Intel® Open Source HD Graphics and Intel Iris™ Plus Graphics

Programmer's Reference Manual

For the 2016 - 2017 Intel Core™ Processors, Celeron™ Processors,
and Pentium™ Processors based on the "Kaby Lake" Platform

Volume 5: Memory Views

January 2017, Revision 1.0

:l"tEl Memory Views

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following
conditions:

e Attribution. You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

¢ No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the 12C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
* Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

i Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Table of Contents

Introduction 1
MEMOTY VIEWS GIOSSAIY ..ouveerrreenieenieeeeesseieesiisssssssesessssssss s st st st s st ssssssssssssssssssssssssssssssnssssnsssnesens 1
GPU Memory Interface 1
Global Arbitration 2
GFX MMIO - MCHBAR Aperture 2
Graphics Memory Interface Functions 3
GraphiCS MEMOIY CHENTS ...ttt sttt sttt 3
Graphics Memory AAdreSSing OVEIVIEW..........cc.weeeeeeineeeeeeeeeeessesssesssssesssessssssssssssssssssssssesssssssssssssnas 4
Graphics AdArESss Path ...ttt sss st sttt ss s ss s ssnnses 4
Graphics MEMOIY Paths ...ttt ettt se st ss st 5
Graphics MemOry AAIESS SPACEScomvimrirrerrieesiesissssss s sssssssssssssssssssssssssssssssssssssessssssssssssssssssssssnns 6
Address Tiling Function Introduction 7
LINEAI VS THlEA STOTAQE ...veuiverrieereeeeeee et ss sttt st st ss bbbt s s 8
Auxiliary Surfaces For Sampled Tiled RESOUICESvireernriensisnsiisnsisssissssssssssssssssssssssssssssssenns 11
HIZ ettt as ettt R SRR R RS R 11
CCS ettt R R R 11
IMICS oottt st e85 4888888t 12

THIE FOTMALS .ottt bbbttt b et st s 12
THlE-X LEGACY FOIMAL ..ottt ettt sttt et 12
THlE-Y LEQACY FOMMIAT ..ottt ettt sttt et 13
W-M@JOT THE FOIMMIAT ..ottt ss e e ss s e e 14

THlE YT FOMMAL ... ettt ettt e bbb et 15
THE-Y'S FOIMAT .eureeeeier ettt ettt sttt e e e s 16
THING AIGOTTENM .ottt e ettt 17
Tiled Channel SEIECt DECISION ...t ssssssseessse s i sissssssessines 27
THING SUPPOI oottt s et Rttt 27
Tiled (FENCEA) REGIONS ...ttt st s sttt s 28
Tiled SUIMACE PAramELETS ...t et sissssssssess st sbs st ssesens 28
Tiled SUIace RESIIICHIONS ...ttt sttt et s 29
Per-Stream Tile FOIrMat SUPPOIT ...ttt sttt ss st ss st ss st ssss st s ssssssssnnes 31
MBIN IMBIMOTY .ottt ettt et 32

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Qn_til

Optimizing Main Memory AllOCAtION ...ttt ss st ssssssss s ssssssasess 32
Application of the Theory (Page ColoriNg) ... irinrinessssessssssssssssssssssssssesssssssssssssssssnssses 33
3D Color and DEPth BUFTEIS ...ttt st sttt ss s ssssses 33
IMEAIB/VILEO ..ottt bbb bbb b 34
Physical Graphics AQArESS TYPESo.urrerrereieeiereeissesssisssesssessnsses 34
Graphics Virtual Memory 34
Graphics Translation TADIES ...t 35
GFX PAQE TADIES .ottt sttt ss s ss sttt ss st ss s 35
Tiled Resources Translation TabIEs ... esssssesisssssssesssssesesssssssens 35
Registers for TR-TT Manag@mMENTt ... eeseeisseesssseasesssssessssssseesssessssesssssssnscsns 38
Detection and Treatment of Null and INValid Til€Scoucmcenceineeeirecrneceineseseeeeeennee 41
TRTT IMOAES .ttt e et e e et 42
Virtual Addressed TR Trans|ation TabIes.........cc.rcrceieeeieeinecsieesssesesseessens 42

TRTT PAGE WK oottt ettt st 44
PAGE TADIE IMOTES ...ttt sttt 45
Pl PrOCESS GTT ...oeieciecicineieeisesiesisesasesase st s s s s sssesssesssesssessse s e sssessse s sssesssesssesssesssessnenes 45
Page Tables ENtry (PTE) FOIMALS ..ot seseessseessseesse st ssses s ssssssssesssneeens 45
POINTEI 10 PMLA TADIE ...ttt ssse s 50
PML4E: POINtEr tO PDP Table ..ottt sssssssanees 51

PDPE: POINtEr tO PD Tabl@ ..ottt 52

PD: POINter t0 PAge TabIe ...t 54

PTE: Page Table Entry for 64KB Page.......ccoc.oerueenreeneeeeceeeirseeesee st eeseeesseessssessesessesssseessnees 57

PTE: Page Table Entry fOr 4KB PAge ...t sssssssssssssssssssssssssess 58
PPGTT fOr 32D Virtual AQArESS......c ettt es st ss s s ssss e ssseens 60
WalK With BAKB PAgE ...ttt sttt ssss sttt ss s st ssss st sssssssesssnses 63

WalK With 2IMB PAgE ..ottt sttt st 64

WalK WIth TGB PAQE ..ottt sessesssssess e ssssss s st st ssssesesssssssens 64
PPGTT for Standard CoNteXt (64D VA) ...t essees s ess s 65
WalK With B4KB PAQE ..ottt ettt sttt st ssesssnes 71

WalK With 2MB PAgE ...ttt sess st sss st ssssss s ss st sss st ssss st sssssssssnnses 72

WalK With TGB PAgE .ottt ettt sttt st et 74
GIODAI GTT oottt e e b 75
PaGE TADIE ENTIY oottt ettt sttt 75

Memory Views

iv Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views
PAGE WKttt et s ettt 76
Legacy MOde WIth 32D VA ...ttt sttt sttt sttt st s s sssssnsen 77
Page Walk in Legacy mode With 32D VA ... sisssisssessissstsssssssssssssssens 77
Walk With B4KB PAQE ...ttt sttt sssssss s sssssssssssssssssssssssssnns 79
Page Table ENtry (PTE) FOIMAtS ...ttt sssssssssssssssssssssssssssssssssssnnns 80
PDE fOr PAQE TADIE ..ottt sttt s ss st sss st sssness 80
PTE: Page Table Entry for 64KB Page.......cco..cooivivmivenrireinsiississsisssissssessssssssssssssssssssnnss 81
PTE: Page Table Entry fOr 4KB PAge ...t sssssssssssssssssssssessaness 82
Legacy MOde With 48D VA ...ttt sttt ssss st st st st st st st sssnssns 83
Page Walk in Legacy 48D MOdE ...t st ses s sssss s sssseens 83
Walk With B4KB PAQE ...t sssss st sttt s ssssssssssssssssssssssssssssssnssssssssnns 84
WalK With 2IMB PagE ..ottt ssses 86
Walk With TGB PAgE c.cueeereererereis sttt sttt sssss s st sssss st st ssssnns 87
Page Tables ENtry PTE FOIMAatS. ..ot ssseease st s s s sssssssssesns 88
POINTEr 1O PMLA taDIE ...ttt sttt 89
PIMLAE: POINtEr tO PDP TabIE ..ottt sttt sssssssssssssssssssaness 89
PDPE: POINtEr 0 PD TabI ...ttt essssssseees 89
PDPE fOF PD ..coooceieeeimeceiieeeeieeceisse i essesssssessssssesssss et e s b bbb 90
PDPE fOI TGB PAQE ..ottt ettt s s bbbttt 91
PD: POINter t0 PAge TabIe ...ttt 92
PDE O PAQE TADIE ..ottt sss sttt st ss s ss bbbttt 92
PDE fOr 2IMB PAQE ...ttt sttt e bttt 93
PTE: Page Table Entry for 64KB Page.......cco.cvirrinmrinnreneeinesinesisss s sisssssssssssssssssssssssssness 94
PTE: Page Table Entry fOr 4KB PAge ...ttt ssssesssssesssssssesssnees 95
Advanced mode with 48b VA and IA32€ SUPPOIt.....cnreerreirneereeereeisseesseesseesssssssssssssssssssenes 96
Page Walk in AdVaNCeA MO ...ttt ss s ssseeon 96
WalK With 2ZMB PAgE ...ttt sttt sttt st sttt ss sttt sssssssssnnses 98
WalK With TGB PAQE ...ttt st sess et st sss st ss st st ss s s sssssssssssssnnses 99
Page Tables ENtry (PTE) FOIMatS ..o ceseetsessesse st ssessssessssssssessssessssssssssssssssnns 100
POINTEr 1O PMLA 1aDIE ...ttt ssseson 100
PML4E: POINter tO PDP Table ...ttt st ssssssssssesens 101
PDPE: POINtEr tO PD TabI@ et 102
PDPE fOF PD ..ot eeses it sssses st sssssssssss s ssss s st 55888 102

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Qn_til

Memory Views

PDPE fOI TGB PAQE ..ottt sttt sss s ss sttt st ss s sessness 104
PD: POINter tO PAge TaDIE ..ottt 105

PDE fOr PAQE TADIE ..ottt sssssssss st sss sttt ss s st snns 105
PDE O 2IMB PAQE ...ttt st sttt ssssssss s ss st sttt ssnssssssssessssasssness 107
PTE: Page Table Entry for 64KB Page.......cco..coovvriervenirineisseississsessiessssessessssssssssssssnsses 108

PTE: Page Table Entry fOr 4KB Page ... seeessessss st ssssssssssssssssnsens 110

GTT CACNE et bbb e bt 111
GFX Page WalKEr (GAM)iuieeeeeeeeeeeesestsssess st ssssssssessssssssssssssssssssssssessssssssssssssssssssssssssssesssnesess 111
Context Definition for GFX Page WalKEr ... inirnnreesissiissssssssssssssssssssssssssssssssnens 112
Context DEfiNitioN DEIIVEIY ...ttt ss e sses s stsees 114
Element DESCrPtOr REGISEN ...t sttt sssssssssssssssse st ssss s sssssssnns 115
PDPO/PML4/PASID DeSCriptor REGISTOr.......vvuureeeeeereeeeeeieeieeeeeiseeesee e seseeseseessseesesens 116

PDP T DeSCriptor REGISTEN ...ttt 117

PDP2 DESCIIPOr REGISTEN ...coueereeeceeecirecee e ssseeesssessse sttt e e ssssssssssns 117

PDP3 DESCIIPtOr REGISTEN . ..coueeeeeecereeiecee ettt st ssssssnssnn 117

List of Registers and CommMand StrEAMENS.......ccooreorvernriernriernriensisssssssssssssssessssssssssssssenns 118
Updating Page Table Pointers (aka PD LOAd).......coocniurenreeeeieeineeerseeereeieseeessseesseeesseessseeenees 120
Page WalKer (GAM) RESET ...t eiseis et ssss et ssssssssssssssssssssssssssssssssessssssnncs 121
TLB Caching @and ManagemMENt........c.oceeeeeeeeeseeese e s e s s s sssesssssssssesssssssssesssssssssssnns 122
TLB CACRES ..ottt sttt i ittt et 124
CONLEXE CACNE = CC ..ottt st et bssessss st sasees 124
PASID CaCNE = PC ..ottt sttt e sttt 124
Intermediate Page Walk Caches (PML4, PDP, PD) — PWC......coocomeemecumeceineceeecereeeeeens 124

TLB = FINAl PAQE ENTIY oottt ettt sttt ssseeon 124

TLB ENEIY CONTENT coce ettt ettt et s bbb et 125
TLB Accessed and Dirty FIags.....oo e sssse sttt ssss s sssssssssssesens 127
UPAAEING A/D BIS ..ottt sttt ssssss sttt ss sttt ssssss st sssssssnssneses 128
REPIGCEMENT ...ttt e e e 133
[NVAlIAALIONS OF TLBcouieeceeceeeee ettt ss s s sttt 133
OPtioNal INVAIAALIONS ...t 133
GTT Walk REQUESE POIt (HDC) ..o eeseeessestssessss st s s ssssssssssssssssssssssssssssssanees 134
TLB INVAHAALION .ottt ss bbb bbb sss s ebsssanes 138
Shared Virtual Memory 139

vi

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

PAGE TADIE TYPES .ottt sss sttt sttt

PG FAUILS ...ttt sttt sttt st e e
SVM CONBIENCY ..ot e s e s s

PAGE FAUIES ..ottt ss bbbttt

Hardware and Software Pieces for Page FAUILS ... ssssssensisnns

PagE ACCESS RIGNTS ..ottt sttt ss sttt s

PAgE FaUIt DECISION ..ottt sttt b s bbb bbb bbb bbb ss s s st ssssssssnes

FAUIE AWAIE SUIMTACES ..ottt sttt sassanes

PAGE FAUIL IMOAES ...ttt st st ss s ss st sttt ens

Fault and Hang/Crash (LEgacy MOE) ... ssseeesssesssesssssssss s sssessenes

FAUIE N HAI .ottt sttt saees

Fault FIOWS @Nd IMPACE ...ttt sss bbb s ssssssssss st sssssssssssssssssssnsssnes

CHENT/GAM INEEITACE ...ttt sa sttt sassaseas

Rescheduling @ Faulted CONTEXL ...t se et st

APPHCALION TEIMUNATION .ottt sss bbb bbb

Memory Types and Cache Interface

Memory Object CONtrol State (MOCS) ...t ess st sesssseses s sssssssseens

MOICS REGISTETS ..ottt bbbttt s b b e b nssnes

L3 CONLIOI REGISLEIS ..ottt ettt ettt

Memory Interface CoONtIOl REGISTELS ...t ssss s ssssssssss st sssssssss st ssssssssnsses

HDCL3GAM Change Specific to CONEreNt L3occereeeeeeceineeeeeeeissesssseesssssesssessssesssssssesens

Graphics Cache and MemMOTY INTEITACE ...ttt

Skip Caching in LLC aNd @DRAM ...ttt ease e s s ssssssss s ssssssssssssssssssssssssssseses

Caching Display SUMaces iN LLC ...t essse st st ssss s sssssens

Page Walker AcCess and MEMOIY TYPESvureerinreeneeireeesesesssessssssesssssss s sssssssssssssssssssssssssssssssssssssans
Page WalKer MEMOTY TYPEScoureereeeereeese i et esse s asssesss s st sses st sssssssssssssessssessssessssees

EPTOT CASES ...t ettt s sttt s st s e astes s asassssasasasassensasanes

Common Surface Formats

NON-VIAEO SUITACE FOIMALS ...t eee et e e e e e e e e e esseee e esesesese e e easeeene

SUIaCe FOIMat NAMING ..ot sssssss st sttt st ssssss s st snsssnss

INEENSITY FOMMATS ..ottt ettt
LUMINGNCE FOIMALSccoomeemceimceienceeiseeeesssesssecesssecsssseesssssesssssesssssesssssssssssesssssesssssessssssssssnessssnsssssnenes

RT_UNORM (same as RT_UINT) and MONORB...........reeeeeeeeeeeessesesesesssessessssssssssassssssssnes

Doc Ref # IHD-OS-KBL-Vol 5-1.17

vii

Qn_til

Memory Views

PAIETEE FOIMIALS «..oooveeeerceieceieceiecic ittt st sbess st bbbttt eninens 168
PAAZL_UNORM ..ottt eesee et esesssessssesessseess s ss s e st ettt 168
AAPA_UNORM ..ottt cas st s sttt 168
PBAB_UNORM ...cctirrimteimceiieeeiisessisessissessssessssssssssssssssssesssesesssssssssssses st ssssssssssssssessisnssssnssssnsses 169
ABPB_UNORM ..ottt eeseeess st st sss sttt 169
PB_UNORM ...ouctiterimeerimneeimecsisne s ssissessissesssssessssssssssssessssses st sssssssssses st ssssesssssssssssessisnessssnssssnneses 170
P2_UNORM ..corteeetueeeineeesseeseseseasescssseesssssessss e essseesss s b a8kt 170

Compressed SUMACe FOIMALS ...ttt ss st sss s sttt st st sssenos 171

ETCT_RGBS ...ttt csise ittt s b e b b bbb 171

ETC2_RGB8 and ETC2_SRGBB ...t eessee st sss st st ssss st st sssesssssenees 173
T MNOA @ ettt e R 174
H MG .ttt bt 176
PlANAE MO ...t ess s b s bbb 178

EAC_RTT and EAC_SIGNED_RTT oottt tssisssss st s sssnes 179

ETC2_RGB8_PTA and ETC2_SRGBB8_PTAereeeireieetesississsnes 181
DiffEreNTial MOGE ...ttt sttt sttt ss bbbt sttt 181
T AN H MOGES ..ottt 181
PlaN@r MOGE.......coccrecrecieiesiesiecsiec e esae s it ittt i 182

ETC2_EAC_RGBAS8 and ETC2_EAC_SRGBB_AB.........coomirrreerereeeeeesssseessssesessssssssssssssssssssssssssssssseees 182

EAC_RGT1 and EAC_SIGNED_RGTT ...t seseisessssssessnnes 182

FXT TeXTUNE FOIMATS ...ttt siecsseesseess s sssesssesssesssesssesssesssesssesssesssesssesssesssens 184
OVEIVIEW OF FXTT FOIMALS w.eooeeeieeieeeiieeeeeeese sttt st st sses s s sssssssesssssssss st ssssees 184
FXTT CC I FOIMMI@T ettt et e s e et s e e sessts e sessesasaesessesasesesassasassenseneaens 184

CC_HI BIOCK ENCOTING oot eeseeessesssse e ssss s s ssssssssesssssssssssssnees 185
CC_HI BlOCK DECOAING ..ot sasesans 185
FXTT CC_CHROMA FOIMAL .ottt ettt s sttt sasans 186
CC_CHROMA BIOCK ENCOAING oo sssssassans 186
CC_CHROMA BIOCK DECOAING ..o ssssssss s sssssssssssssssssssssssssans 187
FXTT CC_MIXED FOIMAT ettt sttt e st s sttt s st ssssaens 188
CC_MIXED BIOCK ENCOAING ..ot sssssssssssssans 188
CC_MIXED BIOCK DECOTING w.ouveerreerrieeeeeeriieeeieeeseeeseeesseessse et sssss s s ssssssssesssessssssassssanees 189
FXTT CC_ALPHA FOIMAT ..ottt et ettt et e 193
CC_ALPHA BIOCK ENCOTING eorierrierrieeieeeiseeiseeiseeesseeessessssesesssssss s s s sssssssssssssesssssssssessaness 193

viii

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

CC_ALPHA BlOCK DECOMING w.oorverreerrierriierieeseseeesseesseessnsssaessaness 193
DXT/BCT-3 TEXUrE FOIMALSoueeeecicinceceeicieeieciecieeieeieeiseetsessestestsessestsesssesssesssesssesssesssessses 195
Opaque and One-bit Alpha Textures (DXTT/BCT) .. reneeererneirssisssessessssssssssssssssssnns 196
Opaque Textures (DXTT_RGB)ceeieeieeieeiseiseiseeseiseesssssssssssssssssssssssssssssssssssssssees 198
Compressed Textures with Alpha Channels (DXT2-5 / BC2-3)cocovrmrrmennrernrerneernrernnernsennns 199
BCA ..ottt e e R R e 201
BCS et e Rk e 202
BCOH ..ottt ssse st e st e e e 204
FIEIA DEIINITION cc..eoeeeeee ettt ss sttt s sttt 204
ENAPOINT COMPULALION coc.eeeertee ittt st s sss s ssss e e sans 216
Palette Color COMPULATION ...ttt ss sttt sssssssss st st st st st 216
TEXEI SEIBCLION vttt ettt e 217
OINE MO ..ottt sses s ess s ssse st s b b bbb 218
TWO MOGE....omiiieeieeiee ettt ettt e e e ettt 218
BT et SRRkt 219
FIEIA DEIINITION cc..eoeeree ettt ss sttt s bbbttt 219
ENAPOINT COMPULALION cocveereeeee ittt sttt sss st sssssss s s ssss e e sans 225
Palette Color COMPULALION ...t 225
TEXEI SEIBCHION ettt ettt sttt 226
OINE MOAE ..ottt et st b b bbb 226
TWO MOt ess st bbbt 226
THREE MOttt ss e e e sttt et 228
Adaptive Scalable Texture CoOmPression (ASTC) ... ssssssssssssasssnns 230
ASTC FUNAAMENTAIS ..ottt ettt sttt e 231
BACKGIOUNG....ooiee ittt ettt ettt ettt 231
New Surface FOrmats for ASTC TEXEUIE ... essse st ssessenos 234
ASTC File Format and MemOry LayOUL.........co.oevireenrieneeeeiere e sessessseesessssssssssssssssssssssssssssneses 239
ASTC Header Data Structure and AMeNdmMENtccvcccucineeerieerscriecriecrisecrseessecens 239
Data Layout in ASTC COMPIreSSION File ... s s ssessenas 240
Total ASTC Data Block Layout in All Mipmap LeVElS ... 240
Data Layout in Memory for All Mipmap LEVEIS.........orrnerreeereeeneeeeeeseeesseeessssseseenne 241
ASTC DAta SEFUCTUIE ...ttt stsesase s sase s sase s sase s sase s s i s i sase e sanenes 244
Layout and Description Of BIOCK Datacoocoreveererreenneeenerneeneseeeesseeesse e esssssssssesssnns 244

Doc Ref # IHD-OS-KBL-Vol 5-1.17

:l"tEl Memory Views

PAITITIONING cevvereeeiee ittt ettt 245
INAEX MOttt e ettt 245
INAEX PLANES .ottt ettt s et 249
INAEX INFIll PrOCEAUIE «..oone sttt sttt et st ss s ssnssns 249
COlOr ENAPOINT MOAE ...ttt 250
Color Endpoint Data Size Determinationccronrenerenneeenneeeneeesssessssssssssssssssssenns 252
VOIA-EXEENT BIOCKS ..ottt sttt seeeson 253
DECOAING PrOCESS ...ooveereeeeee ettt ssss sttt sttt st et 254
OVEIVIEW DECOUING FIOW ..ottt ettt ssss st st sssssssssssssssssssssssssess 254
Integer SEQUENCE ENCOTING ...ttt sttt 257
ENdpoint UNQUANTIZATION ..ottt st ssssssssssssssssssssesssssssssssssnsssnns 258
LDR ENAPOINT DECOAING ..vvvvureereeriieiieeieeeiise e eisse st sesse s s ssssssssssssssssssssesssssssssesssnas 259
HDR ENAPOINt DECOAINGounveunierienriiesieeeieessssssssssssssssss st st st ssssssssssssssssssssssnesssssssssssssssssnns 262
HDR Endpoint Mode 2 (HDR Luminance, Large Range)........cocoereeereeeeneceenecemnecennenens 263
HDR Endpoint Mode 3 (HDR Luminance, Small RaNge)c.coocneereereeeneceenecenecenenens 263
HDR Endpoint Mode 7 (HDR RGB, Base+SCale)coonrmrromrrenreirnriirnssernssesssessssssssnsens 264
HDR Endpoint Mode 11 (HDR RGB, DIF€Ct)c.ccovueerumrunrinriesinsinsiesississsssssssssssssssssssesons 266
HDR Endpoint Mode 14 (HDR RGB, Direct + LDR AIpha)ccccovvuomiermrerniirnrineinciseineenne 270
HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha)c.ccovoeiveervnirerieeiesissinnnnn. 270
Restrictions on Number of Partitions Per BlOCK ... 271
INAEX DECOAING ..ottt se sttt es s ss sttt ss st st enen 272
INAEX UNQUANTIZALION. ...ttt ssss bbb sss s s e e 272
INFIl PrOCESS c.oovveeeeeieseisiie sttt st ss st ss bbbt s st 273
INAEX APPHCALION ..ottt bbb bbb e bbb 275
DUAI-Plane DECOAING ...t 276
Partition Pattern GENEIAtioN. ...ttt sttt ses 276
Data Size DeterMiNation ...t siseesiseesssesssesssssssesssesssssssisessines 278
3D VOId-EXEENT BIOCKS ..ottt sisse i sisesssssessssssesisens 279
[1€GAI ENCOTINGS ...t esse sttt st ss s sttt sss 280
PrOTIlE SUPPOI ..ottt bbbt sttt 280
VIAEO PIXI/TEXEI FOIMIALS oottt e e e e ee e e e s eeeae s s s eeeaes e seeeaeasaseseseasasasesesaen 281
Packed Memory OrganiZatioN.........ceneenneinseiseiseiesissssesssessnes 281
Planar MemOry OrganiZatiON ... ceeeeneeeneeeeeeseeeseesseeesseessessssessssesssssssssssssssssssssssssssssessssessasees 282

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views
RAW FOMMNT ..ttt ettt et e e e e e e e 285
Surface MemOry OrganiZAtiONS...........ovvurverieerieesseessessssesssssssssssss s s st ssssssssssssssssssssssssssssnsses 285
Display, OVerlay, CUIrSOr SUIMACES ...ttt sssss s sssssssssssssssses s sssssssssssssnsses 285
2D RENAET SUIMACESoomvvenrrirereineceiiee sttt ssisss st b st bbbt 285
2D MONOCAIOME SOUICE ..ottt bt e ettt 286
2D COIOT PAEEIN .ottt st b e bbb 286
3D Color Buffer (DeStiNatioN) SUITACESoeeeeeeeeeeeeeeeee et eeee e sesee st ees s esssseseassasesssseees 286
3D DEPth BUFfEr SUMACES......cceecee ettt ssse et sttt st ssnnens 287
3D Separate Stencil BUFFEr SUIMACES........oiereese sttt st st ssssss s sssnsees 287
SUIface Layout @nd TilING ..ot sese ettt 288
Maximum SUMACE SiZE IN BYLES ...ttt ssssssssssssssssss st ssss st st sssnsssnsses 288
THIING ettt et e e e e e 288
TYPEA BUFFEIS .ottt sttt sttt 289
MIIP LY OUT ..ottt ittt bbbttt es s 290
RAW (UNTYPEA) BUFTEIS ...ttt as sttt st sttt 292
SEPUCTUNEA BUTFEIS «.oooeeeeceie ittt sttt bt b 292
TD SUIMACES oottt ettt e bt 292
Tiling and Mip Tail fOr TD SUIMACES. ...t ss s st ssssssssssses 293
1D AlIgNMENT REQUIFEMIENTS ...ttt sseeesee s eese ettt s ss s ssneeon 294
2D SUITACES «.coveerceeceie ettt e b b 295
Calculating TeXEl LOCATION ...t ssse et sss s s sss s 296
Tiling and Mip Tails fOr 2D SUMACES ...ttt sssee s s s sssssssseens 298
2D/CUBE AlIigNmMeNnt REQUIFEMENTcuveiereeeceecieeiseeeeiseeseiseiseesetsssssssssssssssssssssssssssssssssnes 301
MUISAMPIEA 2D SUIMACESvveeeeeeeeeerteeiresiseetsstss sttt sss st sss s ssss s ssss s e sens 301
Interleaved Multisampled SUIMACES ...t st sssenns 302
Compressed Multisampled SUMACES ... sssssens 302
Uncompressed Multisampled SUMaCES ... sssssssssssssssenns 304
QUITTEA TEXTUIES ...ooriverirncirecireeieieriecsieesieesise st sttt st ittt bbbt 305
CUDE SUIACES .ottt sttt s st 305
3D SUITACES «.ooorieeeei ittt st s b 307
Tiling and Mip Tails fOr 3D SUMACES ..ot sess et ss e ss s s sssesens 309
3D AlIGNMENT REQUIFEMENTS ..ottt 311
Surface Padding REQUITEMENTS ...ttt st ss s ssseeens 312

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Xi

Qn_til

Memory Views

AlIGNMENT UNIE SIZE ettt ettt sttt sttt st st 312
AlIGNMENT PAramMELETS ..ottt sttt ss st ss s ss sttt st st ssssssnsen 312
SAMPlING ENGINE SUITACES ...ttt sss s ss s ss s ssssss s s nsssnss 313
Render Target and Media SUIMACES ...ttt ss s sssssssssssessanens 314
Device2 PASID Capability Structures 314
PASID EXtended Capability ..o sessssssssss s sssssssssssssssssessssssssssssssssssssssesens 314
PASID Extended Capability HEAAEN ...t eieetesissiesisstssssstssssssssssssssssssssssnes 315
PASID Capability REGISTET ...t ssssssssssss s st st ss st ssssssssssssssssssssessaness 316
PASID CONEIOI REGISTET ..ottt ssssssss s st st ss st ssssssssssessssnsssnnss 317
ATS EXtended Capability ..ottt ees et se e se st st 318
ATS Extended Capability HEATEN ...ttt sssssssssss sttt sssssssenns 318
ATS Capability REGISEEN ...ttt ettt sttt 318
ATS CONTIOL REGISTEN oottt ssse st sttt st ss bbbttt st 318
Page Request Extended Capability ...t sese e s sssessseeens 319
Page Request Extended Capability HEAEr ... seeeeens 319
Page ReQUEST CONTIOI REGISTET ...ttt sssss st ssssssssssssssssssssssnnss 320
Page ReQUEST StatUS REGISTET ...ttt sttt ss e sseseees 321
Outstanding Page REQUESE CaPACILY ..o ssssassssss s s s s s ssss s sasesans 322
Outstanding Page ReqQUESst AlIOCALION ...ttt sssse st ss s ssneens 322
Atomics for Page Table Updates (MSQD) 323
IMIPIEMIENTATION ..ottt e e e e 326
Atomic_Page_update_0000:c.oewurereecereeeeeeeeeseseessseesseeesessssessssessssessse st ssssssss s ssssesssesssssssssees 326
AtomMIC_Page_update_000T: ...t cee i e et ses s s ssssssssssssssssssssssssssssssssssssessssssssssseses 327
ALtOMIC_Page_update_00T0: ... eeeeeeeeseee s s eesesesse st sttt s s sssssssssees 327
AtoMIC_Page_UpPdate_007T T: ...ttt st ses sttt ss st ss st sttt ss s ssenes 328
AtOMIC_Page_update_0T00:cocieeeererereceeeeeeeeeeesseeessee s eesesesse s st ss s ss s s s s ssssssssnees 328
AtOMIC_Page_UPAate_0T0T: ...ttt sttt sttt sttt ss st st ss sttt sssssnnes 329
AtOMIC_Page_UPAate_0TT0: ...ttt st ses sttt st st ss st ss st st ssssssssseses 330
ALOMIC_Page_UPAAte_0TT T oottt ettt st ss e st 331
AtoMIC_Page_update_TO00:coorwueerreeeeereeeeesiesiesssssesses 332
AtOMIC_Page_update_TO0T: ...ttt ettt eese s st sttt s ssssessanees 333
AtOMIC_Page_UPAAte_TOT0: ..ottt st sss st se st st es sttt sss st st sssssassnses 334
ALtOMIC_Page_UPAAte_TOT T oottt et ettt st s ss st st 335

Xii

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'
AtoMIC_Page_UPdate_TT00: ... ceeseetseetss sttt ssssssssssssssssssessse st ssss st st ssesssessssessaness 336
ALOMIC_Page_UPAAte_TTOT: ettt sttt sttt st s st ss st s sttt ess s ssnnen 337
ALOMIC_Page_UPAAtE_TTT0: ettt sttt et sb st st sb s ss st sttt st st st ssnsen 338
ALtOMIC_Page_UPAAte_TT0T: .ottt sssessssss st et sttt ss st ssess e 339
ALOMIC_A_UPAALE_000: ... e iierieerieeieeiesieeesesissee sttt sssssssssss st st ss st st st st sssss st sssssssssssnssnsssnsssnses 340
ALOMIC_A_UPAALE_00T: oottt sttt ss s ss s ss s ss sttt ss s ss s ss st e 341
ALOMIC_A_UPAALE_0T0: ettt sttt s sss st s b s sttt sttt st st ssnsen 342
ALOMIC_A_UPAAEE_0T Tttt ettt et s s ss sttt ss bbb st 343
ALOMIC_A_UPAAEE_TO0: e sesse sttt ss st sss s s s sss e st st st st st ss s ss st sess 344
ALOMIC_AD _UPAALE_TOT: oottt sttt sttt ssb sttt ss sttt st st s st st ns s ssnnes 345
ALOMIC_AD _UPAATE_TT0: oottt st sssssssssss s sss et ss sttt ss s ssessssesssess 346
ALOMIC_AD _UPAALE_TTT: oottt sttt s st st s b st s st st s st st s s ssnnes 347

Atomic Operations between GPU and IA 348

Doc Ref # IHD-OS-KBL-Vol 5-1.17 xiii

Memory Views

Introduction

The hardware supports three engines:

e The Render command streamer interfaces to 3D/IE and display streams.
¢ The Media command streamer interfaces to the fixed function media.
e The Blitter command streamer interfaces to the blit commands.

Software interfaces of all three engines are very similar and should only differ on engine-specific
functionality.

Memory Views Glossary

Term Definition
IOMMU I/0 Memory Mapping unit
SVM Shared Virtual Memory, implies the same virtual memory view between the |IA cores and
processor graphics.
Page Walker GFX page walker which handles page level translations between GFX virtual memory to physical
(GAM) memory domain.

GPU Memory Interface

GPU memory interface functions are divided into 4 different major sections:

¢ Global Arbitration
e Memory Interface Functions
e Page Translations (GFX Page Walker)
¢ Ring Interface Functions (GTI)
GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The

following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces and
page translations and page walker functions.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 1

:l"tEl Memory Views

Global Arbitration

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses
from different stages of the pipeline are consolidated to a single interface towards GT's connection to
CPU's ring interface.

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels.

Programming Note

Context: Global Memory Arbitration

Arbitration allows 4 levels of arbitration where each pipeline level can be put into these 4 levels. Each consolidation
stage simply follows the 4-level arbitration with grace periods to allow ahead of the pipeline to get a higher share
of the memory bandwidth.

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases
major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace
period where its accesses are counted against a global pool. If a particular engine (or pipeline stage)
exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based prioritization.
Once all counts are expired, the grace period completes and resets.

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring
the pipeline order.

GFX MMIO - MCHBAR Aperture

Address: 140000h — 147FFFh
Default Value: Same as MCHBAR
Access: Aligned Word, Dword, or Qword Read/Write

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write
registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers
defined within the MCHBAR space are preserved when the same registers are accessed via this space.
Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal
Sensor, etc.

The Alias functions work for MMIO access from the CPU only. A command stream load register
immediate will drop the data, and the store register immediate will return all Zeroes.

Graphics MMIO registers can be accessed through MMIO BARs in function #0 and function #1 in Device
#2. The aliasing mechanism is turned off if memory access to the corresponding function is turned off via
software or in certain power states.

Please refer to applicable EDS documentation of offset 140000h — 147FFFh for details of this register’s
format and behavior.

2 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Graphics Memory Interface Functions

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various
client functions access to “graphics” memory used to store commands, surfaces, and other information
used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics
memory is accessed.

Information not presented in this chapter includes:
e Microarchitectural and implementation-dependent features (e.g., internal buffering, caching, and
arbitration policies).

e Ml functions and paths specific to the operation of external (discrete) devices attached via external
connections.

e Ml functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional
“chipset functions”

e GFX Page Walker and GT interface functions are covered in different chapters.

Graphics Memory Clients

The MI function provides memory access functionality to a number of external and internal graphics
memory clients, as described in the table below.

Graphics Memory Clients

Ml Client Access Modes

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses

External PEG Graphics |Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture. (This
Device client is not described in this chapter).

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DM
access to Graphics registers is not supported.

Coherent Read/Write [Internally-generated snooped reads/writes.

(internal)

Command Stream DMA Read of graphics commands and related graphics data.

(internal)

Vertex Stream DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed
(internal) Function.

Instruction/State Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions
Cache (internal) executed by the EUs.

Render Cache Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D,
(internal) MPEG, etc.) Read of render surface state.

Sampler Cache Read of texture (and other sampled surface) data stored in graphics memory.

(internal)

Doc Ref # IHD-OS-KBL-Vol 5-1.17 3

:l"tEl Memory Views

Ml Client Access Modes
Display/Overlay Read of display, overlay, cursor and VGA data.
Engines (internal)
Media Engines Read and write of media content and media processing.
uController Read/Write (DMA) functions for u-controller and scheduler.

Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory
addresses of various types, performs a number of optional operations along address paths, and
eventually performs reads and writes of graphics memory data using the resultant addresses. The
remainder of this subsection will provide an overview of the graphics memory clients and address
operations.

Graphics Address Path

Graphics Address Path shows the internal graphics memory address path, connection points, and optional
operations performed on addresses. Externally-supplied addresses are normalized to zero-based
Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled address
(based on inclusion in a fenced region or via explicit surface parameters), address tiling is performed. At
this point the address is considered a Logical Memory address, and is translated into a Physical Memory
address via the GTT and associated TLBs. The physical memory location is then accessed.

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped
cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory aperture.

4 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Graphics Memory Paths

= CPU JExt. GfxDevice
Device 2 PCI Graphics
Mermory Range
Gk Range Offset
Remaoval

Graphics Graphics Mempr-capable Intemal
Mernoky FunctionsiC aches
Address

(0-based)

(R —){ E Fence Regizters
D&ermination Surface Parameters

Logical + .

Mernory Addrezs Tiling Logic

address — 1

(0-based) —
= Physicd Address-hased
Logical Memory ¥EIC Fes=-0as
M@ ng TLE= Intemal Fundions
Snoop Physical
Loagic: Mernory FF;thﬁ
I Address
X

hain aTT |

Memoey

Boco-01

The remainder of this chapter describes the basic features of the graphics memory address pipeline,
namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation
considerations.

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Qn_til

Graphics Memory Address Spaces

Memory Views

The Graphics Memory Address Spaces table lists the five supported Graphics Memory Address Spaces.
Note that the Graphics Memory Range Removal function is automatically performed to transform system
addresses to internal, zero-based Graphics Addresses.

Graphics Memory Address Types

Address
Type Description Range Gen9
GMADR [Address range allocated via the Device 2 (integrated graphics | Thisis a4 GB BAR | 128 MB, 256
device) GMADR register. The processor and other peer (DMI) above physical MB, 512 MB,
devices utilize this address space to read/write graphics data memory. 1GB, 2GB, 4GB
that resides in Main Memory. This address is internally
converted to a GM_Address.
GTTMMADR The combined Graphics Translation Table Modification Range This is a 16MB BAR 16 MB
. above physical
and Memory Mapped Range. The range requires 16 MB
. : memory. (2 MB MMIO +
combined for MMIO and Global GTT aperture, with 8MB of that 6 MB reserved
used by MMIO and 8MB used by GTT. GTTADR will begin at
: . + 8 MB GGTT)
GTTMMADR 8MB while the MMIO base address will be the
same as GTTMMADR.
For the Global GTT, this range is defined as a memory BAR in
graphics device config space. It is an alias into which software is
required to write Page Table Entry values PTEs. Software may
read PTE values from the global Graphics Translation Table GTT.
PTEs cannot be written directly into the global GTT memory
area.
GSM GTT Stolen Memory. It is an 8 MB (max) region taken out of Th'? 1S ?n 8 MB 1MB, 2 M8, 4
) . region in physical |MB, 8 MB
physical memory to store the Global GTT entries for page .
. - . memory not visible
translations specific to GFX driver use. t0 OS
It is accessible via GTTMMADR from the CPU path however
GPU/DE can access the same region directly.
DSM Data stolen memory, the size is determined with GMS filed (8 2:3'5 lea maﬁ Of 4| 24M|\3133;6M'3;3
bits) with MAX size of 4 GB. stolen pnysica ' '
memory for GFX ..4096MB

This is a stolen memory which can be accessed via GMADR for
CPU and directly for GPU/DE.

Size is programmable with 32 MB multiplier.

First 4KB of DSM has to be reserved for GFX hardware use.

data structures.

Next level breakdown for GTTMMADR is given below.

Software is allowed to use range x17_0000 to x17_FFFF as the Null range.

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Address Tiling Function Introduction

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,
certain functions within the graphics device support the storage/access of the operands using alternative
(tiled) memory formats to increase performance. This section describes these memory storage formats,
why and when they should be used, and the behavioral mechanisms within the device to support them.

Legacy Tiling Modes:
e TileY: Used for most tiled surfaces when TR_ MODE=TR_NONE.

e TileX: Used primarily for display surfaces.
e TileW: Used for Stencil surfaces.

Programming Note

Context: Address Tiling Function

Tiled Resource Tiling Modes

o TileYF: 4KB tiling mode based on TileY
o TileYS: 64KB tiling mode based on TileY

These modes are based on 4KB and 64KB tiles. The 64KB tile is made up of a 4x4 matrix of 4KB tiles. The 4KB tiles in
general have a different layout as compared to the legacy modes, with the sub-mode defining the layout within the
4KB tile. The sub-modes are determined by the bits per element of the surface format. The Tiled Resource Mode
field in SURFACE_STATE is used to select the new modes.

Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile modes). For
1D surfaces, the base address must be 64KB aligned if Tiled Resource Mode is TRMODE_64KB, and 4KB aligned

if Tiled Resource Mode is TRMODE_4KB. An exception to this tile alignment is when a SURFACE_STATE describes a
single MIP within the MIP Tail of another surface, using a 64-bit or 128-bit Surface Format—then Surface Base
Address can refer directly to the given MIP (e.g. to write to a non-renderable Surface Format by re-describing as
an alternative surface).

Doc Ref # IHD-OS-KBL-Vol 5-1.17 7

Memory Views

Qn_til

Linear vs Tiled Storage

Regardless of the memory storage format, “rectangular” memory operands have a specific width and
height, and are considered as residing within an enclosing rectangular region whose width is considered
the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must
have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly with
the surface). Rectangular Memory Operand Parameters shows these parameters.

Rectangular Memory Operand Parameters

Fegion Start

address la Pitch y
[~ il
. »
Enclosing Region
! v A
Surface Start
Address %
Surface =4
o
m
P Width .
B&E20-01

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the
operand is stored in sequentially increasing memory locations. If the surface width is less than the
enclosing region’s pitch, there will be additional memory storage between rows to accommodate the
region’s pitch. The pitch of the enclosing region determines the distance (in the memory address space)
between vertically-adjacent operand elements (e.g., pixels, texels).

8 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Linear Surface Layout

Fitch

Y
-

Endosing Region

Increasing Err i e et
Linear Memary B L S S N
S S S S S S S S
Addresses S S S S S S S S5
S S SR %

&
525
55

L I I L R B

4
o

L
L
e

S
5

o

&
I

o
&
&
525
&
S5
S

S,

i
o
S
0’0
i

&
S
355
SIS
55
&

S5
et

252

OSa ettt

SIS
&

AT
&5
&

e
e
L5
2555
LSS

e

e
%
e

L

e

L

L

Bes91-01

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface
where each scanline is read sequentially). Here the fact that one object element may reside in a different
memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally-
adjacent elements are stored contiguously. However, when a device function needs to access a 2D
subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2
texel block for bilinear filtering), having vertically-adjacent elements fall within different memory pages is
to be avoided, as the page crossings required to complete the access typically incur increased memory
latencies (and therefore lower performance).

One solution to this problem is to divide the enclosing region into an array of smaller rectangular
regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same
physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile
and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows
high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the
dimensions of tiles are irrespective of the data contained within — e.g., a tile can hold twice as many 16-
bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels).

Doc Ref # IHD-OS-KBL-Vol 5-1.17 9

:l"tEl Memory Views

Memory Tile Dimensions

¥ Tile Dimensions ¥ Tile Dimensions

Tile = 4K Bytes

Tile = 4K Bytes

MO 3
SO oE——————

e SiZBytes 4

le— 108 pytes— 4

BE&SZ-01

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled
region are stored sequentially in memory in row-major order.

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a
pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles —
the surface is not necessarily aligned or dimensioned to tile boundaries.

Tiled Surface Layout

Tiled Region
L Fitch = B tiles = 8% 512B = 4 KB }i

S Til2 0 Tile 1 Tile 2 Tile 3 Tiled | Tiles Tile & Tile 7

Tile & Tile9 JTiled0 | Tilell | Tile 12 | Tile 13 Tile|14 Tile 15

Tile 16 | Tile 17 | Tile 13 | Tile 12 | Tile 20 | Tile 21 | Tile g2 | Tile 23

Tile 24 | Tile 25)} Tile 26 | Tile 27 | Tile 28 | Tile 29 [Tile 30 | Tile 31

Tile 32 | Tile 33 Y Tile 34 | Tile 35 | Tile 36 | Tile 37 | Tile B8 | Tile 39

Tile 40 [Tiledl | Tile 42 | Tile 43 | Tile 44 | Tile 45 [Tile e | Tile 47

Tile 45 | Tile a3 § Tile 50 | Tile 51 | Tile 52 | Tile 53 TiIﬂSE Tile 55
-

Tile 56 | Tile 5| Tile 58 | Tile 59 | Tile 60 | Tile 61 | Tile 62 | Tile 63

Tiled Surface —

BEE93-01

10 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Auxiliary Surfaces For Sampled Tiled Resources

For surfaces which are defined as Tiled Resources (TileYs or TileYf format), there may be auxiliary surfaces which are
associated with the surface (e.g. HiZ, CCS or MCS). These auxiliary surfaces, while actually not defined as TileYs or
TileYf will behave like tiled resources from the hardware perspective. It is possible for software to map and unmap
tiles of auxiliary surfaces as tiles of the associated surface are mapped and unmapped. Below is a description how
sampling to the mapped/unmapped tile resources is handled for the associated auxiliary surface. Normally,
sampling unmapped tiles will return a NULL response to the requesting agent.

Hiz

A tile of HiZ data must be mapped to memory whenever any depth surface (Z) pixels associated with the HiZ tile
are mapped. When all Z pixels associated with a HiZ tile are unmapped, the HiZ tile may be mapped or unmapped.
Below is a table showing the responses for sampling to mapped and unmapped depth surfaces.

Responses for Sampling to A Depth-Surface Tiled Resource

Depth Surface Mapping | HiZ Surface Mapping Sample Response
Mapped Mapped Normal Sample Response
Mapped Unmapped Undefined

Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested) will
indicate the depth pixel is Null.

CCS

A tile of CCS (Color Control Surface) must be mapped to memory whenever color surface pixels associated with the
CCS tile are mapped. When all color pixels associated with a CCS tile are unmapped, the CCS may be mapped or
unmapped. CCS is used to indicate that the color surface is losslessly compressed. Below is a table showing the
responses for sampling to mapped and unmapped.

Responses for Sampling to a Losslessly Compressed Color Surface That is a Tiled Resource

Color Surface Mapping | CCS Surface Mapping | Sample Response
Mapped Mapped Normal Response
Mapped Unmapped Undefined
Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested) will
indicate the depth pixel is Null.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 11

:l"tEl Memory Views

MCS

A tile of MCS(Multi-Sample Control Surface) must be mapped to memory whenever MSAA surface pixels
associated with the CCS tile are mapped. When all MSAA pixels associated with a MCS tile are
unmapped, the MCS may be mapped or unmapped. Below is a table showing the responses for sampling
to mapped and unmapped.

Responses for Sampling to MSAA Tiled Resources

MSAA Surface Mapping [MCS Mapping| Sample Response
Mapped Mapped Normal Response
Mapped Unmapped Undefined Response
Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)
will indicate the depth pixel is Null.

Tile Formats

Multiple tile formats are supported by the Gen Core. The following sections define and describe these
formats.

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the
RENDER_SURFACE_STATE.

Tile-X Legacy Format

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following
figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords . The
selection of tile direction only impacts the internal organization of tile data, and does not affect how
surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a
linear fashion.

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE
to XMAJOR.

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the organization
of texels in memory.

12 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Tile X-Tile (X-Major) Layout

¥-Major Tile

32 16B OWord Columns

'y

.

Tile-Y Legacy Format

oW | oW | oW oW | Ow | Ow
0 1 2 o0 30 31
oW | WY | oW . oW | oW | oW
=2 =3 =4 &1 B B3
[un]
ral
% | | []
[| [|
| | [|
oW | oW | OW a s oW | Ow | Ow
oo4 | 225 | 22A o53 | 254 | 255
BEE34-01

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as
shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection
of tile direction only impacts the internal organization of tile data, and does not affect how surfaces map

onto tiles.

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to

YMAJOR.

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout

of pixels.

Y-Major Tile Layout

Y-Major Tile
|<78 166 Chvvord Culumn5—>|
F[ow | ow oW | OW
u] 32 192 224
L]
O Oy oWy oW
1 33 193 223
o
h - | |
%J [] [
=3 - n
oW | oW - oW | 0w
v a1 o3 223 255

BEES5-01

Doc Ref # IHD-OS-KBL-Vol 5-1.17

13

W-Major Tile Format

Memory Views

The device supports additional format W-Major storage of tile data units, as shown in the following
figures. A 4KB tile is subdivided into 8-high by 8-wide array of Blocks for W-Major Tiles (W Tiles). Each
Block is 8 rows by 8 bytes. The selection of tile direction only impacts the internal organization of tile
data, and does not affect how surfaces map onto tiles. W-Major Tile Format is used for separate stencil.

Tile-W surface format is selected by programming the Tile_Mode field in the RENDER_SURFACE_STATE to

WMAIJOR.
W-Major Tile Layout

<
w

8 8B Blocks

v

Blk0

Blk8

Blk1

000
BIk9

8 8Row Blocks

I T,

Blk15

Blk48

Blk56

Blk49

Blk57

BIk55

Blk63

W-Major Block Layout

8B Block

d
-

v

B0

B1 | B4 | B5 | B16 | B17

B20

B21

B2

B3 | B6 | B7 | B18 | B19

B22

B23

B8

B9 | B12 | B13 | B24 | B25

B28

B29

8RowBlock [B1C

B11| B14 | B15 | B26 | B27

B30

B31

B32

B33 | B36 | B37 | B48 | B49

B52

B53

B34

B35 | B38 | B39 | B0 | BS1

B54

B55

B40

B41 | B44 | B45 | BS6 | B57

B60

B61

B42

B43 | B46 | B47 | B58 | B59

B62

B63

14

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views ‘ II'Il!E|

Tile-Yf Format

Tile-Yf is a 4K-Byte tile format (similar to Tile-Y), but organized in a different manner. Tile-Yf is selected
by programming the Tile_Mode field in the RENDER_SURFACE_STATE to YMAJOR and the
Tiled_Resource_Mode to TILEYF. The diagram below shows how pixels are mapped into the TileYf format
for 2D surfaces, and it uses 32Bpp (bits per pixel) surface format as an example on a 2D surface which is
N tiles wide and m tiles high. The exact aspect ratio will be dependent on the Bpp of the surface. Note
that the TileYf format is identical to the TileYs up to the 4K-Byte tile size.

2D Tile Layout for TileYf

32 bpp example

3,0 _z.o 1,0 0.0 The 64 Byte block

3 is always 4-high
64-Bytes st =t NE Sk | Width {in pixels) is
3,2 2,2 1,2 0,2 defined by bpp

3.3 2,3 1,3 0,3

\

-
2 The 256-Byte Block 8, 32 and 128 bpp cases
is always end of up being 1-1, 16
4] 2 compnised of 4 64- and 64 are 2:1
~"| Byte blacks.,
Aspectratiois
256‘Bytes always 1:1 or 2:1
1 3 —
| /
| /
| /
] /
| /
/
| /
/
| /
| /
The ax tile s) In Bytes, only the 8-bit is
0 2 10 always X4 (16 square, the others end up
4K-B Til 256-byte blocks). peing 4:1 or 16:1 apsect
-Byte e Actual aspect ratio gatjos
1 3 11 | in pixels Is 1:1 for
8,32 and 128 bpp,
4 6 12 | 14 Itis 2:1 for 16 and
64 bpp,
o 7 (13 |15
|
| /
| //
|| ’
/
! /
| /
| /
| /
| /
0 1 2 3 N-1
The surface is
composed as an
N N+l N+2 N3 2N-1 mXN array of 4K
eee Tiles (TileYr)
arranged In X-
Major fashion,
2N 2N+1 2N+2 2N+3 3N-1
-
-
-
(m- (m- (m-
m-1)N mN-1
{m:3) DN | 2(Ne2) | 2)(Ne3)

Doc Ref # IHD-OS-KBL-Vol 5-1.17 15

:Intel Memory Views

Tile-Ys Format

TileYs is a 64K-Byte tile size. It is enabled by programming the Tile_Mode field (in
RENDER_SURFACE_STATE) to YMAJOR, and programming the Tiled_Resource_Mode to TILEYS. It is
organized as shown below, and is composed of 4KByte blocks which have identical layout to the TileYf
format. The diagram below shows how pixels are mapped into the TileYs format, and it uses 32Bpp (bits
per pixel) surface format as an example on a 2D surface which is N tiles wide and m tiles high. The exact
aspect ratio will be dependent on the Bpp of the surface.

Tile-Ys Layout

32 bpp example

3.0 2,0 1,0 0.0 The 64 Byta block
i always 4-high
31 21 1.1 a1 S
¢ i I L e | Width (in pixels) is
64-Bytes 5.3 %% 13 0.2 defined by bpp
5,3 2,3 1.3 0,3
I P
\ -
| -~
2
The 256-Byte Block 8, 32 and 128 bpp cases
Is always end of up being 1:1, 16
o 2 comprised of 4 64- gnd 64 are 2:1
~1 Byte blocks.
N Aspect ratio is
256-Bytes always 1:1 or 2:1
1 3
/
\ 7/
/
A
\ ’
/7
: /
/
I /
/
The aK tile Is In Bytes, only the 8-bit is
o 2 8 10 always axld (16 square, the others end up
256-byte blocks) being 4:1 or 16:1 apsect
4K-Byte Tile Actual aspect ratio ratios.
1 3 9 11
8,32 and 128 bpp
a 6
64 bpp,
5 7 13 (15 -
I 7/
I /
\ 7
7/
! /
7/
The GAK tle In Bytes, only the 8-bit s
64K-Byte o 2 8
Tile byte blocks) being 4:1 or 16:1 apsect
Actual aspect ratio ratios.
(TileYs) 1 3 9 (11 1 in pixels is 1:1 for
8,32 and 128 bpp
a4 6
64 bpp.
5 7
\) /
' ¢
/
! /
/
! /
/
/
/
/
/
o 1 2 3 N-1
The surface is
composed as an
a - e NG N1) mXN array of 64
wee Tiles {Tileys)
arvanged In X
Major Fashion,
2N 2N+1 2N+2 2N+3 3N-1
-
-
-
(m- (m- {m-
m-1)N mN-1
(m-1) 1(Ne1) | 1(Ne2) | 1)(Ne3) »

16 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Tiling Algorithm

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics
memory to an address in logical space.

The following new modes are supported for Tiled Resources (TR_MODE != TR_NONE) defined to enable
tiled resources.

For more details about Mip Tails, see Surface Layout and Tiling in the Common Surface Formats section.

e TileYF: 4KB tiling mode based on TileY
e TileYS: 64KB tiling mode based on TileY

Inputs:
LinearAddress (offset into regular or LT aperture in terms of bytes),
Pitch(in terms of tiles),
WalkY (1 for Y and 0 for X)
WalkW (1 for W and 0 for the rest)

Static Parameters:
TileH (Height of tile, 8 for X, 32 for Y and 64 for W),
TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W)
TileSize = TileH * TileW;
RowSize = Pitch * TileSize;

If (Fenced) {
LinearAddress = LinearAddress - FenceBaseAddress
LinearAddrInTileW = LinearAddress div TileW;
Xoffset inTile = LinearAddress mod TileW;
Y = LinearAddrInTileW div Pitch;
X = LinearAddrInTileW mod Pitch + Xoffset inTile;

}

// Internal graphics clients that access tiled memory already have the X, Y
// coordinates and can start here

YOff Within Tile = Y mod TileH;

XOff Within Tile = X mod TileW;

TileNumber InY = Y div TileH;

TileNumber InX = X div TileW;

TiledOffsetY = RowSize * TileNumber InY + TileSize * TileNumber InX + TileH * 16 *
(XOff Within Tile div 16) +
YOff Within Tile * 16 +
(XOff Within Tile mod 16);

TiledOffsetW = RowSize * TileNumber InY +
TileSize * TileNumber InX +
TileH * 8 * (XOff Within Tile div 8) +

64 * (YOff Within Tile div 8) +

32 * ((YOff Within Tile div 4) mod 2) +
16 * ((XOff Within Tile div 4) mod 2) +
8 * ((YOff Within Tile div 2) mod 2) +
4 * ((XOff Within Tile div 2) mod 2) +
2 * (YOff Within Tile mod 2) +

(XOff Within Tile mod 2);

TiledOffsetX = RowSize * TileNumber InY + TileSize * TileNumber InX + TileW *
YOff Within Tile + XOff Within Tile;

Doc Ref # IHD-OS-KBL-Vol 5-1.17 17

:l"tEl Memory Views

TiledOffset = WalkW? TiledOffsetW : (WalkY? TiledOffsetY : TiledOffsetX);

TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress + Y*LinearPitch +
X);TiledAddress = (Tiled &&
Address Swizzling for Tiled-Surfaces == 01)) ?
WalkW || Walky) °?

TiledAddress div 128) * 128 +
((TiledAddress div 64) mod 2) *
(TiledAddress div 512) mod 2)) +
TiledAddress mod 32)

(TiledAddress div 128) * 128 +
(((TiledAddress div 64) mod 2) *
((TiledAddress div 512) mod 2)
()
(

(TiledAddress Div 1024) mod2
TiledAddress mod 32)

+

TiledAddress;
}
Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more
effective address swizzling algorithm.

For Address Swizzling for Tiled-Surfaces see ARB_MODE — Arbiter Mode Control register, ARB_CTL—
Display Arbitration Control 1 and TILECTL - Tile Control register

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the
same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial
locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture
filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements are
stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned
in row-major order for operations like display refresh. For this reason, the Display and Overlay memory
streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions).
This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled
formats if they are to be displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be stored
in Y-Major order.

The following Psuedo Code Describes the algorithm for mapping TileYs and TileYf Tile Address to Byte
Offset within a Tile. It describes the support for 2D for both TileYs and TileYf as well as MSAA 2D For
TileYs.

18 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views ‘ ince

/***\

BitMask
Used for masking single bits of x, y, z, ss# when pdep32 instruction is
not available
***/
enum BitMask
{
BITO =
BIT1
BIT2
BIT3
BIT4
BITS =
BIT6 =
BIT7
BIT8
BIT9 =
BIT10 =
BIT11 =
BIT12 =
BIT13 =
BIT14 =
BIT1S5 =

’

1 «
1 «
1 «
1 «
1 «
1 «
1
1
1
(

(
(

(
(

(

I4

r

I4

r

I4

r

«
«
«

~

~

I
A~~~ o~~~ o~~~
O W ~Jo Ul WN

«
«
«
«
«
«

’

I4

)
)
)
)
)
)
)
)
),
10
11
12
3

I4

’

R = = N =

)
)
) s
)
4)
S5)

}i

/***\

TileYS/TileYF constant swizzle masks w/o pdep32 instruction

Used to mask contiguous x/y/z/sample bit groupings before being shifted into
their final swizzled bit positions
***/

// used for fallback 'manual' bit shifting

static const UINT16 xMaskBits5 4 = 0x0030;
static const UINT16 xMaskBits3 0 = 0x000F;
static const UINT16 yMaskBits4 0 = O0x001F;
static const UINT16 yMaskBits3 0 = 0x000F;
static const UINT16 yMaskBits2 0 = 0x0007;
static const UINT16 yMaskBitsl 0 = 0x0003;

static const UINT16 SampleMask3 0 = 0x000F;

static const UINT16 SampleMask2 0 = 0x0007;
static const UINT16 SampleMaskl 0 = 0x0003;
static const UINT16 SampleMaskO = 0x0001;

/***\

TileYS 2D Tile address swizzling functions w/o _pdep32
***/

/*

| Num | Bits per element | Tiled element offset bits |
| Samples | [15114 113112111110 9| 8| 71 6| 5| 4] 3|1 2| 1| 0]
| S S e e T T P T P O O T N e e
| 1x | 64 & 128 [x91y51x8|y4|x7]y3|x6|y2|x5|x4|yl|y0|x3[x2|x1|x0]
| | 16 & 32 [x81y6|x7]|y5|x6]y4|x5|y3|x4]y2|yl|y0|x3|x2|x1|x0]
| | 8 [x71y71x6|y6lx5]y5|x4|y4|y31y2lylly0[x3|x2|x1|x0]|

*/
UINT16 TileYS2dElementOffset64 128bpe (UINT16 x, UINT16 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYS swizzled bit locations

xSwizzle = ((BITY9 & x) « 6) |
((BIT8 & x) « 5) |

Doc Ref # IHD-OS-KBL-Vol 5-1.17

19

:Intel Memory Views

(BIT7 & x) « 4)
(BIT6 & xX) « 3)
(xMaskBits5 4 &
xMaskBits3 0 & x

’

(|
(|
(x) « 2) | // shift to bit positions 7..6
()

ySwizzle = ((BIT5 & y) « 9) |
((BIT4 & vy) « 8) |
((BIT3 & vy) « 7) |
((BIT2 & y) « 6) |
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYS2dElementOffsetl6 32bpe (UINT16 x, UINT16 y)

{
UINT16 xSwizzle;
UINT16 ySwizzle;

// shift bits in x and y to their respective TileYS swizzled bit locations

xSwizzle = ((BIT8 & x) « 7) |
((BIT7 & x) « 6) |
((BIT6 & x) « 5) |
((BITS5 & x) « 4) |
((BIT4 & x) « 3) |
(xMaskBits3 0 & x);

ySwizzle = ((BIT6 & y) « 8) |
((BITS & y) « 7) |
((BIT4 & y) « 6) |
((BIT3 & y) « 5) |
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYS2dElementOffset8bpe (UINT16 x, UINT16 V)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYS swizzled bit locations
xSwizzle = ((BIT7 & x) « 8) |
((BIT6 & x) « 7) |
((BIT5 & x) « 6) |
((BIT4 & x) « 5) |
(xMaskBits3 0 & x);

ySwizzle = BIT7 & y) « 7
BIT6 & y) « 6
BITS & vy) « 5

|
|
|
yMaskBits4 0 y) « 4); // shift to bit positions 8..4

2 — — —

(
(
(
(

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

/***\

TileYS 2D MSAA Tile address swizzling functions w/o pdep32
***/

20 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views ‘ II'Il!E|

/*

| Num | Bits per element | Tiled element offset bits |
| Samples | |15 1411311211110 9| 8| 7| 6| 5| 4| 3| 2| 1| 0]
| | S S O P U N U PO DU PO PO U O N
| 2% | 64 & 128 |ss0|y5|x8|yd|x7|y3|x6]|y2|[x5|x4|yl|y0|x3|x2|x1|x0]
| | 16 & 32 |ss0|y6|x7|y5Ix6|y4|x5]y3Ix4|y2|yl|y0|x3|x2|x1|x0]
| | 8 ss01y71x6]y6|x5]y5|x4|yd|y3ly2|yl|ly0|x3|x2|x1|x0]|
*/

UINT16 TileYS2xMsaaElementOffset64 128bpe (UINT16 x, UINT16 y, UINT1l6 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations
xSwizzle = ((BIT8 & x) « 5) | // shift to bit position 13

(BIT7 & x) « 4) | // shift to bit position 11

(BIT6 & x) « 3) | // shift to bit position 9

(xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT5 & y) « 9) | // shift to bit position 14
((BIT4 & y) « 8) | // shift to bit position 12
((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

SampleSwizzle = (sample && SampleMask0) « 15; // shift to bit position 15

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS2xMsaaElementOffsetl6 32bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations
xSwizzle = ((BIT7 & x) « 6) | // shift to bit position 13
(BIT6 & x) « 7) | // shift to bit position 11
(BITS5 & x) « 6) | // shift to bit position 9
(BIT4 & x) « 5) | // shift to bit position 7
&

xMaskBits3 0 x) ; // leave in bits 3..0
ySwizzle = ((BIT6 & y) « 8) | // shift to bit position 14
((BIT5 & y) « 7) | // shift to bit position 12
((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4
SampleSwizzle = (sample && SampleMask0) « 15; // shift to bit position 15

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}
UINT16 TileYS2xMsaaElementOffset8bpe (UINT16 x, UINT16 y, UINT1l6 sample)

{
UINT16 xSwizzle;

Doc Ref # IHD-OS-KBL-Vol 5-1.17 21

‘ |ntE|) Memory Views

UINT16 ySwizzle;
UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 13
((BIT5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT7 & y) « 7) | // shift to bit position 14
((BIT6 & y) « 6) | // shift to bit position 12
((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask0) « 15; // shift to bit position 15

// OR the swizzled bit positions for final offset within a tile

return SampleSwizzle | xSwizzle | ySwizzle;

}

/%

| Num | Bits per element | Tiled element offset bits |
| Samples | |15 |14 1312111110 9| 8| 7| 6| 5| 4] 3] 2| 1] 0]
| | | (S S e T P O O O T e T e e
| 4x | 04 & 128 |ss1|ss0|x8|y4|x7|y3|x6|y2|x5|x4|yl|y0|[x3|x2|x1]|x0]
| | 16 & 32 |ssl|ssO|x7]|y5|x6|y4|x5]y3|x4]y2|yl|y0|x3|x2|x1|x0]
| | 8 |ss1l|ss0|x6]|y6|x5]y5|Ix4|y4|ly3ly2|yl|ly0|x3|x2|x1]|x0]
*/

UINT16 TileYS4xMsaaElementOffset64 128bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT1l6 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations
xSwizzle = ((BIT8 & x) « 5) | // shift to bit position 13

(BIT7 & x) « 4) | // shift to bit position 11

(BIT6 & x) « 3) | // shift to bit position 9

(xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT4 & y) « 8) | // shift to bit position 12
((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

SampleSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions 15..14

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS4xMsaaElementOffsetl6 32bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT7 & x) « 6) | // shift to bit position 13
((BIT6 & x) « 7) | // shift to bit position 11

22 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views ‘ II'Il!E|

((BIT5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT5 & y) « 7) | // shift to bit position 12
((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

SampleSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions 15..14

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS4xMsaaElementOffset8bpe (UINT16 x, UINTl6 y, UINT1l6 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 13
((BIT5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT6 & y) « 6) | // shift to bit position 12
((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions 15..14

// OR the swizzled bit positions for final offset within a tile

return SampleSwizzle | xSwizzle | ySwizzle;

}

/*

| Num | Bits per element | Tiled element offset bits |
| Samples | |15 |14 |13 12111110 9| 8| 7| 6| 5| 4] 3| 2| 1] 0]
| | | | [S N T P P D e T P T e e
| 8x | 64 & 128 |ss2|ssl|ss0|yd|x7]y31x6|y2|x5|x4|yl|y0|x3|x2|x1]|x0]|
| | 16 & 32 |ss2|ssl|ssO|y5Ix6|y4|x5]y3Ix4|y2|yl|y0|x3|x2|x1|x0]
| | 8 |ss2|ssl|ss0|y6|x5]y5Ix4|y4|y3|ly2|yl|ly0|lx3|x2|x1]|x0]|
*/

UINT16 TileYS8xMsaaElementOffset64 128bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT7 & x) « 4) | // shift to bit position 11
((BIT6 & x) « 3) | // shift to bit position 9
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT4 & y) « 8) | // shift to bit position 12
((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((& y) « 4); // shift to bit positions 5..4

yMaskBitsl 0

Doc Ref # IHD-OS-KBL-Vol 5-1.17 23

‘ |ntE|) Memory Views

SampleSwizzle = (sample && SampleMask2 0) « 13;// shift to bit positions 15..13

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS8xMsaaElementOffsetl6 32bpe (UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 11
((BIT5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT5 & y) « 7) | // shift to bit position 12
((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask2 0) « 13;// shift to bit positions 15..13

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS8xMsaaElementOffset8bpe (UINT16 x, UINT1l6 y, UINT1l6 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BITS5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT6 & y) « 6) | // shift to bit position 12
((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask2 0) « 13;// shift to bit positions 15..13

// OR the swizzled bit positions for final offset within a tile

return SampleSwizzle | xSwizzle | ySwizzle;

}

/*

| Num | Bits per element | Tiled element offset bits |
| Samples | |15 |14 |13 |12 11110 9| 8| 7| 6| 5| 41 3| 2| 1] 0}
| | | | | S R A S PR PR NS U P U P
| 16x | 64 & 128 |ss3|ss2|ssl|ss0|x7|y3|x6]y2|x5|x4|yl]|y0|x3|x2|x1]|x0]
| | 16 & 32 |ss3|ss2|ssl|ss0|x6|y4|x5]y3Ix4|y2|yl|y0|x3|x2|x1]|x0]
| | 8 |ss3|ss2|ssl|ss0|x5|y51x4|y4|y3ly2|yl]ly0|x3|x2|x1]|x0]
*/

UINT16 TileYSl6xMsaaElementOffset64 128bpe (UINT16 x, UINT1l6 y, UINT16 sample)
{

24 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views ‘ II'Il!E|

UINT16 xSwizzle;
UINT16 ySwizzle;
UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT7 & x) « 4) | // shift to bit position 11
((BIT6 & x) « 3) | // shift to bit position 9
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT3 & y) « 7) | // shift to bit position 10
((BIT2 & y) « 6) | // shift to bit position 8
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

SampleSwizzle = (sample && SampleMask3 0) « 12;// shift to bit positions 15..12

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYSl6xMsaaElementOffsetl6é 32bpe (UINT16 x, UINT16 y, UINT1l6 sample)
{

UINT1l6 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 11
((BIT5 & x) « 6) | // shift to bit position 9
((BIT4 & x) « 5) | // shift to bit position 7
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT4 & y) « 6) | // shift to bit position 10
((BIT3 & y) « 5) | // shift to bit position 8
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask3 0) « 12;// shift to bit positions 15..12

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYSl6xMsaaElementOffset8bpe (UINT16 x, UINT1l6 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

// shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations

xSwizzle = ((BIT5 & x) « 6) | // shift to bit position 11
((BIT4 & x) « 5) | // shift to bit position 9
(xMaskBits3 0 & x); // leave in bits 3..0

ySwizzle = ((BIT5 & y) « 5) | // shift to bit position 10
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask3 0) « 12;// shift to bit positions 15..12

// OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

Doc Ref # IHD-OS-KBL-Vol 5-1.17

25

‘ |ntE|) Memory Views

/***\

TileYF 2D Tile address swizzling functions w/o pdep32
*k**k**/

/*

| Num | Bits per element | Tiled element offset bits |
| Samples | |15114 113112111110 9] 8| 7| 6| 5| 4] 3] 2| 1] 0]
| S S N e N P T P O D T N A e
| 1x | 64 & 128 | | | | [x71y31x6]|y2|x5Ix4|yl|y0|x3|x2|x1|x0]
| | 16 & 32 | | | | |x6|y4|x5]|y3|x41y2|yl|y0|x3|x2|x1|x0]
| | 8 [1 1x51y51x41ydly3ly2lylly0Ix3]1x2|x1[x0]|

*/
UINT16 TileYF2dElementOffset64 128bpe (UINT16 x, UINT16 y)

{
UINT16 xSwizzle;
UINT16 ySwizzle;

// shift bits in x and y to their respective TileYF swizzled bit locations

xSwizzle = ((BIT7 & x) « 4) |
((BIT6 & x) « 3) |
((xMaskBits5 4 & x) « 2) | // shift to bit positions 7..6
(

xMaskBits3 0 & x);

ySwizzle = ((BIT3 & y) « 7) |
((BIT2 & y) « 6) |
((yMaskBitsl 0 & y) « 4); // shift to bit positions 5..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYF2dElementOffsetl6 32bpe (UINT16 x, UINT16 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYF swizzled bit locations
xSwizzle = ((BIT6 & x) « 5) |

((BIT5 & x) « 4) |

((BIT4 & x) « 3) |

(xMaskBits3 0 & x);

ySwizzle = ((BIT4 & y) « 6) |
((BIT3 & y) « 5) |
((yMaskBits2 0 & y) « 4); // shift to bit positions 6..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYF2dElementOffset8bpe (UINT16 x, UINT16 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

// shift bits in x and y to their respective TileYF swizzled bit locations
xSwizzle = ((BIT5 & x) « 6) |

((BIT4 & x) « 5) |

(xMaskBits3 0 & x);

ySwizzle = ((BIT5 & y) « 5) |

26 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4

// OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

)
Tiled Channel Select Decision

There was a historical configuration control field to swizzle address bit[6] for in X/Y tiling modes. This was
set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13].

The swizzle fields are all reserved, and the CPU's memory controller performs all address swizzling
modifications.

Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions
operating upon tiled surfaces. (Note that not all device functions that access memory support tiled
formats). This requires either the modification of an element's linear memory address or an alternate
formula to convert an element's X,Y coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be used to determine
whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile
region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms
by which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address
falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters for surface
operands (i.e., parameters included in surface-defining instructions).

The following table identifies the tiling-detection mechanisms that are supported by the various memory
streams.

Access Path Tiling-Detection Mechanisms Supported
Processor access through the Graphics Memory Aperture | Fenced Regions
3D Render (Color/Depth Buffer access) Explicit Surface Parameters
Sampled Surfaces Explicit Surface Parameters
Blt operands Explicit Surface Parameters
Display and Overlay Surfaces Explicit Surface Parameters

Doc Ref # IHD-OS-KBL-Vol 5-1.17 27

:l"tEl Memory Views

Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics
client is to place them within “fenced” tiled regions within Graphics Memory. A fenced region is a block
of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface
Registers for details). Surfaces contained within a fenced region are considered tiled from an external
access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since
external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by
an internal graphics client) fall within a region covered by an enabled fence register, that enable will be
effectively masked during the internal graphics client access. Only the explicit surface parameters
described in the next section can be used to tile surfaces being accessed by the internal graphics clients.

Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information passed
in commands and state. This capability is provided to limit the reliance on the fixed number of fence
regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color
Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface
Parameter Description

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear
format.

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-
Major or X-Major tile format.

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile
width.

28 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition,
restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The
most restricted surfaces are those that will be accessed both by the host (via fence) and by internal
device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then
sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device
functions always specify tiling in terms of a surface. The surface must have a base address, and this base
address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y
addressing within the surface) are transformed through tiling. The base address of the surface must
therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device
pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than
or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by
the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated
in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base
address in graphics memory equal to the fence base address, and all accesses of the surfaces are
(possibly quite large) offsets from the fence base address. Fence regions have a virtual “left edge” aligned
with the fence base address, and a "right edge” that results from adding the fence pitch to the “left
edge”. Surfaces in the fence region must not straddle these boundaries.

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host
have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the
surface base address (as set in SURFACE_STATE) must be a “Tile Row Start Address” (TRSA). The first
address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base
address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base
address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.)

Doc Ref # IHD-OS-KBL-Vol 5-1.17 29

:l"tEl Memory Views

Tiled Surface Placement

Surface base Address = Fence Region *Right Edge” —

Tile Start address

32B 3w =
Fernce Base Linear (pra-tiled) Addressas Incre ase 2 168 OWs
Address > * ¥
"‘A. '
Surface Base 1 1= = k=
Address = s I i
Tile Zow 3
Start Address Directly N
ool e by Frt= = Ii -
Haat and Gfic I 11 [l
(if S urface
Pitel=Fance
Pitch}
i
1| 1= =
]| 1
Roéstqui reéma
résriap ping far
Accemin By Himt
T B = and Gf.
1| | 1
1
11
Fence Region J= Piteh ¥

“Left Edge

BE&E-101

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to
access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different
GTT mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess
rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in
pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by
SW between the time the host writes the surface and the device reads it, or it can be accomplished by
arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory Mapping
below).

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch
and the fence pitch in any scenario where a surface will be accessed by both the host and an internal
graphics client. Changing the GTT mapping will not help if this restriction is violated.

30 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Qn_til

Surface Access

Base Address

Pitch

Width

Tile “Walk”

Host only No restriction Integral multiple of tile size | Must be <= Fence | No restriction
<= 256KB Pitch
Client only 4KB-aligned Integral multiple of tile size |Must be <= Restrictions imposed by

<= 256KB

Surface Pitch

the client (see Per Stream
Tile Format Support)

Host and Client, |Must be TRSA Fence Pitch = Surface Pitch |Width <= Pitch Surface Walk must meet
No GTT = integral multiple of tile client restriction, Fence
Remapping size <= 256KB Walk = Surface Walk

Host and Client, |4KB-aligned for Both must be Integral Width <= Surface Walk must meet

GTT Remapping

client (will be tile-
aligned for host)

multiple of tile size
<=128KB, but not
necessarily the same

Min(Surface Pitch,
Fence Pitch)

client restriction, Fence
Walk = Surface Walk

Per-Stream Tile Format Support

MiI Client Tile Formats Supported
CPU Read/Write [All
Display/Overlay | Y-Major not supported
X-Major required for Async Flips
Blt Linear and X-Major only
No Y-Major support
3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowest.

3D Color,Depth

Rendering Mode

Color-vs-Depth bpp | Buffer Tiling Supported

Classical Both Linear

Same Bpp Both TileX
Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

Classical Both Linear

Mixed Bpp Both TileX
Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

Doc Ref # IHD-OS-KBL-Vol 5-1.17

31

:l"tEl Memory Views

Main Memory

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for
graphics functions. Some of this main memory can be “stolen” from the top of system memory during
initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to
satisfy application demands. To this end the graphics driver will frequently need to allocate locked-down
(i.e., non-swappable) physical system memory pages — typically from a cacheable non-paged pool. The
locked pages required to back large surfaces are typically non-contiguous. Therefore a means to support
“logically-contiguous” surfaces backed by discontiguous physical pages is required. The Graphics
Translation Table (GTT) that was described in previous sections provides the means.

Optimizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory (SM)
for optimal performance in certain configurations. The general idea is that these memories are divided
into some number of page types, and careful arrangement of page types both within and between
surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and therefore yield
somewhat higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is
somewhat complicated by (1) permutations of memory device technologies (which determine page sizes
and therefore the number of pages per device row), (2) memory device row population options, and (3)
limitations on the allocation of physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching
between open pages is optimal (again, the pages do not need to be sequential), (b) switching between
memory device rows does not in itself incur a penalty, and (c) switching between pages within a
particular bank of a row incurs a page miss and should therefore be avoided.

32 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'I tE|

Application of the Theory (Page Coloring)

This section provides some scenarios for how Main Memory page allocation can be optimized.

3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in
the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or
Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within
a Color or Depth Buffer should be mapped to different page types (where a page’s “type” or “color”
refers to the row and bank it's in).

Memory Pages Backing Color and Depth Buffers

Color Buffer

Page Page Page Page
Type 0| Type 1| Type 0 | Type 1

FPage FPage FPage Page
Type 2| Type 3| Type 2 | Type 3

FPage FPage FPage Page
Type 0] Type 1| Type 0] Type 1

Fage Fage Fage Page
Type 2| Type 3| Type 2 | Type 3

Depth Buffer

FPage FPage FPage Page
Type 3| Type 2| Type 3| Type 2

Page Page Page Page
Typel| Type 0| Type 1 | Type O

Page Page Page Page
Type 3| Type 2| Type 3 | Type 2

Page Page Page Page
Typel| Type 0| Type 1 | Type O

Be701-01

For higher performance, the Color and Depth Buffers could be allocated from different memory device
rows.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 33

:l"tEl Memory Views

Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The U
and V surfaces would split the same 4 page types as used in the Y surface.

Physical Graphics Address Types

The Physical Memory Address Types table lists the various physical address types supported by the
integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory
mappings or are directly specified by graphics device functions. These physical addresses are not subject
to tiling or GTT re-mappings.

Physical Memory Address Types

Address
Type Description Range
MM_Address | Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1]

SM_Address |System Memory Address. Accesses are snooped in processor cache, allowing |[0,512GB]
shared graphics/ processor access to (locked) cacheable memory data.

Graphics Virtual Memory

The GPU uses a virtual memory address space, where the graphics virtual address is mapped through a
Page Table (PPGTT) to a physical memory address. Normally, this mapping is set up by the graphics
device driver and is private to the GPU context. However, in some cases the graphics virtual address is
shared with the CPU — see Shared Virtual Memory (SVM) for more information.

The range of valid graphics virtual addresses, and the types of page tables supported for address
translation, varies with the GPU configuration. See the Configurations section for a summary the ranges
and features supported by a specific graphics device.

Although the range of supported graphics virtual addresses varies, most GPU commands and GPU
instructions use a common 64 bit definition for a graphics virtual address. Addresses outside of the
supported range are reserved for future address space expansion. See the GraphicsAddress structure
definition for specific details.

Some GPU devices support an extended graphics virtual memory address mapping called Tiled
Resources. When enabled, the Tiled Resources Translation Table (TR-TT) pre-processes graphics virtual
addresses. TR-TT maps a graphics virtual memory address either to a new graphics virtual memory
address or to a Null Tile. Null Tiles return zero on reads and drop writes. For translations that are not Null
Tiles, the new graphics virtual memory address is then used for the graphics virtual address and
translated through the normal Page Table to generate a physical memory address.

34 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Graphics Translation Tables

GT supports standard virtual memory models as defined by the IA programmer’s guide. This section
describes the different paging models, their behaviors, and the page table formats.

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)
and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an
array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to
physical memory addresses, and sometimes snooped system memory “PCl” addresses.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and
PGTBL_CTL2 Ml registers, respectively. The translation table base addresses must be 4KB aligned. The
GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes
respectively) and is physically contiguous. The global GTT should only be programmed via the range
defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT)
size is controlled by the PGTBL_CTL?2 register. The PPGTT can, in addition to the above sizes, also be 64KB
in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE
entries.

GFX Page Tables

GPU supports three page table mechanisms

e |A32e compatible GTT
e PPGTT — private per process GTT (private GFX)
e GGTT - global GTT

All page tables use the same 64-bit PTE format. Differences are in how various bit fields applies (vs
reserved) under various usage models.

Tiled Resources Translation Tables

Sparse Tiled Resources can be thought of as a kind of application-controlled virtual memory scheme. The
application allocates a resource in a virtual address space. Then the application tells the driver to map
specified 64KB tiles within the surface to memory, within resources called Tile Pools. Tiles that are not
mapped to a Tile Pool are null tiles.

Tiled Resource Translation Table (TRTT) is constructed as a 3 level tile Table. Each tile is 64KB in size
which leaves behind 44-16=28 address bits. 28bits are partitioned as 9+9+10 which corresponds to
TRVATT L3, L2 and L1 respectively. This is where TRVATT L3 has 512 entries, L2 has 512 entries and L1 has
1024 entries where each level is contained within a 4KB page hence L3 and L2 is composed of 64b entries
and L1 is composed of 32b entries.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 35

Memory Views

6[6]6 oo 3[3[3]3]2]2 AR LT [T Ta A T T
3)2 3|8(716| 3[2|1{0]3}8 l7(6slalsl2 ool (PP P12
S|P
Ignored Address of the TRVATTL2 lgnored uin
iy entry
il TRVATT-12
Ignored Address of the TRVATTL1 lgnored u n\
[
Tile Virtual Address A
entry

The contents of the TRVATT tables are as listed above where L3 and L2 points to the address of the next

level which is a 4KB page and L1 contains the 32b VA address pointer needed to map the TR tile to
virtual address space.

L1 Entry:

Bits Field

Description

31:0 | ADDR: Address | GFX virtual address of 64KB tile is referenced by this entry.

This field is treated as GFX Virtual Address (GVA) when translated and maps to 47:16.

L2 Entry:
Bits Field Description
63:48 | Ignored Ignored (h/w does not care about values behind ignored registers)
47:12 | ADDR: GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L1.
Address

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address
mode chosen by GFX software.

11:2 [Ignored

Ignored (h/w does not care about values behind ignored registers)

1 [Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.
0 |Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is
generated to GFX software when an invalid tile is accessed.
36

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

L3 Entry:
Bits Field Description
63:48 | Ignored Ignored (h/w does not care about values behind ignored registers)
47:12 | ADDR: GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L2.

Address TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address
mode chosen by GFX software.

11:2 [Ignored Ignored (h/w does not care about values behind ignored registers)
1 | Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.
0 |Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is

generated to GFX software when an invalid tile is accessed.

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver has to disable the TR-TT bypass mode before using tiled resoruces translation tables. Details of the
registers are given in "registers for TR-TT management."

Programming Note

Context: ITiIed ResourceTranslation Tables in Gfx Page Tables

GFX Driver is not allowed to put TR-TT entries into TR-VA space.

Programming Note

Context: ITiIed ResourceTranslation Tables in Gfx Page Tables

Usage model for TR translations are restricted to GFX Render Engine (& POSH pipeline).

Programming Note

Context: |Ti|ed ResourceTranslation Tables in Gfx Page Tables

TRTT is only for PPGTT64 (Advanced or Legacy PPGTT64). Enabling TRTT in Legacy PPGTT32 context or GGTT
context is considered as invalid programming.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 37

Qn_til

Registers for TR-TT Management

Memory Views

Following register is a global mechanism to disable the bypass mode which is considered to be default
for h/w. GFX driver has to set this bit to disable bypass mode before using TR-TTs.

Following registers shall be part of the h/w context.

Tiled Resources VA Translation Table L3 Pointer

Register Space: MMIO: 0/2/0
DWord | Bit Description
! LR Reserved
Access: RO
Reserved.
47:32 |
Tiled Resource — VA translation Table L3 Pointer (Upper Address)
Default Value: 0000h
Access: R/W
Upper address bits for tiled resource VA to virtual address translation L3 table.
For physical memory option, address bits [47:39] has to be programmed to "0" as it is defined the
limit of physical memory allocation.
0 31:16 | 1. . .
Tiled Resource — VA translation Table L3 Pointer (Lower Address)
Default Value: 0000h
Access: R/W
Lower address bits for tiled resource VA to virtual address translation L3 table.
150 Reserved
Access: RO
Reserved.

38

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Tiled Resources Null Tile Detection Register

Register Space: MMIO: 0/2/0
DWord | Bit Description
31.0

Null Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Null
Tiles. Hardware will flag each entry and space behind it as Null Tile for matched entries.

Tiled Resources Invalid Tile Detection Register

Register Space: MMIO: 0/2/0
DWord | Bit Description
31:0

Invalid Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Invalid
Tiles. Hardware will flag each entry and space behind it as Invalid Tile for matched entries.

Tiled Resources Virtual Address Detection Registers (TRVADR)

Register Space: MMIO: 0/2/0
DWord | Bit Description
0 31:8 Reserved
Access: RO
Reserved.
7:4

TRVA Mask Value (TRVAMV)

Default Value: 0000b

Access: R/W

4bit MASK value that is mapped to incoming address bits[47:44]. MASK bits are used to identify
which address bits need to be considered for compare. If particular mask bit is “1”, mapping address
bit needs to be compared to DATA value provided. If “0”, corresponding address bit is masked which

Doc Ref # IHD-OS-KBL-Vol 5-1.17 39

Memory Views

Tiled Resources Virtual Address Detection Registers (TRVADR)

makes it don't care for compare (this field defaults to “0000" to disable detection)

Note that h/w supports two possible values for MASK: "0000" which is disabled case and "1111" where
44 bit TR-VA space is carved out.

30 TRVA Data Value (TRVADV)
Default Value: Ob
Access: R/W

4bit DATA value that is mapped to incoming address bits[47:44]. Data bits are used to compare
address values that are not filtered by the TRVAMV for match.

Tiled Resources Translation Table Control Register (TRTTE)

Register Space: MMIO: 0/2/0
DWord | Bit Description
0 312 Reserved
Access: RO
Reserved.

TR-VA Translation Table Memory Location

Default Value: Ob

Access: R/W

This fields specifies whether the translation tables for TR-VA to VA are in virtual address space vs
physical (GPA) address space.

0: Tables are in Physical (GPA) Space
1: Tables are in Virtual Address Space

Tiled Resource Translation Tables in GPA space is not supported in any GEN generations. this
mode should never be set as GPA mode (always set to ‘1). HW will set TRTT tablesin Virtual
address space mode only.

40 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Tiled Resources Translation Table Control Register (TRTTE)

0 TR-TT Enable
Default Value: Ob
Access: R/W

TR translation tables are disabled as default. This field needs to be enabled via s/w to get TR
translation active.

The following register (0x4DFC[0]) has enable and disable control of the bypass path across TR
translations. By default, bypass is enabled, and bypass needs to be disabled (by setting 0x4DFC[0] = '1)
for TR translations to function. Disabling the bypass should be done before render power gating is
enabled.

Detection and Treatment of Null and Invalid Tiles

Two types of definition that need to be extracted from TR-VA walk in addition to reaching the GFX virtual
address.

1. Null Tiles: Null tiles provide the applications the of capability to preventing OS mapping the entire
surface. When a memory access hits a Null tile, the access is terminated and zero’s are returned to
the originator of the memory access for loads along with a null indicator and for stores the access
is dropped at the page walker level.

2. Invalid Tiles: This is the case where GFX software did not update the value of the mapping
properly for hardware to separate resident vs null tiles. The Invalid Tile treatment is exactly same
however additionally a unique interrupt is generated in h/w

Both detections are done by GPU:

e For L2/L3 entries, Null and Invalid tile information is already embedded in the TR-TT entries

e For L1 entries, the contents (32bits) are compared in hardware to pre-programmed values by GFX
software (values are provided in GFX MMIO space). For the match values, two separate 32b registers
are defined, one for Null Tile detection and one for Invalid Tile detection.

Hardware walking matching the value or detecting L2/L3 would terminate the walk (i.e. rest of the tables
are not valid) and define the access as either Null or Invalid.

Programming Note

Context: I Detection and treatment of null and invallide tiles.

The software is not allowed to program both Null and Invalid values to be the same.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 41

:l"tEl Memory Views

Programming Note

Context: TileX Surfaces and Null Tiles

NULL or Invalida Tiles are not supported on TileX surfaces.

GPU implements a counter mechanism to roll-up the Null tile accesses detected. The counter value is
exposed to GFX software via GFX MMIO.

When the TR translation tables are in Gfx virtual address domain, the pages faults encountered while
walking the IA32e pages are not reported back to the TR walkers or TLBs. These faults are handled as fault
& halt, making these faults transparent to the TR walkers. However, when such a fault is not fixed
(unsuccessful fault response) or when a non-recoverable fault encountered, main page walker HW
convertes the cycle to an invalid cycle. Thus, in this case, TR walker or TR TLBs will get incorrect read return
data without any notification of the non-recoverable fault condition. Thus TR walker/TLBs will continue
with the TR-walk with incorrect data. This can lead to spurious cycles being generated. However, a Gfx
reset/FLR is expected as a result of the non-recoverable fault.

TR-TT Modes

The L3 table pointer along with TRTTL3e/TRTTL2e is projected to support two modes of address space.
Original intent was to have the contents to be in Virtual Address space (OS managed) and have them to
be translated to GPA to HPA before getting accessed. Such mechanism will incur high latency penalties
due to nested page translations. GPU shall have an additional mode where tiled-resources translation
tables are in physical address space (GPA) and eliminate the need to have nested translations to reduce
the potentially high miss latencies.

TR-TT walker shall have both modes supported. The Mode bit will be part of the same Register that
provides TR-VA TT L3 pointer.

Virtual Addressed TR Translation Tables

Having sparse tiled resource translation tables in GFX virtual space requires the h/w TR-TT walker to walk
thru the 1+t level tile tables for table accesses to reach to Physical address at the L1 TR translation tables.

The following diagrams provide the view of the walk TR-VA translation tables are in physical memory and
no 2 Level (VTd) translations enabled.

42 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views { i"t‘El

1A32¢e Page Table
Pointer from PASID
TR-VA Table L3 Page Map L4 | Page Directory : Trandaticn
Pointer ‘ Entry = Pointer Table Entry G ey Eotn [Page Tabie Enty lauai
|
Lot) Page Map L4 Page Di .
Hrandation ¥ age Map age Directory 5 dealioni
M TR-VA Table L3 entry Entry —> Pointer Table Entry ~— Page Directory Entry —» Page Table Entry Tali j
J
: Page Map L4 Page D wze]?
7 age Map | Page Directory : Trandation|
TR-VA Table L2 entry Eriry B Tk Entry ~——» Page Directory Entry —» Page Table Entry "“"]
]
N —
TR-VA Table L1 entry
Virtual Address
|1A32e Page Table
Pointer from PASID
132
Translation Page Map L4
Tables Entry
Page Directory
Pointer Table Entry
Page Directory Entry
Page Table Entry

Final Page Frame

Once 2 |evel translations are enabled each level of 1<t level walk needs to be further walked through
VTd page tables.

The level of nested walks does not change the structure of the TR-VA walker; it just defines the recursive
nature of the translations.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 43

Memory Views

Qn_til

TR-TT Page Walk

Sparse Tiled Resources translation tables are separated into 3-levels. The pointer to L3 table is going to
be set up in GFX MMIO space as part of the context, this pointer be would be available to page walker
ahead of any TR-VA memory accesses.

TR-TT L3 walk will be consistent of calculating the 64b of interest based on the L3 table pointer and
using the 9 bit index (address bits[43:35]). L2 will use TR-TT L3 entry as the table pointer and use the next
set of 9 address bits ([34:26]) to locate the L2 entry which is a pointer to L1 table. Final L1 table is located
with L2 entry and indexed by remaining 10 address bits (25:16) to index where 32b virtual address is
extracted.

Post TR-TT walk 32b entry from L1 is mapped to final virtual address 47:16 and remaining 15:0 is passed
from the original TR-VA access as is given all tiles in TR-VA space are 64KB in size.

rATa<[a]a BHE 31” 31:" 0!
{zl6]s]al3| Isal leis] l61s

Unused TR-VATT L3 Index TR-VATT L2 Index TR-VA TT L1 Index Offset inside Tile

Final Tile

L Virtual Mem

TR-VATT >
L2

| Virt. Add.

TR-VATT

—> TRTTL2e

| TR-VATT

L TRTTL3e '

TR-VA Translation Table
L3 Pointer
{from Register Space)

44 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views t II'ItE'

Page Table Modes

GFX Aperture and Display accesses are mapped thru Global GTT to keep the walk simple (i.e. 1-level) and
latency sensitive. GPU accesses to memory can be mapped via Global GTT and/or ppGTT with various
addressing modes.

Supported walk modes are listed as following:

1. Global GTT with 32b virtual addressing: Global GTT usage is similar to previous generations with
extended capability of increasing virtual address (VA) up to 4GB (from 2GB) and use a standard
64b PTE format. The breakdown of the PTE for global GTT is given in later sections and allows 1-
level page walk where the 20b index is used to select the 64b PTE from memory.

2. Legacy 32b VA with ppGTT: This is a mode where ppGTT page tables are considered private and
managed via GFX sotfware (driver) where context is tagged as Legacy 32b VA. Each page walk is
managed via 9b of the virtual address and 20b index to address 4GB memory space is broken into
3 parts. In order to optimize the walks and make it look like previous generations, GFX sotfware
provides 4 pointers to page tables (called 4 PDP entries) all guest physical address. GPU uses the
four pointers and fetches the 4x4KB into h/w (for render and media) before the context execution
starts. The optimization limits the dynamic (on demand) page walks to 1-level only.

3. Legacy 48b VA with ppGTT: GFX address expansion beyond 4GB is added to address 48b virtual
address space. 48b VA requires 36b indexing (4x9b) translating into 4-levels of page walk. To
reduce the overhead of 4 level walk, GPU will cache the entire content of PML4 (4kB) to limit the
on-demand walks to 3 levels. The caching happens as part of the initial demand where no further
replacements required.

4. Advanced 48b VA with 1A32e support via IOMMU: 48b addressing in advanced mode is
managed via IOMMU settings where the base of the page table shall be found after the root /
context tables using bus/device/function values. PASID# is used as an index in PASID table to find
page table pointer to start the 4-level page walk. Rest of the mechanism is similar to Legacy 48b
VA mode, GPU has the capability to cache entire content of PML4 and try to limit the dynamic
page walks to 3-level.

Per Process GTT

GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks on hardware. The
listed mechanisms here are selectable per-context and descriptors are delivered to hardware as part of
context descriptor.

The entry contents are also modified to match the same format as I1A32e page tables allowing future
expansion for sharable page tables as well as higher order virtual addressing.

Page Tables Entry (PTE) Formats

Page Table Entry (PTE) formats follow the IA32e layout shown below. Note that the Hardware Address
Width (HAW) is determined by Uncore: typically 39 for client products and 46 for server products.

Doc Ref # IHD-OS-KBL-Vol 5-1.17 45

Memory Views

G|6|6]6/5/5|5]5/5/5|5]5 3321222222222 AL [T [T L A1 L]2 (2]] - [
3|2|1]|ojsis|7|s]5)a|3]2 HAW. pawct t|ofsls|z]s|slalalz]1]olalslzl6lslal3]2]1l012 137151312313 2{®
I e 2| PPIUR
ZD Ignored Rsvd. Address of page-directory-pointer-table 8|, Ien i glAC/W/I/IP| | PMLEE
n n DIT|SW
d
P|1 PlPIUR

X Address of the E . PDPE
Ignored Rsvd. Reserved Alg| 'glGl1IDACW/!/ P
D 1GB A 1GB P
? BAEE Tin/"n piT[s/w | | LGB PaEe)
Iy | £ 1| [P{PUR PDPE
D Ignored Rswd. Address of page-directory-table B, lgn(0|g/AC/W/|f P Page
| n n| |D|T|S{W || Directory

!
k P1]|1] PIPUR -
;D lgnored Rswd. Address of the 2MB page Reserved Alg A‘g!G 1DACW/If P (2MB Page)
: T/n/"In D|T|S W v

| |
l, e 1| |p|PlURR e
;D lgnored Rsvd. Address of page-table P A lgn (Ojg AC/W/ [P Page Table
f s n| [DT[s|wW | |8

x
lx e|t] [P | [PIPUIR =
lgnored Rsvd. Address of the 64KB MB page Rswd. |g|, 'g|GADACW/ fPl| :
D A (64KE Page)
| n{ in| (T DiT|S'W

x
ly Ay PIPIUR -
;D Ignored Rsvd. Address of 4KB Page 8,8 G|1|DIAIC|W/!/IP (4KB Page)
% n"In D|T|S|W -

Each table entry is further broken down along with the required functions. GFX has a 4-level page table
which is pointed out by context descriptor starting with the 4th level of PML4. The next levels have
slightly different formats depending on the size of the page supported. 1GB and 2MB page formats are

required for support.

Page walk in advanced mode with 48b VA requires 4 levels. The walk will start with a PML4 table pointer
extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page:

46

Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

‘33
k]

[1{0

Page Directory Pointer

PML4 Index e Page Directory Index Page Table Index Offset inside Page
Final Page
> Phy Mem |
Page Table
— PIE
PD Table
B > PDE
PDP Table
o POPE_—
PML4
Table
— PML4E ——
PML4 pointer from
PASID Entry

A 64 bit (48b canonical) address requires 4 levels of page table format where the context carries a

pointer to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk

thru various levels.

To repurpose the caches the following mechanism is used:

e 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

e Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
e VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

Doc Ref # IHD-OS-KBL-Vol 5-1.17

47

:Intel Memory Views

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD.

The 64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB
page. In a page table every 16th entry (PTE#0, PTE#16, PTE#32, ... PTE#496) should be used to index. This
is calculated using address[20:16] & “0000". Note that hardware should not make any assumptions for
any other PTEs.

~

[3]2

[4 ‘3 3
1013

17 E1E:

11
il :

Page Directory Pointer

PML4 Index i Page Directory Index Page Table Index Offset inside Page
Final Page
—— Phy Mem
Page Table
. _PIE
PD Table
| >
—_—
B » PDE —
PDP Table
» PDPE ——
PML4
Table
» PMU4E —
PML4 pointer from
PASID Entry

With the 2MB Page walk, the last level of the page walk is skipped where the PD entry points to the final
page.

48 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Final Page

7 ETE] 32 22
7 ls 5\ Iu 9l ‘1 0| -U
PML4 Index e D"T:;Z;y SORr Page Directory Index Offset inside Page
——————— Phy Mem
PD Table
» PDE
PDP Table
\
» PDPE —
PML4
Table
» PML4E
PML4 pointer from
PASID Entry

For the support for 1GB page size, the following mechanism is needed.

Doc Ref # IHD-OS-KBL-Vol 5-1.17

5
o

:i“tEl Memory Views

l-l |3E J33
7 9|8 0|3

PMA ey | FeeDedton folnter Offset inside Page
Index
Final Page
> Phy Mem
PDP Table
o POPE_|
PML4
Table
» PMU4E —
PML4 pointer from
PASID Entry

Pointer to PML4 Table

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be
provided by PASID table entry in case of advanced context, else it will be provided by software as part of
the legacy context with 48b addressing.

Details of PASID entry is given in later sections.

50 Doc Ref # IHD-OS-KBL-Vol 5-1.17

Memory Views

Qn_til

PMLA4E: Pointer to PDP Table

PML4 is used to locate the page directory pointer tables distributed in physical memory. PML4 will be
used for advanced GPGPU context scheduled via PASID table as well as legacy context with 48b VA.

HEEEEEEE] T——] [3]3]2 HEABBEREEERERENNEEER NN
sémnac%?s ‘H‘*" HAWH | lslols 12|10 9;3!?1554333 1;0"5' "SJ"‘""\
i 1 fz 1| |plpluR
| Ignored Rswd. Address of page-directory-pointer-table gl llan| |gAC \51;' /Pl | PMLEE
D| A v
n| n D|T|SW
I d
Bits Field Description
63 XD: Execute If NXE=1 in the relevant extended-context-entry, execute permission is not granted
Disable for requests to the memory region controlled by this entry when XD=1.
62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 0’s)
(HAW- [ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by this
1:12 entry.
This field is treated as Guest Physical Address (GP