intel.

Intel® Iris® Xe and UHD Graphics Open Source
Programmer's Reference Manual

For the 2020-2021 11th Generation Intel Xeon®, Core™, Celeron®,
Pentium® Gold Processors based on the "Tiger Lake" Platform

Volume 9: Render Engine

December 2021, Revision 1.0

intel

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and
not publicly available. These are not "commercial* names and not intended to function as trademarks

Customer is responsible for safety of the overall system, including compliance with applicable safety-
related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document, with the sole exceptions that a) you may publish an unmodified copy and b) code
included in this document is licensed subject to Zero-Clause BSD open source license (0BSD). You may
create software implementations based on this document and in compliance with the foregoing that are
intended to execute on the Intel product(s) referenced in this document. No rights are granted to create
modifications or derivatives of this document.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal
analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free
license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

ii Doc Ref # IHD-OS-TGL-Vol 9-12.21

Table of Contents

Render Engine

Workload Submission

Multi-context Submission Overview

Render-3D-GPGPU Command Streamer

Engine State

Software Interface

3D Pipeline Stages

3D Pipeline-Level State

3D Pipeline Geometry

3D Pipeline Rasterization

Pixel

GPGPU Compute Pipeline

General Purpose Compute Model

GPGPU Context in GPU Hardware

Programming the GPGPU Pipeline

Commands for GPGPU Pipe

Thread Spawner (TS)

Thread DispatCh ...

Thread Tracking and Synchronization

Context Switch for GPGPU and Media.........................

3D and GPGPU Programs

EU Overview

Shared FUNCHIONS ...t

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

intel

Render Engine

The Render Engine supports command streams used both for 3D and Compute (GPGPU) workloads.
These command streams fetch the data, and dispatch individual work items to many threads that operate
in parallel. The threads run small software programs (also called kernels or shaders) on the GPU
processors (called Execution Units).

The command streamers control the programmable pipelines in the Render Engine so that the individual
programs run in parallel but are synchronized to start only when their required data is available, and
complete when all the work is done.

Each pipeline in the Render Engine shares common state with all the threads running in the pipeline. The
command streamer manages that state.

Workload Submission

This section describes workload submission on the graphics engine.

Multi-context Submission Overview

Work into the Graphics engine is input using the Command Streamer or multiple command streamers.

Each command streamers are independent and support their own submit port and execution list. Within
a command streamer, the work elements are executed serially.

The Render Command Streamer runs in one of the following modes (that is specified using the PIPELINE_SELECT
command):

e 3D
Media/GPGPU

The Compute Command Streamer only supports the Media/GPGPU mode. Number of Compute CS
varies per SKU.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 1

intel

Host
Scheduler Interrupts
Block
Workload Workload
Submission Submission
Execution list Exacution list
Interrupls Im%rm s
y
POSH Render

Command | Command Streamer
Streamer

Sub-slice 0 Sub-slice N

Tl T
HHH R

N slices

Render-3D-GPGPU Command Streamer

This section describes the infrastructure provided by the Command Streamer of the Render engine which
supports 3D, Compute and Programmable Media.

Batch Buffer Privilege Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

Context Save Registers

The following are the Context Save Registers:

Register

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

2 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

Mode Registers

The following are the Mode Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Watchdog Timer Registers

These registers together implement a watchdog timer. Writing ones to the control register enables the
counter, and writing zeros disables the counter. The second register is programmed with a threshold
value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold
value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle
sequences. SW must enable and disable watch dog timer for any given workload within the same
command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for
events commands so that HW can trigger appropriate idle sequence for power savings.

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

CXT_SIZE - Context Sizes

CXT_EL_OFFSET - Exec-List Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

Doc Ref # IHD-OS-TGL-Vol 9-12.21 3

intel

Register

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICEO - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slicel

PS_INVOCATION_COUNT_SLICEZ2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICEO - PS Depth Count for SliceO

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slicel

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

R_PWR_CLK_STATE - Render Power Clock State Register

MI Commands for Render Engine

This chapter describes the formats of the "Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term "“for
Rendering Engine" in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be
present in some commands (i.e., for features added or removed), or some commands may be removed
entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

4 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Commands

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Render Engine Command Streamer

The RCS (Render Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching
of data packets (3D/Media Commands with the header DWord removed) to the front-end interface
module of Render Engine.

Logic Functions Included

e MMIO register programming interface.
e DMA action for fetching of ring data from memory.
e Management of the Head pointer for the Ring Buffer.

e Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) &
GPGPU.

e Handling of user interrupts.
e Flushing the 3D and GPGPU Engine.
e Handle NOP.

e DMA action for fetching of execlists from memory.

e Handling of ring context switch interrupt.

The RCS unit only claims memory mapped 1/O cycles that are targeted to its range of 0x2000 to 0x27FF.
The Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRBO) is programmed by a memory-mapped
register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL
at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.
The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head
pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes
equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the
actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to
the tail pointer.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 5

intel

POCS and RCS Synchronization

Once POCS is triggered, it executes parallel to RCS, it only stops (doesn't switch out) when it runs out of
command (head equals to tail) or on encountering unsuccessful semaphore wait. Command sequence
execution of POCS is completely asynchronous to RCS command sequence execution. SW is responsible
to explicitly synchronize POCS and RCS command sequence execution whenever required based on the
various produce consume model using MI_SEMAPHORE_WAIT command.

GPGPU/Media

POSH pipe supports parallel execution during GPGPU and Media workloads under the condition that the L3 is not
reconfigured, and the GPGPU/Media workload will not use more than 32KB of the URB. Currently the POSH and
GPGPU on the RCS share the same URB space. However, the first 32KB are not used when POSH is only running.

Reconfiguring the URB cannot occur when switching between 3D and Compute/Media workloads if it is possible for
POSH pipeline to be active. SW can ensure POSH is inactive using synchronization commands in the case POSH was
enabled earlier in the context.

Mid-thread preemption must be disabled if it is possible for POSH to be running in parallel with compute
workloads.

HW Binding Table with RS Disabled

RCS sets up the HW Binding Table functionality when 3DSTATE_BTP_POOL_ALLOC is programmed with
RS disabled. POSH pipe uses the mode set by RCS. SW will explicitly synchronize POCS and RCS to
ensure they always work in the same mode of operation wither HW BTP Enabled or Disabled. Note that
both POCS and RCS will maintain their own copies of 3DSTATE_BTP_POOL_ALLOC.

Protection-On/Off Mode

RenderCS controls the Protection-On/Off mode at all times for both POSH and Render pipes. Protection-
on/off mode set by RenderCS applies to memory clients form both render pipe and POSH pipe. based on
the protection on signal from RCS. SW must explicitly ensure both POSH and Render pipes are
synchronized around Protection and ProtectionOff zones during the command sequencing.

Render Command Formats

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter
for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D
Pipeline.

6 Doc Ref # IHD-OS-TGL-Vol 9-12.21

3D Command Map

intel

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 0th Reserved 3D Pipeline
Oh 02h Reserved 3D Pipeline
Oh 03h Reserved
Oh 04h 3DSTATE_CLEAR_PARAMS 3D Pipeline
Oh 05h 3DSTATE_DEPTH_BUFFER 3D Pipeline
Oh 06h 3DSTATE_STENCIL_BUFFER 3D Pipeline
Oh 07h 3DSTATE_HIER_DEPTH_BUFFER 3D Pipeline
Oh 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch
Oh 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch
Oh 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch
Oh 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch
Oh 0Ch 3DSTATE_VF Vertex Fetch
Oh 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline
Oh OEh 3DSTATE_CC_STATE_POINTERS 3D Pipeline
Oh 10h 3DSTATE_VS Vertex Shader
Oh 11h 3DSTATE_GS Geometry Shader
Oh 12h 3DSTATE_CLIP Clipper
Oh 13h 3DSTATE_SF Strips & Fans
Oh 14h 3DSTATE_WM Windower
Oh 15h 3DSTATE_CONSTANT_VS Vertex Shader
Oh 16h 3DSTATE_CONSTANT_GS Geometry Shader
Oh 17h 3DSTATE_CONSTANT_PS Windower
Oh 18h 3DSTATE_SAMPLE_MASK Windower
Oh 19h 3DSTATE_CONSTANT_HS Hull Shader
Oh 1Ah 3DSTATE_CONSTANT_DS Domain Shader
Oh 1Bh 3DSTATE_HS Hull Shader
Oh 1Ch 3DSTATE_TE Tesselator
Oh 1Dh 3DSTATE_DS Domain Shader
Oh 1Eh 3DSTATE_STREAMOUT HW Streamout
Oh 1Fh 3DSTATE_SBE Setup
Oh 20h 3DSTATE_PS Pixel Shader
Oh 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP Strips & Fans
Oh 22h 3DSTATE_CPS_POINTER Course Pixel Shader
Oh 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC Windower
Oh 24h 3DSTATE_BLEND_STATE_POINTERS Pixel Shader

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Opcode Sub Opcode

Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS Pixel Shader
Oh 26h 3DSTATE_BINDING_TABLE_POINTERS_VS Vertex Shader
Oh 27h 3DSTATE_BINDING_TABLE_POINTERS_HS Hull Shader
Oh 28h 3DSTATE_BINDING_TABLE_POINTERS_DS Domain Shader
Oh 29h 3DSTATE_BINDING_TABLE_POINTERS_GS Geometry Shader
Oh 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS Pixel Shader
Oh 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS Vertex Shader
Oh 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS Hull Shader
Oh 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS Domain Shader
Oh 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS Geometry Shader
Oh 2Fh 3DSTATE_SAMPLER_STATE_POINTERS_PS Pixel Shader
Oh 30h 3DSTATE_URB_VS Vertex Shader
Oh 31h 3DSTATE_URB_HS Hull Shader
Oh 32h 3DSTATE_URB_DS Domain Shader
Oh 33h 3DSTATE_URB_GS Geometry Shader
Oh 34h 3DSTATE_GATHER_CONSTANT_VS Vertex Shader
Oh 35h 3DSTATE_GATHER_CONSTANT_GS Geometry Shader
Oh 36h 3DSTATE_GATHER_CONSTANT_HS Hull Shader
Oh 37h 3DSTATE_GATHER_CONSTANT_DS Domain Shader
Oh 38h 3DSTATE_GATHER_CONSTANT_PS Pixel Shader
Oh 39h 3DSTATE_DX9_CONSTANTF_VS Vertex Shader
Oh 3Ah 3DSTATE_DX9_CONSTANTF_PS Pixel Shader
Oh 3Bh 3DSTATE_DX9_CONSTANTI_VS Vertex Shader
Oh 3Ch 3DSTATE_DX9_CONSTANTI_PS Pixel Shader
Oh 3Dh 3DSTATE_DX9_CONSTANTB_VS Vertex Shader
Oh 3Eh 3DSTATE_DX9_CONSTANTB_PS Pixel Shader
Oh 3Fh 3DSTATE_DX9_LOCAL_VALID_VS Vertex Shader
Oh 40h 3DSTATE_DX9_LOCAL_VALID_PS Pixel Shader
Oh 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS Vertex Shader
Oh 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS Pixel Shader
Oh 43h 3DSTATE_BINDING_TABLE_EDIT_VS Vertex Shader
Oh 44h 3DSTATE_BINDING_TABLE_EDIT_GS Geometry Shader
Oh 45h 3DSTATE_BINDING_TABLE_EDIT_HS Hull Shader
Oh 46h 3DSTATE_BINDING_TABLE_EDIT_DS Domain Shader
Oh 47h 3DSTATE_BINDING_TABLE_EDIT_PS Pixel Shader
Oh 48h 3DSTATE_VF_HASHING Vertex Fetch

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 49h 3DSTATE_VF_INSTANCING Vertex Fetch
Oh 4Ah 3DSTATE_VF_SGVS Vertex Fetch
Oh 4Bh 3DSTATE_VF_TOPOLOGY Vertex Fetch
Oh 4Ch 3DSTATE_WM_CHROMA_KEY Windower
Oh 4Dh 3DSTATE_PS_BLEND Windower
Oh 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower
Oh 4Fh 3DSTATE_PS_EXTRA Windower
Oh 50h 3DSTATE_RASTER Strips & Fans
Oh 51h 3DSTATE_SBE_SWIZ Strips & Fans
Oh 52h 3DSTATE_WM_HZ_OP Windower
Oh 53h 3DSTATE_INT (internally generated state) 3D Pipeline
Oh 54h 3DSTATE_RS_CONSTANT_POINTER Resource Streamer
Oh 55h 3DSTATE_VF_COMPONENT_PACKING Vertex Fetch
Oh 56h 3DSTATE_VF_SGVS_2 VertexFetch
Oh 58h 3DSTATE_URB_ALLOC_VS VertexShader
Oh 59h 3DSTATE_URB_ALLOC_HS HullShader
Oh 5Ah 3DSTATE_URB_ALLOC_DS DomainShader
Oh 5Bh 3DSTATE_URB_ALLOC_GS GeometryShader
Oh 5Dh-5Fh Reserved
Oh 60h 3DSTATE_SO_BUFFER_INDEX_0 HW StreamOut
Oh 61h 3DSTATE_SO_BUFFER_INDEX_1 HW StreamOut
Oh 62h 3DSTATE_SO_BUFFER_INDEX_2 HW StreamOut
Oh 63h 3DSTATE_SO_BUFFER_INDEX_3 HW StreamOut
Oh 64h-69h Reserved
Oh 6Ah 3DSTATE_PTBR_MARKER 3D Pipeline
Oh 6Bh 3DSTATE_PTBR_TILE_SELECT Vertex Fetch, Strips & Fans
Oh 6Ch 3DSTATE_PRIMITIVE_REPLICATION 3D Pipeline
Oh 6Dh 3DSTATE_CONSTANT_ALL 3D Pipeline
Oh 6Fh 3DSTATE_AMEFS PSS
Oh 70h 3DSTATE_DEPTH_CNTL_BUFFER WM
Oh 71h 3DSTATE_DEPTH_BOUNDS WM
Oh 72h 3DSTATE_AMFS_TEXTURE_POINTERS WM
Oh 73h 3DSTATE_CONSTANT_TS_POINTER PSS
Oh 57h-59h Reserved
Oh 60h-68h Reserved
Oh 69h Reserved

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 6Eh Reserved
Oh 74h Reserved
Oh 75h Reserved
Oh 76h Reserved
Oh 77h-82h Reserved
Oh 83h Reserved
Oh 83h-FFh Reserved
1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans
1h 02h Reserved
1h 03h Reserved
Th 04h 3DSTATE_CHROMA_KEY Sampling Engine
1h 05h Reserved
1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower
1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower
1h 08h 3DSTATE_LINE_STIPPLE Windower
1h 0Ah 3DSTATE_AA_LINE_PARAMS Windower
Th 0Bh 3DSTATE_GS_SVB_INDEX Geometry Shader
1h 0Ch Reserved
1h 0Dh 3DSTATE_MULTISAMPLE Windower
1h OEh 3DSTATE_STENCIL_BUFFER Windower
1h OFh 3DSTATE_HIER_DEPTH_BUFFER Windower
1h 10h 3DSTATE_CLEAR_PARAMS Windower
1h 11h 3DSTATE_MONOFILTER_SIZE Sampling Engine
1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS Vertex Shader
1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS Hull Shader
1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS Domain Shader
Th 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS Geometry Shader
1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS Pixel Shader
Th 17h 3DSTATE_SO_DECL_LIST HW Streamout
1h 18h 3DSTATE_SO_BUFFER HW Streamout
1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Resource Streamer
1h 1Ah 3DSTATE_GATHER_POOL_ALLOC Resource Streamer
1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC Resource Streamer
1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower
1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline
1h 1Eh 3DSTATE_3D_MODE 3D Pipeline

10 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter
Th 1Fh 3DSTATE_SUBSLICE_HASH_TABLE 3D Pipeline
Th 20h 3DSTATE_SLICE_TABLE_STATE_POINTERS 3D Pipeline
Th 21h 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS 3D Pipeline
Th 22h 3DSTATE_PTBR_TILE_PASS_INFO 3D Pipeline
Th 23h 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS 3D Pipeline
Th 24h 3DSTATE_PTBR_FREE_LIST_BASE_ADDRES 3D Pipeline
Th 23h-2Ah Reserved
Th 2Bh-FFh Reserved
2h 00h PIPE_CONTROL Render/Compute Pipeline
2h 01h Reserved
2h 03h-FFh Reserved
3h 00h 3DPRIMITIVE Vertex Fetch
3h 01h Reserved
3h 02h Reserved
3h 03h-FFh Reserved
4h-7h 00h-FFh Reserved
Pipeline Type (28:27) Opcode | Sub Opcode Command Definition Chapter
Common (pipelined) Bits 26:24 | Bits 23:16
Oh Oh 04h-FFh Reserved
Common (non-pipelined) |Bits 26:24 |Bits 23:16
Oh Th 00h Reserved N/A
Oh Th 01h STATE_BASE_ADDRESS Graphics Processing Engine
Oh Th 02h STATE_SIP Graphics Processing Engine
Oh Th 03h Reserved 3D Pipeline
Oh Th 04h GPGPU CSR BASE ADDRESS | Graphics Processing Engine
Oh Th 05h STATE_COMPUTE_MODE Compute Pipeline
Oh Th 06h Reserved
Oh Th 07h-08h Reserved
Oh Th 09h Reserved
Oh 1h 0Ah-FFh Reserved N/A
Reserved Bits 26:24 |Bits 23:16
Oh 2h-7h XX Reserved N/A

Doc Ref # IHD-OS-TGL-Vol 9-12.21

11

intel

Render Command Header Format

Render Command Header

Type Bits
31:29 28:24 23 22 21:0

Memory [000 |Opcode Identification No./DWord Count
Interface 00h - NOP Command Dependent Data
(M) 0Xh - Single DWord Commands 5:0 - DWord Count

1Xh - Two+ DWord Commands 5:0 - DWord Count

2Xh - Store Data Commands 5:0 - DWord Count

3Xh - Ring/Batch Buffer Cmds

Type Bits

31:29 28:24|23(22:17|16:10] 9:0

Type Bits
31:29 28:24 23:19 18:16 15:0
Reserved | 001, |Opcode - 11111 |Sub Opcode 00h - 01h | Reserved | DWord Count
010
Type Bits
31:29|28:27 26:24 23:16 15:8 7:0
Common 011 |00 Opcode - 000 Sub Opcode | Data | DWord Count
Common (NP)’ 011 |00 Opcode - 001 Sub Opcode | Data | DWord Count
Reserved 011 |00 Opcode - 010 - 111
Single Dword Command |011 |01 Opcode - 000 - 001 | Sub Opcode N/A
Reserved 011 |01 Opcode - 010 - 111
Media State 011 |10 Opcode - 000 Sub Opcode Dword Count
Media Object 011 |10 Opcode - 001 - 010 | Sub Opcode | Dword Count
Reserved 011 |10 Opcode - 011 - 111
3DState (Pipelined) 011 |11 Opcode - 000 Sub Opcode | Data | DWord Count
3DState (NP) 011 |11 Opcode - 001 Sub Opcode | Data | DWord Count
PIPE_Control 011 |11 Opcode - 010 Data | DWord Count
3DPrimitive 011 |11 Opcode - 011 Data | DWord Count
Reserved 011 |11 Opcode - 100
Reserved 011 |11 Opcode - 101
Reserved 011 |11 Opcode - 110 - 111
Reserved 100 XX
Reserved 101 [XX
Reserved 110 XX

12 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Notes:

The qualifier "NP" indicates that the state variable is non-pipelined, and the render pipe is flushed
before such a state variable is updated. The other state variables are pipelined (default).

Render Engine Preemption

Render Engine Command Streamer Preemptable Commands

Preemptable Command Condition
MI_ARB_CHECK AP
Element Boundary AP (if allowed)
Semaphore Wait Unsuccessful & AP
Wait for Event Unsuccessful & AP (if allowed)
3DPRIMITIVE Object Level (if enabled")
GPGPU_WALKER Mid-Thread (if enabled?)
PIPE_CONTROL? PIPESEL_GPGPU MODE / PIPESEL-MEDIA MODE
MEDIA STATE FLUSH Mid-Thread (if enabled?)
MEDIA_OBJECT_WALKER / MEDIA_OBJECT | Thread Group
PIPELINE_SELECT PIPESEL-GPGPU Mode / PIPESEL-MEDIA MODE
Any Non-Pipelined State* PIPESEL-GPGPU Mode / PIPESEL-MEDIA MODE

Table Notes:

AP - Allow Preemption if arbitration is enabled.

1. Ox20EC bit 0 determines whether the level of preemption is command or object level.
2. 0x20E4 bits 2:1 determine the level of preemption for GPGPU workloads.

3. MI_ATOMIC and MI_SEMAPHORE_SIGNAL commands with Post Sync Op bit set are treated as
PIPE_CONTROL command with Post Sync Operation as Atomics or Semaphore Signal.

4. Any Header with the value [31:29] = "011", [28:27] = "00" OR "11" and [26:24] = "001". Refer to
Graphics Command Formats.

Compute Command Streamer

Enabling Multi context

Multi context mode is enabled by setting the Compute Engine Enable bit in the Render Control Unit
Mode Register.

This is a global control bit and hardware responds to submission of workloads to the Compute CS only
when this bit is set (render engine must be idle when programming this bit)

Software Interface
Render CS and the Compute CS have their own independent execution list interfaces that SW can

schedule to independently.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 13

intel

As these engines are executing asynchronously:

e Each CS sends its interrupts to both GuC and Host Interrupt block.

e Each CS provides its status independently (using the Context Status structure).

Context Priority

Scheduler SW can set priority of a context by specifying the priority in the context descriptor. Context
priority can be changed across submissions - for e.g: submitted as low priority at submission n and then
high priority at submission n+1

-- Table of priorities and resulting behavior to be added --

Pre-emption Support

RCS Hardware running in Single-Context Mode

Supported modes of Preemption

e 3D mode: Batch level, Draw (command) level, Object

level

e GPGPU mode: Thread Group level

RCS and CCS Hardware running in Multi-Context Mode

Supported modes of Preemption

e RCS only supports Thread Group pre-emption.

e All compute CS-es only support Thread Group pre-
emption.

The following table describes the hardware behavior when pre-emption is invoked in different multi-
context scenarios.

Context 0 Context1 Pre-empt Behavior

(RO): (CO): Trigger

Running on | Running on

RCS COMPUTE CS

3D Idle Preempt RO Batch/Draw/Object

Compute Idle Preempt RO Thread Group

Idle Compute Preempt CO Thread Group

3D Compute Preempt RO Pre-empt 3D at batch/draw/object
3D Compute Preempt CO Thread group preempt CO

14

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Compute Compute Preempt RO Thread group preempt of RO
Compute Compute Preempt CO Thread group preempt of CO
Resets

When Reset is invoked, the entire render engine is reset.

e This reset impacts all the contexts currently running on the machine.

e Hardware does not support a partial reset - where only one context executing on the render
engine is reset.

If the hardware is running multiple contexts and if a context needs to be reset (for e.g. because it is
hung), then SW has to evict any other normally running context from the machine before it triggers
Reset.

Address Space Considerations

Address Space Programming Note

Context: Address Space Constraints on Dual Context

Dual context support is implemented by splitting the 48b address space into two halves:

e RCS context occupies the address space corresponding to bit 47 =0
e GPGPU context occupies the address space corresponding to bit 47 = 1

As a result of the above, a context can use the entire 48b address space when not running in dual context mode
(matches legacy behavior). When running in dual context mode (i.e Compute Engine Enable bit is set in Graphics
Mode Register) contexts are limited to 47b address space.

This model imposes several limitations for SW when running in dual context mode:

¢ Dual context is supported only in Legacy Context mode with 64b VA

e Applications shall be limited to 47b address space - for e.g: OCL 2.0 fine grained which uses 48b addressing
is not supported)

As indicated earlier, dual context is supported by partitioning the address space (by effectively partitioning the
PML4) as shown in figure below.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 15

intel

Address Space Programming Note

Context: Address Space Constraints on Dual Context
i 1E] 3|2 112 1]t
|7 508 g|a 1|0 1
Page Directory Pointe
PMLA Index % |r| “d;: g Page Directory Index Page Table Index Offset inside Page

GPCPU

{5 --__'-—_

E'rt#?=1T
B'rtaﬁ:w

Dual Context is
supported using
aVirtual Shared
PML4

This shared address space needs to be configured to accommodate TR-TT. This is achieved by dropping the TR-TT
address space to 46: 44. The following figure depicts the TR-TT spaces in a dual context scenario.

16 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel.

Address Space Programming Note

Context: Address Space Constraints on Dual Context
Address Space Aggregated Address Space
Submitted by SW Created by HW
Pddrezs a
' Wae] ., "
LY VAR S —— [
0 ~~_ 0
GPGRUCS o ~._.0]
@‘ [n}
_ 676U TRTT range i é
i"m:-'tbi Qulg1 ':
Cat 1) | —— -
« GPGRU G Mate range ¥ e .
_ " 1.5
RS TRIT range a
]:_—:_:___E';___.__:F_-_‘T':"Eﬁ
QuiD 0 g —rz
(g e
TRIT B -
¥ uamﬂﬂ B T~ =
e
Render C3

In a virtualized environment, each context can belong to a different Virtual Machine. The hardware allows for
independent VT-d page table translation for each context.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 17

intel.

Address Space Programming Note

Context: Address Space Constraints on Dual Context
Address Translation with \/T-d Address Translation with V/T-d
Legacy scenario Dual Context scenario

.
O — -
 TRTT rnge [0 ~ /'” — = VR
7 Vi VA }HHT#E:H =" '0 GPGPU TRIT range =
Ry g b r\
E NU r\ QuiD 1 "
. O = —
~ (G 1) P —
. GPGPU Gl Mate mngeﬂl ——3 E
n R L " T B
S subwmit=d 4] = . d
meT Ghwd g~ g RESTRITrge = 2
Sn(GRA | gy ="
sl i} = ____h:___:t o 3
. \D %‘%—;}]q) s i
1 1] e RCS Gix Mate rangs . H
g L Y I]:l:_‘_-_:_—__—-h.____ 2
0 3
=} '““--q.___whg
1]
FirsLsvel walk -
it A GPA

18 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

CCS Register State Context

This section summarizes the ComputeCS register state context.

Compute Engine Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

Description MMIO Offset/Command Unit # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1108_1019 CSEL 1
Context Save/Restore Control Register 0x1A244 CSEL 2
Ring Buffer Head 0x1A034 CSEL 2
Ring Tail Pointer Register 0x1A030 CSEL 2
RING_BUFFER_START 0x1A038 CSEL 2
RING_BUFFER_CONTROL 0x1A03C CSEL 2
Batch Buffer Current Head Register (UDW) 0x1A168 CSEL 2
Batch Buffer Current Head Register 0x1A140 CSEL 2
Batch Buffer State Register 0x1A110 CSEL 2
BB_PER_CTX_PTR 0x1A1CO CSEL 2
CS_INDIRECT_CTX Ox1A1C4 CSEL 2
CS_INDIRECT_CTX_OFFSET O0x1A1C8 CSEL 2
CCID 0x1A180 CSEL 2
SEMAPHORE_TOKEN Ox1A2B4 CSEL 2
NOOP CSEL 4
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1108_1011 CSEL 1
CTX_TIMESTAMP O0x1A3A8 CSEL 2
PDP3_UDW 0x1A28C CSEL 2
PDP3_LDW 0x1A288 CSEL 2
PDP2_UDW 0x1A284 CSEL 2
PDP2_LDW 0x1A280 CSEL 2
PDP1_UDW 0x1A27C CSEL 2
PDP1_LDW 0x1A2278 CSEL 2

Doc Ref # IHD-OS-TGL-Vol 9-12.21 19

intel

Description MMIO Offset/Command Unit # of DW

PDPO_UDW O0x1A274 CSEL 2
PDPO_LDW 0x1A270 CSEL 2
POSH_LRCA (DUMMY) O0x1A1BO CSEL 2
CONTEXT_SCHEDULING_ATTRIBUTES OxTA5A8 CSEL 2
(RESOURCE_MIN_MAX_PRIROQITY)

PREEMPTION_STATUS 0x1A5AC CSEL 2
NOOP CSEL 4
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1108_0001 CSEL 1
R_PWR_CLK_STATE 0x1A0C8 CSEL 2
GPGPU_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9
NOOP CSFE 1
MI_LOAD_REGISTER_IMM 0x1108_1065 CSFE 1
BB_STACK_WRITE_PORT Ox1A588 CSFE 12
EXCC 0x1A028 CSFE 2
MI_MODE 0x1A09C CSFE 2
INSTPM 0xTA0CO CSFE 2
PR_CTR_CTL 0x1A178 CSFE 2
PR_CTR_THRSH 0x1A17C CSFE 2
TIMESTAMP Register (LSB) 0x1A358 CSFE 2
BB_START_ADDR_UDW 0x1A170 CSFE 2
BB_START_ADDR 0x1A150 CSFE 2
BB_ADD_DIFF 0x1A154 CSFE 2
BB_OFFSET 0x1A158 CSFE 2
MI_PREDICATE_RESULT_1 0x1A41C CSFE 2
CS_GPR (1-16) 0x1A600 CSFE 64
IPEHR 0x1A068 CSFE 2
CMD_BUF_CCTL 0x1A084 CSFE 2
NOOP CSFE 1
MI_LOAD_REGISTER_IMM 0x1102_100F CSFE 1
TRTTCR 0x4580 CSFE 2
TRVADR 0x4584 CSFE 2
TRTT_L3_BASE_LOW 0x4588 CSFE 2
TRTT_L3_BASE_HIGH 0x458C CSFE 2
TR_NULL_GFX 0x4590 CSFE 2
TR_INV 0xF594 CSFE 2

20

Doc Ref # IHD-OS-TGL-Vol 9-12.21

../../../../Content/BXmlSnippets/Instruction_MI_LOAD_REGISTER_IMM__CommandStreamer.html

N

tel

Description MMIO Offset/Command Unit # of DW
AUX_TABLE_BASE_ADDR_LOW 0x42C0 CSFE 2
AUX_TABLE_BASE_ADDR_HIGH 0x42C4 CSFE 2
NOOP CSFE 6
NOOP CSBE 1
MI_LOAD_REGISTER_IMM 0x1108_1023 CSBE 1
CSPAVPMODE OxTA1FO CSBE 2
CS_CONTEXT_STATUS1 Ox1A184 CSBE 2
GPUGPU_DISPATCHDIMX 0x1A500 CSBE 2
GPUGPU_DISPATCHDIMY 0x1A504 CSBE 2
GPUGPU_DISPATCHDIMZ 0x1A508 CSBE 2
MI_PREDICATE_SRCO 0x1A400 CSBE 2
MI_PREDICATE_SRCO 0x1A404 CSBE 2
MI_PREDICATE_SRC1 0x1A408 CSBE 2
MI_PREDICATE_SRC1 0x1A40C CSBE 2
MI_PREDICATE_DATA 0x1A410 CSBE 2
MI_PREDICATE_DATA 0x1A414 CSBE 2
MI_PRED_RESULT 0x1A418 CSBE 2
GPGPU_THREADS_DISPATCHED 0x1A290 CSBE 4
CS_CHICKEN2 0x1A194 CSBE 4
NOOP CSBE 4
NOOP CSBE 2
PIPELINE_SELECT CSBE 1
STATE_BASE_ADDRESS CSBE 22
STATE_SIP CSBE 3
STATE_COMPUTE_MODE CSBE 2
3DSTATE_BINDING_TABLE_POOL_ALLOC CSBE 4
NOOP CSBE 8
NOOP CSBE 12
MI_BATCH_BUFFER_END CSEND 1
NOOP CSEND 127

CCS Power Context Image

This section summarizes the ComputeCS power context.

Doc Ref # IHD-OS-TGL-Vol 9-12.21

21

intel

Compute Engine Power Context

Compute Engine Power Context Image

Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE
CSFE Power context without Display CSFE|195 0 CSFE
cs 1 00C4 CSBE
0x1100_1009| CS 1 00C5 CSBE
cs 10 00D0 CSBE
cs 1 00DA CSBE
cs 1 ooDB CSBE

MI Commands Supported by ComputeCS

ComputeCS supports all the Ml commands supported by RCS except for the below exceptions.

ComputeCS doesn't support below commands and SW must not program them as part of the Compute
engine's command sequence.

Commands not supported in ComputeCS executed command buffers:

Commands
MI_DISPLAY_FLIP
MI_LOAD_SCANLINES_INCL/EXCL
MI_WAIT_FOR_EVENT
MI_REPORT_PERF_COUNT
MI_FORCE_WAKEUP

GPGPU-Media State Commands Supported by ComputeCS

The table below lists the GPGPU-MEDIA STATE Commands Supported by Compute Engine (ComputeCS).
State commands programmed for ComputeEngine which are not listed in the table below will be
gracefully discarded (NOOP'd) by ComputeCS.

GPGPU-MEDIA State Commands

e MEDIA_VFE_STATE

e MEDIA_CURBE_LOAD

e MEDIA_INTERFACE_DESCRIPTOR_LOAD
e MEDIA_OBJECT

e MEDIA_OBJECT_*

e MEDIA_OBJECT_GRPID

e MEDIA_WALKER

e GPGPU_WALKER

22 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

GPGPU-MEDIA State Commands

e MEDIA_STATE_FLUSH

Common Non-Pipeline State Commands

e STATE_BASE_ADDRESS

e GPGPU_CSR_BASE_ADDRESS
e PIPELINE_SELECT

e STATE_SIP

e STATE_COMPUTE_MODE

Misc Commands

e PIPE_CONTROL
e 3DSTATE_BINDING_TABLE_POOL_ALLOC

Position Only Shader Command Streamer (POCS)

Position only shader (POSH) is a new geometry pipeline that has the optional ability to execute the
position only vertex shaders and perform the visibility test on these vertices before the actual vertex
shader is executed. POSH pipe can run ahead of the original geometry pipe by executing position only
vertex shaders and doing visibility test on these vertices and recording this information. Geometry pipe
when processing the vertices will use this visibility information outputted by POSH pipe to skip the vertex
fetch and shading for vertices that are already marked as culled.

POSH pipe has its own command streamer called Position only command streamer (POCS). A context
running on render pipe can exercise POSH capabilities through Render Command Streamer (RCS). RCS
manages the POSH pipe through POCS for POSH enabled contexts. Render command streamer loads the
context to execute on POCS when a POSH enable context execution begins in render pipe, similarly
preempts context executing in POCS when the POSH enabled context switches out of render pipe. Once
POCS is loaded with context it starts executing the ring buffer similar to RCS, refer Programming Model
section for more details.

Position Only Command Streamer (POCS)

The POCS (Position Only Shader Command Streamer) unit primarily serves as the programming interface
between the render command streamer and the POSH pipe. It is responsible for fetching, decoding, and
dispatching of data packets (3D Commands with the header DWord removed) for the POSH pipe.

Logic Functions Included

e MMIO register programming interface.

e DMA action for fetching of ring buffer and batch buffer data from memory.

e Management of the Head pointer for the Ring Buffer.

e Decode and execution of command programmed in ring buffer and batch buffers.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 23

intel

e Flushing the POSH pipe.
Handle NOOP.

The POCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x1_8000 to
Ox1_9FFF. The POCS and RCS use semaphore to synchronize their operations.

POCS ExecList Scheduling

Position Only Engine Command Streamer Preemptable Commands

Preemptable Command Condition
MI_ARB_CHECK AP
Element Boundary AP (if allowed)
Semaphore Wait Unsuccessful & AP
Wait for Event Unsuccessful & AP (if allowed)
3DPRIMITIVE Object Level (if enabled")
3DSTATE_PTBR_TILE_PASS_INFO AP

Table Notes:
AP - Allow Preemption if arbitration is enabled.

1. Ox20EC bit O determines whether the level of preemption is command or object level.

POSH Programming Model

The POSH + Render pipeline will appear as a monolithic engine from SW perspective. Render Command
Streamer (RCS) is hardware front end interface to the SW for the modified Render + POSH pipeline. SW
will use a single context (and associated LRCA) to submit work to the modified Render + POSH pipeline
through its associated ring buffer.

Context submission model should be visualized as context submitted to RCS. RCS will set up the context
definition in HW and triggers POSH pipe to execute the same context, resulting in execution of the same
ring buffer by render pipe and POSH pipe in parallel. POSH pipe has its own command streamer called
POCS (POSH Command Streamer). Similarly, when the context is switched out on the render pipe due to
whatever reasons (Wait For Event, Semaphore Wait or Preemption due to pending execlist), RCS will
ensure POSH pipe is preempted and its corresponding logic state is saved through POCS.

POCS and RCS get to see the same ring buffer, however the execution of the same ring buffer by POCS
and RCS are asynchronous to each other and its SW responsibility to ensure POCS and RCS are
synchronized through semaphores as and when required. SW will provide independent command buffers
(batch buffers) to be executed by RCS and POCS. Marking of batch buffers for POCS and RCS and
execution of ring buffer are detailed in the latter subsections.

This model of execution has the following implications:

e POCS and RCS have to run on the same context definition. RCS sets up context with GAM and
POCS runs within this address space.

24 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Even though the currently running context may not be utilizing the POSH pipe, a waiting context

with POSH enabled has to wait for the current context to be evicted. (waiting context cannot take

advantage of the idle POSH pipe ahead of getting scheduled on the render engine)

POSH Enabled Context

A context submitted to render engine exercising POSH functionality is called "POSH Enabled" context.
Application (UMD) decides if a context is POSH Enabled at the time of context creation. A context is
indicated as POSH enabled to HW by setting "POSH Enable" bit in CTX_SR_CTL register of RCS. SW
allocates additional separate memory space (POSH LRCA) for the POSH Enabled contexts. POSH pipe
uses the POSH LRCA for its context state management.

Context Submission and LRCA for POSH

SW will continue to submit POSH enabled contexts to ELSP in RCS. There is no change in the pending
execlist submission or context switch status report mechanism to/from RCS.

Listed below are the SW changes required for submission of the POSH enabled context:

"POSH Enable" bit in CTX_SR_CTL of RCS must be set to indicate POSH enabled context to HW.
Refer POSH functionality control section for the bit definition and programming.

POSH LRCA is provided to RCS through register programming in the ring context of RCS. Refer
RCS ring context details below.

POSH LRCA format is similar to that of RCS, i.e PPHWSP followed by ring context followed by the
engine context. However POSH ring context will only have the ring buffer and batch buffer details.
POSH ring context will not have the page directory pointers details as the PPGTT is setup by RCS.

SW does not control POCS context ID independently. The context ID for POCS will be supplied
from RCS, and thus will be the same.

SW must update the ring context of POSH with ring buffer details on the very first submission and
whenever the ring buffer start address, control and head pointer details are updated. POSH pipe
(POCS) will sample the tail pointer from RCS. Note that the POCS and RCS share the same ring
buffer.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 25

intel.

LRCA

Pointer

RCS Head
Pointer
POCS Head

Tail Ppinter

MEMORY

POSH LRCA

— — — — — — — — — — — — — — — — — —— — — — — — — —

A

RENDER + POSH

Doc Ref # IHD-OS-TGL-Vol 9-12.21

26

intel

POSH LRCA in RCS Ring Context

The table below highlights the POSH LRCA details in RCS ring context. Ring context listed below is for
illustration of the change, "Register State Context" in "Render Logical Context Data" should be referred
as the final format for implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Register CSEL 2
RING_BUFFER_START CSEL 2
RING_BUFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) | CSEL 2
Batch Buffer Current Head Register CSEL 2
Batch Buffer State Register CSEL 2
SECOND_BB_ADDR_UDW CSEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_STATE CSEL 2
BB_PER_CTX_PTR CSEL 2
RCS_INDIRECT_CTX CSEL 2
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSEL 2
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
CTX_TIMESTAMP CSEL 2
PDP3_UDW CSEL 2
PDP3_LDW CSEL 2
PDP2_UDW CSEL 2
PDP2_LDW CSEL 2
PDP1_UDW CSEL 2
PDP1_LDW CSEL 2
PDPO_UDW CSEL 2
PDPO_LDW CSEL 2
MI_LOAD_REGISTER_IMM CSEL 1
POSH_LRCA CSEL 2
NOOP CSEL 9
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1

Doc Ref # IHD-OS-TGL-Vol 9-12.21 27

intel

Description Unit | # of DW
R_PWR_CLK_STATE CSEL 2
GPGPU_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9

POCS Ring Context

Table below details the POSH ring context. Ring context listed below is for illustration of the change,
"Register State Context" in "Render Logical Context Data" should be referred as the final format for

implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Register CSEL 2
RING_BUFFER_START CSEL 2
RING_BUFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) | CSEL 2
Batch Buffer Current Head Register CSEL 2
Batch Buffer State Register CSEL 2
SECOND_BB_ADDR_UDW CSEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_STATE CSEL 2
BB_PER_CTX_PTR CSEL 2
RCS_INDIRECT_CTX(Always Invalid) CSEL 2
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSEL 2

28

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Description Unit | # of DW

NOOP CSEL 48

POSH Command Transport

These following subtopics describe the command transport mechanism from SW to POCS.

"POSH Start" Batch Buffers

Batch buffers dedicated to being executed by POSH pipe are indicated by setting the field "POSH Start"
in the MI_BATCH_BUFFER_START command header. Once "POSH Start" is set in a batch buffer all the
following chained batch buffers and next level batch buffers will implicitly inherit the "POSH Start" field
value. Once "POSH Start" is set in a batch buffer all the following command sequences are to be
executed by POCS until the corresponding batch buffer sequencing is terminated through
MI_BATCH_BUFFER_END/MI_CONDITIONAL_BATCH_BUFFER_END command.

Example:

e Once "POSH Start" is encountered in a first level batch buffer by HW, it will get reset only when the
first level batch buffer execution is terminated through batch buffer end and the command
execution sequence goes back to the ring buffer,

e Similarly, once "POSH Start" is encountered in a second level batch buffer by HW, it will get reset
only when the second level batch buffer execution is terminated through batch buffer end and the
command execution sequence goes back to the first level buffer,

e Similarly, once when "POSH Start" is encountered in a third level batch buffer by HW, it will get

reset only when the third level batch buffer execution is terminated through batch buffer end and
the command execution sequence goes back to the second level batch buffer.

Command sequences executed from the "POSH Start" batch buffer may lead to chained batch buffers or
next level batch buffers. Batch buffers executed by POCS may have Ml Commands, 3DSATE commands
and 3DPRIMTIVE commands for POSH pipe, however these will be a subset of the commands that are
supported by render pipe. RCS on parsing MI_BATCH_BUFFER_START command with "POSH Start"
enabled NOOPS the command and moves on the following command.

MI Commands Supported by POCS

POCS supports all the Ml commands supported by RCS except for the below exceptions.

POCS doesn't support below commands and SW must not program them as part of the POSH command
sequence.

Commands not supported in POSH executed command buffers:

Column Title1

MI_DISPLAY_FLIP

MI_LOAD_SCANLINES_INCL/EXCL

Doc Ref # IHD-OS-TGL-Vol 9-12.21 29

intel

Column Title1

MI_WAIT_FOR_EVENT

MI_USER_INTERRUPT

MI_REPORT_PERF_COUNT

MI_SET_CONTEXT

MI_ARB_ON_OFF

POCS can semaphore signal RCS and vice-versa, however POCS will not support semaphore signal
forwarding to GUC and also RCS will not forward semaphore signals received from POCS to GUC.

3D State Commands Supported by POCS

The table below lists the 3DSTATE Commands Supported by POSH Pipe. State commands programmed
for POSH which are not listed in the table below will be gracefully discarded (NOOP'd) by POCS.

3D State Commands

e 3DSTATE_VF

e 3DSTATE_INDEX_BUFFER

e 3DSTATE_VERTEX BUFFER

e 3DSTATE_VERTEX_ELEMENTS

e 3DSTATE_VF_COMPONENT_PACKING

o 3DSTATE_VF_INSTANCING

o 3DSTATE_VF_SGVS

e 3DSTATE_VF_TOPOLOGY

o 3DSTATE_VF_STATISTICS

e 3DPRIMTIVE

e 3DSTATE_VS

e 3DSTATE_PUSH_CONSTANT_ALLOC_VS
e 3DSTATE_CONSTANT_VS

e 3DSTATE_BINDING_TABLE_POOL_ALLOC
e 3DSTATE_BINDING_TABLE_POINTERS_VS
e 3DSTATE_SAMPLER _STATE_POINTERS_VS
e 3DSTATE_URB_VS

o 3DSTATE_CLIP

o 3DSTATE_SFFE

o 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP
o 3DSTATE_SCISSOR_STATE_POINTERS

e 3DSTATE_MULTISAMPLE

e 3DSTATE_RASTER

e 3DSTATE_DRAWING_RECTANGLE

e 3DSTATE_INT

30 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

3D State Commands

e PIPECONTROL Command
e 3DSTATE_SBE (for PID computation)

e 3DSTATE_PRIMITVE_REPLICATION

o 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS
o 3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS

o 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS
e 3DSTATE_PTBR_TILE_PASS_INFO

Common Non-Pipeline Sate Commands

o STATE_BASE_ADDRESS

"POSH Enable" Batch Buffers

POCS parses/traverses (doesn't execute) the ring buffer to look for batch buffers programmed with
"POSH Start" field set. "POSH Enable" field in the MI_BATCH_BUFFER_START command is a hint to POCS
to traverse (parse, don't execute) the batch buffer to look for "POSH Start" batch buffers. "POSH Enable”
field is only inherited to the chained batch buffer and doesn't get inherit to the next level batch buffers
unlike "POSH Start" field. "POSH Enable" field must be explicitly set in the MI_BATCH_BUFFER_START
command which calls the next level batch buffers in order for the POCS to parse them to look for "POSH
Start" batch buffers. POCS ends the "POSH Enable" batch buffer on executing MI_BATCH_BUFFER_END or
on MI_CONDITIONAL_BATCH_BUFFER_END meeting the required condition. "POSH Start" field takes
precedence over the "POSH Enable" field in POCS.

Example:

e Once "POSH Enable" is encountered in a first level batch buffer, POCS will traverse the whole of the
first level batch buffers (including chained first level) to check for "POSH Start" field in
MI_BATCH_BUFFER_START command. POCS by default will not traverse the second level batch
buffers. SW must explicitly set the "POSH Enable" field for the second level batch buffer called
from first level batch buffer if the second level batch buffer have to be traversed by POCS.

e Similarly, Once "POSH Enable" is encountered in a second level batch buffer, POCS will traverse the
whole of the second level batch buffers (including chained second level) to check for "POSH Start"
field in MI_BATCH_BUFFER_START command. POCS by default will not traverse the third level batch
buffers. SW must explicitly set the "POSH Enable" field for the third level batch buffer called from
second level batch buffer if the third level batch buffer have to be traversed by POCS.

e Similarly, Once "POSH Enable" is encountered in a third level batch buffer, POCS will traverse the
whole of the third level batch buffers (including chained second level) to check for "POSH Start"
field in MI_BATCH_BUFFER_START command.

RCS ignores "POSH Enable" field and has no implications due to the "POSH Enable" field set in the
MI_BATCH_BUFFER_START command.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 31

intel

POSH Ring Buffer

POCS and RCS share the same ring buffer. POCS parses the ring buffer to look for batch buffers start
commands with "POSH Enable" or "POSH Start" fields set, it doesn't execute any commands
programmed in the ring buffer. POCS and RCS executing the same ring buffer results in two different
command sequences based on the "POSH Start" and "POSH Enable" fields programmed in various batch
buffers.

Examples for Command Buffer Execution by POCS and RCS

There are various possible combinations of command sequences programmable based on the below
fields. Example below states few scenarios.

e POSH Start

e POSH Enable

e First Level Batch Buffers

e Second Level Batch Buffers

e Third Level Batch Buffers

e Chaining of First Level Batch Buffers

e Chaining of Second Level Batch Buffers
e Chaining of Third Level Batch Buffers

Acronyms used in the illustrative example below:

BB: Batch Buffer; BBS: Second Level batch buffer; BBT: Third Level batch buffer; BBE: Batch Buffer End;
PS: POSH Start; PE: POSH Enable; X: Field programmed is don't care by HW

In the figures below:

e First figure depicts the command sequence programmed in the ring buffer that is submitted to
RCS & POCS.

e Second figure depicts the command sequence outputted by POCS on executing the ring buffer
submitted by SW.

e Third figure depicts the command sequence outputted by RCS on executing the ring buffer
submitted by SW.

Note that the same ring buffer results in different command sequence execution from POCS and RcS.

The figure below depicts the command sequence programmed in the ring buffer that is submitted to
RCS & POCS.

32 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel.

Third Level
Batch Buffer

Second Level
Batch Buffer

First Level Batch

Ring Buffer Buffer

1

I

———————————————————————_——— —

L

————————————————— —

B8: PE,O

e —— -
; B8B: 0,0 \;

~—
|

Fig: Ring Buffer Submitted by SW with Posh Enable and Posh Start bits programmed in the batch buffers

The figure below depicts the command sequence outputted by POCS on executing the ring buffer
submitted by SW in the above diagram.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 33

intel.

Third Level
Batch Buffer

Second Level
Batch Buffer

First Level
Batch Buffer

BBT: X,X

BBT: X, X

(-

———— ————— — ————— —————————— —— ——— — —

(®BBT:00 I

{ BBE -)_

Indicates POCS has fotched the buffor and parsoed commands ta look for Ratch
Buffor start commands with Pash Enable (PE) aor Posh Start (P5) bits set

Indicates POCS has forched the butfer and have executed the commands. Note
- thar once Posh Start batch butfer is encountered all the subsequent
originating batch buffars from the corresponding batch buffer are always
oxocurted by POCS,

() Indicates POCS has not fetched the butfer .

Fig: Command buffer execution by POCS w.r.t to the SW submitted Ring Buffer fig above

The figure below depicts the command sequence outputted by RCS on executing the ring buffer
submitted by SW.

34 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel.

Third Level
Batch Buffer

Second Level

First Level Batch Buffer

Ring Buffar Batch Buffer

—————————————————————————————

- ———————————————————————————

1
|
I
)
|
BBE
I
1
— |
I
B88T:0,0 1 BBE
S
o= BN
I
|
I

- Indicates the buffers executed by RCS.

() Indicates the buffers that are not fetched and executed by RCS.

Fig: Command buffer execution by RCS w.r.t to the SW submitted Ring Buffer fig above

POSH Preemption

Once the context is loaded to POCS, only way it can be switched out is through explicit preemption from
RCS, POCS doesn't switch out an context on encountering un-successful Wait for Events or Semaphore

Doc Ref # IHD-OS-TGL-Vol 9-12.21 35

intel

Wait or running out of commands on head equal to tail pointer. RCS on switching out the context either
due to synchronous context switch or preemption, it also preempts POCS if the context is POSH enabled.
POCS receives preemption from RCS and triggers the preemption flow for POSH pipe. POSH pipe
supports 3D object level preemption. Preemption from RCS can happen when POCS is in one of the
below states:

e POCSFE has executed the context and have Head Equals Tail.

e POCSFE is busy executing commands.

POSH MMIO

POSH pipe implements its own set of MMIO registers similar to render pipe, however POSH pipe
implements the registers relevant to the functionality supported in POSH pipeline. Listed below are the
only registers that are accessible in POSH pipeline.

Table 1: Registers in POCSFE

MMIO SYMBOL Suffix
DMA_FADD POCS
ACTHD POCS
ACTHD_UDW POCS
CS_ALU_ACCU POCS
CS_ALU_CF POCS
CS_ALU_SRCA POCS
CS_ALU_SRCB POCS
CS_ALU_ZF POCS
BB_ADDR POCS
BB_ADDR_DIFF POCS
BB_ADDR_UDW POCS
BB_OFFSET POCS
BB_PER_CTX_PTR POCS
BB_PREEMPT_ADDR POCS
BB_PREEMPT_ADDR_UDW POCS
BB_START_ADDR POCS
BB_START_ADDR_UDW POCS
BB_STATE POCS
CCID POCS
CSFE_CHICKENT1 POCS
CTXT_PREMP_DBG POCS
CTXT_SR_CTL POCS
CXT_EL_OFFSET POCS

36 Doc Ref # IHD-OS-TGL-Vol 9-12.21

MMIO SYMBOL Suffix
CMD_CCTL.O POCS
RCS_CTXID_PREEMPTION_HINT POCS
CTX_TIMESTAMP POCS
CTX_WA_BB_ADDR POCS
EXCC POCS
FORCE_TO_NONPRIV_0 POCS
FORCE_TO_NONPRIV_1 POCS
FORCE_TO_NONPRIV_2 POCS
FORCE_TO_NONPRIV_3 POCS
FORCE_TO_NONPRIV_4 POCS
FORCE_TO_NONPRIV_5 POCS
FORCE_TO_NONPRIV_6 POCS
FORCE_TO_NONPRIV_7 POCS
FORCE_TO_NONPRIV_8 POCS
FORCE_TO_NONPRIV_9 POCS
FORCE_TO_NONPRIV_10 POCS
FORCE_TO_NONPRIV_11 POCS
CS_GPRR.O POCS
CS_GPR_R_1 POCS
CS_GPRR 2 POCS
CS_GPR_R_3 POCS
CS_GPR R 4 POCS
CS_GPR R 5 POCS
CS_GPR R 6 POCS
CS_GPR_ R 7 POCS
CS_GPR R 8 POCS
CS_GPRR 9 POCS
CS_GPR_R_10 POCS
CS_GPR_R_11 POCS
CS_GPR R 12 POCS
CS_GPR_R_13 POCS
CS_GPR_R_14 POCS
CS_GPR_R_15 POCS
GFX_MODE POCS
HWS_PGA POCS
PWRCTX_MAXCNT POCS
IPEHR POCS

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

37

intel

MMIO SYMBOL Suffix
IDLEDLY POCS
CSCMDOP POCS
CSCMDVLD POCS
INSTPM POCS
INSTPS POCS
MI_PREDICATE_RESULT_1 POCS
MI_PREDICATE_RESULT_2 POCS
MI_MODE POCS
NOPID POCS
PDPO POCS
PDP1 POCS
PDP2 POCS
PDP3 POCS
PR_CTR_THRSH POCS
PREEMPTDLY POCS
PREEMPTION_HINT POCS
PREEMPTION_HINT_UDW POCS
DMA_FADD_P_UDW POCS
RING_BUFFER_CTL POCS
RING_BUFFER_HEAD POCS
RING_BUFFER_HEAD_PREEMPT_REG | POCS
RING_BUFFER_START POCS
RING_BUFFER_TAIL POCS
TIMESTAMP POCS
RESET_CTRL POCS
SBB_ADDR POCS
SBB_ADDR_UDW POCS
SBB_PREEMPT_ADDR POCS
SBB_PREEMPT_ADDR_UDW POCS
SBB_STATE POCS
SEMA_WAIT_POLL POCS
RC_PSMI_CTRL POCS
CURRENT_LRCA POCS

38

Doc Ref # IHD-OS-TGL-Vol 9-12.21

Table 2: Registers in POCSBE

MMIO SYMBOL Suffix
3DPRIM_BASE_VERTEX POCS
3DPRIM_END_OFFSET POCS
3DPIM_INSTANCE_COUNT | POCS
3DPRIM_START_INSTANCE | POCS
3DPRIM_START_VERTEX POCS
3DPRIM_VERTEX_COUNT |POCS
3DPRIM_XPO POCS
3DPRIM_XP1 POCS
3DPRIM_XP2 POCS
IA_PRIMITIVES_COUNT POCS
IA_VERTICES_COUNT POCS
VS_INVOCATION_COUNT |POCS
CL_INVOCATION_COUNT |POCS
CL_PRIMITIVES_COUNT POCS
MI_PREDICATE_DATA POCS
MI_PREDICATE_RESULT POCS
MI_PREDICATE_SRCO POCS
MI_PREDICATE_SRC1 POCS
CSBEFSM POCS
CSFLFLAG POCS
CSFLFSM POCS
CSFLTRK POCS
CS_CONTEXT_STATUS1 POCS
CTX_RESTORE_ACK 0 POCS
CTX_RESTORE_ACK 1 POCS
FF_MODE POCS
STATE_ACK POCS
STATE_ACK_SLICE1 POCS
STATE_ACK_SLICE2 POCS
STATE_ACK_SLICE3 POCS
State_ACK_Register_Slice_5 | POCS
State_Ack_Register_Slice4 |POCS

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

39

intel

POSH Functionality Controls

POSH functionality enabling and disabling is hierarchically controlled at various levels in the context
execution flow.

e Context Granularity

e Batch Buffer Granularity

e 3DPRIMTIVE Granularity

POSH Control Description

Context POSH feature can be enabled or disabled at context level by programming the "POSH Enable"
Granularity field in CTX_SR_CTL register of the RCS. When POSH is disabled in CTX_SR_CTL register, RCS will
not engage POSH.

Usage model is one time programming of "POSH Enable" field at context creation time.

Dynamic enabling or disabling of POSH during context execution should be achieved through
Batch Buffer and 3DPRIMTIVE granularity controls.

Batch Buffer POSH Enable:

Granularity "POSH Enable" field in MI_BATCH_BUFFER_START command indicates the possibility of

encountering "POSH Start" batch buffer from the corresponding command sequence.

POSH Start:

Commands to be executed by the POCS must be programmed in a dedicated batch buffer and
this batch buffer is indicated with a bit "POSH Start" in the MI_BATCH_BUFFER_START command.
Once POCS encounters the batch buffer with "POSH Start" it executes all the command in the
corresponding batch buffer and also the chained batch buffers from the corresponding buffer.

RCS skips the MI_BATCH_BUFFER_START command with "POSH Start" set and goes on the
following command.

Programming Notes:

POCS executes only the MI_BATCH_BUFER_START commands programmed in the ring buffer
with "POSH Enable" set and NOOPS (predicates) all the other commands in the ring buffer. POCS
only parses/traverses the batch buffer with "POSH Enable" to check for any batch buffer
programmed with "POSH Start" set.

SW must set "POSH Enable" field in the MI_BATCH_BUFFER_START command programmed in
ring buffer if the commands in the corresponding batch buffer or the chained batch buffers
(includes Second Level and third level) has at least one batch buffer start command with "POSH
Start" set (also implies 3DPRIMITIVE command for which POSH is enabled).

3DPRIMTIVE "POSH Enable" field in the 3DPRIMTIVE command indicates the POSH pipe to create the visibility
Granularity recording data and indicates Render pipe to use visibility recording data for the corresponding
3DPRIMTIVE command.

40 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

POSH Interrupts

There are no interrupts generated by POSH pipe.

Graphics Pipeline Software Interface

This section covers the Graphics pipeline software interface.

Synchronization of the Graphics Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top of
the pipe synchronization really enforces the read-only cache invalidation. This synchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not
have outstanding hardware accesses. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through the pipeline
(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is
used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the beginning
of the rendering sequence in a given context. HW may have residual states cached in the state-caches
and read-only surfaces in various caches. With new rendering sequence, read-only surfaces may go
through change in the binding. Hence read-only invalidation is required before such new rendering
sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this specific pipe-
control command, HW invalidates all caches in GT domain that have read-only surfaces but does not
guarantee invalidation beyond GT caches

Upon parsing this specific pipe-control command, HW invalidates all caches in GT domain that have
read-only surfaces but does not guarantee invalidation beyond GT caches (i.e. LLC).

Further, HW does not guarantee that all prior accesses to those read-only surfaces have completed.
Therefore, SW must guarantee that there are no pending accesses to those read-only surfaces before
initializing the top-of-pipe synchronization. PIPE-CONTROL command described below allows for
invalidating individual read-only stream type. It is recommended that driver invalidates only the required
caches on the need basis so that cache warm-up overhead can be reduced.

End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not
necessarily in memory) so that it can deallocate in-memory rendering state, read-only surfaces,
instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee
that all pending depth tests have completed so that the visible pixel count is complete prior to storing it
to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events
are complete (a "read fence" completion). Read events are still pending if work in the pipeline requires
any type of read except a render target read (blend) to complete.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 41

intel

Write synchronization is a special case of end-of-pipe synchronization that requires that the render cache
and/or depth related caches are flushed to memory, where the data will become globally visible. This
type of synchronization is required prior to SW (CPU) actually reading the result data from memory, or
initiating an operation that will use as a read surface (such as a texture surface) a previous render target
and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush Enable,
Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are flushed and
doesn't guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using "Notify Enable" and "Post-
Sync Operation - Write Immediate Data" in the PIPE_CONTROL command. "Notify Enable" and "Post-
Sync Operation - Write Immediate Data" generate a fence cycle on achieving end-of-pipe-
synchronization for the corresponding PIPE_CONTROL command. Fence cycle ensures all the write cycles
in front of it are to global visible point before they themselves get processed. It is guaranteed the data
flushed out by the PIPE_CONTROL is updated in memory by the time SW receives the corresponding
Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back into the render engine in coherent
manner, then the render engine has to wait for the fence completion before accessing the flushed data.
This can be achieved by following means on various products.

PIPE_CONTROL command with CS Stall and the required write caches flushed with Post-Sync-Operation as Write
Immediate Data.

Example:

e WorkLoad-1 (3D/GPGPU/MEDIA)
e PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush bits set)

WorkLoad-2 (Can use the data produced or output by Workload-1)

Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of
the synchronization point must be communicated to the driver. This section describes the actions that
may be taken upon completion of a synchronization point which can achieve this communication.

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be written. In lieu of an
immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register
may be written out to memory. The captured value will be the value at the moment all primitives parsed
prior to the synchronization commands have been completely rendered, and optionally after all said
primitives have been pushed to memory. It is not required that a value be written to memory by the
synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these
counters are free-running and are not to be reset except at initialization. To obtain the delta, two
PIPE_CONTROL commands should be initiated with the command sequence to be measured between

42 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global visible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are
stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible
pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the
visible pixel count is accurate, and the synchronization is completed. This stall has a minor effect on
performance and should only be used in order to obtain accurate "visible pixel” counts for a sequence of
primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) "Occlusion Query" function.

Generating an Interrupt

The synchronization command may indicate that a "Sync Completion" interrupt is to be generated (if
enabled by the Ml Interrupt Control Registers - see Memory Interface Registers) once the rendering of all
prior primitives is complete. Again, the completion of rendering can be considered to be when the
internal render cache has been updated, or when the cache contents are visible in memory, as selected
by the command options.

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse
referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure rendering is
complete. If additional primitives are initiated after new data is laid over the top of old in memory
following a synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used. (See
PIPE_CONTROL Command description).

PIPE_CONTROL Command

The PIPE_CONTROL command provides mechanism to achieve the synchronization of the 3D pipeline
and to execute post-synchronization operations as described in the section "Synchronization of the 3D
pipeline". Parsing a PIPE_CONTROL command stalls the 3D pipe only if the stall enable bit is set.
Commands after PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may
include additional PIPE_CONTROL commands. The implementation does enforce a practical upper limit
(8) on the number of PIPE_CONTROL commands that may be outstanding at once. Parsing a
PIPE_CONTROL command that causes this limit to be reached will stall the parsing of new commands
until the first of the outstanding PIPE_CONTROL commands reach the end of the pipe and retires.

Although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue PIPE_CONTROL when
the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the pipe until the Media FFs

Doc Ref # IHD-OS-TGL-Vol 9-12.21 43

intel

finish processing commands parsed before PIPE_CONTROL. Post-synchronization operations, flushing of
caches and interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this stalling
behavior, only one PIPE_CONTROL command can be outstanding at a time on the Media pipe.

For the invalidate operation of the pipe control, the following pointers are affected. The invalidate
operation affects the context restore of these packets. If the pipe control invalidate operation is
completed before the context save, the indirect pointers will not be context restored from memory on a
context switch.

e Pipeline State Pointer
e Media State Pointer
e Constant Buffer Packet

Programming Note

e SW must ensure to invalidate the Media State and Constant Buffers using "Generic Media State Clear" prior
to the releasing the associated resources (memory).

e SW must ensure to invalidate the Push Constants using "Indirect State Pointers Disable" prior to the
releasing the associated resources (memory).

It is up to software to program the appropriate read-only cache invalidation such as the sampler and
constant read caches or the instruction and state caches. Once notification is observed, new data may
then be loaded (potentially "on top of" the old data) without fear of stale cache data being referenced
for subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it to
a new location to use as a texture, for example), it must also ensure that the write cache (render cache) is
flushed after the synchronization point is reached so that memory will be updated. This can be done by
setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear in order
for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate reporting of
the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be invalidated
(except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is
done in software, not hardware) Note that the index-based vertex cache is always flushed between
primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.
Therefore only the VF ("address-based") cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

PIPE_CONTROL

Description

Hardware supports up to 32 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenarios.

44 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write Non-VF RO Pipeline Top of Pipe
Cache | Notification Cache VF RO Cache | Marker | Marker Completion [Invalidate Pulse
Flush Enabled Invalidate Invalidate Sent Enable Requested from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

e Post-sync operations

e Flush Types
o Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on both flush type and post-sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid.

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command is
completed. The table below shows the restrictions:

Argument Bits Restriction
LRI Post Sync 23 | Post Sync Operation ([15:14] of DW1) must be set to 0xO0.
Operation
Global Snapshot Count | 19 |This bit must not be exercised on any product.
Reset Requires stall bit ([20] of DW1) set.
Generic Media State 16 |Requires stall bit ([20] of DW1) set.
Clear
Generic Media State 16 | Must not be set in PIPECONTROL command programmed for POCS.
Clear
Indirect State Pointers 9 |Requires stall bit ([20] of DW1) set.
Disable
Store Data Index 21 |Post-Sync Operation ([15:14] of DW1) must be set to something other than '0".
Sync GFDT 17 | Post-Sync Operation ([15:14] of DW1) must be set to something other than '0' or

Doc Ref # IHD-OS-TGL-Vol 9-12.21 45

intel

Argument Bits Restriction
0x2520[13] must be set.
TLB inv 18 |Requires stall bit ([20] of DW1) set.
Post Sync Op 15:14 | LRI Post Sync Operation ([23] of DW1) must be set to '0'.
Post Sync Op 15:14 | Post Sync Operations must not be set to "Write PS Depth Count" in PIPECONTROL
command programmed for POCS.
Notify En 8 |Must not be set in PIPECONTROL command programmed for POCS.

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync operation
or the stall bit. The table below shows the restrictions:

Arguments | Bit

Restrictions

Tile Cache 28
Flush

Tile Cache Enabled Mode:

e SW must always set CS Stall bit when Tile Cache Flush Enable bit is set in the
PIPECONTROL command.

e SW must ensure level1 depth and color caches are flushed prior to flushing the tile
cache. This can be achieved by following means:

o Single PIPECONTROL command to flush level1 caches and the tile cache.
Hardware will sequence the flushing of L1 caches followed by the Tile cache.
Attributes listed below must be set. OR

= Tile Cache Flush Enable
= Render Target Cache Flush Enable
= Depth Cache Flush Enable

o Flushing of L1 caches followed by flushing of tile cache through two different
PIEPCONTROL commands. SW must ensure not to issue any rendering
commands between the two PIPECONTROL commands.

Unified Cache (Tile Cache Disabled):

In unified cache mode of operation Color and Depth (Z) streams are cached in DC space of L2
along with Data Port stream.

On a "Tile Cache Flush" only Color and Depth (Z) streams from DC space of L2 are flushed to
globally observable and where as "DC Flush Enable" will only flush Data Port stream from the
DC space of L2 to globally observable. Refer L3 configuration section for Unified cache usage
model. In this mode of operation there is no dedicated memory allocated for Tile Cache in L2.

When the Color and Depth (Z) streams are enabled to be cached in the DC space of L2,
Software must use "Render Target Cache Flush Enable" and "Depth Cache Flush Enable" along
with "Tile Cache Flush" for getting the color and depth (Z) write data to be globally
observable. In this mode of operation it is not required to set "CS Stall" upon setting "Tile
Cache Flush" bit.

46

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Arguments |Bit Restrictions

Must not set in PIPECONTROL command programmed for POCS.
Depth Stall

Render Target Must not be set in PIPECONTROL command programmed for POCS.
Cache Flush

Depth Cache Must not be set in PIPECONTROL command programmed for POCS.
Flush

Stall Pixel 1 | No Restriction.

Scoreboard

Stall Pixel Must not be set in PIPECONTROL command programmed for POCS.
Scoreboard

DC Flush Must not be set in PIPECONTROL command programmed for POCS.
Enable

Inst invalidate | 11 | No Restriction.

Tex invalidate | 10 [Requires stall bit ([20] of DW) set for all GPGPU Workloads.

State 2 |No Restriction.
Invalidate

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments | Bit| Restrictions

Stall Bit 20 | No Restrictions.

Engine State

This section describes the state specific to the Graphics Engine

Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support
comes in the form of two base address state variables used in certain memory address computations with
the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory
structures after command buffers have been generated but prior to their submittal for execution. For
example, as the driver builds the command stream it could append pipeline state descriptors, kernel
binaries, etc. to a general state buffer. References to the individual items would be inserted in the
command buffers as offsets from the base address of the state buffer. The state buffer could then be
freely relocated prior to command buffer execution, with the driver only needing to specify the final base
address of the state buffer. Two base addresses are provided to permit surface-related state (binding
tables, surface state tables) to be maintained in a state buffer separate from the general state buffer.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 47

intel

While the use of these base addresses is unconditional, the indirection can be effectively disabled by
setting the base addresses to zero. The following table lists the various GPE memory access paths and
which base address (if any) is relevant.

Base Address Utilization

Base Address
Used

Memory Accesses

General State
Base Address

DataPort Read/Write DataPort memory accesses resulting from ‘stateless’ DataPort
Read/Write requests. See DataPort for a definition of the ‘stateless’ form of requests.

Dynamic State
Base Address

Sampler reads of SAMPLER_STATE data and associated SAMPLER_BORDER_COLOR_STATE

Dynamic State
Base Address

Viewport states used by CLIP, SF, and WM/CC

Dynamic State
Base Address

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Dynamic State
Base Address

Push Constants (depending on state of INSTPM <CONSTANT_BUFFER Address Offset
Disable>)

Instruction Base
Address

Normal EU instruction stream (non-system routine)

Instruction Base
Address

System routine EU instruction stream (starting address = SIP)

Surface State
Base Address

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT pointers passed via
3DSTATE_BINDING_TABLE_POINTERS

Surface State
Base Address

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object

MEDIA_OBJECT Indirect Data accessed by the CS unit

Base Address

None CS unit reads from Ring Buffers, Batch Buffers

None CS writes resulting from PIPE_CONTROL command

None All VF unit memory accesses (Index Buffers, Vertex Buffers)
None All Sampler Surface Memory Data accesses (texture fetch, etc.)

48

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Base Address
Used Memory Accesses
None All DataPort memory accesses except 'stateless' DataPort Read/Write requests (e.g., RT
accesses). See DataPort for a definition of the 'stateless' form of requests.
None Memory reads resulting from STATE_PREFETCH commands
None Any physical memory access by the device
None GTT-mapped accesses not included above (i.e., default)
None Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset

Disable>)

The following notation is used in the BSpec to distinguish between addresses and offsets:

Notation Definition
PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a GTT)
GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped by a

GTT)

GeneralStateOffset[n:m] | Corresponding bits of a relative byte offset added to the General State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

DynamicStateOffset[n:m] | Corresponding bits of a relative byte offset added to the Dynamic State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

InstructionBaseOffset[n:m] | Corresponding bits of a relative byte offset added to the Instruction Base Address value,

the result of which is interpreted as a virtual graphics memory byte address (mapped by
a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

Context Image

Logical Contexts are memory images used to store copies of the device's rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering contexts
are considered device-dependent and software must not access the memory contents directly. The
definition of the logical rendering and power context memory formats is included here primarily for
internal documentation purposes.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 49

intel

Power Context Image

POSH Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this
table are relative to the starting location of CS in the overall power context image managed by PM.

POCS Power Context Image

Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE

NOOP POCS (1 0 CSFE
Load_Register_Immediate header 0x1100_0055 |POCS |1 001 CSFE
GFX_MODE 0x1829C POCS |2 0002 CSFE
GHWSP 0x18080 POCS |2 0004 CSFE
RC_PSMI_CONTROL 0x18050 POCS |2 0006 CSFE
RC_PWRCTX_MAXCNT 0x18054 POCS |2 0008 CSFE
CTX_WA_PTR 0x18058 POCS |2 000A CSFE
NOPID 0x18094 POCS |2 000C CSFE
CMD_CCTL O 0x180C4 POCS |2 000E CSFE
PREEMPT_DLY 0x18214 POCS (2 0010 CSFE
CTXT_PREMP_DBG 0x18248 POCS |2 0012 CSFE
WAIT_FOR _RC6_EXIT 0x180CC POCS |2 0014 CSFE
RCS_CTXID_PREEMPTION_HINT 0x184CC POCS |2 0016 CSFE
CS_PREEMPTION_HINT_UDW 0x184C8 POCS (2 0018 CSFE
CS_PREEMPTION_HINT 0x184BC POCS (2 001A CSFE
MI_PREDICATE_RESULT_2 0x183BC POCS (2 001C CSFE
SEMA_WAIT_POLL 0x1824C POCS (2 001E CSFE
IDLEDELAY 0x1823C POCS |2 0020 CSFE
RCS_FORCE_TO_NONPRIV_0_11 0x184D0 POCS (24 0022 CSFE
RCS_FORCE_TO_NONPRIV_12_15 0x18010 POCS (8 003A CSFE
RCS_FORCE_TO_NONPRIV_16_19 Ox181EO0 POCS (8 0042 CSFE
EXECLIST_STATUS_REGISTER 0x18234 POCS (2 004A CSFE
CXT_OFFSET 0x181AC POCS (2 004E CSFE
STOP_PARSER_CONTROL 0x18424 POCS |2 0050 CSFE
STOP_PARSER _HINT_ADDR 0x18428 POCS (4 0052 CSFE
NOOP POCS (10 0056 CSFE
0060 CSBE

|0x1100_ 0011 | 0061 CSBE

0066 CSBE

0070 CSBE

50

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel.

Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE
0072 CSBE
0074 CSBE
007E CSBE
007F CSBE
Render Engine Power Context
RCS Power Context Image
Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE
CSFE Power Context with Display 208 0 CSFE
Ccs 1 00DO0 CSBE
0x1100 0019 | CS 1 00D1 CSBE
0x212C Ccs 2 00DC CSBE
0x24C4 Ccs 2 00E2 CSBE
0x24CO0 Ccs 2 00OE4 CSBE
0x83B0 VF 2 (1]1] 33 CSBE
0x83B4 VF 2 00EA CSBE
Ccs 3 00EC CSBE
Cs 1 OOEF CSBE
Compute Engine Power Context
Compute Engine Power Context Image
Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE
CSFE Power context without Display CSFE | 195 0 CSFE
Ccs 1 00C4 CSBE
0x1100 0009 | CS 1 00C5 CSBE
Ccs 10 00DO0 CSBE
Ccs 1 00DA CSBE
Ccs 1 00DB CSBE

Doc Ref # IHD-OS-TGL-Vol 9-12.21

51

intel

The table below captures the data from TDL power context save/restored by PM.

TDL Power Context Image

Description Offset Unit | # of DW
NOOP TDL |1
MI_LOAD_REGISTER_IMM | 0x1100_004D | TDL |1
TD_CTL E400 TDL |2
TD_CTL2 E404 TDL |2
TD_VF_VS_EMSK E408 TDL |2
TD_GS_EMSK E40C TDL |2
TD_WIZ_EMSK E410 TDL |2
TD_TS_EMSK E428 TDL |2
TD_HS_EMSK E4BO TDL |2
TD_DS_EMSK E4B4 TDL |2
EU_PERF_CNT_CTLO E458 TDL |2
EU_PERF_CNT_CTL1 E558 TDL |2
EU_PERF_CNT_CTL2 E658 TDL |2
EU_PERF_CNT_CTL3 E758 TDL |2
EU_PERF_CNT_CTL4 E45C TDL |2
EU_PERF_CNT_CTL5 E55C TDL |2
EU_PERF_CNT_CTL6 E65C TDL |2
CULLBIT3 E488 TDL |2
CACHE_MODE_SS E420 TDL |2
VSR_EMASK E51C TDL |2
SLM_BANK_HASH E660 TDL |2
NOOP TDL |1
MI_BATCH_BUFFER_END TDL |1

Sampler Power Context

The table below captures the data from TDL power context save/restored by PM.

Sampler Power Context Image

Description Offset Unit | # of DW
NOOP sC |1
MI_LOAD_REGISTER_IMM | 0x1100_100D |SC |1
SAMPLER_MODE 0xE18C SC |2

52 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Engine Register and State Context

This section describes programming requirements for the Register State Context.

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(SOL)

ENGINE CONTEXT(VF)

ENGINE CONTEXT(GAMWC)

ENGINE CONTEXT(GAMT)

ENGINE CONTEXT(LNCF)

ENGINE CONTEXT(SVG)

ENGINE CONTEXT

ENGINE CONTEXT(TDL)

ENGINE CONTEXT(WM)

ENGINE CONTEXT(SC)

ENGINE CONTEXT(DM)

ENGINE CONTEXT(VFE)

ENGINE CONTEXT(CS - Footer)

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(SOL)

ENGINE CONTEXT(VF)

ENGINE CONTEXT(OAR)

ENGINE CONTEXT(LBCF)

ENGINE CONTEXT(SVG)

ENGINE CONTEXT(SVL)

ENGINE CONTEXT(WM)

ENGINE CONTEXT(SC)

ENGINE CONTEXT(VFE)

ENGINE CONTEXT(CS - Footer)

Doc Ref # IHD-OS-TGL-Vol 9-12.21 53

intel

ComputeCS Context Image

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(VFE)

ENGINE CONTEXT(CS - Footer)

POSH Context Image

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(VFR)

ENGINE CONTEXT(OVR)

ENGINE CONTEXT(SVGR)

ENGINE CONTEXT(CS - Footer)

Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

MMIO # of

Description Offset/Command Unit DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1108_1019 CSEL 1
Ring Buffer Head 0x2034 CSEL 2
Ring Tail Pointer Register 0x2030 CSEL 2
RING_BUFFER_START 0x2038 CSEL 2
RING_BUFFER_CONTROL 0x203C CSEL 2
Batch Buffer Current Head Register (UDW) 0x2168 CSEL 2
Batch Buffer Current Head Register 0x2140 CSEL 2
Batch Buffer State Register 0x2110 CSEL 2
BB_PER_CTX_PTR 0x21C0 CSEL 2

54

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

MMIO # of
Description Offset/Command Unit DW

RCS_INDIRECT_CTX 0x21C4 CSEL 2
RCS_INDIRECT_CTX_OFFSET 0x21C8 CSEL 2
CCID 0x2180 CSEL 2
SEMAPHORE_TOKEN 0x22B4 CSEL 2
NOOP CSEL 4
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1100_1011 CSEL 1
CTX_TIMESTAMP 0x23A8 CSEL 2
PDP3_UDW 0x228C CSEL 2
PDP3_LDW 0x2288 CSEL 2
PDP2_UDW 0x2284 CSEL 2
PDP2_LDW 0x2280 CSEL 2
PDP1_UDW 0x227C CSEL 2
PDP1_LDW 0x2278 CSEL 2
PDPO_UDW 0x2274 CSEL 2
PDPO_LDW 0x2270 CSEL 2
MI_LOAD_REGISTER_IMM 0x1108_1005 CSEL 1
POSH_LRCA 0x21B0 CSEL 2
CONTEXT_SCHEDULING_ATTRIBUTES 0x25A8 CSEL 2
(RESOURCE_MIN_MAX_PRIORITY)

PREEMPTION_STATUS (RO) 0x25AC CSEL 2
NOOP CSEL 5
NOOP CSEL_BE |1
MI_LOAD_REGISTER_IMM 0x1108_0001 CSEL_BE |1
R_PWR_CLK_STATE 0x20C8 CSEL_BE |2
GPGPU_CSR_BASE_ADDRESS CSEL_BE |3
NOOP CSEL_BE|9
NOOP CSFE 1
MI_LOAD_REGISTER_IMM 0x1108_1065 CSFE 1
BB_STACK_WRITE_PORT 0x2588 CSFE 12
EXCC 0x2028 CSFE 2
MI_MODE 0x209C CSFE 2
INSTPM 0x20C0 CSFE 2
PR_CTR_CTL 0x2178 CSFE 2
PR_CTR_THRSH 0x217C CSFE 2
TIMESTAMP Register (LSB) 0x2358 CSFE 2

Doc Ref # IHD-OS-TGL-Vol 9-12.21

55

intel

MMIO # of
Description Offset/Command Unit DW

BB_START_ADDR_UDW 0x2170 CSFE 2
BB_START_ADDR 0x2150 CSFE 2
BB_ADD_DIFF 0x2154 CSFE 2
BB_OFFSET 0x2158 CSFE 2
MI_PREDICATE_RESULT_1 0x241C CSFE 2
CS_GPR (1-16) 0x2600 CSFE 64
IPEHR 0x2068 CSFE 2
CMD_BUF_CCTL 0x2084 CSFE 2
NOOP CSFE 1
MI_LOAD_REGISTER_IMM 0x1102_100F CSFE 1
TRTT_CR 0x4400 CSFE 2
TRTT_VA_RANGE 0x4404 CSFE 2
TRTT_L3_BASE_LOW 0x4408 CSFE 2
TRTT_L3_BASE_HIGH 0x440C CSFE 2
TR_NULL_GFX 0x4410 CSFE 2
TRTT_INVAL 0x4414 CSFE 2
AUX_TABLE_BASE_ADDR_LOW 0x4200 CSFE 2
AUX_TABLE_BASE_ADDR_HIGH 0x4204 CSFE 2
NOOP CSFE 6
NOOP CSBE 1
MI_LOAD_REGISTER_IMM 0x1108_10AD

CS_CONTEXT_STATUS1 0x2184 CSBE 2
IA_VERTICES_COUNT 0x2310 CSBE 4
IA_PRIMITIVES_COUNT 0x2318 CSBE 4
VS_INVOCATION_COUNT 0x2320 CSBE 4
HS_INVOCATION_COUNT 0x2300 CSBE 4
DS_INVOCATION_COUNT 0x2308 CSBE 4
GS_INVOCATION_COUNT 0x2328 CSBE 4
GS_PRIMITIVES_COUNT 0x2330 CSBE 4
CL_INVOCATION_COUNT 0x2338 CSBE 4
CL_PRIMITIVES_COUNT 0x2340 CSBE 4
PS_INVOCATION_COUNT_0 0x22C8 CSBE 4
PS_DEPTH_COUNT _0 0x22D8 CSBE 4
GPUGPU_DISPATCHDIMX 0x2500 CSBE 2
GPUGPU_DISPATCHDIMY 0x2504 CSBE 2
GPUGPU_DISPATCHDIMZ 0x2508 CSBE 2

56

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

MMIO # of
Description Offset/Command Unit DW
MI_PREDICATE_SRCO 0x2400 CSBE 2
MI_PREDICATE_SRCO 0x2404 CSBE 2
MI_PREDICATE_SRC1 0x2408 CSBE 2
MI_PREDICATE_SRC1 0x240C CSBE 2
MI_PREDICATE_DATA 0x2410 CSBE 2
MI_PREDICATE_DATA 0x2414 CSBE 2
MI_PRED_RESULT 0x2418 CSBE 2
3DPRIM_END_OFFSET 0x2420 CSBE 2
3DPRIM_START_VERTEX 0x2430 CSBE 2
3DPRIM_VERTEX_COUNT 0x2434 CSBE 2
3DPRIM_INSTANCE_COUNT 0x2438 CSBE 2
3DPRIM_START_INSTANCE 0x243C CSBE 2
3DPRIM_BASE_VERTEX 0x2440 CSBE 2
Load Indirect Extended Parameter 0 0x2690 CSBE 2
Load Indirect Extended Parameter 1 0x2694 CSBE 2
Load Indirect Extended Parameter 2 0x2698 CSBE 2
GPGPU_THREADS_DISPATCHED 0x2290 CSBE 4
PS_INVOCATION_COUNT_1 0x22F0 CSBE 4
PS_DEPTH_COUNT _1 0x22F8 CSBE 4
RS_PREEMPT_STATUS 0x215C CSBE 2
PRODUCE_COUNT_BTP 0x2480 CSBE 2
PRODUCE_COUNT_DX9_CONSTANTS 0x2484 CSBE 2
PARSED_COUNT_BTP 0x2490 CSBE 2
PARSED_COUNT_DX9_CONSTANTS 0x2494 CSBE 2
CS_CHICKEN2 0x2194 CSBE 4
OA_CTX_CONTROL 0x2360 CSBE 2
OACTXID 0x2364 CSBE 2
PS_INVOCATION_COUNT_2 0x2448 CSBE 4
PS_DEPTH_COUNT_2 0x2450 CSBE 4
RS_PREEMPT_STATUS_UDW 0x2174 CSBE 2
CPS_INVOCATION_COUNT 0x2478 CSBE 4
PS_INVOCATION_COUNT_3 0x2458 CSBE 4
PS_DEPTH_COUNT_3 0x2460 CSBE 4
PS_INVOCATION_COUNT_4 0x2468 CSBE 4
PS_DEPTH_COUNT_4 0x2470 CSBE 4
PS_INVOCATION_COUNT_5 0x24A0 CSBE 4

Doc Ref # IHD-OS-TGL-Vol 9-12.21

57

intel

MMIO # of
Description Offset/Command Unit DW

PS_DEPTH_COUNT_5 0x24A8 CSBE 4
PS_INVOCATION_COUNT_6 0x25D0 CSBE 4
PS_DEPTH_COUNT_6 0x25B0 CSBE 4
PS_INVOCATION_COUNT_7 0x25D8 CSBE 4
PS_DEPTH_COUNT_7 0x25B8 CSBE 4
NOOP CSBE 1
MI_LOAD_REGISTER_IMM 0x1100_0001 CSBE
VSR_PUSHCONSTANT_BASE OxE518 CSBE 2
NOOP CSBE 2
MI_TOPOLOGY_FILTER CSBE 1
NOOP CSBE 2
PIPELINE_SELECT CSBE 1
STATE_BASE_ADDRESS CSBE 22
STATE_SIP CSBE 3
3DSTATE_PUSH_CONSTANT_ALLOC_VS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_HS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_DS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_GS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_PS CSBE 2
3DSTATE_BINDING_TABLE_POOL_ALLOC CSBE 4
3DSTATE_GATHER_POOL_ALLOC CSBE 4
3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC CSBE 4
MI_RS_CONTROL CSBE 1
3DSTATE_PTBR_TILE_PASS_INFO CSBE 4
STATE_COMPUTE_MODE CSBE 2
NOOP CSBE 16
NOOP SOL 1
MI_LOAD_REGISTER_IMM 0x1100_1027 SOL 1
SO_NUM_PRIMS_WRITTENO 0x5200 SOL 4
SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4
SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4
SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4
SO_PRIM_STORAGE_NEEDEDO 0x5240 SOL 4
SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4
SO_PRIM_STORAGE_NEEDED?2 0x5250 SOL 4
SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4

58

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

MMIO # of
Description Offset/Command Unit DW

SO_WRITE_OFFSETO 0x5280 SOL 2
SO_WRITE_OFFSET1 0x5284 SOL 2
SO_WRITE_OFFSET2 0x5288 SOL 2
SO_WRITE_OFFSET3 0x528C SOL 2
3DSTATE_SO_BUFFER SOL 32
NOOP SOL 3
3DSTATE_SO_DECL_LIST SOL 259
NOOP SOL 0
3DSTATE_INDEX_BUFFER VF 5
3DSTATE_VERTEX_BUFFERS VF 133
3DSTATE_VERTEX_ELEMENTS VF 69
3DSTATE_VF_STATISTICS VF 1
3DSTATE_VF VF 2
3DSTATE_SGVS VF 2
3DSTATE_VF_INSTANCING VF 69
3DSTATE_VF_TOPOLOGY VF 2
NOOP VF 5
MI_LOAD_REGISTER_IMM 0x1100_10C7 VF 1
INSTANCE CNT 08300 - 08384h VF 68
INSTANCE INDX 08400 - 08484h VF 68
COMMITTED VERTEX NUMBER 08390h VF 2
COMMITTED INSTANCE ID 08394h VF 2
COMMITTED PRIMITIVE ID 08398h VF 2
STATUS 0839Ch VF 2
COMMON VERTEX 083A0h VF 2
VF_GUARDBAND 083A4h VF 2
INDEX_OPCODE_DATA00 08490h VF 2
INDEX_OPCODE_DATAO1 08494h VF 2
INDEX_OPCODE_DATA10 08498h VF 2
INDEX_OPCODE_DATA11 0849Ch VF 2
TOKPROC_CULL_COUNTO 084A0h VF 2
TOKPROC_CULL_COUNT1 084A4h VF 2
TOKPROC_PID_COUNTO 084A8h VF 2
TOKPROC_PID_COUNT1 084ACh VF 2
TOKPROC_CULL_VERTEX 084B0Oh VF 2
TOKPROC_PID_OBJECT 084B4h VF 2

Doc Ref # IHD-OS-TGL-Vol 9-12.21

59

intel

MMIO # of
Description Offset/Command Unit DW

TOKPROC_DUMMY_OBJECT 084B8h VF 2
TOKPROC_CL_PTR 084BCh VF 2
TOKPROC_CL_MISC 084C0h VF 2
TOKPROC_STG1_DATA 084C4h VF 2
TOKPROC_STG1_VERTEX_COUNT 084C8h VF 2
TOKPROC_STG1_OBJECT_COUNT 084CCh VF 2
TOKPROC_STG1_VALID 084D0h VF 2
TOKPROC_STGO_INSTANCE_COUNT 084D4h VF 2
TOKPROC_STGO_VERTEX_COUNT 084D8h VF 2
TOKPROC_STGO_COUNT 084DCh VF 2
TOKPROC_STGO_VALID 084EO0h VF 2
TOKIN_DATAO 084F0h VF 2
TOKIN_DATA1 084F4h VF 2
TOKIN_DATA2 084F8h VF 2
TOKIN_DATA3 084FCh VF 2
NOOP VF 7
3DSTATE_VF_COMPONENT_PACKING VF 5
3DSTATE_VF_SGVS_2 VF 3
3DSTATE_PTBR_TILE_SELECT VF 2
NOOP VF 2
NOOP VF 4
OAR Cotext State OAR 192
NOOP LBCF 1
MI_LOAD_REGISTER_IMM 0x1100_100D LBCF 1
LSQCREGT1 0xB100 LBCF 2
LSQCREG4 0xB118 LBCF 2
LSQCREG5 0xB158 LBCF 2
LSQCREG6 0xB15C LBCF 2
L3ALLOCREG 0xB134 LBCF 2
L3TCCNTLREG 0xB138 LBCF 2
L3RCSORSVD1 0xB168 LBCF 2
3DSTATE_CONSTANT_VS_Commited SVG 11
3DSTATE_CONSTANT_HS_Commited SVG 11
3DSTATE_CONSTANT_DS_Commited SVG 11
3DSTATE_CONSTANT_GS_Commited SVG 11
3DSTATE_VS SVG 9

60

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

MMIO # of
Description Offset/Command Unit DW
3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2
3DSTATE_URB_ALLOC_VS SVG 3
3DSTATE_STREAMOUT SVG 5
3DSTATE_SO_BUFFER_INDEX_0 SVG 8
3DSTATE_SO_BUFFER_INDEX_1 SVG 8
3DSTATE_SO_BUFFER_INDEX_2 SVG 8
3DSTATE_SO_BUFFER_INDEX_3 SVG 8
3DSTATE_CLIP SVG 4
3DSTATE_PRIMITIVE_REPLICATION SVG 6
3DSTATE_SF SVG 4
3DSTATE_SCISSOR_STATE_POINTERS SVG 2
3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2
3DSTATE_RASTER SVG 5
3DSTATE_WM_HZ_OP SVG 5
3DSTATE_MULTISAMPLE SVG 2
3DSTATE_HS SVG 9
3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2
3DSTATE_URB_ALLOC_HS SVG 3
3DSTATE_TE SVG 5
3DSTATE_DS SVG 11
3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2
3DSTATE_URB_ALLOC_DS SVG 3
3DSTATE_GS SVG 10
3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2
3DSTATE_URB_ALLOC_GS SVG 3
NOOP SVG 1
3DSTATE_CONSTANT_VS_NonComitted SVG 11
3DSTATE_CONSTANT_HS_NonComitted SVG 11
3DSTATE_CONSTANT_DS_NonComitted SVG 11
3DSTATE_CONSTANT_GS_NonComitted SVG 11
3DSTATE_DRAW_RECTANGULAR SVG 4
MI_LOAD_REGISTER_IMM 0x1100_1007 SVG 1

Doc Ref # IHD-OS-TGL-Vol 9-12.21

61

intel

MMIO # of
Description Offset/Command Unit DW
FF_PERF_REG 0x6b1c SVG 2
DEREF_CTRL 0x6000 SVG 2
FF_MODE2 0x6604 SVG 2
CULLBIT1 0x6100 SVG 2
NOOP SVG 8
NOOP SVG 1
NOOP SVG 3
NOOP SVG 2
NOOP SVG 1
3DSTATE_CONSTANT_PS_comitted SVL 1
NOOP SVL 1
3DSTATE_WM SVL 2
3DSTATE_VIEWPORT_STATE_POINTER_CC SVL 2
3DSTATE_CC_STATE_POINTERS SVL 2
3DSATE_WM_SAMPLEMASK SVL 2
3DSTATE_WM_DEPTH_STENCIL SVL 4
3DSTATE_WM_CHROMAKEY SVL 2
3DSTATE_DEPTH_BUFFER SVL 8
3DSTATE_HIER_DEPTH_BUFFER SVL 5
3DSTATE_STENCIL_BUFFER SVL 8
3DSTATE_CLEAR_PARAMS SVL 3
3DSTATE_CPS_POINTERS SVL 2
3DSTATE_DEPTH_CNTL_BUFFER SVL 5
3DSTATE_DEPTH_BOUNDS SVL 4
3DSTATE_AMFS_TEXTURE_POINTERS SVL 1
3DSTATE_SBE SVL 6
3DSTATE_SBE_SWIZ SVL 11
3DSTATE_PS SVL 12
3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2
STATE_SAMPLER_STATE_POINTERS_PS SVL 2
3DSTATE_BLEND_STATE_POINTERS SVL 2
3DSTATE_PS_EXTRA SVL 2
3DSTATE_PS_BLEND SVL 2
3DSTATE_AMFS SVL 1
3DSTATE_CONSTANT_TS_POINTERS SVL 3
NOOP SVL 1

62

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

MMIO # of
Description Offset/Command Unit DW

3DSTATE_CONSTANT_PS_NonComitted SVL 11
3DSTATE_3D_MODE SVL 2
3DSTATE_SAMPLE_PATTERN SVL 9
3DSTATE_SUBSLICE_HASH_TABLE SVL 14
NOOP SVL 1
NOOP SVL 12
MI_LOAD_REGISTER_IMM 0x1100_101F SVL 1
Cache_Mode 0 0x7000 SVL 2
Cache_Mode_1 0x7004 SVL 2
GT_MODE 0x7008 SVL 2
FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2
FBC_RT_BASE_ADDR_REGISTER_UPPER 0x7024 SVL 2
OA_CULL 0x7030 SVL 2
PSS_MODE 0x7038 SVL 2
PSS_MODE2 0x703C SVL 2
PSS_CHICKEN 0x7044 SVL 2
NOOP SVL 8
NOOP SVL 14
NOOP SVL 2
NOOP WM 1
MI_LOAD_REGISTER_IMM 0x1100_1007 WM 1
WMHWCLRVAL 0x5524 WM 2
3DSTATE_POLY_STIPPLE_PATTERN WM 33
3DSTATE_AA_LINE_PARAMS WM 3
3DSTATE_POLY_STIPPLE_OFFSET WM 2
3DSTATE_LINE_STIPPLE WM 3
3DSTATE_SLICE_HASH_STATE_POINTERS WM 2
NOOP WM 11
3DSTATE_MONOFILTER_SIZE SC 2
3DSTATE_CHROMA_KEY SC 16
NOOP SC 14
MI_BATCH_BUFFER_END CSEND |1
NOOP CSEND (127

Doc Ref # IHD-OS-TGL-Vol 9-12.21

63

intel

Software Interface

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. Refer to each register’'s description and related feature for more
information on each individual bit.

The registers detailed in this chapter are extensions to previous projects. However, slight changes may be
present in some registers (i.e., for features added or removed), or some registers may be removed
entirely. These changes are clearly marked within this chapter.

Commands

This section describes the commands specific to Graphics engine

State Commands

This section covers the following commands:

e STATE_SIP command - Subroutine Kernel based on interrupt in kernel

Command

STATE_SIP

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media
indirect object accesses by the GPE. (See Memory Access Indirection for details.)

The following commands must be reissued following any change to the base addresses:
e 3DSTATE_PIPELINE_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS
e MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

Command

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

Memory Interface Commands for Rendering Engine

Command

MI_SET_CONTEXT

MI_TOPOLOGY_FILTER

64 Doc Ref # IHD-OS-TGL-Vol 9-12.21

Registers

Context Save Registers

VF Instance Count Registers

intel

VF Instance Count Register Set

Register MMIO_VF

Type:

Address: 08300h - 08384h
Default 0000 0000h
Value:

Access: RO

Size: 1088 bits

Description: | Set of Registers for storing the index count values. In case of preempted drawcalls, these register

ignored upon restore.
These are saved as part of render context.

store index count/number per element. For the non-preempted drawcalls, the values stored are

DWord | Bits Description

0 31:0 | Index Count 0. Index Count value for Element 0.
Format: U32

1 31:0 | Index Count 1. Index Count value for Element 1.
Format: U32

31:.0]...

33 31:0 [Index Count 33. Index Count value for Element 33.

Format: U32

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes

Controls/Modes

MI_MODE - Mode Register for Software Interface

FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

SAMPLER_MODE - SAMPLER Mode Register

CACHE_MODE_1 - Cache Mode Register 1

GAFS_MODE - Mode Register for GAFS

FBC_RT_BASE_ADDR_REGISTER - FBC_RT_BASE_ADDR_REGISTER

FBC_RT_BASE_ADDR_REGISTER_UPPER - FBC_RT_BASE_ADDR_REGISTER_UPPER

CACHE_MODE_SS - Cache Mode Subslice Register

L3CNTLREG - L3 Control Register

Doc Ref # IHD-OS-TGL-Vol 9-12.21

65

intel

Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the Graphics pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. Write access to the statistics counter in this section must be done through
MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_REGISTER_REG commands in ring
buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result, a
pipeline flush just prior to reading the registers is necessary to synchronize the counts with the primitive
stream.

Registers

IA_VERTICES_COUNT - IA Vertices Count

IA_PRIMITIVES_COUNT - Primitives Generated By VF

VS_INVOCATION_COUNT - VS Invocation Counter

HS_INVOCATION_COUNT - HS Invocation Counter

DS_INVOCATION_COUNT - DS Invocation Counter

GS_INVOCATION_COUNT - GS Invocation Counter

GS_PRIMITIVES_COUNT - GS Primitives Counter

CL_INVOCATION_COUNT - Clipper Invocation Counter

PS_INVOCATION_COUNT - PS Invocation Count

PS_INVOCATION_COUNT_SLICEO - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slicel

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_INVOCATION_COUNT_SLICE4 - PS Invocation Count for Slice4

PS_INVOCATION_COUNT_SLICES - PS Invocation Count for Slice5

CPS_INVOCATION_COUNT - CPS Invocation Counter

PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICEO - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slicel

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

PS_DEPTH_COUNT_SLICE3 - PS Depth Count for Slice3

PS_DEPTH_COUNT_SLICE4 - PS Depth Count for Slice4

PS_DEPTH_COUNT_SLICES - PS Depth Count for Slice5

TIMESTAMP - Reported Timestamp Count

Stream Output 0 Write Offset

Stream Output 1 Write Offset

Stream Output 2 Write Offset

Stream Output 3 Write Offset

Window Hardware Generated Clear Value

CS_CTX_TIMESTAMP- CS Context Timestamp Count:

This register provides a mechanism to obtain cumulative run time of a GPU context on HW.

66 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Register

CS_CTX_TIMESTAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP run time, save/restored during a GPGPU context
switch flow.

) Context Life Cycle in HW
Time

Y

S_wfe preempt \fe = presmpt_done

B ontext-& Workload Execution
[Save

| Context-a Save -

!

CTX_TIMESTAMP First TH Launch by CTX_TIMESTANMP
Restared T5G T3GFLL PREEMET Saved
CT_TIMESTAMP

Timer Run Period

CTX_TIMESTARNP Run Time for Context-A

Fig: CTX_TIMESTAMP fucntionality during context execution

AUTO_DRAW Registers

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset

3DPRIM_START_VERTEX - Load Indirect Start Vertex

3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count

3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

3DPRIM_START_INSTANCE - Load Indirect Start Instance

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

3DPRIM_XPO - Load Indirect Extended Parameter 0

3DPRIM_XP1 - Load Indirect Extended Parameter 1

3DPRIM_XP2 - Load Indirect Extended Parameter 2

Doc Ref # IHD-OS-TGL-Vol 9-12.21 67

intel

MMIO Registers for GPGPU Indirect Dispatch

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from
the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X
GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y
GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z
TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection
describes these restrictions along with some explanation of why they exist. Refer to the various
command descriptions for additional information.

PIPELINE_SELECT

The previously active pipeline needs to be flushed immediately before switching to a different pipeline
via use of the PIPELINE_SELECT command.

Refer to for details on the PIPELINE_SELECT command.
PIPELINE_SELECT

PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor
does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media
pipe. It has special optimizations to support the pipelining capability in the 3D pipe which do not apply
to the Media pipe.

Common Pipeline State-Setting Commands

The following commands are used to set state common to the Graphics pipelines.

o STATE_BASE_ADDRESS

e STATE_SIP

o 3DSTATE_CHROMA _KEY

e 3DSTATE_BINDING_TABLE_POOL_ALLOC

The state variables associated with these commands must be set appropriately prior to initiating activity
within a pipeline.

3D Pipeline-Specific State-Setting Commands

3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

68 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

e 3DSTATE_PIPELINED_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS
o 3DSTATE_VERTEX_BUFFERS

o 3DSTATE_VERTEX_ELEMENTS

o 3DSTATE_INDEX_BUFFERS

o 3DSTATE_VF_STATISTICS

e 3DSTATE_DRAWING_RECTANGLE
e 3DSTATE_CONSTANT_COLOR

o 3DSTATE_DEPTH_BUFFER

e 3DSTATE_POLY_STIPPLE_OFFSET

e 3DSTATE_POLY_STIPPLE_PATTERN
o 3DSTATE_LINE_STIPPLE

o 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing
3DPRIMITIVE.

Media Pipeline-Specific State-Setting Commands

Media Pipeline-Specific State-Setting Commands

The following command is used to set state specific to the Media pipeline:
o MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing
MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS) needs
to be valid. Thus, the commands used to assign that state must be issued before issuing 3DPRIMITIVE.

MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)
needs to be valid. Therefore, the commands used to set this state need to have been issued at some
point prior to the issue of MEDIA_OBJECT.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 69

intel

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage

Functions Performed

Command Stream
(CS)

The Command Stream stage is responsible for managing the 3D pipeline and passing
commands down the pipeline. In addition, the CS unit reads "constant data" from memory
buffers and places it in the URB.

Note that the CS stage is shared between the 3D, GPGPU and Media pipelines.

Vertex Fetch (VF)

The Vertex Fetch stage, in response to 3D Primitive Processing commands, is responsible for
reading vertex data from memory, reformatting it, and writing the results into Vertex URB
Entries. It then outputs primitives by passing references to the VUEs down the pipeline.

Vertex Shader (VS)

The Vertex Shader stage is responsible for processing (shading) incoming vertices by passing
them to VS threads.

Hull Shader (HS)

The Hull Shader is responsible for processing (shading) incoming patch primitives as part of
the tessellation process.

Tessellation Engine
(TE)

The Tessellation Engine is responsible for using tessellation factors (computed in the HS
stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS)

The Domain Shader stage is responsible for processing (shading) the domain points
(generated by the TE stage) into corresponding vertices.

Geometry Shader
(GS)

The Geometry Shader stage is responsible for processing incoming objects by passing each
object's vertices to a GS thread.

Stream Output Logic
(SOL)

The Stream Output Logic is responsible for outputting incoming object vertices into Stream
Out Buffers in memory.

Clipper (CLIP)

The Clipper stage performs Clip Tests on incoming objects and clips objects if required.
Objects are clipped using fixed-function hardware.

Strip/Fan (SF)

The Strip/Fan stage performs object setup. Object setup uses fixed-function hardware.

Windower/Masker | The Windower/Masker performs object rasterization and determines visibility coverage.
(WM)
CPS Pipeline stage that gathers coarse pixels (CPs) for Coarse Pixel Shading (CPS).

PS Dispatch (PSD)

PSD assembles and dispatches Pixel Shader (PS) threads at one of these rates: CP, Pixel (P), or
Sample (S).

70

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

3D Pipeline-Level State

This section contains table commands for the 3D Pipeline Level.

Programming Note

Context: 3D Pipeline-Level State - Push Constant URB Allocation

The push constants are buffered in the Push Constant section of the URB. Software is required to program the
hardware to allocate space in the URB for each shader push constant. The software is limited to the low addresses
of the URB and must ensure that none of the shaders have overlapping handles.

Software may use some if not all of the Push Constant region of the URB for pr-stage handle allocations as long as
none of the push constants and handle allocations overlap.

Refer to the various 3DSTATE_PUSH_CONSTANT_ALLOC_xx state commands for details regarding the maximum
size of the Push Constant and other state programming information.

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER command for a
fixed function shader:

MEMORY URB GRF
Constant Buffer 1 Constant Buffer 0
Constant Buffer 0

Constant Buffer 1
Constant Buffer 1
Constant Buffer 0
Constant Buffer 2
Constant Buffer 2
Constant Buffer 2 Constant Buffer 3
Constant Buffer 3
Constant Buffer 3

Doc Ref # IHD-OS-TGL-Vol 9-12.21 71

intel

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and
being an even number in length. If the constant buffer starts on an odd cacheline and has an odd
number length, then there will only be a bubble at the beginning of the buffer in the URB. If the constant
buffer in memory starts on a cache line boundary and has an odd number length then the bubble will
only be at the end of the constant buffer in the URB. Once the constant buffer is written to the GRF space
then all the bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one
constant buffer from memory. This includes any buffering to write the 512b aligned requests from
memory into the URB.

3DSTATE_3D_MODE

3D Pipeline Geometry

Block Diagram

The following block diagram shows the stages of the Geometry Pipeline and where they are positioned in
the overall 3D Pipeline.

Render Command
Streamer (RCS)
L

Vertex Fetch (VF)
_ L

Vertex Shader (VS)
; [

Hull Shader (HS)
L

Tessellation Engine (TE)
| -

Domain Shader (DS)
[

G try Shader (GS)
Espety Shadar(G) Thread-Requesting Stage

-y
Fixed-Function-Only Stage
StreamOut (S0)
|
Clipper

- Ra sterization—»F—G eometry Pipeline

72 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

POSH Pipeline Overview

The Position-Only Shading (POSH) pipeline (aka "Cull Pipe" or "Record Pipe") is utilized to improve 3D
rendering performance by removing culled objects from the Render pipeline workload. The POSH
pipeline pre-processes geometry objects using simple "position-only" vertex input and vertex shaders.
These objects are then subjected to clipper/setup cull tests. The results of these cull tests are then stored
(compressed) as streams of "visibility tokens" in memory. Later, when the same geometry work is
submitted to the Render pipe, the VF stage of the Render pipe will receive the pre-recorded visibility
tokens and use those tokens to skip over culled objects and only process the non-culled objects. The
POSH pipe is designed to run ahead of the Render pipe by buffering visibility data for render passes and
possibly entire frames before being consumed by the Render pipe.

— e —— —— —— — —_— e ——— —

i [

, POSH Pipe | | RENDER Pipe |
| [[:
| [[|
' FOCS ! ' RCS |
| [[|

| [|
| [[*’ :
| WFR I Lo WF I

| [[
| VSR I | | V5 :
: CLR : : HE |
| SFR | | TE :
: OvR : : DS |
| [| &5 :
| soL !
- | cL :

i=ibili |
Visibility | = I
Data | |
(Memory) b e |

POSH Pipeline Work Submission

Work is performed on the POSH pipeline by submitting command streams to the POSH CS (POCS) unit
which operates similarly to the Render CS (RCS) unit. Refer to Command Stream Programming for POCS
programming details.

Geometry & Setup Stages of POSH Pipeline

The POSH pipeline contains POSH-specific versions of a subset of the Render pipe stages:

e VFR (POSH VF)
e VSR (POSH VS)
e CLR (POSH CL)
o SFR (POSH SF)

Doc Ref # IHD-OS-TGL-Vol 9-12.21 73

intel

Note that the POSH pipeline does not contain HS, DS, GS or StreamOut stages and therefore does not
support those functions. Work submitted to the POSH pipeline shall not contain state commands for
those stages do not attempt to enable those functions.

These POSH stages are programmed in a similar manner as the corresponding Render stages. When
stage-related state commands are submitted to the POSH pipeline, the corresponding stages in the
POSH pipeline are programmed. POSH/Render pipeline programming differences are described in the
state command definitions.

OVR Stage of POSH Pipeline

An Object Visibility Recording (OVR) stage is located at the end of the POSH pipe. It is used to compress
and store visibility token streams in memory, as well as reading those streams during rendering and
passing the tokens to the VF stage. Refer to the Render Engine Command Streamer BXML for
programming details.

URB Programming when POSH Enabled

When the POSH pipeline is enabled, a URB allocation for the VSR stage is required. This allocation is
programmed via execution of 3DSTATE_URB_*_VS commands in the POSH pipeline. Software shall be
required to manage this allocation, taking into account the synchronous operation of the RCS and POCS
workloads. This programming may require explicit synchronization between the pipelines, e.g., when
Render vs. POSH URB allocation boundaries are changed.

When the POSH pipeline is enabled, a URB allocation for the POSH pipeline Push Constants may be
defined. Refer to the relevant Push Constant URB commands for details on how this allocation is defined
and used.

General Programming of Thread-Generating Stages (VS, HS, DS, GS)

This section provides common programming information for the thread-generating Geometry FF stages
(VS, HS, DS, GS). The intent is to include the common description here in order to avoid redundancy in
the subsequent stage-specific sections. The stage-specific sections will include any unique or exception
information, restrictions, etc. relevant to those stages.

3DSTATE_ Common State Variables

This section describes FF state variables, programmed via 3DSTATE_<FF> commands, that are common
to at least two thread-generating FF stages (VS, HS, DS, GS).

The states described in these sections are only used by HW when the given stage is enabled (i.e., can
request thread execution), unless specifically called out as an exception.

Thread Management State

These state variables are used by a stage to manage thread request generation.

74 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

State VS|HS|DS|GS

Maximum Number of Threads|Y |Y |Y |[|Y

Maximum Number Of Threads

This field specifies, for a particular stage, the maximum number of threads allowed to be simultaneously
active. Here "active" refers to (a) outstanding in the thread request queue, (b) resident in the EUs, or (c) in
the thread retirement queue - up to the point the stage sees the thread retirement. Note that the sum of
(a) and (c) above is non-zero, and therefore - depending on configuration - the allowed number of active
threads can exceed the total number of thread slots available in the EUs.

There are two main factors to consider when programming this state variable:

e Scratch space availability: In the case where threads require scratch space, SW shall allocate
enough contiguous scratch space for the stage to allow each active thread (as programmed by this
field) to access its full per-thread allocation (as programmed by PerThreadScratchSpace). This
may require SW to reduce MaximumNumberOfThreads to accommodate limitations on scratch
space availability.

¢ Performance: For best performance, it is recommended that SW program this field to its
maximum value. This will maximize the number of threads available to perform the stage's
function. However, SW is free to program a smaller value (as long as it meets any restrictions), e.g.,
for performance or workaround experimentation.

Thread State Initialization State

The following values are programmed as state, subsequently included by the stage as thread request
control information, and eventually loaded into an EU architectural (ARF) register upon thread dispatch.
In most instances these initial values can be subsequently overwritten by the thread.

For a complete description of these EU ARF register fields, refer to the EU Execution Environment section.

These values do not appear in the thread payload. (This information may be referred to as the thread's
"transparent header", as it is forwarded to the EUs but not visible in the thread payload.)

State EU State |VS|HS |DS | GS
Kernel Start Pointer ip[31:6] [Y [Y |Y [|Y
Floating Point Mode cr0.0[0] |Y |Y [|Y |Y
Single Program Flow cr0.0[2] [N |Y [N |Y
Vector Mask Enable cr0.0[3] |Y [Y [|Y |Y
lllegal Opcode Exception Enable [cr0.1[12] |Y [Y |Y |Y
Software Exception Enable crO1[131|Y Y [Y |Y
Thread Priority sr0.0[23] |Y [Y [|Y |Y
Binding Table Pointer seenote |Y [Y |Y |Y

Doc Ref # IHD-OS-TGL-Vol 9-12.21 75

intel

Kernel Start Pointer (KSP)

This field specifies bits [31:6] of the value loaded into the EU's Instruction Pointer (ip), which in turn
specifies the starting offset of the kernel program to be executed. The state is specified as a 64B-granular
offset from the Instruction Base Address register (programmed via STATE_BASE_ADDRESS). Bits[5:3]
of the EU 'ip' register (which identify a Dword within a 64B region) are loaded with 0 upon thread
dispatch.

Note (below) that Kernel Start Pointer [47:32] can be programmed via FF state, but these bits are
ignored by HW as the EU 'ip' register only supports a 32-bit value.

A stage may support more than one KSP state, where HW performs an on-the-fly selection of one of the
KSPs based on some criteria. Refer to the stage-specific sections for details. For those stages that support
multiple dispatch modes but only a single KSP state, SW shall ensure that the KSP value programmed
corresponds with the selected dispatch mode.

Floating Point Mode
This state bit is loaded into the EU's Single Precision Floating Point Mode (FPMode, cr0.0[0]) which, in

turn, controls how certain single-precision floating point operations are performed within the EU
subsystem.

Single Program Flow

This state bit is loaded into the EU's Single Program Flow (SPF, cr0.0[2]) which, in turn, controls how
certain flow control instructions operate across the EU channels.

Vector Mask Enable
This state bit is loaded into the EU's Vector Mask Enable (VME, cr0.0[3]) which, in turn, selects whether

the EU's Dispatch Mask or Vector Mask register is used as the execution mask for subsequent
instructions.

lllegal Opcode Exception

This state bit is loaded into the EU's lllegal Opcode Exception Enable (cr0.1[12]) which, in turn, enables
or disables the EU's illegal opcode exception mechanism.

Software Exception Enable

This state bit is loaded into the EU's Software Exception Enable (cr0.1[13]) which, in turn, enables or
disables the EU's software exception mechanism.

Thread Dispatch Priority

This state bit can be used to give thread requests eminating from a Geometry FF stage higher thread
dispatch priority than thread request sources that are not marked as high priority.

This state bit is also loaded into the EU's Priority Class (sr0.0[23]) which, in turn, determines whether the
EU thread is considered as belonging to the high priority class.

76 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Binding Table Pointer (BTP)

Upon thread request, the BTP specified for the relevant FF stage is passed to, and stored in, the EU as
part of thread state. This BTP value is subsequently passed to the Shared Functions (e.g., Sampler) that
are required to access surfaces specified in the Binding Table. Here the BTP is passed via a side-band
channel and not directly in the message descriptor or message header.

Thread State Initialization State (Defaulted)

The following EU state variables are defaulted upon thread dispatch and therefore cannot be controlled
via Geometry FF state programming. Refer to the relevant EU sections for an understanding of these
state variables and whether the thread can overwrite the defaulted values. Note that this is not an
exhaustive list of defaulted EU state variables, only the ones deemed most interesting for Geometry FF
threads.

State EU State Default Value
FFID sr0.0[27:24] | see below
Rounding Mode cr0.0[5:4] |0
Single Precision Denorm Mode |cr0.0[7] 0
Double Precision Denorm Mode |cr0.0[6] 0
Stack Overflow Exception Enable | cr0.1[11] 0
External Halt Exception Enable |cr0.1[14] 0
Breakpoint Exception Enable cr0.1[15] |0
Instruction Pointer [5:3] ip[5:3] 0
Stack Pointer sp.0 0 (see note below)
Stack Pointer Limit sp_limit 0 (see note below)
FFID

The EU's Fixed Function Identifier (FFID, sr0.0[27:24]) is initialized to a value corresponding to the
Geometry FF stage that requested the thread dispatch. Note that this simply identifies the source FF unit,
not the specific thread dispatched.

Stack Pointer, Stack Pointer Limit

These EU state registers are defaulted to 0 for threads requested by Geometry FF units, as opposed to
other thread request sources that may cause them to be initialized differently. The threads can overwrite
the defaulted values if so desired.

Prefetch State

The following state variables can be used by SW to attempt the prefetch of certain state from memory
into internal state cache. The prefetch is requested as part of the first thread dispatch after these state
variables are specified.

Programming Restriction: Software shall not specify a prefetch region that extends into an invalid
memory page, otherwise the prefetch may incur page faults.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 77

intel

Performance Note: Early prefetch of the state that will likely be referenced by the thread can improve
thread execution performance. This is not guaranteed, especially if the amount of prefetched data is
large which may result in state cache thrashing. Also, these prefetch requests are considered low priority
hints by HW and may be dropped under conditions of high memory demand.

State VS |HS|DS|GS

Sampler Count

Binding Table Entry Count|Y

Sampler Count

This field specifies how many SAMPLER_STATE structures are prefetched from memory. The count can be
specified as 0 or as a multiple of 4 (4,8,12,16). Refer to the state definition for encodings and further
details.

Performance Note: It is recommended that SW program this field to (roughly) equal the number of
sampler state structures referenced by the thread.

Binding Table Entry Count

This field specifies how many binding table entries (BTEs) and associated SURFACE_STATE structures are
prefetched from memory. The format of this field depends on whether or not HW-generated binding
tables are enabled, as determined by
3DSTATE_BINDING_TABLE_POOL_ALLOC::BindingTablePoolEnable.

SW Usage Note: When HW-generated binding tables are enabled, it is recommended that the Binding
Table Entry Count value be generated when the shader is compiled.

HW-Generated Binding Tables Disabled:

The field has a Format of U8 and specifies a count of BTEs to be prefetched ([0,255]). Each of the
SURFACE_STATE structures referenced by the BTEs will also be prefetched.

HW-Generated Binding Tables Enabled:

This field has a Format of Bitmask8 and indicates which 64B cache lines of BTEs will be fetched. Each bit
in this field corresponds to a cache line, where a cache line holds 8 16-bit BTEs. Bit O refers to the
cacheline starting at the Binding Table Pointer, as programmed by
3DSTATE_BINDING_TABLE_POINTER_xx.

By default, only the SURFACE_STATE structures referenced by the first 4 non-zero BTEs of each 64B
cacheline will be prefetched.

Common Thread Payload-Related State

The following state variables are either included directly in the thread payload and/or used to control or
compute other fields in the thread payload.

78 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

State VS |HS (DS |GS
Sampler State Pointer Y Y |Y |Y
Per-Thread Scratch Space |Y |Y [Y |Y
Scratch Space Base Pointer|Y |Y |Y |Y
Include Vertex Handles N |Y [N |Y

Sampler State Pointer

This state variable specifies the starting, 32B-granular offset of the stage's SAMPLER_STATE table in
memory, relative to the DynamicStateBaseAddress. It is programmed via
3DSTATE_SAMPLER_STATE_POINTERS_xx commands.

This value is included in thread payloads in R0.3[31:5] and is also directly propagated to the Sampler
shared function for use in processing "headerless" messages. If a thread can potentially send any
messages to the Sampler shared function that requires the Sampler State Pointer in the message header,
that thread shall ensure that it passes along the Sampler State Pointer value passed in the thread
payload.

Scratch Space

The Per-Thread Scratch Space state variable specifies the amount of scratch memory required by each
active thread of a stage. The value is specified as a 4-bit power of two (in excess of 10) bytes, where
programmed values in the valid range [0,11] specify scratch space requirements in the range [1KB, 2MB].

When a thread becomes "active" it is allocated a portion of scratch space, sized according to
PerThreadScratchSpace. The starting location of each thread's scratch space allocation,
ScratchSpaceOffset, is passed in the thread payload in R0.5[31:10] and is specified as a 1KB-granular
offset from the GeneralStateBaseAddress. The computation of ScratchSpaceOffset includes the
starting address of the stage's scratch space allocation, as programmed by ScratchSpaceBasePointer.
The maximum number of active threads for a stage is specified by the MaximumNumberOfThreads
state. SW shall abide by the scratch space restrictions included in the description of
MaximumNumberOfThreads.

This value is also included within thread payloads in R0.3[3:0]. If a thread can potentially send any "A32
Stateless" messages to the DataPort shared function, that thread shall ensure that it passes along the
PerThreadScratchSpace value passed in the thread payload.

The state command specifies starting offset of the scratch memory region allocated to a stage (Scratch
Space Base Pointer). It is specified as a 22-bit, 1KB-aligned offset from the GeneralStateBaseAddress.

Each thread requested by the FF stage will be allocated it's exclusive portion of this space, with the per-
thread allocation size specified by Per-Thread Scratch Space. The computed offset of the thread-
specific portion is passed in the thread payload as Scratch Space Offset. If the thread needs to access
this scratch space, it shall utilize "stateless" DataPort read/write message, where the DataPort will cause
the General State Base Address to be added to the specific scratch space offset passed in the message
header.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 79

intel

Include Vertex Handles

This state variable specifies whether input vertex URB handles are included in the thread payload for
threads requested by the FF stage. SW shall set this bit if the thread kernel requires access to the data
contained input vertex URB entries, either in addition to or instead of the input vertex data pushed into
the thread payload.

URB Payload State

The following state variables specify certain parameters related to the amount and location of URB-
sourced data in the thread payload. State variables specifying other parameters are found in other state
commands. Refer to the Thread Payload Overview subsection for more details.

State VS|HS|DS|GS

Dispatch GRF Start Register for URB Data|Y |Y |Y [Y

Vertex/Patch URB Entry Read Offset Y

Vertex/Patch URB Entry Read Length Y Y [Y |Y

Dispatch GRF Start Register for URB Data

This state variable specifies a 5b GRF# (32B offset) within the thread payload where URB-sourced data
starts. The URB-sourced data starts with some (possibly zero) amount of pushed Constant data, followed
by some (possibly zero) amount of Vertex or Patch data.

Programming Restriction: Software shall ensure that it does not cause URB data to overwrite the RO
Header or Extended Header.

Vertex/Patch URB Entry Read Offset

This state variable specifies the 32B offset at which data is to be read from each Vertex or Patch URB
entry before being included in the thread payload.

Vertex/Patch URB Entry Read Length

This state variable specifies the number of 16B (vertex elements) to be read from each Vertex or Patch
URB entry, starting from the offset specified by the Vertex/PatchURBEntryReadOffset state.

If the read length is non-zero, SW shall ensure that the specification of the source (URB) data does not
extend beyond the allocated and valid data in the URB entry. Other restrictions are described in the
Thread Payload Overview subsection.

Pre-Rasterization Vertex State

The following state variables are implemented in the FF stages whose associated threads generate
vertices (therefore the HS stage is excluded). The state variables control some aspects of how the
generated ("output") vertices are treated if the pipeline is configured to have the stage's vertices to reach
the Clip and Setup stages. Hardware determines which stage produces these "pre-rasterization" vertices
as a function of which FF stages are enabled. For example, if the GS and DS stages are disabled, the VS

80 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

stage's set of state variables will be used or alternatively, if the GS stage is enabled, the GS stage's set of
state variables will be used.

There are "Force" state bits in the Clip & Setup stages that can be used to override use of these per-FF
state variables and instead use corresponding state variables programmed in the Clip and/or Setup
stages.

State VS |HS|DS|GS

Vertex URB Entry Output Read Offset

Vertex URB Entry Output Read Length

User Clip Distance Clip Test Enable Bitmask

<|=<]=<]|=<
Z|1Z2(Z2|Z2
<|=<]=<]|=<
<|[=<]=<]|=<

User Clip Distance Cull Test Enable Bitmask

Vertex URB Entry Output Read Offset

This state variable specifies the 32B offset at which attribute data is to be read from each Vertex URB
entry for use by the Setup stage.

Vertex URB Entry Output Read Length

This state variable specifies the number of 16B attributes to be read from each Vertex URB entry for use
by the Setup stage, starting from the offset specified by the VertextURBEntryOutputReadOffset state.

User Clip Distance Clip Test Enable Bitmask

This state variable is used in the Clip stage's clip test functionality. See Clip stage documentation for
details.

User Clip Distance Cull Test Enable Bitmask

This state variable is used in the Clip stage's cull test functionality. See Clip stage documentation for
details.

UAYV Access State

This state variable is used by the HW UAV Coherency mechanism.

State VS |HS DS |GS | PS | Compute

Accesses UAV[Y |Y (Y [Y |Y |N

Accesses UAV

This state bit indicates that threads requested by this FF stage may perform accesses to UAV resources. If
SW enables the HW UAV Coherency function, it shall set this bit in order to include this stage in the
coherency activities. For improved performance, SW should only set this bit for those FF stages that
require it. If the HW UAV Coherency function is enabled, this bit is ignored.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 81

intel

Statistics Enable

This state variable is used to enable/disable the statistic counter for a FF stage.

State VS|HS |DS|GS

Statistics Enable|Y |Y |Y |Y

Statistics Enable

This state bit controls whether or not the statistic counter(s) associated with a FF stage are enabled. Refer
to the specific FF stage descriptions for details on the statistics counter(s) supported.

SW shall disable statistics counting via this bit prior to submitting any 3DPRIMITIVE commands that are
not to be included in statistics counting. For example, if the statistics counters are to be maintained to
only track application-submitted work, SW shall ensure that any driver-generated work is not included in
the statistics.

Thread State (Ignored)

The following state variables can be programmed but are ignored in the HW implementation.

State VS |HS|DS|GS

Kernel Start Pointer [47:32] Y |Y |Y |Y

Scratch Space Base Offset Upper|Y [Y |Y |Y

URB Allocation Overview

The Geometry FF stages use the URB for temporary storage of vertex and/or patch data as URB Entries,
as well as Push Constant (PC) URB Buffers. Software can program the total size of the URB (see URB/L3
documentation). Software can also partition the URB space into FF stage-specific allocations for URB
Entries and/or PC URB Buffers. These allocations can be changed dynamically to accommodate changing
pipeline configurations and shader data requirements, though such changes may have performance
impacts. There shall be no overlap between the individual allocations and no allocation may extend
beyond the programmed URB upper limit.

Only the first 32KB of the URB can be used for VS, HS, DS, GS, and PS PC URB Buffer allocations. See Push
Constant Programming.

Software can place URB Entry allocations following any PC URB Buffer allocations. Software shall define
allocations for all the relevant Geometry FFs (VS, HS, DS, GS), though a subset of these allocations can be
"null" allocations that do not consume URB space. The VS stage always requires a non-null allocation.
The HS and DS stages only require non-null allocations when tessellation is enabled. Likewise, the GS
stage only requires a non-null allocation when GS is enabled.

When POSH is Enabled (via CTXT_SR_CTL), an additional 32KB block of URB is allocated for POCS pipeline
Push Constants.

This block is located immediately after the RCS Push Constant URB Buffer Allocation.

82 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

When enabled, the size of the Push Constant URB allocation mentioned in the URB programming
information (below) will increase to 64KB total (vs. the 32KB size shown)

URB Space Partitioning

Programmed URB
URB Size

<FF> Stage
URB Entry Allocation
[8KB-Aligned]

<FF> Stage URB Entry
Allocations may start below
the 32KB boundary, though
above any PC allocations.

<FF> Stage
URB Entry Allocation
[8KB-Aligned]

32KB

Push Constant
URB Buffer Allocation
[0-32KB in 2KB increments] PC URB Buffer Allocations

. constrained to first 32KB.

Push Constant
URB Buffer Allocation

0 [0-32KB in 2KB increments] L

The starting offset (within the URB space) of a FF URB Entry allocation is specified by a URBStartAddress
state. The size of an allocation is defined by a NumberOfURBEntries state and a corresponding
URBEntryAllocationSize state.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 83

intel

URB Entry and Entry Allocation

URB Entry
€ 648 3
URB 0
URB Starting . URB Entry
Address /,,.f”“: Allocated Size
(8KB aligned) ~ -
) 7 ,,

URBEnty[0] &

<EF>URB | Number of
Entry | URB Entries
Allocation

URB Entry [NumURBEntries-1]

Multiple-Slice Implications

The FF URB allocations are programmed based on the URB size for a single slice. If the configuration
includes multiple slices, the HW will automatically adjust the URBStartAddress and
NumberOfURBEntries states according to the number of slices. The URBEntryAllocationSize states are
not affected, nor are the PC URB Buffer allocations affected. The NumberOfURBEntries states are simply
multiplied by the number of slices. The URBStartAddress states are scaled by the number of slices after
being first decreased by 32KB, with a 32KB offset added back in after scaling. This scales the allocation
start addresses relative to the 32KB boundary versus the start of the URB.

The following diagram provides an example of how this scaling would be applied in a 2-slice
configuration.

84 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

2 * 1-slice URB 2-slice URB
Size —
128KB - — _
GS Stage &
URB Entry Allocation =
StartAddress = 96KB i
1-Slice URB 1-Slice URB
Size -
80KB — + —— 96KB — L
@S Stage A
URB Entry Allocation <
StartAddress = 64KB @
64KB — + o agke - _
V5 Stage L
40kB - +— A URB Entry Allocation Q
VS Stage | ’ =
URB Entry Allocation %j StartAddress = 32KB
32KB — — StartAddress = 32KB N 23xg — . l
0 0

Enhanced URB Allocation Overview

An "enhanced", alternative FF URB allocation scheme is available and offers more efficient URB allocation
for multiple-slice configurations when Push Constant URB allocations are required. This scheme uses the
3DSTATE_URB_ALLOC_VS, 3DSTATE_URB_ALLOC_HS, 3DSTATE_URB_ALLOC_DS and
3DSTATE_URB_ALLOC_GS commands. The states programmed by these commands are similar to the
legacy 3DSTATE_URB_VS, 3DSTATE_URB_HS, 3DSTATE_URB_DS and 3DSTATE_URB_GS commands,
though the new commands support separate URB Starting Address and Number Of URB Entries states

Doc Ref # IHD-OS-TGL-Vol 9-12.21 85

intel

for "Slice0" and "SliceN" (slices beyond Slice0). HW will use both sets of states to scale the URB allocation
up to the number of enabled slices, versus the legacy commands that only used the single set of states
for Slice0.

The enhanced scheme & commands are available in addition to the legacy scheme & commands.
However, within a context, SW shall only utilize one scheme.

The benefit of the enhanced scheme is apparent for multiple-slice configurations when Push Constant
URB allocations are required. The legacy scheme only supplied a single set of states for one slice. The
size of the FF allocations are therefore impacted by the size of the Push Constant allocations. However, in
a multiple-slice configuration, there is only one set of Push Constant allocation. The legacy scheme was
unable to take advantage of that fact, resulting in unused URB storage at the end of the URB space equal
in size to N-1 times the size of the Push Constant allocations (where N is the number of enabled slices).
The following example diagram illustrates this condition associated with the legacy scheme:

86 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel.

HAKE
BAKB
VSR_0-32 4
+HWER_M+32
128KB
D& 0-32
+05 M+32 T
32KB
WsR_O 7 H5 BAKE
Hs_0-32
os B4KB #HE_M+32
D50 g
HS 32KB
H5 O b 4 Vs 128KB
W5 E1KB
Ij V5 0-32
Vs o POCS k +HW5_N+32 POCS T
Push Push
Constant EAKE Constant GAKE
RCS Push RCS Push
Constant Constant
¥
Slice 2-Slice
Allocation Allocation

The enhanced scheme allows a separate, second set of states for "SliceN" (slices beyond Slice0) that can
be used to specify allocations that are not impacted by Push Constant URB allocations (as these
allocations do not exist in slices beyond Slice0). Therefore the entire URB can be allocated with no
wasted space. The following example diagram illustrates how the use of the enhanced scheme leads to
more efficient FF URB allocation:

Doc Ref # IHD-OS-TGL-Vol 9-12.21 87

intel.

No Unused
Space!
o
BAKR
WSR_DFVSR_M ¢
160KB
4
GAKB
l‘r
32K8
X 4
GEKE
160KB
b 4
32K8
X
4
GEKE
H4KB
e I
Slice O Slice N 2-Slice
Allocation Allocation Allocation

88 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Allocation State Variables

URB Starting Address

This state variable defines the 8KB-aligned starting offset of the URB allocation for a given FF stage.

URB Entry Allocated Size

Programming Note

Context: Allocation State Variables

This state variable defines the amount of storage allocated for each URB Entry within the allocation. It is 64B-
granular. (Note that the contents of a URB entry can be accessed at 32B granularity). The required size of a
URB Entry is typically dictated by API parameters and APl shader programs.

Software should attempt to minimize the size of URB entries in order to maximize the number of URB Entries
that can be stored in a given allocation. However, as changing URB-related state variable can incur
performance penalties, software may decide to employ sizing heuristics that permit a limited amount of
wasted space in URB entries as a performance tradeoff.

Number of URB Entries

Programming Note

Context: Allocation State Variables

This state variable defines the number of URB Entries allocated for a given FF stage. If the stage is disabled,
the number of entries can be programmed as 0, though this is not required. If the stage is enabled (which is
always true for the VS stage), a non-zero number of entries shall be specified. If the URBEntryAllocatedSize
is less than or equal to 8 64B units, this number shall be 0 or a multiple of 8.

The minimum number of entries required as well as the maximum number supported are specific to the FF
stage and state programming (e.g., a function of Dispatch Mode) - see the documentation for the specific
stage.

Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the information required to
submit the thread request to the Thread Dispatcher. This information is divided into several categories,
as listed below and subsequently described in detail.

Thread Control Information: This is the information required (from the FF unit) to establish the
execution environment of the thread.

Thread Payload Header: This is the first portion of the thread payload passed in the GRF, starting
at GRF RO. This is information passed directly from the FF unit. It precedes the Thread Payload
Input URB Data.

Thread Payload Input URB Data: This is the second portion of the thread payload. It is read from
the URB using entry handles supplied by the FF unit.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 89

intel

Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to the
Thread Dispatcher and which affect the thread execution environment. Note that this information is not
directly passed to the thread in the thread payload (though some fields may be subsequently accessed
by the thread via architectural registers).

State Variables Included in Thread Control Information

State
Variable Usage FFs
Kernel Start This field, together with the General State Pointer, specifies the starting location All FFs spawning
Pointer threads

(1=t EU core instruction) of the kernel program run by threads spawned by this FF
unit. It is specified as a 64-byte-granular offset from the General State Pointer.

GRF Register

Specifies, in 16-register blocks, how many GRF registers are required to run the

All FFs spawning

Block Count |kernel. The Thread Dispatcher will only seek candidate EUs that have a sufficient |threads
number of GRF register blocks available. Upon selecting a target EU, the Thread
Dispatcher will generate a logical-to-physical GRF mapping and provide this to
the target EU.
Single Specifies whether the kernel program has a single program flow (SIMDnxm with All FFs spawning
Program ~ . ; |threads
m = 1) or multiple program flows (SIMDnxm with m > 1). See CRO description in
Flow (SPF) . .
ISA Execution Environment.
Thread The Thread Dispatcher will give priority to those thread requests with Thread All FFs spawning
Dispatch Dispatch Priority of HIGH_PRIORITY over those marked as LOW_PRIORITY. Within |threads
Priority these two classes of thread requests, the Thread Dispatcher applies a priority
order (e.g., round-robin --- though this algorithm is considered a device
implementation-dependent detail).
Eo,att'r:v? d This determines the initial value of the Floating Point Mode bit of the EU's CRO ﬁ}” FF; spawning
ointlode | architectural register that controls floating point behavior in the EU core. (See reads
ISA.)
Exceptions This bitmask controls the exception handing logic in the EU. (See ISA.) All FFs spawning
Enable threads
zamptler This is a hint which specifies how many indirect SAMPLER_STATE structures Al stagt(.es
oun should be prefetched concurrent with thread initiation. It is recommended that suppcl)‘r mgVS
software program this field to equal the number of samplers, though there may sampling (V5.
. . ey GS, WM)
be some minor performance impact if this number gets large.
This value should not exceed the number of samplers accessed by the thread as
there would be no performance advantage. Note that the data prefetch is treated
as any other memory fetch (with respect to page faults, etc.).
'Il?:"::llms ¢ This is a hint which specifies how many indirect BINDING_TABLE_STATE ﬁ:l FF; spawning
CZ :t MY | structures should be prefetched concurrent with thread initiation. (The notes reads
u

90

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

State
Variable Usage FFs

included in Sampler Count (above) also apply to this field).

Thread Payload Overview

Like all threads, the threads spawned by Geometry FF stages have some amount of payload data pre-
loaded into the GRF for use as initial input to a thread's kernel. Some of the data is sourced directly from
the spawning FF and/or intermediate Thread Dispatch functions, while some is sourced from the URB as
specified by the spawning FF. The Geometry FF thread payloads have a similar structure, though the
exact payload size/content/layout is unique to each FF stage. This subsection describes the general
layout of the payload - refer to the specific FF stage descriptions for details and differences.

The payload data loaded into the GRF starting at RO and is divided into two main sections: the Payload
Header followed by the Payload URB Data. The Payload Header contains information passed from FF
units, while the Payload URB Data is obtained from the URB.

Geometry FF Thread Payload Layout (General)

GRF#

RO RO Header l
. Payload
R [Extended Header] [Header
Dispatch GRF » —
Start Register [Push Constant Data] ‘
for URB Data N Payload
URB Data
[URB Entry Data]
_
R111

R112
Not Available for Payload Data
R127

The Payload Header is further subdivided into a leading RO Header and (if present) a variable-sized
Extended Header. The RO fields are laid out to closely match the message header (M0) of thread-
generated messages to shared functions. The Extended Header (if present) starts in R1 and its length
varies.

The Payload URB Data section is optional and can contain a variable amount of Push Constant Data
and/or a variable amount of (vertex or patch) URB Entry Data. The Payload URB Data starts at the GRF#
defined by the DispatchGRFStartRegisterForURBData FF state variable. Software can use this state
variable to place the Payload URB Data at a common starting GRF# even when the size of the Extended
Header varies.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 91

intel

Thread Payload Generation

FF units are responsible for generating a thread payload - the data pre-loaded into the target EU's GRF
registers (starting at RO) that serves as the primary direct input to a thread's kernel. The general format of
these payloads follows a similar structure, though the exact payload size/content/layout is unique to
each stage. This subsection describes the common aspects - refer to the specific stage's chapters for
details on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB
data. The payload header contains information passed directly from the FF unit, while the payload URB
data is obtained from URB locations specified by the FF unit.

The first 256 bits of the thread payload (the initial contents of R0, aka "the RO header") is specially
formatted to closely match (and in some cases exactly match) the first 256 bits of thread-generated
messages (i.e., the message header) accepted by shared functions. In fact, the send instruction supports
having a copy of a GR's contents (such as RO) used as the message header. Software must take this
intention into account (i.e., "don't muck with RO unless you know what you're doing"). This is especially
important given the fact that several fields in the RO header are considered opaque to SW, where use or
modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,
variable-sized extended payload header section. In general, the size, content and layout of both payload
header sections are FF-specific, though many of the fixed payload header fields are common amongst
the FF stages. The extended header is used by the FF unit to pass additional information specific to that
FF unit. The extended header is defined to start after the fixed payload header and end at the offset
defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF Start
Register for URB Data field to insert padding into the extended header in order to maintain a fixed
offset for the start of the URB data.

Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This
information is a mixture of SW-provided state information (state table pointers, etc.), primitive
information received by the FF unit from the FF pipeline, and parameters generated/computed by the FF
unit. Most of the fields of the fixed header are common between the FF stages. These non-FF-specific
fields are described in Fixed Payload Header Fields (non-FF-specific). Note that a particular stage's
header may not contain all these fields, so they are not "common" in the strictest sense.

92 Doc Ref # IHD-OS-TGL-Vol 9-12.21

Fixed Payload Header Fields (non-FF-specific)

intel

Fixed Payload

Header Field
(non-FF-
specific) Description FFs
FF Unit ID Function ID of the FF unit. This value identifies the FF unit within the GPU. The |All FFs spawning

FF unit uses this field (when transmitted in a Message Header to the URB
Function) to detect messages emanating from its spawned threads.

threads

Snapshot Flag

All FFs spawning
threads

Thread ID

This field uniquely identifies this thread within the FF unit over some period.

All FFs spawning
threads

Scratch Space
Pointer

This is the starting location of the thread's allocated scratch space, specified as
an offset from the General State Base Address. Note that scratch space is
allocated by the FF unit on a per-thread basis, based on the Scratch Space
Base Pointer and Per-Thread Scratch Space Size state variables. FF units
assign a thread an arbitrarily-positioned region within this space. The scratch
space for multiple (API-visible) entities (vertices, pixels) is interleaved within
the thread's scratch space.

All FFs spawning
threads

Dispatch ID

This field identifies this thread within the outstanding threads spawned by the
FF unit. This field does not uniquely identify the thread over any significant
period.

Implementation Note: This field is effectively an "active thread index". It is
used on a thread's URB allocation request to identify which thread's handle
pool is to source the allocation. It is used upon thread termination to free up
the thread's scratch space allocation.

All FFs spawning
threads

Binding Table
Pointer

This field, together with the Surface State Base Pointer, specifies the starting
location of the Binding Table used by threads spawned by the FF unit. It is
specified as a 64-byte-granular offset from the Surface State Base Pointer.
See Shared Functions for a description of a Binding Table.

All FFs spawning
threads

Sampler State

This field, together with the General State Base Pointer, specifies the starting

All FFs spawning

Pointer location of the Sampler State Table used by threads spawned by the FF unit. It |threads which
is specified as a 64-byte-granular offset from the General State Base Pointer. | sample (VS, GS,
See Shared Functions for a description of a Sampler State Table. WM)

Per Thread This field specifies the amount of scratch space allocated to each thread All FFs spawning

Scratch Space

spawned by the FF unit.

The driver must allocate enough contiguous scratch space, starting at the
Scratch Space Base Pointer, to ensure that the Maximum Number of
Threads can each get Per-Thread Scratch Space size without exceeding the
driver-allocated scratch space.

threads

Handle ID <n>

This ID is assigned by the FF unit and links the thread to a specific entry within
the FF unit. The FF unit will use this information upon detecting a URB_WRITE
message issued by the thread.

Threads spawned by the GS, CLIP, and SF units are provided with a single
Handle ID / URB Return Handle pair. Threads spawned by the VS are provided

VS, GS, CLIP, SF

Doc Ref # IHD-OS-TGL-Vol 9-12.21

93

intel

Fixed Payload
Header Field
(non-FF-
specific)

Description

FFs

with one or two pairs (depending on how many vertices are to be processed).
Threads spawned by the WM do not write to URB entries, and therefore this
info is not supplied.

URB Return
Handle <n>

This is an initial destination URB handle passed to the thread. If the thread
does output URB entries, this identifies the destination URB entry.

Threads spawned by the GS, CLIP, and SF units are provided with a single
Handle ID / URB Return Handle pair. Threads spawned by the VS are provided
with one or two pairs (depending on how many vertices are to be processed).
Threads spawned by the WM do not write to URB entries, and therefore this
info is not supplied.

VS, GS, CLIP, SF

Primitive
Topology Type

As part of processing an incoming primitive, a FF unit is often required to
spawn a number of threads (for example, for each individual triangle in a
TRIANGLE_STRIP). This field identifies the type of primitive which is being
processed by the FF unit, and which has lead to the spawning of the thread.

EU kernels written to process different types of objects can use this value to
direct that processing. E.g., when a CLIP kernel is to provide clipping for all the
various primitive types, the kernel would need to examine the Primitive
Topology Type to distinguish between point, lines, and triangle clipping
requests.

Note: In general, this field is identical to the Primitive Topology Type
associated with the primitive vertices as received by the FF unit. Refer to the
individual FF unit chapters for cases where the FF unit modifies the value
before passing it to the thread. (for example, certain units perform toggling of
TRIANGLESTRIP and TRIANGLESTRIP_REV).

GS, CLIP, SF, WM

RO Header

The RO header is used to pass various parameters to threads. This information contains SW-provided
state information, primitive information received by the FF unit from the FF pipeline, and parameters
generated/computed by the FF unit or Thread Dispatch HW.

Below is a list and description of the RO Header fields common to all Geometry FF thread payloads. Refer
to the specific payload definitions for more details and (if relevant) other FF-specific fields.

RO Header Field RO Header Location
Thread ID R0.6[23:0]
FF Thread ID (FFTID) R0.5[9:0]
Scratch Space Offset R0.5[31:10]
Per Thread Scratch Space R0.3[3:0]
Sampler State Pointer RO.3[31:5]

94

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Thread ID

This field is a sequence number that identifies this thread within the all threads spawned by the relevant
FF stage over some unspecified period of time.

FF Thread ID

This field is assigned by the relevant FF stage and used to identify the thread within the set of currently-
outstanding threads spawned by the FF unit. It shall be included in EOT messages sent by the thread as
required by the relevant message header.

Scratch Space Offset

This field specifies the starting offset of the 1KB-aligned scratch space region allocated to this particular
thread. See the definition of ScratchSpaceBaseAddressLow, which specifies the starting offset for
scratch space region allocated to the FF stage.

Per Thread Scratch Space

This field is a copy of the PerThreadScratchSpace state variable programmed by SW via the
3DSTATE_<FF> commands.

Sampler State Pointer

This field is a copy of the SamplerStatePointer state variable programmed by SW via the
3DSTATE_<FF> commands

Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state
programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the
Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used to
place the payload URB data at a specific starting GRF register, irrespective of the size of the extended
header. A kernel can therefore reference the payload URB data at fixed GRF locations, while conditionally
referencing extended payload header information.

Extended Header (R1+)

In some cases additional FF-sourced information is passed in a variable-size Extended Header, which
starts at GRF R1. Some of the field definitions are common across two or more payloads and are
described below. Refer to specific payload definitions for more details and (if relevant) other FF-specific
fields.

Extended Header Fields

Output URB Handles

Input URB Handles

PrimitivelDs

Doc Ref # IHD-OS-TGL-Vol 9-12.21 95

intel

Output URB Handles

This set of 16-bit fields contains the 64B-aligned offsets into the URB at which a thread is to write output
URB data (i.e., vertex or patch data) via URB Write messages. In the VS thread payload URB Handles are
used both for input and output. Up to 8 Output URB Handles can be included in a thread payload. In
some SIMD4x2 payloads, these handles are passed in the RO Header.

Input URB Handles

This set of 16-bit fields contains the 64B-aligned offsets into the URB at which a thread can access input
URB data (i.e., vertex or patch data) via URB Read messages. In the VS thread payload URB Handles are
used both for input and output. Up to 256 Input URB Handles can be passed in the Extended Header.

As it is often possible for all input URB data to be pushed in the thread payload, the thread may not
require Input URB Handles. As these handles may not be needed, a corresponding
IncludeVertexHandles state bit is typically included in the FF stage's state (via 3DSTATE_<FF>). This
state bit controls whether the Input URB Handles are included in the Extended Header.

PrimitivelDs

This set of 32-bit fields contains the PrimitivelD values corresponding to input objects being processed
by the thread. See Vertex Fetch for a description of PrimitivelD. As PrimitivelD may not be required as
input by the thread, a corresponding IncludePrimitivelD state bit is typically included in the FF stage's
state (via 3DSTATE_<FF>). This state bit controls whether the PrimitivelDs are included in the Extended
Header.

Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as
input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either by
a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only knows the
location of this data in the URB, and is never exposed to the contents. For each URB entry, the FF unit will
supply a sequence of handles, read offsets and read lengths. The thread dispatch subsystem will read the
appropriate 256-bit locations of the URB, optionally perform swizzling (VS only), and write the results
into sequential GRF registers (starting at Dispatch GRF Start Register for URB Data).

State Variables Controlling Payload URB Data

State Variable Usage FFs
Dispatch GRF This SV identifies the starting GRF register receiving payload URB data. FFs
Start Register Software is responsible for ensuring that URB data does not overwrite the Fixed [spawning
for URB Data or Extended Header portions of the payload. threads
Vertex URB This SV specifies the starting offset within VUEs from which vertex data is to be VS, GS
Entry Read read and supplied in this stage's payloads. It is specified as a 256-bit offset into
Offset any and all VUEs passed in the payload.
This SV can be used to skip over leading data in VUEs that is not required by the
stage's threads (e.g., skipping over the Vertex Header data at the SF stage, as that
information is not required for setup calculations). Skipping over irrelevant data

96 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

State Variable Usage FFs

can only help to improve performance.

Specifying a vertex data source extending beyond the end of a vertex entry is

UNDEFINED.
Vertex URB This SV determines the amount of vertex data (starting at Vertex URB Entry Read
Entry Read Offset) to be read from each VUEs and passed into the payload URB data. It is
Length specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

Specifying a vertex data source extending beyond the end of a VUE is
UNDEFINED.

Programming Restrictions: (others may already been mentioned)

e The maximum size payload for any thread is limited by the number of GRF registers available to
the thread, as determined by min(128, 16 * GRF Register Block Count). Software is responsible
for ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.
o The Dispatch GRF Start Register for URB Data SV.
o The amount of CURBE data included (via Constant URB Entry Read Length)
o The number of VUEs included (as a function of FF unit, it's state programming, and incoming
primitive types)
o The amount of VUE data included for each vertex (via Vertex URB Entry Read Length)
o (For WM-spawned PS threads) The amount of Primitive URB Entry data.
e For any type of URB Entry reads:

o Specifying a source region (via Read Offset, Read Length) that goes past the end of the URB
Entry allocation is illegal.

» The allocated size of Vertex/Primitive URB Entries is determined by the URB Entry
Allocation Size value provided in the pipeline state descriptor of the FF unit owning
the VUE/PUE.

» The allocated size of CURBE entries is determined by the URB Entry Allocation Size
value provided in the CS_URB_STATE command.

Payload URB Data Layouts

Before going into more detail about URB-sourced payload contents, it is important to discuss the three
basic layouts of this data: Linear, SIMD4x2 Interleaved, and SIMD8. These layouts are linked to how data
can be accessed by the EU (therefore the EU documentation should be comprehended).

Linear

In Linear layout, data is read from the URB and placed in successive GRFs starting at DWO of the starting
destination GRF, as shown below. Data in this layout can be accessed by all EU channels of execution and

Doc Ref # IHD-OS-TGL-Vol 9-12.21 97

intel

it is therefore used to hold "constant" data as well as patch data for DS dispatch modes that work on a
single patch at a time.

GRF
DW?7 | DW6 HDW5 | DW4 | DW3 | DW2 DW1 | DWO

Start of Entry
R[i] fe——— — Data
Rli+1] [&———— - S
A e — J

] I

SIMD4x2 Interleaved

In SIMD4x2 Interleaved layout, the GRFs receive data from two URB entries, with the "first" URB entry
loaded into the 4 lower DWs of the GRFs and the "second” URB entry loaded into the upper DWs, as
shown below. This layout is primarily used to accommodate a kernel executing in SIMD4x2 execution
mode (see EU documentation). It is also used to pass data from two input patches into a DS
DUAL_PATCH payload, where the kernel may be executing in SIMD8 mode, but with the lower 4 SIMD8
channels operating on one patch and the upper 4 SIMD8 channels operating on another patch.

98 Doc Ref # IHD-OS-TGL-Vol 9-12.21

GRF
DW7 | DW6 | DW5 | DW4 | DW3 | DW2 | DW1 | DWO
Start of |
Entry 1Data "\
R[i] [e=——— L
R(i+1] [————————t—— —
R[i+2] ——— —_—
R(i+3] [¢————————————————
<« — —
e — —_—
< e —
SIMDS8

intel

Start of
Entry O Data

In SIMD8 layout, each DW position of the target GRFs can receive data from a different URB entry, as
shown below. (Note that it may be possible for the data from one source URB entry to be replicated in
two or more channels). This layout is used for kernels executing in SIMD8 mode, where each channel

operates on independent data.

Doc Ref # IHD-OS-TGL-Vol 9-12.21

99

intel

GRF

DW?7 DW6 | DW5 | DW4 | DW3 DW2 DW1 | DWO

Start of Start of Start of

Entry 7 Data h Entry 1 Data /EnterData

R[] [J(h «———
R[i+1] [(€—€— (\:“1;]{;*1;](; L
Rli+2] (€€ —€— -:J*-:"~: «——
R[i+3] “(.‘:"’*-..:"k:"‘*‘..:]ﬁ:”k:]‘(; «—
. e + —
. et 1,._'"‘“]-(“?(“1;‘- —
e M“‘“J(f‘rqfﬂl(f‘uf
e < —le— > e

Payload URB Data

In most Geometry FF thread payloads some amount of URB-sourced data is required as input to the
thread. This data is comprised of an optional amount of Push Constant data, immediately followed by an
optional amount of URB Entry data (vertex or patch data).

The starting GRF# of the Payload URB Data section is specified by the
DispatchGRFStartRegisterForURBData per-FF state variable (programmed via 3DSTATE_<FF>). See
URB Payload State above for more information on the state variables that affect the Payload URB Data.

Push Constant Data

This section of the Payload URB Data is used to pass Push Constant data to the thread kernel. Software
can define up to 4 Push Constant Memory Buffer regions for each Geometry FF stage that requests
thread dispatches, afterwhich the contents of those memory regions are automatically included in each
subsequent payload relevant to the FF stage. A FF stage-specific Push Constant URB Buffer is used to
buffer the memory contents, though any padding required by the URB buffer is removed before the data
is placed in the payload. See Push Constant Programming.

100 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

URB Entry Data

All Geometry FF threads have some number of (vertex or patch) Input URB Entries that serve as input to
the thread. Some amount (and possibly all) of the data from those Input URB Entries can be pushed into
the thread payload for immediate use by the thread's kernel. While the number of Input URB Entries
associated with a thread is only indirectly controlled by software (e.g., via Dispatch Mode), the source
region within each of the Input URB Entries is directly programmed. This source region definition applies
to all of the Input URB Entries pushed into the payload.

The diagram below shows how the Vertex/Patch URB Entry Read Offset and Length states are used to
define the source region of a URB Entry that will be copied into the URB Entry Data area of the thread
payload.

Input URB Entry Source Region Definition

URB

URB Entry
Handle .,

Entry Read Offset

Vertex/Patch URB l B
Vertex/Patch URB [

5 d Dat
Entry Read Length GHrEaa Bt

| Allocated
(" URB Entry
s

The number of Input URB Entries pushed and the layout of the payload data is described in the relevant
FF stage descriptions.

Push Constant Programming Overview

Push constants are constant values that are pushed as part of the thread payload. Pushing constants
allow for the data to be available to the Execution Units as soon as the thread payload is loaded in the
GRF. The alternative to push constants are kernel-fetched constants.

All shaders (VS, HS, DS, GS and PS) have a section of the thread payload for constant data. For the
geometry shaders, this is inserted between the R headers and URB Vertex Data. For Pixel Shaders, this is
inserted prior to Setup Data. For more information, see the detailed descriptions of each Shader's
payload in the corresponding sections.

Below is the format for the constant portion of the thread payload:

Doc Ref # IHD-OS-TGL-Vol 9-12.21 101

intel

Rn Registers prior to Push Constants

[Varles] 255:0 Indirect Push Constants:

optional
Push Constant data indirectly fetched from memory based on the 3DSTATE_CONSTANT_*
command and read from the URB. The amount of data provided is defined by the sum of the
read lengths in the last 3DSTATE_CONSTANT_*command

Data Vertex or Setup Data

Indirect Push Constant Programming

Note: The Resource Streamer-based "Gather Constant” function is an extension of the Push Constant
function and is described in detail in the Resource Streamer section. The Geometry FF state
programming aspects are included below, after the basic Push Constant function is described.

3D APIs and their associated shader languages support the access of constant values, typically sourced
from memory-resident Constant Buffers. Additionally, shader kernels may require access to compiler
and/or driver-generated constants. The device supports a basic Push Constant (PC) mechanism to have a
limited amount of constant data to be pushed into GRF registers via the thread payload where they are
immediately available to the kernel program. It is up to software to determine which constants (if any)
are pushed into the payload versus being dynamically referenced from memory via a shared function.
Besides functional restrictions, there are several performance tradeoffs involved in this decision: GRF
register pressure, locality of constant references, multiple references, expected shared function latency,
etc.

The device supports a basic mechanism where software can specify -- for each FF stage that generates
thread requests - up to 4 memory regions as the source for the PC data and one URB allocation used to
buffer the data internally to the device. The device will fetch the PC source data from memory and write
it into the URB Buffer, and at thread dispatch time the PC data will be read from the URB and inserted
into the thread payload GRF registers.

102 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

PC Memory Buffers PC Memory Source Data PC Memory Source Data
In Memory Stored in PC URB Entry Pushed in Payload in GRF

[Padding]

Buffer Region 0 Data
Buffer Region 2 Buffer Region 0 Data

[Padding]
[Padding]

Buffer Region 1 Data

Buffer Region 1 Data
Buffer Region 0 ¢ Buffer Region 2 Data

[Padding]
[Padding]

Buffer Region 3 Data

Buffer Region 2 Data

[Padding]
[Padding]

Buffer Region 3

Buffer Region 3 Data

[Padding]

Buffer Region 1

Push Constant Memory Buffers

The 3DSTATE_CONSTANT_<FF> commands specify a set of state variables that define up to 4 PC
Memory Buffer regions in memory. The commands also initiate the process of reading the PC source

Doc Ref # IHD-OS-TGL-Vol 9-12.21 103

intel

data (if any) from memory and placing it in the associated PC URB Buffer for inclusion in subsequent
thread payloads.

Up to four PC Memory Buffers can be specified. ConstantBufferReadLength specifies a 32B-granular
amount of PC data residing in the PC Memory Buffer. A length of 0 disables the corresponding buffer.
Disabling all four buffers causes no PC data to be inserted in thread payloads. SW shall disable all four
buffers whenever the corresponding PC URB Buffer is disabled. If SW disables a buffer, it shall also
specify a Pointer value of 0.

The location of a PC Memory Buffer is specified either by:
e 32-Byte granular GraphicsAddress

e 32-Byte granular DynamicStateOffset from the DynamicStateBaseAddress GraphicsAddress
(programmed via STATE_BASE_ADDRESS)

The GatherPoolEnable state bit (programmed via 3DSTATE_GATHER_POOL_ALLOC) is used to enable
option (c) for Buffer 1 only. Otherwise, the CONSTANT_BUFFERAddressOffsetDisable bit of the
INSTPM register controls the use of Pointer state variables:

* If the buffers are specified via a DynamicStateOffset, the DynamicStateMemoryObjectControlState
(programmed via STATE_BASE_ADDRESS) is used and corresponding DynamicState bounds checking is
performed during the memory access.

* If the buffers are specified via a GraphicsAddress, the ConstantBufferObjectControlState state
variable is used to control the memory accesses, though no bounds checking is performed.

Note that the starting location and length of the PC source data in each PC Memory Buffer is specified
via 32B-aligned/granular parameters, while the PC URB Buffer is specified via 64B-aligned/granular
parameters. The implications of this are described in the PC URB Buffer description.

State Command

Constant Buffer Object Control State | 3SDSTATE_CONSTANT_<FF>

Constant Buffer Read Length [0-3] 3DSTATE_CONSTANT_<FF>

Pointer to Constant Buffer [0-3] 3DSTATE_CONSTANT_<FF>

Pointer to Constant Buffer High [0-3] | 3SDSTATE_CONSTANT_<FF>

Push Constant URB Buffer Allocation

The 3DSTATE_PUSH_CONSTANT_ALLOC_<FF> commands specify a set of state variables is used to
define the PC URB Buffer allocation for each relevant FF stage. Each buffer is used to collect 64B-
granular/aligned PC source data prior to use in thread dispatch.

State Command

Constant Buffer Offset | 3DSTATE_PUSH_CONSTANT_ALLOC_<FF>

Constant Buffer Size |3DSTATE_PUSH_CONSTANT_ALLOC_<FF>

104 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

ConstantBufferOffset specifies the 2KB-granular offset of a FF stage's PC URB Buffer allocation. If the
ConstantBufferSize is zero, this offset is ignored.

ConstantBufferSize specifies the size of a FF stage's PC URB Buffer allocation as a possibly-zero count of
2KB increments. Specifying a size of 0 disables the buffer. It is invalid to specify a non-zero amount of PC
source data (via 3DSTATE_CONSTANT_<FF>) when the corresponding PC URB Buffer is disabled.

In order to use PCs for a FF stage, SW shall first program ConstantBufferSize to a non-zero value. The
buffer shall be large enough to accommodate the worst-case buffering requirements of any single set of
PC Memory Buffer definitions (see below). It is invalid to specify more PC source data than can be
accommodated in the allocated PC URB Buffer. Additionally, in order to allow the device to pipeline the
prefetching of subsequent PC Memory Buffers, it is recommended that SW allocate PC URB Buffers larger
than this minimum requirement.

A PC URB Buffer is used to buffer 64B-granular/aligned push constant data from memory, though the PC
memory regions are defined as 32B-granular/aligned. In order to accommodate the worst-case
alignment, where a specific PC memory region is not 64B aligned but is 64B granular in size, the PC URB
Buffer requires 32B of padding at both the beginning and end of the PC data and would therefore need
to be sized at least 64B larger than the source data region wrt that source buffer. If this condition holds
for all 4 PC source buffers, the PC URB Buffer needs to be sized 256B larger than the worst-case amount
of source data. If SW knows a priori that the PC source data is 64B-aligned/granular, then there is no
need to allocate additional room for 64B padding.

An important example of this PC URB Buffer sizing restriction is with respect to supporting a maximum
amount of PC source data. The per-FF limit on the amount of PC data that can be specified for inclusion
in thread payloads at any given time is 2KB (64 * 32B) spread across up to 4 source buffers. Here
minimum-sized (2KB) PC URB Buffer could only be used if all the source data was 64B aligned and 64B
granular is size, as the PC URB Buffer would have no room for padding. If any 64B padding was required,
(at least) a 4KB PC URB Buffer would need to be allocated.

Push Constant URB Buffer Placement: SW shall program all Push Constant URB Buffer allocations to be
either disabled or completely contained within the first 32KB of the URB. There are no ordering
requirements on the placement of the allocations relative to the particular FF stages (e.g., the VS
allocation can come before or after the GS allocation). SW shall not program enabled buffers to overlap.
If 32KB is greater than the amount of URB space required for all the Push Constant URB Buffers and SW
packs the allocations starting at offset 0, SW can utilize the URB space after the last allocation for URB
Entry allocations (e.g., VS VUEs), subject to URB Fence alignment restrictions.

3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be
processed by the 3D pipeline. Typically, the processing results in the rendering of pixel data into the
render targets, but this is not required.

There is considerable confusion surrounding the term 'primitive’, e.g., is a triangle strip a 'primitive’, or is
a triangle within a triangle strip a 'primitive'? Some APIs use the term 'topology' to describe the higher-
level construct (e.g., a triangle strip), and uses the term 'primitive’ when discussing a triangle within a
triangle strip. In this spec, we will try to avoid ambiguity by using the term 'object’ to represent the basic

Doc Ref # IHD-OS-TGL-Vol 9-12.21 105

intel

shapes (point, line, triangle), and 'topology' to represent input geometry (strips, lists, etc.). Unfortunately,
terms like '3DPRIMITIVE' must remain for legacy reasons.

The following table describes the basic primitive topology types supported in the 3D pipeline.

Programming Note

Context:

3D Primitives Overview

e There are several variants of the basic topologies. These have been introduced to allow slight variations in
behavior without requiring a state change.

e Number of vertices and Dangling Vertices: Topologies have an "expected" number of vertices in order to
form complete objects within the topologies (e.g., LINELIST is expected to have an even number of vertices).
The actual number of vertices specified in the 3DPRIMITIVE command, and as output from the GS unit, is
allowed to deviate from this expected number, in which case any "dangling" vertices are discarded. The
removal of dangling vertices is initially performed in the VF unit. To filter out dangling vertices emitted by GS
threads, the CLIP unit also performs dangling-vertex removal at its input.

3D Primitive Topology Types

3D Primitive Topology
Type (ordered
alphabetically)

Description

LINELIST .

A list of independent line objects (2 vertices per line).

Normal usage expects a multiple of 2 vertices, though incomplete objects are
silently ignored.

LINELIST_AD)J

A list of independent line objects with adjacency information (4 vertices per
line).

Normal usage expects a multiple of 4 vertices, though incomplete objects are
silently ignored.

Not valid as output from GS thread.

LINELOOP .

Similar to a 3DPRIM_LINESTRIP, though the last vertex is connected back to the
initial vertex via a line object. The LINELOOP topology is converted to
LINESTRIP topology at the beginning of the 3D pipeline.

Normal usage expects at least 2 vertices, though incomplete objects are silently
ignored. (The 2-vertex case is required by OGL).

Not valid after the GS stage (i.e.,, must be converted by a GS thread to some
other primitive type).

LINESTRIP .

A list of vertices connected such that, after the first vertex, each additional
vertex is associated with the previous vertex to define a connected line object.

Normal usage expects at least 2 vertices, though incomplete objects are silently
ignored.

LINESTRIP_ADJ "

A list of vertices connected such that, after the first vertex, each additional

106

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

3D Primitive Topology
Type (ordered
alphabetically)

Description

vertex is associated with the previous vertex to define connected line object.
The first and last segments are adjacent-only vertices.

Normal usage expects at least 4 vertices, though incomplete objects are silently
ignored.

Not valid as output from GS thread.

LINESTRIP_BF

Similar to LINESTRIP, except treated as "backfacing' during rasterization (stencil
test). This is used by HW to support "line" polygon fill mode when two-sided
stencil is enabled.

LINESTRIP_CONT

Similar to LINESTRIP, except LineStipple (if enabled) is continued (vs. reset) at
the start of the primitive topology.

This can be used to support line stipple when the API-provided primitive is split
across multiple topologies.

LINESTRIP_CONT_BF

Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST

A list of point objects (1 vertex per point).

POINTLIST_BF

Similar to POINTLIST, except treated as "backfacing' during rasterization (stencil
test). This is used to support "point" polygon fill mode when two-sided stencil
is enabled.

POLYGON

Similar to TRIFAN, though the first vertex always provides the "flat-shaded"
values (vs. this being programmable through state).

Normal usage expects at least 3 vertices, though incomplete objects are silently
ignored.

QUADLIST

A list of independent quad objects (4 vertices per quad).

The QUADLIST topology is converted to POLYGON topology at the beginning
of the 3D pipeline.

Normal usage expects a multiple of 4 vertices, though incomplete objects are
silently ignored.

QUADSTRIP

A list of vertices connected such that, after the first two vertices, each additional
pair of vertices are associated with the previous two vertices to define a
connected quad object.

Normal usage expects an even number (4 or greater) of vertices, though
incomplete objects are silently ignored.

RECTLIST

A list of independent rectangles, where only 3 vertices are provided per
rectangle object, with the fourth vertex implied by the definition of a rectangle.
VO=LowerRight, V1=LowerLeft, V2=UpperLeft. Implied V3 = VO-V1+V2.

Doc Ref # IHD-OS-TGL-Vol 9-12.21

107

intel

3D Primitive Topology
Type (ordered
alphabetically)

Description

Normal usage expects a multiple of 3 vertices, though incomplete objects are
silently ignored.

The RECTLIST primitive is supported specifically for 2D operations (e.g., BLTs and
"stretch" BLTs) and not as a general 3D primitive. Due to this, a number of
restrictions apply to the use of RECTLIST:

Must utilize "screen space" coordinates (VPOS_SCREENSPACE) when the
primitive reaches the CLIP stage. The W component of position must be 1.0
for all vertices. The 3 vertices of each object should specify a screen-aligned
rectangle (after the implied vertex is computed).

Clipping: Must not require clipping or rely on the CLIP unit's ClipTest logic to
determine if clipping is required. Either the CLIP unit should be DISABLED, or
the CLIP unit's Clip Mode should be set to a value other than
CLIPMODE_NORMAL.

Viewport Mapping must be DISABLED (as is typical with the use of screen-
space coordinates).

RECTLIST_SUBPIXEL

The subpixel precise, axis-aligned bounding box of the object's 3 vertices is rendered.

TRIFAN

Triangle objects arranged in a fan (or polygon). The initial vertex is maintained
as a common vertex. After the second vertex, each additional vertex is
associated with the previous vertex and the common vertex to define a
connected triangle object.

Normal usage expects at least 3 vertices, though incomplete objects are silently
ignored.

TRIFAN_NOSTIPPLE

Similar to TRIFAN, but poylgon stipple is not applied (even if enabled).

This can be used to support "point" polygon fill mode, under the combination
of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are different (so the
final fill mode is not known to the driver),

(b) one of the fill modes is "point" and the other is "solid",
(c) point mode is being emulated by converting the point into a trifan,

(d) polygon stipple is enabled. In this case, polygon stipple should not be
applied to the points-emulated-as-trifans.

TRILIST e Alist of independent triangle objects (3 vertices per triangle).
¢ Normal usage expects a multiple of 3 vertices, though incomplete objects are
silently ignored.
TRILIST_ADJ

A list of independent triangle objects with adjacency information (6 vertices per

108

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

3D Primitive Topology
Type (ordered
alphabetically)

Description

triangle).

Normal usage expects a multiple of 6 vertices, though incomplete objects are
silently ignored.

Not valid as output from GS thread.

TRISTRIP A list of vertices connected such that, after the first two vertices, each additional
vertex is associated with the last two vertices to define a connected triangle
object.

Normal usage expects at least 3 vertices, though incomplete objects are silently
ignored.

TRISTRIP_AD)

A list of vertices where the even-numbered (including Oth) vertices are
connected such that, after the first two vertex pairs, each additional even-
numbered vertex is associated with the last two even-numbered vertices to
define a connected triangle object. The odd-numbered vertices are adjacent-
only vertices.

VFUNIT will complete a drawcall with the topology of tristrip_adj even if there is
a preemption request in the middle of the draw call.

Normal usage expects at least 6 vertices, though incomplete objects are silently
ignored.

Not valid as output from GS thread.

TRISTRIP_REVERSE

Similar to TRISTRIP, though the sense of orientation (winding order) is reversed - this

allows SW to break long tristrips into smaller pieces and still maintain correct face
orientations.

PATCHLIST_n

List of n-vertex "patch” objects. These topologies cannot be rendered directly - the
tessellation units must be used to convert them into points, lines, or triangles to
produce rasterization results. (VS, GS, and StreamOutput operations can also be
performed.)

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have
the same definition with respect to the information provided in the diagrams).

Doc Ref # IHD-OS-TGL-Vol 9-12.21

109

4 u] 1 2 3 n-2 n-1
POIMTLIST - L 3 - - |]]
% A
f u] 1 2 3 n-2 n-1
LIMELTST »—h » » » i
. A
4 u] 1 2 3 4 5 & 7
LIMELIST_&D] - - L -] | il L il
n-4 n-3 n-2 n-1
L i : .
h,
f u] 1 2 3 n-2 n-1
LIMESTRIP & > & & & -
h,
u] 1 2 3 4 5 n-2 n-1
LIMESTRIP_AD] L - L - L i i il
\
4 1 2
u] 3
LIMELZZP
\ n-1 n-2

B&215-01

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles
that are to be considered having "clockwise" winding order in screen space. Effectively, the arrows show
the order in which vertices are used in the cross-product (area, determinant) computation. Note that for
TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product
or the sign of the result of the normally-ordered cross-product be flipped (these are identical
operations).

110 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

' 1 -1 n-2)
TRILIST
n@l JAS n -JA"*
\ v
4 1 1 7 3 n-g a1 M
E E n=d
TRILIST_ALJ o 4 i 1D n-6 n-2
k E 11 n-1 Y
r 1 | £ n-2 A
TSR OO
k v] 2 4 n-] n-1 J
r 1 2 £ n-2 A
momnsecne SOEOOT,
k_ i] 2 4 n-] n-1 A
s ™)

TRISTRIP_ADJ

. .
r ™
TRIFAM
POLYEOM
\ n-2 y
BES16-01

Doc Ref # IHD-OS-TGL-Vol 9-12.21 111

intel

4 1 2 B i} n-3 n-2 A
LI} 3 4 F n-4 n-1
L A
f 1 3 3 n-1)
QUADS TRIP \ / \ /
1} 2 4 n-2
L y
f 2 (Implied) 5 (Implied) n-1 (Implied) A
1 LI} 4 3 n-2 n-3
%, A
B&s15-01

Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information packets.
(These packets are not directly visible to software.) Much of the data associated with a vertex is passed
indirectly via a VUE handle. The information provided in vertex packets includes:

e The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any
required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

¢ Primitive Topology Information: This information is used to identify/delineate primitive
topologies in the 3D pipeline. Initially, the VF unit supplies this information, which then passes
through the VS stage unchanged. GS and CLIP threads must supply this information with each
vertex they produce (via the URB_WRITE message). If a FF unit directly outputs vertices (that were
not generated by a thread they spawned), that FF unit is responsible for providing this information.

e PrimType: The type of topology, as defined by the corresponding field of the 3DPRIMITIVE
command.

e StartPrim: TRUE only for the first vertex of a topology.
e EndPrim: TRUE only for the last vertex of a topology.

e (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

Vertex URB Entry (VUE) Formats

In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, and only referenced by the
pipeline stages indirectly via VUE handles. Therefore (for the most part) the contents/format of the vertex

112 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

data is not exposed to 3D pipeline hardware - the FF units are typically only aware of the handles and
sizes of VUEs.

VUEs are written in two ways:

e At the top of the 3D Geometry pipeline, the VF's InputAssembly function creates VUEs and
initializes them from data extracted from Vertex Buffers as well as internally-generated data.

e VS, GS, HS and DS threads can compute, format, and write new VUEs as thread output.

There are only a few points in the 3D FF pipeline where the FF units are exposed to the VUE data.
Otherwise the VUE remains opaque to the 3D pipeline hardware.

e TE stage reads back Patch Headers from Patch URB Entries

e GS stage (optionally) reads back VertexCounts and Control Data Headers from GS VUEs
e StreamOutput stage reads back VUE contents in order to stream the vertices out

o Clip stage reads back VertexHeaders from VUEs

Software must ensure that any VUEs subject to readback by the 3D pipeline start with a valid Vertex
Header. This extends to all VUEs with the following exceptions:

e If the VS function is enabled, the VF-written VUEs are not required to have Vertex Headers, as the
VS-incoming vertices are guaranteed to be consumed by the VS (i.e., the VS thread is responsible
for overwriting the input vertex data).

o |f the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs are required to
have Vertex Headers, as the GS will consume all incoming vertices.

e If Rendering is disabled, VertexHeaders are not required anywhere.

The following table defines the Vertex Header. The Position fields are described in further detail below.

VUE Vertex Header

DWord Bits Description

Do 31:0 Reserved: MBZ

D1 31:0 Render Target Array Index (RTAIndex). This value is (eventually) used to index into a

specific element of an "array” Render Target. It is read back by the GS unit (for all exiting
vertices) and the Clip unit (for all clip-generated vertices), subsequently routed into the PS
thread payload, and eventually included in the RTWrite DataPort message header for use by
the DataPort shared function.

Software is responsible for ensuring this field is zero whenever a programmable index value is
not required. When a programmable index value is required

, software must ensure that the correct 11-bit value is written to this field. Specifically, the
kernels must perform a reange check of computed index values against [0,2047], and output
zero if that range is exceeded. Note that the unmodified "renderTargetArraylndex" must be
maintained in the VUE outside of the Vertex Header.

Software can force an RTAlndex of 0 to be used (effectively ignoring the setting of this

Doc Ref # IHD-OS-TGL-Vol 9-12.21 113

intel

DWord Bits Description

DWord) by use of the ForceZeroRTAIndex bit (3DSTATE_CLIP). Otherwise the read-back value
will be used to select an RTArray element, after being clamped to the RTArray surface's
[MinimumArrayElement, Depth] range (SURFACE_STATE).
Format: 0-based U32 index value

D2 31:01,
Viewport Index. This value is used to select one of a possible 16 sets of viewport (VP) state
parameters in the Clip unit's VertexClipTest function and in the SF unit's ViewportMapping and
Scissor functions.
The Clip unit (if enabled) will read back this value. The Clip unit will range-check the value
against [0,Maximum VPIndex] (see 3DSTATE_CLIP).
Software can force a value of 0 to be used by programming Maximum VPIndex to 0.
Format: 0-based U32 index value

D3 310 5 . . I o
Point Width. This field specifies the width of POINT objects in screen-space pixels. It is used
only for vertices within POINTLIST and POINTLIST_BF primitive topologies, and is ignored for
vertices associated with other primitive topologies.
This field is read back by the Clip unit.
Format: FLOAT32

D4 31:0 - . I . e
Vertex Position 0 X Coordinate. This field contains the X component of the vertex's first 4D
space position.
Format: FLOAT32

D5 31:0 - . g . e
Vertex Position 0 Y Coordinate. This field contains the Y component of the vertex's first 4D
space position.
Format: FLOAT32

D6 31:0 - . g . e
Vertex Position 0 Z Coordinate. This field contains the Z component of the vertex's first NDC
space position.
Format: FLOAT32

D7 31:0 - . g . e
Vertex Position 0 W Coordinate. This field contains the Z component of the vertex's first 4D
space position.
Format: FLOAT32

th(N>O): D8 310 Vertex Position [1].XYZW through Vertex Position [N].XYZW. These fields provide, in the

D[réu+(4*(N Render pipeling, "replica” (i.e., in addition to Vertex Position 0) 4D Vertex Positions for the

1))+3]

vertex if the Primitive Replication feature is enabled via 3DSTATE_PRIMITIVE_REPLICATION.
Here "N" refers to the value programmed in
3DSTATE_PRIMITIVE_REPLICATION::ReplicationCount. If N=0, the Primitive Replication
feature is disabled, and therefore there shall be no additional replica Vertex Positions, i.e., only

114

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

DWord Bits Description
Vertex Position 0.XYWZ shall appear in the Vertex Header with the ClipDistance values (if any)
immediately following Vertex Position 0. If N>0, there shall be additional replica Vertex
Positions included following Vertex Position 0, and the DWord offsets of the Clip Distance
Values (below, if any) shall be offset by the number of DWords required for the replica
positions.
Programming Note

Replica Vertex Positions are supported in both the Render and POSH pipelines

D8 31:0]| ~psiopms . A . . .
ClipDistance 0 Value (optional). If the UserClipDistance Clip Test Enable Bitmask bit
(3DSTATE_CLIP) is set, this value will be read from the URB in the Clip stage. If the value is
found to be less than 0 or a NaN, the vertex's UCF<0> bit will set in the Clip unit's
VertexClipTest function.
If the UserClipDistance Clip Test Enable Bitmask bit is clear, this value will not be read back,
and the vertex's UCF<0> bit will be zero by definition.
Format: FLOAT32
ClipDistance Values are enabled for clip/cull test in the Clip stage in one of two modes:
Normally the corresponding Enable Bitmasks are obtained from the state programmed in the
last "vertex-producing” stage (VS/DS/GS) that is enabled prior to the Clip stage. E.g., if VS and
DS are enabled but GS is disabled, the masks are obtained from 3DSTATE_DS. Alternatively,
the Enable Bitmasks can be obtained directly from corresponding masks programmed via
3DSTATE_CLIP, through use of 3DSTATE_CLIP's Force User Clip Distance [Cull/Clip] Test Enable
Bitmask state bits (see description of 3DSTATE_CLIP).

D3 310 ClipDistance 1 Value (optional). See above.

D10 310 ClipDistance 2 Value (optional). See above.

D11 310 ClipDistance 3 Value (optional). See above.

D12 310 ClipDistance 4 Value (optional). See above.

D13 310 ClipDistance 5 Value (optional). See above.

D14 310 ClipDistance 6 Value (optional). See above.

D15 31:0 ClipDistance 7 Value (optional). See above.

31:0 | End of Vertex Header Padding (if required). The Vertex Header shall be padded at the and
so that the header ends on a 32-byte boundary and therefore the Remainder of Vertex
Elements (below) starts on a 32B boundary.
31:0

(Remainder of Vertex Elements).

The absolute maximum size limit on this data is specified via a maximum limit on the amount

Doc Ref # IHD-OS-TGL-Vol 9-12.21 115

intel

DWord Bits Description

of data that can be read from a VUE (including the Vertex Header) (Vertex Entry URB Read
Length has a maximum value of 63 256-bit units). Therefore, the Remainder of Vertex
Elements has an absolute maximum size of 62 256-bit units. Of course, the actual allocated
size of the VUE can and will limit the amount of data in a VUE.

Vertex Positions

(For brevity, the following discussion uses the term map as a shorthand for "compute screen space
coordinate via perspective divide followed by viewport transform".)

The "Position" fields of the Vertex Header are the only vertex position coordinates exposed to the 3D
Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions. The
VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though this
information is not directly exposed to the FF units. For example, the Clip Space position will likely be
required in the VUE (outside of the Vertex Header) to perform correct and robust 3D Clipping in the CLIP
thread.

CLIP unit uses the 3DSTATE_CLIP.PerspectiveDivideDisable bit to determine whether to perform a
perspective projection (divide by w) of the read-back 4D Position.

When Perspective Divide is enabled, the Clip Space position is defined in a homogeneous 4D coordinate
space (pre-perspective divide), where the visible "view volume" is defined by the APIs. The API's VS, GS or
DS shader program will include geometric transforms in the computation of this clip space position such
that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a
"view transform” in this computation path). When Perspective Divide is enabled, the 3D FF pipeline will
perform a perspective projection (division of x,y,z by w), perform clip-test on the resulting NDC
(Normalized Device Coordinates), and eventually perform viewport mapping (in the SF unit) to yield
screen-space (pixel) coordinates.

When Perspective Divide is disabled, the read-back Position does not undergo perspective projection by
the 3D FF pipeline.

Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after
perspective projection (division by W), the visible "view volume" is some canonical (3D) cuboid. Typically
the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The API's VS or
GS shader program will include geometric transforms in the computation of this clip space position such
that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a
"view transform" in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space Z
coordinate.

A vertex's clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is
performed in clip space.

116 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Vertex clip-space positions must be included in the Vertex Header, so that they can be read-back (prior
to Clipping) and then subjected to perspective projection (in hardware) and subsequent use by the FF
pipeline.

NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z RHW] NDC (Normalized
Device Coordinates) space position. Here "normalized" means that visible geometry is located within the
[-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

e The NDC X)Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the clip-
space W coordinate (or, more correctly, the clip-space X,Y,Z coordinates are multiplied by the
reciprocal of the clip space W coordinate).

o Note that the X)Y,Z coordinates may contain INFINITY or NaN values (see below).

e The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under
normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC
space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform
perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

Screen-Space Position
Screen-space coordinates are defined as:

e XY coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex X,Y
Clamping and Quantization in the SF section for a discussion of the limitations/restrictions placed
on screenspace X,Y coordinates.

e Z coordinate has been mapped into the range used for DepthTest.

e RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of the
view-space Z coordinate).

Vertex Fetch (VF) Stage

The Vertex Fetch Stage performs one major function: executing 3DPRIMITIVE commands. This is handled
by the VF's InputAssembly function.

The following subsections describe some high-level concepts associated with the VF stage:

e State
e 3D Primitive Command

e Functions

Doc Ref # IHD-OS-TGL-Vol 9-12.21 117

intel

Vertex Buffers as a 2D Array

Vertex Buffers (VB) as a 2D Array

The Vertex Buffer can be accessed as a 2D array. The first dimension describes vertices where the size of
the vertex is defined by the VB's BufferPitch. The second dimension describes instances where the size
of the instance is defined by the InstanceStride in 3DSTATE_VF_INSTANCING.

Using the VB's as a 2D array is enabled by setting the 3DSTATE_VF_INSTANCING state
InstanceStrideEnable to ENABLED. InstanceStrideEnable cannot be enabled at the same time as
InstancingEnable.

The SGV InstancelD is used as the index for the second dimension. The state InstancelDOffsetEnable
can be used to provide an initial offset to InstancelD. This offset will apply to the InstancelD SGV itself
and when InstancelD is used as an index for the second dimension of the VB 2D Array.

The VertexAccessType can be RANDOM or SEQUENTIAL when reading VB's as 2D arrays.

+—VBuffer BuferP ich———
VBuffer BufferStartingAddress

3DPRIM StartVertex Location * VEuffer BuferPibch +
JDPRIM Startinstancelocation * VBuiTer instanceStride VertexData[i][v]

VertexData[i][v+1]

VBuifer_InstanceStride

VertexData[i][v+n-1]

VertexData[i+1][v]

VertexData[i+ 1][v+1]

WertexData[i+1][v+n-1]

VertexData[i+m-1][v]

VertexData[i+m-1][v+1]

VertexDatali+m-1][v+n-1] VBuffer BuferSize

State

This section contains various state registers.

118 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Control State

Register

3DSTATE_VF

3DSTATE_VF_TOPOLOGY

Index Buffer (IB) State

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (I1B) used in subsequent
3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB. The
IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8, 16 or
32-bit index values. These index values will be fetched by the InputAssembly function, and subsequently
used to compute locations in VERTEXDATA buffers from which the actual vertex data is to be fetched.
(This is opposed to the SEQUENTIAL access mode where the vertex data is simply fetched sequentially
from the buffers).

The following table lists which primitive topology types support the presence of Cut Indices.

Definition Cut Index?

3DPRIM_POINTLIST

3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRIFAN

3DPRIM_QUADLIST

3DPRIM_QUADSTRIP

3DPRIM_LINELIST_ADJ

3DPRIM_LINESTRIP_AD)J

3DPRIM_TRILIST_AD/J

3DPRIM_TRISTRIP_ADJ

3DPRIM_TRISTRIP_REVERSE

3DPRIM_POLYGON

3DPRIM_RECTLIST

3DPRIM_LINELOOP

3DPRIM_POINTLIST_BF

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

Zl<|<|=<|[<|<|z|<|<|<|=<|<|<|=<|=<|<|<]|=<]|<]|=<

3DPRIM_TRIFAN_NOSTIPPLE

Doc Ref # IHD-OS-TGL-Vol 9-12.21 119

intel

Definition Cut Index?

3DPRIM_PATCHLIST_n Y

3DSTATE_INDEX_BUFFER

Vertex Buffers (VB) State

The 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VF_INSTANCING commands are used to define Vertex
Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D array of structures, where the
size of the structure as defined by the VB's BufferPitch. VBs are accessed either as VERTEXDATA buffers
or INSTANCEDATA buffers, as defined by the InstancingEnable state in 3DSTATE_VF_INSTANCING. The
VB's access type will determine whether the VF-computed Vertexindex or Instancelndex is used to access
data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided by
an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect
accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

Register

3DSTATE_VERTEX _BUFFERS

VERTEX_BUFFER_STATE

VERTEXDATA Buffers - SEQUENTIAL Access

Description

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = SEQUENTIAL and (b) vertex elements
with InstancingEnable set to DISABLED. Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
VBState.BufferPitch", the address of the byte immediately beyond the last valid byte of the buffer is determined by
"VBState.StartingBufferAddress + VBState.BufferSize".

120 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

VB State, BufferPitch

| - ,
VBState StartingBufferaddress »
SDPRIM, StartingWertex Lo cation
WBState, BufferPich
| VBInstanceR estartdddress I ¥ [
[restart here each instance I wertexD atalve)
YertexD atal vy]
DR IM Merter CountPerInstance
- wertexData[va.1]
VB State, MaxIndax ¥,
WBState BufferPitch

BE226-01

VERTEXDATA Buffers - RANDOM Access

Description

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = RANDOM and (b) vertex elements
with InstancingEnable set to DISABLED. Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
VBState.BufferPitch", the address of the byte immediately beyond the last valid byte of the buffer is determined by
"VBState.StartingBufferAddress + VBState.BufferSize".

Doc Ref # IHD-OS-TGL-Vol 9-12.21 121

intel

VB State, B ufferRitch

3
¥

VBState, StartingBufferaddress

L J

[(WertenInden +
ZDPRIM. B aseVertesLocation)
% VB State, BufferPitch

L J

Wertex Datal v,]

VB State, MaxIndex v,
u WBState, BufferPitch

BE227-01

INSTANCEDATA Buffers

Description

This section pertains to vertex elements with InstancingEnable set to ENABLED. Instead of
"VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of the byte immediately
beyond the last valid byte of the buffer is determined by "VBState.StartingBufferAddress + VBState.BufferSize".

122 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

VB State, BufferFitch

-)
VBState, StartingBufferAddress >
SDPRIM, StartingInstancelacation
% WBState, BufferPitch
¥ | .
Pointer advances according to InstanceDatal 0]
WBState Instance StepR ate

Instancebatalinstance & div rate]

InstanceDatal n)

VBState, ManIndes
% WBState, B ufferPitch

—

B&E33-01

Vertex Definition State

The following subsections define the state information for vertex data and describe some related
processing.

Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex data
and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the VF
unit.

Two additional commands are added. 3DSTATE_VF_INSTANCING specifies the InstanceStepRate on a
per-vertex-element basis. 3DSTATE_VF_SGVS specifies optional insertion of VertexID and/or InstancelD
into the input vertex data (logically following the processing of the VERTEX_ELEMENT_STATE structures).

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored
during processing of the 3DPRIMITIVE command.

Register

VERTEX_ELEMENT_STATE

3DSTATE_VERTEX_ELEMENTS

3D_Vertex_Component_Control

3DSTATE_VF_INSTANCING

3DSTATE_VF_SGVS

3DSTATE_VF_SGVS_2

3DSTATE_VF_COMPONENT_PACKING

Doc Ref # IHD-OS-TGL-Vol 9-12.21 123

intel

3D Primitive Command

Following are 3D Primitive Commands:
3DPRIMITIVE

3D Primitive Topology Type Encoding
The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for details,
programming restrictions, diagrams, and a discussion of the basic primitive types.

3D_Prim_Topo_Type

Functions

This section covers the various functions for Vertex Fetch.

Input Assembly
The VF's InputAssembly function includes (for each vertex generated):

e Generation of VertexIndex and Instancelndex for each vertex, possibly via use of an Index Buffer.
e Lookup of the VertexIndex in the Vertex Cache (if enabled)
e If a cache miss is detected:

e Use of computed indices to fetch data from memory-resident vertex buffers

e Format conversion of the fetched vertex data

e Assembly of the format conversion results (and possibly some internally generated data) to
form the complete "input" (raw) vertex

e Storing the input vertex data in a Vertex URB Entry (VUE) in the URB
e Output of the VUE handle of the input vertex to the VS stage

¢ If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage (marked
as a cache hit to prevent any VS processing).

Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the
vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description of
the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each
DWord is considered a "component" of the vertex element. The starting destination DWord offset of the
vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with
monotonically increasing VUE offsets. For each component, the source of the component is specified.
The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstancelD or PrimitivelD), or a
component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the case
of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source data
with that VB are specified.

124 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

The VF's Vertex Assembly process can be envisioned as the VF unit stepping through the
VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if memory
resident), and storing the results in the destination VUE.

The information supplied via the 3DSTATE_VF_SGVS command is also used to optionally insert VertexID
and/or InstancelD into the input vertex data, after the VERTEX_ELEMENT structures are processed.

Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D
pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D pipeline
results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,
and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual
vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either case,
the contents of the cache (VUE handles) are tagged with the Vertexindex value used to fetch the input
vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or
parameters change) a vertex with the same VertexIndex as a previous vertex will have the same input
data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition),
or any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the
Vertex Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one instance
per 3DPRIMITIVE command and the inclusion of instance data in the input vertex) will effectively
invalidate the cache between instances, as the Instancelndex is not included in the cache tag. See Vertex
Caching in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly disabled,
etc)

The hardware interface to supply instancing state information is slightly different. Individual vertex
elements (instead of buffers) are tagged as instanced or not.

Input Data: Push Model vs. Pull Model

Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from
memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into
the front of the pipeline or defer the data access (pull) to the shaders that require it. Modern APIs directly
support the latter model via auto-generated IDs in the Input Assembly function. An incrementing
VertexID, InstancelD, and PrimitivelD are generated in the Input Assembly process, and these values can
be declared as input to the "first enabled, relevant" shader. That shader can, for example, use the HW-
generated ID as an index into a memory resource such as a constant buffer or vertex buffer. The 3D
pipeline HW supports these IDs as required by the APIs.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always
better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data
fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB
entries which will be holding redundant data (as the instance data for vertices of an object are by
definition the same). Regardless, the 3D pipeline supports both models.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 125

intel

Generated IDs

Note that the generated IDs are considered separate from any offset computations performed by the VF
unit, and are therefore described separately here.

The VF generates InstancelD, VertexID, and PrimitivelD values as part of the InputAssembly process.

VertexID and InstancelD are only allowed to be inserted into the input vertex data as it is gathered and
written into the URB as a VUE.

The definition/use of PrimitivelD is more complicated than the other auto-generated IDs. PrimitivelD is
associated with an "object” and not a particular vertex.

It is only available to the GS and HS as a special non-vertex input and the PS as a constant-interpolated
attribute. It is not seen by the VS or DS at all.

The PrimitivelD therefore is kept separate from the vertex data. Take for example a TRILIST primitive
topology: It should be possible to share vertices between triangles in the list (i.e., reuse the VS output of
a vertex), even though each triangle has a different PrimitivelD associated with it.

The optional insertion of VertexID and/or InstancelD into the input vertex data occurs as a separate step
after the processing of VERTEX_ELEMENT structures and is controlled via the 3DSTATE_VF_SGVS
command.

PrimitivelD is generated by hardware, plumbed down into the HS, GS and SF stages. It is passed along in
HS/GS thread payloads. Software can also select PrimitivelD to be swizzled into vertex attribute data in
the SF stage, though only if neither the HS nor GS stages are enabled.

3D Primitive Processing

Index Buffer Access

The following figure illustrates how the Index Buffer is accessed.

126 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

FitchlnBytes
(function of IBState . IndexFormat)

A
A

[EState . StartingBufferaddress —a—»

ZDPRIM. StartingvWertexLocation
® PitchlnBytes

I IBInstanceRestartaddress l_‘f_‘_
(restart here each instance

Index[vo]

Index[v;]

-
-
-

SDPRIM . WertexCountPerlnstance

Index[v..1]

BE&E25-01

Vertex Element Data Path

The following diagram shows the path by which a vertex element within the destination VUE is generated
and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the generation.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 127

intel

Vertex Buffer Index

VB VB; VB
VB State g ' i
Wertexlndex e E \ L]
'n
.rll \\
Instancelndex F—» ==~
¥ ™
.r! \‘\
S
J'j N
& -

:'; Structure from VB \"-.‘

Sy

L 1] | L2 1] }

Source Element Offset f
Source Element Format Farmat Conversion
Component O Component 1 Component 2 Component 3
0
Oxl > S
1.0f 4+ »
YertexlD > *
InstancelD +
PrimitivelD

Component Select0...3 —

/\

Dastination YUE Handle

Destination Element Offset

Write Enables

D
Wi

XTT:

LA L)

A

128

B6840-01

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

FormatConversion

Once the VE source data has been fetched, it is subjected to format conversion. The output of format
conversion is up to 4 32-bit components, each either integer or floating-point (as specified by the
Source Element Format). See Sampler for conversion algorithms.

The following table lists the valid Source Element Format selections, along with the format and
availability of the converted components (if a component is listed as -, it cannot be used as the source of
a VUE component). Note: This table is a subset of the list of supported surface formats defined in the
Sampler chapter. Please refer to that table as the "original list". This table is here only to identify the
components available (per format) and their format.

Source Element Formats Supported in VF Unit

Source Element Converted Component
Surface Format Name Format |0 |1 |2 (3
R32G32B32A32_FLOAT FLOAT R B |A
R32G32B32A32_SINT SINT R|G |[B |A
R32G32B32A32_UINT UINT R|G |[B |A
R32G32B32A32_UNORM FLOAT R|G |[B |A
R32G32B32A32_SNORM FLOAT R|G |[B |A
R64G64_FLOAT FLOAT RI|G |- |-
R32G32B32A32_SSCALED FLOAT R|G |B|A
R32G32B32A32_USCALED FLOAT R|G |B|A
R32G32B32A32_SFIXED FLOAT R|G|B|A
R64G64_PASSTHRU NONE RIG |- |-
R32G32B32_FLOAT FLOAT R|G|B |-
R32G32B32_SINT SINT R|G|B |-
R32G32B32_UINT UINT R|G|B |-
R32G32B32_UNORM FLOAT R|G|B |-
R32G32B32_SNORM FLOAT R|G|B |-
R32G32B32_SSCALED FLOAT R|G|B |-
R32G32B32_USCALED FLOAT R |G (B |-
R32G32B32_SFIXED FLOAT R |G (B |-
R16G16B16A16_UNORM FLOAT R|G |[B |A
R16G16B16A16_SNORM FLOAT R|G |[B |A
R16G16B16A16_SINT SINT R|G |[B |A
R16G16B16A16_UINT UINT R|G |[B |A
R16G16B16A16_FLOAT FLOAT R|G |[B |A
R32G32_FLOAT FLOAT RI|G |- |-
R32G32_SINT SINT RI|G |- |-

Doc Ref # IHD-OS-TGL-Vol 9-12.21 129

intel

Source Element

Converted Component

R32G32_UINT UINT RIG |- |-
R32G32_UNORM FLOAT RIG |- |-
R32G32_SNORM FLOAT RIG |- |-
R64_FLOAT FLOAT R{-1- |-
R16G16B16A16_SSCALED FLOAT R|G |B |A
R16G16B16A16_USCALED FLOAT R|G |B |A
R32G32_SSCALED FLOAT RIG |- |-
R32G32_USCALED FLOAT RIG |- |-
R32G32_SFIXED FLOAT RIG |- |-
R64_PASSTHRU NONE R{- |- |-
B8GBRBA8_UNORM FLOAT B [G|R|A
R10G10B10A2_UNORM FLOAT R[G |B|A
R10G10B10A2_UINT UINT R|[G |B |A
R10G10B10_SNORM_A2_UNORM | FLOAT R|[G |B |A
R8G8B8A8_UNORM FLOAT R|[G |B |A
R8G8B8A8_SNORM FLOAT R[G |B|A
R8G8B8AB_SINT SINT R|[G |B |A
R8G8B8AS_UINT UINT R|[G |B |A
R16G16_UNORM FLOAT RIG |- |-
R16G16_SNORM FLOAT RIG |- |-
R16G16_SINT SINT RIG |- |-
R16G16_UINT UINT RIG |- |-
R16G16_FLOAT FLOAT RIG |- |-
B10G10R10A2_UNORM FLOAT R |G |B|A
R11G11B10_FLOAT FLOAT R |G |B |-
R32_SINT SINT R{- |- |-
R32_UINT UINT R{-1- |-
R32_FLOAT FLOAT R{- |- |-
R32_UNORM FLOAT R{-1- |-
R32_SNORM FLOAT R{- |- |-
R10G10B10X2_USCALED FLOAT R G |B |-
R8G8B8A8_SSCALED FLOAT R[G |B|A
R8G8B8A8_USCALED FLOAT R|[G |B|A
R16G16_SSCALED FLOAT RIG |- |-
R16G16_USCALED FLOAT RIG |- |-
R32_SSCALED FLOAT R1- |- |-
R32_USCALED FLOAT R1- |- |-

130

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Source Element Converted Component
R8G8_UNORM FLOAT RIG |- |-
R8G8_SNORM FLOAT RIG |- |-
R8G8_SINT SINT RIG |- |-
R8G8_UINT UINT RIG |- |-
R16_UNORM FLOAT R{- |- |-
R16_SNORM FLOAT R{- |- |-
R16_SINT SINT R{- |- |-
R16_UINT UINT R[- |- |-
R16_FLOAT FLOAT R{- |- |-
R8G8_SSCALED FLOAT RIG |- |-
R8G8_USCALED FLOAT RI|G |- |-
R16_SSCALED FLOAT RI|- |- |-
R16_USCALED FLOAT RI|- |- |-
R8_UNORM FLOAT RI|- |- |-
R8_SNORM FLOAT RI|- |- |-
R8_SINT SINT RI|- |- |-
R8_UINT UINT RI|- |- |-
R8_SSCALED FLOAT RI|- |- |-
R8_USCALED FLOAT RI|- |- |-
R8G8B8_UNORM FLOAT R|G|B |-
R8G8B8_SNORM FLOAT R|G |B |-
R8G8B8_SSCALED FLOAT R|[G |B |-
R8G8B8_USCALED FLOAT R[G |B |-
R8G8B8_SINT SINT R[G |B |-
R8G8B8_UINT UINT R[G |B |-
R8G8B8_UINT UINT R|[G |B |-
R64G64B64A64_FLOAT FLOAT R[G |B |A
R64G64B64_FLOAT FLOAT R([G |B |A
R16G16B16_FLOAT FLOAT R[G |B |-
R16G16B16_UNORM FLOAT R|[G |B |-
R16G16B16_SNORM FLOAT R|[G |B |-
R16G16B16_SSCALED FLOAT R|[G |B |-
R16G16B16_USCALED FLOAT R|G |B |-
R16G16B16_UINT UINT R|G |B |-
R16G16B16_SINT SINT R|G |B |-
R32_SFIXED FLOAT RI|- |- |-
R10G10B10A2_SNORM FLOAT R|G |B |A

Doc Ref # IHD-OS-TGL-Vol 9-12.21 131

intel

Source Element Converted Component
R10G10B10A2_USCALED FLOAT R[G |B |A
R10G10B10A2_SSCALED FLOAT R B |A
R10G10B10A2_SINT SINT R|[G |B |A
B10G10R10A2_SNORM FLOAT R[G |B |A
B10G10R10A2_USCALED FLOAT R[G |B |A
B10G10R10A2_SSCALED FLOAT R[G |B|A
B10G10R10A2_UINT UINT R[G|B |A
B10GT10R10A2_SINT SINT R|[G |B|A
R64G64B64A64_PASSTHRU NONE R[G |B|A
R64G64B64_PASSTHRU NONE R[G |B |-

DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis, which destination
components will be written and with which value. The supported selections are the converted source
component, VertexID, InstancelD, PrimitivelD, the constants 0 or 1.0f, or nothing (VFCOMP_NO_STORE). If
a converted component is listed as '-' (not available) in the "Source Element Formats" table (above). It
must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the
destination component.

The selection process sequences from component 0 to 3. Once a Component Select of
VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be
programmed as VFCOMP_NO_STORE. It is therefore not permitted to have 'holes' in the destination VE.

Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of "dangling"
vertices. This stage includes the discarding of primitive topologies without enough vertices for a single
object (e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not
form a complete primitive (e.g., the last two vertices of a 5-vertex TRILIST). 3D APIs typically require these
vertices to be (effectively) discarded before the VS stage.

Statistics Gathering

This function is best described as a filter operating on the vertex stream emitted from the processing of
the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart, and PrimEnd values associated with the
generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires
the filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices
from the pipeline and dereference the associated VUE handles.

3DSTATE_VF_STATISTICS

132 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume la, GPU)
for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex buffer
in memory. Any "dangling” vertices (fetched vertices that are part of an incomplete object) will not be
included.

Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in vol1a System
Overview) for each object (point, line, triangle, or quadrilateral) that it forwards down the pipeline.

Note

For LINELOOP, the last (closing) line object is counted.

Vertex Shader (VS) Stage

The Vertex Shader (VS) stage of the 3D Pipeline is used to perform processing ("shading") of vertices
after they are assembled and written to the URB by the VF function. The primary function of the VS stage
is to pass vertices that miss in the VS Cache to VS threads, and then pass the VS thread-generated
vertices down the pipeline. Vertices that hit in the VS Cache have already been shaded and are therefore
passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

State

Register

3DSTATE_VS

3DSTATE_CONSTANT_VS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_SAMPLER_STATE_POINTERS_VS

3DSTATE_URB_VS

Functions

Vertex Shader Cache (VS$)

Note: The VS$ should not be confused with input data caches used by the VF stage when fetching data
from index or vertex buffers in memory.

The 3D Pipeline employs a Vertex Shader Cache (VS$) that is shared between the VF and VS stages. (See
Vertex Fetch chapter for additional information). The vertex index generated by the VF stage is used as
the cache tag. The cached data contains the URB handle of a VUE, which in turn typically contains the
vertex data output from a previously-executed VS shader, though if the VS function is disabled the VUE
will contain the input vertex data generated by the VF stage.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 133

intel

When the VF stage processes a verte, it will first perform a lookup in the VS$. If the vertex hits in the
VS$, the VS stage will return the hit VUE handle to the VF stage, and the VF stage will subsequently pass
the returned VUE handle back down the FF pipeline to VS. If the vertex misses in the VS$ (or always, if the
VS$ is disabled), the VS stage will allocate a VUE handle for the miss vertex and return this to the VF
stage. The VF stage will then proceed to fetch/generate the input vertex data, store the results into the
VUE, and then pass the VUE down to the VS stage. If the VS function is enabled, the VUE handle/data will
be used as input to a VS shader thread, and that thread will overwrite the VUE with the shader results.

The VS$ may be explicitly DISABLED via the Vertex Cache Disable bit in 3DSTATE_VS. Even when explicitly
ENABLED, the VS stage will (by default) implicitly disable the VS$ whenever it detects one of the
following conditions:

Condition

Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a don't care as there would not
be any VS$ hits).

The implicit disable persists as long as one of these conditions persist, after which the VS$ is invalidated.

The VS$ is implicitly invalidated between 3DPRIMITIVE commands and between instances within a
3DPRIMITIVE command - therefore use of InstancelD in a Vertex Element is not a condition under which
the cache is implicitly disabled.

The following table summarizes the modes of operation of the VS$.

'S
Function
VS$ Enable Mode of Operation
_Dle‘B,:IED DISABLED The VS$ is not used. VF stage assembles all vertices and writes them into the VUE
(imp :,CI‘tly of supplied by the VS stage. VS stage subsequently passes references to these VUEs
explicitly) down the pipeline without spawning any VS threads.
Usage Model: This is an exceptional condition, only required for when the VF-
generated vertices contain PrimitivelD. Otherwise, the VS$ should be enabled.
ENABLED

The VS$ is not used. VF stage assembles all vertices and writes them into the VUE
supplied by the VS stage. VS stage subsequently spawns VS threads to process all
vertices, overwriting the input data with the results. The VS stage pass references to
these VUEs down the pipeline.

Usage Model: This mode is only used when the VS function is required, but either (a)
the VS kernel produces a side effect (e.g., writes to a memory buffer) which in turn
requires every vertex to be processed by a VS thread, or (b) the input vertex contains
PrimitivelD.

ENABLED DISABLED The VS$ is used to provide reuse of VF-generated vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. In either
case, the VS stage passes references to vertices (that hit or miss) down the pipeline
without spawning any VS threads.

Usage Model: Normal operation when the VS function is not required (e.g., SW has

134 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

VS
Function
VS$ Enable Mode of Operation
detected a VS shader that simply copies outputs to inputs).
ENABLED

The VS$ is used to provide reuse of VS-processed vertices. The VF stage checks the
cache and only processes (assembles/writes) vertices that miss in the VS$. The VS
stage only processes (shades) the vertices that missed in the VS$. The VS stage sends
references to hit or missed vertices down the pipeline in the correct order.

Usage Model: Normal operation when the VS function is required and use of the VS$
is permissible.

VS Thread Dispatch Masks

The VS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of thread
dispatch.

SIMDS8 Dispatch Mask

In SIMD8 dispatch mode, the EU Dispatch Mask is initialized as a function of the number of vertices
included in the thread dispatch, as follows:

e 1 vertex: 0x00000001

e 2 vertices: 0x00000003

e 3 vertices: 0x00000007

e 4 vertices: 0x0000000F

e 5 vertices: 0x0000001F

e 6 vertices: 0x0000003F

e 7 vertices: 0x0000007F

o 8 vertices: 0xO00000FF

Vertex Output

VS threads must always write the destination URB entries whose handles are passed in the thread
payload. Refer to Vertex Data Overview for details on any required contents/formats.

Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output to the URB shared
function. Refer to the ISA doc for details on End-Of-Thread indication.

Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference received from the VF
unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim
information associated with input vertices to the output vertices, and does not use this information in
any way. Neither does the VS unit perform any readback of URB data.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 135

intel

Statistics Gathering

The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex
shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the
shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in
VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume la,

GPU) will be incremented for each vertex that is dispatched to a VS thread.

Description

When VS Function Enable is DISABLED and Statistics Enable is ENABLED, VS_INVOCATION_COUNT increments by

one for every vertex that passes through the VS stage, even though no VS threads are spawned.

Payloads

SIMD8 Payload

The following table describes the payload delivered to VS threads.

SIMD8 VS Thread Payload

DWord | Bits Description

RO.7 31

30:0 [Reserved

RO.6 31:24 | Reserved

230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.
RO.5 |31:10 Description
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread, specified
as a 1KB-granular offset from the General State Base Address. See Scratch Space Base Offset
description in VS_STATE.
(See 3D Pipeline for further description on scratch space allocation).
Format = GeneralStateOffset[31:10]
RO.5 9:0

Description

FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of
outstanding threads spawned by the FF unit.

Reserved for HW Implementation Use.
Format: U10
Range: 0-727

136

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

DWord | Bits Description
R0.4 315 | 5. . . - -
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.
Format = SurfaceStateOffset[31:5]
40 Reserved
RO.3 31:5 . o . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.
Format = DynamicStateOffset[31:5]
4 Description
Single Instance. If set, all valid vertices included in the thread payload come from the same
instance of a 3DPRIMITIVE command. Otherwise the vertices come from more than one
instance. When SIMDS8SinglelnstanceDispatchEnable is ENABLED, this bit will (by definition)
always be set.
3:0 Description
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two is raised to (over determine the amount of
scratch space).
(See 3D Pipeline for further description.)
Format = U4 power of two (in excess of 10)
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 : 31:0 | Reserved: MBZ
RO.0
R1.7 31:0 | Vertex 7 URB Return Handle (see R1.0)
R1.6 31:0 | Vertex 6 URB Return Handle (see R1.0)
R1.5 31:0 | Vertex 5 URB Return Handle (see R1.0)
R1.4 31:0 | Vertex 4 URB Return Handle (see R1.0)
R1.3 31:0 | Vertex 3 URB Return Handle (see R1.0)
R1.2 31:0 | Vertex 2 URB Return Handle (see R1.0)
R1.1 31:0 | Vertex 1 URB Return Handle (see R1.0)
R1.0 31:16 | Reserved
15:0

Vertex 0 URB Return Handle. This is the offset within the URB where Vertex 0 is to be stored.

Format: 64B-granular offset into the URB

Doc Ref # IHD-OS-TGL-Vol 9-12.21 137

intel

DWord | Bits Description
[Va.rles] 2550 Constant Data (optional):
optional
Please refer to the Push Constants chapter in the General Programming of Thread-Generating
Stages section for more details on size and source of constant data.
Vertex Data:
Input data for the 8 input vertices is located here. Vertex0 data is passed in DWO of these GRFs,
and Vertex 7 data is passed in DW7. The first GRF contains Element 0 Component O for all 8
vertices, followed by components 1-3 in the three subsequent GRFs. This is followed by GRFs
containing Element 1, and so on, up to the number of elements specified by Vertex URB Read
Length. Note that the maximum limit is 30 elements per vertex, though the practical limit
imposed by the compiler is likely lower.
Rv.7 31:0 [Vertex 7 Element 0 Component 0
Rv.6 31:0 [Vertex 6 Element 0 Component 0
Rv.5 31:0 [Vertex 5 Element 0 Component 0
Rv.4 31:0 [Vertex 4 Element 0 Component 0
Rv.3 31:0 [Vertex 3 Element 0 Component 0
Rv.2 31:0 [Vertex 2 Element 0 Component 0
Rv.1 31:0 [Vertex 1 Element 0 Component 0
Rv.0 31:0 [Vertex 0 Element 0 Component 0
Rv+1.7 | 31:.0 |Vertex 7 Element 0 Component 1
Rv+1.6 | 31:.0 |Vertex 6 Element 0 Component 1
Rv+1.5 | 31:0 |Vertex 5 Element 0 Component 1
Rv+1.4 | 31:.0 |Vertex 4 Element 0 Component 1
Rv+1.3 | 31:.0 | Vertex 3 Element 0 Component 1
Rv+1.2 | 31:.0 | Vertex 2 Element 0 Component 1
Rv+1.1 | 31:0 |Vertex 1 Element 0 Component 1
Rv+1.0 | 31:.0 | Vertex 0 Element 0 Component 1

Vertex 0-7 Element 0 Component 2,3

Vertex 0-7 Element 1 Component 0-3

Vertex 0-7 Element 2-N Component 0-3

Hull Shader (HS) Stage

The Hull Shader (HS) stage of the pipeline is used to process patchlist (PATCHLIST_n) topologies in
support of higher-order surface (HOS) tessellaton. If the HS stage is enabled, each incoming patch object
is processed by a possible series of HS threads. The combined output of these threads is a Patch URB
Entry ("patch record") written to the URB. This patch record is used by subsequent stages (TE, DS) to
complete the HOS tessellation operations.

138

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

The vertices associated with patchlist primitives are also referred to as "Input Control Points" (ICPs) to
contrast them with any "Output Control Points" the HS threads may write to the patch record. (The
definition and use of OCPs are outside the scope of this document).

The HS stage also performs statistics counting. Incomplete topologies do not reach the HS stage.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all
topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are
enabled, only patchlist topologies should be issued to the pipeline, otherwise behavior is UNDEFINED.

State

This section contains the state registers for the Hull Shader

Register

3DSTATE_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT (Body)

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_URB_HS

Functions

Patch Object Staging

The HS unit accepts patchlist topologies as a stream of incoming vertices. Depending on the number of
vertices per patch object (as specified by the PATCHLIST_n topology), the HS thread assembles each
complete patch object and passes it (its vertices, PrimitivelD, etc.) to HS thread(s) as described below.

HS Thread Execution
Input to HS threads is comprised of:
¢ Input Control Points (incoming patch vertices), pushed into the payload and/or passed indirectly
via URB handles.
e Push Constants (common to all threads)
e Patch Data handle
e Resources available via binding table entries (accessed through shared functions)
e Miscellaneous payload fields (Instance Number, etc.)
Typically the only output of the HS threads is the Patch URB Entry (patch record). All thread instances for
an input patch are passed the same patch record handle. As the (possibly concurrent) threads can both

read and write the patch record, it is up to the kernels to ensure deterministic results. One approach
would be to use the thread's Instance Number as an index for URB write destinations.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 139

intel

HS Thread Dispatch Mask

The HS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of thread
dispatch.

SINGLE_PATCH Dispatch Mask

In SINGLE_PATCH mode, the EU Dispatch Mask is initialized at thread dispatch to 0xO00000FF.

8_PATCH Dispatch Mask

In 8_PATCH mode, the EU Dispatch Mask is initialized as a function of the number of patches included in the thread
dispatch, as follows:

e 1 patch: 0x00000001

e 2 patches 0x00000003

e 3 patches: 0x00000007

e 4 patches: 0x0000000F

e 5 patches: 0x0000001F

e 6 patches: 0x0000003F

e 7 patches: 0x0000007F

e 8 patches: 0x000000FF

Patch URB Entry (Patch Record) Output

For each patch, the HS thread(s) generate a single patch record, starting with a fixed 32B Patch Header.

When the final thread instance terminates, the patch record handle is passed down the pipeline to the
Tessellation Engine (TE).

Patch Header DWO-7

The first eight DWords of the Patch URB Entry are defined as a "Patch Header". A Patch Header is written
by an HS thread and read by the TE stage. It normally contains up to six Tessellation Factors (TFs) that
determine how finely the TE stage needs to tessellate a domain (if at all).

The layout of the patch header depends on the TE Domain and PatchHeaderLayout.
The PatchHeaderLayout of REVERSED_TRI_INSIDE_SEPARATE can only be used with a TE Domain of TRI.

Patch Header: QUAD Domain / LEGACY Patch Header Layout

DWord | Bits Description

7 31:0| UEQO Tessellation Factor
Format: FLOAT32

6 31:0| VEQO Tessellation Factor
Format: FLOAT32

5 31:0| UEQ1 Tessellation Factor
Format: FLOAT32

4 31:0 | VEQ1 Tessellation Factor

140 Doc Ref # IHD-0S-TGL-Vol 9-12.21

DWord

Bits

Description

Format: FLOAT32

31:0

Inside U Tessellation Factor
Format: FLOAT32

31:0

Inside V Tessellation Factor
Format: FLOAT32

1-0

31:0

Reserved : MBZ

Patch Header: QUAD Domain / REVERSED Patch Header Layout

DWord | Bits Description

7:6 31:0 | Reserved : MBZ

5 31:0 | Inside V Tessellation Factor
Format: FLOAT32

4 31:0 | Inside U Tessellation Factor
Format: FLOAT32

3 31:0| VEQ1 Tessellation Factor
Format: FLOAT32

2 31:0| UEQ1 Tessellation Factor
Format: FLOAT32

1 31:0 | VEQO Tessellation Factor
Format: FLOAT32

0 31:0| UEQO Tessellation Factor

Format: FLOAT32

Patch Header: TRI Domain / LEGACY Patch Header Layout

DWord | Bits Description
7 31:0 | UEQO Tessellation Factor
Format: FLOAT32
6 31:0| VEQO Tessellation Factor
Format: FLOAT32
5 31:0 | WEQO Tessellation Factor
Format: FLOAT32
4 31:0| Inside Tessellation Factor
Format: FLOAT32
3-0 |31:0|Reserved : MBZ

Patch Header: TRI Domain / REVERSED Patch Header Layout

DWord | Bits Description
7-4 |31:0|Reserved : MBZ
3 31:0| Inside Tessellation Factor

Format: FLOAT32

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

141

intel

DWord | Bits Description

2 31:0 | WEQO Tessellation Factor
Format: FLOAT32

1 31:0| VEQO Tessellation Factor
Format: FLOAT32

0 31:0 | UEQO Tessellation Factor
Format: FLOAT32

Patch Header: TRI Domain / REVERSED_TRI_INSIDE_SEPARATE Patch Header Layout

DWord | Bits Description

7-5 |131:0|Reserved : MBZ

4 31:0| Inside Tessellation Factor
Format: FLOAT32

31:0 | Reserved : MBZ

31:0 | WEQO Tessellation Factor
Format: FLOAT32

1 31:0| VEQO Tessellation Factor
Format: FLOAT32

0 31:0 | UEQO Tessellation Factor
Format: FLOAT32

Patch Header: ISOLINE Domain / LEGACY Patch Header Layout

DWord | Bits Description

7 31:0 | Line Detail Tessellation Factor
Format: FLOAT32

6 31:0 | Line Density Tessellation Factor
Format: FLOAT32

5-0 |[31:0|Reserved: MBZ

Patch Header: ISOLINE Domain / REVERSED Patch Header Layout

DWord | Bits Description
7-2 [31:0|Reserved : MBZ
1 31:0 | Line Density Tessellation Factor

Format: FLOAT32

0 31:0 | Line Detail Tessellation Factor
Format: FLOAT32

142 Doc Ref # IHD-0S-TGL-Vol 9-12.21

intel

Statistics Gathering

HS Invocations

The HS unit controls the HS_INVOCATIONS counter, which counts the number of patches processed by
the HS stage.

Payloads

8_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage
Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference
(URB handle pushed in the payload).

8_PATCH HS Thread Payload

GRF
DWord | Bits Description
RO.7 31
30:0 |Reserved
R0O.6 31 .
Early Dereference Enable: The enabling of early dereference.
Reserved for Implementation Use
30:24 | Reserved
23:0 |Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit, over
some period of time.
Format: Reserved for HW Implementation Use.
RO.5 31:10 . g . .
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,
specified as a 1KB-aligned offset from the General State Base Address.
Format = GeneralStateOffset[31:10]
Reserved
80 FFTID. This ID is assigned by the fixed function unit and is a relative identifier for the thread. It is
used to free up resources used by the thread upon thread completion.
Format: Reserved for Implementation Use
R0.4 31:5

Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified as
an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

Doc Ref # IHD-OS-TGL-Vol 9-12.21 143

intel

GRF
DWord | Bits Description
4:0 |Reserved
RO3 315 Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this thread,
specified as a 32-byte granular offset from the Dynamic State Base Address.
Format = DynamicStateOffset[31:5]
4 Reserved
30 Per Thread Scratch Space.
Specifies the amount of scratch space allowed to be used by this thread. The value specifies the
power that two will be raised to (over determine the amount of scratch space).
Programming Notes:This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but
the Data Port will ignore it.
Format = U4 power of two (in excess of 10) Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31 Reserved: MBZ.
30:24 | BarrierlD. This field identifies which barrier was allocated for this thread.
Format: U7
Range = [0,63]
22:16 | Instance Number. A patch-relative instance number between 0 and InstanceCount-1.
Format = U7
23 Reserved
15:0 |Reserved
RO1- 31:.0 |Reserved
RO.0
R1.7 31:0 |URB Return Handle for Patch 7 (See R1.0)
R1.6 31:0 [URB Return Handle for Patch 6 (See R1.0)
R1.5 31:0 [URB Return Handle for Patch 5 (See R1.0)
R1.4 31:0 [URB Return Handle for Patch 4 (See R1.0)
R1.3 31:0 [URB Return Handle for Patch 3 (See R1.0)
R1.2 31:0 [URB Return Handle for Patch 2 (See R1.0)
R1.1 31:0 [URB Return Handle for Patch 1 (See R1.0)
R1.0 31:16 | Reserved
15:0

URB Return Handle 0: This is the offset of the Patch 0's URB entry, where shading results are to be
written.

Format: U16 64B-aligned URB Offset

144

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

GRF
DWord

Bits

Description

The following register is included only if Include PrimitivelD is enabled.

R2.7 31:0 Primitive ID 7. This field contains the Primitive ID associated with Patch 7
Format: U32

R2.6 31:0 e el o . N . .
Primitive ID 6. This field contains the Primitive ID associated with Patch 6
Format: U32

R2.5 31:0 o . .
Primitive ID 5. This field contains the Primitive ID associated with Patch 5
Format: U32

R2.4 31:0 . ele o . N . .
Primitive ID 4. This field contains the Primitive ID associated with Patch 4
Format: U32

R2.3 31:0 e el o . o . .
Primitive ID 3. This field contains the Primitive ID associated with Patch 3
Format: U32

R2.2 31:0 N . .
Primitive ID 2. This field contains the Primitive ID associated with Patch 2
Format: U32

R2.1 31:0 e el L . o . .
Primitive ID 1. This field contains the Primitive ID associated with Patch 1
Format: U32

R2.0 31:0

Primitive ID 0. This field contains the Primitive ID associated with Patch 0

Format: U32

The following registers are included only if Include Vertex Handles is enabled

Rn.7 31:16 | Reserved

15:0 |Patch 7 ICP 0 Handle
Rn.6 31:16 | Reserved

15:0 |Patch 6 ICP 0 Handle
Rn.5 31:16 | Reserved

15:0 |Patch 5 ICP 0 Handle
Rn.4 31:16 | Reserved

15:0 |Patch 4 ICP 0 Handle
Rn.3 31:16 | Reserved

15:0 |Patch 3 ICP 0 Handle
Rn.2 31:16 | Reserved

Doc Ref # IHD-OS-TGL-Vol 9-12.21

145

intel

GRF
DWord | Bits Description
15:0 |Patch 2 ICP 0 Handle
Rn.1 31:16 | Reserved
15:0 |Patch 1 ICP 0 Handle
Rn.0 31:16 | Reserved
15:0 |Patch 0 ICP 0 Handle
[Rn+1] |255:0(ICP 1 Handle for Patches 0-7
[Rn+2] |255:0(ICP 2 Handle for Patches 0-7
[Rn+31] | 255:0 | ICP 31 Handle for Patches 0-7
[Varles] 255:0 Constant Data (optional):
optional
Please refer to the Push Constants chapter in the General Programming of Thread-Generating
Stages section for more details on size and source of constant data.
Varies Pushed Vertex Data (optional)
Input data for the 8 patches is located here. Patch 0 (starting with Vertex 0 of Patch 0) data is
passed in DWO of these GRFs, and Patch 7 data is passed in DW7. The first GRF contains Vertex 0
Element 0 Component O for all 8 patches, followed by components 1-3 in the three subsequent
GRFs. This is followed by GRFs containing Vertex 0 Element 1 (if it exists), and so on, up to the
number of Vertex 0 elements specified by Vertex URB Read Length. This is followed by the data for
Vertex 1 for all patches (if it exists), and so on until all relevant vertices are passed.
Programming Note
Context: 8_PATCH Payload - Pushed Vertex Data
The amount of data passed is limited by the number of GRFs supported by EUs. Software is
responsible for comprehending this limit and resorting to the pull model as required.
Rv.7 31:.0 |Patch 7 Vertex 0 Element 0 Component 0
Rv.6 31:.0 |Patch 6 Vertex 0 Element 0 Component 0
Rv.5 31:.0 [Patch 5 Vertex 0 Element 0 Component 0
Rv.4 31:.0 |Patch 4 Vertex 0 Element 0 Component 0
Rv.3 31:.0 |Patch 3 Vertex 0 Element 0 Component 0
Rv.2 31:.0 |Patch 2 Vertex 0 Element 0 Component 0
Rv.1 31:.0 |Patch 1 Vertex 0 Element 0 Component 0
Rv.0 31:.0 |Patch 0 Vertex 0 Element 0 Component 0
Rv+1 31:.0 [Patch 0-7 Vertex 0 Element 0 Component 1

and so on...

146

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Tessellation Engine (TE) Stage

When enabled, the Tessellation Engine (TE) stage performs tessellation of incoming patches
(decomposition of patches into a set of smaller geometric objects, such as triangles or points). Patches
are also subjected to a Patch Cull test prior to tessellation. Culled patches are immediately discarded. The
TE stage is entirely fixed-function and does not spawn threads.

Patches are specified via URB handles output by the preceding Hull Shader stage. These handles
reference Patch URB Entry data written into the URB by HS shaders. The tessellation process is controlled
by TE state and Tessellation Factors (TFs) read from the Patch URB Entries.

The fixed-function tessellation algorithm is considered an implementation detail and is therefore beyond
the scope of this document. That detail includes both the order of output topologies as well as the order
of vertices (domain points) within the output topologies. Only a high-level overview is provided to
describe how the (few) state variables can be used to control aspects of tessellation behavior. The
implementation will generate deterministic results (given the same exact inputs it will produce exactly the
same outputs).

Several domain types (QUAD, TRI, and ISOLINE) are supported. Depending on the domain type, the TE
stage outputs the required point/line/triangle topologies including a domain point per vertex. These
topologies will be output to the DS stage, where the domain points will be converted to 3D object
vertices, resulting in 3D objects as typically input to the 3D pipeline when HOS tessellation is not used.

When tessellation is disabled, all topologies (including patchlist topologies) simply pass through to the
GS stage. When tessellation is enabled, only patchlist topologies should be issued to the pipeline, else
behavior is UNDEFINED. The MI_TOPOLOGY_FILTER command can be used to ensure this happens, i.e., it
can be used to have the Command Stream ignore 3DPRIMITIVE commands that do not match a specific

topology type.

Enabling tessellation is accomplished by enabling the HS/TE/DS stages in specific combinations. Those
valid combinations are described in the table below.

Valid Tessellation Enabled Configurations

To enable tessellation, the HS, TE, and DS stages must be enabled and disabled together. Other configurations will
result in behavior that is UNDEFINED.

State

This section contains the state registers for the Tessellation Engine.
3DSTATE_TE

Functions

Patch Culling

Normally, if any "outside" TF is <= 0.0 or NaN, the entire patch is culled at the TE stage.

Inside TFs are not used to cull patches.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 147

intel

Tessellation Factor Limits

After the Patch Culling test is performed, the TessFactors undergo a min() clamp to either the
MaxTessFactorOdd (for FRACTIONAL_ODD partitioning) or MaxTessFactorNotOdd (for
FRACTIONAL_EVEN or INTEGER partitioning). Exception: If the ISOLINE domain is specified, the
LineDensity TessFactor will be clamped to the MaxFactorNotOdd value even if FRACTIONAL_ODD
partitioning is specified).

Partitioning

The Partitioning state controls how the TFs are used to divide their corresponding edges.

Partitioning
Mode

Definition

INTEGER

The edge is divided into an integral number of equal segments (given some fixed-point
tolerance).

After clamping, the TF is rounded up to an integer value. The edge is divided into that many
equal segments.

EVEN_FRACTIONAL

The edge is divided into an even number of possibly-unequal segments. The total number of
segments is determined by rounding up the post-clamped TF to an even number.

More specifically, the edge is divided exactly in half. Like the endpoints of the edge, the
midpoint of the edge is by definition a tessellation point. Each half contains some number of
equal segments and possibly one smaller segment. The size of the smaller segment is
determined by the position of the TF value within the range defined by the TF rounded down
and up to even numbers. The closer the TF is to the smaller value, the smaller the segment size
is. When the TF reaches the smaller even value, the smaller segment disappears. The closer the
TF gets to the larger even value, the closer the smaller segment size approaches the size of the
other segments. When the TF reaches the larger even value, all segments are equal. The
position of the smaller segment along the half edge varies as a function of the TF value.

ODD_FRACTIONAL

The edge is divided into an odd number of possibly-unequal segments.

The tessellation scheme is very similar to EVEN_FRACTIONAL partitioning, except that the edge
midpoint is not included as a tessellation point. This, and the fact that the tessellation points
are mirrored about the edge midpoint, causes an "odd" segment (which may or may not be
the "smaller" segment) to straddle the edge midpoint, therefore resulting in the number of
segments for the edge always being odd.

POW?2

The edge is divided into an integral number of equal segments (given some fixed-point
tolerance).

After clamping, the TF is rounded up to an integer power of 2 value. The edge is divided into
that many equal segments.

148

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Domain Types and Output Topologies

The major (if only) task of the TE stage is to tessellate a 2D (u,v) domain region, as selected by the
Domain state, into some number of 2D object topologies. (If the patch is culled, that number may be
zero). The options for Domain state are:

e QUAD: A square 2D region within a u,v Cartesian (rectangular) space. The region extends from the
origin to u=1 and v=1. Within the region, tessellation domain locations are determined. The
possible output topologies include points, clockwise triangles, and counterclockwise triangles.

e TRI: A triangular 2D region with u,v,w barycentric (areal) coordinates. The three edges correspond
to u=0, v=0, and w=0 boundaries. In barycentric coordinates, w = 1 - u - v, therefore points within
the region are fully defined as 2D (u,v) coordinates. Within the region, tessellation domain
locations are determined. The possible output topologies include points, clockwise triangles, and
counterclockwise triangles.

e ISOLINE: A series of points within a QUAD domain, where the points lie on lines parallel to the u
axis and extending from [0,1) in the v direction. Either the segmented lines (linestrips) or individual
point topologies can be output.

QUAD Domain Tessellation

The four "outside" TFs (TF.UEQO, TF.VEQO, TF.UEQ1, TF.VEQT) are used to specify the level of tessellation
along the four corresponding edges of the 2D quad domain. The two "inside" TFs (TF.InsideU, TF.InsideV)
are used to determine the level of tessellation within a 2D "interior" region. Typically, the interior region
appears as a "regularly-tessellated 2D grid", however under certain conditions the interior region may
collapse in which case only the outside TFs are relevant.

In general, a transition region exists between each edge of the interior region and the corresponding
outside edge. The topologies generated for these regions effectively "stitch together" locations along the
outside and inside edges, as each of these edges can contain a different number of tessellated segments.
In the case where all TFs in a given direction (e.g., TF.VEQO, TF.InsideU, and TF.VEQ1) are the same value,
it appears as if the regularly-tessellated interior region extends all the way to the outside edges. If this
condition simultaneously exists for both u and v directions, the entire domain will appear to be
tessellated into a regular grid, with no noticeable transition regions.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 149

intel

QUAD Domain
o
o
LL
==
L
. .,
(0,0) ~ N
WVEQO Transition Region) u
c 'Q, =
2 v | &
o = -
& e 3
= nterior o
TF.UEQO< | 2 Region = | Z >TF.UEQ1
£ o | S
o =)
g } TF.InsideV | &
m =
= =
VEQ1 Transition Region
"I (1)
Y
v

TF.VEQ1 <

TRI Domain Tessellation

Tessellation of the TRI domain is similar to the QUAD domain, except only three outside edges/TFs are
used, and the tessellation of the interior region is controlled by a single TF.

150 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

TRI Domain

uv=1,0

Interior
Region

TF Inside

N

UEQOD Transition Region

ﬂ,U =01

U,U=I]:;T

TF UEQD<

ISOLINE Domain Tessellation

Tessellation of the ISOLINE domain is different but much simpler than QUAD and TRl domains. The
TF.LineDetail TF controls how finely the U direction is tessellated, while the TF.LineDensity TF controls
how finely the V direction is tessellated. When LINE output topology is selected, a series of segmented
lines parallel to the U axis (constant V) are output. When POINT output topology is selected, only the line
segment endpoints are output (as point objects). In either case there is no topology output for the V=1
edge, which avoids overlapping lines for adjacent patches.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 151

intel

ISOLINE Domain

TF.LineDetail determines #

) segmeilts 10
e e,y ||

(o, S

S e

(e e v, Yol ey] ey’

TF.LineDensity J R

determines # 0 !t e ! Y

lines e e e e S R

(et St e e e Dl el e =

(e Y

(e e

S e

1.0 Line at V=1.0 not drawn
LY

Domain Shader (DS) Stage

The DS stage is very similar to the VS stage in that it is responsible for dispatching EU threads to shade
vertices and maintaining a cache (with reference counts) of the shaded vertex outputs of these threads.
Major differences are as follows:

e The DS receives topologies with "domain points" instead of vertices. The only data specific to a
domain point are its U,V coordinates. These coordinates (plus a default or computed W
coordinate) are passed directly in the DS thread payload. There is no other vertex-specific "input
vertex data".

e The concatenation of the domain point U,V coordinates (vs. a vertex index) is used as the cache
tag.
e The cache is invalidated between patches.

The DS stage accepts state information via the inline 3DSTATE_DS command.

State

This section contains the state registers for the Domain Shader.

Register

3DSTATE_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT (Body)

3DSTATE_BINDING_TABLE_POINTERS_DS

152 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Register

3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_URB_DS

Functions

DUAL_PATCH Thread Execution

When Dispatch Mode is set to SIMD8_SINGLE_OR_DUAL_PATCH mode, both the KSP and DUAL_PATCH
KSP kernels are enabled. The DS stage decides whether to spawn a SINGLE_PATCH (KSP) or DUAL_PATCH
thread dynamically, based on the number of domain points associated with patches. (See
Implementation Note below).

e The KSP kernel operates exactly like when SIMD8_SINGLE_PATCH mode is set. Up to 8 domain
points for a single patch are processed by the DS thread, which operates in SIMD8 fashion.

e The DUAL KSP kernel uses a hybrid SIMD8 execution mode. The 8 execution channels are divided
into 4 upper channels associated with Patch 1, and 4 lower channels associated with Patch 0. Patch
data is passed in SIMD4x2 layout, with Patch 1 data (Primitive ID, pushed URB data) in the upper 4
channels, and Patch 0 data in the lower 4 channels. The kernel operates much like
SIMD8_SINGLE_PATCH mode, though it needs to access the appropriate SIMD4 patch data.

Implementation Note: Kernel selection is as follows: If a patch requires more than 4 domain points to
be shaded, SIMD8_SINGLE_PATCH threads are spawned until 4 or fewer domain points remain. These
domain points (if any exist) are held pending until the next patch is received. Likewise, if a patch requires
4 or fewer total domain points, those domain points are held pending. In either case, if the subsequent
patch requires 4 or fewer domain points to be shaded, a SIMD8_DUAL_PATCH thread is spawned to
shade both sets of 4 or fewer domain points. If the subsequent patch requires more than 4 domain
points, the (4 or fewer) buffered domain points of the previous patch are shaded via a
SIMDB8_SINGLE_PATCH thread, and the cycle continues.

Statistics Gathering

The DS stage maintains the DS_INVOCATIONS statistics counter, which counts the number of incoming
domain points, irrespective of cache hit/miss. Note that this is different than VS_INVOCATIONS, which
counts shader invocations and therefore doesn't count cache hits.

Payloads

SIMD8 Payload

The following table describes the payload delivered to DS threads.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 153

intel

DS Thread Payload (SIMD8)

DWord Bits Description
RO.7 31
30:0 |Reserved
RO.6 31:24 | Reserved
230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.

RO.5 31:10 o
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,
specified as a TKB-granular offset from the General State Base Address. See Scratch Space
Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).
Format = GeneralStateOffset[31:10]
90 FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of
outstanding threads spawned by the FF unit.
Format: Reserved for HW Implementation Use.

R0.4 315 | ps s . g . . o .
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]
4.0 |Reserved

RO.3 31:5 . o . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.

Format = DynamicStateOffset[31:5]
4 Reserved
30 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two will be raised to (over determine the amount of
scratch space).
Format = U4 power of two (in excess of 10)
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31:0 |Reserved: delivered as zeros (reserved for message header fields)
RO.1 31:0

PrimitivelD. This is the 32-bit PrimitivelD value associated with the patch. It is common to all
output domain points resulting from the tessellation of the patch.

154

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

DWord Bits Description
Format: U32
Programming Note
The contents of this field is UNDEFINED if the 3DSTATE_DS::PrimitivelDNotRequired state bit
is set.
RO.0 31:27 [Reserved
26:16 || Description
Reserved
150 Patch URB Offset. This is the offset within the URB where the patch data is stored.
Format: U14 64B-granular offset into the URB
R1.7 31:0 [Domain Point 7 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.6 31:0 [Domain Point 6 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.5 31:0 [Domain Point 5 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.4 31:0 [Domain Point 4 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.3 31:0 [Domain Point 3 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.2 31:0 [Domain Point 2 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.1 31:0 [Domain Point 1 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.0 310 Domain Point 0 U Coordinate. U coordinate associated with Domain Point 0.
Format: FLOAT32
R2.7 31:0 | Domain Point 7 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.6 31:0 | Domain Point 6 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.5 31:0 | Domain Point 5 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.4 31:0 | Domain Point 4 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.3 31:0 | Domain Point 3 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.2 31:0 | Domain Point 2 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.1 31:0 | Domain Point 1 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.0 310 Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.
Format: FLOAT32
R3.7 31:0 [Domain Point 7 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.6 31:0 [Domain Point 6 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.5 31:0 [Domain Point 5 W Coordinate. (See Domain Point 0 W Coordinate.)
R34 31:0 [Domain Point 4 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.3 31:0 [Domain Point 3 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.2 31:0 [Domain Point 2 W Coordinate. (See Domain Point 0 W Coordinate.)

Doc Ref # IHD-OS-TGL-Vol 9-12.21

155

intel

DWord Bits Description

R3.1 31:0 [Domain Point 1 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.0 310 Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will receive
the computed value (1 - U - V) for Domain Point 0. Otherwise it is passed as 0.0.
Format: FLOAT32

R4.7 31:0 [Domain Point 7 URB Return Handle. (See R4.0.)

R4.6 31:0 [Domain Point 6 URB Return Handle. (See R4.0.)

R4.5 31:0 [Domain Point 5 URB Return Handle. (See R4.0.)

R4.4 31:0 [Domain Point 4 URB Return Handle. (See R4.0.)

R4.3 31:0 [Domain Point 3 URB Return Handle. (See R4.0.)

R4.2 31:0 [Domain Point 2 URB Return Handle. (See R4.0.)

R4.1 31:0 [Domain Point 1 URB Return Handle. (See R4.0.)

R4.0 31:16 | Reserved

150 Domain Point 0 URB Return Handle. This is the offset within the URB where domain point 0

is to be stored.
Format: U14 64B-granular offset into the URB

[Varles] 2550 Constant Data (optional):

optional
Please refer to the Push Constants chapter in the General Programming of Thread-Generating
Stages section for more details on size and source of constant data.

Varies 2550 Patch URB Data (optional).

[Optional] Some amount of Patch Data (possible none) can be extracted from the URB and passed to the
thread in this location in the payload. The amount of data provided is defined by the Patch
URB Entry Read Length state (3DSTATE_DS).

DUAL_PATCH Payload

The following table describes the payload delivered to DS threads.

DUAL_PATCH DS Thread Payload (SIMD8)

DWord Bits Description
RO.7 30:0 |Reserved
RO.6 31:24 |Reserved
230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.
RO.5 31:10

Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,

156

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

DWord Bits Description
specified as a 1KB-granular offset from the General State Base Address. See Scratch Space
Base Offset description in VS_STATE.
(See 3D Pipeline for further description on scratch space allocation).
Format = GeneralStateOffset[31:10]
%0 FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of
outstanding threads spawned by the FF unit.
Format: Reserved for HW Implementation Use.

R0.4 31:5 N . o . . o .
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]
4.0 |Reserved

RO.3 31:5 . o . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.

Format = DynamicStateOffset[31:5]
4 Reserved
30 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two will be raised to (over determine the amount of
scratch space).
Format = U4 power of two (in excess of 10)
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31:0 |Reserved: delivered as zeros (reserved for message header fields)
RO.1 31:27 |Reserved
26:16 || Description
Reserved
150 Patch 1 URB Offset. This is the offset within the URB where the Patch 1 data is stored.
Format: U16 64B-granular offset into the URB
RO.0 31:27 |Reserved
26:16 || Description
Reserved
15:0

Patch 0 URB Offset. This is the offset within the URB where the Patch 0 data is stored.
Format: U16 64B-granular offset into the URB

Doc Ref # IHD-OS-TGL-Vol 9-12.21 157

intel

DWord Bits Description

The following "R1" GRF is not included in the payload if
3DSTATE_DS::PrimitivelDNotRequired is set.

R1.5-7 31:0 |Reserved

R1.4 310 Patch 1 PrimitivelD. This is the 32-bit PrimitivelD value associated with Patch 1.

Format: U32

R1.1-3 31:0 [Reserved

R1.0 31:0 Patch 0 PrimitivelD. This is the 32-bit PrimitivelD value associated with Patch 0.

Format: U32

R2.7 31:0 |Patch 1 Domain Point 3 U Coordinate. (See R2.0.)

R2.6 31:0 |Patch 1 Domain Point 2 U Coordinate. (See R2.0.)

R2.5 31:0 |Patch 1 Domain Point 1 U Coordinate. (See R2.0.)

R2.4 31:0 |Patch 1 Domain Point 0 U Coordinate. (See R2.0.)

R2.3 31:0 |Patch 0 Domain Point 3 U Coordinate. (See R2.0.)

R2.2 31:0 |Patch 0 Domain Point 2 U Coordinate. (See R2.0.)

R2.1 31:0 |[Patch 0 Domain Point 1 U Coordinate. (See R2.0.)

R2.0 310 Patch 0 Domain Point 0 U Coordinate. U coordinate associated with Domain Point O of Patch

0.
Format: FLOAT32

R3.7 31:0 |Patch 1 Domain Point 3 V Coordinate. (See R3.0.)
R3.6 31:0 |Patch 1 Domain Point 2 V Coordinate. (See R3.0)
R3.5 31:0 |Patch 1 Domain Point 1 V Coordinate. (See R3.0)
R3.4 31:0 |Patch 1 Domain Point 0 V Coordinate. (See R3.0)
R3.3 31:.0 |Patch 0 Domain Point 3 V Coordinate. (See R3.0.)
R3.2 31:0 |Patch 0 Domain Point 2 V Coordinate. (See R3.0)
R3.1 31:0 |Patch 0 Domain Point 1 V Coordinate. (See R3.0)

R3.0 310 Patch 0 Domain Point 0 V Coordinate. VV coordinate associated with Domain Point 0.

Format: FLOAT32

R4.7 31:0 [Patch 1 Domain Point 3 W Coordinate. (See R4.0.)

R4.6 31:0 [Patch 1 Domain Point 2 W Coordinate. (See R4.0.)

R4.5 31:0 [Patch 1 Domain Point 1 W Coordinate. (See R4.0.)

R4.4 31:0 [Patch 1 Domain Point 0 W Coordinate. (See R4.0.)

R4.3 31:0 [Patch 0 Domain Point 3 W Coordinate. (See R4.0.)

R4.2 31:0 [Patch 0 Domain Point 2 W Coordinate. (See R4.0.)

R4.1 31:0 [Patch 0 Domain Point 1 W Coordinate. (See R4.0.)

158 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

DWord Bits Description

R4.0 31:0 Patch 0 Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will

receive the computed value (1 - U - V) for Domain Point 0. Otherwise it is passed as 0.0.

Format: FLOAT32

R5.7 31:0 |Patch 1 Domain Point 3 URB Return Handle. (See R5.0.)

R5.6 31:.0 [Patch 1 Domain Point 2 URB Return Handle. (See R5.0))

R5.5 31:.0 [Patch 1 Domain Point 1 URB Return Handle. (See R5.0))

R5.4 31:.0 [Patch 1 Domain Point 0 URB Return Handle. (See R5.0))

R5.3 31:.0 [Patch 0 Domain Point 3 URB Return Handle. (See R5.0))

R5.2 31:.0 [Patch 0 Domain Point 2 URB Return Handle. (See R5.0))

R5.1 31:0 [Patch 0 Domain Point 1 URB Return Handle. (See R5.0))
R5.0 31:16 |Reserved
15:0

Patch 0 Domain Point 0 URB Return Handle. This is the offset within the URB where Patch 0
Domain Point 0 is to be stored.

Format: U16 64B-granular offset into the URB

[Va.rles] 2550 Constant Data (optional):
optional
Please refer to the Push Constants chapter in the General Programming of Thread-Generating

Stages section for more details on size and source of constant data.

Patch 0,1 URB Data follows (optional).

This data is read from the URB and pushed in the payload. The amount of data provided for
each patch (which may be 0) is defined by the Patch URB Entry Read Length state
(3DSTATE_DS). The data is read from the URB starting at the Patch URB Entry Read Offset into
each patch, so leading data with the Patch URB entries can be skipped over.

Patch 1 data is passed in the upper 128 bits, while Patch 0 data is passed in the lower 128 bits.
This is similar to how URB data is pushed into SIMD4x2 kernels (VS, GS, etc.).

[Varies] |255:128 | Patch 1 URB Data.

optional | 127.0 |Patch 0 URB Data.

Geometry Shader (GS) Stage
GS Stage Overview

The GS stage of the 3D Pipeline converts objects within incoming primitives into new primitives through
use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the vertices of
each individual object within the primitives, and passes those object vertices (along with other data) to
the graphics subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Doc Ref # IHD-OS-TGL-Vol 9-12.21 159

intel

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general
description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these
"common" functions. l.e.,, most stage state variables and GS thread payload parameters are described in
3D Pipeline, and although they are listed here for completeness, that chapter provides the detailed
description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits
with respect to common FF unit functions.

State

This section contains the state registers for the Geometry Shader.

Registers

3DSTATE_GS (The state used by GS is defined with this inline state packet.)

3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT (Body)

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_SAMPLER _STATE_POINTERS_GS

3DSTATE_URB_GS

Functions

Object Staging

The GS unit's Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,
and spawns a thread for each individual object within the topology.

Thread Request Generation

Object Vertex Ordering

The following table defines the number and order of object vertices passed in the Vertex Data portion of
the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the thread
is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants) are
called out.

The following table also shows which vertex is selected to provide PrimitivelD (bold, underlined vertex
number). In general, the vertex selected is the last vertex for non-adjacent prims, and the next-to-last
vertex for adjacent prims. Note, however, that there are exceptions:

e reorder-enabled TRISTRIP[_REV], TRISTRIP_ADJ
e "odd-numbered" objects in TRISTRIP_ADJ

160 Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY >

[<object#>] =
(<vert#>,...); [{modified
PrimType passed to

(N = # of vertices) thread}] GS Notes
POINTLIST
[0] = (0)
(11=Q; ...
[N-2] = (N-2);
POINTLIST_BF N/A
LINELIST
[0] = 0.2)

(N is multiple of 2)

[11=@23); ...
[(N/2)-1] = (N-2)N-1)

LINELIST_AD)
(N is multiple of 4)

[0] = (0,1,23);
(1] = (4567); ...

[(N/4)-1)] = (N-4,N-3,N-2N-
1)

LINESTRIP
(N>=2)

[0] = (0.1);
(11 =0.2); ..
[N-2] = (N-2,N-1)

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT is generated by the Vertex Fetch unit on a

LINESTRIP_ADJ_CONT [01 = (0.1.23); restore of a mid-draw pre-empted 3DPRIMITIVE.
(N>=4) [11=01234); ..
[N-4] = (N-4,N-3,N-2,N-1)
LINESTRIP_BF N/A
LINESTRIP_CONT Same as LINESTRIP Handled same as LINESTRIP
LINESTRIP_CONT_BF N/A
LINELOOP _) Not supported after GS.
(N >=2) [0] = (0. 1);
(11 =(12);
[N] = (N-1,0);
TRILIST
(N is multiple of 3) (01 =(0.1.2)
[11=345) ..

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST, RECTLIST_SUBPIXEL

Same as TRILIST

Handled same as TRILIST

Doc Ref # IHD-OS-TGL-Vol 9-12.21

161

intel

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY>
(N = # of vertices)

[<object#>] =
(<vert#>,...); [{modified
PrimType passed to
thread}]

GS Notes

TRILIST_ADJ
(N is multiple of 6)

[0] = (0,1,2,3,4,5);
[11 =(6,7,8910,11); ..,

[(N/6)-1] = (N-6,N-5,N-4,N-
3IMIN_1)

TRISTRIP (Reorder Leading)
(N>=3)

[0] = (0,1,2); {TRISTRIP}
[11 = (1,3,2); {TRISTRIP_REV}

[k even] = (kk+1,k+2)
{TRISTRIP}

[k odd] = (k,k+2,k+1)
{TRISTRIP_REV}

[N-3] = (see above)

"Odd" triangles have vertices reordered and identified as TRISTRIP
to inform the thread.

TRISTRIP (Reorder Trailing)
(N >=3)

[0] = (0,1,2) {TRISTRIP}
[1] = (2,1,3) {TRISTRIP_REV};

[k even] = (k,k+1k+2)
{TRISTRIP}

[k odd] = (k+1,kk+2)
{TRISTRIP_REV}

[N-3] = (see above)

"Odd" triangles have vertices reordered and identified as
TRISTRIP_REV to inform the thread.

TRISTRIP_REV (Reorder
Leading)

(N>=3)

[0] = (0,2,1) {TRISTRIP_REV};
[1]1 = (1,2,3) {TRISTRIP}; ...;

[k even] = (k,k+2,k+1)
{TRISTRIP_REV}

[k odd] = (k,k+1,k+2)
{TRISTRIP}

[N-3] = (see above)

"Even" triangles have vertices reordered and identified as TRISTRIP
to inform the thread.

TRISTRIP_REV (Reorder
Trailing)
(N >=3)

[0] = (1,0,2) {TRISTRIP_REV}
[11 = (1,2,3) {TRISTRIP}; ...

[k even] = (k+1,kk+2,)
{TRISTRIP_REV}

[k odd] = (k,k+1k+2)
{TRISTRIP}

"Even" triangles have vertices reordered and identified as
TRISTRIP_REV to inform the thread.

162

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Order of Vertices in

PrimTopologyType Payload
[<object#>] =
(<vert#>,...); [{modified
<PR|M|T|VE_TOPOL°GY> PrimType passed to
(N = # of vertices) thread}] GS Notes

[N-3] = (see above)

Objects have vertices reordered.

TRISTRIP_ADJ (Reorder N=6or7:
Leading) 0] = (0,1,2,543)
(N>=6) N=8or9:

[0] = (0,1,2,6,4,3);
(11 =(25674,0); ...
N >=10:

[0] = (0,1.26,4,3);
[1] = (2,5,6,84,0); ...

[k>1, even] = (2k,2k-2, 2k+2,
2k+6,2k+4, 2k+3);

[k>2, odd] = (2k, 2k+3, 2k+4,
2k+6, 2k+2, 2k-2);...

Trailing object:

[(N/2)-3, even] = (N-6,N-
8N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-6,N-3,N-

2,N-1,N-4,N-8);
TRISTRIP_ADJ (Reorder N=6or7 OpenGF_ ordering rules (Iast. non-adjacent yertex is the last - aka
Trailing) - provoking - vertex of the triangle). Even triangles have the same
~fernd [0] = (0,1,2,54.3) ordering as Leading Vertex, odd triangle ordering is different
(N >=6) N =8 or: (rotated 2 vertices).

[0] = (0,1,2,64.3);
[11=(402567), ..
N >=10:

[0] = (0,1,2,6,4,3);
[11 = (40.2568); ...

[k>1, even] = (2k,2k-2, 2k+2,
2k+6,2k+4, 2k+3);

[k>2, odd] = (2k+2, 2k-2, 2k,
2k+3, 2k+4, 2k+6);...;

Trailing object:

[(N/2)-3, even] = (N-6,N-

Doc Ref # IHD-OS-TGL-Vol 9-12.21 163

intel

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY >
(N = # of vertices)

[<object#>] =
(<vert#>,...); [{modified
PrimType passed to
thread}]

GS Notes

8 N-4,N-1,N-2,N-3);
[(N/2)-3, odd] = (N-4,N-8,N-

6,N-3,N-2,N-1);
TRIFAN
(N > 2) [0] = (0,1,2);
[11=(0.23) ...

[N-3] = (0, N-2, N-1);

TRIFAN_NOSTIPPLE

Same as TRIFAN

POLYGON, POLYGON_CONT

Same as TRIFAN

POLYGON_CONT is generated by the Vertex Fetch unit on a
restore of a mid-draw pre-empted 3DPRIMITIVE.

QUADLIST

Not supported after GS.

(0= (©1.2.3) QUADLIST primitives are converted into POLYGONS in VF, and
[11=(4567); ..; therefore never reach the GS.
[(N/4)-1] = (N-4,N-3,N-2,N-
1;
QUADSTRIP 0] = (0,1.32): Not supported after GS.
ComEn QUADSTRIP primitives are converted into POLYGONS in VF, and
[11=(2354); ..; therefore never reach the GS.

[(N/2)-2] = (N-4,N-3,N-1,N-
2);

PrimTopologyType

Order of Vertices in Payload

PATCHLIST_1 [0] = (0);
PATCHLIST_2 [11=Q); ..
PATCHLIST_3..32 [N-2] = (N-2);
[0] = (0,1);
(11 =(23); ...

[(N/2)-1] = (N-2N-1)

similar to above

164

Doc Ref # IHD-OS-TGL-Vol 9-12.21

intel

Thread Execution

A GS thread is capable of performing arbitrary algorithms given the thread payload (especially vertex)
data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the
form of vertices output to the FF pipeline (at the GS unit) or data written to memory buffers (UAVs).

The primary usage models for GS threads include (possible combinations of):

e Compiled application-provided "GS shader" programs, specifying an algorithm to convert the
vertices of an input object into some output primitives. For example, a GS shader may convert lines
of a line strip into polygons representing a corresponding segment of a blade of grass centered on
the line. Or it could use adjacency information to detect silhouette edges of triangles and output
polygons extruding out from those edges. Or it could output absolutely nothing, effectively
terminating the pipeline at the GS stage.

o Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream
Output below). This may be required whether or not an app-provided GS shader is enabled.

o Driver-generated instructions used to emulate API functions not supported by specialized
hardware. These functions might include (but are not limited to):

e Conversion of API-defined topologies into topologies that can be rendered (e.g., LINELOOP,
LINESTRIP, POLYGON, TRIFAN, QUADs, TRIFAN, etc.)

e Emulation of "Polygon Fill Mode", where incoming polygons can be converted to points,
lines (wireframe), or solid objects.

e Emulation of wide/sprite points.
Thread Execution

GS URB Entry

All outputs of a GS thread are stored in the single GS thread output URB entry. Cut (1 bit/vertex) or
StreamID (2 bits/vertex) bits are packed into an optional 1-8 32B header. The Control Data Format and
Control Data Header Size states specify the size and contents of the header data (if any).

Header (Cut bits) Header (Stream|D bits)
255 0 155 254 1 D
Clityss .- Cut, SIDy .. S0,
- . 128B . | 256B
- max - (‘'max
Cutyaes Cutzes SIDyz .. <[

Following the optional header is a variable number of 16B or 32B-aligned/granular vertices:

Doc Ref # IHD-OS-TGL-Vol 9-12.21 165

intel

e When rendering is DISABLED, typically output vertices are 32B-aligned, with the exception of 16B-
alignment for vertices <= 16B in length.

e The absolute worst-case size comes from three DW scalars output per vertex. If these are,
say, three "x" outputs, you need to store each DW in a 128b (16B) element, plus another pad
16B to keep the 32B alignment. So you require 4*16B = 64B/vertex. You have to have room
for 1024 scalars / 3 scalar/vtx = 341 vertices. 341*64B = 21,824B. Then add 96B to hold

2b/vtx streamID and you get 21,920B entries.

e When rendering is ENABLED, each output vertex is 32B-aligned. Here the vertex header and vertex

‘position’ are required and therefore the minimum size vertex is 32B.
e Here the worst-case size isn't as bad as render-disabled, as you have to have a 4DW position

output, plus any additional output. So, say you output 5 DW per vertex. You need 64B/vertex
(16B vtx header, 16B position, 16B for the 2nd element, and 16B of pad). You have to have
room for 1024 scalars / 5 = 204 vertices. 204*64 = 13,056B. Then add 64B to hold 2b/vtx
streamID and you get 13,120B entries.

The size of the URB entry should be based on the declared maximum # of output vertices and the
declared output vertex size (the union of per-stream vertex structures, if required).

GS URB Entry - Output Vertex Count

The GS URB entry is the same as in the two previous generations with the following exception: If Static
Output (3DSTATE_GS) is clear, the URB entry starts with a 32B OUTPUT_VERTEX_COUNT structure as
defined below. The control header (if present) immediately follows this structure. If Static Output is set,
the control header (if present) appears at the very start of the URB entry (as described above).

GS OUTPUT_VERTEX_COUNT

DWord | Bit Description

7:6 31:0 |Reserved

0 31:16 | Reserved
15:0

Output Vertex Count. Indicates the number of vertices output from this GS shader invocation.
Format = U16
Range: [0:1024]

This structure (if present) increases the maximum URB entry sizes (described above) by 32B.

The following diagram illustrates the possible layouts of a GS URB Entry:

166 Doc Ref # IHD-OS-TGL-Vol 9-12.21

DW 7 DW O
Output ﬁ'.;r 32e,
Vix Cnt), Cptional
Control Data Hea