

Doc Ref #: IHD-OS-V2 Pt1 – 05 11

Intel® OpenSource HD Graphics
Programmer’s Reference Manual (PRM)
Volume 2 Part 1: 3D/Media – 3D Pipeline
(SandyBridge)

For the 2011 Intel Core Processor Family

May 2011

Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The SandyBridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset
Family, Intel® G35 Express Chipset, and Intel® 965GMx Chipset Mobile Family Graphics Controller may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel® sales office or your distributor to obtain the latest specifications and before
placing your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus
is a subset of the I2C bus/protocol and was developed by Intel®. Implementations of the I2C bus/protocol
may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 3

 Contents
1. 3D Pipeline ... 7

1.1 Introduction .. 7
1.2 3D Pipeline Overview... 7

1.2.1 3D Pipeline Stages... 8
1.3 3D Primitives Overview.. 8
1.4 3D Pipeline State Overview ... 17

1.4.1 3D State Model... 17
1.4.2 3DSTATE_CC_STATE_POINTERS [DevSNB]... 18
1.4.3 3DSTATE_BINDING_TABLE_POINTERS .. 20
1.4.4 3DSTATE_SAMPLER_STATE_POINTERS [DevSNB]... 22
1.4.5 3DSTATE_VIEWPORT_STATE_POINTERS [DevSNB+]... 24
1.4.6 3DSTATE_SCISSOR_STATE_POINTERS [DevSNB+].. 26
1.4.7 3DSTATE_URB [DevSNB]... 27
1.4.8 Gather Constants ... 29

1.5 Vertex Data Overview .. 29
1.5.1 Vertex URB Entry (VUE) Formats.. 30
1.5.2 Vertex Positions ... 39

1.6 3D Pipeline Stage Overview .. 41
1.6.1 Generic 3D FF Unit Block Diagram.. 41
1.6.2 Common 3D FF Unit Functions.. 42
1.6.3 Thread Initiation Management ... 44
1.6.4 Thread Request Generation... 47
1.6.5 Thread Output Handling... 54
1.6.6 VUE Readback... 56
1.6.7 Statistics Gathering [DevSNB] ... 56

1.7 Synchronization of the 3D Pipeline .. 59
1.7.1 Top-of-Pipe Synchronization.. 59
1.7.2 End-of-Pipe Synchronization.. 59
1.7.3 Synchronization Actions... 59
1.7.4 PIPE_CONTROL Command.. 60

2. Vertex Fetch (VF) Stage .. 74
2.1 Vertex Fetch (VF) Stage Overview .. 74

2.1.1 Input Assembly... 74
2.1.2 Vertex Cache.. 75
2.1.3 Input Data: Push Model vs. Pull Model ... 75
2.1.4 Generated IDs.. 75

2.2 Index Buffer (IB) ... 76
2.2.1 3DSTATE_INDEX_BUFFER [DevSNB+]... 77
2.2.2 Index Buffer Access ... 81

2.3 Vertex Buffers (VBs) .. 82
2.3.1 3DSTATE_VERTEX_BUFFERS.. 82
2.3.2 VERTEX_BUFFER_STATE Structure ... 83
2.3.3 VERTEXDATA Buffers – SEQUENTIAL Access ... 89
2.3.4 VERTEXDATA Buffers – RANDOM Access .. 90
2.3.5 INSTANCEDATA Buffers ... 91

2.4 Input Vertex Definition.. 91
2.4.1 3DSTATE_VERTEX_ELEMENTS ... 91
2.4.2 VERTEX_ELEMENT_STATE Structure .. 93
2.4.3 Vertex Element Data Path.. 98

4 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

2.5 3D Primitive Processing... 99
2.5.1 3DPRIMITIVE Command [DevSNB] .. 99
2.5.2 Functional Overview... 106
2.5.3 CommandInit .. 107
2.5.4 InstanceLoop.. 107
2.5.5 VertexLoop... 107
2.5.6 VertexIndexGeneration .. 108
2.5.7 TerminatePrimitive ... 108
2.5.8 VertexCacheLookup... 109
2.5.9 VertexElementLoop.. 109
2.5.10 SourceElementFetch.. 109
2.5.11 FormatConversion.. 110
2.5.12 DestinationFormatSelection ... 115
2.5.13 PrimitiveInfoGeneration.. 115
2.5.14 URBWrite ... 117
2.5.15 OutputBufferedVertex .. 117

2.6 Dangling Vertex Removal .. 117
2.7 Other Vertex Fetch Functionality ... 118

2.7.1 Statistics Gathering .. 118
3. Vertex Shader (VS) Stage ... 119

3.1 VS Stage Overview.. 119
3.1.1 Vertex Caching... 119

3.2 VS Stage Input ... 120
3.2.1 State ... 121
3.2.2 Input Vertices ... 140

3.3 SIMD4x2 VS Thread Request Generation... 140
3.3.1 Thread Payload.. 141

3.4 SIMD4x2 VS Thread Execution ... 143
3.4.1 Vertex Output ... 143
3.4.2 Thread Termination.. 143

3.5 Primitive Output.. 144
3.6 Other VS Functions.. 144

3.6.1 Statistics Gathering .. 144
4. Geometry Shader (GS) Stage... 145

4.1 GS Stage Overview.. 145
4.2 GS Stage Input... 145

4.2.1 State ... 145
4.3 Object Staging.. 163
4.4 GS Thread Request Generation .. 163

4.4.1 Object Vertex Ordering [DevSNB].. 163
4.4.2 GS Thread Payload [DevSNB]... 167

4.5 GS Thread Execution... 170
4.5.1 GS Shader Programming Notes [DevSNB{WA}] ... 171
4.5.2 Vertex Output [DevSNB] .. 171
4.5.3 Stream Output .. 172
4.5.4 Thread Termination.. 173

4.6 Vertex Header Readback [DevSNB]..174
4.7 Primitive Output.. 174
4.8 Other Functionality ... 174

4.8.1 Statistics Gathering .. 174
5. Clip Stage... 176

5.1 CLIP Stage Overview... 176
5.1.1 Clip Stage – General-Purpose Processing .. 176

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 5

5.1.2 Clip Stage – 3D Clipping .. 176
5.1.3 [DevSNB+] Fixed Function Clipper .. 177

5.2 Concepts .. 177
5.2.1 The Clip Volume... 177
5.2.2 User-Specified Clipping.. 179
5.2.3 Negative-W Clipping Errata.. 180
5.2.4 Guard Band.. 181
5.2.5 Vertex-Based Clip Testing and Considerations ... 184
5.2.6 3D Clipping... 187

5.3 CLIP Stage Input.. 187
5.3.1 State ... 187

5.4 VertexClipTest Function... 195
5.5 Object Staging.. 202

5.5.1 Partial Object Removal .. 202
5.5.2 ClipDetermination Function.. 203
5.5.3 ClipMode .. 206

5.6 Object Pass-Through ... 208
5.7 Primitive Output.. 210
5.8 Other Functionality ... 210

5.8.1 Statistics Gathering .. 210
6. Strips and Fans (SF) Stage... 212

6.1 Overview .. 212
6.1.1 Inputs from CLIP .. 212
6.1.2 Attribute Setup/Interpolation Process .. 213
6.1.3 Outputs to WM ... 213

6.2 Primitive Assembly... 214
6.2.1 Point List Decomposition.. 217
6.2.2 Line List Decomposition ... 218
6.2.3 Line Strip Decomposition ... 219
6.2.4 Triangle List Decomposition... 221
6.2.5 Triangle Strip Decomposition ... 222
6.2.6 Triangle Fan Decomposition .. 223
6.2.7 Polygon Decomposition ... 224
6.2.8 Rectangle List Decomposition.. 224

6.3 Object Setup .. 225
6.3.1 Invalid Position Culling (Pre/Post-Transform) .. 225
6.3.2 Viewport Transformation .. 225
6.3.3 Destination Origin Bias... 226
6.3.4 Point Rasterization Rule Adjustment ... 226
6.3.5 Drawing Rectangle Offset Application ... 228
6.3.6 Point Width Application .. 233
6.3.7 Rectangle Completion.. 233
6.3.8 Vertex X,Y Clamping and Quantization ... 234
6.3.9 Degenerate Object Culling ... 235
6.3.10 Triangle Orientation (Face) Culling .. 235
6.3.11 Scissor Rectangle Clipping .. 236
6.3.12 Line Rasterization .. 237

6.4 SF Pipeline State Summary... 245
6.4.1 3DSTATE_SF [DevSNB+].. 245
6.4.2 SF_VIEWPORT [DevSNB]... 262
6.4.3 SCISSOR_RECT [DevSNB+] .. 263

6.5 Attribute Interpolation Setup [DevSNB+] ... 264
6.5.1 Attribute Swizzling.. 264

6 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

6.5.2 Interpolation Modes.. 265
6.5.3 Point Sprites ... 265

6.6 Depth Offset [DevSNB+] .. 266
6.7 Other SF Functions .. 266

6.7.1 Statistics Gathering .. 266
7. Windower (WM) Stage... 267

7.1 Overview .. 267
7.1.1 Inputs from SF to WM .. 267

7.2 Windower Pipelined State.. 268
7.2.1 3DSTATE_WM... 268
7.2.2 3DSTATE_CONSTANT_PS [DevSNB] ... 285
7.2.3 3DSTATE_SAMPLE_MASK [DevSNB+] ... 289

7.3 Rasterization .. 290
7.3.1 Drawing Rectangle Clipping... 290
7.3.2 Line Rasterization .. 291
7.3.3 Polygon (Triangle and Rectangle) Rasterization ... 296

7.4 Multisampling [DevSNB+] .. 300
7.4.1 Multisample Modes/State... 300
7.4.2 3DSTATE_MULTISAMPLE [DevSNB+]... 305

7.5 Early Depth/Stencil Processing.. 309
7.5.1 Depth Offset ... 310
7.5.2 Early Depth Test/Stencil Test/Write ... 311
7.5.3 Hierarchical Depth Buffer ... 312
7.5.4 Separate Stencil Buffer .. 316
7.5.5 Depth/Stencil Buffer State.. 316

7.6 Barycentric Attribute Interpolation [DevSNB+]... 333
7.7 Pixel Shader Thread Generation ... 333

7.7.1 Pixel Grouping (Dispatch Size) Control ... 334
7.7.2 Multisampling Effects on Pixel Shader Dispatch [DevSNB+]... 336
7.7.3 PS Thread Payload for Normal Dispatch ... 339

7.8 Other WM Functions .. 353
7.8.1 Statistics Gathering .. 353

8. Color Calculator (Output Merger) .. 354
8.1.1 Alpha Coverage [DevSNB+] .. 356
8.1.2 Alpha Test .. 357
8.1.3 Depth Coordinate Offset .. 358
8.1.4 Stencil Test... 359
8.1.5 Depth Test.. 359
8.1.6 Pre-Blend Color Clamping ... 360
8.1.7 Color Buffer Blending ... 361
8.1.8 Post-Blend Color Clamping.. 364
8.1.9 Color Quantization ... 364
8.1.10 Dithering ... 364
8.1.11 Logic Ops ... 365
8.1.12 Buffer Update ... 366

8.2 Pixel Pipeline State Summary.. 368
8.2.1 COLOR_CALC_STATE ... 368
8.2.2 DEPTH_STENCIL_STATE [DevSNB+] ... 370
8.2.3 BLEND_STATE [DevSNB+]... 375
8.2.4 CC_VIEWPORT... 385

8.3 Other Pixel Pipeline Functions... 385
8.3.1 Statistics Gathering .. 385

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 7

1. 3D Pipeline

1.1 Introduction
This section covers the programming details for the 3D fixed functions.

1.2 3D Pipeline Overview

Figure 1 3D Pipeline Diagram [DevSNB]

8 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

1.2.1 3D Pipeline Stages
The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream (CS) The Command Stream stage is responsible for managing the 3D pipeline and
passing commands down the pipeline. In addition, the CS unit reads “constant
data” from memory buffers and places it in the URB.

Note that the CS stage is shared between the 3D and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing commands, is
responsible for reading vertex data from memory, reformatting it, and writing the
results into Vertex URB Entries. It then outputs primitives by passing references
to the VUEs down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming
vertices by passing them to VS threads.

Geometry Shader (GS) The Geometry Shader stage is responsible for processing incoming objects by
passing each object’s vertices to a GS thread.

Clipper (CLIP) The Clipper stage performs clip test on incoming objects and, if required, clips
objects via fixed-function hardware [DevGT+].

Strip/Fan (SF) The Strip/Fan stage performs object setup via use of fixed-function hardware
[DevSNB]+..

Windower/Masker (WM) The Windower/Masker performs object rasterization and spawns WM thread
(aka PS thread) to process (shade) the object pixels.

1.3 3D Primitives Overview
The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be
processed by the 3D pipeline. Typically the processing results in the rendering of pixel data into the
render targets, but this is not required.

Terminology Note: There is considerable confusion surrounding the term ‘primitive’,
e.g., is a triangle strip a ‘primitive’, or is a triangle within a triangle strip a ‘primitive’? In
this spec, we will try to avoid ambiguity by using the term ‘object’ to represent the basic
shapes (point, line, triangle), and ‘topology’ to represent input geometry (strips, lists,
etc.). Unfortunately, terms like ‘3DPRIMITIVE’ must remain for legacy reasons.

The following table describes the basic primitive topology types supported in the 3D pipeline.

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 9

Notes:

 There are several variants of the basic topologies. These have been introduced to allow slight
variations in behavior without requiring a state change.

 Number of vertices:

o Dangling Vertices: Topologies have an “expected” number of vertices in order to form
complete objects within the topologies (e.g., LINELIST is expected to have an even
number of vertices). The actual number of vertices specified in the 3DPRIMITIVE
command, and as output from the GS unit, is allowed to deviate from this expected
number --- in which case any “dangling” vertices are discarded. The removal of dangling
vertices is initially performed in the VF unit. In order to filter out dangling vertices emitted
by GS threads, the CLIP unit also performs dangling-vertex removal at its input.
However, the CLIP unit is required to output the expected number.

Table 1. 3D Primitive Topology Types

3D Primitive Topology Type
(ordered alphabetically)

Description

LINELIST A list of independent line objects (2 vertices per line).

Programming Restrictions:

Normal usage expects a multiple of 2 vertices, though incomplete objects
are silently ignored.

LINELIST_ADJ A list of independent line objects with adjacency information (4 vertices per
line).

Programming Restrictions:

Normal usage expects a multiple of 4 vertices, though incomplete objects
are silently ignored.

Not valid as output from GS thread.

LINELOOP Similar to a 3DPRIM_LINESTRIP, though the last vertex is connected back
to the initial vertex via a line object. The LINELOOP topology is converted
to LINESTRIP topology at the beginning of the 3D pipeline.

Programming Restrictions:

Normal usage expects at least 2 vertices, though incomplete objects are
silently ignored. (The 2-vertex case is required by OGL).

Not valid after the GS stage (i.e., must be converted by a GS thread to
some other primitive type).

10 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

3D Primitive Topology Type
(ordered alphabetically)

Description

LINESTRIP A list of vertices connected such that, after the first vertex, each additional
vertex is associated with the previous vertex to define a connected line
object.

Programming Restrictions:

Normal usage expects at least 2 vertices, though incomplete objects are
silently ignored.

LINESTRIP_ADJ A list of vertices connected such that, after the first vertex, each additional
vertex is associated with the previous vertex to define connected line
object. The first and last segments are adjacent–only vertices.

Programming Restrictions:

Normal usage expects at least 4 vertices, though incomplete objects are
silently ignored.

Not valid as output from GS thread.

LINESTRIP_BF Similar to LINESTRIP, except treated as “backfacing’ during rasterization
(stencil test).

This can be used to support “line” polygon fill mode when two-sided stencil
is enabled.

LINESTRIP_CONT Similar to LINESTRIP, except LineStipple (if enabled) is continued (vs.
reset) at the start of the primitive topology.

This can be used to support line stipple when the API-provided primitive is
split across multiple tolopologies.

LINESTRIP_CONT_BF Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST A list of point objects (1 vertex per point).

POINTLIST_BF Similar to POINTLIST, except treated as “backfacing’ during rasterization
(stencil test).

This can be used to support “point” polygon fill mode when two-sided
stencil is enabled.

POLYGON Similar to TRIFAN, though the first vertex always provides the “flat-shaded”
values (vs. this being programmable through state).

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects are
silently ignored.

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 11

3D Primitive Topology Type
(ordered alphabetically)

Description

QUADLIST A list of independent quad objects (4 vertices per quad). [DevSNB+]: The
QUADLIST topology is converted to POLYGON topology at the beginning
of the 3D pipeline.

Programming Restrictions:

Normal usage expects a multiple of 4 vertices, though incomplete objects
are silently ignored.

QUADSTRIP A list of vertices connected such that, after the first two vertices, each
additional pair of vertices are associated with the previous two vertices to
define a connected quad object.

Programming Restrictions:

Normal usage expects an even number (4 or greater) of vertices, though
incomplete objects are silently ignored.

RECTLIST A list of independent rectangles, where only 3 vertices are provided per
rectangle object, with the fourth vertex implied by the definition of a
rectangle. V0=LowerRight, V1=LowerLeft, V2=UpperLeft. Implied V3 = V0-
V1+V2.

Programming Restrictions:

Normal usage expects a multiple of 3 vertices, though incomplete objects
are silently ignored.

The RECTLIST primitive is supported specifically for 2D operations (e.g.,
BLTs and “stretch” BLTs) and not as a general 3D primitive. Due to this, a
number of restrictions apply to the use of RECTLIST:

Must utilize “screen space” coordinates (VPOS_SCREENSPACE) when
the primitive reaches the CLIP stage. The W component of position must
be 1.0 for all vertices. The 3 vertices of each object should specify a
screen-aligned rectangle (after the implied vertex is computed).

Clipping: Must not require clipping or rely on the CLIP unit’s ClipTest logic
to determine if clipping is required. Either the CLIP unit should be
DISABLED, or the CLIP unit’s Clip Mode should be set to a value other
than CLIPMODE_NORMAL.

Viewport Mapping must be DISABLED (as is typical with the use of screen-
space coordinates).

TRIFAN Triangle objects arranged in a fan (or polygon). The initial vertex is
maintained as a common vertex. After the second vertex, each additional
vertex is associated with the previous vertex and the common vertex to
define a connected triangle object .

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects are
silently ignored.

12 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

3D Primitive Topology Type
(ordered alphabetically)

Description

TRIFAN_NOSTIPPLE Similar to TRIFAN, but poylgon stipple is not applied (even if enabled).

This can be used to support “point” polygon fill mode, under the
combination of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are different (so
the final fill mode is not known to the driver),

(b) one of the fill modes is “point” and the other is “solid”,

(c) point mode is being emulated by converting the point into a trifan,

(d) polygon stipple is enabled. In this case, polygon stipple should not be
applied to the points-emulated-as-trifans.

TRILIST A list of independent triangle objects (3 vertices per triangle).

Programming Restrictions:

Normal usage expects a multiple of 3 vertices, though incomplete objects
are silently ignored.

TRILIST_ADJ A list of independent triangle objects with adjacency information (6 vertices
per triangle).

Programming Restrictions:

Normal usage expects a multiple of 6 vertices, though incomplete objects
are silently ignored.

Not valid as output from GS thread.

TRISTRIP A list of vertices connected such that, after the first two vertices, each
additional vertex is associated with the last two vertices to define a
connected triangle object.

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects are
silently ignored.

TRISTRIP_ADJ A list of vertices where the even-numbered (including 0th) vertices are
connected such that, after the first two vertex pairs, each additional even-
numbered vertex is associated with the last two even-numbered vertices to
define a connected triangle object. The odd-numbered vertices are
adjacent-only vertices.

Programming Restrictions:

Normal usage expects at least 6 vertices, though incomplete objects are
silently ignored.

Not valid as output from GS thread.

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 13

3D Primitive Topology Type
(ordered alphabetically)

Description

TRISTRIP_REVERSE Similar to TRISTRIP, though the sense of orientation (winding order) is
reversed – this allows SW to break long tristrips into smaller pieces and still
maintain correct face orientations.

14 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have
the same definition with respect to the information provided in the diagrams).

B6815-01

0 1 2 3 n-2 n-1
POINTLIST

0 1 2 3 n-2 n-1
LINELIST

0 1 2 3
LINELIST_ADJ

4 5 6 7

n-1n-2n-3n-4

0 1 2 3 n-2 n-1
LINESTRIP

0 1 2 3 4 5
LINESTRIP_ADJ

n-2 n-1

0

1 2

LINELOOP

n-1 n-2

3

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 15

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles
that are to be considered having “clockwise” winding order in screen space. Effectively, the arrows show
the order in which vertices are used in the cross-product (area, determinant) computation. Note that for
TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product
or the sign of the result of the normally-ordered cross-product be flipped (these are identical operations).

B6816-01

TRILIST

0

1
8

3

TRILIST_ADJ

TRISTRIP

TRISTRIP_REVERSE

TRISTRIP_ADJ

1

20

4

5

n-3n-5
n-4

n-6 n-2

n-1

1

0

3

42

5

n-3 n-1

n-2

1

0

2

4

6

n-6

n-8

6

7
8

9

10

11

1

0

3

42

5

n-3 n-1

n-2

8 n-2

3 7 n-7 n-3

n-4
n-1

5 9 n-5

53 n-1n-3

4 n-2

TRIFAN
POLYGON

n-2
n-1

5

0 4

3

2

1

16 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

B6818-01

QUADLIST

1 2

0 3

5 6

4 7

n-3 n-2

n-4 n-1

QUADSTRIP

1 3

0 2

5 n-1

4 n-2

RECTLIST

2 (Implied)

1 0

5 (Implied)

4 3

n-1 (Implied)

n-2 n-3

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 17

1.4 3D Pipeline State Overview

1.4.1 3D State Model

1.4.1.1 3D State Model [DevSNB+]

The locations of the sampler state and viewport state pointers have been moved from the state
descriptors to the ring buffer. In addition, the state for the fixed function pipeline has been moved from
indirect state descriptors to inline commands. The color calculator state has been repartitioned.

Primitive
Instructions

Ring Buffer

Binding Table
Ptr Instruction

kernel pointer

kernel resources
Kernel

Instructions

Sampler State

CC State Ptr
Instruction

Other Inline
State

Instructions

Blend
Depth/Stencil

VS
GS
PS

16

Binding Table

256

Surface State

Surface State

Surface State

Surface State

ColorCalc State

Surface State

Surface State

CC

Viewport State

16

Viewport State

16

Sampler State
Ptr Instruction

VS
GS
PS

Viewport State
Ptr Instruction

CLP
SF
CC

Depth/Stencil
State Blend State

8

FF State
Instructions

Fixed Function
Unit State

18 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

1.4.2 3DSTATE_CC_STATE_POINTERS [DevSNB]

3DSTATE_CC_STATE_POINTERS
Project: [DevSNB] Length Bias: 2

The 3DSTATE_CC_STATE_POINTERS command is used to set up the pointers to the color calculator state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Eh 3DSTATE_CC_STATE_POINTERS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Pointer to BLEND_STATE

Project: All

Address: DynamicStateOffset[31:6]

Surface Type: BLEND_STATE*8

Specifies the 64-byte aligned offset of the BLEND_STATE. This offset is relative to the
Dynamic State Base Address.

5:1 Reserved Project: All Format: MBZ

0 BLEND_STATE Change

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that the BLEND_STATE pointer has changed and new state needs
to be fetched.

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 19

3DSTATE_CC_STATE_POINTERS
2 31:6 Pointer to DEPTH_STENCIL_STATE

Project: All

Address: DynamicStateOffset [31:6]

Surface Type: DEPTH_STENCIL_STATE

Specifies the 64-byte aligned offset of the DEPTH_STENCIL_STATE. This offset is
relative to the Dynamic State Base Address.

5:1 Reserved Project: All Format: MBZ

0 DEPTH_STENCIL_STATE Change

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that the DEPTH_STENCIL_STATE pointer has changed and new
state needs to be fetched.

3 31:6 Pointer to COLOR_CALC_STATE

Project: All

Address: DynamicStateOffset[31:6]

Surface Type: COLOR_CALC_STATE

Specifies the 64-byte aligned offset of the COLOR_CALC_STATE. This offset is relative to
the Dynamic State Base Address.

5:1 Reserved Project: All Format: MBZ

0 COLOR_CALC_STATE Change

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that the COLOR_CALC_STATE pointer has changed and new
state needs to be fetched.

20 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

1.4.3 3DSTATE_BINDING_TABLE_POINTERS

1.4.3.1 3DSTATE_BINDING_TABLE_POINTERS [DevSNB]

3DSTATE_BINDING_TABLE_POINTERS
Project: [DevSNB] Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS command is used to define the location of fixed functions’
BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h 3DSTATE_BINDING_TABLE_
POINTERS

Format: OpCode

15:13 Reserved Project: All Format: MBZ

12 PS Binding Table Change

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that the PS (Windower) Binding Table pointer has changed and
new state needs to be fetched.

11:10 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 21

3DSTATE_BINDING_TABLE_POINTERS
9 GS Binding Table Change

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that the GS Binding Table pointer has changed and new state
needs to be fetched.

8 VS Binding Table Change

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that the VS Binding Table pointer has changed and new state
needs to be fetched.

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:5 Pointer to VS Binding Table

Project: All

Address: SurfaceStateOffset[31:5]

Surface Type: BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the VS function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

For [DevSNB-B+], bits [31:16] of this field must be set to zero.

4:0 Reserved Project: All Format: MBZ

2 31:5 Pointer to GS Binding Table

Project: All

Address: SurfaceStateOffset[31:5]

Surface Type: BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the GS function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

For [DevSNB-B+], bits [31:16] of this field must be set to zero.

4:0 Reserved Project: All Format: MBZ

22 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

3DSTATE_BINDING_TABLE_POINTERS
3 31:5 Pointer to PS Binding Table

Project: All

Address: SurfaceStateOffset[31:5]

Surface Type: BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the PS (Windower) function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

For [DevSNB-B+], bits [31:16] of this field must be set to zero.

4:0 Reserved Project: All Format: MBZ

1.4.4 3DSTATE_SAMPLER_STATE_POINTERS [DevSNB]

3DSTATE_SAMPLER_STATE_POINTERS
Project: [DevSNB] Length Bias: 2

The 3DSTATE_SAMPLER_STATE_POINTERS command is used to define the location of fixed functions’
SAMPLER_STATE table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 02h 3DSTATE_SAMPLER_STATE_POIN
TERS

Format: OpCode

15:13 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 23

3DSTATE_SAMPLER_STATE_POINTERS
12 PS Sampler State Change

Project: All

This bit, if set, indicates that the PS (Windower) Sampler State pointer has changed and
new state needs to be fetched.

11:10 Reserved Project: All Format: MBZ

9 GS Sampler State Change

Project: All

This bit, if set, indicates that the GS Sampler State pointer has changed and new state
needs to be fetched.

8 VS Sampler State Change

Project: All

This bit, if set, indicates that the VS Sampler State pointer has changed and new state
needs to be fetched.

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:5 Pointer to VS Sampler State

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the VS function’s SAMPLER_STATE table.
This offset is relative to the Dynamic State Base Address.

4:0 Reserved Project: All Format: MBZ

24 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

3DSTATE_SAMPLER_STATE_POINTERS
2 31:5 Pointer to GS Sampler State

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the GS function’s SAMPLER_STATE table.
This offset is relative to the Dynamic State Base Address.

4:0 Reserved Project: All Format: MBZ

3 31:5 Pointer to PS Sampler State

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the PS (Windower) function’s
SAMPLER_STATE table. This offset is relative to the Dynamic State Base Address.

4:0 Reserved Project: All Format: MBZ

1.4.5 3DSTATE_VIEWPORT_STATE_POINTERS [DevSNB+]

3DSTATE_VIEWPORT_STATE_POINTERS
Project: [DevSNB+] Length Bias: 2

The 3DSTATE_VIEWPORT_STATE_POINTERS command is used to define the location of fixed
functions’ viewport state table (CLIP_VIEWPORT, SF_VIEWPORT, or CC_VIEWPORT).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 25

3DSTATE_VIEWPORT_STATE_POINTERS
23:16 3D Command Sub Opcode

Default Value: 0Dh 3DSTATE_VIEWPORT_STATE_
POINTERS

Format: OpCode

15:13 Reserved Project: All Format: MBZ

12 CC Viewport State Change

Project: All

This bit, if set, indicates that the CC_VIEWPORT pointer has changed and new state
needs to be fetched.

11 SF Viewport State Change

Project: All

This bit, if set, indicates that the SF_VIEWPORT pointer has changed and new state needs
to be fetched.

10 CLIP Viewport State Change

Project: All

This bit, if set, indicates that the CLIP_VIEWPORT pointer has changed and new state
needs to be fetched.

9:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:5 Pointer to CLIP_VIEWPORT

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: CLIP_VIEWPORT*16

Specifies the 32-byte aligned address offset of the CLIP_VIEWPORT state. This offset is
relative to the Dynamic State Base Address.

4:0 Reserved Project: All Format: MBZ

2 31:5 Pointer to SF_VIEWPORT

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: SF_VIEWPORT*16

Specifies the 32-byte aligned address offset of the SF_VIEWPORT state. This offset is
relative to the Dynamic State Base Address.

4:0 Reserved Project: All Format: MBZ

26 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

3DSTATE_VIEWPORT_STATE_POINTERS

3 31:5 Pointer to CC_VIEWPORT

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: CC_VIEWPORT*16

Specifies the 32-byte aligned address offset of the CC_VIEWPORT state. This offset is
relative to the Dynamic State Base Address.

4:0 Reserved Project: All Format: MBZ

1.4.6 3DSTATE_SCISSOR_STATE_POINTERS [DevSNB+]

3DSTATE_SCISSOR_STATE_POINTERS
Project: [DevSNB+] Length Bias: 2

The 3DSTATE_SCISSOR_STATE_POINTERS command is used to define the location of the indirect
SCISSOR_RECT state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Fh 3DSTATE_SCISSOR_STATE_
POINTERS

Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 27

3DSTATE_SCISSOR_STATE_POINTERS
1 31:5

Pointer to SCISSOR_RECT

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: SCISSOR_RECT

Specifies the 32-byte aligned address offset of the SCISSOR_RECT state. This
offset is relative to the Dynamic State Base Address.

4:0

Reserved Project: All Format: MBZ

1.4.7 3DSTATE_URB [DevSNB]
The URB for [DevSNB] is partitioned only between the VS and GS units. The following command
determines that partitioning within the URB.

Because of a urb corruption caused by allocating a previous gsunit’s urb entry to vsunit software is
required to send a “GS NULL Fence”(Send URB fence with VS URB size == 1 and GS URB size == 0)
plus a dummy DRAW call before any case where VS will be taking over GS URB space.

3DSTATE_URB
Project: [DevSNB] Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

28 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

3DSTATE_URB
23:16 3D Command Sub Opcode

Default Value: 05h 3DSTATE_URB Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:24 Reserved Project: All Format: MBZ

23:16 VS URB Entry Allocation Size

Project: All

Format: U3 count (of 1024-bit units – 1)

Range [0,4] = [1,5] 1024-bit URB rows

Specifies the length of each URB entry owned by VS. This field is always used (even if VS
Function Enable is DISABLED).

15:0 VS Number of URB Entries

Project: All

Format: U16 FormatDesc

Range [24,256] in multiples of 4

[24, 128] in multiples of 4[DevSNBGT1]

Specifies the number of URB entries that are used by VS. This field is always used (even
if VS Function Enable is DISABLED).

2 31:18
Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 29

3DSTATE_URB
17:8 GS Number of URB Entries

Project: All

Format: U9
FormatDesc

Range
[0,256] in multiples of 4

[0, 254] in multiples of 4[DevSNBGT1]

Specifies the number of URB entries that are used by GS. Note: This value must be non-
zero value if the GS is dispatching threads that require handles.

7:3
Reserved Project: All Format: MBZ

2:0 GS URB Entry Allocation Size

Project: All

Format: U3 FormatDesc

Range [0,4] = [1,5] 1024-bit URB rows

Specifies the size of each URB entry used by the GS.

1.4.8 Gather Constants
The compiler does some optimizations of constant usage and determines which elements of which
constants should be packed in which push constant register for optimum shader performance. While this
gathering and packing of constant elements into push constant registers optimizes the shader, it cause
the driver additional work at draw call time, since the driver must do the gather and packing at draw time.
A new cmd 3D_STATE_GATHER_CONSTANT_* is added to offload the gather and packing functions
from the driver. There are 5 FF which support push constants (VS, GS, DS, HS, PS) and they all have
corresponding gather cmds. The compiler generates a gather table which instructs what elements of what
buffers should be pack into the gather buffer. The gather table indexes the BT to get the surface state
which points to the constant buffer. The resource streamer fills gather buffer when it executes a
3D_STATE_GATHER_CONSTANT_* cmd. Once the gather buffer has been filled, the Cmd streamer will
execute the 3D_STATE_CONSTANT_* to load the push constant into the URB. Note: The gather push
constants can only be used if the HW generated binding tables are also used.

1.5 Vertex Data Overview
The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information
packets. (These packets are not directly visible to software). Much of the data associated with a vertex is
passed indirectly via a VUE handle. The information provided in vertex packets includes:

30 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

 The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any
required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

 Primitive Topology Information: This information is used to identify/delineate primitive
topologies in the 3D pipeline. Initially, the VF unit supplies this information, which then passes
thru the VS stage unchanged. GS and CLIP threads must supply this information with each
vertex they produce (via the URB_WRITE message). If a FF unit directly outputs vertices (that
were not generated by a thread they spawned), that FF unit is responsible for providing this
information.

o PrimType: The type of topology, as defined by the corresponding field of the
3DPRIMITIVE command.

o StartPrim: TRUE only for the first vertex of a topology.

o EndPrim: TRUE only for the last vertex of a topology.

 (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

1.5.1 Vertex URB Entry (VUE) Formats
In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, processed by CLIP threads,
and only referenced by the pipeline stages indirectly via VUE handles. Therefore (for the most part) the
contents/format of the vertex data is not exposed to 3D pipeline hardware – the FF units are typically only
aware of the handles and sizes of VUEs.

VUEs are written in two ways:

 At the top of the 3D Geometry pipeline, the VF’s InputAssembly function creates VUEs and
initializes them from data extracted from Vertex Buffers as well as internally-generated data.

 VS, GS, and CLIP threads can compute, format and write new VUEs as thread output.

There are only two points in the 3D FF pipeline where the FF units are exposed to the VUE data.
Otherwise the VUE remains opaque to the 3D pipeline hardware.

 Just prior to the CLIP stage, all VUEs are read-back:

o [Pre-DevIL] Readback of the Vertex Header (first 256 bits of the VUE)

o [DevIL] Readback of the Vertex Header (first 512 bits of the VUE)

o [DevIL] Optional readback of User Clip distances if the User Clip Planes are enabled.

o [DevSNB+]: Optional readback of ClipDistance values (up to 8 floats in an aligned 256-bit
URB row)

 Just after the CLIP stage, on clip-generated VUEs are read-back:

o Readback of the Vertex Header (first 256 bits of the VUE)

Software must ensure that any VUEs subject to readback by the 3D pipeline start with a valid Vertex
Header. This extends to all VUEs with the following exceptions listed below:

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 31

 If the VS function is enabled, the VF-written VUEs are not required to have Vertex Headers, as
the VS-incoming vertices are guaranteed to be consumed by the VS (i.e., the VS thread is
responsible for overwriting the input vertex data).

 If the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs are required to
have Vertex Headers, as the GS will consume all incoming vertices.

 (There is a pathological case where the CLIP state can be programmed to guarantee that all
CLIP-incoming vertices are consumed – regardless of the data read back prior to the CLIP stage
– and therefore only the CLIP thread-generated vertices would require Vertex Headers).

The folllowing table defines the Vertex Header. The Position fields are described in further detail below.

Table 2. VUE Vertex Header ([Pre-DevIL])

DWord Bit Description

D0 31:0 Reserved: MBZ

D1 31:11 Reserved: MBZ

 10:0 Render Target Array Index. This value is (eventually) used to index into a specific
element of an “array” Render Target. It is read back by the GS unit (for all exiting
vertices) and the Clip unit (for all clip-generated vertices), subsequently routed into
the PS thread payload, and eventually included in the RTWrite DataPort message
header for use by the DataPort shared function.

Software is responsible for ensuring this field is zero whenever a programmable
index value is not required. When a programmable index value is required
software must ensure that the correct 11-bit value is written to this field.
Specifically, the kernels must perform a range check of computed index values
against [0,2047], and output zero if that range is exceeded. Note that the
unmodified “renderTargetArrayIndex” must be maintained in the VUE outside of
the Vertex Header.

Downstream, the DataPort range-checks the 11-bit index values against the range
[MinimumArrayElement, Depth] state variables (SURFACE_STATE) associated
with the specified render target surface.

Format: 0-based U11 index value

32 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

DWord Bit Description

D2 31:0 Viewport Index. This value is used to select one of a possible 16 sets of viewport
(VP) state parameters in the Clip unit’s VertexClipTest function and in the SF unit’s
ViewportMapping and Scissor functions.

The GS unit (even if disabled) will read back this value for all vertices exiting the
GS stage and entering the Clip stage. When enabled, the GS unit will range-check
the value against [0,Maximum VPIndex] (see GS_STATE) and use a value of
zero if out-of-range. When disabled, the GS unit instead uses the range [0,15].
After this range-check the values are sent down the pipeline and used in the Clip
unit’s VertexClipTest function. For vertices passing through the Clip stage, these
values will also be sent to the SF unit for use in ViewportMapping and Scissor
functions.

The Clip unit (if enabled) will read back this value only for vertices generated by
CLIP threads. Unlike the GS unit, the Clip unit will not apply any range check and
instead just use the lower 4 bits. No hardware clamping is performed on these
read-back values – the read-back values will be used unmodified by the SF unit.
The CLIP kernel is therefore responsible for performing any required clamping on
this value prior to writing the VUE Vertex Header.

Software is responsible for ensuring this field is zero whenever a programmable
index value is not required.

Format: 0-based U32 index value

D3 31:19 Reserved: MBZ

 18:8 Point Width. This field specifies the width of POINT objects in screen-space
pixels. It is used only for vertices within POINTLIST and POINTLIST_BF primitive
topologies, and is ignored for vertices associated with other primitive topologies.

This field is read back by both the GS and Clip units.

Format: U8.3 pixels

 7:0 User Clip Codes. These are ‘outside’ status bits associated with the vertex
element components marked as CullDistance or ClipDistance. The JITTER is
required to generate code to compute and pack these bits. If a Cull/ClipDistance
value is negative or a NaN value, its corresponding User Clip Code bit should be
set. Up to eight values/bits are supported.

The CLIP unit supports the UserClipFlag ClipTest Enable Bitmask
(CLIP_STATE) which is applied to this field before being used in ClipTest.

This field is read back only by the GS unit. This field is ignored for CLIP thread-
generated vertices, as this information is only relevant to CLIP input vertices.

Format: BITMASK8

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 33

DWord Bit Description

D4 31:0 Vertex Position X Coordinate. If this is a PREMAPPED vertex, this field contains
the X component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the X component of the vertex’s
NDC space position (i.e., the clip space X component divided by the clip space W
component).

Format: FLOAT32

D5 31:0 Vertex Position Y Coordinate. If this is a PREMAPPED vertex, this field contains
the Y component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the Y component of the vertex’s
NDC space position (i.e., the clip space Y component divided by the clip space W
component).

Format: FLOAT32

D6 31:0 Vertex Position Z Coordinate. If this is a PREMAPPED vertex, this field contains
the Z component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the Z component of the vertex’s
NDC space position (i.e., the clip space Z component divided by the clip space W
component).

Format: FLOAT32

D7 31:0 Vertex Position RHW Coordinate. This field contains the reciprocal of the
vertex’s clip space W coordinate.

Format: FLOAT32

(D8-Dn) 31:0 (Remainder of Vertex Elements). While DWords D0-D7 are exposed to the
device (i.e., read back by FF units), DWords D8-Dn of vertices written (by threads)
are opaque to the device. Software is free to format/use these DWords as desired.

The absolute maximum size limit on this data is specified via a maximum limit on
the amount of data that can be read from a VUE (including the Vertex Header)
(Vertex Entry URB Read Length has a maximum value of 63 256-bit units).
Therefore the Remainder of Vertex Elements has an absolute maximum size of 62
256-bit units. Of course the actual allocated size of the VUE can and will limit the
amount of data in a VUE.

34 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

Table 3 VUE Vertex Header ([DevIL])

DWord Bit Description

D0 31:0 Reserved: MBZ

D1 31:11 Reserved: MBZ

 10:0 Render Target Array Index. This value is (eventually) used to index into a specific
element of an “array” Render Target. It is read back by the GS unit (for all exiting
vertices) and the Clip unit (for all clip-generated vertices), subsequently routed into
the PS thread payload, and eventually included in the RTWrite DataPort message
header for use by the DataPort shared function.

Software is responsible for ensuring this field is zero whenever a programmable
index value is not required. When a programmable index value is required
software must ensure that the correct 11-bit value is written to this field.
Specifically, the kernels must perform a range check of computed index values
against [0,2047], and output zero if that range is exceeded. Note that the
unmodified “renderTargetArrayIndex” must be maintained in the VUE outside of
the Vertex Header.

Downstream, the DataPort range-checks the 11-bit index values against the range
[MinimumArrayElement, Depth] state variables (SURFACE_STATE) associated
with the specified render target surface.

Format: 0-based U11 index value

D2 31:0 Viewport Index. This value is used to select one of a possible 16 sets of viewport
(VP) state parameters in the Clip unit’s VertexClipTest function and in the SF unit’s
ViewportMapping and Scissor functions.

The GS unit (even if disabled) will read back this value for all vertices exiting the
GS stage and entering the Clip stage. When enabled, the GS unit will range-check
the value against [0,Maximum VPIndex] (see GS_STATE) and use a value of
zero if out-of-range. When disabled, the GS unit instead uses the range [0,15].
After this range-check the values are sent down the pipeline and used in the Clip
unit’s VertexClipTest function. For vertices passing through the Clip stage, these
values will also be sent to the SF unit for use in ViewportMapping and Scissor
functions.

The Clip unit (if enabled) will read back this value only for vertices generated by
CLIP threads. Unlike the GS unit, the Clip unit will not apply any range check and
instead just use the lower 4 bits. No hardware clamping is performed on these
read-back values – the read-back values will be used unmodified by the SF unit.
The CLIP kernel is therefore responsible for performing any required clamping on
this value prior to writing the VUE Vertex Header.

Software is responsible for ensuring this field is zero whenever a programmable
index value is not required.

Format: 0-based U32 index value

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 35

DWord Bit Description

D3 31:19 Reserved: MBZ

 18:8 Point Width. This field specifies the width of POINT objects in screen-space
pixels. It is used only for vertices within POINTLIST and POINTLIST_BF primitive
topologies, and is ignored for vertices associated with other primitive topologies.

This field is read back by both the GS and Clip units.

Format: U8.3 pixels

 7:0 User Clip Codes. These are the sign bits of the vertex element components
marked as CullDistance or ClipDistance. The JITTER is required to assemble
these sign bits. A negative value (sign bit set) indicates that the vertex is on the
“outside” of the corresponding user clip plane. Up to eight sign bits (clip flags) are
supported.

The CLIP unit supports a mask that is applied to this field before being used in
ClipTest.

This field is read back only by the GS unit. This field is ignored for CLIP thread-
generated vertices, as this information is only relevant to CLIP input vertices.

Format: BITMASK8

D4 31:0 Vertex Position X Coordinate. If this is a PREMAPPED vertex, this field contains
the X component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the X component of the vertex’s
NDC space position (i.e., the clip space X component divided by the clip space W
component).

Format: FLOAT32

D5 31:0 Vertex Position Y Coordinate. If this is a PREMAPPED vertex, this field contains
the Y component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the Y component of the vertex’s
NDC space position (i.e., the clip space Y component divided by the clip space W
component).

Format: FLOAT32

D6 31:0 Vertex Position Z Coordinate. If this is a PREMAPPED vertex, this field contains
the Z component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the Z component of the vertex’s
NDC space position (i.e., the clip space Z component divided by the clip space W
component).

Format: FLOAT32

36 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

DWord Bit Description

D7 31:0 Vertex Position RHW Coordinate. This field contains the reciprocal of the
vertex’s clip space W coordinate.

D8 31:0 Vertex Position X Coordinate. This field contains the X component of the vertex’s
4D space position.

Format: FLOAT32

D9 31:0 Vertex Position Y Coordinate. This field contains the Y component of the vertex’s
4D space position

Format: FLOAT32

D10 31:0 Vertex Position Z Coordinate. This field contains the Z component of the vertex’s
NDC space position

Format: FLOAT32

D11 31:0 Vertex Position W Coordinate. This field contains the Z component of the
vertex’s 4D space position

Format: FLOAT32

D12 31:0 User Clip Distance to Plane0. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane0

Format: FLOAT32

D13 31:0 User Clip Distance to Plane1. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane1

Format: FLOAT32

D14 31:0 User Clip Distance to Plane2. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane2

Format: FLOAT32

D15 31:0 User Clip Distance to Plane3. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane3

Format: FLOAT32

D16 31:0 User Clip Distance to Plane4. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane4

Format: FLOAT32

D17 31:0 User Clip Distance to Plane5. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane5

Format: FLOAT32

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 37

DWord Bit Description

D18 31:0 User Clip Distance to Plane6. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane6

Format: FLOAT32

D19 31:0 User Clip Distance to Plane7. If the User Clip Plane0 is enabled,This field
contains distance from the vertex to the User Clip Plane7

Format: FLOAT32

(D20-
Dn)

31:0 (Remainder of Vertex Elements). While DWords D0-D19 are exposed to the
device (i.e., read back by FF units), DWords D20-Dn of vertices written (by
threads) are opaque to the device. Software is free to format/use these DWords
as desired.

The absolute maximum size limit on this data is specified via a maximum limit on
the amount of data that can be read from a VUE (including the Vertex Header)
(Vertex Entry URB Read Length has a maximum value of 63 256-bit units).
Therefore the Remainder of Vertex Elements has an absolute maximum size of 62
256-bit units. Of course the actual allocated size of the VUE can and will limit the
amount of data in a VUE.

Table 4 VUE Vertex Header ([DevSNB+])

DWord Bit Description

D0 31:0 Reserved: MBZ

D1 31:0 Render Target Array Index (RTAIndex). This value is (eventually) used to index
into a specific element of an “array” Render Target. It is read back by the GS unit
(for all exiting vertices) and the Clip unit (for all clip-generated vertices),
subsequently routed into the PS thread payload, and eventually included in the
RTWrite DataPort message header for use by the DataPort shared function.

Software is responsible for ensuring this field is zero whenever a programmable
index value is not required. When a programmable index value is required
software must ensure that the correct 11-bit value is written to this field.
Specifically, the kernels must perform a reange check of computed index values
against [0,2047], and output zero if that range is exceeded. Note that the
unmodified “renderTargetArrayIndex” must be maintained in the VUE outside of
the Vertex Header.

Software can force an RTAIndex of 0 to be used (effectively ignoring the setting of
this DWord) by use of the ForceZeroRTAIndex bit (3DSTATE_CLIP). Otherwise
the read-back value will be used to select an RTArray element, after being
clamped to the RTArray surface’s [MinimumArrayElement, Depth] range
(SURFACE_STATE).

Format: 0-based U32 index value

38 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

DWord Bit Description

D2 31:0 Viewport Index. This value is used to select one of a possible 16 sets of viewport
(VP) state parameters in the Clip unit’s VertexClipTest function and in the SF unit’s
ViewportMapping and Scissor functions.

The GS unit (even if disabled) will read back this value for all vertices exiting the
GS stage and entering the Clip stage. When enabled, the GS unit will range-check
the value against [0,Maximum VPIndex] (see GS_STATE, CLIP_STATE). After
this range-check the values are sent down the pipeline and used in the Clip unit’s
VertexClipTest function. For vertices passing through the Clip stage, these values
will also be sent to the SF unit for use in ViewportMapping and Scissor functions.

The Clip unit (if enabled) will read back this value only for vertices generated by
CLIP threads. The Clip unit will perform a range clamp similar to the GS unit.

Software can force a value of 0 to be used by programming Maximum VPIndex to
0.

Format: 0-based U32 index value

D3 31:0 Point Width. This field specifies the width of POINT objects in screen-space
pixels. It is used only for vertices within POINTLIST and POINTLIST_BF primitive
topologies, and is ignored for vertices associated with other primitive topologies.

This field is read back by both the GS and Clip units.

Format: FLOAT32

D4 31:0 Vertex Position X Coordinate. This field contains the X component of the vertex’s
4D space position.

Format: FLOAT32

D5 31:0 Vertex Position Y Coordinate. This field contains the Y component of the
vertex’s 4D space position

Format: FLOAT32

D6 31:0 Vertex Position Z Coordinate. This field contains the Z component of the
vertex’s NDC space position

Format: FLOAT32

D7 31:0 Vertex Position W Coordinate. This field contains the Z component of the
vertex’s 4D space position

Format: FLOAT32

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 39

DWord Bit Description

D8 31:0 ClipDistance 0 Value (optional). If the UserClipDistance Clip Test Enable
Bitmask bit (3DSTATE_CLIP) is set, this value will be read from the URB in the
Clip stage. If the value is found to be less than 0 or a NaN, the vertex’s UCF<0>
bit will set in the Clip unit’s VertexClipTest function.

If the UserClipDistance Clip Test Enable Bitmask bit is clear, this value will not
be read back, and the vertex’s UCF<0> bit will be zero by definition.

Format: FLOAT32

D9 31:0 ClipDistance 1 Value (optional). See above

D10 31:0 ClipDistance 2 Value (optional). See above

D11 31:0 ClipDistance 3 Value (optional). See above

D12 31:0 ClipDistance 4 Value (optional). See above

D13 31:0 ClipDistance 5 Value (optional). See above

D14 31:0 ClipDistance 6 Value (optional). See above

D15 31:0 ClipDistance 7 Value (optional). See above

 31:0 (Remainder of Vertex Elements).

The absolute maximum size limit on this data is specified via a maximum limit on
the amount of data that can be read from a VUE (including the Vertex Header)
(Vertex Entry URB Read Length has a maximum value of 63 256-bit units).
Therefore the Remainder of Vertex Elements has an absolute maximum size of 62
256-bit units. Of course the actual allocated size of the VUE can and will limit the
amount of data in a VUE.

1.5.2 Vertex Positions
 (For the sake of brevity, the following discussion will use the term map as a shorthand for “compute
screen space coordinate via perspective divide followed by viewport transform”.)

The “Position” fields of the Vertex Header are the only vertex position coordinates exposed to the 3D
Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions.
The VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though
this information is not directly exposed to the FF units. For example, the Clip Space position will likely be
required in the VUE (outside of the Vertex Header) in order to perform correct and robust 3D Clipping in
the CLIP thread.

In the CLIP unit, the read-back Position fields are interpreted as being in one of two coordinate systems,
depending on the CLIP_STATE.VertexPositionSpace bit. The CLIP unit will modify its VertexClipTest
function depending on the coordinate space of the incoming vertices.

 [DevSNB+]: VPOS_CLIPSPACE (Homogeneous 4D Clip-space coordinates, pre-
perspective division): The Clip Space position is defined in a homogeneous 4D coordinate

40 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

space (pre-perspective divide), where the visible “view volume” is defined by the APIs. The
API’s VS or GS shader program will include geometric transforms in the computation of this clip
space position such that the resulting coordinate is positioned properly in relation to the view
volume (i.e., it will include a “view transform” in this computation path). When this coordinate
system is selected, the 3D FF pipeline will perform a perspective projection (division of x,y,z by
w), perform clip-test on the resulting NDC (Normalized Device Coordinates), and eventually
perform viewport mapping (in the SF unit) to yield screen-space (pixel) coordinates.

 VPOS_SCREENSPACE (Screen Space position): Under certain circumstances, the position in
the Vertex Header will contain the screen-space (pixel) coordinates (post viewport mapping).

The SF unit does not have a state bit defining the coordinate space of the incoming vertex positions.
Software must use the Viewport Mapping function of the SF unit in order to ensure that screen-space
coordinates are available after that function. If screen space coordinates are passed into SF, then
software will likely turn off the Viewport Mapping function.

The following subsections briefly describe the three relevant coordinate spaces.

1.5.2.1 Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after
perspective projection (division by W), the visible “view volume” is some canonical (3D) cuboid.
Typically the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The
API’s VS or GS shader program will include geometric transforms in the computation of this clip space
position such that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will
include a “view transform” in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space Z
coordinate.

A vertex’s clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is
performed in clip space.

 In [DevSNB+], vertex clip-space positions must be included in the Vertex Header, so that they
can be read-back (prior to Clipping) and then subjected to perspective projection (in hardware)
and subsequent use by the FF pipeline.

1.5.2.2 NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z,RHW] NDC (Normalized
Device Coordinates) space position. Here “normalized” means that visible geometry is located within the
[-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

 The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the
clip-space W coordinate (or, more correclty, the clip-space X,Y,Z coordinates are multiplied by
the reciprocal of the clip space W coordinate).

o Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see below).

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 41

 The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under
normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC
space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform
perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

1.5.2.3 Screen-Space Position

Screen-space coordinates are defined as:

 X,Y coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex
X,Y Clamping and Quantization in the SF section for a discussion of the limitations/restrictions
placed on screenspace X,Y coordinates.

 Z coordinate has been mapped into the range used for DepthTest.

o D3D allows the visible Z range ([0,1] NDC) to be mapped into some subrange within
[0,1]. However, by definition, pre-mapping in D3D disables Z clipping. (If mapped Z
coordinates outside of [0,1] are presented, rendering results are undefined.) Software
must explicitly disable Z clipping via Viewport Z ClipTest Enable (CLIP_STATE)
whenever positions are pre-mapped.

 RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of
the view-space Z coordinate). D3D requires RHW to be positive, or rendering results are
undefined.

1.6 3D Pipeline Stage Overview
The fixed-function (FF) stages of the 3D pipeline share some common functionality, specifically related to
the creation and management of threads. This chapter is intended to describe the behavior and
programming model of these common functions, in an effort to not replicate this information for each
pipeline stage. Stage-specific exceptions to the information provided here will be included in the stage-
specific chapters to follow.

1.6.1 Generic 3D FF Unit Block Diagram
The following block diagram, in general, applies to the VS, GS and CLIP stages.

42 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

1.6.2 Common 3D FF Unit Functions
A major role of the FF stages is in managing the threads that perform the majority of the processing on
the vertex/pixel data. (In general, the amount of non-thread processing performed by the 3DPIPE stages
increases towards the end of the pipeline.) In a generic sense, the key functions included are:

 Bypass Mode

 URB Entry Management

 Thread Initiation Management

 Thread Request Data Generation

o Thread Control Information Generation

o Thread Payload Header Generation

o Thread Payload Data Generation

 Thread Output Handling

 URB Entry Readback

 Statistics Gathering

B 6820-01

FF Unit

State
Manager

URB
 Entry

Manager

Statistics
Gathering

Vertex Clip Test (CLIP)

Object Staging Buffer

Thread Request Generator

Thread Output Handling

URB Readback

Gen x

Subsystem

URB

Global
URB

Mgr.

Next Stage

Previous Stage

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 43

[DevSNB]: The Clip and SF FF units do not dispatch threads.

The following table lists the various state variables used to control the common FF functions:

State Variable Programmed Via Generic Functions Affected

<stage> Enable [DevSNB]: FF inline state Bypass Mode

Kernel Start Pointer Thread Request Data Gen.

GRF Register Block Count Thread Request Data Gen.

Single Program Flow Thread Request Data Gen.

Thread Priority Thread Request Data Gen.

Floating Point Mode Thread Request Data Gen.

Exceptions Enable Thread Request Data Gen.

Scratch Space Base Pointer Thread Request Data Gen.

Per Thread Scratch Space Thread Request Data Gen.

Constant URB Entry Read
Length

Payload Data Gen.

Constant URB Entry Read Offset Payload Data Gen.

Vertex URB Entry Read Length Payload Data Gen.

Vertex URB Entry Read Offset Payload Data Gen.

Dispatch GRF Start Register for
URB Data

Payload Data Gen.

Maximum Number of Threads

 [DevSNB]: FF inline state

Thread Resource Alloc.

Scratch Space Mgt.

<stage> Fence URB_FENCE_POINTER URB Entry Mgt.

URB Entry Allocation Size URB Entry Mgt.

Number of URB Entries

[DevSNB]: 3DSTATE_URB

URB Entry Mgt.

Sampler State Pointer [DevSNB+]:
3DSTATE_SAMPLER_
STATE_POINTERS

Payload Header Gen.

<stage> Binding Table Pointer 3DSTATE_BINDING_
TABLE_POINTERS

This gets routed directly to
shared functions
(transparent to software).

44 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

State Variable Programmed Via Generic Functions Affected

Sampler Count Thread Request Data Gen.

Binding Table Entry Count Thread Request Data Gen.

Statistics Enable

[DevSNB]: FF inline state

Statistics Gathering

1.6.3 Thread Initiation Management
Those FF stages that can spawn threads must have buffered the input (URB entries) available to supply a
thread, and then ensure that there are sufficient resources (within the domain of the 3D pipeline) to make
the thread request.

Once a FF stage determines a thread request can be submitted, (a) all input data required to initiate the
thread is generated, (b) this information is submitted to the common thread dispatcher, (c) the thread
dispatcher will spawn the thread as soon as an EU with sufficient GRF resources becomes available, and
finally (d) the thread will start execution. With respect to concurrent threads, steps (c) and (d) can
proceed out of order (i.e., a threads are not necessarily dispatched in the order that the thread requests
are submitted to the thread dispatcher).

1.6.3.1 Thread Input Buffering

Each FF stage varies with regard to thread input requirements, and so this will not be discussed in this
chapter other than the overview information provided in the following table:

FF
Stage

Thread Input Requirements

CS N/A (does not spawn threads)

VF N/A (does not spawn threads)

VS Normally, two vertices are buffered before a VS thread is spawned to shade the pair in parallel.
Under some circumstances (e.g., a flush, state change, etc.) a single vertex will be shaded.

GS All the vertices associated with an object must be buffered before a GS thread can be initiated
to process the object.

CLIP [DevSNB]: Does not spawn threads.

SF [DevSNB]: Does not spawn threads.

WM Threads spawned as required by the rasterization algorithm.

1.6.3.2 Thread Resource Allocation [Pre-DevIL]

Once a FF stage that spawn threads has sufficient input to initiate a thread, it must guarantee that it is
safe to request the thread initiation. For all these FF stages, this check is based on :

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 45

 The availability of output URB entries:

o VS: As the input URB entries are overwritten with the VS-generated output data, output
URB availability isn’t a factor.

o GS: At least one output URB entry must be available to serve as the initial output vertex
from the GS thread. However, software must guarantee that additional URB entries will
eventually become available to allow the pipeline to make forward progress and not
deadlock. There are two considerations here:

 Single GS Threads (Maximum Number of Threads == 1): There must be
enough GS output URB entries allocated to allow the GS thread to make
progress (call this number P). P must include enough vertices to allow the next
enabled stage to make progress, i.e., must contain enough vertices for the worst-
case object within a primitive. For example, the system would hang if the GS
stage was only allocated 2 URB entries and the GS thread tried to output a
TRILIST. In this case the GS stage would need to be allocated at least 3 URB
entries – the GS thread would output the first 3 vertices, then would stall on the
allocation of the 4th vertex until the rest of the pipeline consumed that first triangle
and dereferenced the first vertex. The clipper, when enabled, imposes additional
requirements on the number of output URB entries allocated to the GS. Because
of the way the clipper processes strip/fan primitives, it will not release the URB
entries for the vertices of a given object until it has finished processing the next
object in the primitive. The minimum number of handles that must be allocated
to the GS for strip/fan –type primitives is thus increased according to the
following table:

46 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

Topology Minimum GS Handles

LINESTRIP, LINESTRIP_BF, LINESTRIP_CONT,
LINESTRIP_CONT_BF

3

POLYGON, TRIFAN, TRIFAN_NOSTIPPLE 4

TRISTRIP, TRISTRIP_REV 5

 Dual GS threads: If two concurrent GS thread are permitted, software must
account for the possibility that the subsequent GS thread completes before the
preceding GS thread outputs its first vertex. Therefore there must be enough
URB entries allocated to satisfy the above minimums for both threads.

o CLIP: Same considerations as GS (above)

o SF: An output URB entry must be available to store the results of the SETUP thread.

o WM: N/A (does not output to URB)

 The Maximum Number of Threads state variable. This state variable limits the number of
concurrent threads a FF stage can have executing. As long as the FF stage is operating below
this limit, it can make additional thread initiation requests.

 In addition, the WM unit utilizes a scoreboard mechanism to ensure proper ordering of
operations – and this mechanism can postpone the initiation of new threads. (See Windower
chapter).

Software is responsible for programming of Maximum Number of Threads to ensure the correct and
optimal operation of the 3D pipeline.

The considerations for programming Maximum Number of Threads are summarized below:

1. URB Allocation: (See discussion above)

2. Scratch Space Allocation: When the current kernel of an enable stage requires use of scratch
space (for API-defined temporary storage, register spill/fill, overflow stacks, etc.), software must
limit the number of concurrent threads (via Maximum Number of Threads) such that the total
scratch space requirement is satisfied by the amount of scratch space memory allocated to the
FF stage.

3. Stream Output Serialization: If a kernel is required to output a serialized stream of data to a
memory buffer, threads for that stage must be serialized by SW only allowing (Maximum
Number of Threads == 1).

4. Performance: In general, a larger number of possibly-concurrent threads will better ensure the
cores are fully utilized.

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 47

(Note: The 3D pipeline can function correctly with (Maximum Number of Threads == 1) set at each
enabled stage, given that there are sufficient resources to run this single thread (scratch space, etc).
However, this will certainly not be an optimal configuration. See Graphics Processing Engine for a
discussion of URB Allocation Requirements and Guidelines which includes information on programming
the Number Of Threads for the various FF units.)

1.6.3.3 Thread Resource Allocation [DevSNB+]

In general, the considerations listed in the preceding DevIL section are relevant, with the following
exception: CLIP, SF: Threads are not spawned.

1.6.4 Thread Request Generation
Once a FF unit determines that a thread can be requested, it must gather all the information required to
submit the thread request to the Thread Dispatcher. This information is divided into several categories,
as listed below and subsequently described in detail.

 Thread Control Information: This is the information required (from the FF unit) to establish the
execution environment of the thread. Note that some information affecting the thread execution
state is programmed external to the 3D pipeline (e.g., Exception Handler IP, Breakpoint IP, etc.)

 Thread Payload Header: This is the first portion of the thread payload passed in the GRF,
starting at GRF R0. This is information passed directly from the FF unit. It precedes the Thread
Payload Input URB Data.

 Thread Payload Input URB Data: This is the second portion of the thread payload. It is read
from the URB using entry handles supplied by the FF unit.

1.6.4.1 Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to the
Thread Dispatcher and which affect the thread execution environment. Note that this information is not
directly passed to the thread in the thread payload (though some fields may be subsequently accessed by
the thread via architectural registers).

Table 5. State Variables Included in Thread Control Information

State Variable Usage FFs

Kernel Start Pointer This field, together with the General State Pointer,
specifies the starting location (1st core instruction) of
the kernel program run by threads spawned by this
FF unit. It is specified as a 64-byte-granular offset
from the General State Pointer.

All FFs spawning threads

48 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

State Variable Usage FFs

GRF Register
Block Count

Specifies, in 16-register blocks, how many GRF
registers are required to run the kernel. The Thread
Dispatcher will only seek candidate EUs that have a
sufficient number of GRF register blocks available.
Upon selecting a target EU, the Thread DIspatcher
will generate a logical-to-physical GRF mapping and
provide this to the target EU.

All FFs spawning threads

Single Program
Flow (SPF)

Specifies whether the kernel program has a single
program flow (SIMDnxm with m = 1) or multiple
program flows (SIMDnxm with m > 1). See CR0
description in ISA Execution Environment.

All FFs spawning threads

Thread Priority The Thread Dispatcher will give priority to those
thread requests with Thread Priority of
HIGH_PRIORITY over those marked as
LOW_PRIORITY. Within these two classes of thread
requests, the Thread Dispatcher applies a priority
order (e.g., round-robin --- though this algorithm is
considered a device implementation-dependent
detail).

All FFs spawning threads

Floating Point
Mode

This determines the initial value of the Floating
Point Mode bit of the EU’s CR0 architectural
register that controls floating point behavior in the EU
core. (See ISA.)

All FFs spawning threads

Exceptions Enable This bitmask controls the exception hanlding logic in
the EU. (See ISA.)

All FFs spawning threads

Sampler Count This is a hint which specifies how many indirect
SAMPLER_STATE structures should be prefetched
concurrent with thread initiation. It is recommended
that software program this field to equal the number
of samplers, though there may be some minor
performance impact if this number gets large.

This value should not exceed the number of
samplers accessed by the thread as there would be
no performance advantage. Note that the data
prefetch is treated as any other memory fetch (with
respect to page faults, etc.).

All stages supporting
sampling (VS, GS, WM)

Binding Table Entry
Count

This is a hint which specifies how many indirect
BINDING_TABLE_STATE structures should be
prefetched concurrent with thread initiation. (The
comments included in Sampler Count (above) also
apply to this field).

All FFs spawning threads

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 49

1.6.4.2 Thread Payload Generation

FF units are responsible for generating a thread payload – the data pre-loaded into the target EU’s GRF
registers (starting at R0) that serves as the primary direct input to a thread’s kernel. The general format
of these payloads follow a similar structure, though the exact payload size/content/layout is unique to
each stage. This subsection describes the common aspects – refer to the specific stage’s chapters for
details on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB
data. The payload header contains information passed directly from the FF unit, while the payload URB
data is obtained from URB locations specified by the FF unit.

NOTE: The first 256 bits of the thread payload (the initial contents of R0, aka “the R0 header”) is
specially formatted to closely match (and in some cases exactly match) the first 256 bits of thread-
generated messages (i.e., the message header) accepted by shared functions. In fact, the send
instruction supports having a copy of a GR’s contents (such as R0) used as the message header.
Software must take this intention into account (i.e., “don’t muck with R0 unless you know what you’re
doing”). This is especially important given the fact that several fields in the R0 header are considered
opaque to SW, where use or modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,
variable-sized extended payload header section. In general the size, content and layout of both payload
header sections are FF-specific, though many of the fixed payload header fields are common amongst
the FF stages. The extended header is used by the FF unit to pass additional information specific to that
FF unit. The extended header is defined to start after the fixed payload header and end at the offset
defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF
Start Register for URB Data field to insert padding into the extended header in order to maintain a fixed
offset for the start of the URB data.

1.6.4.2.1 Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This
information is a mixture of SW-provided state information (state table pointers, etc.), primitive information
received by the FF unit from the FF pipeline, and parameters generated/computed by the FF unit. most of
the fields of the fixed header are common between the FF stages. These non-FF-specific fields are
described in Table 6. Note that a particular stage’s header may not contain all these fields, so they are
not “common” in the strictest sense.

Table 6. Fixed Payload Header Fields (non-FF-specific)

Fixed Payload
Header Field

(non-FF-specific)

Description FFs

FF Unit ID Function ID of the FF unit. This value identifies the FF unit within
the subsystem. The FF unit will use this field (when transmitted in
a Message Header to the URB Function) to detect messages
emanating from its spawned threads.

All FFs
spawning
threads

Reserved --

50 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

Fixed Payload
Header Field

(non-FF-specific)

Description FFs

Thread ID This field uniquely identifies this thread within the FF unit over
some period of time.

All FFs
spawning
threads

Scratch Space
Pointer

This is the starting location of the thread’s allocated scratch space,
specified as an offset from the General State Base Address.
Note that scratch space is allocated by the FF unit on a per-thread
basis, based on the Scratch Space Base Pointer and Per-
Thread Scratch Space Size state variables. FF units will assign
a thread an arbitrarily-positioned region within this space. The
scratch space for multiple (API-visible) entities (vertices, pixels)
will be interleaved within the thread’s scratch space.

All FFs
spawning
threads

Dispatch ID This field identifies this thread within the outstanding threads
spawned by the FF unit. This field does not uniquely identify the
thread over any significant period of time.

Implementation Note: This field is effectively an “active thread
index”. It is used on a thread’s URB allocation request to identify
which thread’s handle pool is to source the allocation. It is used
upon thread termination to free up the thread’s scratch space
allocation.

All FFs
spawning
threads

Binding Table
Pointer

This field, together with the Surface State Base Pointer, specifies
the starting location of the Binding Table used by threads spawned
by the FF unit. It is specified as a 64-byte-granular offset from the
Surface State Base Pointer.

See Shared Functions for a description of a Binding Table.

All FFs
spawning
threads

Sampler State
Pointer

This field, together with the General State Base Pointer, specifies
the starting location of the Sampler State Table used by threads
spawned by the FF unit. It is specified as a 64-byte-granular offset
from the General State Base Pointer.

See Shared Functions for a description of a Sampler State Table.

All FFs
spawning
threads which
sample (VS,
GS, WM)

Per Thread
Scratch Space

This field specifies the amount of scratch space allocated to each
thread spawned by the FF unit.

The driver must allocate enough contiguous scratch space,
starting at the Scratch Space Base Pointer, to ensure that the
Maximum Number of Threads can each get Per-Thread
Scratch Space size without exceeding the driver-allocated scratch
space.

All FFs
spawning
threads

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 51

Fixed Payload
Header Field

(non-FF-specific)

Description FFs

Handle ID <n> This ID is assigned by the FF unit and links the thread to a specific
entry within the FF unit. The FF unit will use this information upon
detecting a URB_WRITE message issued by the thread.

Threads spawned by the GS, CLIP, and SF units are provided with
a single Handle ID / URB Return Handle pair. Threads spawned
by the VS are provided with one or two pairs (depending on how
many vertices are to be processed). Threads spawned by the WM
do not write to URB entries, and therefore this info is not supplied.

VS,GS,CLIP,SF

URB Return
Handle <n>

This is an initial destination URB handle passed to the thread. If
the thread does output URB entries, this identifies the destination
URB entry.

hreads spawned by the GS, CLIP, and SF units are provided with
a single Handle ID / URB Return Handle pair. Threads spawned
by the VS are provided with one or two pairs (depending on how
many vertices are to be processed). Threads spawned by the WM
do not write to URB entries, and therefore this info is not supplied.

VS,GS,CLIP,SF

Primitive
Topology Type

As part of processing an incoming primitive, a FF unit is often
required to spawn a number of threads (e.g., for each individual
triangle in a TRIANGLE_STRIP). This field identifies the type of
primitive which is being processed by the FF unit, and which has
lead to the spawning of the thread.

Kernels written to process different types of objects can use this
value to direct that processing. E.g., when a CLIP kernel is to
provide clipping for all the various primitive types, the kernel would
need to examine the Primitive Topology Type to distinguish
between point, lines, and triangle clipping requests.

NOTE: In general, this field is identical to the Primitive Topology
Type assoociated with the primitive vertices as received by the FF
unit. Refer to the individual FF unit chapters for cases where the
FF unit modifies the value before passing it to the thread. (E.g.,
certain units perform toggling of TRIANGLESTRIP and
TRIANGLESTRIP_REV).

GS, CLIP, SF,
WM

1.6.4.2.2 Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state
programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the
Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used
to place the payload URB data at a specific starting GRF register, irrespective of the size of the extended
header. A kernel can therefore reference the payload URB data at fixed GRF locations, while
conditionally referencing extended payload header information.

52 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

1.6.4.2.3 Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as
input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either
by a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only
knows the location of this data in the URB, and is never exposed to the contents. For each URB entry,
the FF unit will supply a sequence of handles, read offsets and read lengths to the subsystem. The
subsystem will read the appropriate 256-bit locations of the URB, optionally perform swizzling (VS only),
and write the results into sequential GRF registers (starting at Dispatch GRF Start Register for URB
Data).

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 53

Table 7. State Variables Controlling Payload URB Data

State Variable Usage FFs

Dispatch GRF Start
Register for URB
Data

This SV identifies the starting GRF register receiving payload URB
data.

Software is responsible for ensuring that URB data does not overwrite
the Fixed or Extended Header portions of the payload.

FFs
spawning
threads

Vertex URB Entry
Read Offset

This SV specifies the starting offset within VUEs from which vertex
data is to be read and supplied in this stage’s payloads. It is specified
as a 256-bit offset into any and all VUEs passed in the payload.

This SV can be used to skip over leading data in VUEs that is not
required by the stage’s threads (e.g., skipping over the Vertex Header
data at the SF stage, as that information is not required for setup
calculations). Skipping over irrelevant data can only help to improve
performance.

Specifying a vertex data source extending beyond the end of a vertex
entry is UNDEFINED.

Vertex URB Entry
Read Length

This SV determines the amount of vertex data (starting at Vertex
URB Entry Read Offset) to be read from each VUEs and passed into
the payload URB data. It is specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

Specifying a vertex data source extending beyond the end of a VUE is
UNDEFINED.

VS, GS,

Programming Restrictions: (others may already have been mentioned)

 The maximum size payload for any thread is limited by the number of GRF registers available to
the thread, as determined by min(128, 16 * GRF Register Block Count). Software is
responsible for ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.

o The Dispatch GRF Start Register for URB Data SV.

o The amount of CURBE data included (via Constant URB Entry Read Length)

o The number of VUEs included (as a function of FF unit, it’s state programming, and
incoming primitive types)

o The amount of VUE data included for each vertex (via Vertex URB Entry Read Length)

o (For WM-spawned PS threads) The amount of Primitive URB Entry data.

 For any type of URB Entry reads:

54 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

o Specifying a source region (via Read Offset, Read Length) that goes past the end of the
URB Entry allocation is illegal.

 The allocated size of Vertex/Primitive URB Entries is determined by the URB
Entry Allocation Size value provided in the pipeline state descriptor of the FF
unit owning the VUE/PUE.

 The allocated size of CURBE entries is determined by the URB Entry Allocation
Size value provided in the CS_URB_STATE command.

1.6.5 Thread Output Handling
Those FF units spawning threads are responsible for monitoring and responding to certain events
generated by their spawned threads. Such events are indirectly detected by these FF units monitoring
messages sent from threads to the URB Shared Function. By snooping the Message Bus Sideband and
Header information, a FF can detect when a particular spawned thread sends a message to the URB
function. A subset of this information is then captured and acted upon. Refer to the URB chapter for
more details (including a table of valid/invalid combinations of the Complete, Used, Allocate, and EOT
bits)

The following subsections describe functions that FF units perform as part of Thread Output Handling.

1.6.5.1 URB Entry Output (VS, GS)

The following description is applicable only to the VS and GS stages.

For these threads the main (if not only) output of the thread takes the form of data written to one or more
destination VUEs. At very least this is the only form of thread output visible to the FF units.

When a thread sends a URB_WRITE message to the URB function with the Complete and Used bits set
in the Message Description, the spawning FF unit recognizes this as the thread having completely written
a destination UE. (In the typical case of a VS thread, a pair of UEs will be written in parallel). The thread
must not target any additional URB messages to this UE (unless it gets reallocated to the thread). The
FF unit marks this UE as complete and available for output.

In the case where multiple concurrent threads are supported at a given stage, the FF unit is responsible
for outputing UEs down the pipeline in order. I.e., all VUE outputs of a spawned thread must be sent
down the pipeline (in order of allocation to the thread) prior to any outputs from a subsequently-spawned
thread. This is required even if the subsequent threads perform any/all of their output prior to the
preceding thread producing any/some output.

1.6.5.2 VUE Allocation (GS, CLIP) [Pre-DevIL]

 The following description is applicable only to the GS, CLIP stages.

The GS and CLIP threads are passed a single, initial destination VUE handle. These threads may be
required to output more than one destination VUE, and therefore they are provided with a mechanism to
request additional handles.

When a GS or CLIP thread issues a URB_WRITE message with the Allocate bit set, the spawning FF
unit will consider this a request for the allocation of an additional VUE handle. The thread must specify a
destination GRF register for the message writeback data. The spawning FF unit will perform the

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 55

allocation, and provide the writeback data (containing Handle ID and URB Return Handle) to the
subsystem, which will in turn deliver that data to the appropriate GRF register. (See the URB chapter for
the definition of this writeback data).

The thread is allowed to proceed while the allocation is taking place (it is guaranteed to complete at some
point). If the thread attempts to reference the writeback data before the allocation has completed,
execution will be stalled in the same fashion any unfulfilled dependency is handled. It is therefore
recommended that SW (a) request the additional allocation as soon as possible, and (b) reference the
writeback data as late as possible in order to keep the thread in a runnable state. (Refer to the following
subsection to see how the thread is allowed to “allocate ahead” and give back unused VUE handles).

NOTE: GS and CLIP threads must write VUEs in the order they are allocated by the FF unit (in response
to an allocation request from the thread), starting with the initial destination handle passed in the thread
payload.

A GS or CLIP thread is restricted as to the number of URB handles it can retain. Here a “retained” handle
refers to a URB handle that (a) has been pre-allocated or allocated and returned to the thread via the
Allocate bit in the URB_WRITE message, and (b) has yet to be returned to the pipeline via the Complete
bit in the URB_WRITE message.

 When operating in single-thread mode (Maximum Number of Threads == 1), the number of
retained handles must not exceed min(16, Number of URB Entries).

 When operating in dual-thread mode (Maximum Number of Threads == 2), the number of
retained handles must not exceed (Number of URB Entries/2).

This restriction is not expected to be significant in that most/all GS/CLIP threads are expected to retain
only a few (<=4) handles.

1.6.5.3 VUE Allocation (GS, CLIP) [DevIL]

The following description is applicable only to the GS, CLIP stages.

The threads are not passed an initial handle. Instead, they request a first handle (if any) via the URB
shared function’s FF_SYNC message (see Shared Functions). If additional handles are required, the
URB_WRITE allocate mechanism (mentioned above) is used.

1.6.5.4 VUE Allocation (GS) [DevSNB+]

The following description is applicable only to the GS stage.

The threads are not passed an initial handle. Instead, they request a first handle (if any) via the URB
shared function’s FF_SYNC message (see Shared Functions). If additional handles are required, the
URB_WRITE allocate mechanism (mentioned above) is used.

1.6.5.5 VUE Dereference (GS)

The following description is applicable only to the GS stage.

It is possible and legal for a thread to produce no output or subsequently allocate a destination VUE that
was not required (e.g., the thread allocated ahead). Therefore, there is a mechanism by which a thread

56 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

can “give back” (dereference) an allocated VUE. This mechanism must be used if the VUE is not written
before the thread terminates.

A kernel can explicitly dereference a VUE by issuing a URB_WRITE message (specifying the to-be-
dereference handle) with the Complete bit set and the Used bit clear.

1.6.5.6 Thread Termination

All threads must explicitly terminate by executing a SEND instruction with the EOT bit set. (See EU
chapters). When a thread spawned by a 3D FF unit terminates, the spawning FF unit detects this
termination as a part of Thread Management. This allows the FF units to manage the number of
concurrent threads it has spawned and also manage the resources (e.g., scratch space) allocated to
those threads.

Programming Note: [Pre-DevIL] GS and Clip threads must terminate by sending a URB_WRITE
message (with EOT set) with the Complete bit also set (therein returning a URB handle marked as either
used or un-used).

1.6.6 VUE Readback
Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to the VUE handle.
For example, the CLIP unit’s VertexClipTest function needs the vertex position, as does the SF unit’s
functions. This information is obtained by the 3D pipeline reading a portion of each vertex’s VUE data
directly from the URB. This readback (effectively) occurs immediately before the CLIP VertexClipTest
function, and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous VUE Formats
subsection (above) for details on the content and format of the Vertex Header.) [DevSNB+]: Additional
Clip/Cull data (located immediately past the Vertex Header) may be read prior to clipping.

This readback occurs automatically and is not under software control. The only software implication is
that the Vertex Header must be valid at the readback points, and therefore must have been previously
loaded or written by a thread.

1.6.7 Statistics Gathering [DevSNB]

The Vertex Fetch, Geometry Shader and Clipper units count the number of complete primitives that they
issue down the pipeline. The Vertex Fetch unit counts the number of vertices and objects it issues. The
Vertex Shader, Geometry Shader, [Pre-DevIL] Clipper and Windower keep a count of the number of
objects they pass to shader threads. The Windower counts the number of pixels that turn out to be visible
after stencil and depth testing (the Color Calculator also helps track this statistic.)

The pipeline must be completely flushed prior to reading out the values of these counters via MMIO (or
MI_STORE_REGISTER_MEM) and reporting them to the API. Without a flush it is impossible to tell
which work in the pipeline has affected a given statistic, and which has not.

These statistics counters are initialized by writing the value 0 to them via MMIO or
MI_LOAD_REGISTER_IMM. Generally this should be done only at API “pipeline creation”. Each context
has its own statistics so these registers are saved and restored on context switch. Table 8 shows the

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 57

statistics counter register names and MMIO offsets. See the Memory Interface Registers chapter for
more detailed register information.

Table 8. Statistics MMIO Registers

MMIO Register Statistic Controlled By

IA_PRIMITIVES_COUNT VF Primitives Output VF

IA_VERTICES_COUNT VF Vertices Output VF

VS_INVOCATION_COUNT VS Vertices Shaded VS

GS_INVOCATION_COUNT Geometry GS Threads GS

GS_PRIMITIVES_COUNT [Pre-DevIL]: Geometry
Primitives Output

[DevIL+]: Accumulation of
GS Shader-supplied
GS_PRIMITIVES count

[Pre-DevIL]: Clip

[DevIL+]: GS thread via
URB_WRITE

[DevCTG+]:
SO_NUM_PRIMS_WRITTEN Stream Output Primitives

Written

[DevCTG]: GS thread via
SVBWrite

[DevIL+]: GS thread via
URBWrite

[DevCTG+]:
SO_PRIM_STORAGE_NEEDE
D

Stream Output Primitives
Storage Needed

[DevCTG]: GS thread via
SVBWrite

[DevIL+]: GS thread via
FF_SYNC

CL_INVOCATION_COUNT [Pre-DevCTG]: Clipper
Clip Threads

[DevCTG]: Under GS
kernel control. See
URB_WRITE.

[DevIL+]: Clipper Input
Primitives

CL

CL_PRIMITIVES_COUNT Primitives Output from Clip
unit to SF unit

SF

PS_INVOCATION_COUNT Windower Pixels Shaded WM

PS_DEPTH_COUNT “Visible” pixels WM+CC

All the 3D FF units perform some part of the statistics gathering. At the 3D FF unit level, this function is
controlled by the Statistics Enable bit in each unit’s pipeline state (except VF, which has no pipeline

58 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

state and uses a dedicated command). Refer to the individual FF unit chapters for details on the statistics
gathered.

Tracking of these statistics should be enabled by SW anytime the 3D pipeline is operating. A control to
disable statistics gathering is provided in case the driver wishes to render primitives that are not initiated
by the API (to support a stretch blit, for example). Statistics are gathered on behalf of the API and
primitives it does not initiate should not affect the statistics in any way. Each FF unit has an individual
control to disable statistics gathering. Normally these controls should all be set and reset as a group; in
other words the Statistics Enable bits in the different FFs state descriptors that are loaded with one PSP
command should be the same. The individual controls exist only to make the hardware implementation
more straightforward. A single control would require state shared amongst all the FF units, something
that isn’t currently supported.

[Pre-DevCTG]:

There is a mismatch between what DX10 requires for certain pipeline statistics counters and what the
device is counting.

 DX10

o GSPrimitives: DX10 requires a count of primitives output by GS shaders. This does not
include primitives flowing thru the GS stage when the GS shader is NULL, at least when
StreamOutput is also disabled. (Whether or not streamed-out primitives are counted
when the GS shader is NULL is undefined).

o CInvocations: DX10 requires a count of primitives that are submitted for rasterization
(which starts with clip-test/clipping), regardless of whether they are trivially-accepted,
trivially-rejected, or must-clip cases. Primitives issued when rasterization is disabled are
not counted.

 [Pre-DevCTG]

o GS_PRIMITIVES_COUNT: The device counts primitives which reach the Clip FF unit, as
enabled via SF_STATE.GSOutputObjectStatisticEnable.

 SW can use this counter to support GSPrimitives assuming it is enabled only
when the GS shader is enabled.

 SW can use this counter to support CInvocations assuming it is enabled given
the following exceptions/caveats: (a) it is disabled when the driver renders non-
app-issued primitives, and (b) when rasterization is disabled either the counter is
disabled or software must ensure that primitives are not emitted by the GS unit.

o CLIP_INVOCATIONS_COUNT: This HW counter is counting Clip thread dispatches.
There is no corresponding DX10 pipeline statistic counter, so this counter is effectively
useless except for internal uses (perfmon, etc.).

Given the above descriptions, software can use GS_PRIMITIVES_COUNT to support either GSPrimitives
or CInvocations, but not both simultaneously. (CLIP_INVOCATIONS_COUNT cannot be used to support
either.) Therefore software needs to get creative to support “the other” counter.

Given that GSPrimitives should only include GS shader-produced primitives, it seems natural for software
to (a) use the GS kernel to support GSPrimitives and (b) use GS_PRIMITIVES_COUNT to support
CInvocations (which includes GS-enabled and GS-disabled primitives). The GS kernel could be
enhanced to increment a per-context, memory-resident GSPrimitives counter, using DataPort to

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 59

read/write the counter from the GS thread. This is similar to how the GS kernel implements the SVBI
indices and the StreamOutput statistics counters. In order to permit two concurrent GS threads, the GS
kernel can use the FFTID bit of the GS thread payload to modify one of two thread-slot-specific counters
in memory. Without this (or similar) mechanism, only one outstanding GS thread could be permitted at
any given time in order to prevent collisions on incrementing a single memory-resident counter.

1.7 Synchronization of the 3D Pipeline
Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top of
the pipe synchronization really enforces the read-only cache invaliadation. This synchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not
have outstanding hardware accesses. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through the pipeline (and
without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is used
to perform all of above synchronizations.

1.7.1 Top-of-Pipe Synchronization
The driver can use top-of-pipe synchronization to invalidate read-only caches in hardware. This operation
is performed only after determining that no pending accesses from the hardware exist on these read-only
buffers. PIPE-CONTROL aommnd described below allows for invalidating individual read-only buffer type.
It is recommended that driver invalidates only the required caches on the need basis so that cache warm-
up overhead can be reduced.

1.7.2 End-of-Pipe Synchronization
The driver can use end-of-pipe synchronization to know that rendering is complete (although not
necessarily in memory) so that it can de-allocate in-memory rendering state, read-only surfaces,
instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee
that all pending depth tests have completed so that the visible pixel count is complete prior to storing it to
memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events are
complete (a “read fence” completion). Read events are still pending if work in the pipeline requires any
type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render cache
and/or depth erlated caches are flushed to memory, where the data will become globally visible. This
type of synchronization is required prior to SW (CPU) actually reading the result data from memory, or
initiating an operation that will use as a read surface (such as a texture surface) a previous render target
and/or depth/stencil buffer.

1.7.3 Synchronization Actions
In order for the driver to act based on a synchronization point (usually the whole point), the reaching of
the synchronization point must be communicated to the driver. This section describes the actions that
may be taken upon completion of a synchronization point which can achieve this communication.

60 Doc Ref #: IHD-OS-V2 Pt1 – 05 11

1.7.3.1 Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be written. In lieu of an
immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register
may be written out to memory. The captured value will be the value at the moment all primitives parsed
prior to the synchronization commands have been completely rendered, and optionally after all said
primitives have been pushed to memory. It is not required that a value be written to memory by the
synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these
counters are free-running and are not to be reset except at initialization. To obtain the delta, two
PIPE_CONTROL commands should be initiated with the command sequence to be measured between
them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

1.7.3.1.1 PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global visible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are stalled
at that point in the pipeline. This prevents the subsequent primitives from affecting the visible pixel count
until all primitives preceding the synchronization point reach the end of the pipeline, the visible pixel count
is accurate and the synchronization is completed. This stall has a minor effect on performance and
should only be used in order to obtain accurate “visible pixel” counts for a sequence of primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) “Occlusion Query” function.

1.7.3.2 Generating an Interrupt

The synchronization command may indicate that a “Sync Completion” interrupt is to be generated (if
enabled by the MI Interrupt Control Registers – see Memory Interface Registers) once the rendering of all
prior primitives is complete. Again, the completion of rendering can be considered to be when the internal
render cache has been updated, or when the cache contents are visible in memory, as selected by the
command options.

1.7.3.3 Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse
referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure rendering is
complete. If additional primitives are initiated after new data is laid over the top of old in memory
following a synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used.
(See PIPE_CONTROL description below).

1.7.4 PIPE_CONTROL Command
The PIPE_CONTROL command is used to effect the synchronization described above. Parsing of a
PIPE_CONTROL command stalls 3D pipe only if the stall enable bit is set. Commands after

Doc Ref #: IHD-OS-V2 Pt1 – 05 11 61

PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may include
additional PIPE_CONTROL commands. The implementation does enforce a practical upper limit
[DevSNB B+] (8) [DevSNB A] (7) on the number of PIPE_CONTROL commands that may be outstanding
at once. Parsing of a PIPE_CONTROL command that causes this limit to be reached will stall the parsing
of new commands until the first of the outstanding PIPE_CONTROL commands reaches the end of the
pipe and retires.

Note that although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue
PIPE_CONTROL when the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of
the pipe until the Media FFs finish processing commands parsed before PIPE_CONTROL. Post-
synchronization operations, flushing of caches and interrupts will then occur if enabled via
PIPE_CONTROL parameters. Due to this stalling behavior, only one PIPE_CONTROL command can be
outstanding at a time on the Media pipe.

[DevCTG+]: For the invalidate operation of the pipe control, the following pointers are affected. The
invalidate operation affects the restore of these packets. If the pipe control invalidate operation is
completed before the context save, the indirect pointers will not be restored from memory.

1. Pipeline State Pointer

2. Media State Pointer

3. Constant Buffer Packet

[DevSNB+] Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e.
decision is done in software, not hardware) Note that the index-based vertex cache is always flushed
between primitive topologies and of course PIPE_CONTROL can only be issued between primitive
topologies. Therefore only the VF (“address-based”) cache is uniquely affected by PIPE_CONTROL.

62 Doc Ref #

1.7.4.1 PIPE_CONTROL [DevSNB+]

 [DevSNB B+] Hardware can support up to 8 pending PIPE_CONTROL flushes

 [DevSNB A] Hardware can support 7 pending PIPE_CONTROL flushes

 [DevSNB:A{W/A}] When performing a PIPE_CONTROL with TLB invalidate, the driver must
follow the current programming below. Without this, hardware cannot guarantee the command
after the PIPE_CONTROL w/ TLB inv will not use the old TLB values.

Ring/Batch Contents [DevSNB:A]

PIPE_CONTROL w/ stall (20) and TLB inv bit (18) set

6 Store Data Commands (such as MI_STORE_DATA_IMM or MI_STORE_DATA_INDEX)

PIPE_CONTROL w/ stall bit (20) set

 [DevSNB:B+{W/A}] When performing a PIPE_CONTROL with TLB invalidate, the driver must
follow the current programming below. Without this, hardware cannot guarantee the command
after the PIPE_CONTROL w/ TLB inv will not use the old TLB values.

Ring/Batch Contents [DevSNB:B/C+]

2 Store Data Commands (such as MI_STORE_DATA_IMM or MI_STORE_DATA_INDEX)

PIPE_CONTROL w/ stall (20) and TLB inv bit (18) set

 [DevSNB:A{W/A}] If bit 13 of MI_MODE is ‘0’, pipelined PIPE_CONTROLs cannot be between
multiple non-pipelined state if there are no 3DPRIMITIVE commands previously. Legal and illegal
examples below

Ring/Batch Contents - ILLEGAL

3DPRIMITIVE

np-state

pipelined (bit 20 = ‘0’) PIPE_CONTROL

np-state

3DPRIMITIVE

Ring/Batch Contents - LEGAL

3DPRIMITIVE

np-state

3DPRIMITIVE

pipelined (bit 20 = ‘0’) PIPE_CONTROL

Doc Ref # 63

Ring/Batch Contents - LEGAL

np-state

3DPRIMITIVE

 [DevSNB-A{W/A}] For all PIPE_CONTROLs that only have RO cache invalidation, software
must set the post-sync operation field to something other than 0

 [DevSNB-A {W/A}] For all PIPE_CONTROLs that has Stall At Pixel Scoreboard set, software
must also set either the Depth Stall bit or the CS Stall bit.

 DevSNB A {W/A}] [DevSNB B {W/A}] Before any depth stall flush (including those produced by
non-pipelined state commands), software needs to first send a PIPE_CONTROL with the CS
Stall bit set. CS Stall restrictions still apply, except for setting the Depth Stall bit. This bit cannot
be set on this PIPE_CONTROL.

 [DevSNB-C+{W/A}] Before any depth stall flush (including those produced by non-pipelined state
commands), software needs to first send a PIPE_CONTROL with no bits set except Post-Sync
Operation != 0.

 [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable =1, a
PIPE_CONTROL with any non-zero post-sync-op is required.

 Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent BEFORE the pipe-control with a
post-sync op and no write-cache flushes.

64 Doc Ref #

Table 9. Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

The table below explains all the different flush/invalidation scenerios for DevSNB+

Write
cache
flush

Notification
Enabled

non-VF
RO Cache
Invalidate

VF RO
Cache

Invalidate

Marker
Sent

pipeline
marker
enable

Completion
Requested

Top of
pipe

invalidate
pulse from

CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

PIPE_CONTROL
Project: DevSNB+ Length Bias: 2
The PIPE_CONTROL command is used to effect the synchronization described above.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 2h PIPE_CONTROL Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0h PIPE_CONTROL Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h 3h for QWord Write

Format: =n Total Length - 2

Project: All

1 31:26 Reserved Format: MBZ

Doc Ref # 65

PIPE_CONTROL
25 Reserved Format: MBZ

24 Reserved Project: DevSNB Format: MBZ

23 Reserved

22 Protected Memory Enable Project: All Format: U1

After completion of the flush, the hardware will limit all access to the Protected Content
Memory. Only command streamer initiated cacheable writes are allowed to non-PCM
memory.

Programming Note:

This bit is ignored if only read-only invalidate bits are set (no write flush, depth stall, or
post-sync op)

[DevSNB D+] Once set, it can only be cleared at the end of a batch buffer with Clear
Command Buffer Enable bit set. This applies to soft resets also, including FLR

[pre-DevSNB D] This bit is always set/cleared by the PIPE_CONTROL command with write
flush, depth stall, or post-sync op set.

21 Store Data Index Project: All Format: U1

This field is valid only if the post-sync operation is not 0. If this bit is set, the store data
address is actually an index into the hardware status page.

This bit only applies to the Global HW status page. If this field is set to ‘1’, the Destination
Address Type in this command must be set to ‘1’ (GGTT)

If this bit is set, this command will index into the per-process hardware status page if
executed from within a non-secure batch buffer and if the Per-Process Virtual Address
Space bit is set. Else the Global HW status page is used.

20 CS Stall Project: All Format: U1

If ENABLED, the sync operation will not occur until all previous flush operations pending a
completion of those previous flushes will complete, including the flush produced from this
command. This enables the command to act similar to the legacy MI_FLUSH command.

66 Doc Ref #

PIPE_CONTROL
19 Global Snapshot Count Reset

Project: All

Format: U1

SW should never set this bit during normal operation since the Statistics Counters are
intended to be free running.

Value Name Description Project

0h Don’t Reset Do not reset the snapshot counts or
Statistics Counters.

All

1h Reset Reset the snapshot count for all the
units and reset the Statistics Counters
except as noted above.

All

Programming Notes

PS_DEPTH_COUNT and TIMESTAMP are not reset by PIPE_CONTROL with this bit
set. TIMESTAMP and PS_DEPTH_COUNT can be reset by writing 0 to them

18 TLB Invalidate Project: All Format: U1

If ENABLED, all TLBs will be invalidated once the flush operation is complete. Note that if
the flush TLB invalidation mode is clear, a TLB invalidate will occur irrespective of this bit
setting

17 Synchronize GFDT Surface Project: All Format: U1

If enabled, at the end of the current flush the last level cache is cleared of all the cachelines
which have been marked with the special GFDT flags. Store DW must be enabled.

16 Generic Media State Clear Project: DevSNB+ Format: Disable

If set, all generic media state context information will not be included with the next context
save, assuming no new state is initiated after the flush. If clear, the generic media state
context save state will not be affected. An MI_FLUSH with this bit set should be issued
once all the Media Objects that will be processed by a given persistent root thread have
been issued or when an MI_SET_CONTEXT switching from a generic media context to a
3D context completes. When using MI_SET_CONTEXT, once state is programmed, it will
be saved and restarted as part of any context each time that context is saved/restored until
an MI_FLUSH with this bit set is issued in that context.

Doc Ref # 67

PIPE_CONTROL
15:14 Post-Sync Operation

Project: All

This field must be cleared if the LRI Post-Sync Operation bit is set.

Value Name Description Project

0h No Write No write occurs as a result of this
instruction. This can be used to
implement a “trap” operation, etc.

All

1h Write
Immediate
Data

Write the QWord containing Immediate
Data Low, High DWs to the Destination
Address

All

2h Write PS
Depth Count

Write the 64-bit PS_DEPTH_COUNT
register to the Destination Address

All

3h Write
Timestamp

Write the 64-bit TIMESTAMP register to
the Destination Address

All

Programming Notes

If executed in non-secure batch buffer, the address given will be in a PPGTT address
space. If in a secure ring or batch, address given will be in GGTT space

13 Depth Stall Enable

Project: All

Format: Enable

This bit should be set when obtaining a “visible pixel” count to preclude the possible
inclusion in the PS_DEPTH_COUNT value written to memory of some fraction of pixels
from objects initiated after the PIPE_CONTROL command.

Value Name Description Project

0h Disable 3D pipeline will not stall subsequent
primitives at the Depth Test stage.

All

1h Enable 3D pipeline will stall any subsequent
primitives at the Depth Test stage until
the Sync and Post-Sync operations
complete.

All

Programming Notes

This bit should be DISABLED for operations other than writing PS_DEPTH_COUNT.

This bit will have no effect (besides preventing write cache flush) if set in a
PIPE_CONTROL command issued to the Media pipe.

68 Doc Ref #

PIPE_CONTROL
12 Render Target Cache Flush Enable

Project: All

Format: Enable

Setting this bit will force Render Cache to be flushed to memory prior to this
synchronization point completing. This bit should be set for all write fence sync operations
to assure that results from operations initiated prior to this command are visible in memory
once software observes this synchronization.

Value Name Description Project

0h Disable Flush Render Target Cache is NOT flushed. All

1h Enable Flush Render Target Cache is flushed. All

Programming Notes

This bit should be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or
TIMESTAMP queries.

This bit must not be set when Depth Stall Enable bit is set in this packet.

11 Instruction Cache Invalidate
Enable

Project: All Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the
invalidation of the L1 and L2 at the top of the pipe i.e. at the parsing time.

10 Texture Cache Invalidation Enable Project: All Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the
invalidation of the texture caches at the top of the pipe i.e. at the parsing time.

9 Indirect State Pointers Disable Project: All Format: Enable

At the completion of the post-sync operation associated with this pipecontrol packet, the
indirect state pointers in the hardware will be considered as invalid ie the indirect pointers
will not be saved in the context. If any new indirect state commands are executed in the
command stream while the pipe control is pending, the new indirect state commands will
be preserved.

[pre-DevSNB C] It is considered UNDEFINED if there is a PIPE_CONTROL with this bit set
before any pipelined state in any context is set. For instance, it is not allowed to send a
PIPE_CONTROL with this bit set as a first command coming out of reset.

[pre-DevSNB C] It is considered UNDEFINED to have more than 1 PIPE_CONTROL with
this bit set for every 1 configuration of pipeline state.

Doc Ref # 69

PIPE_CONTROL
8 Notify Enable Project: All Format: Enable

If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt
Control registers) once the sync operation is complete. See Interrupt Control Registers in
Memory Interface Registers for details.

7 Reserved Project: Format:

6 Protected Memory Application ID

Project: DevSNB+

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

Context ID for Media Applications

5 Reserved Project: Format:

4 VF(address based) Cache
Invalidation Enable

Project: All Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the
invalidation of VF address based cache at the top of the pipe i.e. at the parsing time.

3 Constant Cache Invalidation
Enable

Project: All Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the
invalidation of the constant cache at the top of the pipe i.e. at the parsing time.

2 State Cache Invalidation Enable Project: All Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the
invalidation of the L1 and L2 state caches at the top of the pipe i.e. at the parsing time.

70 Doc Ref #

PIPE_CONTROL
1 Stall At Pixel Scoreboard

Project: All

Format: Enable

Defines the behavior of PIPE_CONTROL command at the pixel scoreboard.

Value Name Description Project

0h Disable Stall at the pixel scoreboard is disabled. All

1h Enable Stall at the pixel scoreboard is enabled. All

Programming Notes

This bit should be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or
TIMESTAMP queries. This bit is ignored if Depth Stall Enable is set. Further the render
cache is not flushed even if Write Cache Flush Enable bit is set.

0 Depth Cache Flush Enable

Project: All

Format: Enable

Setting this bit enables flushing (i.e. writing back the dirty lines to memory and invalidating
the tags) of depth related caches. This bit applies to HiZ cache, Stencil cache and depth
cache.

Value Name Description Project

0h Flush
Disabled

Depth relates caches (HiZ, Stencil and
Depth) are NOT flushed.

All

1h Flush Enabled Depth relates caches (HiZ, Stencil and
Depth) are flushed.

All

Programming Notes

Ideally depth caches need to be flushed only when depth is required to be coherent in
memory for later use as a texture, source or honoring CPU lock. This bit should be
DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or TIMESTAMP queries.

This bit must not be set when Depth Stall Enable bit is set in this packet.

Doc Ref # 71

PIPE_CONTROL
2 31:3 Address

Project: DevSNB

Address: GraphicsAddress[31:3]

Surface Type: U32

This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. As
the store address must be DWord-aligned, Bits 1:0 of that address MBZ. This address
must be 8B aligned for a store “QW” command.

2 Destination Address Type

Project: DevSNB

Defines address space of Destination Address

Value Name Description Project

0h Reserved

1h GGTT Use GGTT address space for DW write All

Programming Notes

Ignored if “No write” is the selected in Operation.

1:0 Reserved Project: All Format: MBZ

3..4 31:0 Immediate Data

Project: All

Format: U32

This field specifies the DWord value to be written to the targeted location. DW3 is the
lower DW. Only valid when LRI Post-Sync Operation is set.

72 Doc Ref #

1.7.4.2 [DevSNB+] Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

 Post-sync operations

 Flush Types

 Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid

1.7.4.2.1 Post-Sync Operation

These are arguments related to events that occur after the marker initiated by the PIPE_CONTROL
command is completed. The table below shows the restrictions:

Arguments Bit Restrictions

Protected Mem Enable 22 Requires stall bit ([20] of DW1) set.

Global Snapshot Count Reset 19 Requires stall bit ([20] of DW1) set.

Generic Media State Clear 16 Requires stall bit ([20] of DW1) set.

Indirect State Pointers Disable 9 Requires stall bit ([20] of DW1) set.

Store Data Index 21 Post-Sync Operation ([15:14] of DW1) must be set to something
other than ‘0’

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something
other than ‘0’ or 0x2520[13] must be set

TLB inv 18 Post-Sync Operation ([15:14] of DW1) must be set to something
other than ‘0’. Already implied when 0x2520[13] is set

Post Sync Op 15:14 No Restriction

Notify En 8 No Restriction

Doc Ref # 73

1.7.4.2.2 Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync operation
or the stall bit. The table below shows the restrictions:

Arguments Bit Restrictions

Depth Stall 13 Following bits must be clear

 Render Target Cache Flush Enable ([12] of DW1)

 Depth Cache Flush Enable ([0] of DW1)

Render Target Cache Flush 12 Depth Stall must be clear ([13] of DW1)

Depth Cache Flush 0 Depth Stall must be clear ([13] of DW1)

Stall Pixel Scoreboard 1 No Restriction

Inst invalidate. 11 No Restriction

Tex invalidate. 10 No Restriction

VF invalidate 4 No Restriction

Constant invalidate 3 No Restriction

State Invalidate 2 No Restriction

1.7.4.2.3 Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments Bit Restrictions

Stall Bit 20 1 of the following must also be set

 Render Target Cache Flush Enable ([12] of DW1)

 Depth Cache Flush Enable ([0] of DW1)

 Stall at Pixel Scoreboard ([1] of DW1)

 Depth Stall ([13] of DW1)

 Post-Sync Operation ([13] of DW1)

 Notify Enable ([8] of DW1)

74 Doc Ref #

2. Vertex Fetch (VF) Stage

2.1 Vertex Fetch (VF) Stage Overview
The VF stage performs one major function: executing 3DPRIMITIVE commands. This is handled by the
VF’s InputAssembly function. Minor enhancements have been included to better support legacy D3D
APIs as well as OpenGL.

The following subsections describe some high-level concepts associated with the VF stage.

2.1.1 Input Assembly
The VF’s InputAssembly function includes (for each vertex generated):

 Generation of VertexIndex and InstanceIndex for each vertex, possibly via use of an Index Buffer.

 Lookup of the VertexIndex in the Vertex Cache (if enabled)

 If a cache miss is detected:

o Use of computed indices to fetch data from memory-resident vertex buffers

o Format conversion of the fetched vertex data

o Assembly of the format conversion results (and possibly some internally generated data)
to form the complete “input” (raw) vertex

o Storing the input vertex data in a Vertex URB Entry (VUE) in the URB

o Output of the VUE handle of the input vertex to the VS stage

 If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage
(marked as a cache hit to prevent any VS processing).

2.1.1.1 Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the
vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description
of the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each
DWord is considered a “component” of the vertex element. The starting destination DWord offset of the
vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with
monotonically increasing VUE offsets. For each component, the source of the component is specified.
The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstanceID or PrimitiveID), or a

Doc Ref # 75

component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the case
of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source data
with that VB are specified.

The VF’s Vertex Assembly process can be envisioned as the VF unit stepping through the
VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if
memory resident), and storing the results in the destination VUE.

2.1.2 Vertex Cache
The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D
pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D pipeline
results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,
and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual
vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either
case, the contents of the cache (VUE handles) are tagged with the VertexIndex value used to fetch the
input vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or
parameters change) a vertex with the same VertexIndex as a previous vertex will have the same input
data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition), or
any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the Vertex
Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one instance per
3DPRIMITIVE command and the inclusion of instance data in the input vertex) will effectively invalidate
the cache between instances, as the InstanceIndex is not included in the cache tag. See Vertex Caching
in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly disabled, etc.)

2.1.3 Input Data: Push Model vs. Pull Model
Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from
memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into
the front of the pipeline or defer the data access (pull) to the shaders that require it.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always
better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data
fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB
entries which will be holding redundant data (as the instance data for vertices of an object are by
definition the same). Regardless, the 3D pipeline supports both models.

2.1.4 Generated IDs
[Note that the generated IDs are considered separate from any offset computations performed by the VF
unit, and are therefore described separately here.]

The VF generates InstanceID, VertexID, and PrimitiveID values as part of the InputAssembly process.

VertexID and InstanceID are only allowed to be inserted into the input vertex data as it is gathered and
written into the URB as a VUE.

76 Doc Ref #

The definition/use of PrimitiveID is more complicated than the other auto-generated IDs. PrimitiveID is
associated with an “object”, not a particular vertex. It is only available to the GS as a special non-vertex
input, and the PS as a constant-interpolated attribute. It is not seen by the VS at all. The PrimitiveID
therefore is kept separate from the vertex data. Take for example a TRILIST primitive topology: It should
be possible to share vertices between triangles in the list (i.e., reuse the VS output of a vertex), even
though each triangle has a different PrimitiveID associated with it.

2.1.4.1 Generated IDs [DevSNB]

The InstanceID, VertexID, and PrimitiveID values associated with each vertex can be stored in the
vertex’s VUE, via use of the Component n Control fields in the VERTEX_ELEMENT structure. This
makes the value(s) available to the VS thread.

[DevSNB+]: While the PrimitiveID can still be stored in the VUE (see above), there should be no API-
specific reason to do so. The 32-bit PrimitiveIDs associated with objects are passed down the FF
pipeline and made available to GS and Setup threads as payload header data. A side effect of this
feature is that the vertex cache can operate even when PrimitiveIDs are being used.

2.2 Index Buffer (IB)
The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in subsequent
3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB.
The IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8,
16 or 32-bit index values. These index values will be fetched by the InputAssembly function, and
subsequently used to compute locations in VERTEXDATA buffers from which the actual vertex data is to
be fetched. (This is opposed to the SEQUENTIAL access mode were the vertex data is simply fetched
sequentially from the buffers).

Software is responsible for ensuring that accesses outside the IB do not occur. This is possible as
software can compute the range of IB values referenced by a 3DPRIMITIVE command (knowing the
StartVertexLocation, InstanceCount, and VerticesPerInstance values) and can then compare this
range to the IB extent.

Doc Ref # 77

2.2.1 3DSTATE_INDEX_BUFFER [DevSNB+]

3DSTATE_INDEX_BUFFER
Project: All Length Bias: 2

This command is used to specify the current IB state used by the VF function. At most one IB is defined and
active at any given time.

NOTES:

The IB must be specified before any RANDOM 3D_PRIMITIVE commands are issued

It is possible to have vertex elements source completely from generated ID values and therefore not require
any Index Buffer accesses. In this case, VF function will simply ignore the Index Buffer state.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType

Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default
Value:

0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default
Value:

0Ah 3DSTATE_INDEX_BUFFER Format: OpCode

15:12 Index Buffer Object Control State

Project: [DevSNB+]

Format: MEMORY_OBJECT_CONTROL_
STATE

FormatDesc

Specifies the memory object control state for this index buffer.

11 Reserved Project: All Format: MBZ

78 Doc Ref #

3DSTATE_INDEX_BUFFER
10 Cut Index Enable

Project: [DevSNB+]

Format: Enable FormatDesc

If ENABLED, the largest index value (0xFF,0xFFFF,0xFFFFFFFF, depending on
Index Format) is interpreted as the “cut” index. (See description of this elsewhere
in this section). If DISABLED, there is no special “cut” index value, and the largest
index value is simply used as an index. (Expected OpenGL driver usage)

This field can only be enabled for certain primitive topology types. Refer to the
table later in this section for details.

9:8 Index Format

Project: All

Format: U2 enumerated type FormatDesc

This field specifies the data format of the index buffer. All index values are
UNSIGNED.

Value Name Description Project

0h INDEX_BYTE All

1h INDEX_WORD All

2h INDEX_DWORD All

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

Doc Ref # 79

3DSTATE_INDEX_BUFFER
1 31:0 Buffer Starting Address

Project: All

Address: GraphicsAddress[31:0]

Surface Type: Index Buffer Entry

This field contains the size-aligned (as specified by Index Format) Graphics
Address of the first element of interest within the index buffer. Software must
program this value with the combination (sum) of the base address of the memory
resource and the byte offset from the base address to the starting structure within
the buffer.

Programming Notes

Index Buffers can only be allocated in linear (not tiled) graphics memory

2 31:0 Buffer Ending Address

Project: All

Address: GraphicsAddress[31:0]

If non-zero, this field contains the address of the last valid byte in the index buffer.
Any index buffer reads past this address returns an index value of 0 (as if the
index buffer was zero-extended). Software must guarantee that the buffer ends on
an index boundary (e.g., for an INDEX_DWORD buffer, Bits [1:0] == 11b).

80 Doc Ref #

The following table lists which primitive topology types support the presence of Cut Indices. When
3DSTATE_INDEX_BUFFER has Cut Index Enable set, it is UNDEFINED to issue a 3DPRIMITIVE with a
primitive topology type not supporting a Cut Index (even if no cut indicies are actually present in the index
buffer).

Definition Cut Index?

3DPRIM_POINTLIST Y

3DPRIM_LINELIST Y

3DPRIM_LINESTRIP Y

3DPRIM_TRILIST Y

3DPRIM_TRISTRIP Y

3DPRIM_TRIFAN DevSNB: N

3DPRIM_QUADLIST DevSNB: N

3DPRIM_QUADSTRIP DevSNB: N

3DPRIM_LINELIST_ADJ Y

3DPRIM_LINESTRIP_ADJ Y

3DPRIM_TRILIST_ADJ Y

3DPRIM_TRISTRIP_ADJ Y

3DPRIM_TRISTRIP_REVERSE Y

3DPRIM_POLYGON DevSNB: N

3DPRIM_RECTLIST N

3DPRIM_LINELOOP DevSNB: N

3DPRIM_POINTLIST_BF Y

3DPRIM_LINESTRIP_CONT Y

3DPRIM_LINESTRIP_BF Y

3DPRIM_LINESTRIP_CONT_BF Y

3DPRIM_TRIFAN_NOSTIPPLE N

3DPRIM_PATCHLIST_n DevSNB: N

Doc Ref # 81

2.2.2 Index Buffer Access
The figure below illustrates how the Index Buffer is accessed.

B6825-01

3DPRIM.StartingVertexLocation
x PitchInBytes

IBState.StartingBufferAddress

Index[v0]

Index[v1]

Index[vn-1]

PitchInBytes
(function of IBState.IndexFormat)

IBInstanceRestartAddress

(restart here each instance

3DPRIM.VertexCountPerInstance

82 Doc Ref #

2.3 Vertex Buffers (VBs)
The 3DSTATE_VERTEX_BUFFERs and 3DSTATE_INSTANCE_STEP_RATE commands are used to
define Vertex Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D arrays of structures, where
the size of the structure as defined by the VB’s BufferPitch. VBs are accessed either as VERTEXDATA
buffers or INSTANCEDATA buffers, as defined by the VB’s BufferAccessType. The VB’s access type
will determine whether the VF-computed VertexIndex or InstanceIndex is used to access data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided by
an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect
accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

2.3.1 3DSTATE_VERTEX_BUFFERS
This command is used to specify VB state used by the VF function. From 1 to 33 VBs can be specified,
where the VertexBufferID field within the VERTEX_BUFFER_STATE structure(s) indicate the specific
VB. If a VB definition is not included in this command, its associated state is left unchanged and
available for use if previously defined.

NOTES:

 It is possible to have individual vertex elements sourced completely from generated ID values and
therefore not require any vertex buffer accesses for that vertex element. In this case, VF function
will simply ignore the VB state associated with that vertex element. If all enabled vertex elements
have this characteristic, no VBs are required to process 3DPRIMITIVE commands. For example,
this might arise when the user wants to perform all data lookups in the first shader, so only
generated index values need to be passed down to it. In this extreme case, SW would not need
to program any VB state, and therefore not need to issue any 3DSTATE_VERTEX_BUFFERS
commands.

 For any 3DSTATE_VERTEX_BUFFERS command, at least one VERTEX_BUFFER_STATE
structure must be included.

 VERTEX_BUFFER_STATE structures are 4 DWords for both VERTEXDATA buffers and
INSTANCEDATA buffers.

 Inclusion of partial VERTEX_BUFFER_STATE structures is UNDEFINED.

The order in which VBs are defined within this command can be arbitrary, though a vertex buffer must be
defined only once in any given command (otherwise operation is UNDEFINED).

Doc Ref # 83

DWord Bit Description

0 31:29 Command Type = GFXPIPE = 03h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_BUFFERS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 08h] (Pipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (excludes DWords 0,1)

4n-1 (where n = # of buffer states included)

1-4 Vertex Buffer State [0]

Format: VERTEX_BUFFER_STATE

5-8 Vertex Buffer State [1]

… …

(4n-3)-
(4n)

 Vertex Buffer State [..]

2.3.2 VERTEX_BUFFER_STATE Structure

2.3.2.1 VERTEX_BUFFER_STATE Structure [DevSNB]

VERTEX_BUFFER_STATE
Project: DevSNB

This structure is used in 3DSTATE_VERTEX_BUFFERS to set the state associated with a VB. The VF
function will use this state to determine how/where to extract vertex element data for all vertex elements
associated with the VB.

The VERTEX_BUFFER_STATE structure is 4 DWords for both INSTANCEDATA and VERTEXDATA
buffers.

A VB is defined as a 1D array of vertex data structures, accessed via a computed index value. The VF function
therefore needs to know the starting address of the first structure (index 0) and size of the vertex data structure.
[DevILK+] Vertex element accesses which straddle or go past the VB’s End Address will return 0’s for all elements.

84 Doc Ref #

VERTEX_BUFFER_STATE
DWord Bit Description

0 31:26 Vertex Buffer Index

Project: [DevSNB+]

Format: U6 index FormatDesc

Address: GraphicsAddress[31:0]

Range [0,32]

This field contains an index value which selects the VB state being defined.

25:21 Reserved Project: All Format: MBZ

20 Buffer Access Type

This field determines how vertex element data is extracted from this VB. This
control applies to all vertex elements associated with this VB.

Value Name Description Project

00 VERTEXDATA For SEQUENTIAL vertex access,
each vertex of an instance is
sourced from sequential
structures within the VB. For
RANDOM vertex access, each
vertex of an instance is looked up
(separately) via a computed index
value

All

01 INSTANCEDATA Each vertex of an instance is
sourced with the same (instance)
data. Subsequent instances may
be sourced with the same or
different data, depending on
Instance Data Step Rate.

All

19:16 Vertex Buffer Memory Object Control State

Project All

Format: MEMORY_OBJECT_CONTROL_
STATE

FormatDesc

Specifies the memory object control state for this vertex buffer.

Doc Ref # 85

VERTEX_BUFFER_STATE
15 Reserved Project: All Format: MBZ

14 Reserved: MBZ

13 Null Vertex Buffer.

Project: [DevILK+]

Format: Enable FormatDesc

This field enabled causes any fetch for vertex data to return 0.

12 bitfieldname

Project: [DevCTG+]

Security: None

Access: None

Exists If: Always

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: U32 FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

Invalidate the Vertex overfetch cache when this bit is set. For multiple vertex buffer
state structures in one packet, this bit may be set only once in the entire packet.

[Pre-DevCTG]: Reserved

86 Doc Ref #

VERTEX_BUFFER_STATE
11:0 Buffer Pitch

Format: U12 FormatDesc Count of
bytes

Range [Pre-DevCTG]: [0,2047] Bytes

[DevCTG+]: [0,2048] Bytes

This field specifies the pitch in bytes of the structures accessed within the VB.
This information is required in order to access elements in the VB via a structure
index.

Programming Notes

Different VERTEX_BUFFER_STATE structures can refer to the same memory
region using different Buffer Pitch values.

See note on 64-bit float alignment in Buffer Starting Address.

1 31:0 Buffer Starting Address

Format: GraphicsAddress[31:0] FormatDesc

Address: GraphicsAddress[31:0]

This field contains the byte-aligned Graphics Address of the first element of
interest within the VB. Software must program this value with the combination
(sum) of the base address of the memory resource and the byte offset from the
base address to the starting structure within the buffer.

Programming Notes

64-bit floating point values must be 64-bit aligned in memory, or
UNPREDICTABLE data will be fetched. When accessing an element containing
64-bit floating point values, the Buffer Starting Address and Source Element
Offset values must add to a 64-bit aligned address, and BufferPitch must be a
multiple of 64-bits.

VBs can only be allocated in linear (not tiled) graphics memory.

As computed index values are, by definition, interpreted as unsigned values,
there is no issue with accesses to locations before (lower address value) the start
of the buffer. However, these wrapped indices are subject to Max Index checking
(see below).

Doc Ref # 87

VERTEX_BUFFER_STATE
2 31:0 End Address

Project: All

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: U32 FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

[DevIL+] This field defines the address of the last valid byte in this particular VB.
Access of a vertex element which either straddles or is beyond this address will
return 0’s for any data read.

2 31:0 Max Index [Pre-DevILK]

Format: U32 FormatDesc

If non-zero (bounds-checking enabled), this field defines the maximum (inclusive)
structure index accessible for this particular VB. Use of an index larger than the
Max Index returns 0 for all components. This includes a “negative” computed index
which, when viewed as an unsigned value, exceeds Max Index.

If zero, bounds checking is disabled. A read from the vertex buffer memory is
performed regardless of the computed index.

Programming Notes

The smallest vertex buffer that can be bounds-checked is a 2-entry buffer (where
MaxIndex is programmed to 1).

88 Doc Ref #

VERTEX_BUFFER_STATE
3 31:0 Instance Data Step Rate:

Format: U32 FormatDesc

This field only applies to INSTANCEDATA buffers – it is ignored (but still present) for
VERTEXDATA buffers).

This field determines the rate at which instance data for this particular
INSTANCEDATA vertex buffer is changed in sequential instances. Only after the
number of instances specified by this field is generated is new (sequential)
instance data provided. This process continues for each group of instances
defined in the draw command. For example, a value of 1 in this field causes new
instance data to be supplied with each sequential (instance) group of vertices. A
value of 2 causes every other instance group of vertices to be provided with new
instance data. The special value of 0 causes all vertices of all instances
generated by the draw command to be provided with the same instance data.
(The same effect can be achieved by setting this field to its maximum value.)

Doc Ref # 89

2.3.3 VERTEXDATA Buffers – SEQUENTIAL Access
Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of
the byte immediately beyond the last valid byte of the buffer is determined by “VBState.EndAddress+1”.

B6826-01

3DPRIM.StartingVertexLocation
x VBState.BufferPitch

VBState.StartingBufferAddress

VertexData[v0]

VertexData[v1]

VertexData[vn-1]

VBState.BufferPitch

VBInstanceRestartAddress

(restart here each instance

3DPRIM.VertexCountPerInstance

VBState.MaxIndex
x VBState.BufferPitch

90 Doc Ref #

2.3.4 VERTEXDATA Buffers – RANDOM Access
Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of
the byte immediately beyond the last valid byte of the buffer is determined by “VBState.EndAddress+1”.

B6827-01

(VertexIndex +
3DPRIM.BaseVertexLocation)

x VBState.BufferPitch

VBState.StartingBufferAddress

VertexData[vn]

VBState.BufferPitch

VBState.MaxIndex
x VBState.BufferPitch

Doc Ref # 91

2.3.5 INSTANCEDATA Buffers
Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of
the byte immediately beyond the last valid byte of the buffer is determined by “VBState.EndAddress+1”.

B6839-01

3DPRIM.StartingInstanceLocation
x VBState.BufferPitch

VBState.StartingBufferAddress

InstanceData[0]

InstanceData[instance# div rate]

InstanceData[n]

VBState.BufferPitch

VBState.MaxIndex
x VBState.BufferPitch

Pointer advances according to
VBState.InstanceStepRate

2.4 Input Vertex Definition
The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex
data and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the
VF unit.

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored
during processing of the 3DPRIMITIVE command.

2.4.1 3DSTATE_VERTEX_ELEMENTS
This is a variable-length command used to specify the active vertex elements (up to 34 [DevSNB+]) Each
VERTEX_ELEMENT_STATE structure contains a Valid bit which determines which elements are used.

92 Doc Ref #

RESTRICTIONS/NOTES:

 At least one VERTEX_ELEMENT_STATE structure must be included.

 [Pre-DevILK] Vertex elements must be ordered by increasing Destination Element Offset.

 Inclusion of partial VERTEX_ELEMENT_STATE structures is UNDEFINED.

 SW must ensure that at least one vertex element is defined prior to issuing a 3DPRIMTIVE
command, or operation is UNDEFINED.

 There are no ‘holes’ allowed in the destination vertex: NOSTORE components must be
overwritten by subsequent components unless they are the trailing DWords of the vertex.
Software must explicitly chose some value (probably 0) to be written into DWords that would
otherwise be ‘holes’.

 Within a VERTEX_ELEMENT_STATE structure, if a Component Control field is set to something
other than VFCOMP_STORE_SRC, no higher-numbered Component Control fields may be set to
VFCOMP_STORE_SRC. In other words, only trailing components can be set to something other
than VFCOMP_STORE_SRC.

 (See additional restrictions listed in the command fields and VERTEX_ELEMENT_STATE
description).

 [DevILK+] Element[0] must be valid.

 [DevILK+] All elements must be valid from Element[0] to the last valid element. (i.e. if Element[2]
is valid then Element[1] and Element[0] must also be valid)

[DevILK+] The pitch between elements packed in the URB will always be 128 bits.

DWord Bit Description

0 31:29 Command Type = GFXPIPE = 03h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_ELEMENTS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 09h] (Pipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (excludes DWords 0,1)

Vertex Element Count = (DWord Length + 1) / 2

1-2 Element[0]

Format: VERTEX_ELEMENT_STATE

[3-4] Element[1]

… …

[35-36] Element[17]

... [DevSNB+]...

[67-68] [DevSNB+] Element[33]

Doc Ref # 93

2.4.2 VERTEX_ELEMENT_STATE Structure

VERTEX_ELEMENT_STATE Structure
Project: All Length Bias: 2

This structure is used in 3DSTATE_VERTEX_ELEMENTS to set the state associated with a vertex element.
A vertex element is defined as an entity supplying from 1 to 4 DWord vertex components to be stored in the
vertex URB entry. Up to 34 (DevSNB+) vertex elements are supported. The VF function will use this state,
and possibly the state of the associated vertex buffer, to fetch/generate the source vertex element data,
perform any required format conversions, padding with zeros, and store the resulting destination vertex
element data into the vertex URB entry.

DWord Bit Description

0 31:26 Vertex Buffer Index

Project: [DevSNB+]

Format: U6 FormatDesc

Range [0,32] (Up to 33 VBs are supported)

This field specifies which vertex buffer the element is sourced from.

Programming Notes

It is possible for a vertex element to include only internally-generated data (VertexID,
etc.), in which case the associated vertex buffer state is ignored.

25 Valid

Project: [DevSNB+]

Format: Boolean FormatDesc

Value Name Description Project

0h TRUE this vertex element is used in vertex
assembly

All

1h FALSE this vertex element is not used. All

94 Doc Ref #

VERTEX_ELEMENT_STATE Structure
24:16 Source Element Format

Project: All

Format: The encoding of this field is identical the
Surface Format field of the
SURFACE_STATE structure, as
described in the Sampler chapter.

FormatDesc

Range Valid encodings are those marked as “Y” in the “Vertex Buffer”
column of the table of Surface Format encodings in the Sampler
chapter.

This field specifies the format in which the memory-resident source data for this particular
vertex element is stored in the memory buffer. This only applies to elements stored with
VFCOMP_STORE_SRC component control. (All other component types have an explicit
format).

15 Edge Flag Enable

Project: [DevSNB+]

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

When ENABLED, the source element is interpreted as an EdgeFlag for the vertex. If the
source element is zero, the EdgeFlag will be set to FALSE. If the source element is non-
zero, the EdgeFlag will be set to TRUE. The EdgeFlag bit will travel down the fixed function
pipeline along with the vertex handle, etc. and not be stored in the vertex data like the other
vertex elements. Refer to the fixed function descriptions for how this EdgeFlag affects
rendering.

Edge flags are supported for the following primitive topology types only, otherwise
EdgeFlagEnable must not be ENABLED.

3DPRIM_TRILIST*

3DPRIM_TRISTRIP*

3DPRIM_TRIFAN*

3DPRIM_POLYGON

Programming Notes

This bit must only be ENABLED on the last valid VERTEX_ELEMENT structure.

When set, Component 0 Control must be set to VFCOMP_STORE_SRC, and Component
1-3 Control must be set to VFCOMP_NOSTORE.

The Source Element Format must be set to the UINT format.

[DevSNB]: Edge Flags are not supported for QUADLIST primitives. Software may elect to
convert QUADLIST primitives to some set of corresponding edge-flag-supported primitive
types (e.g., POLYGONs) prior to submission to the 3D pipeline.

14:11 Reserved Project: All Format: MBZ

Doc Ref # 95

VERTEX_ELEMENT_STATE Structure
10 Source Element Offset (in bytes)

Project: All

Format: U11 byte offset

Range [0,2047

Byte offset of the source vertex element data in the structures comprising the vertex buffer.

Programming Notes

See note on 64-bit float alignment in Buffer Starting Address.

1 31 Reserved Project: All Format: MBZ

30:28 Component 0 Control

Project: All

This field specifies which value is stored for component 0 of this particular vertex element.

Valu
e

Name Description Project

0 VFCOMP_NOSTORE Don’t store this component. (Not
valid for Component 0, but can be
used for Component 1-3). Once
this setting is used for a
component, all higher-numbered
components (if any) MUST also
use this setting. (I.e., no holes
within any particular vertex
element). Also, there are no
‘holes’ allowed in the destination
vertex: NOSTORE components
must be overwritten by
subsequent components unless
they are the trailing DWords of the
vertex. Software must explicitly
chose some value (probably 0) to
be written into DWords that would
otherwise be ‘holes’.

All

96 Doc Ref #

VERTEX_ELEMENT_STATE Structure
1 VFCOMP_

STORE_SRC
Store corresponding component
from format-converted source
element. Storing a component
that is not included in the Source
Element Format results in an
UNPREDICTABLE value being
stored. Software should used the
STORE_0 or STORE_1 encoding
to supply default components.

Within a
VERTEX_ELEMENT_STATE
structure, if a Component Control
field is set to something other than
VFCOMP_STORE_SRC, no
higher-numbered Component
Control fields may be set to
VFCOMP_STORE_SRC. In other
words, only trailing components
can be set to something other
than VFCOMP_STORE_SRC.

All

2 VFCOMP_
STORE_SRC

Store 0 (interpreted as 0.0f if
accessed as a float value)

All

3 VFCOMP_
STORE_1_FP

Store 1.0f All

4 VFCOMP_
STORE_1_
INT

Store 0x1

All

5-6 - Reserved

7 VFCOMP_
STORE_PID

Store Primitive ID (as U32)
[DevSNB+]: Software should no
longer need to use this encoding
as PrimitiveID is passed down the
FF pipeline – see explanation
above).

All

27 Reserved Project: All Format: MBZ

26:24 Component 1 Control

23 Reserved Project: All Format: MBZ

22:20 Component 2 Control

19 Reserved Project: All Format: MBZ

Doc Ref # 97

VERTEX_ELEMENT_STATE Structure
18:16 Component 3 Control

15:8 Reserved Project: All Format: MBZ

7:0 Reserved Project: Format: MBZ

98 Doc Ref #

2.4.3 Vertex Element Data Path
The following diagram shows the path by which a vertex element within the destination VUE is generated
and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the generation.

B6840-01

VB0 VBi VBN

Structure from VB

VB State

VertexIndex

InstanceIndex

Vertex Buffer Index

Source Element Offset

Source Element Format Format Conversion

Component 0 Component 1 Component 2 Component 3

0
0x1
1.0f

Component Select 0...3

VertexID

InstanceID

PrimitiveID

D
W

D
W

D
W

D
W

Destination VUE Handle

Write Enables

Destination Element Offset

Doc Ref # 99

2.5 3D Primitive Processing

2.5.1 3DPRIMITIVE Command [DevSNB]

3DPRIMITIVE
Project: DevSNB Length Bias: 2

The 3DPRIMITIVE command is used to submit 3D primitives to be processed by the 3D pipeline. Typically,
the processing results in rendering pixel data into the render targets, but this result is not required.

The parameters passed in this command are forwarded to the Vertex Fetch function. The Vertex Fetch
function will use this information to generate vertex data structures and store them in the URB. These
vertices are then passed down the 3D pipeline for possible processing by the Vertex Shader, Geometry
Shader, and Clipper. If rendering is required, the computed vertices are passed down to the StripFan and
WindowerMasker units.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 3h 3DPRIMITIVE Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0h 3DPRIMITIVE Format: OpCode

100 Doc Ref #

3DPRIMITIVE
15 Vertex Access Type

Project: All

Format: VertexAccessType

This field specifies how data held in vertex buffers marked as VERTEXDATA is accessed
by Vertex Fetch.

Value Name Description Project

0h SEQUENTIAL VERTEXDATA buffers are accessed
sequentially

All

1h RANDOM VERTEXDATA buffers are accessed
randomly via an index obtained from the
Index Buffer.

All

14:10 Primitive Topology Type

Project: All

Format: 3D_PrimTopoType See table below for encoding, see
3D Overview for diagrams and
general comments

This field specifies the topology type of 3D primitive generated by this command. Note that
a single primitive topology (list/strip/fan/etc.) can contain a number of basic objects (lines,
triangles, etc.).

9 Reserved Project: DevSNB:A Format: MBZ

9 Indirect Vertex Count Project: DevCTG, DevILK Format: U1

If set, the Vertex Count Per Instance field contains the graphics memory address of the
DWord containing the vertex count. If clear, the Vertex Count Per Instance field contains
the count as immediate data.

9 Internal Vertex Count Project: DevSNB:B+ Format: U1

If set, the Vertex Count Per Instance field is ignored and the vertex count is taken from the
Internal Vertex Count state register.

8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 4h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

Doc Ref # 101

3DPRIMITIVE

1 31:0 Vertex Count Per Instance

Project: DevBW, DevCL

Format: U32 Count of Vertices

Range: [0, 2^32-1] upper limit probably constrained by VB
size

This field specifies how many vertices are to be generated for each instance of the
primitive topology.

Programming Notes

This per-instance value should specify a valid number of vertices for the primitive topology
type. E.g., for 3DPRIM_TRILIST_ADJ, this field should specify a multiple of 6 vertices.
However, in cases where too few or too many vertices are provided, the unused vertices
will be silently discarded by the pipeline.

A 0 value is this field effectively makes the command a ‘no-operation’.

31:0 Vertex Count Per Instance

Project: DevSNB+

Format: U32 Count of Vertices

Range: [0, 2^32-1] upper limit probably constrained by VB
size

This field specifies how many vertices are to be generated for each instance of the
primitive topology.

Ignored if Internal Vertex Count is set.

Programming Notes

This per-instance value should specify a valid number of vertices for the primitive topology
type. E.g., for 3DPRIM_TRILIST_ADJ, this field should specify a multiple of 6 vertices.
However, in cases where too few or too many vertices are provided, the unused vertices
will be silently discarded by the pipeline.

A 0 value is this field effectively makes the command a ‘no-operation’.

102 Doc Ref #

3DPRIMITIVE
31:0 Vertex Count Per Instance

Project: DevCTG, DevILK

Format: U32 Count of Vertices

Range: [0, 2^32-1] upper limit probably constrained by VB
size

Address: GraphicsAddress[31:0]

Surface Type: U32*1

This field specifies how many vertices are to be generated for each instance of the
primitive topology.

If Indirect Vertex Count is set:

Format = DWord-aligned Graphics Memory Address of the count value (there the count
value has the same Format/Range as listed below)

If Indirect Vertex Count is clear:

Format = U32 count of vertices

Programming Notes

This per-instance value should specify a valid number of vertices for the primitive topology
type. E.g., for 3DPRIM_TRILIST_ADJ, this field should specify a multiple of 6 vertices.
However, in cases where too few or too many vertices are provided, the unused vertices
will be silently discarded by the pipeline.

A 0 value is this field effectively makes the command a ‘no-operation’.

Doc Ref # 103

3DPRIMITIVE
31:0 BitFieldName

Project: All

Security: None

Access: None

Exists If: Always

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: U32 FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

BitFieldDesc

Value Name Description Project

0h Disable Desc All

1h Enable Desc All

2 31:0 Start Vertex Location

Project: All

Format: U32 structure index

This field specifies the “starting vertex” for each instance. This allows skipping over part of
the vertices in a buffer if, for example, a previous 3DPRIMITIVE command had already
drawn the primitives associated with the earlier entries.

For SEQUENTIAL access, this field specifies, for each instance, a starting structure index
into the vertex buffers

For RANDOM access, this field specifies, for each instance, a starting index into the Index
Buffer.

Programming Notes

Access of any data outside of the valid extent of a vertex or index buffer will return the
value 0 (i.e., appears as if the data stored at the invalid location was 0).

104 Doc Ref #

3DPRIMITIVE
3 31:0 Instance Count

Project: All

Format: U32 count of instances

Range 1..2^32-1

This field specifies the number of instances by which the primitive topology is to be
regenerated. A value of 0 is UNDEFINED. A value of 1 effectively specifies “non-
instanced” operation, though vertex buffers will still be used to provide instance data, if so
programmed.

4 31:0 Start Instance Location

Project: All

Format: U32 structure index

This field specifies the “starting instance” for the command as an initial structure index into
INSTANCEDATA buffers. Subsequent instances will access sequential instance data
structures, as controlled by the Instance Data Step Rate.

Programming Notes

Access of any data outside of the valid extent of a vertex or index buffer will return the
value 0 (i.e., appears as if the data stored at the invalid location was 0).

5 31:0 Base Vertex Location

Project: All

Format: S31 structure index bias

This field specifies a signed bias to be added to values read from the index buffer. This
allows the same index buffer values to access different vertex data for different commands.

This field applies only to RANDOM access mode. This field is ignored for SEQUENTIAL
access mode, where there Start Vertex Location can be used to specify different regions in
the vertex buffers.

Programming Notes

Access of any data outside of the valid extent of a vertex or index buffer will return the
value 0 (i.e., appears as if the data stored at the invalid location was 0).

Doc Ref # 105

The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for details,
programming restrictions, diagrams and a discussion of the basic primitive types.

Table 10. 3D Primitive Topology Type Encoding

3D_PrimTopoType
Project: DevSNB
The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for details,
programming restrictions, diagrams and a discussion of the basic primitive types.

Bit Description

4:0 Encoding

Project: All

Value Name Description Project

00h Reserved All

01h 3DPRIM_POINTLIST All

02h 3DPRIM_LINELIST All

03h 3DPRIM_LINESTRIP All

04h 3DPRIM_TRILIST All

05h 3DPRIM_TRISTRIP All

06h 3DPRIM_TRIFAN All

07h 3DPRIM_QUADLIST The QUADLIST topology is
converted to POLYGON topology
at the beginning of the 3D pipeline.

All

08h 3DPRIM_QUADSTRIP The QUADSTRIP topology is
converted to POLYGON topology
at the beginning of the 3D pipeline.

All

09h 3DPRIM_LINELIST_ADJ All

0Ah 3DPRIM_LISTSTRIP_ADJ All

0Bh 3DPRIM_TRILIST_ADJ All

0Ch 3DPRIM_TRISTRIP_ADJ All

0Dh 3DPRIM_TRISTRIP_REVERSE All

0Eh 3DPRIM_POLYGON All

0Fh 3DPRIM_RECTLIST All

10h 3DPRIM_LINELOOP The LINELOOP topology is
converted to LINESTRIP topology
at the beginning of the 3D pipeline.

All

11h 3DPRIM_POINTLIST _BF All

12h 3DPRIM_LINESTRIP_CONT All

13h 3DPRIM_LINESTRIP_BF All

14h 3DPRIM_LINESTRIP_CONT_BF All

106 Doc Ref #

3D_PrimTopoType
15h Reserved All

16h 3DPRIM_TRIFAN_NOSTIPPLE All

17h-1Fh Reserved All

2.5.2 Functional Overview
The following pseudocode summarizes the general flow of 3D Primitive Processing.

CommandInit

InstanceLoop {

 VertexLoop {

 VertexIndexGeneration

 if (CutFlag)

 TerminatePrimitive

 else

 OutputBufferedVertex

 VertexCacheLookup

 if (miss) {

 VertexElementLoop {

 SourceElementFetch

 FormatConversion

 DestinationComponentSelection

 PrimitiveInfoGeneration

 URBWrite

 }

 }

 }

 TerminatePrimitive

}

Doc Ref # 107

2.5.3 CommandInit
The InstanceID value is initialized to 0.

2.5.4 InstanceLoop
The InstanceLoop is the outmost loop, iterating through each instance of primitives. There is no special
“non-instanced” mode – at a minimum there is one instance of primitives.

For SEQUENTIAL accessing, the VertexID value is initialized to 0 at the start of each instance. (For
RANDOM accessing, there is no initial value for VertexID, as it is derived from the fetched IB value).

The PrimitiveID is also initialized to 0 at the start of each instance. StartPrim is initialized to TRUE.

The VertexLoop (see below) is then executed to iterate through the instance vertices and output vertices
to the pipeline as required.

The end of each iteration of InstanceLoop includes an implied “cut” operation.

The InstanceID value is incremented at the end of each InstanceLoop. Note that each instance will
produce the same vertex outputs with the exception of any data dependent on InstanceID (i.e., “instance
data”).

2.5.5 VertexLoop
The VertexLoop iterates VertexNumber through the VertexCountPerInstance vertices for the instance.

For each iteration, a number of processing steps are performed (see below) to generate the information
that comprises a vertex. Note that, due to CutProcessing, each iteration does not necessarily output a
vertex to the pipeline. When a vertex is to be output, the following information is generated for that
vertex:

 PrimitiveType associated with the vertex. This is simply a copy of the PrimitiveTopologyType
field of the 3DPRIMITIVE

 VUE handle at which the vertex data is stored

o For a Vertex Cache hit, the VUE handle is marked with a VCHit boolean, so that the VS
unit will not attempt to process (shade) that vertex.

o Otherwise, the VertexLoop will generate and store the input vertex data into the VUE
referenced by this handle.

 The PrimitiveID associated with the vertex. See PrimitiveInfoGeneration.

 PrimStart and PrimEnd booleans associated with the vertex. See PrimitiveInfoGeneration.

(Note that a single vertex of buffering is required in order to associate PrimEnd with a vertex, as this
information may not be known until the next iteration through the VertexLoop (see
OutputPrimitiveDelimiter).

VertexNumber value is incremented by 1 at the end of the loop.

108 Doc Ref #

2.5.6 VertexIndexGeneration
A VertexIndex value needs to be derived for each vertex. With the exception of the “cut” index, this index
value is used as the vertex cache tag and will be used as a structure index into all VERTEXDATA VBs.

For SEQUENTIAL accessing, the VertexID and VertexIndex value is derived as shown below:

VertexIndex = StartVertexLocation + VertexNumber

VertexID = VertexNumber

For RANDOM access, the VertexID and VertexIndex is derived from an IBValue read from the IB, as
shown below:

IBIndex = StartVertexLocation + VertexNumber

VertexID = IB[IBIndex]

if (CutIndexEnable && VertexID == CutIndex)

 CutFlag = 1

else

 VertexIndex = VertexID + BaseVertexLocation

 CutFlag = 0

endif

2.5.7 TerminatePrimitive
For RANDOM accessing, and when enabled via Cut Index Enable, a fetched IBValue of ‘all ones’ (0xFF,
0xFFFF, or 0xFFFFFFFF depending on Index Format) is interpreted as a ‘cut value’ and signals the
termination of the current primitive and the possible start of the next primitive. This allows the application
to specify an instance as a sequence of variable-sized strip primitives (though the cut value applies to any
primitive type).

Also, there is an implied primitive termination at the end of each InstanceLoop (and so strip primitives
cannot span multiple instances).

In either case, the currently-buffered vertex (if any) is marked with EndPrim and then flushed out to the
pipeline.

The next-output vertex (if any) will be marked with StartPrim.

Whenever a primitive delimiter is encountered, the PIDCounterS and PIDCounterR counters are reset to
0. These counters control the incrementing (in PrimitiveInfoGeneration, below) of PrimitiveID within each
primitive topology of an instance.

if (PIDCounterS != 0) // There is a buffered vertex

if (primType == TRISTRIP_ADJ)

Doc Ref # 109

 if (PIDCounterS==6 || PIDCounterR==1)

 PrimitiveID++

 endif

 endif

PrimEnd = TRUE

 OutputBufferedVertex

endif

PrimEnd = FALSE

PrimStart = TRUE

2.5.8 VertexCacheLookup
The VertexIndex value is used as the tag value for the VertexCache (see Vertex Cache, above). If the
Vertex Cache is enabled and the VertexIndex value hits in the cache, the VUE handle is read from the
cache and inserted into the vertex stream. It is marked with a VCHit boolean to surpress processing
(shading) in the VS unit.

Otherwise, for Vertex Cache misses, a VUE handle is obtained to provide storage for the generated
vertex data. VertexLoop processing then proceeds to iterate through the VEs to generate the destination
VUE data.

2.5.9 VertexElementLoop
The VertexElementLoop generates and stores vertex data in the destination VUE one VE at a time.

[Pre-DevILK] Note that VEs must be defined (via 3DSTATE_VERTEX_ELEMENTS) in order of
increasing Destination Element Offset, though architecturally the order by which VEs are processed is
arbitrary (has no impact on the results).

2.5.10 SourceElementFetch
The following assumes the VE requires data from a VB, which is the typical case. In the case that the VE
is completely comprised of constant and/or auto-generated IDs, the SourceElementFetch and
FormatConversion steps are skipped.

The structure index within the VE’s selected VB is computed as follows:

if (VB is a VERTEXDATA VB)

 VBIndex = VertexIndex

else // INSTANCEDATA VB

110 Doc Ref #

 VBIndex = StartInstanceLocation

 if (VB.InstanceDataStepRate > 0)

 VBIndex += InstanceID/VB.InstanceDataStepRate

endif

If VBIndex is invalid (i.e., negative or past Max Index), the data returned from the VB fetch is defined to
be zero. Otherwise, the address of the source data required for the VE is then computed and the data is
read from the VB. The amount of data read from the VB is determined by the Source Element Format.

if ((VBIndex<0) || (VBIndex>VB.MaxIndex))

srcData = 0

else

pSrcData = VB.BufferStartingAddress + (VBIndex * VB.BufferPitch) +
VE.SourceElementOffset

srcData = MemoryRead(pSrcData, VE.SourceElementFormat)

endif

2.5.11 FormatConversion
Once the VE source data has been fetched, it is subjected to format conversion. The output of format
conversion is up to 4 32-bit components, each either integer or floating-point (as specified by the Source
Element Format). See Sampler for conversion algorithms.

The following table lists the valid Source Element Format selections, along with the format and
availability of the converted components (if a component is listed as “-“, it cannot be used as source of a
VUE component). Note: This table is a subset of the list of supported surface formats defined in the
Sampler chapter. Please refer to that table as the “master list”. This table is here only to identify the
components available (per format) and their format.

Table 11. Source Element Formats supported in VF Unit

Source Element Format Converted Component

 Format 0 1 2 3

256 bits

R64G64B64A64_FLOAT FLOAT R G B A

192 bits

R64G64B64_FLOAT FLOAT R G B A

128 bits

Doc Ref # 111

Source Element Format Converted Component

 Format 0 1 2 3

R32G32B32A32_FLOAT FLOAT R G B A

R32G32B32A32_SNORM FLOAT R G B A

R32G32B32A32_UNORM FLOAT R G B A

R32G32B32A32_SINT SINT R G B A

R32G32B32A32_UINT UINT R G B A

R32G32B32A32_SSCALED FLOAT R G B A

R32G32B32A32_USCALED FLOAT R G B A

R32G32B32A32_SFIXED FLOAT R G B A

R64G64_FLOAT FLOAT R G - -

96 bits

R32G32B32_FLOAT FLOAT R G B -

R32G32B32_SNORM FLOAT R G B -

R32G32B32_UNORM FLOAT R G B -

R32G32B32_SINT SINT R G B -

R32G32B32_UINT UINT R G B -

R32G32B32_SSCALED FLOAT R G B -

R32G32B32_USCALED FLOAT R G B -

R32G32B32_SFIXED FLOAT R G B -

64 bits

R16G16B16A16_FLOAT FLOAT R G B A

R16G16B16A16_SNORM FLOAT R G B A

R16G16B16A16_UNORM FLOAT R G B A

R16G16B16A16_SINT SINT R G B A

R16G16B16A16_UINT UINT R G B A

R16G16B16A16_SSCALED FLOAT R G B A

R16G16B16A16_USCALED FLOAT R G B A

112 Doc Ref #

Source Element Format Converted Component

 Format 0 1 2 3

R32G32_FLOAT FLOAT R G - -

R32G32_SNORM FLOAT R G - -

R32G32_UNORM FLOAT R G - -

R32G32_SINT SINT R G - -

R32G32_UINT UINT R G - -

R32G32_SSCALED FLOAT R G - -

R32G32_USCALED FLOAT R G - -

R32G32_SFIXED FLOAT R G - -

R64_FLOAT FLOAT R - - -

48 bits

R16G16B16_FLOAT [DevSNB+] FLOAT R G B -

R16G16B16_SNORM FLOAT R G B -

R16G16B16_UNORM FLOAT R G B -

R16G16B16_UINT UINT R G B -

R16G16B16_SINT SINT R G B -

R16G16B16_SSCALED FLOAT R G B -

R16G16B16_USCALED FLOAT R G B -

32 bits

R10G10B10A2_UNORM FLOAT R G B A

R10G10B10A2_SNORM FLOAT R G B A

R10G10B10A2_USCALED FLOAT R G B A

R10G10B10A2_SSCALED FLOAT R G B A

B10G10R10A2_UNORM FLOAT R G B A

B10G10R10A2_SNORM FLOAT R G B A

B10G10R10A2_USCALED FLOAT R G B A

B10G10R10A2_SSCALED FLOAT R G B A

Doc Ref # 113

Source Element Format Converted Component

 Format 0 1 2 3

R10G10B10A2_UINT UINT R G B A

R10G10B10X2_USCALED FLOAT R G B -

R10G10B10_SNORM_A2_UNORM FLOAT R G B A

R8G8R8A8_UNORM FLOAT B G R A

R8G8B8A8_SNORM FLOAT R G B A

R8G8B8A8_UNORM FLOAT R G B A

R8G8B8A8_SINT SINT R G B A

R8G8B8A8_UINT UINT R G B A

R8G8B8A8_SSCALED FLOAT R G B A

R8G8B8A8_USCALED FLOAT R G B A

R11G11B10_FLOAT FLOAT R G B -

R16G16_FLOAT FLOAT R G - -

R16G16_SNORM FLOAT R G - -

R16G16_UNORM FLOAT R G - -

R16G16_SINT SINT R G - -

R16G16_UINT UINT R G - -

R16G16_SSCALED FLOAT R G - -

R16G16_USCALED FLOAT R G - -

R32_FLOAT FLOAT R - - -

R32_SINT SINT R - - -

R32_UINT UINT R - - -

R32_SSCALED FLOAT R - - -

R32_USCALED FLOAT R - - -

R32_SNORM FLOAT R - - -

R32_UNORM FLOAT R - - -

114 Doc Ref #

Source Element Format Converted Component

 Format 0 1 2 3

R32_SFIXED FLOAT R - - -

24 bits

R8G8B8_SNORM FLOAT R G B -

R8G8B8_UNORM FLOAT R G B -

R8G8B8_SSCALED FLOAT R G B -

R8G8B8_USCALED FLOAT R G B -

16 bits

R8G8_SNORM FLOAT R G - -

R8G8_UNORM FLOAT R G - -

R8G8_SINT SINT R G - -

R8G8_UINT UINT R G - -

R8G8_SSCALED FLOAT R G - -

R8G8_USCALED FLOAT R G - -

R16_FLOAT FLOAT R - - -

R16_SNORM FLOAT R - - -

R16_UNORM FLOAT R - - -

R16_SINT SINT R - - -

R16_UINT UINT R - - -

R16_SSCALED FLOAT R - - -

R16_USCALED FLOAT R - - -

8 bits

R8_SNORM FLOAT R - - -

R8_UNORM FLOAT R - - -

R8_SINT SINT R - - -

R8_UINT UINT R - - -

R8_SSCALED FLOAT R - - -

Doc Ref # 115

Source Element Format Converted Component

 Format 0 1 2 3

R8_USCALED FLOAT R - - -

2.5.12 DestinationFormatSelection
The Component Select 0..3 bits are then used to select, on a per-component basis, which destination
components will be written and with which value. The supported selections are the converted source
component, VertexID, InstanceID, PrimitiveID, the constants 0 or 1.0f, or nothing
(VFCOMP_NO_STORE). If a converted component is listed as ‘-‘ (not available) in Table 11, it must not
be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the destination
component.

The selection process sequences from component 0 to 3. Once a Component Select of
VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be
programmed as VFCOMP_NO_STORE. It is therefore not permitted to have ‘holes’ in the destination VE.

2.5.13 PrimitiveInfoGeneration
A PrimitiveID value and PrimStart boolean need to be associated with the vertex.

If the vertex is either the first vertex of an instance or the first vertex following a ‘cut index’, the vertex is
marked with PrimStart.

PrimitiveID gets incremented such that subsequent per-object processing (i.e., in the GS or SF/WM) will
see an incrementing value associated with each sequential object within an instance. The PrimitiveID
associated with the provoking, non-adjacent vertex of an object is applied to the object.

 The following pseudocode describe the logic used in the VertexLoop to compute the PrimitiveID value
associated with the vertex. Recall that PrimitiveID is reset to 0 at the start of each InstanceLoop.

if (PIDCounterS < S[primType])

 PIDCounterS++

else

 if (PIDCounterR < R[primType])

 PIDCounterR++

 else

 PrimitiveID++

 PIDCounterR = 0

 endif

endif

116 Doc Ref #

Two counters are employed to control the incrementing of PrimitiveID. The counters are compared
against two corresponding parameters associated with the primitive topology type.

The PIDCounterS is used to ‘skip over’ some number (possibly zero) initial vertices of the primitive
topology. This counter gets reset to 0 after each primitive is terminated.

Then the PIDCounterR is used to periodically increment the PrimitiveID, where the incrementing interval
(vertex count) is topology-specific.

The following table lists the S[] and R[] values associated with each primitive topology type.

PrimTopologyType S, R PrimitiveID Outputs

POINTLIST

POINTLIST_BF

1, 0 0,1,2,3, …

LINELIST 1, 1 0,0,1,1,2,2,3,3, …

LINELIST_ADJ 1, 3 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3 …

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

2, 0 0,0,1,2,3, …

LINESTRIP_ADJ 3, 0 0,0,0,1,2,3,…

LINELOOP 2, 0 0,0,1,2,3,… Note: this breaks the usage model (as the initial
vertex is the provoking vertex for the closing line, but it has an
invalid PrimitiveID of 0), but is effectively a don’t care as
PrimitiveID is only required for D3D and LINELOOP is an
OpenGL-only primitive.) The LINELOOP topology is converted to
LINESTRIP topology at the beginning of the 3D pipeline.

TRILIST

RECTLIST

1, 2 0,0,0,1,1,1,2,2,2,3,3,3,…

TRILIST_ADJ 1, 5 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,…

TRISTRIP

TRISTRIP_REV

3, 0 0,0,0,1,2,3, …

TRISTRIP_ADJ 5, 1 0,0,0,0,0,0,1,1,2,2,3,3, …

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

3, 0 0,0,0,1,2,3, …

Doc Ref # 117

PrimTopologyType S, R PrimitiveID Outputs

QUADLIST 1, 3 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3, … Note: The QUADLIST topology
is converted to POLYGON topology at the beginning of the 3D
pipeline.

QUADSTRIP 3, 1 0,0,0,0,1,1,2,2,3,3, … Note: The QUADSTRIP topology is
converted to POLYGON topology at the beginning of the 3D
pipeline.

Reserved

2.5.14 URBWrite
The selected destination components are written into the destination VUE starting at Destination Offset
Select. See the description of 3DPRIMITIVE for restrictions on this field.

2.5.15 OutputBufferedVertex
In order to accommodate ‘cut’ processing, the VF unit buffers one output vertex. The generation of a new
vertex or the termination of a primitive causes the buffered vertex to be output to the pipeline.

2.6 Dangling Vertex Removal
The last functional stage of processing of the 3DPRIMITIVE command is the removal of “dangling”
vertices. This includes the discarding of primitive topologies without enough vertices for a single object
(e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not form a
complete primitive (e.g., the last two vertices of a 5-vertex TRILIST).

This function is best described as a filter operating on the vertex stream emitted from the processing of
the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart and PrimEnd values associated with the
generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires
the filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices
from the pipeline and dereference the associated VUE handles.

118 Doc Ref #

2.7 Other Vertex Fetch Functionality

2.7.1 Statistics Gathering
The VF stage tracks two pipeline statistics, the number of vertices fetched and the number of objects
generated. VF will increment the appropriate counter for each when statistics gathering is enabled by
issuing the 3DSTATE_VF_STATISTICS command with the Statistics Enable bit set.

DWord Bit Description

0 31:29 Command Type = GFXPIPE = 03h

 28:16 GFXPIPE Opcode = 3DSTATE_VF_STATISTICS

[DevBW], [DevCL] GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined)

[DevCTG+] GFXPIPE[28:27 = 1h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined, Single DW)

 15:1 Reserved : MBZ

 0 Statistics Enable

If ENABLED, VF will increment the pipeline statistics counters IA_VERTICES_COUNT and
IA_PRIMITIVES_COUNT for each vertex fetched and each object output, respectively, for
3DPRIMITIVE commands issued subsequently.

If DISABLED, these counters will not be incremented for subsequent 3DPRIMITIVE
commands.

Format: Enable

2.7.1.1 Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume Ia,
GPU) for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex
buffer in memory. Any “dangling” vertices (fetched vertices that are part of an incomplete object) should
be included.

2.7.1.2 Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in Volume Ia,
GPU) for each object (point, line, triangle or quadrilateral) that it forwards down the pipeline. NOTE: For
LINELOOP, the last (closing) line object is not counted.

Doc Ref # 119

3. Vertex Shader (VS) Stage

3.1 VS Stage Overview
The VS stage of the 3D Pipeline is used to perform processing (“shading”) of vertices after being
assembled and written to the URB by the VF function. The primary function of the VS stage is to pass
vertices that miss in the Vertex Cache to VS threads, and then pass the VS thread-generated vertices
down the pipeline. Vertices that hit in the Vertex Cache are passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general
description of a 3D pipeline stage, as much of the VS stage operation and control falls under these
“common” functions. I.e., most stage state variables and VS thread payload parameters are described in
3D Overview, and although they are listed here for completeness, that chapter provides the detailed
description of the associated functions.

Refer to this chapter for an overall description of the VS stage, and any exceptions the VS stage exhibits
with respect to common FF unit functions.

3.1.1 Vertex Caching
The 3D Pipeline employs a Vertex Cache that is shared between the VF and VS units. (See Vertex Fetch
chapter for additional information). The Vertex Cache may be explicitly DISABLED via the Vertex Cache
Disable bit in VS_STATE. Even when explicitly ENABLED, the VS unit can (by default) implicitly disable
and invalidate the Vertex Cache when it detects one of the following conditions:

1. Either VertexID or PrimitiveID is selected as part of the vertex data stored in the URB.

2. Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a don’t care
as there wouldn’t be any hits anyway).

The implicit disable will persist as long as one of these conditions persist. The Vertex Cache Implicit
Disable Inhibit bit in the VFSKPD MI register is provided to inhibit the VS unit’s implicit cache disable. If
inhibited, software is responsible for explicitly enabling/disabling the vertex cache as required for correct
operation.

Note: Even though use of VertexID causes an implicit cache disable, there is no known (good) reason
why this is required. Software can therefore allow the implicit cache disable (the default action) and live
with some possible performance penalty due to the too-often-disabled cache.

The Vertex Cache is implicitly invalidated between 3DPRIMITIVE commands and between instances
within a 3DPRIMITIVE command – therefore use of InstanceID in a Vertex Element is not a condition
underwhich the cache is implicitly disabled.

The following table summarizes the modes of operation of the Vertex Cache:

120 Doc Ref #

Vertex
Cache

VS
Function
Enable

Mode of Operation

DISABLED
(implicitly
or
explicitly)

DISABLED Vertex Cache is not used. VF unit will assemble all vertices and write
them into the URB entry supplied by the VS unit. VS unit will pass
references to these VUEs down the pipeline unmodified.

Usage Model: This is an exceptional condition, only required when the
VF-generated vertices contain InstanceID or PrimitiveID and more than
one instance is produced. Otherwise the Vertex Cache should be
enabled.

DISABLED

(implicitly
or
explicitly)

ENABLED Vertex Cache is not used. VF unit will assemble all vertices and write
them into the URB entry supplied by the VS unit. VS unit will spawn VS
threads to process all vertices, overwriting the input data with the
results. The VS unit pass references to these VUEs down the pipeline.

Usage Model: This mode is only used when the VS function is required,
but either (a) the input vertex contains InstanceID or PrimitiveID and
more than one instance is generated or (b) the VS kernel produces a
side effect (e.g., writes to a memory buffer) which requires every vertex
to be processed by a VS thread.

ENABLED DISABLED Vertex Cache is used to provide reuse of VF-generated vertices. The
VF unit will check the cache and only process (assemble/write) vertices
that miss in the cache. In either case, the VS unit will pass references to
vertices (that hit or miss) down the pipeline without spawning any VS
threads.

Usage Model: Normal operation when the VS function is not required.
Note that there may be situations which require the VS function to be
used even when not explicitly required by the API. E.g., perspective
divide may be required for clip testing.

ENABLED ENABLED Vertex Cache is used to provide reuse of VS-processed vertices. The
VF unit will check the cache and only process (assemble/write) vertices
that miss in the cache. The VS unit will only process (shade) the
vertices that missed in the cache. The VS unit sends references to hit or
missed vertices down the pipeline in the correct order.

Usage Model: Normal operation when the VS function is required and
use of the Vertex Cache is permissible.

3.2 VS Stage Input
As a stage of the 3D pipeline, the VS stage receives inputs from the previous (VF) stage. Refer to 3D
Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this
subsection describes the inputs specific to the VS stage.

Doc Ref # 121

3.2.1 State

3.2.1.1 URB_FENCE

Refer to 3D Overview for a description of how the VS stage processes this command.

3.2.1.2 VS_STATE [Pre-DevSNB]

The following table describes the format and contents of the VS_STATE structure referenced by the
Pointer to VS State field of the 3DSTATE_PIPELINED_POINTERS command.

3DSTATE_VS
Project: [Pre-DevSNB] Length Bias: 2

For [Pre-DevSNB], the state used by VS is defined with this inline state packet.

DWord Bit Description

0 31:6 Kernel Start Pointer

Project: All

Format: [Pre-DevIL]: Format =
GeneralStateOffset[31:6]

[DevIL]: Format =
InstructionBaseOffset[31:6]

FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

This field specifies the starting location (1st core instruction) of the kernel program run by
threads spawned by this FF unit. It is specified as a 64-byte-granular offset from the
General State Base Address [Pre-DevIL] or Instruction Base Address [DevIL].

This field is ignored if VS Function Enable is DISABLED.

Errata Description Project

[BWT007 Instructions pointed at by offsets from General State must be
contained within 32-bit physical address space (that is, must
map to memory pages under 4G.)

[DevBW-
A,B]

5:4 Reserved Project: All Format: MBZ

122 Doc Ref #

3DSTATE_VS
3:1 GRF Register Count

Project: All

Security: None

Access: None

Exists If: Always

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: U32 FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

Defines the number of GRF Register Blocks used by the kernel. A register block contains
16 registers. A kernel using a register count that is not a multiple of 16 must round up to
the next multiple of 16.

This field is ignored if VS Function Enable is DISABLED.

0 Reserved Project: All Format: MBZ

1 31 Single Program Flow (SPF)

Specifies whether the kernel program has a single program flow (SIMDnxm with m =
1) or multiple program flows (SIMDnxm with m > 1). If set, the VS unit will only
dispatch 1-vertex thread payloads. See CR0 description in ISA Execution
Environment.

Value Name Description Project

0 Multiple
Program
Flows

Multiple Program Flows (1- or 2-
vertex threads spawned, operating
under normal (SIMD4x2) mode)

All

1 Single
Program
Flow

Single Program Flow (only 1-vertex
threads spawned, operating under
SPF EU mode)

All

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

30:26 Reserved Project: All Format: MBZ

Doc Ref # 123

3DSTATE_VS
25:18 Binding Table Entry Coun

Project: All

Format: U8 FormatDesc

Range [0,255]

Specifies whether the kernel program has a single program flow (SIMDnxm with m = 1) or
multiple program flows (SIMDnxm with m > 1). If set, the VS unit will only dispatch 1-vertex
thread payloads. See CR0 description in ISA Execution Environment.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

[DevILK:A], [DevILK:B] MBZ

Note: For kernels using a large number of binding table entries, it may be wise to set this
field to zero to avoid prefetching too many entries and thrashing the state cache

17 Thread Priority

Project: All

Specifies the priority of the thread for dispatch:

Value Name Description Project

0 Normal Normal priority All

1 High High priority All

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

[Pre-DevIL]: this field must be zero.

16 Floating Point Mode:

Project: All

Specifies the initial floating point mode used by the dispatched thread.

Value Name Description Project

0h IEEE-754
rules

Use IEEE-754 Rules All

1h Alternate
rules

Use alternate rules All

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

124 Doc Ref #

3DSTATE_VS
15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format Enable FormatDesc

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and
ISA Execution Environment.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

12 Reserved Project: All Format: MBZ

11 MaskStack Exception Enable

Project: All

Format: Enable FormatDesc

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and
ISA Execution Environment.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

10:8 Reserved Project: All Format: MBZ

7 Software Exception Enable

Project: All

Format Enable FormatDesc

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA
Execution Environment.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

6:0 Reserved Project: All Format: MBZ

Doc Ref # 125

3DSTATE_VS
2 31:10 Scratch Space Base Of

Project: All

Format: GeneralStateOffset[31:10] FormatDesc

Range 0..2^32-1

Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-
byte aligned offset from the General State Base Address. If required, each thread
spawned by this FF unit will be allocated some portion of this space, as specified by Per-
Thread Scratch Space. The computed offset of the thread-specific portion will be passed
in the thread payload as Scratch Space Offset. The thread is expected to utilize
“stateless” DataPort read/write requests to access scratch space, where the DataPort will
cause the General State Base Address to be added to the offset passed in the request
header.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

9:4 Reserved Project: All Format: MBZ

3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes FormatDesc

Range [0,11] indicating [1K Bytes, 2M Bytes]

Specifies the amount of scratch space to be allocated to each thread spawned by this FF
unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space
Base Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread
Scratch Space size without exceeding the driver-allocated scratch space.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

This amount is available to the kernel for information only. It will be passed verbatim (if
not altered by the kernel) to the Data Port in any scratch space access messages, but the
Data Port will ignore it.

3 31 Reserved Project: All Format: MBZ

30:25 Constant URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the amount of URB data read and passed in the thread payload for the Constant
URB entry, in 256-bit register increments.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

126 Doc Ref #

3DSTATE_VS
24 Reserved Project: All Format: MBZ

23:18 Constant URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the amount of URB data read and passed in the thread payload for the Constant
URB entry, in 256-bit register increments.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

17 Reserved Project: All Format: MBZ

16:11 Vertex URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [1,63]

Specifies the amount of URB data read and passed in the thread payload for each Vertex
URB entry, in 256-bit register increments.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read and
passed to the thread.

10 Reserved Project: All Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB
before being included in the thread payload. This offset applies to all Vertex URB entries
passed to the thread.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

Doc Ref # 127

3DSTATE_VS
3:0 Dispatch GRF Start Register for URB Data

Project: All

Format: U4 FormatDesc

Range [0,15] indicating GRF [R0,R15]

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the
thread payload.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

4 31 Reserved Project: All Format: MBZ

30:25 Maximum Number of Threads

Project: All

Format: U5 representing thread count - 1 FormatDesc

Range [Pre-DevCTG:B]Range = [0,15] indicating thread count of [1,16]

[DevCTG:B+]Range = [0,31] indicating thread count of [1,32]

[DevILK]Range = [0, 71] indicating thread count of [1,72]

Specifies the maximum number of simultaneous threads allowed to be active. Used to
avoid using up the scratch space, or to avoid potential deadlock.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

24 Reserved Project: All Format: MBZ

23:19 URB Entry Allocation Size

Project: All

Format: U5 count (of 512-bit units) – 1 FormatDesc

Range [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows

Specifies the length of each URB entry owned by this FF unit.

Programming Notes

This field is always used (even if VS Function Enable is DISABLED).

Changing this value requires a subsequent URB_FENCE command. See Graphics
Processing Engine for Command Ordering Rules and a description of URB_FENCE.

18 Reserved Project: All Format: MBZ

17:11 Number of URB Entries

Project: All

Format: [DevILK]

Format = U9 shift right by 2, see valid
settings below

FormatDesc

128 Doc Ref #

3DSTATE_VS
[DevCTG-B]:

Format = U7, see valid settings below

[Pre DevCTG-B]:

Format = U6, see valid settings below

DevBW-A,B Restriction:

Format = U6, see valid settings below

Range [DevILK]

Range = [2=8 entries, 3=12 entries, 4=16 entries, 8=32 entries,
16=64 entries, 24=96 entries, 32=128 entries, 42=168 entries,
48=192 entires, 56=224 entries, 64=256 entries] (see restriction
above)

[DevCTG-B]:

Range = [8,12, 16, 32, 64] (see restriction above)

[Pre DevCTG-B]:

Range = [8,12, 16, 32] (see restriction above)

DevBW-A,B Restriction:

Range = [8,12, 16]

Specifies the number of URB entries that are used by this FF unit.

Programming Notes

This field is always used (even if VS Function Enable is DISABLED).

Changing this value requires a subsequent URB_FENCE command. See Graphics
Processing Engine for Command Ordering Rules and a description of URB_FENCE.

This field must be programmed to 12 or greater in order to process TRISTRIP_ADJ
primitives, otherwise operation is UNDEFINED (possible hang).

10 Statistics Enable

Project: All

Format: Enable FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

If ENABLED, this FF unit will engage in statistics gathering. See the Statistics Gathering
section later in this chapter. If DISABLED, statistics information associated with this FF
stage will be left unchanged.

Programming Notes

This field is effectively if VS Function Enable is DISABLED.

9:0 Reserved Project: All Format: MBZ

Doc Ref # 129

3DSTATE_VS
5 31:5 Sampler State Offset

Project: All

Format: GeneralStateOffset[31:5] FormatDesc

This field, together with the General State Base Address, specifies the starting location of
the Sampler State Table used by threads spawned by this FF unit. It is specified as a 32-
byte-granular offset from the General State Base Address. The Sampler will apply the
offset to the General State Base Address when accessing Sampler State data.

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

Errata Description Project

Errata
BWT007

Sampler state pointed at by offsets from General State
must be contained within 32-bit physical address
space (that is, must map to memory pages under 4G.)

[DevBW-A,B]

4:3 Reserved Project: All Format: MBZ

2:0 Sampler Count

Project: All but ILK

Format: U3 FormatDesc

Range [0,4]

Specifies how many samplers (in multiples of 4) the vertex shader 0 kernel uses. Used
only for prefetching the associated sampler state entries.

0: no samplers used

1: between 1 and 4 samplers used

2: between 5 and 8 samplers used

3: between 9 and 12 samplers used

4: between 13 and 16 samplers used

Programming Notes

This field is ignored if VS Function Enable is DISABLED.

31:0 Reserved Project: [DevILK:A-B] Format: MBZ

6 31:2 Reserved Project: All Format: MBZ

130 Doc Ref #

3DSTATE_VS
1 Vertex Cache Di

Project: All

Format: Disable FormatDesc

This bit controls the operation of the Vertex Cache. This field is always used.

Value Name Description Project

0 Vertex Cache
is DISABLED
and the VS
Function is
ENABLED

the Vertex Cache is not used and all
incoming vertices will be passed to VS
threads.

All

1 Vertex Cache
is ENABLED
and the VS
Function is
ENABLED

incoming vertices that do not hit in the
Vertex Cache will be passed to VS
threads.

All

2 Vertex Cache
is ENABLED
and the VS
Function is
DISABLED

input vertices that miss in the Vertex
Cache will be assembled and written to
the URB, though pass thru the VS stage
unmodified (not shaded).

Programming Notes

The Vertex Cache is invalidated whenever the Vertex Cache becomes DISABLED ,
whenever the VS Function Enable toggles, between 3DPRIMITIVE commands and
between instances within a 3DPRIMITIVE command.

See the Vertex Caching section (above) for details on implicit vertex cache disabling.

0 VS Function Enable

Project: All

Format: Enable FormatDesc

This field is always used.

Value Name Description Project

0 Disable VF-generated vertices will pass thru the
VS function and sent down the pipeline
unmodified. The Vertex Cache is still
available in this mode, if enabled.

All

1 Enable VF-generated vertices will pass thru the
VS function and sent down the pipeline
unmodified. The Vertex Cache is still
available in this mode, if enabled.

All

Doc Ref # 131

3.2.1.3 3DSTATE_VS [DevSNB+]

3DSTATE_VS [DevSNB+]
Project: [DevSNB+] Length Bias: 2

For [DevSNB+], the state used by VS is defined with this inline state packet.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 10h 3DSTATE_VS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 4h

Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Kernel Start Pointer

Project: All

Address: InstructionBaseOffset[31:6]

Surface Type: Kernel

This field specifies the starting location (1st core instruction) of the kernel program run by
threads spawned by this FF unit. It is specified as a 64-byte-granular offset from the
Instruction Base Address.

This field is ignored if VS Function Enable is DISABLED.

5:0 Reserved Project: All Format: MBZ

132 Doc Ref #

3DSTATE_VS [DevSNB+]
2 31 Single Vertex Dispatch

Project: All

Format: U1 enumerated type FormatDesc

This field can be used to force single vertex SIMD4x2 VS threads.

Value Name Description Project

0h Multiple Dual vertex SIMD4x2 thread dispatches are
allowed.

All

1h Single Single vertex SIMD4x2 thread dispatches are
forced.

All

30 Vector Mask Enable (VME)

Project: All

Format: U1 Enumerated type

When SPF=0, VME specifies which mask to use to initialize the initial channel enables.
When SPF=1, VME specifies which mask to use to generate execution channel enables.

Value Name Description Project

0h Dmask Channels are enabled based on the dispatch mask All

1h Vmask Channels are enabled based on the vector mask All

29:27 Sampler Count

Project: All

Format: U3 FormatDesc

Specifies how many samplers (in multiples of 4) the vertex shader 0 kernel uses. Used
only for prefetching the associated sampler state entries.

This field is ignored if VS Function Enable is DISABLED.

Value Name Description Project

0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12
Samplers

between 9 and 12 samplers used All

4h 13-16
Samplers

between 13 and 16 samplers used All

26 Reserved Project: All Format: MBZ

Doc Ref # 133

3DSTATE_VS [DevSNB+]
25:18 Binding Table Entry Count

Project: All

Format: U8 FormatDesc

Range [0,255]

Specifies how many binding table entries the kernel uses. Used only for prefetching of the
binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be wise to set this
field to zero to avoid prefetching too many entries and thrashing the state cache.

This field is ignored if VS Function Enable is DISABLED.

17 Thread Priority

Project: All

Format: U1 Enumerated type

Specifies the priority of the thread for dispatch:

This field is ignored if VS Function Enable is DISABLED.

Value Name Description Project

0h Normal
Priority

Normal Priority All

1h High Priority High Priority All

16 Floating Point Mode

Project: All

Format: U1 enumerated type FormatDesc

Specifies the initial floating point mode used by the dispatched thread.

This field is ignored if VS Function Enable is DISABLED.

Value Name Description Project

0h IEEE-754 Use IEEE-754 Rules All

1h Alternate Use alternate rules All

15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable FormatDesc

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA
Execution Environment.

This field is ignored if VS Function Enable is DISABLED.

12:11 Reserved Project: All Format: MBZ

134 Doc Ref #

3DSTATE_VS [DevSNB+]
10:8 Reserved Project: All Format: MBZ

7 Software Exception Enable

Project: All

Format: Enable FormatDesc

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA
Execution Environment.

This field is ignored if VS Function Enable is DISABLED.

6:0 Reserved Project: All Format: MBZ

3 31:10 Scratch Space Base Offset

Project: All

Address: GeneralStateOffset[31:10]

Surface Type: ScratchSpace

Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-
byte aligned offset from the General State Base Address. If required, each thread
spawned by this FF unit will be allocated some portion of this space, as specified by Per-
Thread Scratch Space. The computed offset of the thread-specific portion will be passed
in the thread payload as Scratch Space Offset. The thread is expected to utilize “stateless”
DataPort read/write requests to access scratch space, where the DataPort will cause the
General State Base Address to be added to the offset passed in the request header.

This field is ignored if VS Function Enable is DISABLED.

9:4 Reserved Project: All Format: MBZ

3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes FormatDesc

Range [0,11] indicating [1K Bytes, 2M Bytes]

Specifies the amount of scratch space to be allocated to each thread spawned by this FF
unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space
Base Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread
Scratch Space size without exceeding the driver-allocated scratch space.

This field is ignored if VS Function Enable is DISABLED.

Programming Notes Project

This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space
access messages, but the Data Port will ignore it.

All

4 31:25 Reserved Project: All Format: MBZ

Doc Ref # 135

3DSTATE_VS [DevSNB+]
24:20 Dispatch GRF Start Register for URB Data

Project: DevSNB+

Format: U5 FormatDesc

Range [0,31] indicating GRF [R0,R31]

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the
thread payload.

This field is ignored if VS Function Enable is DISABLED.

19:17 Reserved Project: All Format: MBZ

16:11 Vertex URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [1,63]

Specifies the number of pairs of 128-bit vertex elements to be passed into the payload for
each vertex. This field is ignored if VS Function Enable is DISABLED.

For SIMD4x2 dispatch, each vertex element requires one GRF of payload data, therefore
the number of GRFs with vertex data will be double the value programmed in this field.

Programming Notes Project

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read
and passed to the thread.

10 Reserved Project: All Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB
before being included in the thread payload. This offset applies to all Vertex URB entries
passed to the thread.

This field is ignored if VS Function Enable is DISABLED.

3:0 Reserved Project: All Format: MBZ

136 Doc Ref #

3DSTATE_VS [DevSNB+]
5 31:25 Maximum Number of Threads

Project: DevSNB

Format: U7 representing thread count - 1 FormatDesc

Range DevSNB: [0,59] indicating thread count of [1,60]

Specifies the maximum number of simultaneous threads allowed to be active. Used to
avoid using up the scratch space, or to avoid potential deadlock.

This field is ignored if VS Function Enable is DISABLED.

24:11 Reserved Project: Format: MBZ

10 Statistics Enable

Project: All

Format: Enable FormatDesc

If ENABLED, this FF unit will engage in statistics gathering. See the Statistics Gathering
section later in this chapter. If DISABLED, statistics information associated with this FF
stage will be left unchanged.

[DevSNB] This field is effectively ignored if VS Function Enable is DISABLED.

9:3 Reserved Project: All Format: MBZ

2 Reserved Project: Format: MBZ

1 Vertex Cache Disable

Project: All

Format: Disable FormatDesc

This bit controls the operation of the Vertex Cache. This field is always used.

If the Vertex Cache is DISABLED and the VS Function is ENABLED, the Vertex Cache is
not used and all incoming vertices will be passed to VS threads.

If the Vertex Cache is ENABLED and the VS Function is ENABLED, incoming vertices that
do not hit in the Vertex Cache will be passed to VS threads.

If the Vertex Cache is ENABLED and the VS Function is DISABLED, input vertices that
miss in the Vertex Cache will be assembled and written to the URB, though pass thru the
VS stage unmodified (not shaded).

The Vertex Cache is invalidated whenever the Vertex Cache becomes DISABLED ,
whenever the VS Function Enable toggles, between 3DPRIMITIVE commands and
between instances within a 3DPRIMITIVE command.

Programming Notes Project

See the Vertex Caching section (above) for details on implicit vertex cache
disabling.

All

Doc Ref # 137

3DSTATE_VS [DevSNB+]
0 VS Function Enable

Project: All

Format: Enable FormatDesc

If ENABLED, VS threads may be spawned to process VF-generated vertices before the
resulting vertices are passed down the pipeline.

If DISABLED, VF-generated vertices will pass thru the VS function and sent down the
pipeline unmodified. The Vertex Cache is still available in this mode, if enabled.

This field is always used.

[DevSNB: A,B] VS function Enable must always be disabled.

6 31:17 Reserved Project: Format: MBZ

20:16 Reserved

15:8 Reserved

7:0 Reserved

3.2.1.4 3DSTATE_CONSTANT_VS [DevSNB]

3DSTATE_CONSTANT_VS
Project: DevSNB Length Bias: 2

This command sets pointers to the push constants for VS unit. The constant data pointed to by this command will be
loaded into the VS unit’s push constant buffer (PCB).

[DevSNB A] All memory accesses are to GGTT address space, independent of the PPGTT mode bit in GFX_MODE

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 15h 3DSTATE_CONSTANT_VS Format: OpCode

15 Buffer 3 Valid Project: All Format: Enable

This field enables buffer 3

138 Doc Ref #

3DSTATE_CONSTANT_VS
14 Buffer 2 Valid Project: All Format: Enable

This field enables buffer 2

13 Buffer 1 Valid Project: All Format: Enable

This field enables buffer 1

12 Buffer 0 Valid Project: All Format: Enable

This field enables buffer 0

11:8 Constant Buffer Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE FormatDesc

Specifies the memory object control state for all constant buffers defined in this command.

[DevSNB:A] Only bits 11 and 10 can be used (GFDT)

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:5 Pointer to VS Constant Buffer 0

Project: All

Address: DynamicStateOffset[31:5] or GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of VS Constant Buffer 0. The state of
INSTPM<CONSTANT_BUFFER Address Offset Disable> determines whether the
Dynamic State Base Address is added to this pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 VS Constant Buffer 0 Read Length

Project: All

Format: U5 read length – 1

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 32

Doc Ref # 139

3DSTATE_CONSTANT_VS
2 31:5 Pointer to VS Constant Buffer 1

Project: All

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of VS Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 VS Constant Buffer 1 Read Length

Project: All

Format: U5 read length – 1

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 32

3 31:5 Pointer to VS Constant Buffer 2

Project: All

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of VS Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 VS Constant Buffer 2 Read Length

Project: All

Format: U5 read length – 1

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 32

140 Doc Ref #

3DSTATE_CONSTANT_VS
4 31:5 Pointer to VS Constant Buffer 3

Project: All

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of VS Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 VS Constant Buffer 3 Read Length

Project: All

Format: U5 read length – 1

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 32

3.2.2 Input Vertices
Refer to 3D Overview for a description of the vertex information input to the VS stage.

3.3 SIMD4x2 VS Thread Request Generation
This section describes SIMD4x2 thread request generation.

The following discussion assumes the VS Function is ENABLED.

When the Vertex Cache is disabled, the VS unit will pass each pair of incoming vertices to a VS thread.
Under certain circumstances (e.g., prior to a state change or pipeline flush) the VS unit will spawn a VS
thread to process a single vertex. Note that, in this case, the “unused” vertex slot will be “disabled” via
the Execution Mask provided by the VS unit to the subsystem as part of the thread dispatch (See ISA
doc). The VS thread will in itself be unaware of the single-vertex case, and therefore a single VS kernel
can be used to process one or two vertices. (The performance of single-vertex processing will roughly
equal the two-vertex case).

When the Vertex Cache is enabled, the VF unit will detect vertices that hit in the cache and mark these
vertices so that they will bypass VS thread processing and be output via a reference to the cached VUE.
The VS unit will keep track of these cache-hit vertices as it proceeds to process cache-miss vertices. The
VS unit guarantees that vertices will exit the unit in the order they are received. This may require the VS
unit to issue single-vertex VS threads to process a cache-miss vertex that has yet to be paired up with
another cache-miss vertex (if this condition is preventing the VS unit from producing any output).

Doc Ref # 141

3.3.1 Thread Payload
The following table describes the payload delivered to VS threads.

Table 12. VS Thread Payload (SIMD4x2)

DWord Bit Description

R0.7 31 Snapshot Flag

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID: This field uniquely identifies this thread within the threads spawned by
this FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Offset: Specifies the of the scratch space allocated to the thread,
specified as a 1KB-granular offset from the General State Base Address. See
Scratch Space Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9 Reserved

 8:0 FFTID: This ID is assigned by the FF unit and used to identify the thread within the
set of outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

R0.4 31:5 Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding
Table. It is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table to be
used by this thread, specified as a 32-byte granular offset from the General State
Base Address or Dynamic State Base Address.

Format = DynamicStateOffset[31:5] [DevSNB+]

 4 Reserved

142 Doc Ref #

DWord Bit Description

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be
used by this thread. The value specifies the power that two will be raised to (over
determine the amount of scratch space).

(See 3D Pipeline for further description).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:16 Reserved

 15:0 URB Return Handle 1: This is the 64B-aligned URB offset where the EU’s upper
channels (DWords 7:4) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will
effectively be ignored (no results are stored for these channels, as controlled by
the thread’s Channel Mask).

(See Generic FF Unit for further description).

Format: U9 opaque handle [Pre-DevILK]

Format: U10 opaque handle [DevILK]

Format: U11 64B-aligned offset [DevSmallGT]

Format: U12 64B-aligned offset [DevSNB+]

R0.0 31:16 Reserved

 15:0 URB Return Handle 0: This is the 64B-aligned URB offset where the EU’s lower
channels (DWords 3:0) results are to be stored.

(See Generic FF Unit for further description).

Format: U12 64B-aligned offset [DevSNB+]

[Varies]
optional

255:0 Constant Data (optional) :

[DevSNB+]: Some amount of constant data (possible none) can be extracted
from the push constant buffer (PCB) and passed to the thread following the R0
Header. The amount of data provided is defined by the sum of the read lengths in
the last 3DSTATE_CONSTANT_VS command (taking the buffer enables into
account).

The Constant Data arrives in a non-interleaved format.

Doc Ref # 143

DWord Bit Description

Varies 255:0 Vertex Data : Data from (possibly) one or (more typically) two Vertex URB Entries
is passed to the thread in the thread payload. The Vertex URB Entry Read
Offset and Vertex URB Entry Read Length state variables define the regions of
the URB entries that are read from the URB and passed in the thread payload.
These SVs can be used to provide a subset of the URB data as required by SW.

The vertex data is laid out in the thread header in an interleaved format. The lower
DWords (0-3) of these GRF registers always contain data from a Vertex URB
Entry. The upper DWords (4-7) may contain data from another Vertex URB Entry.
This allows two vertices to be processed (shaded) in parallel SIMD8 fashion. The
VS kernel is not aware of the validity of the upper vertex.

3.4 SIMD4x2 VS Thread Execution
This section describes SIMD4x2 thread execution.

A VS kernel (with one exception mentioned below) assumes it is to operate on two vertices in parallel.
Input data is either passed directly in the thread payload (including the input vertex data) or indirectly via
pointers passed in the payload.

Refer to ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

Refer to 3D Pipeline Stage Overview (3D Overview) for information on FF-unit/Thread interactions.

In the (unlikely) event that the VS kernel needs to determine whether it is processing one or two vertices,
the kernel can compare the URB Return Handle 0 and URB Return Handle 1 fields of the thread
payload. These fields will be different if two vertices are being processed, and identical if one vertex is
being processed. An example of when this test may be required is if the kernel outputs some vertex-
dependent results into a memory buffer – without the test the single vertex case might incorrectly output
two sets of results. Note that this is not the case for writing the URB destinations, as the Execution Mask
will prevent the write of an undefined output.

Prior to sending an End Of Thread, the kernel must dispatch a write commit cycle, if there were any
previous writes to memory that had caused no dependency checks.

3.4.1 Vertex Output
VS threads must always write the destination URB handles passed in the payload. VS threads are not
permitted to request additional destination handles. Refer to 3D Pipeline Stage Overview (3D Overview)
for details on how destination vertices are written and any required contents/formats.

3.4.2 Thread Termination
VS threads must signal thread termination, in all likelihood on the last message output to the URB shared
function. Refer to the ISA doc for details on End-Of-Thread indication.

144 Doc Ref #

3.5 Primitive Output
The VS unit will produce an output vertex reference for every input vertex reference received from the VF
unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim
information associated with input vertices to the output vertices, and does not use this information in any
way. Neither does the VS unit perform any readback of URB data.

3.6 Other VS Functions

3.6.1 Statistics Gathering
The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex
shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the
shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in
VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume
Ia, GPU) will be incremented for each vertex that is dispatched to a VS thread. This counter will often
need to be incremented by 2 for each thread invoked since 2 vertices are dispatched to one VS thread in
the general case.

[DevSNB:B0]: When VS Function Enable is DISABLED and Statistics Enable is ENABLED,
VS_INVOCATION_COUNT will increment by one for every vertex that passes through the VS stage, even
though no VS threads are spawned.

Doc Ref # 145

4. Geometry Shader (GS) Stage

4.1 GS Stage Overview
The GS stage of the 3D Pipeline is used to convert objects within incoming primitives into new primitives
through use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the
vertices of each individual object within the primitives, and passes these object vertices (along with other
data) to the subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general
description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these
“common” functions. That is, most stage state variables and GS thread payload parameters are
described in 3D Pipeline, and although they are listed here for completeness, that chapter provides the
detailed description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits
with respect to common FF unit functions.

4.2 GS Stage Input
As a stage of the 3D pipeline, the GS stage receives inputs from the previous VS stage. Refer to 3D
Pipeline for an overview of the various types of input to a 3D Pipeline stage. The remainder of this
subsection describes the inputs specific to the GS stage.

4.2.1 State

4.2.1.1 3DSTATE_GS_SVB_INDEX [DevSNB]

The 3DSTATE_GS_SVB_INDEX instruction is used to program geometry shader streamed vertex buffer
indexes or the Internal Vertex Count state register.

Four independent index values are supported. Each instance of this instruction programs one of the
indexes, selected by the Index Number field. All four indexes are delivered to the geometry shader
thread, and kernel code is responsible for using the correct index for each data port message.

This instruction is treated like non-pipelined state, thus a pipeline flush is executed before the indexes are
changed.

146 Doc Ref #

DWord Bit Description

31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_GS_SVB_INDEX

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 0Bh]

0

15:0 DWord Length (Excludes DWords 0,1) = [DevSNB+]: 2

1 31 Reserved: MBZ

 30:29 Index Number: Selects which index is to be loaded.

Format = U2

Range = [0,3]

 28:0 Reserved : MBZ

2 31:0 Streamed Vertex Buffer Index

This field contains the value of the specified index, or the pointer to the index depending on
the Index Loading Mode field.

Format = U32 index

Range = [0,227-1]

3
DevSNB

+ only

31:0 [DevSNB+]: Maximum Index. This field specifies the maximum value of the selected SVBI,
enforced by the device. Software should set this field to one past the last valid vertex index,
so that the clamped value can be used as a vertex count (see Internal Vertex Count in
3DPRIMITIVE.

Format = U32 index

Range = [0,227]

3DSTATE_GS_SVB_INDEX
Project: [DevSNB] Length Bias: 2

The 3DSTATE_GS_SVB_INDEX instruction is used to program geometry shader streamed vertex buffer indexes.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Bh 3DSTATE_GS_SVB_INDEX Format: OpCode

15:8 Reserved Project: All Format: MBZ

Doc Ref # 147

3DSTATE_GS_SVB_INDEX
7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: [preDevIL]

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: [DevIL+]

1 31 Reserved Project: All Format: MBZ

30:29 Index Number

Project: All

Format: U2 Index of SVBI register

Range 0-3

Selects which index is to be loaded.

For DevSNB+, this field is alternatively used to select the SVBI register whose value is to
be loaded into the Internal Vertex Count state register (see Load Internal Vertex Count field
below).

28:1 Reserved Project: All Format: MBZ

0 Load Internal Vertex Count

Project: DevSNB:B

Format: Boolean FormatDesc

If set, the current contents of the selected SVBI register is loaded into the Internal Vertex
Count state register.

If clear, the selected SVBI register/max-index is loaded from the Streamed Vertex Buffer
Index and Maximum Index fields. The Internal Vertex Count register is left unmodified.

Value Name Description Project

0h Disable DevSNB:B

1h Enable DevSNB:B

148 Doc Ref #

3DSTATE_GS_SVB_INDEX
2 31:0 Streamed Vertex Buffer Index (SVBI)

Project: All

Format: U32 FormatDesc

Range 0..2^27-1

This field contains the value to be loaded into the SVBI register selected by Index Number.

Programming Notes

[DevSNB] If a buffer is not enabled then the SVBI must be set to 0x0 in order to not cause
overflow in that SVBI.

[DevSNB] The SVBI value must never be programmed to a value greater than the
Maximum Index

3 31:0 Maximum Index

Project: DevSNB

Format: U32 Index into an SVB

Range 0..2^27

This field specifies the maximum value of the selected SVBI, enforced by the device.
Software should set this field to one past the last valid vertex index, so that the clamped
value can be used as a vertex count (see Internal Vertex Count in 3DPRIMITIVE.

Programming Notes

Once and SVBI reaches the Maximum Index then all SVBI values will discontinue to
increment.

If a buffer is not enabled then the MaxSVBI must be set to 0xFFFFFFFF in order to not
cause overflow in that SVBI.

Doc Ref # 149

4.2.1.2 3DSTATE_GS [DevSNB]

For [DevSNB], the state used by GS is defined with this inline state packet.

3DSTATE_GS
Project: [DevSNB] Length Bias: 2
Controls the GS stage hardware.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType

Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default
Value:

0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default
Value:

11h 3DSTATE_GS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Format: =n

1 31:6 Kernel Start

Pointer
Project: All Format: InstructionBaseOffset[31:6]

This field specifies the starting location (1st core instruction) of the kernel program
run by threads spawned by this FF unit. It is specified as a 64-byte-granular offset
from the Instruction Base Address.

5:0 Reserved Project: All Format: MBZ

150 Doc Ref #

3DSTATE_GS
2 31 Single Program Flow (SPF)

Project: All

Specifies the initial condition of the kernel program as either a single program flow
(SIMDnxm with m = 1) or as multiple program flows (SIMDnxm with m > 1). See
CR0 description in ISA Execution Environment.

Value Name Description Project

0h Reserved All

1h Enable Single Program Flow enabled All

30 Vector Mask Enable (VME)

Project: All

Format: U1 enumerated type FormatDesc

When SPF=0, VME specifies which mask to use to initialize the initial channel
enables. When SPF=1, VME specifies which mask to use to generate execution
channel enables.

Value Name Description Project

0h Dmask Channels are enabled based on the dispatch
mask

All

1h Vmask Channels are enabled based on the vector
mask

All

Doc Ref # 151

3DSTATE_GS
29:27 Sampler Count

Project: All

Format: U3

Specifies how many samplers (in multiples of 4) the geometry shader kernel uses.
Used only for prefetching the associated sampler state entries.

Value Name Description Project

0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12
Samplers

between 9 and 12 samplers used All

4h 13-16
Samplers

between 13 and 16 samplers used All

5h-7h Reserved Reserved All

26 Reserved Project: All Format: MBZ

25:18 Binding Table Entry

Count
Project: All Format: U8

Specifies how many binding table entries the kernel uses. Used only for
prefetching of the binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be wise to
set this field to zero to avoid prefetching too many entries and thrashing the state
cache.

17 Thread Priority

Project: All

Specifies the priority of the thread for dispatch

Value Name Description Project

0h Normal
Priority

Normal Priority All

1h High Priority High Priority All

152 Doc Ref #

3DSTATE_GS
16 Floating Point Mode

Project: All

Specifies the initial floating point mode used by the dispatched thread.

Value Name Description Project

0h IEEE-754 Use IEEE-754 Rules All

1h alternate Use alternate rules All

15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode

Exception Enable
Project: All Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions
and ISA Execution Environment.

12 Reserved Project: All Format: MBZ

11 Mask Stack

Exception Enable
Project: All Format: Enable

This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution
Environment.

10:8 Reserved Project: All Format: MBZ

7 Software

Exception Enable
Project: All Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions
and ISA Execution Environment.

6:0 Reserved Project: All Format: MBZ

3 31:10 Scratch Space

Base Pointer
Project: All Format: GeneralStateOffset[31:10]

Specifies the location of the scratch space area allocated to this FF unit, specified
as a 1KB-granular offset from the General State Base Address. If required, each
thread spawned by this FF unit will be allocated some portion of this space, as
specified by Per-Thread Scratch Space.

9:4 Reserved Project: All Format: MBZ

Doc Ref # 153

3DSTATE_GS
3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes FormatDesc

Range [0,11] indicating [1K Bytes, 2M Bytes]

Specifies the amount of scratch space to be allocated to each thread spawned by
this FF unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch
Space Base Pointer, to ensure that the Maximum Number of Threads can each
get Per-Thread Scratch Space size without exceeding the driver-allocated scratch
space.

4 31:17 Reserved Project: All Format: MBZ

16:11 Vertex URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [1,63]

Specifies the amount of URB data read and passed in the thread payload for each
Vertex URB entry, in 256-bit register increments.

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read
and passed to the thread.

10 Reserved Project: All Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from
the URB before being included in the thread payload. This offset applies to all
Vertex URB entries passed to the thread.

154 Doc Ref #

3DSTATE_GS
3:0 Dispatch GRF Start Register for URB Data

Project: All

Format: U4 FormatDesc

Range [0,15] indicating GRF [R0,R15]

Specifies the starting GRF register number for the URB portion (Constant +
Vertices) of the thread payload.

5 31:25 Maximum Number of Threads

Project: All

Format: U7 thread count – 1

Range DevSNB: [0,59] indicating thread count of [1,60]

Specifies the maximum number of simultaneous threads allowed to be active.
Used to avoid using up the scratch space, or to avoid potential deadlock.

Programming Notes:

A URB_FENCE command must be issued subsequent to any change to the value
in this field and before any subsequent pipeline processing (e.g., via 3DPRIMITIVE
or CONSTANT_BUFFER). See Graphics Processing Engine (Command Ordering
Rules)

[DevSNB] Maximum Number of Threads valid range is [0,27] when Rendering
Enabled bit is set.

24:11 Reserved Project: All Format: MBZ

10 GS Statistics Enable

Project: All

Format: Enable

This bit controls whether GS-unit-specific statistics register(s) can be incremented.

Value Name Description Project

0h Disable GS_INVOCATIONS_COUNT and
GS_PRIMITIVES_COUNT cannot increment

All

1h Enable GS_INVOCATIONS_COUNT and
GS_PRIMITIVES_COUNT can increment

All

Doc Ref # 155

3DSTATE_GS
9 SO Statistics Enable

Project: All

Format: Enable

This bit controls whether certain StreamOutput statistics register(s) can be
incremented.

Value Name Description Project

0h Disable SO_NUM_PRIMS_WRITTEN and
SO_PRIM_STORAGE_NEEDED cannot
increment

All

1h Enable SO_NUM_PRIMS_WRITTEN and
SO_PRIM_STORAGE_NEEDED can
increment

All

8 Rendering Enabled

Project: All

Format: U1

This state bit is used to indicate whether or not the GS thread will be allocating
and outputting VUE handles for rendering. This bit must be set if the thread will
attempt to allocate a handle. If clear, the GS thread must not allocate handles
(e.g., when only performing stream output without concurrent rendering).

7:0 Reserved Project: All Format: MBZ

6 31 Reserved Project: All Format: MBZ

156 Doc Ref #

3DSTATE_GS
30 Reorder Enable Project: All Format: Enable

This bit controls whether the GS unit reorders TRISTRIP/TRISTRIP_REV vertices
passed in the GS thread payload.

If ENABLED, the GS unit will reorder the vertices for “odd-numbered” triangles
originating from TRISTRIP topologies and “even-numbered” triangles originating
from TRISTRIP_REV topologies. (Note that the first triangle is considered
“triangle 0”, which is even-numbered).

With respect to the PrimType passed in the GS thread payload, the GS unit
passes TRISTRIP when the vertices are not reordered, and TRISTRIP_REV when
the vertices are reordered (regardless of whether a TRISTRIP or TRISTRIP_REV
topology was being processed)

If DISABLED, TRISTRIP/TRISTRIP_REV vertices are not reordered, and always
passed in the order they are received from the pipeline. The GS unit will still
toggle PrimType on alternating (as described above) so that the GS thread can
perform the reordering internally (or do whatever is necessary to account for the
non-reordering of its input).

29 Discard Adjaceny Project: All Format: Enable

When set, adjacent vertices will not be passed in the GS payload when objects
with adjacency are processed. Instead, only the non-adjacent vertices will be
passed in the same fashion as the without-adjacency form of the primitive.
Software should set this bit whenever a GS kernel is used that does not expect
adjacent vertices. This allows both with-adjacency/without-adjacency variants of
the primitive to be submitted to the pipeline (via 3DPRIMITIVE) – the GS unit will
silently discard any adjacent vertices and present the GS thread with only the
internal object.

When clear, adjacent vertices will be passed to the GS thread, as dictated by the
incoming primitive type. Software should only clear this bit when a GS kernel is
used that does expect adjacent vertices. E.g., if the GS kernel is compiled to
expect a TRIANGLE_ADJ object, software must clear this bit.

Software should also clear this bit if the GS kernel expects a POINT object (which
doesn’t have a with-adjacency variant).

This bit is used to provide limited compatibility between submitted primitive types
and the object type expected by the GS kernel. The only hardware assistance is
to allow the submission of a with-adjacency variant of a primitive when operating
with a GS kernel that expects the without-adjacency variant of the object. (E.g.,
when the GS kernel is compiled to expect a TRIANGLE object, software should
set this bit just in case a TRILIST_ADJ is submitted to the pipeline.) Note that the
GS unit is otherwise not aware of the object type that is expected by the GS
kernel. It is up to software to ensure that the submitted primitive type (in
3DPRIMITIVE) is otherwise compatible with the object type expected by the GS
kernel. (E.g., if the GS kernel expects a LINE_ADJ object, only LINELIST_ADJ or
LINESTRIP_ADJ should be submitted, otherwise the GS kernel will produce

Doc Ref # 157

3DSTATE_GS
unpredictable results.)

Also note that it is possible to craft a GS kernel which can accept any object type
that’s thrown at it by first examining the PrimType passed in the payload and then
using this info to correctly interpret the number of vertices passed in the payload.

28 SVBI Payload

Enable
Project: All Format: Enable

This field controls whether the optional R1 header phase containing the Streamed
Vertex Buffer Indices is delivered.

[DevSNB+]: The optional R1 header phase now also contains the Maximum Index
Values for the SVBs (in previously-reserved DWords).

27 SVBI Post-

Increment Enable
Project: All Format: Enable

This bit should be set whenever the GS thread is performing only the SO function
(no GS, no Render). Setting this bit allows the GS FF unit to post-increment the
SVBI values after GS threads are dispatched. This allows the threads to complete
without the need for further synchronization. The increment value is specified by
SVBI Post-Increment Value.

If this bit is clear, the GS thread must use the FF_SYNC message to report the
amount of data it will output and receive the appropriate (synchronized) SVBI
values in the writeback. This is required whenever the GS API function is required
and software cannot guarantee that the GS shader will output a constant amount
of output (vertices).

Programming Note: Since the GS threads are provided with overflow-clamped
SVBI inputs, they are always responsible for overflow detection given those inputs.

26 Reserved Project: All Format: MBZ

25:16 SVBI Post-

Increment Value
Project: All Format: U10

If SVBI Post-Increment Enable is set, all the SVBI state registers will be
incremented by this value after the dispatch of every GS thread. If SVBI Post-
Increment Enable is clear, this field is ignored.

158 Doc Ref #

3DSTATE_GS
15 GS Enable

Project: All

Format: Enable FormatDesc

Specifies whether the GS function is enabled or disabled (pass-through).

Programming Note: When enabling the GS stage that may generate incomplete
objects, the CLIP stage also needs to be ENABLED in order to filter out any
incomplete objects. See Clipper chapter.

14:0 Reserved Project: All Format: MBZ

Doc Ref # 159

4.2.1.3 3DSTATE_CONSTANT_GS [DevSNB]

3DSTATE_CONSTANT_GS
Project: [DevSNB] Length Bias: 2

This command sets pointers to the push constants for GS unit. The constant data pointed to by this
command will be loaded into the GS unit’s push constant buffer (PCB).

[DevSNB A] All memory accesses are to GGTT address space, independent of the PPGTT mode bit in
GFX_MODE

Programming Note:

It is invalid to program this command mroe then once between 3D_PRIMITIVE commands.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType

Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default
Value:

0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default
Value:

16h 3DSTATE_CONSTANT_GS Format: OpCode

15 Buffer 3 Valid Project: All Format: Enable

This field enables buffer 3

14 Buffer 2 Valid Project: All Format: Enable

This field enables buffer 2

13 Buffer 1 Valid Project: All Format: Enable

This field enables buffer 1

160 Doc Ref #

3DSTATE_CONSTANT_GS
12 Buffer 0 Valid Project: All Format: Enable

This field enables buffer 0

11:8 Constant Buffer Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_
STATE

FormatDesc

Specifies the memory object control state for all constant buffers defined in this
command.

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:5 Pointer to GS Constant Buffer 0

Project: All

Address: DynamicStateOffset[31:5] or GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of GS Constant Buffer 0. The state of
INSTPM<CONSTANT_BUFFER Address Offset Disable> determines
whether the Dynamic State Base Address is added to this pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

Doc Ref # 161

3DSTATE_CONSTANT_GS
4:0 GS Constant Buffer 0 Read Length

Project: All

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in
256-bit units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual
read length) must be less than or equal to 64

2 31:5 Pointer to GS Constant Buffer 1

Project: All

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of GS Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 GS Constant Buffer 1 Read Length

Project: All

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in
256-bit units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual
read length) must be less than or equal to 64

162 Doc Ref #

3DSTATE_CONSTANT_GS
3 31:5 Pointer to GS Constant Buffer 2

Project: All

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of GS Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 GS Constant Buffer 2 Read Length

Project: All

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in
256-bit units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual
read length) must be less than or equal to 64

4 31:5 Pointer to GS Constant Buffer 3

Project: All

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of GS Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

Doc Ref # 163

3DSTATE_CONSTANT_GS
4:0 GS Constant Buffer 3 Read Length

Project: All

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in
256-bit units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual
read length) must be less than or equal to 64

4.3 Object Staging
The GS unit’s Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,
and spawns a thread for each individual object within the topology.

4.4 GS Thread Request Generation

4.4.1 Object Vertex Ordering [DevSNB]
The following table defines the number and order of object vertices passed in the Vertex Data portion of
the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the
thread is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants)
are called out.

 [DevSNB+]: The following table also shows which vertex is selected to provide PrimitiveID (bold,
underlined vertex number). In general, the vertex selected is the last vertex for non-adjacent prims, and
the next-to-last vertex for adjacent prims. Note, however, that there are exceptions:

 reorder-enabled TRISTRIP[_REV]
 “odd-numbered” objects in TRISTRIP_ADJ

164 Doc Ref #

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] = (<vert#>,…); [{modified
PrimType passed to thread}]

POINTLIST [0] = (0);

[1] = (1); …;

[N-2] = (N-2);

POINTLIST_BF N/A

LINELIST

(N is multiple of 2)

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ

(N is multiple of 4)

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1)] = (N-4,N-3,N-2,N-1)

LINESTRIP

(N >= 2)

[0] = (0,1);

[1] = (1,2); …;

[N-2] = (N-2,N-1)

LINESTRIP_ADJ

(N >= 4)

[0] = (0,1,2,3);

[1] = (1,2,3,4); …;

[N-4] = (N-4,N-3,N-2,N-1)

LINESTRIP_BF N/A

LINESTRIP_CONT Same as LINESTRIP Handled same as LINESTRIP

LINESTRIP_CONT_BF Same as LINESTRIP Handled same as LINESTRIP

LINELOOP

(N >= 2)

[0] = (0,1);

[1] = (1,2);

[N] = (N-1,0);

Not supported after GS.

Doc Ref # 165

PrimTopologyType Order of Vertices in Payload GS Notes

TRILIST

(N is multiple of 3)

[0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST Same as TRILIST Handled same as TRILIST

TRILIST_ADJ

(N is multiple of 6)

[0] = (0,1,2,3,4,5);

[1] = (6,7,8,9,10,11); …;

[(N/6)-1] = (N-6,N-5,N-4,N-3,N-2,N-1)

TRISTRIP (Reorder
ENABLED)

(N >= 3)

[0] = (0,1,2); {TRISTRIP}

[1] = (1,3,2); {TRISTRIP_REV}

[k even] = (k,k+1,k+2) {TRISTRIP}

[k odd] = (k,k+2,k+1) {TRISTRIP_REV}

[N-3] = (see above)

“Odd” triangles have vertices
reordered though identified as
TRISTRIP_REV so the thread
knows this

TRISTRIP (Reorder
DISABLED)

(N >= 3)

[0] = (0,1,2) {TRISTRIP}

[1] = (1,2,3) {TRISTRIP_REV}; …

[N-3] = (N-3,N-2,N-1) {TRISTRIP or
TRISTRIP_REV}

“Odd” triangles do not have
vertices reordered, though
identified as TRISTRIP_REV
so the thread knows this

TRISTRIP_REV (Reorder
ENABLED)

(N >= 3)

[0] = (0,2,1) {TRISTRIP_REV};

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k,k+2,k+1) {TRISTRIP_REV}

[k odd] = (k,k+1,k+2) {TRISTRIP}

[N-3] = (see above)

“Odd” triangles have vertices
reordered, though identified
as TRISTRIP so the thread
knows this

TRISTRIP_REV (Reorder
DISABLED)

(N >= 3)

[0] = (0,1,2) {TRISTRIP_REV}

[1] = (1,2,3) {TRISTRIP}; …;

[N-3] = (N-3,N-2,N-1) {TRISTRIP or
TRISTRIP_REV}

“Odd” triangles do not have
vertices reordered, though
identified as TRISTRIP so the
thread knows this

166 Doc Ref #

PrimTopologyType Order of Vertices in Payload GS Notes

TRISTRIP_ADJ

(N even, N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,7,4,0); …;

N > 10:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,8,4,0); …;

 [k>1, even] = (2k,2k-2, 2k+2, 2k+6,2k+4,
2k+3);

[k>2, odd] = (2k, 2k+3, 2k+4, 2k+6, 2k+2,
2k-2);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-8,N-4,N-1,N-
2,N-3);

[(N/2)-3, odd] = (N-6,N-3,N-2,N-1,N-4,N-
8);

“Odd” objects have vertices
reordered.

TRIFAN

(N > 2)

[0] = (0,1,2);

[1] = (0,2,3); …;

[N-3] = (0, N-2, N-1);

Only used by OGL

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON Same as TRIFAN

QUADLIST

(N is multiple of 4)

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1] = (N-4,N-3,N-2,N-1);

Not supported after GS.

QUADSTRIP

(N is multiple of 2, N >=4)

[0] = (0,1,3,2);

[1] = (2,3,5,4); … ;

[(N/2)-2] = (N-4,N-3,N-1,N-2);

Not supported after GS.

Doc Ref # 167

4.4.2 GS Thread Payload [DevSNB]
The table below shows the layout of the payload delivered to GS threads.

Refer to 3D Pipeline Stage Overview (3D Pipeline) for details on those fields that are common amongst
the various pipeline stages.

GS Thread Payload [DevSNB]

GRF
DWord

Bit Description

R0.7 31 Snapshot Flag.

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID. This field uniquely identifies this thread within the threads spawned by
this FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer. Specifies the location of the scratch space allocated to
this thread, specified as a 1KB-aligned offset from the General State Base
Address.

Format = GeneralStateOffset[31:10]

 9:8 Reserved

 7:0 FFTID. This ID is assigned by the fixed function unit and is relative identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

Format: Reserved for Implementation Use

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding
Table. It is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table to be
used by this thread, specified as a 32-byte granular offset from the General State
Base Address or Dynamic State Base Address.

Format = DynamicStateOffset[31:5] [DevSNB+]

 4 Reserved

168 Doc Ref #

GRF
DWord

Bit Description

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be
used by this thread. The value specifies the power that two will be raised to (over
determine the amount of scratch space).

(See Generic Pipeline Stage for further description).

Programming Notes:

This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space access
messages, but the Data Port will ignore it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:10 Reserved : delivered as zeros (reserved for message header fields)

 9 Edge Indicator [1]. For POLYGON primitive objects, this bit indicates whether the
edge from Vertex2 to Vertex0 is an exterior edge of the polygon (i.e., this is the last
or only triangle of the polygon). If clear, that edge is an interior edge. The kernel
can use this bit to control operations such as generating wireframe representations
of polygon primitives.

 For all other Primitive Topology Types, this bit is Reserved

 8 Edge Indicator [0]. For POLYGON primitive objects, this bit indicates whether the
edge from Vertex0 to Vertex1 is an exterior edge of the polygon (i.e., this is the
first or only triangle of the polygon). If clear, that edge is an interior edge. The
kernel can use this bit to control operations such as generating wireframe
representations of polygon primitives.

 For all other Primitive Topology Types, this bit is Reserved

 7 [Pre-DevIL]: Reserved: MBZ

[DevIL+]: Rendering Enabled: This is a copy of the corresponding
GS_STATE/3DSTATE_GS bit . This bit can be used to inform the GS kernel
whether or not it needs to output VUEs down the pipeline for possible rendering
(as the state which controls whether rendering is enabled can change after the
kernel is compiled).

Format: U1

 6:5 Reserved

Doc Ref # 169

GRF
DWord

Bit Description

 4:0 Primitive Topology Type. This field identifies the Primitive Topology Type
associated with the primitive containing this object. It indirectly specifies the
number of input vertices included in the thread payload. Note that the GS unit may
toggle this value between TRISTRIP and TRISTRIP_REV, as described in 4.4.1.

Format: See 3D Pipeline

R0.1 31:0 [DevSNB+]:

Primitive ID. This field contains the Primitive ID associated with this object.

Format: U32

R0.0 31:23 Reserved

 22:16 Reserved

 15:9 Reserved

 8:0 Reserved

Streamed Vertex Buffer Index Values (passed in R1)

(only included for [DevCTG+] and SVBI Payload Enable is set.

R1.7 Maximum Streamed Vertex Buffer Index 3

This is a copy of the Maximum Index field sent in the last
3DSTATE_GS_SVB_INDEX command targetting SVBI[3]. The thread will need to
use the maximum indices of all bounds SOBs.

R1.6 Maximum Streamed Vertex Buffer Index 2

R1.5 Maximum Streamed Vertex Buffer Index 1

R1.4 Maximum Streamed Vertex Buffer Index 0

R1.3 31:0 Streamed Vertex Buffer Index 3

This field represents the initial value of the index #3.

Format = U32

Range = [0,227-1]

R1.2 31:0 Streamed Vertex Buffer Index 2

R1.1 31:0 Streamed Vertex Buffer Index 1

R1.0 31:0 Streamed Vertex Buffer Index 0

170 Doc Ref #

GRF
DWord

Bit Description

[Varies]
optional

31:0 Constant Data (optional) :

[DevSNB+]: Some amount of constant data (possible none) can be extracted
from the push constant buffer (PCB) and passed to the thread following the R0
Header. The amount of data provided is defined by the sum of the read lengths in
the last 3DSTATE_CONSTANT_GS command (taking the buffer enables into
account).

The Constant Data arrives in a non-interleaved format.

Varies 31:0 Vertex Data. There can be up to 6 vertices supplied, each with a size defined by
the Vertex URB Entry Read Length state. The amount of data provided for each
vertex is defined by the Vertex URB Entry Read Length state

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc.
Vertex 1 DWord 0 immediately follows the last DWord of Vertex 0, and so on.

4.5 GS Thread Execution
A GS thread is capable of performing arbritrary algorithms given the thread payload (especially vertex)
data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the
form of vertices output to the FF pipeline (at the GS unit) and/or data written to memory buffers via the
DataPort.

The primary usage models for GS threads include (possible combinations of):

 Compiled application-provided “GS shader” programs, specifying an algorithm to convert the
vertices of an input object into some output primitives. For example, a GS shader may convert
lines of a line strip into polygons representing a corresponding segment of a blade of grass
centered on the line. Or it could use adjacency information to detect silhouette edges of triangles
and output polygons extruding out from the those edges. Or it could output absolutely nothing,
effectively terminating the pipeline at the GS stage.

 Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream
Output below). This may be required whether or not an app-provided GS shader is enabled.

 Driver-generated instructions used to emulate API functions not supported by specialized
hardware. These functions might include (but are not limited to):

o Conversion of API-defined topologies into topologies that can be rendered (e.g.,
LINELOOPLINESTRIP, POLYGONTRIFAN, QUADsTRIFAN, etc.)

o Emulation of “Polygon Fill Mode”, where incoming polygons can be converted to points,
lines (wireframe), or solid objects.

o Emulation of wide/sprite points.

[DevSNB]: When rendering is required, concurrent GS threads must use the FF_SYNC message (URB
shared function) to request an initial VUE handle and synchronize output of VUEs to the pipeline (see
URB in Shared Functions). Only one GS thread can be outputting VUEs to the pipeline at a time. In

Doc Ref # 171

order to achieve parallelism, GS threads should perform the GS shader algorithm (along with any other
required functions) and buffer results (either in the GRF or scratch memory) before issuing the FF_SYNC
message. The issuing GS thread will be stalled on the FF_SYNC writeback until it is that thread’s turn to
output VUEs. As only one GS thread at a time can output VUEs, the post-FF_SYNC output portion of the
kernel should be optimized as much as possible to maximize parallelism.

4.5.1 GS Shader Programming Notes [DevSNB{WA}]
Prior to End of Thread with a URB_WRITE, the kernel must ensure all writes are complete by sending the
final write as a committed write.

4.5.2 Vertex Output [DevSNB]
The GS kernel will typically use the URB_WRITE message to output vertices and request additional
handles. (Refer to the 3D Pipeline chapter for a general discussion of how FF units output vertices, and
the URB chapter for details on the use of the URB_WRITE message.)

The following table lists which primitive topology types are valid for output by a GS thread.

PrimTopologyType Output

LINELIST Yes

LINELIST_ADJ No

LINESTRIP Yes

LINESTRIP_ADJ No

LINESTRIP_BF Yes

LINESTRIP_CONT Yes

LINESTRIP_CONT_BF Yes

LINELOOP No

POINTLIST Yes

POINTLIST_BF Yes

POLYGON Yes

QUADLIST No

QUADSTRIP No

RECTLIST Yes

TRIFAN Yes

172 Doc Ref #

PrimTopologyType Output

TRIFAN_NOSTIPPLE Yes

TRILIST Yes

TRILIST_ADJ No

TRISTRIP Yes

TRISTRIP_ADJ No

TRISTRIP_REV Yes

The GS thread is responsible for providing correct PrimType, PrimStart and PrimEnd information for each
vertex output, in the same fashion as the Vertex Fetch unit. Given that the GS thread is likely performing
an algorithm as specified by an application “geometry shader” program, where the algorithm dictates
when and if a vertex is to be output, the GS thread is allowed to output incomplete primitives (too few or
too many vertices). The downstream FF units will correctly handle any dangling vertices.

However, the PrimStart and PrimEnd indicators must be correct for all vertices, e.g., the last vertex of a
topology must have PrimEnd set. This may require the GS thread to postpone completion of a vertex
output operation until either the next vertex is encountered or the algorithm (not the thread) completes.

Note that, through use (clearing) of the Complete bit in the URB_WRITE message, is it possible to write
a vertex to the URB yet delay the “complete” indication until later. The PrimType, PrimStart, and PrimEnd
indications are not sampled by the FF pipeline until Complete is set. This relieves the GS thread from
actually having to buffer the pending vertex.

A GS or CLIP thread is restricted as to the number of URB handles it can retain. Here a “retained” handle
refers to a URB handle that (a) has been pre-allocated or allocated and returned to the thread via the
Allocate bit in the URB_WRITE message, and (b) has yet to be returned to the pipeline via the Complete
bit in the URB_WRITE message.

 [DevSNB]: The number of retained handles must not exceed min(32, Number of URB Entries).

This restriction is not expected to be significant in that most/all GS/CLIP threads are expected to retain
only a few (<=4) handles.

4.5.3 Stream Output
With a “Stream Output” function, vertex data can be written to one or more memory buffers for
subsequent readback by the CPU or use in subsequent Draw operations. The Stream Output function is
defined such that the pipeline is tapped immediately following the GS stage (just prior to clipping) and in
such a way that permits the GS kernel to perform the writes after the GS shader function.

The final contents of Stream Output buffers must follow the strict pipeline ordering of vertices. Given this
ordering requirement, it will be necessary to run the GS stage in a single-threaded fashion (Maximum
Number of Threads == 1). Otherwise concurrent GS threads might append vertices to the output buffer
out of order.

Doc Ref # 173

Hardware support for the Stream Output is limited to a special “Streamed Vertex Buffer Write” DataPort
message. (Refer to DataPort chapter). Through use of this message type, the GS thread can write from
1 to 4 DWords to specified ‘element’ (indexed entry) in a BUFFER surface. The DataPort will inhibit
writes past the end of the buffer.

Stream Output is allowed to either a set (<= 4) of “single element buffers” (SEBs) or a single “multiple
element buffer” (MEB). The SEB is a simple 1D array of 1-4 DWord elements, while the MEB is a 1D
array of structures, with a maximum structure pitch of 2K bytes. Up to 16 1-4 DWord elements within the
MEB structure can be written, with arbitrary, multiple-DWord “gaps” that must be left unmodified in
memory.

Software will likely need to define separate surface states for each SEB, and separate surface states for
each element within the MEB structure. The surfaces are selected via the normal binding table
mechanisms.

The need for separate SEB surface states is obvious, as the SEBs are separate buffers in memory. The
MEB surface-per-element allows the GS kernel to address the MEB using an structure index. Here each
surface would be specified as having the same structure pitch, but with different starting addresses
corresponding to the different element offsets within the structure – in effect, defining a set of interleaved
surfaces. The GS kernel would output one write message per element.

(Note that software could, if it wished, treat the MEB as a single 1D array of DWords, though it would then
have to write the buffer one DWord at a time, performing the address calculations within the GS kernel.
This should not be necessary, and is certainly not recommended due to obvious performance and
complexity reasons.)

Programming Note: If the GS stage is enabled, software must always allocate at least one GS URB
Entry. This is true even if the GS thread never needs to output vertices to the pipeline, e.g., when only
performing stream output. This is an artifact of the need to pass the GS thread an initial destination URB
handle.

4.5.3.1 Streamed Vertex Buffer Indexing [DevCTG+]

The GS unit supports four Streamed Vertex Buffer Indicies (SVBIs) in hardware. Only when the
Streamed Vertex Buffer Enable bit (GS_STATE) is set will the current SVBI values be passed to GS
threads via R1 of the thread payload. The GS thread is then responsible for (a) using/incrementing these
initial values when generating the Destination Index field of DataPort Streamed Vertex Buffer Write
messages – as the DataPort will this field and not the SVBIs directly to write out vertex data, and (b)
correctly programming the Increment SVBIs bit of the DataPort Streamed Vertex Buffer Write message in
order to cause the GS’s SVBI values to increment as required. The incremented SVBI values will be
passed to the next GS thread unless they are reloaded from the command stream.

The SVBIs can be loaded (either directly or indirectly from memory) via the new
3DSTATE_GS_SVB_INDEX command. Software would use this command to specify initial values when
an SVB was bound to the pipeline.

4.5.4 Thread Termination
GS threads must terminate by sending a URB_WRITE message with the EOT and Complete bits set.
The Used bit can be set (if outputting a VUE) or clear (if freeing an used VUE).

174 Doc Ref #

4.6 Vertex Header Readback [DevSNB]
The GS unit performs a readback of the Vertex Header of each vertex exiting the GS stage (either passed
through or generated by a GS thread) as this information is required by the next FF stage (CLIP).
Software is responsible for ensuring that any required Vertex Header fields are valid at this point in the
pipeline. See Vertex Data Overview for a description of the Vertex Header fields and how they are read-
back and used by the GS unit.

4.7 Primitive Output
(This section refers to output from the GS unit to the pipeline, not output from the GS thread)

The GS unit will output primitives (either passed-through or generated by a GS thread) in the proper
order. This includes the buffering of a concurrent GS thread’s output until the preceding GS thread
terminates. Note that the requirement to buffer subsequent GS thread output until the preceding GS
thread terminates has ramifications on determining the number of VUEs allocated to the GS unit and the
number of concurrent GS threads allowed.

4.8 Other Functionality

4.8.1 Statistics Gathering
There are a number of GS/StreamOutput pipeline statistics counters associated with the GS stage and
GS threads. This subsection describes these counters and controls depending on device, even in the
cases where functions outside of the GS stage (e.g., DataPort) are involved in the statistics gathering.

Refer to the Statistics Gathering summary provided earlier in this specification. Refer to the Memory
Interface Registers chapter for details on these MMIO pipeline statistics counter registers, as well as the
chapters corresponding to the other functions involved (e.g., DataPort, URB shared functions).

4.8.1.1 GS Invocations

The GS unit controls the GS_INVOCATIONS counter, which the number of times a GS thread is
executed. A GS thread is executed for each object (triangle, line or point) that is derived from the stream
of incoming primitive topologies. If the Statistics Enable bit in GS_STATE is set, the GS unit will
increment the GS_INVOCATIONS_COUNT register (see Memory Interface Registers in Volume Ia, GPU)
for each object that is dispatched to a GS thread.

4.8.1.2 GS Primitives Output [DevSNB]

The GS_PRIMITIVES_COUNT pipeline statistics register counts objects (triangles/lines/points) output by
GS threads.

Doc Ref # 175

4.8.1.2.1 GS Primitives Output [DevSNB]

As a effect of GS threads issuing FF_SYNC messages to the URB shared function, the
GS_PRIMITIVES_COUNT register is incremented by the NumGSPrimsGenerated field of that message.

4.8.1.3 Stream Output Primitives Written [DevSNB]

GS threads must terminate by issuing a URBWrite message with EOT set. The URBWrite header
contains an SONumPrimsWritten Increment Count

Whenever a GS thread outputs a DataPort Streamed Vertex Buffer Write (SVBWrite) message with the
Increment Num Prims Written bit set, the SO_NUM_PRIMS_WRITTEN register will be incremented.
The Statistics Enable bit in GS_STATE does not affect the increment of this register. [DevGT+]: The
SO Statistics Enable bit (GS_STATE) controls whether the SO_NUM_PRIMS_WRITTEN register is
incremented.

Programming Note: The GS thread is solely responsible for limiting the increment of
SO_NUM_PRIMS_WRITTEN in the face of SVB buffer overflow. There is no hardware performing this
function.

4.8.1.4 Stream Output Primitive Storage Needed [DevSNB]

Whenever a GS thread outputs a DataPort Streamed Vertex Buffer Write (SVBWrite) message with the
Increment Prim Storage Needed bit set, the SO_NUM_PRIM_STORAGE_NEEDED register will be
incremented. The Statistics Enable bit in GS_STATE does not affect the increment of this register.
[DevSNB+]: The SO Statistics Enable bit (GS_STATE) controls whether the
SO_PRIM_STORAGE_NEEDED register is incremented.

[DevSNB+]: In addition to (and, frankly, in lieu of) the control mentioned above, DevSNB+ adds an
additional method of incrementing this counter. As a effect of GS threads issuing FF_SYNC messages to
the URB shared function, the SO_PRIM_STORAGE_NEEDED register is incremented by the
NumSOPrimsNeeded field of that message. Note that this new method removes any need for the GS
thread to issue (possibly multiple) dummy SVBWrite messages simply to increment
SO_PRIM_STORAGE_NEEDED.

Programming Note: There should be no need for GS threads to limit the increment of
SO_PRIM_STORAGE_NEEDED, as this value should reflect the minimum buffer size required to avoid
overflow.

176 Doc Ref #

5. Clip Stage

5.1 CLIP Stage Overview
The CLIP stage of the 3D Pipeline is similar to the GS stage in that it can be used to perform general
processing on incoming 3D objects via spawned threads. However, the CLIP stage also includes
specialized logic to perform a ClipTest function on incoming objects. These two usage models of the
CLIP stage are outlined below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general
description of a 3D Pipeline stage, as much of the CLIP stage operation and control falls under these
“common” functions. I.e., many of the CLIP stage state variables and CLIP thread payload parameters
are described in 3D Overview, and although they are listed here for completeness, that chapter provides
the detailed description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the ClipTest function, and any
exceptions the CLIP stage exhibits with respect to common FF unit functions.

5.1.1 Clip Stage – General-Purpose Processing
Numerous state variable controls are provided to tailor the ClipTest function as required by the API or
primitive characteristics. These controls allow a mode where all objects are passed to CLIP threads, and
in this regard the CLIP stage can be used as a second GS stage. However, unlike the GS stage,
primitives output by CLIP threads will not be subject to 3D Clipping, and therefore any clip-testing/clipping
of these primitives (if required) would need to be performed by the CLIP thread itself.

5.1.2 Clip Stage – 3D Clipping
The ClipTest fixed function is provided to optimize the CLIP stage for support of generalized 3D Clipping.
The CLIP FF unit examines the position of incoming vertices, performs a fixed function VertexClipTest on
these positions, and then examines the results for the vertices of each independent object in
ClipDetermination.

The results of ClipDetermination indicate whether an object is to be processed by a thread (MustClip),
discarded (TrivialReject) or passed down the pipeline unmodified (TrivialAccept). In the MustClip case,
the spawned thread is responsible for performing the actual 3D Clipping algorithm. The CLIP thread is
passed the source object vertex data and is able to output a new, arbitrary 3D primitive (e.g., the clipped
primitive), or no output at all. Note that the output primitive is independent in that it is comprised of newly-
generated VUEs, and does not share vertices with the source primitive or other CLIP-generated
primitives.

New vertices produced by the CLIP threads are stored in the URB. Their Vertex Headers are then read
from the VUEs in order to insert the relevant information into the 3D pipeline. The CLIP unit maintains the
proper ordering of CLIP-generated primitives and any surrounding trivially-accepted primitives. The CLIP
unit also supports multiple concurrent CLIP threads and maintains the proper ordering of the thread
outputs as dictated by the order of the source objects.

Doc Ref # 177

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage (now including the
read-back VUE Vertex Header data such as Vertex Rosition (NDC or screen space), RTAIndex, VPIndex,
PointWidth) and control information (PrimType, PrimStart, PrimEnd) while the remainder of the vertex
data remains in the VUE in the URB.

5.1.3 [DevSNB+] Fixed Function Clipper
[DevSNB+] The device supports Fixed Function Clippling. Prior to this fixed function pipeline had Clipping
done in the EU. However the clipper thread latency was high and caused a bottleneck in the pipeline.
Hence the motivation for a fixed function clipper.

5.2 Concepts
This section provides an overview of 3D clip-testing and clipping concepts, as defined by the D3D and
OpenGL APIs. It is provided as background material: some of the concepts impact HW functionality
while others impact CLIP kernel functionality.

5.2.1 The Clip Volume
3D objects are optionally clipped to the clip volume. The clip volume is defined as the intersection of a
set of clip half-spaces. Six of these half-spaces define the view volume, while additional, user-defined
half-spaces can be employed to perform clipping (or at least culling) within the view volume.

The CLIP stage design will permit the enable/disable of certain subsets of these clip half-spaces. This
capability can be used, for example, to disable viewport, guardband, and near and far clipping as required
by the API and other conditions.

5.2.1.1 View Volume

The intersection of the six view half-spaces defines the view volume. The view volume is defined in 4D
clip space coordinates as:

‘Outside’ Condition View Clip Plane

 4D Clip Space NDC space, positive w

XMIN

(NDC Left)

clip.x < -clip.w ndc.x < -1

XMAX

(NDC Right)

clip.w < clip.x ndc.x > 1

YMIN

(NDC Bottom)

clip.y < -clip.w ndc.y < -1

YMAX

(NDC top)

clip.w < clip.y ndc.y > 1

178 Doc Ref #

‘Outside’ Condition View Clip Plane

 4D Clip Space NDC space, positive w

ZMIN

(NDC Near)

D3D: clip.z < 0.0

OGL: clip.z < -clip.w

D3D: ndc.z < 0.0

OGL: ndc.z < -1.0

ZMAX

(NDC Far)

clip.w < clip.z ndc.z > 1.0

Note that, since the 2D (X,Y) extent of the projected view volume is subsequently mapped to the 2D pixel
space viewport, the terms “viewport” and “view volume” are used somewhat interchangeably in this
discussion.

The CLIP unit will perform view volume clip test using NDC coordinates (the results of the speculative
PerspectiveDivide). The treatment of negative ndc.w and invalid (NaN, +/-INF) coordinates is clarified
below.

Negative W Coordinates

Consider for a moment vertices with a negative clip.w coordinate. Examination of the API definitions for
“outside” shows that it is impossible for that vertex to be considered inside both the XMIN (NDC Left) and
XMAX (NDC Right) planes. The clip.x coordinate would need to be greater than or equal to some
positive value (-clip.w) to be considered inside the XMIN plane, while also being less than or equal to the
negative (clip.w) value to be considered inside the XMAX plane. Obviously both these conditions cannot
be met simultaneously, so a vertex with a negative clip.w coordinate will always appear outside.

Surprisingly, it is possible for a vertex to be outside both the XMIN and XMAX planes (and likewise for the
Y axis). This arises when clip.w is negative and clip.x falls between clip.w and -clip.w. Note, however,
that in NDC space (post perspective-divide), this same vertex would be considered inside. This disparity
arises from the loss of information from the perspective divide operation, specifically the signs of the input
operands. The CLIP stage will avoid this artifact by supporting an additional clip.w=0 clip plane – a
negative ndc.rhw value indicates the point is outside of the clip.w=0 plane. (See sections below for related
errata in DevBW and DevCL devices)

The assumption made in the Clip stage is that only the w>0 portion of clip space is considered visible.
The VertexClipTest function tests each incoming 1/w value and, if negative, the vertex is tagged as being
outside the w=0 plane. These vertex outcodes are combined in ClipDetermination to determine
TA/TR/MC status.

A negative w coordinate poses an additional issue due to the fact that VertexClipTest is performed using
post-perspection-projection coordinates (NDC or screen space). This disparity arises from the loss of
information from the perspective divide operation, specifically the signs of the input operands. For
example, to test for (x>w) using NDC coordinates, (x/w>1) must be used when w>0, and (x/w<1) must be
used when w<0. The VertexClipTest function therefore uses the sign of the incoming 1/w coordinate to
select the appropriate comparison function for each of the VP and GB clip planes.

As the CLIP thread performs clipping in 4D clip space, only the truly visible portions of objects (i.e,
meeting the 4D clip space visibility criteria) will be considered. The CLIP thread should not output
negative w (clip or NDC) coordinates.

Doc Ref # 179

B6841-01

W

W=1.0

X=
w

(V
P L

ef
t)

Points on this
line project to
an outside
point

Points on this
line project to an

inside point

x

X=
w

(VP Right)

Perspective Divide
maps a 4D point to
the intersection of

the W=1 line and a
line from the point

to through the origin

???

Inside

5.2.2 User-Specified Clipping
The various APIs define mechanisms by which objects can be clipped or culled according to some user-
specified parameter(s) in addition to the implied viewport clipping. The HW support of these mechanisms
is restricted to use of the 8 UserClipFlags (UCFs) of the VUE Vertex Header. Software is required to
provide the remaining support (e.g., the JITTER including instructions to cause a distance value to be
computed, tested for visibility, and generation of the appropriate UCF bit.)

180 Doc Ref #

5.2.2.1 User Clip Planes (OGL)

In OpenGL, up to 6 user clip planes can be defined and enabled. These planes define half-spaces that
are intersected with the view volume (and each other) to form a final clip volume. Each user clip plane is
specified by four coefficients of a plane equation in clip space coordinates (UserClipPlane[n].xyzw).
A point is not visible if it has a negative distance to the plane. Therefore, points P that satisfy the
following equation are considered to lie in the half-space and therefore may be visible:

 (P.xyzw dot UCP[n].xyzw) >= 0, 0<=n<=5

There is no direct HW support for this distance computation. The driver/JITTER is required to cause the
distances to be correctly computed/compared in a shader, with the comparison result (boolean) placed in
the proper location in the Vertex Header.

5.2.3 Negative-W Clipping Errata
In legacy devices, there is a bug in the definition of the handling of negative RHW (1/w) coordinates in the
Clip unit’s trivial reject logic. The fault may cause line and triangle objects to be erroneously trivially
rejected and therefore be manifested as occasional missing geometry.

This section defines a correction of the problem in DevCTG+.

A new “NEGW” vertex outcode is added. It is set for a vertex if the RHW component is negative. Also
invert the computed VP,GB vertex outcodes if NEGW is seen. In ClipDetermination, NEGW is treated like
a separate clip plane in determination of trivial accept, trivial reject and mustclip cases.

Table 13 SW Workaround Summary

Device VS/GS
Kernel

Clip State Clip Kernel Notes

DevCTG+ No WA
required

None, other than
enabling NEGW clip

None.

Doc Ref # 181

5.2.4 Guard Band
Note: Refer to Vertex X,Y Clamping and Quantization in the SF stage section for device-specific
guardband size information.

3DClipping is time consuming. For cases where 2DClipping is sufficient, we are willing to forgo
3DClipping and instead apply 2DClipping during rendering. In the general case, this is possible only
when an object is totally within the ZMin and ZMax planes, and only clipping to the view volume X/Y
MIN/MAX clip planes is required, as 2DClipping is restricted to a screen-aligned 2D rectangle.

However, we must ensure that the 2D extent of these objects do not exceed the limitations of the
renderer’s coordinate space (see Vertex X,Y Clamping and Quantization in the SF section). Therefore
we define a 2D guardband region corresponding to (though likely somewhat smaller than) the maximum
2D extent supported by the renderer. During VertexClipTest, vertices are (optionally) subjected to an
additional visibility test based on the 2D guardband region.

During ClipDetermination, if an object is not trivially-rejected from the 2D viewport, the XMIN_GB,
XMAX_GB, YMIN_GB and YMAX_GB guardband outcodes are used instead of the XMIN, XMAX, YMIN,
YMAX view volume outcodes to determine trivial-accept. This will allow objects that fall within the
guardband and possibly intersect the viewport to be trivially-accepted and passed down the pipeline.

The diagram below shows some examples of objects (triangles) in relation to the viewport and
guardband. The shaded triangles are examples of triangles that are not trivially accepted to the viewport
but trivially accepted to the guardband and therefore passed to down the pipeline. Without the
guardband, these triangles would have to be submitted to a CLIP thread.

182 Doc Ref #

Figure 5-1. Normal Guardband Operation

B6822-01

Screen X

Screen Y

Trivial Reject (VP)

Trivial Reject
(VP and GB)

Trivial
Reject (VP)

Trivial
Accept
(GB)

Trivial
Accept

(VP)

MustClip,
not visible

Trivial
Accept
(GB)

Trivial Accept
(GB)

Viewport

GuardBand

MustClip,
partially visible

The CLIP stage needs to handle the case where the viewport XY is larger than the screen space
coordinate range supported by the SF and WM units. This condition may arise when the API defines an
implicit 2D clip between the viewport XY extent and the rendertarget. In the 3D pipeline, the guardband
must used to force explicit clipping in order to ensure legal coordinates are passed out of the CLIP stage.
Therefore the CLIP unit supports a guardband that can be larger or smaller than the viewport (in any
particular direction). The following diagram illustrates a case with a very large viewport, extending well
beyond the guardband. Note that the only trivial accept case is where objects are completely within the
guardband.

Doc Ref # 183

Figure 5-2. Very Large Viewport Case

B6842-01

Screen X

Screen Y

Trivial Reject (GB)

Trivial Reject
(VP and GB)

Trivial
Reject (GB)

MustClip,
partially
visible

Trivial
Accept

(GB)

MustClip,
not visible

MustClip,
partially
visible

MustClip,
not visible

GuardBand

Viewport

MustClip,
partially visible

5.2.4.1 NDC Guardband Parameters

Note: Refer to Vertex X,Y Clamping and Quantization in the SF stage section for device-specific
guardband size information.

When the CLIP unit performs VertexClipTest in NDC space, the guardband limits must be provided as
NDC coordinates. The diagram below shows how the guardband NDC coordinates are derived.
Specifically, the XMIN_GB NDC coordinate is simply the ratio of the (screen space) distance from the
screen space VP center to the screen space GB XMin boundary over the distance from the VP center to
the VP XMin (left) boundary. A similar computation yields the XMAX_GB (right), YMIN_GB (bottom) and
YMAX_GB (top) guardband NDC coordinates.

184 Doc Ref #

B6843-01

GB XMin

XMIN_GB (NDC)

VP XMin

-1

VP Center

0

VP XMax

+1

GB XMax

XMAX_GB (NDC)

Screen Space

NDC Space

As these guardband parameters are defined relative to the viewport, each of the up-to-16 sets of viewport
specifications supported in the 3D pipeline will require a corresponding set of guardband parameters.
These guardband parameters are provided as a separate memory-resident state structure
(CLIP_VIEWPORT), and referenced via the Clipper Viewport State Pointer contained in the
CLIP_STATE structure. Note that the CLIP_VIEWPORT structure has a different definition than the
SF_VIEWPORT structure used by the SF unit.

5.2.5 Vertex-Based Clip Testing and Considerations
The CLIP unit performs clip test and determines whether objects need to be clipped based solely on
information (position, UserClipFlags) provided at the vertices of the object as they arrive at the clip stage.
Issues arise if and when the corresponding rendered object is not constrained to the convex hull of the
object. Different APIs impose different treatment of these conditions.

In addition and in the more general case, a CLIP thread could be used to convert the object (as defined
by its vertices) into some arbitrary output primitive. In this case, the CLIP unit’s
ClipTest/ClipDetermination logic may not be suitable for determination of when to reject/accept/clip
objects. In this case the ClipMode can be used to route all (or all non-rejected) objects to CLIP threads,
where the proper clip-test and clipping can occur in the CLIP kernel.

One issue that arises is whether a trivial-reject to the VPXY is suitable. If this were allowed, an object
might be discarded even if it would have been partially visible in the viewport. A second issue is whether
a TA against the GB is suitable. If this were allowed, portions of the rendered object might be visible in
the VP even if the object should have been clipped out of the VP.

5.2.5.1 Triangle Objects

In the normal processing of triangle-based primitives (tristrip/trilist/polygon/etc.), the footprint of each
triangle is constrained to the 2D convex hull. I.e., the rendering of these triangles will not produce pixels
outside of the triangle. Therefore the normal operation of the CLIP unit functions will support the proper
clip testing and clip determination for triangle objects:

 Both the VPXY and GB clip boundaries can be utilized (as described above). If the triangle is TR
against the VP, it can be discarded. Otherwise, if the triangle is TA against the GB, it can be
passed down the pipeline (assuming it is TA against VPZ, UCFs, etc.) and properly handled by
2DClipping.

Doc Ref # 185

 The GB parameters can be programmed to coincide with the maximum allowable screen space
extent (though making the GB marginally smaller than this max extent is highly recommended).

5.2.5.2 Non-Wide Line Objects

In the normal processing of non-wide, line-based primitives (linestrip/linelist/etc.), the footprint of each line
is constrained to the 2D convex hull. I.e., the rendering of these lines will not produce pixels off of the
line. Therefore the normal operation of the CLIP unit functions will support the proper clip testing and clip
determination for non-wide line objects. (See Triangle Objects above).

5.2.5.3 Wide Line Objects

The rendering hardware supports wide lines (solid lines with a line width or anti-aliased lines). When
rendered, pixels outside of the convex hull will be generated.

The following diagram shows an example of a wide line that normally would be TA against the GB. If the
TA is allowed, the partially-visible region of the line would be rendered.

B6844-01

Partially-Visible
Region?

GuardBand

Viewport

In general, OpenGL dictates that the partially-visible region must not be rendered. In this case the line
must be clipped-out against the VPXY (not TA against the GB). To accomplish this, SW could disable the
GB when drawing wide lines.

186 Doc Ref #

5.2.5.4 Wide Points

The rendering hardware supports a width parameter for native line objects. When rendered, pixels
surrounding the point (center) vertex will be generated.

The following diagram shows an example wide point that normally would be TR against the VPXY. If the
TR is allowed, the partially-visible region of the point would not be rendered.

B6845-01

Point
Vertex

GuardBand

Viewport

Partially-visible
Region?

In general, OpenGL dictates that the partially-visible region must not be rendered. In this case the point
must be TR against the VPXY (not TA against the GB). To accomplish this, SW could disable the GB
when drawing wide points.

In D3D, the partially visible region should be rendered. (This behavior reduces ‘popping’ artifacts as the
point center is perturbed about the VP boundaries.) To accomplish this, software could disable the
VPXY and leave the GB enabled. In this case, software might want to set the GB to extend partially past
the VPXY (to filter out points that cannot be visible, but otherwise would be TR against a large GB).

5.2.5.5 RECTLIST

The CLIP unit treats RECTLIST exactly like TRILIST. No special consideration is made for the implied 4th
vertex of each rectangle (although ViewportXY and Guardband VertexClipTest theoretically should be
sufficient to drive ClipDetermination). Given this, and the fact that RECTLIST is primarily intended for
driver-generated “BLT” functions, there are number of restrictions on the use of RECTLIST, especially
regarding the CLIP unit. Refer to the RECTLIST definition in 3D Pipeline.

Doc Ref # 187

5.2.6 3D Clipping
If an object needs to be clipped, it will be passed to the CLIP thread. The CLIP thread will perform some
(arbitrary) algorithm to clip the primitive, and subsequently output “new” vertices as a primitive defining
the visible region of the input object (assuming there is a visible region). In the process of spawning the
CLIP thread, the input vertices may be considered “consumed” and therefore dereferenced. Therefore
the CLIP thread will need to copy (if required) any input VUE data to a new output VUE – there is no
mechanism to “output” input vertices other than copying.

Note: [DevSNB+] supports only Fixed function Clipping

5.3 CLIP Stage Input
As a stage of the 3D pipeline, the CLIP stage receives inputs from the previous (GS) stage. Refer to 3D
Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this
subsection describes the inputs specific to the CLIP stage.

5.3.1 State

5.3.1.1 3DSTATE_CLIP [DevSNB]

For [DevSNB], the state used by the clip stage is defined with this inline state packet.

3DSTATE_CLIP
Project: [DevSNB] Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 12h 3DSTATE_ Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 02h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

188 Doc Ref #

3DSTATE_CLIP
1 31:11 Reserved Project: All Format: MBZ

10 Clipper Statistics Enable

Project: All

Format: Enable

This bit controls whether Clip-unit-specific statistics register(s) can be incremented.

Value Name Description Project

0h Disable CL_INVOCATIONS_COUNT cannot increment All

1h Enable CL_INVOCATIONS_COUNT can increment All

9:8 Reserved Project: All Format: MBZ

7:0 User Clip Distance Cull Test Enable Bitmask

Project: All

Format: 8-bit mask FormatDesc

This 8 bit mask field selects which of the 8 user clip distances against which trivial reject /
trivial accept determination needs to be made (does not cause a must clip).

DX10 allows simultaneous use of ClipDistance and Cull Distance test of up to 8 distances.

Clip Distance Cull Test Enable Bitmask" and "Clip Distance Clip Test Enable Bitmask"
should not have overlapping bits in the mask, else the results are undefined.

2 31 CLIP Enable

Project: All

Format: Enable FormatDesc

Specifies whether the CLIP function is enabled or disabled (pass-through).

30 API Mode

Project: All

Controls the definition of the NEAR clipping plane

Value Name Description Project

0h APIMODE_OGL NEAR VP boundary == 0.0 (NDC)

All

1h APIMODE_D3D NEAR VP boundary == -1.0 (NDC) All

29 Reserved Project: All Format: MBZ

28 Viewport XY
ClipTest Enable

Project: All Format: Enable

This field is used to control whether the Viewport X,Y extents are considered in
VertexClipTest.

See Tristrip Clipping Errata subsection.

Doc Ref # 189

3DSTATE_CLIP
27 Viewport Z ClipTest

Enable
Project: All Format: Enable

This field is used to control whether the Viewport Z extents (near, far) are considered in
VertexClipTest.

26 Guardband ClipTest
Enable

Project: All Format: Enable

This field is used to control whether the Guardband X,Y extents are considered in
VertexClipTest for non-point objects.

If the Guardband ClipTest is DISABLED but the Viewport XY ClipTest is ENABLED,
ClipDetermination operates as if the Guardband were coincident with the Viewport.

If both the Guardband and Viewport XY ClipTest are DISABLED, all vertices are
considered “visible” with respect to the XY directions.

25 Reserved Project: All Format: Enable

24 Reserved Project: All Format: MBZ

23:16 User Clip Distance Clip Test Enable Bitmask

Project: All

Format: 8-bit mask FormatDesc

This 8 bit mask field selects which of the 8 user clip distances against which trivial reject /
trivial accept / must clip determination needs to be made.

DX10 allows simultaneous use of ClipDistance and Cull Distance test of up to 8 distances.

Clip Distance Cull Test Enable Bitmask" and "Clip Distance Clip Test Enable Bitmask"
should not have overlapping bits in the mask, else the results are undefined.

190 Doc Ref #

3DSTATE_CLIP
15:13 Clip Mode

Project: All

This field specifies a general mode of the CLIP unit, when the CLIP unit is ENABLED.

Value Name Description Project

0h CLIPMODE_
NORMAL

TrivialAccept objects are passed down the
pipeline, MustClip objects Clipped in the
Fixed Function Clipper HW, TrivialReject
and BAD objects are discarded

All

1h reserved All

2h reserved All

3h CLIPMODE_
REJECT_ALL

All objects are discarded. All

4h CLIPMODE_
ACCEPT_ALL

All objects (except BAD objects) are trivially
accepted. This effectively disables the clip-
test/clip-determination function. Note that
the CLIP unit will still filter out adacency
information, which may be required since
the SF unit does not accept primitives with
adjacency.

All

5h-7h Reserved

12:10 Reserved Project: All Format: MBZ

9 Perspective Divide Disable

Project: All

Format: Disable

This field disables the Perspective Divide function performed on homogeneous position
read from the URB. This feature can be used by software to submit pre-transformed
“screen-space” geometry for rasterization. This likely requires the W component of
positions to contain “rhw” (aka 1/w) in order to support perspective-correct interpolation of
vertex attributes. Likewise, the X,Y,Z components will likely be required to be X/W, Y/W,
Z/W.

Note that the device does not support clipping when perspective divide is disabled.
Software must specify CLIPMODE_ACCEPT_ALL whenever it disables perspective divide.
This implies that software must ensure that object positions are completely contained within
the “guardband” screen-space limits imposed by the SF unit (e.g., by clipping in CPU SW
before submitting the objects).

[errata] Clipper might use the incorrect version of this field when processing back to back
primitives with different values of this bit. When changing the value of this bit, an extra
3DSTATE_CLIP followed by a PIPE_CONTROL needs to be inserted before the new
3DSTATE_CLIP.

Doc Ref # 191

3DSTATE_CLIP
8 Non-Perspective Barycentric Enable

Project: All

Format: Enable FormatDesc

This field enables computation of non-perspective barycentric parameters in the clipper,
which are sent to SF unit in the must clip case. This field must be enabled if any non-
perspective barycentric parameters are enabled in the Windower.

7:6 Reserved Project: All Format: MBZ

5:4 Triangle Strip/List Provoking Vertex Select

Project: All

Format: U2 enumerated type FormatDesc

This field selects which vertex of a triangle (in a triangle strip or list primitive) is considered
the “provoking vertex”.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

3:2 Line Strip/List Provoking Vertex Select

Project: All

Format: U2 enumerated type FormatDesc

This field selects which vertex of a line (in a line strip or list primitive) is considered the
“provoking vertex”.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Reserved All

3h Reserved All

1:0 Triangle Fan Provoking Vertex Select

Project: All

Format: U2 enumerated type FormatDesc

This field selects which vertex of a triangle (in a triangle fan primitive) is considered the
“provoking vertex”.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

192 Doc Ref #

3DSTATE_CLIP

3

31:28 Reserved Project: All Format: MBZ

27:17 Minimum Point
Width

Project: All Format: U8.3 pixels

This value is used to clamp read-back PointWidth values.

16:6 Maximum Point
Width

Project: All Format: U8.3 pixels

This value is used to clamp read-back PointWidth values.

5 Force Zero
RTAIndex Enable

Project: All Format: Enable

If set, the Clip unit will ignore the read-back RTAIndex and operate as if the value 0 was
read-back. If clear, the read-back value is used.

4 Reserved Project: All Format: MBZ

3:0 Maximum VPIndex Project: All Format: U4 index value (# of viewports -1)

This field specifies the maximum valid VPIndex value, corresponding to the number of
active viewports. If the source of the VPIndex exceeds this maximum value, a VPIndex
value of 0 is passed down the pipeline. Note that this clamping does not affect a VPIndex
value stored in the URB.

Doc Ref # 193

5.3.1.2 CLIP_VIEWPORT [DevSNB]

[DevSNB]: The viewport-related state is stored as an array of up to 16 elements, each of which contains
the DWords described here. The start of each element is spaced 4 DWords apart. The first element of
the viewport state array is aligned to a 32-byte boundary, and is located at (General State Base Pointer
+ Clipper Viewport State Pointer). Note that the definition of the CLIP_VIEWPORT structure differs from
the SF_VIEWPORT structure used by the SF unit.

CLIP_VIEWPORT
Project: DevSNB Length Bias: 2

Viewport data used by the Clip unit.

DWord Bit Description

0 31:0 XMin Clip Guardband

Project: All

Format: FLOAT32 FormatDesc

For VPOS_NDCSPACE:

This 32-bit float represents the XMin guardband boundary (normalized to Viewport.XMin ==
-1.0f). This corresponds to the left boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the XMin guardband boundary in screen space coordinates.
This corresponds to the left boundary of the screen space guardband.

1 31:0 XMax Clip Guardband

Project: All

Format: FLOAT32 FormatDesc

For VPOS_NDCSPACE:

This 32-bit float represents the XMax guardband boundary (normalized to Viewport.XMax
== 1.0f). This corresponds to the right boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the XMax guardband boundary in screen space coordinates.
This corresponds to the right boundary of the screen space guardband.

2 31:0 YMin Clip Guardband

Project: All

Format: FLOAT32 FormatDesc

For VPOS_NDCSPACE:

This 32-bit float represents the YMin guardband boundary (normalized to Viewport.YMin ==
-1.0f). This corresponds to the bottom boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the YMin guardband boundary in screen space coordinates.
This corresponds to the top boundary of the screen space guardband.

194 Doc Ref #

CLIP_VIEWPORT
3 31:0 YMax Clip Guardband

Project: All

Format: FLOAT32 FormatDesc

For VPOS_NDCSPACE:

This 32-bit float represents the YMax guardband boundary (normalized to Viewport.YMax
== 1.0f). This corresponds to the top boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the YMax guardband boundary in screen space coordinates.
This corresponds to the bottom boundary of the screen space guardband.

5.3.1.3 CLIP_VIEWPORT

The viewport-related state is stored as an array of up to 16 elements, each of which contains the DWords
described here. The start of each element is spaced 4 DWords apart. The first element of the viewport
state array is aligned to a 32-byte boundary, and is located at (General State Base Pointer + Clipper
Viewport State Pointer).

Note that the definition of the CLIP_VIEWPORT structure differs from the SF_VIEWPORT structure used
by the SF unit.

CLIP_VIEWPORT
Project: All

Viewport data used by the Clip unit.

DWord Bit Description

0 31:0 XMin Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the XMin guardband boundary (normalized to Viewport.XMin ==
-1.0f). This corresponds to the left boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the XMin guardband boundary in screen space coordinates.
This corresponds to the left boundary of the screen space guardband.

1 31:0 XMax Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the XMax guardband boundary (normalized to Viewport.XMax
== 1.0f). This corresponds to the right boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the XMax guardband boundary in screen space coordinates.
This corresponds to the right boundary of the screen space guardband.

Doc Ref # 195

CLIP_VIEWPORT
2 31:0 YMin Clip

Guardband
Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the YMin guardband boundary (normalized to Viewport.YMin ==
-1.0f). This corresponds to the bottom boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the YMin guardband boundary in screen space coordinates.
This corresponds to the top boundary of the screen space guardband.

3 31:0 YMax Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the YMax guardband boundary (normalized to Viewport.YMax
== 1.0f). This corresponds to the top boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the YMax guardband boundary in screen space coordinates.
This corresponds to the bottom boundary of the screen space guardband.

5.4 VertexClipTest Function
The VertexClipTest function compares each incoming vertex position (x,y,z,w) with various viewport and
guardband parameters (either hard-coded values or specified by state variables).

The RHW component of the incoming vertex position is tested for NaN value, and if a NaN is detected,
the vertex is marked as “BAD” by setting the outcode[BAD]. If a NaN is deteced in any vertex
homogeneous x,y,z,w component or an enabled ClipDistance value, the vertex is marked as “BAD” by
setting the outcode[BAD].

In general, any object containing a BAD vertex will be discarded, as how to clip/render such objects is
undefined. However, in the case of CLIP_ALL mode, a CLIP thread will be spawned even for objects with
“BAD” vertices. The CLIP kernel is required to handle this case, and can examine the Object Outcode
[BAD] payload bit to detect the condition. (Note that the VP and GB Object Outcodes are UNDEFINED
when BAD is set).

If the incoming RHW coordinate is negative (including negative 0) the NEGW outcode is set. Also, this
condition is used to select the proper comparison functions for the VP and GB outcode tests (below).

Next, the VPXY and GB outcodes are computed, depending on the corresponding enable SV bits. If one
of VPXY or GB is disabled, the enabled set of outcodes are copied to the disabled set of outcodes. This
effectively defines the disabled boundaries to coincide with the enabled boundaries (i.e., disabling the GB
is just like setting it to the VPXY values, and vice versa.).

The VPZ outcode is computed as required by the API mode SV.

Finally, the incoming UserClipFlags are masked and copied to corresponding outcodes.

The following algorithm is used by VertexClipTest:

196 Doc Ref #

//

// Vertex ClipTest

//

// On input:

// if (CLIP.PreMapped)

// x,y are viewport mapped

// z is NDC ([0,1] is visible)

// else

// x,y,z are NDC (post-perspective divide)

// w is always 1/w

//

// Initialize outCodes to “inside”

//

outCode[*] = 0

//

// Check if w is NaN

// Any object containing one of these “bad” vertices will likely be discarded

 //

 #ifdef (DevBW-E0 || DevCL-B)

 if (ISNAN(w)|| UserClipFlag[7])

 #elseif (DevCTG)

 if (ISNAN(w))

 #elseif (DevIL+)

 if (ISNAN(homogeneous x,y,z,w or enabled ClipDistance value)

 #endif

{

outCode[BAD] = 1

}

Doc Ref # 197

//

// If 1/w is negative, w is negative and therefore outside of the w=0 plane

//

//

rhw_neg = ISNEG(rhw)

if (rhw_neg)

{

#ifdef (PreDevBW-E0 || DevCL-A)

outCode[VP_XMIN] = 1

outCode[VP_XMAX] = 1

outCode[VP_YMIN] = 1

outCode[VP_YMAX] = 1

outCode[VP_ZMIN] = 1

outCode[VP_ZMAX] = 1

outCode[GB_XMIN] = 1

outCode[GB_XMAX] = 1

outCode[GB_YMIN] = 1

outCode[GB_YMAX] = 1

goto UserClipFlags

 #elseifdef (DevCTG+)

 outCode[NEGW] = 1

 #endif

}

//

// View Volume Clip Test

// If Premapped, the 2D viewport is defined in screen space

// otherwise the canonical NDC viewvolume applies ([-1,1])

//

if (CLIP_STATE.PreMapped)

198 Doc Ref #

{

 vp_XMIN = CLIP_STATE.VP_XMIN

 vp_XMAX = CLIP_STATE.VP_XMAX

 vp_YMIN = CLIP_STATE.VP_YMIN

 vp_YMAX = CLIP_STATE.VP_YMAX

} else {

 vp_XMIN = -1.0f

 vp_XMAX = +1.0f

 vp_YMIN = -1.0f

 vp_YMAX = +1.0f

}

 if (CLIP_STATE.ViewportXYClipTestEnable) {

outCode[VP_XMIN] = (x < vp_XMIN)

outCode[VP_XMAX] = (x > vp_XMAX)

outCode[VP_YMIN] = (y < vp_YMIN)

outCode[VP_YMAX] = (y > vp_YMAX)

 #ifdef (DevBW-E0)

 if (rhw_neg) {

 outCode[VP_XMIN] = (x >= vp_XMIN)

 outCode[VP_XMAX] = (x <= vp_XMAX)

 outCode[VP_YMIN] = (y >= vp_XMIN)

 outCode[VP_YMAX] = (y <= vp_XMAX)

}

 #endif

 #ifdef (DevCTG+)

 if (rhw_neg) {

 outCode[VP_XMIN] = (x > vp_XMIN)

 outCode[VP_XMAX] = (x < vp_XMAX)

 outCode[VP_YMIN] = (y > vp_XMIN)

 outCode[VP_YMAX] = (y < vp_XMAX)

}

Doc Ref # 199

 #endif

 }

 if (CLIP_STATE.ViewportZClipTestEnable) {

 if (CLIP_STATE.APIMode == APIMODE_D3D) {

 vp_ZMIN = 0.0f

 vp_ZMAX = 1.0f

 } else { // OGL

 vp_ZMIN = -1.0f

 vp_ZMAX = 1.0f

 }

 outCode[VP_ZMIN] = (z < vp_ZMIN)

 outCode[VP_ZMAX] = (z > vp_ZMAX)

 #ifdef (DevBW-E0)

 if (rhw_neg) {

 outCode[VP_ZMIN] = (z >= vp_ZMIN)

 outCode[VP_ZMAX] = (z <= vp_ZMAX)

}

 #endif

 #ifdef (DevCTG+)

 if (rhw_neg) {

 outCode[VP_ZMIN] = (z > vp_ZMIN)

 outCode[VP_ZMAX] = (z < vp_ZMAX)

}

 #endif

 }

//

// Guardband Clip Test

//

if {CLIP_STATE.GuardbandClipTestEnable) {

 gb_XMIN = CLIP_STATE.Viewport[vpindex].GB_XMIN

200 Doc Ref #

 gb_XMAX = CLIP_STATE.Viewport[vpindex].GB_XMAX

 gb_YMIN = CLIP_STATE.Viewport[vpindex].GB_YMIN

 gb_YMAX = CLIP_STATE.Viewport[vpindex].GB_YMAX

 outCode[GB_XMIN] = (x < gb_XMIN)

 outCode[GB_XMAX] = (x > gb_XMAX)

 outCode[GB_YMIN] = (y < gb_YMIN)

 outCode[GB_YMAX] = (y > gb_YMAX)

 #ifdef (DevBW-E0)

 if (rhw_neg) {

 outCode[GB_XMIN] = (x >= gb_XMIN)

 outCode[GB_XMAX] = (x <= gb_XMAX)

 outCode[GB_YMIN] = (y >= gb_YMIN)

 outCode[GB_YMAX] = (y <= gb_YMAX)

}

 #endif

 #ifdef (DevCTG+)

 if (rhw_neg) {

 outCode[GB_XMIN] = (x > gb_XMIN)

 outCode[GB_XMAX] = (x < gb_XMAX)

 outCode[GB_YMIN] = (y > gb_YMIN)

 outCode[GB_YMAX] = (y < gb_YMAX)

}

 #endif

}

//

// Handle case where either VP or GB disabled (but not both)

// In this case, the disabled set take on the outcodes of the enabled set

//

if (CLIP_STATE.ViewportXYClipTestEnable && !CLIP_STATE.GuardbandClipTestEnable) {

 outCode[GB_XMIN] = outCode[VP_XMIN]

Doc Ref # 201

 outCode[GB_XMAX] = outCode[VP_XMAX]

 outCode[GB_YMIN] = outCode[VP_YMIN]

 outCode[GB_YMAX] = outCode[VP_YMAX]

} else if (!CLIP_STATE.ViewportXYClipTestEnable &&
CLIP_STATE.GuardbandClipTestEnable) {

 outCode[VP_XMIN] = outCode[GB_XMIN]

 outCode[VP_XMAX] = outCode[GB_XMAX]

 outCode[VP_YMIN] = outCode[GB_YMIN]

 outCode[VP_YMAX] = outCode[GB_YMAX]

}

//

// X/Y/Z NaN Handling

//

xyorgben = (CLIP_STATE.ViewportXYClipTestEnable ||
CLIP_STATE.GuardbandClipTestEnable)

if (isNAN(x)) {

 outCode[GB_XMIN] = xyorgben

 outCode[GB_XMAX] = xyorgben

 outCode[VP_XMIN] = xyorgben

 outCode[VP_XMAX] = xyorgben

 }

if (isNAN(y)) {

 outCode[GB_YMIN] = xyorgben

 outCode[GB_YMAX] = xyorgben

 outCode[VP_YMIN] = xyorgben

 outCode[VP_YMAX] = xyorgben

}

if (isNaN) {

 outCode[VP_ZMIN] = CLIP_STATE.ViewportZClipTestEnable

202 Doc Ref #

 outCode[VP_ZMAX] = CLIP_STATE.ViewportZClipTestEnable

}

//

// UserClipFlags

//

ExamineUCFs

for (i=0; i<7; i++)

{

outCode[UC0+i] = userClipFlag[i] &
CLIP_STATE.UserClipFlagsClipTestEnableBitmask[i]

 }

 #ifdef (DevBW-E0 || DevCL-B)

outCode[UC7] = rhw_neg & CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]

 #else

outCode[UC7] = userClipFlag[i] &
CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]

 #endif

5.5 Object Staging
The CLIP unit’s Object Staging Buffer (OSB) accepts streams of input vertex information packets, along
with each vertex’s VertexClipTest result (outCode). This information is buffered until a complete object or
the last vertex of the primitive topology is received. The OSB then performs the ClipDetermination
function on the object vertices, and takes the actions required by the results of that function.

5.5.1 Partial Object Removal
The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that it may receive
from the preceding stage (GS). Partial object removal is not supported for other primitive types due to
either (a) the GS is not permitted to output those primitive types (e.g., primitives with adjacency info), and
the VF unit will have removed the partial objects as part of 3DPRIMITIVE processing, or (b) although the
GS thread is allowed to output the primitive type (e.g., LINELIST), it is assumed that the GS kernel will be
correctly implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED). In short,
CLIP unit partial object removal is only provided for the cases where the GS shader programmer is able
to generate partial objects.

Doc Ref # 203

An object is considered ‘partial’ if the last vertex of the primitive topology is encountered (i.e., PrimEnd is
set) before a complete set of vertices for that object have been received. Given that only LINESTRIP and
TRISTRIP primitive types are subject to CLIP unit partial object removal, the only supported cases of
partial objects are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

[errata DevSNB]: Possible hang if final output from GS kernel is 2 vertex triangle. If it is possible for the
final output from GS kernel to be a 2 vertex triangle, then have the GS kernel always output an extra
single vertex triangle as the final output.

5.5.2 ClipDetermination Function
In ClipDetermination, the vertex outcodes of the primitive are combined in order to determine the clip
status of the object (TR: trivially reject; TA: trivial accept; MC: must clip; BAD: invalid coordinate). Only
those vertices included in the object are examined (3 vertices for a triangle, 2 for a line, and 1 for a point).
The outcode bit arrays for the vertices are separately ANDed (intersection) and ORed (union) together
(across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is computed as the
logical OR of the appropriate objANDCode bits, as the vertices need only be outside of one common
boundary to be trivially rejected. The TA status is computed as the logical NOR of the appropriate
objORCode bits, as any vertex being outside of any of the boundaries prevents the object from being
trivially accepted.

If any vertex contains a BAD coordinate, the object is considered BAD and any computed TR/TA results
will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status of the object. If the
object is TR against any viewport or enabled UC plane, the object is considered TR. Note that, by
definition, being TR against a VPXY boundary implies that the vertices will be TR agains the
corresponding GB boundary, so computing TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable state. If
DISABLED, an object that is not TR against the UCFs is considered TA against them. Put another way,
objects will only be culled (not clipped) with respect to the UCFs. If ENABLED, the UCF outcodes are
treated like the other outcodes, in that they are used to determine TR, TA or MC status, and an object can
be passed to a CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

The following logic is used to compute the final TR, TA, and MC status.

//

// ClipDetermination

//

//

// Compute objANDCode and objORCode

//

204 Doc Ref #

switch (object type) {

case POINT:

{

objANDCode[…] = v0.outCode[…]

objORCode[…] = v0.outCode[…]

} break

case LINE:

{

 objANDCode[…] = v0.outCode[…] & v1.outCode[…]

 objORCode[…] = v0.outCode[…] | v1.outCode[…]

} break

case TRIANGLE:

{

 objANDCode[…] = v0.outCode[…] & v1.outCode[…] & v2.outCode[…]

 objORCode[…] = v0.outCode[…] | v1.outCode[…] | v2.outCode[…]

} break

//

// Determine TR/TA against interesting boundary subsets

//

TR_VPXY = (objANDCode[VP_L] | objANDCode[VP_R] | objANDCode[VP_T] |
objANDCode[VP_B])

TR_GB = (objANDCode[GB_L] | objANDCode[GB_R] | objANDCode[GB_T] |
objANDCode[GB_B])

TA_GB = !(objORCode[GB_L] | objORCode[GB_R] | objORCode[GB_T] | objORCode[GB_B])

TA_VPZ = !(objORCode[VP_N] | objORCode[VP_Z])

TR_VPZ = (objANDCode[VP_N] | objANDCode[VP_Z])

TA_UC = !(objORCode[UC0] | objORCode[UC1] | … | objORCode[UC7])

TR_UC = (objANDCode[UC0] | objANDCode[UC1] | … | objANDCode[UC7])

BAD = objORCode[BAD]

#ifdef (DevCTG+)

TA_NEGW = !objORCode[NEGW]

Doc Ref # 205

TR_NEGW = objANDCode[NEGW]

#endif

//

// Trivial Reject

//

// An object is considered TR if all vertices are TR against any common boundary

// Note that this allows the case of the VPXY being outside the GB

//

#ifdef (DevCTG+)

TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC || TR_NEGW

#else

TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC

#endif

//

// Trivial Accept

//

// For an object to be TA, it must be TA against the VPZ and GB, not TR,

// and considered TA against the UC planes and (DevCTG+) NEGW

// If the UCMC mode is disabled, an object is considered TA against the UC

// as long as it isn’t TR against the UC.

// If the UCMC mode is enabled, then the object really has to be TA against the UC

// to be considered TA

// In this way, enabling the UCMC mode will force clipping if the object is neither

// TA or TR against the UC

//

#ifdef (DevCTG+)

TA = !TR && TA_GB && TA_VPZ && TA_NEGW

#else

TA = !TR && TA_GB && TA_VPZ

206 Doc Ref #

#endif

UCMC = CLIP_STATE.UserClipFlagsMustClipEnable

TA = TA && ((UCMC && TA_UC) || (!UCMC && !TR_UC))

//

// MustClip

// This is simply defined as not TA or TR

// Note that exactly one of TA, TR and MC will be set

//

MC = !(TA || TR)

5.5.3 ClipMode
The ClipMode state determines what action the CLIP unit takes given the results of ClipDetermination.
The possible actions are:

 PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not spawned.

 DISCARD: Remove the object from the pipeline and dereference object vertices as required
(i.e., dereferencing will not occur if the vertices are shared with other objects).

 SPAWN: Pass the object to a CLIP thread. In the process of initiating the thread, the
object vertices may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or DISCARD or SPAWN).

//

// Use the ClipMode to determine the action to take

 //

switch (CLIP_STATE.ClipMode) {

 case NORMAL: {

 PASSTHRU = TA && !BAD

 DISCARD = TR || BAD

 SPAWN = MC && !BAD

 }

Doc Ref # 207

 case CLIP_ALL: {

 PASSTHRU = 0

 DISCARD = 0

 SPAWN = 1

 }

 case CLIP_NOT_REJECT: {

 PASSTHRU = 0

 DISCARD = TR || BAD

 SPAWN = !(TR || BAD)

 }

 case REJECT_ALL: {

 PASSTHRU = 0

 DISCARD = 1

 SPAWN = 0

 }

 case ACCEPT_ALL: {

 PASSTHRU = !BAD

 DISCARD = BAD

 SPAWN = 0

 }

} endswitch

#ifdef (DevBW-E0 || DevCL-B)

if (BAD && CLIP_STATE.ClipMode != REJECT_ALL) {

 DISCARD = 0

 SPAWN = 1

}

#endif

208 Doc Ref #

5.5.3.1 NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and passed to a CLIP
thread if MC. Those mode is typically used when the CLIP kernel is only used to perform 3D Clipping (the
expected usage model).

5.5.3.2 CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP threads. Note that this
includes BAD objects. This mode can be used to perform arbritrary processing in the CLIP thread, or as
a backup if for some reason the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are not
sufficient for controlling 3D Clipping.

5.5.3.3 CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all other (TA, MC)
objects are passed to CLIP threads. Usage of this mode assumes that the CLIP unit fixed functions
(VertexClipTest, ClipDetermination) are sufficient at least in respect to determining trivial reject.

5.5.3.4 REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This mode effectively clips
out all objects.

5.5.3.5 ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This mode partially
disables the CLIP stage. BAD objects will still be discarded, and incomplete primitives (generated by a
GS thread) will be discarded.

Primitive topologies with adjacency are also handled, in that the adjacent-only vertices are dereferenced
and only non-adjacent objects are passed down the pipeline. This condition can arise when primitive
topologies with adjacency are generated but the GS stage is disabled. If this condition is allowed, the
CLIP stage must not be completely disabled – as this would allow adjacent vertices to pass through the
CLIP stage and lead to UNPREDICATBLE results as the rest of the pipeline does not comprehend
adjacency.

5.6 Object Pass-Through
Depending on ClipMode, objects may be passed directly down the pipeline. The PrimTopologyType
associated with the output objects may differ from the input PrimTopologyType, as shown in the table
below.

Programming Note: The CLIP unit does not tolerate primitives with adjacency that have “dangling
vertices”. This should not be an issue under normal conditions, as the VF unit will not generate these
sorts of primitives and the GS thread is restricted (though by specification only) to not output these sorts
of primitives.

Doc Ref # 209

Input
PrimTopologyType

Pass-Through Output
PrimTopologyType

 Notes

POINTLIST POINTLIST

POINTLIST_BF POINTLIST_BF

LINELIST LINELIST

LINELIST_ADJ LINELIST Adjacent vertices removed.

LINESTRIP LINESTRIP

LINESTRIP_ADJ LINESTRIP Adjacent vertices removed.

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT LINESTRIP_CONT

LINESTRIP_CONT_BF LINESTRIP_CONT_BF

LINELOOP N/A Not supported after GS.

TRILIST TRILIST

RECTLIST RECTLIST

TRILIST_ADJ TRILIST Adjacent vertices removed.

TRISTRIP TRISTRIP or TRISTRIP_REV Depends on where the incoming strip is broken
(if at all) by discarded or clipped objects

See Tristrip Clipping Errata subsection.

TRISTRIP_REV TRISTRIP or TRISTRIP_REV Depends on where the incoming strip is broken
(if at all) by discarded or clipped objects

See Tristrip Clipping Errata subsection.

TRISTRIP_ADJ TRISTRIP or TRISTRIP_REV Depends on where the incoming strip is broken
(if at all) by discarded or clipped objects

Adjacent vertices removed.

See Tristrip Clipping Errata subsection.

TRIFAN TRIFAN

TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE

POLYGON POLYGON

210 Doc Ref #

Input
PrimTopologyType

Pass-Through Output
PrimTopologyType

 Notes

QUADLIST N/A Not supported after GS.

QUADSTRIP N/A Not supported after GS.

5.7 Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the CLIP thread)

The CLIP unit will output primitives (either passed-through or generated by a CLIP thread) in the proper
order. This includes the buffering of a concurrent CLIP thread’s output until the preceding CLIP thread
terminates. Note that the requirement to buffer subsequent CLIP thread output until the preceding CLIP
thread terminates has ramifications on determining the number of VUEs allocated to the CLIP unit and
the number of concurrent CLIP threads allowed.

5.8 Other Functionality

5.8.1 Statistics Gathering

The CLIP unit includes logic to assist in the gathering of certain pipeline statistics, primarily in support of
the Asynchronous Query function of the D3D APIs. The statistics take the form of MI counter registers
(see Memory Interface Registers), where the CLIP unit provides signals causing those counters to
increment.

Software is responsible for controlling (enabling) these counters in order to provide the required statistics
at the DDI level. For example, software might need to disable the statistics gathering before submitting
non-API-visible objects (e.g., RECTLISTs) for processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of PIPELINED_STATE_POINTERS) in order
to it to affect the statistics counters. This might lead to a pathological case where the CLIP unit needs to
be ENABLED simply to provide statistics gathering. If no clipping functionality is desired, Clip Mode can
be set to ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage ENABLED.

The two statistics the CLIP unit affects (if enabled) are:

 CL_INVOCATION_COUNT:

o Incremented for every object received from the GS stage.

Doc Ref # 211

5.8.1.1 CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the
CL_INVOCATION_COUNT register for every complete object received from the GS stage.

In order to maintain a count of application-generated objects, software will need to clear the CLIP unit’s
Statistic Enable whenever driver-generated objects are rendered.

212 Doc Ref #

6. Strips and Fans (SF) Stage

6.1 Overview
The Strips and Fan (SF) stage of the 3D pipeline is responsible for performing “setup” operations required
to rasterize 3D objects.

 [DevSNB+]: This functionality is handled completely in hardware, and the SF unit no longer has the
ability to spawn threads.

6.1.1 Inputs from CLIP
The following table describes the per-vertex inputs passed to the SF unit from the previous (CLIP) stage
of the pipeline.

Table 14. SF’s Vertex Pipeline Inputs

Variable Type Description

primType enum Type of primitive topology the vertex belongs to. See Table 15 for a list of
primitive types supported by the SF unit. See 3D Pipeline for descriptions
of these topologies.

Notes:

The CLIP unit will convert any primitive with adjacency (3DPRIMxxx_ADJ)
it receives from the pipeline into the corresponding primitive without
adjacency (3DPRIMxxx).

QUADLIST, QUADSTRIP, LINELOOP primitives are not supported by the
SF unit. Software must use a GS thread to convert these to some other
(supported) primitive type.

[DevSNB+] If an object is clipped by the hardware clipper, the CLunit
would force this field to “3DPRIM_POLYGON”. SFunit would process this
incoming object just as it would any other “3DPRIM_POLYGON”. SFunit
selects vertex 0 as the provoking vertex.

primStart,primEn
d

boolean Indicate vertex’s position within the primitive topology

vInX[] float Vertex X position (screen space or NDC space)

vInY[] float Vertex Y position (screen space or NDC space)

vInZ[] float Vertex Z position (screen space or NDC space)

Doc Ref # 213

Variable Type Description

vInInvW[] float Reciprocal of Vertex homogeneous (clip space) W

hVUE[] URB
address

Points to the vertex’s data stored in the URB (one VUE handle per vertex)

renderTargetArra
yIndex

uint Index of the render target (array element or 3D slice), clamped to 0 by the
GS unit if the max value was exceeded.

If this vertex is the leading vertex of an object within the primitive topology,
this value will be associated with that object in subsequent processing.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure
used to perform Viewport Transformation on object vertices and scissor
operations on an object.

If this vertex is the leading vertex of an object within the primitive topology,
this value will be associated with that object in the Viewport Transform and
Scissor subfunctions, otherwise the value is ignored. Note that for
primitive topologies with vertices shared between objects, this means a
shared vertex may be subject to multiple Viewport Transformation
operations if the viewPortIndex varies within the topology.

pointSize uint If this vertex is within a POINTLIST[_BF] primitive topology, this value
specifies the screen space size (width,height) of the square point to be
rasterized about the vertex position. Otherwise the value is ignored.

6.1.2 Attribute Setup/Interpolation Process

6.1.2.1 Attribute Setup/Interpolation Process [DevSNB+]

Computation of all parameters needed is performed by hardware as there is no setup thread.

6.1.3 Outputs to WM
The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific
information required for the rasterization of objects. The types of information is summarized below, but as
the interface is not exposed to software a detailed discussion is not relevant to this specification.

 PrimType of the object

 VPIndex, RTAIndex associated with the object

 [DevSNB+]: Coefficients for Z, 1/W, perspective and non-perspective b1 and b2 per vertex, and
attribute vertex deltas a0, a1, and a2 per attribute.

 Information regarding the X,Y extent of the object (e.g., bounding box, etc.)

 Edge or line interpolation information (e.g., edge equation coefficients, etc.)

 Information on where the WM is to start rasterization of the object

214 Doc Ref #

 Object orientation (front/back-facing)

 Last Pixel indication (for line drawing)

6.2 Primitive Assembly
The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive vertex information is
buffered and, when a sufficient number of vertices are received, converted into basic 3D objects which
are then passed to the Viewport Transformation subfunction.

The number of vertices passed with each primitive is constrained by the primitive type and must conform
to Table 15. Passing any other number of vertices results in UNDEFINED behavior. Note that this
restriction only applies to primitive output by GS threads (which is under control of the GS kernel). See
the Vertex Fetch chapter for details on how the VF unit automatically removes incomplete objects
resulting from processing a 3DPRIMITIVE command.

Table 15. SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction

3DPRIM_TRILIST nonzero multiple of 3

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERS
E

>=3

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPL
E

3DPRIM_POLYGON

>=3

3DPRIM_LINELIST nonzero multiple of 2

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_
BF

>=2

3DPRIM_RECTLIST nonzero multiple of 3

3DPRIM_POINTLIST

3DPRIM_POINTLIST_BF

nonzero

The 3D object types are listed in the table below.

Doc Ref # 215

Table 16. 3D Object Types

objectType generated by primType Vertices/Object

3DOBJ_POINT 3DPRIM_POINTLIST

3DPRIM_POINTLIST_BF

1

3DOBJ_LINE 3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

2

3DOBJ_TRIANGLE 3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

 3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

3

3DOBJ_RECTANGLE 3DPRIM_RECTLIST 3 (expanded to 4 in
RectangleCompletion)

The outputs of Primitive Decomposition are listed in the following table.

Table 17. Primitive Decomposition Outputs

Variable Type Description

objectType enum Type of object. See Table 16

nV uint The number of object vertices passed to Object Setup. See Table 16

v[0..nV-1]* various Data arrays associated with object vertices. Data in the array consists
of X, Y, Z, invW and a pointer to the other vertex attributes. These
additional attributes are not used by directly by the 3D fixed functions
but are made available to the SF thread. The number of valid vertices
depends on the object type. See Table 16

invertOrientation enum Indicates whether the orientation (CW or CCW winding order) of the
vertices of a triangle object should be inverted. Ignored for non-triangle
objects.

backFacing enum Valid only for points and line objects, indicates a back facing object.
This is used later for culling.

216 Doc Ref #

Variable Type Description

provokingVtx uint Specifies the index (into the v[] arrays) of the vertex considered the
“provoking” vertex (for flat shading). The selection of the provoking
vertex is programmable via SF_STATE (xxx Provoking Vertex Select
state variables.)

polyStippleEnable boolean TRUE if Polygon Stippling is enabled. FALSE for
TRIFAN_NOSTIPPLE. Ignored for non-triangle objects.

continueStipple boolean Only applies to line objects. TRUE if Line Stippling should be continued
(i.e., not reset) from where the previous line left off. If FALSE, Line
Stippling is reset for each line object.

renderTargetInde
x

uint Index of the render target (array element or 3D slice), clamped to 0 by
the GS unit if the max value was exceeded. This value is simply
passed in SF thread payloads and not used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure
used to perform Viewport Transformation on object vertices and scissor
operations on an object.

pointSize unit For point objects, this value specifies the screen space size
(width,height) of the square point to be rasterized about the vertex
position. Otherwise the value is ignored.

The following table defines, for each primitive topology type, which vertex’s VPIndex/RTAIndex applies to
the objects within the topology.

 Table 18. VPIndex/RTAIndex Selection

PrimTopologyType Viewport Index Usage

POINTLIST
POINTLIST_BF

Each vertex supplies the VPIndex for the corresponding point object

LINELIST The leading vertex of each line supplies the VPIndex for the corresponding line
object.

V0.VPIndex  Line(V0,V1)

V2.VPIndex  Line(V2,V3)

…

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT_BF

The leading vertex of each line segment supplies the VPIndex for the
corresponding line object.

V0.VPIndex  Line(V0,V1)

V1.VPIndex  Line(V1,V2)

…

NOTE: If the VPIndex changes within the topology, shared vertices will be
processed (mapped) multiple times.

TRILIST The leading vertex of each triangle/rect supplies the VPIndex for the

Doc Ref # 217

PrimTopologyType Viewport Index Usage

RECTLIST corresponding triangle/rect objects.

V0.VPIndex  Tri(V0,V1,V2)

V3.VPIndex  Tri(V3,V4,V5)

…

TRISTRIP

TRISTRIP_REVERSE

The leading vertex of each triangle supplies the VPIndex for the corresponding
triangle object.

V0.VPIndex  Tri(V0,V1,V2)

V1.VPIndex  Tri(V1,V2,V3)

…

NOTE: If the VPIndex changes within the primitive, shared vertices will be
processed (mapped) multiple times.

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

The first vertex (V0) supplies the VPIndex for all triangle objects.

6.2.1 Point List Decomposition
The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a list of
independent points.

Figure 6-1. 3DPRIM_POINTLIST Primitive

v0

v1

v2

v3

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects that are then
passed individually and in order to the Object Setup subfunction. The provokingVertex of each object is,
by definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state whether they are back-
facing or front-facing points. Primitives of type 3DPRIM_POINTLIST_BACKFACING are decomposed
exactly the same way as 3DPRIM_POINTLIST primitives, but the backFacing variable is set for resulting
point objects being passed on to object setup.

PointListDecomposition() {

 objectType = 3DOBJ_POINT

218 Doc Ref #

 nV = 1

provokingVtx = 0

 if (primType == 3DPRIM_POINTLIST)

 backFacing = FALSE

 else // primType == 3DPRIM_POINTLIST_BACKFACING

 backFacing = TRUE

for each (vertex I in [0..vertexCount-1]) {

 v[0]  vIn[i] // copy all arrays (e.g., v[]X, v[]Y, etc.)

 ObjectSetup()

 }

}

6.2.2 Line List Decomposition
The 3DPRIM_LINELIST primitive specifies a list of independent lines.

Figure 6-2. 3DPRIM_LINELIST Primitive

v0
v1

v2

v3

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects that are then
passed individually and in order to the Object Setup stage. The lines are generated with the following
object vertex order: v0, v1; v2, v3; and so on. The provokingVertex of each object is taken from the Line
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

LineListDecomposition() {

 objectType = 3DOBJ_LINE

 nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select

Doc Ref # 219

continueStipple = FALSE

 for each (vertex I in [0..vertexCount-2] by 2) {

 v[0] arrays  vIn[i] arrays

 v[1] arrays  vIn[i+1] arrays

 ObjectSetup()

 }

}

6.2.3 Line Strip Decomposition
The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and
3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

Figure 6-3. 3DPRIM_LINESTRIP_xxx Primitive

v0
v1

v2

v3

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects that are then
passed individually and in order to the Object Setup stage. The lines are generated with the following
object vertex order: v0,v1; v1,v2; and so on. The provokingVertex of each object is taken from the Line
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state whether they are back-
facing or front-facing lines. Primitives of type 3DPRIM_LINESTRIP[_CONT]_BF are decomposed exactly
the same way as 3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the
resulting line objects being passed on to object setup. Likewise 3DPRIM_LINESTRIP_CONT[_BF]
primitives are decomposed identically to basic line strips, but the continueStipple variable is set to true so
that the line stipple pattern will pick up from where it left off with the last line primitive, rather than being
reset.

220 Doc Ref #

LineStripDecomposition() {

 objectType = 3DOBJ_LINE

 nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select

 if (primType == 3DPRIM_LINESTRIP) {

 backFacing = FALSE

 continueStipple = FALSE

 } else if (primType == 3DPRIM_LINESTRIP_BF) {

 backFacing = TRUE

 continueStipple = FALSE

 } else if (primType == 3DPRIM_LINESTRIP_CONT) {

 backFacing = FALSE

 continueStipple = TRUE

 } else if (primType == 3DPRIM_LINESTRIP_CONT_BF) {

 backFacing = TRUE

 continueStipple = TRUE

 }

for each (vertex I in [0..vertexCount-1]) {

 v[0] arrays  vIn[i] arrays

 v[1] arrays  vIn[i+1] arrays

 ObjectSetup()

 continueStipple = TRUE

 }

}

Doc Ref # 221

6.2.4 Triangle List Decomposition
The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

Figure 6-4. 3DPRIM_TRILIST Primitive

v0
v1

v2

v4

v5 v3

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE objects that are then
passed individually and in order to the Object Setup stage. The triangles are generated with the following
object vertex order: v0,v1,v2; v3,v4,v5; and so on. The provokingVertex of each object is taken from
the Triangle List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

TriangleListDecomposition() {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

invertOrientation = FALSE

 provokingVtx = Triangle List/Strip Provoking Vertex Select

polyStippleEnable = TRUE

for each (vertex I in [0..vertexCount-3] by 3) {

 v[0] arrays  vIn[i] arrays

 v[1] arrays  vIn[i+1] arrays

 v[2] arrays  vIn[i+2] arrays

 ObjectSetup()

 }

}

222 Doc Ref #

6.2.5 Triangle Strip Decomposition
The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of triangles
arranged in a strip, as illustrated below.

Figure 6-5. 3DPRIM_TRISTRIP[_REVERSE] Primitive

v0
v2

v1

v4

v3 v5

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE objects that are
then passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: v0,v1,v2; v1,v2,v3; v2,v3,v4; and so on. Note that the winding order of the
vertices alternates between CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of
each object is taken from the Triangle List/Strip Provoking Vertex Select state variable, as
programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-facing and back-facing
triangles (see Triangle Orientation (Face) Culling below). Therefore, the 3D pipeline must account for the
alternation of winding order in strip triangles. The invertOrientation variable is generated and used for this
purpose.

To accommodate the situation where the driver is forced to break an input strip primitive into multiple
tristrip primitive commands (e.g., due to ring or batch buffer size restrictions), two tristrip primitive types
are supported. 3DPRIM_TRISTRIP is used for the initial section of a strip, and wherever a continuation
of a strip starts with a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is used for a
continuation of a strip that starts with a triangle with a CCW winding order.

TriangleStripDecomposition() {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

provokingVtx = Triangle List/Strip Provoking Vertex Select

 if (primType == 3DPRIM_TRISTRIP)

 invertOrientation = FALSE

 else // primType == 3DPRIM_TRISTRIP_REVERSE

 invertOrientation = TRUE

 polyStippleEnable = TRUE

Doc Ref # 223

for each (vertex I in [0..vertexCount-3]) {

 v[0] arrays  vIn[i] arrays

 v[1] arrays  vIn[i+1] arrays

 v[2] arrays  vIn[i+2] arrays

 ObjectSetup()

 invertOrientation = ! invertOrientation

 }

}

6.2.6 Triangle Fan Decomposition
The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of triangles
arranged in a fan, as illustrated below.

Figure 6-6. 3DPRIM_TRIFAN Primitive

v5
v0

v4

v1

v3 v2

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE objects that are then
passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: v0,v1,v2; v0,v2,v3; v0,v3,v4; and so on. As there is no alternation in the
vertex winding order, the invertOrientation variable is output as FALSE unconditionally. The
provokingVertex of each object is taken from the Triangle Fan Provoking Vertex state variable, as
programmed via SF_STATE.

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same way, except the
polyStippleEnable variable is FALSE for the resulting objects being passed on to object setup. This will
inhibit polygon stipple for these triangle objects.

TriangleFanDecomposition() {

objectType = 3DOBJ_TRIANGLE

 nV = 3

invertOrientation = FALSE

224 Doc Ref #

 provokingVtx = Triangle Fan Provoking Vertex Select

 if (primType == 3DPRIM_TRIFAN)

 polyStippleEnable = TRUE

 else // primType == 3DPRIM_TRIFAN_NOSTIPPLE

 polyStippleEnable = FALSE

 v[0] arrays  vIn[0] arrays // the 1st vertex is common

for each (vertex I in [1..vertexCount-2]) {

 v[1] arrays  vIn[i] arrays

 v[2] arrays  vIn[i+1] arrays

 ObjectSetup()

 }

}

6.2.7 Polygon Decomposition
The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the exception that
the provokingVtx is overridden with 0. This support has been added specifically for OpenGL support,
avoiding the need for the driver to change the provoking vertex selection when switching between trifan
and polygon primitives.

6.2.8 Rectangle List Decomposition
The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned rectangles.
Only the lower right, lower left, and upper left vertices (in that order) are included in the command – the
upper right vertex is derived from the other vertices (in Object Setup).

Figure 6-7. 3DPRIM_RECTLIST Primitive

v0v1

v2

v4

v5

v3

Implied Vertices

Doc Ref # 225

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the 3DPRIM_TRILIST
decomposition, with the exception of the objectType variable.

RectangleListDecomposition() {

 objectType = 3DOBJ_RECTANGLE

 nV = 3

invertOrientation = FALSE

 provokingVtx = 0

for each (vertex I in [0..vertexCount-3] by 3) {

 v[0] arrays  vIn[i] arrays

 v[1] arrays  vIn[i+1] arrays

 v[2] arrays  vIn[i+2] arrays

 ObjectSetup()

 }

}

6.3 Object Setup
The Object Setup subfunction of the SF stage takes the post-viewport-transform data associated with
each vertex of a basic object and computes various parameters required for scan conversion. This
includes generation of implied vertices, translations and adjustments on vertex positions, and culling
(removal) of certain classes of objects. The final object information is passed to the Windower/Masker
(WM) stage where the object is rasterized into pixels.

6.3.1 Invalid Position Culling (Pre/Post-Transform)
At input the the SF stage, any objects containing a floating-point NaN value for Position X, Y, Z, or RHW
will be unconditionally discarded. Note that this occurs on an object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN value for post-
transform Position X, Y or Z will be unconditionally discarded.

6.3.2 Viewport Transformation
If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport transformation is applied to
each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the Viewport Matrix
Element data from the corresponding element of the SF_VIEWPORT structure in memory. For each
object vertex, the following scale and translate transformation is applied to the position coordinates:

226 Doc Ref #

 x’ = m00 * x + m30

 y’ = m11 * y + m31

 z’ = m22 * z + m32

Software is responsible for computing the matrix elements from the viewport information provided to it
from the API.

6.3.3 Destination Origin Bias
The positioning of the pixel sampling grid is programmable and is controlled by the Destination Origin
Horizontal/Vertical Bias state variables (set via SF_STATE). If these bias values are both 0, pixels are
sampled on an integer grid. Pixel (0,0) will be considered inside the object if the sample point at XY
coordinate (0,0) falls within the primitive.

If the bias values are both 0.5, pixels are sampled on a “half” integer grid (i.e., X.5, Y.5). Pixel (0,0) will be
considered inside the object if the sample point at XY coordinate (0.5,0.5) falls within the primitive. This
positioning of the sample grid corresponds with the OpenGL rasterization rules, where “fragment centers”
lay on a half-integer grid. It also corresponds with the Intel740 rasterizer (though that device did not
employ “top left” rules).

Note that subsequent descriptions of rasterization rules for the various objects will be with reference to
the pixel sampling grid.

Figure 6-8. Destination Origin Bias

0,0

Origin Bias (0.0, 0.0)
x

y
(0.0,0.0)

(1.0,1.25)

(1.75,0.25)Sample Point

0,0

Origin Bias (0.5, 0.5)
x

y
(0.0,0.0)

(1.0,1.25)

(1.75,0.25)

Sample Point

6.3.4 Point Rasterization Rule Adjustment
POINT objects are rasterized as square RECTANGLEs, with one exception: The Point Rasterization
Rule state variable (in SF_STATE) controls the rendering of point object edges that fall directly on pixel
sample points, as the treatment of these edge pixels varies between APIs.

Doc Ref # 227

The following diagram shows the rasterization of a 2-pixel wide point centered at (2,2). Here the pixel
sample grid coincides with the integer pixel coordinates, and the Point Rasterization Rule is set to
RASTRULE_UPPER_LEFT. Note that the pixels which lie only on the upper and/or left edges are lit.

Figure 6-9. RASTRULE_UPPER_LEFT

B6846-01

Sample Point
for Pixel 0,0

DX7
Mode

1,2 Lit 2,2 Lit

1,1 Lit 2,1 Lit

0 1 2 3 4
0

3

4

Point Width = 2.0

1

2

The following diagram shows the rasterization of a 2-pixel wide point centered at (2,2) given “OpenGL”
rasterization rules. Here the pixel sample grid coincides with half-integer pixel coordinates, and the Point
Rasterization Rule is set to RASTRULE_UPPER_RIGHT. Note that the pixels which lie only on the
upper and/or right edges are lit.

228 Doc Ref #

Figure 6-10. RASTRULE_UPPER_RIGHT

B6847-01

Sample Point
for Pixel 0,0

OpenGL Mode

1,0 Lit 2,1 Lit

1,0 Lit 2,0 Lit

0 1 2 3 4
0

3

4

Point Width = 2.0

1

2

X

XX XX

XX

XX XX

XX XX

6.3.5 Drawing Rectangle Offset Application
The Drawing Rectangle Offset subfunction offsets the object’s vertex X,Y positions by the pixel-exact,
unclipped drawing rectangle origin (as programmed via the Drawing Rectangle Origin X,Y values in the
3DSTATE_DRAWING_RECTANGLE command). The Drawing Rectangle Offset subfunction (at least with
respect to Color Buffer access) is unconditional, and therefore to (effectively) turn off the offset function
the origin would need to be set to (0,0). A non-zero offset is typically specified when window-relative or
viewport-relative screen coordinates are input to the device. Here the drawing rectangle origin would be
loaded with the absolute screen coordinates of the window’s or viewport’s upper-left corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the pipeline. Note that
this clipping is based on the “clipped” draw rectangle (as programmed via the Clipped Drawing
Rectangle values in the 3DSTATE_DRAWING_RECTANGLE command), which must be clamped by
software to the rendertarget boundaries. The unclipped drawing rectangle origin, however, can extend
outside the screen limits in order to support windows whose origins are moved off-screen. This is
illustrated in the following diagrams.

Doc Ref # 229

Figure 6-11. Onscreen Draw Rectangle

Color Buffer

DrawRectOrigin

DrawRectClipped

Figure 6-12. Partially-offscreen Draw Rectangle

Color Buffer

DrawRectOrigin

DrawRectClipped

230 Doc Ref #

6.3.5.1 3DSTATE_DRAWING_RECTANGLE

3DSTATE_DRAWING_RECTANGLE
Project: All Length Bias: 2
The 3DSTATE_DRAWING_RECTANGLE command is used to set the 3D drawing rectangle and related state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h 3DSTATE_DRAWING_RECTANGLE Format: OpCode

15:14 Reserved

15:14 Reserved Project: DevSNB Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:16 Clipped Drawing Rectangle Y Min

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [DevSNB]: [0,8191] (Device ignores bits 31:29)

Specifies Ymin value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with Y coordinates less than Ymin will be
clipped out.

Programming Notes

This value can be larger than Clipped Drawing Rectangle Y Max. If Ymin>Ymax, the
clipped drawing rectangle is null, all polygons are discarded. If Ymin==Ymax, the clipped
drawing rectangle is 1 pixel wide in the Y direction.

[DevSNB] Errata: This field must be an even number

Doc Ref # 231

3DSTATE_DRAWING_RECTANGLE
15:0 Clipped Drawing Rectangle X Min

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [DevSNB]: [0,8191] (Device ignores bits 15:13)

Specifies Xmin value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with X coordinates less than Xmin will be
clipped out.

Programming Notes Project

This value can be larger than Clipped Drawing Rectangle X Max. If
Xmin>Xmax, the clipped drawing rectangle is null, all polygons are discarded.
If Xmin==Xmax, the clipped drawing rectangle is 1 pixel wide in the X
direction.

All

2 31:16 Clipped Drawing Rectangle Y Max

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [DevSNB]: [0,8191] (Device ignores bits 31:29)

Specifies Ymax value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with coordinates greater than Ymax will be
clipped out.

Programming Notes

This value can be less than Clipped Drawing Rectangle Y Min. If Ymax<Ymin, the
clipped drawing rectangle is null, all polygons are discarded. If Ymin==Ymax, the clipped
drawing rectangle is 1 pixel wide in the Y direction.

15:0 Clipped Drawing Rectangle X Max

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [DevSNB]: [0,8191] (Device ignores bits 15:13)

Specifies Xmax value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with coordinates greater than Xmax will be
clipped out.

Programming Notes Project

This value can be less than Clipped Drawing Rectangle X Min. If
Xmax<Xmin, the clipped drawing rectangle is null, all polygons are discarded.If
Xmin==Xmax, the clipped drawing rectangle is 1 pixel wide in the X direction.

All

232 Doc Ref #

3DSTATE_DRAWING_RECTANGLE
3 31:16 Drawing Rectangle Origin Y

Project: All

Format: S15 in Pixels from Color Buffer origin
(upper left corner).

FormatDesc

Range [DevSNB]: [-8192,8191] (Bits 31:30 should be a sign extension)

Specifies Y origin of Drawing Rectangle (in whole pixels) relative to origin of the Color
Buffer, used to map incoming (Draw Rectangle-relative) vertex positions to the Color Buffer
space.

15:0 Drawing Rectangle Origin X

Project: All

Format: S15 in Pixels from Color Buffer origin
(upper left corner).

FormatDesc

Range [DevSNB]: [-8192,8191] (Bits 31:30 should be a sign extension)

Specifies X origin of Drawing Rectangle (in whole pixels) relative to origin of the Color
Buffer, used to map incoming (Draw Rectangle-relative) vertex positions to the Color Buffer
space.

Doc Ref # 233

6.3.6 Point Width Application
This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object is converted from
a single vertex to four vertices located at the corners of a square centered at the point’s X,Y position. The
width and height of the square are specified by a point width parameter. The Use Point Width State
value in SF_STATE determines the source of the point width parameter: the point width is either taken
from the Point Width value programmed in SF_STATE or the PointWidth specified with the vertex (as
read back from the vertex VUE earlier in the pipeline).

The corner vertices are computed by adding and subtracting one half of the point width, as shown in
Figure 6-13.

Figure 6-13. Point Width Application

Width/2

Width/2

Point
Vertex

 



Z and W vertex attributes are copied from the single point center vertex to each of the four corner
vertices.

6.3.7 Rectangle Completion
This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y coordinates of the
4th (upper right) vertex of the rectangle object is computed from the first 3 vertices as shown in the
following diagram. The other vertex attributes assigned to the implied vertex (v[3]) are UNDEFINED as
they are not used. The Object Setup subfunction will use the values at only the first 3 vertices to compute
attribute interpolants used across the entire rectangle.

234 Doc Ref #

Figure 6-14. Rectangle Completion

v0v1

v2
Implied Vertex
= v2 + v0 – v1

6.3.8 Vertex X,Y Clamping and Quantization
At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel) coordinates. These
positions are quantized to subpixel precision by rounding the incoming values to the nearest subpixel
(using round-to-nearest-or-even rules). The device supports rasterization with either 4 or 8 fractional
(subpixel) position bits, as specified by the Vertex SubPixel Precision Select bit of SF_STATE.

The vertex X and Y screenspace coordinates are also clamped to the fixed-point “guardband” range
supported by the rasterization hardware, as listed in the following table:

Table 19 Per-Device Guardband Extents

Device Supported
X,Y

ScreenSpace
“Guardband”

Extent

Maximum
Post-Clamp

Delta (X or Y)

DevSNB [-16K,16K-1] 16K

For earlier releases, an additional restriction effectively cuts the guardband extent in half: The screen-
aligned 2D bounding-box of an object must not exceed 8K pixels in either X or Y. E.g., a line between (-
6K,-6K) and (6K,6K) would not be rendered correctly, as its bounding box is 12K pixels in X and Y. This
restriction effectively requires software to ensure all objects are contained within, or clipped to, a 2D
region not exceeding 8K pixels in X or Y (even though that region can be located anywhere within the [-
8K,8K-1] guardband extent). A similar restriction applies to [DevSNB], though the guardband and
maximum delta are doubled from legacy products.

Note that this clamping occurs after the Drawing Rectangle Origin has been applied and objects have
been expanded (i.e., points have been expanded to squares, etc.). In almost all circumstances, if an
object’s vertices are actually modified by this clamping (i.e., had X or Y coordinates outside of the
guardband extent the rendered object will not match the intended result. Therefore software should take
steps to ensure that this does not happen – e.g., by clipping objects such that they do not exceed these
limits after the Drawing Rectangle is applied.

In addition, in order to be correctly rendered, objects must have a screenspace bounding box not
exceeding 8K in the X or Y direction. This additional restriction must also be comprehended by software,
i.e., enforced by use of clipping.

Doc Ref # 235

6.3.9 Degenerate Object Culling
At this stage of the pipeline, “degenerate” objects are discarded. This operation is automatic and cannot
be disabled. (The object rasterization rules would by definition cause these objects to be “invisible” – this
culling operation is mentioned here to reinforce that the device implementation optimizes these
degeneracies as early as possible).

Degenerate objects are defined in the following table.

Table 20. Degenerate Objects

objType Degenerate Object Definition

3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius quantized to
zero)

3DOBJ_LINE The endpoints are coincident

3DOBJ_TRIANGLE All three vertices are collinear or any two vertices are coincident and
SOLID fill mode applies to the triangle

3DOBJ_RECTANGLE Two or more corner vertices are coincident

6.3.10 Triangle Orientation (Face) Culling
At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded based on the “face
orientation” of the object. This culling operation does not apply to the other object types.

This operation is typically called “back face culling”, though front facing objects (or all 3DOBJ_TRIANGLE
objects) can be selected to be discarded as well. Face culling is typically used to eliminate triangles
facing away from the viewer, thus reducing rendering time.

The “winding order” of a triangle is defined by the the triangle vertex’s 2D (X,Y) screen space position
when traversed from v0 to v1 to v2. That traversal will proceed in either a clockwise (CW) or counter-
clockwise (CCW) direction, as shown in the following figure. A degenerate triangle is considered
“backfacing”, regardless of the FrontWinding state.)

Figure 6-15. Triangle Winding Order

CW CCW

V0

V2

V1

V0

V2

V1

236 Doc Ref #

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles are considered
as having a “front-facing” orientation (at which point non-front-facing triangles are considered “back-
facing”). The internal variable invertOrientation associated with the triangle object is then used to
determine whether the orientation of a that triangle should be inverted. Recall that this variable is set in
the Primitive Decomposition stage to account for the alternating orientations of triangles in strip primitives
resulting form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are to be discarded according to their
resultant orientation, as defined in Table 21.

Table 21. Cull Mode

CullMode Definition

CULLMODE_NONE The face culling operation is disabled

CULLMODE_FRON
T

Triangles with “front facing” orientation are
discarded

CULLMODE_BACK Triangles with “back facing” orientation are
discarded

CULLMODE_BOTH All triangles are discarded

6.3.11 Scissor Rectangle Clipping
A scissor operation can be used to restrict the extent of rendered pixels to a screen-space aligned
rectangle. If the scissor operation is enabled, portions of objects falling outside of the intersection of the
scissor rectangle and the clipped draw rectangle are clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in SF_STATE. If
enabled, the VPIndex associated with the leading vertex of the object is used to select the corresponding
SF_VIEWPORT structure. Up to 16 structures are supported. The Scissor Rectangle X,Y Min,Max
fields of the SF_VIEWPORT structure defines a scissor rectangle as a rectangle in integer pixel
coordinates relative to the (unclipped) origin of the Drawing Rectangle. The scissor rectangle is defined
relative to the Drawing Rectangle to better support the OpenGL API. (OpenGL specifies the “Scissor
Box” in window-relative coordinates). This allows instruction buffers with embedded Scissor Rectangle
definitions to remain valid even after the destination window (drawing rectangle) moves.

Drawing
Rectangle

Scissor Rectangle
Color Buffer

Discarded
Pixels

Doc Ref # 237

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all polygons to be discarded
for a given viewport (effectively a null scissor rectangle).

6.3.12 Line Rasterization
The device supports three styles of line rendering: zero-width (cosmetic) lines, non-antialiased lines, and
antialiased lines. Zero-Width lines are rendered according to the Grid Intersection Quantization (GIQ)
technique. Non-antialiased lines are rendered as a polygon having a specified width as measured
parallel to the major axis of the line. Antialiased lines are rendered as a rectangle having a specified
width measured perpendicular to the line connecting the vertices.

The functions required to render lines is split between the SF and WM units. The SF unit is responsible
for computing the overall geometry of the object to be rendered, including the pixel-exact bounding box,
edge equations, etc., and therefore is provided with the screen-geometry-related state variables. The
WM unit performs the actual scan conversion, determining the exact pixel included/excluded and
coverage value for anti-aliased lines.

6.3.12.1 Zero-Width (Cosmetic) Line Rasterization

(The specification of zero-width line rasterization would be more correctly included in the WM Unit
chapter, though is being included here to keep it with the rasterization details of the other line types).

When the Line Width is set to zero, the device will use special rules to rasterize zero-width (“cosmetic”)
lines. The Anti-Aliasing Enable state variable is ignored when Line Width is zero.

When the LineWidth is set to zero, the device will use special rules to rasterize “cosmetic” lines. The
rasterization rules used are compliant with the Grid Intersection Quantization (GIQ) (aka diamond exit
rules) algorithm. The rasterization rules comply with the OpenGL conformance requirements (for 1-pixel
wide non-smooth lines).

The GIQ rules basically intersect the directed, ideal line connecting two endpoints with an array of
diamond-shaped areas surrounding pixel sample points. Wherever the line exits a diamond (including
passing through a diamond), the corresponding pixel is lit. Special rules are used to define the subpixel
locations which are considered interior to the diamonds, as a function of the slope of the line. When a
line ends in a diamond (and therefore does not exit that diamond), the corresponding pixel is not drawn.
When a line starts in a diamond and exits that diamond, the corresponding pixel is drawn.

The following diagram shows some examples of GIQ-rendered lines.

238 Doc Ref #

End Pixel not
drawn

Pixel Lit
(starts in and
exits this
diamond)

End Pixel not
drawn

Pixel Lit
(starts in and
exits this
diamond)

The following subsections describe the GIQ rules in more detail.

6.3.12.2 GIQ (Diamond) Sampling Rules – Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is ENABLED, zero-width lines are
rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable
bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last
pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample
point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left
corners.

Doc Ref # 239

0 1

0

1

0.5

0.5

Left corner
inclusive
if slope = 1

Right corner
inclusive
if slope  1

Bottom corner
always inclusive

Bottom left edge
inclusive
if slope = 1

Bottom right edge
inclusive
if slope = -1

Interior subpixels
always inclusive

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.
Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the
following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the
open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line slope is not exactly one, in which
case the left corner subpixel is inclusive. Including the right corner subpixel ensures that lines
with slopes in the range (1, +infinity] or [-infinity, -1) touch a diamond even when they cross
exactly between pixel diamonds. Including the left corner on slope=1 lines is required for proper
handling of slope=1 lines (see (3) below) – where if the right corner was inclusive, a slope=1 line
falling exactly between pixel centers would wind up lighting pixel on both sides of the line (not
desired).

3. The subpixels along the bottom left edge are inclusive only if the line slope = 1. This is to
correctly handle the case where a slope=1 line falls enters the diamond through a left or bottom
corner and ends on the bottom left edge. One does not consider this “passing through” the
diamond (where the normal rules would have us light the pixel). This is to avoid the following
case: One slope=1 line segment enters through one corner and ends on the edge, and another
(continuation) line segments starts at that point on the edge and exits through the other corner. If
simply passing through a corner caused the pixel to be lit, this case would case the pixel to be lit
twice – breaking the rule that connected line segments should not cause double-hits or missing

240 Doc Ref #

pixels. So, by considering the entire bottom left edge as “inside” for slope=1 lines, we will only
light the pixel when a line passes through the entire edge, or starts on the edge (or the left or
bottom corner) and exits the diamond.

4. The subpixels along the bottom right edge are inclusive only if the line slope = -1. Similar
case as (3), except slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel
sample point (sample.x, sample.y), given additional information about the slope (slopePosOne,
slopeNegOne).

 delta_x = point.x – sample.x

 delta_y = point.y – sample.y

 distance = abs(delta_x) + abs(delta_y)

 interior = (distance < 0.5)

 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

 left_corner = (delta_x == –0.5) && (delta_y == 0.0)

 right_corner = (delta_x == 0.5) && (delta_y == 0.0)

 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior ||

bottom_corner ||

(slopePosOne ? left_corner : right_corner) ||

(slopePosOne && left_edge) ||

(slopeNegOne && right_edge)

6.3.12.3 GIQ (Diamond) Sampling Rules

When the Legacy Line Rasterization Enable bit in WM_STATE is DISABLED, zero-width lines are
rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable
bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last
pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample
point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left
corners.

Doc Ref # 241

B6849-01

0 0.5 1

0

0.5

1

Bottom Left Edge
Always Inclusive

Bottom Right Edge
Always InclusiveBottom Corner

Always Inclusive

Left Corner is
Never Inclusive

Right Corner
Inclusive if Y
Major Line

Interior Subpixels
always Inclusive

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.
Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the
following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the
open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line is not X Major (X Major is defined
as -1 <= slope <= 1). Including the right corner subpixel ensures that lines with slopes in the
range (>1, +infinity] or [-infinity, <-1) touch a diamond even when they cross exactly between pixel
diamonds.

3. The left corner subpixel is never inclusive. For Y Major lines, having the right corner subpixel as
always inclusive requires that the left corner subpixel should never be inclusive, since a line falling
exactly between pixel centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This is to correctly handle the
case where a line enters the diamond through a left or bottom corner and ends on the bottom left
edge. One does not consider this “passing through” the diamond (where the normal rules would
have us light the pixel). This is to avoid the following case: One line segment enters through one
corner and ends on the edge, and another (continuation) line segments starts at that point on the
edge and exits through the other corner. If simply passing through a corner caused the pixel to be
lit, this case would case the pixel to be lit twice – breaking the rule that connected line segments

242 Doc Ref #

should not cause double-hits or missing pixels. So, by considering the entire bottom left edge as
“inside”, we will only light the pixel when a line passes through the entire edge, or starts on the
edge (or the left or bottom corner) and exits the diamond.

5. The subpixels along the bottom right edge are always inclusive. Same as case as (4), except
slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel
sample point (sample.x, sample.y), given additional information about the slope (XMajor).

 delta_x = point.x – sample.x

 delta_y = point.y – sample.y

 distance = abs(delta_x) + abs(delta_y)

 interior = (distance < 0.5)

 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

 left_corner = (delta_x == –0.5) && (delta_y == 0.0)

 right_corner = (delta_x == 0.5) && (delta_y == 0.0)

 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior ||

bottom_corner ||

(!XMajor && right_corner) ||

(bottom_left_edge) ||

(bottom_right_edge)

6.3.12.4 Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are centered on, and aligned
to, the line joining the endpoint vertices. Pixels sampled interior to the parallelogram are rendered; pixels
sampled exactly on the parallelogram edges are rendered according to the polygon “top left” rules.

The parallelogram is formed by first determining the major axis of the line (diagonal lines are considered
x-major). The corners of the parallelogram are computed by translating the line endpoints by +/-(Line
Width / 2) in the direction of the minor axis, as shown in the following diagram.

Doc Ref # 243

Figure 6-16. Non-Antialiased Line Rasterization

LineWidth/2

Y Major

X Major

6.3.12.5 Anti-aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the line joining the
endpoint vertices. For each pixel in the rectangle, a fractional coverage value (referred to as Antialias
Alpha) is computed – this coverage value will normally be used to attenuate the pixel’s alpha in the pixel
shader thread. The resultant alpha value is therefore available for use in those downstream pixel pipeline
stages in order to generate the desired effect (e.g., use the attenuated alpha value to modulate the pixel’s
color, and add the result to the destination color, etc.). Note that software is required to explicitly
program the pixel shader and pixel pipeline to obtain the desired anti-aliasing effect – the device will
simply make the coverage-attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the coverage value
computation, are programmed via the Line Width, Line AA Region, and Line Cap AA Region state
variables, as shown below. The edges parallel to the line are located at the distance (LineWidth/2) from
the line (measured in screen pixel units perpendicular to the line). The end-cap edges are perpendicular
to the line and located at the distance (LineCapAARegion) from the endpoints.

244 Doc Ref #

Figure 6-17. Anti-aliased Line Rasterization

LineCapAARegion

LineCapAARegion

LineWidth/2

LineWidth/2

LineAARegion/2

LineAARegion/2

Coverage=1

Coverage=0

Coverage=1

Coverage=0

Line Endpoint

Along the parallel edges, the coverage values ramp from the value 0 at the very edges of the rectangle to
the value 1 at the perpendicular distance (LineAARegion/2) from a given edge (in the direction of the
line). A pixel’s coverage value is computed with respect to the closest edge. In the cases where
(LineAARegion/2) < (LineWidth/2), this results in a region of fractional coverage values near the edges of
the rectangle, and a region of “fully-covered” coverage values (i.e., the value 1) at the interior of the line.
When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling exactly on the line can
generate fully-covered coverage values. If (LineAARegion/2) > (LineWidth/2), no pixels can be fully-
covered (it is expected that this case is not typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line endpoint to the value 0 at
the cap edge – itself at a perpendicular distance (LineCapAARegion) from the endpoint. Note that, unlike
the line-parallel edges, there is only a single parameter (LineCapAARegion) controlling the extension of
the line at the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by distances from both
the line-parallel and end cap edges – here the two coverage values are multiplied together to provide a
composite coverage value.

The computed coverage value for each pixel is passed through the Windower Thread Dispatch payload.
The Pixel Shader kernel should be passed (unmodified) by the shader to the Render Cache as part of it’s
output message.

Doc Ref # 245

6.3.12.5.1 Anti-aliased Line Distance Mode

In legacy devices, the distance from a pixel to the line is approximated by the “Manhattan Distance”
(abs(delta_x)+abs)delta_y). More recently, a better approximation to the true perpendicular distance has
been added for better visual quality and API compliance. On those devices, the AA Line Distance Mode
bit in SF_STATE can be used to select between the legacy and improved distance calculations.

6.4 SF Pipeline State Summary

6.4.1 3DSTATE_SF [DevSNB+]

6.4.1.1 3DSTATE_SF [DevSNB]

For [DevSNB], the state used by the SF stage is defined with this inline state packet.

3DSTATE_SF
Project: [DevSNB] Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 13h 3DSTATE_SF Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 12h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:28 Reserved Project: All Format: MBZ

246 Doc Ref #

3DSTATE_SF
27:22 Number of SF Output Attributes

Project: All

Format: U6 Count of attributes

Range [0,48]

Specifies the number of vertex attributes passed from the SF stage to the WM stage (does
not include Position). The actual number of attributes specified by this field must be set the
same as the Number of SF Output Attributes field in 3DSTATE_WM.

In the range description below, “swizzling” refers to the operations controlled by the
following state fields:

Attribute n Component Override X/Y/Z/W

Attribute n Constant Source

Attribute n Swizzle Select

Attribute n Source Attribute

Attribute n WrapShortest Enables

0: Specifies no attributes (beyond position) are associated with vertices.

1-16: Specifies 1-16 attributes. Swizzling performed on Attributes 0-15 (as required).

17-32: Specifies 17-32 attributes. Swizzling performed on Attributes 0-15. Attributes 16-
31 (as required) passed through unmodified.

33-48: Specifies 17-32 attributes (# attributes = field value – 16). Swizzling performed on
Attributes 16-31 (as required) only. Attributes 0-15 passed through unmodified.

Note:

Attribute n Component Override and Constant Source states apply to Attributes 16-31 (as
required) instead of Attributes 0-15. E.g., this allows an Attribute 16-31 component to be
overridden with the PrimitiveID value.

Attribute n WrapShortest Enables still apply to Attributes 0-15.

Attribute n Swizzle Select and Attribute n Source Attribute states are ignored and none of
the swizzling functions available through these controls are performed.

Doc Ref # 247

3DSTATE_SF
21 Attribute Swizzle Enable

Project: All

Format: Enable FormatDesc

This bit controls the use of the Attribute n Swizzle Select and Attribute n Source
Attribute fields only. If ENABLED, those fields are used as described below. If
DISABLED, attributes are copied from their corresponding source attributes, for the
purposes of Swizzle Select only.

Note that the following fields are unaffected by this bit, and are therefore always used to
control their respective fields:

Attribute n Component Override X/Y/Z/W

Attribute n Constant Source

Attribute n WrapShortest Enables

See Number of SF Output Attributes field.

20 Point Sprite Texture Coordinate Origin

Project: All

Format: U1 enumerated type FormatDesc

This state controls how Point Sprite Texture Coordinates are generated (when enabled on
a per-attribute basis by Point Sprite Texture Coordinate Enable).

Value Name Description Project

0h UPPERLEFT Top Left = (0,0,0,1)

Bottom Left = (0,1,0,1)

Bottom Right = (1,1,0,1)

All

1h LOWERLEFT Top Left = (0,1,0,1)

Bottom Left = (0,0,0,1)

Bottom Right = (1,0,0,1)

All

19:16 Reserved Project: All Format: MBZ

248 Doc Ref #

3DSTATE_SF
15:11 Vertex URB Entry Read Length

Project: All

Format: U5 FormatDesc

Range [1,16]

Specifies the amount of URB data read for each Vertex URB entry, in 256-bit register
increments.

Programming Notes Project

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be
read.

This field should be set to the minimum length required to read the maximum
source attribute. The maximum source attribute is indicated by the maximum
value of the enabled Attribute # Source Attribute if Attribute Swizzle
Enable is set, Number of Output Attributes-1 if enable is not set.
read_length = ceiling((max_source_attr+1)/2)

[errata] Corruption/Hang possible if length programmed larger than
recommended

All

10 Reserved Project: All Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB.

3:0 Reserved Project: All Format: MBZ

2 31:12 Reserved Project: All Format: MBZ

11 Legacy Global Depth Bias Enable

Project: All

Format: Enable FormatDesc

Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is not
set, the SF will scale the Global Depth Offset Constant.

10 Statistics Enable

Project: All

Format: Enable FormatDesc

If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP
stage. If DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.

Programming Notes Project

This bit should be set whenever clipping is enabled and the Statistics Enable
bit is set in CLIP_STATE. It should be cleared if clipping is disabled or
Statistics Enable in CLIP_STATE is clear.

All

Doc Ref # 249

3DSTATE_SF
9 Global Depth Offset Enable Solid

Project: All

Format: Enable FormatDesc

Enables computation and application of Global Depth Offset for SOLID objects.

8 Global Depth Offset Enable Wireframe

Project: All

Format: Enable FormatDesc

Enables computation and application of Global Depth Offset when triangles are rendered in
WIREFRAME mode.

7 Global Depth Offset Enable Point

Project: All

Format: Enable FormatDesc

Enables computation and application of Global Depth Offset when triangles are rendered in
POINT mode.

6:5 FrontFace Fill Mode

Project: All

Format: U2 enumerated type FormatDesc

This state controls how front-facing triangle and rectangle objects are rendered.

Value Name Description Project

0h SOLID Any triangle or rectangle object found to
be front-facing is rendered as a solid
object. This setting is required when
rendering rectangle (RECTLIST)
objects.

All

1h WIREFRAME Any triangle object found to be front-
facing is rendered as a series of lines
along the triangle boundaries (as
determined by the topology type and
controlled by the vertex EdgeFlags).

All

2h POINT Any triangle object found to be front-
facing is rendered as a set of point
primitives at the triangle vertices (as
determined by the topology type and
controlled by the vertex EdgeFlags).

NOTE: If the triangle is clipped, points
will not be rendered at clip-inserted
vertices. Point will only be rendered at
original vertices (if visible).

All

3h Reserved All

250 Doc Ref #

3DSTATE_SF
4:3 BackFace Fill Mode

Project: All

Format: U2 enumerated type FormatDesc

This state controls how back-facing triangle and rectangle objects are rendered.

Value Name Description Project

0h SOLID Any triangle or rectangle object found to
be back-facing is rendered as a solid
object. This setting is required when
rendering rectangle (RECTLIST)
objects.

All

1h WIREFRAME Any triangle object found to be back-
facing is rendered as a series of lines
along the triangle boundaries (as
determined by the topology type and
controlled by the vertex EdgeFlags).

All

2h POINT Any triangle object found to be back-
facing is rendered as a set of point
primitives at the triangle vertices (as
determined by the topology type and
controlled by the vertex EdgeFlags).

NOTE: If the triangle is clipped, points
will not be rendered at clip-inserted
vertices. Point will only be rendered at
original vertices (if visible).

All

3h Reserved All

2 Reserved Project: All Format: MBZ

1 Viewport Transform Enable

Project: All

Format: Enable FormatDesc

This bit controls the Viewport Transform function.

0 Front Winding

Project: All

Determines whether a triangle object is considered “front facing” if the screen space vertex
positions, when traversed in the order, result in a clockwise (CW) or counter-clockwise
(CCW) winding order. Does not apply to points or lines.

Value Name Description Project

0h FRONTWINDING_CW All

1h FRONTWINDING_CCW All

Doc Ref # 251

3DSTATE_SF
3 31 Anti-aliasing Enable

Project: All

Format: Enable FormatDesc

This field enables “alpha-based” line antialiasing.

Programming Notes

This field must be disabled if any of the render targets have integer (UINT or SINT)
surface format.

This field is ignored when Multisample Rasterization Mode is MSRASTMODE_ON_xx.

30:29 Cull Mode

Project: All

Format: 3D_CullMode FormatDesc

Controls removal (culling) of triangle objects based on orientation. The cull mode only
applies to triangle objects and does not apply to lines, points or rectangles.

Value Name Description Project

0h CULLMODE_BOTH All triangles are discarded (i.e., no triangle
objects are drawn)

All

1h CULLMODE_NONE No triangles are discarded due to
orientation

All

2h CULLMODE_FRONT Triangles with a front-facing orientation are
discarded

All

3h CULLMODE_BACK Triangles with a back-facing orientation
are discarded

All

Programming Notes Project

Orientation determination is based on the setting of the Front Winding state. All

28 Reserved

27:18 Line Width

Project: All

Format: U3.7 FormatDesc

Range [0.0, 7.9921875]

Controls width of line primitives.

Setting a Line Width of 0.0 specifies the rasterization of the “thinnest” (one-pixel-wide),
non-antialiased lines. Note that this effectively overrides the effect of AAEnable (though
the AAEnable state variable is not modified). Lines rendered with zero Line Width are
rasterized using GIQ (Grid Intersection Quantization) rules as specified by the GDI and
Direct3D APIs.

Programming Notes Project

Software must not program a value of 0.0 when running in
MSRASTMODE_ON_xxx modes – zero-width lines are not available when
multisampling rasterization is enabled.

All

252 Doc Ref #

3DSTATE_SF
17:16 Line End Cap Antialiasing Region Width

Project: All

Format: U2 FormatDesc

This field specifies the distances over which the coverage of anti-aliased line end caps are
computed.

Note: this state is duplicated in 3DSTATE_WM.

Value Name Description Project

0h 0.5 pixels All

1h 1.0 pixels All

2h 2.0 pixels All

3h 4.0 pixels All

15:14 Reserved Project: All Format: MBZ

13 Reserved

12 Reserved

11 Scissor Rectangle Enable

Project: All

Format: Enable FormatDesc

Enables operation of Scissor Rectangle.

10 Reserved Project: All Format: MBZ

9:8 Multisample Rasterization Mode

Project: All

Format: U2 enumerated type FormatDesc

This state is duplicated in 3DSTATE_WM and both must be set to the same value. See
the field in 3DSTATE_WM for definition details.

7:0 Reserved Project: All Format: MBZ

4 31 Last Pixel Enable

Project: All

Format: Enable FormatDesc

If ENABLED, the last pixel of a diamond line will be lit. This state will only affect the
rasterization of Diamond lines (will not affect wide lines or anti-aliased lines).

Programming Notes

Last pixel is applied to all lines of a LINELIST, and only the last line of a LINESTRIP.

Doc Ref # 253

3DSTATE_SF
30:29 Triangle Strip/List Provoking Vertex Select

Project: All

Format: 0-based vertex index FormatDesc

Selects which vertex of a triangle (in a triangle strip or list primitive) is considered the
“provoking vertex”. Used for flat shading of primitives.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

28:27 Line Strip/List Provoking Vertex Select

Project: All

Format: 0-based vertex index FormatDesc

Selects which vertex of a line (in a line strip or list primitive) is considered the “provoking
vertex”.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Reserved All

3h Reserved All

26:25 Triangle Fan Provoking Vertex Select

Project: All

Format: 0-based vertex index FormatDesc

Selects which vertex of a triangle (in a triangle fan primitive) is considered the “provoking
vertex”.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

24:15 Reserved Project: All Format: MBZ

254 Doc Ref #

3DSTATE_SF
14 AA Line Distance Mode

Project: All

Format: U1 FormatDesc

This bit controls the distance computation for antialiased lines.

Value Name Description Project

0h Reserved All

1h AALINEDISTANCE_
TRUE

True distance computation. This is the
normal setting which should yield WHQL
compliance.

All

13 Reserved Project: All Format: MBZ

12 Vertex Sub Pixel Precision Select

Project: All

Format: U1 FormatDesc

Selects the number of fractional bits maintained in the vertex data

Value Name Description Project

0h 8 sub pixel precision bits maintained All

1h 4 sub pixel precision bits maintained All

11 Use Point Width State

Project: All

Format: U1 FormatDesc

Controls whether the point width passed on the vertex or from state is used for rendering
point primitives.

Value Name Description Project

0h Use Point Width on Vertex All

1h Use Point Width from State All

10:0 Point Width

Project: All

Format: U8.3 FormatDesc

Range [0.125, 255.875] pixels

This field specifies the size (width) of point primitives in pixels. This field is overridden
(though not overwritten) whenever point width information is passed in the FVF.

Doc Ref # 255

3DSTATE_SF
5 31:0 Global Depth Offset Constant

Project: All

Format: IEEE_FP FormatDesc

Specifies the constant term in the Global Depth Offset function.

6 31:0 Global Depth Offset Scale

Project: All

Format: IEEE_FP FormatDesc

Specifies the scale term used in the Global Depth Offset function.

7 31:0 Global Depth Offset Clamp

Project: All

Format: IEEE_FP FormatDesc

Specifies the clamp term used in the Global Depth Offset function.

8 31 Attribute 1 Component Override W

Project: All

Format: Enable FormatDesc

If set, the W component of output Attribute 1 or 17 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the W
component of the constant vector specified by ConstantSource[1].

30 Attribute 1 Component Override Z

Project: All

Format: Enable FormatDesc

If set, the Z component of output Attribute 1 or 17 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the Z
component of the constant vector specified by ConstantSource[1].

29 Attribute 1 Component Override Y

Project: All

Format: Enable FormatDesc

If set, the Y component of output Attribute 1 or 17 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the Y
component of the constant vector specified by ConstantSource[1].

28 Attribute 1 Component Override X

Project: All

Format: Enable FormatDesc

If set, the X component of output Attribute 1 or 17 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the X
component of the constant vector specified by ConstantSource[1].

27 Reserved Project: All Format: MBZ

256 Doc Ref #

3DSTATE_SF
26:25 Attribute 1 Constant Source

Project: All

Format: U2 enumerated type FormatDesc

This state selects a constant vector which can be used to override individual components
of Attribute 1 or 17 (refer to Number of SF Output Attributes field for information on which
attribute is affected)

Value Name Description Project

0h CONST_0000 Constant.xyzw = 0.0,0.0,0.0,0.0 All

1h CONST_0001
_FLOAT

Constant.xyzw = 0.0,0.0,0.0,1.0 All

2h CONST_1111
_FLOAT

Constant.xyzw = 1.0,1.0,1.0,1.0 All

3h PRIM_ID Constant.xyzw = PrimID (replicated) All

24 Reserved Project: All Format: MBZ

23:22 Attribute 1 Swizzle Select

Project: All

Format: U2 enumerated type FormatDesc

This state, along with Attribute 1 Source Attribute, specifies the source for output Attribute
1 or 17 (refer to Number of SF Output Attributes field for information on which attribute is
affected).

Value Name Description Project

0h INPUTATTR This attribute is sourced from
AttrInputReg[SourceAttribute]

All

1h INPUTATTR_
FACING

If the object is front-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute].

If the object is back-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute+1].

All

2h INPUTATTR_
W

This attribute is sourced from
AttrInputReg[SourceAttribute].

The W component is copied to the X
component.

All

3h INPUTATTR_
FACING_W

If the object is front-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute].

If the object is back-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute+1].

The W component is copied to the X
component.

All

Doc Ref # 257

3DSTATE_SF
21 Reserved Project: All Format: MBZ

20:16 Attribute 1 Source Attribute

Project: All

Format: U5 FormatDesc

This field selects the source attribute for Attribute 1 or 17 (refer to Number of SF Output
Attributes field for information on which attribute is affected). Source attribute 0
corresponds to the first 128 bits of data indicated by Vertex URB Entry Read Offset

15 Attribute 0 Component Override W

Project: All

Format: Enable FormatDesc

If set, the W component of output Attribute 0 or 16 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the W
component of the constant vector specified by ConstantSource[0].

14 Attribute 0 Component Override Z

Project: All

Format: Enable FormatDesc

If set, the Z component of output Attribute 0 or 16 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the Z
component of the constant vector specified by ConstantSource[0].

13 Attribute 0 Component Override Y

Project: All

Format: Enable FormatDesc

If set, the Y component of output Attribute 0 or 16 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the Y
component of the constant vector specified by ConstantSource[0].

12 Attribute 0 Component Override X

Project: All

Format: Enable FormatDesc

If set, the X component of output Attribute 0 or 16 (refer to Number of SF Output
Attributes field for information on which attribute is affected) is overridden by the X
component of the constant vector specified by ConstantSource[0].

11 Reserved Project: All Format: MBZ

258 Doc Ref #

3DSTATE_SF
10:9 Attribute 0 Constant Source

Project: All

Format: U2 enumerated type FormatDesc

This state selects a constant vector which can be used to override individual components
of Attribute 0 or 16 (refer to Number of SF Output Attributes field for information on which
attribute is affected)

Value Name Description Project

0h CONST_0000 Constant.xyzw = 0.0,0.0,0.0,0.0 All

1h CONST_0001
_FLOAT

Constant.xyzw = 0.0,0.0,0.0,1.0 All

2h CONST_1111
_FLOAT

Constant.xyzw = 1.0,1.0,1.0,1.0 All

3h PRIM_ID Constant.xyzw = PrimID (replicated) All

8 Reserved Project: All Format: MBZ

7:6 Attribute 0 Swizzle Select

Project: All

Format: U2 enumerated type FormatDesc

This state, along with Attribute 0 Source Attribute, specifies the source for output Attribute
0 or 16 (refer to Number of SF Output Attributes field for information on which attribute is
affected).

Value Name Description Project

0h INPUTATTR This attribute is sourced from
AttrInputReg[SourceAttribute]

All

1h INPUTATTR_
FACING

If the object is front-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute].

If the object is back-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute+1].

All

2h INPUTATTR_
W

This attribute is sourced from
AttrInputReg[SourceAttribute].

The W component is copied to the X
component.

All

3h INPUTATTR_
FACING_W

If the object is front-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute].

If the object is back-facing, this attribute
is sourced from
AttrInputReg[SourceAttribute+1].

The W component is copied to the X
component.

All

Doc Ref # 259

3DSTATE_SF
5 Reserved Project: All Format: MBZ

4:0 Attribute 0 Source Attribute

Project: All

Format: U5 FormatDesc

This field selects the source attribute for Attribute 0 or 16 (refer to Number of SF Output
Attributes field for information on which attribute is affected). Source attribute 0
corresponds to the first 128 bits of data indicated by Vertex URB Entry Read Offset

9 31:0 Attribute Control for Attributes 2,3

Project: All

Format: see DW 8 FormatDesc

10 31:0 Attribute Control for Attributes 4,5

Project: All

Format: see DW 8 FormatDesc

11 31:0 Attribute Control for Attributes 6,7

Project: All

Format: see DW 8 FormatDesc

12 31:0 Attribute Control for Attributes 8,9

Project: All

Format: see DW 8 FormatDesc

13 31:0 Attribute Control for Attributes 10,11

Project: All

Format: see DW 8 FormatDesc

14 31:0 Attribute Control for Attributes 12,13

Project: All

Format: see DW 8 FormatDesc

15 31:0 Attribute Control for Attributes 14,15

Project: All

Format: see DW 8 FormatDesc

260 Doc Ref #

3DSTATE_SF
16 31:0 Point Sprite Texture Coordinate Enable

Project: All

Format: 32-bit bitmask FormatDesc

When processing point primitives, the attributes from the incoming point vertex are typically
copied to the point object corner vertices. However, if a bit is set in this field, the
corresponding Attribute is selected as a Point Sprite Texture Coordinate, in which case
each corner vertex is assigned a pre-defined texture coordinate as defined by the Point
Sprite Texture Coordinate Origin state bit. Bit 0 corresponds to output Attribute 0.

17 31:0 Constant Interpolation Enable[31:0]

Project: All

This field is a bitmask containing a Constant Interpolation Enable bit for each
corresponding attribute. If a bit is set, that attribute will undergo constant interpolation, and
the corresponding WrapShortest Enable bits (if defined) will be ignored. If a bit is clear,
components which are not enabled for WrapShortest interpolation (if defined) will be
linearly interpolated.

18 31:28 Attribute 7 WrapShortest Enables

Project: All

Format: 4-bit bitmask FormatDesc

This state selects which components (if any) of Attribute 7 or 23 (refer to Number of SF
Output Attributes field for information on which attribute is affected) are to be interpolated
in a “wrap shortest” fashion. Operation is UNDEFINED if any of these bits are set and the
Constant Interpolation Enable bit associated with this attribute is set.

Bit 0: WrapShortest X Component

Bit 1: WrapShortest Y Component

Bit 2: WrapShortest Z Component

Bit 3: WrapShortest W Component

27:24 Attribute 6 WrapShortest Enables

Project: All

(See above).

23:20 Attribute 5 WrapShortest Enables

Project: All

(See above).

19:16 Attribute 4 WrapShortest Enables

Project: All

(See above).

15:12 Attribute 3 WrapShortest Enables

Project: All

(See above).

Doc Ref # 261

3DSTATE_SF
11:8 Attribute 2 WrapShortest Enables

Project: All

(See above).

7:4 Attribute 1 WrapShortest Enables

Project: All

(See above).

3:0 Attribute 0 WrapShortest Enables

Project: All

(See above).

19 31:28 Attribute 15 WrapShortest Enables

Project: All

Format: 4-bit bitmask FormatDesc

This state selects which components (if any) of Attribute 15 or 31 (refer to Number of SF
Output Attributes field for information on which attribute is affected) are to be interpolated
in a “wrap shortest” fashion. Operation is UNDEFINED if any of these bits are set and the
Constant Interpolation Enable bit associated with this attribute is set.

Bit 0: WrapShortest X Component

Bit 1: WrapShortest Y Component

Bit 2: WrapShortest Z Component

Bit 3: WrapShortest W Component

27:24 Attribute 14 WrapShortest Enables

Project: All

(See above).

23:20 Attribute 13 WrapShortest Enables

Project: All

(See above).

19:16 Attribute 12 WrapShortest Enables

Project: All

(See above).

15:12 Attribute 11 WrapShortest Enables

Project: All

(See above).

11:8 Attribute 10 WrapShortest Enables

Project: All

(See above).

262 Doc Ref #

3DSTATE_SF
7:4 Attribute 9 WrapShortest Enables

Project: All

(See above).

3:0 Attribute 8 WrapShortest Enables

Project: All

(See above).

6.4.2 SF_VIEWPORT [DevSNB]

SF_VIEWPORT
Project: DevSNB Length Bias: 2

The viewport-specific state used by the SF unit (SF_VIEWPORT) is stored as an array of up to 16 elements,
each of which contains the DWords described below. The start of each element is spaced 8 DWords apart.
The location of first element of the array, as specified by Setup Viewport State Offset, is aligned to a 32-
byte boundary.

[DevSNB+]: This structure contains only the viewport matrix elements (6 dwords). The scissor rectangle
parameters are contained in the SCISSOR_RECT state.

DWord Bit Description

0 31:0 Viewport Matrix Element m00

Format: Format = IEEE_Float

1 31:0 Viewport Matrix Element m11

Format: Format = IEEE_Float

2 31:0 Viewport Matrix Element m22

Default Value: 0h Excludes DWord (0,1)

Format: IEEE_Float

3 31:0 Viewport Matrix Element m30

Format: Format = IEEE_Float

4 31:0 Viewport Matrix Element m31

Format: Format = IEEE_Float

5 31:0 Viewport Matrix Element m32

Format: Format = IEEE_Float

Doc Ref # 263

6.4.3 SCISSOR_RECT [DevSNB+]

SCISSOR_RECT
Project: [DevSNB+]

The viewport-specific state used by the SF unit (SCISSOR_RECT) is stored as an array of up to 16
elements, each of which contains the DWords described below. The start of each element is spaced 2
DWords apart. The location of first element of the array, as specified by Pointer to SCISSOR_RECT, is
aligned to a 32-byte boundary.

DWord Bit Description

0 31:16 Scissor Rectangle Y Min

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Range [DevSNB]: 0..8191

Specifies Y Min coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels
with (Draw Rectangle-relative) Y coordinates less than Y Min will be clipped out if Scissor
Rectangle is enabled. NOTE: If Y Min is set to a value greater than Y Max, all primitives
will be discarded for this viewport.

15:0 Scissor Rectangle X Min

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Range [DevSNB]: 0..8191

Specifies X Min coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels
with (Draw Rectangle-relative) X coordinates less than X Min will be clipped out if Scissor
Rectangle is enabled. NOTE: If X Min is set to a value greater than X Max, all primitives
will be discarded for this viewport.

1 31:16 Scissor Rectangle Y Max

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Range [DevSNB]: 0..8191

Specifies Y Max coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels
with (Draw Rectangle-relative) Y coordinates greater than Y Max will be clipped out if
Scissor Rectangle is enabled.

264 Doc Ref #

SCISSOR_RECT
15:0 Scissor Rectangle X Max

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Range 0[DevSNB]: 0..8191

Specifies X Max coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels
with (Draw Rectangle-relative) Y coordinates greater than X Max will be clipped out if
Scissor Rectangle is enabled.

6.5 Attribute Interpolation Setup [DevSNB+]
With the attribute interpolation setup function being implemented in hardware for [DevSNB+], a number of
state fields in 3DSTATE_SF are utilized to control interpolation setup.

Number of SF Output Attributes sets the number of attributes that will be output from the SF stage, not
including position. This can be used to specify up to 32, and may differ from the number of input
attributes. The number of input attributes is derived from the Vertex URB Entry Read Length field. Note
that this field is also used to specify whether swizzling is to be performed on Attributes 0-15 or Attributes
16-32. See the state field definition for details.

6.5.1 Attribute Swizzling
The first or last set of 16 attributes can be swizzled according to certain state fields. Attribute Swizzle
Enable enables the swizzling for all 16 of these attributes, and each of the attributes has a 2-bit Swizzle
Select field that controls swizzling with the following settings:

 INPUTATTR – This attribute is sourced from AttrInputReg[SourceAttribute].

 INPUTATTR_FACING – This attribute is sourced from AttrInputReg[SourceAttribute] if the object
is front-facing, otherwise it is sourced from AttrInputReg[SourceAttribute+1].

 INPUTATTR_W – This attribute is sourced from AttrInputReg[SourceAttribute]. WYZW (the W
component of the source is copied to the X component of the destination).

 INPUTATTR_FACING – If the object is front-facing, this attribute is sourced from
AttrInputReg[SourceAttribute]. WYZW (the W component of the source is copied to the X
component of the destination). If the object is front-facing, this attribute is sourced from
AttrInputReg[SourceAttribute+1]. WYZW.

Each of the first or last set of 16 attributes also has a 5-bit Source Attribute field which specify, per
output attribute (not component), which input attribute sources the output attribute when INPUTATTR is
selected for Swizzle Select. A Source Attribute value of 0 corresponds to the 128-bit attribute
immediately following the vertex 4D position. If INPUTATTR_FACING is selected, this specifies the first
of two consecutive (front,back) input attributes, where the SourceAttribute value can be an odd or even
number (just not 31, as that would place the back-face input attribute past the end of the input max
complement of input attributes).

Doc Ref # 265

Constant overriding is also available for the first or last set of 16 attributes. Each attribute has a
Constant Source field which specifies the constant values per swizzled attribute, with the following
settings available:

 XYZW = 0000

 XYZW = 0001

 XYZW = 1111

Each channel of each attribute has a Component Override field to control whether the corresponding
channel is overridden with the constant value defined in Constant Source.

6.5.2 Interpolation Modes
All 32 attributes have a Constant Interpolation Enable state field bit to specify whether all components
of the post-swizzled attribute are to be interpolated as constant values (not varying over the pixels of the
object). If set, the attribute at the provoking vertex is copied to a0, and a1 and a2 are set to zero – this
results in a constant interpolation of the provoking vertex value. If clear, the attribute is linearly
interpolated. Attributes 0-15 are further subjected to Wrap Shortest processing on a per-component
basis, via the Attribute WrapShortest Enables state bitfields. WrapShortest processing modifies the a1
and/or a2 values depending on attribute deltas.

The table below indicates the output values of a0, a1, and a2 depending on interpolation mode settings.

 a0 a1 a2

Constant A0 0.0 0.0

Linear A0 A1-A0 A2-A0

Wrap
Shortest

A0 (A1-A0)+1 (A1-A0) <= -0.5

(A1-A0)-1 (A1-A0) >= 0.5

(A1-A0) otherwise

(A2-A0)+1 (A2-A0) <= -0.5

(A2-A0)-1 (A2-A0) >= 0.5

(A2-A0) otherwise

6.5.3 Point Sprites
Normally all vertex attributes (including texture coordinates) other than position are simply replicated from
the incoming point center vertex to the generated point object (corner) vertices. However, OGL supports
“sprite points”, where some/all texture coordinates are replaced with full-scale 2D texture coordinates.

A 32-bit PointSprite TextureCoordinate Enable bit mask controls whether the corresponding vertex
attribute is to be replaced by a sprite point texture coordinate. The global (not per-attribute) Point Sprite
TextureCoordinate Origin field controls how the point object vertex (top/bottom, left/right) texture
coordinates are generated:

UPPERLEFT Left Right

Top (0,0,0,1) (1,0,0,1)

266 Doc Ref #

Bottom (0,1,0,1) (1,1,0,1)

LOWERLEFT Left Right

Top (0,1,0,1) (1,1,0,1)

Bottom (0,0,0,1) (1,0,0,1)

6.6 Depth Offset [DevSNB+]
The state for depth offset in 3DSTATE_SF controls the depth offset function. Since this function was
previously contained in the Windower stage, refer to the “Depth Offset” section in the Windower chapter
for more details on this function.

6.7 Other SF Functions

6.7.1 Statistics Gathering
The SF stage itself does not have any associated pipeline statistics; however, it counts the number of
objects being output by the clipper on the clipper’s behalf, since it less feasible to have the CLIP unit
figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the
number of objects it receives from the CLIP stage since it is decomposing the output primitive topologies
into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT
Register (see Memory Interface Registers in Volume Ia, GPU) once for each object in each primitive
topology it receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline
statistics are desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since
objects SF receives are not considered “primitives output by the clipper” unless the clipper is enabled.
Note that the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS
command with Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

Doc Ref # 267

7. Windower (WM) Stage

7.1 Overview
As mentioned in the SF Unit chapter, the SF stage prepares an object for scan conversion by the
Window/Masker (WM) unit. Refer to the SF Unit chapter for details on the screen-space geometry of
objects to be rendered. The WM unit uses the parameters provided by the SF unit in the object-specific
rasterization algorithms.

The WM stage of the 3D pipeline performs the following operations (at a high level)

 Pre-scan-conversion modification of some primitive attributes, including

o Application of Depth Offset to the position Z attribute

 Scan-conversion of the various primitive types, including

o 2D clipping to the scissor/draw rectangle intersection

 Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-conversion

The spawned Pixel Shader (PS) threads are responsible for the following (high-level) operations

 interpolation of vertex attributes (other than X,Y,Z) to the pixel location

 performing any “Pixel Shader” operations dictated by the API PS program

o Using the Sampler shared function to sample data from “texture” surfaces

o Using the DataPort to perform general memory I/O

 Submitting the shaded pixel results to the DataPort for any subsequent “blending” (aka Output
Merger) operation and write to the RenderCache.

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads in order to
guarantee in-order rasterization results. This allows the WM unit to overlap processing of several objects.

7.1.1 Inputs from SF to WM
The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific
information required for the rasterization of objects. The types of information is summarized below, but as
the interface is not exposed to software a detailed discussion is not relevant to this specification.

 PrimType of the object

 VPIndex, RTAIndex associated with the object

 Handle of the Primitive URB Entry (PUE) that was written by the SF (Setup) thread. This handle
will be passed to all WM (PS) threads spawned from the WM’s rasterization process.

 Information regarding the X,Y extent of the object (e.g., bounding box, etc.)

 Edge or line interpolation information (e.g., edge equation coefficients, etc.)

268 Doc Ref #

 Information on where the WM is to start rasterization of the object

 Object orientation (front/back-facing)

 Last Pixel indication (for line drawing)

7.2 Windower Pipelined State

7.2.1 3DSTATE_WM

7.2.1.1 3DSTATE_WM [DevSNB]

For [DevSNB], the state used by the windower stage is defined with this inline state packet.

3DSTATE_WM
Project: [DevSNB] Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 14h 3DSTATE_WM Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 07h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Kernel Start Pointer[0]

Project: All

Address: InstructionBaseOffset[31:6]

Surface Type: Kernel

Specifies the 64-byte aligned address offset of the first instruction in the kernel[0]. This
pointer is relative to the Instruction Base Address.

5:0 Reserved Project: All Format: MBZ

Doc Ref # 269

3DSTATE_WM
2 31 Single Program Flow (SPF)

Project: All

Specifies the initial condition of the kernel program as either a single program flow
(SIMDnxm with m = 1) or as multiple program flows (SIMDnxm with m > 1). See CR0
description in ISA Execution Environment.

Value Name Description Project

0h Multiple Multiple Program Flows All

1h Single Single Program Flows All

30 Vector Mask Enable (VME)

Project: All

Format: U1 enumerated type FormatDesc

When SPF=0, VME specifies which mask to use to initialize the initial channel enables.
When SPF=1, VME specifies which mask to use to generate execution channel enables.

Value Name Description Project

0h Dmask Channels are enabled based on the dispatch mask All

1h Vmask Channels are enabled based on the vector mask All

29:27 Sampler Count

Project: All

Format: U3 FormatDesc

Range [0,4]

Specifies how many samplers (in multiples of 4) the vertex shader 0 kernel uses. Used
only for prefetching the associated sampler state entries.

Value Name Description Project

0h no samplers used All

1h between 1 and 4 samplers used All

2h between 5 and 8 samplers used All

3h between 9 and 12 samplers used All

4h between 13 and 16 samplers used All

5h-7h Reserved All

26 Reserved Project: All Format: MBZ

270 Doc Ref #

3DSTATE_WM
25:18 Binding Table Entry Count

Project: All

Format: U8 FormatDesc

Range [0,255]

Specifies how many binding table entries the kernel uses. Used only for prefetching of the
binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be advantageous
to set this field to zero to avoid prefetching too many entries and thrashing the state cache.

See 3D Pipeline for more information.

17 Thread Priority

Project: All

Specifies the priority of the thread for dispatch.

Value Name Description Project

0h Normal Normal Priority All

1h High High Priority All

16 Floating Point Mode

Project: All

Specifies the floating point mode used by the dispatched thread.

Value Name Description Project

0h IEEE-745 Use IEEE-754 rules All

1h Alt Use alternate rules All

15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable FormatDesc

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA
Execution Environment.

12 Reserved Project: All Format: MBZ

11 MaskStack Exception Enable

Project: All

Format: Enable FormatDesc

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA
Execution Environment.

10:8 Reserved Project: All Format: MBZ

Doc Ref # 271

3DSTATE_WM
7 Software Exception Enable

Project: All

Format: Enable FormatDesc

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA
Execution Environment.

6:0 Reserved Project: All Format: MBZ

3 31:10 Scratch Space Base Pointer

Project: All

Address: GeneralStateOffset[31:10]

Surface Type: ScratchSpace

Specifies the 1k-byte aligned address offset to scratch space for use by the kernel. This
pointer is relative to the General State Base Address.

9:4 Reserved Project: All Format: MBZ

3:0 Per Thread Scratch Space

Project: All

Format: U4 FormatDesc

Range [0,11] indicating [1k bytes, 2M bytes] in powers of two

Specifies the amount of scratch space allowed to be used by each thread. The driver must
allocate enough contiguous scratch space, pointed to by the Scratch Space Pointer, to
ensure that the Maximum Number of Threads each get Per Thread Scratch Space size
without exceeding the driver-allocated scratch space.

272 Doc Ref #

3DSTATE_WM
4 31 Statistics Enable

Project: All

Format: Enable FormatDesc

If ENABLED, the Windower and pixel pipeline will engage in statistics gathering. If
DISABLED, statistics information associated with this FF stage will be left unchanged. See
Statistics Gathering.

Programming Notes Project

This bit should be set for “normal” operation since statistics are supposed to
be continuously calculated.

This bit must be disabled if either of these bits is set: Depth Buffer Clear ,
Hierarchical Depth Buffer Resolve Enable or Depth Buffer Resolve Enable.

DevSNBCO+ Errata: Software should also set the mmio register 0x2084[7] to
“1”, in cases where the "depth statistics bit" is DISABLED, HIZ buffer is
ENABLED and NONE of these bits are set (Depth Buffer Clear , Hierarchical
Depth Buffer Resolve Enable or Depth Buffer Resolve Enable)

Note:- The mmio register 0x2084[7] must only be programmed when the 3D
pipe is IDLE

Note:- The mmio register 0x2084[7] must only be programmed when the 3D
pipe is IDLE

All

30 Depth Buffer Clear

Project: All

Format: Enable FormatDesc

When set, the depth buffer is initialized as a side-effect of rendering pixels.

Programming Notes Project

If this field is enabled, the Depth Test Enable field in
DEPTH_STENCIL_STATE must be disabled

All

Refer to section 0 “Depth Buffer Clear” for additional restrictions when this field
is enabled.

All

29 Reserved Project: All Format: MBZ

Doc Ref # 273

3DSTATE_WM
28 Depth Buffer Resolve Enable

Project: All

Format: Enable FormatDesc

When set, the depth buffer is made to be consistent with the hierarchical depth buffer as a
side-effect of rendering pixels. This is intended to be used when the depth buffer is to be
used as a surface outside of the 3D rendering operation.

Programming Notes Project

If this field is enabled, the Depth Buffer Clear and Hierarchical Depth Buffer
Resolve Enable fields must both be disabled. Refer to section 7.5.3.2 “Depth
Buffer Resolve” for additional restrictions when this field is enabled.

All

If Hierarchical Depth Buffer Enable is disabled, enabling this field will have
no effect.

All

27 Hierarchical Depth Buffer Resolve Enable

Project: All

Format: Enable FormatDesc

When set, the hierarchical depth buffer is made to be consistent with the depth buffer as a
side-effect of rendering pixels. This is intended to be used when the depth buffer has been
modified outside of the 3D rendering operation.

Programming Notes Project

If this field is enabled, the Depth Buffer Clear and Depth Buffer Resolve
Enable fields must both be disabled. Refer to section 7.5.3.3 “Hierarchical
Depth Buffer Resolve” for additional restrictions when this field is enabled.

All

If Hierarchical Depth Buffer Enable is disabled, enabling this field will have
no effect.

All

Performance Note: expect the hierarchical depth buffer’s impact on
performance to be reduced for some period of time after this operation is
performed, as the hierarchical depth buffer is initialized to a state that makes it
ineffective. Further rendering will tend to bring the hierarchical depth buffer
back to a more effective state.

All

26:23 Reserved Project: All Format: MBZ

22:16 Dispatch GRF Start Register for Constant/Setup Data [0]

Project: All

Format: U7 FormatDesc

Range [0,127]

Specifies the starting GRF register number for the Constant/Setup portion of the thread
payload for kernel[0].

15 Reserved Project: All Format: MBZ

274 Doc Ref #

3DSTATE_WM
14:8 Dispatch GRF Start Register for Constant/Setup Data [1]

Project: All

Format: U7 FormatDesc

Range [0,127]

Specifies the starting GRF register number for the Constant/Setup portion of the thread
payload for kernel[1].

7 Reserved Project: All Format: MBZ

6:0 Dispatch GRF Start Register for Constant/Setup Data [2]

Project: All

Format: U7 FormatDesc

Range [0,127]

Specifies the starting GRF register number for the Constant/Setup portion of the thread
payload for kernel[2].

5 31:25 Maximum Number of Threads

Project: All

Format: U7 representing (thread count – 1) FormatDesc

Range:

[DevSNB:B0] with WIZ Hashing Disable in GT_MODE register enabled: Range = [3,79]
� [4,80] threads. Only odd values are allowed (resulting in even max number of threads)

 [DevSNB:A0] with WIZ Hashing Disable in GT_MODE register enabled: Range = [5,79]
� [6,80] threads. Only odd values are allowed (resulting in even max number of threads)

[DevSNB] with WIZ Hashing Disable in GT_MODE register disabled: Range = [1,39] �
[2,40] threads

Programming Notes

A PIPE_CONTROL command, with only the Stall At Pixel Scoreboard field set (DW1 Bit 1),
must be issued prior to any change to the value in this field

24 Reserved Project: All Format: MBZ

23 Legacy Diamond Line Rasterization

Project: All

Format: Enable FormatDesc

This bit, if ENABLED, indicates that the Windower will rasterize zero width lines using the
DX9 rasterization rules. If DISABLED, the Windower will rasterize zero width lines using
the DX10 rasterization rules (see Strips Fans chapter).

Doc Ref # 275

3DSTATE_WM
22 Pixel Shader Kill Pixel

Project: All

Format: Enable FormatDesc

This bit, if ENABLED, indicates that the PS kernel or color calculator has the ability to kill
(discard) pixels or samples, other than due to depth or stencil testing. This bit is required
to be ENABLED in the following situations:

The API pixel shader program contains “killpix” or “discard” instructions, or other code in
the pixel shader kernel that can cause the final pixel mask to differ from the pixel mask
received on dispatch.

A sampler with chroma key enabled with kill pixel mode is used by the pixel shader.

Any render target has Alpha Test Enable or AlphaToCoverage Enable enabled.

The pixel shader kernel generates and outputs oMask.

Note: As ClipDistance clipping is fully supported in hardware and therefore not via PS
instructions, there should be no need to ENABLE this bit due to ClipDistance clipping.

21 Pixel Shader Computed Depth

Project: All

Format: Enable FormatDesc

This bit, if ENABLED, indicates that the PS kernel computes and outputs a depth value.

Programming Notes Project

If a NULL Depth Buffer is selected, the Pixel Shader Computed Depth field
must be set to disabled.

All

20 Pixel Shader Uses Source Depth

Project: All

Format: Enable FormatDesc

This bit, if ENABLED, indicates that the PS kernel requires the source depth value (vPos.z)
to be passed in the payload.

The source depth value is interpolated according to the Position ZW Interpolation Mode
state.

[DevSNB-A/B] Errata: This bit must be reset when Depth Bufer Surface Format is
D32_FLOAT_S8X24_UINT and Number of Multisamples = 4.

276 Doc Ref #

3DSTATE_WM
19 Thread Dispatch Enable

Project: All

Format: Enable FormatDesc

This bit, if set, indicates that it is possible for a PS thread to modify a render target, i.e.,at
least one render target is enabled (is not of type SURFTYPE_NULL and has at least one
channel enabled for writes) and the PS kernel contains a code path that may issue a write
to that/those enabled RTs.

Programming Notes Project

This bit is used for performance optimizations and does not directly control
writing to render targets. If this bit is DISABLED, no pixel shader threads will
be dispatched.

All

For correct behavior, this bit must be set consistently with the behavior of the
PS kernel, i.e. if this bit is DISABLED the PS kernel must not write color or
depth to any render targets.

All

If this field is disabled, Pixel Shader Kill Pixel must be disabled.

18 Reserved Project: All Format: MBZ

17:16 Line End Cap Antialiasing Region Width

Project: All

Format: U2 FormatDesc

This field specifies the distances over which the coverage of anti-aliased line end caps are
computed.

Note: This state is duplicated in 3DSTATE_SF.

Value Name Description Project

0h 0.5 pixels All

1h 1.0 pixels All

2h 2.0 pixels All

3h 4.0 pixels All

15:14 Line Antialiasing Region Width

Project: All

Format: U2 FormatDesc

This field specifies the distance over which the anti-aliased line coverage is computed.

Value Name Description Project

0h 0.5 pixels All

1h 1.0 pixels All

2h 2.0 pixels All

3h 4.0 pixels All

Doc Ref # 277

3DSTATE_WM
13 Polygon Stipple Enable

Project: All

Format: Enable FormatDesc

Enables the Polygon Stipple function.

12 Reserved Project: All Format: MBZ

11 Line Stipple Enable

Project: All

Format: Enable FormatDesc

Enables the Line Stipple function.

10 Reserved Project: All Format: MBZ

9 oMask Present to RenderTarget

Project: All

Format: Enable FormatDesc

This bit is inserted in the PS payload header and made available to the DataPort (either via
the message header or via header bypass) to indicate that oMask data (one or two phases)
is included in Render Target Write messages. If present, the oMask data is used to mask
off samples.

[DevSNB:A0] This bit must be disabled in A Step.

8 Pixel Shader Uses Source W

Project: All

Format: Enable FormatDesc

This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value
(vPos.w) to be passed in the payload. The W value is interpolated according to the
Position ZW Interpolation Mode state.

7 Dual Source Blend Enable

Project: All

Format: Enable FormatDesc

This field is set if dual source blend is enabled. If this bit is disabled, the data port dual
source message reverts to a single source message using source 0.

[DevSNB:A0] : Errata : This bit must be set to 0. Dual Source Blending is not supported in
DevSNB A Step.

6:3 Reserved Project: All Format: MBZ

278 Doc Ref #

3DSTATE_WM
2 32 Pixel Dispatch Enable

Project: All

Format: Enable FormatDesc

Enables the Windower to dispatch 8 subspans in one payload.

Note: in the table below, the Valid column indicates which products that combination is
supported on. Combinations of dispatch enables not listed in the table are not available on
any product.

A: Valid on all products

B: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

D: Valid on all products, except when in non-1x PERSAMPLE mode (applies to [DevSNB+]
only). Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

E: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

F: Valid on all products, except not valid on [DevSNB] if 4x PERPIXEL mode with pixel
shader computed depth.

For [DevSNB], there is only one kernel start pointer (KSP) specified in
WM_STATE, with other kernels being entered via an offset from the single KSP
as follows:

SP[0] = KSP

KSP[1] = KSP+1

KSP[2] = KSP+2

KSP[3] = KSP+3

For [DevSNB], each of the three KSP values is separately specified. In addition,
each kernel has a separately-specified GRF register count.

Table 22 for valid pixel dispatch combinations.

Doc Ref # 279

3DSTATE_WM
1 16 Pixel Dispatch Enable

Project: All

Format: Enable FormatDesc

Enables the Windower to dispatch 4 subspans in one payload.

Note: in the table below, the Valid column indicates which products that combination is
supported on. Combinations of dispatch enables not listed in the table are not available on
any product.

A: Valid on all products

B: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

D: Valid on all products, except when in non-1x PERSAMPLE mode (applies to [DevSNB+]
only). Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

E: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

F: Valid on all products, except not valid on [DevSNB] if 4x PERPIXEL mode with pixel
shader computed depth.

For [DevSNB], there is only one kernel start pointer (KSP) specified in WM_STATE, with
other kernels being entered via an offset from the single KSP as follows:

SP[0] = KSP

KSP[1] = KSP+1

KSP[2] = KSP+2

KSP[3] = KSP+3

For [DevSNB], each of the three KSP values is separately specified. In addition, each
kernel has a separately-specified GRF register count.

Table 22 for valid pixel dispatch combinations.

280 Doc Ref #

3DSTATE_WM
0 8 Pixel Dispatch Enable

Project: All

Format: Enable FormatDesc

Enables the Windower to dispatch 2 subspans in one payload.

Note: See Note: in the table below, the Valid column indicates which products that
combination is supported on. Combinations of dispatch enables not listed in the table are
not available on any product.

A: Valid on all products

B: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

D: Valid on all products, except when in non-1x PERSAMPLE mode (applies to
[DevSNB+] only). Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader
computed depth.

E: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

F: Valid on all products, except not valid on [DevSNB] if 4x PERPIXEL mode with pixel
shader computed depth.

For [DevSNB], there is only one kernel start pointer (KSP) specified in WM_STATE, with
other kernels being entered via an offset from the single KSP as follows:

SP[0] = KSP

KSP[1] = KSP+1

KSP[2] = KSP+2

KSP[3] = KSP+3

For [DevSNB], each of the three KSP values is separately specified. In addition, each
kernel has a separately-specified GRF register count.

Table 22 for valid pixel dispatch combinations.

6 31:26 Reserved Project: All Format: MBZ

25:20 Number of SF Output Attributes

Project: All

Format: U6 count of attributes FormatDesc

Range [0,32]

Specifies the number of vertex attributes passed from the SF stage to the WM stage (does
not include Position). This field must reflect the same number of actual attributes as the
Number of SF Output Attributes field in 3DSTATE_SF.

Doc Ref # 281

3DSTATE_WM
19:18 Position XY Offset Select

Project: All

Format: U2 enumerated type FormatDesc

This field specifies if/what Position XY Offset values are passed in the PS payload. Note
that these are per-slot (pixel|sample) offsets, and therefore separate from the subspan XY
coordinates passed in R1.

Value Name Description Project

0h POSOFFSET
_NONE

No Position XY Offsets are included in the PS
payload.

All

1h Reserved All

2h POSOFFSET
_CENTROID

Position XY Offsets will be passed in the PS
payload, and these will reflect the Centroid
position(s).

All

3h POSOFFSET
_SAMPLE

Position XY Offsets will be passed in the PS
payload, and these will reflect the multisample
position(s).

All

Programming Notes Project

SW Recommendation: If the PS kernel needs the Position Offsets to compute
a Position XY value, this field should match Position ZW Interpolation Mode
to ensure a consistent position.xyzw computation

All

If the PS kernel does not need the Position XY Offsets to compute a Position
Value, then this field should be programmed to POSOFFSET_NONE, as the
PS kernel should be using the various barycentric inputs to evaluate other-
than-position attributes. However, this field can be used to pass Centroid or
Sample offsets in the payload for special test modes (e.g., where barycentric
coordinates are computed in the PS vs. being HW-generated and passed in
the payload).

All

MSDISPMODE_PERSAMPLE is required in order to select
POSOFFSET_SAMPLE.

All

282 Doc Ref #

3DSTATE_WM
17:16 Position ZW Interpolation Mode

Project: All

Format: U2 enumerated type FormatDesc

This field elects “interpolation mode” associated with the Position Z (source depth) and W
coordinates passed in the PS payload when the PS requires Position as input. This field
does not determine whether these coordinates are actually included in the payload (see
Pixel Shader Requires Depth, Pixel Shader Requires W).

Value Name Description Project

0h INTERP_PIXEL Evaluate Z & W at the pixel center
or UL corner (as specified by Pixel
Location of
3DSTATE_MULTISAMPLE)

All

1h Reserved All

2h INTERP_CENTROID All

3h INTERP_SAMPLE All

Programming Notes Project

Position XY Offset Select controls if/what Position XY Offset values are
included in the PS payload. This field (Position ZW Interpolation Mode)
does not affect those Position XY Offset values.

All

The device may need to evaluate Z and W coordinates using different
interpolation locations, for DepthTest and barycentric coordinate generation.
This field only impacts the values that get passed in the PS payload.

All

MSDISPMODE_PERSAMPLE is required in order to select
INTERP_SAMPLE.

All

[DevSNB-A,B{W/A}]: Erratum: For 4X MSRT, when Pixel Shader Uses Source
Depth is enabled, this bit-field must not be INTERP_PIXEL.

[DevSN
B-A,B]

Doc Ref # 283

3DSTATE_WM
15:10 Barycentric Interpolation Mode

Project: All

Format: 6-bit enable mask FormatDesc

Controls which barycentric interpolation terms must be passed into the pixel shader kernel.

Bit 0: Perspective Pixel Location barycentric is required

Bit 1: Perspective Centroid barycentric is required

Bit 2: Perspective Sample barycentric is required

Bit 3: Non-perspective Pixel Location barycentric is required

Bit 4: Non-perspective Centroid barycentric is required

Bit 5: Non-perspective Sample barycentric is required

[DevSNB:A0{WKA}]: [DevSNB:A]: Errata: Perspective Pixel Location Barycentric (Bit 0)
and Non-perspective Pixel Location Barycentric (Bit 3) are not supported with Number of
Multisamples equals to 4 in 3DSTATE_MULTISAMPLE

Programming Notes Project

Pixel Location below refers to either the upper left corner or pixel center
depending on the Pixel Location state of 3DSTATE_MULTISAMPLING).

All

MSDISPMODE_PERSAMPLE is required in order to select Perspective
Sample or Non-perspective Sample barycentric coordinates.

All

9 Point Rasterization Rule

Project: All

Format: 3D_RasterizationRule FormatDesc

This field specifies the rasterization rules to be applied whenever the edges of a point
primitive fall exactly on a pixel sampling point.

Value Name Description Project

0h RASTRULE_UPPER_LEFT To match “normal” upper left
rules for surface primitives

All

1h RASTRULE_UPPER_RIGHT To match OpenGL point
rasterization rules (round to +
infinity, where this is the upper
right direction wrt OpenGL
screen origin of lower left).

All

8:3 Reserved Project: All Format: MBZ

284 Doc Ref #

3DSTATE_WM
2:1 Multisample Rasterization Mode

Project: All

Format: U2 enumerated type FormatDesc

This field determines whether multisample rasterization is turned on/off, and how the pixel
sample point(s) are defined. Software sets this according to the API, the API’s multisample
enable state setting (if any), and whether 1X or 4X MSRTs are bound. This state is
duplicated in 3DSTATE_SF and both must be set to the same value. Refer to the
“Multisampling” section for details on the settings of this field.

Value Name Description Project

0h MSRASTMODE_ OFF_PIXEL All

1h MSRASTMODE_ OFF_PATTERN All

2h MSRASTMODE_ ON_PIXEL All

3h MSRASTMODE_ ON_PATTERN All

Programming Notes

Setting this field to MSRASTMODE_xxx_PATTERN when Number of Multisamples ==
NUMSAMPLES_1 is UNDEFINED.

0 Multisample Dispatch Mode

Project: All

Format: U1 enumerated type FormatDesc

This bit, along with Number of Multisamples, determines how PS threads are
dispatched. Software programs this bit depending on the per-pixel v.s per-sample PS
execution requirement.

Value Name Description Project

0h MSDISPMODE
_PERSAMPLE

This is the high-quality multisample mode where
(over and above PERPIXEL mode) the PS is
run for each covered sample. This mode is also
used for “normal” non-multisample rendering
(aka 1X), given Number of Multisamples is
programmed to NUMSAMPLES_1.

All

1h MSDISPMODE
_PERPIXEL

This is the classic multisample mode of
operation, typically used for both antialiasing
and transparency. Setup and rasterization
operate in full multisample mode, testing
coverage and depth/stencil test at the sample
level but only running the PS once per pixel.

All

Doc Ref # 285

3DSTATE_WM
7 31:6 Kernel Start Pointer[1]

Project: All

Address: InstructionBaseOffset[31:6]

Surface Type: Kernel

Specifies the 64-byte aligned address offset of the first instruction in kernel[1]. This pointer
is relative to the Instruction Base Address.

5:0 Reserved Project: All Format: MBZ

8 31:6 Kernel Start Pointer[2]

Project: All

Address: InstructionBaseOffset[31:6]

Surface Type: Kernel

Specifies the 64-byte aligned address offset of the first instruction in kernel[2]. This pointer
is relative to the Instruction Base Address.

5:0 Reserved Project: All Format: MBZ

7.2.2 3DSTATE_CONSTANT_PS [DevSNB]

3DSTATE_CONSTANT_PS
Project: [DevSNB] Length Bias: 2
This command sets pointers to the push constants for WM unit. The constant data pointed to by this
command will be loaded into the WM unit’s push constant buffer (PCB).

[DevSNB:A] All memory accesses are to GGTT address space, independent of the PPGTT mode bit in
GFX_MODE

 [DevSNB]: This packet must be followed by WM_STATE.

Programming Note:

 It is invalid to program this command mroe then once between 3D_PRIMITIVE commands.
DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

286 Doc Ref #

3DSTATE_CONSTANT_PS
23:16 3D Command Sub Opcode

Default Value: 17h 3DSTATE_CONSTANT_PS Format: OpCode

15 Buffer 3 Valid Project: [DevSN
B]

Forma
t:

Enable

This field enables buffer 3

14 Buffer 2 Valid Project: [DevSN
B]

Forma
t:

Enable

This field enables buffer 2

13 Buffer 1 Valid Project: [DevSN
B]

Forma
t:

Enable

This field enables buffer 1

12 Buffer 0 Valid Project: [DevSN
B]

Forma
t:

Enable

This field enables buffer 0

11:8 Constant Buffer Object Control State

Project: [DevSNB]

Format: MEMORY_OBJECT_CONTROL_STATE FormatDesc

Specifies the memory object control state for all constant buffers defined in this command.

[DevSNB-A] Only bits 11 and 10 can be used (GFDT)

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: [DevSNB]

1 31:5 Pointer to PS Constant Buffer 0

Project: [DevSNB]

Address: DynamicStateOffset[31:5] or GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of PS Constant Buffer 0. The state of
INSTPM<CONSTANT_BUFFER Address Offset Disable> determines whether the
Dynamic State Base Address is added to this pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

Doc Ref # 287

3DSTATE_CONSTANT_PS
4:0 PS Constant Buffer 0 Read Length

Project: [DevSNB]

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 64

2 31:5 Pointer to PS Constant Buffer 1

Project: [DevSNB]

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of PS Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 PS Constant Buffer 1 Read Length

Project: [DevSNB]

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 64

3 31:5 Pointer to PS Constant Buffer 2

Project: [DevSNB]

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of PS Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

288 Doc Ref #

3DSTATE_CONSTANT_PS
4:0 PS Constant Buffer 2 Read Length

Project: [DevSNB]

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 64

4 31:5 Pointer to PS Constant Buffer 3

Project: [DevSNB]

Address: GraphicsAddress[31:5]

Surface Type: ConstantBuffer

This field points to the location of PS Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 PS Constant Buffer 3 Read Length

Project: [DevSNB]

Format: U5 (read length – 1) FormatDesc

This field specifies the length of the constant data to be loaded from memory in 256-bit
units minus one.

Programming Notes

The sum of all four read length fields (each incremented to represent the actual read
length) must be less than or equal to 64

Doc Ref # 289

7.2.3 3DSTATE_SAMPLE_MASK [DevSNB+]
For [DevSNB+], the sample mask state used by the windower stage is defined with this inline state
packet.

3DSTATE_SAMPLE_MASK
Project: [DevSNB+] Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 18h 3DSTATE_SAMPLE_MASK Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:4 Reserved Project: DevSNB Format: MBZ

3:0 Sample Mask

Project: DevSNB

Format: Right-justified bitmask (Bit 0 =
Sample0). Number of bits that are used
is determined by Num Multisamples
(3DSTATE_MULTISAMPLE)

FormatDesc

A per-multisample-position mask state variable that is immediately and unconditionally
ANDed with the sample coverage mask as part of the rasterization process. This mask is
applied prior to centroid selection.

31:8 Reserved Project: Format: MBZ

290 Doc Ref #

3DSTATE_SAMPLE_MASK
7:0 Reserved

7.3 Rasterization
The WM unit uses the setup computations performed by the SF unit to rasterize objects into the
corresponding set of pixels. Most of the controls regarding the screen-space geometry of rendered
objects are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see Figure 7-1)
which, after being subjected to various inclusion/discard tests, are grouped and passed to spawned Pixel
Shader (PS) threads for subsequent processing. Once these PS threads are spawned, the WM unit
provides only bookkeeping functions on the pixels. Note that the WM unit can proceed on to rasterize
subsequent objects while PS threads from previous objects are still executing.

Figure 7-1. Pixels with a SubSpan

B6850-01

Pixel
0

Pixel
1

Pixel
2

Pixel
3

7.3.1 Drawing Rectangle Clipping
The Drawing Rectangle defines the maximum extent of pixels which can be rendered. Portions of objects
falling outside the Drawing Rectangle will be clipped (pixels discarded). Implementations will typically
discard objects falling completely outside of the Drawing Rectangle as early in the pipeline as possible.
There is no control to turn off Drawing Rectangle clipping – it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the destination buffer
extents. (The Drawing Rectangle Origin, used to offset relative X,Y coordinates earlier in the pipeline, is
permitted to lie offscreen). The Clipped Drawing Rectangle X,Y Min,Max state variables (programmed
via 3DSTATE_DRAWING_RECTANGLE – See SF Unit) defines the intersection of the Drawing
Rectangle and the Color Buffer. It is specified with non-negative integer pixel coordinates relative to the
Destination Buffer upper-left origin.

Doc Ref # 291

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the rectangle is
inclusive). For example, to render to a full-screen 1280x1024 buffer, the following values would be
required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023.

For “full screen” rendering, the Drawing Rectangle coincides with the screen-sized buffer. For “front-
buffer windowed” rendering it coincides with the destination “window”.

7.3.2 Line Rasterization
See SF Unit chapter for details on the screen-space geometry of the various line types.

7.3.2.1 Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line End Cap Anti-
aliasing Region Width state variables (in WM_STATE) in order to compute the coverage values for anti-
aliased lines.

7.3.2.2 3DSTATE_AA_LINE_PARAMS [DevCTG+]

3DSTATE_AA_LINE_PARAMETERS
Project: [DevCTG+] Length Bias: 2

The 3DSTATE_AA_LINE_PARAMS command is used to specify the slope and bias terms used in the improved alpha
coverage computation. Note that in these devices the coverage values passed to PS threads are full U0.8 values,
versus [DevBW]/[DevCL] where U0.4 values are passed.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ah 3DSTATE_AA_LINE_PARAMS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

292 Doc Ref #

3DSTATE_AA_LINE_PARAMETERS
1 31:24 Reserved Project: All Format: MBZ

23:16 AA Coverage Bias

Project: All

Format: U0.8 FormatDesc

This field specifies the bias term to be used in the aa coverage computation for edges 0
and 3.

15:8 Reserved Project: All Format: MBZ

7:0 AA Coverage Slope

Project: All

Format: U0.8 FormatDesc

This field specifies the slope term to be used in the aa coverage computation for edges 0
and 3.

If this field is zero, the Windower will revert to legacy aa line coverarge computation
(though still output expanded U0.8 coverage values).

2 31:24 Reserved Project: All Format: MBZ

23:16 AA Coverage EndCap Bias

Project: All

Format: U0.8 FormatDesc

This field specifies the bias term to be used in the aa coverage computation for edges 1
and 2.

15:8 Reserved Project: All Format: MBZ

7:0 AA Coverage EndCap Slope

Project: All

Format: U0.8 FormatDesc

This field specifies the slope term to be used in the aa coverage computation for edges 1
and 2.

The slope and bias values should be computed to closely match the reference rasterizer results. Based
on empirical data, the following recommendations are offered:

The final alpha for the center of the line needs to be 148 to match the reference rasterizer. In this case,
the Lo to edge 0 and edge 3 will be the same. Since the alpha for each edge is multiplied together, we
get:

edge0alpha * edge1alpha = 148/255 = 0.580392157

Since edge0alpha = edge3alpha we get:

(edge0alpha)2 = 0.580392157

Doc Ref # 293

edge0alpha = sqrt(0.580392157) = 0.761834731 at the center pixel

The desired alpha for pixel 1 = 54/255 = 0.211764706

The slope is (0.761834731 – 0.211764706) = 0.550070025

294 Doc Ref #

Since we are using 8 bit precision, the slope becomes

AA Coverage [EndCap] Slope = 0.55078125

The alpha value for Lo = 0 (second pixel from center) determines the bias term and is equal to

(0.211764706 – 0.550070025) = -0.338305319

With 8 bits of precision the programmed bias value

AA Coverage [EndCap] Bias = 0.33984375

7.3.2.3 Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE, discards certain pixels
that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via
3DSTATE_LINE_STIPPLE: the 16-bit Line Stipple Pattern (p), Line Stipple Repeat Count I, and Line
Stipple Inverse Repeat Count. Sofware must compute Line Stipple Inverse Repeat Count as 1.0f /
Line Stipple Repeat Count and then converted from float to the required fixed point encoding (see
3STATE_LINE_STIPPLE).

The WM unit maintains an internal Line Stipple Counter state variable (s). The initial value of s is zero; s
is incremented after production of each pixel of a line segment (pixels are produced in order, beginning at
the starting point and working towards the ending point). s is reset to 0 whenever a new primitive is
processed (unless the primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every
line segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:

A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are numbered with 0
being the least significant and 15 being the most significant.

7.3.2.4 3DSTATE_LINE_STIPPLE [DevSNB]

3DSTATE_LINE_STIPPLE
Project: [DevSNB] Length Bias: 2
The 3DSTATE_LINE_STIPPLE command is used to specify state variables used in the Line Stipple function.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

Doc Ref # 295

3DSTATE_LINE_STIPPLE
26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 08h 3DSTATE_LINE_STIPPLE Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31 Modify Enable (Current Repeat Counter, Current Stipple Index)

Project: All

Format: Enable FormatDesc

Modify enable for Current Repeat Counter and Current Stipple Index fields.

Programming Notes

Software should never set this field to enabled. It is provided only for HW-generated
commands as part of context save/restore.

30 Reserved Project: All Format: MBZ

29:21 Current Repeat Counter

Project: All

Format: U9 FormatDesc

This field sets the HW-internal repeat counter state.

Note: Software should never attempt to set this value – this state is only provided for HW-
generated commands as part of context save/restore.

20 Reserved Project: All Format: MBZ

19:16 Current Stipple Index

Project: All

Format: U4 FormatDesc

This field sets the HW-internal stipple pattern index.

Note: Software should never attempt to set this value – this state is only provided for HW-
generated commands as part of context save/restore.

15:0 Line Stipple Pattern

Project: All

Format: 16 bit mask. Bit 15 = most significant
bit, Bit 0 = least significant bit

FormatDesc

Specifies a pattern used to mask out bit specific pixels while rendering lines.

296 Doc Ref #

3DSTATE_LINE_STIPPLE
2 31:16 Line Stipple Inverse Repeat Count

Project: [DevSNB]

Format: U1.13 FormatDesc

Range [0.00390625, 1.0]

Specifies the inverse (truncated) of the repeat count for the line stipple function.

15:9 Reserved Project: All Format: MBZ

8:0 Line Stipple Repeat Count

Project: All

Format: U9 FormatDesc

Range [1, 256]

Specifies the repeat count for the line stipple function.

7.3.3 Polygon (Triangle and Rectangle) Rasterization
The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a “pixel sampling
grid” to be defined. This grid is defined as an axis-aligned array of pixel sample points spaced exactly 1
pixel unit apart. If a sample point falls within one of these objects, the pixel associated with the sample
point is considered “inside” the object, and information for that pixel is generated and passed down the
pipeline.

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the object, the
associated pixel is considered “inside” the object if the intersecting edge is a “left” or “top” edge (or, more
exactly, the intersected edge is not a “right” or “bottom” edge). Note that “top” and “bottom” edges are by
definition exactly horizontal. The following diagram identifies the edge types for representative
TRIANGLE and RECTANGLE objects (solid edges are inclusive, dashed edges are exclusive).

Doc Ref # 297

Figure 7-2. TRIANGLE and RECTANGLE Edge Types

B6851-01

Right Edge
Left Edge

Bottom Edge

Right Edge

Left Edge

Right Edge

Right Edge
Left Edge

Left Edge

Right EdgeLeft Edge

Top Edge

Top Edge

Bottom Edge

Right EdgeLeft Edge

7.3.3.1 Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state variable in WM_STATE,
allows only selected pixels of a repeated 32x32 pixel pattern to be rendered. Polygon stipple is applied
only to the following primitive types:

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the 3DSTATE_POLY_STIPPLE_PATTERN
command. This is a non-pipelined command which incurs an implicit pipeline flush when executed.

298 Doc Ref #

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables programmed via the
3DSTATE_POLY_STIPPLE_OFFSET command. The offsets are pixel offsets from the Color Buffer
origin to the upper left corner of the stipple pattern. This is a non-pipelined command which incurs an
implicit pipeline flush when executed.

7.3.3.2 3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_OFFSET
Project: All Length Bias: 2

The 3DSTATE_POLY_STIPPLE_OFFSET command is used to specify the origin of the repeated screen-space
Polygon Stipple Pattern as an X,Y offset from the Color Buffer origin.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 06h 3DSTATE_POLY_STIPPLE_OFFSET Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:13 Reserved Project: All Format: MBZ

12:8 Polygon Stipple X Offset

Project: All

Format: U5 FormatDesc

Range [0,31]

Specifies a 5 bit x address offset in the poly stipple pattern

7:5 Reserved Project: All Format: MBZ

Doc Ref # 299

3DSTATE_POLY_STIPPLE_OFFSET
4:0 Polygon Stipple Y Offset

Project: All

Format: U5 FormatDesc

Range [0,31]

Specifies a 5 bit y address offset in the poly stipple pattern

7.3.3.3 3DSTATE_POLY_STIPPLE_PATTERN

3DSTATE_POLY_STIPPLE_PATTERN
Project: All Length Bias: 2

The 3DSTATE_POLY_STIPPLE_PATTERN command is used to specify the 32x32 Polygon Stipple Pattern used in the
Polygon Stipple function of the WM unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 07h 3DSTATE_POLY_STIPPLE_PATTERN Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1Fh Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:0 Polygon Stipple Pattern Row 1 (top most)

Project: All

Format: 32 bit mask. Bit 31 = upper left corner,
Bit 0 = upper right corner of first row.

FormatDesc

Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32 area
rendered.

300 Doc Ref #

3DSTATE_POLY_STIPPLE_PATTERN
2..32 31:0 Polygon Stipple Pattern Rows 2-32 (bottom most)

Project: All

Format: 32 bit mask. Bit 31 = upper left corner,
Bit 0 = upper right corner of first row.

FormatDesc

Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32 area
rendered.

7.4 Multisampling [DevSNB+]
The multisampling function has two components:

 Multisample Rasterization: multisample rasterization occurs at a subpixel level, wherein each
pixel consists of a number of “samples” at state-defined positions within the pixel footprint.
Coverage of the primitive as well as color calculator operations (stencil test, depth test, color
buffer blending, etc.) are done at the sample level. In addition the pixel shader itself can
optionally run at the sample level depending on a separate state field.

 Multisample Render Targets (MSRT): The render targets, as well as the depth and stencil
buffers, now have the ability to store per-sample values. When combined with multisample
rasterization, color calculator operations such as stencil test, depth test, and color buffer blending
are done with the destination surface cont aining potentially different values per sample.

7.4.1 Multisample Modes/State
A number of state variables control the operation of the multisampling function. The following list
indicates the state and their location. Refer to the state definition for more details.

 Multisample Rasterization Mode (3DSTATE_SF and 3DSTATE_WM): controls whether
rasterization of non-lines is performed on a pixel or sample basis (PIXEL vs. PATTERN), and
whether rasterization of lines is performed on a pixel or sample basis (OFF vs. ON). The table
below details the possible values of this state:

Multisample Rasterization Mode Description

MSRASTMODE_ OFF_PIXEL
All object types: Rasterization is performed on a pixel (vs. sample)
basis. The number of pixel sample points is determined by Number
of Multisamples, but the location(s) are all fixed at either the pixel
center or UL corner, as defined by Pixel Location
(3DSTATE_MULTISAMPLE). The programmed values Sample Offset
states are ignored.

Lines: Multisampling rasterization of lines is turned off, allowing 0-width lines,
french-cut wide/stippled lines, and AA lines.

MSRASTMODE_ OFF_PATTERN
This mode is only valid when Number of Multisamples =

Doc Ref # 301

Multisample Rasterization Mode Description

NUMSAMPLES_4.

Non-Lines: Rasterization is performed on a 4X sample basis. The
four pixel sample points are completely defined by state variables
programmed via 3DSTATE_MULTISAMPLE.

Lines: Rasterization is performed on a pixel (vs. sample) basis. The number
of pixel sample points is determined by Number of Multisamples, but the
location(s) are all fixed at either the pixel center or UL corner, as defined by
Pixel Location (3DSTATE_MULTISAMPLE). The programmed values
Sample Offset states are ignored. Multisampling rasterization of lines is
turned off, allowing 0-width lines, french-cut wide/stippled lines, and AA lines.

MSRASTMODE_ ON_PIXEL
All object types: Rasterization is performed on a pixel (vs. sample)
basis. The number of pixel sample points is determined by Number
of Multisamples, but the location(s) are all fixed at either the pixel
center or UL corner, as defined by Pixel Location
(3DSTATE_MULTISAMPLE). The programmed values Sample Offset
states are ignored.

Lines: Multisampling rasterization of lines is turned on, where all lines are
drawn as rectangles using Line Width.

MSRASTMODE_ ON_PATTERN
This mode is only valid when Number of Multisamples =
NUMSAMPLES_4.

All object types: Rasterization is performed on a 4X sample basis.
The four pixel sample points are completely defined by state variables
programmed via 3DSTATE_MULTISAMPLE.

Lines: Multisampling rasterization of lines is turned on, where lines are drawn
as rectangles using Line Width.

 Multisample Dispatch Mode (3DSTATE_WM): controls whether the pixel shader is executed
per pixel or per sample.

 Number of Multisamples (3DSTATE_MULTISAMPLE and SURFACE_STATE): indicates the
number of samples per pixel contained on the surface. This field in 3DSTATE_MULTISAMPLE
must match the corresponding field in SURFACE_STATE for each render target. The depth,
hierarchical depth, and stencil buffers inherit this field from 3DSTATE_MULTISAMPLE.

 Pixel Location (3DSTATE_MULTISAMPLE): indicates the subpixel location where values
specified as “pixel” are sampled. This is either the upper left corner or the center.

 Sample Offsets (3DSTATE_MULTISAMPLE): for each of the four samples, specifies the
subpixel location of each sample.

302 Doc Ref #

APIs define a “Multisample” render state Boolean which controls how objects are rasterized (sample level
vs. pixel level). The binding of MSRTs also affects the rasterization process. The various permutations of
multisample operation are listed below, along with the HW state settings required.

API State HW Mode

MSRT Sampling
Pattern

Multisample
Enable

PerSample
PS?

Disabled - Legacy Non-MSAA Mode 1X n/a

Enabled - 1X Multisampling Mode

No MSRT Only, PerPixel PS Disabled

Yes MSRT Only, PerSample PS

No Multibuffering MSAA, PerPixel PS

UL or Center

Enabled

Yes Multibuffering MSAA, PerSample PS

No MSRT Only, PerPixel PS

Yes n/a

No Mixed Mode, PerPixel PS

Disabled

Yes Mixed Mode, PerSample PS

No Pattern MSAA, PerPixel PS

4X

Pattern

Enabled

Yes Pattern MSAA, PerSample PS

HW State

Num
Samples

MS

RAST

MODE

MS DISP
MODE

HW Mode

OFF_PIXEL PERSAMPLE Legacy Non-MSAA Mode

1X rasterization, using Pixel Location

Legacy lines/aa-line rasterization

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

1X

ON_PIXEL PERSAMPLE 1X Multisampling Mode

1X rasterization, using Pixel Location

MSAA lines only, using Pixel Location

Doc Ref # 303

HW State

Num
Samples

MS

RAST

MODE

MS DISP
MODE

HW Mode

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

- PERPIXEL Invalid

ON_PATTERN - Invalid

OFF_PATTERN - Invalid

PERPIXEL MSRT Only, PerPixel PS

1X rasterization, using Pixel Location

Legacy lines/aa-line rasterization

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

OFF_PIXEL

PERSAMPLE MSRT Only, PerSample PS

1X rasterization, using Pixel Location

Legacy lines/aa-line rasterization

4X PS, all samples at Pixel Location

4X output merge, eval Depth at Pixel Location

PERPIXEL Multibuffering MSAA, PerPixel PS

1X rasterization, using Pixel Location

MSAA lines only

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

ON_PIXEL

PERSAMPLE Multibuffering MSAA, PerSample PS

1X rasterization, using Pixel Location

MSAA lines only

4X PS, all samples at Pixel Location

4X output merge, eval Depth at Pixel Location

4X

OFF_PATTERN PERPIXEL Mixed Mode, PerPixel PS

Lines: Legacy lines/aa-line rasterization using Pixel
Location

Non-Lines: 4X rasterization, using Sample Offsets

304 Doc Ref #

HW State

Num
Samples

MS

RAST

MODE

MS DISP
MODE

HW Mode

1X PS, sample at Pixel Location

4X output merge, eval depth at Sample Offsets

PERSAMPLE Mixed Mode, PerSample PS

Lines: Legacy lines/aa-line rasterization using Pixel
Location

Non-Lines: 4X rasterization, using Sample Offsets

4X PS, sample at Pixel Location or Sample Offsets

4X output merge, eval depth at Sample Offsets

PERPIXEL Pattern MSAA, PerPixel PS

4X rasterization, using Sample Offsets

MSAA lines only

1X PS, sample at Pixel Location

4X output merge, eval depth at Sample Offsets

ON_PATTERN

PERSAMPLE Pattern MSAA, PerSample PS

4X rasterization, using Sample Offsets

MSAA lines only

4X PS, sample at Pixel Location or Sample Offsets

4X output merge, eval depth at Sample Offsets

DX9 4x/8x MSAA workaround [DevSNB+]

There is hardware issue in DX9 MSAA 4x/8x mode of rendering because of which driver needs to
implement a work around.

This work around requires that driver force the device to render in DX10 MSAA mode if the API mode
happens to be DX9 with multi sample enabled and 4x or 8x rendertarget is bound. Workaround also
requires to enable the viewport transform in SF if not enabled already and set the transform coefficients
such that an offset of 0.5 gets added in horizontal and vertical directions.

Following gives the pseudocode to be implemented in DX9 mode

If(multisampleRenderTarget &&

 MultisampleEnable)

{

 // NDC space enabled with 3DSTATE_SF Viewport Transform Enable

Doc Ref # 305

ViewportTransformEnable = true;

// 3DSTATE_MULTISAMPLE Pixel Location to Center like DX10+

PixelLocation = 0;

// Set ViewportMatrixElements in SF_VIEWPORT

 ViewportMartixElement_m00 = 1.0f;

 ViewportMartixElement_m11 = 1.0f;

 ViewportMartixElement_m22 = 1.0f;

 ViewportMartixElement_m30 = 0.5f;

 ViewportMartixElement_m31 = 0.5f;

 ViewportMartixElement_m32 = 0.0f;

7.4.2 3DSTATE_MULTISAMPLE [DevSNB+]

3DSTATE_MULTISAMPLE
Project: [DevSNB+] Length Bias: 2
The 3DSTATE_MULTISAMPLE command is used to specify multisample state associated with the current render
target/depth buffer. This is non-pipelined state.

Programming Restriction:

Driver must guarentee that all the caches in the depth pipe are flushed before this command is parsed. This
requires driver to send a PIPE_CONTROL with a CS stall along with a Depth Flush prior to this command.

Programming Note: When programming the sample offsets (for NUMSAMPLES_4 or _8 and
MSRASTMODE_xxx_PATTERN), the order of the samples 0 to 3 (or 7 for 8X) must have monotonically
increasing distance from the pixel center. This is required to get the correct centroid computation in the
device.

When this command is issued, the currently active depth buffer, hierarchical depth buffer, stencil buffer, and
render target(s) must be cleared (meaning that every pixel must be overwritten). Alternatively, other
surfaces can be activated before issuing the next 3DPRIMITIVE that were previously rendered with the
same values of all state fields in this command. In other words, it is illegal to render to these surfaces with
multiple different values of the state fields in this command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

306 Doc Ref #

3DSTATE_MULTISAMPLE
28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode
26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode
23:16 3D Command Sub Opcode

Default Value: 0Dh 3DSTATE_MULTISAMPLE Format: OpCode
15:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 1h [DevSNB]

2h [Reserved]

Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All
1 31:6 Reserved Project: All Format: MBZ

5 Reserved

4 Pixel Location

Project: All

Format: U1 Enumerated Type FormatDesc

This field specifies where the device evaluates “pixel” (vs. centroid or sample)
values/attributes.

Value Name Description Project

0h PIXLOC_CENTER Use the pixel center (0.5, 0.5 offset) All

1h PIXLOC_UL_CORNER Use the pixel upper-left corner All

Programming Notes

The programming of this field is assumed to be a function of the API being supported.
Specifically, it is expected that OpenGL API requires CENTER selection,.

Doc Ref # 307

3DSTATE_MULTISAMPLE
3:1 Number of Multisamples

Project: All

Format: U3 Enumerated Type FormatDesc

This field specifies how many samples/pixel exist in all RTs and the Depth Buffer, as
log2(#samples). This field is valid regardless of the setting of Multisample Rasterization
Mode.

Value Name Description Project

0h NUMSAMPLES_1 1 sample/pixel All

1h Reserved All

2h NUMSAMPLES_4 4 samples/pixel All

3h Reserved All

4h-7h Reserved All

Programming Notes

Setting Multisample Rasterization Mode to MSRASTMODE_xxx_PATTERN when
Number of Multisamples == NUMSAMPLES_1 is UNDEFINED.

The setting of this field must match the Number of Multisamples field in
SURFACE_STATE of all bound render targets.

0 Reserved Project: All Format: MBZ

308 Doc Ref #

3DSTATE_MULTISAMPLE
2 31:28 Sample3 X Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel X offset of Sample 3 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

27:24 Sample3 Y Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel Y offset of Sample 3 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

23:20 Sample2 X Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel X offset of Sample 2 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

19:16 Sample2 Y Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel Y offset of Sample 2 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

15:12 Sample1 X Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel X offset of Sample 1 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

Doc Ref # 309

3DSTATE_MULTISAMPLE
11:8 Sample1 Y Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel Y offset of Sample 1 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

7:4 Sample0 X Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel X offset of Sample 0 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

3:0 Sample0 Y Offset

Project: All

Format: U0.4 FormatDesc

Range [0,0.9375]

Subpixel Y offset of Sample 0 relative to the UL pixel origin. Valid only when
NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN
mode.

3 31:28 Reserved
27:24 Reserved
23:20 Reserved
19:1 Reserved
15:12 Reserved
11:8 Reserved
7:4 Reserved
3:0 Reserved

7.5 Early Depth/Stencil Processing
The Windower/IZ unit provides the Early Depth Test function, a major performance-optimization feature
where an attempt is made to remove pixels that fail the Depth and Stencil Tests prior to pixel shading.
This requires the WM unit to perform the interpolation of pixel (“source”) depth values, read the current
(“destination”) depth values from the cached depth buffer, and perform the Depth and Stencil Tests. As
the WM unit has per-pixel source and destination Z values, these values are passed in the PS thread
payload, if required.

310 Doc Ref #

7.5.1 Depth Offset
Note for [DevSNB+]: the depth offset function is contained in SF unit, thus the state to control it is also
contained in SF unit.

There are occasions where the Z position of some objects need to be slightly offset in order to reduce
artifacts due to coplanar or near-coplanar primitives. A typical example is drawing the edges of triangles
as wireframes – the lines need to be drawn slightly closer to the viewer to ensure they will not be
occluded by the underlying polygon. Another example is drawing objects on a wall – without a bias on
the z positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset on the object’s z
slope. Note that there is no clamping applied at this stage after the Z position is offset – clamping to [0,1]
can be performed later after the Z position is interpolated to the pixel. This is preferable to clamping prior
to interpolation, as the clamping would change the Z slope of the entire object.

The Global Depth Offset function is controlled by the Global Depth Offset Enable state variable in
WM_STATE. Global Depth Offset is only applied to 3DOBJ_TRIANGLE objects.

When Global Depth Offset Enable is ENABLED, the pipeline will compute:

MaxDepthSlope = max(abs(dZ/dX),abs(dz/dy)) // approximation of max depth slope for polygon

When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):

Bias = GlobalDepthOffsetConstant * r + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the minimum representable value > 0 in the depth buffer format, converted to float32. (note: If
state bit Legacy Global Depth Bias Enable is set, the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:

Bias = GlobalDepthOffsetConstant * 2^(exponent(max z in primitive) - r) +
GlobalDepthOffsetScale * MaxDepthSlope

Where r is the # of mantissa bits in the floating point representation (excluding the hidden bit), e.g. 23 for
float32. (note: If state bit Legacy Global Depth Bias Enable is set, no scaling is applied to the
GobalDepthOffsetConstant).

Adding Bias to z:

 if (GlobalDepthOffsetClamp > 0)

Bias = min(DepthBiasClamp, Bias)

else if(GlobalDepthOffsetClamp < 0)

Bias = max(DepthBiasClamp, Bias)

Doc Ref # 311

// else if GlobalDepthOffsetClamp == 0, no clamping occurs

z = z + Bias

Biasing is constant for a given primitive. The biasing formulas are performed with float32 arithmetic.
Global Depth Bias is not applied to any point or line primitives

7.5.2 Early Depth Test/Stencil Test/Write
When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard depth-occluded pixels
during scan conversion (before processing them in the Pixel Shader). Pixels are only discarded when the
WM unit can ensure that they would have no impact to the ColorBuffer or DepthBuffer. This function is
therefore only a performance feature. Note: for [DevSNB+], the Early Depth Test Enable bit is no
longer present. This function is always enabled.

If some pixels within a subspan are discarded, only the pixel mask is affected indicating that the
discarded pixels are not active. If all pixels within a subspan are discarded, that subspan will not even be
dispatched.

7.5.2.1 Software-Provided PS Kernel Info

In order for the WM unit to properly perform Early Depth Test and supply the proper information in the PS
thread payload (and even determine if a PS thread needs to be dispatched), it requires information
regarding the PS kernel operation. This information is provided by a number of state bits in WM_STATE,
as summarized in the following table.

State Bit Description

Pixel Shader Kill Pixel This must be set when there is a chance that valid pixels passed to
a PS thread may be discarded. This includes the discard of pixels
by the PS thread resulting from a “killpixel” or “alphatest” function
or as dictated by the results of the sampling of a “chroma-keyed”
texture. The WM unit needs this information to prevent early
depth/stencil writes for pixels which might be killed by the PS
thread, etc.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader Computed Depth This must be set when the PS thread computes the “source” depth
value (i.e., from the API POV, writes to the “oDepth” output). In
this case the WM unit can’t make any decisions based on the WM-
interpolated depth value.

See WM_STATE/3DSTATE_WM for more information.

312 Doc Ref #

State Bit Description

Pixel Shader Uses Source Depth Must be set if the PS thread requires the WM-interpolated source
depth value. This will force the source depth to be passed in the
thread payload where otherwise the WM unit would not have seen
it as required.

See WM_STATE/3DSTATE_WM for more information.

7.5.2.2 Early Depth Test Cases

Note: for [DevSNB+], the functional details of the early depth test feature are not visible to software.

7.5.3 Hierarchical Depth Buffer
A hierarchical depth buffer is supported to reduce memory traffic due to depth buffer accesses. This
buffer is supported only in Tile Y memory.

The Surface Type, Height, Width, Depth, Minimum Array Element, Render Target View Extent, and
Depth Coordinate Offset X/Y of the hierarchical depth buffer are inherited from the depth buffer. The
height and width of the hierarchical depth buffer that must be allocated are computed by the following
formulas, where HZ is the hierarchical depth buffer and Z is the depth buffer. The Z_Height, Z_Width,
and Z_Depth values given in these formulas are those present in 3DSTATE_DEPTH_BUFFER
incremented by one. [DevSNB+]: The value of Z_Height and Z_Width must each be multiplied by 2
before being applied to the table below if Number of Multisamples is set to NUMSAMPLES_4. The
value of Z_Height must be multiplied by 2 and Z_Width must be multiplied by 4 before being applied to
the table below if Number of Multisamples is set to NUMSAMPLES_8.

[DevSNB]

Surface Type HZ_Width (bytes) HZ_Height (rows)

SURFTYPE_1D ceiling(Z_Width / 16) * 16 4 * Z_Depth

SURFTYPE_2D ceiling(Z_Width / 16) * 16 ceiling(Z_Height / 8) * 4 * Z_Depth

SURFTYPE_3D ceiling(Z_Width / 16) * 16 ceiling(Z_Height / 8) * 4 * Z_Depth

SURFTYPE_CUBE ceiling(Z_Width / 16) * 16 ceiling(Z_Height / 8) * 24 * Z_Depth

[DevSNB]: The hierarchical depth buffer does not support the LOD field, it is assumed by hardware to be
zero. A separate hierarachical depth buffer is required for each LOD used, and the corresponding
buffer’s state delivered to hardware each time a new depth buffer state with modified LOD is delivered.

If HiZ is enabled, you must initialize the clear value by either

 a. Perform a depth clear pass to initialize the clear value.

 b. Send a 3dstate_clear_params packet with valid = 1

Without one of these events, context switching will fail, as it will try to save off a clear value even though
no valid clear value has been set. When context restore happens, HW will restore an uninitialized clear
value.

Doc Ref # 313

Erratum: [DevSNB:GT1:P0]:

1. Hierarchical Depth Buffer must not be enabled while rendering with 3DSTATE_WM.RAST_MODE =
*_*_PATTERN and Barycentric Interpolation Mode is set to Perspective Centroid or Non-perspective
Centroid when NUM_MULTISAMPLES = 4.

2. Hierarchical Depth Buffer must not be enabled while rendering with 3DSTATE_WM.RAST_MODE =
*_*_PATTERN and Position ZW Interpolation Mode is set to centroid when NUM_MULTISAMPLES = 4
and PS_USE_SOURCE_Z/W.

3. Hierarchical Depth Buffer must not be enabled while rendering with 3DSTATE_WM.RAST_MODE =
*_*_PATTERN and Position XY Offset Select set to Centroid when NUM_MULTISAMPLES = 4.

7.5.3.1 Depth Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special clear
mechanism described here to clear the hierarchical depth buffer and the depth buffer. This is enabled
though the Depth Buffer Clear field in WM_STATE or 3DSTATE_WM. This bit can be used to clear the
depth buffer in the following situations:

 Complete depth buffer clear

 Partial depth buffer clear with the clear value the same as the one used on the previous clear

 Partial depth buffer clear with the clear value different than the one used on the previous clear
can use this mechanism if a depth buffer resolve is performed first.

The following is required when performing a depth buffer clear with this field:

 If other rendering operations have preceded this clear, a PIPE_CONTROL with write cache flush
enabled and Z-inhibit disabled must be issued before the rectangle primitive used for the depth
buffer clear operation.

 The fields in 3DSTATE_CLEAR_PARAMS are set to indicate the source of the clear value and (if
source is in this command) the clear value itself.

 A rectangle primitive representing the clear area is delivered. The primitive must adhere to the
following restrictions on size:

o If Number of Multisamples is NUMSAMPLES_1, the rectangle must be aligned to an
8x4 pixel block relative to the upper left corner of the depth buffer, and contain an integer
number of these pixel blocks, and all 8x4 pixels must be lit.

o If Number of Multisamples is NUMSAMPLES_4, the rectangle must be aligned to a 4x2
pixel block (8x4 sample block) relative to the upper left corner of the depth buffer, and
contain an integer number of these pixel blocks, and all samples of the 4x2 pixels must
be lit

o If Number of Multisamples is NUMSAMPLES_8, the rectangle must be aligned to a 2x2
pixel block (8x4 sample block) relative to the upper left corner of the depth buffer, and
contain an integer number of these pixel blocks, and all samples of the 2x2 pixels must
be list.

 Depth Test Enable must be disabled and Depth Buffer Write Enable must be enabled (if depth
is being cleared).

 Stencil buffer clear can be performed at the same time by enabling Stencil Buffer Write Enable.
Stencil Test Enable must be enabled and Stencil Pass Depth Pass Op set to REPLACE, and the
clear value that is placed in the stencil buffer is the Stencil Reference Value from
COLOR_CALC_STATE.

314 Doc Ref #

 Note also that stencil buffer clear can be performed without depth buffer clear. For stencil only
clear, Depth Test Enable and Depth Buffer Write Enable must be disabled.

 [DevSNB] errata: For stencil buffer only clear, the previous depth clear value must be delivered
during the clear.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed
Depth must all be disabled.

ILK: Several cases exist where Depth Buffer Clear with Fast Clear Optimization enabled (Cache Mode
Register offset 0x2120, bit 2) cannot be enabled:

 If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.

 If the separate stencil buffer is disabled.

[DevSNB+]: Several cases exist where Depth Buffer Clear cannot be enabled (the legacy method of
clearing must be performed):

 If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.

 If stencil test is enabled but the separate stencil buffer is disabled.

 [DevSNB-A{W/A}]: When fast clear optimization is enabled, depth buffer clear pass must have a
rectangle aligned to 8X4 pixel block. Further the Height and Width of the clear rectangle must be
a multiple of 8 pixels and 4 lines, respectively.

 [DevSNB{W/A}]: When depth buffer format is D16_UNORM and the width of the map (LOD0) is
not multiple of 16, fast clear optimization must be disabled.

 [DevSNB, DevSNB-B{W/A}]: Depth buffer clear pass must be followed by a PIPE_CONTROL
command with DEPTH_STALL bit set and Then followed by Depth FLUSH

7.5.3.2 Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering is
complete. If the depth buffer is retained and used for another purpose (i.e as input to the sampling
engine as a shadow map), it must first be “resolved”. This is done by setting the Depth Buffer Resolve
Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle. Once
this is complete, the depth buffer will contain the same contents as it would have had the rendering been
performed with the hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be
resolved after rendering on it and before using a depth buffer as a source for any consecutive operation.
Depth buffer can be used as a source in three different cases: using it as a texture for the nest rendering
sequence, honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

The following is required when performing a depth buffer resolve:

 A rectangle primitive of the same size as the previous depth buffer clear operation must be
delivered, and depth buffer state cannot have changed since the previous depth buffer clear
operation.

 Depth Test Enable must be enabled with the Depth Test Function set to NEVER. Depth
Buffer Write Enable must be enabled. Stencil Test Enable and Stencil Buffer Write Enable
must be disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed
Depth must all be disabled.

Doc Ref # 315

 [DevSNB-A]: When fast clear optimization is enabled, depth buffer resolve pass must have a
rectangle aligned to 8X4 pixel block. Further, the Height and Width of the clear rectangle must be
a multiple of 8 pixels and 4 lines, respectively.

7.5.3.3 Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if the
depth buffer is written to outside of the 3D rendering operation. If this occurs, the hierarchical depth
buffer must be “resolved”to avoid incorrect device behavior. This is done by setting the Hierarchical
Depth Buffer Resolve Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target
sized rectangle. Once this is complete, the hierarchical depth buffer will contain contents such that
rendering will give the same results as it would have had the rendering been performed with the
hierarchical depth buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

 A rectangle primitive covering the full render target must be delivered.

 Depth Test Enable must be disabled. Depth Buffer Write Enable must be enabled. Stencil
Test Enable and Stencil Buffer Write Enable must be disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed
Depth must all be disabled.

Errata: [DevSNB:A0]:

 If alpha-test or kill-pix or computed depth is enabled and stencil test or write is enabled,
Hierarchical Depth Buffer must be disabled.

Errata: [DevSNB-A,B,C]:

 Hierarchical Depth Buffer must be disabled in the follwing condition:
Anti Alias Lines are enabled.

7.5.3.4 Optimized Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if the
depth buffer is written to outside of the 3D rendering operation. If this occurs, the hierarchical depth
buffer must be “resolved” to avoid incorrect device behavior. This is done by setting the Hierarchical
Depth Buffer Resolve Enable field in 3DSTATE_WM_HZ_OP and specifying a full render target sized
rectangle. The depth buffer resolve uses the same sequence as the optimized Depth buffer clear (see
above) except the Hierarchical Depth Buffer Resolve Enable bit is set. Once this is complete, the
hierarchical depth buffer will contain contents such that rendering will give the same results as it would
have had the rendering been performed with the hierarchical depth buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

 A rectangle primitive covering the full render target must be delivered.

316 Doc Ref #

7.5.4 Separate Stencil Buffer

7.5.4.1 Separate Stencil Buffer [DevSNB]

A separate stencil buffer is supported, which improves performance when using the hierarchical depth
buffer with stencil test enabled. This buffer is supported only in Tile Y memory. If the separate stencil
buffer is enabled, it always has the format S8_UINT. The Surface Type, Height, Width, and Depth,
Minimum Array Element, Render Target View Extent, and Depth Coordinate Offset X/Y of the stencil
buffer are inherited from the depth buffer.

The stencil depth buffer does not support the LOD field, it is assumed by hardware to be zero. A
separate stencil depth buffer is required for each LOD used, and the corresponding buffer’s state
delivered to hardware each time a new depth buffer state with modified LOD is delivered.

The stencil channel in the depth buffer is still supported, however if this is used with the hierarchical depth
buffer, performance will generally be lower than using the separate stencil buffer.

7.5.5 Depth/Stencil Buffer State

7.5.5.1 3DSTATE_DEPTH_BUFFER

7.5.5.1.1 3DSTATE_DEPTH_BUFFER [DevSNB]

3DSTATE_DEPTH_BUFFER
Project: All Length Bias: 2

The depth buffer surface state is delivered as a non-pipelined state packet.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 05h 3DSTATE_DEPTH_BUFFER Format: OpCode

Doc Ref # 317

3DSTATE_DEPTH_BUFFER
7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: [DevSNB+]

1 31:29 Surface Type

Project: All

Format: U3 Enumerated Type

This field defines the type of the surface.

Value Name Description Project

0h SURFTYPE_1D Defines a 1-dimensional map or array of
maps

All

1h SURFTYPE_2D Defines a 2-dimensional map or array of
maps

All

2h SURFTYPE_3D Defines a 3-dimensional (volumetric) map All

3h SURFTYPE_CUBE Defines a cube map All

4h-6h Reserved All

7h SURFTYPE_NULL Defines a null surface All

Programming Notes

The Surface Type of the depth buffer must be the same as the Surface Type of the
render target(s) (defined in SURFACE_STATE), unless either the depth buffer or render
targets are SURFTYPE_NULL.

28 Reserved Project: All Format: MBZ

318 Doc Ref #

3DSTATE_DEPTH_BUFFER
27 Tiled Surface

Project: All

Format: U1 enumerated type FormatDesc

Specifies if the surface is tiled.

Value Name Description Project

0h FALSE Linear surface All

1h TRUE Tiled surface All

Programming Notes Project

Linear surfaces can be mapped to Main Memory (uncached) or System
Memory (cacheable, snooped). Tiled surfaces can only be mapped to Main
Memory.

[DevILK+] : When Hierarchical Depth Buffer is enabled, this bit must be set.

[DevSNB+]: This field must be set to TRUE. Linear Depth Buffer is not
supported.

All

The corresponding cache(s) must be invalidated before a previously accessed
surface is accessed again with an altered state of this bit.

All

26 Tile Walk

Project: All

Format: U1 enumerated type FormatDesc

This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this
surface. The Depth Buffer, if tiled, must use Y-Major tiling. See Memory Interface
Functions for details on memory tiling and restrictions.

This field is ignored when the surface is linear.

Value Name Description Project

0h Reserved All

1h TILEWALK_YMAJOR Y major tiled All

Doc Ref # 319

3DSTATE_DEPTH_BUFFER
25 Depth Buffer Coordinate Offset Disable

Project: [Pre-DevCTG]

Format: Disable FormatDesc

Disables the application (addition) of the “upper bits” of the Drawing Rectangle Origin to
Depth Buffer coordinates. (This does not affect the application of the Drawing Rectangle
Origin to the Color Buffer coordinates). This control is provided to better support “Front
Buffer Rendering”. By disabling the Draw Rectangle adjustment of Depth Buffer
coordinates, software can utilize a “window-sized” Depth Buffer while rendering to a
window within the Color Buffer. Without this control, use of the Draw Rectangle adjustment
would require the Depth Buffer to be dimensioned to match the Color Buffer (screen) vs.
the target window.

Programming Notes Project

The device still applies some small coordinate offset in order to provide the
required alignment of color and depth memory/cache accesses. Software
needs to consider this alignment when allocating depth buffers.

All

This bit must not be set when rendering to field-mode (interlaced) Color
Buffers (i.e., when Surface State’s VerticalLineStride==1).

All

This bit can only be set when rendering to surfaces of type SURFTYPE_1D
and SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
mapped)

All

25 Reserved Project: [DevCTG+] Format: MBZ

320 Doc Ref #

3DSTATE_DEPTH_BUFFER
24:23 Software Tiled Rendering Mode

Project: All

Format: U2 enumerated type FormatDesc

This field is intended to enable software tiled rendering (STR). If certain restrictions are
met, performance can be improved by reducing memory bandwidth to the render target
and depth buffer.

Normal mode: Rendering behaves normally.

STR1 mode: Only pixels within a particular 64x32 block (aligned relative to the upper left
corner of the render target) are rendered between pixel shader serializations. Generally
the alignment is guaranteed via a scissor rectangle. A write to a given pixel in the render
target must occur before a read from the same pixel.

STR2 mode: The restrictions of STR1 mode applies, and in addition each pixel must be
rendered with depth write enabled and depth test disabled before it can be rendered with
depth test enabled. The depth buffer in memory is not updated, even on a render cache
flush. Depth buffer data is contained only within the render cache during rendering.

Value Name Description Project

0h NORMAL Normal mode All

1h STR1 STR1 mode [DevCTG+]

2h Reserved All

3h STR2 STR2 mode [DevCTG+]

Programming Notes Project

 [DevSNB]: Only mode is supported

The render cache must be flushed when this field is modified from its
previous state

All

For both STR modes, the depth buffer (if used) must be tiled Y with
D16_UNORM format, and the render target surface must be tiled X or Y

All

For both STR modes, the only data port messages allowed that use the
render cache are the Render Target UNORM Read and Write
messages.

All

Performance considerations: Both STR modes eliminate all memory
read traffic from the render target. The STR2 mode additionally
eliminates all memory traffic to the depth buffer.

All

When STR2 mode is used in conjunction with the multi-context
scheduler, context switches can only occur on the boundaries between
the 64x32 blocks, as the depth buffer contents are not saved for restore
when the context is restarted.

All

This field must be set to NORMAL if the Render Cache Operational
Flush Enable bit is enabled in the Cache_Mode_0 register.

All

Doc Ref # 321

3DSTATE_DEPTH_BUFFER
22 Hierarchical Depth Buffer Enable

Project: [DevILK+]

Format: Enable FormatDesc

If enabled, indicates that a hierarchical depth buffer is defined.

Programming Notes

If this field is enabled, the Software Tiled Rendering Mode must be NORMAL.

This field must be disabled if Early Depth Test Enable is disabled.

[DevSNB+]: This field must be disabled if Anti-aliasing Enable in 3DSTATE_SF is
enabled.

[DevSNB+]: If this field is enabled, the Surface Format of the depth buffer cannot be
D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT. Use of stencil requires the
separate stencil buffer.

21 Separate Stencil Buffer Enable

Project: [DevILK+]

Format: Enable FormatDesc

If enabled, indicates that a separate stencil buffer is defined.

Programming Notes

[DevSNB]: This field must be set to the same value (enabled or disabled) as Hierarchical
Depth Buffer Enable.

20:18 Surface Format

Project: All

Format: U3 enumerated type FormatDesc

Specifies the format of the depth buffer. See the Separate Stencil Buffer Enable and
Hierarchical Depth Buffer Enable fields for restrictions on the use of some of these
formats.

Erratum: [DevSNB-A]: Depth format:D32_FLOAT_S8X24_UINT is not supported when
NUM_SAMPLES = 4 and PS_KILL_PIX bit or PS Computed Depth bit is set in the WM
state.

Value Name Description Project

0h D32_FLOAT_S8X24_UIN
T

D32_FLOAT_S8X24_UINT All

1h D32_FLOAT D32_FLOAT All

2h D24_UNORM_S8_UINT D24_UNORM_S8_UINT All

3h D24_UNORM_X8_UINT D24_UNORM_X8_UINT [DevILK+]

4h Reserved Reserved All

5h D16_UNORM D16_UNORM All

6h-7h Reserved Reserved All

322 Doc Ref #

3DSTATE_DEPTH_BUFFER

17 Reserved Project: All Format: MBZ

16:0 Surface Pitch

Project: All

Format: U17 pitch in (Bytes – 1) FormatDesc

Range if linear: [63, 128K-1] corresponding to [64B, 128KB]

 also restricted to a multiple of 64B

if tiled: [127, 128K-1] corresponding to [128B, 128KB]

 also restricted to a multiple of 128B

This field specifies the pitch of the depth buffer in (#Bytes – 1).

Programming Notes Project

If this surface is tiled, the pitch specified must be a multiple of the tile pitch, in
the range [128B, 128KB].

All

If the surface is linear, the pitch can be any multiple of 64 bytes up to 128KB. All

2 31:0 Surface Base Address

Project: All

Address: GraphicsAddress[31:0]

Surface Type: Depth Buffer

This field specifies the starting DWord address of the buffer in mapped Graphics Memory.

Programming Notes

The Depth Buffer can only be mapped to Main Memory (uncached).

If the surface is tiled, the base address must conform to the Per-Surface Tiling Alignment
Rules.

If the buffer is linear, the surface must be 64-byte aligned.

Doc Ref # 323

3DSTATE_DEPTH_BUFFER
3 31:19 Height

Project: All

Format: U13 FormatDesc

Range SURFTYPE_1D: must be zero

SURFTYPE_2D: height of surface – 1 (y/v dimension) [0,8191]

SURFTYPE_3D: height of surface – 1 (y/v dimension) [0,2047]

SURFTYPE_CUBE: height of surface – 1 (y/v dimension) [0,8191]

This field specifies the height of the surface. If the surface is MIP-mapped, this field
contains the height of the base MIP level.

Programming Notes

The Height of the depth buffer must be the same as the Height of the render target(s)
(defined in SURFACE_STATE), unless Surface Type is SURFTYPE_1D or
SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped).

18:6 Width

Project: All

Format: U13 FormatDesc

Range SURFTYPE_1D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_2D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_3D: width of surface – 1 (x/u dimension) [0,2047]

SURFTYPE_CUBE: width of surface – 1 (x/u dimension) [0,8191]

This field specifies the width of the surface. If the surface is MIP-mapped, this field
specifies the width of the base MIP level. The width is specified in units of pixels.

Programming Notes Project

The Width specified by this field must be less than or equal to the surface pitch
(specified in bytes via the Surface Pitch field).

All

For cube maps, Width must be set equal to Height. All

The Width of the depth buffer must be the same as the Width of the render
target(s) (defined in SURFACE_STATE), unless Surface Type is
SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0
(non-mip mapped).

All

324 Doc Ref #

3DSTATE_DEPTH_BUFFER
5:2 LOD

Project: All

Format: U4 in LOD units FormatDesc

Range [0, 13]

This field defines the MIP level that is currently being rendered into.

Programming Notes Project

The LOD of the depth buffer must be the same as the LOD of the render
target(s) (defined in SURFACE_STATE).

All

1 MIP Map Layout Mode

Project: All

Format: U1 enumerated type FormatDesc

For 1D and 2D Surfaces:

This field specifies which MIP map layout mode is used, whether the map for LOD 1 is
stored to the right of the LOD 0 map, or stored below it. See Memory Data Formats for
details on the specifics of each layout mode.

For Other Surfaces:
This field is reserved : MBZ

Value Name Description Project

0h MIPLAYOUT_BELOW MIPLAYOUT_BELOW All

1h MIPLAYOUT_RIGHT MIPLAYOUT_RIGHT All

Programming Notes Project

MIPLAYOUT_RIGHT is legal only for 2D non-array surfaces All

0 Reserved Project: All Format: MBZ

Doc Ref # 325

3DSTATE_DEPTH_BUFFER
4 31:21 Depth

Project: All

Format: U11 FormatDesc

Range SURFTYPE_1D: number of array elements – 1 [0,511]

SURFTYPE_2D: number of array elements – 1 [0,511]

SURFTYPE_3D: depth of surface – 1 (r/z dimension) [0,2047]

SURFTYPE_CUBE: must be zero

This field specifies the total number of levels for a volume texture or the number of array
elements allowed to be accessed starting at the Minimum Array Element for arrayed
surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base
MIP level.

Programming Notes

The Depth of the depth buffer must be the same as the Depth of the render target(s)
(defined in SURFACE_STATE).

20:10 Minimum Array Element

Project: All

Format: U11 FormatDesc

Range SURFTYPE_1D/2D: [0,511]

SURFTYPE_3D: [0,2047]

For 1D and 2D Surfaces:

This field indicates the minimum array element that can be accessed as part of this
surface. The delivered array index is added to this field before being used to address the
surface.

For 3D Surfaces:

This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to.
This field is added to the delivered array index before it is used to address the surface.

For Other Surfaces:

This field is ignored.

326 Doc Ref #

3DSTATE_DEPTH_BUFFER
9:1 Render Target View Extent

Project: All

Format: U9 FormatDesc

Range SURFTYPE_1D/2D: same value as Depth field

SURFTYPE_3D: [0,511] to indicate extent of [1,512]

For 3D Surfaces:

This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD
currently being rendered to.

For 1D and 2D Surfaces:

This field must be set to the same value as the Depth field.

For Other Surfaces:

This field is ignored.

0 Reserved Project: All Format: MBZ

5 31:16 Depth Coordinate Offset Y

Project: [DevCTG+]

Format: S15 in Screen Space (pixels)

(3 LSBs MBZ)

FormatDesc

Range [-8192,8191] (Bits 31:30 should be a sign extension)

Specifies a signed pixel offset to be added to the RenderTarget Y coordinate in order to
generate a DepthBuffer Y coordinate. (See Depth Coordinate in Windower).

Programming Notes

The 3 LSBs of both offsets must be zero to ensure correct alignment

Software must ensure that the resulting (sum) coordinate value is non-negative.

This field must be zero when rendering to field-mode (interlaced) Color Buffers (i.e., when
Surface State’s VerticalLineStride==1).

This field can only be nonzero when rendering to surfaces of type SURFTYPE_1D and
SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped)

[DevSNB-A]: This field must be zero when separate stencil buffer is enabled.

Doc Ref # 327

3DSTATE_DEPTH_BUFFER
15:0 Depth Coordinate Offset X

Project: [DevCTG+]

Format: S15 in Screen Space (pixels)

(3 LSBs MBZ)

FormatDesc

Range [-8192,8191] (Bits 15:14 should be a sign extension)

Specifies a signed pixel offset to be added to the RenderTarget X coordinate in order to
generate a DepthBuffer X coordinate. (See Depth Coordinate in Windower).

Programming Notes

The 3 LSBs of both offsets must be zero to ensure correct alignment

Software must ensure that the resulting (sum) coordinate value is non-negative.

This field must be zero when rendering to field-mode (interlaced) Color Buffers (i.e., when
Surface State’s VerticalLineStride==1).

This field can only be nonzero when rendering to surfaces of type SURFTYPE_1D and
SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped)

[DevSNB-A]: This field must be zero when separate stencil buffer is enabled.

6 31:27 Depth Buffer Object
Control State

Project: All Format: MEMORY_OBJECT_CONTROL_S
TATE

Specifies the memory object control state for the depth buffer.

26:0 Reserved Project: All Format: MBZ

328 Doc Ref #

7.5.5.2 3DSTATE_STENCIL_BUFFER

7.5.5.2.1 3DSTATE_STENCIL_BUFFER [DevSNB]

3DSTATE_STENCIL_BUFFER
Project: [DevSNB] Length Bias: 2

This command sets the surface state of the separate stencil buffer, delivered as a non-pipelined state command..

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Eh 3DSTATE_STENCIL_BUFFER Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:29 Reserved Project: All Format: MBZ

28:25 Stencil Buffer Object Control State

Project: [DevSNB]

Format: MEMORY_OBJECT_CONTROL_STATE FormatDesc

Specifies the memory object control state for the stencil buffer.

24:17 Reserved Project: All Format: MBZ

Doc Ref # 329

3DSTATE_STENCIL_BUFFER
16:0 Surface Pitch

Project: All

Format: U17 pitch in (Bytes – 1) FormatDesc

Range [127, 128K-1] corresponding to [128B, 128KB]

also restricted to a multiple of 128B

This field specifies the pitch of the stencil buffer in (#Bytes – 1).

Programming Notes Project

Since this surface is tiled, the pitch specified must be a multiple of the tile
pitch, in the range [128B, 128KB].

All

The pitch must be set to 2x the value computed based on width, as the
stencil buffer is stored with two rows interleaved. Refer to “Memory Data
Formats” chapter for details on the separate stencil buffer storage format in
memory.

[DevSN
B]

2 31:0 Surface Base Address

Project: All

Address: GraphicsAddress[31:0]

Surface Type: Stencil Buffer

This field specifies the starting DWord address of the buffer in mapped Graphics Memory.

Programming Notes

The Stencil Buffer can only be mapped to Main Memory (uncached).

Since this surface is tiled, the base address must conform to the Per-Surface Tiling
Alignment Rules.

330 Doc Ref #

7.5.5.3 3DSTATE_HIER_DEPTH_BUFFER

7.5.5.3.1 3DSTATE_HIER_DEPTH_BUFFER [DevSNB]

3DSTATE_HIER_DEPTH_BUFFER
Project: [DevSNB] Length Bias: 2

This command sets the surface state of the hierarchical depth buffer, delivered as a non-pipelined state command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Fh 3DSTATE_HIER_DEPTH_BUFFER Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:29 Reserved Project: All Format: MBZ

28:25 Heirarchical Depth Buffer Object Control State

Project: [DevSNB]

Format: MEMORY_OBJECT_CONTROL_STATE FormatDesc

Specifies the memory object control state for the hierarchical depth buffer.

24:17 Reserved Project: All Format: MBZ

Doc Ref # 331

3DSTATE_HIER_DEPTH_BUFFER
16:0 Surface Pitch

Project: All

Format: U17 pitch in (Bytes – 1) FormatDesc

Range [127, 128K-1] corresponding to [128B, 128KB]

also restricted to a multiple of 128B

This field specifies the pitch of the hierarchical depth buffer in (#Bytes – 1).

Programming Notes Project

Since this surface is tiled, the pitch specified must be a multiple of the tile
pitch, in the range [128B, 128KB].

All

2 31:0 Surface Base Address

Project: All

Address: GraphicsAddress[31:0]

Surface Type: Hierarchical Depth Buffer

This field specifies the starting DWord address of the buffer in mapped Graphics Memory.

Programming Notes

The Hierarchical Depth Buffer can only be mapped to Main Memory (uncached).

Since this surface is tiled, the base address must conform to the Per-Surface Tiling
Alignment Rules.

7.5.5.4 3DSTATE_CLEAR_PARAMS

7.5.5.4.1 3DSTATE_CLEAR_PARAMS [DevSNB]

3DSTATE_CLEAR_PARAMS packet must follow the DEPTH_BUFFER_STATE packet when HiZ is
enabled and the DEPTH_BUFFER_STATE changes.

If HiZ is enabled, you must initialize the clear value by either

 a. Perform a depth clear pass to initialize the clear value.

 b. Send a 3dstate_clear_params packet with valid = 1

332 Doc Ref #

Without one of these events, context switching will fail, as it will try to save off a clear value even though
no valid clear value has been set. When context restore happens, HW will restore an uninitialized clear
value.

3DSTATE_CLEAR_PARAMS
Project: DevSNB Length Bias: 2

This command defines the depth clear value, delivered as a non-pipelioned state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 10h 3DSTATE_CLEAR_PARAMS Format: OpCode

15 Depth Clear Value Valid

Project: DevSNB

Format: Enable FormatDesc

This field enables the Depth Clear Value. If clear, the depth clear value is obtained from
interpolated depth of an arbitrary pixel of the primitive rendered with Depth Buffer Clear
set in WM_STATE or 3DSTATE_WM. If set, the depth clear value is obtained from the
Depth Clear Value field of this command.

14:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: DevSNB

7:0 Reserved

Doc Ref # 333

3DSTATE_CLEAR_PARAMS
1 31:0 Depth Clear Value

Project: All

Format: IEEE_Float for Surface Format of depth buffer:

D32_FLOAT_S8X24_UINT: IEEE_Float

D32_FLOAT: IEEE_Float

D24_UNORM_S8_UINT: U24 UNORM in bits [23:0]

D24_UNORM_X8_UINT: U24 UNORM in bits [23:0]

D16_UNORM: U16 UNORM in bits [15:0]

This field defines the clear value that will be applied to the depth buffer if the Depth Buffer
Clear field is enabled. It is valid only if Depth Buffer Clear Value Valid is set.

2 31:1 Reserved Project: All Format: MBZ

0 Reserved

7.6 Barycentric Attribute Interpolation [DevSNB+]
Given hardware clipper and setup, some of the previous flexibility in the algorithm used to interpolate
attributes is no longer available. Hardware uses barycentric parameters to aid in attribute interpolation,
and these parameters are computed in hardware per-pixel (or per-sample) and delivered in the thread
payload to the pixel shader. Also delivered in the payload are a set of vertex deltas (a0, a1, and a2) per
channel of each attribute.

There are six different barycentric parameters that can be enabled for delivery in the pixel shader
payload. These are enabled via the Barycentric Interpolation Mode bits in 3DSTATE_WM.

In the pixel shader kernel, the following computation is done for each attribute channel of each
pixel/sample given the corresponding attribute channel a0/a1/a2 and the pixel/sample’s b1/b2 barycentric
parameters, where A is the value of the attribute channel at that pixel/sample:

A = a0 + (a1 * b1) + (a2 * b2)

7.7 Pixel Shader Thread Generation
After a group of object pixels have been rasterized, the Pixel Shader function is invoked to further
compute pixel color/depth information and cause results to be written to rendertargets and/or depth
buffers. For each pixel, the Pixel Shader calculates the values of the various vertex attributes that are to
be interpolated across the object using the interpolation coefficients. It then executes an API-supplied
Pixel Shader Program. Instructions in this program permit the accessing of texture map data, where

334 Doc Ref #

Texture Samplers are employed to sample and filter texture maps (see the Shared Functions chapter).
Arithmetic operations can be performed on the texture data, input pixel information and Pixel Shader
Constants in order to compute the resultant pixel color/depth. The Pixel Shader program also allows the
pixel to be discarded from further processing. For pixels that are not discarded, the pixel shader must
send messages to update one or more render targets with the pixel results.

7.7.1 Pixel Grouping (Dispatch Size) Control
The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels) or 8 subspans (32
pixels) to a Pixel Shader thread. Software should take into account the following considerations when
determining which groupings to support/enable during operation. This determination involves a tradeoff
of these likely conflicting issues. Note that the size of the dispatch has significant impact on the kernel
program (it is certainly not transparent to the kernel). Also note that there is no implied spatial
relationship between the subspans passed to a PS thread, other than the fact that they come from the
same object.

1. Thread Efficiency: In general, there is some amount of overhead involved with PS thread
dispatch, and if this can be amortized over a larger number of pixels, efficiency will likely
increase. This is especially true for very short PS kernels, as may be used for desktop
composition, etc.

2. GRF Consumption: Processing more pixels per thread will require a larger thread payload and
likely more temporary register usage, both of which translate into a requirement for a larger GRF
register allocation for the threads. If this increased GRF usage could lead to increased use of
scratch space (for spill/fill, etc.) and possibly less efficient use of the EUs (as it would be less
likely to find an EU with enough free physical GRF registers to service the thread).

3. Object Size: If the number of very small objects (e.g., covering 2 subspans or fewer) is expected
to comprise a significant portion of the workload, supporting the 8-pixel dispatch mode may be
advantageous. Otherwise there could be a large number of 16-pixel dispatches with only 1 or 2
valid subspans, resulting in low efficiency for those threads.

4. Intangibles: Kernel footprint & Instruction Cache impact; Complexity; ….
The groupings of subspans that the WM unit is allowed to include in a PS thread payload is controlled by
the 32,16,8 Pixel Dispatch Enable state variables programmed in WM_STATE. Using these state
variables, the WM unit will attempt to dispatch the largest allowed grouping of subspans. The following
table lists the possible combinations of these state variables.

Note: in the table below, the Valid column indicates which products that combination is supported on. Combinations
of dispatch enables not listed in the table are not available on any product.

A: Valid on all products

B: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

D: Valid on all products, except when in non-1x PERSAMPLE mode (applies to [DevSNB+] only). Not valid on
[DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

E: Not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

F: Valid on all products, except not valid on [DevSNB] if 4x PERPIXEL mode with pixel shader computed depth.

For [DevSNB], there is only one kernel start pointer (KSP) specified in WM_STATE, with other kernels being entered
via an offset from the single KSP as follows:

Doc Ref # 335

SP[0] = KSP

KSP[1] = KSP+1

KSP[2] = KSP+2

KSP[3] = KSP+3

For [DevSNB], each of the three KSP values is separately specified. In addition, each kernel has a
separately-specified GRF register count.

Table 22. Variable Pixel Dispatch

IP for n-pixel
Contiguous

Dispatch

IP for n-pixel Dispatch

(KSP offsets are in 128-
bit instruction units)

Contiguou
s

64 Pixel
Dispatch
Enable

Contiguous
32 Pixel
Dispatch
Enable

32 Pixel
Dispatch
Enable

16 Pixel
Dispatch
Enable

8 Pixel
Dispatc
h Enable

Vali
d

n=64 n=32 n=32 n=16 n=8

0 0 0 0 1 A KSP
[0]

0 0 0 1 0 F KSP
[0]

0 0 0 1 1 D KSP
[2]

KSP
[0]

0 0 1 0 0 B KSP
[0]

0 0 1 1 0 E KSP
[1]

KSP
[2]

0 0 1 1 1 D KSP
[1]

KSP
[2]

KSP
[0]

0 1 0 0 0 C KSP
[0]

0 1 1 0 0 C KSP
[1]

KSP
[0]

0 1 1 1 0 C KSP
[2]

KSP
[1]

KSP
[0]

1 0 0 0 0 C KSP
[0]

1 0 1 0 0 C KSP
[1]

 KSP
[0]

1 0 1 1 0 C KSP
[2]

 KSP
[1]

KSP
[0]

1 1 0 0 0 C KSP
[1]

KSP
[0]

1 1 1 0 0 C KSP
[2]

KSP
[1]

KSP
[0]

336 Doc Ref #

7.7.2 Multisampling Effects on Pixel Shader Dispatch [DevSNB+]
The pixel shader payloads are defined in terms of subspans and pixels. The slots in the pixel shader
thread previously mapped 1:1 with pixels. With multisampling, a slot could contain a pixel or may just
contain a single sample, depending on the mode. Payload definitions now refer to “slot” to make the
definition independent of multisampling mode.

7.7.2.1 MSDISPMODE_PERPIXEL Thread Dispatch

In PERPIXEL mode, the pixel shader kernel still works on 2/4/8 separate subspans, depending on
dispatch mode. The fact that rasterization and the depth/stencil tests are being performed on a per-
sample (not per-pixel) basis is transparent to the pixel shader kernel.

7.7.2.2 MSDISPMODE_PERSAMPLE Thread Dispatch

In PERSAMPLE mode, the pixel shader needs to operate on a sample vs. pixel basis (although this
collapses in NUMSAMPLES_1 mode). Instead of processing strictly different subspans in parallel , the
PS kernel processes different sample indices of one or more subspans in parallel. For example, a
SIMD16 dispatch in PERSAMPLE/NUMSAMPLES_4 mode would operate on a single subspan, with the
usual “4 Subspan0 pixel slots” used for the “4 Sample0 locations of the (single) subspan”. Subspan1
slots would be used for the Sample1 locations, and so on. This layout allows the pixel shader to compute
derivatives/LOD based on deltas between corresponding sample locations in the subspan in the same
fashion as LEGACY pixel shader execution.

Depending on the dispatch mode (8/16/32 pixels) and multisampling mode (1X/4X), there are different
mappings of subspans/samples onto dispatches and slots-within-dispatch. In some cases, more than
one subspan may be included in a dispatch, while in other cases multiple dispatches are be required to
process all samples for a single subspan. In the latter case, the StartingSamplePairIndex value is
included in the payload header so the Render Target Write message will access the correct samples with
each message.

3

01

2

“Subspan 0” “Subspan 1” “Subspan 2” “Subspan 3”

Rendered
Subspan

SIMD16
Dispatch

Doc Ref # 337

PERSAMPLE SIMD16 4X Dispatch

3

01

2

“Subspan 0” “Subspan 1” “Subspan 0” “Subspan 1”

Rendered
Subspan

SIMD8
Dispatch

SIMD8
Dispatch

StartingSamplePairIndex = 0 StartingSamplePairIndex = 1

PERSAMPLE SIMD8 4X Dispatch

The following table provides the complete dispatch/slot mappings for all the MS/Dispatch combinations.

Dispatch
Size

Num Samples Slot Mapping

(SSPI = Starting Sample Pair Index)

SIMD32 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

 4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

338 Doc Ref #

Dispatch
Size

Num Samples Slot Mapping

(SSPI = Starting Sample Pair Index)

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

 8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

SIMD16 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

 4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

 8X Dispatch[i]: (i=0, 2)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

Doc Ref # 339

Dispatch
Size

Num Samples Slot Mapping

(SSPI = Starting Sample Pair Index)

SIMD8 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

 4X Dispatch[i]: (i=0..1)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

 8X Dispatch[i]: (i=0, 1, 2, 3)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

7.7.3 PS Thread Payload for Normal Dispatch
The following tables list all possible contents included in a PS thread payload, in the order they are
provided. Certain portions of the payload are optional, in which case the corresponding phase is skipped.

This payload does not apply to the contiguous dispatch modes on [DevCTG+]. The payload for these
modes are documented in the section titled PS Thread Payload for Contiguous Dispatch.

7.7.3.1 PS Thread Payload for Normal Dispatch [DevSNB+]

The following payload applies to [DevSNB]. All registers are numbered starting at 0, but many registers
are skipped depending on configuration. This causes all registers below to be renumbered to fill in the
skipped locations. The only case where actual registers may be skipped is immediately before the
constant data and again before the setup data.

DWord Bit Description

R0.7 31 Snapshot Flag

 30:24 Reserved

 23:0 Primitive Thread ID: This field contains the primitive thread count passed to the
Windower from the Strips Fans Unit.

Format: Reserved for HW Implementation Use.

340 Doc Ref #

DWord Bit Description

R0.6 31:24 Reserved

 23:0 Thread ID: This field contains the thread count which is incremented by the
Windower for every thread that is dispatched.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer: Specifies the 1K-byte aligned pointer to the scratch
space available for this PS thread. This is specified as an offset to the General
State Base Address.

Format = GeneralStateOffset[31:10]

 9:8 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng
events.

Format: Reserved for HW Implementation Use.

 7:0 FFTID: This ID is assigned by the WM unit and is a identifier for the thread. It is
used to free up resources used by the thread upon thread completion.

Format: Reserved for HW Implementation Use.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding
Table. It is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer: Specifies the 32-byte aligned pointer to the Sampler State
table. It is specified as an offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

 4 Reserved

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be
used by this thread.

Programming Notes:

This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space access
messages, but the Data Port will ignore it.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

Doc Ref # 341

DWord Bit Description

R0.1 31:6 Color Calculator State Pointer:Specifies the 64-byte aligned pointer to the Color
Calculator state (COLOR_CALC_STATE structure in memory). It is specified as
an offset from the Dynamic State Base Address. This value is eventually passed
to the ColorCalc function in the DataPort and is used to fetch the corresponding
CC_STATE data.

Format = DynamicStateOffset[31:6]

 5:0 Reserved

R0.0 31 Reserved

 30:27 Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

 26:16 Render Target Array Index:Specifies the array index to be used for the following
surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

 15 Front/Back Facing Polygon: Determines whether the polygon is front or back
facing. Used by the render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

 14 Reserved

342 Doc Ref #

DWord Bit Description

 13 Source Depth to Render Target: Indicates that source depth will be sent to the
render target

 12 oMask to Render Target: Indicates that oMask will be sent to the render target

 11:9 Reserved

 8:7 Reserved for expansion of Starting Sample Pair Index

 6 Starting Sample Pair Index: indicates the index of the first sample pair of the
dispatch

Format = U1

[DevSNB+]: Range = [0,1]

 5 Reserved

 4:0 Primitive Topology Type: This field identifies the Primitive Topology Type
associated with the primitive spawning this object. The WM unit does not modify
this value (e.g., objects within POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline)

R1.7 31:16 Pixel/Sample Mask (SubSpan[3:0]) : Indicates which pixels within the four
subspans are lit. If 32 pixel dispatch is enabled, this field contains the pixel mask
for the first four subspans.

Note: This is not a duplicate of the Dispatch Mask that is delivered to the thread.
The dispatch mask has all pixels within a subspan as active if any of them are lit to
enable LOD calculations to occur correctly.

This field must not be modified by the Pixel Shader kernel.

 15:0 Pixel/Sample Mask Copy (SubSpan[3:0]) : This is a duplicate copy of the pixel
mask. This copy can be modified as the pixel shader thread executes in order to
turn off pixels based on kill instructions.

R1.6 31:0 Reserved

R1.5 31:16 Y3: Y coordinate (screen space) for upper-left pixel of subspan 3 (slot 12)

Format = U16

 15:0 X3: X coordinate (screen space) for upper-left pixel of subspan 3 (slot 12)

Format = U16

R1.4 31:16 Y2 : Y coordinate (screen space) for upper-left pixel of subspan 2 (slot 8)

Format = U16

Doc Ref # 343

DWord Bit Description

 15:0 X2 : X coordinate (screen space) for upper-left pixel of subspan 2 (slot 8)

Format = U16

R1.3 31:16 Y1 : Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Format = U16

 15:0 X1 : X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Format = U16

R1.2 31:16 Y0 : Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

 15:0 X0 : X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

R1.1 31:0 Reserved

R1.0 31:0 Reserved

 R2: delivered only if this is a 32-pixel dispatch.

R2.7 31:16 Pixel/Sample Mask (SubSpan[7:4]) : Indicates which pixels within the upper four
subspans are lit. This field is valid only when the 32 pixel dispatch state is
enabled. This field must not be modified by the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered to the thread.
The dispatch mask has all pixels within a subspan as active if any of them are lit to
enable LOD calculations to occur correctly.

This field must not be modified by the Pixel Shader kernel.

 15:0 Pixel/Sample Mask Copy (SubSpan[7:4]) : This is a duplicate copy of pixel mask
for the upper 16 pixels. This copy will be modified as the pixel shader thread
executes to turn off pixels based on kill instructions.

R2.6 31:0 Reserved

R2.5 31:16 Y7: Y coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

 15:0 X7: X coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

R2.4 31:16 Y6

344 Doc Ref #

DWord Bit Description

 15:0 X6

R2.3 31:16 Y5

 15:0 X5

R2.2 31:16 Y4

 15:0 X4

R2.1 31:0 Reserved

R2.0 31:0 Reserved

 R3-R26: delivered only if the corresponding Barycentric Interpolation Mode
(WM_STATE) bit is set. Register phases containing Slot 8-15 data are not
delivered in 8-pixel dispatch mode.

R3.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 7

This and the next register phase is only included if the corresponding enable bit in
Barycentric Interpolation Mode is set.

Format = IEEE_Float

R3.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

R3.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

R3.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

R3.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

R3.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

R3.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

R3.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

R4 Perspective Pixel Location Barycentric[2] for Slots 7:0

R5.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 15

R5.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 14

R5.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 13

R5.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 12

Doc Ref # 345

DWord Bit Description

R5.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 11

R5.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 10

R5.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 9

R5.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 8

R6 Perspective Pixel Location Barycentric[2] for Slots 15:8

R7:10 Perspective Centroid Barycentric

R11:14 Perspective Sample Barycentric

R15:18 Linear Pixel Location Barycentric

R19:22 Linear Centroid Barycentric

R23:26 Linear Sample Barycentric

 R27: delivered only if Pixel Shader Uses Source Depth is set.

R27.7 31:0 Interpolated Depth for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source
Depth (WM_STATE) is set.

R27.6 31:0 Interpolated Depth for Slot 6

R27.5 31:0 Interpolated Depth for Slot 5

R27.4 31:0 Interpolated Depth for Slot 4

R27.3 31:0 Interpolated Depth for Slot 3

R27.2 31:0 Interpolated Depth for Slot 2

R27.1 31:0 Interpolated Depth for Slot 1

R27.0 31:0 Interpolated Depth for Slot 0

 R28: delivered only if Pixel Shader Uses Source Depth is set and this is not an
8-pixel dispatch.

R28.7 31:0 Interpolated Depth for Slot 15

R28.6 31:0 Interpolated Depth for Slot 14

346 Doc Ref #

DWord Bit Description

R28.5 31:0 Interpolated Depth for Slot 13

R28.4 31:0 Interpolated Depth for Slot 12

R28.3 31:0 Interpolated Depth for Slot 11

R28.2 31:0 Interpolated Depth for Slot 10

R28.1 31:0 Interpolated Depth for Slot 9

R28.0 31:0 Interpolated Depth for Slot 8

 R29: delivered only if Pixel Shader Uses Source W is set.

R29.7 31:0 Interpolated W for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source W
(WM_STATE) is set

R29.6 31:0 Interpolated W for Slot 6

R29.5 31:0 Interpolated W for Slot 5

R29.4 31:0 Interpolated W for Slot 4

R29.3 31:0 Interpolated W for Slot 3

R29.2 31:0 Interpolated W for Slot 2

R29.1 31:0 Interpolated W for Slot 1

R29.0 31:0 Interpolated W for Slot 0

 R30: delivered only if Pixel Shader Uses Source W is set and this is not an 8-
pixel dispatch.

R30.7 31:0 Interpolated W for Slot 15

R30.6 31:0 Interpolated W for Slot 14

R30.5 31:0 Interpolated W for Slot 13

R30.4 31:0 Interpolated W for Slot 12

R30.3 31:0 Interpolated W for Slot 11

R30.2 31:0 Interpolated W for Slot 10

Doc Ref # 347

DWord Bit Description

R30.1 31:0 Interpolated W for Slot 9

R30.0 31:0 Interpolated W for Slot 8

 R31: delivered only if Position XY Offset Select is either
POSOFFSET_CENTROID or POSOFFSET_SAMPLE

R31.7 31:24 Position Offset Y for Slot 15

This field contains either the CENTROID or SAMPLE position offset for Y,
depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 23:16 Position Offset X for Slot 15

This field contains either the CENTROID or SAMPLE position offset for X,
depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 15:8 Position Offset Y for Slot 14

 7:0 Position Offset X for Slot 14

R31.6 31:24 Position Offset Y for Slot 13

 23:16 Position Offset X for Slot 13

 15:8 Position Offset Y for Slot 12

 7:0 Position Offset X for Slot 12

R31.5:4 Position Offset X/Y for Slot[11:8]

R31.3:2 Position Offset X/Y for Slot[7:4]

R31.1:0 Position Offset X/Y for Slot[3:0]

 R32-R55: delivered only if the corresponding Barycentric Interpolation Mode
(WM_STATE) bit is set and this is a 32-pixel dispatch.

348 Doc Ref #

DWord Bit Description

R32.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 23

This and the next register phase is only included if the corresponding enable bit in
Barycentric Interpolation Mode is set.

Format = IEEE_Float

R32.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 22

R32.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 21

R32.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 20

R32.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 19

R32.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 18

R32.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 17

R32.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 16

R33 Perspective Pixel Location Barycentric[2] for Slots 23:16

R34.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 31

R34.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 30

R34.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 29

R34.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 28

R34.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 27

R34.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 26

R34.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 25

R34.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 24

R35 Perspective Pixel Location Barycentric[2] for Slots 31:24

R36:39 Perspective Centroid Barycentric

R40:43 Perspective Sample Barycentric

R44:47 Linear Pixel Location Barycentric

R48:51 Linear Centroid Barycentric

Doc Ref # 349

DWord Bit Description

R52:55 Linear Sample Barycentric

 R56-R57: delivered only if Pixel Shader Uses Source Depth is set and this is a
32-pixel dispatch.

R56.7 31:0 Interpolated Depth for Slot 23

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source
Depth (WM_STATE) bit is set.

R56.6 31:0 Interpolated Depth for Slot 22

R56.5 31:0 Interpolated Depth for Slot 21

R56.4 31:0 Interpolated Depth for Slot 20

R56.3 31:0 Interpolated Depth for Slot 19

R56.2 31:0 Interpolated Depth for Slot 18

R56.1 31:0 Interpolated Depth for Slot 17

R56.0 31:0 Interpolated Depth for Slot 16

R57.7 31:0 Interpolated Depth for Slot 31

R57.6 31:0 Interpolated Depth for Slot 30

R57.5 31:0 Interpolated Depth for Slot 29

R57.4 31:0 Interpolated Depth for Slot 28

R57.3 31:0 Interpolated Depth for Slot 27

R57.2 31:0 Interpolated Depth for Slot 26

R57.1 31:0 Interpolated Depth for Slot 25

R57.0 31:0 Interpolated Depth for Slot 24

 R58-R59: delivered only if Pixel Shader Uses Source W is set and this is a 32-
pixel dispatch.

350 Doc Ref #

DWord Bit Description

R58.7 31:0 Interpolated W for Slot 23

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source W
(WM_STATE) bit is set.

R58.6 31:0 Interpolated W for Slot 22

R58.5 31:0 Interpolated W for Slot 21

R58.4 31:0 Interpolated W for Slot 20

R58.3 31:0 Interpolated W for Slot 19

R58.2 31:0 Interpolated W for Slot 18

R58.1 31:0 Interpolated W for Slot 17

R58.0 31:0 Interpolated W for Slot 16

R59.7 31:0 Interpolated W for Slot 31

R59.6 31:0 Interpolated W for Slot 30

R59.5 31:0 Interpolated W for Slot 29

R59.4 31:0 Interpolated W for Slot 28

R59.3 31:0 Interpolated W for Slot 27

R59.2 31:0 Interpolated W for Slot 26

R59.1 31:0 Interpolated W for Slot 25

R59.0 31:0 Interpolated W for Slot 24

 R60: delivered only if Position XY Offset Select is either
POSOFFSET_CENTROID or POSOFFSET_SAMPLE and this is a 32-pixel
dispatch.

R60.7 31:24 Position Offset Y for Slot 31

This field contains either the CENTROID or SAMPLE position offset for Y,
depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

Doc Ref # 351

DWord Bit Description

 23:16 Position Offset X for Slot 31

This field contains either the CENTROID or SAMPLE position offset for X,
depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 15:8 Position Offset Y for Slot 30

 7:0 Position Offset X for Slot 30

R60.6 31:24 Position Offset Y for Slot 29

 23:16 Position Offset X for Slot 29

 15:8 Position Offset Y for Slot 28

 7:0 Position Offset X for Slot 28

R60.5:4 Position Offset X/Y for Slot[27:24]

R60.3:2 Position Offset X/Y for Slot[23:20]

R60.1:0 Position Offset X/Y for Slot[19:16]

 Optional Padding before the Start of Constant/Setup Data

The locations between the end of the Optional Payload Header and the location
programmed via Dispatch GRF Start Register for Constant/Setup Data are
considered “padding” and Reserved. (see below)

optional,
multiple of

8 DWs

31:0 Reserved

 The Dispatch GRF Start Register for Constant/Setup Data state variable in
3DSTATE_WM is used to define the starting location of the constant and setup
data within the PS thread payload. This control is provided to allow this data to be
located at a fixed location within thread payloads, regardless of the amount of data
in the Optional Payload Header. This permits the kernel to use direct GRF
addressing to access the constant/setup data, regardless of the optional
parameters being passed (as these are determined on-the-fly by the WM unit).

352 Doc Ref #

DWord Bit Description

 Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the push
constant buffer (PCB) and passed to the thread following the R0 Header. The
amount of data provided is defined by the sum of the read lengths in the last
3DSTATE_CONSTANT_PS command (taking the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

optional,
multiple of

8 DWs

31:0 Constant Data

 Setup Data (Attribute Vertex Deltas)

Output data from the SF stage is delivered in the PS thread payload. The amount
of data is determined by the Number of Output Attributes field in 3DSTATE_SF.
Each register contains two channels of one attribute. Thus, the total number of
registers sent is equal to 2 * Number of Output Attributes.

Rp.7 31:0 a0[0].y – a0 vertex delta for Attribute0.y

Format = IEEE_Float

Rp.6 31:0 Reserved

Rp.5 31:0 a2[0].y – a2 vertex delta for Attribute0.y

Format = IEEE_Float

Rp.4 31:0 a1[0].y – a1 vertex delta for Attribute0.y

Format = IEEE_Float

Rp.3 31:0 a0[0].x – a0 vertex delta for Attribute0.x

Rp.2 31:0 Reserved

Rp.1 31:0 a2[0].x – a2 vertex delta for Attribute0.x

Rp.0 31:0 a1[0].x – a1 vertex delta for Attribute0.x

R(p+1).7 31:0 a0[0].w – a0 vertex delta for Attribute0.w

R(p+1).6 31:0 Reserved

R(p+1).5 31:0 a2[0].w – a2 vertex delta for Attribute0.w

R(p+1).4 31:0 a1[0].w – a1 vertex delta for Attribute0.w

R(p+1).3 31:0 a0[0].z – a0 vertex delta for Attribute0.z

Doc Ref # 353

DWord Bit Description

R(p+1).2 31:0 Reserved

R(p+1).1 31:0 a2[0].z – a2 vertex delta for Attribute0.z

R(p+1).0 31:0 a1[0].z – a1 vertex delta for Attribute0.z

R(p+2):Rq Vertex deltas for additional attributes in numerical order

See definition of Rp and R(p+1) for formats.

7.8 Other WM Functions

7.8.1 Statistics Gathering
If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the
PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a
Pixel Shader thread. If Early Depth Test Enable is set it is possible for pixels or samples to be discarded
prior to reaching the Pixel Shader due to failing the depth or stencil test. PS_INVOCATIONS_COUNT will
still be incremented for these pixels or samples since the depth test occurs after the pixel shader from the
point of view of SW.

354 Doc Ref #

8. Color Calculator (Output Merger)
Note: The Color Calculator logic resides in the Render Cache backing Data Port (DAP) shared

function. It is described in this chapter as the Color Calc functions are naturally an extension of
the 3D pipeline past the WM stage. See the DataPort chapter for details on the messages used by
the Pixel Shader to invoke Color Calculator functionality.

The Color Calculator function within the Data Port shared function completes the processing of rasterized
pixels after the pixel color and depth have been computed by the Pixel Shader. This processing is
initiated when the pixel shader thread sends a Render Target Write message (see Shared Functions) to
the Render Cache. (Note that a single pixel shader thread may send multiple Render Target Write
messages, with the result that multiple render targets get updated). The pixel variables pass through a
pipeline of fixed (yet programmable) functions, and the results are conditionally written into the
appropriate buffers.

[DevSNB+]: The word “pixel” used in this section is effectively replaced with the word “sample” if
multisample rasterization is enabled.

Pipeline Stage Description

Alpha Coverage
[DevSNB+]

[DevSNB+]It generates coverage masks using AlphaToCoverage
AND/OR AlphaToOne functions based on src0.alpha.

Alpha Test Compare pixel alpha with reference alpha and conditionally discard pixel

Stencil Test Compare pixel stencil value with reference and forward result to Buffer
Update stage

Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer and
forward result to Buffer Update stage

Color Blending Combine pixel color with corresponding color in color buffer according to
programmable function

Gamma Correction Adjust pixel’s color according to gamma function for SRGB destination
surfaces.

Color Quantization Convert “full precision” pixel color values to fixed precision of the color
buffer format

Logic Ops Combine pixel color logically with existing color buffer color (mutually
exclusive with Color Blending)

Buffer Update Write final pixel values to color and depth buffers or discard pixel without
update

Doc Ref # 355

The following logic describes the high-level operation of the Pixel Processing pipeline:

PixelProcessing() {

 AlphaCoverage()// [DevSNB+]

 AlphaTest()

 DepthBufferCoordinateOffsetDisable

 StencilTest()

 DepthTest()

 ColorBufferBlending()

 GammaCorrection()

 ColorQuantization()

 LogicalOps()

 BufferUpdate()

}

[SNB WA]: Errata BK83/BJ84 - Display Corruption may be seen after graphics voltage rail (VCC_AXG)
power up from 0V

This workaround must be applied after any power-up condition when graphics voltage is starting from
zero volts (examples: initial power up, S3/S4 resume, etc..).

In order to set the initial state of the 3D engine (Color Calculator) to avoid incorrect 3D rendering after
such a power up cycle, driver software must implement the following before any other 3D rendering
occurs:

Set a render target with a size of at least 1 page, set base graphics address of 64K (0x10000)

 Render target should be set for SURFACE_TYPE_NULL.

Set a depth (Z) buffer with a size of at least 1 page, set base graphics address of 128K (0x20000)

 Depth Test should be set to ENABLE

 Depth Test Function should be COMPAREFUNCTION_ALWAYS

 Depth Write DISABLE

 HiZ should be DISABLE

Generic Surface Settings for both Buffers

 Surface X,Y offsets should be ZERO

 LOD should be set to ZERO

356 Doc Ref #

 Render array target index must be set to ZERO

 Page table entry for the addresses should be valid (do not generate a page fault)

Do not use Stencil Buffer

Render a single point list primitive with these buffers

 Specify X=0, Y=0 for render location

 Pixel Sample Point Value set to UPPER LEFT

 No textures or sampling required.

 Per state settings, the pixel must be rendered (do not clip, cull, or scissor)

With these settings, the pipeline will be cleared and the color calculator will properly render subsequent
3D primitives. With the pipeline state specified above (SURFACE_TYPE_NULL and Depth Write
DISABLE), the workaround will not write any rendered pixel data to memory.

8.1.1 Alpha Coverage [DevSNB+]
Alpha coverage logic is supported for DevSNB+ and can be controlled using three state variables:

 AlphaToCoverage Enable, when enabled Color Calculator modifies the sample mask. This function
(along with AlphaToOne) come at the top of the pixel pipeline. The sample’s Source0.Alpha value
(possibly being replicated from the pixel’s Source0.Alpha) is used to compute a (optionally dithered)
1/2/4-bit mask (depending on NumSamples).

 The AlphaToCoverage Dither Enable SV is used to control the dithering of the AlphaToCoverage
mask. The bit corresponding to the sample# is then ANDed with the sample’s incoming mask bits –
allowing the sample to be masked off depending on alpha.

 AlphaToOne Enable, when enabled, Color Calculator must replace Source0.Alpha (if present) with
1.0f.

 If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.

NOTE:

 Src0.alpha needs to be first multiplied with AA alpha before applying AlphaToCoverage and
AlphaToOne functions.

 An alpha value of NaN results in a no coverage (zero) mask.

 [DevSNB]: When NumSamples = 1, AlphaToCoverage and AlphaTo Coverage Dither both must
be disabled.

 Alpha values from the pixel shader are treated as FLOAT32 format for computing the
AlphaToCoverage Mask.

Doc Ref # 357

8.1.2 Alpha Test
The Alpha Test function can be used to discard pixels based on a comparison between the incoming
pixel’s alpha value and the Alpha Test Reference state variable in COLOR_CALC_STATE. This
operation can be used to remove transparent or nearly-transparent pixels, though other uses for the alpha
channel and alpha test are certainly possible.

This function is enabled by the Alpha Test Enable state variable in COLOR_CALC_STATE. If
ENABLED, this function compares the incoming pixel’s alpha value (pixColor.Alpha) and the reference
alpha value specified by via the Alpha Test Reference state variable in COLOR_CALC_STATE. The
comparison performed is specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is performed using fixed-
point (UNORM8) or FLOAT32 values. Accordingly, it determines whether the Alpha Reference Value is
passed in a UNORM8 or FLOAT32 format. If UNORM8 is selected, the pixel’s alpha value will be
converted from floating-point to UNORM8 before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are discarded at this point
in the pipeline.

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

[DevSNB+]: The Alpha Test function is supported in conjunction with Multiple Render Targets (MRTs). If
delivered in the incoming render target write message, source 0 alpha is used to perform the alpha test.
If source 0 alpha is not delivered, the normal alpha value is used to perform the alpha test.

358 Doc Ref #

8.1.3 Depth Coordinate Offset
The Depth Coordinate Offset function applies a programmable constant offset to the RenderTarget X,Y
screen space coordinates in order to generate DepthBuffer coordinates.

The function has been specifically added to allow the OpenGL driver to deal with a RenderTarget and
DepthBuffer of differing sizes. This condition isn’t an issue for the D3D driver, as D3D defines a upper-
left screen coordinate origin which matches the HW rasterizer – as long as the application limits rendering
to the smaller of the RT/DepthBuffer extents, no special logic is required.

In contrast, OpenGL defines a lower-left screen coordinate origin. This requires the driver to incorporate
a “Y coordinate flipping” transformation into the viewport mapping function. The Y extent of the RT is
used in this flipping transformation. If the DepthBuffer extent is different, the wrong pixel Y locations
within the DepthBuffer will be accessed.

The least expensive solution is to provide a translation offset to be applied to the post-viewport-mapped
DepthBuffer Y pixel coordinate, effectively allowing the alignment of the lower-left origins of the RT and
DepthBuffer. [Note that the previous DBCOD feature performed an optional translation of post-viewport-
mapping RT pixel (screen) coordinates to generate DepthBuffer pixel (window) coordinates. Specifically,
the Draw Rect Origin X,Y state could be subtracted from the RT pixel coordinates.]

This function uses Depth Coordinate Offset X,Y state (signed 16-bit values in
3DSTATE_DEPTH_RECTANGLE) that is unconditionally added to the RT pixel coordinates to generate
DepthBuffer pixel coordinates.

The previous DBCOB feature can be supported by having the driver program Depth Coordinate X,Y
Offset to the two’s complement of the the Draw Rect Origin. By programming Depth Coordinate X,Y
Offset to zeros, the current “normal” operation (DBCOD disabled) can be achieved.

Programming Restrictions:

 Only simple 2D RTs are supported (no mipmaps)

 Software must ensure that the resultant DepthBuffer Coordinate X,Y values are non-negative.

 There are alignment restrictions – see 3DSTATE_DEPTH_BUFFER command.

RenderTarget DepthBuffer
HW Origin

OGL Origin

Before offset

After offset

Doc Ref # 359

8.1.4 Stencil Test
The Stencil Test function can be used to discard pixels based on a comparison between the [Backface]
Stencil Test Reference state variable and the pixel’s stencil value. This is a general purpose function
used for such effects as shadow volumes, per-pixel clipping, etc. The result of this comparison is used in
the Stencil Buffer Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the current stencil buffer
value for this pixel is read.

Programming Notes:

 If the Depth Buffer is either undefined or does not have a surface format of
D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT and separate stencil buffer is disabled,
Stencil Test Enable must be DISABLED.

A 2nd set of the stencil test state variables is provided so that pixels from back-facing objects, assuming
they are not culled, can have a stencil test performed on them separate from the test for normal front-
facing objects. The separate stencil test for back-facing objects can be enabled via the Double Sided
Stencil Enable state variable. Otherwise, non-culled back-facing objects will use the same test function,
mask and reference value as front-facing objects. The 2nd stencil state for back-facing objects is most
commonly used to improve the performance of rendering shadow volumes which require a different
stencil buffer operation depending on whether pixels rendered are from a front-facing or back-facing
object. The backface stencil state removes the requirement to render the shadow volumes in 2 passes or
sort the objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state variable name>.
The Backface set of state variables are only used if Double Sided Stencil Enable is ENABLED and the
object is considered back-facing. Otherwise the normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the pixel’s stencil value
value after logically ANDing both values by [Backface] Stencil Test Mask. The comparison performed is
specified by the [Backface] Stencil Test Function state variable. The result of the comparison is passed
down the pipeline for use in the Stencil Buffer Update function. The Stencil Test function does not in itself
discard pixels.

If Stencil Test Enable is DISABLED, a result of “stencil test passed” is propagated down the pipeline.

8.1.5 Depth Test
The Depth Test function can be used to discard pixels based on a comparison between the incoming
pixel’s depth value and the current depth buffer value associated with the pixel. This function is typically
used to perform the “Z Buffer” hidden surface removal. The result of this pipeline function is used in the
Stencil Buffer Update function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the pixel’s (“source”) depth
value is first computed. After computation the pixel’s depth value is clamped to the range defined by
Minimum Depth and Maximum Depth in the selected CC_VIEWPORT state. Then the current
(“destination”) depth buffer value for this pixel is read.

This function then compares the source and destination depth values. The comparison performed is
specified by the Depth Test Function state variable.

360 Doc Ref #

The result of the comparison is propogated down the pipeline for use in the subsequent Depth Buffer
Update function. The Depth Test function does not in itself discard pixels.

If Depth Test Enable is DISABLED, a result of “depth test passed” is propagated down the pipeline.

Programming Notes:

 Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

8.1.6 Pre-Blend Color Clamping
Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable and Color Clamp Range
states in COLOR_CALC_STATE, is affected by the enabling of Color Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color Clamping.

Blending RT Format Pre-Blend Color
Clamp

Post-Blend Color
Clamp

Off UNORM,
UNORM_SRGB,YCRC
B

Must be enabled with
range = RT range or
[0,1] (same function)

n/a, state ignored

 SNORM Must be enabled with
range = RT range or [-
1,1] (same function)

n/a, state ignored

 FLOAT (except for
R11G11B10_FLOAT)

Must be enabled (with
any desired range)

n/a, state ignored

 R11G11B10_FLOAT Must be enabled with
either [0,1] or RT range

n/a, state ignored

 UINT, SINT State ignored, implied
clamp to RT range

n/a, state ignored

On

(where
permitted)

UNORM,
UNORM_SRGB

Must be enabled with
range = RT range or
[0,1] (same function)

Must be enabled with
range = RT range or [0,1]
(same function)

 SNORM Must be enabled with
range = RT range or [-
1,1] (same function)

Must be enabled with
range = RT range or [-1,1]
(same function)

 FLOAT (except for
R11G11B10_FLOAT)

Can be disabled or
enabled (with any
desired range)

Must be enabled (with any
desired range)

 R11G11B10_FLOAT Can be disabled or
enabled (with any
desired range)

Must be enabled with
either [0,1] or RT range

8.1.6.1.1 Pre-Blend Color Clamping when Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp Enable. If
ENABLED, all source color components are clamped to the range specified by Color Clamp Range. If
DISABLED, no clamping is performed.

Doc Ref # 361

Programming Notes:

 Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is expected and
highly recommended that, when blending is disabled, software set Pre-Blend Color Clamp
Enable to ENABLED and select an appropriate Color Clamp Range.

 When using SINT or UINT rendertarget surface formats, Blending must be DISABLED. The
Pre-Blend Color Clamp Enable and Color Clamp Range fields are ignored, and an implied
clamp to the rendertarget surface format is performed.

8.1.6.1.2 Pre-Blend Color Clamping when Blending is Enabled

The clamping of source, destination and constant color components is controlled by Pre-Blend Color
Clamp Enable. If ENABLED, all these color components are clamped to the range specified by Color
Clamp Range. If DISABLED, no clamping is performed on these color components prior to blending.

8.1.7 Color Buffer Blending
The Color Buffer Blending function is used to combine one or two incoming “source” pixel color+alpha
values with the “destination” color+alpha read from the corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state variable (in
COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp functions are disabled for all
RenderTargets, and the pixel values (possibly subject to Pre-Blend Clamp) are passed through
unchanged.

[DevSNB+]: The Color Buffer Blend Enable is in the per-render-target BLEND_STATE, and the field in
SURFACE_STATE is no longer supported.

Programming Note:

 Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is
UNDEFINED.

 Dual source blending:

o [DevCTG+]: The DataPort only supports dual source blending with a SIMD8-style
message.

 Only certain surface formats support Color Buffer Blending. Refer to the Surface Format tables in
Sampling Engine. Blending must be disabled on a RenderTarget if blending is not supported.

The incoming “source” pixel values are modulated by a selected “source” blend factor, and the possibly
gamma-decorrected “destination” values are modulated by a “destination” blend factor. These terms are
then combined with a “blend function”. In general:

src_term = src_blend_factor * src_color

dst_term = dst_blend_factor * dst_color

color output = blend_function(src_term, dst_term)

362 Doc Ref #

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used and,
correspondingly, there is no alpha component computed by this function.

The blending of the color and alpha components is controlled with two separate (color and alpha) sets of
state variables. However, if the Independent Alpha Blend Enable state variable in
COLOR_CALC_STATE is DISABLED, then the “color” (rather than “alpha”) set of state variables is used
for both color and alpha. Note that this is the only use of the Independent Alpha Blend Enable state – it
does not control whether Blending occurs, only how.

[DevSNB+] Per Render Target Blend State: Blend state is selected based on Render Target Index
contained in the message header, and appropriate blend state is applied to Render Target Write
messages.

The following table describes the color source and destination blend factors controlled by the Source
[Alpha] Blend Factor and Destination [Alpha] Blend Factor state variables in COLOR_CALC_STATE.
Note that the blend factors applied to the R,G,B channels are always controlled by the
Source/Destination Blend Factor, while the blend factor applied to the alpha channel is controlled either
by Source/Destination Blend Factor or Source/Destination Alpha Blend Factor.

Table 23. Color Buffer Blend Color Factors

Blend Factor Selection Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode only)
(rtN = destination color from RT#N)

(CC = Constant Color)

BLENDFACTOR_ZERO 0.0, 0.0, 0.0, 0.0

BLENDFACTOR_ONE 1.0, 1.0, 1.0, 1.0

BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a

BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a

BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a

BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a

BLENDFACTOR_SRC1_COLOR o1.r, o1.g, o1.b, o1.a

BLENDFACTOR_INV_SRC1_COLOR 1.0-o1.r, 1.0-o1.g, 1.0-o1.b, 1.0-o1.a

BLENDFACTOR_SRC1_ALPHA o1.a, o1.a, o1.a, o1.a

BLENDFACTOR_INV_SRC1_ALPHA 1.0-o1.a, 1.0-o1.a, 1.0-o1.a, 1.0-o1.a

BLENDFACTOR_DST_COLOR rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR 1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

Doc Ref # 363

Blend Factor Selection Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode only)
(rtN = destination color from RT#N)

(CC = Constant Color)

BLENDFACTOR_CONST_COLOR CC.r, CC.g, CC.b, CC.a

BLENDFACTOR_INV_CONST_COLOR 1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA CC.a, CC.a, CC.a, CC.a

BLENDFACTOR_INV_CONST_ALPHA 1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f,f,1.0 where f = min(1.0 – rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend Function state
variable and the Alpha Blend Function state variable (when in independent alpha blend mode).

Table 24. Color Buffer Blend Functions

Blend Function Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_
SUBTRACT

DstColor*DstFactor - SrcColor*SrcFactor

BLENDFUNCTION_MIN min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL
“min” function.

BLENDFUNCTION_MAX max (SrcColor*SrcFactor, DstColor*DstFactor)
Programming Note: This is a superset of the OpenGL
“max” function.

364 Doc Ref #

8.1.8 Post-Blend Color Clamping
(See Pre-Blend Color Clamping above for a summary table regarding clamping)

Post-Blend Color clamping is available only if Blending is enabled.

If Blending is enabled, the clamping of blending output color components is controlled by Post-Blend
Color Clamp Enable. If ENABLED, the color components output from blending are clamped to the range
specified by Color Clamp Range. If DISABLED, no clamping is performed at this point.

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is enabled color
components will be automatically clamped to (at least) the rendertarget surface format range at this stage
of the pipeline.

8.1.9 Color Quantization
[This is considered an implementation-specific topic, covered in the detailed hardware design documents]

8.1.10 Dithering
Dithering is used to give the illusion of a higher resolution when using low-bpp channels in color buffers
(e.g., with 16bpp color buffer). By carefully choosing an arrangement of lower resolution colors, colors
otherwise not representable can be approximated, especially when seen at a distance where the viewer’s
eyes will average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands seen on
smooth-shaded objects.

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on the pixel’s X and Y
screen coordinate. The pixel’s X and Y screen coordinates are first offset by the Dither Offset X and
Dither Offset Y state variables (these offsets are used to provide window-relative dithering). Then the
two LSBs of the pixel's screen X coordinate are used to address a column in the dither matrix, and the
two LSBs of the pixel's screen Y coordinate are used to address a row. This way, the matrix repeats
every four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise) truncated bits of the
component being dithered. It is then added with the component and the result is truncated to the bit
depth of the component given the color buffer format.

Doc Ref # 365

Figure 8-1. Dithering Process (5-Bit Example)

B6852-01

S S S S S D D D D

Z Z Z Z+

T T T T T X X X X

Significant Bits Bits for Dithering

Component Being Dithered (e.g., RGBA)

Value From Dither Matrix

Truncated
Bits

Dithered Value
(either SSSSS
or SSSSS+1)

Pixel y Mod 4

Pixel x Mod 4

0 8 2 10

0 1 2 3

12 4 14 6

3 11 1 9

3 7 13 5

0

1

2

3

Dither Matrix
Address by 2 LSBs

of Pixel x and y

8.1.11 Logic Ops
The Logic Ops function is used to combine the incoming “source” pixel color/alpha values with the
corresponding “destination” color/alpha contained in the ColorBuffer, using a logic function.

The Logic Op function is enabled by the LogicOp Enable state variable. If DISABLED, this function is
ignored and the incoming pixel values are passed through unchanged.

Programming Note:

 Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is
UNDEFINED.

 Logic Ops are only supported on *_UNORM surfaces (excluding _SRGB variants), otherwise
Logic Ops must be DISABLED.

The following table lists the supported logic ops. The logic op is selected using the Logic Op Function
field in COLOR_CALC_STATE.

366 Doc Ref #

Table 25. Logic Ops

LogicOp Function Definition (S=Source, D=Destination)

LOGICOP_CLEAR all 0’s

LOGICOP_NOR NOT (S OR D)

LOGICOP_AND_INVERTED (NOT S) AND D

LOGICOP_COPY_INVERTED NOT S

LOGICOP_AND_REVERSE S AND NOT D

LOGICOP_INVERT NOT D

LOGICOP_XOR S XOR D

LOGICOP_NAND NOT (S AND D)

LOGICOP_AND S AND D

LOGICOP_EQUIV NOT (S XOR D)

LOGICOP_NOOP D

LOGICOP_OR_INVERTED (NOT S) OR D

LOGICOP_COPY S

LOGICOP_OR_REVERSE S OR NOT D

LOGICOP_OR S OR D

LOGICOP_SET all 1’s

8.1.12 Buffer Update
The Buffer Update function is responsible for updating the pixel’s Stencil, Depth and Color Buffer contents
based upon the results of the Stencil and Depth Test functions. Note that Kill Pixel and/or Alpha Test
functions may have already discarded the pixel by this point.

8.1.12.1 Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the Stencil Fail Op,
Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op state (or their backface counterparts if
Double Sided Stencil Enable is ENABLED and the pixel is from a back-facing object) and the results of
the Stencil Test and Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is modified if the stencil
test fails. Stencil Pass Depth Fail Op and Backface Stencil Pass Depth Fail Op specify how/if the
stencil buffer is modified if the stencil test passes but the depth test fails. Stencil Pass Depth Pass Op
and Backface Stencil Pass Depth Pass Op specify how/if the stencil buffer is modified if both the stencil
and depth tests pass. The operations (on the stencil buffer) that are to be performed under one of these
(mutually exclusive) conditions is summarized in the following table.

Doc Ref # 367

Table 26. Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

STENCILOP_ZERO Store a 0

STENCILOP_REPLACE Store the StencilTestReference reference value

STENCILOP_INCRSAT Saturating increment (clamp to max value)

STENCILOP_DECRSAT Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil Buffer Write
Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil Buffer Write Mask state
variables provide an 8-bit mask that selects which bits of the stencil write value are modified. Masked-off
bits (i.e., mask bit == 0) are left unmodified in the Stencil Buffer.

Programming Notes:

 If the Depth Buffer does not have a surface format of D32_FLOAT_S8X24_UINT or
D24_UNORM_S8_UINT, Stencil Buffer Write Enable must be DISABLED.

 The Stencil Buffer can be written even if depth buffer writes are disabled via Depth Buffer Write
Enable.

8.1.12.2 Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write Enable state variable. If
there is no Depth Buffer, writes must be explicitly disabled with this state variable, or operation is
UNDEFINED.

If depth testing is disabled or the depth test passed, the incoming pixel’s depth value is written to the
Depth Buffer. If depth testing is enabled and the depth test failed, the pixel is discarded – with no
modification to the Depth or Color Buffers (though the Stencil Buffer may have been modified).

8.1.12.3 Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color Buffer.

This function is automatically invoked whenever the destination surface (render target) has an SRGB
format (see surface formats in Sampling Engine). For these surfaces, the computed RGB values are
converted from gamma=1.0 space to gamma=2.4 space by applying a ^(2.4) exponential function.

368 Doc Ref #

8.1.12.4 Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is written into the Color
Buffer. The Surface Format of the color buffer indicates which channel(s) are written (e.g.,
R8G8_UNORM are written with the Red and Green channels only). The Color Buffer Component Write
Disables from the Color Buffer’s SURFACE_STATE provide an independent write disable for each
channel of the Color Buffer.

8.2 Pixel Pipeline State Summary

8.2.1 COLOR_CALC_STATE

8.2.1.1 COLOR_CALC_STATE [DevSNB+]

COLOR_CALC_STATE
Project: DevSNB+

This definition applies to [DevSNB+] devices. It is pointed to by a field in 3DSTATE_CC_STATE_POINTERS, and
stored at a 64-byte aligned boundary.

DWord Bit Description

0 31:24 Stencil Reference Value

Format: U8.0

This field specifies the stencil reference value to compare against in the (front face)
StencilTest function.

23:16 BackFace Stencil Reference Value

Format: U8.0

This field specifies the stencil reference value to compare against in the StencilTest
function.

15 Round Disable Function Disable

Project: All

Format: U8.0

Disables the round-disable function of the color calculator. If this bit is zero, dithering is
cancelled based on the data used by blend to avoid drift. If this bit is one, this is not done.

14:1 Reserved Project: All Format: MBZ

Doc Ref # 369

COLOR_CALC_STATE
0 Alpha Test Format

Project: All

This field selects the format for Alpha Reference Value and the format in which Alpha Test
is performed.

Value Name Description Project

0h ALPHATEST_UNORM8 UNorm8 All

1h ALPHATEST_FLOAT32 Float32 All

Programming Notes

Alpha-test format is independent of RT format. When PS outputs UNIT/SINT alpha-value,
it will be treated as IEEE 32bit float number for the purpose of alpha-test.

1 31:0 Alpha Reference Value

Project: All

Exists If: Alpha Test Format == ALPHATEST_UNORM8

Format: UNORM8 Upper 24 bits MBZ

This field specifies the alpha reference value to compare against in the Alpha Test function.

31:0 Alpha Reference Value

Project: All

Exists If: Alpha Test Format == ALPHATEST_ FLOAT32

Format: IEEE_Float

This field specifies the alpha reference value to compare against in the Alpha Test function.

2 31:0 Blend Constant Color Red

Format: IEEE_Float

This field specifies the Red channel of the Constant Color used in Color Buffer Blending.

3 31:0 Blend Constant Color Green

Format: IEEE_Float

This field specifies the Green channel of the Constant Color used in Color Buffer Blending.

4 31:0 Blend Constant Color Blue

Format: IEEE_Float

This field specifies the Blue channel of the Constant Color used in Color Buffer Blending.

370 Doc Ref #

COLOR_CALC_STATE
5 31:0 Blend Constant Color Alpha

Format: IEEE_Float

This field specifies the Alpha channel of the Constant Color used in Color Buffer Blending.

8.2.2 DEPTH_STENCIL_STATE [DevSNB+]

DEPTH_STENCIL_STATE
Project: DevSNB+

The DEPTH_STENCIL_STATE is pointed to by a field in 3DSTATE_CC_STATE_POINTERS. It is stored at a 64-byte
aligned boundary.

DWord Bit Description

0 31 Stencil Test Enable

Project: All

Format: Enable

Enables StencilTest function of the Pixel Processing pipeline.

Programming Notes

If any of the render targets are YUV format, this field must be disabled.

This field cannot be enabled if Surface Format in 3DSTATE_DEPTH_BUFFER is set to
D16_UNORM.

30:28 Stencil Test Function

Project: All

Format: 3D_CompareFunction

This field specifies the comparison function used in the (front face) StencilTest function.

Value Name Description Project

0h COMPAREFUNCTION_ALWAYS All

1h COMPAREFUNCTION_NEVER All

2h COMPAREFUNCTION_LESS All

3h COMPAREFUNCTION_EQUAL All

4h COMPAREFUNCTION_LEQUAL All

5h COMPAREFUNCTION_GREATER All

6h COMPAREFUNCTION_NOTEQUAL All

7h COMPAREFUNCTION_GEQUAL All

Doc Ref # 371

DEPTH_STENCIL_STATE
27:25 Stencil Fail Op

Project: All

Format: 3D_StencilOperation

This field specifies the operation to perform on the Stencil Buffer when the (front face)
stencil test fails.

 Note: if all three stencil ops (Stencil Fail, Stencil Pass Depth Fail, and Stencil Pass Depth
Pass) are KEEP, ZERO, or REPLACE, the stencil buffer is not read.

Value Name Description Project

0 STENCILOP_KEEP All

1 STENCILOP_ZERO All

2 STENCILOP_REPLACE All

3 STENCILOP_INCRSAT All

4 STENCILOP_DECRSAT All

5 STENCILOP_INCR All

6 STENCILOP_DECR All

7 STENCILOP_INVERT All

24:22 Stencil Pass Depth Fail Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the (front face)
stencil test passes but the depth pass fails.

21:19 Stencil Pass Depth Pass Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the (front face)
stencil test passes and the depth pass passes (or is disabled).

18 Stencil Buffer Write Enable

Project: All

Format: Enable

Enables writes to the Stencil Buffer. If Stencil Test Enable is disabled, writes to the
stencil buffer are disabled independent of the setting of this field.

Programming Notes

This field cannot be enabled if Surface Format in 3DSTATE_DEPTH_BUFFER is set to
D16_UNORM.

372 Doc Ref #

DEPTH_STENCIL_STATE
17:16 Reserved Project: All Format: MBZ

15 Double Sided Stencil Enable

Project: All

Format: Enable

Enable doubled sided stencil operations.

Value Name Description Project

1 TRUE Double Sided Stencil Enabled All

0 FALSE Double Sided Stencil Disabled All

Programming Notes

Back-facing primitives have a vertex winding order opposite to the currently selected
Front Winding state.

Culling of primitives is not affected by the double sided stencil state

Back-facing primitives will be rendered, honoring all current device state, as though it
were a front-facing primitive with no implicitly overloaded state.

14:12 BackFace Stencil Test Function

Project: All

Format: 3D_CompareFunction

This field specifies the comparison function used in the StencilTest function.

Value Name Description Project

0h COMPAREFUNCTION_ALWAYS All

1h COMPAREFUNCTION_NEVER All

2h COMPAREFUNCTION_LESS All

3h COMPAREFUNCTION_EQUAL All

4h COMPAREFUNCTION_LEQUAL All

5h COMPAREFUNCTION_GREATER All

6h COMPAREFUNCTION_NOTEQUAL All

7h COMPAREFUNCTION_GEQUAL All

Doc Ref # 373

DEPTH_STENCIL_STATE
11:9 Backface Stencil Fail Op

Project: All

Format: 3D_StencilOperation

This field specifies the operation to perform on the Stencil Buffer when the stencil test fails.

Value Name Description Project

0 STENCILOP_KEEP STENCILOP_KEEP All

1 STENCILOP_ZERO STENCILOP_ZERO All

2 STENCILOP_REPLACE STENCILOP_REPLACE All

3 STENCILOP_INCRSAT STENCILOP_INCRSAT All

4 STENCILOP_DECRSAT STENCILOP_DECRSAT All

5 STENCILOP_INCR STENCILOP_INCR All

6 STENCILOP_DECR STENCILOP_DECR All

7 STENCILOP_INVERT STENCILOP_INVERT All

8:6 Backface Stencil Pass Depth Fail Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the stencil test
passes but the depth pass fails.

5:3 Backface Stencil Pass Depth Pass Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the stencil test
passes and the depth pass passes (or is disabled).

2:0 Reserved Project: All Format: MBZ

1 31:24 Stencil Test Mask

Project: All

Format: U8

This field specifies a bit mask applied to stencil test values. Both the stencil reference value
and value read from the stencil buffer will be logically ANDed with this mask before the
stencil comparison test is performed.

23:16 Stencil Write Mask

Project: All

Format: U8

This field specifies a bit mask applied to stencil buffer writes. Only those stencil buffer bits
corresponding to bits set in this mask will be modified.

374 Doc Ref #

DEPTH_STENCIL_STATE
15:8 Backface Stencil Test Mask

Project: All

Format: U8

This field specifies a bit mask applied to backface stencil test values. Both the stencil
reference value and value read from the stencil buffer will be logically ANDed with this
mask before the stencil comparison test is performed.

7:0 Backface Stencil Write Mask

Project: All

Format: U8

This field specifies a bit mask applied to backface stencil buffer writes. Only those stencil
buffer bits corresponding to bits set in this mask will be modified.

2 31 Depth Test Enable

Project: All

Format: Enable

Enables the DepthTest function of the Pixel Processing pipeline.

Programming Notes

If any of the render targets are YUV format, this field must be disabled.

Errata Description Project

 Software must issue a PIPE_CONTROL command with the
Write Cache Flush Enable set before transitioning from
write-only depth/stencil mode (Depth Test Enable and
Stencil Test Enable both DISABLED and Depth Buffer
Write Enable or Stencil Buffer Write Enable ENABLED) to
read/write depth/stencil mode (Depth Test Enable or Stencil
Test Enable ENABLED), otherwise operation is
UNDEFINED.

DevBW,
DevCL-A

30 Reserved Project: All Format: MBZ

Doc Ref # 375

DEPTH_STENCIL_STATE
29:27 Depth Test Function

Project: All

Format: 3D_DepthTestFunction

Specifies the comparison function used in DepthTest function.

Value Name Description Project

0h COMPAREFUNCTION_ALWAYS All

1h COMPAREFUNCTION_NEVER All

2h COMPAREFUNCTION_LESS All

3h COMPAREFUNCTION_EQUAL All

4h COMPAREFUNCTION_LEQUAL All

5h COMPAREFUNCTION_GREATER All

6h COMPAREFUNCTION_NOTEQUAL All

7h COMPAREFUNCTION_GEQUAL All

Programming Notes

if the Depth Test Function is ALWAYS or NEVER, the depth buffer is not read.

26 Depth Buffer Write Enable

Project: All

Format: Enable

Enables writes to the Depth Buffer.

Programming Notes

A Depth Buffer must be defined before enabling writes to it, or operation is UNDEFINED.

Errata Description Project

 See relevant errata in Depth Test Enable above DevBW,DevCL-A

25:0 Reserved Project: All Format: MBZ

8.2.3 BLEND_STATE [DevSNB+]

BLEND_STATE

376 Doc Ref #

BLEND_STATE
Project: DevSNB+

The blend state is stored as an array of up to 8 elements, each of which contains the DWords described
here. The start of each element is spaced 2 DWords apart. The first element of the blend state array is
aligned to a 64-byte boundary, which is pointed to by a field in 3DSTATE_CC_STATE_POINTERS. The 3-
bit Render Target Index field in the Render Target Write data port message header is used to select which
of the 8 elements from BLEND_STATE that is used on the current message.

DWord Bit Description

0 31 Color Buffer Blend Enable

Project: All

Format: Enable

Enables the ColorBufferBlending (nee “alpha blending”) function of the Pixel Processing
Pipeline for this render target.

Programming Notes

Enabling LogicOp and ColorBufferBlending at the same time is UNDEFINED

30 Independent Alpha Blend Enable

Project: All

Format: Enable

When enabled, the other fields in this instruction control the combination of the alpha
components in the Color Buffer Blend stage. When disabled, the alpha components are
combined in the same fashion as the color components.

29 Reserved Project: All Format: MBZ

28:26 Alpha Blend Function

Project: All

Format: 3D_ColorBufferBlendFunction

This field specifies the function used to combine the alpha components in the Color Buffer
blend stage of the Pixel Pipeline when the IndependentAlphaBlend state is enabled.

Value Name Description Project

0 BLENDFUNCTION_ADD All

1 BLENDFUNCTION_SUBTRACT All

2 BLENDFUNCTION_REVERSE_SUBTRACT All

3 BLENDFUNCTION_MIN All

4 BLENDFUNCTION_MAX All

5 - 7 Reserved All

25 Reserved Project: All Format: MBZ

Doc Ref # 377

BLEND_STATE
24:20 Source Alpha Blend Factor

Project: All

Format: 3D_ColorBufferBlendFactor

Controls the “source factor” in alpha Color Buffer Blending stage.

Note: For the source/destination alpha blend factors, the encodings indicating “COLOR”
are the same as the encodings indicating “ALPHA”, as the alpha component of the color is
selected.

Value Name Description Project

00h Reserved All

01h BLENDFACTOR_ONE All

02h BLENDFACTOR_SRC_COLOR All

03h BLENDFACTOR_SRC_ALPHA All

04h BLENDFACTOR_DST_ALPHA All

05h BLENDFACTOR_DST_COLOR All

06h BLENDFACTOR_SRC_ALPHA_SATURATE All

07h BLENDFACTOR_CONST_COLOR All

08h BLENDFACTOR_CONST_ALPHA All

09h BLENDFACTOR_SRC1_COLOR All

0Ah BLENDFACTOR_SRC1_ALPHA All

0Bh-10h Reserved All

11h BLENDFACTOR_ZERO All

12h BLENDFACTOR_INV_SRC_COLOR All

13h BLENDFACTOR_INV_SRC_ALPHA All

14h BLENDFACTOR_INV_DST_ALPHA All

15h BLENDFACTOR_INV_DST_COLOR All

16h Reserved All

17h BLENDFACTOR_INV_CONST_COLOR All

18h BLENDFACTOR_INV_CONST_ALPHA All

19h BLENDFACTOR_INV_SRC1_COLOR All

1Ah BLENDFACTOR_INV_SRC1_ALPHA All

19:15 Destination Alpha Blend Factor

Project: All

Format: 3D_ColorBufferBlendFactor

Controls the “destination factor” in alpha Color Buffer Blending stage.

Refer to Source Alpha Blend Factor for encodings.

378 Doc Ref #

BLEND_STATE
14 Reserved Project: All Format: MBZ

13:11 Color Blend Function

Project: All

Format: 3D_ColorBufferBlendFunction

This field specifies the function used to combine the color components in the
ColorBufferBlending function of the Pixel Processing Pipeline. If Independent Alpha
Blend Enable is disabled, this field will also control the blending of the alpha components
in the ColorBufferBlending function.

Value Name Description Project

0 BLENDFUNCTION_ADD All

1 BLENDFUNCTION_SUBTRACT All

2 BLENDFUNCTION_REVERSE_SUBTRACT All

3 BLENDFUNCTION_MIN All

4 BLENDFUNCTION_MAX All

10 Reserved Project: All Format: MBZ

9:5 Reserved

1 31 AlphaToCoverage Enable

Project: All

Format: Enable

If set, Source0 Alpha is converted to a temporary 1/2/4-bit coverage mask and the mask bit
corresponding to the sample# ANDed with the sample mask bit. If set, sample coverage is
computed based on src0 alpha value. Value of 0 disables all samples and value of 1
enables all samples for that pixel. The same coverage needs to apply to all the RTs in MRT
case. Further, any value of src0 alpha between 0 and 1 monotonically increases the
number of enabled pixels.

The same coverage needs to be applied to all the RTs in MRT case.

[DevSNB-A] Errata: This bit must be disabled.

30 AlphaToOne Enable

Project: All

Format: Enable

If set, Source0 Alpha is set to 1.0f after (possibly) being used to generate the
AlphaToCoverage coverage mask.

The same coverage needs to be applied to all the RTs in MRT case.

If Dual Source Blending is enabled, this bit must be disabled.

[DevSNB-A] Errata: This bit must be disabled.

Doc Ref # 379

BLEND_STATE
29 AlphaToCoverage Dither Enable

Project: All

Format: Enable

If set, sample coverage is computed based on src0 alpha value and it modulates the
sample coverage based on screen coordinates. Value of 0 disables all samples and value
of 1 enables all samples for that pixel. The same coverage needs to apply to all the RTs in
MRT case. Further, any value of src0 alpha between 0 and 1 monotonically increases the
number of enabled pixels.

The same coverage needs to be applied to all the RTs in MRT case.

If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.

[DevSNB]: This bit must be disabled.

This bit is not supported on [DevSNB:A] and [DevSNB:B]

28 Reserved Project: All Format: MBZ

27 Write Disable Alpha

Project: All

Format: Disable

This field controls the writing of the alpha component into the Render Target.

Value Name Description Project

0B Enabled Alpha component can be overwritten All

1B Disabled Writes to the color buffer will not modify Alpha. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

26 Write Disable Red

Project: All

Format: Disable

This field controls the writing of the red component into the Render Target.

Value Name Description Project

0B Enabled Red component can be overwritten All

1B Disabled Writes to the color buffer will not modify Red. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

380 Doc Ref #

BLEND_STATE
25 Write Disable Green

Project: All

Format: Disable

This field controls the writing of the green component into the Render Target.

Value Name Description Project

0B Enabled Green component can be overwritten All

1B Disabled Writes to the color buffer will not modify Green. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

24 Write Disable Blue

Project: All

Format: Disable

This field controls the writing of the Blue component into the Render Target.

Value Name Description Project

0B Enabled Blue component can be overwritten All

1B Disabled Writes to the color buffer will not modify Blue. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

23 Reserved Project: All Format: MBZ

22 Logic Op Enable

Project: All

Format: Enable

Enables the LogicOp function of the Pixel Processing pipeline.

Programming Notes

Enabling LogicOp and Color Buffer Blending at the same time is UNDEFINED

Doc Ref # 381

BLEND_STATE
21:18 Logic Op Function

Project: All

Format: 3D_LogicOpFunction

This field specifies the function to be performed (when enabled) in the Logic Op stage of
the Pixel Processing pipeline. Note that the encoding of this field is one less than the
corresponding “R2_” ROP code defined in WINGDI.H, and is a rather contorted mapping of
the OpenGL LogicOp encodings. However, this field was defined such that, when the 4
bits are replicated to 8 bits, they coincide with the ROP codes used in the Blter.

Note: if the Logic Op Function does not depend on “D”, the dest buffer is not read.

Value Name Description Project

0h LOGICOP_CLEAR BLACK; all 0’s All

1h LOGICOP_NOR NOTMERGEPEN; NOT (S OR D) All

2h LOGICOP_AND_INVERTED MASKNOTPEN; (NOT S) AND D All

3h LOGICOP_COPY_INVERTE
D

NOTCOPYPEN; NOT S All

4h LOGICOP_AND_REVERSE MASKPENNOT; S AND NOT D All

5h LOGICOP_INVERT NOT; NOT D All

6h LOGICOP_XOR XORPEN; S XOR D All

7h LOGICOP_NAND NOTMASKPEN; NOT (S AND D) All

8h LOGICOP_AND MASKPEN; S AND D All

9h LOGICOP_EQUIV NOTXORPEN; NOT (S XOR D) All

Ah LOGICOP_NOOP NOP; D All

Bh LOGICOP_OR_INVERTED MERGENOTPEN; (NOT S) OR D All

Ch LOGICOP_COPY COPYPEN; S All

Dh LOGICOP_OR_REVERSE MERGEPENNOT; S OR NOT D All

Eh LOGICOP_OR MERGEPEN; S OR D All

Fh LOGICOP_SET WHITE; all 1’s All

17 Reserved Project: All Format: MBZ

382 Doc Ref #

BLEND_STATE
16 Alpha Test Enable

Project: All

Format: Enable

Enables the AlphaTest function of the Pixel Processing pipeline.

Programming Notes

Alpha Test can only be enabled if Pixel Shader outputs a float alpha value.

Alpha Test is applied independently on each render target by comparing that render
target’s alpha value against the alpha reference value. If the alpha test fails, the
corresponding pixel write will be supressed only for that render target. The depth/stencil
update will occur if alpha test passes for any render target.

15:13 Alpha Test Function

Project: All

Format: 3D_CompareFunction

This field specifies the comparison function used in the AlphaTest function

Value Name Description Project

0h COMPAREFUNCTION_ALWAYS Always pass All

1h COMPAREFUNCTION_NEVER Never pass All

2h COMPAREFUNCTION_LESS Pass if the value is less
than the reference

All

3h COMPAREFUNCTION_EQUAL Pass if the value is equal to
the reference

All

4h COMPAREFUNCTION_LEQUAL Pass if the value is less
than or equal to the
reference

All

5h COMPAREFUNCTION_GREATER Pass if the value is greater
than the reference

All

6h COMPAREFUNCTION_NOTEQUAL Pass if the value is not
equal to the reference

All

7h COMPAREFUNCTION_GEQUAL Pass if the value is greater
than or equal to the
reference

All

12 Color Dither Enable

Project: All

Format: Enable

Enables dithering of colors (including any alpha component) before they are written to the
Color Buffer.

Doc Ref # 383

BLEND_STATE
11:10 X Dither Offset

Project: All

Format: U2

Specifies offset to apply to pixel X coordinate LSBs when accessing dither table.

9:8 Y Dither Offset

Project: All

Format: U2

Specifies offset to apply to pixel Y coordinate LSBs when accessing dither table.

7:4 Reserved Project: All Format: MBZ

3:2 Color Clamp Range

Project: All

Specifies the clamped range used in Pre-Blend and Post-Blend Color Clamp functions if
one or both of those functions are enabled. Note that this range selection is shared
between those functions. This field is ignored if both of the Color Clamp Enables are
disabled

Value Name Description Project

0 COLORCLAMP_UNORM Clamp Range [0,1] All

1 COLORCLAMP_SNORM Clamp Range [-1,1] All

2 COLORCLAMP_RTFORMAT Clamp to the range of the RT
surface format (Note: The Alpha
component is clamped to
FLOAT16 for R11G11B10_FLOAT
format).

All

3 Reserved Reserved All

384 Doc Ref #

BLEND_STATE
1 Pre-Blend Color Clamp Enable

Project: All

Format: Enable FormatDesc

This field specifies whether the source, destination and constant color channels are
clamped prior to blending, regardless of whether blending is enabled.

If DISABLED, no clamping is performed prior to blending.

If ENABLED, all inputs to the blend function are clamped prior to the blend to the range
specified by Color Clamp Range.

Value Name Description Project

0 Disabled No clamping is performed prior to blending. All

1 Enabled All inputs to the blend function are clamped prior to the
blend to the range specified by Color Clamp Range.

All

Programming Notes

See table in Pre-Blending Color Clamp subsection for programming restrictions as a
function of RT format.

This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats.
Blending is not supported for those RT surface formats. The device will automatically
clamp source color channels to the respective RT surface range.

0 Post-Blend Color Clamp Enable

Project: All

Format: Enable

If blending is enabled, this field specifies whether the blending output channels are first
clamped to the range specified by Color Clamp Range. Regardless of whether this
clamping is enabled, the blending output channels will be clamped to the RT surface format
just prior to being written.

Programming Notes

See table in Pre-Blending Color Clamp subsection for programming restrictions as a
function of RT format.

This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats.
Blending is not supported for those RT surface formats. The device will automatically
clamp source color channels to the respective RT surface range.

Programming Note: CC Unit also receives 3DSTATE_WM_HZ_OP and 3DSTATE_PS_EXTRA.

Doc Ref # 385

8.2.4 CC_VIEWPORT

CC_VIEWPORT
Project: All

The viewport state is stored as an array of up to 16 elements, each of which contains the DWords described here. The
start of each element is spaced 2 DWords apart. The first element of the viewport state array is aligned to a 32-byte
boundary.

DWord Bit Description

0 31:0 Minimum Depth

Project: All

Format: IEEE_Float FormatDesc

Indicates the minimum depth. The interpolated or computed depth is clamped to this value
prior to the depth test.

1 31:0 Maximum Depth

Project: All

Format: IEEE_Float FormatDesc

Indicates the maximum depth. The interpolated or computed depth is clamped to this
value prior to the depth test.

8.3 Other Pixel Pipeline Functions

8.3.1 Statistics Gathering
[DevSNB+]: If Statistics Enable is set in 3DSTATE_WM, the PS_DEPTH_COUNT register (see
Memory Interface Registers in Volume Ia, GPU) will be incremented once for each pixel (or sample) that
passes the depth, stencil and alpha tests. Note that each of these tests is treated as passing if disabled.
This count is accurate regardless of whether Early Depth Test Enable is set. In order to obtain the value
from this register at a deterministic place in the primitive stream without flushing the pipeline, however,
the PIPE_CONTROL command must be used. See the 3D Pipeline chapter in this volume for details on
PIPE_CONTROL.

386 Doc Ref #

Revision History

Revision Number Description Revision Date

1.0 First 2011 OpenSource edition May 2011

§§

