(l n te,l uexperience

what's inside”

Intel® Open Source HD Graphics, Intel Iris™ Graphics, and
Intel Iris™ Pro Graphics

Programmer's Reference Manual

For the 2015 - 2016 Intel Core™ Processors, Celeron™ Processors,
and Pentium™ Processors based on the "Skylake" Platform

Volume 5: Memory Views

May 2016, Revision 1.0

Memory Views

(lntel')') e

what'’s inside

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following
conditions:

e Attribution. You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

¢ No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the 12C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
* Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

i Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Table of Contents

Introduction 1
MEMOTY VIEWS GIOSSAIY ...vevrverrierienriesiiesisssisssisssisss s ssssssss s ssss s s sssssssssssssasssssssasssssssssssasssssssssssssssssssssesans 1
GPU Memory Interface 1
Global Arbitration 2
GFX MMIO - MCHBAR Aperture 2
Graphics Memory Interface Functions 3
Graphics MEMOIY CHENTS ...ttt sttt sttt ss st ss st bbbttt ss st ss st sennen 3
Graphics Memory AddresSing OVEIVIEW..............wierereenesenssesssnns 4
Graphics AAArESS Path ...t s ssss s bbb bbb sas e 4
Graphics MEMOTY Paths ...ttt ettt sttt 5
Graphics MemOry AAIESS SPACEScovrumiirreerieeeisesissssse s sssssssssessssssssssssssssssssssssssssessssssssssssssssssssssnns 6
Address Tiling Function Introduction 7
LINEAI VS THlEA STOTAQE ...veureeerieeieeeiese e ssse s ss sttt st s s bbbt st s s 8
Aucxiliary Surfaces for Sampled Tiled RESOUICESccvwureeeneeineireeeiseeiseeissseisseessseessssessesssssssssssnas 11
HIZ ettt e R 11
CCS ettt e R R R R b 11
IVICS ettt e85 48888 8RR E SRR RS e 12

THIE FOTMALS .ottt sttt enb s 12
THlE-X LEGACY FOIMAL ..ottt ettt sttt et 12
THlE-Y LEGACY FOIMAT ... ittt e e 13
W-MJOT TIlE FOIMAL c.ouveenveeceeeceeeeeieee ittt ettt s sttt et 14

Tl YT FOMMALt .. ettt ettt bbb et 15
THE-Y'S FOIMAT .eurieeieeierceeci ettt ettt e e e e 16
THING AIGOTTENM ..ottt et e sttt 17
Tiled Channel SeleCt DECISION ... eceeierirecriecriecrieesieeiseeise i sissesiseesisessasssssssessssssssisesssessisecsines 31
THING SUPPOI oottt s st sttt 31
Tiled (FENCEA) REGIONS ...ttt sttt ssss st ss st ss s bss s s 31
Tiled SUIACE PAramMELEIS ...ttt ettt sttt e 32
Tiled SUIace RESIIICHIONS ...ttt sttt et s 32
Per-Stream Tile FOIrMat SUPPOIT ...ttt ettt sttt ss s ss st ssss st ssssssssssnnes 34
MBIN IMBIMOTY .ottt ettt et 35
Optimizing Main Memory AllOCAtION ...ttt sess s ss sttt se s sssssenes 35

Doc Ref # IHD-OS-SKL-Vol 5-05.16 iii

(lntel')‘expem

what's inside’
Application of the Theory (Page Coloring)

3D Color and Depth Buffers

Media/Video

Physical Graphics Address Types

Graphics Translation Tables

Virtual Memory
GFX Page Tables

Tiled Resources Translation Tables

Registers for TR-TT Management

Detection and Treatment of Null and Invalid Tiles

TR-TT Modes

Virtual Addressed TR Translation Tables

TR-TT Page Walk

Gen9 Page Table Modes

Gen9 Per Process GTT

Page Tables Entry (PTE) Formats
Pointer to PML4 Table

PML4E: Pointer to PDP Table

PDPE: POINTEI t0 PD TaDI@.....eeeeeeeeeeee e s s een

PD: Pointer to Page Table

PTE: Page Table Entry for 64KB Page

PTE: Page Table Entry for 4KB Page
PPGTT for 32b Virtual Address

WalK With B4KB PAGE ..ottt sttt sens

Walk with 2MB Page

WalK With TGB PAgE .ottt et sttt

PPGTT for Standard Context (64b VA)

WalKk With B4KB PAQE ..ottt sttt ssss sttt ssssssnos

Walk with 2MB Page
Walk with 1GB Page

GENG GlOBAI GTT e e e e e e e eee e ese e ese e ese s esseesssesesessaseseane

Page Table Entry

PG WIK. oottt se st

Legacy mode with 32b VA

Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Page Walk in Legacy mode With 32D VA ...t sesss st ssssssssseens 79
WalK With B4KB PAgE ...ttt sessssssss st st sssnses 81

Page Table ENtry (PTE) FOIMAtS ..ot ssesssesssssssssssssesssss st st ssssssssnsens 82
PDE fOr PAQe TADIE ..ottt ssss st s s ss st ssssssssssnsssnss 82

PTE: Page Table Entry for 64KB Page.......cco..cooivivemrienrieeinsiiessiessiessissssessssssssssssssssssssnnss 83

PTE: Page Table Entry fOr 4KB PAge ...t ssssssssssssssssssssesssness 84
Legacy Mode WIth 48D VA ...ttt ss st sttt st sttt s s sssssnses 85
Page Walk in Legacy 48D IMOME ... ssssssssssss st st st ssssssssesens 85
WalK With BAKB PAgE ...ttt st sttt st sssnses 86

WalKk With 2IMB PAQE ...ttt sttt st sssssssssssssssssssss st sssssssnns 88

Walk With TGB PAgE ..ttt sttt sttt sssss s st st ssss st ssssnns 89

Page Tables ENtry PTE FOIMatS. ...t sesee s i st ssses s s s ssseeens 90
POINEEr t0 PMLA tADIE .couveercci et ssses et ese s 90
PML4E: POINtEr tO PDP Table ...ttt essssessnees 91

PDPE: POINtEr 10 PD TabIE..... oottt sttt st sssssssssssssssess 91

PDPE fOI PD .ot ssss bbb s s e s s e e e e s bbb 92
PDPE fOI TGB PAQE ..ottt ettt e ettt 93
PD: POINTEr 10 PAGE TADIE ..ottt sttt ss sttt st 94
PDE fOr PAQE TADIE ..ottt e ettt 94
PDE fOr 2IMB PAQE ...ttt sttt ssssssssssssssssss st sttt sss s sss s ssss s st st ssssssssnns 95
PTE: Page Table Entry for 64KB Page. ... ssseeesssesssssesssssssesssnees 96

PTE: Page Table Entry fOr 4KB PAge ...t sssssssssssssssssssssssness 97
Advanced mode with 48b VA and IA32€ SUPPOIt.....oeenreerreerneireeirneisseesseesseesssessssssssssssssenes 98
Page Walk in AdVaNCeA MO ...ttt ss s ssseeon 98
WalK With B4KB PAgE ...ttt sssssse s s sans 100

WalK With 2IMB PAgE ..ottt ettt s s ssssssssssssnees 101

WalK WIth TGB PAQE ..ottt sess s s 102

Page Tables ENtry (PTE) FOIMAtS ..o eeseeesessse st sssssssssessssssssessssessssesssssssssssnns 103
POINTEr 1O PMLA 1aDIE ...ttt ssseson 103
PMLAE: POINter t0 PDP Tabl@ ...t 104

PDPE: POINtEr 10 PD TabIE...... ettt st ssssssssesens 105

PDPE fOF PD ..ottt sssssssssss sttt st s sttt 105
PDPE fOI TGB PAQE ..ottt sttt ss e ss sttt st ns s 107
PD: POINter t0 PAge TabIe ...t 108

Doc Ref # IHD-OS-SKL-Vol 5-05.16 v

Memory Views

(lntel')‘expem

what's inside

PDE O PAQE TADIE ..ottt ssss s sttt ss s ss st sessness 108
PDE fOr 2IMB PAQE ...ttt ssssssss s sssssss s ss sttt bbb nsssnns 110
PTE: Page Table Entry for 64KB Page.......ccoc.comrmrinerennreereeeeeseseeesessssssssssssssssssssssssssssens 111

PTE: Page Table ENntry fOr 4KB PAge ... sssessesssssssssssssssnsses 113

GTT CACNE e b e e bt 114
GFX Page WalKEr (GAM) ...t sesesssssess s ssssssssesssssssssssssssssssssssssssssessssessssssssnssssssssssssssassssasess 114
Context Definition for GFX Page WaIKET ... ssssssssssssssssssssnnss 115
Context DEfiNItION DEIIVEIY ...ttt st ssss st ssssssssssssssssssssasssssssssanens 116
Element DESCHIPLOr REGISTEN ...ttt sttt ssssst st sssssss st sssssssssssnsen 117
PDPO/PML4/PASID DeSCriptor REGISTEN ... sssssnns 118

PDP T DeSCriptor REGISTEN ...ttt 119

PDP2 DESCIIPOr REGISTEN . ..coueerceecerectrecee et sssee sttt e sssesssssns 119

PDP3 DeSCriptor REGISTEN ...t 119

List of Registers and Command StrEaMENS.........cocceeermeeerneeereeiireeeneeeseeesseesse s e ssessenes 120
Updating Page Table Pointers (@ka PD LOAd).......ccocomiinmrimmreneierneiirnseennssesssesssssssssssssesssssesnens 122
Page WalKer (GAM) RESEL ...ttt eas s ettt sssessssssssees 123
TLB Caching @and ManagemMENt.......oc.ocuceeeeeereeeseeese e eeseeesse s sssesssessssssssesssssssssssssessssessenes 124
TLB CACNES ..ottt esise ittt b b 126
CONLEXE CACNE = CC .ottt ettt e e e et 126
PASID CaCh@ = PC...ouoiiiiiecieeieriecsiecriecsinecssnessasssse st i sissesisessisssansssanssssnessssesissssssssisecsines 126
Intermediate Page Walk Caches (PML4, PDP, PD) — PWC......cccccoouvnemmrrnnreernecerneeerneeeseeeene 126

TLB = FINAl PAQE ENTIY .ottt ees sttt ss bbb st ssssssssssssssees 127

TLB ENEIY CONTENT coce ettt et st e et 127
TLB Accessed and Dirty FIags......ooereerneeereeeereeeieeiisee e eeseeesse s s s sssse s s s sssssssesens 129
UPAAEING A/D BITS ..ottt sttt sttt sttt ss et et ss s ss s sssssseses 130
REPIACEMENT ...ttt sttt sttt st 135
[NVAlIAALIONS OF TLB.....ooieeieeeieesieeiesiiesiees s ssss s st st sttt st s bbb st st st st 135
OptioNal INVAIIAGTIONS ..ottt ettt sesseees 135
GTT Walk REQUESE POIt (HDQC) c.cceeereeeereeieeississiseisstssisssssssssessnes 136
TLB INVAHAALION .ottt ss bbb bbb st s s sssnessnes 139
Faulting 139
Page FaUItING SUPPOIT ..coueeeeiee ettt ettt s st s s e 139
PAGE FAUIES ..oov ettt ettt 139
PAGE FAUIL IMOES......coieeii sttt b bbb bbb nesnes 140

vi Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Fault and Hang/Crash (LEGACY MOE)covvrreemeeernreerneeerseeiseseisssssessssssssssssessssssssssssssssssssnns 140
Memory Types and Cache INtEIfaCe. ...t 141
Memory Object CONtrol State (MOCS) ...t ssssssss st ssssssssssssssssssssssssssens 141
MOCS REGISTETS ..ottt stssbss s bbb bbb bbb bbb bbb s s s s s ssnssnes 142
L3 CONLIOI REQISTEIS ..ottt sise st ss et sss st sttt st s sss e bbb 142
Memory Interface CoONtIOl REGISTELS ...ttt ssssesssss st sess st s st sssssssnsens 144
HDCL3GAM Change Specific 10 CONEIENT L3 ... sssessaessssssssssssssssnnsses 148
Graphics Cache and MemMOTY INTEITACE ...ttt st st ssseaos 148
Skip Caching iN LLC and @DRAM........ et sesestssstssssss s st sssnses 149
Caching Display SUMaCes iN LLC ...t ssssessssssssssssssssssssssssssssssssssssssnsess 150
Page Walker ACCesS and MEMOIY TYPESovvrinrreneeeneeeseesnsssnsess 151
Page WalKer MEMOTY TYPEScoueeeeeeereeereeese e sssesseesssessssease s st ssssssssss s ssssesssessnsssssssssees 151
EFTOT CASES oottt ssseessse s s e et ettt it it 151
Common Surface Formats 152
NON-VIAEO SUIMACE FOIMALS ..oceerreiiceiieceieetieeeiecsisee i esssessise st esssssess sttt ssssssssens 152
SUIACe FOIMat NGMING .ottt ettt ettt eees 152
INEENSITY FOIMALS oottt ettt sttt 152
LUMINGNCE FOIMALS «.covieicricricriecrieriserise e sisecsisecssseessssesssessssessssesissesssessisessisssenssssnssssnssssnesssens 152
R1_UNORM (same as RT_UINT) and MONOB..........oeeeeeeeeeeeeeeeeeeeeeeeeeeeee e s eeee e eesseeseeen 153
PAlETEE FOMMIALS ...ovneercirircriecricricti ettt sisec i siseesss s ettt it sisees 153
PAAZA _UNORM ...ttt sttt s ssss s ses s s s s ettt et 154
ALPA _UNORM ..ttt ettt et et e s s s et et et 154
PBAB_UNORM ..ottt easeeseiseesisssessssesessssssssssssssses st ssss s sssses st st ssssessssssssssssesssssssessssees 155
ABPB_UNORM ...ttt sttt st st st st nenees 155
PB_UNORM ...ouctieeimeeeimeeeimee i esssesssseessssssssssesesssssesss st s ssss e st s ssssesssssssssssessssssessssees 156
P2_UNORM ...ttt st sttt 156
CompPressed SUIMTACE FOIMALS ...ttt ss st sssssssssssss st sssssss st sssssssnns 156
ETCT_RGBS ...ttt ssses sttt ssss s e85 8 5558 bbb 156
ETC2_RGBB8 and ETC2_SRGBB ...t esssesssssesssse st ssssssesssssestssssssnssessnssees 159

T MNOTE ottt e e 159

H MO ..ottt sttt sttt bbb 162
PlaN@r MO ...ttt et sttt 164
EAC_RTT @and EAC_SIGNED_RTT oottt ittt ssesssesssnes 165
ETC2_RGB8_PTA and ETC2_SRGBB8_PTAreeeeeereetrseereeisetssississsssssssssssssssssssssssssssssssssnnes 167

Doc Ref # IHD-OS-SKL-Vol 5-05.16 vii

(lntel')‘expem

what's inside

Memory Views

DiffEreNtial MO ..ottt sttt sttt 167

T AN H MOGES ..ottt ettt st o 167
PlANEAE IMOTE....cooeeeceiceiceiec vt ese st bbb e bt 167
ETC2_EAC_RGBAS8 and ETC2_EAC_SRGBB_AB.........coomimrireeeeiereeisneeeisseeesssesssssesssse st ssssssssssees 168
EAC_RGTT and EAC_SIGNED_RGTT ...cieeeerereemeeeeseeeessseeessesesssseessssessssssssssesssssssesssssssssssssssnsssssnssees 168
FXT TEXEUNE FOIMATS. ...t sisc e ssseesssessssessssesessesassesasessasessesessassssnssssnesssnesssens 170
OVErVIEW OF FXTT FOIMALS ..occeeureeeeeeeeeeceeeeceeeeeisesessee st sttt ssssssesss sttt sssssssssnas 170
FXT T CC HI FOIMMIAT ettt ee st s s st s e s es st sses s s sessasassenssnsaens 170
CC_HI BIOCK ENCOAING ..ottt ssss s ssss s s s sasssssssans 171
CC_HI BlOCK DECOTING ..o viureeereerriieriiesiiesissnssssssssness 171
FXTT CC_CHROMA FOIMAL .ottt ssss s ssss s s sasssans 172
CC_CHROMA BIOCK ENCOAING ..ouvvtrrierciieiieeimeeiseeisecesseeesseeesssssss s e sssssssssessssssssssssssssssesssees 172
CC_CHROMA BIOCK DECOAING ..o riurieriinrieneisreisseisssness 173
FXTT CC_MIXED FOPMAL ...ttt sseeass st s ss s et 174
CC_MIXED BIOCK ENCOING w..ourivrriiriieriiesiissiieeisssissnasssnsssaness 174
CC_MIXED BIOCK DECOAING ..ourverreirrieeieeeiieeiseeiseeisecesseeasse e sssse e ssssessssssssssssesssees 175
FXTT CC_ALPHA FOIMAT .ottt st s ss b et 178
CC_ALPHA BIOCK ENCOAING .ourrierriirieeeiiesisssisseissnsssssssssess 178
CC_ALPHA BlOCK DECOMING ..ouveerreerrieeieeeiseeeseeiseeisseeessessssesssssssssssssss s s ssssssssesssessssesssssssanees 179
DXT/BCT-3 TEXUrE FOIMALSoueieiecicrcecrcieciecieciecieciecissassssesisestsesssesssesssesssesssesssesssesssesssesssens 181
Opaque and One-bit Alpha Textures (DXTT/BCT) ... reneneiesisesississiessssssssssssssnsssnns 182
Opaque Textures (DXTT_RGB) ...t sseeese e sssessesesssesse e sssessesessees 184
Compressed Textures with Alpha Channels (DXT2-5 / BC2-3)cccounmenmennrenneenneeneeerseirneennns 184
BCA oottt ettt RS RR R R RS R R R E bR 187
BC5 ettt e R R 188
BCBH ..ottt etttk R8RSR RS R 190
FIEIA DEFINITION c..eoieereee ittt ss sttt s bbbttt 190
ENAPOINt COMPULATION w..ovreeeeeeeee ettt ettt ettt 202
Palette Color COMPULALION ...ttt 203
TEXEI SEIBCHION ettt et st 204
ONE IMOAE ettt e et nsees 204
TWO MOttt ess st e bbb 204
BT ettt ettt stk SRR R R RR £ R RS RS R £ R £ R R S R AR 205
FIEIA DEFINITION ..ottt sttt s bbbt st 206

viii

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

ENAPOINt COMPULATION «..ovveereeeeeee ettt st st ss s ssss st ettt sssts 211
Palette Color COMPULALION ...ttt bbb 211
TEXEI SEIBCLION wcoureereieict ittt bbbt b 212
OINE MOGE ..ot eai s e sttt s bbb 212
TWO MO ..ottt ees et ss et s bbb 213
THREE MOttt s esisssssise st sssssssssss s sttt sssssssssss st sssnsssssssssneses 215
Adaptive Scalable Texture ComPression (ASTC)coririnrinsississsssssssssssssssssssssssssssssssssssens 217
ASTC FUNABMENTAISoooreiceiercriecrieceieesisec s ssese it esessessse st sssesssssse it ssssesssinaes 217
BaACKGIOUNG....ooieiei ettt sttt sttt sttt 217
New Surface FOrmats for ASTC TEXEUIEcccuuceueeceeeeiecrisecsiiesesiseeesiseesessessssesssssesesssssssens 219
ASTC File Format and Memory LayOUL........orinrennrinesiseesssisesssssssssssssssssssssssssssssssssssens 223
ASTC Header Data Structure and AMENdMENtccvueueeenecenneeereeeireeieseeeeseeesseeesseeesseeens 223
Data Layout in ASTC COMPIeSSION File ... siessisssssssssssssssssssssssssssssenns 224
Total ASTC Data Block Layout in All Mipmap LEVEIS ... 225
Data Layout in Memory for All Mipmap LEVEIS......... s sesssssssesssenns 225
ASTC DAta STTUCTUTE ..ottt sttt sise ittt bbb 228
Layout and Description Of BIOCK Data ... eesecesseeesssessssseesenns 228
PAITITIONING ceoeeeeieci ittt ettt sttt e bt e bbbttt 228
INAEX MOttt e e bbbttt 228
INAEX PLANES ...ttt sasesssse st st it ssssson 231
INAEX INFIll PrOCEAUIE ..ottt sttt 232
COlOr ENAPOINT MOAE ... s s s 232
Color Endpoint Data Size Determinationeeesinsinseeneeenseesesssesesesesssssssesssssnes 235
VOIA-EXEENT BIOCKS ..ottt ettt sttt 236
DECOAING PrOCESS ..ottt ssss s e e 236
OVErVIEW DECOAING FIOW ..ottt sssse s ss e sas s ssnees 236
Integer SEQUENCE ENCOAING ...ttt ssse et st ss st ssssssssssenes 239
ENdpoint UNQUANTIZAION ..ottt ssse s ssssssssss st ssssssnos 240
LDR ENAPOINt DECOAING w.ourverrerreriereieeiieieeiesseeseis e sesssneses 241
HDR ENAPOINt DECOAING ...uuvuririiriereceeiieeieeie e eis e sesssssssssesssneses 244
HDR Endpoint Mode 2 (HDR Luminance, Large Range)cowoenmeeermreeneeeeneeesneeennenens 245
HDR Endpoint Mode 3 (HDR Luminance, Small Range)cccccoecovromrrniernrerneerncirnsinnenn. 245
HDR Endpoint Mode 7 (HDR RGB, Base+SCale).........ccouwwumrermmreemreenseeessseessssssssesessnnens 246
HDR Endpoint Mode 11 (HDR RGB, DIiF€Ct)coocccuneuumreemeereneerereeesseeessssessssessssesessneens 249

Doc Ref # IHD-OS-SKL-Vol 5-05.16 iX

Memory Views

(lntel')‘expem

what's inside

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha)ccccoveceumecrmnecemneceinecerneeens 251

HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha)ccoovvvmervvrerrrreneriseririenns 252
Restrictions on Number of Partitions Per BlOCK ... 253

INAEX DECOAING ..ottt sttt sttt se s ss st ss st ss st st ss st ss st s snnen 253

INAEX UNQUANTIZALION. ...ttt bbb s bbb 253

INTI] PrOCESS .ottt sttt st ss bbb 254

INAEX APPHCALION ..o e 256
DUAI-PIaNe DECOTING ..ot st ssss st sssssssessssssssssss st s sssssssssssssssssnsens 257

Partition Pattern GENEIatioN. ... ssseesssessss s st sssessenes 257

Data Size DeterMiNationrcrecrecriermieriesisesissesisecsiseesiseessneessnsssssesssessscsisesisecsenes 259

3D VOIA-EXLENE BIOCKSooumeeeniiirceinciimeceiiecieiecsiseesieessssessssssessisesssssessssssssssssessssesssssesessnsssens 260

[1€GAI ENCOQINGS ...vverrierrieiiee et esse ittt st sttt 260
PrOTIE SUPPOI oottt ss st s bbbttt 261
VidEO PIXEl/TEXEl FOIMALS oottt sss sttt st st sseees 262
Packed MemMOry OrganiZatioN..........cwinreenesensisssnesssssssssess 262
Planar MemOry OrganiZatiON. ... ceeeeeeerneeeeeeeeeeeeesssesssseaseessessssesssesssssessssssssssssssessssesssessssessssees 263
RAW FOMMAT .. iiiiriieiciiieiei ettt sttt e s b e e e e e 265
Surface MemMOrY OrganiZatiONS ... ssssssssssssssssessssssssssss st sssssssssssssssssssssssssnsess 265
Display, OVerlay, CUIrSOr SUMACES ..ottt essse st sssssssessssssesssssesens 265
2D RENET SUIMACESoomveerceireceieciieee it ass st bbb bt 265
2D IMONOCAIOME SOUICE ...ttt ettt et 266
2D COlOr PALEIMN .ottt sasssbse s i it ittt eten 266
3D Color Buffer (Destination) SUITACES ... sssessassassasssssases 266
3D DEPLh BUFFEI SUMACES. ...ttt ssss s ssss s s s s s sass s s s e sans 267
3D Separate StenCil BUFFEr SUIACES........cooverierese sttt st st ssssss s ssssnses 267
SUIface Layout @Nd TilING ...t sss st e 268
MaximumM SUMACE SiZE IN BYLES ...ttt sssssssssssssssss st ssss st sssssssssssssnsses 268
THIING ettt et et 268
TYPEA BUIFEIS oottt bbbttt sttt 269
IVIIP L@YOUL .ot csssse st e s b b b 270
RAW (UNTYPEA) BUFTEIS ...ttt sttt sttt sees 271
SETUCLUIEA BUTFEIS oottt sttt st 271
TD SUIMACES ..ottt bbbt 271
Tiling and Mip Tail fOr TD SUIMACES. ...t ss st ssssssssses 272

X Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

1D AlIgNMENT REQUIFEMENTSceereeieeeeeeeeeeeeseies st ssesssesssessssssssess sttt sssss st ssssssnsens 273

2D SUITACES ..ottt et st bbb 274
Calculating TEXEl LOCALION ..t ssse s ssssssssssss st st ss st st ss s ssnssssnsens 275
Tiling and Mip Tails fOr 2D SUMACES ..o sssessssesssse s sssssssssssssssssssses 277
2D/CUBE AlIigNmMent REQUIFEMENTvvurrireiereeeieeiesiesisesssissesssessnss 280
MUItISAMPIEA 2D SUIMACES ..ottt sss s s sttt st ses 280
Interleaved Multisampled SUIMACES ...t 281
Compressed Multisampled SUMACES ... sssssssssssssssssessness 281
Uncompressed Multisampled SUIMACES ... ssssssssssssessssssssessenns 283
QUITEA TEXLUIES oottt esise it et ssss sttt bbb 283
CUDE SUMACES «.oorveereietie ettt esi st bbb e b 284
3D SUITACES «.eoreerceee ettt stk e e bt 286
Tiling and Mip Tails fOr 3D SUMACES ... ssssssss st sss st ssssssssssssens 288

3D AlIgNMENt REGUITEMENTSouveeereecerecerecte e isse et ettt st ss s ssse s ssssssssees 291
Surface Padding REQUITEIMENTS ...t ssss st sttt ssssssss s sssssssssssnsses 292
AlIGNMENT UNIE SIZE ettt sese sttt sttt et 292
AlIGNMENT PAraMELETS ..ottt sttt e 292
SAMPIING ENGINE SUIMACES...... ettt se sttt st st st ssssssssss s st sesssnss 292
Render Target and Media SUIMACES ...ttt eeseeseees 293
Device2 PASID Capability Structures 294
PASID Extended Capability ..ottt st ss s sssssseeens 294
PASID Extended Capability HEAAEN ...ttt stsssssessssssssssssssnnes 294
PASID Capability REGISTEN ...ttt eess s ssessss s sessssssss st sssssssssssssssssnnes 295
PASID CONEIOI REGISTEN .c.ouveeereereeeeeee ettt asseeas sttt sttt eees 296
ATS EXtENAEA CAPADIITY weoveeeeeeceeieeceecie ettt ettt sttt sttt et st ss st ns s nnes 296
ATS Extended Capability HEATEN ...ttt 297
ATS CAPADIIILY REGISTEN ..ottt s e s s 297
ATS CONEIOI REGISEEN c.ovveereeeeeee ettt ettt sttt 297
Page Request Extended Capability ...t ssss s sasssans 298
Page Request Extended Capability HEAAEN ...t sesssesssasseees 298
Page ReqUEST CONLIOI REGISTET ...ttt et st ss s sssssss s sssssees 298
Page ReqUEST STatUS REGISTEN ...ttt sttt sttt sttt sss s st ssssnes 299
Outstanding Page REQUEST CAPACITYcvreureereerierereereeiee e eeseeesseetsse s et st ssssssssssssssssnsens 300
Outstanding Page Request AlIOCATION ... 300

Doc Ref # IHD-OS-SKL-Vol 5-05.16 Xi

Atomics for Page Table Updates (MSQD)

Atomic Operations between GPU and IA

Xii

experience
what's inside’

Implementation

Atomic_Page_update_0000:
Atomic_Page_update_0001:
Atomic_Page_update_0010:
Atomic_Page_update_0011:
Atomic_Page_update_0100:
Atomic_Page_update_0101:
Atomic_Page_update_0110:
Atomic_Page_update_0111:
Atomic_Page_update_1000:
Atomic_Page_update_1001:
Atomic_Page_update_1010:
Atomic_Page_update_1011:
Atomic_Page_update_1100:
Atomic_Page_update_1101:
Atomic_Page_update_1110:
Atomic_Page_update_1101:

Atomic_A_update_001:

Atomic_A_update_0T0: ..o

Atomic_A_update_011:

Atomic_A_update_100:

Atomic_AD_update_TOT: ..o

Atomic_AD_update_110:

Atomic_AD_update_T1T: oo

... 316

... 317

318

Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what'’s inside’
Introduction
The hardware supports three engines:

e The Render command streamer interfaces to 3D/IE and display streams.
e The Media command streamer interfaces to the fixed function media.
e The Blitter command streamer interfaces to the blit commands.

Software interfaces of all three engines are very similar and should only differ on engine-specific
functionality.

Memory Views Glossary

Term Definition
IOMMU I/0 Memory Mapping unit
SVM Shared Virtual Memory, implies the same virtual memory view between the |IA cores and
processor graphics.
SKL SkyLake CPU/GFX platform. 9th generation processor graphics (Gen9)
Page Walker GFX page walker which handles page level translations between GFX virtual memory to physical
(GAM) memory domain.

GPU Memory Interface

GPU memory interface functions are divided into 4 different major sections:

¢ Global Arbitration

e Memory Interface Functions

e Page Translations (GFX Page Walker)
¢ Ring Interface Functions (GTI)

GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The
following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces and
page translations and page walker functions.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 1

(lntel')‘expem

what's inside

Global Arbitration

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses
from different stages of the pipeline are consolidated to a single interface towards GT's connection to
CPU's ring interface.

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels.

Programming Note

Context: Global Memory Arbitration

Gen9 arbitration allows 4 levels of arbitration where each pipeline level can be put into these 4 levels. Each
consolidation stage simply follows the 4-level arbitration with grace periods to allow ahead of the pipeline to get a
higher share of the memory bandwidth.

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases
major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace
period where its accesses are counted against a global pool. If a particular engine (or pipeline stage)
exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based prioritization.
Once all counts are expired, the grace period completes and resets.

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring
the pipeline order.

GFX MMIO - MCHBAR Aperture

Address: 140000h — 147FFFh
Default Value: Same as MCHBAR
Access: Aligned Word, Dword, or Qword Read/Write

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write
registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers
defined within the MCHBAR space are preserved when the same registers are accessed via this space.
Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal
Sensor, etc.

The Alias functions work for MMIO access from the CPU only. A command stream load register
immediate will drop the data, and the store register immediate will return all Zeroes.

Graphics MMIO registers can be accessed through MMIO BARs in function #0 and function #1 in Device
#2. The aliasing mechanism is turned off if memory access to the corresponding function is turned off via
software or in certain power states.

2 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’

Graphics Memory Interface Functions

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various
client functions access to “graphics” memory used to store commands, surfaces, and other information
used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics

memory is accessed.

Information not presented in this chapter includes:

e Microarchitectural and implementation-dependent features (e.g., internal buffering, caching, and
arbitration policies).

e Ml functions and paths specific to the operation of external (discrete) devices attached via external

connections.

e Ml functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional
“chipset functions”

e GFX Page Walker and GT interface functions are covered in different chapters.

Graphics Memory Clients

The MI function provides memory access functionality to a number of external and internal graphics
memory clients, as described in the table below.

Graphics Memory Clients

Ml Client

Access Modes

Host Processor

Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses

External PEG Graphics
Device

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture. (This
client is not described in this chapter).

Peer PCl Device

Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DMI
access to Graphics registers is not supported.

Coherent Read/Write
(internal)

Internally-generated snooped reads/writes.

Command Stream
(internal)

DMA Read of graphics commands and related graphics data.

Vertex Stream
(internal)

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed
Function.

Instruction/State
Cache (internal)

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions
executed by the EUs.

Render Cache
(internal)

Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D,
MPEG, etc.) Read of render surface state.

Sampler Cache
(internal)

Read of texture (and other sampled surface) data stored in graphics memory.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 3

(intel)‘emem

what's inside’
Ml Client Access Modes
Display/Overlay Read of display, overlay, cursor and VGA data.
Engines (internal)
Media Engines Read and write of media content and media processing.
uController Read/Write (DMA) functions for u-controller and scheduler.

Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory
addresses of various types, performs a number of optional operations along address paths, and
eventually performs reads and writes of graphics memory data using the resultant addresses. The
remainder of this subsection will provide an overview of the graphics memory clients and address
operations.

Graphics Address Path

Graphics Address Path shows the internal graphics memory address path, connection points, and optional
operations performed on addresses. Externally-supplied addresses are normalized to zero-based
Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled address
(based on inclusion in a fenced region or via explicit surface parameters), address tiling is performed. At
this point the address is considered a Logical Memory address, and is translated into a Physical Memory
address via the GTT and associated TLBs. The physical memory location is then accessed.

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped
cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory aperture.

4 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Graphics Memory Paths

= CPU JEX. Gix Device
Device 2 PCI Graphics
Memory Range
GM Range Offzet
Femoval
Graphics Graphics Mempr-capable Intemal
Merary FunctionsiCaches
Address
(0-based)
(Tiled Addres=s)‘ E Fence Registers
Determination Surface Parameters
t ¥
Logical - .
Memory | Addre=sz Tiling Logic |
Address —
(0-based)
X Physical Address-bazed
Logical Memary T resz-das
Mapping TLBs Irtemal Fundions
L3
Snoop Physical
Logic Mernary FFn‘atTEh
I - Address
I ¥
Main oTT
hemory

(intel

experience
what's inside’

The remainder of this chapter describes the basic features of the graphics memory address pipeline,
namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation
considerations.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

(lntel')‘expem

what's inside

Graphics Memory Address Spaces

The Graphics Memory Address Spaces table lists the five supported Graphics Memory Address Spaces.
Note that the Graphics Memory Range Removal function is automatically performed to transform system
addresses to internal, zero-based Graphics Addresses.

Graphics Memory Address Types

Address
Type Description Range Gen9 (BXT)
GMADR |Address range allocated via the Device 2 (integrated graphics | Thisis a4 GB BAR |128 MB, 256
device) GMADR register. The processor and other peer (DMI) above physical MB, 512 MB,
devices utilize this address space to read/write graphics data memory. 1GB, 2GB, 4GB
that resides in Main Memory. This address is internally
converted to a GM_Address.
GTTMMADR The combined Graphics Translation Table Modification Range This is a 16MB BAR 16 MB
. above physical

and Memory Mapped Range. The range requires 16 MB (2 MB MMIO +
combined for MMIO and Global GTT aperture, with 8MB of that memory. 6 MB reserved
used by MMIO and 8MB used by GTT. GTTADR will begin at + 8 MB GGTT)
GTTMMADR 8MB while the MMIO base address will be the
same as GTTMMADR.
For the Global GTT, this range is defined as a memory BAR in
graphics device config space. It is an alias into which software is
required to write Page Table Entry values PTEs. Software may
read PTE values from the global Graphics Translation Table GTT.
PTEs cannot be written directly into the global GTT memory
area.

GSM GTT Stolen Memory. It is an 8 MB (max) region taken out of Th'? 1S ?n 8 MB 1MB, 2 M8, 4

) . region in physical |MB, 8 MB
physical memory to store the Global GTT entries for page .
. - . memory not visible

translations specific to GFX driver use. t0 OS
It is accessible via GTTMMADR from the CPU path however
GPU/DE can access the same region directly.

DSM Data stolen memory, the size is determined with GMS filed (8 This is a max Of,4 0 MB, 32 MB,

. . . GB stolen physical |64 MB, 96 MB,
bits) with MAX size of 4 GB.
memory for GFX ..4096MB

This is a stolen memory which can be accessed via GMADR for
CPU and directly for GPU/DE.

Size is programmable with 32 MB multiplier.

First 4KB of DSM has to be reserved for GFX hardware use.

data structures.

Next level breakdown for GTTMMADR is given below.

Software is allowed to use range x17_0000 to x17_FFFF as the Null range.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Address Tiling Function Introduction

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,
certain functions within the graphics device support the storage/access of the operands using alternative
(tiled) memory formats to increase performance. This section describes these memory storage formats,
why and when they should be used, and the behavioral mechanisms within the device to support them.

Legacy Tiling Modes:
e TileY: Used for most tiled surfaces when TR_ MODE=TR_NONE.

o TileX: Used primarily for display surfaces.
o TileW: Used for Stencil surfaces.

Programming Note

Context: Address Tiling Function

Tiled Resource Tiling Modes

o TileYF: 4KB tiling mode based on TileY
o TileYS: 64KB tiling mode based on TileY

These modes are based on 4KB and 64KB tiles. The 64KB tile is made up of a 4x4 matrix of 4KB tiles. The 4KB tiles in
general have a different layout as compared to the legacy modes, with the sub-mode defining the layout within the
4KB tile. The sub-modes are determined by the bits per element of the surface format. The Tiled Resource Mode
field in SURFACE_STATE is used to select the new modes.

Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile modes). For
1D surfaces, the base address must be 64KB aligned if Tiled Resource Mode is TRMODE_64KB, and 4KB aligned

if Tiled Resource Mode is TRMODE_4KB. An exception to this tile alignment is when a SURFACE_STATE describes a
single MIP within the MIP Tail of another surface, using a 64-bit or 128-bit Surface Format—then Surface Base
Address can refer directly to the given MIP (e.g. to write to a non-renderable Surface Format by re-describing as
an alternative surface).

Doc Ref # IHD-OS-SKL-Vol 5-05.16 7

(lntel')') e

what'’s inside

Linear vs Tiled Storage

Regardless of the memory storage format, “rectangular” memory operands have a specific width and
height, and are considered as residing within an enclosing rectangular region whose width is considered
the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must
have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly with
the surface). Rectangular Memory Operand Parameters shows these parameters.

Rectangular Memory Operand Parameters

Fegion Start)
Address la Pitch ol
[~ l
K »
Enclosing Region
! v A
Surface Start
Address =
Surface =4
=
+
P Width .
BEE20-01

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the
operand is stored in sequentially increasing memory locations. If the surface width is less than the
enclosing region’s pitch, there will be additional memory storage between rows to accommodate the
region'’s pitch. The pitch of the enclosing region determines the distance (in the memory address space)
between vertically-adjacent operand elements (e.g., pixels, texels).

8 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ [ntel)
experience

what's inside’
Linear Surface Layout

Pitch

Y

Endosing Region

R
Increasing ;éé;4;4;4;4;4;4;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;¢;:; % o

i S S S S S S S S S S S S5 505

Linear Memory i
Addresses I I

o L T T L
oL, o
b P L S
e KL PA R E

£ R B B R B R e R R

A

BEs91-01

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface
where each scanline is read sequentially). Here the fact that one object element may reside in a different
memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally-
adjacent elements are stored contiguously. However, when a device function needs to access a 2D
subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2
texel block for bilinear filtering), having vertically-adjacent elements fall within different memory pages is
to be avoided, as the page crossings required to complete the access typically incur increased memory
latencies (and therefore lower performance).

One solution to this problem is to divide the enclosing region into an array of smaller rectangular
regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same
physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile
and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows
high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the
dimensions of tiles are irrespective of the data contained within — e.g., a tile can hold twice as many 16-
bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels).

Doc Ref # IHD-OS-SKL-Vol 5-05.16 9

(lntel')') e

what's inside
Memory Tile Dimensions

X Tile Dimensions Y Tile Dimensions

Tile = 4K Bytes

Tile = 4K Bytes

MO 3
SMOY oE——————

e S1oBytes 4

h J

Lli 128 E-'g.-'tES—I-l

BE&SZ-01

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled
region are stored sequentially in memory in row-major order.

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a
pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles —
the surface is not necessarily aligned or dimensioned to tile boundaries.

Tiled Surface Layout

Tiled Region
-t Fitch = 8 tiles = 8% 512B = 4 KB }i

S| Tilz 0 Tile 1 Tile 2 Tile 3 Tile 4 Tile & Tile & Tile 7

Tile & Tiles | Tiledd | Tile11l | Tile 12 | Tile 13 Tile|14 Tile 15

Tile 16 | Tile 17 | Tile 18 | Tile 19 | Tile 20 | Tile 21 | Tile 22 [Tile 23

Tile 24 | Tile 25 | Tile 26 | Tile 27 | Tile 28 | Tile 29 | Tile™30 | Tile 31

Tile 32 | Tile 33 Y Tile 34 [Tile 35 | Tile 36 | Tile 37 | TileBg | Tile 39

Tiledd | Tiledl | Tile 42 | Tile 43 | Tile 44 | Tile 45 | Tilepe | Tile 47

Tile 4d | Tiled9 | Tile 50 | Tile 51 | Tile 52 | Tile 53 TiIﬂSS Tile 55
=

Tile 56 | Tile 5 Tile 58 | Tile 59 | Tile 60 | Tile 61 | Tile 62 | Tile 63

Tiled Surface —
BEES3-01

10 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

Auxiliary Surfaces for Sampled Tiled Resources

For surfaces which are defined as Tiled Resources (TileYs or TileYf format), there may be auxiliary surfaces
which are associated with the surface (e.g. HiZ, CCS or MCS). These auxiliary surfaces, while actually not
defined as TileYs or TileYf will behave like tiled resources from the hardware perspective. It is possible
for software to map and unmap tiles of auxiliary surfaces as tiles of the associated surface are mapped
and unmapped. Below is a description how sampling to the mapped/unmapped tile resources is
handled for the associated auxiliary surface. Normally, sampling unmapped tiles will return a NULL
response to the requesting agen.

HizZ

A tile of HiZ data must be mapped to memory whenever any depth surface (Z) pixels associated with the
HiZ tile are mapped. When all Z pixels associated with a HiZ tile are unmapped, the HiZ tile may be
mapped or unmapped. Below is a table showing the responses for sampling to mapped and unmapped
depth surfaces.

Responses for Sampling to a Depth-Surface Tiled Resource

Depth Surface Mapping | HiZ Surface Mapping Sample Response
Mapped Mapped Normal Sample Response
Mapped Unmapped Undefined

Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)
will indicate the depth pixel is Null.

CcCs

A tile of CCS (Color Control Surface) must be mapped to memory whenever color surface pixels
associated with the CCS tile are mapped. When all color pixels associated with a CCS tile are unmapped,
the CCS may be mapped or unmapped. CCS is used to indicate that the color surface is losslessly
compressed. Below is a table showing the responses for sampling to mapped and unmapped.

Responses for Sampling to a Losslessly Compressed Color Surface That is a Tiled Resource

Color Surface Mapping | CCS Surface Mapping | Sample Response
Mapped Mapped Normal Response
Mapped Unmapped Undefined
Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)
will indicate the depth pixel is Null.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 11

(intel"emem

what's inside

A tile of MCS (Multi-Sample Control Surface) must be mapped to memory whenever MSAA surface pixels
associated with the CCS tile are mapped. When all MSAA pixels associated with a MCS tile are
unmapped, the MCS may be mapped or unmapped. Below is a table showing the responses for sampling
to mapped and unmapped.

Responses for Sampling to MSAA Tiled Resources

MSAA Surface Mapping [MCS Mapping| Sample Response
Mapped Mapped Normal Response
Mapped Unmapped Undefined Response
Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)
will indicate the depth pixel is Null.

Tile Formats

Multiple tile formats are supported by the Gen Core. The following sections define and describe these
formats.

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the
RENDER_SURFACE_STATE.

Tile-X Legacy Format

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following
figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords. The
selection of tile direction only impacts the internal organization of tile data, and does not affect how
surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a
linear fashion.

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE
to XMAJOR.

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the organization
of texels in memory.

12 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Tile X-Tile (X-Major) Layout

(lntel)) e

what's inside’

¥-Major Tile
i: 32 168 OWord Columns }.:i
2 2y iy iy 1yl iy
o 1 2 29 a0 31
oW | oW | O . oW | Ow | Ow
32 33 34 Gl oe a3
(un}
A
% [] |
| | | |
[] |
oW | oW [ow .u ow | ow | ow
224 225 226 253 254 235
BE5a4-01

Tile-Y Legacy Format

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as
shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection
of tile direction only impacts the internal organization of tile data, and does not affect how surfaces map

onto tiles.

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to

YMAJOR.

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout

of pixels.
Y-Major Tile Layout

Y-Major Tile

riiEl 168 Ovvord Column5—>1

+ o] o] 21y 214y
u] 32 192 224
- Em
0] U] ol Q1Y
1 3z 193 225
()
ra
_73 - -
[m} - [
LE = -
o] o] amm 214y 214y
+ 31 63 223 255

Doc Ref # IHD-OS-SKL-Vol 5-05.16

B &&S5-01

13

(intel") e

what'’s inside

W-Major Tile Format

The device supports additional format W-Major storage of tile data units, as shown in the following
figures. A 4KB tile is subdivided into 8-high by 8-wide array of Blocks for W-Major Tiles (W Tiles). Each
Block is 8 rows by 8 bytes. The selection of tile direction only impacts the internal organization of tile
data, and does not affect how surfaces map onto tiles. W-Major Tile Format is used for separate stencil.

Tile-W surface format is selected by programming the Tile_Mode field in the RENDER_SURFACE_STATE to

WMAJOR.
W-Major Tile Layout

ad
|

8 8B Blocks

v

Bk0

Blk8

Blk1

Blk9

8 8Row Blocks

I T

Blk15

Blk48 | Blk56

Blk49 | Blk57

BIk55 | Blk63

W-Major Block Layout

4
hJ

8B Block

BO

B

B5 | B16

B17

B20

B21

B2

B3

B6

B7 | B18

B19

B22

B23

B8

B9

B12

B13 | B4

B25

B28

B29

8Row Block B10

B11

B14

B15 | B26

B27

B30

B31

B32

B33

B36

B37 | B48

B49

B52

B53

B34

B35

B38

B39 | B30

B51

Bo4

B55

B40

B

B44

B45 | B56

B57

B60

B61

B43

B46

B47 | B58

B59

B62

B63

14

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Tile-Yf Format

(intel

experience
what's inside”

Tile-Yf is a 4K-Byte tile format (similar to Tile-Y), but organized in a different manner. Tile-Yf is selected
by programming the Tile_Mode field in the RENDER_SURFACE_STATE to YMAJOR and the
Tiled_Resource_Mode to TILEYF. The diagram below shows how pixels are mapped into the TileYf format
for 2D surfaces, and it uses 32Bpp (bits per pixel) surface format as an example on a 2D surface which is
N tiles wide and m tiles high. The exact aspect ratio will be dependent on the Bpp of the surface. Note
that the TileYf format is identical to the TileYs up to the 4K-Byte tile size.

2D Tile Layout for TileYf

32 bpp example

3,0 2,0 10 0.0 The 64 Byte block
- is always 4-high
64-Bytes 3,1 2,1 Al 0.1 | Width (in pixels) is
32 [22 | 12 | 02 defiaby e
3.3 2,3 1,3 0,3
| g
| e
| A
| Pld
| o
The 256-Byte Block 8, 32 and 128 bpp cases
is always end of up being 1:1, 16
0 2 compnsed of 4 64- and 64 are 2:1
~"| Byte blocks,
Aspectratio is
ZSS-BYQGS always 1:1 or 2:1
1 3 —
| /
| /
| /
| /
| /
/
| /
/
| /
|
The ax tile s In Bytes, only the 8-bit is
0 2 10 “'W"g‘ axa (1ﬁ square, the others end up
256-byte blocks). peing 4:1 or 16:1 apsect
4K-Byte Tile Actual aspect ratio atjas
1 3 11 "] in pixels Is 1:1 for
8,32 and 128 bpp,
4 6 12 | 14 Itis 2:1 for 16 and
64 bpp,
5 (7 |13 |15
|
|
| /’
‘I 7
/
! /
| /
| /
| /
| /
Vi
1 2 3 N-1
The surface is
composed as an
N+l N+2 N3 2N-1 mXN array of 4K
see Tiles (TileYr)
arranged In X-
Major fashion.
2N+1 2N+2 2N+3 3N-1
-
-
-
(m- (m- (m-
m-1)N mN-1
{ms) 1N | 1)(Ne2) | 1)(Ne3)

Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside”

(intel

Tile-Ys Format

TileYs is a 64K-Byte tile size. It is enabled by programming the Tile_Mode field (in
RENDER_SURFACE_STATE) to YMAJOR, and programming the Tiled_Resource_Mode to TILEYS. Itis
organized as shown below, and is composed of 4KByte blocks which have identical layout to the TileYf
format. The diagram below shows how pixels are mapped into the TileYs format, and it uses 32Bpp (bits
per pixel) surface format as an example on a 2D surface which is N tiles wide and m tiles high. The exact
aspect ratio will be dependent on the Bpp of the surface.

Tile-Ys Layout

32 bpp example

3.0 2.0 1.0 9.0 The 64 Byte block
is alwiays 4-high
3,1 21 11 0,1 =
’ Easa T L Bl | Width (in pixels) is
64 thes 3,2 2.2 1.2 0.2 defined by bpp
5,3 2,3 1.3 0,3
| -
\ -
| -
L
The 256-Byte Block 8, 32 and 128 bpp cases
Is always end of up being 1:1, 16
o 2 comprised of 4 64- gnd 64 are 2:1
Byte blocks
N Aspect ratio is
256-Bytes always 1:1 or 2:1
1 3
I /
} /
’
/
’
: ¥
/
/
/
The aK tile Is In Bytes, only the 8-bit is
o 2 8 10 always 4%4 (16 square, the others end up
256-byte blocks) being 4:1 or 16:1 apsect
4K-Byte Tile Actual aspect ratio ratios.
1 3 9
8,32 and 128 bpp
a4 6 12
64 bpp.
5 7 13
I P
I 7z
\ 7
A
J
P
The GaK tle In Bytes, only the 8-bit iy
64K-Byte o 2 8
Tile byte blocks) being 4:1 or 16:1 apsect
Actual aspect ratio ratios.
(TileYs) 1 (3 (9
8,32 and 128 bpp
a 6 12
64 bpp.
S 7 13
\ . 7
' ¢
’
: /
/
/
/
/
1 /
/
‘
1 2 3 N-1
The surface is
composed as an
e o Nia IN-1 mXN array of 64K
R Tiles (Tileys)
arranged In X
Major fashion,
2N 2N+1 2N+2 2N+3 3N-1
-
-
-
(m- (m- (m-
m-1)N mN-1
(m:3) 1)(N+1) 1)(N+2) 1)(N+3)

16

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views qlﬂtél)
experience

what's inside

Tiling Algorithm

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics
memory to an address in logical space.

The following new modes are supported for Tiled Resources (TR_MODE != TR_NONE) defined to enable
tiled resources.

For more details about Mip Tails, see Surface Layout and Tiling in the Common Surface Formats section.

e TileYF: 4KB tiling mode based on TileY
e TileYS: 64KB tiling mode based on TileY

Inputs:
LinearAddress (offset into regular or LT aperture in terms of bytes),
Pitch (in terms of tiles),
WalkY (1 for Y and 0 for X)
WalkW (1 for W and 0 for the rest)

Static Parameters:
TileH (Height of tile, 8 for X, 32 for Y and 64 for W),
TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W)
TileSize = TileH * TileW;
RowSize = Pitch * TileSize;

If (Fenced) {
LinearAddress = LinearAddress - FenceBaseAddress
LinearAddrInTileW = LinearAddress div TileW;
Xoffset inTile = LinearAddress mod TileW;
Y = LinearAddrInTileW div Pitch;
X = LinearAddrInTileW mod Pitch + Xoffset inTile;
}

// Internal graphics clients that access tiled memory already have the X, Y
// coordinates and can start here

YOff Within Tile = Y mod TileH;

XOff Within Tile = X mod TileW;

TileNumber InY = Y div TileH;

TileNumber InX = X div TileW;

TiledOffsetY = RowSize * TileNumber InY + TileSize * TileNumber InX +
TileH * 16 * (XOff Within Tile div 16) +
YOff Within Tile * 16 +
(XOff Within Tile mod 16);

TiledOffsetW = RowSize * TileNumber InY +
TileSize * TileNumber InX +
TileH * 8 * (XOff Within Tile div 8) +

64 * (YOff Within Tile div 8) +

32 * ((YOff Within Tile div 4) mod 2) +
16 * ((XOff Within Tile div 4) mod 2) +
8 * ((YOff Within Tile div 2) mod 2) +

Doc Ref # IHD-OS-SKL-Vol 5-05.16 17

(lntel')') e

what'’s inside
4 * ((XOff Within Tile div 2) mod 2) +
2 * (YOff Within Tile mod 2) +
(XOff Within Tile mod 2);

TiledOffsetX = RowSize * TileNumber InY + TileSize * TileNumber InX +
TileW * YOff Within Tile + XOff Within Tile;

TiledOffset = WalkW? TiledOffsetW : (WalkY? TiledOffsetY
TiledOffsetX);

TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress +

Y*LinearPitch + X);TiledAddress = (Tiled &&

(Address Swizzling for Tiled-Surfaces == 01)) *?

(WalkW || Walky) 2

(TiledAddress div 128) * 128 +

(((TiledAddress div 64) mod 2) ~

((TiledAddress div 512) mod 2)) +

(TiledAddress mod 32)

(TiledAddress div 128) * 128 +
(((TiledAddress div 64) mod 2) *
((TiledAddress div 512) mod 2)
()
(

(TiledAddress Div 1024) mod2
TiledAddress mod 32)

|

TiledAddress;

Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more
effective address swizzling algorithm.

For Address Swizzling for Tiled-Surfaces see ARB_MODE — Arbiter Mode Control register, ARB_CTL—
Display Arbitration Control 1 and TILECTL - Tile Control register

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the
same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial
locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture
filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements are
stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned
in row-major order for operations like display refresh. For this reason, the Display and Overlay memory
streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions).
This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled
formats if they are to be displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be stored
in Y-Major order.

18 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

experience
what'’s inside

The following Psuedo Code Describes the algorithm for mapping TileYs and TileYf Tile Address to Byte
Offset within a Tile. It describes the support for 2D for both TileYs and TileYf as well as MSAA 2D For

TileYs.

/**

***\

BitMask
Used for masking single bits of x, y, z, ss# when pdep32 instruction

is

not available

**

***/

enum BitMask

{

BITO =
BIT1 =
BIT2
BIT3
BIT4
BITS
BIT6
BIT7
BITS8
BITY9 =
BIT10

~ e~~~ o~ o~~~ —~

BIT11 =

BIT12
BIT13
BIT14

BIT15 =

b g

P e e e e e =

O o T S S S

«
«
«
«
«
«
«
«
«

«
«
«
«
«
«

N N N N N NN

~

O 00 J o Ul Wb
2 R R = — = — — — — — —

=
w NP O~

~

~

~

~

~

/**

***\

TileYS/TileYF constant swizzle masks w/o pdep32 instruction

Used to mask contiguous x/y/z/sample bit groupings before being shifted

into

their final swizzled bit positions

'k*'k*'k*'k***********'k*********'k***

***/

// used for fallback 'manual'
UINT16 xMaskBits5 4
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16

static
static
static
static
static
static
static
static

const
const
const
const
const
const
const
const

xMaskBits3 0
yMaskBits4 0
yMaskBits3 0
yMaskBits2 0
yMaskBitsl O

SampleMask3 0
SampleMask2 0

Doc Ref # IHD-OS-SKL-Vol 5-05.16

bit shifting

0x0030;

= 0x000F;

0x001F;
0x000F;
0x0007;
0x0003;
0x000F;
0x0007;

19

experience

what's inside’
static const UINT16 SampleMaskl 0 = 0x0003;
static const UINT16 SampleMaskO = 0x0001;

/**
***\

TileYS 2D Tile address swizzling functions w/o pdep32

**

***/

/%
_| Num | Bits per element | Tiled element offset bits

|

| Samples | 1511411311211]110 9| 8| 7| 6| 5| 4| 3| 2|
11 0]

| O e e e A P P D T O e
|

| 1x | 64 & 128
|x9|y5|x8|yd|x7|y3|x6|y2|x5|x4|yl|y0|x3|x2|x1]|x0]

| | 16 & 32
|x8|y6|xT7|y5|x6|y4|x5|y3|x4|y2|yl|y0|x3|x2|x1|x0|

| | 8

|x71y7Ix61y6lx51y5Ix41y4ly3ly2lylly0[x3[x2[x1[x0]

7

UINT16 TileYS2dElementOffset64 128bpe (UINT16 x, UINT16 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYS swizzled bit
locations

xSwizzle = ((BIT9 & x) « 6) |
((BIT8 & x) « 5) |
((BIT7 & x) « 4) |
((BIT6 & x) « 3) |
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
(xMaskBits3 0 & x);
ySwizzle = ((BIT5 & y) « 9) |
((BIT4 & y) « 8) |
((BIT3 & y) « 7) |
((BIT2 & y) « 6) |
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

20 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views 1lntE|)
experience

what's inside’
UINT16 TileYS2dElementOffsetl6 32bpe (UINT16 x, UINT16 y)
{
UINT1l6 xSwizzle;
UINT1l6 ySwizzle;

// shift bits in x and y to their respective TileYS swizzled bit
locations

xSwizzle = ((BIT8 & x) « 7) |
((BIT7 & x) « 6) |
((BIT6 & x) « 5) |
((BIT5 & x) « 4) |
((BIT4 & x) « 3) |
(xMaskBits3 0 & x);

ySwizzle = ((BIT6 & y) « 8) |
((BITS & y) « 7) |
((BIT4 & y) « 6) |
((BIT3 & y) « 5) |
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYS2dElementOffset8bpe (UINT16 x, UINT16 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYS swizzled bit
locations
xSwizzle

) «
) «
) «
) «
30

oY)
H
—
o
S -o =)

BIT4 &
MaskBit

2 U1 o) 1 0

((x |
((x |
((BITS x |
((x |
(x S X);

ySwizzle =

BIT7 & y) «
BIT6 & y) «
BITS & y) «
yMaskBits4 O

U1 oy
N — — —

((|
((|
((|
((y) « 4); // shift to bit positions 8..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

/**
***\

TileYS 2D MSAA Tile address swizzling functions w/o pdep32

**

Doc Ref # IHD-OS-SKL-Vol 5-05.16 21

experience
what's inside
***/
/*
_T Num | Bits per element | Tiled element offset bits
|
| Samples | |15 1411311211110 | 9| 8| 7| 6| 5| 4| 3| 2]
1] 0]
| R A N T P T e e e T O e e e
[
| 2x | 64 & 128
|ss0|y5|x8|yd|x7|y3|x6]|y2|x5[x4|yl]|y0|x3|x2]|x1]|x0|]
| | 16 & 32
|ss0|y6|x7|y5|x6|y4d|x5|y3|x4|y2|yl]|y0|x3|x2]|x1]|x0|
| | 8
|ssO|y7Ix6|y6|x5|yS5|x4|ydly3ly2|ylly0Ix3|x2[x1|x0]|
*/

UINT16 TileYS2xMsaaElementOffset64 128bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT8 & x) « 5) // shift to bit position 13
((BIT7 & x) « 4) | // shift to bit position 11
((BIT6 & x) « 3) | // shift to bit position 9
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle =) «
) «
) «
BIT2 & y) «

yMaskBitsl O

| // shift to bit position 14

| // shift to bit position 12

| // shift to bit position 10

| // shift to bit position 8

y) « 4); // shift to bit positions 5..4

oY)

H

=

IS
SN2 =)
KKK
o 3 @ ©
P = = o

SampleSwizzle = (sample && SampleMask(O) « 15;// shift to bit position 15

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS2xMsaaElementOffsetl6 32bpe (UINT16 x, UINT1l6 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA

22 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside

swizzled bit locations

}

xSwizzle = ((BIT7 & x) « 6) | // shift to bit position 13
((BIT6 & x) « 7) | // shift to bit position 11
((BIT5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT6 & y) « 8) | // shift to bit position 14
((BITS5 & y) « 7) | // shift to bit position 12
((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask(0) « 15;// shift to bit position 15

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

UINT16 TileYS2xMsaaklementOffset8bpe (UINT16 x, UINT16 y, UINT16 sample)

{

UINT16 xSwizzle;
UINT16 ySwizzle;
UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 13
((BIT5 & xX) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT7 & y) « 7) | // shift to bit position 14
((BIT6 & y) « 6) | // shift to bit position 12
((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask(O) « 15;// shift to bit position 15

// OR the swizzled bit positions for final offset within a tile

return SampleSwizzle | xSwizzle | ySwizzle;
}
/%
| Num | Bits per element | Tiled element offset bits
|
| Samples | |15 |14 |13]12|11]10| 9| 8| 7| 6| 5| 4| 3| 2|
11 0]

Doc Ref # IHD-OS-SKL-Vol 5-05.16 23

what'’s inside

(intel)‘emem
|

]
| 4x | 64 & 128
|ssl|ss0|x8|yd|x7|y3|x6|y2|x5|x4|yl|y0|x3|x2]|x1]|x0]|
| | 16 & 32
|ssl|ssO|x7|y5|x6|yd|x5|y31x4|y2|yl|y0]|x3|x2]|x1]|x0]|
| | 8
|ssl|ssO|x6|y6|x5|y5|Ix4|va|y3|ly2|yl|y0|x3|x2]|x1|x0]|
=
UINT1l6 TileYS4xMsaaElementOffset64 128bpe (UINT16 x, UINT1l6 y, UINT16 sample)
{
UINT1l6 xSwizzle;
UINT1l6 ySwizzle;
UINT1l6 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT8 & x) « 5)

(BIT7 & x))

(BITo & xX) « 3)

(xMaskBits5 4 &

xMaskBits3 0 & x

| // shift to bit position 13

| // shift to bit position 11

| // shift to bit position 9

x) « 2) | // shift to bit positions 7..6
))

(
(
(
(g // leave in bits 3..0

ySwizzle = ((BIT4 & y) « 8) | // shift to bit position 12
((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4
SampleSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions
15..14

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS4xMsaaElementOffsetl6 32bpe (UINT1l6 x, UINT16 y, UINT1l6 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT7 & x) « 6) | // shift to bit position 13
((BIT6 & x) « 7) | // shift to bit position 11
((BITS5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT5 & y) « 7) | // shift to bit position 12
((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8

24 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ intel)

experience

what'’s inside’
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4
SampleSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions

15..14

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS4xMsaaklementOffset8bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT1l6 ySwizzle;

UINT1l6 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 13
((BIT5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT6 & y) « 6) | // shift to bit position 12
((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions

15..14

// OR the swizzled bit positions for final offset within a tile

return SampleSwizzle | xSwizzle | ySwizzle;

}

/%

| Num | Bits per element | Tiled element offset bits

|

| Samples | |15 |14 |13 |12]11110| 9| 8| 7| ©| 5| 4| 3|
21 11 Of

| [
o

| 8x | 04 & 128
|ss2|ssl|ssO|yd|x7|y3|x6|y2|x5|x4|yl|y0|x3|x2|x1]|x0|

| | 16 & 32
|ss2|ssl|ssO|y5|x6|yd|x5|y3|x4|y2|yl|y0|x3|x2|x1]|x0|

| | 8
|ss2]|ssl|ssO|y6|x5|y5|x4|yad|y3ly2|yl|y0|x3|[x2|x1]|x0|

=)

UINT16 TileYS8xMsaaElementOffset64 128bpe (UINT16 x, UINT16 y, UINT16 sample)

Doc Ref # IHD-OS-SKL-Vol 5-05.16 25

(lﬂtEl) |
experience
what'’s inside
{
UINT1l6 xSwizzle;
UINT1l6 ySwizzle;
UINT1l6 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations
xSwizzle = ((BIT7 & x) « 4)
((BIT6 & x) « 3)
((xMaskBits5 4 &
(xMaskBits3 0 & x

| // shift to bit position 11

| // shift to bit position 9

x) « 2) | // shift to bit positions 7..6
); // leave in bits 3..0

ySwizzle = ((BIT4 & y) « 8) | // shift to bit position 12
((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4
SampleSwizzle = (sample && SampleMask2 0) « 13;// shift to bit positions
15..13

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS8xMsaaElementOffsetl6 32bpe (UINT16 x, UINT16 y, UINT1l6 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 11
((BITS5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT5 & y) « 7) | // shift to bit position 12
((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask2 0) « 13;// shift to bit positions

15..13

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}
UINT16 TileYS8xMsaaklementOffset8bpe (UINT1l6 x, UINT16 y, UINT16 sample)

{
UINT16 xSwizzle;

26 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside
UINT1l6 ySwizzle;
UINT1l6 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT6 & y) « 6) | // shift to bit position 12
((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask2 0) « 13;// shift to bit positions

15..13

// OR the swizzled bit positions for final offset within a tile

return SampleSwizzle | xSwizzle | ySwizzle;

}

/*

| Num | Bits per element | Tiled element offset bits

|

| Samples | |15 |14 |13 |12 |11]10| 9| 8| 7| 6| 5| 4| 3|
21 1] 0]

| N N P P N O P A N
N

| 16x | 64 & 128
|ss3|ss2|ssl|ssO|x7|y3|x6|y2|x5|x4|yl]|y0|x3|x2|x1]|x0|

| | 16 & 32
|ss3|ss2|ssl|ssO|x6|yd|x5]y3|x4|y2|yl]|y0|x3|x2|x1]|x0|

| | 8
|ss3]|ss2|ssl|ssO|x5]y5|x4|y4|y3ly2|yl|y0|x3|x2|x1]|x0|

%/

UINT16 TileYSl6xMsaaElementOffset64 128bpe (UINT16 x, UINT1l6 y, UINT16
sample)
{
UINT16 xSwizzle;
UINT16 ySwizzle;
UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations
xSwizzle = ((BIT7 & x) « 4) | // shift to bit position 11
((BIT6 & x) « 3) | // shift to bit position 9
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
()

xMaskBits3 0 & x); // leave in bits 3..0

Doc Ref # IHD-OS-SKL-Vol 5-05.16 27

(intel)‘emem

what'’s inside
ySwizzle = ((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4
SampleSwizzle = (sample && SampleMask3 0) « 12;// shift to bit positions

15..12

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYSlé6xMsaaElementOffsetl6 32bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 11
((BIT5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask3 0) « 12;// shift to bit positions

15..12

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYSl6xMsaaElementOffset8bpe (UINT16 x, UINT1l6 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0
ySwizzle = ((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4
SampleSwizzle = (sample && SampleMask3 0) « 12;// shift to bit positions
15..12

28 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views 1lntE|)
experience

what's inside’

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

/**

***\

TileYF 2D Tile address swizzling functions w/o pdep32

**

***/

/%
_| Num | Bits per element | Tiled element offset bits

|

| Samples | 15114113112 |111]10| 9| 8| 7| 6| 5| 4| 3| 2|
1] 0]

| [
|

| 1x | 04 & 128 | | | |
|x7|y3|x6|y2|x5|x4|yl|y0|x3|x2|x1|x0|

| | 16 & 32 | | | |
|x6|y4|x5|y3|x4|y2|yl|y0|x3|x2|x1|x0|

| | 8 [
|x51y51x4|y4ly3ly2lylly0|x3|x2[x1[x0]|

=

UINT16 TileYF2dElementOffset64 128bpe (UINT1l6 x, UINTl6 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYF swizzled bit
locations

xSwizzle = ((BIT7 & x) « 4) |
((BIT6 & x) « 3) |
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
(xMaskBits3 0 & x);

ySwizzle = ((BIT3 & y) « 7)

|
((BIT2 & y) « 6) |
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

// OR the swizzled bit positions for final offset within a tile

return xSwizzle | ySwizzle;

}

UINT16 TileYF2dElementOffsetl6 32bpe (UINT16 x, UINT16 y)

Doc Ref # IHD-OS-SKL-Vol 5-05.16 29

(l n te,l .kexperieﬂce
{

what's inside

UINT1l6 xSwizzle;
UINT1l6 ySwizzle;

// shift bits in x and y to their respective TileYF swizzled bit
locations

xSwizzle = ((BIT6 & x) « 5) |
((BITS & x) « 4) |
((BIT4 & x) « 3) |
(xMaskBits3 0 & x);

ySwizzle = ((BIT4 & y) « 6)

|
((BIT3 & y) « 5) |
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYF2dElementOffset8bpe (UINT16 x, UINT1l6 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYF swizzled bit
locations
xSwizzle = ((BITS5 & x) « 6) |
((BIT4 & x) « 5) |
(xMaskBits3 0 & x);

ySwizzle = ((BIT5 & y) « 5) |
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

30 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Tiled Channel Select Decision

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling
modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13].

For Gen8 and subsequent generations, the swizzle fields are all reserved, and the CPU's memory
controller performs all address swizzling modifications.

Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions
operating upon tiled surfaces. (Note that not all device functions that access memory support tiled
formats). This requires either the modification of an element's linear memory address or an alternate
formula to convert an element's X,Y coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be used to determine
whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile
region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms
by which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address
falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters for surface
operands (i.e., parameters included in surface-defining instructions).

The following table identifies the tiling-detection mechanisms that are supported by the various memory
streams.

Access Path Tiling-Detection Mechanisms Supported
Processor access through the Graphics Memory Aperture | Fenced Regions
3D Render (Color/Depth Buffer access) Explicit Surface Parameters
Sampled Surfaces Explicit Surface Parameters
Blt operands Explicit Surface Parameters
Display and Overlay Surfaces Explicit Surface Parameters

Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics
client is to place them within "fenced” tiled regions within Graphics Memory. A fenced region is a block
of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface
Registers for details). Surfaces contained within a fenced region are considered tiled from an external
access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since
external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by
an internal graphics client) fall within a region covered by an enabled fence register, that enable will be
effectively masked during the internal graphics client access. Only the explicit surface parameters
described in the next section can be used to tile surfaces being accessed by the internal graphics clients.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 31

(lntel')') e

what'’s inside

Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information passed
in commands and state. This capability is provided to limit the reliance on the fixed number of fence
regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color
Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface
Parameter Description

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear
format.

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-
Major or X-Major tile format.

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile
width.

Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition,
restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The
most restricted surfaces are those that will be accessed both by the host (via fence) and by internal
device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then
sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device
functions always specify tiling in terms of a surface. The surface must have a base address, and this base
address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y
addressing within the surface) are transformed through tiling. The base address of the surface must
therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device
pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than
or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by
the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated
in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base
address in graphics memory equal to the fence base address, and all accesses of the surfaces are
(possibly quite large) offsets from the fence base address. Fence regions have a virtual “left edge” aligned
with the fence base address, and a “right edge” that results from adding the fence pitch to the “left
edge”. Surfaces in the fence region must not straddle these boundaries.

32 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ [ntel))
experience

what's inside
Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host
have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the
surface base address (as set in SURFACE_STATE) must be a "Tile Row Start Address” (TRSA). The first
address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base
address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base
address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.)

Tiled Surface Placement

Surface base Address = Fence Region "Right Edge” —

Tile Start Address

3z2B EwW =
Fence Base Linzar (pre-tiled) Addressas Increase 2 16B Ois
Address » * ¥
'\L. :
Surface Base = = 111z
Address = i I I
Tile fow 3
Start Address Directly N
oozl e by F = = Ii C
Haat and G« I 11 [l
(if Surface
Pite h=Farncae
PFitch}
i
= =
I I
Foeatjui oy
ré=rhap pirg far
Access By Hemt
Thlt= = and G,
1l 1
L1
||
Fence Fegion J‘ Ritch |

“Left Edge
Besoe-01

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to
access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different
GTT mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess
rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in
pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by
SW between the time the host writes the surface and the device reads it, or it can be accomplished by
arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory Mapping
below).

Doc Ref # IHD-OS-SKL-Vol 5-05.16 33

experience

what's inside

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch
and the fence pitch in any scenario where a surface will be accessed by both the host and an internal
graphics client. Changing the GTT mapping will not help if this restriction is violated.

Surface Access

Base Address

Pitch

Width

Tile “Walk”

Host only No restriction Integral multiple of tile size |Must be <= Fence | No restriction
<= 256KB Pitch
Client only 4KB-aligned Integral multiple of tile size |Must be <=

<= 256KB

Surface Pitch

Restrictions imposed by
the client (see Per Stream
Tile Format Support)

Host and Client, |Must be TRSA Fence Pitch = Surface Pitch |Width <= Pitch Surface Walk must meet
No GTT = integral multiple of tile client restriction, Fence
Remapping size <= 256KB Walk = Surface Walk

Host and Client, |4KB-aligned for Both must be Integral Width <= Surface Walk must meet

GTT Remapping

client (will be tile-
aligned for host)

multiple of tile size
<=128KB, but not
necessarily the same

Min(Surface Pitch,
Fence Pitch)

client restriction, Fence
Walk = Surface Walk

Per-Stream Tile Format Support

MiI Client Tile Formats Supported
CPU Read/Write [All
Display/Overlay | Y-Major not supported
X-Major required for Async Flips
Blt Linear and X-Major only
No Y-Major support
3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowest.

3D Color,Depth

Rendering Mode

Color-vs-Depth bpp | Buffer Tiling Supported

Classical Both Linear

Same Bpp Both TileX
Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

Classical Both Linear

Mixed Bpp Both TileX
Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

34

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Main Memory

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for
graphics functions. Some of this main memory can be “stolen” from the top of system memory during
initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to
satisfy application demands. To this end the graphics driver will frequently need to allocate locked-down
(i.e., non-swappable) physical system memory pages — typically from a cacheable non-paged pool. The
locked pages required to back large surfaces are typically non-contiguous. Therefore a means to support
“logically-contiguous” surfaces backed by discontiguous physical pages is required. The Graphics
Translation Table (GTT) that was described in previous sections provides the means.

Optimizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory (SM)
for optimal performance in certain configurations. The general idea is that these memories are divided
into some number of page types, and careful arrangement of page types both within and between
surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and therefore yield
somewhat higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is
somewhat complicated by (1) permutations of memory device technologies (which determine page sizes
and therefore the number of pages per device row), (2) memory device row population options, and (3)
limitations on the allocation of physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching
between open pages is optimal (again, the pages do not need to be sequential), (b) switching between
memory device rows does not in itself incur a penalty, and (c) switching between pages within a
particular bank of a row incurs a page miss and should therefore be avoided.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 35

(lntel')') e

what'’s inside

Application of the Theory (Page Coloring)

This section provides some scenarios for how Main Memory page allocation can be optimized.

3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in
the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or
Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within
a Color or Depth Buffer should be mapped to different page types (where a page’s “type” or “color”
refers to the row and bank it's in).

Memory Pages Backing Color and Depth Buffers

Color Buffer

Page Page Page Page
Type 0| Type 1| Type 0 | Type 1

FPage FPage FPage Page
Type 2| Type 3| Type 2 | Type 3

FPage FPage FPage Page
Type 0] Type 1| Type 0] Type 1

Fage Fage Fage Page
Type 2| Type 3| Type 2 | Type 3

Depth Buffer

FPage FPage FPage Page
Type 3| Type 2| Type 3| Type 2

Page Page Page Page
Typel| Type 0| Type 1 | Type O

Page Page Page Page
Type 3| Type 2| Type 3 | Type 2

Page Page Page Page
Typel| Type 0| Type 1 | Type O

Be701-01

For higher performance, the Color and Depth Buffers could be allocated from different memory device
rows.

36 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The U
and V surfaces would split the same 4 page types as used in the Y surface.

Physical Graphics Address Types

The Physical Memory Address Types table lists the various physical address types supported by the
integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory
mappings or are directly specified by graphics device functions. These physical addresses are not subject
to tiling or GTT re-mappings.

Physical Memory Address Types

Address
Type Description Range
MM_Address | Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1]

SM_Address |System Memory Address. Accesses are snooped in processor cache, allowing [[0,512GB]
shared graphics/ processor access to (locked) cacheable memory data.

Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)
and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an
array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to
physical memory addresses, and sometimes snooped system memory “PCl” addresses.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and
PGTBL_CTL2 Ml registers, respectively. The translation table base addresses must be 4KB aligned. The
GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes
respectively) and is physically contiguous. The global GTT should only be programmed via the range
defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT)
size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB
in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE
entries.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 37

experience
what's inside’

Virtual Memory

GT supports standard virtual memory models as defined by the IA programmer’s guide. This section
describes the different paging models, their behaviors, and the page table formats.

GFX Page Tables

GPU supports three page table mechanisms

e |A32e compatible GTT
e PPGTT - private per process GTT (private GFX)
e GGTT -global GTT

All page tables use the same 64-bit PTE format. Differences are in how various bit fields applies (vs
reserved) under various usage models.

Gen9 follows the same principles that gen8 set it up for improved page tables and compatibility of OS
managed page table formats.

Tiled Resources Translation Tables

Sparse Tiled Resources can be thought of as a kind of application-controlled virtual memory scheme. The
application allocates a resource in a virtual address space. Then the application tells the driver to map
specified 64KB tiles within the surface to memory, within resources called Tile Pools. Tiles that are not
mapped to a Tile Pool are null tiles.

Tiled Resource Translation Table (TRTT) is constructed as a 3 level tile Table. Each tile is 64KB is size which
leaves behind 44-16=28 address bits. 28bits are partitioned as 9+9+10 which corresponds to TRVATT L3,
L2 and L1 respectively. This is where TRVATT L3 has 512 entries, L2 has 512 entries and L1 has 1024
entries where each level is contained within a 4KB page hence L3 and L2 is composed of 64b entries and
L1 is composed of 32b entries.

JEE BEEE 3[3[3]3]2]2 A ERERENETEY A ENEU PN P Bl
3|2|1 alal7ls 3|2|1io|9|s 3?65‘43!2103; ZEMEERE
|l TRVATT-L3
Ignored Address of the TRVATTL2 Ignored un
entry
v
i TRVATT-L2
Ignored Address of the TRVATT11 Ignored un
entry
‘ v
Tile Virtual Address v
entry

38 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

experience
what's inside’

The contents of the TRVATT tables are as listed above where L3 and L2 points to the address of the next
level which is a 4KB page and L1 contains the 32b VA address pointer needed to map the TR tile to
virtual address space.

L1 Entry:
Bits Field Description
31:0 | ADDR: Address | GFX virtual address of 64KB tile is referenced by this entry.

This field is treated as GFX Virtual Address (GPA) when translated and maps to 47:16.

L2 Entry:
Bits Field Description
63:48 | Ignored Ignored (h/w does not care about values behind ignored registers)
47:12 | ADDR: GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L1.
Address TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address
mode chosen by GFX software.
11:2 |Ignored Ignored (h/w does not care about values behind ignored registers)
1 | Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.
0 |Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is
generated to GFX software when an invalid tile is accessed.
L3 Entry:
Bits Field Description
63:48 | Ignored Ignored (h/w does not care about values behind ignored registers)
47:12 | ADDR: GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L2.
Address TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address
mode chosen by GFX software.
11:2 [Ignored Ignored (h/w does not care about values behind ignored registers)
1 [Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.
0 |Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is
generated to GFX software when an invalid tile is accessed.
Programming Note
Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver has to disable the TR-TT bypass mode before using tiled resources translation tables. Details of the
registers are given in "registers for TR-TT management.”

Programming Note

Context: | Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver is not allowed to put TR-TT entries into TR-VA space.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 39

experience

what'’s inside

Programming Note

Context: ITiIed ResourceTranslation Tables in Gfx Page Tables

Usage model for TR translations are restricted to GFX Render Engine.

Programming Note

Context:

|Ti|ed ResourceTranslation Tables in Gfx Page Tables

TRTT is only for PPGTT64 (Advanced or Legacy PPGTT64). Enabling TRTT in Legacy PPGTT32 context or GGTT
context is considered as invalid programming.

Registers for TR-TT Management

Following register is a global mechanism to disable the bypass mode which is considered to be default
for h/w. GFX driver has to set this bit to disable bypass mode before using TR-TTs.

Following registers shall be part of the h/w context.

Tiled Resources VA Translation Table L3 Pointer

Register Space: MMIO: 0/2/0
DWord| Bit Description
! 63:48 Reserved
Access: RO
Reserved.
4132 Tiled Resource - VA translation Table L3 Pointer (Upper Address)

Default Value: 0000h
Access: R/W

Upper address bits for tiled resource VA to virtual address translation L3 table.

For physical memory option, address bits [47:39] has to be programmed to "0" as it is defined the
limit of physical memory allocation.

0 31:16 Tiled Resource - VA translation Table L3 Pointer (Lower Address)

Default Value: 0000h
Access: R/W
Lower address bits for tiled resource VA to virtual address translation L3 table.

et Reserved
Access: RO
Reserved.

40 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Tiled Resources Null Tile Detection Register

Register Space: MMIO: 0/2/0
DWord | Bit Description
31.0

Null Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Null
Tiles. Hardware will flag each entry and space behind it as Null Tile for matched entries.

Tiled Resources Invalid Tile Detection Register

Register Space: MMIO: 0/2/0
DWord | Bit Description
31:0

Invalid Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Invalid
Tiles. Hardware will flag each entry and space behind it as Invalid Tile for matched entries.

Tiled Resources Virtual Address Detection Registers (TRVADR)

Register Space: MMIO: 0/2/0
DWord | Bit Description
0 318 Reserved
Access: RO
Reserved.
7:4

TRVA Mask Value (TRVAMV)

Default Value: 0000b

Access: R/W

4bit MASK value that is mapped to incoming address bits[47:44]. MASK bits are used to identify
which address bits need to be considered for compare. If particular mask bit is “1”, mapping address
bit needs to be compared to DATA value provided. If “0”, corresponding address bit is masked which
makes it don't care for compare (this field defaults to “0000" to disable detection)

Note that h/w supports two possible values for MASK: "0000" which is disabled case and "1111" where
44 bit TR-VA space is carved out.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 41

(lntel')‘expem

what's inside
Tiled Resources Virtual Address Detection Registers (TRVADR)
30 TRVA Data Value (TRVADV)
Default Value: 0b
Access: R/W

4bit DATA value that is mapped to incoming address bits[47:44]. Data bits are used to compare
address values that are not filtered by the TRVAMV for match.

Tiled Resources Translation Table Control Register (TRTTE)

Register Space: MMIO: 0/2/0
DWord | Bit Description
0 2gLa Reserved
Access: RO
Reserved.

TR-VA Translation Table Memory Location

Default Value: Ob

Access: R/W

This fields specifies whether the translation tables for TR-VA to VA are in virtual address space vs
physical (GPA) address space.

0: Tables are in Physical (GPA) Space

1: Tables are in Virtual Address Space

0 TR-TT Enable
Default Value: Ob
Access: R/W

TR translation tables are disabled as default. This field needs to be enabled via s/w to get TR
translation active.

Detection and Treatment of Null and Invalid Tiles

Two types of definition that need to be extracted from TR-VA walk in addition to reaching the GFX virtual
address.

1. Null Tiles: Null tiles provide the applications of capability to preventing OS mapping the entire
surface. When a memory access hits a Null tile, the access is terminated and zero's are returned to
the originator of the memory access for loads along with a null indicator and for stores the access
is dropped at the page walker level.

42 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
2. Invalid Tiles: This is the case where GFX software did not update the value of the mapping
properly for hardware to separate resident vs null tiles. The Invalid Tile treatment is exactly same
however additionally a unique interrupt is generated in h/w

Both detections are done by GPU:

e For L2/L3 entries, Null and Invalid tile information is already embedded in the TR-TT entries

e For L1 entries, the contents (32bits) are compared in hardware to pre-programmed values by GFX
software (values are provided in GFX MMIO space). For the match values, two separate 32b registers
are defined, one for Null Tile detection and one for Invalid Tile detection.

Hardware walking matching the value or detecting L2/L3 would terminate the walk (i.e. rest of the tables
are not valid) and define the access as either Null or Invalid.

Programming Note

Context: I Detection and treatment of null and invalid tiles.

The software is not allowed to program both Null and Invalid values to be the same.

Programming Note

Context: ITiIeX Surfaces and Null Tiles

NULL or Invalid Tiles are not supported on TileX surfaces.

GPU implements a counter mechanism to roll-up the Null tile accesses detected. The counter value is
exposed to GFX software via GFX MMIO.

In Gen9 implementation, when the TR translation tables are in Gfx virtual address domain, the pages faults
encountered while walking the IA32e pages are not reported back to the TR walkers or TLBs. These faults
are handled as fault & halt, making these faults transparent to the TR walkers. However, when such a fault
(s not fixed (unsuccessful fault response) or when a non-recoverable fault encountered, main page walker
HW converts the cycle to an invalid cycle. Thus, in this case, TR walker or TR TLBs will get incorrect read
return data without any notification of the non-recoverable fault condition. Thus TR walker/TLBs will
continue with the TR-walk with incorrect data. This can lead to spurious cycles being generated. However,
a Gfx reset/FLR is expected as a result of the non-recoverable fault.

TR-TT Modes

The L3 table pointer along with TRTTL3e/TRTTL2e is projected to support two modes of address space.
Original intent was to have the contents to be in Virtual Address space (OS managed) and have them to
be translated to GPA to HPA before getting accessed. Such mechanism will incur high latency penalties
due to nested page translations. GPU shall have an additional mode where tiled-resources translation
tables are in physical address space (GPA) and eliminate the need to have nested translations to reduce
the potentially high miss latencies.

TR-TT walker shall have both modes supported. The Mode bit will be part of the same Register that
provides TR-VA TT L3 pointer.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 43

experience
what's inside”

(| ntel)
Virtual Addressed TR Translation Tables

Having sparse tiled resource translation tables in GFX virtual space requires the h/w TR-TT walker to walk
thru the 1+t level tile tables for table accesses to reach to Physical address at the L1 TR translation tables.

The following diagrams provide the view of the walk TR-VA translation tables are in physical memory and
no 2 Level (VTd) translations enabled.

1A32e Page Table
Pointer from PASID
ble 13 | a1
TR-VATa | PageMapld | Page Directory : Trandation|
S Entry B i et Enty ~——» Page Directory Entry — Page Table Entry Tabi esi
|
e) Page Map L4 Page Di .
randation r age Map age Directory : Trandation,
b TR-VA Table L3 entry Entry —> Pointer Table Entry ~—— Page Directory Entry —+ Page Table Entry “uji
|
: Page Map L4 Page D u32e§
age Map age Directory g Trandation)
TR-VA Table L2 entry Eaiey l—» Painter Table Entry — Page Directory Entry ——| Page Table Entry Tables.
]
S —
TR-VA Table L1 entry
Virtual Address
|A32e Page Table
Pointer from PASID
132 r o
Translation Page Map L4
Tables Entry
Page Directory
Pointer Table Entry
Page Directory Entry
Page Table Entry

Final Page Frame

44 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
Once 2 level translations are enabled each level of 1 level walk needs to be further walked through
VTd page tables.

The level of nested walks does not change the structure of the TR-VA walker; it just defines the recursive
nature of the translations.

TR-TT Page Walk

Sparse Tiled Resources translation tables are separated into 3-levels. The pointer to L3 table is going to
be set up in GFX MMIO space as part of the context, this pointer be would be available to page walker
ahead of any TR-VA memory accesses.

TR-TT L3 walk will be consistent of calculating the 64b of interest based on the L3 table pointer and
using the 9 bit index (address bits[43:35]). L2 will use TR-TT L3 entry as the table pointer and use the next
set of 9 address bits ([34:26]) to locate the L2 entry which is a pointer to L1 table. Final L1 table is located
with L2 entry and indexed by remaining 10 address bits (25:16) to index where 32b virtual address is
extracted.

Post TR-TT walk 32b entry from L1 is mapped to final virtual address 47:16 and remaining 15:0 is passed
from the original TR-VA access as is given all tiles in TR-VA space are 64KB in size.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 45

(i n te,l experience

what's inside”
4141414]4 3|3 212 1z[1
JES]SL al ls 4| ls sl 165)
Unused TR-VATT L3 Index TR-VATT L2 Index TR-VATT L1 Index Offset inside Tile
Final Tile
> Virtual Mem
TR-VATT »
2
> Virt. Add.
TR-VATT i
12
» TRTTL2e
TR-VATT >
3
| TRTTL3e |
TR-VA Translation Table
L3 Pointer
(from Register Space)

46 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Gen9 Page Table Modes

GFX Aperture and Display accesses are mapped thru Global GTT to keep the walk simple (i.e. 1-level) and
latency sensitive. GPU accesses to memory can be mapped via Global GTT and/or ppGTT with various
addressing modes.

Supported walk modes are listed as following:

1. Global GTT with 32b virtual addressing: Global GTT usage is similar to previous generations with
extended capability of increasing virtual address (VA) up to 4GB (from 2GB) and use a standard
64b PTE format. The breakdown of the PTE for global GTT is given in later sections and allows 1-
level page walk where the 20b index is used to select the 64b PTE from memory.

2. Legacy 32b VA with ppGTT: This is a mode where ppGTT page tables are considered private and
managed via GFX sotfware (driver) where context is tagged as Legacy 32b VA. Each page walk is
managed via 9b of the virtual address and 20b index to address 4GB memory space is broken into
3 parts. In order to optimize the walks and make it look like previous generations, GFX sotfware
provides 4 pointers to page tables (called 4 PDP entries) all guest physical address. GPU uses the
four pointers and fetches the 4x4KB into h/w (for render and media) before the context execution
starts. The optimization limits the dynamic (on demand) page walks to 1-level only.

3. Legacy 48b VA with ppGTT: GFX address expansion beyond 4GB is added to address 48b virtual
address space. 48b VA requires 36b indexing (4x9b) translating into 4-levels of page walk. To
reduce the overhead of 4 level walk, GPU will cache the entire content of PML4 (4kB) to limit the
on-demand walks to 3 levels. The caching happens as part of the initial demand where no further
replacements required.

4. Advanced 48b VA with 1A32e support via IOMMU: 48b addressing in advanced mode is
managed via IOMMU settings where the base of the page table shall be found after the root /
context tables using bus/device/function values. PASID# is used as an index in PASID table to find
page table pointer to start the 4-level page walk. Rest of the mechanism is similar to Legacy 48b
VA mode, GPU has the capability to cache entire content of PML4 and try to limit the dynamic
page walks to 3-level.

Gen9 Per Process GTT

Gen9 per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks
on hardware. The listed mechanisms here are selectable per-context and descriptors are delivered to
hardware as part of context descriptor.

The entry contents are also modified to match the same format as IA32e page tables allowing future
expansion for sharable page tables as well as higher order virtual addressing.

Page Tables Entry (PTE) Formats

Page Table Entry (PTE) formats follow the IA32e layout shown below. Note that the Hardware Address
Width (HAW) is determined by Uncore: typically 39 for client products and 46 for server products.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 47

(l n te,l gexperience

what'’s inside”

266665:555555555 e 3322222:2232212111111111_,‘] s
l3l2|1o}ols|7[slslalala]e] | | ™Y AW 3 slafalz|tlololalrlslslalal2]alo®|®" (B[13[211)°
IE gl PIPUR
Ignored Rswd. Address of page-directory-pointer-table Blp Ign] gACW/I/IP|| PMLEE
n n DITS/W
d | |
| PII{_|I PIPUR
A lgnored Rsvd. Adfg;“:“he Reserved A g;g GlLDAC/W/ /P (1(;??)
bR Tinln DIT|s W »
Iy IE I| |[P|PIUR PDPE
D Ignored Rswd. Address of page-directory-table Bl len|0/g ACW /I[P | Page
" n n| |D|T|S|W || Directory
[‘
'y P11 PPIUR| || oo
D Ignored Rswd. Address of the 2B page Reserved |Alg A:g!G 1DACW/|/ P (M8 Page)
T n. /T[S W g
| |
l e[(PR poe
;D Ignored Rswd. Address of page-table P A len (0jg AW/ /P Page Table
S n| D[T/siw || @
" IEI P PIPUR oTE
Ignored Rswd. Address of the 64KB MB page Rswl. [g| 'g|GIADDAICIW/I/PI| .~
D A (64€B Page)
ni o |T DIT|S|W
l /! PPUR [oo
;D Ignored Rswd. Address of 4B Page 8,8 GI1DACW/|/IP (448 Page)
n"n DITs|w -

Each table entry is further broken down along with the required functions. GFX has a 4-level page table
which is pointed out by context descriptor starting with the 4th level of PML4. The next levels have
slightly different formats depending on the size of the page supported. 1GB and 2MB page formats are
required for support.

Page walk in advanced mode with 48b VA requires 4 levels. The walk will start with a PML4 table pointer
extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page:

48 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
0

what's inside”

[4 ‘as

17

‘3. |4]¢ |
09 |1]0 211

Page Directory Pointer

PML4 Index o Page Directory Index Page Table Index Offset inside Page
Final Page
— Phy Mem
Page Table
—__PIE
PD Table
| —_—
B » PDE
PDP Table
o PDPE
PML4
Table
PMU4E —
PML4 pointer from
PASID Entry

A 64 bit (48b canonical) address requires 4 levels of page table format where the context carries a
pointer to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk
thru various levels.

To repurpose the caches the following mechanism is used:

e 3D:4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
e Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
e VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 49

(lntel) |

experience
The 64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB
page. In a page table every 16th entry (PTE#0O, PTE#16, PTE#32, ... PTE#496) should be used to index. This
is calculated using address[20:16] & “0000". Note that hardware should not make any assumptions for

what's

inside”

any other PTEs.

4

HE

2
|09

lil

50

Page Directory Point
PML4 Index e Irfn dC;;V] Page Directory Index Page Table Index Offset inside Page
Final Page
— Phy Mem
Page Table
— PTE
PD Table
PDE
PDP Table
 PDPE_——
PML4
Table
» PMLAE ——
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

experience
what's inside”

With the 2MB Page walk, the last level of the page walk is skipped where the PD entry points to the final
page.

3]

7] T 22
7| 3 ;\ Ia 9[ol 401
PML4 Index e D"T:;:Ly SORr Page Directory Index Offset inside Page |
Final Page
> Phy Mem |
PD Table
PDE
PDP Table |
: » PDPE —
PML4 |
Table ‘
| > }
o PMLAE —
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16

51

(lntel) |
experience
what's inside”

For the support for 1GB page size, the following mechanism is needed.
4]

ETE]] 32
7l 19 ;[ID 9[-0}
PML4 Index Faee Divectory folnter Offset inside Page
Index
Final Page
> Phy Mem |
PDP Table
: » PDPE |
PML4 ‘ ‘
Table
[>
R—
» PML4E —
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16

(lntel)‘expem

what's inside’

Memory Views

Pointer to PML4 Table

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be
provided by PASID table entry in case of advanced context, else it will be provided by software as part of
the legacy context with 48b addressing.

Details of PASID entry is given in later sections.

PMLA4E: Pointer to PDP Table

PML4 is used to locate the page directory pointer tables distributed in physical memory. For gen8/9,
PML4 will be used for advanced GPGPU context scheduled via PASID table as well as legacy context with

48b VA.
6|6|6|6]5|5|5|5{5]|5|5|5|5 — el 1(1 al71e 3|211ln
3@%1'03&%7554!31:‘4 {H"V" HAW 1loi®|® bs*““Jl
i 1 f; 1| plplulR
| Ignored Rsvd. Address of page-directory-pointer-table gl llen| |glAC ﬁ/ /Pl | PMLEE
D| A v
[n n| DiT|SW
d
Bits Field Description
63 XD: Execute If NXE=1 in the relevant extended-context-entry, execute permission is not granted
Disable for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0’s)
(HAW- [ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by this
1):12 entry.
This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11 Ignored Ignored (h/w does not care about values behind ignored registers)
10 EA: Extended Extended Access bit is added for devices to separate accesses from IA cores. If

Access EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this bit.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

Reserved Reserved (must return 0's)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging structures.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

53

experience
what's inside’
Bits Field Description
3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly
Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging structures.

2 u/s: User vs supervisor access rights. If 0, requests with user-level privilege are not

User/Supervisor allowed to the memory region controlled by this entry. See section for access
rights.
GPU does not support Supervisor mode contexts.

1 R/W: Read/Write | Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.
0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the base of the PD table:

E|6[6|615|5]5|5]515]515]5 w lewal | BRRERERERERRERPEEEEEEEER R lelsl7lclclalalalilo
3_:11’03&]“554i31:;‘ HAW. At 10193“%6,513f:11093i?1554312 o237 15151413 [2]2°
4 I I| |[P|PlUR PDPE
DI Ignored Rswd. Address of page-directory-table gl |len|OjgACW/I/ P Page
[‘ n n DT|SW ‘ Directory
Bits Field Description
63 XD: Execute Disable |If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 |[Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0's)
(HAW- |ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by
1):12 this entry.
This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11 Ignored/Reserved Ignored/not used by hardware
10 EA: Extended Access |Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this
bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.
This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)
7 Reserved Reserved (must return 0’s)
54 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’

Bits

Field

Description

6

Ignored

Ignored (h/w does not care about values behind ignored registers)

5

A: Accessed

A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

PCD: Page level
cache disable

For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

PWT: Page level
Write-through

For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory- pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

U/S: User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

R/W: Read/Write

Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0

P: Present

PDP Entry is present. It must be “1" to point to a page directory pointer table

PDP entry for 1 GB Page

Z6|6]6/5]5]5]5]5/515]515 o lawa] | BRREZEEZREZEEEREREREARIEI alalallclalalals Ia
a:}lynaeiwssﬂaﬁ:;- b ot 1lo : 913!?‘;654521203°‘ B
‘ PiI|_|1 PIP[UR
X Address of the E | PDPE
Ignored Rsvd. Reserved Alg| 'g/iGI1DAC/W/ [/ P|
D| 1GB page In A ol DITls w {1GB Page)
Bits Field Description

63 XD: Execute Disable |If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9

62:52 |[Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0’s)
(HAW- |ADDR: Address Physical address of 1GB memory page referenced by this entry.
1):30 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
29:13 | Reserved Reserved (must return 0’s)

12 PAT: Page Attribute |For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

Doc Ref # IHD-OS-SKL-Vol 5-05.16

55

(lntel')') e

what's inside
Bits Field Description

10 EA: Extended Access |Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this
bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

Ignored Ignored (h/w does not care about values behind ignored registers)

G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to
indicate that the memory region pointed by this entry can be considered global
Global paging is not used by GPU.

Page Size Must be 1 to indicate 1GB page.

D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful
write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 U/S: User/Supervisor | User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PD: Pointer to Page Table

Page Directory entry has few different usage models:

1.
2.

It can identify the base of the page table.

It can define 2MB page table entries.

Pointer to page table is given below:

56

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)) e

what's inside’
5|6|6]6/5]5|5|5/5/5|5]5]5 w lewel | PRRRPEREPEREERPEEEEEREEREelel7lslslalalz]1le
52}109517554&!:;_ bW -t \11093‘“65—3;211093=?‘§6343§2 1;0‘5"’54“"'
1 I ;E I |plPlUR o
| £ -tabl | A P|
D| Ignored Rswd Address of page-table ::A Ign |0 E [C) \;Jé {/M Page talle
Bits Field Description
63 XD: Execute If NXE=1 in the relevant extended-context-entry, execute permission is not granted
Disable for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0°s)
(HAW- [ADDR: Address Physical address of 4-KByte aligned page table referenced by this entry.
1):12 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11 IPS An MMIO level control has been introduced to manage 64KB page enabling.
10 EA: Extended Extended Access bit is added for devices to separate accesses from IA cores. If

Access EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this bit.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

Reserved Reserved (must return 0's)

Ignored Ignored (h/w does not care about values behind ignored registers)

A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

2 u/s: User vs supervisor access rights. If 0, requests with user-level privilege are not

User/Supervisor allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write | Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.
0 P: Present PD Entry is present. It must be “1" to point to a page directory pointer table

Doc Ref # IHD-OS-SKL-Vol 5-05.16 57

(intel

experience
what's inside

PDE for 2MB Page is given below:

6|6|6]6/5]5]5|5/5]5|5]5]5 — — BEBRBERRENNAE 15 JT Y
5:2}1'0355%?654;3!2}1 FEW. vt 13=?§654§::1503‘ SEMEERE
: p |jE I PP|UR =
| Ignored Rsvd. Address of the 2IMB page Reserved Alg|, g/G|1DACW/ [/ P| :
D| B nlA ol DITls w {2MB Page)
Bits Field Description

63 XD: Execute Disable |If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9

62:52 |[Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW?* | Reserved Reserved (must return 0s)
(HAW- |ADDR: Address Physical address of 1GB memory page referenced by this entry.
1):21 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
20:13 | Reserved Reserved (must return 0s)

12 PAT: Page Attribute |For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access |Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this
bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

Ignored Ignored (h/w does not care about values behind ignored registers)

G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to
indicate that the memory region pointed by this entry can be considered global
Global paging is not used by GPU.

Page Size Must be 1 to indicate 2MB page.

D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful
write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 U/S: User/Supervisor | User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access

58

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’
Bits Field Description
rights.
GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1" to point to a 2MB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

6|6|6]|615|5[5|5{5]5|5|5|5 . ey} 3‘3;222'2222%2]2213‘_ t]1j1f1j1]1]1]1 zl7lg A ”

5:}1’03 i?GSJiEiEQ- b ot 1|o|s 3‘,.";65-’-3i2’}109§3!?‘165d352 o PR 1521A 133120

g el P PP[UR ==

D; Ignored Rsvd. Address of the 64KB MB page Rswd. |g AE GAIDACW/!/ P| Terreiie
: n"in| [T DIT(S|W | [© %7
Bits Field Description

63 XD: Execute Disable |If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9

62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0s)
(HAW- [ADDR: Address Physical address of 64KB memory page referenced by this entry.
1):16 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
15:12 | Reserved Reserved (must return 0's)

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access |Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this
bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

Ignored Ignored (h/w does not care about values behind ignored registers)

G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to
indicate that the memory region pointed by this entry can be considered global
Global paging is not used by GPU.

7 PAT: Page Attribute |For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful

write transaction. See later sections for A/D-bit management.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

59

experience
what's inside’
Bits Field Description

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 U/S: User/Supervisor | User vs supervisor access rights. If O, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

64KB pages need to be enabled via MMIO along with the PDE IPS bit per directory entry.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 4KB Page

E[6[6|615|5]5|5]515]5(5]5 w lewal | BRREEEREREERREEEEREEE M alal-lclclalalalzle
E'E}lUBE;TESJiE!ZQ- Ll i 1|ofslsl7]s|salalz]1]olalelz]elslalsl2 1o l® 37 (B 1314 312 121°
¥ I ; | P|PIUR PTE
Dé Ignored Rswd. Address of 4KB Page 8,8 G/1/DACW/!/ P| (4KB Page)
? nnl D{T|s /W "
Bits Field Description
63 XD: Execute Disable |If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 |[Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0's)
(HAW- | ADDR: Address Physical address of 4KB memory page referenced by this entry.
1:12 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11 Ignored/Reserved Ignored/not used by hardware
10 EA: Extended Access |Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this
bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

60

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)) e

what's inside’
Bits Field Description
This bit applies to GPU Only.
Ignored Ignored (h/w does not care about values behind ignored registers)
G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to
indicate that the memory region pointed by this entry can be considered global
Global paging is not used by GPU.

7 PAT: Page Attribute |For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful
write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 U/S: User/Supervisor | User vs supervisor access rights. If O, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If O, write permission not granted for requests with user-
level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 4KB Page.

* HAW = 39 for client, and 46 for server.

PPGTT for 32b Virtual Address

For page walk in legacy mode with 32b VA, we need two levels. The walk starts with a PDP pointer
provided by the context descriptor, and uses the 32b VA as an index to consecutive levels of page tables.
Hardware implements 16KB intermediate caches to limit the page walk needed to a single level, to have
the same sensitivity to latency as previous generations.

The following diagram shows the page walk needed for a 4KB page.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 61

experience
what's inside”
E] 2 1[1 L
1 0l9 1o 21 _
{ Page D"T:?e;y Foinker Page Directory Index | Page Table Index Offset inside Page
Final Page
» Phy Mem
Page Table
Page
Directory
Table 4
» PDE
_ PDPE#3 »
PDPE#2
— PDPE#1
PDPE#0
PDP Pointers from
Context Descriptor

62 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Page Table Entry format

(inteD) ...

what'’s inside’
s for 32b VA use the following formats:

B[6[6[615[5I515151515 15151 | | raw lreaws 3321222222222 AT [T [T T [I[L]1[1]T 1] =[]
3!2109&7554321’ FAW. e 1|ofalalzle|slalalz]1lolals|7|slslalz|2 | o ®[B]7 15121213121 11°
Ignored Address of Page Table Ignored / P PDE
W
N 1P P(P{1|R PTE
Ignored Address of the 64KB MB page Rsvd. |lgn u/gl|A lgn C|Wgl/ P A
In(T| |D|T|njw || "%
N 1P P(P{ 1R PTE
Ignored Address of 4KB Page Ign ulglA|lgn ClWgl/ P
ulniT| |DlT|njw || {8 Paee)
|
PDE for the page table
6[6[6[6]5]|5]5]5]515]5]5]5] | | ey IPRZIEZEEZRERREREREEEIAEIII]E o1 [A U Y 1
3!:|1’035765432t1 l ‘H"V‘ h"""" 10_‘38]’?65:3!21;09%8?65@3:1!03;6'bs"‘a 2
R
Ignored Address of page-directory-pointer-table Ignored / P PDE
Bits Field Description
63:HAW* |Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- [ADDR: Physical address of 4-KByte aligned page table referenced by this entry.
1:12 Address This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:2 Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Write permission rights. If O, write permission not granted for requests targeted to the
Read/Write memory range pointed by this PDE.
In Legacy mode with 32b VA, R/W bits from PDE are not used.
0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table
PTE for 64KB page
6|6(6|6{5[5|5|5{5|5|5|5|5] | T 3|3|212(2(2|2{2|2|z|2|2|1je|L|L | fijL|L|1]1 L : M
3!2{1‘09&7554312{1 s h“‘”"’ 1DJ'B 85?65-’-.3!2 1o sial?ia 5la 3!: 1!0 213 PR AEe
N 1P P/P|1R =
Ignored Address of the 64KB MB page Rswd. |lgn u glA|lgn Clwg /P A P
liniT D|T|nW oo e
Bits Field Description

63:HAW* |Ignored

Ignored (h/w does not care about values behind ignored registers)

(HAW- [ADDR: Address
1):16

Physical address of 64KB memory page referenced by this entry.
This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.

15:10 |Ignored

Ignored (h/w does not care about values behind ignored registers)

Doc Ref # IHD-OS-SKL-Vol 5-05.16 63

(lntel')') e

what's inside
Bits Field Description

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1%t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

PTE for 4KB Page

E|6[6|615|5]5|5]515]515]5 m— F— BREREEERERREREEEEEERI [alal lclclalalalalo
5:{1'035i7554i312;_ Faw g [1[o]9 3‘?’565—3i211093}?‘16543}2 o PBI7 B33 2140
N 1P P|P|1|R =
Ignored Address of 4KB Page lgn u/glAllgn ClWgl/ P (4KB Page)
In(T| D|T|n|w -
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address | Physical address of 64KB memory page referenced by this entry.
1:12 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:10 |Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1% Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

Ignored Ignored (h/w does not care about values behind ignored registers)
PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
64 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
Bits Field Description
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly
Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.
In page table every 16th entry (PTE#0, PTE#16, PTE#32... PTE#496) should be used to index. This is
calculated using address[21:16] & “0000". Note that hardware should not make any assumptions for any
other PTEs.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 65

(lntel) |
experience
what's inside”
3

A 2 1[1 d
i 03 110 65 |
Page D"T;;Z:(y O ~ Page Directory Index | Page Table Index Offset inside Page
|
Final Page
> Phy Mem
Page Table
—— PTE
Page
Directory
Table ’
— PDE
PDPEA3 >
PDPE#2
— PDPE#1
PDPE#0
PDP Pointers from
Context Descriptor

Walk with 2MB Page

PPGTT32 does not support 2MB pages.

Walk with 1GB Page

PPGTT32 does not support 1GB pages.

66

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience
what's inside”

PPGTT for Standard Context (64b VA)

For page walk in advanced mode with 48b VA, we need four levels. The walk starts with a PML4 table
pointer given by GFX software and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page:

3|12
k]

3[3
E1E

: |
Page Directory Pointer

A ok

PML4 Index e Page Directory Index Page Table Index Offset inside Page
Final Page
> Phy Mem |
Page Table
’ — PTE
PD Table
B > PDE
PDP Table
o POPE_—

PML4

Table

PMLE ——

PML4 pointer from
PASID Entry

A 64-bit (48b canonical) address requires 4-levels of page table format where the context carries a
pointer to the highest level page table (PML4 pointer) via PASID. The rest of the walk is a normal page

walk thru the various levels.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 67

experience
what's inside’

To repurpose the caches the following mechanism is used:

e 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
e Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
e VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD.

Page Table Entry (PTE) formats follow a similar layout to I1A32e as given below.

[6]6]6]615[5[5[5[5]5]5]5]5 3[3Z|Z[Z[Z[22[Z[Z[Z 2[R [[T [T T [E[L]L[1]2 o 9 L TP
3(2|1|ol9|8|7|6|5/4|3]2]|1 F plwt 10965?65:321093?63&43210925 EMEERE
R
Ignored Address of page-directory-pointer-table Ignored /P PMLIE
W
Ignored Adkdrescof the Reserved : lgn ﬁ; 1 lgn ECJ; i; P s
|
1GB page T "i" oIt nlw {1GB Page)
R PDPE
Ignored Address of page-directory-table Ignored /P Page
W Directory
\ Pl NI PIPIIR -
Ignored Address of the 2MB page Reserved Allgn ug/l lgn CWg /P (2MB Page)
T lin D|T|n(w &
R PDE
Ignored Address of page-table Ignored \,L P Page Table
N/ 1P PP/ IR PTE
Ignored Address of the 64KB MB page Rswd. |lgn u/g/A|len ClwWgl/ P i pad
II!nT D|T|njw || &
N/ 1P PP/ IR PTE
Ignored Address of 4KB Page lgn ulg|A|lgn [ClWgl/ P (4KB Page)
II!n T/ |D/T|njw -

Each table entry is further broken down along with the required functions. GFX has a 4-level page table
which is pointed out by context descriptor starting with the PML4. The next levels have slightly different
formats depending on the size of the page supported. 1GB and 2MB page formats are required for
support.

In 48b legacy mode, the pointer to the PML4 table is provided via the context descriptor provided by
GFX software. The PML4 entry format is given below and points to the base of the PDP table.

68 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

experience
what'’s inside’
516|6|6 5/5]5]515/5]5]5]5 | IPEEZEERREREERPEREEEEREEE Eelel lclslalzlz]1]o
e:hlnaei.’-ssaia}:;- G bl ’110}93‘E6‘5£ {21 93!?%53431: 1;0‘El'lb5"13\"‘J
R
Ignored Address of page-directory-pointer-table Ignored /P PMLAE
w
|
Bits Field Description
63:HAW?* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry.
1):12 | Address This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:2 |Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Write permission rights. If O, write permission not granted for requests with user-level
Read/Write |privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-
context-entry) to the memory region controlled by this entry. See a later section for access
rights.
GPU does not support Supervisor mode contexts.
In 64b Legacy, R/W in PML4 entry can not be used for RO pages.
0 P: Present PML4 Entry is present. It must be "1” to point to a page directory pointer table

PDP entry is used to locate the page directory. Similar to IA32e page tables, legacy 48b VA supports 1GB
pages, the PDPE has a mechanism to identify a way to say whether this PDPE represents a pointer to
page directory or to a contiguous 1GB physical memory. PDP entry format is given below and points to

the base of PD table.

Z[6[6|61515]5|5]515]5(5]5 o Tonwr o] I alalalclclala ol la
3>2}1095%7554ia!:1- bW -t 431: 1o P12 I B3R
R PDPE
Ignored Address of page-directory-table Ignored /P Page
w ‘ Directory
Bits Field Description
63:HAW* |Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Physical address of 4-KByte aligned page-directory table referenced by this entry.
1:12 | Address This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:2 Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Write permission rights. If O, write permission not granted for requests with user-level
Read/Write | privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-
context-entry) to the memory region controlled by this entry. See a later section for access
rights.
GPU does not support Supervisor mode contexts.
In 64b Legacy, R/W in PDP entry can not be used for RO pages
0 P: Present PDP Entry is present. It must be "1" to point to a page directory pointer table

Doc Ref # IHD-OS-SKL-Vol 5-05.16

69

experience

what's inside

PDP entry for 1GB Page

6|6|6|615|5[5]|5{5i5|5|5]|5 - AW_§ 3|3 111 1}11-1‘1 1|1 o | PR i
3:{1|aasiﬂ554i312;‘ e Rk 1|0 9§3!ﬁ;5543f2 o 2B P11 312
‘ Pl NI P|P[IR
Address of the | PDPE
Ignored Reserved Allgn u/g|l|lgn CWel/ P
1GB page T iln DT nlw {1GB Page)
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address |Physical address of 1GB memory page referenced by this entry.
1):30 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
29:10 |Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1% Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page For devices operating in the processor coherency domain, this field indirectly

Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 1GB Page.

70

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(intel‘emem

what'’s inside’
Page Directory entry point to the base of the page table and format is given below.
6|6|6|615|5|5|5]5/5|5]|5] s ey} 33;222'::22;:]:21_1§11‘_L‘11_1 ,17_ p o
a:}lyoasiwssﬂai:; Gl ekl 1|ofslsl7]6]sal3]z]1 93!?155451: 10®[®]’ bSJ!S*‘J
R PDE
Ignored Address of page-table Ignored \,"VP Page talle
Bits Field Description
63:HAW?* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- |ADDR: Physical address of 4-KByte aligned page- table referenced by this entry.
1):12 | Address This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:2 |Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Write permission rights. If O, write permission not granted for requests with user-level
Read/Write |privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-
context-entry) to the memory region controlled by this entry. See a later section for access
rights.
GPU does not support Supervisor mode contexts.
In 64b Legacy, R/W in PD entry can not be used for RO pages
0 P: Present PDP Entry is present. It must be "1" to point to a page directory pointer table

Page Directory entry for 2MB page:

Z[6[6]6/5]5]5]5]5/515]1515 = e AERREEERRRRRPEEEEEERE el o 0 1
3’2}103&i?654i3121- b ot 1[]}93‘56‘5— {2 [1 913!“6345::1;03': CEEEERE
P N P|P|1R ==
Ignored Address of the 2IMB page Reserved Allgn lu/g|l|lgn CWgl/ P (2MB Page)
T liin DiT|nfw | [&
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address |Physical address of 1GB memory page referenced by this entry.
1):21 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
20:10 |/gnored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

Ignored Ignored (h/w does not care about values behind ignored registers)
PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

Doc Ref # IHD-OS-SKL-Vol 5-05.16 71

experience
what's inside
Bits Field Description
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 1GB Page.

Page Table entry for 64KB page:

E[E[6]615|5]5]5]515]515]5 w lewsl | FRRPREERPRPERRRPEEEEREEEE el lslslalzl2]e
32}1l03£i7554i312;1 PAW. it {1|o]s 31‘ge,5_3i:;‘109}3}?§554332 1;03" S HEEE
N 1P PIP|1|R =
Ignored Address of the 64KB MB page Rswd. |lgn u/glAllgn CWegl/ P s
Iin|T D|T|nW S
Bits Field Description
63:HAW?* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address |Physical address of 64KB memory page referenced by this entry.
1):16 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
15:10 |Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

Ignored Ignored (h/w does not care about values behind ignored registers)
7 PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

72

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

experience
what's inside’
Bits Field Description
1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.
GPU does not support Supervisor mode contexts.
0 P: Present It must be “1” to point to a 64KB Page.

Page Table Entry for 4KB page:

n

[

5 |
7

HAaw-1

6|6|6|615|5| 5i5|5|5]5 — |3 :__;-:::22’_‘:21-'1;11-1?111:{,__,_ I ¥
52}109,_i. 554i3!:;1 Ea {1|0]9 3‘?565£3|211093=?§634332 1o 2137 5121213312
N 1P P|P|1R o
Ignored Address of 4KB Page lgn ujglAllen CWgl/ P||
iln{T| |D{T|njw | |4 Paee)
Bits Field Description
63:HAW?* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address | Physical address of 64KB memory page referenced by this entry.
1):12 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:10 |Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

Ignored Ignored (h/w does not care about values behind ignored registers)
7 PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1" to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

73

experience
what's inside”

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.
In page table every 16t entry (PTE#0, PTE#16, PTE#32....PTE#496) should be used to index. This is
calculated using address [20:16]& “0000". Note that hardware should not make any assumptions for any
other PTEs.

4 3|3 3|2 212 1 {
7 la 8 Io 3 \1 0 é 5 i
Page Direct int
PML4 Index 8ee "Tn d:_:(y fonter Page Directory Index Page Table Index Offset inside Page
Final Page
— Phy Mem
Page Table
—» PTE
PD Table
» PDE
PDP Table
> PDPE
PML4
Table
» PMLAE ——
PML4 pointer from
PASID Entry

74 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside”
Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final
page.

1] 33| 3(2 212
7l 3 ;\ lu 9| 1 nl -0‘
PML4 Index e D"f:;‘;;y SOUNRE | e Dty e Offset inside Page {
Final Page
> Phy Mem
PD Table
» PDE
PDP Table |
»_PDPE_—
PML4 ‘
Table
» PML4E
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16 75

(inteD) .,

what's inside”

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

3 33| EJE
7! IS Bl IG 9I \0
PML4 Index e D"T:;z;y Eiinter Offset inside Page
Final Page
> Phy Mem
PDP Table |
|
» PDPE }
PML4
Table
» PML4E
PML4 pointer from
PASID Entry

76

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Gen9 Global GTT

experience
what's inside’

The Global GTT mechanism in gen9 looks very similar to pre-gen8 with the distinction of page table
entry. Aperture and display will still use the global GTT even if GT core is mapped via per-process GTT.

The PTE format for Gen9 is updated to match per process GTT definitions and GSM is now expanded in
size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry corresponding to

a 4KB page with 2720 entries in GSM (each with 8B content)

For "MI_update_GTT", the page address provided 31:12 need to be shifted down to 22:3 for the correct

QW position within the GGTT.

Page Table Entry

The following page table entry will be used for Global GTT:

Z[E[6]615/5]5]5]5]5]5]5]5 Tow | BRREEEEEEEEE AR], _
3|2 1’09‘5|?654i3;211 baw piawy 10%93?%6,5:3;2109§3|?€65d3;2 1{0/°[®] "5413
Ignored Address to Final Page {4KB) Ignored " GioEiatlrSTT

Bits Field Description

63:HAW* |Ignored |Ignored (h/w does not care about values behind ignored registers)
(HAW- | Address | Physical address of 4KB memory page referenced by this entry.
1):12
11:1 Ignored |Ignored (h/w does not care about values behind ignored registers)
0 Present | When set to 1, indicates that this Page Table Entry is Valid, and the corresponding page is
Present in physical memory

* HAW = 39 for client, and 46 for server.

The GPU accesses GGTT table entries as uncacheable.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

77

(l n te,l gexperience

what'’s inside”
Page Walk

The global GTT page walk is identical to what it was before gen8. The only difference would be that each
entry is 8B (instead of 4B) hence the entry selection needs to be updated once the corresponding Page
Table miss read is returned.

Global GTT Index Offset inside Page
Final Page
— Phy Mem
Global GTT
Table
» GGTTE
Global GTT Pointer
(GSM)

78 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience
what's inside’

Legacy mode with 32b VA

Gen9 page walker is capable supporting 32b VA address with optimized page tables, this is to keep the
walk to a single level.

Page Walk in Legacy mode with 32b VA

For page walk in legacy mode with 48b VA, we need 2 levels. The walk will start with a PDP pointer
provided by the context descriptor and uses the 48b VA as index to consecutive levels of page tables.
Hardware implements 16KB intermediate caches to limit the page walk needed to a single level to have
the same sensitivity to latency as previous generations.

The following diagram shows the page walk that is needed for a 4KB page.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 79

(intel)

experience
what's inside”
N 22 afs 0
0lg 1lo 2(1 |
Page Dlrle:;c;;y Sou Page Directory Index | Page Table Index Offset inside Page
Final Page
» Phy Mem
Page Table
» PTE
Page
Directory
Table J
PDE
PDPE#3 g
PDPE#2
» PDPEK1
PDPE#0

PDP Pointers from
Context Descriptor

80

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views (ln te!:ex erience
whaRc’s inside”
Walk with 64KB Page
3 N 1) ! :
1 09 1/0 6(5
Page D"T:;z;y s Page Directory Index | Page Table Index Offset inside Page
Final Page
» Phy Mem
‘Page Table
» PTE
Page
Directory
Table 4
PDE
_ PDPE#3 »
PDPE#2
» PDPE#1
PDPE#0
PDP Pointers from
Context Descriptor

Doc Ref # IHD-OS-SKL-Vol 5-05.16 81

(l n te,l ‘experience

what's inside”
Page Table Entry (PTE) Formats

Page Table Entry formats for 32b VA use the following format:

[6[6[6[6]5]S[S5I5I515]5]5]5 1 3[3[2[2[2[2[2]Z[2[2[2[2[T]I[T[T|T[T[1[1]1]T Il
1312]1jof9|8|7]6|5(4|3[2]1 HAW puwt 1lojois|7[s[slal3]2]1]olol8|7]6ls ala]2]1]0l®3]7 (131413 [2]1)°
| ’ R
Ignored Address of Page Table Ignored /P PDE
l W
‘ NI[P| |P[P[1|R -
Ignored Address of the 64KB MB page Rsvd. |lgniulg|Allgn|ClWMg|/IP| |, :
| (64KB Page)
| in|T |D T|n|W
N[I|P P|P|I|R PTE
Ignored Address of 4KB Page Ign ulglA Ignlc Wel/ /P (4KB Page)
| in(T| [o[T|n|W ’
PDE for Page Table
|16|/6]6|6{5|5|5|5]5]5|5(5]5 | 3322'222;2‘2221211111;\11111
slalilolslsl2lels a1l [[waw] | Blolslel5 e aE 1ol s lslslalslzlalole[=] e[l 2[2]2 e
' R
Ignored ’ Address of page-directory-pointer-table Ignored /|P PDE
\ w
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- [ADDR: Physical address of 4-KByte aligned page table referenced by this entry.
12 Address This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:2 Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Write permission rights. If 0, write permission not granted for requests targeted to the
Read/Write memory range pointed by this PDE.
0 P: Present PD Entry is present. It must be “1" to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

82 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’

PTE: Page Table Entry for 64KB Page

6[6]6]615|5]5]51515]5]5]5 » | | BRRZEZREREZEZEZEZEZEZEZIIIEIIII11 [[} 2
32]1'093!7'554[312;1 IH"N AW '1!0;9 8‘7!61543!2!1;0 918‘716543i2 1ol?[3171°P1* 312 121°
NlI|P PIP|1|R ==
Ignored Address of the 64KB MB page Rsvd. |[lgn|u/g|A|lgn|CiWg|/ P| A
Hin|T D|T|nW | i
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address | Physical address of 64KB memory page referenced by this entry.

1):16 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
15:10 |[Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1% Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

Ignored Ignored (h/w does not care about values behind ignored registers)
PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1" to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

83

(intel"

what's inside

experience

PTE: Page Table Entry for 4KB Page

6[6]6]615|5]5]51515]5]5]5 » 1 | BRRIZIZZ[ZZZ[Z[Z[2[A[X][T[T|T[I[I[1[1]T [[} 2
32]1'093!7'554[312;1 IH"N AW '1!0987!61543[2'109w8|7‘6543i2 1ol?[3171°P1* 312 121°
NlI|P PIP|1|R ==
Ignored Address of 4KB Page Ign ujg|A|lgn|C/Wgl|/ P (4KB Page)
H{n|T D(T|njW || s
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address | Physical address of a 4KB memory page referenced by this entry.

112 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:10 |Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1%t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.

Ignored Ignored (h/w does not care about values behind ignored registers)
PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level |For devices operating in the processor coherency domain, this field indirectly

Write-through | determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write | Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present This bit must be “1" to point to a valid Page.

* HAW = 39 for client, and 46 for server.

84

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Legacy mode with 48b VA

(inteD) ...

what's inside”

Legacy mode with 48b VA enables larger virtual space while keeping the page walk compatible with

IA32e.

Page Walk in Legacy 48b Mode

For page walk in advanced mode with 48b VA, we need 4 levels. The walk will start with a PML4 table
pointer extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page.

4 33 32 22 11 |
9(8) lO 9] 11 0‘ 2{1 9
PML4 Index Page D"T::i? FoRter Page Directory Index Page Table Index Offset inside Page
Final Page
— Phy Mem
Page Table
—> PIE
PD Table
> PDE
PDP Table
PDPE ——
PML4
Table
» PMUE —
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16

85

experience
what's inside’

64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer
to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk thru
various levels.

To repurpose the caches the following mechanism will be used:

e 3d: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache
e Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache
e VEBOX, Blitter: each with a 4KB acting as PML4, PDP, PD cache.

Note: design can section the 512 entries within 4KB to separate areas for PML4, PDP and PD.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.
In page table every 16t entry (PTE#0, PTE#16, PTE#32....PTE#496) should be used to index. This is
calculated using address [20:16]& “0000". Note that hardware should not make any assumptions for any
other PTEs.

86 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel)
experience

what's inside”
4 33 312 2{2 i1
: HH HH [l HH o
Page Directory Pointer , —
PML4 Index i Page Directory Index Page Table Index Offset inside Page
Final Page
Phy Mem
Page Table
PTE
PD Table
> PDE
PDP Table
» PDPE
PML4
Table
» PML4E
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16 87

(inteD) .,

what's inside”

Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final
page.

4 3|3] 32 212
7‘ IB 8\ IO 9[‘l 0| .o
PML4 Index Page D"Tﬁ;zrxy Fosier Page Directory Index Offset inside Page
Final Page
———— > Phy Mem
PD Table
» PDE
PDP Table |
\
» PDPE —
PML4
Table
» PML4E
PML4 pointer from
PASID Entry

88 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

3 HH

|32
(L]

o

Index

PML4 Index Page Directory Pointer

Offset inside Page

r

PDP Table |

PML4
Table

PDPE

Final Page

> Phy Mem

v

PMLAE

PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16

(inteD) ...

what's inside”

89

experience
what's inside”

Page Tables Entry PTE Formats

Page Table Entry (PTE) formats will follow the IA32e layout as given below:

[6]6]6 5/515 33 12[22[2[2]1 II[I[I[I[I[1
lslalslolalsls slslalalzls] | [#aw [wawa] [F1Gla[sl7 16 5 el 12 51010 1als lslslalslala ol el e[s]e]o[2]2]e
R
Ignored Address of page-directory-pointer-table Ignored [P PMLAE
w
\ | |
| Address of the P ;N : ,P PILIR PDPE
Ignored | 168 page Reserved Allgnlulg|1|lgn|C/Weg|/IP (1GB Page)
| T/ ufn |D T|n|w
wl [R PDPE
| Ignored | Address of page-directory-table Ignored /P Page
| W Directory
‘. pl INli plP|1[R i
| Ignored | Address of the 2MB page Reserved Allgnluig|1iign |CIW /P
{2MB Page)
1 ‘ T lijn ID|T|n/W
| R
PDE
Ignored | Address of page-table Ignored 6\' P Page Table
J
| N/ I|P PIP(I|R PTE
Ignored | Address of the 64KB MB page Rsvd. |[lgn ulg|A|lgn|C[Wgl|/IP (GAKB Page)
| llin|T 'D T|n|w
| N|I|P PIP(I|R PTE
Ignored | Address of 4KB Page Ign lulg|Allgn|C/Wg|/|P (4KB Page)
| llin|T 'D T|n|w

Each table entry is further broken down along with the required functions. GFX has a 4 level page table
which is pointed out by context descriptor starting with the PML4. The next levels have slightly different
formats depending on the size of the page supported. 1GB and 2MB page formats are required for

support.

Pointer to PML4 table

In legacy mode, pointer to PML4 table is provided via the context descriptor.

90

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(intel" |
exp:anen_ce

what's inside’

PMLA4E: Pointer to PDP Table

6/6[/6|6i5|/5|5(5|5]5|5|5]|5 | 3|3(2]2(|2]|2 22111J1111‘11;1 - |
3,211'098!7[654!312}1 ‘ IHAW et Hole 87\6] IIOQ\SI 1654312 1|0 9‘817’654‘3’210
R
Ignored Address of page-directory-pointer-table Ignored {/IP PML4E
W
Bits Field Description
63:HAW* L .
Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR:
Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry.
1):12 |Address y y 9 pag y'p y y
This field is treated as Guest Physical Address (GPA) when Nested translations are enabled
(NESTE=1) in the relevant extended-context entry.
11:2 L .
Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: . S . . .
Read/Writ Write permission rights. If 0, write permission not granted for requests with user-level
ea e privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-
context-entry) to the memory region controlled by this entry. See a later section for access
rights.
GPU does not support Supervisor mode contexts.
0 P: Present PML4 Entry is present. It must be "1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to
identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB
physical memory.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 91

experience
what's inside’
PDPE for PD
6/6[/6|6i5|/5|5(5|5]5|5|5]5 . | 33}222222222‘21}11l111111151 | - |
3,2]1'0 5 SMG 5 a!3J2§1 IH"W AW lllojg 8‘7\6!5 4 3&2‘1;0 ols|7]6lslal3]2|1]0|° 8H6 2 4‘3\2_1 g
Rl || POPE
Ignored Address of page-directory-table Ignored (/1P Page
W Directory
Bits Field Description
63:HAW* . .
Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- |ADDR:
Physical address of 4-KByte aligned page-directory table referenced by this entry.
1):12 |Address y y 9 bag y y y
This field is treated as Guest Physical Address (GPA) when Nested translations are enabled
(NESTE=1) in the relevant extended-context entry.
11:2 . .
Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: . -
Read/Writ Write permission rights. If 0, write permission not granted for requests with user-level
ea e privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-
context-entry) to the memory region controlled by this entry. Access rights are described
later.
GPU does not support Supervisor mode contexts.
0 P: Present PDP Entry is present. It must be “1" to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

92

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
PDPE for 1GB Page

6[6]6|6/5|5|5|5]515|5]5]5] 3[3[2[2[2[2[22[2[2[Z[2[T[T[T [T [T[1[1]1]T _
3.211'098!7'654!3]231 IH"W HAW L '11098‘7!6!543%2!1;0 913|71654321:0987°543210
Address of the P N FIP|LR , PDPE
Ignored 1GB page Reserved Allgn ulg|1|ign|CiWg|/ P| (1GB Page)
B8 [lifn D(T|nw [|77 8
Bits | Field | Description
63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW- ADDR: Address Physical address of 1GB memory page referenced by this entry.

1):30 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.
29:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1<t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion,
write accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)
7 PAT: Page For devices operating in the processor coherency domain, this field indirectly
Attribute determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly
Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Write permission rights. If 0, write permission not granted for requests with user-
Read/Write level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present This bit must be “1” to point to a valid Page.

* HAW = 39 for client, and 46 for server.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 93

experience

what's inside

PD: Pointer to Page Table

This section describes the following:

e PDE for Page Table
e PDE for 2 MB Page

PDE for Page Table

6/6|6|6{5|5|5|5]/5[5|5|5]5 =sii) 33‘22‘2222222321111{111111;1 : |
31211’098‘7[654!312;1 : ‘HAW HAW’I‘ ll‘OiQ 837‘6]543!2'130 918‘7]6 54 3%2 1|0 9‘817}654‘3'2110
R PDE
Ignored Address of page-table Ignored (/1P
W Page Table
|
Bits Field Description
63:HAW* . .
Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- |ADDR: . . .
Physical address of 4-KByte aligned page- table referenced by this entry.
1):12 | Address y y 9 pag y y
This field is treated as Guest Physical Address (GPA) when Nested translations are enabled
(NESTE=1) in the relevant extended-context entry.
11:2 . .
Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: - .
Read,/Wirit Write permission rights. If O, write permission not granted for requests with user-level
ea e privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-
context-entry) to the memory region controlled by this entry. See a later section for access
rights.
GPU does not support Supervisor mode contexts.
0 P: Present PDP Entry is present. The value must be “1" to point to a page directory pointer table.

* HAW = 39 for client, and 46 for server.

94

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

PDE for 2MB Page

(lntel)‘expem

what's inside’

6/6[/6|6i5|/5|5(5|5]5|5|5]5 — | 313;22222222]22131 1|1]1]1]1]|1|1|1 | ['
3_2J1|09 !7'654!312}1 IH"N AW '1!o§9 8‘7!61543!2! 09| |71654352 1ol?(3171°P1* 3|2 121°
P NI PIP[I|R .
Ignored Address of the 2MB page Reserved Allgniulgil|lgn|C/Wg|/ P| (2MB Page)
T lt{n D|T(njw | [==
Bits Field Description
63:HAW* . .
Ignored Ignored (h/w does not care about values behind ignored registers)
(?;A_‘;q/_ ADDR: Address Physical address of 1GB memory page referenced by this entry.
This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
20:10 o .
Ignored Ignored (h/w does not care about values behind ignored registers)
9 N: Null . . .
For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1% Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion, write
accesses are dropped.
8 Ignored Ignored (h/w does not care about values behind ignored registers)
7 PAT,: Page For devices operating in the processor coherency domain, this field indirectly
Attribute . . .
determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.
3 SVWI F;ige Ie\r/]el For devices operating in the processor coherency domain, this field indirectly
rite-throug determines the memory type used to access the page directory- pointer table
referenced by this entry.
2 Ignored Ignored (h/w does not care about values behind ignored registers)
1 R/W: Read/Write

Write permission rights. If O, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

95

(lntel')‘expem

what's inside’
Bits Field Description
0 P: Present It must be “1" to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

5[6[616/5/5]5]5]5/5]5]5]5] I | BRRREZERRERREEEZAE A =] P

3211'098!7'554!3]2%1 ‘H"W HAW L '1[0;9 8‘7!615 3!2!1;0 913|716543i2 1ol?[3171°P1* 312 121°
Nl I[P PIP[1|R -

Ignored Address of the 64KB MB page Rsvd. |[Ign u/g|A|lgn|CiWgl|/ P A Sl
ll{n|T D|T|n/W | i
Bits Field Description
63:HAW* . .
Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- [ADDR: Address

Physical address of 64KB memory page referenced by this entry.

1):16
This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
15:10 o .
Ignored Ignored (h/w does not care about values behind ignored registers)
9 N: Null . . .
For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1% Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero’s for the read access with a null completion, write
accesses are dropped.
8 Ignored Ignored (h/w does not care about values behind ignored registers)
7 PAT,: Page For devices operating in the processor coherency domain, this field indirectly
Attribute . . .
determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level |For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.
3 CVWI F;ige Ie\l/1el For devices operating in the processor coherency domain, this field indirectly
rite-throug determines the memory type used to access the page directory- pointer table
referenced by this entry.
2 Ignored Ignored (h/w does not care about values behind ignored registers)
96 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’
Bits Field Description

! R/W.: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level
privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.
GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 4KB Page

6[6]61615]5]5|5]515]5]515 - 1 | BRRZEZEEZEZEZEZZEZEZIIIEIIII11 T [P
3_2J1|09 !7'654!312}1 IH"N AW '1!o§9 8‘7!61543!2!1;0 913|716543;‘2 1ol2(3171°P1* 32 12°
N 1P PIP[I|R -
Ignored Address of 4KB Page Ign ujg|Allgn|C/Wg|/ | P| (4KB Page)
Wn(T| [D|T|njw || &
Bits Field Description
63:HAW* | Ignored Ignored (h/w does not care about values behind ignored registers)
(HAW- | ADDR: Address | Physical address of 64KB memory page referenced by this entry.
1:12 This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extended-context entry.
11:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page
information to primary (1<t Level) translation tables. If Null=1, the h/w will avoid the
memory access and return all zero's for the read access with a null completion,
write accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page For devices operating in the processor coherency domain, this field indirectly

Attribute determines the memory type used to access the page directory-pointer table
referenced by this entry.
6:5 Ignored Ignored (h/w does not care about values behind ignored registers)
4 PCD: Page level | For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level | For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

Doc Ref # IHD-OS-SKL-Vol 5-05.16 97

(l n te,l .kexperieﬂce

what's inside’
Bits Field Description
1 R/W: Write permission rights. If 0, write permission not granted for requests with user-
Read/Write level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be 1" to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

Advanced mode with 48b VA and I1A32e Support

In advanced mode, Gen9 per process GTT mechanism supports IA32e compatible page tables. Paging
mechanism is controlled via IOMMU which shall be owned by OS or GFX driver (not both at the same
time).

Page Walk in Advanced Mode

For page walk in advanced mode with 48b VA, we need 4 levels. The walk will start with a PML4 table
pointer extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page.

98 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
0

what's inside”
[] ‘33 ‘321 ‘112‘ 1;1‘
E1ES 0[9 |1{0 21
PML4 Index Poge Dlrlerf:;;y Fomier Page Directory Index Page Table Index Offset inside Page
Final Page
—— Phy Mem
Page Table
—n PIE
PD Table
B » PDE
PDP Table
» PDPE |
PML4
Table
PML4E —
PML4 pointer from
PASID Entry

64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer
to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk thru
various levels.

To repurpose the caches the following mechanism will be used:

e 3d: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache
e Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache
e VEBOX, Blitter: each with a 4KB acting as PML4, PDP, PD cache.

Note: design can section the 512 entries within 4KB to separate areas for PML4, PDP and PD.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 99

experience
what's inside”

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.
In page table every 16t entry (PTE#0, PTE#16, PTE#32....PTE#496) should be used to index. This is
calculated using address [20:16]& “0000". Note that hardware should not make any assumptions for any
other PTEs.

4 33 32 22 11
9/8/ ln 9] ‘10‘ s‘s‘ 0
PML4 Index Poge D"?:;zr: Fomier Page Directory Index Page Table Index Offset inside Page
Final Page
— Phy Mem
Page Table
— PIE
PD Table
> PDE
PDP Table
POPE —
PML4
Table
» PMLE —
PML4 pointer from

PASID Entry

100 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside”

Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final
page.

4 3|3] 32 212
7‘ IB 8\ IO 9[‘l 0| .o
PML4 Index Page D"Tﬁ;zrxy Fosier Page Directory Index Offset inside Page
Final Page
———— > Phy Mem
PD Table
» PDE
PDP Table |
\
» PDPE —
PML4
Table
» PML4E
PML4 pointer from
PASID Entry

Doc Ref # IHD-OS-SKL-Vol 5-05.16 101

(i n te,l ‘experience

what's inside”

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

33 32
7‘ l9 8' ID 9| -o
PML4 Index Fage Directony Pofuter Offset inside Page
Index
Final Page
> Phy Mem
PDP Table |
|
|
» PDPE
PML4
Table
> PML4E
PML4 pointer from
PASID Entry

102

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside”

Page Tables Entry (PTE) Formats

Page Table Entry (PTE) formats will follow the IA32e layout as given below:

[6[6]6[6]5 3322

(¥,

515{5/5(5|5|5

~N

2 2|2 1|1 11

[
[
[N

‘ 2]2]2 21 11 ;
i3/2|1|ol9]8|7|6i514|3|2]1 HAwiHAw'l 1098765}4:3210937654321098765:“210
& 1M SI P|P|UR
§D Ignored Rsvd. ‘ Address of page-directory-pointer-table g Ailgn i g/AICIW/|/IP| | PMLAE
| n n| |D[T[S|W
\ | di | |
, | Pl 1 P|p|ulR
;I); Ignored Rsvd. | Ad;ig:}ss :f;he Reserved Alg ig G|1|DIAIC/W/|/IP i GP[? :;E e
j | rae Tin[[l | | | [ofT|s/w .
ly IE' t| |plplulr PDPE
E; Ignored Rsvd. Address of page-directory-table gl,!lgn|0[g/AICIW/|/IP Page
QD A | | .
| n n| [D|T|S|W Directory

! il |

x P|l £ I P|P|UR PDE
| Ignored Rsvd. Address of the 2MB page Reserved |A|g|, g|G|1|DIA|C/W/|/IP|],
D A | (2MB Page)
| T|n| |n [D|T(S|W
|
Iy e 1| |p|P|UIR -
iD Ignored Rsvd. ' Address of page-table P A‘j Ign|0{g/AICIW/|/IP Page Table
i s | [n| [o[T|s|W .
|
[x | . I |P P|P|UR PTE
i Ignored Rsvd. Address of the 64KB MB page Rsvd. |g|,ig|G|A|D|AIC/W/|/IP] |, ‘
D A (64KB Page)
] nin T | iD T[S|W
F |
Iy | £ I P|P|UR PTE
;’D Ignored Rsvd. ' Address of 4KB Page g Agg G[1[DIAICIW/|/IP (4KB Page)
i n|"n - |ojT|s/w .

Each table entry is further broken down along with the required functions. GFX has a 4 level page table
which is pointed out by context descriptor starting with the PML4. The next levels have slightly different
formats depending on the size of the page supported. 1GB and 2MB page formats are required for
support.

Pointer to PML4 table

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be
provided by PASID table entry in case of advanced context, else it will be provided by software as part of
the legacy context with 48b addressing.

Details of PASID entry is given in later sections.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 103

experience

what's inside

PMLA4E: Pointer to PDP Table

6(6[6[6]5[5[5[5]5[5[5]5]5 [s) 3[3[212]2]2[2]2[2[2[2[2[A[1[a a2]1[11]1]2 EElEE l l
3[2[1]ols 8!7’65 aislzq {H"W W) \110198 7!5‘5 3!2!1‘0 als|7|sls|al3]2]1]o® 8|7]ss|4[32]1)0
T T R
e ‘SI PP|UIR
Ignored Rsvd. Address of page-directory-pointer-table Bl lgn vIB AICW/I/IP PML4E
n n| |[D|T|S|W
id
Bits Field Description

63 XD: Execute

If NXE=1 in the relevant extended-context-entry, execute permission is not

Disable granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0's)
(HAW- | ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by
1):12 this entry.
This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.
11 Ignored Ignored (h/w does not care about values behind ignored registers)

10 EA: Extended

Extended Access bit is added for devices to separate accesses from IA cores. If

Access EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to set
this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)
7 Reserved Reserved (must return 0°s)
6 Ignored Ignored (h/w does not care about values behind ignored registers)
5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table entry.
See later sections for A/D-bit management.
4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable

determines the memory type used to access the page directory-pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging
structures.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory- pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging
structures.

104

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(inteD) ...

what's inside’

Bits

Field

Description

2

u/s:
User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

R/W: Read/Write

Write permission rights. If O, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.

0

P: Present

PML4 Entry is present. It must be "1" to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to
identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB
physical memory.

PDPE for PD
6]6]6]615|5]5]51515]5]5]5 . 1 | BRRRREREREREZREEZAAAEAAI[II]1 d , _
3,211‘0 9 8!7[6 5 ais{zil ‘H"W bW '110%9 8|) ,ls 3!2! lolo|s|7]6is/a3]2]1]0 U B MEE
x| e 1| |P|P[UR PDPE
D; Ignored Rsvd. Address of page-directory-table Bl lgn [O|g AICIW/|/IP| Page
| \ n n| |[D|T|SIW Directory
Bits Field Description
63 XD: Execute Disable | If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when
XD=1.
Not support in gen9
62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0’s)
(HAW- | ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by
1):12 this entry.
This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.
11 Ignored/Reserved Ignored/not used by hardware

Doc Ref # IHD-OS-SKL-Vol 5-05.16 105

experience
what's inside
Bits Field Description

10 EA: Extended Access | Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to
set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table
entry. See later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging
structures.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging
structures.

2 U/S: User/Supervisor | User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If O, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.
0 P: Present PDP Entry is present. It must be “1" to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

106

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

PDPE for 1GB Page

(lntel)‘expem

what's inside’

6]6]6|615|5|5|5]515|5]5]5 . =] 33222222 Z[2[Z[Z[T[A[T[A[T[I|1]1[1]T [[}
3:2J1|09 !7'654[31231 IH"N HAW L '1!098‘7!6!543!2!1;0 913|71654352 1ol?(3171°P1* 3|2 12°
, \ Pl |1 P|P|UR ’
; Ignored Rsvd. Adféis gf the Reserved Alg i g|G|1|DIAICIW/|/ P ‘Al»wPBng,._.
\ Lo Tin{ |n DiT|sjw ||
Bits Field Description

63 XD: Execute Disable | If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when
XD=1.

Not support in gen9
62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0s)
(HAW- | ADDR: Address Physical address of 1GB memory page referenced by this entry.
1):30 This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.
29:13 Reserved Reserved (must return 0s)

12 PAT: Page Attribute | For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access | Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to
set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w
to indicate that the memory region pointed by this entry can be considered
global
Global paging is not used by GPU.

7 Page Size Must be 1 to indicate 1GB page.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a
successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table
entry. See later sections for A/D-bit management.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

107

experience
what's inside’
Bits Field Description

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 U/S: User/Supervisor | User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present The value must be “1” to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PD: Pointer to Page Table

PDE for Page Table

5[6[616/5/5]5]5]5/5]5]5]5] I | BRRREZERRREREEEZAEE I ,
3:211|0 9 3!7'6 slaal2x ‘HAW sionsdtd '11019 8‘7]615 3!2!1;0 9‘3|7}6 sialz|2[1]o|3[3]7 1812113 [3]2°
. I I |p|P|UR =
g Ignored Rsvd. Address of page-table P i lgn(0|gl|AIC/W/|/IP| p«nszE-np:
‘ \ S nl |D[T|S|W SEE TS
Bits Field Description
63 XD: Execute If NXE=1 in the relevant extended-context-entry, execute permission is not
Disable granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0’s)
(HAW- | ADDR: Address Physical address of 4-KByte aligned page table referenced by this entry.
1:12 This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.
108 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)) e

what's inside’

Bits Field

Description

11 IPS

If FL64KPE=1 in the corresponding PASID entry, the page table referenced by
this PD entry with IPS=1 translates into 64KB pages. If IPS=0, the page table
referenced here translates into 4KB pages.

If FL64KPE=0 in the corresponding PASID entry, the IPS value is ignored and the
page table referenced by this entry translates into 4KB pages.

10 EA: Extended

Extended Access bit is added for devices to separate accesses from IA cores. If

Access EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to set
this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table entry.
See later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable

determines the memory type used to access the page directory-pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging
structures.

3 PWT: Page level
Write-through

For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory- pointer table
referenced by this entry.

GPU does not support any memory type but WB when accessing paging
structures.

2 u/s:
User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write

Write permission rights. If O, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present

PD Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 109

experience
what's inside’

PDE for 2MB Page

6|/6|6|6i{5|5|5|5|5]5|5(|5]5 — | 3i3;22222222]221311§1111]1151 | ['
3@]1'093!7'654[31251 IH"N HAW L '1!o§9 8‘7!61543!2! 09| |71654352 1ol?(3171°P1* 3|2 12°
) 4UAL P|P|UR mo—
D; Ignored Rsvd. Address of the 2MB page Reserved Alg A g|G{1|DIAICIW/|/IP| (2MB Page)
\ Ti{n{ In D|T(S|W | b
Bits Field Description

63 XD: Execute Disable | If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when
XD=1.

Not support in gen9
62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0s)
(HAW- | ADDR: Address Physical address of 1GB memory page referenced by this entry.
1):21 This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.
20:13 Reserved Reserved (must return 0s)

12 PAT: Page Attribute | For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access | Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to
set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w
to indicate that the memory region pointed by this entry can be considered
global
Global paging is not used by GPU.

7 Page Size Must be 1 to indicate 2MB page.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a
successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table
entry. See later sections for A/D-bit management.

110 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(inteD) ...

what'’s inside’
Bits Field Description
4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly
cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 U/S: User/Supervisor | User vs supervisor access rights. If 0, requests with user-level privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1" to point to a 2MB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

6]6]6]615|5]5]51515]5]5]5 . 1 | BRRRERREREREREZREREZAAAEAAI[II1 d , P
3.2|1‘098!7'654!31231 ‘H"W s '1'039 87!6,‘543&2!1‘0 ols|7]els|al3]2|1]0l®|37|®17[*13|2[2]°
x| Helt] [P P|P[UR -
N Ignored Rsvd. Address of the 64KB MB page Rsvd. |g A8 GIADIAICIW/|/IP] |, A
| n T| | |ofTisiw || %
Bits Field Description
63 XD: Execute Disable | If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0°s)
(HAW- | ADDR: Address Physical address of 64KB memory page referenced by this entry.
1):16 This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.
15:12 Reserved Reserved (must return 0's)
11 Ignored/Reserved Ignored/not used by hardware

Doc Ref # IHD-OS-SKL-Vol 5-05.16

111

(lntel')') e

what's inside
Bits Field Description
10 EA: Extended Extended Access bit is added for devices to separate accesses from IA cores. If
Access EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to
set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.
This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w
to indicate that the memory region pointed by this entry can be considered
global
Global paging is not used by GPU.

7 PAT: Page Attribute | For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a
successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table
entry. See later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.

2 u/s: User vs supervisor access rights. If 0, requests with user-level privilege are not

User/Supervisor allowed to the memory region controlled by this entry. See section for access
rights.
GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If O, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

112

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’

PTE: Page Table Entry for 4KB Page

6/6[/6|/6:5/5|5(5|5]5|5]|5]5 . =u) 3!3322222222]22”1”1111]1111 | [= :
3.2{109 !7'65 231231 ‘H"W e '1|059 8‘7!61‘543£2!1‘0 ols|7lelslalz]2|1]0|?3]7[%13]*[3|2]2]°
el P|P[UR =
Ignored Rsvd. Address of 4KB Page 8ls8 G[{1|DIAICIW/|/IP| (4KB Page)
| - p(T|sw ||’ ee
Bits Field Description

63 XD: Execute Disable | If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0's)
(HAW- | ADDR: Address Physical address of 4KB memory page referenced by this entry.
1:12 This field is treated as Guest Physical Address (GPA) when Nested translations
are enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Extended Access bit is added for devices to separate accesses from IA cores. If

Access EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has
been used for address translation by device. It is the devices responsibility to
set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w
to indicate that the memory region pointed by this entry can be considered
global
Global paging is not used by GPU.

7 PAT: Page Attribute | For devices operating in the processor coherency domain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a
successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs
to set this bit for the first access to the region defined with this page table
entry. See later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.

Doc Ref # IHD-OS-SKL-Vol 5-05.16

113

(lntel')‘expem

what's inside’
Bits Field Description
3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly
Write-through determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 u/s: User vs supervisor access rights. If 0, requests with user-level privilege are not
User/Supervisor allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with
user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the
relevant extended-context-entry) to the memory region controlled by this entry.
See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be 1" to point to a 4KB Page.

* HAW = 39 for client, and 46 for server.

GTT Cache

Processor graphics page walker implements a GTT cache which holds the remaining entries that are read
as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf walks and
not including the 2MB/1GB page sizes. When SW enables the use of 2MB/1GB page sizes, it must disable
the GTT cache.

GFX Page Walker (GAM)

GPU supports various engines behind the same page walker. These streams/contexts are identified Client
level IDs which are carried via the arbitration pipeline. Page walker using look-up tables does the correct
selection for the page tables in case of concurrent context are running at the same time.

There are two different types of page table types:

Global graphics translation table (GGTT) is a single common translation table used for all processes.
There can be many Per-process graphics translation table (PPGTT). This requires an additional lookup for
translation.

Virtual Memory Structure Memory Location

Global (GGTT) GSM Only

Per-Process (PPGTT) — private | 2 to4-level, Page Tables anywhere

Per-Process (IA32e) — shared |4 levels, Page Tables anywhere

IA32e compatible PPGTT is added to gen8/gen9 to enable SVM (shared virtual memory) functions.

114 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
Context Definition for GFX Page Walker

Page Walker blocks need details about the context to decide on what type of page tables are used, what
the error handling cases are, and many other details to operate. The information is passed to Page
Walker (GAM) by the respective command streamer/DMA.

GAM needs to support the following engines:

e Render

e Media (VDBox) x2
e Blit

e VEBOX x2

The following fields are sent to GAM:

e Context Type (4 bits):

e Legacy vs Advanced Context. Defines the context type and qualifies the rest of the fields.
Same field may mean something else between the Legacy vs Advanced context. There is no
restriction for what type of context can run in either combination.

e Requests without address-space-identifier (Legacy Context): These are the normal
memory requests from endpoint devices. These requests typically specify the type of
access (read/write/atomics), targeted DMA address/size, and identity of the device
originating the request.

e Requests with address-space-identifier (Advanced Context): These are memory requests
with added information identifying the targeted process address space from endpoint
devices supporting virtual memory capabilities. Beyond attributes in normal requests,
these requests specify the targeted process address space identifier (PASID), and
extended attributes such as Execute-Requested (ER) flag (to indicate reads that are
instruction fetches), and Privileged-mode-Requested (PR) flag (to distinguish user
versus supervisor access). For details, refer to the Process Address Space ID (PASID)
Capability in the PCI-Express specifications.

e A/D Support Enable. Access and Dirty bits are used when OS is managing the page tables

and has been added to IA32e compatible page walk. Context defines whether A/D bits need
to be managed via GPU (only applicable in Advanced Context).

e Privileged Context Support. Enables GPU to be able to run a privileged context which
translates into page table accesses regardless of user vs supervisor privileges (only
applicable in Advanced Context).

e 32b vs 48b VA Support. Enables 48b VA in page tables for the page walks. The rest of the
HW is seamless to 32b vs 48b VA address walks, however GAM does the check and properly
aligns the page walk to address bits. Note: Only applicable in Legacy Context. Advanced
Context is always 48b.

e Page Fault Support Model:

Doc Ref # IHD-OS-SKL-Vol 5-05.16 115

(lntel')') e

what's inside
e Fault and Hang: The only supported fault handling mode for legacy context and it is
not applicable to advanced mode. Optionally hang can be skipped for HW to make
progress (same as Gen7.5).

e Fault and Stream (Switch if needed): Context can survive thru a number of page faults
and could be switched out by the scheduler if a certain threshold is reached.

e Fault and Halt: HW detects page fault and reports to SW; the request is flagged in
pending queue as “waiting for page response” and is halted until the page response is
returned.

e Function Number - 3-bit field that defines the function number of the device. GFX device is
always on BUS=0 and DEVICE=2. If we are not virtualized, our FUNCTION#=0 however if
virtualized function number can be any 8 possible values (i.e. 0-7). The BUS/DEVICE/FUNCTION
numbers are used for the initial walk for ROOT and CONTEXT tables.

e PASID - Process Address Space IDentifier: Use to identify the context that is submitted to HW. We
use the PASID in many places where during the page walk (i.e. PASID table look up) or while
communicating with SW on page faults. Each engine could be running an independent context
with different PASID. The page walker should have a mechanism to be able to cache at least some
number of PASID table entries (matching the engine count) for faster walk.

e Context ID (Queue ID, Bell ID) — Context ID is used to further qualify the running context beyond
the PASID. PASID is given per process, and same process may allocate multiple queues to
communicate with HW. The only way to further identify the process is to use an additional ID. For
GFX HW Context ID could be same as the bell number assigned to it. GAM HW uses the context ID
to populate the queue ID field while communicating page faults to SW.

¢ Page Table Pointers — The field could be up to 256 bits (i.e. 4x64bits) to identify the page table
pointers associated with the context. For legacy 32b context, the entire 256b is valid representing
the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant pointing to base of
PMLA4. In case of advanced context, PASID is given in the context definition.

Context Definition Delivery

Context Definition is supposed to be delivered from the corresponding command streamer to GAM and
GAM has independent storage for each engine present.

Context Definition is given by *CS to GAM via a new message:
Message: “Context Available”

GAM prepares for new context, cleans up internal state and does the proper fencing. Most of these steps
should have been performed when context switch request was done for the previous context, but added
here for completeness.

Message: “Context Receive Ready”

GAM is ready for the context. *CS writes all new context values into the descriptor registers. To push all
context descriptors CS sends the following message to GAM also indicating new context descriptor is
downloaded.

Message: “Context Launched”

116 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’
GAM does the context requirements and sends the following message to CS to resume its command
parser.

Message: Context Confirmed

GAM should send context confirmed message only after PD restore is done. CS waiting for context
confirmed message is treated as PD restore busy. Since all clients memory interface are blocked during
PD restore it doesn't make any difference if the context confirmed message is send by GAM immediately
or after PD restore.

Element Descriptor Register

General Element Information: The register is populated by command streamer and consumed by
Description GAM

Register Offset See per engine list below.

Bits | Access|Default Field

63:32| RO Xh | Context ID:

Context identification number assigned to separate this context from others. Context IDs
needs to be recycled in such a way that there cannot be two active contexts with the same
ID.

This is a unique identification number by which a context is identified and referenced.

31:12(RO Xh LRCA:
Command Streamer Only

11:9 RO Xh Function Number:
GFX device is considered to be on BusO with device number of 2. Function number is
normally assigned as 000b.

Not used in Gen8/9.

8 RO Xh |Privileged Context / GGTT vs PPGTT mode: Differs in legacy vs advanced context modes:
In Legacy Context: Defines the page tables to be used. This is how page walker come to
know PPGTT vs GGTT selection for the entire context.

0: Use Global GTT

1: Use Per-Process GTT

76 RO Xh Fault Model:

00b: Fault & Hang. Same mode as Gen7.5.

01b: Fault & Halt/Wait. Same as initial release of Fault & Halt as in gen7.5. No Advanced
Context.

10b: Reserved
11b: Reserved

Doc Ref # IHD-OS-SKL-Vol 5-05.16 117

experience

what's inside

Bits

Access

Default

Field

RO

Xh

Deeper IA coherency Support:

In Advanced Context: Defines the level of |A coherency:

0: IA coherency is provided at LLC level for all streams of GPU (i.e. Gen7.5 like mode).
1: 1A coherency is provided at L3 level for EU data accesses of GPU.

RO

Xh

A&D Support / 32&64b Address Support: Differs in legacy vs advanced context modes:
In Legacy Context: Defines 32b vs 64b (48b canonical) addressing format:

0: 32b addressing format.

1: 64b (48b canonical) addressing format.

In Advanced Context: Defines A&D bit support:

0: A&D bit management in page tables is NOT supported.

1: A&D bit management in page tables is supported.

RO

Xh

Context Type: Legacy vs Advanced

Defines the context type.

0: Advanced Context: Defines the rest of the advanced capabilities (i.e. OS page table
support, fault models, ...). Note that advanced context is not bounded to GPGPU.

1: Legacy Context: Defines the context as legacy mode which is similar to prior generations
of Gen8.

Note: Bits [8:4] differs in functions when legacy vs advanced context modes are selected.

RO

Xh

FR: Command streamer specific.

RO

xh

Scheduling Mode:
0: Indicates Ring Buffer mode of scheduling.
1: Indicates execlist mode of scheduling.

RO

Xh

Valid: Indicates that element descriptor is valid. If GAM is programmed with an invalid
descriptor, it continues but flags an error.

PDP0O/PML4/PASID Descriptor Register

General

Description

PDPO/PML4/PASID: The register is populated by command streamer and consumed by GAM. It
contains one of the 3 values which is determined by looking at the element descriptor.

Register Offset

See per engine list below

Bits

Access

Default

Field

63:0

RO

Xh

PDPO/PML4/PASID:
This register can contain three values which depend on the element descriptor definition.

PASID[19:0]: Populated in the first 20bits of the register and selected when Advanced
Context flag is set.

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is set
and 64b address support is selected

PDPO0[38:12]: Pointer to one of the four page directory pointer (lowest) and defines the first
0-1GB of memory mapping

Note: This is a guest physical address

118

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(inteD) ...

what's inside’

PDP1 Descriptor Register

General
Description

PDP1: The register is populated by command streamer and consumed by GAM. It contains one
of the pointers to PD.

Register Offset

See per engine list below

Bits | Access | Default Field

63:12| RO

Xh

PDP1:

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1-2GB of
memory mapping

Note: This is a guest physical address

PDP2 Descriptor Register

General
Description

PDP2: The register is populated by command streamer and consumed by GAM. It contains one
of the pointers to PD.

Register Offset

See per engine list below

Bits | Access | Default Field

63:12| RO

Xh

PDP2:

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2-3GB of
memory mapping

Note: This is a guest physical address

PDP3 Descriptor Register

General
Description

PDP3: The register is populated by command streamer and consumed by GAM. It contains one
of the pointers to PD.

Register Offset

See per engine list below

Bits | Access | Default Field

63:12(RO

Xh

PDP3:

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3-4GB of
memory mapping

Note: This is a guest physical address

Doc Ref # IHD-OS-SKL-Vol 5-05.16 119

(lntel')‘expem

what's inside

List of Registers and Command Streamers

The following registers are message registers and not written directly by SW.

Engine Offset Description
Render x4400h Element Descriptor Register
x4408h PDPO/PML4/PASID Descriptor Register
x4410h PDP1 Descriptor Register
x4418h PDP2 Descriptor Register
x4420h PDP3 Descriptor Register
Media0 x4440h Element Descriptor Register
(VDBOX0) x4448h PDPO/PML4/PASID Descriptor Register
x4450h PDP1 Descriptor Register
x4458h PDP2 Descriptor Register
x4460h PDP3 Descriptor Register
Media x4480h Element Descriptor Register
(VDBOX1) x4488h PDPO/PML4/PASID Descriptor Register
x4490h PDP1 Descriptor Register
x4498h PDP2 Descriptor Register
x44A0h PDP3 Descriptor Register
VEBOX x44C0h Element Descriptor Register
x44C8h PDPO/PML4/PASID Descriptor Register
x44D0h PDP1 Descriptor Register
x44D8h PDP2 Descriptor Register
x44EOQh PDP3 Descriptor Register
Blitter x4500h Element Descriptor Register
x4508h PDPO/PML4/PASID Descriptor Register
x4510h PDP1 Descriptor Register
x4518h PDP2 Descriptor Register
x4520h PDP3 Descriptor Register

120

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)) e

what's inside’

Messages:
Message Mask
Name Source | Destination | Category | Address | Bit| Bit |Value Description
Context CS(GT) | GAM (GT) | self-clear [4004 0 16 1 Signal request from CS to GAM as
Available new context is about to be
submitted.

Context GAM CS(GT) self-clear | 3438 0 16 1 Signal ack from GAM to CS in
Receive (GT) response to Context Available
Ready message from CS to GAM.
Context CS (GT) | GAM (GT) | self-clear [4004 1 17 1 Signal indicator to GAM that
Launched context descriptor is pushed.
Context GAM CS(GT) self-clear | 3438 1 17 1 Signal ack from GAM to CS in
Confirmed (GT) response to Context Launched

message from CS to GAM.

Context BCS GAM (GT) | self-clear | 4014 |0 16 1 Signal request from CS to GAM as
Available (GT) new context is about to be
submitted.
Context GAM BCS(GT) | self-clear | 23438 |0 16 1 Signal ack from GAM to BCS in
Receive (GT) response to Context Available
Ready message from BCS to GAM.
Context BCS GAM (GT) |self-clear| 4014 |1 17 1 Signal indicator to GAM that
Launched (GT) context descriptor is pushed.
Context GAM BCS(GT) self-clear | 23438 |1 17 1 Signal ack from GAM to BCS in
Confirmed (GT) response to Context Launched

message from BCS to GAM.

Context VECS GAM (GT) | self-clear| 4010 |O 16 1 Signal request from CS to GAM as
Available (GT) new context is about to be
submitted.
Context GAM VECS(GT) | self-clear | 1B438 |0 16 1 Signal ack from GAM to VECS in
Receive (GT) response to Context Available
Ready message from VECS to GAM.
Context VECS GAM (GT) | self-clear| 4010 |1 17 1 Signal indicator to GAM that
Launched (GT) context descriptor is pushed.
Context GAM VECS(GT) | self-clear| 1B438 |1 17 1 Signal ack from GAM to VECS in
Confirmed (GT) response to Context Launched

message from VECS to GAM.

Context VCSO | GAM (GT) | self-clear | 4008 |0 16 1 |Signal request from CS to GAM as

Available (GT) new context is about to be
submitted.

Context GAM VCSO(GT) | self-clear | 13438 |0 16 1 Signal ack from GAM to VCS in

Doc Ref # IHD-OS-SKL-Vol 5-05.16

121

(lntel')') e

what's inside
Message Mask
Name Source | Destination | Category | Address | Bit| Bit |Value Description
Receive (GT) response to Context Available
Ready message from VCS to GAM.
Context VCSO GAM (GT) | self-clear| 4008 |1 17 1 Signal indicator to GAM that
Launched (GT) context descriptor is pushed.
Context GAM VCSO(GT) | self-clear | 13438 |1 17 1 Signal ack from GAM to VCS in
Confirmed (GT) response to Context Launched

message from VCS to GAM.

Context VCS1 GAM (GT) | self-clear | 400C |0 16 1 Signal request from CS to GAM as
Available (GT) new context is about to be
submitted.
Context GAM VCS1(GT) | self-clear | 1D438 |0 16 1 Signal ack from GAM to VCS in
Receive (GT) response to Context Available
Ready message from VCS to GAM.
Context VCS1 GAM (GT) | self-clear | 400C |1 17 1 Signal indicator to GAM that
Launched (GT) context descriptor is pushed.
Context GAM VCS1(GT) | self-clear | 1D438 |1 17 1 Signal ack from GAM to VCS in
Confirmed (GT) response to Context Launched

message from VCS to GAM.

Updating Page Table Pointers (aka PD Load)

In case of legacy context, driver is allowed to add/remove pages as long as it is ensured that h/w is not
using these entries. Pre-gen8 flow allowed a mid-context PD load to update the PD entries and directed
h/w to reload updated entries.

Pre-loading of Page Directory Entries (PD load) for 32b legacy mode is not supported from Gen9
onwards. PD entries are loaded on demand when there is a miss in the PDE cache of the corresponding
page walker. Any new page additions by the driver are transparent to the HW, and the new page
translations will be fetched on demand. However, any removal of the pages by the driver should initiate
a TLB invalidation to remove the stale entries.

122

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
what's inside’

Page Walker (GAM) Reset

GAM gets all the engine specific resets as well as device and bus resets to manage its internal logic
domains. It is the expectation of SW when a particular GPU engine (i.e. Render, Media...) gets reset, all its
related HW is cleared and comes out fresh for reprogramming. That is true for most of the logic with the
exception of some shared HW blocks. The following blocks require additional steps (post-reset) from SW
to further clean-up the HW:

¢ Hardware TLBs: The caching structures for the page walks are often considered shared resources.
The expectation for GFX driver to clear the TLBs via “TLB Invalidate” prior to re-using the engine
post reset. This is the same process that was followed on previous GPU generations.

¢ Page Requests: At the time of the reset HW may have outstanding page requests to SW for page
faulted accesses. These requests could be at any level hence it is required for SW to clear these
paging requests pre/post-engine reset. Engine reset ensures that no new page requests are sent
from HW. Page requests could be at the “page request queue” in memory where they could be
mapped to a dummy page post engine reset completion. Or they could be at the MMIO registers
which will block completion of the reset; it is up to SW to service paging request interrupts without
waiting for the completion of reset request.

Device reset (FLR) covers most of the page walker. However there are exceptions where all messaging
towards the rest of the system (system agent) should not be impacted by it.

All external interactions and IOMMU related blocks are kept under bus (system) reset. GAM keeps the
following blocks outside the device reset:

e |IOMMU registers and content

e All system agent messaging structures (including translation enable flows, root pointer structures,
and DMA fault reporting pieces)

An engine being reset also means the particular context that engine is running, is complete or taken out.
This requires GAM to decrement the PASID_State Counter if the engine was running a PASID based
(advanced) context. For FLR (device reset) similar requirement holds. In case of device reset, GAM needs
to decrement all the PASID state counters that are active on the GPU before completing the sequence.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 123

experience
what's inside’

TLB Caching and Management

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At every
stage of the page different bits need to be taken into account and proper treatment is required.
Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear address are translated
using a hierarchy of in-memory paging structures located using the contents of CR3. |IA-32e paging
translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4
PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be

accessed at any given time.lA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or
1-GByte pages.

124 Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside’

Memory Views ‘ i n tel)

5555555555555 M1 [M-1 3(3|13|2[21212(2|2|2[2|2[2[1 1 pan |
32| 1]0}qB]7 [5]5 (4] 3|21 2[10)9(8|7]16(5|4|3(2]1|0[9|8]7|6]|5[4|3]2[1]0]9(8] 7|6(5]4(3|2]1 [0
> F|P
Reserved=- Address of PML4 table lgnored [Cfw] lgn. CR3
DT
Il [PIFUR \
lgnored Rsvd. Address of page-directory-polnter table lgn. | |alA|cwl/ (/|1 PHLAE.
d
PMLAE:
lgnored O] not
present
e Address of F F|PUR| | PDPTE
lgnored Rswd. 1GB page Reserved Al lgn. |G 1 DIAICW A1) TGB
I] frame T D|T|S page
Il [PIFU[R| | PDPTE:
lgnored Rswd. Address of page directory lan. |Dg|A|Clw|/]/|1] page
n| |D|T|Sw] |directory
POTPE:
lgnored O] not
present
P P{F|UIR PDE;
A lgnored Rsvd. EM‘“B“ddfffE;m . Reserved |a| lan. |cl1[olalcm7|/|1] 2ME
F pag T TSIl | page
Il [PIFU[R PDE;
lgnored Rswd. Address of page table lan. |0g|A|Cw|/]/|1] page
n| (DT|% i table
PDE:
lgnored 0] not
present
¢ F P(F|UIR PTE
b Ignored Rsvd. Address of 4KB page frame lon. |GIAIDIA[CI /LS (1] 4KB
T D|T|S page
PTE
lgnored 0] not
present

The following rules apply:

M is an abbreviation for MAXPHYSICAL ADDRESS
Reserved fields must be “0”
Ignored field must be ignored (there could be private information)

A W N =

All ignore options are part of the context entry and coming from IOMMU definition.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 125

experience
what's inside’

TLB Caches

For gen8/9 the caching structures are separated as following with the architectural view, this is also
applicable to s/w view of these caches when it comes to invalidations.

Context Cache - CC

This is the storage for context table entry which is achieved as part of root/context table walk.

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the
content of the context cache along with all low level caches.

PASID Cache - PC

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for
every HW engine that could be running an independent context (per GAM):

e Render/GPGPU

e MFX (VDBOX) -1

e MFX (VDBOX) -2

e Video Enhancement (VEBOX) — 1
e Video Enhancement (VEBOX) - 2
o Blitter

The cache content is updated if the corresponding engine is running an advanced context where its page
table pointers are accessible via PASID table. In case of legacy context running engine, corresponding
PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per engine which is
filled/invalidated during the context switch time.

PASID Cache can also be invalidated with the directed invalidations along with low level caches and
needs to be re-filled prior to context resuming.

Intermediate Page Walk Caches (PML4, PDP, PD) - PWC

These are the stages where intermediate page walk entries are cached to speed-up/shorten the page
walk when final TLB is missed. Each level can be cached separately or along with different levels, the
cacheability structures will have programmability to move the boundary of different levels to
accommodate more/less on each page walk level. However as a concept, for legacy 32b addressing
mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and
media. The others will use cache concept.

126 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
TLB - Final Page Entry

The size of the TLBs has been increased over the previous generation and should be targeting using the
following list:

e L3 TLB: 768 TLB entries — This is where all HDC, 1§, Constant, State, and Sampler streams are stored.
e MFX: 512 TLB entries — All Media streams (split 256/256 between two media engines).

e BLT: 32 entries.

e Z:512 TLB entries — All depth accesses.

e (: 256 (256 TLB entries) — All color accesses.

e FF: 128 (128 TLB entries) — All FF accesses to memory.

e VLF: 32 (32 TLB entries) — Media surface.

e GAV: 64 (64 TLB entries) — Video enhancement.

All TLB entries are increased to 48b to contain larger address as well as the page attributes attached to it.

The max size of a single TLB is 256 entries, larger quantities have to be handled as set-associative
storages. Set associativity will be managed by low order page bits (i.e. address#12, address#13, ...).

Both Color and Z TLBs are designed to process a single memory request per cycle. To achieve a higher
throughput where concurrent Color or Z read/write's are used, following register bit needs to be
enabled: mmio0x04A30h [31]

The sizes of RCCTLB and ZTLB is different in SKL and BXT. In SKL both these have 448 entries and in BXT
they only have 256 entries.

The size of the L3 TLB is also different between projects. The default TLB entry alocations are:

e SKL (L3TLB-Gfx 640): L3(80:0-79), DC(100:80-179), TX(444:180-623), GATR(16:624-639)
e SKL (L3TLB-GPGPU 640): L3(80:0-79), DC(460:80-539), TX(100:540-639)

For giving more TLB resources for both DC and TX, the following allocations are recommended.

o SKL (L3TLB-Gfx 640): L3(80:0-79), DC(544:80-623), TX(544:80-623), GATR(16:624-639)
e SKL (L3TLB-GPGPU 640): L3(80:0-79), DC(560:80-639), TX(560:80-639)

TLB Entry Content

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as
well along with the physical address bits. The treatment on these bits would be considered when a HIT vs
MISS decision needs to be made during a look up.

The purpose of caching is to accelerate the paging process by caching individual translations in
translation look-aside buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is
referenced by a page number. It contains the following information from the paging-structure entries
used to translate linear addresses with the page number:

Doc Ref # IHD-OS-SKL-Vol 5-05.16 127

(lntel')') e

what's inside
» The physical address corresponding to the page number (the page frame).

» The access rights from the paging-structure entries used to translate linear addresses with the
page number:

o The logical-AND of the R/W flags.
o The logical-AND of the U/S flags.
o The logical-OR of the XD flags.

= Attributes from a paging-structure entry that identifies the final page frame for the page number
(either a PTE or a paging-structure entry in which the PS flag is 1):

o The dirty flag.
o The memory type.

PRESENT: This is the same VALID bit description we had in previous page table designs. The lack of
present bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For
some fault models, even NOT PRESENT entries are cached to filter further page faults (see fault models
on caching page faulting entries). If such entry is cached, there are couple ways that it can be removed
from the page tables:

1. LRA selection where the entry becomes a victim for replacement
2. Global or Selective invalidation
3. Page fault response stating the faulting page is now fixed.

R/W Privilege: Certain pages can be allocated as read-only and write operations are not allowed. To
make this check work, TLB has to keep the R/W bit. This bit has no effect on read operations; however for
write operation privilege needs to be checked. If there is mis-match, the result of the TLB look-up should
be a MISS. This does not mean a page fault immediately; the walk has to be re-done as for any TLB MISS
result. There are cases OS may change page table privileges without invalidating pages in TLB (note: all
downgrades result in invalidation of the TLB, however upgrades can be done silently hence re-walk is
required). In case where the TLB Miss is due to privilege mis-match, the existing entry from TLB has to be
invalidated and page walk will bring in the most up-to-date copy from memory.

The R/W privilege on final frame is generated as a logical-AND process of all upper page walks pointing
to this location.

User vs Supervisor Privilege: The GPU typically operates in user mode when it comes to page tables. So
the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and the
context is marked as user mode. The faulted entry can be cached back into TLB with “P" bit off indicating
a faulted entry. However the page fault report should carry the correct reason why h/w detected the fault
in the first place which was the user vs supervisor privilege. There is an option in context header to define
the context as supervisor, than it legal to access supervisor pages.

= This is not stored in TLB

The U/S privilege on final frame is generated as a logical-AND process of all upper page walks pointing
to this location.

128 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ [ntel))
experience

what'’s inside’
Accessed Bit: This where a stage of the page walk cannot be used if the accessed bit is not set for that
level in the page walk. This is true for both storage into TLB as well as to make progress on the page
walk. In order to achieve the process of Accessed bit, every stage of the ppGTT read is done via a new
semantics between the GAM and GTI such that GTI can atomically process A-bit w/o running into access
violations. The details of the semantics are defined as part of the following sections. The “A” bit does not
need to be stored as part of the TLB, just the fact that a valid page table entry is present in the TLB does
mean that h/w took care off the "A” bit at the time the page was brought up to TLB. Note that TLB
prefetching is disabled when A-bit management is enabled.

IA32e mode page tables cannot co-exist with TLB pre-fetching due to lack of A-bit management for all
entries of the line.

= This is not stored in TLB

Dirty Bit: Similar to accessed bit, dirty bit needs to be managed. It is only applicable for "write” accesses.
Given there are cases where a TLB entry was acquired as part of a read operation, the presence of D-bit
should be maintained with the TLB. This gives us the capability to declare a TLB miss for a write access
when the D-bit is not set even though TLB has a valid translation. In such case, The TLB entry needs to
invalidated and the final stage of the walk needs to be re-done to ensure most up-to-date copy of GTT
entry is brought into h/w. The operation of Dirty bit update is also atomic similar to A-bit management.

Execute (XD) Bit: XD bit is also present on every stage of the walk and applicable to executable code
that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the
corresponding page does not have the execute credentials set properly. Similar treatment of the TLB
entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for
instruction space will have to check the XD bit which is also stored in TLB. If mis-match, the end result is a
TLB miss and walk has to be re-done replacing the different stages of the walk.

The XD privilege on final frame is generated as a logical-OR process of all upper page walks pointing to
this location.

Faulted Bit: There are usage models where the faulted entries are cached in TLB. This is to filter further
faults to the same page as opportunistic way to prevent fault storms. When faulted bit is set the address
is included in the TLB look up but final treatment is fault filtering. The rest of the bits are used to define
what would be the reason for the fault. If the look-up conflicts with the original faulted reason, a re-walk
is required. As a basic case, take a read access bringing up a PTE with W-flag cleared. A subsequent write
access has a conflict on privilege, and it will perform a re-walk. If the result of the re-walk is W-flag set,
than TLB is upgraded and write makes progress. However if the result is still W-flag cleared, the write
access will fault and TLB entry will be tagged as a faulted entry with only read-allowed. Subsequent write
accesses will be filtered as fault but read accesses should cause a re-walk of the page and if successful,
the TLB can be updated with PTE as valid with read-only attribute.

TLB Accessed and Dirty Flags

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.
For paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6
is the dirty flag. These flags are provided for use by memory-management software to manage the
transfer of pages and paging structures into and out of physical memory.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 129

(lntel) |
experience
what'’s inside

Whenever the processor and/or GPU uses a paging-structure entry as part of linear-address translation, it
sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor and/or GPU sets the dirty flag (if it is not
already set) in the paging-structure entry that identifies the final physical address for the linear address
(either a PTE or a paging-structure entry in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging structure is initially
loaded into physical memory. These flags are “sticky,” meaning that, once set, the processor and/or GPU
does not clear them; only software can clear them.

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging-

structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty
flag from 1 to 0, the GPU might not set the corresponding bit in memory on a subsequent access using
an affected linear address

Accessed bit is applicable to every stage of the page walk, however the dirty bit is only applicable to final
stage of the walk.

The rule states that a particular access cannot be committed until the Accessed and/or Dirty bits are not
visible to page management s/w. In order for GPU to follow the rule, GTT accesses (when A/D bits are
supported) are going to be done via a special cycle definition between GAM and GTI.

Updating A/D Bits

New atomic operations are added to GAM to GPU interface (GTI) to handle paging entries. GAM has to
set the correct atomic opcodes based on the access type and context entry controls as well as level of
access.

Requires setting for opcodes are given in the table below. The steps of operations in the atomic ALUs are
given later in the document.

130 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

n

tel.

@

experience
what's inside’

The Following Atomics are only applicable in GTI and used for Page Walks
R/W => Bit[0]

Extended Access required => Bit[1]

Write Protect Enable => Bit[2]

Intermediate Entry =

> Bit[3]

Atomic
Operation

Opcode

Description

New
Destination
Value

Applicable

Return Value
(optional)

Atomic_Page_update_0000

1100_0000

Read Access

Extended Access bit is
disabled

Write Protection is
disabled

Final PTE

Set bit[5] if not
set

new_dst

Atomic_Page_update_0001

1100_0001

Write Access

Extended Access bit is
disabled

Write Protection is
disabled

Final PTE

Set bit[5,6] if not
set

new_dst

Atomic_Page_update_0000

1100_0010

Read Access

Extended Access bit is
enabled

Write Protection is
disabled

Final PTE

Set bit[5,10] if not
set

new_dst

Doc Ref # IHD-OS-SKL-Vol 5-05.16

131

(lntel')‘expem

what's inside

Atomic_Page_update_0001

1100_0011

Write Access

Extended Access bit is
enabled

Write Protection is
disabled

Final PTE

Set bit[5,6,10] if
not set

new_dst

Atomic_Page_update_0100

1100_0100

Read Access

Extended Access bit is
disabled

Write Protection is
enabled

Final PTE

Set bit[5] if not
set

new_dst

Atomic_Page_update_0101

1100_0101

Write Access

Extended Access bit is
disabled

Write Protection is
enabled

Final PTE

Set bit[5,6] if not
set

new_dst

Atomic_Page_update_0100

1100_0110

Read Access

Extended Access bit is
enabled

Write Protection is
enabled

Final PTE

Set bit[5,10] if not
set

new_dst

Atomic_Page_update_0101

1100_0111

Write Access

Extended Access bit is
enabled

Write Protection is
enabled

Final PTE

Set bit[5,6,10] if
not set

new_dst

132

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’

Atomic_Page_update_0000

1100_1000

Read Access

Extended Access bit is
disabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5] if not
set

new_dst

Atomic_Page_update_0001

1100_1001

Write Access

Extended Access bit is
disabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5,6] if not
set

new_dst

Atomic_Page_update_0000

1100_1010

Read Access

Extended Access bit is
enabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5,10] if not
set

new_dst

Atomic_Page_update_0001

1100_1011

Write Access

Extended Access bit is
enabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5,6,10] if
not set

new_dst

Atomic_Page_update_0100

1100_1100

Read Access

Extended Access bit is
disabled

Write Protection is
enabled

Intermediate Paging
Entry

Set bit[5] if not
set

new_dst

Doc Ref # IHD-OS-SKL-Vol 5-05.16

133

(lntel')') e

what'’s inside

Atomic_Page_update_0101{1100_1101 Set bit[5,6] if not new_dst

set

Write Access

Extended Access bit is
disabled

Write Protection is
enabled

Intermediate Paging
Entry

Atomic_Page_update_0100|1100_1110 Set bit[5,10] if not new_dst

set

Read Access

Extended Access bit is
enabled

Write Protection is
enabled

Intermediate Paging
Entry

Atomic_Page_update_0101|1100_1111 Set bit[5,6,10] if new_dst

not set

Write Access

Extended Access bit is
enabled

Write Protection is
enabled

Intermediate Paging
Entry

Atomic updates are only possible for cacheable memory types. There could be cases where the PTE could
be in WT/WC/UC space where atomic update is not possible via WB space. Those are the cases where 1A
cores use bus lock to update the A/D bits in PTE.

GT core is not capable of supporting bus locks and has the following options. These options will be
enabled/disabled via register space.

Option#1: Ignore the PAT/MTRR setting of the PTE and update the space as WB with atomic ops. This is
the place GAM will decide to go forward with atomic updates assuming WB space works

Option#2: Once the memory type is determined and the end result of the page is WC/UC/WT space, we
can not guarantee an atomic update. GAM will report an application error (catastrophic) to the scheduler
and handle the case as error.

134 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
what's inside’

Default
Bit | Access| Value Description
11 R/W Ob A/D Bit Update on non-WB Space: A/D bit updates are only possible via atomic

operations which are required to be on WB space to work properly. On non-WB spaces, the
A/D bit updates are done via bus locks which are not supported for GT.

“1": Ignore the page level cacheability and do atomic updates for A/D bit management

“0": Detect the page level cacheability as part of the atomic operation and throw a
catastrophic error when non-WB space is seen for A/D bit updates.

Replacement

TLB replacements during runtime are based on LRA algorithm; in addition invalidations and page
responses will have to invalidate the TLB entries.

Invalidations of TLB

There are various ways to invalidate TLBs:

1. Traditional invalidation from command streamer: Could be part of any fence accesses including
newly added atomics

2. SVM based invalidations: Listed as part of the new SVM related invalidations, various stages of
TLBs including intermediate stages can be invalidated selectively and/or as a whole.

3. Context Switch: A context switch has to invalidate caches to make sure we have no residual value
of the TLBs across multiple PASIDs. GAM will treat the context reload message from CS as a form
of TLB invalidation.

4. A page response: should invalidate faulted recordings. It should be done via address matching to
kick the faulted entries within the matching PASID.

Invalidation response “Invalidation Wait Descriptor” should also be a fence for both READs and WRITEs
that used the previous TLB entries. GAM can only respond to “invalidation wait descriptor” after getting a
GTI EMPTY indication.

Optional Invalidations

The following cases are listed as page table updates which software may choose not to invalidate the
TLBs.

e If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, s/w may choose
not to invalidate TLBs. This affects only the case where GPU keeps the faulted page in its TLB to
filter out future faults. Regardless of s/w does invalidation or not, for the cases where h/w cares,
there will be a page response from s/w which will be used to shootdown the faulted record from
the TLB.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 135

(lntel')') e

what'’s inside
GAM will put faulted entries to its TLBs only if there has been page request for it, which
means that only faultable surfaces can be stored in GAM TLBs as a faulted entry.

e If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is
necessary (assuming that an invalidation was performed the last time the accessed flag was
changed from 1 to 0). This is because no TLB entry or paging-structure cache entry is created with
information from a paging structure entry in which the accessed flag is 0.

¢ If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure to
perform an invalidation may result in a “spurious” page-fault exception (e.g., in response to an
attempted write access) but no other adverse behavior. Such an exception will occur at most once
for each affected linear address

GTT Walk Request Port (HDC)

A private GTT request port has been added between the HDC(s) and GAM to service the page walks.
HDC clusters will contain a mini-TLB and uses GAM's page walker. Their accesses to this page walker is
provided thru this private ports. Main GAM TLBs also act as a secondary cache to back these TLBs.

When page walk request comes to GAM, it will be treated as any normal request where the TLB look up
will be done and in case of a miss further page walk will be performed. The results of the page walk will
be returned on the private connection between the GAM and HDC clusters.

The hierarchy is defined as following diagram where each slice will contain a “Slice GTT Request
Manager” (slice GRM) where all HDCs interface with. Each HDC get two credits (i.e. 2-deep ingress queue
per HDC) where walk request response back to HDC is considered the release of credits. Slice GRM will
collect the walk requests and arbitrate/forward them to GAM on per slice dedicated port.

The request interface is designed to support 1 page walk request per 4 core clocks. Hence both the HDC
to slice GRM and slice GRM to GAM should be designed to carry a single page request distributed over 4
clocks to keep the wiring at minimum.

Page Request Interface:

= Valid -1 bit
= Opcode - 1 bit ("0": Page Request and “1": TLB Invalidation Response)
= Slice ID -1 bit
= HDCID -2 bits
= Virtual (GFX) Address — 36 bits (corresponds to [47:12])
= R/W - Read vs Write intend — 1 bit
= Tracking Number - 8 bits
» Faultable vs non-fautable surface - 1 bits
Page response interface from GAM is designed to deliver one page response every 4 clocks and it is

broadcast bus that connects to all HDCs directly. It is up to HDC unit to decode slice/unit ID and claim
the response as its own which is also treated as claiming the page miss credit back.

Page Response Interface:

136 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Valid - 1 bit
Opcode - 1 bit

o 00: for Page Response
o 01: Reserved
o 10: TLB Invalidation Start

o 11: TLB Invalidation End

PA — 27 bits (corresponds to [38:12])
R/W — this was for a read or write
Slice ID -2 bit

HDC ID - 2 bits

D bit -1 bit

Fault Codes - 2 bits (6 bits)
Cacheability (memory type) Override
Tracking number — 8 bits

Fault Codes:

Bits[1:0] Bit Description
00 No Faults
01 Page fault due to Page not present
10 Privilege level violation
11 Write permission violation

- 3 bits

experience
what's inside’

Cacheability (memory type) Override — In case of advanced context execution (where HDC coherent

mode is only applicable), the cacheability from surface state will need to be overridden by the OS/VMM
setting up the page tables (PAT), MTRR and CD. The effective memory type for HDC has to be used for
cache allocation starting with L3. HDC needs to use the memory type bits reported by GAM for memory

accesses.
HDC to L3
Memory Type Encoding in MTRR | Control[3:2]

Uncacheable (UC) Oh "00"
Write Combining (WC) 1h "01"
Write Through (WT) 4h “10"
Write Protected (WP) (Reads:WB and Writes:WC) | 5h Read: “11"

Write: “"01”
WriteBack (WB) 6h 11"
Reserved* 2,3,7h Reserved

*HDC is already capable of processing WT and WB memory types

Doc Ref # IHD-OS-SKL-Vol 5-05.16

137

experience
what's inside’

Overall Signaling Diagram for HDC/GAM connection:

GAM

HDC |

¥

Slice GTT “
Request
Manager

\/

HDC |

e

1 HDC

/o

1 HDC

HDC |

1 HDC

\/

Slice GTT
Fequest
Manager

-

7

/

HDC |

138

1 HDC

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
TLB Invalidation

In addition to page walk requests, there is also a communication needed between HDCs and GAM to
relate the TLB invalidation events. GAM combines all TLB invalidation events into a single event as a
global TLB invalidation to HDC where the entire content of mini-TLB is wiped out.

The protocol starts with GAM sending a “TLB invalidation start” on *page response* interface. All HDCs
will act on the TLB invalidation request as it is a broadcast event. Inline communication of the TLB
invalidation is to make sure all previous page responses are seen by the HDCs targeted. Upon receiving
the TLB Invalidation start, HDCs will stop sending new TLB requests and only process already available
translations pending and ensure corresponding (physical accesses) are GO'ed by L3. Once all these steps
are complete HDC will send out the ACK on the “page request” interface to GAM.

GAM will stop sending any page responses post “TLB invalidation start” message and it is free to drop
any new request that might have been enqueued by HDCs prior to HDCs seeing the invalidation request.
The inline ACK from each HDC is meant to push pending HDC TLB requests towards GAM (where they
are dropped). Once GAM collects all “TLB invalidations ACK's” from all HDCs, it will re-enable the TLB
service path and send back (broadcast) “TLB invalidation end” message (inline).

HDCs seeing the "TLB Invalidation end” indicating the sequence are complete and synchronized are free
to send TLB requests back to GAM.

Faulting
Page Faulting Support

Gen9 supports the WDDM2.0 page fault model, where hardware detects non-present pages post
translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page fault
and would require a GPU-only reset to recover.

Page Faults

Production SKL supports the WDDM2.0 page fault model, where hardware detects non-present pages
post translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page
fault and would require a GPU-only reset to recover.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 139

(lntel')') e

what'’s inside

Page Fault Modes

Only legacy faulting is supported, which means that a fault occurrence is treated as unrecoverable.

Page Faultable Context? No

Fault Mode Non-fault
Context Type Legacy
Shared Func. Support n/a

Fault Counters Inc'd No

IOMMU Action On Fault

Signal fatal error

Shared Func Action on Fault <oblivious>
Msg Retry (2) n/a
Kernel Visibility of Fault None

App Visibility of Fault

Via driver signaling of Fatal Error

Scheduler Visibility of Fault

n/a

Usage

Legacy Behavior

Fault and Hang/Crash (Legacy Mode)

GPU cores prior to gen8 all implemented Fault and Hang behavior (optionally continue — MMIO based)
with the exception of a simple fault and halt that was introduced for gen7.5. This is where page walker
detects a page which is not present as part of the translation and hangs the pipeline via reporting into a

register/interrupt (through command streamer).

The resulting issue points to a s/w problem either in defining the GTT or using a surface which is not

meant to be page faultable.

The same behavior will be carried forward for gen9 and used for legacy context operation as well as
optionally for surfaces that are not page fault-able. The same MMIO based mechanism will allow the
engine to ignore the page fault and resume operating.

140

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Memory Types and Cache Interface

(lntel)‘expem

what's inside’

This section has additional information on the types of memory which are accessible via the various GT
mechanisms. It includes discussion on how the various paging models are used and accessed. See the
Graphics Translation Tables for more detailed discussions on paging models.

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3

and the different behaviors which can be enabled.

Memory Object Control State (MOCS)

The memory object control state defines the behavior of memory accesses beyond the graphics core,
including graphics data types that allow selective flushing of data from outer caches, and controlling

cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by
page in the GTT entries. Memory objects that are defined by state per surface generally have additional

memory object control state in the state structure that defines the other surface attributes. Memory

objects without state defining them have memory object state control defined per class in the

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some

memory objects only have the GTT entry mechanism for defining this control. The table below
enumerates the memory objects and the location of the control state for each:

Memory Object

Location of Control State

surfaces defined by SURFACE_STATE: sampling engine surfaces, render
targets, media surfaces, pull constant buffers, streamed vertex buffers

SURFACE_STATE

depth, stencil, and hierarchical depth buffers

corresponding state command that
defined the buffer attributes

stateless buffers accessed by data port

STATE_BASE_ADDRESS

indirect state objects

STATE_BASE_ADDRESS

kernel instructions

STATE_BASE_ADDRESS

push constant buffers

3DSTATE_CONSTANT_(VS | GS | PS)

index buffers

3DSTATE_INDEX_BUFFER

vertex buffers

3DSTATE_VERTEX_BUFFERS

indirect media object

STATE_BASE_ADDRESS

generic state prefetch

GTT control only

ring/batch buffers

GTT control only

context save buffers

GTT control only

store DWord

GTT control only

Doc Ref # IHD-OS-SKL-Vol 5-05.16

141

(intel)‘emem

what's inside

MOCS Registers

These registers provide the detailed format of the MOCS table entries, that need to be programmed to
define each surface state.

MEMORY_OBJECT_CONTROL_STATE

L3 Control Registers

64x16b control registers are defined within L3 space to interpret MOCS indexing and map it to cache
events.

The incoming MOCS value is used to index into one of these registers which hardware uses as control
parameters for a given surface. It allows 64 concurrent surface definitions with unique control values for
L3 caching.

Also attached are the default settings for each 64 locations if driver chooses to use as is.
Following 16b defines per selection definition:

Register#64 (MOCS value 63) is reserved for h/w use and should not be used by s/w.

In L3 Node: B020-BO9F (128 Bytes)

Bits Description

16:6 |Reserved.

>4 L3 Cacheability Control (L3CC).

Memory type information used in L3. This field is combined with the additional two bits that are
sent by HDC based on binding table index. For all other L3 requesters, this field is the primary
source of L3 cache controls.

00b: Use binding table index for direct EU accesses — for rest it is reserved.
01b: Uncacheable (UC) — non-cacheable.

10b: Reserved

11b: Writeback (WB).

31 Skip Caching Control (SCC).

Defines the bit values to enable caching. Outcome overrides the L3caching for the surface.
If “0” — than corresponding address bit value is don't care.

Bit[1]=1: Address bit[9] needs to be "0" to cache in target.

Bit[2]=1: Address bit[10] needs to be "0" to cache in target.

Bit[3]=1: Address bit[11] needs to be "0" to cache in target.

142 Doc Ref # IHD-OS-SKL-Vol 5-05.16

../../../../Content/BXmlSnippets/Structure_MEMORY_OBJECT_CONTROL_STATE_DevSKL+_BSpec.html

Memory Views

®

(inteD) ...

what's inside”

Bits

Description

0 Enable Skip Caching (ESC).

Enable for the Skip cache mechanism.
0: Not enabled.
1: Enabled for L3.

Defaults Table

Default L3CC | SCC | ESC
000000 00 000 0
000001 01 000 0
000010 01 001 1
000011 01 011 1
000100 01 111 1
000101 10 000 0
000110 01 001 1
000111 01 011 1
001000 01 111 1
001001 11 000 0
001010 01 001 1
001011 01 011 1
001100 01 111 1
001101 00 000 0
001110 00 000 0
001111 00 000 0
010000 00 000 0
010001 01 000 0
010010 01 001 1
010011 01 011 1
010100 01 111 1
010101 10 000 0
010110 01 001 1
010111 01 011 1
011000 01 111 1
011001 11 000 0
011010 01 001 1
011011 01 011 1
011100 01 111 1

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Default | L3CC | SCC | ESC
100000 00 000 | O
100001 01 000 | O
100010 01 001 1
100011 01 011 1
100100 01 111 1
100101 10 000 | O
100110 01 001 1
100111 01 011 1
101000 01 111 1
101001 11 000 | O
101010 01 001 1
101011 01 011 1
101100 01 111 1
101101 00 000 | O
101110 00 000 | O
101111 00 000 | O
110000 00 000 | O
110001 01 000 | O
110010 01 001 1
110011 01 011 1
110100 01 111 1
110101 10 000 | O
110110 01 001 1
110111 01 011 1
111000 01 111 1
111001 11 000 | O
111010 01 001 1
111011 01 011 1
111100 01 111 1

143

(l n te,l M experience

what's inside’
Default L3CC | SCC | ESC Default | L3CC | SCC | ESC
011101 00 000 111101 00 000
011110 00 000 111110 00 000
011111 00 000 111111 00 000

Memory Interface Control Registers

8*64x32b control registers are defined within the page walker where control parameters for LLC/eDRAM
caching are defined. Incoming memory control object state index is used to do a look up into the table
where the corresponding control parameters are picked for a given surface. These control values are
used to control LLC/eDRAM caching.

For EU surfaces where binding table index is used, we also pass two bits of information in the hardware.
Following 32b defines per selection definition:
These set of registers have to be engine specific (8x).

All MOCS registers are considered part of the HW context and need to be saved part of the context that
command streamers are controlling.

Register#64/#63 (MOCS value 63&62) are reserved for h/w use and should not be used by s/w.

e Register#64 is for Coherent L3 evictions
e Register#63 is used for Tiled-Resources page walker accesses

In GAMT: C800-CFFF (256 Bytes)

Bits Description

31:19 [Reserved

18:17 | Reserved

16:15 Class of Service
This field controls the Class of Service sent to the LLC to determine which sub-set of Ways the surface will be
stored

in.The allocation of certain LLC ways to different class of service settings is a project dependent decision and
listed in the Bspec.

00: Value from Private PAT Registers(40E0/40E4/40E8/40EC)
01: Class 1
10: Class 2
11: Class 3

144 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Bits Description

14 Snoop Control Field (SCF):

Enables s/w to have GFX h/w to be able to consume IA generated buffers that are tagged as WB. Driver can
mark these buffers as WB when generating them from IA. In LP-SOCs, the fabric is not forced to be coherent
all the time. |1A-core generated WB buffers can only be consumed by GPU if that buffer is tagged as snoop-
able in GPUs buffer definitions (or via GPU Page tables).

1: Hardware will snoop the IA caches while accessing this surface

0: Hardware will not snoop the IA caches while accessing this surface

Note: There is a performance & power penalty in accessing surfaces that are tagged as snooped.
Note: S/W should NOT set this field in client platforms.

Note: In BXT-A step, there is a HW bug that does not send this snoop information to the uncore reliably for the
write transactions. Thus, should not rely on this snoop control bit for generating snoops to IA caches for write.

This could be worked around by making write surfaces "coherent", which would generate RFO/I2ZM requests to

the uncore which will generate snoops to IA regardless of this snoop control.

13:11 Page Faulting Mode

This fields controls the page faulting mode that will be used in the memory interface block for the given
request coming from this surface:

000: Use the global page faulting mode from context descriptor (default)
001-111: Reserved

108 Skip Caching Control

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface.
If "0" - than corresponding address bit value is do not care

Bit[8]=1: address bit[9] needs to be "0" to cache in target

Bit[9]=1: address bit[10] needs to be "0" to cache in target

Bit[10]=1: address bit[11] needs to be "0" to cache in target

The default value of this field is '000. For coherent surfaces, skip caching should not be enabled, as not
caching in LLC breaks the coherency.

Enable Reverse Skip Caching
Enable for the Skip cache mechanism

0: Not enabled
1: Enabled for LLC

Doc Ref # IHD-OS-SKL-Vol 5-05.16 145

(lntel')') e

what'’s inside

Bits Description
6 Don’t Allocate on miss

Controls defined for RO surfaces in mind, where if the target cache is missed - do not bring the line
(applicable to LLC/eDRAM).
0: Allocate on MISS (normal cache behavior)
1: Do NOT allocate on MISS

>4 LRU (Cache Replacement) Management (LRUM).
This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular allocation is
done at youngest age (“3") it tends to stay longer in the cache as compared to older age allocations (2", “1",
or “0"). This option is given to driver to be able to decide which surfaces are more likely to generate HITs,
hence need to be replaced least often in caches.
00: Take the age value from Uncore CRs.
01: Assign the age of "0"
10: Dont change the age on a hit.
11: Assign the age of “3"

3:2 Target Cache (TC).
This field allows the choice of LLC vs eLLC for caching.
00b: Use TC/LRU controls from page table
01b: LLC Only.
10b: LLC/eLLC Allowed.
11b: LLC/eLLC Allowed.
For coherent surfaces ensure that LLC caching is enabled - even when using target cache controls
from page table.

1:0

LLC/eDRAM Cacheability Control (LeCC).

Memory type information used in LLC/eDRAM.

00b: Use Cacheability Controls from page table / UC with Fence (if coherent cycle).
01b: Uncacheable (UC) — non-cacheable.

10b: Writethrough (WT).

11b: Writeback (WB).

Note: In case of SVM (advanced context), LLC/eDRAM memory type is used based on the page table
controls and cannot be managed via MOCS index.

146

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

Defaults Table

Default |LeCC|TC|LRUM | AOM |ESC|SCC | PFM [Default | LeCC [TC|LRUM |AOM | ESC | SCC | PFM
000000 | 00 [00| 11 0 0 | 00 | 000 f 00COOCO | 00 |00| 11 0 0 | 00 | 000
000001 | 00 (O1]| 11 0 0 | 00 | 000 (f 000001 | 00 |OT| 11 0 0 | 00 | 000
000010 | 00 [10| 11 0 0 | 00 | 000 (f 000010 | 00 |10| 11 0 0 | 00 | 000
000011 | 01 [00| 11 0 0 | 00 | 000 (f 000011 | O1 |0OO| 11 0 0 | 00 | 000
000100 | 10 [(00| 11 0 0 | 00 | 000 (f 000100 | 10 |0OO| 11 0 0 | 00 | 000
000101 | 10 (O1]| 11 0 0 | 00 | 000 (f 000101 | 10 |OT| 11 0 0 | 00 | 000
000110 10 [10]| 11 0 0 | 00 | 000 (f 00O110(10 |10| 11 0 0 | 00 | 000
000111 11 [00| 11 0 0 | 00 | 000 (4 000111 | 11 |0O| 11 0 0 | 00 | 000
001000 | 11 [O1]| 11 0 0 | 00 | 000 (§ 001000 | 11 |OT| 11 0 0 | 00 | 000
001001 | 11 [10]| 11 0 0 | 00 | 000 ff 001001 | 11 |10| 11 0 0 [00 | 000
001010 | 10 [00| 11 0 0 | 00 | 000 (4 001010 | 10 |0O| 11 0 0 | 00 | 000
001011 10 [O1]| 11 0 0 | 00 | 000 (4 001011 | 10 |O1| 11 0 0 [00 | 000
001100 | 10 [10]| 11 0 0 | 00 | 000 (§ 001100 10 |10| 11 0 0 [00 | 000
001101 | 11 [00| 11 0 0 | 00 | 000 (4 001101 | 11 |0O| 11 0 0 [00 | 000
001110 11 {01 11 0 0 | 00 | 000 (4 001110 | 11 |O1| 11 0 0 [00 | 000
001111 11 (10| 11 0 0 | 00 | 000 (4 0O1111(11 |10| 11 0 0 [00 | 000
010000| 00 [00| 11 0 0 | 00 | 000 || 010000 | 00 (OO 11 0 0 | 00 | 000
010001 | 00 [O1| 11 0 0 | 00 | 000 {f 010001 | 00 |O1| 11 0 0 [00 | 000
010010| 00 |10 ™M1 0 0 | 00 | 000 |5f 010010 00 (10| 11 0 0 | 00 | 000
010011| 01 |00| 11 0 0 | 00 | 000 |5f 010011 | O1 (0OO| 11 0 0 [00 | 000
010100 | 10 [00| 11 0 0 | 00 | 000 (f 010100 | 10 |0O| 11 0 0 | 00 | 000
010101 | 10 (O1| 11 0 0 | 00 | 000 ff 010101 | 10 |OT| 11 0 0 | 00 | 000
010110 10 [10]| 11 0 0 | 00 | 000 (4 010110 | 10 |10| 11 0 0 | 00 | 000
010111 11 00| 11 0 0 | 00 | 000 (4 010111 | 11 |0O| 11 0 0 | 00 | 000
011000 | 11 [O1]| 11 0 0 | 00 | 000 (4 011000 11 |O1| 11 0 0 | 00 | 000
011001 | 11 (10| 11 0 0 | 00 | 000 (4 011001 | 11 |10| 11 0 0 | 00 | 000
011010 10 [00| 11 0 0 | 00 | 000 (4 011010 10 |0O| 11 0 0 | 00 | 000
011011 10 [O1]| 11 0 0 | 00 | 000 (4 011011 | 10 |OT| 11 0 0 | 00 | 000
011100 | 10 (10| 11 0 0 | 00 | 000 (4 011100 | 10 |10| 11 0 0 | 00 | 000
011101 11 00| 11 0 0 | 00 | 000 (4 011101 | 11 |0O| 11 0 0 | 00 | 000
011110 11 {01 11 0 0 | 00 | 000 (4 O11110(11 |O1| 11 0 0 | 00 | 000
011111 11 (10| 11 0 0 | 00 | 000 j5{ O11111 | 11 (10| 11 0 0 [00 | 000

Doc Ref # IHD-OS-SKL-Vol 5-05.16 147

experience
what's inside’

HDCL3GAM Change Specific to Coherent L3

Given memory object control state is an index for SKL, for L3 coherent accesses HDC cannot replace the
bit[3:2] with the memory type information coming from GAM. Instead these two bits need to be
communicated separately.

Both L3 and GAM override the memory type information that is extracted from the index table with these
two bits passed by HDC in case of L3 coherent accesses.

Encoding HDC to L3
Memory Type in MTRR Control[3:2]

Uncacheable (UC) Oh "00"
Write Combining (WC) 1h "01"
Write Through (WT) 4h "10"

Write Protected (WP) (Reads:WB and Writes:WCQ) 5h Read: "11"

Write: “"01"
WriteBack (WB) 6h 11"

Reserved* 2,3,7h Reserved

Also for the HDC GAM interface (page request response), the faulting mode from indexed table needs to
be communicated along with response. This would add 2 bits and HDC can use the mode bits to figure
out what to do with the data.

This is also applicable to read return data from GAM.

Graphics Cache and Memory Interface

The SKL generation memory interface has further improvements over previous generations. These
improvements are either on existing functions or new features that are added to this particular
generation.

148 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
Skip Caching in LLC and eDRAM

Skip Caching is added to SKL to deal with two specific problems:

1. If a given surface is too large for LLC or eDRAM, we want to cache a portion of the surface in the
cache and get limited benefits instead of trying to cache the entire surface and trash the cache. Or
not cache at all and lose any benefit of using a cache.

2. If a given surface can benefit from additional/concurrent b/w of both caches and/or memory, we
can split the surface via allocating a certain segments of it in different caches and memory, and try
to extract additional b/w. The opportunity would be additional b/w from different sources rather
being stuck with cache b/w only.

For coherent surfaces, skip caching should not be enabled, as not caching in LLC breaks the coherency.

Mechanism can be controlled via memory object control state which is used to identify each surface
separately.

Bit Description

10:8 | Skip Caching Control (SCC).
Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface.
If "0" then corresponding address bit value is don't care.

e Bit[8]=1: Address bit[9] needs to be "0" to cache in target.
e Bit[9]=1: Address bit[10] needs to be "0" to cache in target.
e Bit[10]=1: Address bit[11] needs to be "0" to cache in target.

Enable Reverse Skip Caching (ESC).
Enable for the Skip cache mechanism.

e 0: Not enabled.
e 1:Enabled for reverse caching.

Here is the mechanism:
If bit[7]=0:

e If access is LLC cacheable and skip caching is enabled, match the enabled address bits:
¢ If matched address bits, let the caching to be in LLC
¢ If no-matched address bits, downgrade the caching to eLLC
e If access is eLLC/eDRAM cacheable (Only) and skip caching is enabled, match the enabled address
bits:
e If matched address bits, let the caching to be in eLLC
¢ If no-matched address bits, downgrade the memory type to UC (uncacheable).

Doc Ref # IHD-OS-SKL-Vol 5-05.16 149

experience
what's inside

If bit[7]=1:

e If access is LLC cacheable and skip caching is enabled, match the enabled address bits:
e |f matched address bits, downgrade the caching to eLLC
¢ If no-matched address bits, let the caching to be in LLC

e If access is eLLC/eDRAM cacheable (Only) and skip caching is enabled, match the enabled address
bits:
¢ If matched address bits, downgrade the memory type to UC (uncacheable).
¢ If no-matched address bits, let the caching to be in eLLC

Caching Display Surfaces in LLC

Using LLC for the output Color pipeline when Display buffers are accessed has been tried for many
generations. Previous generations enabled write-through caching to get benefits from reads.

SKL generation GFX adds a mechanism to be able to cache display buffers that are immediate target of
the color pipeline as write-back. In order to synchronize the contents of the display buffer within LLC to
display controller, SKL PG added an option at the pipe-control flush to select whether a color buffer flush
is needed along with pipeline flush (see pipe-control and MI_Flush_DW definition updates).

For Frame buffer caching GFX driver will tag the corresponding Display buffer target as cacheable in LLC.
LLC cacheability shall be selected via GFX Page tables (using private PAT) or MOCS (memory object
control state). However this setting would enable for display buffers to be cached along with general GFX
accesses which could lead to trashing in LLC cache along with long flush penalties. In order to limit the
implications of an LLC flush, a global setting register (IDICR — IDI Control Register[23:22]) is included to
control the QOS (quality of service) value for display buffers only. GFX driver is required to tune the QOS
value based on system settings to limit the number of ways required to be allocated for frame buffer
caching and to be flushed at the FLIP time.

For proper LLC flush event, GFX driver will program the cache definition registers (FBCDR — Frame Buffer
Cache Definition Register) in the Page Walker register space to define different parameters of the
LLCcache on the system.

Pipe-control and/or MI_FLUSH_DW for the contexts that have Frame Buffer caching has to be enhanced
to enable overlap execution of the LLC flush as well as the execution of next context/frame by h/w. Not
doing the following steps will cause GT h/w to stall on LLC flush which is not desirable.

In the case where Frame Buffer is cached, driver is required to put 2 pipe-controls and/or
MI_FLUSH_DW's.

e The first will be used to flush the GPU h/w with a stall, and will not have LLC flush or SYNC'ing
DW/interrupt to the driver.

e Second will be used to flush LLC with a SYNC DW/interrupt to the driver. This will not be a stalling
pipe-control and/or MI_FLUSH_DW.

After first pipe-control/MI_FLUSH_DW, hardware will be free to execute forward on the command ring
and 2nd pipe-control/MI_FLUS_DW will be non-stalling for h/w but will hold off the FLIP synchronization
to display controller until display buffer contents are flushed from LLC.

150 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

Page Walker Access and Memory Types

Most of these notes are further explained in the document however summarized as part of the page
table behavior:

Page Walker Memory Types
1. Legacy Contexts

GT access to root/extended-root table and context/extended-context table

a.
b. GTT access to private paging (PPGTT) entries
¢. GT access to GPA-to-HPA paging entries

d.

GT access to the translated page
2. Advanced context (without nesting)

a. GT access to extended-root table and extended-context table
b. GT access to PASID-entry & PASID-state entry

¢. GT access to IA-32e paging entries

d. GT access to the translated page

3. Advanced context (with nesting)

GT access to extended-root table and extended-context table
GT access to PASID-entry & PASID-state entry

GT access to IA-32e paging entries

GT access to the translated page

GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-
state entry

® O n T o

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries
g. GT access to GPA-to-HPA paging entries to translate address of page

For Gen8, the following behavior is defined however gen9 needs to comply with the spec definition:

Error Cases

e A/D bit update attempt for paging entry in non-WB memory, cause page-walk to be aborted;
Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU
context in error — catastrophic error case.

e Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver
as GPGPU context in error (catastrophic error)

e CD=1 treated same as non-WB memory, for above lock behavior

Doc Ref # IHD-OS-SKL-Vol 5-05.16 151

(l n te,l .kexperierwce

what's inside

Common Surface Formats

This section documents surfaces and how they are stored in memory, including 3D and video surfaces,
including the details of compressed texture formats. Also covered are the surface layouts based on tiling
mode and surface type.

Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data
(e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats,
bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory
object types.

Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. i.e., pixel bits 7:0 are stored
in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color components
in little endian order (e.g., RBG8B8AS8 format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order
(LSB channel on the left, MSB channel on the right), with the channel format specified following the
channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of
red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

Intensity Formats

uln

All surface formats containing “I” include an intensity value. When used as a source surface for the
sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered.
Intensity surfaces are not supported as destinations.

Luminance Formats

All surface formats containing “L" include a luminance value. When used as a source surface for the
sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being
filtered. The alpha channel is provided either from another field or receives a default value. Luminance
surfaces are not supported as destinations.

152 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
R1_UNORM (same as R1_UINT) and MONOS8

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are
replicated to all color channels. Note that TO of byte 0 of a R1_UNORM-formatted texture corresponds to
Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine.

7 6 5 4 3 2 1 0
T7 T6 T5 T4 T3 T2 T1 TO
Bit Description
10 Texel 0

On texture reads, this
(unsigned) 1-bit value is
replicated to all color channels.

Format: U1

Ll Texel 7

On texture reads, this
(unsigned) 1-bit value is
replicated to all color channels.

Format: U1

MONOS format is identical to R1_UNORM but has different semantics for filtering. MONOS is the only
supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter.

Palette Formats

Palette formats are supported by the sampling engine. These formats include an index into the palette
(Px) that selects the actual channel values from the palette, which is loaded via the
3DSTATE_SAMPLER_PALETTE_LOADO command.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 153

(lntel')‘expem

what's inside
P4A4 UNORM

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in
the low nibble).

7 | | 403 | | 0
Alpha Palette Index

Bit Description

74 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 255
to yield a [0.0,1.0] Alpha value.

Format: U4

3:0 Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADX)

Format: U4

A4P4_UNORM

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the
high nibble).

7 | | 43 | | 0
Palette Index Alpha

Bit Description

74

Palette Index
A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette.
Format: U4

30 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit
value, and then divided by 255 to yield a [0.0,1.0] alpha value.

Format: U4

154 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
PS8A8 UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in
the low byte).

15 | | 8|7 | | 0
Alpha Palette Index

Bit Description

15:8 Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.
Format: U8

70 Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded
via 3DSTATE_SAMPLER_PALETTE_LOADX)

Format: U8

A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the
high byte).

15 | 8|7 | | 0
Palette Index Alpha

Bit Description

15:8

Palette Index
An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette.
Format: U8

70 | Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.
Format: U8

Doc Ref # IHD-OS-SKL-Vol 5-05.16 155

(intel)‘emem

what's inside

P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit Description

70 Palette Index

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture
palette.

Format: U8

P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit Description

10 Palette Index

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.
Format: U2

Compressed Surface Formats

This section contains information on the internal organization of compressed surface formats.

ETC1_RGBS

This format compresses UNORM RGB data using an 8-byte compression block representing a 4x4 block
of texels. The texels are labeled as texel[row][column] where both row and column range from O to 3.
Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

High 24 bits if “diff” is zero (individual mode):

Bits Description
74 RO[3:0]
3:0 R1[3:0]
15:12 GO[3:0]
11:8 G1[3:0]
23:20 BO[3:0]
19:16 B1[3:0]

156 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

High 24 bits if “diff” is one (differential mode):

Bits Description

7:3 RO[4:0]

2:0 dR1[2:0]

15:11 GO0[4:0]

10:8 dG1[2:0]

23:19 BO[4:0]

18:16 dB1[2:0]

Low 40 bits:

Bits Description
31:29 lum table index for sub-block 0
28:26 lum table index for sub-block 1

25 diff

24 flip

39 texel[3][3] index MSB
38 texel[2][3] index MSB
37 texel[1][3] index MSB
36 texel[0][3] index MSB
35 texel[3][2] index MSB

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

40 texel[0][0] index MSB

55 texel[3][3] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside’

157

(lntel')') e

what's inside

Bits Description

48 texel[0][2] index LSB
63 texel[3][1] index LSB
62 texel[2][1] index LSB
61 texel[1][1] index LSB
60 texel[0][1] index LSB
59 texel[3][0] index LSB
58 texel[2][0] index LSB
57 texel[1][0] index LSB
56 texel[0][0] index LSB

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks
controlled by the “flip” bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the
right. If flip=1, sub-block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom.

The "diff” bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444
value per sub-block (“individual” mode with diff = 0), or a single 555 value for the first sub-block
(RO/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block (“differential” mode with diff
= 1). The delta values are 3-bit two’s-complement values that hold values in the range [-4,3]. These
values are added to the 5-bit values for sub-block 0 to obtain the 5-bit values for sub-block 1 (if the
value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit
per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base
color for each sub-block.

For each sub-block one of 8 different luminance columns is selected based on the 3-bit lum table index.
Then each texel selects one of the 4 rows of the selected column with a 2-bit per-texel index. The chosen
value in the table is added to the 8-bit base color for the sub-block (obtained in the previous step) to
obtain the texel's color. Values in the table are given in decimal, representing an 8-bit UNORM as an 8-
bit signed integer.

Luminance Table

0 1 2 3 4 5 6 7
0 2 5 9 13 18 24 33 47
1 8 17 29 42 60 80 106 183
5 -2 -5 -9 -13 -18 -24 -33 -47
3 -8 -17 -29 -42 -60 -80| -106| -183

158 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
ETC2_RGB8 and ETC2_SRGBS8

The ETC2_RGB8 format builds on top of ETC1_RGBS, using a set of invalid bit sequences to enable three
new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be
documented in this section as they are covered in the ETC1_RGB8 section.

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1
differential mode. The mode is determined as follows (x indicates don't care):

diff Rt Gt Bt mode
0 X X X individual
1 0 X X T
1 1 0 H
1 1 1 0 planar
1 1 1 differential

The inputs in the above table are defined as follows:

Rt = (RO + dR1) in [0,31]
Gt = (GO + dGl) in [0,31]
Bt = (GO + dB1l) in [0,31]

8-byte compression block for mode determination

Bits Description
73 RO[4:0]
2:0 dR1[2:0]
15:11 GO[4:0]
10:8 dG1[2:0]
23:19 BO[4:0]
18:16 dB1[2:0]
31:26 ignored
25 diff
24 ignored
63:32 ignored

The fields in the table above are used only for mode determination. Some of the bits in this table are
overloaded with other values within each mode. The algorithm is defined such that there is no ambiguity
in modes when this is done.

T mode

The “T" mode has the following bit definition:

Doc Ref # IHD-OS-SKL-Vol 5-05.16

159

intel)

<

8-byte compression block for “T” mode

experience
what's inside’

Bits Description

7:5 ignored

4:3 RO[3:2]
2 ignored
1:0 RO[1:0]

15:12 GO0[3:0]

11:8 BO[3:0]

23:20 R1[3:0]

19:16 G1[3:0]

31:28 B1[3:0]

27:26 di[2:1]
25 diff = 1
24 di[0]
39 texel[3][3] index MSB
38 texel[2][3] index MSB
37 texel[1][3] index MSB
36 texel[0][3] index MSB
35 texel[3][2] index MSB
34 texel[2][2] index MSB
33 texel[1][2] index MSB
32 texel[0][2] index MSB
47 texel[3][1] index MSB
46 texel[2][1] index MSB
45 texel[1][1] index MSB
44 texel[0][1] index MSB
43 texel[3][0] index MSB
42 texel[2][0] index MSB
41 texel[1][0] index MSB
40 texel[0][0] index MSB
55 texel[0][0] index LSB
54 texel[2][3] index LSB
53 texel[1][3] index LSB
52 texel[0][3] index LSB
51 texel[3][2] index LSB
50 texel[2][2] index LSB
49 texel[1][2] index LSB
48 texel[0][2] index LSB

160

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Bits Description

63 texel[3][1] index LSB
62 texel[2][1] index LSB
61 texel[1][1] index LSB
60 texel[0][1] index LSB
59 texel[3][0] index LSB
58 texel[2][0] index LSB
57 texel[1][0] index LSB
56 texel[0][0] index LSB

The “T" mode has two base colors stored as 4 bits per channel, RO/G0/B0 and R1/G1/B1, as in the
individual mode, however the bit positions for these are different. For each channel, the 4 bits are
extended to 8 bits by bit replication.

A 3-bit distance index “di” is also defined in the compression block. This value is used to look up the
distance in the following table:

distance index
“di” distance “d”

0 3

6

11

16

23

32

41

N|lojun|bdM|lwWwIN|=

64

Four colors are possible on each texel. These colors are defined as the following:

PO = (RO, GO, BO)
P1 = (Rl, G1, Bl) + (d, d, d)
P2 = (R1, Gl, Bl)
P3 = (Rl, G1, Bl) - (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each
texel in the block based on the 2-bit texel index.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 161

(lntel')‘expem

what's inside

H mode

The "H” mode has the following bit definition:

8-byte compression block for “H” mode

Bits Description
7 ignored

6:3 RO[3:0]

2:0 GO[3:1]

15:13 ignored
12 GO[0]
11 BO[3]
10 ignored

9:8 BO[2:1]
23 BO[O0]

22:19 R1[3:0]

18:16 G1[3:1]
31 G1[0]

30:27 B1[3:0]
26 di[2]
25 diff = 1
24 di[1]
39 texel[3][3] index MSB
38 texel[2][3] index MSB
37 texel[1][3] index MSB
36 texel[0][3] index MSB
35 texel[3][2] index MSB
34 texel[2][2] index MSB
33 texel[1][2] index MSB
32 texel[0][2] index MSB
47 texel[3][1] index MSB
46 texel[2][1] index MSB
45 texel[1][1] index MSB
44 texel[0][1] index MSB
43 texel[3][0] index MSB
42 texel[2][0] index MSB
41 texel[1][0] index MSB
40 texel[0][0] index MSB

162

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’

Bits Description

55 texel[3][3] index LSB
54 texel[2][3] index LSB
53 texel[1][3] index LSB
52 texel[0][3] index LSB
51 texel[3][2] index LSB
50 texel[2][2] index LSB
49 texel[1][2] index LSB
48 texel[0][2] index LSB
63 texel[3][1] index LSB
62 texel[2][1] index LSB
61 texel[1][1] index LSB
60 texel[0][1] index LSB
59 texel[3][0] index LSB
58 texel[2][0] index LSB
57 texel[1][0] index LSB
56 texel[0][0] index LSB

The "H” mode has two base colors stored as 4 bits per channel, RO/G0/B0 and R1/G1/B1, as in the
individual and T modes, however the bit positions for these are different. For each channel, the 4 bits are
extended to 8 bits by bit replication.

A 3-bit distance index “di" is defined by 2 MSBs in the compression block and the LSB computed by the
following equation, where R/G/B values are the 8-bit values from the first step:

di[0] = ((RO « 16) | (GO « 8) | BO) >= ((Rl « 16) | (Gl « 8) | Bl)

The distance “d" is then looked up in the same table used for T mode. The four colors for H mode are
computed as follows:

PO = (RO, GO, BO) + (d, d, d)
Pl = (RO, GO, BO) - (4, d, d)
P2 = (R1, G1, Bl) + (d, d, d)
P3 = (R1, G1, B1l) - (4, 4, d)

~
~

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each
texel in the block based on the 2-bit texel index as in T mode.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 163

(lntel')‘expem

what's inside’
Planar mode
The “planar” mode has the following bit definition:

8-byte compression block for “planar” mode

Bits Description
7 ignored
6:1 RO[5:0]
0 GO[6]
15 ignored
14:9 GO[5:0]
8 B[5]
23:21 ignored
20:19 B[4:3]
18 ignored
17:16 BO[2:1]
31 BO[O]
30:26 RHI[5:1]
25 diff = 1
24 RHI[O]
39:33 GHI[6:0]
32 BH[5]
47:43 BH[4:0]
42:40 RV[5:3]
55:53 RV[2:0]
52:48 GV[6:2]
63:62 GV[1:0]
61:56 BV[5:0]

The “planar” mode has three base colors stored as RGB 676, with red & blue having 6 bits and green
having 7 bits. These three base colors are each extended to RGB 888 with bit replication.

The color of each texel is then computed using the following equations, with x and y representing the
texel position within the compression block:
texel[y] [x].R

texelly] [x].G
texel[y] [x].B

x (RH-R0) /4 + y(RV-R0)/4 + RO
x (GH-G0) /4 + y(GV-G0)/4 + GO
x (BH-B0) /4 + y(BV-B0)/4 + BO

All resulting channels are clamped to the range [0,255].

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGBS, then a conversion from the resulting RGB
values to SRGB space is performed.

164 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
EAC R11 and EAC SIGNED R11

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block
representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and
column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

EAC_R11 compression block layout

Bits Description
7:0 RO[7:0]
15:12 m[3:0]
11:8 ti[3:0]
23:21 texel[0][0] index
20:18 texel[1][0] index
17:16,31 texel[2][0] index
30:28 texel[3][0] index
27:25 texel[0][1] index
24,39:38 texel[1][1] index
37:35 texel[2][1] index
34:32 texel[3][1] index
47:45 texel[0][2] index
44:42 texel[1][2] index
41:40,55 texel[2][2] index
54:52 texel[3][2] index
51:49 texel[0][3] index
48,63:62 texel[1][3] index
61:59 texel[2][3] index
58:56 texel[3][3] index

Doc Ref # IHD-OS-SKL-Vol 5-05.16 165

(lntel')') e

what'’s inside

The “ti” (table index) value from the compression block is used to select one of the columns in the table
below.

Intensity modifier (im) table

0o |1 2 3 |4 |5 |6 |7 |8 |9 |10 |11 |12 [13 |14 |15

0 3| -3 2| -2 -3 3| -4l -3 2| 2| 2| 2| -3 -1 -4l 3
1 6| -7 -5| -4 -6/ -7\ -7 -5/ -6| -5 -4 -5| -4 -2| -6 -5
5 9| -10| -8 -6| -8 -of -8/ -8 -8 -8 -8 -7| -7| -3| -8 -7
3 15| -13| 13| -13| -12| -11| -11| -11| -10| -10| -10| -10| -10| -10| -9| -9
A 2| 2| 1 1 2 2| 3| 2| 1 1 1 1 2| ol 3] 2
c 5| 6| 4| 3| s| e 6| 4| s| 4] 3| 4] 3| 1 51 4
6 8| 9of 7| s| 7| 8 7| 7| 7| 7| 71 e 6 2| 71 =6
. 14| 12| 12| 12| 11| 10| 10l 10| 9f 9| 9f 9f 9f 9 8 8

The eight possible color values R; are then computed from the 8 values in the column labeled im;, where i

ranges from 0 to 7:

For EAC_R11:

if (m == 0) R = RO*8 + 4 + imelseR = RO*8 + 4 + (im * m * 8)
Each value is clamped to the range [0,2047].

For EAC_SIGNED_R11:

if (m == 0) R = R0O*8 + imelseR = RO*8 + (im * m * 8)

Each value is clamped to the range [-1023,1023].

Note that in the signed case, the RO value is a signed, 2's complement value in the range [-127, 127].
Before being used in the above equations, an RO value of -128 must be clamped to -127.

Finally, each texel red value is selected from the 8 possible values R; using the 3-bit index for that texel.
The green, blue, and alpha values are set to their default values.

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer.

166 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
ETC2_RGB8 PTA and ETC2_SRGB8 PTA

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the “individual” mode in favor of
allowing a punch-through alpha. The “diff" bit from ETC2_RGB8 is renamed to “opaque” in this format,
and the mode selection behaves as if the “diff” bit is always 1, making the “individual” mode inaccessible
for these formats.

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is
determined to be zero, the three other channels are also forced to zero, regardless of what value the
normal decompression algorithm would have produced.

Differential Mode

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGBS8 is used. If the opaque bit
is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out, otherwise
the table is the same):

Luminance Table for opaque bit not set

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 8 17 29 42 60 80 106 183
5 0 0 0 0 0 0 0 0
3 -8 -17 -29 -42 -60 -80| -106| -183

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value is
set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255 and
RGB is the result of the normal decompression calculations.

T and H Modes

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set
to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255.

Planar Mode

In planar mode, the opaque bit is ignored and alpha is set to 255.

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the
resulting RGB values to SRGB space is performed, with alpha remaining unchanged.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 167

experience
what's inside’

ETC2_EAC_RGBAS8 and ETC2_EAC_SRGB8_AS8

The ETC2_EAC_RGBAS8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression block

represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the EAC_R8

algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm. The EAC_R8
format differs from EAC_R11 as described below.

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBAS, then a conversion from
the resulting RGB values to SRGB space is performed, with alpha remaining unchanged.

EAC R8 Format:

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier
section, except the procedure for computing the eight possible color values Ri is performed as follows:

Ri = RO + (imi * m)
Each value is clamped to the range [0,255].

EAC_RG11 and EAC_SIGNED_RG11

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block
representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and
column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows.

EAC_RG11 compression block layout

Bits Description
63:56 GO[7:0]
55:52 Gm[3:0]
51:48 Gti[3:0]
47:45 texel[0][0] G index
44:42 texel[1][0] G index
41:39 texel[2][0] G index
38:36 texel[3][0] G index
35:33 texel[0][1] G index
32:30 texel[1][1] G index
29:27 texel[2][1] G index
26:24 texel[3][1] G index
23:21 texel[0][2] G index
20:18 texel[1][2] G index
17:15 texel[2][2] G index
14:12 texel[3][2] G index

11:9 texel[0][3] G index

8:6 texel[1][3] G index

168 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’
Bits Description
5:3 texel[2][3] G index
66:64 texel[3][3] G index
63:56 RO[7:0]
55:52 Rm(3:0]
51:48 Rti[3:0]
47:45 texel[0][0] R index
44:42 texel[1][0] R index
41:39 texel[2][0] R index
38:36 texel[3][0] R index
35:33 texel[0][1] R index
32:30 texel[1][1] R index
29:27 texel[2][1] R index
26:24 texel[3][1] R index
23:21 texel[0][2] R index
20:18 texel[1][2] R index
17:15 texel[2][2] R index
14:12 texel[3][2] R index
11:9 texel[0][3] R index
8:6 texel[1][3] R index
5:3 texel[2][3] R index
2:0 texel[3][3] R index

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that they
supply two channels of output data, both red and green, from two independent 8-byte portions of the
compression block. The low half of the compression block contains the red information, and the high half
contains the green information. Blue and alpha channels are set to their default values.

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels
are generated using the data in the compression block.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 169

experience
what's inside

FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel
blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged
according to the following diagram:

FXT1 Encoded Blocks

to | t1 | t2 | t3 tl16 | t17 [t18 |19
| t5 | e | tF 20| 21 | t22 | T2
t8 | t9 | f10 [t11 t2d | 125 | t26 |27
1z | t13 | t14 [t15 t2d | 129 [t30 | 131

Beszz-0l

Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on
which encoding scheme results in best overall visual quality. The following table lists the four different
modes and their encodings:

FXT1 Format Summary

Block
Bit Bit Bit | Compression
127 | 126 | 125 Mode Summary Description
0 0 X CC HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and
- transparent black
0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT.
0 1 1 CC ALPHA 3 A5R5G5BS5 colors supplied. LERP bit selects between 1 LUT with 3 discrete
- colors + transparent black and 2 LUTs using interpolated values of Color 0,1
(t0-15) and Color 1,2 (t16-31).
1 X X CC MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and
- Color2,3 LUT used for t16-31. Alpha bit selects between LUTs with 4
interpolated colors or 3 interpolated colors + transparent black.

FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the
encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB
colors, and used to define an 8-entry lookup table of interpolated color values (the 8t entry is
transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a
color from the table.

170

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format:

FXT CC_HI Block Encoding

Bit Description
127:126 Mode = "00'b (CC_HI)
125:121 Color 1 Red
120:116 Color 1 Green
115:111 Color 1 Blue
110:106 Color 0 Red
105:101 Color 0 Green
100:96 Color 0 Blue

95:93 Texel 31 Select
50:48 Texel 16 Select
47:45 Texel 15 Select

2:0 Texel O Select

CC_HI Block Decoding

experience
what's inside’

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3
MSBs into the 3 LSBs, as shown in the following table:

FXT CC_HI Decoded Colors

Expanded Color Bit

Expanded Channel Bit | Encoded Block Source Bit

Color 1 [23:19]

Color 1 Red [7:3]

[125:121]

Color 1 [18:16]

Color 1 Red [2:0]

[125:123]

Color 1 [15:11]

Color 1 Green [7:3]

[120:116]

Color 1 [10:08]

Color 1 Green [2:0]

[120:118]

Color 1 [07:03]

Color 1 Blue [7:3]

[115:111]

Color 1 [02:00]

Color 1 Blue [2:0]

[115:113]

Color 0 [23:19]

Color 0 Red [7:3]

[110:106]

Color 0 [18:16]

Color 0 Red [2:0]

[110:108]

Color 0 [15:11]

Color 0 Green [7:3]

[105:101]

Color 0 [10:08]

Color 0 Green [2:0]

[105:103]

Color 0 [07:03]

Color 0 Blue [7:3]

[100:96]

Color 0 [02:00]

Color 0 Blue [2:0]

[100:98]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

171

experience
what's inside’

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors
(with Alpha = OFFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table:

FXT CC_HI Interpolated Color Table

Interpolated
Color Color RGB Alpha

0 Color0.RGB OFFh
1 (5 * ColorO.RGB + 1 * Color1.RGB + 3) / 6 OFFh
2 (4 * ColorO.RGB + 2 * Color1.RGB + 3) / 6 OFFh
3 (3 * ColorO.RGB + 3 * Color1.RGB + 3) / 6 OFFh
4 (2 * ColorO.RGB + 4 * Color1.RGB + 3) / 6 OFFh
5 (1 * ColorO.RGB + 5 * Color1.RGB + 3) / 6 OFFh
6 Color1.RGB OFFh
7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded
CC_HI block is used to index into a 32-bit ABR8G8B8 color from the table completing the decode of the
CC_HI block.

FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block.
These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB
colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color
from the table. The Alpha component defaults to fully opaque (OFFh).

CC_CHROMA Block Encoding
The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format:

FXT CC_CHROMA Block Encoding

Bit Description
127:125 Mode = ‘010'b (CC_CHROMA)
124 Unused
123:119 Color 3 Red
118:114 Color 3 Green
113:109 Color 3 Blue
108:104 Color 2 Red
103:99 Color 2 Green
98:94 Color 2 Blue
93:89 Color 1 Red
88:84 Color 1 Green

172 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Bit Description

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

33:32 Texel 16 Select

31:30 Texel 15 Select

1:0 Texel 0 Select

CC_CHROMA Block Decoding

experience
what's inside’

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3
LSBs, as shown in the following tables:

FXT CC_CHROMA Decoded Colors

Expanded Color Bit | Expanded Channel Bit | Encoded Block Source Bit
Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10:08] Color 3 Green [2:0] [118:116]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]
Color 3 [02:00] Color 3 Blue [2:0] [113:111]
Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10:08] Color 1 Green [2:0] [88:86]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:17] Color 0 Red [7:3] [78:74]
Color 0 [18:16] Color 0 Red [2:0] [78:76]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

173

(l n te,l .kexperieﬂce

what's inside’
Expanded Color Bit | Expanded Channel Bit | Encoded Block Source Bit
Color 0 [15:11] Color 0 Green [7:3] [73:69]
Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded
CC_CHROMA block is used to index into a 32-bit ABR8G8B8 color from the table (Alpha defaults to OFFh)
completing the decode of the CC_CHROMA block.

FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB
0 Color0.ARGB
1 Color1.ARGB
2 Color2.ARGB
3 Color3.ARGB

FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0
and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit
RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB
color from the table. The Alpha component defaults to fully opaque (OFFh).

CC_MIXED Block Encoding
The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format:

FXT CC_MIXED Block Encoding

Bit Description
127 Mode = "1'b (CC_MIXED)
126 Color 3 Green [0]
125 Color 1 Green [0]
124 Alpha [0]
123:119 Color 3 Red
118:114 Color 3 Green
113:109 Color 3 Blue
108:104 Color 2 Red
103:99 Color 2 Green
98:94 Color 2 Blue

174 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(inteD) ...

what'’s inside’
Bit Description

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

33:32 Texel 16 Select

31:30 Texel 15 Select

1.0 Texel O Select

CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block.
Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as
per the following table:

FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit

Definition

Color 3 Green [0]

Encoded Bit [126]

Color 2 Green [0]

Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0]

Encoded Bit [125]

Color 0 Green [0]

Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into
the 3 LSBs, as shown in the following table:

FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit | Expanded Channel Bit | Encoded Block Source Bit
Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

175

(l n te,l .kexperierwce

what's inside

Expanded Color Bit

Expanded Channel Bit

Encoded Block Source Bit

Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10] Color 2 Green [2] [33] XOR [126]]
Color 2 [09:08] Color 2 Green [1:0] [103:100]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10] Color 1 Green [2] [125]
Color 1 [09:08] Color 1 Green [1:0] [88:86]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:17] Color 0 Red [7:3] [78:74]
Color 0 [18:16] Color 0 Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]
Color 0 [10] Color 0 Green [2] [1]1 XOR [125]
Color 0 [09:08] Color 0 Green [1:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four
interpolated colors (with Alpha = OFFh). The Color0,1 table is used as a lookup table for texel 0-15
indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures:

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-15 Select Color RGB Alpha
0 Color0.RGB OFFh
1 (2*Color0.RGB + Color1.RGB + 1) /3| OFFh
2 (Color0.RGB + 2*Color1.RGB + 1) /3| OFFh
3 Color1.RGB OFFh

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31 Select Color RGB Alpha
0 Color2.RGB OFFh
1 (2/3) * Color2.RGB + (1/3) * Color3.RGB | OFFh
2 (1/3) * Color2.RGB + (2/3) * Color3.RGB | OFFh

176

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Texel 16-31 Select

Color RGB

Alpha

3 Color3.RGB

OFFh

Alpha[0] = 1 Decoding

(inteD) ...

what's inside’

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are
encoded as RGB565 colors, with the Green LSB obtained as shown in the following table:

FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit

Definition

Color 3 Green [0]

Encoded Bit [126]

Color 1 Green [0]

Encoded Bit [125]

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following

diagram.

FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit

Expanded Channel Bit

Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10] Color 3 Green [2] [126]
Color 3 [09:08] Color 3 Green [1:0] [118:117]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]
Color 3 [02:00] Color 3 Blue [2:0] [113:111]
Color 2 [23:19] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10] Color 1 Green [2] [125]
Color 1 [09:08] Color 1 Green [1:0] [88:87]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:19] Color 0 Red [7:3] [78:74]
Color 0 [18:16] Color 0 Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

177

(l n te,l .kexperieﬂce

what's inside

Expanded Color Bit

Expanded Channel Bit

Encoded Block Source Bit

Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors.
The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels
16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 3

is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures:

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15 Select Color RGB Alpha
0 Color0.RGB OFFh
1 (Color0.RGB + Color1.RGB) /2 |OFFh
2 Color1.RGB OFFh
3 Black (0,0,0) 0

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-31 Select Color RGB Alpha
0 Color2.RGB OFFh
1 (Color2.RGB + Color3.RGB) /2 | OFFh
2 Color3.RGB OFFh
3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the
encoded CC_MIXED block is used to index into the appropriate 32-bit ABR8G8B8 color from the table,
completing the decode of the CC_CMIXED block.

FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three ASR5G5B5 colors are provided in the encoded block. A control
bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects.

CC_ALPHA Block Encoding
The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format:

FXT CC_ALPHA Block Encoding

Bit Description
127:125 Mode = ‘011'b (CC_ALPHA)
124 LERP
123:119 Color 2 Alpha

178

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Bit Description

118:114 Color 1 Alpha
113:109 Color 0 Alpha
108:104 Color 2 Red
103:99 Color 2 Green
98:94 Color 2 Blue
93:89 Color 1 Red
88:84 Color 1 Green
83:79 Color 1 Blue
78:74 Color 0 Red
73:69 Color 0 Green
68:64 Color 0 Blue
63:62 Texel 31 Select
33:32 Texel 16 Select
31:30 Texel 15 Select

1:0 Texel 0 Select

CC_ALPHA Block Decoding

experience
what's inside’

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to ABR8G8B8 by replicating the 3
MSBs into the 3 LSBs, as shown in the following tables:

FXT CC_ALPHA Decoded Colors

Expanded Color Bit

Expanded Channel Bit

Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]
Color 2 [26:24] Color 2 Alpha [2:0] [123:121]
Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [31:27] Color 1 Alpha [7:3] [118:114]
Color 1 [26:24] Color 1 Alpha [2:0] [118:116]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

179

(intel)‘emem

what's inside

Expanded Color Bit | Expanded Channel Bit | Encoded Block Source Bit

Color 1 [10:08]

Color 1 Green [2:0] [88:86]

Color 1 [07:03]

Color 1 Blue [7:3] [83:79]

Color 1 [02:00]

Color 1 Blue [2:0] [83:81]

Color 0 [31:27]

Color 0 Alpha [7:3] [113:109]

Color 0 [26:24]

Color 0 Alpha [2:0] [113:111]

Color 0 [23:17]

Color 0 Red [7:3] [78:74]

Color 0 [18:16]

Color 0 Red [2:0] [78:76]

Color 0 [15:11]

Color 0 Green [7:3] [73:69]

Color 0 [10:08]

Color 0 Green [2:0] [73:71]

Color 0 [07:03]

Color 0 Blue [7:3] [68:64]

Color 0 [02:00]

Color 0 Blue [2:0] [68:66]

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4t
entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded
CC_ALPHA block is used to index into a 32-bit ABR8G8B8 color from the table completing the decode of
the CC_ALPHA block.

FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha
0 Color0.RGB Color0.Alpha
1 Color1.RGB Color1.Alpha
2 Color2.RGB Color2.Alpha
3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The
Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-
31 indices, as shown in the following figures:

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-15 Select Color ARGB
0 Color0.ARGB
1 (2*Color0.ARGB + Color1.ARGB + 1) /3
2 (Color0.ARGB + 2*Color1.ARGB + 1) /3
3 Color1.ARGB

180

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-31 Select Color ARGB
0 Color2.ARGB
1 (2*Color2.ARGB + Color1.ARGB + 1) /3
2 (Color2.ARGB + 2*Color1.ARGB + 1) /3
3 Color1.ARGB

DXT/BC1-3 Texture Formats

Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next
multiple of four texels — here the pad texels are not referenced by the device.

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is
opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding
can be used to support source textures that require more than one-bit alpha: here the 1t QWord is used
to encode the texel alpha values, and the 2" QWord is used to encode the texel color values.

These three types of format are discussed in the following sections:
e Opaque and One-bit Alpha Textures (DXT1)

e Opaque Textures (DXT1_RGB)
e Textures with Alpha Channels (DXT2-5)

DXT2 and DXT3 are equivalent compression formats from the perspective of the hardware. The only
difference between the two is the use of pre-multiplied alpha encoding, which does not affect hardware.

Likewise, DXT4 and DXT5 are the same compression formats with the only difference being the use of
pre-multiplied alpha encoding.

Note that the surface formats DXT1-5 are referred to in the DirectX Specification as BC1-3. The mapping
between formats is shown below:

e DXT1 = BC1
e DXT2/DXT3 = BC2
e DXT4/DXT5 = BC3

Doc Ref # IHD-OS-SKL-Vol 5-05.16 181

(lntel')') e

what'’s inside

Programming Note

Context: DXT Texture Formats

¢ Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit
blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-bit alpha
formats on a per-block basis within the same texture. In other words, the comparison of the unsigned
integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels.

e When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or
DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once
interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used
on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a
block-by-block basis.

Opaque and One-bit Alpha Textures (DXT1/BC1)

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque
or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This
totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel.

In the block bitmap, there are two bits per texel to select between the four colors, two of which are
stored in the encoded data. The other two colors are derived from these stored colors by linear
interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color
values stored in the block. They are treated as unsigned integers. If the first color is greater than the
second, it implies that only opaque texels are defined. This means four colors will be used to represent
the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed
in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha
transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that
the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the
alpha block .

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a
transparent texel (alpha information). This format is analogous to ATR5G5B5, where the final bit is used
for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color
encoding is selected:

if (color 0 > color 1)
{

// Four-color block: derive the other two colors.
// 00 = color 0, 01 = color 1, 10 = color 2, 11 = color 3
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
color 2 = (2 * color 0 + color 1) / 3;
color 3 = (color 0 + 2 * color 1) / 3

4

182 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’

else
{

// Three-color block: derive the other color.

// 00 = color 0, 01 = color 1, 10 = color 2,

// 11 = transparent.

// These two bit codes correspond to the 2-bit fields

// stored in the 64-bit block.

color 2 = (color 0 + color 1) / 2;

color 3 = transparent;

}

The following tables show the memory layout for the 8-byte block. It is assumed that the first index
corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example,
Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word Address| 16-bit Word

0 Color_ 0
1 Color_1
2 Bitmap Word_0
3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits

Color

15:11| Red color component

10:5 | Green color component

4:0 | Blue color component

Bits Texel
1:0 (LSB) | Texel[0][0]
3:2 Texel[0][1]
54 Texel[0][2]
7:6 | Texel[0][3]
9:8 Texel[1][0]
11:10 | Texel[1][1]
13:12 | Texel[1][2]
15:14 | Texel[1][3]

Bitmap Word_1 is laid out as follows:

Bits

Texel

1:0 (LSB) |Texel[2][0]

3:2

Texel[2][1]

5:4

Texel[2][2]

Doc Ref # IHD-OS-SKL-Vol 5-05.16 183

(lntel')‘expem

what's inside

Bits Texel

7:6 Texel[2][3]

9:8 Texel[3][0]

11:10 Texel[3][1]

13:12 Texel[3][2]

15:14 (MSB) | Texel[3][3]

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We
will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly
distributed gradient between them. To determine the values for the 4x4 bitmap, the following
calculations are used:

00 ? color O
01 ? color 1
10 2 2/3 color 0 + 1/3 color 1
11 2 1/3 color 0 + 2/3 color 1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit
integer, color_1. An example of where this format could be used is leaves on a tree to be shown against a
blue sky. Some texels could be marked as transparent while three shades of green are still available for
the leaves. Two of these colors fix the extremes, and the third color is an interpolated color.

The bitmap encoding for the colors and the transparency is determined using the following calculations:

00 ? color O

01 ? color 1

10 ? 1/2 color 0 + 1/2 color_1
11 ? Transparent

Opaque Textures (DXT1_RGB)

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is
removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the
Opaque Color Encoding. The alpha channel defaults to 1.0.

Programming Note

Context: |Opaque Textures (DXT1_RGB)

The behavior of this format is not compliant with the OGL spec.

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3)

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a
block that describes the transparency precedes the 64-bit block already described for DXT1. The
transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with
fewer bits and linear interpolation analogous to what is used for color encoding.

184 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
what's inside’

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block
3.0 Transparency block
7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe
transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a
variety of means such as dithering or by simply using the 4 most significant bits of the alpha data.
However they are produced, they are used just as they are, without any form of interpolation.

Note: DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word.

This is the layout for Word O:

Bits Alpha
3:0 (LSB) | [0]1[0]
74 [0][1]

2]

]

[
11:8 [O][
15:12 (MSB) | [O][

This is the layout for Word 1:

Bits Alpha
3:0 (LSB) | [1]1[0]
74 [1[1]
11:8 [11[2]

15:12 (MSB) | [1][3]

This is the layout for Word 2:

Bits Alpha
3:0 (LSB) | [2][0]
7:4 [21[1]
11:8 [2][2]

15:12 (MSB) | [2][3]

This is the layout for Word 3:

Bits Alpha
3:0 (LSB) | [31(0]
74 [31[1]
11:8 [31[2]

15:12 (MSB) | [3113]

Doc Ref # IHD-OS-SKL-Vol 5-05.16 185

experience
what's inside’

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear
encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in
the first eight bytes of the block. The representative alpha values are used to interpolate intermediate
alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is
greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four
intermediate alpha values are interpolated between the specified alpha extremes. The two additional
implicit alpha values are 0 (fully transparent) and 255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?
if (alpha 0 > alpha 1) {
// 8-alpha block: derive the other 6 alphas.

// 000 = alpha 0, 001 = alpha 1, others are interpolated
alpha 2 = (6 * alpha 0 + alpha 1) / 7; // Bit code 010
alpha 3 = (5 * alpha 0 + 2 * alpha 1) / 7; // Bit code 011
alpha 4 = (4 * alpha 0 + 3 * alpha 1) / 7; // Bit code 100
alpha 5 = (3 * alpha 0 + 4 * alpha 1) / 7; // Bit code 101
alpha 6 = (2 * alpha 0 + 5 * alpha 1) / 7; // Bit code 110
alpha 7 = (alpha 0 + 6 * alpha 1) / 7; // Bit code 111
}

else {

// 6-alpha block: derive the other alphas.

// 000 = alpha 0, 001 = alpha 1, others are interpolated
alpha 2 = (4 * alpha 0 + alpha 1) / 5; // Bit code 010
alpha 3 = (3 * alpha 0 + 2 * alpha 1) / 5; // Bit code 011
alpha 4 = (2 * alpha 0 + 3 * alpha 1) / 5; // Bit code 100
alpha 5 = (alpha 0 + 4 * alpha 1) / 5; // Bit code 101
alpha 6 = 0; // Bit code 110
alpha 7 = 255; // Bit code 111

The memory layout of the alpha block is as follows:

Byte Alpha
0 |Alpha_0
1 |Alpha_1
2 [[0][2] (2 LSBs), [O][1], [O][O]
3 [[1[7] (1 LSB), [1][0], [01(3], [0][2] (1 MSB)
4 | [113], [1][2], [1][1] (2 MSBs)
5 |[2][2] (2 LSBs), [2][1], [2][0]
6 | [3101] (1 LSB), [3][0], [2](3], [2][2] (1 MSB)
7| 31131 [3112], [3][1] (2 MSBs)

186 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
BC4

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data.
An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1
18:16 texel[0][0] bit code
21:19 texel[0][1] bit code
24:22 texel[0][2] bit code
27:25 texel[0][3] bit code
30:28 texel[1][0] bit code
33:31 texel[1][1] bit code
36:34 texel[1][2] bit code
39:37 texel[1][3] bit code
42:40 texel[2][0] bit code
45:43 texel[2][1] bit code
48:46 texel[2][2] bit code
51:49 texel[2][3] bit code
54:52 texel[3][0] bit code
57:55 texel[3][1] bit code
60:58 texel[3][2] bit code
63:61 texel[3][3] bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has
the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen
based on the three-bit code for that texel. The second mode has the two reference colors plus four
interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max
values for the colors. The values of red_0 through red_7 are computed as follows:

Doc Ref # IHD-OS-SKL-Vol 5-05.16 187

(lntel')') e

what'’s inside

red 0 = red 0; // bit code 000
red 1 = red 1; // bit code 001
if (red 0 > red 1) {
red 2 = (6 * red 0 + 1 * red 1) / 7; // bit code 010
red 3 = (5 * red 0 +2 * red 1) / 7; // bit code 011
red 4 = (4 * red 0 + 3 * red 1) / 7; // bit code 100
red 5 = (3 * red 0 + 4 * red 1) / 7; // bit code 101
red 6 = (2 * red 0 + 5 * red 1) / 7; // bit code 110
red 7= (1 * red 0 + 6 * red 1) / 7; // bit code 111
}

else {
red 2 = (4 * red 0 + 1 * red 1) / 5; // bit code 010
red 3 = (3 *red 0 + 2 * red 1) / 5; // bit code 011
red 4 = (2 * red 0 + 3 * red 1) / 5; // bit code 100
red 5 = (1 * red 0 + 4 * red 1) / 5; // bit code 101
red 6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1

for SNORM)
red 7 = 1.0; // bit code 111

}

BC5

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. A
16-byte compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column]
where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1
18:16 texel[0][0] red bit code
21:19 texel[0][1] red bit code
24:22 texel[0][2] red bit code
27:25 texel[0][3] red bit code
30:28 texel[1][0] red bit code
33:31 texel[1][1] red bit code
36:34 texel[1][2] red bit code
39:37 texel[1][3] red bit code
42:40 texel[2][0] red bit code
45:43 texel[2][1] red bit code
48:46 texel[2][2] red bit code
51:49 texel[2][3] red bit code

188 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’
Bit Description

54:52 texel[3][0] red bit code
57:55 texel[3][1] red bit code
60:58 texel[3][2] red bit code
63:61 texel[3][3] red bit code
71:64 green_0

7972 green_T

82:80 texel[0][0] green bit code
85:83 texel[0][1] green bit code
88:86 texel[0][2] green bit code
91:89 texel[0][3] green bit code
94:92 texel[1][0] green bit code
97:95 texel[1][1] green bit code
100:98 texel[1][2] green bit code
103:101 texel[1][3] green bit code
106:104 texel[2][0] green bit code
109:107 texel[2][1] green bit code
112:110 texel[2][2] green bit code
115:113 texel[2][3] green bit code
118:116 texel[3][0] green bit code
121:119 texel[3][1] green bit code
124:122 texel[3][2] green bit code
127:125 texel[3][3] green bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has
the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen
based on the three-bit code for that texel. The second mode has the two reference colors plus four
interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max
values for the colors. The values of red_0 through red_7 are computed as follows:

Doc Ref # IHD-OS-SKL-Vol 5-05.16 189

(lntel')') e

what'’s inside

red 0 = red 0; // bit code 000
red 1 = red 1; // bit code 001
if (red 0 > red 1) {

red 2 = (6 * red 0 + 1 * red 1) / 7; // bit code 010
red 3 = (5 * red 0 +2 * red 1) / 7; // bit code 011
red 4 = (4 * red 0 + 3 * red 1) / 7; // bit code 100
red 5= (3 * red 0 + 4 * red 1) / 7; // bit code 101
red 6 = (2 * red 0 + 5 * red 1) / 7; // bit code 110
red 7= (1 * red O + 6 * red 1) / 7; // bit code 111
}

else {
red 2 = (4 * red 0 + 1 * red 1) / 5; // bit code 010
red 3 = (3 *red 0 + 2 * red 1) / 5; // bit code 011
red 4 = (2 * red 0 + 3 * red 1) / 5; // bit code 100
red 5 = (1 * red 0 + 4 * red 1) / 5; // bit code 101
red 6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1

for SNORM)
red 7 = 1.0; // bit code 111

}
The same calculations are done for green, using the corresponding reference colors and bit codes.

BC6H

These formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high dynamic range (> 8
bits per channel). BC6H supports floating point denorms but there is no support for INF and NaN, other
than with BC6H_SF16 —INF is supported. The alpha channel is not included, thus alpha is returned at its
default value.

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.
BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits
(either 2 or 5 bits).

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices
indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32
partition sets is indicated which selects which of the two lines each texel is assigned to.

Field Definition

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. The
mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines
("TWQ"), and the last 4 use one line (“ONE"). The difference between the various two-line and one-line
modes is with the precision of the first endpoint and the number of bits used to store delta values for the
remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than using
the deltas (these are indicated as having no delta values).

190 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

" n

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is "r",

", n [/ R TR] "_n

g”, or "b” indicating the color channel. The second letter is “w", “x", "y", or “z" indicating which of the

"o

four endpoints. The first line has endpoints “w"” and “x", with “w" being the endpoint that is fully specified

"_n

(i.e. not as a delta). The second line has endpoints "y" and “z". Modes using ONE mode do not have

", "_n

endpoints “y” and “z" as they have only one line.

In addition to the mode and endpoint data, TWO blocks contain a 5-bit “partition” which selects one of
the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are
described in more detail below.

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas

Bit Description
1.0 mode = 00
2 gy[4]
3 by[4]
4 bz[4]
14:5 rw[9:0]
24:15 gw[9:0]
34:25 bw[9:0]
39:35 rx[4:0]
40 gz[4]
44:41 gy[3:0]
49:45 gx[4:0]
50 bz[0]
54:51 gz[3:0]
59:55 bx[4:0]
60 bz[1]
64:61 by[3:0]
69:65 ry[4:0]
70 bz[2]
7571 rz[4:0]
76 bz[3]
8177 partition
127:82 indices

Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas

Bit Description
1:0 mode = 01
2 gy[5]

3 gz[4]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

191

what's inside

experience

Bit Description
4 gz[5]
11:5 rw[6:0]
12 bz[0]
13 bz[1]
14 by[4]
21:15 gw[6:0]
22 by[5]
23 bz([2]
24 gy[4]
31:25 bw[6:0]
32 bz[3]
33 bz[5]
34 bz[4]
40:35 rx[5:0]
44:41 gy[3:0]
50:45 gx[5:0]
54:51 gz[3:0]
60:55 bx[5:0]
64:61 by[3:0]
70:65 ry[5:0]
76:71 rz[5:0]
8177 partition
127:82 indices

Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas

Green, Blue: 11-bit endpoint, 4-bit deltas

Bit Description
4:0 mode = 00010
14:5 rw[9:0]
24:15 gw[9:0]
34:25 bw[9:0]
39:35 rx[4:0]
40 rw[10]
44:41 gy[3:0]
48:45 gx[3:0]
49 gw[10]
50 bz[0]

192

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Bit Description
54:51 gz[3:0]
58:55 bx[3:0]

59 bw[10]

60 bz[1]
64:61 by[3:0]
69:65 ry[4:0]

70 bz[2]
75:71 rz[4:0]

76 bz[3]
81:77 partition

127:82 indices

Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas

Green: 11-bit endpoint, 5-bit deltas

Bit Description
4.0 mode = 00110
14:5 rw[9:0]
2415 gw[9:0]
34:25 bw[9:0]
38:35 rx[3:0]
39 rw([10]
40 gz[4]
44:41 gy[3:0]
49:45 gx[4:0]
50 gwl[10]
54:51 gz[3:0]
58:55 bx[3:0]
59 bw[10]
60 bz[1]
64:61 by[3:0]
68:65 ry[3:0]
69 bz[0]
70 bz[2]
74:71 rz[3:0]
75 gy[4]
76 bz[3]
8177 partition

Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside’

193

(lntel')‘expem

what's inside
Bit Description
127:82 indices

Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas
Blue: 11-bit endpoint, 5-bit deltas

Bit Description
4:0 mode = 01010
14:5 rw[9:0]
24:15 gw[9:0]
34:25 bw[9:0]
38:35 rx[3:0]

39 rw[10]

40 by[4]
44:41 gy[3:0]
48:45 gx[3:0]

49 gw[10]

50 bz[0]
54:51 gz[3:0]
59:55 bx[4:0]

60 bw[10]
64:61 by[3:0]
68:65 ry[3:0]

69 bz[1]

70 bz[2]
74:71 rz[3:0]

75 bz[4]

76 bz[3]
8177 partition
127:82 indices

Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit delt

Bit Description

4:0 mode = 01110

13:5 rw[8:0]

14 by[4]
23:15 gw[8:0]

24 gyl4]
33:25 bw[8:0]

194

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Bit Description
34 bz[4]
39:35 rx[4:0]
40 gz[4]
44:41 gy[3:0]
49:45 gx[3:0]
50 bz[0]
54:51 gz[3:0]
59:55 bx[4:0]
60 bz[1]
64:61 by[3:0]
69:65 ry[4:0]
70 bz[2]
75:71 rz[4:0]
76 bz[3]
81:77 partition
127:82 indices

Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas
Green, Blue: 8-bit endpoint, 5-bit deltas

Bit Description
4:0 mode = 10010
12:5 rw[7:0]

13 gz[4]

14 by[4]
22:15 gw[7:0]

23 bz([2]

24 gy[4]
32:25 bw[7:0]

33 bz[3]

34 bz[4]
40:35 rx[5:0]
44:41 gy[3:0]
49:45 gx[4:0]

50 bz[0]
54:51 gz[3:0]
59:55 bx[4:0]

60 gz[1]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside’

195

(lntel')‘expem

what's inside’

Bit Description
64:61 by[3:0]
70:65 ry[5:0]
76:71 rz[5:0]
8177 partition
127:82 indices

Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas
Green: 8-bit endpoint, 6-bit deltas

Bit Description
4:0 mode = 10110
12:5 rw(7:0]
13 bz[0]
14 by[4]
2215 gw([7:0]
23 9y[5]
24 gyl4]
32:25 bw[7:0]
33 gz(5]
34 bz([4]
39:35 rx[4:0]
40 gz[4]
44:41 gy[3:0]
50:45 gx[5:0]
54:51 gz[3:0]
59:55 bx[4:0]
60 bz[1]
64:61 by[3:0]
69:65 ry[4:0]
70 bz([2]
75:71 rz[4:0]
76 bz(3]
8177 partition
127:82 indices

196 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas
Blue: 8-bit endpoint, 6-bit deltas

Bit Description
4:0 mode = 11010
12:5 rw[7:0]

13 bz[1]

14 by[4]
22:15 gw[7:0]

23 by[5]

24 gy[4]
32:25 bw[7:0]

33 bz[5]

34 bz[4]
39:35 rx[4:0]

40 gz[4]
44:41 gy[3:0]
49:45 gx[4:0]

50 bz[0]
54:51 gz[3:0]
60:55 bx[5:0]
64:61 by[3:0]
69:65 ry[4:0]

70 bz[2]
75:71 rz[4:0]

76 bz[3]
8177 partition
127:82 indices

Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas

Bit Description

4:0 mode = 11110

10:5 rw[5:0]

11 gz[4]

12 bz[0]

13 bz[1]

14 by[4]
20:15 gw[5:0]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

(lntel')‘expem

what's inside

Bit Description
21 gy[3]
22 by[5]
23 bz([2]
24 gyl4]
30:25 bw[5:0]
31 gz[5]
32 bz[3]
33 bz[5]
34 bz[4]
40:35 rx[5:0]
44:41 gy[3:0]
50:45 gx[5:0]
54:51 gz[3:0]
60:55 bx[5:0]
64:61 by[3:0]
70:65 ry[5:0]
76:71 rz[5:0]
8177 partition
127:82 indices

Mode 10: (ONE) Red, Green,

Blue: 10-bit endpoints for both, no deltas

Bit Description

4:0 mode = 00011

14:5 rw[9:0]
24:15 gw[9:0]
34:25 bw[9:0]
44:35 rx[9:0]
54:45 gx[9:0]
64:55 bx[9:0]
127:65 indices

Mode 11: (ONE) Red, Green,

Blue: 11-bit endpoints, 9-bit deltas

Bit Description

4:0 mode = 00111

14:5 rw[9:0]
2415 gw[9:0]
34:25 bw[9:0]
43:35 rx[8:0]

198

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

Bit Description
44 rw([10]
53:45 gx[8:0]
54 gw[10]
63:55 bx[8:0]
64 bw[10]
127:65 indices

Mode 12: (ONE) Red, Green,

Blue: 12-bit endpoints, 8-bit deltas

Bit Description

4.0 mode = 01011

14:5 rw[9:0]
2415 gw[9:0]
34:25 bw[9:0]
42:35 rx[7:0]

43 rw[11]

44 rw[10]
52:45 gx[7:0]

53 gwl[11]

54 gw[10]
62:55 bx[7:0]

63 bw[11]

64 bw[10]
127:65 indices

Mode 13: (ONE) Red, Green,

Blue: 16-bit endpoints, 4-bit deltas

Bit Description

4:0 mode = 01111
14:5 rw[9:0]
24:15 gw[9:0]
34:25 bw[9:0]
38:35 rx[3:0]
39 rw[15]
40 rw[14]
41 rw([13]
42 rw[12]
43 rw[11]
44 rw([10]
48:45 gx[3:0]

Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside’

199

experience
what's inside

Bit Description
49 gw[15]
50 gw[14]
51 gw[13]
52 gw[12]
53 gw[11]
54 gw[10]
58:55 bx[3:0]
59 bw[15]
60 bw[14]
61 bw[13]
62 bw[12]
63 bw[11]
64 bw[10]
127:65 indices

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels.

The "indices” fields are defined as follows:

TWO mode indices field with fix-up index [1] at texel[3][3]

Bit Description
83:82 texel[0][0] index
86:84 texel[0][1] index
89:87 texel[0][2] index
92:90 texel[0][3] index
95:93 texel[1][0] index
98:96 texel[1][1] index
101:99 texel[1][2] index

104:102 texel[1][3] index
107:105 texel[2][0] index
110:108 texel[2][1] index
113:111 texel[2][2] index
116:114 texel[2][3] index
119:117 texel[3][0] index
122:120 texel[3][1] index
125:123 texel[3][2] index
127:126 texel[3][3] index

200

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

112]

101

TWO mode indices field with fix-up index [1] at texel[0
Bit Description
83:82 texel[0][0] index
86:84 texel[0][1] index
88:87 texel[0][2] index
91:89 texel[0][3] index
94:92 texel[1][0] index
97:95 texel[1][1] index
100:98 texel[1][2] index
103:101 texel[1][3] index
106:104 texel[2][0] index
109:107 texel[2][1] index
112:110 texel[2][2] index
115:113 texel[2][3] index
118:116 texel[3][0] index
121:119 texel[3][1] index
124:122 texel[3][2] index
127:125 texel[3][3] index

TWO mode indices field with fix-up index [1] at texel[2
Bit Description
83:82 texel[0][0] index
86:84 texel[0][1] index
89:87 texel[0][2] index
92:90 texel[0][3] index
95:93 texel[1][0] index
98:96 texel[1][1] index
101:99 texel[1][2] index
104:102 texel[1][3] index
106:105 texel[2][0] index
109:107 texel[2][1] index
112:110 texel[2][2] index
115:113 texel[2][3] index
118:116 texel[3][0] index
121:119 texel[3][1] index
124:122 texel[3][2] index
127:125 texel[3][3] index

Doc Ref # IHD-OS-SKL-Vol 5-05.16

experience
what's inside’

201

(lntel')') e

what'’s inside

ONE mode indices field

Bit Description
67:65 texel[0][0] index
71:68 texel[0][1] index
75:72 texel[0][2] index
79:76 texel[0][3] index
83:80 texel[1][0] index
87:84 texel[1][1] index
91:88 texel[1][2] index
95:92 texel[1][3] index
99:96 texel[2][0] index

103:100 texel[2][1] index
107:104 texel[2][2] index
111:108 texel[2][3] index
115:112 texel[3][0] index
119:116 texel[3][1] index
123:120 texel[3][2] index
127:124 texel[3][3] index

Endpoint Computation

The endpoints can be defined in many different ways, as shown above. This section describes how the
endpoints are computed from the bits in the compression block. The method used depends on whether
the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16).

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and
independently, however in some modes different channels have different incoming precision which must
be accounted for. The following rules are employed:

o |f the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits
e For all other cases, the value is zero-extended to 16 bits

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that are
delta values, the next step involves computing the absolute endpoint. The “w" endpoint is always
absolute and acts as a base value for the other three endpoints. Each channel is handled identically and
independently.
X
y
Z

+ + +
N oKX

5 5 =

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any
resulting high bits are dropped).

202 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Palette Color Computation

The next step involves computing the color palette values that provide the available values for each
texel's color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 14
(ONE mode) interpolated colors. Again each channel is processed independently.

First the endpoints are unquantized, with each channel of each endpoint being processed independently.
The number of bits in the original base w value represents the precision of the endpoints. The input
endpoint is called e, and the resulting endpoints are represented as 17-bit signed integers and called e’
below.

For the BC6H_UF16 format:

e if the precision is already 16 bits, e' = e

e fe=0,e'=0

e if e is the maximum representible in the precision, e' = OxFFFF
e otherwise, €' = ((e « 16) + 0x8000) » precision

For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e' and e refer
only to the magnitude portion:

e if the precision is already 16 bits, e' = e

e ife=0,e'=0

e if e is the maximum representible in the precision, e' = Ox7FFF

e otherwise, €' = ((e « 15) + 0x4000) » (precision - 1)
Next, the palette values are generated using predefined weights, using the tables below:
palette[i] = (w' * (64 - weight[i]) + x' * weight[i] + 32) » 6

TWO mode weights:

palette index 0 1 2 3 4 5 6 7

weight 0 9 18 27 37 46 55 64

ONE mode weights:

paletteindex | O | 1 | 2 (3 | 4[5 |6 | 7|89 |10[11[12]13[14|15

weight 0|49 131721 |26|30|34(38|43 |47 |51|55]|60|64

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the
above equation w' and x' represent the endpoints e' computed in the previous step corresponding to w
and x, respectively. For the second line in TWO mode, w and x are replaced with y and z.

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the
values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign
magnitude. These final 16-bit results are ultimately treated as 16-bit floats.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 203

(lntel')') e

what'’s inside

Texel Selection

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit
per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter.
This procedure differs depending on whether the mode is TWO or ONE.

ONE Mode

In ONE mode, there is only one set of palette colors, but the “indices” field is 63 bits. This field consists of
a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 3
bits, the missing high bit being set to zero.

TWO Mode

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of
texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each
texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1
(endpoints y and z). Each case has one texel each of “[0]” and “[1]", the index that this is at is termed the
“fix-up index". These texels have one less bit in the index.

0 1 2 3
00 0] |0/ 1 1 ool ol 1 [|1] 1 1 o |o]| o | 1
0|0 1 1 0 |o| o | 1 1] 1 1 0l 1 1
0 1 1 0 |o| o | 1 1] 1 1 0l 1 1
ol 1 | m| oo o] m 11 1 | m 1 1 |
04 o |o| o | o |]|0] 1 1 lo]lo] ol 1|0 o] o0
0olo| o | 1 0o | 1] 1 1 0l 1 1 o] o | 1
o] o | 1 0o | 1] 1 1 1] 1 1 0l 1 1
ol 1 | m |1 1| 1] o111 |m 11 1 |
- o |o| o | o |0 |0] 1 1 oo o o l|]|0]| 0] o0
0| o 0o | 1] 1 1 ol o | 1 0| o
0| o | 1 T 1] 1 1 1| 1 1 ol o | 1
ol 1 | m |1 1| 1] o111 |m 11 1 |
e o |o| o | 1 | |0l O] o0 @] ol O]| o0 |[©]|O0]|O
0o |1 1 1 0 |o]| o 1T 1] 1 0| o
1 1] 1 1 1T 1] 1 1 T 1] 1 1 0| o
L T A T T T T A T £ O N T B T A IO A £
10 o |o| o ol |[1|m]| 1]|©]|]ol o | o | |1]Tm]1
1 1o o 0o |o| o | 1 o |o] o] o 0] 1 1
1T 1] 1 0|0 o |mlol ol o 0 1
11 1 || olo o | 1 [1] 1 0 0 0

204 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

14 [0] | O [1] 1 0] | O 0 0 0] | O 0 0 [0] 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 1

0 0 0 [1] 1 0 0 [171 | 0O 0 0 0 1 1

0 0 0 1 1 1 0 1 1 0 0 0 0 [1]

18 [0] | O [1] 1 0] | O 0 0 [0] 1 [1] 0 [0] | O | [1] 1
0 0 1 1 0 0 0 1 1 0 1 1 0

0 0 1 [171 10 0 0 1 1 0 1 1 0

0 0 0 1 1 0 0 1 1 0 1 1 0 0

1C 0] | O 0 1 0] | O 0 0 [0] 1 [1] 1 [0] | O [1] 1
0 1 1 1 1 1 1 1 0 0 1 1 0 1

[17 | 1 1 0 [1] 1 1 1 1 0 0 1 0 1

1 0 0 0 0 0 0 0 1 1 0 1 1 0

The 46-bit “indices” field consists of a 3-bit palette index for each of the 16 texels, with the exception of
the bracketed texels that have only two bits each. The high bit of these texels is set to zero.

BC7

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point
images.

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC7
has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 bits
depending on mode).

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or
three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If a
two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the two
lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the
color-only modes, alpha is always returned at its default value of 1.0.

Some modes contain the following fields:

e P-bits. These represent shared LSB for all components of the endpoint, which increases the
endpoint precision by one bit. In some cases both endpoints of a line share a P-bit.

¢ Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which of
the four components has its own indexes (scalar) vs. the other three components (vector).

¢ Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit
index vs. the 2-bit index.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 205

experience
what's inside

Field Definition

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The
mode is selected by the unique mode bits specified in each table. Each mode has particular
characteristics described at the top of the table.

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16

partitions
Bit Description
0 mode = 0

4:1 partition

8:5 RO

12:9 R1
16:13 R2
20:17 R3
24:21 R4
28:25 R5
32:29 GO
36:33 G1
40:37 G2
44:41 G3
48:45 G4
52:49 G5
56:53 BO
60:57 B1
64:61 B2
68:65 B3
72:69 B4
76:73 B5

77 PO

78 P1

79 p2

80 P3

81 P4

82 P5
127:83 indices

206

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

experience
what's inside’

Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64

partitions
Bit Description
1.0 mode = 10
7:2 partition
13:8 RO
19:14 R1
25:20 R2
31:26 R3
37:32 GO
43:38 G1
49:44 G2
55:50 G3
61:56 BO
67:62 B1
73:68 B2
79:74 B3
80 PO
81 P1
127:82 indices

Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit

indices, 64 partitions

Bit Description
2:0 mode = 100
8:3 partition
13:9 RO
18:14 R1
23:19 R2
28:24 R3
33:29 R4
38:34 R5
43:39 GO
48:44 G1
53:49 G2
58:54 G3
63:59 G4
68:64 G5
73:69 BO

Doc Ref # IHD-OS-SKL-Vol 5-05.16

207

experience

what's inside’

Bit Description
78:74 B1
83:79 B2
88:84 B3
93:89 B4
98:94 B5
127:99 indices

Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64

partitions

Bit Description

3:0 mode = 1000

9:4 partition
16:10 RO
23:17 R1
30:24 R2
37:31 R3
44:38 GO
51:45 G1
58:52 G2
65:59 G3
72:66 BO
79:73 B1
86:80 B2
93:87 B3

94 PO

95 P1

96 p2

97 P3
127:98 indices

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16

3-bit indices, 2-bit component rotation, 1-bit index selector

Bit Description
4:0 mode = 10000
6:5 rotation

7 index selector
12:8 RO
17:13 R1

208

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’
Bit Description
22:18 GO
27:23 G1
32:28 BO
37:33 B1
43:38 A0
49:44 Al
80:50 2-bit indices
127:81 3-bit indices

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices,
2-bit alpha indices, 2-bit component rotation

Bit Description
5.0 mode = 100000
7:6 rotation
14:8 RO
21:15 R1
28:22 GO
35:29 G1
42:36 BO
49:43 B1
57:50 AO
65:58 Al
96:66 color indices
127:97 alpha indices

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit
indices

Bit Description
6:0 mode = 1000000
13:7 RO
20:14 R1
27:21 GO
34:28 G1
41:35 BO
48:42 B1
55:49 AO
62:56 Al
63 PO

Doc Ref # IHD-OS-SKL-Vol 5-05.16 209

(lntel')') e

what's inside
Bit Description
64 P1
127:65 indices

Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit
indices, 64 partitions

Bit Description

7:0 mode = 10000000

13:8 partition
18:14 RO
23:19 R1
28:24 R2
33:29 R3
38:34 GO
43:39 G1
48:44 G2
53:49 G3
58:54 BO
63:59 B1
68:64 B2
73:69 B3
78:74 AO
83:79 Al
88:84 A2
93:89 A3

94 PO

95 P1

96 p2

97 P3
127:98 indices

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels.

The indices fields are variable in length and due to the different locations of the fix-up indices depending
on partition set there are a very large number of possible configurations. Each mode above indicates
how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, and three in
THREE mode) each have one less bit than indicated. However, the indices are always packed into the
index fields according to the table below, with the specific bit assignments of each texel following the
rules just given.

210 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Bit Description

LSBs texel[0][0] index

texel[0][1] index

texel[0][2] index

texel[0][3] index

texel[1][0] index

texel[1][1] index

texel[1][2] index

texel[1][3] index

texel[2][0] index

texel[2][1] index

texel[2][2] index

texel[2][3] index

texel[3][0] index

texel[3][1] index

texel[3][2] index

MSBs texel[3][3] index

Endpoint Computation

The endpoints can be defined with different precision depending on mode, as shown above. This section
describes how the endpoints are computed from the bits in the compression block. Each component of
each endpoint follows the same steps.

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint
value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range from
0x00 to OxFF.

Palette Color Computation

The next step involves computing the color palette values that provide the available values for each
texel's color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14
interpolated colors, depending on the number of bits in the indices. Again each channel is processed
independently.

The equation to compute each palette color with index i, given two endpoints is as follows, using the
tables below to determine the weight for each palette index:

palette[i] = (E0 * (64 - weight[i]) + E1 * weight[i] + 32) » 6

Doc Ref # IHD-OS-SKL-Vol 5-05.16 211

experience
what's inside

2-bit index weights:

palette index 0 1 2 3
weight 0 21 43 64

3-bit index weights:

palette index 0 1 2 3 4 5 6 7
weight 0 9 18 27 37 46 55 64

4-bit index weights:

paletteindex | O | 1 | 2 |3 (4 | 5|6 |7 8|9 |10[11 (1213|1415

weight 04 |9 |13[17|21]26|30|34|38 |43 (47 |51|55]|60|64

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the
above equation EO and E1 represent the even-numbered and odd-numbered endpoints computed in the
previous step for the component and line currently being computed.

Texel Selection

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit
per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In
BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure
differs depending on whether the mode is ONE, TWO, or THREE.

ONE Mode

In ONE mode, there is only one set of palette colors, thus there is only a single “partition set” defined,
with all texels selecting line 0 and texel [0][0] being the “fix-up index” with one less bit in the index.

212 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ [ntel))
experience

what's inside’
TWO Mode

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of
texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each
texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 7) or line 1 (endpoints
2 and 3). Each case has one texel each of "[0]" and “[1]", the index that this is at is termed the “fix-up
index”. These texels have one less bit in the index.

0 1 2 3
00 o] | o 1 1 0] o] o 10 | 1 1 1 0] o] o 1
0 1 1 0| o 1 1 1 1 0 1 1
0 1 1 0| o 1 1 1 1 0 1 1
0 1| M o | o | 1 1 1| m 1 1| M
04 o | o | o] o] o 1 1 (0] o] o 1] o] ol o
o]l o o 1 0 1 1 1 0| o 1 1 o | o 1
o o 1 1 1 1 1 1 1 0 1 1
0 10 m | 1 1 1T m | 1 1 1| M 1 1| M
- o | o | o] o || o 1 1] o]|] o ol]mo]|o]| of]o
0| o 0 1 1 1 0| o 0| o
o o 1 1 1 1 1 1 1 1 o | o 1
0 10 m | 1 1 1T m | 1 1 1| M 1 1| M
- o | o | o 1| o| o | of@@]|o]|of|ol]wo]|o]lo
0 1 1 1 ol o] o] o 1 1 1 1 0| o
1 1 1 1 1 1 1 1 1 1 1 1 0| o
1 1 10 m | 1 1 1T m | 1 1 T m | 1 1 1| M
10 o | o | ool]| 1 |m]|1]|wo|ol] o] o /|| 1|0/ 1
1 ol o | o o] o] o0 1 o]l o | o] o 0 1 1
1 1 1 0 ol o | o f|m|o]| ol o 0| o 1
1 1 1| M o]l o o 1 1 1 0 ol o o
" o | o |m| 1]|wo| ol o] o]|©|o]| o] o/frqn] 1 1 1
ol o o 1 1 ol o | oo o]| ol o 0 1 1
o | o | o || 1 ol o |m|]o]| ol o 0 1 1
o]l o o 1 1 1 0 1 1 0| o o | o | 1
18 o | o | m| 1|0 ol o] o wo]|1]|m]| o /@] o] n]| 1
0| o 1 1 ol o | ol o 1 1 0 1 1 0
0| o 1 m] o] ol o 1 1 0 1 1 0
o]l o o 1 1 0| o 1 1 0 1 1 0| o
- o | o | o 1] o] oo f@]| 1 |m|1]|wo]| o0olfrqmn/]| 1

Doc Ref # IHD-OS-SKL-Vol 5-05.16 213

experience

what'’s inside

— —|—|o|o|— o|l—|+— — oo o|lo|o|o — ol — —| o =
o —|—|o|lo|o —|lol| = o ofr— o|lo|o| - —| o —| o —
o OO v~ | — | — O — | O — O OO v~ | — o — | O — | — —
~|=|8lo|E|~|E|~|~|o|8|~|~|-|E8|c|o|o|E|o|E|o|E o|ls o|ls o
o —|o|—|o|o o|l—|+— o o|o —|lo|o]|— o of— —| o o
o ol=|o|—|— —|lol| = o —| - o|lo|—=|+— - of— o~ —
o — O —]| O] — — | O] O — | — OO |O| — — — [— o | o —
—
~|=lgl~|e|-|g|~|o|-|g|c|o|~|g|e|~|~|E|o|=||E -z olz -
— ofl—|o|=]|+— oo~ o —| o —|lo|l—]|o — —| o = — o
— Ofv—|O| — | — o|loOo| o — o — OO —| O o O | — o | o o
=lolg|~|o|-|Blo|E|~|E|o|E|-|8|~|~|o|E|o|o|o|E -z -l& o
o — === —|of|— o ol — o|lo|o|o o —| o —| o -
— o|lo|o|o|= —|o|= o —| o —|lo|=|o — —| — oo —
— — || — | — O O| | — — | O — | | | — | o | o o
=|-|glo|eo|e|a|~|o|-|g|c|~|~|E|-|~|o|E|-|o||E ol -z o
< N X S @ A * »

Doc Ref # IHD-OS-SKL-Vol 5-05.16

214

Memory Views ‘ [ntel))
experience

what's inside’
THREE Mode

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block
of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each
texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 7), line 1 (endpoints 2
and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of “[0]", “[1]", and "[2]", the index that
this is at is termed the “fix-up index". These texels have one less bit in the index.

0 1 2 3
0 o] | o T mlmom|o | o |mlmom|ol|ol]olwo]|2]2/]TI@
0| o 1 1 0| o 1 1 2 | o | o 1 0| 2 2
o | 2| 2 1@ 2 1 1 @ 2 1 1 0 1 1
2 |l 2|2 |@al 2] 2|2 1 2 | 2 1| M 1 1| M1
04 o | o | o o] | o 1 mlmom| o] 2 |wr&|©0]| o0 1 1
ol o o 0| o 1 1 o|lo | 2|21]o0]o 1 1
1 | 1 2 ol o | 2|2 1 1 1 1@ 2 1 1
1 1 2 ||l o | o 2 |@] 1 1 1Tl m| 2 2 1| M1
08 o | o | o o | o | ol o] o]|o]| o] o0 1 2
ol o o 1 1 1 1 1 1T m | 1 o | m| 2
1 | 1 1 1| m | 1 1 1 2 | 2| 2| 2 0 1 2
2 |l 22 l@alz2]2|2|@al2]2]2]m®@ 0 1 | 121
- o] | 1 1 2 |0 | 1 2 | 2l | o 1] o 11 m
0 T lm|l 2o |ml|2/1]2/]o 1 1 2 | 20| o0 1
1 1 2 1 2 | 2 1 1 2 |l 2 || 2| o 0
1 1 | 121 1 2 | 1| 1 2 | 2 || 2 2 | 2
- o | o | o ||| 1 1t lmlmom| o] o]| o /|| o] 2|
0| o 1 1 0| o 1 1 1 1 2 | 2 0o | 2 2
0 1 1 2 @] o | o 10| 1 2 | 2 0o | 2 2
1 1 2 ||l 2 2ol o 1 1 2 | 1| 1 1 1| M
" o] | 1 Tt mlmom|] o] o |ml|mo@| o] o]|o]|wo]|olo 0
1 1 1 ol o] o 1 o | m | 1 1 1 0 0
2 22|l 2| 2 1 1 2 |l 2|l 2 m]| o
2 | 2 || 2| 2| 2 1 1 2 | 1| 2 2 1 0
18 o] | 1 2 ||| o 1 2 |0 | 1 1 o || ol o 0
ml| 212110 o 1 2 1 2 |21 | 1 0 1 | m | o
0 1 1| | 1 2 | 2 |m| 2| 2 1 1 2 || 1
ol o | o | 2|21]21]@&]o0 1 1 0 1 2 1
i o | o | 2| 2 |70] 1 1 0 || o 1 1 0| o 0
1 1 o | 21| o0 | m| 1 0| o 1 2 | 22| o 0

Doc Ref # IHD-OS-SKL-Vol 5-05.16 215

experience
what's inside

—|—=|o|o|lo|lo|~|o|la|=|la|la|la|No|—|—|=|o]| N|lo|o|n|N|o|o | = —| o
||l |ofd|—|a|a|fa|la]lo|lafa|a]|o] - —|o|lo|=|~|o|o — | — o|«
ANl =] =|—|—|o|la|—|o|o|=|o|—|o|—|—|—|o]|= —|o|lo|~|—|o|o i R ey
Nln|S|lo|lo|lo|d|a|—|o|D|—|o|—|S|a|d|n| D] NfS|o|la|n|D| o NRS) | ey
Al =l |dN|o|a|—|o|lo|lo|—|=| ||| =] | N|lo|lo|lo|d| |« | = o
Nf—|—|—|nN|an|n|—|o|ln|ojo|a|a|lo|d|an|o|o]| — — =] —|N|N|« afo ey
—|o|o|o|lo|la|—|o|d|—|o|o|—|—|—|a|a|—]|0O]| = —| == —|~n|o]| o~ A
o|lo|S|o|lo|lo|S|a|l—|lo|S|lo|ld|la|S|ala|lo|D]| —|S|o|o|a|S]| — o| S | e
ald|dafa|=lo|—|a|lo|l=|~|a|dNo|—|o|=| &~ oo |- | e IR
o« Al —|—|anfo|=|lan|jo|o|la|la|la|afa|a]| o] = —|o|—|—|o|a|— N AN
o
o|lan|n|o|lo|lo|—|afo|—| ||| o] = —|o|—|~|o|o|o o« | e
aN|ln|S|o|lo|lo|g|~[N|lo|S|o|la|la|S|~|o|l—|S]| o o|S|—|=|lo|S]|o o| 2o o|—
NN =1 I AN =l B I R B O R B B R K R B N[~ |d|o|o RN N
olan|o|lo|a|a|lo|=|d|lo|~|d|o|~|an|—|n|—~]|]O|O NN =] =] | —]— ~fo o|o
—|o|lo|o|~|n|o|—|an|lo|lo|~|n|o|o|o|lo|o|~]|— Nl =~ = ~fo o|o
—|lo|S|o|l=|—|S|—|n|o|S|~|n|lo|S|o|lo|o|S]| o n|S|o|lo|lo| S| o a| S o|o
S N X N @ A * A

Doc Ref # IHD-OS-SKL-Vol 5-05.16

216

Memory Views ‘ |nte|))
experience

what's inside’

Adaptive Scalable Texture Compression (ASTC)

This section describes the data structure of the Adaptive Scalable Texture Compression (ASTC) format, as
well as the decoding flow of ASTC. Also described are the header format and mipmap layout in the
compressed texture file of *.astc. This is based on the reference encoder and decoder from the Khronos
committee, with an extension to support multiple miplevel texture.

ASTC is a new compressed texture format with following characteristics:

1. ASTC compression format is currently only used for static texture, due to the large amount of
computation and high latency required to find the optimal configuration in compression. It cannot
be used to compress dynamic textures such as a shadow map.

2. ASTC s a lossy compression technique that cannot be used to compress dynamic textures which
do not tolerate quality degradation.

3. ASTC has a huge range of compression ratio and block size, but these choices are fixed for each
texture for all blocks at all mipmap levels.

4. ASTC has options to support compression from 1 to 4 channels for texture data.
ASTC can support both high and low dynamic textures.
6. ASTC can support both 2D and 3D textures.

Supported Formats

2D LDR profile.

2D HDR profiles.

ASTC Fundamentals

This section describes some background details and new surface formats for ASTC.

Background

ASTC is a more advanced texture compression technique than the existing BC and ETC, and can reduce
footprint & BW of static texture further in Graphics application by providing a texture compression
solution at higher compression ratios. To best find the balance point of visual quality and compression, it
provides a wide range of bit rate selection from 8bpp to 0.89 bpp in 2D, and 4.6bpp to 0.6 bpp in 3D at
various block size of footprints. It also has flexibility to specify 1-4 components, selection of dual plane
mode among the specified color components.

It extends the existing linear model on color distribution of each block in multiple partitions (up to 4),
with flexible compact supporting on index/weight for color interpolation. ASTC also has a support of
high dynamic range (HDR) image and 3D textures. The mixture of HDR and LDR data is within each block
level allows a great flexibility to represent high dynamics variation at fine granularity. The support of 3D
texture explores the data coherency in all 3 dimensions, without the need to mimic 3D map with 2D
slices. On top of everything, void-extent regions are introduced for both 2D and 3D maps as further
optimization on large constant region.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 217

experience
what's inside

ASTC is a voted approved future texture format for OpenGL ES by Khronos Group, and is on projection to
be accepted in D3D API. It provides less bandwidth, storage, lower power and high performance over
existing techniques, and has been identified as a critical feature for Gen GPU to get future design win
from desktop, laptop to tablet and handheld markets.

Due to the computational complexity and processing delay of the encoding process, ASTC compression
encoding is always offline, and can only be used for static texture. It does not support auto mipmap
generation and cannot be considered as a format for render target.

The ASTC provides a wide spectrum of bit per pixel for both 2D and 3D texture for both LDR and HDR
images, hence a wide range of compression to any 2D and 3D texture.

LDR Compression Ratios:

2D Block Footprint | Bit Rate (bpp) | Compression ratio (LDR 32bpp)
4x4 8.00 4.0
5x4 6.40 5.0
5x5 5.12 6.3
6x5 4.27 7.5
6x6 3.56 9.0
8x5 3.20 10.0
8x6 2.67 12.0
10x5 2.56 12.5
10x6 2.13 15.0
8x8 2.00 16.0
10x8 1.60 20.0
10x10 1.28 25.0
12x10 1.07 29.9
12x12 0.89 36.0

218 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

HDR Compression Ratios:

2D Block Footprint | Bit Rate (bpp) | Compression ratio (LDR 32bpp)
4x4 8.00 8.0
5x4 6.40 10.0
5x5 5.12 12.5
6x5 4.27 15.0
6x6 3.56 18.0
8x5 3.20 20.0
8x6 2.67 24.0
10x5 2.56 25.0
10x6 2.13 30.0
8x8 2.00 320
10x8 1.60 40.0
10x10 1.28 50.0
12x10 1.07 59.8
12x12 0.89 719

Compared against fixed compression ratios of 4x or 8x on BC* formats, ASTC provides compression
ratios from 4x to 36x for 2D LDR, 8x to 72x in 2D HDR maps, 7x to 54x on 3D LDR (32bpp) maps, and 14x
to 108x in 3D HDR (64bpp). This can reduce bandwidth and footprint of a static 2D HDR or 3D textures
to a small fractional of the existing BC formats, and greatly improve the performance on the graphic
applications using these textures intensively.

Another benefit of ASTC is that, with the large range of selection of footprints and bpp, it can provide a
good trade-off between quality degradation of the compressed texture and performance, due to the
bandwidth and footprints reduction. This could not be achieved by any previously existing texture
compression technologies.

Although ASTC has a huge benefit of bandwidth reduction, the expected performance gain in real 3D
application from this technique depends on how much texture bandwidth bottleneck is relative to the
throughput of computing in EU, Sampler, and other fixed function components.

New Surface Formats for ASTC Texture

The ASTC data format natively supports 14 2D block size, 10 3D block size, and each decoded format
should support either UN8 (with sSRGB con version) or Float16 at each color component. Following is the
full list of all different surface formats as the full combination of different block shapes and UN8 or
Float16 options.

Programming Note

Context: Supported ASTC Formats

All 2D ASTC Formats (LDR and HDR) are supported.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 219

experience
what's inside’

Width Height
[26] LDR/Full 2D 2D Depth
[25] 2D/3D [23:21] [20:18] 2D: n/a
[24] U8srgb 3D 3D 3D: Binary

Value /FLT16 [23:22] [21:20] [19:18] form Name (BPE)

000h 000 0 0 000 000 ASTC_LDR_2D_4x4_U8sRGB | 8.00
000

008h 000 1 0 000 001 ASTC_LDR _2D_5x4_U8sRGB | 6.40
000

009h 000 1 1 000 001 ASTC_LDR_2D 5x5 U8sRGB | 5.12
001

011h 000 2 1 000 010 ASTC_LDR_2D_6x5_U8sRGB | 4.27
001

012h 000 2 2 000 010 ASTC_LDR_2D_6x6_U8sRGB | 3.56
010

021h 000 4 1 000 100 ASTC_LDR_2D_8x5_U8sRGB | 3.20
001

022h 000 4 2 000 100 ASTC_LDR_2D _8x6_U8sRGB | 2.67
010

031h 000 6 1 000 110 | ASTC_LDR_2D_10x5_U8sRGB | 2.56
001

032h 000 6 2 000 110 | ASTC_LDR_2D_10x6_U8sRGB | 2.13
010

024h 000 4 4 000 100 100 ASTC_LDR_2D _8x8 U8sRGB 200

036h 000 6 6 000 110 |ASTC_LDR_2D_10x10_U8sRGB| 1.28
110

03eh 000 7 6 000 111 110 ASTC_LDR_2D_12x10_U8sRGB 1.07

03fh 000 7 7 000 111 111 ASTC_LDR_2D_12x12_U8sRGB 0.89

040h 001 0 0 001 000 ASTC_LDR_2D 4x4 FLT16 8.00
000

048h 001 1 0 001 001 ASTC_LDR_2D 5x4_FLT16 6.40
000

049h 001 1 1 001 001 ASTC_LDR_2D _5x5_FLT16 5.12
001

051h 001 2 1 001 010 ASTC_LDR_2D _6x5 _FLT16 427
001

052h 001 2 2 001 010 ASTC_LDR_2D_6x6_FLT16 3.56
010

220

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

(lntel)‘expem

what's inside’
Width Height
[26] LDR/Full 2D 2D Depth
[25] 2D/3D [23:21] [20:18] 2D: n/a
[24] U8srgb 3D 3D 3D: Binary

Value /FLT16 [23:22] [21:20] [19:18] form Name (BPE)

061h 001 4 1 001 100 ASTC_LDR_2D_8x5_FLT16 3.20
001

062h 001 4 2 001 100 ASTC_LDR 2D_8x6_FLT16 2.67
010

071h 001 6 1 001 110 ASTC_LDR 2D_10x5_FLT16 | 2.56
001

072h 001 6 2 001 110 ASTC_LDR 2D_10x6_FLT16 | 2.13
010

064h 001 4 4 001 100 100 | ASTC_LDR 2D_8x8_FLT16 2.00

074h 001 6 4 001 110 100 | ASTC_LDR_2D_10x8_FLT16 | 1.60

076h 001 6 6 001 110 ASTC_LDR_2D_10x10_FLT16 | 1.28
110

07fh 001 7 7 001 111 111 | ASTC_LDR_2D_12x12_FLT16 | (gg

080h 010 0 0 0 010000 |ASTC_LDR_3D_3x3x3_U8sRGB | 4.74
000

090h 010 1 0 0 010 010 | ASTC_LDR_3D_4x3x3_U8sRGB| 3.56
000

094h 010 1 1 0 010010 |ASTC_LDR_3D_4x4x3_U8sRGB | 2.67
100

095h 010 1 1 1 010 010 | ASTC_LDR_3D_4x4x4_U8sRGB | 2.00
101

0a5h 010 2 1 1 010 100 | ASTC_LDR_3D_5x4x4_U8sRGB | 1.60
101

0a%h 010 2 2 1 010 101 | ASTC_LDR_3D_5x5x4_U8sRGB | 1.28
001

Oaah 010 2 2 2 010 101 | ASTC_LDR_3D_5x5x5_U8sRGB | 1.02
010

Obah 010 3 2 2 010111 | ASTC_LDR_3D_6x5x5_U8sRGB | 0.85
010

Obeh 010 3 3 2 010 111 | ASTC_LDR_3D_6x6x5_U8sRGB | 0.71
110

Obfh 010 3 3 3 010111 | ASTC_LDR_3D_6x6x6_U8sRGB | 0.59
111

140h 101 0 0 n/a 101 000 ASTC_FULL_2D_4x4_FLT16 8.00

Doc Ref # IHD-OS-SKL-Vol 5-05.16 221

(lntel')‘expem

what's inside
Width Height
[26] LDR/Full 2D 2D Depth
[25] 2D/3D [23:21] [20:18] 2D: n/a
[24] U8srgb 3D 3D 3D: Binary

Value /FLT16 [23:22] [21:20] [19:18] form Name (BPE)
000

148h 101 1 0 n/a 101 001 ASTC FULL_2D_5x4_FLT16 6.40
000

149h 101 1 1 n/a 101 001 ASTC_FULL_2D_5x5_FLT16 5.12
001

151h 101 2 1 n/a 101 010 ASTC FULL_2D_6x5_FLT16 4.27
001

152h 101 2 2 n/a 101 010 ASTC_FULL_2D_6x6_FLT16 3.56
010

161h 101 4 1 n/a 101 100 ASTC_FULL_2D_8x5_FLT16 3.20
001

162h 101 4 2 n/a 101 100 ASTC_FULL_2D_8x6_FLT16 2.67
010

171h 101 6 1 n/a 101 110 ASTC_FULL_2D_10x5_FLT16 | 2.56
001

172h 101 6 2 n/a 101 110 ASTC_FULL_2D_10x6_FLT16 | 2.13
010

164h 101 4 4 n/a 101 100 100 ASTC_FULL_2D_8x8_FLT16 2.00

174h 101 6 4 n/a 101 110 100 ASTC_FULL_2D _10x8 FLT16 | 1.60

176h 101 6 6 n/a 101 110 ASTC _FULL_2D _10x10_FLT16 | 1.28
110

1cOh 111 0 0 0 111 000 ASTC_FULL_3D_3x3x3_FLT16 | 4.74
000

1dOh 111 1 0 0 111 010 ASTC_FULL_3D_4x3x3_FLT16 | 3.56
000

1d4h 111 1 1 0 111 010 ASTC_FULL_3D_4x4x3_FLT16 | 2.67
100

1d5h 111 1 1 1 111 010 ASTC_FULL_3D 4x4x4 FLT16 | 2.00
101

1e5h 111 2 1 1 111 100 ASTC_FULL_3D_5x4x4_FLT16 | 1.60
101

1e9h 111 2 2 1 111 101 ASTC_FULL_3D 5x5x4 FLT16 | 1.28

222 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

Width Height
[26] LDR/Full 2D 2D Depth
[25] 2D/3D [23:21] [20:18] 2D: n/a
[24] U8srgb 3D 3D 3D: Binary
Value /FLT16 [23:22] [21:20] [19:18] form Name (BPE)
001
Teah 111 2 2 2 111 101 ASTC_FULL_3D_5x5x5_FLT16 | 1.02
010
1fah 111 3 2 2 111 111 ASTC_FULL_3D_6x5x5_FLT16 | 0.85
010
1feh 111 3 3 2 111111 ASTC_FULL_3D_6x6x5_FLT16 | 0.71
110
1ffh 111 3 3 3 111 111 ASTC_FULL_3D_6x6x6_FLT16 | 0.59
111

ASTC File Format and Memory Layout

ASTC Header Data Structure and Amendment

The 1t block of an ASTC compression texture is a header file. Its byte layout in the original header
structure in *.astc file is:

struct astc header
{
uint8 t magic(4];
uint8 t blockdim x;
uint8 t blockdim y;
uint8 t blockdim z;

uint8 t xsizel[3]; // x-size = xsize[0] + xsize[l] + xsize[2]
uint8 t ysize[3]; // x-size, y-size and z-size are given in texels;
uint8 t zsizel[3]; // block count is inferred

}i

Since there are limited ranges for block dimensions in x, y and z directions as described in following, we
could store additional information in the unused upper bits of these byte fields

Block Dimension 2D 3D

blockdim_x 4,5,6,8 10,12(3,4,5, 6
blockdim_y 4,5,6,8 10,12(3,4,5, 6
blockdim_z 1 3,4,5,6

Since blockdim_z is in the range of [1,6], only lower 3 bits of blockdim_z is used. We proposed the Intel
astc extension format with numLOD:s stored in the upper 5 bits of the byte field used for blockdim_z.
This new byte field can be defined as:

numLODs_blockdim_z = (numLODs-1) « 3 | (blockdim_z & 0x7) ;

Doc Ref # IHD-OS-SKL-Vol 5-05.16 223

(l n te,l .kexperierwce

what's inside
New header:

struct astc header
{
uint8 t magic[4];
uint8 t blockdim x;
uint8 t blockdim y;
uint8 t numLODs blockdim z;
uint8 t xsize[3]; // width + (xsize[2]«16)
1; // height= ysize[0] + (ysize[l]«8) + (ysize[2]«16)
uint8 t zsize[3]; // depth = zsize[0] + (zsize[l]«8) + (zsize[2]«l6)

xsize[0] + (xsize[1l]«8)

uint8 t ysize[3

// x_size, y size and z size are given in texels;

// block count is inferred

}i

The driver or the software responsible for managing the memory resource will get numLODs and
blockdim_z in:

numLODs = ((numLODs_blockdim_z » 3) & Ox1F) + 1;
blockdim_z = numLODs_blockdim_z & 0x7;

Data Layout in ASTC Compression File

A number of parameters are useful to determine where given pixels are located on the 2D & 3D surface.
First, the width and height for each LOD level "L" is computed as:

Wi = ((width > L) > 0)? width > L:1)
H: = ((height > L) = 0)7 height > L: 1)

D: = ((depth > L) > 0)?depth > L: 1)

The numbers of blocks in width, height and depth slab in each LOD are:
Nw(L) = Ceil(WL /Bw);

Nh (L) = Ceil(H. /Bh);

Ns (L) = Ceil(DL/Bd),

Where Bw, Bh and Bd is the block width, height and depth respectively.

Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in
each LOD level of the mipmap is described by nB. = Nw(L) * Nh (L) * Ns (L), The total number of blocks
in the entire texture map is a summation of nBL's from all mipmap levels and all slabs, which are all pre-
compressed via ASTC encoder. All the blocks in each LOD are in raster sequenced in width, height and
then depth slab order.

224 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
Total ASTC Data Block Layout in All Mipmap Levels

The entire layout of the compression texture file looks like:

Address Data Description
AddrO (Base Address) Header structure
AddrO0+16

1st Data Block in LODo

Addr0+32 2nd Data Block in LODo

Addr = Addr0+16nBO0 | |t hata Block in LODs

Addr1 +16 1st Data Block in LOD;

Addr1+32 2nd Data Block in LOD;

Addr2 = Addr1+16"nB1 | i pota Block in LOD;

Addr2+16 1st Data Block in LOD;

Addr2+32 2nd Data Block in LOD:

Addr3 = Addr2+16"nB2 Last Data Block in LOD:

Data Layout in Memory for All Mipmap Levels

The following equations for give the base address (U_offset, V_offset) in Cartesian coordinates for the
starting point of each mip map at LOD L and depth slab g:

LOD=0:
U_offset (0, q) = 0;
V_offset (0, q) =q * hO;
LOD=1:
U_offset (1, q) = (q%2)*w1;
V_offset (1, q) = DO*h0 + (g»1)*h1;
LOD=2:
U_offset (2, q) = (q%4)*w2;

Doc Ref # IHD-OS-SKL-Vol 5-05.16 225

experience

what's inside

V_offset (2, q) = DO*h0 + ceil(D1/2) * h1 + (g»2)*h2;

LOD=3:

U_offset (3, q) = (q%8)*w3;

V_offset (3, q) = DO*h0 + ceil(D1/2) * h1 + ceil(D2/2) * h2 + (g»3)*h3;

Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in
each LOD level of the mipmap is described by nB. = Nw(L) * Nh (L) * Ns (L). The memory layout for TileY
format are considered with 512bit (16Bx4) in 1 cacheline granularity, the total number of blocks is: 4*(

(Ceil(H. /Bh)+3)/4 * Ceil(WL /Bw) * Ceil(D. /Bd):

Here is the full list describing the total number of rows and columns of data in each mipmap for texture

in ASTC format:

Table for block dimension in 2D

ASTC Block Height

ASTC Block Width

Block Size (in line) (in Byte)
4 ((Ceil(HL /4) +3)/4) *4 | Ceil(WL/4)* 16
5 ((Ceil(HL /5) +3)/4) *4 | Ceil(WL/5)* 16
6 ((Ceil(HL /6) +3)/4) *4 | Ceil(WL/6)* 16
8 ((Ceil(HL /8) +3)/4) *4 | Ceil(WL/8)* 16
10 ((Ceil(HL /10) +3)/4) *4| Ceil(WL /10) * 16
12 ((Ceil(HL /12) +3)/4) *4| Ceil(WL /12) * 16

Table for block dimension in 3D

ASTC Block Height

ASTC Block Width

ASTC Block Depth/slab

Block Size (in line) (in Byte) (in slice)
3 ((Ceil(HL /3) +3)/4) *4 | Ceil(WL /3) * 16 Ceil(DL /3)
4 ((Ceil(HL /4) +3)/4) *4| Ceil(WL /4)* 16 Ceil(DL /4)
5 ((Ceil(HL /5) +3)/4) *4| Ceil(WL/5)* 16 Ceil(DL /5)
6 ((Ceil(HL /6) +3)/4) *4| Ceil(WL/6)* 16 Ceil(DL /6)

For example, an image of 64x64 with 5x5 block coding in LODO will have:
Block Height: (13+3)/4*4=16 (lines)
Block Width: 13 *16 = 208 (Bytes)

The following diagram illustrate the memory layout for 2D and 3D map respectively.

226

Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views

q=0
q=1
LODO
gq=14
g=13
9=2 | g=3
LOD1
q=4 | q=5
q=6 | 9=/

213
q: LOD2
LOD3

HD LOD4

Doc Ref # IHD-OS-SKL-Vol 5-05.16

®

experience
what's inside”

227

experience
what's inside’

ASTC Data Structure

Layout and Description of Block Data

The block data structure is described in the following table in the categories of the block being partition
enabled (2-4 partitions) or disabled (only 1 partition), as well as 1 plane or dual-plane mode. Where CEM
refers to Color Endpoint Mode, and CCS stands for Color Channel Selection:

Layout of Partitioning Disabled (1 partition) and Enabled (multi-partition) blocks

Partition 127:19 18:17| 16:13 12:11 10:0
Disable
(1 Plane) Index Data Color Endpoint Data CEM 00 Index Mode
(2 Planes) Index Data C"""'DE’::"“'I“ cCs CEM 00 | Index Mode
Multi-
- - 29. 4. .
partitions 127:20 28:23 22:13 12:11 10:0
Index Color CEM Partition
(1 Plane) Data Rest of CEM Endpoint Data | (Initial 6 bits) Index Part | Index Mode
Index Rest of Color CEM Partition
(2 Planes) | 1yota | €CS| CEM | Endpoint Data | (Initial 6 bits) Indey Part | Index Mode

The 11 bit “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this
field is listed in next two tables, one for the 2D and one for the 3D.

The "Part” field specifies the number of partitions minus one. If dual plane mode is enabled, the number
of partitions must be 3 or fewer. In case 4 partitions in such situation are specified, the error value is
returned for all texels in the block. The size and layout of the extra configuration data depends on the
number of partition, and the number of planes in the image.

Partitioning

For any non-void extend region, each block is subdivided into 1, 2, 3 or 4 partitions, with a separate color
endpoint pair for each partition. The number of partitions is specified by the partition count-1 in bits
[12:11] of block data. If 2 or more partitions are selected, partitioning is enabled, the 10 bit partition
index is then used to select one from 1024 partitioning patterns, where the total set of patterns
supported in ASTC depends on the partition count and block size. The partitioning patterns are
produced generatively, which supports a very large set of partitioning patterns for different block sizes
with a modest number of hardware gates implementation.

Index Mode

The “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this field is
listed in next two tables, one for the 2D and one for the 3D.

228 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ i n tel)

experience
what's inside’

The Index Mode field specifies the width (N), height (M) and depth (Q) of the grid of indices, what range
of values they use, and whether dual index planes are present. The index ranges are encoded using a 3
bit value R, which is interpreted together with a precision bit H, as follows:

Mode Low-precision High-precision
R(2 r1r0) | (H=0) (H=1)

gﬁ:‘e Trits | Quints | Bits gﬁl‘:‘e Trits | Quints | Bits
000 Invalid Invalid
001 Invalid Invalid
010 [0.1] 1 [0.9] 1 1
011 [0.2] 1 [0.11] 1 2
100 [0.3] 2 [0.15] 4
101 [0.4] 1 [0.19] 1 2
110 [0.5] 1 1 [0.23] 1 3
111 [0.7] 3 [0.31] 5

Each index value is encoded using the specified number of Trits, Quints and Bits. The details of this
encoding can be found in Section - Integer Sequence Encoding. Due to the encoding of the R field, bits r2
and r1 cannot both be zero,

The number of indices provided for a block is not tied to the block size in any way, instead, the indices
form an N*M*Q ordered grid. N, M and Q are specified on a per-block basis rather then being a global
texture property. For 2D blocks, N and M can be set to any value from 2 to 12 while Q is fixed at 1; for 3D
blocks, N, M and Q can be set to any value from 2 to 5. The range used for each index can be set
separately for each block. The Index Bit Mode field species the values of N, M, Q and the range; it also
specifies whether Dual Index Planes are present or not as well.

The D bit in following tables is set to indicate dual-plane mode. In this mode, the maximum allowed
number of partitions is 3. The size of the grid in each dimension must be less than or equal to the
corresponding dimension of the block footprint. If the grid size is greater than the footprint dimension in
any axis, then this is an illegal block encoding and all texels will decode to the error color.

For 2D blocks, the index mode field is laid out as follows:

Doc Ref # IHD-OS-SKL-Vol 5-05.16 229

(lntel')‘expem

what's inside

The bit encoding of the index mode field for 2D Blocks

Bits Width | Height Notes

10]9]8|7|6|s5]4a] 32| 10] n M
D|H B A rO| 00 r2 ri B+4 A+2
D|H B A rOf 01 r2ri B+8 A+2
D|H B A rOf 10 r2 ri A+2 B+8
D|H|[O|B| A |r0]| 11 r2ri A+2 B+6
D|H[1T]|B| A rof 11 r2 ri B+2 A+2
D|H[O|O] A |r0O]| r2r1 00 12 A+2
D|H|O]|1 A |r0] r2rl 00 A+2 12
D|H[1]1 0|r0]| r2rl 00 6 10
D[H|1]1 11r0 | r2rl 00 10 6

B 110 A r0 | r2rl 00 A+6 B+6 D=0, H=0
X | x (11111 11 00 - - Void-Extent
X [x| 1T[1T[1T]x]| x X X 00 - - Reserve
X [x| x|[x|[x]x]| x 00 00 - - Reserve

Note that, due to the encoding of the R field (rO, r1, r2), bits r2 and r1 cannot both be zero, which
disambiguates the first five rows from the rest of the table. The penultimate row of the table is reserved
only if bits [5:2] are not all 1, in which case it encodes a void-extent block (as shown in the previous row)

For 3D blocks, the index mode field is laid out as follows:

3D Index Mode Layout

Bits Notes
10|9]8|7]6|s][4[3|2]1]o| N [M | Q| ©H
B [A [rOf C |r2r1|A+2|B+2|C+2
B [0|0] A |rO|r2r1|0|0| 6 [B+2]|A+2 (0,0
B [Of1[A [rOfr2r1{0O|[O0[A+2| 6 |B+2 ©, 0)
B |1|0f A |rOfr2r1|0|0|A+2|B+2| 6 0, 0)
D|H|[1[{1]0({0|rO|r2r1|0 |0 2 2
D|H[1[{1]0(1|rO|r2r1|0|0 6 2
D|H[1|{1]1{0]|rO|r2r1]0(0]| 2 2 6
X I x[T]1{1T{1]11{1[1]0]0| - - - | Void-Extent
X [x|T11{1]1]x 0|10 - - - Reserve
X [x|x|x[x|x[x[0]0[0]|O]| - - - Reserve

The D bit is set to indicate dual-plane mode:

1: dual index planes are used

230 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what'’s inside’
0: single index plane is used

In this mode, the maximum allowed number of partitions is 3. The size of the grid in each dimension
must be less than or equal to the corresponding dimension of the block footprint. If the grid size is
greater than the footprint dimension in any axis, then this is an illegal block encoding and all texels will
decode to the error color. The penultimate row of the table is reserved only if bits [4:2] are not all 1, in
which case it encodes a void-extent block (as shown in the previous row).

H: Index Range Bit:
1: the High-Precision group is selected.
0: The Low-Precision group is selected.

Here is the detail description:

e The encoding of xx111111100 is for the void-extent block.

e The pattern xxxxxxx0000 (the bottom 4 bits being 0000b) is reserved for future extension, and
should result a NaN-vector when such a pattern is decoded.

¢ Any encodings not listed in the table are considered invalid and result in undened behavior if
encountered by decoders.

Given the limitation of the fix length of 128 bits per block, there are restrictions that will not allow every
possible encoding:

e The total number of indexes (N*M*Q for single index plane, 2*N*M*Q for dual index planes) must
not exceed 64.

e The length of the Index Integer Sequence must not exceed 96 bits.

e The length of the Index Integer Sequence must be at least 24 bits.

e The above restriction, combined with the other field widths of the format, implicitly restricts the
Color Integer Sequence to a maximum of 75 bits.

e Blocks that violate these restrictions are not legally produced by the encoder, result a vector of
NaNs if encountered by decoders.

Here is how the indices in each block are encoded and stored:

e They are encoded using the Integer Sequence Encoding method described in Appendix.

e The resulting bit-sequence is then bit-reversed, and stored from the top of the block downwards.
The ordering of the indices in the Integer Sequence is a simple scan line-like ordering.

The indices are used in two steps to interpolate between two endpoint colors for each texel.

e First, they are scaled from whatever interval they were to the range [0,64];
e The resulting value is then used as a weight to interpolate between the two endpoints.

Index Planes

Depending on the Index Bits mode selected, an ASTC compressed block may offer 1 or 2 index planes. In
the case of 2 index planes, two indices rather than just one are supplied for each texel that receives

Doc Ref # IHD-OS-SKL-Vol 5-05.16 231

(lntel')‘expem

what's inside’
indices. Of these two indices, the first one is used for a weighted sum of three of the color components;
the second is used for a weighted sum of the fourth color component. If only 1 index plane is present, it
applies to all four color components.

If two index planes are used, then a 2-bit bit field is needed to indicate which of the color components
the second index plane applies to. These two bits are stored just below the index bits, except in the case
where leftover color endpoint type bits are present; in that case, these two bits are stored just below the
leftover color endpoint type bits. This two-bit bit-field has the following layout:

Channel |Red | Green | Blue | Alpha

Value 0 1 2 3

If index infill is present while two index planes are being used, then index infill is performed on each
index plane separately. If two index planes are used, the indexes are stored interleaved: the first index
belongs to the first index plane, the second index belongs to the second index plane, the third index
belongs to the first index plane, and so on.

Index Infill Procedure

In ASTC, each block has an N*M*Q ordered grid of indices. N, M and Q may or may not match the
dimensions of the actual block (e.g. it is possible to encode a 5x3 grid for an 8x8 block); if they don't
match, then the grid is scaled so that its corner indexes align with the corner texels of the block, a
bilinear index infill procedure is defined to interpolate an index for each texel. This procedure picks 1 to 4
indexes, and assigns each of them a weight; these weights are always a multiple of 1/16. The exact details
of this interpolation procedure are specified below.

Color Endpoint Mode

In single-partition mode, the Color Endpoint Mode (CEM) field stores one of 16 possible values. Each of
these specifies how many raw data values are encoded, and how to convert these raw values into two
RGBA color endpoints. They can be summarized as follows:

List of Color Endpoint Modes

CEM Description Class | # of integers to represent each pair of color end points

0 LDR Luminance or Alpha, direct 0 2

LDR Luminance, base+offset

HDR Luminance, large range

HDR Luminance, small range

LDR Luminance+Alpha, direct

LDR Luminance+Alpha, base+offset

232 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

CEM Description Class | # of integers to represent each pair of color end points

6 LDR RGB, base+scale 1 4

HDR RGB, base+scale

LDR RGB, direct

LDR RGB, base+offset

10 LDR RGB, base+scale plus two A 2 6

1 HDR RGB, direct 2 6

12| | DR RGBA, direct 3 |8D=0/6:D=1

13 | DR RGBA, base+offset 3 |8D=0/6:D=1

4 1\iDR RGB, direct + LDR Alpha 3 8: D=0; 6: D=1

1> |HDR RGB, direct + HDR Alpha 3 8:D=0; 6: D=1

Description

LDR modes are supported in ASTC LDR profile, which is enabled since CHV.

HDR modes are only supported in ASTC HDR mode, which is enabled since SKL.

In 2-4 partition modes, the encoding of Color Endpoint Modes are listed in following tables, where the
endpoint mode representation may take from 6 to 14 bits, of which the first 6 bits are stored just after
the partition indices, and the remaining bits are stored just below the index bits at variable position in

the remaining space.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 233

experience

what'’s inside

Partition / High bits [1:0]
Class Types
Same Class | 6b [5:0] 5:2] 00
Color Endpoint Mode
Different |2-Partions|[7:6] [5:4] [3:3] [2:2] 01
Classes 8b [7:0] Mode in P1 [Mode in PO |Class Select | Class Select | (Class 0 & 1)
for P1 for PO
3-Partions [10:9] [8:7] 10
11b [10:0] Mode in P2 [Mode in P1|(Class 1 & 2)
[6:5] [4:4] [3:3] [2:2]
Mode in PO | Class Select|Class Select | Class Select
for P2 for P1 for PO
4-Partions | [13:12] [11:10] [9:8] [7:6] 11
14b [13:0] | Mode in P2 |Mode in P1 [Mode in P2 [Mode in P1 | (Class 2 & 3)
[5:5] [4:4] [3:3] [2:2]
Class Select | Class Select [Class Select | Class Select
for P3 for P2 for P1 for PO

More specifically, if the CEM selector value in bits [24:23] is not 00, then data layout is as follows:

List of Color Endpoint Class Types encoding under multi-partitions

Partitions |28 [27]26] 25 |24]23
2 |..|Index|m1 vo |C1]col cem
3 |..|index[mM2|m1|Mmo| [..[mo]c2c1]|co] cem
4 |..|index|M3|M2][m1[mo0]...|c3 [c2|c1]co| cem

In this view, each partition i has two fields. Ci is the class selector bit, choosing between the two possible
CEM classes (0 indicates the lower of the two classes), and Mi is a two-bit field specifying the low bits of
the color endpoint mode within that class. The additional bits appear at a variable bit position,
immediately below the texel index data. The ranges used for the data values are not explicitly specified.
Instead, they are derived from the number of available bits remaining after the configuration data and
index data have been specified. Details of the decoding procedure for Color Endpoints can be found
later.

234 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lﬂtEl)
experience

what'’s inside’
Color Endpoint Data Size Determination

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is determined
from the index mode and number of partitions as follows:

config bits = 17;
if (num partitions>1)
if (single CEM)
config bits = 29;

else

config bits 24 + 3*num partitions;

num_indices = M * N * Q; // size of index grid

if (dual plane)
config bits += 2;

num_indices *= 2;

index bits = floor (num indices*8*trits in index range/5) +
floor (num_indices*7*quints_in index range/3) +

num_indices*bits in index range;

remaining bits = 128 - config bits - index bits;

num CEM pairs = base CEM class+l + count bits(extra CEM bits);

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. This
table is initialized such that the range is as large as possible, consistent with the constraint that the
number of bits required to encode num_CEM_pairs pairs of values is not more than the number of
remaining bits. An equivalent iterative algorithm would be:

num CEM values = num CEM pairs*2;
for (range = each possible CEM range in descending order of size)
{
CEM bits = floor (num CEM values*8*trits in CEM range/5) +
floor (num CEM values*7*quints_in CEM range/3) +
num CEM values*bits_in CEM range;
if (CEM bits <= remaining bits)
break;
}

return range;

In cases where this procedure results in unallocated bits, these bits are not read by the decoding process
and can have any value.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 235

experience
what's inside

Void-Extent Blocks

As noted in the index mode, a specifically type of encoding is the void-extended type (2D), an efficient
way to encode a constant color for large blocks of regions in texture. The data structure of a void extent
is listed in following 2 tables as 2D and 3D blocks respectively.

Layout of 2D Void-Extend Block, being supported in LDR.

127:112|111:96 | 95:80 | 79:64 | 63:51 | 50:38 | 37:25 |24:12| 11:10 |9 8:0

A B G R |T_high|T_low|S_high|S_low |Res:11|H|[111111100

Bit 9 H is the Dynamic Range flag, which indicates the format in which colors are stored. A 0 value
indicates LDR, in which case the color components are stored as UNORM16 values. A 1 indicates HDR, in
which case the color components are stored as FP16 values. If a void-extent block with HDR values is
decoded in LDR mode, then the result will be the error color, opaque magenta, for all texels within the
block. The low and height coordinate values are treated as unsigned integers and then normalized into
the range 0..1 (by dividing by 23-1 for 2D or 2°-1, for 3D respectively). The high values for each
dimension must be greater than the corresponding low values, unless they are all all-1s. If all the
coordinates are all-1s, then the void extent is ignored, and the block is simply a constant color block.The
existence of single-color blocks with void extents must not produce results different from those obtained
if these single-color blocks are defined without void-extents. Any situation in which the results would
differ is invalid. Results from invalid void extents are undefined. If a void-extent appears in a MIPmap
level other than the most detailed one, then the extent will apply to all of the more detailed levels too.
This allows decoders to avoid sampling more detailed MIPmaps. If the more detailed MIPmap level is not
a constant color in this region, then the block may be marked as constant color, but without a void
extent, as detailed above. If a void-extent extends to the edge of a texture, then filtered texture colors
may not be the same color as that specified in the block, due to texture border colors, wrapping, or cube
face wrapping. Care must be taken when updating or extracting partial image data that void-extents in
the image do not become invalid.

Decoding Process

Overview Decoding Flow

The goal for this feature is to reconstruct a cacheline (512b) of a target texture data at 4x4 region in
UNORMS8 A8R8G8B8 or 4x2 in FLT16 A16R16G16B16 with certain performance target, given the input
texture coordinate (s,t,r). The scope of the u-architecture includes

e The additional surface format of the post decoding block, and the footprint (equivalent bpp).
These are both global to each texture surface, and can be passed to the Sampler in the surface
state via sampler messages.

e With post-scaled texture coordinate (u, v, p), the additional address calculation in FT to find the
particular block location relative to the native block size specified in the surface state, as well as the
relative texel position within that block. Assuming the block size for the block is Bu, Bv, Bp, the
dimensions of a 2D surface as measured in block size tsize is:

bw = MAX (2, (w+ tsize -1)/ tsize)

236 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside”
bh = MAX (2, (h+ tsize -1)/ tsize)

Here the division is an integer division. The relationship between non-negative image coordinates
[row,col] =[u, v] and block coordinates is

bu = u / tsize ; buu = u % tsize;
bv = v / tsize ; bvv = v % tsize;
bp = p / tsize ; bpp = p % tsize;

e With the selected sets of block size from 4x4 to 12x12 in 2D and 3x3x3 to 6x6x6 in 3D maps,1~4
blocks of source texture needs to be fetched, depending on whether the destination tile size (4x2
in FLT16 or 4x4 in UNORMB8888) is inclusive or come across a few source blocks, as shown in Fig.

Destination tile is inclusive within one tile or across up to 4 tiles in source texture region

e Decode 1to 4 128-bit ASTC compressed blocks fetched from DRAM in Sampler from ASTC
compression format to either UNORMBS (LDR) or FLT16(HDR), reconstruct the texels needed in the
texture filtering stage. The total decoding processing include:

Front End Decoding Processing:

Detect if an ASTC block is a void-extent type, illegal type, or a normal non-void-extent type.
Decode the partition state — number of partitions in the current block.

Decode the index mode for the block include the partition seed and (N,M,Q) dimension of the
compact sampling domain.

4. Decode the color endpoints modes in each partition.
5. Calculate the bit position and total # of bits used for Index.

Calculate the bit position and total # of bits and # of integers used in the Color endpoints in all
partitions within the block.

7. With Integer Sequence Decoding, get all the indices in the compact domain defined by NxMxQ
grid.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 237

(lntel |
experience
what's inside

8. With Integer Sequence Decoding, get all the color end points from 16 modes in FLT16 for all
partitions.

Back End Decoding Processing:

1. Reconstruct the indices at the selected sampling locations with infill scaling.
Find the partition from the partition seed at each sampling location.
Reconstruct the texture color value with the index and the pair of color end points at each
sampling location.

4. If Block type is void extent, get the constant color from the high 64 bits and assign to the sampling
location.

5. Convert the data to UNORMS if LDR data is needed for the subsequent FL filtering process. Under
void-extent block type,

Following is the flow diagram of the decoding process:

[llegal Block

Check Block type
Bits [8:0]

Nomm al Block

A
Void-extent
(2D&3D)

Index Mode Bits
Bits[10:0]

. £ bits for (MNAQ). (DH)
‘="—'?'_ Index Index Range
partition
. Decode Index/Weights in (N MLQ) dim ension
Decode Color Endpoints Modes = :
Decode Void-extent 2D & 3D [® I fiiere Sequence Decodie)
(Fx Length Decoding)
Constant Color Decode Color Endpointsin all
partitions
(Integer Sequenpe Decoding) Index Weight
Unquantization

I
‘ Index Weight Infill ‘

| Select Partition & End Points

‘]

¥

t Final Interpolation between W

two end points

l

Format conversion and get ready for texture filtering J

238 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Integer Sequence Encoding

Both the index data and the endpoint color data are variable width, and are specified using a sequence
of integer values. The range of each value in a sequence (e.g. a color index) is constrained. Since it is
often the case that the most efficient range for these values is not a power of two, each value sequence
is encoded using a technique known as “integer sequence encoding”. This allows efficient, hardware-
friendly packing and unpacking of values with non-power-of-two ranges. In a sequence, each value has
an identical range. The range is specified in one of the following forms:

Value range MSB encoding LSB encoding Value (Block|Packed block size
0. 21) n bit value m (n <= 8)|m 1 n
5 8 + 5*n

0. (3*2-1|Base-3 “trit"valuet |nbitvaluem(n <=6)|t*2"+m

0. (5*2n)-1|Base-5 “quint” value g [n bitvaluem (n <=5)|g*2"+m 3 7+3"M

Since 3% is 243, it is possible to pack five trits into 8 bits (which has 256 possible values), so a trit can
effectively be encoded as 1.6 bits. Similarly, since 53 is 125, it is possible to pack three quints into 7 bits
(which has 128 possible values), so a quint can be encoded as 2.33 bits.

The encoding scheme packs the trits or quints, and then interleaves the n additional bits in positions that
satisfy the requirements of an arbitrary length stream. This makes it possible to correctly specify lists of
values whose length is not an integer multiple of 3 or 5 values. It also makes it possible to easily select a
value at random within the stream. If there are insufficient bits in the stream to fill the final block, then
unused (higher order) bits are assumed to be 0 when decoding.

To decode the bits for value number i in a sequence of bits b, both indexed from 0, perform the
following:

If the range is encoded as n bits per value, then the value is bits b[i*n+n-1:i*n] — a simple multiplexing
operation.

If the range is encoded using a trit, then each block contains 5 values (vO to v4), each of which contains a
trit (t0 to t4) and a corresponding LSB value (mO to m4). The first bit of the packed block is bit
floor(i/5)*(8+5*n). The bits in the block are packed as follows (in this example, n is 4):

Trit-based Packing

2726|2524 23] 22| 21]20{19]18]17] 16| 15| 14|13[12]11]10]9|8]7]6]5 |4 [3]2]1]0]

7 [ma [t6 |15 [m3 [|m [13[12 |mi 71|70 |{mo0

Doc Ref # IHD-OS-SKL-Vol 5-05.16 239

(lntel')') e

what'’s inside

The five trits t0 to t4 are obtained by bit manipulations of the 8 bits T[7:0] as follows:

if T[4:2] = 111
C={ T[7:5], T[1:0] }; t4d = t3 = 2
else
C = T[4:0]
if T[6:5] = 11
td = 2; £t3 = T[7]
else

t4d = T[7]; t3 =
if C[1:0] = 11

t2 = 2; tl = C[4]; t0 = { C[3], C[2]&~C[3] }
else if C[3:2] = 11
t2 = 2; tl = 2; t0 = C[1:0]
else
t2 = C[4]; tl = C[3:2]; t0O = { C[1], C[O]&~C[1] }

Endpoint Unquantization

Each color endpoint is specified as a sequence of integers in a given range. These values are packed
using integer sequence encoding, as a stream of bits stored from just above the configuration data, and
growing upwards. Once unpacked, the values must be unquantized from their storage range, returning
them to a standard range of 0..255. For bit-only representations, this is simple bit replication from the
most significant bit of the value. For trit or quint-based representations, this involves a set of bit
manipulations and adjustments to avoid the expense of full-width multipliers. This procedure ensures
correct scaling, but scrambles the order of the decoded values relative to the encoded values. This must
be compensated for using a table in the encoder.

The initial inputs to the procedure are denoted A, B, C and D and are decoded using the range as follows:

cO

Range | Trits | Quints Bits | Bit value| A (9 bits) B (9 bits) bits) | D (3 bits)

0.5 1 1 a aaaaaaaaa 000000000 204 Trit value
0.9 1 1 a aaaaaaaaa 000000000 113 Quint
value

0..11 1 ba aaaaaaaaa b000b0Obb0 93 Trit value
0..19 1 ba aaaaaaaaa b0000bb00 54 Quint
value

0.23 1 3 cba aaaaaaaaa cb000cbcb 44 Trit value
0.39 1 3 cba aaaaaaaaa cb0000cbc 26 Quint
value

0.47 1 dcba aaaaaaaaa dcb000dcb 22 Trit value
0.79 1 dcba aaaaaaaaa dcb0000dc 13 Quint
value

0..95 1 5 edcba aaaaaaaaa edcb000ed 11 Trit value

240 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
c(@
Range | Trits | Quints Bits | Bit value| A (9 bits) B (9 bits) bits) | D (3 bits)
0..159 1 5 edcba aaaaaaaaa edcb0000e 6 Quint
value
0..191 1 6 fedcba aaaaaaaaa fedcb000f 5 Trit value

These are then processed as follows:
T=D*C+B;
T=TAA
T =(A&0x80) | (T»2);
The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4.

LDR Endpoint Decoding

The decoding method used depends on the Color Endpoint Mode (CEM) field, which specifies how many
values are used to represent the endpoint. The CEM field also specifies how to take the n unquantized
color endpoint values vO to vn-1 and convert them into two RGBA color endpoints €0 and e1. The HDR
Modes are more complex and do not fit neatly into the table. They are documented in following section.
The LDR methods can be summarized as follows.

Color Endpoint Modes

of end
CEM | Range Description points Endpoints Reconstruction
0 LDR Luminance, direct 2 e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF);
! LDR Luminance, 2 LO = (v0»2)|(v1&0xCO0); L1=L0+(v1&0x3F);
base+offset if (L1>0xFF) { L1=0xFF; }
e0=(LO,LO,LO,0xFF); e1=(L1,L1,L1,0xFF);
2 HDR [Luminance, large range 2 See next Section
HDR |Luminance, small range 2 See next Section
4 LDR Luminance+Alpha, 4 e0=(v0,v0,v0,v2);
Direct el=(v1,v1,v1v3);
> LDR Ik_)umlza?fce:Alpha, 4 bit_transfer_signed(v1,v0);
aserotise bit_transfer_signed(v3,v2);
e0=(v0,v0,v0,v2); e1=(vO+v1,vO+v1,v0+v1,v2+Vv3);
clamp_unorm8(e0); clamp_unorm8(e1);

Doc Ref # IHD-OS-SKL-Vol 5-05.16 241

experience
what's inside’
of end
CEM | Range Description points Endpoints Reconstruction
6 LDR RGB, e0=(v0*v3»8,v1*v3»8,v2*v3»8, OxFF);
base+scale e1=(vO,v1,v2,0xFF);
HDR [RGB, base+scale See next Section
LDR RGB, sO0= vO+v2+v4; s1= v1+v3+v5;

Direct if (s1>=s0){e0=(v0,v2,v4,0xFF); e1=(v1,v3,v5,0xFF); }
else { e0=blue_contract(v1,v3,v5,0xFF);
el=Dblue_contract(v0,v2,v4,0xFF); }

3 LDR RGB, bit_transfer_signed(v1,v0);

base+offset bit_transfer_signed(v3,v2);
bit_transfer_signed(v5,v4);
if(vl1+v3+v5 >= 0)

{ e0=(vO,v2,v4,0xFF); e1=(vO+v1,v2+v3,v4+Vv5,0xFF);
}
else
{ e0O=blue_contract(vO+v1,v2+v3,v4+v5,0xFF);
e1=blue_contract(v0,v2,v4,0xFF); }
clamp_unorm8(e0); clamp_unorm8(e1);

10 1LDR | pGe, €0=(v0*v3»8,1"V3»8,v2"3»8, v4);

base+scale plus two A e1=(vO,v1,v2, v5);

11 |HDR |RGB See next Section

12 |LDR RGBA, s0= v0+v2+v4; s1= v1+v3+V5;

direct if (s1>=s0){e0=(vO,v2,v4,v6); e1=(v1,v3,v5Vv7); }
else { eO=blue_contract(v1,v3,v5,v7);
el=blue_contract(v0,v2,v4,v6); }

242 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
what's inside’

CEM

Range

of end
Description points Endpoints Reconstruction

13

LDR

RGBA, bit_transfer_signed(v1,v0);

base+offset bit_transfer_signed(v3,v2);
bit_transfer_signed(v5,v4);
bit_transfer_signed(v7,v6);

if(v1+v3+v5>=0) { e0=(vO,v2,v4,v6);
el=(v0+v1,v2+v3,v4+v5Vv6+Vv7); }

else { e0=blue_contract(vO+v1,v2+v3,v4+v5,v6+Vv7);
e1=blue_contract(vO,v2,v4,v6); }

clamp_unorm8(e0); clamp_unorm8(e1);

14

HDR

RGB + LDR Alpha 8 See next Section

15

HDR

RGB + HDR Alpha 8 See next Section

Mode 14 is special in that the alpha values are interpolated linearly, but the color components are
interpolated logarithmically. This is the only endpoint format with mixed-mode operation, and will return
the error value if encountered in LDR mode. The bit_transfer_signed procedure transfers a bit from one
signed byte value (a) to another (b). The result is an 8-bit signed integer value and a 6-bit integer value
sign extended to 8 bits. Note that, as is often the case, this is easier to express in hardware than in C:

bit_transfer_signed(uint16_t& a, uint16_t& b)

{

}

b»=1;

b |=a & 0x80;

a»=1,

a &= 0x3F;

if((a&0x20)!=0) a-=0x40;

For the purposes of this pseudocode, the signed bytes are passed in as unsigned 16-bit integers because
the semantics of a right shift on a signed value in C are undefined.

Doc Ref # IHD-OS-SKL-Vol 5-05.16 243

experience
what's inside’

The blue_contract procedure is used to give additional precision to RGB colors near grey:
color blue_contract(intr, int g, intb, inta)
{
color ¢;
cr=(r+b)» 1;

cg = (g+b)» 1;

cb =b;
ca=a;
return ¢

}

The clamp_unorm8 procedure is used to clamp a color into the UNORMS range:
void clamp_unorm8(color ¢)
{
if(c.r < 0) {c.r=0;} else if(c.r > 255) {c.r=255;}
if(c.g < 0) {c.g=0;} else if(c.g > 255) {c.g=255;}
if(c.b < 0) {c.b=0;} else if(c.b > 255) {c.b=255;}
if(c.a < 0) {c.a=0;} else if(c.a > 255) {c.a=255;}
}

HDR Endpoint Decoding

The 6 HDR CEM modes on color endpoints reconstruction and surface formats are only used in full-
profile ASTC texture in float 16 bit.

e HDR Endpoint Mode 2: HDR Luminance, large range

e HDR Endpoint Mode 3: HDR Luminance, small range

e HDR Endpoint Mode 7: HDR RGB, base + scale

¢ HDR Endpoint Mode 11: HDR RGB, direct

e HDR Endpoint Mode 14: HDR RGB, direct + LDR Alpha
e HDR Endpoint Mode 15: HDR RGB, direct + HDR Alpha

244 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’
HDR Endpoint Mode 2 (HDR Luminance, Large Range)

Mode 2 represents luminance-only data with a large range. It encodes using two values (vO, v1). The
complete decoding procedure is as follows:

If (vl >= v0)

{
yO0 = (v0 « 4);
vl = (vl « 4);

else {
yO = (vl « 4) + 8;
vyl = (v0 « 4) - 8;

// Construct RGBA result (0x780 is 1.0f)

el (y0, y0, y0, 0x780);
el = (yl, yl, yl, 0x780);

HDR Endpoint Mode 3 (HDR Luminance, Small Range)

Mode 3 represents luminance-only data with a small range. It packs the bits for a base luminance value,
together with an offset, into two values (vO, v1):

Value | Bit[7] | Bit[6] | Bit[5] | Biti41 | Bit[3] | Bit[2] | Bit[1] | Bit[0]
vo | M L[6:0]
V1 X[3:0] D(3:0]

Doc Ref # IHD-OS-SKL-Vol 5-05.16 245

experience
what's inside’

The bit field marked as X allocates different bits to L or d depending on the value of the mode bit M. The
complete decoding procedure is as follows:

// Check mode bit and extract.
If ((v0&0x80) !=0)

{
y0 = ((vl & O0xE0) « 4) | ((v0 & O0x7F) « 2);
d = (vl & 0x1F) « 2;

}

else {
y0 = ((vl & O0xF0) « 4) | ((v0 & O0x7F) « 1);
d = (vl & 0x0F) « 1;

}

// Add delta and clamp

yl = y0 + d;

if(yl > OxFFF) { yl = OXFFF; }

// Construct RGBA result (0x780 is 1.0f)
el = (y0, yv0, y0, 0x780);

el = (y1, y1, v1, 0x780);

HDR Endpoint Mode 7 (HDR RGB, Base+Scale)

Mode 7 packs the bits for a base RGB value, a scale factor, and some mode bits into the four values (v0,
v1,v2, v3).

HDR Mode 7 Value Layout

value | Bit[71| Bit[6] | Bit[5] | Bit[4] | Bit(31 | Bit[2] | Bit[1] | Bit[0]
vo | M1 | M2 R5:0]

vi [M| xo | xa G[4:0]

v2 [Mo | xe | x3 |Bu0]

vi [xa | x5 | x6 5[4:0]

The mode bits M[0:3] are a packed representation of an endpoint bit mode, together with the major
component index. For modes 0 to 4, the component (red, green, or blue) with the largest magnitude is
identified, and the values are swizzled to ensure that it is decoded from the red channel. The endpoint bit
mode is used to determine the number of bits assigned to each component of the endpoint, and the
destination of each of the extra bits X0 to X6, as follows:

246 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience

what's inside’

Endpoint Bit Mode

Mode | R |G|B|Scale| | X0 | X1 | X2 | X3 | X4 | X5 | X6

Number of bits Description of Extra Bits

0 [11]|5|5] 7 RI[9] [R[8] | R[7T|R[101|R[6]| S[6] |SI5]
1 1166 5 R[8] [GI5] [R[7]| BI[5] [R[6]|R[10]|R[9]
2 |10[5|5| 8 RI[9] [R[8] | R[7]| R[6] |S[7]1| SI[6] |SI5]
3 916|6| 7 R[8] [GI5]|RI[71| BI5] [RI6]| S[6] |SI5]
4 8 (7|7 6 G[6] |GI[5] | B[6]| BI5] [RI[6]| R[7] |SI5]
5 7\7|7| 7 G[6] |G[5] | B[6]| B[5] [RI[6]| S[6] |SI5]

The complete decoding procedure is as follows:

// Extract mode bits and unpack to major component and mode.

int modeval = ((vO & 0xCO0) » 6) | ((v1 & 0x80) » 5) | ((v2 & 0x80) » 4);
int majcomp;

int mode;

if((modeval & 0xC) != 0xC) { majcomp = modeval » 2; mode = modeval & 3, }
else if(modeval != OxF) { majcomp = modeval & 3; mode = 4; }

else { majcomp = 0; mode = 5; }

// Extract low-order bits of r, g, b, and s.

int red = vO & 0x3f;

int green = v1 & Ox1f;

int blue = v2 & 0x1f;

int scale = v3 & 0x1f;

// Extract high-order bits, which may be assigned depending on mode
intx0=v1»6)&1 intx] =v1»5 &7,

ntx2=WV2»6)& 1 intx3=W2»5) &1,

intx4d=wv3»7)&1 intxs5=w3»6)&1 intx6=(WV3»5 &1,

// Now move the high-order xs into the right place.

int ohm = 1 « mode;

ift ohm & 0x30) green |= x0 « 6;

ift ohm & Ox3A) green |= x1 « 5;

ift ohm & 0x30) blue |= x2 « 6;

ift ohm & 0x3A) blue |= x3 « 5;

Doc Ref # IHD-OS-SKL-Vol 5-05.16 247

(lntel')') e

what'’s inside

ift ohm & 0x3D) scale |= x6 « 5;

ift ohm & 0x2D) scale |= x5 « 6;

ift ohm & 0x04) scale |= x4 « 7;

iftohm & 0x3B) red |= x4 « 6;

ift ohm & 0x04) red |= x3 « 6;

iftohm & 0x10) red |= x5 « 7;

ift ohm & OxOF) red |= x2 « 7;

ift ohm & 0x05) red |= x1 « &

ifl ohm & Ox0A) red |= x0 « &;

ift ohm & 0x05) red |= x0 « 9;

ift ohm & 0x02) red |= x6 « 9;

ift ohm & 0x01) red |= x3 « 10;

ift ohm & 0x02) red |= x5 « 10;

// Shift the bits to the top of the 12-bit result.
static const int shamts[6] = { 1,1,2,3,4,5 };

int shamt = shamts[mode];

red «= shamt; green «= shamt; blue «= shamt; scale «= shamt;
// Minor components are stored as differences
iftmode !=5) { green = red - green; blue = red - blue; }
// Swizzle major component into place

ift majcomp == 1) swap(red, green),

ift majcomp == 2) swap(red, blue);

// Clamp output values, set alpha to 1.0

el.r = clamp(red, O, OxFFF),

el.g = clamp(green, 0, OxFFF),

el.b = clamp(blue, 0, OxFFF);

el.alpha = 0x780;

e0.r = clamp(red - scale, 0, OxFFF),

e0.g = clamp(green - scale, 0, OxFFF),

e0.b = clamp(blue - scale, 0, OxFFF);
e0.alpha = 0x780;

248 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
HDR Endpoint Mode 11 (HDR RGB, Direct)

Mode 11 specifies two RGB values, which it calculates from a number of bitfields (a, b0, b1, ¢, d0 and d1)
which are packed together with some mode bits into the six values (v0, v1, v2, v3, v4, v5):

HDR Mode 11 Value Layout

Value | Bit[7] | Bit[6] | Bit[5] | | Bit[3] | Bit[2] | Bit[1] | Bit[o]
VO a[7:0]
vi | mio] | a8 c[5:0]
v2 [mp1 | xo b0[5:0]
v [mpr | xi b1(5:0]
va [mjor| x2 | x4 do[4:0]
vs [min| x3 | xs d1[4:0]

If the major component bits mj[1:0] = b11, then the RGB values are specified directly as

HDR Mode 11 Value Layout

value | Bit(71| Bit(6] | Bit[5] | | Bit(31 | Bit[2] | Bit[1] | Bit[0]
VO RO[11:4]
V1 R1[11:4]
V2 GO [11:4]
V3 G1[11:4]
va | 1 BO[11:5]
vs | 1 B1[11:5]

The mode bits m[2:0] specify the bit allocation for the different values, and the destinations of the extra
bits X0 to X5:

Endpoint Bit Mode

Number of Bits Description of Extra Bits
Mode| a (b |c|d X0 [X1 | X2 | X3 | X4 | X5
0 9 | 7|67 ||b0[6]|bl1[6]|dO[6]|d1[6]|dO[5]|d1[5]
1 9 [8|66 ||b0[6]|b1[6]|b0[7]|b1[7]|dO[5]|d1[5]
2 10 | 6|77]| a9 | c[6] [dO[6]|d1[6]|dO[5]|d1[5]
3 10 | 7| 7|6 ||bo[6]|b1[6]| a[9] | c[6] |dO[5]|d1[5]
4 11 |8 |6|5]|b0[6]|b1[6]|bO[7]|b1[7]| a[9] |a[10]
5 11| 6|76/ a9 |a[10]| c[7] | c[6] |dO[5]|d1[5]
6 12 |7 |75]|b0[6]|b1[6]|a[11]]| c[6] | a[9] |a[10]
7 12 | 6|76]| a9 |a[10]|a[11]| c[6] |dO[5]|d1[5]

Doc Ref # IHD-OS-SKL-Vol 5-05.16 249

experience
what's inside’

The complete decoding procedure is as follows:

// Find major component
int majcomp = ((v4 & 0x80) » 7) | ((v5 & 0x80) » 6);
// Deal with simple case first
if(majcomp ==)
{
el0 = (v0 « 4, v2 « 4, (v4 & 0x7f) « 5, 0x780);
el = (vl « 4, v3 « 4, (vb & 0x7f) « 5, 0x780);
return;
}
// Decode mode, parameters.
int mode = ((vl & 0x80) » 7) | ((v2 & 0x80) » 6) | ((v3 & 0x80) » 5);
int va = v0 | ((vl & 0x40) « 2);

int vb0 = v2 & 0x3f;

int vbl v3 & 0x3f;

int ve = vl & 0x3f;

int vd0 = v4 & 0x7f;

int vdl = v5 & 0x7f;

// Assign top bits of vd0, vdl.

static const int dbitstab([8] = {7,6,7,6,5,6,5,6};
vd0 = signextend(vd0, dbitstab[mode]);

vdl = signextend(vdl, dbitstab[mode]);

// Extract and place extra bits

int x0 = (v2 » 6) & 1;
int x1 = (v3 » 6) & 1;
int x2 = (v4 » 6) & 1;
int x3 = (vb » 6) & 1;
int x4 = (v4 » 5) & 1;
int x5 = (vb » 5) & 1;

int ohm = 1 « mode;

if(ohm & O0xA4) va |= x0 « 9;
if(ohm & 0x08) va |= x2 « 9;
if(ohm & 0x50) va |= x4 « 9;
if(ohm & 0x50) va |= x5 « 10;
if(ohm & O0xAO0) va |= x1 « 10;
if(ohm & 0xCO) va |= x2 « 11;
if(ohm & 0x04) vc |= x1 « 6;
if(ohm & OxXE8) vc |= x3 « 6;
if(ohm & 0x20) vc |= x2 « 7;

250 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lﬂtEl)
experience

what's inside’
if(ohm & 0x5B) vb0 |= x0 « 6
if(ohm & O0x5B) vbl |= x1 « ©
if(ohm & 0x12) vb0 |= x2 « 7;
if(ohm & 0x12) vbl |= x3 « 7
// Now shift up so that major component is at top of 12-bit value
int shamt = (modeval » 1) ©~ 3;
va «= shamt; vb0 «= shamt; vbl «= shamt;
vc «= shamt; vd0 «= shamt; vdl «= shamt;
el.r = clamp(va, 0, OxFFF);
el.g = clamp(va - vb0, 0, OxFFF);
el.b = clamp(va - vbl, 0, OxFFF);
el.alpha = 0x780;
e0.r = clamp(va - vc, 0, OxXFFF);
e0.g = clamp(va - vb0 - vc - vd0O, 0, OxFFF);
e0.b = clamp(va - vbl - vc - vdl, 0, OxXFFF);
e0.alpha = 0x780;
if(majcomp ==)

{

swap(e€0.r, e0.g); swap(el.r, el.qg);
}

else if(majcomp == 2)

{

swap(€0.r, e0.b); swap(el.r, el.b);

}

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha)

Mode 14 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, V7). First, the RGB
values are decoded from (v0..v5) using the method from Mode 11. Then the alpha values are filled in
from v6 and v7:

// Decode RGB as for mode 11

(e0,e1) = decode_mode_11(vO,v1,v2,v3,v4,v5)
// Now fill in the alphas

v6;

v7;

e0.alpha

el.alpha

Doc Ref # IHD-OS-SKL-Vol 5-05.16 251

experience
what's inside’

HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha)

Mode 15 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, V7). First, the RGB
values are decoded from (v0..v5) using the method from Mode 11. The alpha values are stored in values
v6 and v7 as a mode and two values which are interpreted according to the mode:

HDR Mode 15 Alpha Value Layout

value | Bit(71| Bit(6] | Bit[5] | Bit[4] | Bit(31 | Bit[2] | Bit[1] | Bit[o]

V6 MO Al6:0]

V7 M1 B[6:0]

The alpha values are decoded from v6 and v7 as follows:

// Decode RGB as for mode 11
(e0,el) = decode mode 11(v0,vl,v2,v3,v4,v5)
// Extract mode bits
mode = ((ve » 7) & 1) | ((v7 » 6) & 2);
vo &= O0x7F;
vl &= O0x7F;
1f (mode==3)
{
// Directly specify alphas
el.alpha = v6 « 5;
el.alpha = v7 « 5;

else

// Transfer bits from v7 to v6 and sign extend v7.
vo |= (v7] « (mode+l))) & 0x780;
v7 &= (0x3F » mode);

v7 = 0x20 » mode;

v7 -= 0x20 » mode;
v6 «= (4-mode) ;
v7 «= (4-mode) ;

// Add delta and clamp
vl += v6;

v7 = clamp(v7, 0, OxFFF);
el0.alpha = v6;

el.alpha = v7;

252 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’

Restrictions on Number of Partitions Per Block

Following table gives total number of partitions for each CEM mode given the restriction of total up to
16 integer values being decoded from the Integer Sequence Coding sequence.

Groups Max Number of Partition | CEM Modes
(vO,v1) 4 0,123
(vO,v1,v2,v3) 4 4,5,6,7
(vO,v1,v2,v3,v4,v5) 3 8,9,10,11
(vO,v1,v2,v3,v4,v5,v6,v7) 2 12,13,14,15

Index Decoding

The index information is stored as a stream of bits, growing downwards from the most significant bit in
the block. Bit n in the stream is thus bit 127-n in the block.

For each location in the index grid, a value (in the specified range) is packed into the stream. These are
ordered in a raster pattern starting from location (0,0,0), with the X dimension increasing fastest, and the
Z dimension increasing slowest. If dual-plane mode is selected, both indices are emitted together for
each location, plane O first, then plane 1.

Index Unquantization

Each index plane is specified as a sequence of integers in a given range. These values are packed using
integer sequence encoding.

Once unpacked, the values must be unquantized from their storage range, returning them to a standard
range of 0..64. The procedure for doing so is similar to the color endpoint unquantization.

First, we unquantize the actual stored index values to the range 0..63.
For bit-only representations, this is simple bit replication from the most significant bit of the value.

For trit or quint-based representations, this involves a set of bit manipulations and adjustments to avoid
the expense of full-width multipliers.

For representations with no additional bits, the results are as follows:

Index Unquantization Values

Range(0| 1|2 |3 | 4

0.2 0132(63|- |-

0.4 0116|3247 |63

For other values, we calculate the initial inputs to a bit manipulation procedure. These are denoted A, B,
C and D and are decoded using the range as follows:

Doc Ref # IHD-OS-SKL-Vol 5-05.16 253

(lntel')‘expem

what's inside’
Index Unquantization Parameters

Range | Trits [Quints | Bits | Bit value [A (7 bits) | B (7 bits) | C (7 bits) | D (3 bits)
0.5 1 1 a aaaaaaa |[0000000 |50 Trit

0.9 1 1 a aaaaaaa |[0000000 |28 Quint
0.11 |1 2 ba aaaaaaa |[b000b0Ob |23 Trit

0.19 1 2 ba aaaaaaa |[b0000bO |13 Quint
0.23 |1 3 cba aaaaaaa |[cb000cb |11 Trit

These are then processed as follows:
T=D*C+B;
T=T"NA
T = (A& 0x20) | (T » 2);

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4. As a final step,
for all types of value, the range is expanded from 0..63 up to 0..64 as follows:

if(T>32){T+=1;}

This allows the implementation to use 64 as a divisor during interpolation, which is much easier than
using 63.

Infill Process

After unquantization, the indexes are subject to index selection and infill. The infill method is used to
calculate the index for a texel position, based on the indices in the stored index grid array (which may be
a different size). The procedure below must be followed exactly, to ensure bit exact results. The block size
is specified as three dimensions along the s, t and r axes (Bs, Bt, Br). Texel coordinates within the block
(s,t,r) can have values from 0 to one less than the block dimension in that axis.
For each block dimension, we compute scale factors (Ds, Dt, Dr)

Ds = floor((1024 + floor(Bs/2)) / (Bs-1));

Dt = floor((1024 + floor(Bt/2)) / (Bt-1));

Dr = floor((1024 + floor(Br/2)) / (Br-1));

Since the block dimensions are constrained, these are easily looked up in a table. These scale factors are
then used to scale the (s,t,r) coordinates to a homogeneous coordinate (cs, ct, cr):

cs=Ds*s;
ct=Dt*t;
cr=Dr*r;

This homogeneous coordinate (cs, ct, cr) is then scaled again to give a coordinate (gs, gt, gr) in the
index-grid space . The index-grid is of size (N, M, Q), as specified in the index mode field:

gs = (cs*(N-1)+32) » 6;
gt = (ct*(M-1)+32) » 6;

254 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ |nte|))
experience
what'’s inside’
gr = (cr*(Q-1)+32) » 6;

The resulting coordinates may be in the range 0..176. These are interpreted as 4:4 unsigned fixed point
numbers in the range 0.0 .. 11.0. If we label the integral parts of these (js, jt, jr) and the fractional parts (fs,
ft, fr), then:

js =gs » 4; fs = gs & OxOF;

jt=gt» 4; ft = gt & OxXOF;

jr=gr» 4, fr = gr & OxO0F;
These values are then used to interpolate between the stored indices. This process differs for 2D and 3D.
For 2D, bilinear interpolation is used:

vO = js + jt*N;

p00 = decode_index(vO0);

p01 = decode_index(v0 + 1);

p10 = decode_index(vO + N);

p11 = decode_index(vO + N + 1);

The function decode_index(n) decodes the nth index in the stored index stream. The values p00 to p11
are the indices at the corner of the square in which the texel position resides. These are then weighted
using the fractional position to produce the effective index i as follows:

w11 = (fs*ft+8) » 4;

w10 = ft —w11;

w01 = fs —w11;

w00 = 16 —fs — ft + w11;

i = (p00*w00 + p01*wO01 + p10*w10 + p11*wll + 8) » 4;

For 3D, simplex interpolation is used as it is cheaper than a naive trilinear interpolation. First, we pick
some parameters for the interpolation based on comparisons of the fractional parts of the texel position:

fs>ft|ft>fr|fs>fr| s1 s2 | wO | wl|w2 (w3

True [True |True |1 N 16-fs | fs-ft | ft-fr | fr

False | True |True |N 1 16-ft | ft-fs | fs-fr | fr

True |False |True |1 N*M | 16-fs | fs-fr | fr-ft | ft

True |False |False |[N*M | 1 16-fr | fr-fs | fs-ft | ft

False | True |False |N N*M [16-ft | ft-fr | fr-fs | fs

False | False | False [N*M | N 16-fr | fr-ft | ft-fs | fs

Doc Ref # IHD-OS-SKL-Vol 5-05.16 255

experience
what's inside

The effective index i is then calculated as:
vO = js + jt*N + jr*N*M;
p0 = decode_index(v0);
p1 = decode_index(v0 + s1);
p2 = decode_index(v0 + s1 + s2);
p3 = decode_index(v0 + N*M + N + 1);
i = (P0*wWO0 + p1*w1 + p2*w2 + p3*w3 + 8) » 4;

Index Application

Once the effective index i for the texel has been calculated, the color endpoints are interpolated and
expanded. For LDR endpoint modes, each color component C is calculated from the corresponding 8-bit
endpoint components CO and C1 as follows:

If SRGB conversion is not enabled, CO and C1 are first expanded to 16 bits by bit replication:
CO = (CO«8)|CO; CT1 =(CT1«8)]|CT;

If SRGB conversion is enabled, CO and C1 are expanded to 16 bits differently, as follows:
CO = (CO « 8) | 0x80; C1 = (C1 « 8) | 0x80;

CO and C1 are then interpolated to produce a UNORM16 result C:
C = floor((CO*(64-i) + C1*i + 32)/64)

If SRGB conversion is enabled, the top 8 bits of the interpolation result are passed to the external sSRGB
conversion block. Otherwise, if C = 65535, then the final result is 1.0 (0x3C00) otherwise C is divided by
65536 and the infinite-precision result of the division is converted to FP16 with round-to-zero semantics.
For HDR endpoint modes, color values are represented in a 12-bit logarithmic representation, and
interpolation occurs in a piecewise-approximate logarithmic manner as follows:

In LDR mode, the error result is returned.

In HDR mode, the color components from each endpoint, CO and C1, are initially shifted left 4 bits to
become 16-bit integer values and these are interpolated in the same way as LDR. The 16-bit value C is
then decomposed into the top five bits, E, and the bottom 11 bits M, which are then processed and
recombined with E to form the final value Cf:

C = floor((CO*(64-i) + C1*i + 32)/64)

E = (C&O0xF800) » 11; M = C&O0x7FF;

if (M < 512) { Mt = 3*M; }

else if (M >= 1536) { Mt = 5*M - 2048; }
else { Mt = 4*M - 512; }

Cf = (E«<10) + (Mt»3)

256 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Views ‘ lntel))
experience

what's inside’
This final value Cf is interpreted as an IEEE FP16 value. If the result is +Inf or NaN, it is converted to the
bit pattern Ox7BFF, which is the largest representable finite value.

Dual-Plane Decoding

If dual-plane mode is disabled, all of the endpoint components are interpolated using the same index
value. If dual-plane mode is enabled, two indices are stored with each texel. One component is then
selected to use the second index for interpolation, instead of the first index. The first index is then used
for all other components.

The component to treat specially is indicated using the 2-bit Color Component Selector (CCS) field as
follows:

Dual Plane Color Component Selector Values

Value | Index O | Index 1

0 GBA R

RBA

1 G
2 RGA B
3 RGB A

The CCS bits are stored at a variable position directly below the index bits and any additional CEM bits.

Partition Pattern Generation

When multiple partitions are active, each texel position is assigned a partition index. This partition index
is calculated using a seed (the partition pattern index), the texel’s x,y,z position within the block, and the
number of partitions. An additional argument, small_block, is set to 1 if the number of texels in the block
is less than 31, otherwise it is set to 0. The full partition selection algorithm is as follows:

int select partition(int seed, int x, int y, int z,
int partitioncount, int small block)
{
if (small block){ x «= 1; y «=1; z «= 1; }
seed += (partitioncount-1) * 1024;

uint32 t rnum = hash52(seed);

uint8 t seedl = rnum & OxF;
uint8 t seed2 = (rnum » 4) & OxF;
uint8 t seed3 = (rnum » 8) & OxF;
uint8 t seed4 = (rnum » 12) & OxF;
uint8 t seed5 = (rnum » 16) & OxF;
uint8 t seed6 = (rnum » 20) & OxF;
uint8 t seed7 = (rnum » 24) & OxF;
uint8 t seed8 = (rnum » 28) & OxF;
uint8 t seed9 = (rnum » 18) & OxF;

Doc Ref # IHD-OS-SKL-Vol 5-05.16 257

(intel* |
experlemce

what's inside’
uint8 t seedl0 = (rnum » 22) & OxF;
uint8 t seedll = (rnum » 26) & OxF;
uint8 t seedl2 = ((rnum » 30) | (rnum « 2)) & OxF;

seedl *= seedl; seed2 *= seed2; seed3 *= seed3; seedd4d *= seed4d;

seed5 *= seed5; seed6 *= seedb6; seed’ *= seed7; seed8 *= seed8;

seed9 *= seed9; seedl0 *= seedl0; seedll *= seedll; seedl2 *= seedl2;
int shl, sh2, sh3;

if(seed & 1)

{ shl = (seed & 2 2 4 : 5); sh2 = (partitioncount == 3 ? 6 : 5); }
else

{ shl = (partitioncount == 3 ? 6 : 5); sh2 = (seed & 2 2 4 : 5); }
sh3 = (seed & 0x10) ? shl : sh2:

seedl »= shl; seed2 »= sh2; seed3 »= shl; seed4 »= sh2;
seed5 »= shl; seed6 »= sh2; seed7 »= shl; seed8 »= sh2;

seed9 »= sh3; seedl0 »= sh3; seedll »= sh3; seedl2 »= sh3;

int a = seedl*x + seed2*y + seedll*z + (rnum » 14);
int b = seed3*x + seed4*y