

© 2013 Intel Corporation

Intel Open Source Graphics Programmer’s Reference
Manual (PRM) for the 2013 Intel® Core™ Processor
Family, including Intel HD Graphics, Intel Iris™
Graphics and Intel Iris Pro Graphics

Volume 3: GPU Overview (Haswell)

1/21/2014

 1

Copyright
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.

2

GPU Overview

Table of Contents

Introduction ... 5

Graphics Processing Unit (GPU) ... 6

Command Stream (CS) Unit ... 7

3D Pipeline .. 8

Media Pipeline ... 9

Thread Dispatching ... 10

Execution Units (EUs) .. 11

Shared Functions .. 12

Fixed and Shared Function IDs ... 13

Video Codec Engine .. 15

Register Address Maps .. 17

Graphics Register Address Map ... 17

Memory and IO Space Registers ... 18

PCI Configuration Space ... 19

VGA and Extended VGA Register Map .. 19

VGA and Extended VGA I/O and Memory Register Map .. 20

Indirect VGA and Extended VGA Register Indices .. 22

Memory Object Overview .. 25

Hardware Status Page .. 27

Instruction Ring Buffers ... 28

Instruction Batch Buffers ... 29

Logical Contexts ... 30

MFX Logical Context Data.. 31

Overall Context Layout ... 31

Context Layout .. 31

Register/State Context .. 31

Copy Engine Logical Context Data ... 33

Overall Context Layout ... 33

Context Layout .. 33

 3

Register/State Context ... 34

Video Enhancement Logical Context Data .. 35

Overall Context Layout ... 35

Context Layout .. 35

Memory Data Formats ... 36

Unsigned Normalized (UNORM).. 37

Gamma Conversion (SRGB) .. 38

Signed Normalized (SNORM).. 39

Unsigned Integer (UINT/USCALED) .. 40

Signed Integer (SINT/SSCALED) ... 41

Floating Point (FLOAT) ... 42

64-bit Floating Point .. 43

32-bit Floating Point .. 44

16-bit Floating Point .. 45

11-bit Floating Point .. 47

10-bit Floating Point .. 48

Shared Exponent .. 49

4

Introduction
The integrated graphics component, specifically called the Graphics Processing Unit, or GPU, resides on
the same chip die as the Central Processing Unit, or CPU, and communicates with the CPU via the on-
chip bus, with internal memory and with output device(s). As Intel GPUs have evolved, they now occupy a
significant percentage of space on the chip, and provide customers with high performance and low-
power graphics processing, eliminating the need to purchase a separate video card for most users.

This Programmer’s Reference Manual, or PRM, provides detailed narrative and referential information
required by graphics device driver engineers and graphics API-level programmers to take advantage of
the sophisticated architecture and programmability of the GPU.

 5

Graphics Processing Unit (GPU)

The Graphics Processing Unit is controlled by the CPU through a direct interface of memory-mapped IO
registers, and indirectly by parsing commands that the CPU has placed in memory. The Display interface
and Blitter (block image transferrer) are controlled primarily by direct CPU register addresses, while the
3D and Media pipelines and the parallel Video Codec Engine (VCE) are controlled primarily through
instruction lists in memory.

The subsystem contains an array of cores, or execution units, with a number of "shared functions", which
receive and process messages at the request of programs running on the cores. The shared functions
perform critical tasks, such as sampling textures and updating the render target (usually the frame
buffer). The cores themselves are described by an instruction set architecture, or ISA.

 Block Diagram of the GPU

6

Command Stream (CS) Unit

The Command Stream (CS) unit manages the use of the 3D and Media pipelines; it performs switching
between pipelines and forwarding command streams to the currently active pipeline. It manages
allocation of the URB and helps support the Constant URB Entry (CURBE) function.

 7

3D Pipeline

The 3D Pipeline provides specialized 3D primitive processing functions. These functions are provided by
a pipeline of "fixed function" stages (units) and GEN threads spawned by these units. See 3D Pipeline
Overview.

8

Media Pipeline

The Media pipeline provides both specialized media-related processing functions and the ability to
perform more general ("generic") functionality. These Media-specific functions are provided by a Video
Front End (VFE) unit. A Thread Spawner (TS) unit is utilized to spawn GEN threads requested by the VFE
unit, or as required when the pipeline is used for general processing. See Media Pipeline Overview.

 9

Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread
Dispatcher receives the requests. The dispatcher performs such tasks as arbitrating between concurrent
requests, assigning requested threads to hardware threads on EUs, allocating register space in each EU
among multiple threads, and initializing a thread's registers with data from the fixed functions and from
the URB. This operation is largely transparent to software.

10

Execution Units (EUs)

While the number of EU cores in the subsystem is almost entirely transparent to the programming
model, there are a few areas where this parameter comes into play:

• The amount of scratch space required is a function of (#EUs * #Threads/EU)

Device # of EUs #Threads/EU

[DevHSW-GT3] 40 7

[DevHSW-GT2] 20 7

[DevHSW-GT1] 10 7

 11

Shared Functions

Shared functions are hardware units which serve to provide specialized supplemental functionality for the
EUs. A shared function is implemented where the demand for a given specialized function is insufficient
to justify the costs on a per-EU basis. Instead a single instantiation of that specialized function is
implemented as a stand-alone entity outside the EUs and shared among the EUs.

Invocation of the shared functionality is performed via a communication mechanism called a message. A
message is a small self-contained packet of information created by a kernel and directed to a specific
shared function. Messages are dispatched to the shared function under software control via the send
instruction. This instruction identifies the contents of the message and the GRF register locations to
direct any response.

The message construction and delivery mechanisms are general in their definition and capable of
supporting a wide variety of shared functions.

12

Fixed and Shared Function IDs

The following table lists the assignments (encodings) of the Shared Function and Fixed Function IDs used
within the GPE. A Shared Function is a valid target of a message initiated via a 'send' instruction. A Fixed
Function is an identifiable unit of the 3D or Media pipeline. Note that the Thread Spawner is both a
Shared Function and Fixed Function.

Function IDs [HSW]

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 Reserved --- Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 SFID_DP_SAMPLER Sampler Cache Data Port FFID_HS Hull Shader

0x5 SFID_DP_RC Render Cache Data Port FFID_DS Domain Shader

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

0x8 SFID_VME Video Motion Estimation FFID_VFE Video Front End

0x9 SFID_DP_CC Constant Cache Data Port FFID_VS Vertex Shader

0xA SFID_DP_DC Data Cache Data Port FFID_CS Command Stream

0xB SFID_PI Pixel Interpolator FFID_VF Vertex Fetch

0xC Reserved --- FFID_GS Geometry Shader

0xD Reserved --- FFID_CLIP Clipper Unit

0xE Reserved --- FFID_SF Strip/Fan Unit

0xF Reserved --- FFID_WM Windower/Masker Unit

Function IDs [HSW]

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 Reserved --- Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 SFID_DP_SAMPLER Sampler Cache Data Port FFID_HS Hull Shader

0x5 SFID_DP_RC Render Cache Data Port FFID_DS Domain Shader

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

0x8 SFID_VME Video Motion Estimation Reserved ---

 13

ID[3:0] SFID Shared Function FFID Fixed Function

0x9 SFID_DP_CC Constant Cache Data Port FFID_VS Vertex Shader

0xA SFID_DP_DC0 Data Cache Data Port0 FFID_CS Command Stream

0xB SFID_PI Pixel Interpolator FFID_VF Vertex Fetch

0xC SFID_DP_DC1 Data Cache Data Port1 FFID_GS Geometry Shader

0xD SFID_CRE Check & Refinement Engine Reserved ---

0xE Reserved --- FFID_SF Strip/Fan Unit

0xF Reserved --- FFID_WM Windower/Masker Unit

[DevHSW+] SFID_DP_DC1 is an extension of SFID_DP_DC0 to allow for more message types. They act as
a single logical entity.

14

Video Codec Engine

The parallel Video Codec Engine (VCE) is a fixed function video decoder and encoder engine. It is also
referred to as the multi-format codec (MFX) engine, as a unified fixed function pipeline is implemented
to support multiple video coding standards such as MPEG and VC1:

• VCS – VCE Command Streamer unit (also referred to as BCS)
• BSD – Bitstream Decoder unit
• VDS – Video Dispatcher unit
• VMC – Video Motion Compensation unit
• VIP – Video Intra Prediction unit
• VIT – Video Inverse Transform unit
• VLF – Video Loop Filter unit
• VFT – Video Forward Transform unit (encoder only)
• BSC – Bitstream Encoder unit (encoder only)

 15

VCE Diagram

Device AVC BSD VC1 BSD AVC Dec VC1 Dec MPEG2 Dec AVC Enc

 No No Yes Yes Yes Yes

16

Register Address Maps

Graphics Register Address Map

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers.
Individual register bit field descriptions are provided in the following chapters. PCI configuration address
maps and register bit descriptions are provided in the following chapter.

 17

Memory and IO Space Registers

These are graphics MMIO ranges used for [HSW]. Note that this is only a subset of the complete
definition of the MMIO address space.

Range Start (Hex) Range End (Hex) Unit Owning The Range

00002000 00002FFF Render/Generic Media Engine

00004000 00004FFF Render/Generic Media Graphics Memory Arbiter

00012000 000123FF MFX Control Engine (Video Command Streamer)

00012400 00012FFF Media Units (VIN Unit)

00014000 00014FFF MFX Memory Arbiter

00022000 00022FFF Blitter Engine

00024000 00024FFF Blitter Memory Arbiter

00100000 00107FFF Fence Registers

00140000 0017FFFF MCHBAR (SA)

Note: 8800h-88FFh is a reserved range for GT. IA accesses to this region have no impact.

18

PCI Configuration Space

VGA and Extended VGA Register Map

For I/O locations, the value in the address column represents the register I/O address. For memory
mapped locations, this address is an offset from the base address programmed in the MMADR register.

 19

VGA and Extended VGA I/O and Memory Register Map

I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h–
3B3h

Reserved Reserved

3B4h VGA CRTC Index (CRX) (monochrome) VGA CRTC Index (CRX) (monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h–
3B9h

Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh–
3BFh

Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/
VGA Attribute Controller Data (alternating writes select ARX or
write ARxx Data)

3C1h VGA Attribute Controller Data
(read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register (MSR)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index (DACRX)

3C8h VGA Color Palette Write Mode Index
(DACWX)

VGA Color Palette Write Mode Index (DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register
(MSR)

Reserved

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx)

3D0h–
3D1h

Reserved Reserved

20

Address Register Name (Read) Register Name (Write)

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions
Index (XRX)

GFX/2D Configurations Extensions Index (XRX)

3D7h GFX/2D Configurations Extensions
Data (XRxx)

GFX/2D Configurations Extensions Data (XRxx)

2D Registers

3D8h–
3D9h

Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh–
3DFh

Reserved Reserved

 21

Indirect VGA and Extended VGA Register Indices

The registers listed in this section are indirectly accessed by programming an index value into the
appropriate SRX, GRX, ARX, or CRX register. The index and data register address locations are listed in
the previous section. Additional details concerning the indirect access mechanism are provided in the
VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or CRxx sections).

2D Sequence Registers (3C4h / 3C5h)

Index Sym Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset

01h GR01 Enable Set / Reset

02h GR02 Color Compare

03h GR03 Data Rotate

04h GR04 Read Plane Select

05h GR05 Graphics Mode

06h GR06 Miscellaneous

07h GR07 Color Don't Care

08h GR08 Bit Mask

10h GR10 Address Mapping

11h GR11 Page Selector

18h GR18 Software Flags

22

2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Overscan Color

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

 23

2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

22h CR22 Memory Read Latch Data

24

Memory Object Overview
Any memory data accessed by the device is considered part of a memory object of some memory object
type.

The following table lists the various memory objects types and an indication of their role in the system.

Memory Object
Type Role

Graphics Translation
Table (GTT)

Contains PTEs used to translate "graphics addresses" into physical memory addresses.

Hardware Status
Page

Cached page of sysmem used to provide fast driver synchronization.

Logical Context
Buffer

Memory areas used to store (save/restore) images of hardware rendering contexts. Logical
contexts are referenced via a pointer to the corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary means of controlling
rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be read by hardware. Many
different state descriptor formats are supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through "indexed" 3D primitive instructions.

VGA Buffer

(Must be mapped
UC on PCI)

Graphics memory buffer used to drive the display output while in legacy VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display devices.

Overlay Register,
Filter Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register and filter coefficient
loading.

Cursor Surface Hardware cursor pattern in memory.

2D Render Source Surface used as primary input to 2D rendering operations.

2D Render R-M-W
Destination

2D rendering output surface that is read in order to be combined in the rendering function.
Destination surfaces that accessed via this Read-Modify-Write mode have somewhat
different restrictions than Write-Only Destination surfaces.

2D Render Write-
Only Destination

2D rendering output surface that is written but not read by the 2D rendering function.
Destination surfaces that accessed via a Write-Only mode have somewhat different
restrictions than Read-Modify-Write Destination surfaces.

2D Monochrome
Source

1 bpp surfaces used as inputs to 2D rendering after being converted to
foreground/background colors.

 25

Memory Object
Type Role

2D Color Pattern 8x8 pixel array used to supply the "pattern" input to 2D rendering functions.

DIB "Device Independent Bitmap" surface containing "logical" pixel values that are converted (via
LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be accessed via R-M-W
(aka blending). Also referred to as a Render Target.

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D rendering operations.
Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture data in 3D rendering
operations.

"Non-3D" Texture Surface read by Texture Samplers, though not in normal 3D rendering operations (e.g., in
video color conversion functions).

Motion Comp
Surfaces

These are the Motion Comp reference pictures.

Motion Comp
Correction Data
Buffer

This is Motion Comp intra-coded or inter-coded correction data.

26

Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system memory. This page
exists primarily to allow the device to report status via PCI master writes – thereby allowing the driver to
read/poll WB memory instead of UC reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in
Memory Interface Registers) includes a description of the layout of the Hardware Status Page.

 27

Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device. Refer to the
Programming Interface chapter for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer
memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear memory. The
length of any one ring buffer is limited to 2MB.

Note that "indirect" 3D primitive instructions (those that access vertex buffers) must reside in the same
space as the vertex buffers.

28

Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an
MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions, Programming
Interface). They are used to transport instructions external to ring buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The device will treat
these as MainMemory (MM) address, and therefore not snoop the CPU cache.

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address is the
address of the last valid QWord in the buffer. The length of any single batch buffer is "virtually unlimited"
(i.e., could theoretically be 4GB in length).

 29

Logical Contexts

This section is the lead section for the following subsections:

• BSD Logical Context Data (MFX)
• Copy Engine Logical Content Data [HSW]
• Video Enhancement Logical Context Data

30

MFX Logical Context Data

This section includes the following sub-sections:

• Overall Context Layout
• Context Layout
• Register State Context

Overall Context Layout

Context Layout

[HSW]: BSD effectively has no context. Switching from one task to another is accomplished by
programming the UHPTR register with a new head pointer, then executing an MI_ARB_CHECK command.
This will load the head pointer with the new value, "jumping" to the commands for the next task.

Register/State Context

 Valid Only When Execlists and
PPGTT Enabled

 DW
Range

 DW
Count State Field

 Restore
Inhibited

 PPGTT and
Execlists
Enableds

 PPGTT and
Execlists Disabled

 Power
Context

 Set Before
Submitting
Context?

00h 1 Context Control R S/R X S/R Yes

01h 1 Ring Head Pointer Register R S/R X S/R Yes

02h 1 Ring Tail Pointer Register R R X S/R Yes

03h 1 Batch Buffer Current Head
Register

NR S/R X S/R No

04h 1 Batch Buffer State Register NR S/R X S/R No

05h 1 PPGTT Directory Cache Valid
Register

 (Software always populates via
host)

R R X S/R Yes

06h 1 Reserved X X X S/R X

07h 1 PD Base Virtual Address
Register

R R X S/R Yes

08h 1 MFX_STATE_POINTER 0 NR S/R X S/R Yes

09h 1 MFX_STATE_POINTER 1 NR S/R X S/R Yes

0Ah 1 MFX_STATE_POINTER 2 NR S/R X S/R Yes

0Bh 1 MFX_STATE_POINTER 3 NR S/R X S/R Yes

0Ch 1 VCS_CNTR— Media Watchdog
Counter Control

NR S/R X S/R No

0Dh 1 VCS_THRSH— Media
Watchdog Counter Threshold

NR S/R X S/R No

 31

 Valid Only When Execlists and
PPGTT Enabled

 DW
Range

 DW
Count State Field

 Restore
Inhibited

 PPGTT and
Execlists
Enableds

 PPGTT and
Execlists Disabled

 Power
Context

 Set Before
Submitting
Context?

0Eh 1 Current Context ID Register NR S/R X S/R No

0Fh 1 Reserved X X X S/R X

32

Copy Engine Logical Context Data

This section contains the following sub-sections:

• Overall Context Layout
• Context Layout
• Register/State Context

Overall Context Layout

Context Layout

[HSW] Video engine effectively has no context. Switching from one task to another only occurs when the
head pointer equals the tail pointer and there is a new context ID received.

 33

Register/State Context

 Valid Only When
Execlists and
PPGTT Enabled

DW
Range

DW
Count State Field

Render
Restore
Inhibite

d

PPGTT and
Execlists
Enabled

PPGTT and
Execlists
Disabled

Power
Context

Set Before
Submitting
Context?

00h 1 Reserved NR X X X X

01h 1 Ring Head
Pointer Register

R S/R X S/R Yes

02h 1 Ring Tail Pointer
Register

R R X S/R Yes

03h 1 Reserved NR X X X X

04h 1 Reserved NR X X X X

05h 1 PPGTT Directory
Cache Valid

Register
(Software always

populates via
host)

R R X X Yes

06h 1 BCS_SWCTRL
Register

NR S/R X S/R Yes

07h 1 PD Base Virtual
Address Register

R R X X Yes

08h 1 Reserved NR X X X X

09h 1 Reserved NR X X X X

0Ah 1 Reserved NR X X X X

0Bh 1 Reserved NR X X X X

0Ch 1 Reserved NR X X X X

0Dh 1 Reserved NR X X X X

0Eh 1 Reserved NR X X X X

0Fh 1 Reserved NR X X X X

34

Video Enhancement Logical Context Data

Overall Context Layout

Context Layout

[DevHSW]: Video Enhancement engine effectively has no context. Switching from one task to another
only occurs when the head pointer equals the tail pointer and there is a new context ID received.

 35

Memory Data Formats
This chapter describes the attributes associated with the memory-resident data objects operated on by
the graphics pipeline. This includes object types, pixel formats, memory layouts, and rules/restrictions
placed on the dimensions, physical memory location, pitch, alignment, etc. with respect to the specific
operations performed on the objects.

36

Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The minimum
value (all 0's) is interpreted as 0.0, the maximum value (all 1's) is interpreted as 1.0. Values in between are
equally spaced. For example, a 2-bit UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by
dividing the integer by 2n-1.

 37

Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the surface format
name, it indicates that a reverse gamma conversion is to be done after the source surface is read, and a
forward gamma conversion is to be done before the destination surface is written.

38

Signed Normalized (SNORM)

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0. If the incoming
value is interpreted as a 2's-complement n-bit signed integer, the interpreted value can be calculated by
dividing the integer by 2n-1-1. Note that the most negative value of -2n-1 will result in a value slightly
smaller than -1.0. This value is clamped to -1.0, thus there are two representations of -1.0 in SNORM
format.

 39

Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a
range of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if required), keeping the
value as an integer.

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 -->
3.0f). For 32-bit sources, the value is rounded to nearest even.

40

Signed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2's complement integer with a range of -2n-1 to +2n-

1-1.

The SINT formats copy the source value to the destination (sign-extending if required), keeping the value
as an integer.

The SSCALED formats convert the integer into the corresponding floating point value (e.g., 0xFFFD --> -
3.0f). For 32-bit sources, the value is rounded to nearest even.

 41

Floating Point (FLOAT)

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel (R) Architecture Software
Developer's Manual also describes floating point data types .

42

64-bit Floating Point

Bit Description

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include "hidden one"

The value of this data type is derived as:

• if e == b'11..11' and f != 0, then v is NaN regardless of s
• if e == b'11..11' and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < b'11..11', then v = (-1)s*2(e-1023)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

 43

32-bit Floating Point

Bit Description

31 Sign (s)

30:23 Exponent (e) Biased
Exponent

22:0 Fraction (f) Does not include
"hidden one"

The value of this data type is derived as:

• if e == 255 and f != 0, then v is NaN regardless of s
• if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

44

16-bit Floating Point

Bit Description

15 Sign (s)

14:10 Exponent (e) Biased
Exponent

9:0 Fraction (f) Does not
include "hidden one"

The value of this data type is derived as:

• if e == 31 and f != 0, then v is NaN regardless of s
• if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

 45

The following table represents relationship between 32 bit and 16 bit floating point ranges:

flt32
exponent

Unbiased
exponent

 flt16
exponent flt16 fraction

 255

 254 127

 ...

 127+16 16 Infinity 31 1.1111111111

 127+15 15 Max exponent 30 1.xxxxxxxxxx

 127 0 15 1.xxxxxxxxxx

 113 -14 Min exponent 1 1.xxxxxxxxxx

 112 Denormalized 0 0.1xxxxxxxxx

 111 Denormalized 0 0.01xxxxxxxx

 110 Denormalized 0 0.001xxxxxxx

 109 Denormalized 0 0.0001xxxxxx

 108 Denormalized 0 0.00001xxxxx

 107 Denormalized 0 0.000001xxxx

 106 Denormalized 0 0.0000001xxx

 115 Denormalized 0 0.00000001xx

 114 Denormalized 0 0.000000001x

 113 Denormalized 0 0.0000000001

 112 Denormalized 0 0.0

 ...

 0 0 0.0

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to
nearest even.

46

11-bit Floating Point

Bits Description

10:6 Exponent (e): Biased exponent (the bias depends on e)

5:0 Fraction (f): Fraction bits to the right of the binary point

The value v of an 11-bit floating-point number is calculated from e and f as:

• if e == 31 and f != 0 then v = NaN
• if e == 31 and f == 0 then v = +infinity
• if 0 < e < 31, then v = 2(e-15)*(1.f)
• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = 0 (zero)

There is no sign bit and negative values are not represented.

The 11-bit floating-point format has one more bit of fractional precision than the 10-bit floating-point
format.

The maximum representable finite value is 1.111111b * 215 = FE00h = 65024.

 47

10-bit Floating Point

Bits Description

9:5 Exponent (e): Biased exponent (the bias depends on e)

4:0 Fraction (f): Fraction bits to the right of the binary point

The value v of a 10-bit floating-point number is calculated from e and f as:

• if e == 31 and f != 0 then v = NaN
• if e == 31 and f == 0 then v = +infinity
• if 0 < e < 31, then v = 2(e-15)*(1.f)
• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = 0 (zero)

There is no sign bit and negative values are not represented.

The maximum representable finite value is 1.11111b * 215 = FC00h = 64512.

48

Shared Exponent

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent. The three fractions
assume an impled "0" rather than an implied "1" as in the other floating point formats. This format does
not support infinity and NaN values. There are no sign bits, only positive numbers and zero can be
represented. The value of each channel is determined as follows, where "f" is the fraction of the
corresponding channel, and "e" is the shared exponent.

v = (0.f)*2(e-15)

Bit Description

31:27 Exponent (e) Biased Exponent

26:18 Blue Fraction

17:9 Green Fraction

8:0 Red Fraction

 49

