

Intel® Iris® Xe and UHD Graphics Open Source

Programmer's Reference Manual

For the 2020-2021 11th Generation Intel Xeon®, Core™, Celeron®,

Pentium® Gold Processors based on the "Tiger Lake" Platform

Volume 13: General Assets

December 2021, Revision 1.0

ii Doc Ref # IHD-OS-TGL-Vol 13-12.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document, with the sole exceptions that a) you may publish an unmodified copy and b) code

included in this document is licensed subject to Zero-Clause BSD open source license (0BSD). You may

create software implementations based on this document and in compliance with the foregoing that are

intended to execute on the Intel product(s) referenced in this document. No rights are granted to create

modifications or derivatives of this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 iii

Table of Contents

General Assets ... 1

MMIO .. 1

Force Wake and Steering Table ... 1

Multicast Steering and Die Recovery ... 9

SW Virtualization Reserved MMIO range .. 11

Register Address Maps .. 11

Graphics Register Address Map... 11

VGA and Extended VGA Register Map ... 11

GUC .. 15

GuC Introduction ... 15

Arming Doorbells .. 17

GuC Shim (GUCSHIM) Register Functions ... 18

GUCSHIM Registers .. 19

Guc DMA (GUCDMA) ... 20

GuC Interrupt (GUCINT) Register Functions ... 22

Observability .. 25

Observability Overview ... 25

GT Power-up/RC6 Exit ... 25

Render Engine Power-up ... 25

Media Engine Power-up ... 25

Resume From Partial GT Power Down .. 26

Trace ... 26

GPU Doorbells ... 43

The Concept and Usage Flow ... 44

Doorbells and Lock ... 50

Interrupts Overview: .. 50

GT Engine Interrupts: ... 52

Hardware Scheduler/MinIA SW Interface .. 53

Host SW Interface .. 53

Interrupt Aggregating Logic ... 54

Doc Ref # IHD-OS-TGL-Vol 13-12.21 1

General Assets

This is the General Assets section.

MMIO

Force Wake and Steering Table

MMIO Range Start MMIO Range End # Bytes Wake Target

Replicated /

 Multicast ? Replication Group Type Inst. Count Steering

00000000 00000AFF 2816

00000B00 00000BFF 256 AON Yes SQIDI 2 subsliceid[0..1]

00000C00 00000DFF 512 AON No - 1 -

00000E00 00000FFF 512 AON No - 1 -

00001000 00001FFF 4096 AON Yes SQIDI 2 subsliceid[0..1]

00002000 000026FF 1792 RENDER No - 1 -

00002700 000027FF 256 GT No - 1 -

00002800 00002AFF 768 RENDER No - 1 -

00002B00 00002FFF 1280 GT No - 1 -

00003000 00003FFF 4096 RENDER No - 1 -

00004000 000041FF 512 GT No - 1 -

00004200 000043FF 512 GT No - 1 -

00004400 000048FF 1280 GT No - 1 -

00004900 00004FFF 1792

00005000 000051FF 512

00005200 000052FF 256 RENDER No - 1 -

00005300 000053FF 256 RENDER No - 1 -

00005400 000054FF 256

00005500 00005FFF 2816 RENDER No - 1 -

00006000 00006FFF 4096 RENDER No - 1 -

00007000 00007FFF 4096 RENDER No - 1 -

00008000 000080FF 256 GT No - 1 -

00008100 0000813F 64 GT No - 1 -

00008140 0000814F 16 RENDER No - 1 -

00008150 0000815F 16 RENDER Yes DSS 6 subsliceid[0..5]

00008160 0000817F 32

00008180 000081FF 128 AON No - 1 -

00008200 000082FF 256 GT No - 1 -

00008300 000084FF 512 RENDER No - 1 -

00008500 000085FF 256 GT No - 1 -

00008600 000086FF 256 GT No - 1 -

00008700 000087FF 256 GT Yes SQIDI 2 subsliceid[0..1]

00008800 00008FFF 2048

00009000 000093FF 1024 GT No - 1 -

00009400 0000947F 128 GT No - 1 -

00009480 000094CF 80

2 Doc Ref # IHD-OS-TGL-Vol 13-12.21

000094D0 0000951F 80 RENDER No - 1 -

00009520 0000955F 64 RENDER Yes DSS 6 subsliceid[0..5]

00009560 000095FF 160 AON No - 1 -

00009600 000097FF 512

00009800 00009FFF 2048 GT No - 1 -

0000A000 0000AFFF 4096 GT No - 1 -

0000B000 0000B0FF 256 RENDER No - 1 -

0000B100 0000B3FF 768 RENDER Yes L3BANK 8 subsliceid[0..7]

0000B400 0000B47F 128 GT No - 1 -

0000B480 0000BFFF 2944

0000C000 0000C7FF 2048 GT No - 1 -

0000C800 0000CFFF 2048 GT No - 1 -

0000D000 0000D3FF 1024 AON No - 1 -

0000D400 0000D7FF 1024 AON No - 1 -

0000D800 0000D8FF 256 RENDER No - 1 -

0000D900 0000DBFF 768 GT No - 1 -

0000DC00 0000DDFF 512 RENDER No - 1 -

0000DE00 0000DE7F 128

0000DE80 0000DEFF 128 RENDER Yes DSS 6 subsliceid[0..5]

0000DF00 0000DFFF 256 RENDER Yes DSS 6 subsliceid[0..5]

0000E000 0000E0FF 256 RENDER Yes DSS 6 subsliceid[0..5]

0000E100 0000E1FF 256 RENDER Yes DSS 6 subsliceid[0..5]

0000E200 0000E3FF 512 RENDER Yes DSS 6 subsliceid[0..5]

0000E400 0000E7FF 1024 RENDER Yes DSS 6 subsliceid[0..5]

0000E800 0000E8FF 256 RENDER Yes DSS 6 subsliceid[0..5]

0000E900 0000EFFF 1792

0000F000 0000F0FF 256 GT No - 1 -

0000F100 0000FFFF 3840 GT No - 1 -

00010000 000147FF 18432

00014800 00014FFF 2048 RENDER No - 1 -

00015000 00016DFF 7680

00016E00 00016FFF 512 RENDER No - 1 -

00017000 00017FFF 4096 RENDER No - 1 -

00018000 00019FFF 8192 RENDER No - 1 -

0001A000 0001BFFF 8192 RENDER No - 1 -

0001C000 0001DFFF 8192

0001E000 0001FFFF 8192

00020000 00020FFF 4096 VD0 No - 1 -

00021000 00021FFF 4096 VD2 No - 1 -

00022000 00022FFF 4096 GT No - 1 -

00023000 00023FFF 4096 GT No - 1 -

00024000 0002407F 128 AON No - 1 -

00024080 0002417F 256

00024180 000241FF 128 GT No - 1 -

00024200 000249FF 2048

Doc Ref # IHD-OS-TGL-Vol 13-12.21 3

00024A00 00024A7F 128 RENDER Yes DSS 6 subsliceid[0..5]

00024A80 000251FF 1920

00025200 0002527F 128 GT No - 1 -

00025280 000252FF 128 GT No - 1 -

00025300 000255FF 768

00025600 0002567F 128 VD0 No - 1 -

00025680 000256FF 128 VD2 No - 1 -

00025700 000259FF 768

00025A00 00025A7F 128 VD0 No - 1 -

00025A80 00025AFF 128 VD2 No - 1 -

00025B00 00025FFF 1280

00026000 00027FFF 8192

00028000 0002FFFF 32768

00030000 0003FFFF 65536 GT No - 1 -

MMIO Range

Start

MMIO Range

End # Bytes

Wake

Target

Replicated

/

 Multicast ?

Replication Group

Type

Inst.

Count Steering

001C0000 001C07FF 2048 VD0 No - 1 -

001C0800 001C0FFF 2048 VD0 No - 1 -

001C1000 001C1FFF 4096 VD0 No - 1 -

001C2000 001C27FF 2048 VD0 No - 1 -

001C2800 001C2AFF 768 VD0 No - 1 -

001C2B00 001C2BFF 256 VD0 No - 1 -

001C2C00 001C2CFF 256

001C2D00 001C2DFF 256 VD0 No - 1 -

001C2E00 001C3EFF 4352

001C3F00 001C3FFF 256 VD0 No - 1 -

001C4000 001C47FF 2048

001C4800 001C4FFF 2048

001C5000 001C5FFF 4096

001C6000 001C67FF 2048

001C6800 001C6AFF 768

001C6B00 001C6BFF 256

001C6C00 001C6CFF 256

001C6D00 001C6DFF 256

001C6E00 001C7EFF 4352

001C7F00 001C7FFF 256

001C8000 001C9FFF 8192 VE0 No - 1 -

001CA000 001CA0FF 256 VE0 No - 1 -

001CA100 001CBEFF 7680

001CBF00 001CBFFF 256 VE0 No - 1 -

001CC000 001CCFFF 4096 VD0 No - 1 -

4 Doc Ref # IHD-OS-TGL-Vol 13-12.21

001CD000 001CDFFF 4096

001CE000 001CEFFF 4096

001CF000 001CFFFF 4096

001D0000 001D07FF 2048 VD2 No - 1 -

001D0800 001D0FFF 2048 VD2 No - 1 -

001D1000 001D1FFF 4096 VD2 No - 1 -

001D2000 001D27FF 2048 VD2 No - 1 -

001D2800 001D2AFF 768 VD2 No - 1 -

001D2B00 001D2BFF 256 VD2 No - 1 -

001D2C00 001D2CFF 256

001D2D00 001D2DFF 256 VD2 No - 1 -

001D2E00 001D3EFF 4352

001D3F00 001D3FFF 256 VD2 No - 1 -

001D4000 001D47FF 2048

001D4800 001D4FFF 2048

001D5000 001D5FFF 4096

001D6000 001D67FF 2048

001D6800 001D6AFF 768

001D6B00 001D6BFF 256

001D6C00 001D6CFF 256

001D6D00 001D6DFF 256

001D6E00 001D7EFF 4352

001D7F00 001D7FFF 256

001D8000 001D9FFF 8192

001DA000 001DA0FF 256

001DA100 001DBEFF 7680

001DBF00 001DBFFF 256

001DC000 001DFFFF 16384

001E0000 001E07FF 2048

001E0800 001E0FFF 2048

001E1000 001E1FFF 4096

001E2000 001E27FF 2048

001E2800 001E2AFF 768

001E2B00 001E2BFF 256

001E2C00 001E2CFF 256

001E2D00 001E2DFF 256

001E2E00 001E3EFF 4352

001E3F00 001E3FFF 256

001E4000 001E47FF 2048

001E4800 001E4FFF 2048

001E5000 001E5FFF 4096

Doc Ref # IHD-OS-TGL-Vol 13-12.21 5

001E6000 001E67FF 2048

001E6800 001E6AFF 768

001E6B00 001E6BFF 256

001E6C00 001E6CFF 256

001E6D00 001E6DFF 256

001E6E00 001E7EFF 4352

001E7F00 001E7FFF 256

001E8000 001E9FFF 8192

001EA000 001EA0FF 256

001EA100 001EBEFF 7680

001EBF00 001EBFFF 256

001EC000 001EFFFF 16384

001F0000 001F07FF 2048

001F0800 001F0FFF 2048

001F1000 001F1FFF 4096

001F2000 001F27FF 2048

001F2800 001F2AFF 768

001F2B00 001F2BFF 256

001F2C00 001F2CFF 256

001F2D00 001F2DFF 256

001F2E00 001F3EFF 4352

001F3F00 001F3FFF 256

001F4000 001F47FF 2048

001F4800 001F4FFF 2048

001F5000 001F5FFF 4096

001F6000 001F67FF 2048

001F6800 001F6AFF 768

001F6B00 001F6BFF 256

001F6C00 001F6CFF 256

001F6D00 001F6DFF 256

001F6E00 001F7EFF 4352

001F7F00 001F7FFF 256

001F8000 001F9FFF 8192

001FA000 001FA0FF 256

001FA100 001FBEFF 7680

001FBF00 001FBFFF 256

001FC000 001FFFFF 16384

00200000 0023FFFF 262144

• The Steering Control Registers reside at the following locations:

• MGSR access point (access initiated by agent outside of GT):

6 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Steering Reg

Addr

Description

1 0xFD0 Access steering towards MCFG endpoints only.

2 0xFD4 Access steering towards MDRB endpoints only

3 0xFD8 Access steering towards SF endpoints only

4 0xFDC Access steering towards all other endpoints (all but above)

• GuC access point:

Steering Reg

Addr

Description

1 0xC060 Access steering towards all GT endpoints

• CS access point:

Steering Reg

Addr

Description

1 0x20CC Access steering towards all GT endpoints

• Note: All Steering Control Registers contain the following fields:

Field Description

multicast 1: Access will be multicast to all replicated endpoints:

• *WRITE* op cycles go to all endpoint instances; sliceid[]/subsliceid[] fields

ignored.

• *READ* op cycles go to all endpoint instances, and responses are

returned from all instances; The MsgCh selects single instance’s

response as the final read return, based on sliceid[]/subsliceid[]

fields.

0: Access will be steered using sliceid[] and subsliceid[] fields below:

• Both *WRITE* and *READ* cycles go to a single instance of an endpoint,

based on sliceid[]/subsliceid[] steering.

Default: 1

Note: The multicast field has no impact for a non-replicated target.

sliceid[] Default: 0

subsliceid[] Default: 0

Doc Ref # IHD-OS-TGL-Vol 13-12.21 7

• The following Replication Group Types exist for multicast MMIO endpoints:

Replication

Group Type

Description / Notes

SQIDI • 2 instances

• subsliceid: 0..1

• all instances are always present.

DSS • LP has max 6 DSS

• subsliceid: 0..5

• Terminated/disabled when the corresponding dss_enable bit is ‘0’

L3BANK • 8 instances

• subsliceid 0..7 to access

• Terminated/disabled when corresponding fuse_gt_l3disable bit is

‘disable’

• Fuse reflections (how to tell when an endpoint is disabled):

Fuse Register reflection

fuse_gt_dssen[5:0] 0x913C[5:0]

fuse_gt_l3_disable[3:0] 0x9118[7:0]

(fuse is replicated into [3:0] and [7:4])

Note: MsgCh termination also occurs when the domains are powered down. (i.e., not necessarily

because the domain is disabled/fused off.) If reading/writing the registers is needed, then force-

wake of the domain is required. Force-wake is not required for shadow register accesses coming

through MGSR.

• The following table captures the force-wake and corresponding acknowledgment register

locations for the various domains:

Domain

Driver

 ForceWake

 Req

Driver

 ForceWake

 Ack

GuC

 ForceWake

 Req

GuC

 ForceWake

 Status Comment

AON NA NA NA NA Registers sit outside of the C6 boundary. No

ForceWake required.

GT 0xA188 0x00130044 NA NA

Render 0xA278 0x0D84 0xA27C 0xA2A0[1]

VDBOX0 0xA540 0x0D50 0xA274[0] 0xA2A0[0]

8 Doc Ref # IHD-OS-TGL-Vol 13-12.21

VDBOX1 0xA544 0x0D54 0xA274[1] 0xA2A0[0]

VDBOX2 0xA548 0x0D58 0xA274[2] 0xA2A0[2]

VDBOX3 0xA54C 0x0D5C 0xA274[3] 0xA2A0[2]
As available in the product

VDBOX4 0xA550 0x0D60 0xA274[4] 0xA2A0[3]
As available in the product

VDBOX5 0xA554 0x0D64 0xA274[5] 0xA2A0[3]
As available in the product

VDBOX6 0xA558 0x0D68 0xA274[6] 0xA2A0[4]
As available in the product

VDBOX7 0xA55C 0x0D6C 0xA274[7] 0xA2A0[4]
As available in the product

VEBOX0 0xA560 0x0D70 0xA274[8] 0xA2A0[0]
As available in the product

VEBOX1 0xA564 0x0D74 0xA274[9] 0xA2A0[2]
As available in the product

VEBOX2 0xA568 0x0D78 0xA274[10] 0xA2A0[3]
As available in the product

VEBOX3 0xA56C 0x0D7C 0xA274[11] 0xA2A0[4]
As available in the product

• Miscellaneous Notes:

• The MsgCh network has termination points, where cycles to endpoints that are disabled (fused-

off, powered off, etc…) are gracefully completed. The termination node on the network will sink P

cycles, and return dummy completions for NP cycles, on behalf of the disabled endpoints.

• Access requirements to registers that are part of GTMMADDR but not listed in the GT MMIO map

table is defined elsewhere. This descriptions in this document only cover GT range (GT MMIO map

xls.)

Doc Ref # IHD-OS-TGL-Vol 13-12.21 9

Multicast Steering and Die Recovery

Some units in GT are replicated multiple times in the design, each with their own register storage local to

that instance.

• In some cases, each replica/instance gets its own MMIO address range of offsets – for example,

the multiple CCS command streamers, multiple VDBox/VEBox instances. For those, direct register

access targets the only instance of that registers. The programming model described on this page

is moot for those cases where each register has unique address.

• In other cases, the multiple instances of the unit use the same MMIO address on message

channel. For these cases, the message channel provides additional capabilities to address the

instances for read/write operations in either multicast (targeting all instances) or unicast modes

(target specific instance) via a set of “steering registers” which can be configured to direct the

access as desired. The steering registers have 3 fields: Multicast/Unicast, Sliceid, Subsliceid.

o Multicast write access - write goes to all instances; sliceid/subsliceid fields are ignored

o Multicast read access – read goes to all instances and all instances generate read

response; message channel selects single instance’s response as the final read return

(based on the steering register slice/subslice fields)

o Unicast write access – write goes to only the instance specified in the steering register

o Unicast read access – read goes to only the instance specified in the steering register

o In some replicated units, all of the replicated instances always “enabled” from a message

channel perspective (never fused off/separately power gated) and thus all instances are

always accessible if the containing power well is on (e.g. if GT is out of RC6)

o In some replicated units, there are die recovery/fuse down modes where some instances

are fused off/disabled. For the latter, GT also contains MMIO registers which allow SW to

detect which instances are fused as enabled/disabled (generally 1-hot). When this fuse

down case applies, message channel is aware of the fusing and provides automatic

termination of cycles toward disabled instances (writes get dropped with dummy NP

completion if NP write; reads get dummy completion with 0 read return value from that

instance). The fuse mirror register provides a mechanism for SW to know which instances

are valid and to program the steering register toward enabled instances when needed –

see comments below.

General rules:

• Some of these replicated registers are control registers which are generally expected to be all

programmed with the same value – for these, writes should generally be multicast and reads can

target any enabled instance (since all instances should contain the same value from prior

multicast write).

• Some replicated registers are status registers and are expected to have different values as part of

normal usage (for example, INSTDONE registers related to Sampler, Slice common; TDL thread

10 Doc Ref # IHD-OS-TGL-Vol 13-12.21

status, etc). For these typical usage model would be to either iterate over all enabled instances or

select specific single instance to target.

• If an instance is disabled (access terminated on message channel via the fuse info above or if

containing power well is power gated), reads from that instance will return 0s and writes are

silently dropped. Since the default for the steering registers is multicast read with

sliceid=subsliceid=0, the default hardware behavior is to return data from instance that

corresponds with sliceid/subsliceid = 0. If that instance is disabled, message channel will return a

dummy response (0). In order to get correct/valid value the steering registers must be used to

access a valid instance.

o Note that a common usage model is for SW/FW to initializing specific bits in control

register by reading the current/default value, then modifying the value in memory

(set/clear few bits), and then write the result back.

o For these cases, SW must ensure that it uses the steering registers to steer to an enabled

instance when performing the initial read.

• When performing engine and power context save restore, GT hardware is aware of the fuses and

internally targets reads for context save toward the first enabled instance.

• In cases where steering registers are being programmed, caution must be exercised to ensure

that there is no race condition/concurrent access between two different initiators using a given

steering register. SW must protect against concurrent access by multiple threads to any given

steering register. System level flows must also guard against concurrent access by Firmware

(CSC/FSP FW, Punit pCode) and driver tools to any given steering register.

o Multicast is the hardware default. If an agent sets a steering register to unicast mode, they

should generally set it back to multicast after completion.

o In some projects there are separate steering registers listed are intended to allow for

some degree of concurrency between different usages targeting different destinations in

GT by replication group.

▪ MGSR uses the MMIO offset requested in the inbound cycle to select which

steering register to use for routing.

▪ MGSR uses SAI policy registers to identify sources as “IA” (low privilege cfg_src on

message channel) vs “HW” (high privilege – includes trusted firmware such as

CSC/FSP, Pcode)

▪ See project specific documentation for the list of steering registers and their

intended use.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 11

SW Virtualization Reserved MMIO range

The MMIO address range from 0x178000 thru 0x178FFF is reserved for communication between a VMM

and the GPU Driver executing on a Virtual Machine.

HW does not actually implement anything within this range. Instead, in a SW Virtualized environment, if

a VM driver issues a read to this MMIO address range, the VMM will trap that access, and provide

whatever data it wishes to pass to the VM driver. In a non-SW-Virtualizated environment (including an

SR-IOV Virtualized environment), reads will return zeros, like any other unimplemented MMIO address.

Writes to this range are always ignored.

It is important that no "real" HW MMIO register be defined within this range, as it would be inaccessable

in a SW-virtualized environment.

Register Address Maps

Graphics Register Address Map

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers.

Individual register bit field descriptions are provided in the following chapters. PCI configuration address

maps and register bit descriptions are provided in the following chapter.

VGA and Extended VGA Register Map

For I/O locations, the value in the address column represents the register I/O address. For memory

mapped locations, this address is an offset from the base address programmed in the MMADR register.

VGA and Extended VGA I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h-

3B3h

Reserved Reserved

3B4h VGA CRTC Index (CRX) (monochrome) VGA CRTC Index (CRX) (monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h-

3B9h

Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh-

3BFh

Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/

 VGA Attribute Controller Data (alternating writes select ARX or

write ARxx Data)

3C1h VGA Attribute Controller Data

 (read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register (MSR)

12 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Address Register Name (Read) Register Name (Write)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index (DACRX)

3C8h VGA Color Palette Write Mode Index

(DACWX)

VGA Color Palette Write Mode Index (DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register

(MSR)

Reserved

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx)

3D0h-

3D1h

Reserved Reserved

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions

Index (XRX)

GFX/2D Configurations Extensions Index (XRX)

3D7h GFX/2D Configurations Extensions

Data (XRxx)

GFX/2D Configurations Extensions Data (XRxx)

2D Registers

3D8h-

3D9h

Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh-

3DFh

Reserved Reserved

Indirect VGA and Extended VGA Register Indices

The registers listed in this section are indirectly accessed by programming an index value into the

appropriate SRX, GRX, ARX, or CRX register. The index and data register address locations are listed in

the previous section. Additional details concerning the indirect access mechanism are provided in the

VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or CRxx sections).

Doc Ref # IHD-OS-TGL-Vol 13-12.21 13

2D Sequence Registers (3C4h / 3C5h)

Index Sym Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset

01h GR01 Enable Set / Reset

02h GR02 Color Compare

03h GR03 Data Rotate

04h GR04 Read Plane Select

05h GR05 Graphics Mode

06h GR06 Miscellaneous

07h GR07 Color Don't Care

08h GR08 Bit Mask

10h GR10 Address Mapping

11h GR11 Page Selector

18h GR18 Software Flags

2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

14 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Index Sym Register Name

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Overscan Color

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

Doc Ref # IHD-OS-TGL-Vol 13-12.21 15

Index Sym Register Name

22h CR22 Memory Read Latch Data

GUC

GUC is part of the System Interfaces Volume.

GuC Introduction

GuC is an embedded micro-controller in the graphics sub-system that is designed to perform graphics

workload scheduling on the various graphics parallel engines. In this scheduling model, host software

submits work through one of the 256 graphics doorbells and this invokes the micro-kernel running on

the GuC core to perform the scheduling operation on the appropriate graphics engine.

Scheduling operations include determining which workload to run next, submitting a workload to a

command streamer, pre-empting existing workloads running on an engine, monitoring progress and

notifying host SW when work is done. To perform these actions, the GuC requires access to a wide range

of assets within the graphics subsystem. The GuC has access to the entire graphics device MMIO register

space to allow it to schedule work on any graphics engine.

The code that runs on the GuC is provided by the graphics driver (KMD) during the boot-up and graphics

initialization phase. Code provided by the driver is copied from graphics memory and authenticated

before execution.

From a functional perspective, the GuC sub-system has the following blocks:

• A Shim block that provides an interface between the micro-controller and rest of the graphics

assets.

• An interrupt block that aggregates all the notifications coming from various graphics engines and

communicates them to the GuC micro-controller for action. The interrupt block supports

(programmable) prioritized delivery of events.

• A DMA engine to allow efficient copy of large blocks of data between memory and internal SRAM.

During GuC initialization phase, this DMA engine is available to the host SW to load the GuC

micro-kernel. Once the micro-kernel is successfully loaded into GuC, the access to the DMA engine

is restricted to the code running on the GuC.

• It also has additional infrastructure to receive notification that are required for scheduling

(semaphores from engines, page faults/faults-cleared from Memory interface, etc)

• A GuC power management unit that determines when all the GuC components are idle and

supports the power management protocol with the Power Management unit.

Once code is loaded successfully, the primary method of communication with GuC is through the

workload doorbells and a GuC/host interrupt mechanism. GuC automatically saves and restores its code

image across RC6 power states, so no host intervention is required during these power transitions.

16 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Terminology

Description Software Use Must Be Implemented As

Read/Write, R/W This bit can be read or written.

Reserved Do not assume a value for these bits.

Writes have no effect.

Writes are ignored. Reads return zero.

Reserved: must

be zero, MBZ

Software must always write a zero to

these bits. This allows new features to

be added using these bits that will be

disabled when using old software and

as the default case.

Writes are ignored. Reads return zero. Maybe be

connected as Read/Write in future projects.

Reserved: PBC,

software must

preserve contents

Software must write the original value

back to this bit. This allows new

features to be added using these bits.

Read only or test mode Read/Write.

Read Only This bit is read only. The read value is

determined by hardware. Writes to

this bit have no effect.

According to each specific bit. The bit value is

determined by hardware and not affected by register

writes to the actual bit.

Read/Clear,

Read/Write Clear

This bit can be read. Writes to it with a

one cause the bit to clear.

Hardware events cause the bit to be set and the bit is

cleared on a write operation where the corresponding

bit has a one for a value.

Double Buffered
Write when desired. Read gives the

unbuffered value (written value)

unless specified otherwise. Written

values will update to take effect after

a certain point.

Some have a specific arming

sequence where a write to another

register is required before the update

can take place. This is used to ensure

atomic updates of several registers.

Two stages of registers used. First stage is written into

and used for readback (unless specified otherwise). First

stage value is transferred into second stage at the

update point. Second stage value is used to control

hardware. Arm/disarm flag for specific arming

sequences.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 17

Arming Doorbells

As indicated in the Workload submission section, doorbell rings signal request for work to be submitted

to hardware.

Doorbells need to be configured (armed) before they can be rung. Following sections describe the

sequence.

Arming Memory Based Doorbells

Doorbells (As described in the GPU doorbells section in the "Memory View" chapter) are used to submit

work to the hardware. Each doorbell monitors a memory address (cacheline) that detects a write to the

cacheline and generates an interrupt to the MinIA core.

A distributed doorbells infrastructure is provided. Distributed doorbell units save doorbells in parallel so

there are some performance benefits if SW distributes doorbells evenly across Doorbell Units. Hence the

infrastructure allows SW to explicitly pick the IDI (ring interface) on which the doorbell needs to be

installed.

The memory address programmed into the doorbell register needs to be Physical address. Since

addresses are hashed on IDI (physical address based hashing), this address needs to have specific

attributes to land on a specific IDI. To enable this Graphics KMD picks the doorbell Page Address, GuC

Shim HW computes the cacheline address within the page.

When virtualization is enabled, the memory address provided by the Graphics Kernel Mode Driver needs

to be translated from Guest Physical Address(GPA) to Host Physical Address(HPA) before getting

programmed into the doorbell register. To conform to the security requirements of virtualization where

only Virtual Machine Manager is aware of the HPA values, the GPA --> HPA translation is automatically

done by GuC Shim HW as described below. The Guc Shim computes the cacheline address based on the

HPA of the doorbell page address and this is returned to the KMD so that it has a fully formed Doorbell

cacheline address.

Note that the hashing algorithm is different depending on how many LLC/CBO slices are present in the

part. GT receives a fuse value at manufacturing that indicates which hashing rule should be used. That

fuse value is not communicated directly to GUC hardware; instead, the Graphics Kernel Mode Driver is

required to copy information about the hashing mode fuse from a register in the GT perimeter

(SNOOP_FILTER_Q_STATUS - offset 0xB00[30]) to the GUC shim (SHIM_CTRL_GUC0_REG - offset

0xC068[10]). Driver must do this prior to arming any doorbells. Note that this value is retained across

RC6 cycles but is lost on FLR, warm/cold reset, etc. Thus driver must program this value on every driver

start/load as well as after any driver initiated FLR. Stated differently, any time driver loads GUC firmware,

it should also perform this B00[30]-> C068[10] copy operation.

Doorbell Arming Sequence

• The memory page address to be monitored is picked by the Graphics Kernel Mode Driver and

provided to the MinIA FW.

• Graphics KMD communicates the doorbell details to MinIA FW: Doorbell memory Page-address to

be monitored, IDI#, Doorbell ID

18 Doc Ref # IHD-OS-TGL-Vol 13-12.21

• MinIA FW computes Doorbell MMIO

• MinIA FW programs the memory address to be monitored to the doorbell range: 0x1000 - 0x17FF

range.

• GuC Shim HW intercepts the Doorbell MMIO targeted cycles to provide a GPA --> HPA translation

and installs the translated address into the doorbell. Using the returned HPA, HW also computes

the appropriate cacheline address that is returned to the FW for propagaton back up to the KMD.

Detailed HW sequence is described below.

• MinIA FW monitors register 0xC090 and 0xC094 waiting for HW to signal completion of the

doorbell install step and then checks status to determine if this was completed successfully.

GuC Shim (GUCSHIM) Register Functions

The GuC Shim provides the interface between GuC and the rest of GT. It is comprised of the various

status registers that communicate the current state of the GuC, the infrastructure to setup the address

space for GuC operation and interface with message channel.

Context: The following table provides a view of the GuC address space

Address Top

Address

Bottom Space Description

0xFFFF_FFFF 0xFFE0_0000 Graphics MMIO 2 MB off the top of the 4GB space

0xFFDF_FFFF 0xFEE0_1000 Hole

0xFEE0_0FFF 0xFEE0_0000 LAPIC 4KB that houses the Local APIC registers. The accesses to this

region are redirected to the LAPIC before they get to the shim

decoder.

0xFEDF_FFFF WOPCM_TOP DRAM -

Graphics

Memory

Section should be decoded as:

Upper bound: 4GB - 2MB(Gfx mmio) - 16MB

Lower bound: 80KB Lower bound accounts for 16KB + 64KB

WOPCM_TOP-

1

0x0006_8000 DRAM -

WOPCM

Write Only Protected Content Memory (WO-PCM)

 This allows for code to straddle SRAM and memory (as

described later)

0x0006_7FFF 0x0000_8000 SRAM space 384 KB SRAM

 This gets loaded with the GuC micro-kernel. The GuC may also

use portion of the SRAM for its data, stack, and other required

components.

0x0000_7FFF 0x0000_0000 Boot ROM 32 KB of BootROM for

Initialization and authentication code that the GuC first jumps to

is located here.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 19

Context: MinuteIA L1 Cacheability

By default, the Shim uses the following rules for caching in the MinuteIA L1 cache.

• 0xFEE0_0000 - 0xFFFF_FFFF: Un-Cached (Covers the 2MB Gfx address space + 16MB hole)

• 0x0000_0000 - 0xFEDF_FFFF: Cached (Everything below)

• By default, MinIA treats all WOPCM cycles as WB while Gfx-GTT cycles are WT. If C064[16] is set, all cycles

(below xFFE0_0000) from MinIA are WB.

Graphics driver can create an Un-cached region window in the lower range described above, by programming the

Non_Cacheable_Region_Base and Non_Cacheable_Region_Limit registers.

When using the GuC DMA engine to load the HuC uKernel, the status can be obtained by reading:

• GuC's BOOT_HASH_CHK register (0xc010 bit 8) to see if a HuC uKernel loading had been

attempted, and

• HuC's HUC_STATUS2 register (0xd3b0 bit 7) to check whether or not the HuC uKernel was

successfully loaded.

GUCSHIM Registers

Register

GUC_STATUS - Global MicroController Status

JMP_DEST - Jump Location

MIA_FORCE_FENCE - Minute IA Force Fence

MIA_INV_TLB - Minute IA Force TLB Invalidate

UOS_FULL_HASH_LO - uOS Full Hash Low

UOS_FULL_HASH_HI - uOS Full Hash High

SOFT_SCRATCH - Soft Scratch

UOS_RSA_SCRATCH - RSA for uOS/Soft Scratch

20 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Guc DMA (GUCDMA)

The DMA engine allows the MinuteIA core to move data back and forth efficiently from the various

memory segments listed below. Note that the DMA engine supports more than current required usage

models. Memory segments supported:

• Global GTT mapped memory

• Per Process GTT mapped memory

• WOPCM

• SRAM

The MinIA is a 32 bit engine so it cannot generate an address greater than 4 GB. Thus any data that the

MinIA core has to access must be located <4 GB in the graphics address space. The graphics address

generated by the MinIA core goes through the regular graphics page table walk to derive the physical

address that can be above 4 GB.

The DMA engine supports the full 48 bit addressing so it can be used by the MinIA core to get to the

address regions above 4 GB. The MinIA core programs this DMA engine through registers that are

mapped into the Gfx MMIO.

The DMA Registers

GUCDMA uses two 64-bit registers (4 DWord registers) to indicate the 48-bit Source and Destination

addresses along with fetch type indication etc. Bit 1 of the DMA Control Register (described later) pins

DMA Address Register 0 to Source addressing or Destination, and vice versa for DMA Address Register 1.

By default, DMA Address Register 0 is assigned to Source addressing and DMA Address Register 1 to

Destination addressing.

Register

DMA_ADDR_0_LOW - DMA Address Register 0 Low

DMA_ADDR_0_HIGH - DMA Address Register 0 High

DMA_ADDR_1_LOW - DMA Address Register 1 Low

DMA_ADDR_1_HIGH - DMA Address Register 1 High

DMA_COPY_SIZE - DMA Copy Size

DMA_CFG - DMA Configuration

DMA_CTRL - DMA Control

Doc Ref # IHD-OS-TGL-Vol 13-12.21 21

Programming Note

Context: The DMA Registers

Notes:

• The DMA engine can be deactivated by setting the Disable-GuC fuse. If this fuse is set, the DMA engine is

rendered inoperable, so it cannot be used to load a GuC uOS or move any data. On a product that intends to

use GuC, this fuse shall be zero.

• The lower 6 bits of addressing of both Source and Destination addresses must be same. There is no provision

for barrel rotation across byte locations, during a DMA Transfer.

• The following restrictions shall be followed for placement of uOS and uApps:

• uOS and uApps are always located on a 64-byte aligned address.

• uApps are not automatically loaded into SRAM by HW. uKernel must explicitly copy a uApp into SRAM from

WOPCM when using it.

• Once the ukernel and the uApps have been loaded successfully into the WOPCM area, the HW shall not

allow DMA operation to overwrite them.

• Before programming the DMA engine to access memory in the Per Process GTT address space, GuC SW

must setup the PPGTT by programming registers: These registers are located in the GUC_PM unit (offsets:

0xC3B8 - 0xC3F0):

• CTXT_INFO

• PDP0, PDP1, PDP2, PDP3

• PPGTT_ENABLE

• The GuC DMA engine also provides support for loading the HuC micro-kernel. To load a third party HuC

ukernel, the third party GuC ukernel must be loaded first. An authenticated GuC ukernel can then be invoked

to load a HuC ukernel. (If a third party HuC ukernel is loaded first, there is no way to clear the ME_DATA

registers - thus locking out the ability to load a third party GuC).

• GuC DMA HW checks for the following illegal cases and rejects the DMA invocation (DMA will not happen):

Illegal Case

GuC WOPCM Base & GuC WOPCM Size is not programmed (for copy

to/from WOPCM) 0xC050 and 0xC340

DMA copy into GuC WOPCM that does not fit into the GuC WOPCM

DMA copy into SRAM that falls off the SRAM edge (except for uKernel

copy)

DMA size is set to 0

22 Doc Ref # IHD-OS-TGL-Vol 13-12.21

GuC Interrupt (GUCINT) Register Functions

This section discusses the register functions for GuC Interrupt. Registers in this section are:

Functionality

Interrupt Group Registers

Doorbell Group Registers

Engine Interrupt Regiters

GuC Timer Registers

GuC DMA Interrupt Registers

GuC Host Registers

Interrupt Group Registers

GUCINT uses two registers to map all incoming interrupts to the 256-bit interrupt vector sent to the

LAPIC. Internal to the LAPIC, the 256-bit interrupt vector is organized as 16 groups of 16 vectors. GUCINT

maps each group of interrupts to a single group in the vector sent to LAPIC. Note that the higher the

group number, the higher the priority of the group of interrupts to which it is assigned.

Interrupt Group Registers

INTR_GROUP_1 - Interrupt Group 1

INTR_GROUP_0 - Interrupt Group 0

The following interrupt groups are supported:

Interrupt Group

Doorbells (counts as 8 groups)

Semaphores

Engines

IOMMU

DMA/TIMER/FLR

HOST

Each group of interrupts needs 4 bits to map to the correct group in the 256-bit vector.

Interrupt Group 0 Register maps the 8 groups of Doorbells. Interrupt Group 1 Register maps the

remaining 5 groups listed above.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 23

Programming Note

Context: Interrupt Group Registers

• All groups must be unique. Only Doorbell groups may share a value with another doorbell

group.

• The group value cannot be 4'h1. That is illegal. This restriction applies to both GROUP

registers.

• Group values cannot dynamically change from one nonzero value to a different nonzero value.

Doorbell Group Registers

There is a Doorbell Control Register in GUCint, which has a single doorbell_rung bit for each one of the

eight Doorbell Registers located in GTI (1900 - 191C). GTI sets this GuC Register bit when the

corresponding Doorbell register GTI houses, has that GTI register value going from all 0s to having any

one bit set (any one of the 32 doorbells in that doorbell group gets rung).

GTI could set multiple first_doorbell_rung bits in a single message to the GuC based Doorbell Control

Register (corresponding to several doorbells rung in different doorbell group registers in GTI). Once a

doorbell_rung bit is set for a group in the Doorbell Control Register, it is not updated until GUCINT reads

the corresponding GTI doorbell register, at which time the corresponding rung_bit is reset.

The doorbell control register also holds 1 bit (send to Mini-Core) that routes interrupts to host or Mini-

Core. By default, interrupts are sent to host. This bit must be set by software (running on Mini-Core or

host) to route interrupts to Mini-Core.

GUC_DB_ISR_7 - GuC Doorbell Group 7 Interrupt Status

GUC_DB_ISR_6 - GuC Doorbell Group 6 Interrupt Status

GUC_DB_ISR_5 - GuC Doorbell Group 5 Interrupt Status

GUC_DB_ISR_4 - GuC Doorbell Group 4 Interrupt Status

GUC_DB_ISR_3 - GuC Doorbell Group 3 Interrupt Status

GUC_DB_ISR_2 - GuC Doorbell Group 2 Interrupt Status

GUC_DB_ISR_1 - GuC Doorbell Group 1 Interrupt Status

GUC_DB_ISR_0 - GuC Doorbell Group 0 Interrupt Status

DOORBELL_CTRL - Doorbell Control

Engine Interrupt Registers

GUC gets Engine Event interrupts from various engines (Render, Copy, Compute, Video Decode, Video

Enhancment ..).

GUCINT also gets Engine Event interrupts from OA.

The engines support a variety of interrupts that may not be interesting to GuC from a scheduling point of

view. GUCINT provides an infrastructure to redirect engine interrupts to the host driver without invoking

24 Doc Ref # IHD-OS-TGL-Vol 13-12.21

the Mini-Core firmware. This infrastructure allows software to specify on a per engine and per interrupt

granularity the interrupts that must be delivered to Mini-Core or simply forwarded to the host (bypassing

the MiniCore).

Command Streamer Status Information

During execution, the Command Streamer Status is sent to the GuC.

Programming Note

Context: Context Status Buffer Initialization

GuC CSB FIFO’s are implemented on device reset domain, its possible following GFX Reset (All engines and GuC are

reset) there are unprocessed entries present in the engine CSB FIFO’s. GuC FW as part of the GuC initialization flow

must ensure the engine CSB FIFO’s are drained and empty before scheduling contexts to the engines.

CSB Read Port

The following RO registers are for use by GuC FW or host. SW must read twice to obtain a single CSB

entry: the first read returns bits[31:0]; the second read returns [63:32].

CS CSB

BCS CSB

VCS CSB

VECS CSB

CSB FIFO Status Registers

The following RO registers hold the status of each Command Streamer's CSB FIFO:

CS CSB Fifo Status Register

BCS CSB Fifo Status Register

VCS CSB Fifo Status Register

VECS CSB Fifo Status Register

Guc DMA Interrupt Registers

GUC_DMA_IIR - GuC DMA Interrupt Input

The DMA generates this message interrupt at the completion of a programmed DMA transfer.

Guc Host Registers

GuC and Host(IA) communicate with each other through interrupts.

• A Host-to-GUC interrupt is generated by Host SW writing to 0xC4C8. The written data will get

stored in 0xC590 and an interrupt will be generated to GuC.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 25

• A GUC-to-Host interrupt is generated by GuC FW writing to 0xC4B8 - this generates a 16bit vector

to the host (this 16b vector is shared by GuC HW and GuC FW. FW write can only set FW owned

bits)

GUC_HOST_INTR_IIR - GuC Host Interrupt Interrupt Input

Observability

Observability Overview

As GFX-enabled systems and usage models have grown in complexity over time, a number of hardware

features have been added to provide more insight into hardware behavior while running a commercially

available operating system. This chapter documents these features with pointers to relevant sections in

other chapters. Supported observability features include:

Feature

Performance counters

Internal node tracing

Note: This chapter describes the registers and instructions used to monitor GPU performance. Please

review other volumes in this specification to understand the terms, functionality and details for specific

Intel graphics devices.

DFD Configuration Restore

Since DFD logic does not usually add value to end user usage models and its configuration space is large

(which would add latency to power management restore flows), it is typically not enabled during normal

operation for optimal power & performance. Hence, additional steps are required when DFD

functionality is needed in combination with system configurations where GT logic loses power/is reset.

The basic strategy per scenario is detailed below.

GT Power-up/RC6 Exit

Strategy

Replicate failure without power management

Configure the DFD restore feature

Render Engine Power-up

Configure the RCS RC6 W/A batch buffer to restore render engine DFD configuration ONLY.

Media Engine Power-up

Configure the applicable media command stream W/A batch buffer to restore media engine DFD

configuration ONLY.

26 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Resume From Partial GT Power Down

For cases where SW is aware of power well state, re-apply DFD configuration.

For cases where SW is not aware of power well state, configure the per-context W/A batch buffer to

apply the DFD configuration on every context load.

Trace

This section contains the following contents:

Feature

• Performance Visibility

Performance Visibility

Motivation For Hardware-Assisted Performance Visibility

As the focus on GFX performance and programmability has increased over time, the need for hardware

(HW) support to rapidly identify bottlenecks in HW and efficiently tune the work sent to same has

become correspondingly important. This part of the BSpec describes the HW support for Performance

Visibility.

Performance Event Counting

An earlier generation introduced dedicated GFX performance counters to address key issues associated

with existing chipset CHAPs counters (lack of synchronization with GFX rendering work and low sampling

frequency achievable when sampling via CPU MMIO read). Furthermore, reliance on SoC assets created a

cross-IP dependency that was difficult to manage well. Hence, the approach since that earlier generation

has been to use dedicated counters managed by the graphics device driver for graphics performance

measurement. The dedicated counter values are written to memory whenever an

MI_REPORT_PERF_COUNT command is placed in the ring buffer.

While this approach eliminated much of the error associated with the previous approaches, it is still

limited to sampling the counters only at the boundaries between ring commands. This inherently limited

the ability of performance analysis tools to drill down into a primitive, which can contain thousands of

triangles and require several hundreds of milliseconds to render. It is further worth noting that precise

sampling via MI_REPORT_PERF command requires flushing the GFX pipeline before and after the work of

interest. The overhead of flushing the GFX pipeline can become large if the work of interest is small,

hence reducing the accuracy of the performance counter measurement. In such situations, the flush can

be removed or internally triggered reporting can be used with some resulting loss of precision in which

draws/dispatches are being profiled.

Additionally, Intel design and architecture teams found that the existing silicon-based performance

analysis tools provided only a general idea of where a problem may exist but were not able to pin point a

problem. This was generally because the counter values are integrated across a very large time period,

washing out the dynamic behavior of the workload.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 27

All OA config registers are tied to GT global reset and hence are not affected by per-engine resets (e.g.

render only reset).

OA Programming Guidelines

SW utilizing OA HW is expected to monitor the overflow/lost report status for the OABUFFER and

respond as appropriate for the active usage model.

In order for OA counters to increment the 'Counter Stop-Resume Mechanism' bit of the

OACTXCONTROL register must be set. This requires a RCS context with this bit set be loaded, and either

RCS force wake be enabled or the RCS context be left active for the duration of the window this counter

is needed for.

In general, OA is effectively unable to count between the power context save that happens prior to GFX

entering RC6 and the power context restore that occurs on the next RC6 exit. This limitation results from

the fact that the counters themselves are power context save/restored and hence the counts that (may)

have accumulated in this time window are overwritten by the saved values that are read back from the

power context save area. An example of the kind of information that can be missed is the GTI traffic

resulting from the power context save of OA itself. The size of this performance counting blind spot is

microarchitecturally minimized as much as reasonably possible but still varies from device to device.

Legacy OACS functionality is now logically split into two functions called OAG (OA Global) and OAR (OA

Render). Summary of the blocks is as follows:

OAG:

• Handles OA buffer and timer/internally-triggered sampling.

• Is unaffected by engine reset / power well status.

• Is inaccessible by non-privileged batch buffers but accessible by all command streamers / GuC /

CPU.

• Implements free-running utilization counters.

• Is GT power context save/restored.

• Is only allowed to access global GTT memory.

OAR:

• Is expected to behave as a part of the render engine from a clocking/power well/reset perspective.

• Implements MI_REPORT_PERF command.

• Is render context save/restored, making all values reported by MI_REPORT_PERF per-context.

• Must be initialized to power-on default values as part of RCS golden context creation (please refer

to RCS section describing golden context creation for full details) or implementation-specific

undesirable behavior may occur.

• Doesn't support timer/internally-triggered sampling.

• Can be enabled/disabled independent from OAG.

Is only intended to be accessed by RCS, access from other command streamers / CPU may have

implementation-specific negative side-effects.

28 Doc Ref # IHD-OS-TGL-Vol 13-12.21

HW Support

This section contains various reporting counters and registers for hardware support for Performance

Visibility.

Performance Counter Report Formats

Counters layout for various values of select from the register:

Counters layout for various values of the "Counter Select" from the register:

Counter Select = 000

A-Cntr 10

(low dword)

A-Cntr 9

(low dword)

A-Cntr 8

(low dword)

A-Cntr 7

(low dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 18

(low dword)

A-Cntr 17

(low dword)

A-Cntr 16

(low dword)

A-Cntr 15

(low dword)

A-Cntr 14 (low

dword)

A-Cntr 13

(low dword)

A-Cntr 12 (low

dword)

A-Cntr 11

(low dword)

Counter Select = 010

A-Cntr 10

(low dword)

A-Cntr 9

(low dword)

A-Cntr 8

(low dword)

A-Cntr 7

(low dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 18

(low dword)

A-Cntr 17

(low dword)

A-Cntr 16

(low dword)

A-Cntr 15

(low dword)

A-Cntr 14 (low

dword)

A-Cntr 13

(low dword)

A-Cntr 12 (low

dword)

A-Cntr 11

(low dword)

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-cntr 0

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0

Counter Select = 111

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 GPU_TICKS CTX ID TIME_STAMP RPT_ID

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

OAR Report Format (Counter Select = 0b101):

A-Cntr 3

(low dword)

A-Cntr 2

(low dword)

A-Cntr 1

(low dword)

A-Cntr 0

(low dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 11

(low dword)

A-Cntr 10

(low dword)

A-Cntr 9

(low dword)

A-Cntr 8

(low dword)

A-Cntr 7 (low

dword)

A-Cntr 6

(low dword)

A-Cntr 5 (low

dword)

A-Cntr 4

(low dword)

A-Cntr 19

(low dword)

A-Cntr 18

(low dword)

A-Cntr 17

(low dword)

A-Cntr 16

(low dword)

A-Cntr 15 (low

dword)

A-Cntr 14

(low dword)

A-Cntr 13 (low

dword)

A-Cntr 12

(low dword)

A-Cntr 27

(low dword)

A-Cntr 26

(low dword)

A-Cntr 25

(low dword)

A-Cntr 24

(low dword)

A-Cntr 23 (low

dword)

A-Cntr 22

(low dword)

A-Cntr 21 (low

dword)

A-Cntr 20

(low dword)

A-Cntr 35

(low dword)

A-Cntr 34

(low dword)

A-Cntr 33

(low dword)

A-Cntr 32

(low dword)

A-Cntr 31 (low

dword)

A-Cntr 30

(low dword)

A-Cntr 29 (low

dword)

A-Cntr 28

(low dword)

High bytes

of A31-A28

High bytes

of A27-A24

High bytes

of A23-A20

High bytes

of A19-A16

High bytes of

A15-A12

High bytes

of A11-A8

High bytes of

A7-A4

High bytes

of A3-A0

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

Doc Ref # IHD-OS-TGL-Vol 13-12.21 29

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0

OAG Report Format (Counter Select = 0b101)

A-Cntr 3

(low dword)

A-Cntr 2

(low dword)

A-Cntr 1

(low dword)

A-Cntr 0

(low dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 11

(low dword)

A-Cntr 10

(low dword)

A-Cntr 9

(low dword)

A-Cntr 8

(low dword)

A-Cntr 7 (low

dword)

A-Cntr 6

(low dword)

A-Cntr 5 (low

dword)

A-Cntr 4

(low dword)

A-Cntr 19

(low dword)

A-Cntr 18

(low dword)

A-Cntr 17

(low dword)

A-Cntr 16

(low dword)

A-Cntr 15 (low

dword)

A-Cntr 14

(low dword)

A-Cntr 13 (low

dword)

A-Cntr 12

(low dword)

A-Cntr 27

(low dword)

A-Cntr 26

(low dword)

A-Cntr 25

(low dword)

A-Cntr 24

(low dword)

A-Cntr 23 (low

dword)

A-Cntr 22

(low dword)

A-Cntr 21 (low

dword)

A-Cntr 20

(low dword)

A-Cntr 35

(low dword)

A-Cntr 34

(low dword)

A-Cntr 33

(low dword)

A-Cntr 32

(low dword)

A-Cntr 31 (low

dword)

A-Cntr 30

(low dword)

A-Cntr 29 (low

dword)

A-Cntr 28

(low dword)

High bytes

of A31-A28

High bytes

of A27-A24

High bytes

of A23-A20

High bytes

of A19-A16

High bytes of

A15-A12

High bytes

of A11-A8

High bytes of

A7-A4

High bytes

of A3-A0

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0

Counter Select = 111

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 GPU_TICKS CTX ID TIME_STAMP RPT_ID

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

Description of RPT_ID and other important fields of the layout:

Field Description

GPU TICKS[31:0] GPU_TICKS is simply a free-running count of render clocks elapsed used for normalizing other

counters (e.g. EU active time), it is expected that the rate that this value advances will vary with

frequency and freeze (but not lose its value) when all GT clocks are gated, GT is in RC6, and so

on.

Context ID[31:0]
This field carries the Context ID of the active context in render engine.

[31:0]: Context ID in Execlist mode of scheduling.

TIME_STAMP[31:0]
This field provides an elapsed real-time value that can be used as a timestamp for GPU events

over short periods of time. This field has the same format at TIMESTAMP register defined in

Vol1C.4 Render Command Streamer BSpec.

RPT_ID[46:38] Reserved (for future use)

RPT_ID[35:34] Reserved (for future Tile IDs)

RPT_ID[31:0]
This field has several sub fields as defined below:

31:26 SourceID[5:0]

30 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Field Description

Encoded value to identify various sources like any CS or Shader unit from which the

Report was requested.

Programming note:

25:19 Report Reason[6:0]

Report_reason[0]: When set indicates current report is due to "Timer Triggered".

Report_reason[1]: When set indicates current report is due to "Internal report trigger 1".

Report_reason[2]: When set indicates current report is due to "Internal report trigger 2".

Report_reason[3]: When set indicates current report is due to "Context switch".

Report_reason[4]: When set indicates current report is due to "GO transition from '1' to

'0' ".

Report_reason[5]: When set indicates current report is due to a change in unslice/slice

ratio

Report_reason[6]: When set indicates current report is due to a MMIO Trigger

Programming note:

18 Start Trigger Event:This bit is multiplexed from "Start Trigger Event-1" or "Start

Trigger Event-2" based on the "Internal Report Trigger-1" or "Internal Report Trigger-2"

asserted in the Report Reason respectively. "Internal Report Trigger-1" is given priority

over "Internal Report Trigger-2". By default Start Trigger Event-1 is outputted.

17 Threshold Enable: This bit is multiplexed from "Report Trigger Threshold Enable-1" or

"Report Trigger Threshold Enable-2" based on the "Internal Report Trigger-1" or

"Internal Report Trigger-2" asserted in the Report Reason respectively. "Internal Report

Trigger-1" is given priority over "Internal Report Trigger-2". By default "Report Trigger

Threshold Enable-1" is outputted.

16 Timer Enabled

15:0 Reserved

Doc Ref # IHD-OS-TGL-Vol 13-12.21 31

Performance Counting Register Interface

Global Registers

OACTXID - Observation Architecture Control Context ID

OA_IMR - OA Interrupt Mask Register

OASTATUS - Observation Architecture Status Register

OAHEADPTR - Observation Architecture Head Pointer

OATAILPTR - Observation Architecture Tail Pointer

OABUFFER - Observation Architecture Buffer

OASTARTTRIG_COUNTER - Observation Architecture Start Trigger Counter

OARPTTRIG_COUNTER - Observation Architecture Report Trigger Counter

OAREPORTTRIG2 - Observation Architecture Report Trigger 2

OAREPORTTRIG6 - Observation Architecture Report Trigger 6

CEC0-0 - Customizable Event Creation 0-0

CEC1-0 - Customizable Event Creation 1-0

CEC1-1 - Customizable Event Creation 1-1

CEC2-0 - Customizable Event Creation 2-0

CEC2-1 - Customizable Event Creation 2-1

CEC3-0 - Customizable Event Creation 3-0

CEC3-1 - Customizable Event Creation 3-1

CEC4-0 - Customizable Event Creation 4-0

CEC5-0 - Customizable Event Creation 5-0

CEC5-1 - Customizable Event Creation 5-1

CEC6-0 - Customizable Event Creation 6-0

CEC6-1 - Customizable Event Creation 6-1

CEC7-0 - Customizable Event Creation 7-0

CEC7-1 - Customizable Event Creation 7-1

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5

EU_PERF_CNT_CTL6 - Flexible EU Event Control 6

32 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Symmetrical Registers OAG Offset OAR Offset

OAPERF_A0 - Aggregate Perf Counter A0

OAPERF_A0_UPPER - Aggregate Perf Counter A0 Upper DWord

OAPERF_A1 - Aggregate Perf Counter A1

OAPERF_A1_UPPER - Aggregate Perf Counter A1 Upper DWord

OAPERF_A2 - Aggregate Perf Counter 2

OAPERF_A2_UPPER - Aggregate Perf Counter A2 Upper DWord

OAPERF_A3 - Aggregate Perf Counter A3

OAPERF_A3_UPPER - Aggregate Perf Counter A3 Upper DWord

OAPERF_A4 - Aggregate Perf Counter A4

OAPERF_A4_UPPER - Aggregate Perf Counter A4 Upper DWord

OAPERF_A4_LOWER_FREE - Aggregate Perf Counter A4 Lower DWord Free

OAPERF_A4_UPPER_FREE - Aggregate Perf Counter A4 Upper DWord Free

OAPERF_A5 - Aggregate Perf Counter A5

OAPERF_A5_UPPER - Aggregate Perf Counter A5 Upper DWord

OAPERF_A6 - Aggregate Perf Counter A6

OAPERF_A6_UPPER - Aggregate Perf Counter A6 Upper DWord

OAPERF_A6_LOWER_FREE - Aggregate Perf Counter A6 Lower DWord Free

OAPERF_A6_UPPER_FREE - Aggregate Perf Counter A6 Upper DWord Free

OAPERF_A7 - Aggregate Perf Counter A7

OAPERF_A7_- Upper Aggregate Perf Counter A7 Upper DWord

OAPERF_A8 - Aggregate Perf Counter A8

OAPERF_A8_UPPER - Aggregate Perf Counter A8 Upper DWord

OAPERF_A9 - Aggregate Perf Counter A9

OAPERF_A9_UPPER - Aggregate Perf Counter A9 Upper DWord

OAPERF_A10 - Aggregate Perf Counter A10

OAPERF_A10_UPPER - Aggregate Perf Counter A10 Upper DWord

OAPERF_A11 - Aggregate Perf Counter A11

OAPERF_A11_UPPER - Aggregate Perf Counter A11 Upper DWord

OAPERF_A12 - Aggregate Perf Counter A12

OAPERF_A12_UPPER - Aggregate Perf Counter A12 Upper DWord

OAPERF_A13 - Aggregate Perf Counter A13

OAPERF_A13_UPPER - Aggregate Perf Counter A13 Upper DWord

OAPERF_A14 - Aggregate Perf Counter A14

OAPERF_A14_UPPER - Aggregate Perf Counter A14 Upper DWord

OAPERF_A15 - Aggregate Perf Counter A15

OAPERF_A15_UPPER - Aggregate Perf Counter A15 Upper DWord

Doc Ref # IHD-OS-TGL-Vol 13-12.21 33

Symmetrical Registers OAG Offset OAR Offset

OAPERF_A16 - Aggregate Perf Counter A16

OAPERF_A16_UPPER - Aggregate Perf Counter A16 Upper DWord

OAPERF_A17 - Aggregate Perf Counter A17

OAPERF_A17_UPPER - Aggregate Perf Counter A17 Upper DWord

OAPERF_A18 - Aggregate Perf Counter A18

OAPERF_A18_UPPER - Aggregate Perf Counter A18 Upper DWord

OAPERF_A19 - Aggregate Perf Counter A19

OAPERF_A19_UPPER - Aggregate Perf Counter A19 Upper DWord

OAPERF_A19_LOWER_FREE - Aggregate Perf Counter A19 Lower DWord Free

OAPERF_A19_UPPER_FREE - Aggregate Perf Counter A19 Upper DWord Free

OAPERF_A20 - Aggregate Perf Counter A20

OAPERF_A20_UPPER - Aggregate Perf Counter A20 Upper DWord

OAPERF_A20_UPPER_FREE - Aggregate Perf Counter A20 Upper DWord Free

OAPERF_A20_LOWER_FREE - Aggregate Perf Counter A20 Lower DWord Free

OAPERF_A21 - Aggregate Perf Counter A21

OAPERF_A21_UPPER - Aggregate Perf Counter A21 Upper DWord

OAPERF_A22 - Aggregate Perf Counter A22

OAPERF_A22_UPPER - Aggregate Perf Counter A22 Upper DWord

OAPERF_A23 - Aggregate Perf Counter A23

OAPERF_A23_UPPER - Aggregate Perf Counter A23 Upper DWord

OAPERF_A24 - Aggregate Perf Counter A24

OAPERF_A24_UPPER - Aggregate Perf Counter A24 Upper DWord

OAPERF_A25 - Aggregate Perf Counter A25

OAPERF_A25_UPPER - Aggregate Perf Counter A25 Upper DWord

OAPERF_A26 - Aggregate Perf Counter A26

OAPERF_A26_UPPER - Aggregate Perf Counter A26 Upper DWord

OAPERF_A27 - Aggregate Perf Counter A27

OAPERF_A27_UPPER - Aggregate Perf Counter A27 Upper DWord

OAPERF_A28 - Aggregate Perf Counter A28

OAPERF_A28_UPPER - Aggregate Perf Counter A28 Upper DWord

OAPERF_A29 - Aggregate Perf Counter A29

OAPERF_A29_UPPER - Aggregate Perf Counter A29 Upper DWord

OAPERF_A30 - Aggregate Perf Counter A30

OAPERF_A30_UPPER - Aggregate Perf Counter A30 Upper DWord

OAPERF_A31 - Aggregate_Perf_Counter_A31

OAPERF_A31_UPPER - Aggregate Perf Counter A31 Upper DWord

OAPERF_A32 - Aggregate_Perf_Counter_A32

34 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Symmetrical Registers OAG Offset OAR Offset

OAPERF_A33 - Aggregate_Perf_Counter_A33

OAPERF_A34 - Aggregate_Perf_Counter_A34

OAPERF_A35 - Aggregate_Perf_Counter_A35

GPU_TICKS - GPU_Ticks_Counter

OA Interrupt Control Registers

The Interrupt Control Registers listed below all share the same bit definition. The bit definition is as

follows:

Bit Description

31:29 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

28 Performance Monitoring Buffer Half-Full Interrupt: For internal trigger (timer based) reporting, if the

report buffer crosses the half full limit, this interrupt is generated.

27:0 Reserved: MBZ (These bits must be never set by OA, these bit could be allocated to some other unit)

• WDBoxOAInterrupt Vector

• IMR

• Bit Definition for Interrupt Control Registers

Performance Counter Reporting

When either the MI_REPORT_PERF_COUNT command is received or the internal report trigger logic fires,

a snapshot of the performance counter values is written to memory. The format used by HW for such

reports is selected using the Counter Select field within the register. The organization and number of

report formats vary per project and are detailed in Here.

Details of Start Trigger Behavior

• All counters not explicitly defined as free-running will advance after the start trigger conditions are

met.

• Counting will continue after the start trigger has fired until OA is disabled or device is reset.

• Multiple start triggering blocks (where implemented) are OR'd together in order to allow

specification of multiple trigger conditions.

• Bit 18 in the report format reflects whether the start trigger has fired or not.

While architectural intent was that Start Trigger logic would control all qualified counter types (A/B/C),

there is a long-standing implementation bug whereby start trigger logic only affects B/C counters.

Configuration of Trigger Logic

OA contains logic to control when performance counter values are reported to memory. This

functionality is controlled using the OA report trigger and OA start trigger registers. More detailed

Doc Ref # IHD-OS-TGL-Vol 13-12.21 35

register descriptions are included in the Hardware Programming interface. The block diagram below

illustrates the logic these registers control.

Note that counters which are 40 bits wide are split in the report format into low DWORD and high byte

chunks for simplicity of HW implementation as well as SW-friendly alignment of report data. The

performance counter read logically done before writing out report data for these 40-bit counters is

guaranteed to be an atomic operation, the counter data is simply swizzled as it is being packed into the

report.

Context Switch Triggered Reports

A context load/switch on RCS will cause a performance counter snapshot to be written to memory at the

next location in the OA circular report buffer using the perf counter format selected in OACONTROL ().

This functionality can be leveraged when preemption is enabled to re-construct the contribution of a

specific context to a performance counter delta, requires SW to consider both the delta reported by

MI_REPORT_PERF and the reports that may have been issued to OABUFFER by intervening contexts.

A context load/switch on RCS will cause a performance counter snapshot to be written to memory at the

next location in the OA circular report buffer using the perf counter format selected in OARCONTROL. This

functionality can be leveraged when preemption is enabled to re-construct the contribution of a specific

context to a performance counter delta, requires SW to consider both the delta reported by

MI_REPORT_PERF and the reports that may have been issued to OABUFFER by intervening contexts.

Frequency Change Triggered Reports

A GFX frequency change will cause a performance counter snapshot to be written to memory at the next

location in the OA circular report buffer using the perf counter format selected in OACONTROL (). Please

note that a change back to the same frequency can occur and that such changes will still cause a

performance counter report to occur.

A GFX frequency change will cause a performance counter snapshot to be written to memory at the next

location in the OA circular report buffer using the perf counter format selected in OARCONTROL. Please

36 Doc Ref # IHD-OS-TGL-Vol 13-12.21

note that a change back to the same frequency can occur and that such changes will still cause a

performance counter report to occur.

Aggregating Counters

The table below described the desired high-level functionality from each of the aggregating counters.

Note that there is no counter of 2x2s sent to pixel shader, this is based on the assumption that the pixel

shader invocation pipeline statistics counter increments for partially lit 2x2s as well and hence does not

require a duplicate performance counter.

Please also note that some of the information provided by A-counters is useful for GFX/system load-

balancing and is hence made available via free-running counters which do not require initial setup and

count irrespective of OA enable/disable or freeze.

Counter

Event Description

A0 GPU Busy
GPU is not idle (includes all GPU engines).

A1 # of Vertex Shader Threads Dispatched Count of VS fused threads dispatched to EUs

A2 # of Hull Shader Threads Dispatched Count of HS fused threads dispatched to EUs

A3 # of Domain Shader Threads

Dispatched

Count of DS fused threads dispatched to EUs

A4
of GPGPU Threads Dispatched Count of GPGPU fused threads dispatched to EUs. Available on both

qualified and free-running counters.

A5 # of Geometry Shader Threads

Dispatched

Count of GS fused threads dispatched to EUs

A6 # of Pixel Shader Threads Dispatched
Count of PS fused threads dispatched to EUs. Available on both qualified

and free-running counters.

A7 Aggregating EU counter 0 User-defined (details in Flexible EU Event Counters section)

A8 Aggregating EU counter 1 User-defined (details in Flexible EU Event Counters section)

A9 Aggregating EU counter 2 User-defined (details in Flexible EU Event Counters section)

A10 Aggregating EU counter 3 User-defined (details in Flexible EU Event Counters section)

A11 Aggregating EU counter 4 User-defined (details in Flexible EU Event Counters section)

A12 Aggregating EU counter 5 User-defined (details in Flexible EU Event Counters section)

A13 Aggregating EU counter 6 User-defined (details in Flexible EU Event Counters section)

A14 Aggregating EU counter 7 User-defined (details in Flexible EU Event Counters section)

A15 Aggregating EU counter 8 User-defined (details in Flexible EU Event Counters section

A16 Aggregating EU counter 9 User-defined (details in Flexible EU Event Counters section)

A17 Aggregating EU counter 10 User-defined (details in Flexible EU Event Counters section)

A18 Aggregating EU counter 11 User-defined (details in Flexible EU Event Counters section)

A19 Aggregating EU counter 12
Available on both qualified and free-running counters

Doc Ref # IHD-OS-TGL-Vol 13-12.21 37

Counter

Event Description

User-defined (details in Flexible EU Event Counters section)

A20 Aggregating EU counter 13
Available on both qualified and free-running counters

User-defined (details in Flexible EU Event Counters section)

A21 2x2s Rasterized Count of the number of samples of 2x2 pixel blocks generated from the

input geometry before any pixel-level tests have been applied. (Please note

that 2x2s may be in terms of pixels or in terms of samples depending on

project but are consistent between A21-A27.)

A22 2x2s Failing Fast pre-PS Tests Count of the number of samples failing fast "early" (i.e. before pixel shader

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be

in terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.)

A23 2x2s Failing Slow pre-PS Tests Count of the number of samples of failing slow "early" (i.e. before pixel

shader execution) tests (counted at 2x2 granularity). (Please note that 2x2s

may be in terms of pixels or in terms of samples depending on project but

are consistent between A21-A27.)

A24 2x2s Killed in PS
Number of samples entirely killed in the pixel shader as a result of explicit

instructions in the kernel (counted in 2x2 granularity). (Please note that 2x2s

may be in terms of pixels or in terms of samples depending on project but

are consistent between A21-A27.)

A25
2x2s Failing post-PS Tests

"POSTPS_DEPTH_STENCIL_ALPHA_FAIL"

Number of samples that entirely fail "late" tests (i.e. tests that can only be

performed after pixel shader execution). Counted at 2x2 granularity. (Please

note that 2x2s may be in terms of pixels or in terms of samples depending

on project but are consistent between A21-A27.)

A26 2x2s Written To Render Target
Number of samples that are written to render target.(counted at 2x2

granularity). MRT case will report multiple writes per 2x2 processed by the

pixel shader. (Please note that 2x2s may be in terms of pixels or in terms of

samples depending on project but are consistent between A21-A27.)

Please note that this counter will not advance if a render target update does

not occur and that pixel masking operations performed by the fixed

function HW or shader may not be reflected in counters A22-A25 which only

track their specific defined operations. This can lead to an apparent

discrepancy between A21 vs. A22-A25 vs. A26/A27.

A27 Blended 2x2s Written to Render Target
Number of samples of blendable that are written to render target.(counted

at 2x2 granularity). MRT case will report multiple writes per 2x2 processed

by the pixel shader. (Please note that 2x2s may be in terms of pixels or in

terms of samples depending on project but are consistent between A21-

A27.)

Please note that this counter will not advance if a render target update does

not occur and that pixel masking operations performed by the fixed

function HW or shader may not be reflected in counters A22-A25 which only

track their specific defined operations. This can lead to an apparent

discrepancy between A21 vs. A22-A25 vs. A26/A27.

38 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Counter

Event Description

A28 2x2s Requested from Sampler Aggregated total 2x2 texel blocks requested from all EUs to all instances of

sampler logic.

A29 Sampler L1 Misses Aggregated misses from all sampler L1 caches. Please note that the number

of L1 accesses varies with requested filtering mode and in other

implementation specific ways. Hence it is not possible in general to draw a

direct relationship between A28 and A29. However, a high number of

sampler L1 misses relative to texel 2x2s requested frequently degrades

sampler performance.

A30 SLM Reads Total read requests from an EU to SLM (including reads generated by atomic

operations).

A31 SLM Writes Total write requests from an EU to SLM (including writes generated by

atomic operations).

A34 Atomic Accesses
Aggregated total atomic accesses from all EUs. This counter increments on

atomic accesses to both SLM and URB.

Workaround

SLM atomics are not included in prior releases by this OA event (only

global memory atomics are counted), a workaround using B/C counters is

possible.

A35
Barrier Messages

Aggregated total kernel barrier messages from all Eus (one per thread in

barrier).

SPM Counters

Counter

Event Description

SPM0 EU Stall
Event reflects the condition where an EU is not idle but also not processing an ISA

instruction. Each increment of the event reflects 4 clocks where a single EU met this

condition.

SPM1 EU IPC
Event counts the number of ISA FPU/EM instructions that GT processes. It comprehends

cases where multiple instructions are processed in a single clock. Each increment of this

event reflects 8 instructions processed.

SPM2 Threads

loaded
Event counts the total number of threads that have been fully loaded onto an EU in a

given clock. This event DOES NOT include the time where the thread header is being sent

to the EU. The per-clock increment is added to an accumulator each clock, a single

increment of this event reflects that the accumulator has reached 8.

SPM3 EU Not Idle
Event reflects the condition where an EU is not idle. Each increment of the event reflects 8

clocks where a single EU met this condition.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 39

Counter

Event Description

SPM4 Sampler Not

Idle
Event counts sampler activity.

SPM5 EU Stalled &

Sampler Not

Idle

Event reflects the condition where the EU has sent a request(s) to sampler and all threads

on the EU are stalled. Please note that the EU could be stalled for reasons other than

sampler as well. Each increment of the event reflects 8 clocks where a single EU met this

condition.

Flexible EU Event Counters

Since EU performance events are most interesting in many cases when aggregated across all EUs and

many interesting EU performance events are limited to certain APIs (e.g. hull shader kernel stats only

applicable when running a DX11+ workload).

The following block diagram shows the high-level flow that generates each flexible EU event.

Note that no support is provided for differences between flexible EU event programming between EUs

because the resulting output from each EU is eventually merged into a single OA counter anyway.

40 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Supported Increment Events

Increment Event Encoding Notes

EU_INST_EXECUTED_ALU0_ALL 0b00000 Signal that is high on every EU clock where the EU FPU

pipeline is actively executing an ISA instruction.

EU_INST_EXECUTED_ALU1_ALL 0b00001 Signal that is high on every EU clock where the EU EM

pipeline is actively executing an ISA instruction.

 Only fine event filters 0b0000, 0b0111, 0b1000, 0b1001, and

0b1010 are supported with this increment event.

EU_INST_EXECUTED_SEND_ALL 0b00010 Number of instructions executed on SEND Pipe. Only fine

event filters 0b0000,0b0101, 0b0111, 0b1000, 0b1001, and

0b1010 are supported with this increment event.

EU_PIPE_ALU0_AND_ALU1_ACTIVE_CYCLES 0b00011 Signal that is high on every EU clock where the EU FPU and

EM pipelines are both actively executing an ISA instruction.

Only coarse event filters 0b0000, 0b0111, and 0b1000 are

supported with this increment event. Only fine event filters

0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are

supported with this increment event.

EU_ACTIVE_CYCLES 0b00100 Number of occurrences of signal that is high on every EU

clock where at least one EU pipeline is actively executing an

ISA instruction. All coarse event filters are supported. Only

fine event filters 0b0000,0b0101, 0b0111, 0b1000, 0b1001,

and 0b1010 are supported with this increment event.

EU_STALL_CYCLES 0b00101 Number of occurrences of signal that is high on every EU

clock where at least one thread is loaded but no EU pipeline

is actively executing an ISA instruction. All coarse event

filters are supported. Only fine event filters 0b0000, 0b0111,

0b1000, 0b1001, and 0b1010 are supported with this

increment event.

EU_THREADS_OCCUPANCY_ALL 0b01000
Number of Thread slots occupied. Accumulated every clock.

Implies an accumulator which increases every EU clock by

the number of loaded threads, signal pulses high for one

clock when the accumulator exceeds a multiple of the

number of thread slots (e.g. for a 8-thread EU, signal pulses

high every clock where the increment causes a 3-bit

accumulator to overflow). Only coarse event filters 0b0000,

0b0111, and 0b1000 are supported with this increment

event. Only fine event filters 0b0000, 0b0111, 0b1000,

0b1001, and 0b1010 are supported with this increment

event.

 0b01111 Expected HW default, allows logic to be power-optimized.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 41

Supported Coarse Event Filters

Coarse

Event Filter Encoding Notes

No mask 0b0000 Never masks increment event.

VS Thread

Filter

0b0001
For increment events 0b00000/0b00001/0b00010, masks increment events unless the

FFID which dispatched the currently executing thread equals FFID of VS.

For increment events 0b00100/0b00101, masks increment event unless at least one of the

loaded threads was dispatched by VS.

HS Thread

Filter

0b0010
For increment events 0b00000/0b00001/0b00010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of HS.

For increment events 0b00100/0b00101, masks increment event unless at least one of the

loaded threads was dispatched by HS

DS Thread

Filter

0b0011
For increment events 0b00000/0b00001/0b00010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of DS.

For increment events 0b00100/0b00101, masks increment event unless at least one of the

loaded threads was dispatched by DS.

GS Thread

Filter

0b0100
For increment events 0b00000/0b00001/0b00010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of GS.

For increment events 0b00100/0b00101, masks increment event unless at least one of the

loaded threads was dispatched by GS.

PS Thread

Filter

0b0101
For increment events 0b00000/0b00001/0b00010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of PS.

For increment events 0b00100/0b00101, masks increment event unless at least one of the

loaded threads was dispatched by PS.

TS Thread

Filter

0b0110
For increment events 0b00000/0b00001/0b00010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of TS.

For increment events 0b00100/0b00101, masks increment event unless at least one of the

loaded threads was dispatched by TS.

Row = 0 0b0111 Masks increment event unless the row ID for this EU is 0 (control register is in TDL so only

have to check within quarter-slice).

42 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Fine Event Filters

Fine Event Filter Encoding Notes

None 0b0000 Never mask increment event.

Cycles where

hybrid instructions

are being executed

0b0001 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are hybrid instructions.

Cycles where

ternary instructions

are being executed

0b0010 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are ternary instructions.

Cycles where

binary instructions

are being executed

0b0011 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are binary instructions.

Cycles where mov

instructions are

being executed

0b0100 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are mov instructions.

Cycles where sends

start being

executed

0b0101 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are send start of dispatch. Note that if this fine

event filter is used in combination with increment events not related to the EU send

pipeline (e.g. FPU0 active), the associated flexible event counter will increment in an

implementation-specific manner.

EU# = 0b00 0b0111 Masks increment event unless the EU number for this EU is 0b00.

EU# = 0b01 0b1000 Masks increment event unless the EU number for this EU is 0b01.

EU# = 0b10 0b1001 Masks increment event unless the EU number for this EU is 0b10.

EU# = 0b11 0b1010 Masks increment event unless the EU number for this EU is 0b11.

Flexible EU Event Config Registers

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5

EU_PERF_CNT_CTL6 - Flexible EU Event Control 6

Custom Event Counters

Also known as B-counters, the events counted in these counters are defined from Boolean combinations

of input signals using the custom event creation logic built into OA.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 43

The following diagram(s) illustrate(s) the structure used to create a custom event. Every B-counter has

such a block.

MI_REPORT_PERF_COUNT

MI_REPORT_PERF_COUNT

GPU Doorbells

On current platforms, graphics workload is submitted to the graphics hardware through multiple SW

layers: Application, user mode driver (UMD), Graphics Runtime, kernel mode driver (KMD) and then

finally down to hardware. This submission path incurs the penalty of traversing the various SW layers and

then a ring3-to-ring0 switch when the kernel mode driver finally submits the workload by writing to

some graphics register. With the advent of the GPGPU computing, applications like to use the parallelism

provided by the graphics hardware for graphics and non-graphics workloads. However, due to the large

latency introduced by the legacy submission mechanism, an App has to determine if the computation

cycles required for a workload exceeds a threshold to justify incurring the latency that will be incurred to

get this workload running on the graphics hardware.

The proposed GFX doorbell solution provides a mechanism for submission of workload to the graphics

hardware by a ring3 application - without the penalty of ring transition for each workload submission.

The structure has the following components:

• Assignment of a work queue page by Kernel Mode driver into an Apps address space

• Infrastructure in GTI/BGF to detect submission of work into a N work queue pages; GTI detects a

write to a specific cacheline in the doorbell page.

44 Doc Ref # IHD-OS-TGL-Vol 13-12.21

• Message from GTI/BGF to a micro-controller in the graphics engine indicating new work has

arrived in a queue.

• Microcontroller inspects queue and determines the specific graphics engine to submit the

workload to (render engine,...).

Essentially, the hardware will support monitoring of 256 cache-line addresses that are on separate 4KB

pages. Each GPGPU App/thread negotiates with KMD on the address of this 4KB page (in app's space) as

a "doorbell" page. This negotiation happens during the app's call to the driver (KMD) for open GPGPU.

The page is assigned for doorbell operation which is basically a way to MONITOR accesses to the

specified cacheline within the doorbell page.

This portion of the document details the interactions needed in GT BGF Doorbell Block as well as the HW

pieces.

The Concept and Usage Flow

The interactions between the doorbell hardware and software flows described as viewed from the

doorbell controller:

Doorbell Structures

Doorbell structures for reporting have been separated into three logical blocks in the hardware. First

stage is where doorbell address is stored along with Valid bit. Once Valid is set (written by KMD/GuC),

doorbell block will start monitoring and store the cookie value (DW[0] of the doorbell line).

Once a doorbell is triggered corresponding Status bit is set. Eventually status is propagated to interrupt

status bit, meanwhile multiple triggers on doorbell will be collapsed within the status bits.

A read from interrupt status stage to doorbell status stage moves the bits to interrupt status register and

clears the doorbell status register.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 45

All stages are exposed via MMIO:

Doorbell Address. Read/Write support for the driver, but thru GuC/Shim (no direct updates).

Valid. Read/Write support however there are restrictions which hardware needs to ensure:

• 0=>1 transition only from GuC via message channel (not allowed for any other message channel

client and memory reads of related doorbell does not change the doorbell value from 0=>1.

• 1=>0 transition is only from memory read that doorbell block does when it needs to acquire the

doorbell cookie.

Hardware has to guarantee proper clients make the transitions.

Doorbell Status. Read Only (updates are HW managed).

Doorbell Interrupt Status. Read/Write - it is set by hardware and cleared by driver/GuC.

Doorbell Page and Cacheline

As part of the "openGPGPU" call between the App and GFX driver a doorbell page is assigned. The page

is allocated within the WB space (requirement) and pinned to prevent any faulting while exchanging

semaphores (requirement). The doorbell monitoring hardware operates on each doorbell at a 64B

granularity.

App and KMD negotiates which cacheline (64Byte) entity within the doorbell page should be picked as

doorbell line. Even though this could be simply the first 64B of the page, it is highly recommended to

pick a rotating 64B entity to maximize the hardware performance. The suggested algorithm should be:

Doorbell CL# = Bell# mod 64

46 Doc Ref # IHD-OS-TGL-Vol 13-12.21

This simply means Bell0,64,128,192 goes to CL0 of the page, Bell1,65,129,193 goes to CL1 of the page,

Bell2,66,130,194 goes to CL2 of the page, and so on.

Only the first 2 DWords of the Doorbell CL is relevant, the rest is not used by the doorbell hardware.

Same is also applicable for the rest of page which could be utilized for some other means.

1st DWord (4 bytes) contains 1-bit for doorbell status: Active vs. Inactive:

• Active - Bit0=1: Doorbell is Active for Application.

• Inactive - Bit0=0: Doorbell is suspended for the Application, hence Application should re-negotiate

the doorbell.

Note that as part of the negotiation a different cacheline can be picked within the doorbell page,

different than what was originally agreed between GFX Driver and Application.

GFX driver control the initial setting of bit[0] of DW[0] to enable and disable doorbell for a given

application. However HW setup of doorbell can be done only via GuC and disabling in HW is self-

detected via snooping driver's clearing of DW0[0].

2nd DWord (4 bytes) carries a cookie value. It is reset to "0h" by the GFX driver prior to being assigned

and acquired and incremented by the App. Note that value "0h" is a reserved value for cookie which App

should never write. A roll-over increment should go from "FFFF_FFFFh" to "0000_0001h". Details on how

cookie and flag value should be processed by application and hardware are given in later sections.

Work Queue and DoorBell Creation

App calls the driver for "OpenGPU()API", UMD calls the KMD and KMD sets up the queues. KMD maps

the queue addresses to application space. KMD assigns a doorbell if one available:

• If available: Doorbell page gets allocated and assigned to Applications space. Doorbell cacheline

is decided and QW0 is initialized as:

• DW0 = "0000_0001h"

• DW1 = "0000_0000h"

• If not-available: Driver has to victimize doorbell from an existing application and wait for it to

clear from HW before assigning to new application requesting one.

KMD assigns a unique ID (i.e. Context ID) which is a 32b value to define the context. KMD allocates HW

context memory for "State" - up to 3MB.

Note that the SW flows here are a high level description; the actual flows may contain further steps and

will be detailed in SAS.

KMD communicates the contextID as a handle to memory (work queue) to GuC. If there is a doorbell

assignment, GuC also receives the doorbell number as well as the physical address of the cacheline

decided.

GuC has to ensure there are no pending doorbell events before updating the doorbell register for use.

To ensure this, GuC should read "doorbell status vector". If there are any pending events to the same

doorbell that is about to be assigned, GuC expedites the service of the matching vector and waits for

Doc Ref # IHD-OS-TGL-Vol 13-12.21 47

status to clear. If status is cleared, GuC needs to check the "doorbell interrupt status" register in the

GuC/Shim to ensure there are no pending interrupts. Once both stages are clear, GuC can proceed with

re-assignment of the doorbell.

The doorbell address is GPA. Rest of the flow is between the GuC Shim/GAM and Doorbell control block:

• GuC the address (GPA) of the doorbell page/cacheline. Given the address is GPA, a 2nd level page

table translation is required before the monitor address can be written to doorbell block.

• GuC sends the following message pair to GAM asking for a GPA to HPA translation.

• Doorbell Address programming has to be routed thru GuC/Shim - driver (KMD) is not allowed to

update the doorbell addresses directly.

Doorbell Flows

Doorbell Controller has a single primary flow of acquiring the ownership of a doorbell cacheline and

detecting and reporting doorbell rings. Besides the main flow, there is various side flows to handle power

states.

There are two cases where the main (ownership) flow can be invoked:

1. VALID bit in one of the doorbell registers transitions from 0=>1 indicating a new assignment of

doorbell. This is considered initial flow.

2. A snoop from LLC/Cbo removing the ownership of a doorbell cacheline that was already being

monitored. This is considered subsequent flow.

Both flows are handled same, as they overlap whether this is the initial ownership flow or subsequent

case.

Doorbell controller collects the results of the RFO where data gets processed:

• If DW0[0] - flag - is seen as "0", that means s/w already victimized the doorbell and in the process

of re-assigning it. However it is possible that application had a chance to sneak in work at the very

last opportunity. And the doorbell register is still valid.

• If DW0[0] - flag - is seen as "1", the doorbell is still active.

Both cases are handled similarly in the doorbell controller.

• The value of cookie is checked:

• If cookie is "0000_0000h", this is the initialized value of the cookie by GFX driver. Application

did not use the doorbell yet. Doorbell block initializes the cookie value stored in h/w and

does not ring the bell.

• If cookie is same as what was stored in the cookie register this means either we are still at

the initialized value or the ownership was lost due to LLC victimization and there is no RING

event.

• If cookie value is different than the previous value and it is not all "0's", this is a VALID RING

event.

• In case of a valid RING event,

48 Doc Ref # IHD-OS-TGL-Vol 13-12.21

• Doorbell controller sets up the corresponding bit flag in the "Active Doorbell Status Vector".

• If in RC6, generate a wake-event to GT-Shim pm block.

• Doorbell Block has to be aware of the RC6 status and need to be able to communicate

the wake up request to Shim-PM block.

• The message to Shim has to be hold-off until we wake up GT.

• If not in RC6 or woken up from RC6, generate a message to GuC unless the 32b group of

active vector is non-Zero. Meaning there has been already a message to Guc and GuC did

not have a chance to read the corresponding "Active Doorbell Vector" piece. The

communication between the doorbell monitoring hardware and GuC is handled via internal

messaging.

• Once a group's message is sent (via message channel) subsequent rings to the same group does

not cause a message to GuC. The only time a message is sent if the previous value of the doorbell

vector for the corresponding group was "0000_0000h".

• At some point, GuC will read the vector from the doorbell block to see which doorbells have rung.

Same read event should clear the corresponding doorbell vector register allowing any subsequent

rings to generate a new message back to GuC.

Assigning Doorbells

Doorbells assignments are straight forward - see doorbell creation section

In addition s/w shall not assign the same cacheline to more than one doorbell. Such assignments will

create unexpected behavior when the doorbell is rung.

Removing Doorbells

Doorbells are floating hardware resources, and they can be temporarily attached to Apps. GFX Driver can

remove an application's doorbell without the need to notify or negotiate with that App. The removal

process described requires KMD to poll doorbell status locations in HW to ensure doorbell is freed

before re-assigning. And re-assignment process is done making sure all previous interrupts from this

doorbell are processed.

An application losing a doorbell simply needs to request one as it realizes that its doorbell is lost. This is

considered as a doorbell virtualization process where GFX driver and GuC can move a limited number of

doorbells between a practically unbounded (2^31) number of applications.

The removal processes for doorbells are managed by the driver (KMD). However, it is completely

asynchronous to what applications are doing with the doorbells and where HW is in processing these

doorbells. The following flow is used to de-activate a doorbell.

As part of the de-activation:

1. GFX driver decides which doorbell to victimize and clears the DW0[0] of the doorbell cacheline in

WB space. This is an indication to the GPU doorbell controller that the corresponding doorbell is

removed. The doorbell block in GPU will see the update from IA core as part of the snoop

monitoring (see later sections on how application checks the flag via compare&exchange).

Doc Ref # IHD-OS-TGL-Vol 13-12.21 49

From this point on, Application will not be able to ring that doorbell, and it needs to request a new

one once it realizes its doorbell is lost.

2. The GFX driver clearing DW0[0] of the doorbell is seen by the GFX doorbell hardware as de-

activation. However, there is a possibility that the App had a chance to use it to increment the

cookie just before doorbell got de-activated. The doorbell block compares the cookie value new vs

old to make a decision to set the interrupt status bit or not.

From this point on we know that the particular doorbell cannot be used and HW will not match

incoming snoops even if there may be snoops to the line (Valid bit is managed by the HW when

getting cleared).

3. After GFX driver clears the DW0[0] of the doorbell that is getting victimized, it polls the doorbell

register VALID bit in HW which indicates when HW got to see the victimized doorbell and cleared

the VALID bit state. This also ensures that all previous updates of the victim doorbell are now

registered in the HW.

4. Once the GFX driver sees the VALID bit cleared in the doorbell register, it is free to re-allocate the

same doorbell for another APP. Note that assignment of the doorbell requires GuC to clear all

previous usages of the previous owner of that doorbell.

Now the doorbell is ready to be re-assigned to any application.

Application Flow

The application use of doorbell is described in this document for completeness and to give the design

owners what to expect.

Application can start using the doorbell once agreed with the GFX driver, from this point the main part of

the flow is to be able cache the value of the cookie (if initial assignment application knows cookie is "0"

and next value is "1"). The flow relies on the fact that application simply increments the cookie by "1" to

indicate a doorbell event. And application has the value of cookie and the next value that it wants to

update to. To understand how the rest of the sequence works, one needs to understand the inner works

of the LOCK_CMPXCHG8B.

1. Assumption thread knows the value of the cookie - if this is the first time using it, it knows KMD

initialized to "0". Thread prepares ECX = 1

2. Thread does compare exchange 8B (LOCK_CMPXCHG8B)

a. Outcome#1: Success - thread gets "ZF == 1", rings the doorbell successfully and resumes

execution

b. Outcome#2: Fail: Bell is present (EAX =1) but EDX is not the expected value - means some other

thread is sharing the same bell.

i. Load ECX with EDX, and INC ECX - prepare the next value for destination

ii. And loop to compare exchange (step#2) - at this point this is a RACE to the bell between

multiple threads. The thread that succeeds updates the bell

c. Outcome#3: Fail : Bell is not there (EAX = 0) - ask for a bell and loop to step#1

50 Doc Ref # IHD-OS-TGL-Vol 13-12.21

In both cases algorithm is self correcting. For the case of one doorbell to one application thread,

Outcome#2 is never possible given the application thread exactly knows what the value of the cookie is

(it is the only thread writing to it). Outcome#3 is possible if GFX driver decides to remove the doorbell.

For the case of one doorbell to many application threads, each application thread has an idea of what

the value of the cookie could be. If this is the first time the thread is writing the cookie value, it assumes

"0"; if not the first time, it assumes whatever the value it wrote last time. In this case Outcome#2

becomes possible given that other threads are doing LOCK_CMPXCHG8B on the same data structure as

well. However the good part of the LOCK_CMPXCHG8B is that, operation is atomic and a fail case (i.e.

mismatch of the compare) returns the most up to date value from memory and does not change the

contents of the memory. For multiple application-thread case, all threads are going to be racing to the

flag while making successful updates and any doorbell ring is going to get uC to check and process all

application-threads' work queues.

Atomic operation, "CMPXCHNG8B", is a required instruction to use if multiple application threads are

mapped to same doorbell or same doorbell is virtualized via KMD between multiple applications. The

latter part refers to a case where KMD removes a doorbell without letting the application know about it.

If there is no multiple thread or virtualization case for doorbells, simple memory operations are suffice to

operate with doorbells.

Doorbells and Lock

The fact that doorbell block is capable of generating accesses to IDI, it will have to be involved in LOCK

process. The impact has to be looked in two different operational modes:

Interrupts Overview:

The Graphics device is comprised of a number of independent engines that can be invoked to execute

workloads. Engines communicate status primarily through interrupts. The Graphics device supports two

models of scheduling and handling of interrupts:

• Host SW schedules and manages all interrupts

• Scheduling and related interrupts are managed by hardware scheduler (MinIA micro-controller)

and host SW manages interrupts not related to scheduling.

The hardware can be configured to work in either of these models. HW scheduling is the preferred mode

because it provides best utilization of resources. The figure below shows the high level overview of the

interrupt infrastructure.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 51

The interrupt infrastructure is designed to support both of these models. Each engine is allocated a set of

interrupt bits that it can set to report events (the number of bits allotted to each engine varies -- most

engines are allocated 16bits, some engines which have more events are allocated 32bits). Interrupt

messages sent by engines result in interrupt bits being recorded in MMIO registers and an interrupt

being generated to the servicing agent (MinIA scheduler or Host SW). The interrupt handler determines

the source of the interrupt (by reading registers) and then processes the interrupts. Processing interrupts

involves reading the interrupt status register, performing the operations for handling the interrupt and

indicating completion of handling by writing to registers (clear).

When using the HW scheduler, the scheduling related interrupts are directed to the MinIA scheduler.

52 Doc Ref # IHD-OS-TGL-Vol 13-12.21

GT Engine Interrupts:

Within GT, engines are categorized into different engine classes and instances. An engine class is used to

differentiate between engines that perform different functions (Copy, Render, VideoDecode,

VideoEncode, etc). A product may have a number of instances of a specific engine class e.g.: GT2 has 2

instances of VD, GT3 has 4 instances of VD, etc. The following table lists various engine classes as well as

instances within each class.

Engine Class Engine Instance Name ClassID[2:0] InstanceID[5:0]

Render RCS 0 0

Video Decode VCS0-N 1 0-N

Video Enhancement Engine VECS0-N/2 2 0-N/2

Copy Engine BCS 3 0

Other GuC 4 0

 GTPM 4 1

 WDOAPerf 4 2

 SCTRG 4 3

 KCR 4 4

 Gunit 4 5

 CSME 4 6

Compute Engine CCS0-N 5 0-N

Reserved 6-7

Each engine reports up to 16 interrupts to interrupt handling logic. Source identification data is included

in interrupt messages to interrupt aggregating logic, i.e. when reporting an interrupt to either host or

graphics firmware, the generating engine must identify itself. 16 bits of identification is sent along with

interrupt data, and comprises Engine Class ID, Instance ID and Virtual Function Number. Interrupt bit

definition varies per engine class, these are listed in the Bspec in the Global/ section.

Format of interrupt message:

Bit Fied Purpose

[31:30] Reserved

[29:27] VF ID

[26] Reserved

[25:20] Instance ID

Doc Ref # IHD-OS-TGL-Vol 13-12.21 53

[19] Reserved

[18:16] Engine Class ID

[15:0] Interrupt data

Hardware Scheduler/MinIA SW Interface

Graphics interrupts to scheduling firmware are delivered as two unique vector values. Each vector

accounts for 32 graphics engines. Firmware processes each of two groups of graphics engines

independently.

Service routines are independent for the two interrupt vectors presented to the MinIA firmware.

Host SW Interface

54 Doc Ref # IHD-OS-TGL-Vol 13-12.21

Interrupts to Host are delivered via a Primary Interrupt Control Register. Graphics interrupts use 2 bits in

the Primary Interrupt Control Register. In addition, interrupt events from Display are also represented in

the Primary Interrupt Control Register. Multiple copies of Primary Interrupt Control Register exist, one for

every virtual machine in the system.

Interrupt bits in the Primary Interrupt Control Register are Read-Only bits, and are level indications that a

second level interrupt is present (As seen earlier, second level interrupts per client are OR-ed together.

 When the second level IIR is cleared, the bit represented will be 0.). An interrupt is sent to driver

whenever bits are set in the Primary Interrupt Control Register and the Enable bit is also set.

As a result of this interrupt, SW first resets the Primary Control Enable bit. SW then reads the

Primary Interrupt Control register into a local variable, and works off this local variable to service

interrupts. Once all lower level interrupts have been serviced, SW writes the Primary Interrupt Control

register to set the Primary Control Enable bit.

Interrupt Aggregating Logic

A hierarchical interrupt status infrastructure is provided to efficiently determine the source of the

interrupt. The first level of interrupts is generated by GT Engines. Interrupt handling logic accumulates

these interrupts from the various engines, and organizes it as a single bit per engine in a second level. 32

bits of second level interrupts are OR-ed together to generate a DW-level interrupt event for up to 32

engines. Two such events are used to provide support for up to 64 GT engines. When communicating

with the MinIA, these events are mapped to two unique interrupt vectors in the MinIA LAPIC. When

communicating with host driver, these events form two bits of the Primary Interrupt Control Register as

marked in the picture.

Doc Ref # IHD-OS-TGL-Vol 13-12.21 55

First Level Interrupt Bits:

When an interrupt event comes into the interrupt handling logic, it is AND-ed with a per-Engine Enable

register (IER). Only enabled events make forward progress. Disabled events are simply dropped by the

interrupt handling logic. [Note that multiple instances of the same engine type (except those in the

'Other' Engine Class) share the same Enable register.]

Enabled interrupts are logged in a per-instance, non-SW readable Collapsing Register. These events are

AND-ed with (the inverse of) a per-Instance Mask Register (IMR). Only unmasked events make forward

progress. Masked events remain in the per-Instance Collapsing Register until they are unmasked. [Note

that every instance (even of the same engine type) has its own Mask Register.]

Unmasked events in the per-Instance Collapsing Register are OR-ed together to produce a single second

level interrupt event.

Second Level Interrupt Bits:

Second level interrupt events are stored in a double buffered IIR structure. A snapshot of events is taken

when SW reads the IIR. From the time of read to the time of SW completely clearing the second-level

56 Doc Ref # IHD-OS-TGL-Vol 13-12.21

IIR (to indicate end of service), all incoming interrupts are logged in a secondary storage structure. This

guarantees that the record of interrupts SW is servicing will not change while under service.

Bits in the second-level IIR are OR-ed together to generate a DW-level event. The IIR is cleared by writing

1s. If events exist in the secondary storage at the time that the IIR is completely cleared, a second DW-

level event will be generated.

Shared IIR, Selector:

Shared IIR and Selector registers are used when SW is in the process of handling reported interrupts. As

a result of a GT interrupt (DW-level interrupt), SW reads the second-level IIR register. The read provides

an indication of engines needing service. SW must then service engines one at a time by writing a one-

hot selection into the Selector Register.

When a selection is made by writing the Selector, interrupt handling logic presents all the unmasked

interrupt bits (first level interrupt events) for the selected engine in the Shared IIR, and sets the Data-

Valid bit (MSB). SW can then read the Shared IIR and take action for the reported events. SW must clear

the Shared IIR by writing 1 to the Data-Valid bit to indicate end of service for the selected engine. This

clearing of the Shared IIR Data-Valid bit clears both the Shared IIR as well as the Selector. Note that the

Selector data must be one-hot. Selector must not have a bit set that is not set in the second-level IIR at

the time of SW read.

SW then repeats the above steps for each bit set in the second-level IIR. Multiple rounds of Selector

write-Shared IIR clear may be required to service a DW level interrupt a single time.

Second-level IIR bits are cleared only after individual engines are serviced via the Selector write -Shared

IIR clear routine. This clearing can be done after each iteration through the Selector write-Shared IIR clear

routine (i.e. one second-level bit cleared after each iteration), or all at once after all engines have been

serviced. Second-level IIR bits must not be cleared without first servicing that engine's interrupts via the

Selector and Shared IIR registers.

Enable and Mask Registers:

Interrupt aggregating logic includes Enable registers(IER) per Engine Class. Different instances of the

same engine class use the same Enable register, except for engines in the 'Other' class. Each instance in

the 'Other' class has its own Enable register.

Interrupt aggregating logic also includes Mask registers (IMR). Each engine instance, even within the

same Engine Class, has a unique Mask Register.

Enables for Engine classes at the two software interfaces are typically complements of each other.

