© 2013 Intel Corporation

Intel Open Source Graphics Programmer’s Reference
Manual (PRM) for the 2013 Intel® Core™ Processor

Family, including Intel HD Graphics, Intel Iris™
Graphics and Intel Iris Pro Graphics

Volume 2b: Command Reference: Instructions (Command
Opcodes) (Haswell)

1/21/2014



Q"_til

Copyright

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.



Command Reference: Instructions

Table of Contents

Copyright

Command Reference: Instructions

Half Precision Float to Single Precision Float

End If

Find First Bit from MSB Side

Single Precision Float to Half Precision Float

Else

Dot Product 3

Dot Product 2

Dot Product Homogeneous

Dot Product 4

Line

Jump Indexed

Leading Zero Detection

Linear Interpolation

Illegal

Fraction

Find First Bit from LSB Side

If

Halt

Double Precision Floating Point Inmediate Data Move

Bit Field Insert 1

Bit Field Extract

Bit Field Reverse

Bit Field Insert 2

Average

Addition with Carry

Addition

Arithmetic Shift Right

14
16
18
20
22
24
26
28
30
32
34
37
39
42
43
45
47
49
51
52
54
58
59
63
64
66
68



Q"_til

Logic And 70
Compare 72
Count Bits Set 74
Continue 75
Compare NaN 77
Call 79
Branch Diverging 81
Branch Converging 83
Call Absolute 85
Break 87
Multiply Accumulate 89
Reserved Instruction0 91
Logic Xor 92
Reserved Instruction2 94
Reserved Instructionl 95
While 96
Shift Right 98
Shift Left 100
Wait Notification 102
Integer Subtraction with Borrow 104
Reserved Instruction7 106
Reserved Instruction6 107
Reserved Instruction8 108
MI_NOOP 109
MI_NOOP 110
Reserved Instruction4 111
Reserved Instruction3 112
Reserved Instruction5 113
MI_NOOP 114
Conditional Send Message 115
No Operation 117
Multiply 118
Logic Or 120




Logic Not

Move Indexed

Multiply Add

Multiply Accumulate High

Move

Extended Math Function

Sum of Absolute Difference 2

Round to Zero

Select

Sum of Absolute Difference Accumulate 2

Round Up

Return

Plane

Round to Nearest or Even

Round Down

Reserved Instruction9

MI_NOOP

Send Message
MI_SET_PREDICATE

MI_USER_INTERRUPT

MI_USER_INTERRUPT

MI_USER_INTERRUPT

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
MI_FLUSH

MI_ARB_CHECK

MI_ARB_CHECK

MI_ARB_CHECK

MI_ARB_CHECK

MI_RS_CONTROL

122
124
127
130
132
134
137
139
141
143
145
147
149
151
153
155
156
157
160
162
163
164
165
166
170
171
172
176
178
179
180
181
182



Q"_til

MI_REPORT_HEAD
MI_REPORT_HEAD

MI_REPORT_HEAD

MI_REPORT_HEAD

MI_ARB_ON_OFF

MI_ARB_ON_OFF

MI_ARB_ON_OFF

MI_URB_ATOMIC_ALLOC

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

MI_PREDICATE

MI_TOPOLOGY_FILTER
MI_RS_CONTEXT

MI_LOAD_SCAN_LINES_INCL
MI_LOAD_SCAN_LINES_INCL
MI_LOAD_SCAN_LINES_EXCL
MI_LOAD_SCAN_LINES_EXCL
MI_DISPLAY_FLIP

MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX
MI_SEMAPHORE_MBOX

MI_SET_CONTEXT

MI_URB_CLEAR

MI_MATH

MI_STORE_DATA_IMM

MI_STORE_DATA_IMM

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
201
202
203
205
207
209
211
216
218
220
222
224
227
229
231
233



MI_STORE_DATA_IMM
MI_STORE_DATA_IMM

MI_STORE_DATA _INDEX

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX

MI_STORE_DATA _INDEX

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER _IMM
MI_UPDATE_GTT

MI_UPDATE_GTT

MI_UPDATE_GTT

MI_UPDATE_GTT

MI_STORE_REGISTER_MEM

MI_FLUSH_DW

MI_FLUSH_DW

MI_FLUSH_DW
MI_CLFLUSH

MI_LOAD_REGISTER_MEM

MI_LOAD_REGISTER_REG

MI_RS_STORE_DATA_IMM

MI_LOAD_URB_MEM

MI_STORE_URB_MEM

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
MI_BATCH_BUFFER_START

MI_CONDITIONAL_BATCH_BUFFER _END
MI_CONDITIONAL_BATCH_BUFFER _END
MI_CONDITIONAL BATCH_BUFFER_END
XY_SETUP_BLT

XY_SETUP_CLIP_BLT

235
237
240
242
244
246
248
250
252
254
256
258
260
262
264
267
270
274
277
279
281
283
285
287
289
292
296
298
300
302
304
306
309



Q"_til

XY_SETUP_MONO_PATTERN_SL_BLT
XY_PIXEL_BLT

XY_SCANLINES_BLT

XY_TEXT_BLT

XY_TEXT_IMMEDIATE_BLT

COLOR _BLT

SRC_COPY_BLT

XY_COLOR BLT

XY_PAT_BLT

XY_MONO_PAT BLT
XY_SRC_COPY_BLT

XY_MONO_SRC_COPY_BLT

XY_FULL_BLT

XY_FULL_MONO_SRC_BLT

XY_FULL_MONO_PATTERN_BLT

XY_FULL_MONO_PATTERN_MONO_SRC BLT

XY_MONO_PAT_FIXED_BLT

XY_MONO_SRC_COPY_IMMEDIATE_BLT
XY_PAT_BLT_IMMEDIATE

XY_SRC_COPY_CHROMA _BLT

XY_FULL_IMMEDIATE_PATTERN_BLT

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
XY_PAT_CHROMA _BLT

XY_PAT_CHROMA BLT_IMMEDIATE

STATE_PREFETCH

STATE_BASE_ADDRESS

STATE_SIP
SWTESS_BASE_ADDRESS

GPGPU_CSR_BASE_ADDRESS

MFX_WAIT

3DSTATE_VF_STATISTICS

PIPELINE_SELECT

MFX_PIPE_MODE_SELECT

310
313
315
317
319
321
323
325
327
330
333
337
340
343
346
350
354
357
360
363
367
370
373
376
379
381
388
390
392
393
395
396
398



MEDIA_VFE_STATE
MEDIA_CURBE_LOAD

MFX_SURFACE_STATE

MEDIA_INTERFACE_DESCRIPTOR_LOAD

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR STATE
MFX_IND_OBJ_BASE_ADDR_STATE
MEDIA_STATE_FLUSH

MFX_BSP_BUF_BASE_ADDR STATE
MFX_BSP_BUF_BASE_ADDR STATE
MFX_STATE_POINTER

MFX_QM_STATE

MFX_FQM_STATE

MFX_DBK_OBJECT

MFX_DBK_OBJECT

MFD_IT_OBJECT

MFX_PAK_INSERT_OBJECT

MFX_STITCH_OBJECT

MEDIA_OBJECT
MFX_AVC_IMG_STATE

MEDIA_OBJECT_PRT

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_SLICE_STATE

MEDIA_OBJECT_WALKER

GPGPU_OBJECT

MFX_AVC_REF_IDX_STATE
GPGPU_WALKER

MFX_AVC_WEIGHTOFFSET_STATE

MFX_SVC_IMG_STATE

MFX_SVC_INTERLAYER_STATE

MFX_SVC_INTERLAYER_MV_STATE
MFX_SVC_SLICE_STATE

406
413
415
423
425
432
439
447
450
454
458
460
462
464
468
472
475
479
482
487
507
510
514
518
531
538
542
545
548
551
580
588
591



Q"_til

MFD_AVC_PICID_STATE
MFD_AVC_DPB_STATE

MFD_AVC_SLICEADDR

MFD_AVC_BSD_OBJECT

MFC_AVC_PAK_OBJECT

MFX_SVC_INTERLAYER OBJECT

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_DIRECTMODE_STATE

MFD_VC1_SHORT_PIC_STATE
MFD_VC1_LONG_PIC STATE

MFD_VC1_BSD_OBJECT

MFX_MPEG2_PIC_STATE

MFD_MPEG2_BSD_OBJECT

MFC_MPEG2_SLICEGROUP_STATE

MFC_MPEG2_PAK_OBJECT

VEBOX_SURFACE_STATE

VEBOX_STATE
VEB_DI_IECP

MFX_JPEG_PIC_STATE

MFX_JPEG_HUFF_TABLE_STATE

MFD_JPEG_BSD_OBJECT

3DSTATE_CLEAR_PARAMS

3DSTATE_DEPTH_BUFFER

3DSTATE_STENCIL_BUFFER

3DSTATE_HIER_DEPTH_BUFFER

3DSTATE_VERTEX_BUFFERS
3DSTATE_VERTEX_ELEMENTS

3DSTATE_INDEX_BUFFER

3DSTATE_VF

3DSTATE_CC_STATE_POINTERS

3DSTATE_SCISSOR _STATE_POINTERS
3DSTATE_VS

10

599
601
604
606
608
611
612
618
620
623
632
646
649
664
666
674
676
682
686
690
695
697
700
702
708
711
713
715
717
719
721
723
724



3DSTATE_GS
3DSTATE_CLIP

3DSTATE_SF

3DSTATE_WM

3DSTATE_CONSTANT_VS

3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT_PS

3DSTATE_SAMPLE_MASK

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT_DS
3DSTATE_HS

3DSTATE_TE

3DSTATE_DS

3DSTATE_STREAMOUT

3DSTATE_SBE

3DSTATE_PS

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_VIEWPORT_STATE_POINTERS_CC
3DSTATE_BLEND_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS

3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_BINDING_TABLE_POINTERS_DS

3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_BINDING_TABLE_POINTERS_PS

3DSTATE_SAMPLER _STATE_POINTERS_VS

3DSTATE_SAMPLER STATE_POINTERS_HS
3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_SAMPLER _STATE_POINTERS_GS

3DSTATE_SAMPLER _STATE_POINTERS_PS

3DSTATE_URB_VS

3DSTATE_URB_HS

3DSTATE_URB_DS

731
741
748
757
766
768
770
772
774
776
778
785
789
796
801
810
820
821
823
825
827
829
831
833
835
837
838
840
842
844
846
848
850

11



Q"_til

3DSTATE_URB_GS
3DSTATE_GATHER_CONSTANT_VS

3DSTATE_GATHER CONSTANT_GS

3DSTATE_GATHER_CONSTANT_HS

3DSTATE_GATHER_CONSTANT_DS

3DSTATE_GATHER CONSTANT_PS

3DSTATE_DX9_CONSTANTF_VS

3DSTATE_DX9_CONSTANTF_PS

3DSTATE_DX9_CONSTANTI_VS

3DSTATE_DX9_CONSTANTI_PS
3DSTATE_DX9_CONSTANTB_VS

3DSTATE_DX9_CONSTANTB_PS

3DSTATE_DX9_LOCAL_VALID VS

3DSTATE_DX9_LOCAL_VALID_PS

3DSTATE_DX9_GENERATE_ACTIVE_VS

3DSTATE_DX9_GENERATE_ACTIVE_PS

3DSTATE_BINDING_TABLE_EDIT_VS

3DSTATE_BINDING_TABLE_EDIT_GS
3DSTATE_BINDING_TABLE_EDIT_HS

3DSTATE_BINDING_TABLE_EDIT_DS

3DSTATE_BINDING_TABLE_EDIT_PS

3DSTATE_DRAWING_RECTANGLE

3DSTATE_SAMPLER _PALETTE_LOADO

3DSTATE_CHROMA _KEY

3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_PATTERN

3DSTATE_LINE_STIPPLE
3DSTATE_AA_LINE_PARAMETERS

3DSTATE_SAMPLER _PALETTE_LOAD1

3DSTATE_MULTISAMPLE

3DSTATE_RAST_MULTISAMPLE

3DSTATE_MONOFILTER_SIZE

3DSTATE_PUSH_CONSTANT_ALLOC_VS

12

852
854
858
862
866
870
874
876
878
881
883
885
887
889
891
893
896
898
200
902
9204
906
909
910
912
914
915
918
920
922
929
937
939



3DSTATE_PUSH_CONSTANT_ALLOC_HS
3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

3DSTATE_SO_DECL_LIST

3DSTATE_SO_BUFFER

3DSTATE_BINDING_TABLE_POOL_ALLOC

3DSTATE_GATHER POOL_ALLOC

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC

PIPE_CONTROL
3DPRIMITIVE

941
943
945
947
949
952
954
956
958
960
969

13



Q"_til

Half Precision Float to Single Precision Float

fl6to32 - Half Precision Float to Single Precision Float

Project: HSW
Source: Eulsa
Length Bias: 4

The f16t032 instruction converts the half precision float in srcO to single precision float and storing in dst.

Because this instruction does not have a 16-bit floating-point type, the source data type must be Word (W).
The destination type must be F (Float).

Format:
[(pred)] f16to32[.cmod] (exec_size) dst srcO

Restriction

Restriction : The FP Mode (Single Precision Floating Point Mode in crO) must be IEEE mode.

Restriction : No accumulator access, implicit or explicit.

Syntax

[(pred)] f16to32[.cmod] (exec_size) reg reg [(pred)] fl6to32[.cmod] (exec_size)
reg imml6

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = convert half precision float to single precision
float(srcO.chan[n]); } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types

w F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][SrcO.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="IMM")

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

14



fl6to32 - Half Precision Float to Single Precision Float

[Format:  [EU_INSTRUCTION_OPERAND_CONTROLS
31:.0 Header
| Format: | EUINSTRUCTION_HEADER

15




End If

endif - End If

Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
The endif instruction terminates an if/else/endif block of code. It restores execution to the channels
that were active prior to the if/else/endif block.
The endif instruction is also used to hop out of nested conditionals by jumping to the end of the next
outer conditional block when all channels are disabled.
The following table describes the 16-bit JIP. In GEN binary, JIP is at location src1 and must be of type |HSW
W (signed word integer). JIP must be an immediate operand, it is a signed 16-bit number. This value is
added to IP pre-increment.
Format:
endif JIP
Restriction Project
Restriction : Predication is not allowed.
Restriction : The execution size must be the same for the if, else, and endif instructions of the same HSW
code block.
Syntax Project
endif (exec_size) imml6 HSW
Pseudocode
Evaluate(WrEn); if ( WrEn == 0 ) { // all channels false Jump(IP + JIP); }
Predication [ Conditional Modifier | Saturation | Source Modifier
N N N N
DWord| Bit Description
0.3 |127:112|Reserved
Project: HSW
Format: MBZ
111:96 |JIP
Project: HSW

16




Q"_til

endif - End If

Format: |515 |
Jump Target Offset. The relative offset in 64-bit units if a jump is taken for the instruction.

95:91 |[Reserved
Project: HSW
Format: MBZ
90 |Flag Register Number
| Project: | HSW |
Added a second flag register
89 |Flag Subregister Number
| Project: | HSW |
This field specifies the sub-register number for a flag register operand. There are two sub-
registers in the flag register. Each sub-register contains 16 flag bits.
The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled
for the instruction. The same flag sub-register can be both the predication source and
conditional destination, if both predication and conditional modifier are enabled.
88:64 |Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16')
Format; |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:64 |Source 0
Exists If: [ (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1")
Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
63:32 |Operand Control
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS |
31:0 [Header
| Format: | EU_INSTRUCTION_HEADER |

17




Q"_til

Find First Bit from MSB Side

fbh - Find First Bit from MSB Side

Project: HSW
Source: Eulsa
Length Bias: 4

If src0 is unsigned, the fbh instruction counts component-wise the leading zeros from srcO and stores the
resulting counts in dst.

If src0 is signed and positive, the fbh instruction counts component-wise the leading zeros from srcO and
stores the resulting counts in dst.

If src0 is signed and negative, the fbh instruction counts component-wise the leading ones from srcO and
stores the resulting counts in dst.

Format:
[(pred)] fbh (exec_size) dst srcO

Programming Notes

If srcO is zero, store OxFFFFFFFF in dst.

If src0 is signed and is -1 (OXFFFFFFFF), store OxFFFFFFFF in dst.

Restriction

Restriction : No accumulator access, implicit or explicit.

Syntax

[(pred)] fbh (exec_size) reg reg [(pred)] fbh (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) { UD cnt
= 0; if ( srcO is unsigned ) { UD udScalar = srcO.chan[n]; while ( (udScalar & (1
<< 31)) == 0 && cnt 1= 32 ) { cnt ++; udScalar = udScalar << 1; } if (
srcO.chan[n] == 0x00000000 ) { dst.chan[n] = OxXFFFFFFFF; } else { dst.chan[n] =
cnt; } } else { // srcO is signed. D dScalar = srcO.chan[n]; bit cval =
dScalar[31]; while ((dScalar & (1 << 31)) == cval && cnt = 32 ) { cnt ++;
dScalar = dScalar << 1; } if ( (srcO.chan[n] == OXFFFFFFFF) ]| (srcO.chan[n] ==
0x00000000) ) { dst.chan[n] = OxFFFFFFFF; } else { dst.chan[n] =cnt; } } } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y N N N

Src Types | Dst Types |

18




Q"_til

fbh - Find First Bit from MSB Side

loup  |up |
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG
127:64 |ImmSource
Exists If: ([Operand Controls][Src0.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS |
31.0 Header
| Format: | EU_INSTRUCTION_HEADER |

19



Q"_til

Single Precision Float to Half Precision Float

f32t016 - Single Precision Float to Half Precision Float

Project: HSW
Source: Eulsa
Length Bias: 4

The f32to16 instruction converts the single precision float in src0 to half precision float and storing in the lower
word of each channel in dst.

Because this instruction does not have a 16-bit floating-point type, the destination data type must be Word
(W).

Format:
[(pred)] f32to16[.cmod] (exec_size) dst srcO

Restriction

Restriction : The destination must be DWord-aligned and specify a horizontal stride (HorzStride) of 2. The 16-
bit result is stored in the lower word of each destination channel and the upper word is not modified.

Restriction : The FP Mode (Single Precision Floating Point Mode in crO) must be IEEE mode.

Restriction : No accumulator access, implicit or explicit.

Syntax

[(pred)] f32tol6][-cmod] (exec_size) reg reg [(pred)] f32tol6[.cmod] (exec_size)
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = convert single precision float to half precision
float(srcO.chan[n]); } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types

F W
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 |ImmSource

20




Q"_til

f32t016 - Single Precision Float to Half Precision Float

Exists If: ([Operand Controls][Src0.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

21




Else
else - Else
Project: HSW
Source: Eulsa
Length Bias: 4

The else instruction is an optional statement within an if/else/endif block of code. It restricts execution within
the else/endif portion to the opposite set of channels enabled under the if/else portion. Channels which were
inactive before entering the if/endif block remain inactive throughout the entire block.

All enabled channels upon arriving at the else instruction are redirected to the matching endif. If all channels
are redirected (by else or before else), a relative jump is performed to the location specified by JIP. The jump
target should be the the matching endif instruction for that conditional block.

The following table describes the 16-bit JIP. In GEN binary, JIP is at location src1 and must be of type W
(signed word integer). JIP must be an immediate operand, it is a signed 16-bit number and is intended to be
forward referencing. This value is added to IP pre-increment.

Format:
else (exec_size) JIP

Restriction

Restriction : Predication is not allowed.

Restriction : The execution size must be the same for the if, else, and endif instructions of the same code block.

Syntax

else (exec_size) imml6

Pseudocode

Evaluate(WrEn); for ( n = 0; n < 32; n+t+ ) { if ( WrEn.channel[n] ) { PclIP[n] =
IP + JIP; } } if ( PclIP = (IP + 1) ) { // for all channels Jump(IP + JIP); }

Predication | Conditional Modifier | Saturation | Source Modifier

N N N N
DWord Bit Description
0.3 127:112 |UIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the channel.

22



else - Else
111:96 |JIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the instruction.
95:64 Reserved
Project: HSW
Format: MBZ
63:32 Operand Control
Format: EU_INSTRUCTION_OPERAND_CONTROLS
310 Header
Format: EU_INSTRUCTION_HEADER

23




Q"_til

Dot Product 3

dp3 - Dot Product 3

Project: HSW
Source: Eulsa
Length Bias: 4

The dp3 instruction performs a three-wide dot product on four-tuple vector basis and storing the same scalar
result per four tuple to all four channels in dst. This instruction is similar to dp4 except that every fourth
element of srcO (post-source-swizzle if present) is not involved in the computation.

The dot product of two vectors of equal length is the sum of the products of each pair of corresponding
elements.

The dp4 instruction includes all four elements of each vector in the dot product. The dp2 instruction includes
the first two elements of each vector in the dot product.

Format:
[(pred)] dp3[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Execution size cannot be less than 4.

Restriction : Horizontal strides must be 1.

Restriction : Source operands cannot be accumulators.

Syntax

[(pred)] dp3[-cmod] (exec_size) reg reg reg [(pred)] dp3[-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n += 4 ) { fTmp = srcO.chan[n] *
srcl.chan[n] + srcO.chan[n+1] * srcl.chan[n+1] + srcO.chan[n+2] * srcl.chan[n+2];
if ( WrEn.chan[n] ) dst.chan[n] = fTmp; if ( WrEn.chan[n+1] ) dst.chan[n+1] =
fTmp; if ( WrEn.chan[n+2] ) dst.chan[n+2] = fTmp; if ( WrEn_.chan[n+3] )
dst.chan[n+3] = fTmp; }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types
F F

DWord Bit Description

0.3 127:64 |RegSource

24



dp3 - Dot Product 3

Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EU_INSTRUCTION_HEADER

25




Q"_til

Dot Product 2

dp2 - Dot Product 2

Project: HSW
Source: Eulsa
Length Bias: 4

The dp2 instruction performs a two-wide dot product on four-tuple vector basis and storing the same scalar
result per four tuple to all four channels in dst. This instruction is similar to dp4 except that every third and
fourth element of srcO (post-source-swizzle if present) are not involved in the computation.

The dot product of two vectors of equal length is the sum of the products of each pair of corresponding
elements.

The dp4 instruction includes all four elements of each vector in the dot product. The dp3 instruction includes
the first three elements of each vector in the dot product.

Format:
[(pred)] dp2[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Execution size cannot be less than 4.

Restriction : Horizontal strides must be 1.

Restriction : Source operands cannot be accumulators.

Syntax

[(pred)] dp2[-cmod] (exec_size) reg reg reg [(pred)] dp2[-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n += 4 ) { fTmp = srcO.chan[n] *
srcl.chan[n] + srcO.chan[n+1] * srcl.chan[n+1]; if ( WrEn.chan[n] ) dst.chan[n] =
fTmp; if ( WrEn.chan[n+1] ) dst.chan[n+1] = fTmp; if ( WrEn.chan[n+2] )
dst.chan[n+2] = fTmp; If ( WrEn.chan[n+3] ) dst.chan[n+3] = fTmp; }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types
F F

DWord Bit Description

0.3 127:64 |RegSource

26



dp2 - Dot Product 2

Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EU_INSTRUCTION_HEADER

27




Q"_til

Dot Product Homogeneous

dph - Dot Product Homogeneous

Project: HSW
Source: Eulsa
Length Bias: 4

same scalar result per four tuple to all four channels in dst. This instruction is similar to dp4 except that every
fourth element of srcO (post-source-swizzle if present) is forced to 1.0f.

Use the dp4 instruction to do a four-wide dot product that includes all elements of srcO and srcl.

The dph instruction performs a four-wide homogeneous dot product on four-tuple vector basis and storing the

Format:
[(pred)] dph[.cmod] (exec_size) dst src0 srcl

Restriction

Restriction : Execution size cannot be less than 4.

Restriction : Horizontal strides must be 1.

Restriction : Source operands cannot be accumulators.

Syntax

[(pred)] dph[.cmod] (exec_size) reg reg reg [(pred)] dph[.-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n += 4 ) { fTmp = srcO.chan[n] *
srcl.chan[n] + srcO.chan[n+1] * srcl.chan[n+1] + srcO.chan[n+2] * srcl.chan[n+2]
+ srcl.chan[n+3]; // Use 1.0Ff in place of srcO.chan[n+3]. if ( WrEn.chan[n] )
dst.chan[n] = fTmp; if ( WrEn.chan[n+1] ) dst.chan[n+1] = fTmp; if (
WrEn.chan[n+2] ) dst.chan[n+2] = fTmp; if ( WrEn.chan[n+3] ) dst.chan[n+3] =
fTmp; }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

28



dph - Dot Product Homogeneous

127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

29




Q"_til

Dot Product 4

dp4 - Dot Product 4

Project: HSW
Source: Eulsa
Length Bias: 4

The dp4 instruction performs a four-wide dot product on four-tuple vector basis and storing the same scalar
result per four tuple to all four channels in dst.

The dot product of two vectors of equal length is the sum of the products of each pair of corresponding
elements.

Format:
[(pred)] dp4[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Execution size cannot be less than 4.

Restriction : Horizontal strides must be 1.

Restriction : Source operands cannot be accumulators.

Syntax

[(pred)] dp4[-cmod] (exec_size) reg reg reg [(pred)] dp4[-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n += 4 ) { fTmp = srcO.chan[n] *
srcl.chan[n] + srcO.chan[n+1] * srcl.chan[n+1] + srcO.chan[n+2] * srcl.chan[n+2]
+ srcO.chan[n+3] * srcl.chan[n+3]; 1If ( WrEn.chan[n] ) dst.chan[n] = fTmp; if (
WrEn.chan[n+1] ) dst.chan[n+1] = fTmp; if ( WrEn.chan[n+2] ) dst.chan[n+2] =
fTmp; if ( WrEn.chan[n+3] ) dst.chan[n+3] = fTmp; }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

30



dp4 - Dot Product 4

Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
310 Header
| Format: | EUINSTRUCTION_HEADER

31




Line
line - Line
Project: HSW
Source: Eulsa
Length Bias: 4

The line instruction computes a component-wise line equation (v = p * u + q where u, v are vectors and p, q
are scalars) of srcO and srcl and stores the results in dst. srcl is the input vector u. srcO provides input scalars p
and g, where p is the scalar value based on the region description of srcO and q is the scalar value implied from
src0 region. Specifically, g is the fourth component of the 4-tuple (128-bit aligned) that p belongs to.

Format:
[(pred)] line[.cmod] (exec_size) dst src0 srcl

Restriction

Restriction : This is a specialized instruction that only supports an execution size (ExecSize) of 8 or 16.

Restriction : The srcO region must be a replicated scalar (with HorzStride == VertStride == 0).

Restriction : srcO must specify .0 or .4 as the subregister number, corresponding to a subregister byte offset of 0
or 16.

Restriction : Source operands cannot be accumulators.

Syntax

[(pred)] line[.cmod] (exec_size) reg reg reg [(pred)] line[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { dwP =
src0.RegNum.SubRegNum[bits4:2]; // A DWord-aligned scalar. dwQ =

src0.RegNum. (SubRegNum[bit4] | 0x8); // Fourth component. if ( WrEn.chan[n] ) {
dst.chan[n] = dwP * srcl.chan[n] + dwQ; } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

32



line - Line

127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

33




Q"_til

Jump Indexed

jmpi - Jump Indexed

Project: HSW
Source: Eulsa
Length Bias: 4

Description

Project

The jmpi instruction redirects program execution to an index offset relative to the post-
incremented instruction pointer. The index is a signed integer value, with positive or zero integers
for forward jumps, and negative integers for backward jumps.

Note: Unlike other flow control instructions, the offset used by jmpi is relative to the incremented
instruction pointer rather than the IP value for the instruction itself.

In GEN binary, index is at location srcl. The ip register must be put (for example, by the assembler)
at the dst and srcO locations.

Predication is allowed to provide conditional jump with a scalar condition. As the execution size is
1, the first channel of PMASK (flags post prediction control and negate) is used to determine
whether the jump is taken or not. If the condition is false, the jump is not taken and execution
continues with the next instruction.

DevHSW +

Format:
[(pred)] jmpi (1) index {NoMask}

Programming Notes

Project

An index of 0 does nothing, continuing execution with the next instruction.

An index of -16 (if the jmpi instruction is in native format) or -8 (if the jmpi instruction is in compact
format) is an infinite loop on the jmpi instruction.

DevHSW +

Restriction

Restriction : The execution size must be 1.

Restriction : The {NoMask} instruction option must be specified.

Restriction : The index data type must be D (Signed DWord Integer).

Syntax

[(pred)] Jmpi (1) reg32 {NoMask} [(pred)] jmpi (1) imm32 {NoMask}

| Pseudocode

34




Q"_til

jmpi - Jump Indexed

Evaluate(WrEn); if ( WrEn = 0 ) { Jump(IP + 1 + index ); // IP + 1 is a
pseudocode idiom for the IP of the following instruction. }
Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N
Src Types
D
DWord| Bit Description
0.3 |127:112|Reserved
Project: HSW
Format: MBZ
111:96 |JIP
Project: HSW
Format: S15
Jump Target Offset. The relative offset in 64-bit units if a jump is taken for the instruction.
95:91 |[Reserved
Project: HSW
Format: MBZ
90 |Flag Register Number
Project: | HSW
Added a second flag register
89 |Flag Subregister Number
| Project: | HSW
This field specifies the sub-register number for a flag register operand. There are two sub-
registers in the flag register. Each sub-register contains 16 flag bits.
The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled
for the instruction. The same flag sub-register can be both the predication source and
conditional destination, if both predication and conditional modifier are enabled.
88:64 |Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16'")
Format; |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:64 |[Source 0
Exists If: [ (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1")
Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

35




jmpi - Jump Indexed

63:32 |Operand Control

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 [Header

| Format: | EUINSTRUCTION_HEADER

36




Leading Zero Detection

Izd - Leading Zero Detection

Project: HSW
Source: Eulsa
Length Bias: 4

If srcO is zero, store 32 in dst.

The lzd instruction counts component-wise the leading zeros from srcO and stores the resulting counts in dst.

Format:
[(pred)] Izd[.cmod] (exec_size) dst srcO

Restriction

Restriction : Accumulator cannot be destination, implicit or explicit.

Syntax

[(pred)] 1zd[.cmod] (exec_size) reg reg [(pred)] 1zd[.cmod] (exec_size) reg reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) { UD
udScalar = srcO.chan[n]; UD cnt = 0; while ( (udScalar & (1 << 31)) == 0 && cnt
1= 32 ) { cnt ++; udScalar = udScalar << 1; } dst.chan[n] = cnt; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types

D,UD ubD
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG
127.64 |ImmSource
Exists If: ([Operand Controls][Src0.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format; EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

37




Izd - Leading Zero Detection

| Format: | EUINSTRUCTION_HEADER

38



Linear Interpolation

Irp - Linear Interpolation

Project: HSW
Source: Eulsa
Length Bias: 4

The Irp instruction takes component-wise multiplication of srcO and srcl, and adds the result to the
component-wise multiplication of src2 and (1 - src0), and then stores the final results in dst.

Format:
[(pred)] Irp[.cmod] (exec_size) dst srcO srcl src2

Restriction

Project

Restriction : The vertical stride (VertStride) is overloaded to 4 in HW for 3-source instructions.

Restriction : The overflow conditional modifier (.0) is not allowed.

Restriction : No explicit accumulator access because this is a three-source instruction. AccWrEn is
allowed for implicitly updating the accumulator.

Restriction : All three-source instructions have certain restrictions, described in Instruction Machine
Formats.

HSW

Syntax

[(pred)] Irp[-cmod] (exec_size) reg reg reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {

3}

dst.chan[n] = srcl.chan[n] * srcO.chan[n] + src2.chan[n] * (1.0 - srcO.chan[n]);

Predication | Conditional Modifier | Saturation [ Source Modifier
Y N Y Y

Src Types | Dst Types

F F
DWord| Bit Description
0.3 [127:126|Reserved
|Format: MBZ
125:106 | Source 2
| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
105 |Reserved

39




Irp - Linear Interpolation

| Format: | MBZ
104:85 |Source 1

| Format: | EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

| Format: MBZ
83:64 |Source 0

| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
63:56 |Destination Register Number

| Format: | DstRegNum

55:53 |Destination Subregister Number
| Format: | DstSubRegNum|[2:0]
52:49 |Destination Channel Enable
| Format: ChanEn[4]
Four channel enables are defined for controlling which channels are written into the
destination region. These channel mask bits are applied in a modulo-four manner to all
ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the
bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is
enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,
where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group
48 |Reserved
Project: HSW
Format: MBZ
47 | NibCtrl
Project: HSW
Format: NibCtrl
46 |Reserved
Project: HSW
Format: MBZ
45:44 |Destination Data Type

Project: HSW

This field contains the data type for the destination

Value Name
00b Single Precision Float
01lb DWord
10b Unsigned DWord
11b Double Precision Float

40



Irp - Linear Interpolation

43:42 |Source Data Type
Project: | HSW
This field contains the data type for all three sources
Value Name
00b Single Precision Float
01lb DWord
10b Unsigned DWord
11b Double Precision Float
41:40 |Source 2 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
39:38 |Source 1 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
41:36 |Reserved
Exists If: ([Property[Source Modification]=="false")
Format: MBZ
37:36 |Source 0 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
35 [Reserved
| Format: | MBZ
34 | Flag Register Number
| Project: | HSW
This field contains the flag register number for instructions with a non-zero Conditional
Modifier.
33 |Flag Subregister Number
This field contains the flag subregister number for instructions with a non-zero Conditional
Modifier.
32 [Reserved
Project: HSW
Format: MBZ
31:0 [Header
Format: EU_INSTRUCTION_HEADER

41




Q"_til

Illegal

illegal - Illegal

Project: HSW
Source: Eulsa
Length Bias: 4

The Illegal Opcode Exception Enable flag in cr0.1 is normally set so the normal processing of an illegal opcode
is to transfer control to the System Routine.

Instruction dispatch treats any unused 8-bit opcode (including bit 7 of the instruction, reserved for future
opcode expansion) as if it is the illegal opcode.

The illegal opcode is zero because that byte value is more likely than most to be read via a wayward
instruction pointer.

The illegal instruction is an instruction only in the same way that a NULL pointer in software is a pointer. Both
are special values indicating invalid instances.

Format:
illegal

Restriction

Restriction : The illegal instruction takes no instruction options.

Syntax

illegal

Pseudocode

{ Set the Illegal Opcode Exception Status bit in crO0.1. if ( Illegal Opcode

Exception Enable is set in cr0.1 ) { Transfer control to the System Routine
(return address to AIP, IP = SIP). } }

Predication | Conditional Modifier | Saturation | Source Modifier

N N N N
DWord Bit Description
0.3 1277 Reserved
| Format: MBZ
6:0 Opcode
| Format: EU_OPCODE

42



Fraction
frc - Fraction
Project: HSW
Source: Eulsa
Length Bias: 4

The frc instruction computes, component-wise, the truncate-to-minus-infinity fractional values of srcO and
stores the results in dst. The results, in the range of [0.0, 1.0], are the fractional portion of the source data. The
result is in the range [0.0, 1.0] irrespective of the rounding mode.

Floating-point fraction computation follows the rules in the following tables, based on the current floating-
point mode.

Format:
[(pred)] frc[.cmod] (exec_size) dst srcO

Note:

Note: When the Rounding Mode in cr0.0 is not Round Down, the result from frc must be followed by compare
and select instructions to avoid a result of 1.0. Those latter instructions must use the :ud type. For example:

cmp.ne.f0.0 null r4:ud 0x3f800000:ud
(f0.0)sel r5:f r4:ud Ox3f7fffff:ud

Syntax

[(pred)] frc[-cmod] (exec_size) reg reg [(pred)] frc[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] - floor(srcO.chan[n]); } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y N Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 |ImmSource

43




frc - Fraction

Exists If: ([Operand Controls][Src0.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:.0 Header
| Format: | EUINSTRUCTION_HEADER

44




Find First Bit from LSB Side

fbl - Find First Bit from LSB Side

Project: HSW
Source: Eulsa
Length Bias: 4

The fbl instruction counts component-wise the number of LSB 0 bits before the first 1 bit in src0, storing that
number in dst.

Format:
[(pred)] fbl (exec_size) dst src0

Programming Notes

If srcO contains no 1 bits, store OxFFFFFFFF in dst.

Restriction

Restriction : No accumulator access, implicit or explicit.

Syntax

[(pred)] fbl (exec_size) reg reg [(pred)] fbl (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) { UD cnt
= 0; UD udScalar = srcO.chan[n]; while ( (udScalar & 1) == 0 && cnt '= 32 ) { cnt
++; udScalar = udScalar >> 1; } if ( srcO.chan[n] == 0x00000000 ) { dst.chan[n] =
OXFFFFFFFF; } else { dst.chan[n] = cnt; } } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y N N N

Src Types | Dst Types

ub ub
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="IMM")

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

45




fbl - Find First Bit from LSB Side

[Format  [EUINSTRUCTION_OPERAND_CONTROLS
31:.0 Header
| Format: [EUINSTRUCTION_HEADER

46



If

if - If

Project: HSW
Source: Eulsa
Length Bias: 4

Description Project

An if instruction starts an if/endif or an if/else/endif block of code. It restricts execution within the
conditional block to only those channels that were enabled via the predicate control.

Each if instruction must have a matching endif instruction and may have up to one matching else
instruction before the matching endif.

If all channels are inactive (for the if/endif or if/else/endif block), a jump is performed to the
instruction referenced by JIP. This jump must be to right after the matching else instruction when

present, or otherwise to the matching endif instruction of the conditional block.

If SPF is ON, the UIP must be used to update IP; JIP is not used in this case.

The following table describes the two 16-bit instruction pointer offsets. Both the JIP and UIP are HSW
signed 16-bit numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at location srcl and
must be of type W (signed word integer).

Format: HSW
[(pred)] if (exec_size) JIP UIP

Restriction

Restriction : The execution size must be the same for the if, else, and endif instructions of the same code block.

Syntax Project
[(pred)] if (exec_size) imml6 Imml6 HSW
Pseudocode
Evaluate(WrEn); for ( n = 0; n < 32; n+t+ ) { if ( WrEn.channel[n] == 0 ) {

PclIP[n] = IP + JIP; } else { PcIP[n] = IP + 1; } } if ( PclP = (P + 1) ) { //
for all channels Jump(IP + JIP); }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y N N

DWord Bit Description

0.3 127:112 |UIP

47




if - If

Project:

HSW

Format:

S15

The jump distance in number of eight-byte units if a jump is taken for the channel.

111:96 |JIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the instruction.
95:64 |Reserved
Project: HSW
Format: MBZ
63:32 |Operand Control
| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

48




Halt
halt - Halt

Project: HSW

Source: Eulsa

Length Bias: 4

Description Project

The halt instruction temporarily suspends execution for all enabled compute channels. Upon

execution, the enabled channels are sent to the instruction at (IP + UIP), if all channels are enabled at
HALT, jump to the instruction at (IP + JIP).

If the halt instruction is not inside any conditional code block, the values of JIP and UIP should be the
same. If the halt instruction is inside a conditional code block, the UIP should be the end of the

program and the JIP should be the end of the inner most conditional code block.

The UIP must point to a HALT Instruction.

If SPF is ON, the UIP must be used to update IP; JIP is not used in this case.

The following table describes the two 16-bit instruction pointer offsets. Both the JIP and UIP are HSW
signed 16-bit numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at location srcl and

must be of type W (signed word integer).

Format:

[(pred)] halt (exec_size) JIP UIP

Restriction
Restriction : dst and srcO must be NULL.
Syntax Project
[(pred)] halt (exec_size) imml6 Imml6 HSW
Pseudocode

IP + UIP; else { PcIP[n] = IP + 1; } } if ( PclP 1= (IP + 1) ) { // for all
channels Jump(IP + JIP); }

Evaluate(WrEn); for ( n = 0; n < 32; n++ ) { if ( WrEn.channel[n] ) { PclIP[n] =

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

DWord Bit Description

0.3 127112 |UIP

49



halt - Halt

Project:

HSW

Format:

S15

The jump distance in number of eight-byte units if a jump is taken for the channel.

111:96 |JIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the instruction.
95:64 Reserved
Project: HSW
Format: MBZ
63:32 |Operand Control
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

50




Q"_til

Double Precision Floating Point Immediate Data Move

dim - Double Precision Floating Point Inmediate Data Move

Project: HSW
Source: Eulsa
Length Bias: 4

The dim instruction moves the 64-bit immediate value into enabled channels of dst.

Format:
[(pred)] dim[.cmod] (exec_size) dst src0

Restriction

Restriction : srcO must be immediate. srcO must specify the :f (F, Float) type encoding but is an immediate 64-
bit DF (Double Float) value. dst must have type DF.

Syntax

[(pred)] dim[.cmod] (exec_size) reg imm64

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = imm64; // srcO is imm64 immediate DF value but must use :f (F,
Float) type encoding. } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y N

Src Types | Dst Types

F DF
DWord Bit Description
0.3 127:64 |Source
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

| Format: | EUINSTRUCTION_HEADER

51




Q"_til

Bit Field Insert 1

bfil - Bit Field Insert 1

Project: HSW
Source: Eulsa
Length Bias: 4

The bfil instruction is the first instruction in a two-instruction macro for bfi (Bit Field Insert).

The bfil instruction component-wise generates mask with control from srcO and srcl and stores the results in
dst. The mask is used in the bfi2 instruction to generate the final result of bfi.

Create a bit mask corresponding to the bit field width and offset in srcO and srcl. Store the bit mask in dst. The
mask has all bits in the bit field set to 1 and all other bits as 0.

The width and offset values are from the low five bits of srcO and srcl respectively, or srcO & 0x1f and srcl &
Ox1f.

If width is zero, the result is zero.

The bfi macro has four source operands: src0 - bit field width in low five bits, srcl - bit field offset/starting bit
position in low five bits, src2 - bit field value to insert, using only the number of least significant bits given by
width in src0Q, and src3 - overall value into which the bit field is inserted, providing all bits other than the

inserted bits for the result value.
bfi dst src0 srcl src2 src3

// Translates to these two instructions:
bfil dst src0 srcl
bfi2 dst dst src2 src3

Format:
[(pred)] bfil (exec_size) dst srcO srcl

Programming Notes Project
No accumulator access, implicit or explicit.
A SIMD16 instruction is not allowed. HSW

Syntax

[(pred)] bfil (exec_size) reg reg reg [(pred)] bfil (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec size; nt+ ) { if ( WrEn.chan[n] ) { UD

52



(intel
bfil - Bit Field Insert 1

width = srcO.chan[n][4:0]; UD offset = srcl.chan[n][4:0]; dst = ((1 << width) -
1) << offset; } }

Predication | Conditional Modifier | Saturation [ Source Modifier

Y N N N

Src Types | Dst Types

ub ub
D D
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

| Sl | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header
| Format: | EU_INSTRUCTION_HEADER

53




Q"_til

Bit Field Extract

bfe - Bit Field Extract

Project: HSW
Source: Eulsa
Length Bias: 4

Component-wise extract a bit field from src2 using the bit field width from srcO and the bit field offset from
srcl. Store the extracted bit field value in the low bits of dst and sign extend (if D type) or zero extend (if UD
type).

The width and offset values are from the low five bits of srcO and srcl respectively, or srcO & 0x1f and srcl &
Ox1f.

If width is zero, the result is zero.

If offset + width > 32 then the extracted bit field is bits offset to 31 of src2, extracting only 32 - offset bits, less
than width as the bit field cannot extend past the MSB of the source value. Otherwise extract width bits
extending from bit positions offset to offset + width - 1.

Format:
[(pred)] bfe (exec_size) dst src0 srcl src2

Restriction Project

Restriction : No accumulator access, implicit or explicit.

Restriction : All three-source instructions have certain restrictions, described in Instruction Machine HSW
Formats.

Syntax

[(pred)] bfe (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) { UD
width = srcO.chan[n][4:0]; UD offset = srcl.chan[n][4:0]; if ( width == 0 ) {
dst.chan[n] = 0x00000000; } else if ( (width + offset) < 32 ) { dst.chan[n] =
src2.chan[n] << (32 - width - offset); if (src2 is signed) { dst.chan[n] =
dst.chan[n] >> (32 - width); // pad sign bit of dst.chan } else { dst.chan[n] =
dst.chan[n] >> (32 - width); // pad 0 } } else { if ( src2 is signed ) {
dst.chan[n] = src2.chan[n] >> offset; // pad sign bit } else { dst.chan[n] =
src2.chan[n] >> offset; // pad O } } } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

Src Types | Dst Types
ub ub
D D

54



DWord| Bit Description
0.3 |127:126|Reserved
| Format: MBZ
125:106 | Source 2
| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
105 |Reserved
| Format: MBZ
104:85 |Source 1
| Format; EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
84 |Reserved
| Format: MBZ
83:64 |Source 0
| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
63:56 |Destination Register Number
| Format: | DstRegNum
55:53 |[Destination Subregister Number
| Format: | DstSubRegNum|[2:0]
52:49 |Destination Channel Enable
| Format: ChanEn[4]
Four channel enables are defined for controlling which channels are written into the
destination region. These channel mask bits are applied in a modulo-four manner to all
ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the
bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is
enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,
where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group
48 |Reserved
Project: HSW
Format: MBZ
47 | NibCtrl
Project: HSW
Format: NibCtrl
46 |Reserved
Project: HSW
Format: MBZ
45:44 |Destination Data Type

Project: HSW

This field contains the data type for the destination

55




bfe - Bit Field Extract

Value Name
00b Single Precision Float
01lb DWord
10b Unsigned DWord
11b Double Precision Float
43:42 |Source Data Type
Project: HSW
This field contains the data type for all three sources
Value Name
00b Single Precision Float
01lb DWord
10b Unsigned DWord
11b Double Precision Float
41:40 |Source 2 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
39:38 |Source 1 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
41:36 |Reserved
Exists If: ([Property[Source Modification]=="'false")
Format: MBZ
37:36 |Source 0 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
35 [Reserved
| Format: | MBZ
34 | Flag Register Number
| Project: | HSW
This field contains the flag register number for instructions with a non-zero Conditional
Modifier.
33 |Flag Subregister Number
This field contains the flag subregister number for instructions with a non-zero Conditional
Modifier.
32 Reserved

56




bfe - Bit Field Extract

Project: HSW

Format: MBZ
31:.0 |[Header

Format: EU_INSTRUCTION_HEADER

57




Q"_til

Bit Field Reverse

bfrev - Bit Field Reverse

Project: HSW
Source: Eulsa
Length Bias: 4

The bfrev instruction component-wise reverses all the bits in srcO and stores the results in dst.

Format:

[(pred)] bfrev (exec_size) dst srcO

Restriction

Restriction : No accumulator access, implicit or explicit.

Syntax

[(pred)] bfrev (exec_size) reg reg [(pred)] bfrev (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for ( n =

0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) { for (

idx = 0; idx < 32; idx++ ) { dst.chan[n][idx] = srcO.chan[n][31-idx]; } } }
Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N
Src Types | Dst Types
ub ub
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][SrcO.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG
127.64 |ImmSource
Exists If: ([Operand Controls][Src0.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header
| Format: | EUINSTRUCTION_HEADER

58




Bit Field Insert 2

bfi2 - Bit Field Insert 2

Project: HSW
Source: Eulsa
Length Bias: 4

The bfi2 instruction is the second instruction in a two-instruction macro for bfi (Bit Field Insert).

The bfi2 instruction component-wise performs the bitfield insert operation on srcl and src2 based on the mask
in srcO.

Use the mask in src0 to take a bit field value from the low bits of srcl and combine it with the value from src2
(so src2 provides all bits other than those masked out and replaced by the bit field value). Store the result in
dst.

The bfi macro has four source operands: src0 - bit field width in low five bits, srcl - bit field offset/starting bit
position in low five bits, src2 - bit field value to insert, using only the number of least significant bits given by
width in src0O, and src3 - overall value into which the bit field is inserted, providing all bits other than the
inserted bits for the result value.

bfi dst src0 srcl src2 src3
// Translates to these two instructions:

bfil dst srcO srcl
bfi2 dst dst src2 src3

Format:
[(pred)] bfi2 (exec_size) dst srcO srcl src2

Restriction Project

Restriction : No accumulator access, implicit or explicit.

Restriction : All three-source instructions have certain restrictions, described in Instruction Machine HSW
Formats.

Syntax

[(pred)] bfi2 (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) { UD
offset = LzZD(reverse(srcO.chan[n]))-1; // offset is the number of LSB zero bits
below the bit mask which has all 1s. // width (implied by the logic) is the
number of 1 bits in the mask value, which should be all 1s. dst.chan[n] =

59



(intel
bfi2 - Bit Field Insert 2

((srcl.chan[n] << offset) & srcO.chan[n]) | (src2.chan[n] & ! srcO.chan[n]); }

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

Src Types | Dst Types

ub ub
D D
DWord| Bit Description
0.3 |[127:126|Reserved
|Format: MBZ
125:106 | Source 2
| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 |Reserved

| Format: MBZ

104:85 |Source 1

| Format; EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

| Format: MBZ
83:64 |Source 0
| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

63:56 |Destination Register Number

| Format: | DstRegNum

55:53 | Destination Subregister Number

| Format: | DstSubRegNum|[2:0]

52:49 | Destination Channel Enable

Format: ChanEn[4]

Four channel enables are defined for controlling which channels are written into the
destination region. These channel mask bits are applied in a modulo-four manner to all
ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the
bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is
enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,
where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project: HSW
Format: MBZ
47 NibCtrl

60




bfi2 - Bit Field Insert 2

Project: HSW
Format: NibCtrl
46 |Reserved
Project: HSW
Format: MBZ
45:44 |Destination Data Type
Project: HSW
This field contains the data type for the destination
Value Name
00b Single Precision Float
01lb DWord
10b Unsigned DWord
11b Double Precision Float
43:42 |Source Data Type
Project: HSW
This field contains the data type for all three sources
Value Name
00b Single Precision Float
01lb DWord
10b Unsigned DWord
11b Double Precision Float
41:40 |Source 2 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
39:38 |Source 1 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
41:36 |Reserved
Exists If: ([Property[Source Modification]=="'false")
Format: MBZ
37:36 |Source 0 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod
35 Reserved
Format: MBZ

61




bfi2 - Bit Field Insert 2

34

Flag Register Number

| Project: | HSW

This field contains the flag register number for instructions with a non-zero Conditional
Modifier.

33

Flag Subregister Number

This field contains the flag subregister number for instructions with a non-zero Conditional
Modifier.

32

Reserved

Project: HSW

Format: MBZ

31:.0

Header

Format: EU_INSTRUCTION_HEADER

62




Average
avg - Average
Project: HSW
Source: Eulsa
Length Bias: 4

The avg instruction performs component-wise integer average of srcO and srcl and stores the results in dst. An
integer average uses integer upward rounding. It is equivalent to increment one to the addition of srcO and
srcl and then apply an arithmetic right shift to this intermediate value.

Format:

The avg instruction performs component-wise integer average of srcO and srcl and stores the results in dst. An
integer average uses integer upward rounding. It is equivalent to increment one to the addition of srcO and
srcl and then apply an arithmetic right shift to this intermediate value.

Syntax

reg imm32

[(pred)] avg[-cmod] (exec_size) reg reg reg [(pred)] avg[-cmod] (exec_size) reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = (srcO.chan[n] + srcl.chan[n] + 1) >> 1; // Use arithmetic shift

right. } }
Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y
Src Types | Dst Types
*B,*W,*D *B,*W,*D
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

63




Q"_til

Addition with Carry

addc - Addition with Carry

Project: HSW
Source: Eulsa
Length Bias: 4

The addc instruction performs component-wise addition of srcO and srcl and stores the results in dst; it also
stores the carry into acc.
If the operation produces a carry out, 0xX00000001 is stored in acc, else 0x00000000 is stored in acc.

Format:
[(pred)] addc[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit
destination operand.

Syntax

[(pred)] addc[.cmod] (exec_size) reg reg reg [(pred)] addc[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n+t+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] + srcl.chan[n]; acc.chan[n] = carry(srcO.chan[n] +
srcl.chan[n]); } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y N N

Src Types | Dst Types

ubD ub
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 ImmSource
Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

64



addc - Addition with Carry

31:0

Header

| Format: [ EUINSTRUCTION_HEADER

65




Q"_til

Addition
add - Addition
Project: HSW
Source: Eulsa
Length Bias: 4

The add instruction performs component-wise addition of srcO and srcl and stores the results in dst.
Addition of two floating-point numbers follows rules in add (IEEE mode) or add (ALT mode).

Format:
[(pred)] add[.cmod] (exec_size) dst srcO srcl

Programming Notes

Use a source modifier with add to implement subtraction.

Syntax

[(pred)] add[.cmod] (exec_size) reg reg reg [(pred)] add[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] + srcl.chan[n]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types | Project
*B,*W,*D *B,*W,*D

*B*W,*D |F
F F
DF DF HSW
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: (ImmSource][Srcl.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

66



add - Addition

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
310 Header

| Format: | EUINSTRUCTION_HEADER

67




Q"_til

Arithmetic Shift Right

asr - Arithmetic Shift Right

Project: HSW
Source: Eulsa
Length Bias: 4

Perform component-wise arithmetic right shift of the bits in srcO by the shift count indicated in srcl, storing the
results in dst. If srcO has a signed type, insert copies of srcQ's sign bit in the number of MSBs indicated by the
shift count. Otherwise insert 0 bits.

[DevHSW]I: The shift count is taken from the low five bits of srcl, regardless of the srcl type and treated as an
unsigned integer in the range 0 to 31.

For positive values, this operation is srcO / 2shiftCount and for negative values, this operation is src0 /
2shiftCount - 1.

Format:
[(pred)] asr[.cmod] (exec_size) dst src0 srcl

Programming Notes

If srcO is -1, the result is -1 regardless of the shift count.

For unsigned src0 types, asr and shr produce the same result.

Syntax

[(pred)] asr[-cmod] (exec_size) reg reg reg [(pred)] asr[-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.channel[n] ) {
[DevHSW] : shiftCnt = srcl.chan[n] & Ox1F; // Always use low 5 bits for shift
count. if (srcO.chan[n] >= 0) { dst.chan[n] = srcO.chan[n] >> shiftCnt; } else {
int maskLSB pow(2, shiftCnt) - 1; if ( maskLSB & srcO.chan[n] == 0 ) {
dst.chan|[n] sign(srcO.chan[n]) * ((abs)srcO.chan[n] >> shiftCnt); } else {
dst.chan[n] sign(srcO.chan[n]) * ((abs)srcO.chan[n] >> shiftCnt) - 1; } } } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types
*B'*W,*D *B'*W,*D

DWord Bit Description

0.3 127:64 |RegSource

68



asr - Arithmetic Shift Right

Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EU_INSTRUCTION_HEADER

69




Q"_til

Logic And
and - Logic And
Project: HSW
Source: Eulsa
Length Bias: 4

The and instruction performs component-wise logic AND operation between srcO and srcl and stores the
results in dst.

Register source operands can use source modifiers:

[DevHSW]: Any source modifier is numeric, optionally changing a source value s to -s, abs(s), or -abs(s) before
the AND operation.

This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz conditional modifiers
should be used.

Format:
Source modifier is not allowed if source is an accumulator.

Restriction

Restriction : Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] and[.cmod] (exec_size) reg reg reg [(pred)] and[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] & srcl.chan[n]; } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y N N

Src Types | Dst Types
*B’*W,*D *B’*W,*D

DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Srcl.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

70



and - Logic And

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
310 Header

| Format: | EUINSTRUCTION_HEADER

71




Q"_til

Compare
cmp - Compare
Project: HSW
Source: Eulsa
Length Bias: 4

The cmp instruction performs component-wise comparison of srcO and srcl and stores the results in the
selected flag register and in dst. It takes component-wise subtraction of srcO and srcl, evaluating the
conditional code (excluding NS signal) based on the conditional modifier, and storing the conditional bits in
bit-packed form in the destination flag register and all bits of dst channels. If the dst is not null, for the enabled
channels, then all bits of the destination channel will contain the flag value for the channel. When the
instruction operates on packed word format, one general register may store up to 16 such comparison results.
In DWord format, one general register may store up to 8 results.

A conditional modifier must be specified; the conditional modifier field cannot be 0000b. The comparison does
not use the NS (NaN source) signals, as described in the Creating Conditional Flags section. Accordingly the
conditional modifier should not be .u (unordered).

For each enabled channel 0b or 1b is assigned to the appropriate flag bit and 0/all zeros or all ones (e.g, byte
OxFF, word OxFFFF, DWord OxFFFFFFFF) is assigned to dst.

When any source type is floating-point, the cmp instruction obeys the rules described in the tables in the
Floating Point Modes section of the Data Types chapter.

Format:
[(pred)] cmp[.cmod] (exec_size) dst srcO srcl

Restriction Project

Restriction : Accumulator cannot be destination, implicit or explicit. The HSW
destination must be a general register or the null register.

Restriction : A SIMD16 instruction is not allowed for DWord data types. Use | DevHSW:GT1:A, DevHSW:GT2:A,
two SIMDS8 instructions. DevHSW:GT3:A

Restriction : If the destination is the null register, the {Switch} instruction HSW
option must be used.

Syntax

[(pred)] cmp[-cmod] (exec_size) reg reg reg [(pred)] cmp[-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { bitMask[n] = 0; if (
WrEn.chan[n] ) { results[n] = srcO.chan[n] - srcl.chan[n]; bitMask[n] =

72



(intel
cmp - Compare

Condition(results[n]); dst.chan[n] = bitMask[n]; 7/ All bits for dst channel } }
flag# = bitMask;

Predication | Conditional Modifier | Saturation [ Source Modifier

Y Y N Y

Src Types | Dst Types | Project

*B’*W’*D *B’*W’*D

*B,*W,*D |F
F F
DF DF HSW
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: (ImmSource][Srcl.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

| Format: | EUINSTRUCTION_HEADER




Q"_til

Count Bits Set

cbit - Count Bits Set

Project: HSW
Source: Eulsa
Length Bias: 4

The cbit instruction counts component-wise the total bits set in srcO and stores the resulting counts in dst.

Format:
[(pred)] cbit (exec_size) dst src0

Restriction

Restriction : No accumulator access, implicit or explicit.

Syntax

[(pred)] cbit (exec_size) reg reg [(pred)] cbit (exec_size) reg imm32

Pseudocode

rEn.chan[n] ) { UD cnt

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if (W
& 1) { cnt ++; } val = val

= 0; UD val = srcO.chan[n]; while ( val ) { if ( val
>> 1; } dst.chan[n] = cnt; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y N N N

Src Types | Dst Types

UB,UW,UD [UD
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 |ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

| Format: | EUINSTRUCTION_HEADER

74



Continue
cont - Continue
Project: HSW
Source: Eulsa
Length Bias: 4

Description Project

The cont instruction disables execution for the subset of channels for the remainder of the current
loop iteration. Channels remain disabled until right before the while instuction or right before the
condition check code block for the while instruction. If all enabled channels hit this instruction, jump
to the instruction referenced by JIP where execution continues.

UIP should always reference the loop's associated while instruction. JIP should point to the last
instruction of the inner most conditional block if the cont instruction is inside a conditional block. In

case of the break instruction directly under the loop, the JIP and the UIP are the same.

If SPF is ON, the UIP must be used to update IP; JIP is not used in this case.

The following table describes the two 16-bit instruction pointer offsets. Both the JIP and UIP are HSW
signed 16-bit numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at location srcl and
must be of type W (signed word integer).

Format:
[(pred)] cont (exec_size) JIP UIP

Restriction

Restriction : The execution size must be the same for the while, break, and cont instructions of the same code
block.

Syntax Project
[(pred)] cont (exec_size) imml6 Imml6 HSW
Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn_.channel[n] ) { if (
PMask[n] ) { // PMask is for all channels enabled for the cont instruction.
PcIP[n] = IP + UIP; } else { PcIP[n] = IP + 1; } } } for ( n = exec_size; n < 32;
n+t+ ) { PclP[n] = IP + 1; } if ( PcIP = (IP + 1) ) { // all channels true
Jump(IP + JIP); }

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

75




Q"_til

DWord Bit Description
0.3 127:112 |UIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the channel.
111:96 [JIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the instruction.
95:64 |Reserved
Project: HSW
Format: MBZ
63:32 | Operand Control
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header
| Format: | EUINSTRUCTION_HEADER

76




Compare NaN

cmpn - Compare NaN

Project: HSW
Source: Eulsa
Length Bias: 4

The cmpn instruction performs component-wise special-NaN comparison of srcO and srcl and stores the
results in the selected flag register and in dst. It takes component-wise subtraction of srcO and srcl, evaluating
the conditional signals including NS based on the conditional modifier, and storing the conditional flag bits in
bit-packed form in the destination flag register and all bits of dst channels. If the dst is not null, for the enabled
channels, then all bits of the destination channel will contain the flag value for the channel. When the
instruction operates on packed word format, one general register may store up to 16 such comparison results.
In DWord format, one general register may store up to 8 results.

A conditional modifier must be specified; the conditional modifier field cannot be 0000b. More information
about the conditional signals used is in the Creating Conditional Flags section.

For each enabled channel Ob or 1b is assigned to the appropriate flag bit and 0/all zeros or all ones (e.g, byte
OxFF, word OxFFFF, DWord OxFFFFFFFF) is assigned to dst.

Min/Max instructions use cmpn to select the destination from the input sources (see the Min Max of Floating
Point Numbers section for details).

Format:
[(pred)] cmpn[.cmod] (exec_size) dst srcO srcl

Restriction Project

Restriction : Accumulator cannot be destination, implicit or explicit. The HSW
destination must be a general register or the null register.

Restriction : A SIMDL16 instruction is not allowed for DWord data types. Use |DevHSW:GT1:A, DevHSW:GT2:A,
two SIMDS8 instructions. DevHSW:GT3:A

Restriction : If the destination is the null register, the {Switch} instruction HSW
option must be used.

Syntax

[(pred)] cmpn[.cmod] (exec_size) reg reg reg [(pred)] cmpn[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { bitMask[n] = 0; if (
WrEn.chan[n] ) { results[n] = srcO.chan[n] - srcl.chan[n]; bitMask[n] =
ConditionNaN(results[n]); dst.chan[n][0] = bitMask[n]; 7/ All bits for dst

77



Q"_til

cmpn - Compare NaN

channel } } flag# = bitMask;

Predication | Conditional Modifier | Saturation [ Source Modifier

Y Y N Y
Src Types | Dst Types | Project
*B’*W,*D *B’*W,*D
*B*W,*D |F
F F
DF DF HSW
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

78



Call

call - Call

Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
The call instruction jumps to a subroutine. It can be predicated or non-predicated. If non-predicated,
all enabled channels jump to the subroutine. If predicated, only the channels enabled by PMask jump
to the subroutine; the rest of the channels move to the next instruction after the call instruction. If
none of the channels jump into the subroutine, the call instruction is treated as a nop.
In case of a jump, the call instruction stores the return IP onto the first DWord of the destination
register and stores the CallMask in the second DWord of the destination register.
When SPF is on, the predication control must be scalar.
The following table describes JIP, the jump offset, for DevHSW+. JIP can be an immediate or register |HSW
value. When a jump occurs, this value is added to IP pre-increment. For DevHSW+, in GEN binary, JIP
is at location srcl when immediate and at location srcO when in a register. The IP register must be put
(for example, by the assembler) at dst location. When offsets are immediate, srcO must be null.
Format:
[(pred)] call (exec_size) dst JIP
Restriction Project
Restriction : The call instruction must have DWord source and destination type, and the destination
must be QWord aligned.
Restriction : The source0 regioning control must be < 2;2,1 > . HSW
Restriction : The execution size must be 2. HSW
Syntax Project

[(pred)] call (exec_size) reg imm32 [(pred)] call (exec_size) reg reg32 DevHSW +

Pseudocode

Evaluate(WrEn); for ( n
= IP + JIP; CallMask[n]

CallMask; Jump(IP + JIP); }

0; n < exec_size; nt+ ) { if (WrEn_.chan[n] ) { PclP[n]
1; } else { PclIP[n] = IP + 1; CallMask[n] = 0; } } if (
PcIP[n] '= (UIP + 1) ) { // any channel jumped dst.chan[0] = IP + 1; dst.chan[1] =

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

79




Q"_til

call - Call
Dst Types
D,UD
DWord| Bit Description
0.3 |127:112|Reserved
Project: HSW
Format: MBZ
111:96 |JIP
Project: HSW
Format: S15
Jump Target Offset. The relative offset in 64-bit units if a jump is taken for the instruction.
95:91 |[Reserved
Project: HSW
Format: MBZ
90 |Flag Register Number
Project: HSW
Added a second flag register
89 |Flag Subregister Number
| Project: HSW
This field specifies the sub-register number for a flag register operand. There are two sub-
registers in the flag register. Each sub-register contains 16 flag bits.
The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled
for the instruction. The same flag sub-register can be both the predication source and
conditional destination, if both predication and conditional modifier are enabled.
88:64 |[Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16'")
Format; |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:64 |[Source 0
Exists If: [ (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1")
Format; |[EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
63:32 | Operand Control
| Format; | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 [Header
| Format: | EU_INSTRUCTION HEADER

80



Branch Diverging

brd - Branch Diverging

Project: HSW
Source: Eulsa
Length Bias: 4

Description Project

The brd instruction redirects the execution forward or backward to the instruction pointed by (current
IP + offset). The jump will occur if any channels are branched away.

In GEN binary, JIP is at location src1 when immediate and at location srcO when reg32, where reg32 is |HSW
accessed as a scalar DWord. The ip register must be used (for example, by the assembler) as dst.

Format:
[(pred)] brd (exec_size) JIP

Syntax Project
[(pred)] brd (exec_size) imml6 [(pred)] brd (exec_size) reg32 HSW
Pseudocode
Evaluate(WrEn); for ( n = 0; n < 32; n+t+ ) { if ( WrEn[n] ) { PcIP[n] = IP + JIP;
} else { PclP[n] = IP + 1; } } if ( any PclP == ExIP + JIP ) { // any channel

Jump(ExIP + JIP); }

Predication | Conditional Modifier | Saturation [ Source Modifier

Y N N N

Src Types

D

DWord| Bit Description

0.3 |127:112|Reserved
Project: HSW
Format: MBZ
111:96 (JIP
Project: HSW
Format: S15
Jump Target Offset. The relative offset in 64-bit units if a jump is taken for the instruction.

81




brd - Branch Diverging

95:91 |[Reserved
Project: HSW
Format: MBZ
90 |Flag Register Number
| Project: | HSW
Added a second flag register
89 |Flag Subregister Number
| Project: | HSW
This field specifies the sub-register number for a flag register operand. There are two sub-
registers in the flag register. Each sub-register contains 16 flag bits.
The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled
for the instruction. The same flag sub-register can be both the predication source and
conditional destination, if both predication and conditional modifier are enabled.
88:64 |Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16')
Format;: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:64 |[Source 0
Exists If: [ (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1")
Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
63:32 |Operand Control
| Format; | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 [Header
| Format: | EUINSTRUCTION_HEADER

82



Branch Converging

brc - Branch Converging

Project: HSW
Source: Eulsa
Length Bias: 4

Description Project

The brc instruction redirects the execution forward or backward to the instruction pointed by (current
IP + offset). The jump will occur if all channels are branched away.

UIP should reference the instruction where all channels are expected to come together. JIP should
reference the end of the innermost conditional block.

In GEN binary, JIP and UIP are at location srcl1 when immediates and at location srcO when reg64, HSW
where reg64 is accessed as paired DWord (regioning being <2;2,1>). The ip register must be used (for
example, by the assembler) as dst. When offsets are immediate, srcO must be null.

Format:
[(pred)] brc (exec_size) JIP UIP

Syntax Project
[(pred)] brc (exec_size) imml6 imml6 [(pred)] brc (exec_size) reg64 HSW
Pseudocode
Evaluate(WrEn); for ( n = 0; n < 32; n+t+ ) { if ( WrEn[n] ) { PcIP[n] = IP + UIP;
} else { PcIP[n] = IP + 1; } } if C all PclIP I= 1P + 1 ) { // for all channels

Jump(IP + JIP); }

Predication | Conditional Modifier | Saturation [ Source Modifier

Y N N N
Src Types
D
DWord Bit Description
0.3 127:112 |UIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the channel.

83




brc - Branch Converging

111:96 |JIP

Project: HSW

Format: S15

The jump distance in number of eight-byte units if a jump is taken for the instruction.

95:64 [Reserved

Project: HSW

Format: MBZ
63:32 |Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header
Format: EU_INSTRUCTION_HEADER

84




Call Absolute

calla - Call Absolute

Project: HSW
Source: Eulsa
Length Bias: 4

The calla instruction jumps to a subroutine. It can be predicated or non-predicated. If non-predicated, all
enabled channels jump to the subroutine. If predicated, only the channels enabled by PMask jump to the
subroutine; the rest of the channels move to the next instruction after the calla instruction. If none of the
channels jump into the subroutine, the calla instruction is treated as a nop.

In case of a jump, the call instruction stores the return IP onto the first DWord of the destination register and
stores the CallMask in the second DWord of the destination register.

If SPF is ON, none of the PcIP are updated.
When SPF is on, the predication control must be scalar.

The difference between calla and call is that calla uses JIP as the IP value rather than adding it to the IP value.

Format:
[(pred)] calla (exec_size) dst JIP

Restriction Project

Restriction : The calla instruction must have DWord source and destination type, and the destination
must be QWord-aligned.

Restriction : The srcO regioning control must be <2;2,1>,

Restriction : The execution size must be 2. HSW

Syntax Project

[(pred)] calla (exec_size) reg imml6 HSW

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.channel[n] ) {
PcIP[n] = JIP; CallMask[n] = 1; } else { PcIP[n] = IP + 1; CallMask[n] = 0; } }
if ( PclIP[n] '= (UP + 1) ) { // any channel jumped dst.chan[0] = IP + 1;
dst.chan[1] = CallMask; Jump(JIP); }

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

85



calla - Call Absolute

(II'IE

DWord| Bit Description
0.3 |127:112|Reserved
Project: HSW
Format: MBZ
111:96 |JIP
Project: HSW
Format: S15
Jump Target Offset. The relative offset in 64-bit units if a jump is taken for the instruction.
95:91 |[Reserved
Project: HSW
Format: MBZ
90 |Flag Register Number
| Project: HSW
Added a second flag register
89 |Flag Subregister Number
| Project: HSW
This field specifies the sub-register number for a flag register operand. There are two sub-
registers in the flag register. Each sub-register contains 16 flag bits.
The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled
for the instruction. The same flag sub-register can be both the predication source and
conditional destination, if both predication and conditional modifier are enabled.
88:64 |[Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16'")
Format; |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:64 |[Source 0
Exists If: [ (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1")
Format; |[EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
63:32 | Operand Control
| Format; | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 [Header
| Format: | EU_INSTRUCTION HEADER

86




Break
break - Break
Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
The break instruction is used to early-out from the inner most loop, or early out from the inner most
switch block.
When used in a loop, upon execution, the break instruction terminates the loop for all execution
channels enabled. If all the enabled channels hit the break instruction, jump to the instruction
referenced by JIP. JIP should be the offset to the end of the inner most conditional or loop block, UIP
should be the offset to the while instruction of the loop block.
If SPF is ON, the UIP must be used to update IP; JIP is not used in this case
The following table describes the two 16-bit instruction pointer offsets. Both the JIP and UIP are HSW
signed 16-bit numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at location srcl and
must be of type W (signed word integer).
Format:
[(pred)] break (exec_size) JIP UIP
Syntax Project
[(pred)] break (exec_size) imml6 imml6 HSW
Pseudocode
Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.channel[n] ) {
PcIP[n] = IP + UIP; else { PcIP[n] = IP + 1; } } if ( PcIP I= (UIP + 1) ) { 7/ all
channels Jump(IP + JIP); }
Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N
DWord Bit Description
0.3 127:112 |UIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the channel.

87




break - Break

111:96 |JIP
Project: HSW
Format: S15
The jump distance in number of eight-byte units if a jump is taken for the instruction.
95:64 |Reserved
Project: HSW
Format: MBZ
63:32 Operand Control
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header
| Format: | EU_INSTRUCTION_HEADER

88




Multiply Accumulate

mac - Multiply Accumulate

Project: HSW
Source: Eulsa
Length Bias: 4

The mac instruction takes component-wise multiplication of srcO and srcl, adds the results with the
corresponding accumulator values, and then stores the final results in dst.

Format:
[(pred)] mac[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Accumulator is an implicit source and thus cannot be an explicit source operand.

Syntax

[(pred)] mac[-cmod] (exec_size) reg reg reg [(pred)] mac[-cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] * srcl.chan[n] + accO.chan[n]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types | Project
*B,*W *B,*W,*D

F F
DF DF HSW
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Srcl.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

89




mac - Multiply Accumulate

31:0

Header

Format: | EU_INSTRUCTION_HEADER

90




Reserved InstructionO

Reserved Instruction0

Project:
Length Bias:
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:27 Opcode 1
| Format: | Opcode
26:24 Opcode 2
| Format: | Opcode
23:21 Opcode 3
| Format: | Opcode
20:16 Opcode 4
| Format: | Opcode
31:0 Reserved
| Format: | u32
11:0 DWord Count
| Format: | =n
0..n 31:0 Unknown Bitfield

91




Q"_til

Logic Xor
xor - Logic Xor
Project: HSW
Source: Eulsa
Length Bias: 4

Description Project

The xor instruction performs component-wise logic XOR operation between srcO and srcl and stores
the results in dst.

This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz conditional
modifiers should be used.

Register source operands can use source modifiers: HSW
Any source modifier is numeric, optionally changing a source value s to -s, abs(s), or -abs(s) before
the XOR operation.

Format:
[(pred)] xor[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] xor[.cmod] (exec_size) reg reg reg [(pred)] xor[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] ~ srcl.chan[n]; } }

Predication | Conditional Modifier | Saturation | Source Modifier

Y N Y Y

Src Types | Dst Types
*B’*W,*D *B’*W,*D

DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource

92



xor - Logic Xor

Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
310 Header
| Format: | EUINSTRUCTION_HEADER

93




Q"_til

Reserved Instruction2

Reserved Instruction2

Project: HSW
Length Bias: 2
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:27 Opcode 1
| Format: | Opcode
26:24 Opcode 2
| Format: | Opcode
23:16 Opcode 3
| Format: | Opcode
31:0 Reserved
| Format: | u32
15:0 DWord Count
| Format: | =n
0..n 31.0 Unknown Bitfield

94




Reserved Instructionl

Reserved Instructionl

Project:
Length Bias:
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:27 Opcode 1
| Format: | Opcode
26:24 Opcode 2
| Format: | Opcode
23:21 Opcode 3
| Format: | Opcode
20:16 Opcode 4
| Format: | Opcode
31:0 Reserved
| Format: | u32
11:0 DWord Count
| Format: | =n
0..n 31:0 Unknown Bitfield

95




While

while - While

Project: HSW
Source: Eulsa
Length Bias: 4
Description Project

The while instruction marks the end of a do-while block. The instruction first evaluates the loop

termination condition for each channel based on the current channel enables and the predication

flags specified in the instruction. If any channel has not terminated, a branch is taken to a destination
address specified in the instruction, and the loop continues for those channels. Otherwise, execution
continues to the next instruction.ld point to the first instruction with the do label of the do-while block

of code. It should be a negative number for the backward referencing. In GEN binary, JIP is at location

dst and must be of type W (signed word integer).

If SPF is ON, none of the PcIP are updated.

The following table describes the 16-bit jump target offset JIP. JIP is a signed 16-bit number, added to | HSW

IP pre-increment, and should point to the first instruction with the do label of the do-while block of
code. It should be a negative number for the backward referencing. In GEN binary, JIP is at location
srcl and must be of type W (signed word integer).

Format:
[(pred)] while (exec_size) JIP

Restriction

of the same code block.

Restriction : The execution size must be the same for the while instruction and any break and cont instructions

Syntax Project

[(pred)] while (exec_size) imml6 HSW

Pseudocode

Evaluate(WrEn); for ( n
JIP; } else { PclIP[n] =
true Jump(IP + JIP); }

=0
IP

; N <32; nt+ ) { if (WrEn.chan[n] ) { PcIP[n] = IP +
+1; y } if (| PMask == 1 ) { // any enabled channel

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

DWord| Bit Description

0.3 |127:112|Reserved

96




while - While

Project: HSW
Format: MBZ
111:96 |JIP
Project: HSW
Format: S15
Jump Target Offset. The relative offset in 64-bit units if a jump is taken for the instruction.
95:91 |[Reserved
Project: HSW
Format: MBZ
90 |Flag Register Number
| Project: | HSW |
Added a second flag register
89 |Flag Subregister Number
| Project: | HSW |
This field specifies the sub-register number for a flag register operand. There are two sub-
registers in the flag register. Each sub-register contains 16 flag bits.
The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled
for the instruction. The same flag sub-register can be both the predication source and
conditional destination, if both predication and conditional modifier are enabled.
88:64 |Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16'")
Format; |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:.64 |Source 0
Exists If: [ (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1")
Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
63:32 |Operand Control
| Format: | EUINSTRUCTION_OPERAND_CONTROLS |
31:0 [Header
| Format: | EUINSTRUCTION_HEADER |

97




Q"_til

Shift Right

shr - Shift Right

Project: HSW
Source: Eulsa
Length Bias: 4

Description

Project

Perform component-wise logical right shift with zero insertion of the bits in srcO by the shift count
indicated in srcl, storing the results in dst. Insert zero bits in the number of MSBs indicated by the
shift count.

srcO and dst can have different types and can be signed or unsigned.

Note: For word and DWord operands, the accumulators have 33 bits.

Note: For unsigned src0 types, shr and asr produce the same result.

The shift count is taken from the low five bits of srcl, regardless of the srcl type and treated as an
unsigned integer in the range 0 to 31.

HSW

Format:
[(pred)] shr[.cmod] (exec_size) dst src0 srcl

Syntax

reg imm32

[(pred)] shr[.cmod] (exec_size) reg reg reg [(pred)] shr[.cmod] (exec_size) reg

Pseudocode

Project

Evaluate(WrEn); for ( n = 0; n < exec_size; n+t+ ) { if ( WrEn.chan[n] ) {
shiftCnt = srcl.chan[n] & Ox1F; // Always use low 5 bits for shift count.
dst.chan[n] = srcO.chan[n] >> shiftCnt; } }

HSW

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types
UB,UW,UD [ UB,UW,UD

DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 ImmSource

98




shr - Shift Right

Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
310 Header
| Format: | EUINSTRUCTION_HEADER

99




Q"_til

Shift Left

shl - Shift Left

Project: HSW
Source: Eulsa
Length Bias: 4
Description Project

Perform component-wise logical left shift of the bits in srcO by the shift count indicated in srcl, storing

the results in dst, inserting zero bits in the number of LSBs indicated by the shift count.

Hardware detects overflow properly and uses it to perform any saturation operation on the result, as

long as the shifted result is within 33 bits. Otherwise, the result is undefined.

Note: For word and DWord operands, the accumulators have 33 bits.

The shift count is taken from the low five bits of srcl, regardless of the srcl type and treated as an HSW
unsigned integer in the range 0 to 31.

Format:

[(pred)] shl[.cmod] (exec_size) dst srcO srcl

Restriction Project

Restriction : Accumulator cannot be destination, implicit or explicit.

Restriction : Results of saturation in packed-DWord mode are unpredicable. HSW

Syntax
[(pred)] shl[.cmod] (exec_size) reg reg reg [(pred)] shl[.cmod] (exec_size) reg
reg imm32
Pseudocode Project

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) { HSW
shiftCnt = srcl.chan[n] & Ox1F; // Always use low 5 bits for shift count.
dst.chan[n] = srcO.chan[n] << shiftCnt; } }

Predication | Conditional Modifier | Saturation | Source Modifier

Y Y Y Y

Src Types | Dst Types

*B’*W’*D *B’*W’*D

DWord Bit Description

0.3 127:64 RegSource
’Eigsts If: ([RegSource][Srcl.RegFile]!="IMM")

100




shl - Shift Left

Format: | EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource

Exists If: ([ImmSource][Srcl.RegFile]=="IMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls

| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header

| Format: | EUINSTRUCTION_HEADER

101




Q"_til

Wait Notification

wait - Wait Notification

Project: HSW
Source: Eulsa
Length Bias: 4

The wait instruction evaluates the value of the notification count register nreg. If nreg is zero, thread execution
is suspended and the thread is put in 'wait_for_notification' state. If nreg is not zero (i.e., one or more
notifications have been received), nreg is decremented by one and the thread continues executing on the next
instruction. If a thread is in the 'wait_for_notification' state, when a notification arrives, the notification count
register is incremented by one. As the notification count register becomes nonzero, the thread wakes up to
continue execution and at the same time the notification register is decremented by one. If only one
notification arrived, the notification register value becomes zero. However, during the above mentioned time
period, it is possible that more notifications may arrive, making the notification register nonzero again.

When multiple notifications are received, software must use wait instructions to decrement notification count
registers for each notification.

Notification register n0.0:ud is for thread to thread communication (via the Message Gateway shared function)
and n0.1:ud for host to thread communication (through MMIO registers). See the Message Gateway chapter for
thread-thread communication and the Debug chapter for host-to-thread communication.

Format:
wait (exec_size) nreg

Restriction

Restriction : srcO and dst must be n0.0, n0.1, or n0.2.

Restriction : Execution size must be 1 as the notification registers are scalar.

Restriction : Predication is not allowed.

Restriction : Two back-to-back wait instructions are not allowed. At minimum, a nop instruction must be
inserted between two wait instructions

Syntax

wait (1) n#

Pseudocode

N/A

Predication | Conditional Modifier | Saturation | Source Modifier
N N N N

Src Types | Dst Types

102



wait - Wait Notification

lub  |w
DWord Bit Description
0 127:64 |Sources
Exists If: ([Operand Control][Src1.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG
127.64 |Sources
Exists If: ([Operand Control][Src1.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Control
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EU_INSTRUCTION_HEADER

103




Q"_til

Integer Subtraction with Borrow

subb - Integer Subtraction with Borrow

Project: HSW
Source: Eulsa
Length Bias: 4

The subb instruction performs component-wise subtraction of srcO and srcl and stores the results in dst, it also
stores the borrow into acc.

If the operation produces a borrow (srcO < srcl), write 0x00000001 to acc, else write 0x00000000 to acc.

Format:
[(pred)] subb[.cmod] (exec_size) dst src0 srcl

Restriction

Restriction : AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit
destination operand.

Syntax

[(pred)] subb[.cmod] (exec_size) reg reg reg [(pred)] subb[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] - srcl.chan[n]; acc.chan[n] = borrow(src.chan[n] -
srcl.chan[n]); } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y N Y N

Src Types | Dst Types

ub ub
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: (ImmSource][Srcl.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

104




el

subb - Integer Subtraction with Borrow

[Format:  [EU_INSTRUCTION_OPERAND CONTROLS
31.0 Header
| Format: [ EUINSTRUCTION_HEADER

105




Q"_til

Reserved Instruction7

Reserved Instruction7

Project: HSW
Length Bias: 1
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:23 Opcode 1
| Format: | Opcode
31:0 Reserved
| Format: | u32
0..n 31:0 Unknown Bitfield

106




Reserved Instruction6

Reserved Instruction6

Project: HSW
Length Bias: 2
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:23 Opcode 1
| Format: | Opcode
31:0 Reserved
| Format: | u32
5:0 DWord Count
| Format: | =n
0.n 31:0 Unknown Bitfield

107




Q"_til

Reserved Instruction8

Reserved Instruction8

Project: HSW
Length Bias: 1
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:23 Opcode 1
| Format: | Opcode
31:0 Reserved
| Format: | u32
0..n 31:0 Unknown Bitfield

108




MI_NOOP

MI_NOOP

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to
pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one
minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.
This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide
sequencing information for a subsequent breakpoint interrupt).

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 00h MI_NOOP
Format: OpCode
22 |Identification Number Register Write Enable
Format: Enable

This field enables the value in the Identification Number field to be written into the MI NOPID
register. If disabled, that register is unmodified - making this command an effective "no
operation” function.

Value Name

1 Write the NOP_ID register.

21:0 |Identification Number

Format: u22

This field contains a 22-bit number which can be written to the MI NOPID register.

109



Q"_til

MI_NOOP

MI_NOOP

Project: HSW
Source: RenderCS
Length Bias: 1

The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to
pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one
minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.
This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide
sequencing information for a subsequent breakpoint interrupt).

Performance Project

The MI_NOOP process time is reduced to 1 clock. An example use of the improved NOOP throughput |HSW
is for some multi-pass media applications where some unwanted media object commands are
replaced by MI_NOOP commands without repacking the commands in a batch buffer.

DWord | Bit Description
0 31:29 | Command Type
| Default Value: | oh MLCOMMAND |
28:23 | MI Command Opcode
| Default Value: | 0Oh MI_NOOP |

22 |Identification Number Register Write Enable

| Format: | Enable |

This field enables the value in the Identification Number field to be written into the MI NOPID
register. If disabled, that register is unmodified, making this command an effective "no
operation" function.

Value Name Description
Oh Disable Do not write the NOP_ID register.
1h Enable Write the NOP_ID register.
21:.0 |Identification Number
Format: u22

This field contains a 22-bit number which can be written to the MI NOPID register.

110




Reserved Instruction4

Reserved Instruction4

Project:
Length Bias:
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:27 Opcode 1
| Format: | Opcode
26:24 Opcode 2
| Format: | Opcode
23:16 Opcode 3
| Format: | Opcode
31:0 Reserved
| Format: | u32
15:0 DWord Count
| Format: | =n
0..n 31.0 Unknown Bitfield

111




Q"_til

Reserved Instruction3

Reserved Instruction3

Project: HSW
Length Bias: 2
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:27 Opcode 1
| Format: | Opcode
26:24 Opcode 2
| Format: | Opcode
23:16 Opcode 3
| Format: | Opcode
31:0 Reserved
| Format: | u32
15:0 DWord Count
| Format: | =n
0..n 31.0 Unknown Bitfield

112




Reserved Instruction5

Reserved Instructionb

Project: HSW
Length Bias: 2
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:23 Opcode 1
| Format: | Opcode
31:0 Reserved
| Format: | u32
7:0 DWord Count
| Format: | =n
0.n 31:0 Unknown Bitfield

113




Q"_til

MI_NOOP

MI_NOOP

Project: HSW
Source: BlitterCS
Length Bias: 1

The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to
pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one
minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.
This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide
sequencing information for a subsequent breakpoint interrupt).

DWord | Bit Description

0 31:29 | Command Type

| Default Value: | oh MILCOMMAND

28:23 | MI Command Opcode

| Default Value: | oh MINOOP

22 |Identification Number Register Write Enable

Project: All

Format: Enable

This field enables the value in the Identification Number field to be written into the MI NOPID
register. If disabled, that register is unmodified - making this command an effective "no
operation” function.

Value Name Description Project
Oh Disable Do not write the NOP_ID register. All
lh Enable Write the NOP_ID register. All
21:0 |Identification Number
Project: All
Format: uz22

This field contains a 22-bit number which can be written to the MI NOPID register.

114



Conditional Send Message

sendc - Conditional Send Message

Project: HSW
Source: Eulsa
Length Bias: 4

The sendc instruction has the same behavior as the send instruction except the following.

sendc first checks the dependent threads inside the Thread Dependency Register. There are up to 8 dependent
threads in the TDR register. The sendc instruction executes only when all the dependent threads in the TDR
register are retired.

Wait for dependencies in the TDR Register to clear, then send a message stored in registers starting at src to a
shared function identified by exdesc along with control from desc with a general register writeback location at
dst.

Format:
[(pred)] sendc (exec_size) dst srcO exdesc desc

Restriction

Restriction : The sendc instruction has the same restrictions as the send instruction.

Pseudocode

if ( TDR[7] --- |11 TDR[2] |1 TDR[1] || TDR[O] ) { wait; } Evaluate(WrEn);
MsgChEnable = WrEn; SourceReg = src0.RegNum; MessageEnqueue(MsgChEnable,
ResponseReg, SourceReg, desc, exdesc);

Predication | Conditional Modifier | Saturation [ Source Modifier

Y N N N
DWord Bit Description
0.3 127:96 |Message
| Format: | EU_INSTRUCTION_OPERAND_SEND_MSG
95:89 |Flags
Format: | EU_INSTRUCTION FLAGS

88:64 |Source 0

Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16")

Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 |[Source 0

Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1’)

Format; |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 |Operand Control

115



sendc - Conditional Send Message

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:28 [Controls B
| Format: | EU_INSTRUCTION_CONTROLS_B
27:24 | Shared Function ID (SFID)
| Format: SFID
23:8 [Controls A
| Format: EU_INSTRUCTION_CONTROLS_A
7 Reserved
| Format: MBZ
6:0 |Opcode
Format: EU_OPCODE

116



No Operation

nop - No Operation

Project: HSW
Source: Eulsa
Length Bias: 4

Do nothing. The nop instruction takes an instruction dispatch but performs no operation. It can be used for
assembly patching in memory, or to insert a delay in the program sequence.

Format:
nop

Restriction

Restriction : The nop instruction takes no instruction options other than Breakpoint.

Syntax

nop

Pseudocode

{ ; // The null statement, which does nothing. }

Predication | Conditional Modifier | Saturation | Source Modifier

N N N N
DWord| Bit Description
0.3 |127:31|Reserved
Format: MBZ

30 |[DebugCtrl

This field allows the insertion of a breakpoint at the current instruction. When the bit is set,

hardware automatically stores the current IP in CR register and jumps to the System IP (SIP)
BEFORE executing the current instruction.

Value Name

0 No Breakpoint [Default]

1 Breakpoint

29:7 |Reserved
| Format: MBZ

6:0 |Opcode
| Format: EU_OPCODE

117




Q"_til

Multiply

mul - Multiply

Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
The mul instruction performs component-wise multiplication of srcO and srcl and stores the results in
dst.
When both srcO and srcl are of type D or UD, only the low 16 bits of each element of srcl are used. HSW
The accumulator maintains full 48-bit precision. The macro described in the mach instruction should
be used to obtain the full precision 64-bit multiplication result.
Multiplication of two floating-point numbers follows the rules in mul - Multiply based on the
applicable floating-point mode.
Format:
[(pred)] mul[.cmod] (exec_size) dst srcO srcl
Restriction Project
Restriction : Use a source modifier with add to implement subtraction.
Restriction : When operating on integers with at least one of the source being a DWord type (signed
or unsigned), the destination cannot be floating-point (implementation note: the data converter only
looks at the low 34 bits of the result).
Restriction : When operating on integers with at least one source having a DWord type (signed or
unsigned), the Overflow and Sign flags are undefined. Therefore, conditional modifiers and saturation
(.sat) cannot be used in this case.
Restriction : When multiplying a DW and a W, the W has to be on srcl, and the DW has to be on src0. |HSW

Syntax

reg imm32

[(pred)] mul[.cmod] (exec_size) reg reg reg [(pred)] mul[.cmod] (exec_size) reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] * srcl.chan[n]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types | Project |

118




mul - Multiply

B B
B W
B D
W W
W D
wW,D D
F F
DF DF HSW
DWord Bit Description
0.3 127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
310 Header
| Format: | EUINSTRUCTION_HEADER

119




Q"_til

Logic Or
or - Logic Or
Project: HSW
Source: Eulsa
Length Bias: 4

Description Project

The or instruction performs component-wise logic OR operation between srcO and srcl and stores the
results in dst.

This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz conditional
modifiers should be used.

Register source operands can use source modifiers: HSW

Any source modifier is numeric, optionally changing a source value s to -s, abs(s), or -abs(s) before
the OR operation.

Format:
[(pred)] or[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] or[.cmod] (exec_size) reg reg reg [(pred)] or[.cmod] (exec_size) reg reg
imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n] | srcl.chan[n]; } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y N Y Y

Src Types | Dst Types
*B’*W,*D *B’*W,*D

DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource

120



or - Logic Or

Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header
| Format: | EUINSTRUCTION_HEADER

121




Q"_til

Logic Not
not - Logic Not
Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
The not instruction performs logical NOT operation (or one's complement) of srcO and storing the
results in dst.
This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz conditional
modifiers should be used.
A register source operand can use a source modifier: HSW

Any source modifier is numeric, optionally changing a source value s to -s, abs(s), or -abs(s) before
the NOT operation.

Format:
[(pred)] not[.cmod] (exec_size) dst srcO

Restriction

Restriction : Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] not[.cmod] (exec_size) reg reg [(pred)] not[.cmod] (exec_size) reg imm32

Pseudocode

dst.chan[n] = ~ srcO.chan[n]; } }

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {

Predication | Conditional Modifier | Saturation | Source Modifier
Y N Y Y

Src Types | Dst Types
*B’*W,*D *B’*W,*D

DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 |ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="TMM")

122




not - Logic Not

| Format: | EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:.0 Header

| Format: | EUINSTRUCTION_HEADER

123




Q"_til

Move Indexed

movi - Move Indexed

Project: HSW
Source: Eulsa
Length Bias: 4

The movi instruction performs a fast component-wise indexed move for subfields from srcO to dst. The source
operand must be an indirectly-addressed register. All channels of the source operand share the same register
number, which is provided by the register field of the first address subregister, with a possible immediate
register offset. The register fields of the subsequent address subregisters are ignored by hardware. The
subregister number of a source channel is provided by the subregister field of the corresponding address
subregister, with a possible immediate subregister offset.

The destination register may be either a directly-addressed or an indirectly-addressed register.

This instruction effectively performs a subfield shuffling from one register to another. Up to eight subfields can
be selected by an instruction.

Format:
[(pred)] movi (exec_size) dst srcO srcl

Programming Notes

HW Implementation Details:

The source register is calculated by adding the register portion of the first index register with the register
portion of the address immediate, a0.0[11:5] + addr_imm[9:5]

For byte movi, byte0 of the destination is selected by (a0.0[4:0]), bytel is selected by (a0.1[4:0]), ..., and byte7 is
selected by (a0.7[4:0]). The rest of the bytes are undefined.

For word movi, byte0 of the destination is selected by (a0.0[4:1] & 0), bytel is selected by (a0.0[4:1] & 1), byte2
is selected by (a0.1[4:1] & 0), byte3 is selected by (a0.1[4:1] & 1), .., and bytel5 is selected by (a0.7[4:1] & 1).
The rest of the bytes are undefined.

For DWord or float movi, byte0 of the destination is selected by (a0.0[4:2] & 00b), bytel is selected by
(@0.0[4:2] & 01b), byte2 is selected by (a0.0[4:2] & 10b), byte3 is selected by (a0.0[4:2] & 11b), byte4 is selected
by (a0.1[4:2] & 00b), byte5 is selected by (a0.1[4:2] & 01b), ..., byte31 is selected by (a0.7[4:2] & 11b).

For all 3 conditions above, a0.n[4:0] = a0.n[4:0] + addr_imm[4:0].

Restriction Project

Restriction : Source operand cannot be accumulators. The source operand must be a general register.

Restriction : The source and destination must have the same type.

Restriction : HSW
The execution size must be 8.
Restriction : HSW

The address register for the source must be aligned to the base (a0.0).

Restriction : The destination register (directly or indirectly addressed) must be 16-byte aligned.

Restriction : The destination region (directly or indirectly addressed) must point to the same GRF

124



Q"_til

movi - Move Indexed

register.

Restriction : The destination stride in bytes must equal the source element size in bytes.

Restriction : The Align16 access mode is not allowed.

Restriction : All the index registers (address subregisters) used must point to the same GRF register.

Restriction : The instruction must use 1x1 indirect regioning.

Restriction : The destination offset is only used to create channel enables. Each element of the
destination is directly mapped to the index registers for the movi instruction. i.e. a0.0 -> dst.0, a0.1 ->
dst.1, a0.2 -> dst.2, etc.

Restriction : Conditional Modifier is not allowed for this instruction.

Syntax
[(pred)] movi (exec_size) reg reg imm
Pseudocode Project
Evaluate(WrEn); srcregfile = regfile(src0); srcregbase = reg(address[0]) + [|HSW

reg(addr_imm); for ( n = 0; n < RegWidth; n++ ) { if ( WrEn.chan[n] ) {
srcsubreg = subreg(address[n] + addr_imm); dst.chan[n] =
srcregfile._srcreg.srcsubreg; } }

Predication | Conditional Modifier | Saturation | Source Modifier

Y N Y Y

Src Types | Dst Types

B B

UB UB

w w

uw uw

D D

ub ub

F F

DWord Bit Description
0.3 127:64 |RegSource

Exists If: ([Operand Controls][Src0.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="IMM")

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

125




movi - Move Indexed

[Format:  |EU_INSTRUCTION_OPERAND_CONTROLS
31:.0 Header
| Format: | EUINSTRUCTION_HEADER

126




Multiply Add

mad - Multiply Add

Project: HSW
Source: Eulsa
Length Bias: 4

The mad instruction takes component-wise multiplication of srcl and src2, adds the results with the
corresponding srcO values, and then stores the final results in dst.

Format:
[(pred)] mad[.cmod] (exec_size) dst srcO srcl src2

Machine Formats.

Restriction Project
Restriction : No explicit accumulator access because this is a three-source instruction. AccWrEn is
allowed for implicitly updating the accumulator.
Restriction : [DevHSW]: All three-source instructions have certain restrictions, described in Instruction |HSW

Syntax

[(pred)] mad[-cmod] (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcl.chan[n] * src2.chan[n] + srcO.chan[n]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types | Project

F F
DF DF HSW
DWord| Bit Description
0.3 |127:126 | Reserved
| Format: MBZ
125:106 | Source 2
| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 |Reserved

| Format: MBZ

104:85 |Source 1

127




mad - Multiply Add

| Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
84 |Reserved
| Format: | MBZ
83:64 |[Source 0
| Format; EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC
63:56 |Destination Register Number
| Format: | DstRegNum
55:53 | Destination Subregister Number
| Format: | DstSubRegNum|[2:0]
52:49 |Destination Channel Enable
Format: ChanEn[4]
Four channel enables are defined for controlling which channels are written into the
destination region. These channel mask bits are applied in a modulo-four manner to all
ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the
bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is
enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,
where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group
48 |Reserved
Project: HSW
Format: MBZ
47 | NibCtrl
Project: HSW
Format: NibCtrl
46 |Reserved
Project: HSW
Format: MBZ
45:44 |Destination Data Type
Project: HSW
This field contains the data type for the destination
Value Name
00b Single Precision Float
01b DWord
10b Unsigned DWord
11b Double Precision Float
43:42 |Source Data Type

Project: HSW

128



mad - Multiply Add

This field contains the data type for all three sources

Value Name
00b Single Precision Float
0lb DWord
10b Unsigned DWord
11b Double Precision Float
41:40 |Source 2 Modifier
Exists If: ([Property[Source Modification]=="true")
Format: SrcMod

39:38 |Source 1 Modifier

Exists If: ([Property[Source Modification]=="true")

Format: SrcMod

41:36 |Reserved

Exists If: ([Property[Source Modification]=="false')
Format: MBZ

37:36 |Source 0 Modifier
Exists If: ([Property[Source Modification]=="true")
Format; SrcMod

35 Reserved

| Format: MBZ

34 Flag Register Number
|Project: HSW

This field contains the flag register number for instructions with a non-zero Conditional
Modifier.

33 Flag Subregister Number
This field contains the flag subregister number for instructions with a non-zero Conditional
Modifier.

32 Reserved

Project: HSW

Format: MBZ

31:0 |Header

Format: EU_INSTRUCTION_HEADER

129



Q"_til

Multiply Accumulate High

mach - Multiply Accumulate High

Project: HSW
Source: Eulsa
Length Bias: 4

The mach instruction performs DWord integer multiply-accumulate operation and outputs the high DWord
(bits 63:32).

For each enabled channel, this instruction multiplies the DWord in srcl with the high word of the DWord in
src0, left shifts the result by 16 bits, adds it with the corresponding accumulator values, and keeps the whole
64-bit result in the accumulator. It then stores the high DWord (bits 63:32) of the results in dst.

This instruction is intended to be used to emulate 32-bit DWord integer multiplication by using the large

number of bits available in the accumulator. For example, the following four instructions perform vector

multiplication of two 32-bit signed integer sources from r2 and r3 and store the resulting vectors with the high
32 bits in r5 and the low 32 bits in r6.

mul (8) acc0:d r2.0<8;8,1>:d r3.0<8;8,1>:d //All channels must be enabled

mach (8) rTemp<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d //All channels must be enabled

mov (8) r5.0<1>:d rTemp<8;8,1>:d // High 32 bits
mov (8) r6.0<1>:d accO:d // Low 32 bits

The mul and mach instructions must have all channels enabled. The first mov should have channel enable from
the destHI of IMUL, the second mov should have the channel enable from the destLO of IMUL.

As mach is used to generate part of the 64-bit DWord integer results, saturation modifier should not be used.
In fact, saturation modifier should not be used for any of these four instructions.

Source and destination operands must be DWord integers. Source and destination must be of the same type,
signed integer or unsigned integer.

If dst is UD, srcO and src1 may be UD and/or D. However, if any of srcO and srcl is D, source modifier (abs)
must be present to convert it to match with dst.

If dst is D, srcO and srcl must also be D. They cannot be UD as it may cause unexpected overflow because the
computed results are limited to 64 bits.

Format:
[(pred)] mach[.cmod] (exec_size) dst srcO srcl

Restriction

130




Q"_til

mach - Multiply Accumulate High

Restriction : Accumulator is an implicit source and thus cannot be an explicit source operand.

Restriction : AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit
destination operand.

Syntax

[(pred)] mach[.cmod] (exec_size) reg reg reg [(pred)] mach[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn);

for ( n = 0; n < exec_size; n+t+ ) { acc.chan[n][63:0] = (srcO.chan[n][31:16] *
srcl.chan[n][31:0]) << 16 + acc.chan[n][63:0]; if ( WrEn.chan[n] ) {
dst.chan[n][31:0] = acc.chan[n][63:32]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier

Y N Y Y

Src Types | Dst Types

D D
ub ub
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Srcl.RegFile]=="IMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

| Format: | EU_INSTRUCTION_HEADER

131



Move
mov - Move
Project: HSW
Source: Eulsa
Length Bias: 4

The mov instruction moves the components in src0 into the channels of dst. If srcO and dst are of different
types, format conversion is performed. If src0 is a scalar immediate, the immediate value is loaded into enabled
channels of dst.

A mov with the same source and destination type, no source modifier, and no saturation is a raw move. A
packed byte destination region (B or UB type with HorzStride == 1 and ExecSize > 1) can only be written using
raw move.

When denorm mode is flush to zero, a raw mov instruction with saturation modifier will not flush the denorm
input or output to zero (Denorm is preserved).

Format:
[(pred)] mov[.cmod] (exec_size) dst srcO

Programming Notes Project

A mov instruction with a source modifier always copies a denorm source value to a denorm HSW
destination value (in the manner of a raw move).

There is no direct conversion from B/UB to DF or DF to B/UB. Use two instructions and a word or HSW
DWord intermediate type.

Restriction

Restriction : Raw move is not supported for Float values in ALT mode if any values are infinities or NaNs.

Restriction : An accumulator can be a source or destination operand but not both.

Syntax Project

[(pred)] mov[.cmod] (exec_size) reg reg [(pred)] mov[.cmod] (exec_size) reg |HSW
imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = srcO.chan[n]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types | Project |

132



mov - Move

*B*W*D | *B,*W,*D
*B*W,*D |F
F *B,*W,*D
F F
*W,*D DF HSW
F DF HSW
DF *W,*D HSW
DF F HSW
DF DF HSW
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][SrcO.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG
127.64 |ImmSource
Exists If: ([Operand Controls][Src0.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

[Format: | EUINSTRUCTION_OPERAND_CONTROLS
31:.0 Header
| Format: | EUINSTRUCTION_HEADER

133



Q"_til

Extended Math Function

math - Extended Math Function

Project: HSW
Source: Eulsa
Length Bias: 4

The math instruction performs extended math function on the components in src0, or srcO and srcl, and write
the output to the channels of dst. The type of extended math function are based on the FC[3:0] encoding in the
table below.

Format:
[(pred)] math (exec_size) dst srcO srcl <FC>

Restriction Project

Restriction : Accumulator access is allowed only for ieee macro functions.

Restriction : The math instruction does not support indirect addressing modes.

Restriction : The only supported rounding mode for math instruction is Round to Nearest Even.

Restriction : INT DIV function does not support SIMD16.

Restriction : The FDIV function is not supported in ALT_MODE.

Restriction : The math instruction must use GRF registers as source(s) and destination. HSW

Restriction : The supported regioning mode for math instruction is alignl with the following HSW
restrictions:

Scalar source is supported.

Source and destination horizontal stride must be 1.

Width must be the same as execution size.

Source and destination offset must be the same, except the case of scalar source.

Syntax

[(pred)] math (exec_size) reg reg reg imm4

Pseudocode
Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
if (WrEn_.channel[n] == 1) {
switch FC[3:0] {
case lh:
dst.channel[n] = rcp(srcO.channel[n]);
case 2h:
dst.channel[n] = log(srcO.channel[n]);
case 3h:
dst_channel[n] = exp(srcO.channel[n]);
case 4h:

dst._channel[n] = sqrt(srcO0.channel[n]);

134



math - Extended Math Function

case 5h:
dst.
case 6h:
dst.
case 7h:
dst.
case 9h:
dst.
case Ah:
dst.
case Bh:

channel[n] = rsq(srcO.channel[n]);
channel[n] = sin(srcO.channel[n]);
channel[n] = cos(srcO.channel[n]);
// srcO / srcl

channel[n] = fdiv(srcO.channel[n], srcl.channel[n]);

channel [n] = pow(srcO.channel[n], srcl/channel[n]);
// srcO / srcl

idiv(srcO.channel[n], srcl.channel[n]);

dst.

channel[n] = quotient;

dst+l._channel[n] = remainder;

case Ch:

idiv(srcO.channel[n], srcl.channel[n]);

dst.
case Dh:

channel[n] = quotient;

idiv(srcO.channel[n], srcl.channel[n]);

dst.

channel[n] = remainder;

Predication | Conditional Modifier | Saturation | Source Modifier

Y N Y N
Src Types | Dst Types
F F
D D
ubD ubD
DWord Bit Description
0.3 127:64 |RegSource
Ia’mat; | EU_INSTRUCTION_SOURCES_REG_REG
63:32 Operand Control
| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31:28 Controls B
| Format: | EU_INSTRUCTION_CONTROLS_B
27:24 Function Control (FC)
|Fonnat FC
23:8 Controls A
| Format: EU_INSTRUCTION_CONTROLS_A
7 Reserved
| Format: MBZ

135




math - Extended Math Function

6:0

Opcode

| SSE | EU_OPCODE

136



Sum of Absolute Difference 2

sad2 - Sum of Absolute Difference 2

Project: HSW
Source: Eulsa
Length Bias: 4

The sad2 instruction takes source data channels from srcO and srcl in groups of 2-tuples. For each 2-tuple, it
computes the sum-of-absolute-difference (SAD) between srcO and srcl and stores the scalar result in the first
channel of the 2-tuple in dst.

The results are also stored in the accumulator register. The destination operand and the accumulator maintain
16 bits per channel precision.

The destination register must be aligned to even word (DWord). The even words in the destination region will
contain the correct data. The odd words are also written but with undefined values.

Format:
[(pred)] sad2[.cmod] (exec_size) dst src0 srcl

Restriction

Restriction : Source operands cannot be accumulators.

Restriction : The execution size cannot be 1 as the computation requires at least two data channels.

Syntax

[(pred)] sad2[.cmod] (exec_size) reg reg reg [(pred)] sad2[.cmod] (exec_size) reg
reg imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n += 2 ) { if ( WrEn.chan[n] ) {
dst.chan[n] = abs(srcO.chan[n] - srcl.chan[n]) + abs(srcO.chan[n+1] -
srcl.chan[n+1]); } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types

B,UB wW,Uw
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

137



sad2 - Sum of Absolute Difference 2

127:64 |ImmSource
Exists If: ([ImmSource][Srcl.RegFile]=="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

138



Round to Zero

rndz - Round to Zero

Project: HSW
Source: Eulsa
Length Bias: 4

The rndz instruction takes component-wise floating point round-to-zero operation of srcO with results in two
pieces - a downward rounded integral float results stored in dst and the round-to-zero increments stored in
the rounding increment bits. The round-to-zero increment must be added to the results in dst to create the
final round-to-zero values to emulate the round-to-zero operation, commonly known as the truncate()
function. The final results are the one of the two closest integral float values to the input values that is nearer to
zero.

Format:
[(pred)] rndz[.cmod] (exec_size) dst src0

Restriction Project
Restriction : No accumulator access, implicit or explicit. HSW
Syntax

[(pred)] rndz[.cmod] (exec_size) reg reg [(pred)] rndz[.cmod] (exec_size) reg
imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = floor(srcO.chan[n]); if ( abs(srcO.chan[n]) < abs(dst.chan[n]) ) {
dst.chan[n] = floor(srcO.chan[n]) + 1; } else { dst.chan[n] =
floor(srcO.chan[n]); } } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="IMM")

139




rndz - Round to Zero

| Format: | EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header

| Format: | EUINSTRUCTION_HEADER

140



Select
sel - Select
Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
The sel instruction selectively moves the components in srcO or srcl into the channels of dst based on
the predication. On a channel by channel basis, if the channel condition is true, data in srcO is moved
into dst. Otherwise, data in srcl is moved into dst.
As the predication is used to select the two sources, it is not included in the evaluation of WrEn. The
predicate clause is mandatory if cmod is omitted/0000b. If both predication and the conditional
modifier are omitted, the results are undefined.
If the conditional modifier is specified (not 0000b, a compare is performed and the resulting condition
flag is used for the sel instruction. Conditional modifiers .ge and .| follow the cmpn rules, and all other
conditional modifiers follow the cmp rules. Predication is not allowed in this mode.
A sel instruction with cmod .l is used to emulate a MIN instruction.
A sel instruction with cmod .ge is used to emulate a MAX instruction.
For a sel instruction with a .| or .ge conditional modifier, if one source is NaN and the other not NaN,
the non-NaN source is the result. If both sources are NaNs, the result is NaN. For all other conditional
modifiers, if either source is NaN then srcl is selected.
A sel instruction without a conditional modifier always copies a denorm source value to a denorm
destination value (in the manner of a raw move).
The sel instruction uses any conditional modifier internally and does not update the flag register if a
conditional modifier is used.
A sel instruction with a conditional modifier flushes any selected denorm source value to a zero HSW
destination value.
Format:
(pred) sel[.cmod] (exec_size) dst srcO srcl
Restriction Project
Restriction : The maximum execution size is 16. SIMD32 is not supported. HSW

Syntax

141




Q"_til

sel - Select

(pred) sel[.cmod] (exec_size) reg reg reg (pred) sel[.cmod] (exec_size) reg reg
imm32

Pseudocode

Evaluate(WrEn, NoPMask); if (cmod == "0000"™) { // no CMod Evaluate(PMask); for (
n=0; n< exec_size; nt+ ) { if ( WrEn.chan[n] ) { if ( PMask.channel[n] ) {
dst.chan[n] = srcO.chan[n]; } else { dst.chan[n] = srcl.chan[n]; } } } } else {
// with CMod Evaluate(CMod); for ( n = 0; n < exec_size; nt+ ) { if (
WrEn.chan[n] ) { if ( CMod.chan[n] ) { dst.chan[n] = srcO.chan[n]; } else {
dst.chan[n] = srcl.chan[n]; } } } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types | Project
*B*W*D | *B,*W,*D

F F
DF DF HSW
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: (ImmSource][Srcl.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

| Format: | EUINSTRUCTION_HEADER

142



Q"_til

Sum of Absolute Difference Accumulate 2

sada2 - Sum of Absolute Difference Accumulate 2

Project: HSW
Source: Eulsa
Length Bias: 4

The sada2 instruction takes source data channels from srcO and srcl in groups of 2-tuples. For each 2-tuple, it
computes the sum-of-absolute-difference (SAD) between srcO and srcl, adds the intermediate result with the
accumulator value corresponding to the first channel, and stores the scalar result in the first channel of the 2-
tuple in dst.

The destination operand and the accumulator maintain 16 bits per channel precision. Higher precision (guide
bits) stored in the accumulator allows up to 64 rounds of sada2 instructions to be issued back to back without
overflowing the accumulator.

The destination register must be aligned to even word (DWord). The even words in the destination region will
contain the correct data. The odd words are also written but with undefined values.

Format:
[(pred)] sada2[.cmod] (exec_size) dst srcO srcl

Restriction

Restriction : Source operands cannot be accumulators.

Restriction : The execution size cannot be 1 as the computation requires at least two data channels.

Syntax

[(pred)] sada?[.cmod] (exec_size) reg reg reg [(pred)] sada?[.cmod] (exec_size)
reg reg Iimm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n += 2 ) { uwTmp = abs(srcO.chan[n] -
srcl.chan[n]) + abs(srcO.chan[n+1] - srcl.chan[n+1]); if ( WrEn.chan[n] ) {
dst.chan[n] = uwTmp + acc[n]; } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types

B,UB W,Uuw
DWord Bit Description
0.3 127:64 |RegSource

143




sada2 - Sum of Absolute Difference Accumulate 2

Exists If: ([RegSource][Srcl.RegFile]!="IMM")

Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource

Exists If: ([ImmSource][Srcl.RegFile]=="IMM")

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

| Format: | EUINSTRUCTION_HEADER

144



Round Up

rndu - Round Up

Project: HSW
Source: Eulsa
Length Bias: 4

The rndu instruction takes component-wise floating point upward rounding (to the integral float number closer
to positive infinity) of srcO, commonly known as the ceiling() function.

Each result follows the rules in the following tables based on the floating-point mode.

Format:
[(pred)] rndul.cmod] (exec_size) dst src0

Restriction Project
Restriction : No accumulator access, implicit or explicit. HSW
Syntax

[(pred)] rndu[.cmod] (exec_size) reg reg [(pred)] rndu[.cmod] (exec_size) reg
imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) { if (
srcO.chan[n] - floor(srcO.chan[n]) > 0.0f ) { dst.chan[n] = floor(srcO.chan[n]) +
1; } else { dst.chan[n] = srcO.chan[n]; } } }

Predication | Conditional Modifier | Saturation [ Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 |ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_IMM32

145




rndu - Round Up

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header

| Format: | EUINSTRUCTION_HEADER

146



Return
ret - Return
Project: HSW
Source: Eulsa
Length Bias: 4
Description Project
Return execution to the code sequence that called a subroutine. HSW
The ret instruction can be predicated or non-predicated. If non-predicated, all channels jump to the
return IP in the first channel of srcO and restore CallMask from the second channel of src0. If
predicated, the enabled channels jump to the return IP from the first channel of srcO and the
corresponding bits in the CallMask are cleared to zero; if all CallMask bits are zero after the ret
instruction, then execution jumps to the return IP from the first channel of src0.
When SPF is on, the predication control must be scalar.
Format:
[(pred)] ret (exec_size) null srcO
Restriction Project
Restriction : This instruction cannot take accumulator as source.
Restriction : The srcO regioning control must be <2;2,1>,
Restriction : The execution size must be 2. DevHSW +
Syntax
[(pred)] ret (exec_size) null reg
Pseudocode Project

PclIP[n] =

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) { HSW
srcO.chan[0]; CallMask[n] = 0; } else { PcIP[n] = IP + 1; } } for
( n =exec size; n< 32; nt+ ) { PcIP[n] = IP + 1; } if ( CallMask[n:0] ==
0) ) { 7/ all channels are zero Jump(srcO.chan[0]); CallMask =

srcO.chan[1]; }
Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N
Src Types
D,UD
DWord Bit Description

147




ret - Return
127:64 |RegSource
Exists If: ([Operand Controls][Src0.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG
127.64 |ImmSource
Exists If: ([Operand Controls][Src0.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Controls
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

148




Plane
pin - Plane
Project: HSW
Source: Eulsa
Length Bias: 4

The pln instruction computes a component-wise plane equation (w = p*u+qg*v+r where u/v/w are vectors and
p/q/r are scalars) of srcO and srcl and stores the results in dst. srcl is the input vector u.

srcO provides input scalars p, g, and r, where p is the scalar value based on the region description of srcO and q
and r are the scalar values implied from the srcO region. Specifically, q is the second component and r is the
fourth component of the 4-tuple (128-bit aligned) that p belongs to.

Format:

[(pred)] pIn[.cmod] (exec_size) dst src0 srcl

Restriction Project
Restriction : This is a specialized instruction that only supports an execution size (ExecSize) of 8 or 16.
Restriction : The srcO region must be a replicated scalar (with HorzStride == VertStride == 0).
Restriction : srcO must specify .0 or .4 as the subregister number, corresponding to a subregister byte
offset of 0 or 16.
Restriction : Source operands cannot be accumulators. HSW

Syntax

[(pred)] pIn[.cmod] (exec_size) reg reg reg

Pseudocode

Evaluate(WrEn);
for ( n = 0; n < exec_size; nt+ ) {

float dwP = srcO.RegNum.SubRegNum[bits4:2];

float dwQ = srcO.RegNum.(SubRegNum[bit4:2] | O0x1);
float dwR = srcO.RegNum. (SubRegNum[bit4:2] | 0x3);
if ( ExecSize == 8 ) {

u = srcl.RegNum

v = srcl.(RegNum + 1)

se {

if(n<8){

= srcl.RegNum

= srcl.(RegNum + 1)

rcl.(RegNum + 2)
rcl.(RegNum + 3)

I
n n

if ( WrEn.chan[n] ) {

// A DWord-aligned scalar.
// Second component.
// Fourth component.

149




Q"_til

pIn - Plane
dst.chan[n] = dwP * u.chan[n] + dwQ * v.chan[n] + dwR;
3
}
Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y N
Src Types | Dst Types
F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([RegSource][Srcl.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG_REG
127:64 |ImmSource
Exists If: (ImmSource][Srcl.RegFile]=="TMM")
Format: EU_INSTRUCTION_SOURCES_REG_IMM
63:32 Operand Controls
| Format: |EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header
| Format: | EUINSTRUCTION_HEADER

150




Round to Nearest or Even

rnde - Round to Nearest or Even

Project: HSW
Source: Eulsa
Length Bias: 4

The rnde instruction takes component-wise floating point round-to-even operation of srcO with results in two
pieces - a downward rounded integral float results stored in dst and the round-to-even increments stored in
the rounding increment bits. The round-to-even increment must be added to the results in dst to create the
final round-to-even values to emulate the round-to-even operation, commonly known as the round() function.
The final results are the one of the two integral float values that is nearer to the input values. If the neither
possibility is nearer, the even alternative is chosen.

Each result follows the rules in the following tables based on the floating-point mode.

Format:
[(pred)] rnde[.cmod] (exec_size) dst src0

Restriction Project
Restriction : No accumulator access, implicit or explicit. HSW
Syntax

[(pred)] rnde[.cmod] (exec_size) reg reg [(pred)] rnde[.cmod] (exec_size) reg
imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; n++ ) { if ( WrEn.chan[n] ) { if (
srcO.chan[n] - floor(srcO.chan[n]) > 0.5F ) { dst.chan[n] = floor(srcO.chan[n]) +
1; } else if ( srcO.chan[n] - floor(srcO.chan[n]) < 0.5F ) { dst.chan[n] =
floor(srcO.chan[n]); } else { if ( floor(srcO.chan[n]) is odd ) { dst.chan[n] =
floor(srcO.chan[n]) + 1; } else { dst.chan[n] = floor(srcO.chan[n]); } } } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Ests If: ([Operand Controls][Src0.RegFile]!="TMM")

151



rnde - Round to Nearest or Even

| Format: | EUINSTRUCTION_SOURCES _REG
127.64 |ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_IMM32
63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31.0 Header

| Format: | EUINSTRUCTION_HEADER

152



Round Down

rndd - Round Down

Project: HSW
Source: Eulsa
Length Bias: 4

The rndd instruction takes component-wise floating point downward rounding (to the integral float number
closer to negative infinity) of srcO and storing the rounded integral float results in dst. This is commonly
referred to as the floor() function.

Each result follows the rules in the following tables based on the floating-point mode.

Format:
[(pred)] rndd[.cmod] (exec_size) dst srcO

Restriction Project
Restriction : No accumulator access, implicit or explicit. HSW
Syntax

[(pred)] rndd[.cmod] (exec_size) reg reg [(pred)] rndd[.cmod] (exec_size) reg
imm32

Pseudocode

Evaluate(WrEn); for ( n = 0; n < exec_size; nt+ ) { if ( WrEn.chan[n] ) {
dst.chan[n] = floor(srcO.chan[n]); } }

Predication | Conditional Modifier | Saturation | Source Modifier
Y Y Y Y

Src Types | Dst Types

F F
DWord Bit Description
0.3 127:64 |RegSource
Exists If: ([Operand Controls][SrcO.RegFile]!="IMM")
Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=="TMM")

Format: EU_INSTRUCTION_SOURCES_IMM32

153



rndd - Round Down

63:32 Operand Controls

| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:0 Header

| Format: | EUINSTRUCTION_HEADER

154



Reserved Instruction9

Reserved Instruction9

Project: HSW
Length Bias: 1
DWord Bit Description
0 31:29 Opcode 0
| Format: | Opcode
28:23 Opcode 1
| Format: | Opcode
31:0 Reserved
| Format: | u32
0..n 31:0 Unknown Bitfield

155




Q"_til

MI_NOOP

MI_NOOP

Project: HSW
Source: VideoEnhancementCS
Length Bias: 1

The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to
pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one
minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.
This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide
sequencing information for a subsequent breakpoint interrupt).

DWord | Bit Description
0 31:29 | Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 00h MI_NOOP
Format: OpCode

22 |Identification Number Register Write Enable

Format: Enable

This field enables the value in the Identification Number field to be written into the MI NOPID
register. If disabled, that register is unmodified - making this command an effective "no
operation” function.

Value Name Description
1 Write th NOP_ID Register
0 Do not write the NOP_ID register
21:0 |Identification Number
Project: All
Format: u22

This field contains a 22-bit number which can be written to the MI NOPID register.

156



Send Message

send - Send Message

Project: HSW
Source: Eulsa
Length Bias: 4

Description

Project

Send a message stored in GRF starting at <src> to a shared function identified by <ex_desc> along
with control from <desc> with a GRF writeback location at <dest>.

HSW

The send instruction performs data communication between a thread and external function units,
including shared functions (Sampler, Data Port Read, Data Port Write, URB, and Message Gateway)
and some fixed functions (e.g. Thread Spawner, who also have an unique Shared Function ID). The
send instruction adds an entry to the EU's message request queue. The request message is stored in a
block of contiguous GRF registers. The response message, if present, will be returned to a block of
contiguous GRF registers. The return GRF writes may be in any order depending on the external
function units. <src> is the lead GRF register for request. <dest> is the lead GRF register for response.
The message descriptor field <desc> contains the Message Length (the number of consecutive GRF
registers) and the Response Length (the number of consecutive GRF registers). It also contains the
header present bit, and the function control signals. The extend mesage descriptor field <ex_desc>
contains the target function ID. WrEn is forwarded to the target function in the message sideband.

HSW

The send instruction is the only way to terminate a thread. When the EOT (End of Thread) bit of
<ex_desc> is set, it indicates the end of thread to the EU, the Thread Dispatcher and, in most cases,
the parent fixed function.

Message descriptor field <desc> can be a 32-bit immediate, imm32, or a 32-bit scalar register,
<reg32a>. GEN restricts that the 32-bit scalar register <reg32a> must be the leading dword of the
address register. It should be in the form of a0.0<0;1,0>:ud. When <desc> is a register operand, only
the lower 29 bits of <reg32a> are used.

HSW

<ex_desc> is a 6-bit immediate, immé. The lower 4bits of the <ex_desc> specifies the SFID for the
message. The MSb of the message descriptor, the EOT field, always comes from bit 127 of the
instruction word, which is the MSb of imm6. A thread must terminate with a send instruction with EOT
turned on.

HSW

<src> is a 256-bit aligned GRF register. It serves as the leading GRF register of the request.

HSW

<dest> serves for two purposes: to provide the leading GRF register location for the response
message if present, and to provide parameters to form the channel enable sideband signals.

<dest> signals whether there is a response to the message request. It can be either a null register, a
direct-addressed GRF register or a register-indirect GRF register. Otherwise, hardware behavior is
undefined.

If <dest> is null, there is no response to the request. Meanwhile, the Response Length field in <desc>
must be 0. Certain types of message requests, such as memory write (store) through the Data Port, do
not want response data from the function unit. If so, the posted destination operand can be null.

If <dest> is a GRF register, the register number is forwarded to the shared function. In this case, the

HSW

157




Q"_til

send - Send Message

target function unit must send one or more response message phases back to the requesting thread.
The number of response message phases must match the Response Length field in <desc>, which of
course cannot be zero. For some cases, it could be an empty return message. An empty return
message is defined as a single phase message with all channel enables turned off.

The subregister number, horizontal stride, destination mask and type fields of <dest> are always valid
and are used in part to generate on the WrEn. This is true even if <dest> is a null register (this is an
exception for null as for most cases these fields are ignored by hardware).

The 16-bit channel enables of the message sideband are formed based on the WrEn. Interpretation of
the channel enable sideband signals is subject to the target external function. In general for a 'send’
instruction with return messages, they are used as the destination dword write mask for the GRF
registers starting at <dest>. For a message that has multiple return phases, the same set of channel
enable signals applies to all the return phases.

Thread managed memory coherency: A special usage of using non-null <dest> is to support write-
commit signaling for memory write service by the Data Port Write unit. If <post_dest> is not null for a
memory write request, the Data Port along with the Data Cache or Render Cache will wait until all the
posted writes for the request have reached the coherent domain before sending back to the
requesting thread an empty message to <dest> register. A memory write reaching the coherent
domain, also referred to as reaching the global observable state, means that subsequent read to the
same memory location, no matter which thread issues the read, must return the data of the write.
The destination dependency control, {NoDDClr}, can be used in this instruction. This allows software
to control the destination dependencies for multiple 'read’-type messages similar to that for multiple
instructions using EU execution pipeline. As send does not check register dependencies for the post
destination, {NoDDChk} should not be used for this instruction.

Restriction

Project

Restriction : Software must obey the following rules in signaling the end of thread using the send
instruction:

The posted destination operand must be null.

No acknowledgement is allowed for the send instruction that signifies the end of thread. This is to
avoid deadlock as the EU is expecting to free up the terminated thread's resource.

A thread must terminate with a send instruction with message to a shared function on the output
message bus; therefore, it cannot terminate with a send instruction with message to the following
shared functions: Sampler unit, NULL function

For example, a thread may terminate with a URB write message or a render cache write message.
A root thread originated from the media (generic) pipeline must terminate with a send instruction
with message to the Thread Spawner unit. A child thread should also terminate with a send to TS.
Please refer to the Media Chapter for more detailed description.

The send instruction can not update accumulator registers.

Saturate is not supported for send instruction.

ThreadCtrl are not supported for send instruction.

The send with EOT should use register space R112-R127 for <src>. This is to enable loading of a new
thread into the same slot while the message with EOT for current thread is pending dispatch

HSW

Predication | Conditional Modifier | Saturation | Source Modifier
Y N N N

158




DWord Bit Description
0.3 127:96 | Message
| Format: | EU_INSTRUCTION_OPERAND_SEND_MSG
95:89 |Flags
Format: | EU_INSTRUCTION FLAGS
88:64 |Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align16")
Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16
88:64 |Source 0
Exists If: | (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=="Align1’)
Format: |EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
63:32 | Operand Control
| Format: | EU_INSTRUCTION_OPERAND_CONTROLS
31:28 [Controls B
| - | EU_INSTRUCTION_CONTROLS_B
27:24 | Shared Function ID (SFID)
| Format: SFID
23:8 |Controls A
| Format: EU_INSTRUCTION_CONTROLS_A
7 Reserved
| Format: MBZ
6:0 |[Opcode
| Format: EU_OPCODE

159




Q"_til

MI_SET_PREDICATE

MI_SET_PREDICATE

Project: HSW
Source: RenderCS
Length Bias: 1

Description

Project

This command sets the Predication Check for the subsequent commands in the command buffer
except for MI_SET_PREDICATE itself. Render Command Streamer NOOPs the following commands
based on the PREDICATE_ENABLE from MI_SET_PREDICATE, MI_SET_PREDICATE_RESULT and
ML_SET_PREDICATE_RESULT_2 status. Resource Streamer doesn't take any action of parsing
MI_SET_PREDICATE, this command is similar to any other command which is not meant for resource
streamer.

Executing MI_SET_PREDICATE command sets PREDICATE_ENABLE bits in INSTPM register, INSTPM
register gets render context save restored.

HSW

Programming Notes

Project

e MI_SET_PREDICATE predication scope must be confined within a Batch Buffer to set of
commands.

e MI_SET_PREDICATE with Predicate Enable Must always have a corresponding
MI_SET_PREDICATE with Predicate Disable within the same Batch Buffer.

e MI_ARB_CHK command must be programmed outside the Predication Scope of
ML_SET_PREDICATE.

e MI_SET_PREDICATE Predication Scope must not involve any RC6 triggering events.

The following command(s) can be disabled by the MI_SET_PREDICATE command:
3DSTATE_URB_VS

3DSTATE_URB_HS

3DSTATE_URB_DS

3DSTATE_URB_GS
3DSTATE_PUSH_CONSTANT_ALLOC_VS
3DSTATE_PUSH_CONSTANT_ALLOC_HS
3DSTATE_PUSH_CONSTANT_ALLOC_DS
3DSTATE_PUSH_CONSTANT_ALLOC_GS
3DSTATE_PUSH_CONSTANT_ALLOC_PS
MI_LOAD_REGISTER_IMM
MEDIA_VFE_STATE

MEDIA_OBJECT
MEDIA_OBJJECT_WALKER
MEDIA_INTERFACE_DESCRIPTOR_LOAD

HSW

DWord Bit Description

160




MI_SET_PREDICATE

31:29

Command Type

Default Value:

Oh MI_COMMAND

Format:

OpCode

28:23

MI Command Opcode

Default Value:

01h MI_SET_PREDICATE

Format:

OpCode

22:4

Reserved

Project:

DevHSW +

Format:

MBZ

3:2

Reserved

Project:

HSW

Format:

MBZ

1:0

PREDICATE ENABLE

Project:

HSW

Format:

Enable

Disable is the default m

This field sets the predi

ication logic in render command streamer when parsed. Predicate
ode of operation.

Value Name Description Project

6h [Default]

Oh Predicate Following Commands will be NOOPED by RCS DevHSW+
Always unconditionally.

1h Predicate on |Following Commands will be NOOPED by RCS only if the |DevHSW+
Clear MI_PREDICATE_RESULT_2 is clear.

2h Predicate on |Following Commands will be NOOPED by RCS only if the |DevHSW+
Set MI_PREDICATE_RESULT_2 is set.

3h Predicate Predication is Disabled and RCS will process commands | DevHSW +
Disable as usual.

161




Q"_til

MI_USER_INTERRUPT

MI_USER_INTERRUPT

Project: HSW
Source: BlitterCS
Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue
parsing after processing this command. See User Interrupt.

DWord Bit Description
0 31:29 Command Type
| Default Value: | 0h MI_COMMAND
28:23 MI Command Opcode
| Default Value: | 02h MILUSER INTERRUPT
22:0 Reserved
Project: All
Format: MBZ

162



MI_USER_INTERRUPT

MI_USER_INTERRUPT

Project:
Source:

Length Bias:

HSW

VideoEnhancementCS

1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description
0 31:29 Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 MI Command Opcode
Default Value: 02h MI_USER_INTERRUPT
Format: OpCode

22:0 Reserved
Project: All
Format: MBZ

163




Q"_til

MI_USER_INTERRUPT

MI_USER_INTERRUPT

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue
parsing after processing this command. See User Interrupt.

DWord Bit Description
0 31:29 Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 MI Command Opcode
Default Value: 02h MI_USER_INTERRUPT
Format: OpCode

22:0 Reserved
Format: MBZ

164



MI_USER_INTERRUPT

MI_USER_INTERRUPT

Project:
Source:

Length Bias:

HSW

RenderCS

1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description
0 31:29 Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 MI Command Opcode
Default Value: 02h MI_USER_INTERRUPT
Format: OpCode

22:0 Reserved
Format: MBZ

165




MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

Project: HSW
Source: RenderCS
Length Bias: 1

Description

Project

The MI_WAIT_FOR_EVENT command is used to pause command stream processing of this pipe only
until a specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device
Programming Interface in Ml Functions. Only one event/condition can be specified. Specifying multiple
events is UNDEFINED.

Once parsed, the parser will halt (and suspend command arbitration) until the event/condition occurs.
Note that if a specified condition does not exist (the condition code is inactive) at the time the parser
executes this command, the parser proceeds, treating this command as a no-operation.

If CSunit is waiting for V-blank or flip done, HW can go into RC1/RC6 state.

MI_NOOP setting NOP register (or any other benign command) must be set after
MI_WAIT_FOR_EVENT under the following conditions:

e Back-to-back MI_WAIT_FOR_EVENT commands
e MI_WAIT_FOR_EVENT is the last command before head = tail

Events must be unmasked in the Display Engine Render Response Mask Register

(DE RRMR 0x44050) prior to waiting for them with a MI_WAIT_FOR_EVENT command, or in the case of
flips

or scanlines, prior to starting the flip or loading the scanline. Unmasked events will wake command
streamer as they occur, so for improved power savings it is recommended to only unmask events that
are

required. Programming the DE RRMR register can be done through MMIO or a
LOAD_REGISTER_IMMEDIATE

HSW

command.
DWord | Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 03h ML_WAIT_FOR_EVENT
Format: OpCode
22 |Display Pipe C Horizontal Blank Wait Enable
| Project: HSW

166




Q"_til

MI_WAIT_FOR_EVENT

Format: | Enable |

event is described as the start of the next Display C Horizontal blank period. Note that this can
cause a wait for up to a line.

This field enables a wait until the start of next Display Pipe C Horizontal Blank event occurs. This

21

Display Pipe C Vertical Blank Wait Enable
Project: HSW
Format: Enable

This field enables a wait until the next Display Pipe C Vertical Blank event occurs. This event is
described as the start of the next Display C vertical blank period. Note that this can cause a wait

for up to an entire refresh period.

20

Display Sprite C Flip Pending Wait Enable
Project: HSW
Format: Enable

This field enables a wait for the duration of a Display Sprite C Flip Pending condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

19:16

Condition Code Wait Select

Project: HSW
This field enables a wait for the duration that the corresponding condition code is active. These
enable select one of 15 condition codes in the EXCC register, that cause the parser to wait until

that condition-code in the EXCC is cleared.
Value Name
Oh Not enabled |Condition Code Wait Not Enabled

1h-5h |Enable Condition Code Select Enabled; selects one of 5 codes, 0 - 4

Description

6h-15h |Reserved

Programming Notes

Note that not all condition codes are implemented. The parser operation is UNDEFINED if an
unimplemented condition code is selected by this field. The description of the EXCC register

(Memory Interface Registers) lists the codes that are implemented.

15

Display Plane C Flip Pending Wait Enable

HSW

Format: Enable

This field enables a wait for the duration of a Display Plane C "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).

Project:

167



MI_WAIT_FOR_EVENT

14

Display Pipe C Scan Line Wait Enable

Project: HSW

Format: Enable

This field enables a wait while a Display Pipe C Scan Line condition exists. This condition is
defined as the start of the scan line specified in the Pipe C Display Scan Line Count Range
Compare Register.

13

Display Pipe B Horizontal Blank Wait Enable

Project: HSW

Format: Enable

This field enables a wait until the start of next Display Pipe B "Horizontal Blank" event occurs.
This event is described as the start of the next Display B Horizontal blank period. Note that this
can cause a wait for up to a line.

12 [Reserved
| Format: | MBZ |
11 |Display Pipe B Vertical Blank Wait Enable

Format: | Enable

This field enables a wait until the next Display Pipe B "Vertical Blank" event occurs. This event is
described as the start of the next Display Pipe B vertical blank period. Note that this can cause a
wait for up to an entire refresh period.

10

Display Sprite B Flip Pending Wait Enable

| Format: Enable

This field enables a wait for the duration of a Display Sprite B "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).

9 |Display Plane B Flip Pending Wait Enable
| Format: Enable
This field enables a wait for the duration of a Display Plane B Flip Pending condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers.

8 |Display Pipe B Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe B Scan Line condition exists. This condition is
defined as the start of the scan line specified in the Pipe B Display Scan Line Count Range
Compare Register.

168




MI_WAIT_FOR_EVENT

7:6 [Reserved
Project: HSW
Format: MBZ
5 |Display Pipe A Horizontal Blank Wait Enable
Project: HSW
Format: Enable
This field enables a wait until the start of next Display Pipe A Horizontal Blank event occurs. This
event is described as the start of the next Display A Horizontal blank period. Note that this can
cause a wait for up to a line.
4 |Reserved
| Format: | MBZ |
3 | Display Pipe A Vertical Blank Wait Enable
Format: | Enable |
This field enables a wait until the next Display Pipe A "Vertical Blank" event occurs. This event is
described as the start of the next Display Pipe A vertical blank period. Note that this can cause a
wait for up to an entire refresh period.
2 |Display Sprite A Flip Pending Wait Enable
| Format: Enable
This field enables a wait for the duration of a Display Sprite A "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).
1 |Display Plane A Flip Pending Wait Enable
| Format: Enable
This field enables a wait for the duration of a Display Plane A "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).
0 [Display Pipe A Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe A "Scan Line" condition exists. This condition is
defined as the start of the scan line specified in the Pipe A Display Scan Line Count Range
Compare Register.

169




MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing of this pipe only until a
specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device Programming
Interface in MI Functions. Only one event/condition can be specified -- specifying multiple events is
UNDEFINED.Note that if a specified condition does not exist (the condition code is inactive) at the time the
parser executes this command, the parser proceeds, treating this command as a no-operation.

DWord | Bit Description
0 31:29 | Command Type
| Default Value: | 0h MI_COMMAND
28:23 | MI Command Opcode
| Default Value: | 03h MI WAIT FOR EVENT
22:20 | Reserved
Project: All
Format: MBZ

19:16 | Condition Code Wait Select

This field enables a wait for the duration that the corresponding condition code is active.
These enable select one of 15 condition codes in the EXCC register, that cause the parser to
wait until that condition-code in the EXCC is cleared.

Value Name Description
Oh Not enabled |Condition Code Wait Not Enabled
1h-5h |Enable Condition Code select enabled; selects one of 5 codes, 0 - 4
6h-15h |[Reserved

Programming Notes

Note that not all condition codes are implemented. The parser operation is UNDEFINED if an
unimplemented condition code is selected by this field. The description of the EXCC register
(Memory Interface Registers) lists the codes that are implemented.

15:0 |Reserved

Format: MBZ

170



MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

Project:
Source:

Length Bias:

HSW
VideoEnhancementCS
1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing of this pipe only until a
specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device Programming
Interface in Ml Functions. Only one event/condition can be specified -- specifying multiple events is UNDEFINED.
Note that if a specified condition does not exist (the condition code is inactive) at the time the parser executes
this command, the parser proceeds, treating this command as a no-operation.

DWord | Bit Description
0 31:29 | Command Type
| Default Value: | 0h MI.COMMAND |
28:23 [ MI Command Opcode
| Default Value: | 03h MI WAIT FOR EVENT |
22:20 | Reserved
Project: All
Format: MBZ
19:16 | Condition Code Wait Select
This field enables a wait for the duration that the corresponding condition code is active. These
enable select one of 15 condition codes in the EXCC register, that cause the parser to wait until
that condition-code in the EXCC is cleared.
Value Name Description Project
Oh Not enabled | Condition Code Wait Not Enabled All
1h-5h |[Enable Condition Code select enabled; selects one of 5 codes, 0-4 | All
6h-15h |Reserved All
Programming Notes
Note that not all condition codes are implemented. The parser operation is UNDEFINED if an
unimplemented condition code is selected by this field. The description of the EXCC register
(Memory Interface Registers) lists the codes that are implemented.
15:0 |Reserved
Project: All
Format: MBZ

171




MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

Project: HSW
Source: BlitterCS
Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a specific event occurs
or while a specific condition exists. Only one event/condition can be specified -- specifying multiple events is
UNDEFINED.The effect of the wait operation depends on the source of the command. If executed from a batch
buffer, the parser will halt (and suspend command arbitration) until the event/condition occurs. If executed from
a ring buffer, further processing of that ring will be suspended, although command arbitration (from other rings)
will continue. Note that if a specified condition does not exist (the condition code is inactive) at the time the
parser executes this command, the parser proceeds, treating this command as a no-operation.If execution of this
command from a primary ring buffer causes a wait to occur, the active ring buffer will effectively give up the
remainder of its time slice (required in order to enable arbitration from other primary ring buffers).

DWord | Bit Description
0 31:29 | Command Type
| Default Value: | oh MILCOMMAND
28:23 | MI Command Opcode
| Default Value: | 03h MLWAIT_FOR_EVENT

22 |Reserved

Project: All

Format: MBZ
21 |Reserved

Project: HSW

Format: MBZ
20 |Display Sprite C Flip Pending Wait Enable

Project: All

Format: Enable

This field enables a wait for the duration of a Display Sprite C "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).

19:16 | Condition Code Wait Select

Project: HSW

This field enables a wait for the duration that the corresponding condition code is active. These
enable select one of 15 condition codes in the EXCC register, that cause the parser to wait until
that condition-code in the EXCC is cleared.

172



Q"_til

MI_WAIT_FOR_EVENT

Value Name Description Project
Oh Not Enabled |Condition Code Wait not enabled All
1h-5h |Enabled Condition Code select enabled; selects one of 5 codes, 0 -4 | All
6h-15h |Reserved All

Programming Notes

Note that not all condition codes are implemented. The parser operation is UNDEFINED if an
unimplemented condition code is selected by this field. The description of the EXCC register
(Memory Interface Registers) lists the codes that are implemented.

15 [Display Plane C Flip Pending Wait Enable
Project: All
Format: Enable
This field enables a wait for the duration of a Display Plane C "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).
14 |Display Pipe C Scan Line Wait Enable
Project: DevHSW +
Format: Enable
This field enables a wait while a Display Pipe C "Scan Line" condition exists. This condition is
defined as the the start of the scan line specified in the Pipe C Display Scan Line Count Range
Compare Register.
13:12 [Reserved
Project: All
Format: MBZ
11 |Reserved
Project: HSW
Format: MBZ
10 |Display Sprite B Flip Pending Wait Enable
Project: All
Format: Enable
This field enables a wait for the duration of a Display Sprite B "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).
9 |Display Plane B Flip Pending Wait Enable

| Project: All

173




MI_WAIT_FOR_EVENT

| Format: | Enable

This field enables a wait for the duration of a Display Plane B "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).

8 | Display Pipe B Scan Line Wait Enable
Project: DevHSW +
Format: Enable
This field enables a wait while a Display Pipe B "Scan Line" condition exists. This condition is
defined as the the start of the scan line specified in the Pipe B Display Scan Line Count Range
Compare Register.
7:6 |Reserved
Project: HSW
Format: MBZ
54 [Reserved
Project: All
Format: MBZ
3 |Reserved
Project: HSW
Format: MBZ
2 | Display Sprite A Flip Pending Wait Enable
Project: All
Format: Enable
This field enables a wait for the duration of a Display Sprite A "Flip Pending” condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).
1 |Display Plane A Flip Pending Wait Enable
Project: All
Format: Enable
This field enables a wait for the duration of a Display Plane A "Flip Pending" condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new front
buffer address has now been loaded into the active front buffer registers).
0 [Display Pipe A Scan Line Wait Enable

Project: DevHSW +

Format: Enable

This field enables a wait while a Display Pipe A "Scan Line" condition exists. This condition is

174




el

MI_WAIT_FOR_EVENT

defined as the the start of the scan line specified in the Pipe A Display Scan Line Count Range

Compare Register.

175




Q"_til

MI_FLUSH

MI_FLUSH

Project: HSW
Source: RenderCS
Length Bias: 1
Description Project
The MI_FLUSH command is used to perform an internal flush operation. The parser pauses on an
internal flush until all drawing engines have completed any pending operations and the read caches
are invalidated including the texture cache accessed via the Sampler or the data port. In addition, this
command can also be used to:
e Flush any dirty data in the Render Cache to memory. This is done by default, however this can
be inhibited.
e Invalidate the state and command cache.
Usage Note: After this command is completed and followed by a Store DWord-type command, CPU
access to graphics memory will be coherent (assuming the Render Cache flush is not inhibited). This
command is specific to the render engine. Other engines use MI_FLUSH_DW.
To use this command, bit 12 in the MI_MODE(0x209¢) must be enabled.
If GFX_MODE (0x229C) bit 13, this command will cause a config write to MMIO register space with the |HSW
address 0x4f100.
ML_FLUSH command is no longer validated or supported. Use at your own risk. HSW
DWord | Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 04h MI_FLUSH
Format: OpCode
22:7 |Reserved
| Format: | MBZ

6 |Reserved

5 |Indirect State Pointers Disable

| Format: | Disable

invalid. Le., the indirect pointers will not be restored for the context.

At the completion of the flush, the indirect state pointers in the hardware will be considered as

176




Q"_til

MI_FLUSH

Generic Media State Clear

Project: HSW

Format: Disable

If set, all generic media state context information will not be included with the next context save,
assuming no new state is initiated after the flush. If clear, the generic media state context save
state will not be affected. An MI_FLUSH with this bit set should be issued once all the Media
Objects that will be processed by a given persistent root thread have been issued or when an
MI_SET_CONTEXT switching from a generic media context to a 3D context completes. When
using MI_SET_CONTEXT, once state is programmed, it will be saved and restarted as part of any
context each time that context is saved/restored until an MI_FLUSH with this bit set is issued in
that context.

Global Snapshot Count Reset

Format: Boolean

The Statistics Counters are also reset; SW should never set this bit during normal operation since
the Statistics Counters are intended to be free running.

Value| Name Description
Oh Don't Do not reset the snapshot counts or Statistics Counters.
Reset
1h Reset Reset the snapshot count in Gen4 for all the units and reset the Statistics
Counters except as noted above.

Programming Notes

TIMESTAMP are not reset by MI_FLUSH with this bit set. TIMESTAMP and PS_DEPTH_COUNT
can be reset by writing 0 to them.

Render Cache Flush Inhibit

Format: Boolean
If set, the Render Cache is not flushed as part of the processing of this command.
Value Name Description
Oh Flush Flush the Render Cache.
1h Don't Flush Do not flush the Render Cache.

State/Instruction Cache Invalidate

Format: Boolean

If set, Invalidates the State and Instruction Cache.

Value Name Description
Oh Don't Invalidate Leave State/Instruction Cache unaffected.
1h Invalidate Invalidate State/Instruction Cache.
Reserved
Format: MBZ

177



Q"_til

MI_ARB_CHECK

MI_ARB_CHECK

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_ARB_CHECK is used to check for a change in arbitration. If executed as part of a Ring Buffer the
command checks the UHPTR valid bit and if set the head of the ring will jump to the value of the head pointer
programmed in the UHPTR.

Programming Notes

This instruction cannot be placed in a batch buffer.

DWord Bit Description
0 31:29 MI Instruction Type

Default Value: Oh MI_INSTRUCTION
Format: OpCode

28:23 MI Instruction Opcode
Default Value: 05h MI_ARB_CHECK
Format: OpCode

22:0 Reserved
Format: MBZ

178



MI_ARB_CHECK

MI_ARB_CHECK

Project:
Source:

Length Bias:

HSW
RenderCS
1

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head pointer (register UHPTR).
This instruction can be used to pre-empt the current execution of the ring buffer. Note that the valid bit in the

updated head pointer register needs to be set for the command streamer to be pre-empted.

Programming Notes Project
e The current head pointer is loaded with the updated head pointer register independent of the
location of the updated head.
e If the current head pointer and the updated head pointer register are equal, hardware will
automatically reset the valid bit corresponding to the UHPTR.
e For pre-emption, the wrap count in the ring buffer head register is no longer maintained by
hardware. The hardware updates the wrap count to the value in the UHPTR register.
This instruction can be in either a ring buffer or batch buffer. HSW
DWord Bit Description
0 31:29 Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 MI Command Opcode
Default Value: 05h MI_ARB_CHECK
Format: OpCode
22:0 Reserved
Format: MBZ

179




Q"_til

MI_ARB_CHECK

MI_ARB_CHECK

Project: HSW
Source: VideoEnhancementCS
Length Bias: 1

The MI_ARB_CHECK is used to check for a change in arbitration. If executed as part of a Ring Buffer the
command checks the UHPTR valid bit and if set the head of the ring will jump to the value of the head pointer

programmed in the UHPTR.

Programming Notes

This instruction cannot be placed in a batch buffer.

DWord Bit Description
0 31:29 MI Instruction Type

Default Value: Oh MI_INSTRUCTION
Format: OpCode

28:23 MI Instruction Opcode
Default Value: 05h MI_ARB_CHECK
Format: OpCode

22:0 Reserved
Project: All
Format: MBZ

180



MI_ARB_CHECK

MI_ARB_CHECK

Project: HSW
Source: BlitterCS
Length Bias: 1

The MI_ARB_CHECK is used to check for a change in arbitration. If executed as part of a Ring Buffer the
command checks the UHPTR valid bit and if set the head of the ring will jump to the value of the head pointer

programmed in the UHPTR.

Programming Notes

This instruction cannot be placed in a batch buffer.

DWord Bit Description
0 31:29 Command Type
Default Value: Oh MI_INSTRUCTION
Format: OpCode
28:23 MI Command Opcode
Default Value: 05h MI_ARB_CHECK
Format: OpCode

22:0 Reserved

Format: MBZ

181




Q"_til

MI_RS_CONTROL

MI_RS_CONTROL

Project: HSW
Source: RenderCS
Length Bias: 1

The MI_RS_CONTROL command is used to start or stop the Resource Streamer.

Programming Notes

e This command is only valid in a batch buffer. The behavior is undefined if this command is parsed within
aring.

e This command should only be used in a batch buffer that the Resource Streamer Enable bit is set

¢ If the Resource Streamer Control bit is set, the command stream will start the RS on the next Dword of
the batch buffer.

e Once the resource streamer is stopped due to this command, it will not be started unit a

MI_RS_CONTROL command with the Resource Streamer Control bit set or a MI_BATCH_BUFFER_START
with the Resource Streamer Enable bit set.

DWord Bit Description
0 31:29 |Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 06h MI_RS_CONTROL
Format: OpCode

221 [Reserved
Format: MBZ

0 Resource Streamer Control
Format: Ul
This bit specifies whether the command is starting or stopping the Resource Streamer.
Value Name Description

Oh Stop Stop and disable the Resource Streamer
1h Start Start and enable the Resource Streamer

182




MI_REPORT_HEAD

MI_REPORT_HEAD

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the ring buffer to be written to a cacheable
(snooped) system memory location.When the Per-Process Virtual Address Space and Execlist Enable bitis
reset:The location written is relative to the address programmed in the Hardware Status Page Address Register.
When the Execlist Enable is set, the head pointer will be reported to the PP HW Status Page.

Programming Notes

This command must not be executed from a Batch Buffer (Refer to the description of the HWS_PGA register).

DWord Bit Description
0 31:29 Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 MI Command Opcode
Default Value: 07h MI_REPORT_HEAD
Format: OpCode

22:0 Reserved
Format: MBZ

183




Q"_til

MI_REPORT_HEAD

MI_REPORT_HEAD

Project: HSW
Source: RenderCS
Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a
cacheable (snooped) system memory location. When Execlist Enable is set, the head pointer will be reported to
the PP HW Status Page. The location written is relative to the address programmed in the Hardware Status Page
Address Register.

Programming Notes

This command must not be executed from a Batch Buffer. (Refer to the description of the HWS_PGA register.)

DWord Bit Description
0 31:29 Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 MI Command Opcode
Default Value: 07h MI_REPORT_HEAD
Format: OpCode

22:0 Reserved

Format: MBZ

184



MI_REPORT_HEAD

MI_REPORT_HEAD

Project: HSW
Source: VideoEnhancementCS
Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the ring buffer to be written to a cacheable
(snooped) system memory location.

When the Per-Process Virtual Address Space and Execlist Enable bit is reset: The location written is relative to
the address programmed in the Hardware Status Page Address Register. When the Execlist Enable is set, the
head pointer will be reported to the PP HW Status Page.

Programming Notes

This command must not be executed from a Batch Buffer (Refer to the description of the HWS_PGA register).

DWord Bit Description
0 31:29 Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 MI Command Opcode
Default Value: 07h MI_REPORT_HEAD
Format: OpCode

22:0 Reserved
Project: All
Format: MBZ

185



Q"_til

MI_REPORT_HEAD

MI_REPORT_HEAD

Project: HSW
Source: BlitterCS
Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a
cacheable (snooped) system memory location.

When the Execlist Enable bit is reset:
The location written is relative to the address programmed in the Hardware Status Page Address Register.

Programming Notes

This command must not be executed from a Batch Buffer (Refer to the
description of the HWS_PGA register).

When the Execlist Disable is clear, the head pointer will be reported to the PP HW Status Page.

DWord Bit Description
0 31:29 Command Type
| Default Value: | oh MI_COMMAND
28:23 MI Command Opcode
| Default Value: | 07h MI_REPORT_HEAD
22:0 Reserved
Project: All
Format: MBZ

186



MI_ARB_ON_OFF

MI_ARB_ON_OFF

Project: HSW
Source: RenderCS
Length Bias: 1

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. This instruction can be used to
prevent submission of a new execlist from interrupting a command sequence, however lite restore preemption is
allowed with in the arbitration disabled command execution zone. Note that context switching will remain
disabled until re-enabled through use of this command.

This command will also prevent a switch in the case of waiting on events, running out of commands. These will
effectively hang the device if allowed to occur while arbitration is off (context switching is disabled.) This
command should always be used as an off-on pair with the sequence of instructions to be protected from
context switch between MI_ARB_OFF and MI_ARB_ON. Software must use this arbitration control with caution
since it has the potential to increase the response time of the Render Engine to pre-emption requests. This is a
privileged command; it will not be effective (will be converted to a no-op) if executed from within a non-
privileged batch buffer.

DWord Bit Description
0 31:29 |Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 08h MI_ARB_ON_OFF
Format: OpCode

2211 Reserved

| Format: | MBZ

0 Arbitration Enable

| Format: | Enable

This field enables or disables context switches due to pre-emption (a new execlist).

187



Q"_til

MI_ARB_ON_OFF

MI_ARB_ON_OFF

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. This instruction can be used to
prevent submission of a new execlist from interrupting a command sequence, however lite restore preemption is
allowed with in the arbitration disabled command execution zone. Note that context switching will remain
disabled until re-enabled through use of this command.

This command will also prevent a switch in the case of waiting on events, running out of commands. These will
effectively hang the device if allowed to occur while arbitration is off (context switching is disabled.) This
command should always be used as an off-on pair with the sequence of instructions to be protected from
context switch between MI_ARB_OFF and MI_ARB_ON. Software must use this arbitration control with caution
since it has the potential to increase the response time of the Render Engine to pre-emption requests. This is a
privileged command; it will not be effective (will be converted to a no-op) if executed from within a non-
privileged batch buffer.

DWord Bit Description
0 31:29 |Command Type
| Default Value: | oh MI_cCOMMAND
28:23 | MI Command Opcode
| Default Value: | 08h MILARB_ON_OFF
22:1  |Reserved
| Format: | MBZ

0 Arbitration Enable

| Format: | Enable
This field enables or disables context switches due to pre-emption (a new execlist).
Value Name
Oh Disabled
1h Enabled

188



MI_ARB_ON_OFF

MI_ARB_ON_OFF

Project: HSW
Source: VideoEnhancementCS
Length Bias: 1

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. This instruction can be used to
prevent submission of a new execlist from interrupting a command sequence, however lite restore preemption is
allowed with in the arbitration disabled command execution zone. Note that context switching will remain
disabled until re-enabled through use of this command.

This command will also prevent a switch in the case of waiting on events, running out of commands. These will
effectively hang the device if allowed to occur while arbitration is off (context switching is disabled.) This
command should always be used as an off-on pair with the sequence of instructions to be protected from
context switch between MI_ARB_OFF and MI_ARB_ON. Software must use this arbitration control with caution
since it has the potential to increase the response time of the Render Engine to pre-emption requests. This is a
privileged command; it will not be effective (will be converted to a no-op) if executed from within a non-
privileged batch buffer.

DWord Bit Description
0 31:29 |Command Type
| Default Value: | oh MI_COMMAND
28:23 | MI Command Opcode
| Default Value: | 08h MILARB_ON_OFF

22:1 Reserved

Project: All

Format: MBZ

0 Arbitration Enable

Format: Enable

This field enables or disables context switches due to pre-emption (a new execlist).

Value Name

Oh Disabled

1h Enabled

189



Q"_til

MI_URB_ATOMIC_ALLOC

MI_URB_ATOMIC_ALLOC

Project: HSW
Source: RenderCS
Length Bias: 1

This command is used to specify the region in URB allocated for URB atomic value storage.
This command is specific to the Render command stream only.

Programming Notes

This command can only be sent after a flush has occurred.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 09h MI_URB_ALLOC
Format: OpCode
22:20 | Reserved
| Format: MBZ |
19:12 | URB Atomic Storage Offset
| Format: U8 Number of 128B Entries |

This field specifies the offset of a 128B granular starting address in the URB. The value of URB
Atomic Storage Offset plus the value of the URB Atomic Storage Size must not exceed 256.

Value Name Description
[0,255] 0-(32KB-128B)
11:9 [Reserved
| Format: MBZ |

8:0 |URB Atomic Storage Size
| Format: U9 Number of 128B Entries |

This field specifies the size of the buffer in the URB in number of 128B entries. If this field has a
value of zero then the URB Atomic allocation is disabled and will not be context save/restored.

Value Name Description
[0,256] 0-32KB

190



MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END

Project:
Source:

Length Bias:

HSW

VideoEnhancementCS

1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch
buffer initiated using a MI_BATCH_BUFFER_START command.

DWord

Bit

Description

0

31:29

Command Type

Default Value:

Oh MI_COMMAND

Format:

OpCode

28:23

MI Command Opcode

Default Value:

0Ah MI_BATCH+_BUFFER_END

Format:

OpCode

22:0

Reserved

Project:

All

Format:

MBZ

191




Q"_til

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END

Project: HSW
Source: BlitterCS
Length Bias: 1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch buffer
initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description
0 31:29 Command Type
| Default Value: |Oh MI_COMMAND
28:23 MI Command Opcode
| Default Value: | 0Ah MI_ BATCH_BUFFER_END
22:0 Reserved
Project: All
Format: MBZ

192



MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END

Project: HSW
Source: VideoCS
Length Bias: 1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch buffer
initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description
0 31:29 |Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 MI Command Opcode
Default Value: 0Ah MI_BATCH+_BUFFER_END
Format: OpCode

22:0 Reserved
Format: MBZ

193



Q"_til

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END

Project: HSW
Source: RenderCS
Length Bias: 1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch
buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description
0 31:29 Command Type

Default Value: 0Oh MI_COMMAND
Format: OpCode

28:23 MI Command Opcode
Default Value: OAh MI_ BATCH_BUFFER_END
Format: OpCode

22:0 Reserved
Format: MBZ

194



MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

Project: HSW
Source: BlitterCS
Length Bias: 1
Description Project
Blocks MMIO sync flush or any flushes related to VT-d while enabled. HSW
DWord Bit Description
0 31:29 |Command Type
| Default Value: | oh MI.COMMAND
28:23 | MI Command Opcode
| Default Value: | 0Bh MI_SUSPEND_FLUSH
22:1 |Reserved
Project: All
Format: MBZ
0 Suspend Flush
Project: All
Format: Enable
Description Project
This field suspends flush due and IOTLB invalidation. HSW

195




Q"_til

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

Project:
Source:
Length Bias:

HSW
VideoEnhancementCS
1

Description

Project

Blocks MMIO sync flush or any flushes related to VT-d while enabled.

HSW

DWord

Bit

Description

0

31:29

Command Type

| Default Value: | oh MI.COMMAND

28:23

MI Command Opcode

| Default Value: | 0Bh MI_SUSPEND_FLUSH

221

Reserved

Project: All

Format: MBZ

Suspend Flush

Project: All

Format: Enable

Description

Project

This field suspends flush due and IOTLB invalidation.

HSW

196




MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

Project: HSW
Source: VideoCS
Length Bias: 1
Description Project
Blocks MMIO sync flush or any flushes related to VT-d while enabled. HSW
DWord Bit Description
0 31:29 |Command Type
| Default Value: | oh MI.COMMAND
28:23 | MI Command Opcode
| Default Value: | 0Bh MI_SUSPEND_FLUSH
22:1 |Reserved
| Format: | MBZ
0 Suspend Flush
| Format: | Enable
Description Project
This field suspends flush due and IOTLB invalidation. HSW

197




Q"_til

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

Project: HSW
Source: RenderCS
Length Bias: 1
Description Project
Blocks MMIO sync flush or any flushes related to VT-d while enabled. HSW
DWord Bit Description
0 31:29 |Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 0Bh MI_SUSPEND_FLUSH
Format: OpCode
22:1 |Reserved
| Format: | MBZ
0 Suspend Flush
| Format: | Enable
Description Project
This field suspends flush due and IOTLB invalidation. HSW

198




MI_PREDICATE

MI_PREDICATE

Project: HSW
Source: RenderCS
Length Bias: 1
DWord| Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 0Ch MI_PREDICATE
Format: OpCode
22:8 |Reserved
Format: MBZ
7:6 |Load Operation
This field controls if/fhow the Predicate state bit is modified.
Value Name Description
Oh LOADOP_KEEP The Predicate state bit is unmodified.
1h Reserved
2h LOADOP_LOAD The Predicate state bit is loaded with the combine operation result.
3h LOADOP_LOADINV | The Predicate state bit is loaded with the inverted combine
operation result.
5 |Reserved
Format: MBZ
4:3 |Combine Operation
This field controls if/how the result of the compare operation is combined with the current
Predicate state bit.
Value Name Description
Oh COMBINEOP_SET |The combine operation output the compare result unmodified.
1h COMBINEOP_AND [ The combine operation outputs the AND of the compare result and
the current Predicate state bit.
2h COMBINEOP_OR [The combine operation outputs the OR of the compare result and
the current Predicate state bit.
3h COMBINEOP_XOR | The combine operation outputs the XOR of the compare result and

199




MI_PREDICATE

| |the current Predicate state bit.

2 |Reserved
| Format: | MBZ
1:0 |Compare Operation

This field controls how Data DWord 0 and Data DWord 1 fields are used to generate a compare
operation result and possibly modify the PredicateData register.

Value Name Description

Oh COMPAREOP_TRUE The compare operation outputs TRUE. The PredicateData
register is unmodified.

1lh COMPAREOP_FALSE The compare operation outputs FALSE. The
PredicateData register is unmodified.

2h COMPAREOP_SRCS_EQUAL | (MItempO - MItempl) is computed and loaded into the
PredicateData register. The compare operation outputs
(MItemp0 == Mltempl).

3h COMPAREOP_DELTAS_EQUAL | (MItempO - Mltemp1l) is computed and compared to the
PredicateData register. If the values are equal, the
compare operation outputs TRUE, otherwise it outputs
FALSE. The PredicateData register is unmodified.

200




MI_TOPOLOGY_FILTER

MI_TOPOLOGY_FILTER

Project:
Source:
Length Bias:

HSW
RenderCS
1

This command is used to specify a specific 3DPrimType value, where the CS will ignore all 3DPRIMITIVE
commands that do no have a matching 3DPrimType. This primitive culling is optional (turned off by using this
command with a Topology Filter Value of 0). This command is specific to the Render command stream only.

DWord | Bit Description
0 31:29 |Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 0Dh MI_TOPOLOGY_FILTER
Format: OpCode
22:6 |Reserved
| Format: MBZ
5:0 |Topology Filter Value
| Format: 3D_Prim_Topo_Type
When non-zero, the CS will discard all 3DPRIMITIVE commands which do not match the
specified 3DPrimTopologyType. When zero, no filtering is performed (normal operation).

201




Q"_til

MI_RS_CONTEXT

MI_RS_CONTEXT

Project: HSW
Source: RenderCS
Length Bias: 1
The MI_RS_CONTEXT command is used to force a resource streamer context save or restore.
DWord| Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: OFh MI_RS_CONTEXT
Format: OpCode
22:1 |Reserved
| Format: | MBZ
0 [Resource Streamer Save
| Format: | Ul
This bit specifies whether the MI_RS_CONTEXT command will cause the resource streamer
context to be saved or restored.
Value Name Description
Oh Restore Resource Streamer context is restored
1h Save Resource Streamer context is saved

202



MI_LOAD_SCAN_LINES_INCL

MI_LOAD_SCAN_LINES_INCL

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_LOAD_SCAN_LINES_INCL command is used to initialize the Scan Line Window registers for a specific
Display Engine. If the display refresh is within this window the Display Engine asserts a signal that is used by the
command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while inside the window).
This command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single
MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical MI_LOAD_SCAN_LINES_EXCL/INCL
command.

DWord Bit Description
0 31:29 |Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 12h MI_LOAD_SCAN_LINES_INCL
Format: OpCode

22 Reserved

Format: MBZ

21:19 |Display (Plane) Select
Project: HSW
Format: u3
This field selects which display plane is to perform the scanline operation.

Value Name

Oh Display Plane A
1h Display Plane B
2h Reserved
3h Reserved
4h Display Plane C
5h Reserved

18:6 [Reserved
Project: HSW

203



MI_LOAD_SCAN_LINES_INCL

| Format: | MBZ

5:0 DWord Length

Default Value: Oh

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31 Reserved

Format: MBZ

30 Reserved

Default Value: 1h

Format: Must Be One

29 Reserved

| Format: MBZ

28:16 |Start Scan Line Number

| Format: | U13 In scan lines, where scan line 0 is the first line of the display frame.

Range: [0,Display Buffer height in lines-1]

This field specifies the starting scan line number of the Scan Line window.

15:13 |[Reserved

| Format: MBZ

12:0 End Scan Line Number

| Format: | U13 In scan lines, where scan line 0 is the first line of the display frame.

Range: [0,Display Buffer height in lines-1]

This field specifies the ending scan line number of the Scan Line Window.

204



MI_LOAD_SCAN_LINES_INCL

MI_LOAD_SCAN_LINES_INCL

Project:
Source:
Length Bias:

HSW
BlitterCS
2

The MI_LOAD_SCAN_LINES_INCL command is used to initialize the Scan Line Window registers for a specific
Display Engine. If the display refresh is within this window the Display Engine asserts a signal that is used by the
command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while inside of the
window). This command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL
or MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single
MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical

DWord

Bit

Description

0

31:29

Command Type

Default Value:

Oh MI_COMMAND

Format:

OpCode

28:23

MI Command Opcode

Default Value:

12h MI_LOAD_SCAN_LINES_INCL

Format:

OpCode

22

Reserved

Project:

All

Format:

MBZ

21:19

Display Pipe Select

Project:

All

Format:

u3

This field selects which Display Engine (pipe)
this command is targeting.

Value

Name

Oh

Display Pipe A

1h

Display Pipe B

4h

Display Pipe C

18:6

Reserved

Project:

HSW

Format:

MBZ

5:0

DWord Length

205




MI_LOAD_SCAN_LINES_INCL

Default Value: 0Oh Excludes DWord (0,1)
Format: =n Total Length - 2
1 31:16 |Start Scan Line Number

| Format: | U16 In scan lines, where scan line 0 is the first line of the display frame.

This field specifies the starting
scan line number of the Scan Line Window. Range: [0,Display Buffer height in lines-1]

15:0 |End Scan Line Number

| Format: | U16 In scan lines, where scan line 0 is the first line of the display frame.

This field specifies the ending
scan line number of the Scan Line Window. Range: [0,Display Buffer height in lines-1]

206




MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_EXCL

Project:
Source:
Length Bias:

HSW
BlitterCS
2

The MI_LOAD_SCAN_LINES_EXCL command is used to initialize the Scan Line Window registers for a specific
Display Pipe. If the display refresh is outside this window the Display Engine asserts a signal that is used by the
command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while outside). This
command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display pipe.

Note: The two scan-line numbers are inclusive. If programmed to the same values, that single line defines the

region in question.
Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single
MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical MI_LOAD_SCAN_LINES_EXCL/INCL

command.

DWord

Bit

Description

0

31:29

Command Type

Default Value:

Oh MI_COMMAND

Format:

OpCode

28:23

MI Command Opcode

Default Value:

13h MI_LOAD_SCAN_LINES_EXCL

Format:

OpCode

22

Reserved

Project:

All

Format:

MBZ

21:19

Display Pipe Select

Project:

All

Format:

U3

This field selects which Display Engine (pipe)
this command is targeting.

Value

Name Project

Oh

Display Pipe A

All

lh

Display Pipe B

All

4h

Display Pipe C

All

18:6

Reserved

Project:

HSW

207




MI_LOAD_SCAN_LINES_EXCL

| Format: | MBZ
5:0 DWord Length
Default Value: Oh Excludes DWord (0,1)
Format: =n Total Length - 2
1 31:16 [Start Scan Line Number

| Format: | U16 In scan lines, where scan line 0 is the first line of the display frame.

This field specifies the starting
scan line number of the Scan Line Window. Range: [0,Display Buffer height in lines-1]

15:0 |End Scan Line Number

Format: |U16 In scan lines, where scan line 0 is the first line of the display frame.

This field specifies the ending
scan line number of the Scan Line Window. Range: [0,Display Buffer height in lines-1]

208



MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_EXCL

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_LOAD_SCAN_LINES_EXCL command is used to initialize the Scan Line Window registers for a specific
Display Pipe. If the display refresh is outside this window the Display Engine asserts a signal that is used by the
command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while outside). This
command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display pipe.

Note: The two scan-line numbers are inclusive. If programmed to the same values, that single line defines the
region in question.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single

MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical MI_LOAD_SCAN_LINES_EXCL/INCL
command.

DWord Bit Description
0 31:29 |Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 13h MI_LOAD_SCAN_LINES_EXCL
Format: OpCode
22 Reserved
| Format: | MBZ
21:19 |Display (Plane) Select
| Format: | u3 |
This field selects which display plane is to perform the scanline operation.
Value Name
Oh Display Plane A
1h Display Plane B
2h Reserved
3h Reserved
4h Display Plane C
5h Reserved
18:6 [Reserved
Project: HSW

209




MI_LOAD_SCAN_LINES_EXCL

| Format: | MBZ
5:0 DWord Length
Default Value: Oh
Format: =n Total Length - 2. Excludes DWord (0,1).
1 31:29 [Reserved
| Format: MBZ
28:16 |Start Scan Line Number
| Format: | U13 In scan lines, where scan line 0 is the first line of the display frame.
Range: [0,Display Buffer height in lines-1]
This field specifies the starting scan line number of the Scan Line Window.
15:13 |Reserved
| Format: MBZ
12:0 [End Scan Line Number

| Format: | U13 In scan lines, where scan line 0 is the first line of the display frame.

This field specifies the ending scan line number of the Scan Line Window.

Range: [0,Display Buffer height in lines-1]

210



MI_DISPLAY_FLIP

MI_DISPLAY_FLIP

Project: HSW
Source: BlitterCS
Length Bias: 2

programmed as part of the packet.

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to display a new
buffer. The buffer is specified with a starting address and pitch. The tiled attribute of the buffer start address is

occur: either synchronously with vertical retrace to avoid tearing artifacts

The operation this command performs is also known as a "display flip request" operation - in that the flip
operation itself will occur at some point in the future. This command specifies when the flip operation is to

Programming Notes

Project

This command simply requests a display flip operation -- command execution then continues
normally. There is no guarantee that the flip (even if asynchronous) will occur prior to subsequent
commands being executed. (Note that completion of the MI_FLUSH_DW command does not
guarantee that outstanding flip operations have completed). The MI_WAIT_FOR_EVENT command
must be used to provide this synchronization to avoid back to back MI_DISPLAY_FLIP commands to
the same display plane - by pausing command execution until a pending flip has actually completed.
This synchronization can also be performed by use of the Display Flip Pending hardware status. See
Display Flip Synchronization in the Device Programming Interface chapter of MI Functions.

After a display flip operation is requested, software is responsible for initiating any required
synchronization with subsequent buffer clear or blitter operations. For multi-buffering (e.g., double
buffering) operations, this will typically require updating SURFACE_STATE or the binding table to
change the blitter (back) buffer. In addition, prior to any subsequent clear or blitter operations,
software must typically ensure that the new blitter buffer is not actively being displayed. Again, the
MI_WAIT_FOR_EVENT command or Display Flip Pending hardware status can be used to provide this
synchronization. See Display Flip Synchronization in the Device Programming Interface chapter of MI
Functions.

The display buffer command uses the X and Y offset for the tiled buffers from the Display Interface
registers. Software is allowed to change the offset via the MMIO interface irrespective of the flip
commands enqueued in the command stream. For tiled buffers, the display subsystem uses the X and
Y offset in generation of the final request to memory. The offset is always updated on the next vblank
for both Synchronous and Asynch Flips. It is not necessary to have a flip enqueued to update the X
and Y offset

The display buffer command uses the linear DWord offset for the linear buffers from the Display
Interface registers. Software is allowed to change the offset via the MMIO interface irrespective of the
flip commands enqueued in the command stream. For linear buffers, the display subsystem uses the
Dword offset in generation of the final request to memory.

e For synchronous flips the offset is updated on the next vblank. It is not necessary to have a sync

211




Q"_til

MI_DISPLAY_FLIP

flip enqueued to update the DWord offset.
e Linear memory does not support asynchronous flips.

Events must be unmasked in the Display Engine Render Response Mask Register (DE RRMR 0x44050) |HSW
prior to waiting for them with a MI_WAIT_FOR_EVENT command, or in the case of flips or scanlines,
prior to starting the flip or loading the scanline. Unmasked events will wake command streamer as
they occur, so for improved power savings it is recommended to only unmask events that are
required. Programming the DE RRMR register can be done through MMIO or a
LOAD_REGISTER_IMMEDIATE command.

DWord Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 14h MI_DISPLAY_FLIP
Format: OpCode
22 | Async Flip Indicator
Format: Enable
This bit should always be set if DW2 [1:0] == '01' (async flip). This field is required due to
HW limitations. This bit is used by the blitter pipe while DW2 is used by the display
hardware.
21:19 | Display (Plane) Select
This field selects which display plane is to perform the flip operation.
Value Name
Oh Display Plane A
1h Display Plane B
2h Display Sprite A
3h Display Sprite B
4h Display Plane C
5h Display Sprite C
18:17 | Reserved
Project: HSW
Format: MBZ
16 |Reserved
Project: HSW
Format: MBZ

212




MI_DISPLAY_FLIP

15:13

Reserved

Format:

| MBZ

12:8

Reserved

Project:

HSW

Format:

MBZ

7:0

DWord Length

Format:

=n Total Length - 2

For Synchronous Flips and Asynchronous Flips, this field must be programmed to 1h for a

total length of 3.

Value

Name Pr

oject

Exists If

Oh

Excludes DWord (0,1) [Default]

1h

([Flip Type]!="Stereo 3D Flip")

2h

DevHSW +

([Flip Type]=="Stereo 3D Flip")

31

Reserved

Project:

DevHSW +

30:16

Reserved

Project:

All

Format:

MBZ

15:6

Reserved

Project:

All

51

Reserved

Project:

All

Format:

MBZ

Tile Parameter

Project:

HSW

Format:

Enable

For Asynchronous Flips, this parameter cannot be changed. All the flips in a flip chain
should maintain the same tile parameter as programmed with the last synchronous flip or

direct thru MMIO.

Value

Name

Description

Oh

Linear [Default]

For Syncronous Flips Only

1h

Tiled X

Programming Notes

Performing a synchronous or asynchronous flip will drop any previous synchronous flip
that has not yet completed.

31:12

Display Buffer Base Address

213




MI_DISPLAY_FLIP

Project: All
Format: GraphicsAddress[31:12]
This field specifies Bits 31:12 of the Graphics Address of the new display buffer.
Programming Notes
The Display buffer must reside completely in Main Memory.
This address is always translated via the global (rather than per-process) GTT
11:3 [Reserved
Project: All
Format: MBZ
2 |Reserved
| Project: | HSW
1:0 |Flip Type
| Project: | HSW
This field specifies whether the flip operation should be performed asynchronously to
vertical retrace.
Value Name Description Project
00b | Sync Flip The flip will occur during the vertical blanking interval - [All
[Default] thus avoiding any tearing artifacts.
01b [Async Flip The flip will occur "as soon as possible" - and may All
exhibit tearing artifacts
1b Reserved All
Programming Notes Project
e The Display Buffer Pitch and Tile parameter cannot be changed for DevHSW +
asynchronous flips (i.e., the new buffer must have the same pitch/tile
format as the previous buffer).
e Async flips are supported on X-Tiled Frame buffers only.
e For Asynch Flips the Buffers used must be 32KB aligned.
e Asynch flips are supported on Display Planes A and B and C only.
3 31:12 | Reserved
Project: Project: DevHSW+
DevHSW +
11:3 [Reserved
Project: DevHSW +
Format: MBZ
2 |Reserved
Project: DevHSW +

214




Q"_til

MI_DISPLAY_FLIP

1.0

Flip Type

Project:

| DevHsw+

This field specifies whether the flip operation should be performed asynchronously to
vertical retrace.

Value Name Description Project
00b | Sync Flip The flip will occur during the vertical blanking interval - [All
[Default] thus avoiding any tearing artifacts.
01b [Async Flip The flip will occur "as soon as possible" - and may All
exhibit tearing artifacts

Programming Notes

The Display Buffer Pitch and Tile parameter cannot be changed for asynchronous
flips (i.e., the new buffer must have the same pitch/tile format as the previous

buffer).

Async flips are supported on X-Tiled Frame buffers only.
For Asynch Flips the Buffers used must be 32KB aligned.
Asynch flips are supported on Display Planes A and B and C only.

215




Q"_til

MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX

Project:
Source:

Length Bias:

HSW
BlitterCS
2

Description Project

MI_SEMAPHORE_MBOX command provides capability in Blitter Engine to wait conditionally until a
given synchronization register gets updated with a value greater than the
"SEMAPHORE_DATA_DWORD" mentioned inline in this command. Synchronization registers can be
updated through CPU MMIO access or through execution of MI_LOAD_REGISTER_IMM command in
other engines. Synchronization between contexts (especially between contexts running on 2 different
engines) is provided by the MI_SEMAPHORE_MBOX command.

If execution is stalled due to this command, the engine will specify that the engine is IDLE to the HSW
power management engine.

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 16h MI_SEMAPHORE_MBOX
Format: OpCode
22:21 | Reserved
Format: MBZ
20 |Reserved
Default Value: 1h
Format: Must Be One
19 |Reserved
Format: MBZ
18 |Reserved
Default Value: 1h
Format: Must Be One
17:16 | Register Select

|P_roject: HSW

This field indicates the synchronization register to be used for comparison with the inline data.

| Value Name Project

216




MI_SEMAPHORE_MBOX

0 CS register (BRSYNC)
1 VECS register(BVESYNC) HSW
2 VCS regiser (BVSYNCQ)
3 Reserved
15:8 | Reserved
Format: MBZ
7.0 |DWord Length
Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2
31:0 | Semaphore Data Dword
Format: uU32
Inline Data Dword to compare with the selected synchronization register. The Data dword is
supplied by software to control execution of the command buffer. If the data in the selected
synchronization register is greater than this dword, the execution of the command buffer
continues.
31:0 |Reserved
Format: MBZ

217




Q"_til

MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX

Project: HSW
Source: VideoCS

Length Bias: 2

Description Project

MI_SEMAPHORE_MBOX command provides capability in Video Engine to wait conditionally until a

given synchronization register gets updated with a value greater than the

"SEMAPHORE_DATA_DWORD" mentioned inline in this command. Synchronization registers can be

updated through CPU MMIO access or through execution of MI_LOAD_REGISTER_IMM command in

other engines.

If execution is stalled due to this command, the engine will specify that the engine is IDLE to the HSW
power management engine.

DWord

Bit

Description

0

31:29

Command Type

Default Value:

Oh MI_COMMAND

Format:

OpCode

28:23

MI Command Opcode

Default Value:

16h MI_SEMAPHORE_MBOX

Format:

OpCode

22:21

Reserved

Format:

MBZ

20

Reserved

Default Value:

lh

Format:

Must Be One

19

Reserved

Format:

MBZ

18

Reserved

Default Value:

1h

Format:

Must Be One

17:16

Register Select

|P7roject:

HSW

This field indicates the synchronization register to be used for comparison with the inline data.

Value

Name

Project

BCS register (VBSYNC)

218




MI_SEMAPHORE_MBOX

1

VECS register (VWVESYNC)

HSW

2

CS register (VRSYNCQ)

3

Reserved

15:8

Reserved

Format:

MBZ

7:0

DWord Length

Default Value:

1h Excludes DWord (0,1)

Format:

=n Total Length - 2

310

Semaphore Data Dword

Format:

u32

continues.

Inline Data Dword to compare with the selected synchronization register. The Data dword is
supplied by software to control execution of the command buffer. If the data in the selected
synchronization register is greater than this dword, the execution of the command buffer

31:0

Reserved

Format:

MBZ

219




Q"_til

MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

Description

Project

MI_SEMAPHORE_MBOX command provides capability in Video Enhancement Engine to wait
conditionally until a given synchronization register gets updated with a value greater than the

other engines.

"SEMAPHORE_DATA_DWORD" mentioned inline in this command. Synchronization registers can be
updated through CPU MMIO access or through execution of MI_LOAD_REGISTER_IMM command in

If execution is stalled due to this command, the engine will specify that the engine is IDLE to the
power management engine.

HSW

DWord | Bit Description

0 31:29 | Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 | MI Command Opcode

Default Value: 16h MI_SEMAPHORE_MBOX

Format: OpCode

22:21 | Reserved

Format: MBZ

20 |[Reserved

Default Value: 1h

Format: Must Be One

19 |Reserved

Format: MBZ

18 |Reserved

Default Value: 1h

Format: Must Be One

17:16 | Register Select

This field indicates the synchronization register to be used for comparison with the inline data.

Value Name

0 BCS register (VEBSYNC)

VCS register (VEVSYNC)

220




MI_SEMAPHORE_MBOX

2 CS register (VERSYNC)

3 Reserved

15:8

Reserved

Format: MBZ

7:0

DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

310

Semaphore Data Dword

Format: u32

Inline Data Dword to compare with the selected synchronization register. The Data dword is
supplied by software to control execution of the command buffer. If the data in the selected
synchronization register is greater than this dword, the execution of the command buffer
continues.

31:0

Reserved

Format: MBZ

221




Q"_til

MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX

Project: HSW
Source: RenderCS
Length Bias: 2

MI_SEMAPHORE_MBOX command provides capability in Render Engine to wait conditionally until a given
synchronization register gets updated with a value greater than the "SEMAPHORE_DATA_DWORD" mentioned
inline in this command. Synchronization registers can be updated through CPU MMIO access or through
execution of MI_LOAD_REGISTER_IMM command in other engines.

DWord | Bit Description

0 31:29 | Command Type

Default Value: 0Oh MI_COMMAND

Format: OpCode

28:23 | MI Command Opcode

Default Value: 16h MI_SEMAPHORE_MBOX

Format: OpCode

22:21 | Reserved

Format: MBZ

20 |Reserved

Default Value: 1h

Format: Must Be One

19 |Reserved

Format: MBZ

18 |Reserved

Default Value: 1h

Format: Must Be One

17:16 | Register Select
This field indicates the synchronization register to be used for comparison with the inline data.

Value Name Description Project
Oh RVSYNC VCS Register
1h RVESYNC VECS Register HSW
2h RBSYNC BCS Register
3h Use General Register Select

15:14 | Reserved

Format: MBZ

222



Q"_til

MI_SEMAPHORE_MBOX

13:8 [General Register Select
Project: | HSW
If Register Select is 3h, the register used to select which will be compared to specify whether the
semaphore compare causes a stall.
Register Number | MMIO Offset
0 0x2680
1 0x2684
2-31 Reserved
32 0x24B4
33 0x24B8
7.0 |DWord Length
Default Value: 1h
Format: =n Total Length - 2. Excludes DWord (0,1).
31:0 [Semaphore Data Dword
Format: u32
Inline Data Dword to compare with the selected synchronization register. The Data dword is
supplied by software to control execution of the command buffer. If the data in the selected
synchronization register is greater than this dword, the execution of the command buffer
continues.
31:0 [Reserved
Format: MBZ

223



Q"_til

MI_SET_CONTEXT

MI_SET_CONTEXT

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_SET_CONTEXT command is used to specify the logical context associated with the hardware context. A
logical context is an area in memory used to store hardware context information, and the context is referenced
via a 2KB-aligned pointer. If the (new) logical context is different (i.e., at a different memory address), the device
saves the current HW context values to the current logical context address, and then restores (loads) the new
logical context by reading the context from the new address and loading it into the hardware context state. If the
logical context address specified in this command matches the current logical context address, this command is
effectively treated as a NOOP. Specific to the Render command stream only.

This command also includes some controls over the context save/restore process.

e The Force Restore bit can be used to refresh the on-chip device state from the same memory address if
the indirect state buffers have been modified.

e The Restore Inhibit bit can be used to prevent the new context from being loaded at all. This must be
used to prevent an uninitialized context from being loaded. Once software has initialized a context (by
setting all state variables to initial values via commands), the context can then be stored and restored
normally.

e This command is legal only if Execlist Enable in the GFX_MODE register is reset. Otherwise, execlists must
be used to switch context in lieu of MI_SET_CONTEXT.

e This command needs to be always followed by a single MI_NOOP instruction to correct a silicon issue.

e When switching from a generic media context to a 3D context, the generic media state must be cleared
via the Generic Media State Clear bit 16 in PIPE_CONTROL (or bit 4 in MI_FLUSH) before saving 3D
context.

e MI_SET_CONTEXT commands are permitted only within a ring buffer (not within a batch buffer).

Programming Notes Project

MI_ARB_ON_OFF with 'Arbitration Enable Reset' set should be programmed before an HSW
MI_SET_CONTEXT command. MI_ARB_ON_OFF with 'Arbitration Enable' set should be programmed
after an MI_SET_CONTEXT command. This programming ensures that PSMI context switch flows do
not conflict with MI_SET_CONTEXT flows.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 18h MI_SET_CONTEXT

224



MI_SET_CONTEXT

| Format: | OpCode
22:8 |Reserved
| Format: | MBZ
7.0 [DWord Length
Default Value: Oh
Format: =n Total Length - 2. Excludes DWord (0,1).
31:12 | Logical Context Address
Project: HSW
Format: GraphicsAddress[31:12]LogicalContext
Description Project
This field contains the 4KB-aligned graphics memory address of the Logical Context
that is to be loaded into the hardware context. If this address is equal to the CCID
register associated with the current ring, no load will occur. Prior to loading this new
context, the device will save the existing context as required. After the context switch
operation completes, this address will be loaded into the associated CCID register.
This field needs to be 4KB aligned virtual address. HSW
11:10 | Reserved
Format: MBZ
9 |Reserved
Project: HSW
Format: MBZ
8 |Reserved, Must be 1
| Format: Must Be One
7:5 [Reserved
| Format: MBZ
4 | Core Mode Enable
Project: DevHSW +
Format: Enable
If set the Context Image will be offset based off the Core ID:
If Core ID 0, no offset
If Core ID 1, 36KB Offset
3 |Resource Streamer State Save Enable

Project: DevHSW +

Format: Enable

If set, the resource streamer state identified in the Logical Context Data section of the Memory

225




MI_SET_CONTEXT

Data Formats chapter is saved as part of switching away from this logical context. This bit will be
stored in the associated CCID register to control the context save operation when switching away
from this context (as part of a subsequent MI_SET_CONTEXT command).

Resource Streamer State Restore Enable

Project: DevHSW +

Format: Enable

If set, the resource streamer state identified in the Logical Context Data section of the Memory
Data Formats chapter is loaded (or restored) as part of switching to this logical context. This bit
affects the switch (if required) to the context specified in Logical Context Address. This bit will
also be stored in the associated CCID register to control a subsequent context save operation
when switching to this context (as part of a subsequent ring buffer switch).

Programming Notes Project

Resource Streamer State Restore Enable bit should be set when Resource Streamer HSW
State Save Enable is set irrespective of Restore Inhibit set.

Force Restore

When switching to this logical context a comparison between Logical Context Address and the
contests of the CCID register is performed. Normally, matching addresses prevent a context
restore from occurring; however, when this bit is set a context restore is forced to occur. This bit
cannot be set with Restore Inhibit. Note: This bit is not saved in the associated CCID register. It
only affects the processing of this command.

Restore Inhibit

If set, the restore of the HW context from the logical context specified by Logical Context
Address is inhibited (i.e., the existing HW context values are maintained). This bit must be used to
prevent the loading of an uninitialized logical context. If clear, the context switch proceeds
normally. This bit cannot be set with Force Restore. Note: This bit is not saved in the associated
CCID register. It only affects the processing of this command.

226




MI_URB_CLEAR

MI_URB_CLEAR

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_URB_CLEAR command allows SW to clear (write zero) to a section in the URB.

when a given context expects URB locations to be initialized to 0x0.

Programming Notes Project
e The command temporarily halts command execution.
e This command is part of context save/restore. Only the last instance will be part of context.
e This command requires the 3D pipeline to be flushed before execution.
MI_URB_CLEAR must be programmed following MI_SET_CONTEXT and before workload is submitted, [HSW

DWord Bit Description

0 31:29 |Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 | MI Command Opcode

Default Value: 19h MI_URB_CLEAR

Format: OpCode

22:8 |Reserved

Format: MBZ

7.0 |DWord Length

Default Value: Oh

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:30 |Reserved

Project: DevHSW Project: HSW

Format: MBZ

29:16 |URB Clear Length

Project: DevHSW +

This field specifies the number of 256b entries in the URB to be cleared to zero.

Value Name

[0,16383]

15 Reserved

227




MI_URB_CLEAR

Project: HSW

Format: MBZ
14:0 |URB Address

Project: DevHSW +

Format: URBAddress[19:5] 256b aligned

This field specifies Bits 19:5 of the URB Address

228




MI_MATH

MI_MATH
Project: HSW
Source: RenderCS
Length Bias: 2
Description Project
The MI_MATH command allows SW to send instruction to ALU in Render Command Streamer.
MI_MATH command is the means by which ALU can be accessed. ALU instructions form the data
payload of MI_MATH command, ALU instruction is dword in size. MI_MATH Dword Length should be
programmed based on the number of ALU instruction packed, max number is limited by the max
Dword Length supported. When MI_MATH command is parsed by command streamer it outputs the
payload dwords (ALU instructions) to the ALU. ALU takes single clock to process any given instruction.
Refer to B-spec "Command Streamer (CS) ALU Programming" section in Command Streamer
Programming.
This command is specific to the Render command stream only. HSW
DWord Bit Description
0 31:29 Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 MI Command Opcode
Default Value: 1Ah MI_MATH
Format: OpCode
22:8 Reserved
Format: MBZ
7:6 Reserved
Project: HSW
Format: MBZ
5.0 DWord Length
Default Value: Oh
Project: HSW
Format: =n Total Length - 2. Excludes DWord (0,1).
1 31:0 ALU INSTRUCTION 1
| Format: |Tab|e Entry
2 31:0 ALU INSTRUCTION 2
| Format: |Tab|e Entry

229




MI_MATH

31:0

ALU INSTRUCTION n

Format: | Table Entry

230



MI_STORE_DATA_IMM

MI_STORE_DATA_IMM

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord or DWord constant supplied in the packet
to the specified Memory Address. As the write targets a System Memory Address, the write operation is coherent
with the CPU cache (i.e., the processor cache is snooped).

Programming Notes

This command should not be used within a "non-secure” batch buffer to access global virtual space. Doing so
will cause the command parser to perform the write with byte enables turned off. This command can be used
within ring buffers and/or "secure" batch buffers. If used within a non-secure batch buffer, Use Global GTT
must be clear.

This command can be used for general software synchronization through variables in cacheable memory (i.e,,
where software does not need to poll un-cached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally. Although the
write operation is guaranteed to complete "eventually”, there is no mechanism to synchronize command
execution with the completion (or even initiation) of these operations.

DWord| Bit Description

0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 20h MI_STORE_DATA_IMM
Format: OpCode
22 |Use Global GTT

Project: All
Format: Ul

If set, this command will use the global GTT to translate the Address and this command must be
executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used. This bit will be
ignored and treated as if clear when executing from a non-privileged batch buffer. It is allowed
for this bit to be clear when executing this command from a privileged (secure) batch buffer. This
bit must be '1' if the Per Process GTT Enable bit is clear.

21:8 | Reserved
Project: All

Format: MBZ

231




MI_STORE_DATA_IMM

(lntel
7

:0 |DWord Length
Default Value: Oh Excludes DWord (0,1) = 3 for QWord, 2 for DWord
Format: =n Total Length - 2
1 31:.0 |Reserved
Project: All
Format: MBZ
2 31:2 |Address
Format: GraphicsAddress[31:2]
This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store address
must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B aligned for a
store "QW" command.
1.0 |Reserved
Project: All
Format: MBZ
3 31:0 |Data DWord 0
Format: u3z
This field specifies the DWord value to be written to the targeted location.For a QWord write this
DWord is the lower DWord of the QWord to be reported (DW 0).
4 31:.0 |Data DWord 1

Format: u32
This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

232




MI_STORE_DATA_IMM

MI_STORE_DATA_IMM

Project: HSW
Source: VideoCS
Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord or DWord constant supplied in the packet
to the specified Memory Address. As the write targets a System Memory Address, the write operation is coherent
with the CPU cache (i.e., the processor cache is snooped).

Programming Notes Project

This command should not be used within a "non-secure” batch buffer to access global virtual space.
Doing so will cause the command parser to perform the write with byte enables turned off. This
command can be used within ring buffers and/or "secure" batch buffers.

Use Global GTT will not be ignored when in a PPGTT batch buffer. There are no security implications HSW
when execlist mode is not used. Execlist mode is not supported.

This command can be used for general software synchronization through variables in cacheable
memory (i.e., where software does not need to poll un-cached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally.
Although the write operation is guaranteed to complete "eventually”, there is no mechanism to
synchronize command execution with the completion (or even initiation) of these operations.

DWord| Bit Description

0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 20h MI_STORE_DATA_IMM
Format: OpCode
22 |Use Global GTT

Format: Ul

If set, this command will use the global GTT to translate the Address and this command must be
executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used. It is allowed for
this bit to be clear when executing this command from a privileged (secure) batch buffer. This bit
must be '1" if the Per Process GTT Enable bit is clear.

21:8 |Reserved
Format: MBZ

7.0 [DWord Length

233




MI_STORE_DATA_IMM

Default Value: Oh Excludes DWord (0,1) = 3 for QWord, 2 for DWord
Format: =n Total Length - 2
1 31:0 |Reserved
| Format: MBZ |
2 31:2 | Address
| Format: GraphicsAddress[31:2] |
This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store address
must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B aligned for a
store "QW" command.
1.0 |[Reserved
| Format: MBZ |
3 31:0 | Data DWord 0
|Format: U32 FormatDesc |
This field specifies the DWord value to be written to the targeted location.For a QWord write this
DWord is the lower DWord of the QWord to be reported (DW 0).
4 31:0 | Data DWord 1

Format: U32 FormatDesc

This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

234




MI_STORE_DATA_IMM

MI_STORE_DATA_IMM

Project:
Source:
Length Bias:

HSW
BlitterCS
2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the
specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with
the CPU cache (i.e., the processor cache is snooped).

Programming Notes

This command can be used for general software synchronization through variables in cacheable memory (i.e,,
where software does not need to poll un-cached memory or device registers). However, the cacheable nature
of the transaction is determined by the setting of the "mapping type" in the GTT entry. This command simply
initiates the write operation with command execution proceeding normally. Although the write operation is
guaranteed to complete "eventually”, there is no mechanism to synchronize command execution with the
completion (or even initiation) of these operations. All writes to memory generated using this command are
expected to finish in order.

DWord Bit Description
0 31:29 | Command Type
| Default Value: | oh MI_cOMMAND
28:23 | MI Command Opcode
| Default Value: | 20h MI_STORE_DATA IMM
22 |Use Global GTT
| Project: All
This bit must be '1" if the Per Process GTT Enable bit is clear.
Value Name Description Project
Oh Per Process All
Graphics
Address
1h Global Graphics | This command will use the global GTT to translate the All
Address Address and this command must be executing from a
privileged (secure) batch buffer.
Programming Notes Project
This will not be ignored when in a PPGTT batch buffer. There are no security HSW
implications when execlist mode is not used. Execlist mode is not supported.
21 |Reserved

Project: HSW

235




MI_STORE_DATA_IMM

| Format: | MBZ

20:10 |Reserved

Project: All

Format: MBZ

9:0 [DWord Length

Default Value: 2h Excludes DWord (0,1) = 2 for DWord, 3 for QWord

Format: =n Total Length - 2

1 31:0 |Reserved

Project: Project: All

Dy Format: MBZ

2 31:2 |Address

Project: Project: All

Dy Format: GraphicsAddress[31:2]U32(2)

This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store
address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B
aligned for a store "QW" command.

1:0 |Reserved

Project: All

Format: MBZ

3 31:0 |Data DWord 0

Project: All

Format: u32

This field specifies the DWord value to be written to the targeted location.For a QWord
write this DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 |Data DWord 1

Project: All

Format: u32

This field specifies the upper DWord value to be written to the targeted QWord location
(DW 1).

236



MI_STORE_DATA_IMM

MI_STORE_DATA_IMM

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the
specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with
the CPU cache (i.e., the processor cache is snooped).

Programming Notes

This command should not be used within a "non-privilege" batch buffer to access global virtual space,
doing so will be treated as privilege access violation. Refer "User Mode Privilege Command" in
MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access
violation. This command can be used within ring buffers and/or privilege batch buffers to access global
virtual space.

This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll un-cached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally.
Although the write operation is guaranteed to complete eventually, there is no mechanism to
synchronize command execution with the completion (or even initiation) of these operations.

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 20h MI_STORE_DATA_IMM
Format: OpCode
22 |Use Global GTT
Project: All
Format: Boolean
If set, this command will use the global GTT to translate the Address and this command must
be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used. It is
allowed for this bit to be clear when executing this command from a privileged (secure) batch
buffer. This bit must be '1" if the Per Process GTT Enable bit is clear.

237




MI_STORE_DATA_IMM

21 (Reserved
Project: HSW
Format: MBZ
20:10 | Reserved
Format: MBZ
9:6 [Reserved
Project: HSW
Format: MBZ
5:0 |DWord Length
Default Value: 2h Excludes DWord (0,1)
Project: HSW
Format: =n Total Length - 2. Excludes DWord (0,1)
Programming Notes
Dword Length programmed must not exceed 0x3.
1 31:0 | Reserved
Project: Project: HSW
DRI Format: MBZ
2 31:2 | Address
Project: Project: HSW
v Format: GraphicsAddress[31:2]U32(2)
This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store
address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B
aligned for a store "QW" command.
1:0 |Reserved
Project: HSW
Format: MBZ
3 31:0 |Data DWord 0
Format: uU32
This field specifies the DWord value to be written to the targeted location.For a QWord write
this DWord is the lower DWord of the QWord to be reported (DW 0).
4 31:0 |Data DWord 1
Format: u32
This field specifies the upper DWord value to be written to the targeted QWord location (DW

238




MI_STORE_DATA_IMM

1).

239




Q"_til

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the write
targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is
snooped).

Programming Notes

e Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register
is UNDEFINED.

e This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll uncached memory or device registers).

e This command simply initiates the write operation with command execution proceeding normally.
Although the write operation is guaranteed to complete "eventually”, there is no mechanism to
synchronize command execution with the completion (or even initiation) of these operations.

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 21h MI_STORE_DATA_INDEX
Format: OpCode
22 |Reserved
Project: All
Format: MBZ
21 |[Reserved
Project: HSW
Format: MBZ
20:8 | Reserved
Project: All
Format: MBZ

7.0 |DWord Length

240



MI_STORE_DATA_INDEX

Default Value: Oh Excludes DWord (0,1) = 2 for QWord
Project: All

Format: =n Total Length - 2

31:12

Reserved
Project: All
Format: MBZ

11:2

Offset

Project: All

Format: U10 Zero-based DWord offset into the HW status page
Format: GraphicsAddress[11:2]U32

This field specifies the offset (into the hardware status page) to which the data will be written.
Note that the first few DWords of this status page are reserved for special-purpose data storage
- targeting these reserved locations via this command is UNDEFINED.

For a QWord write, the offset is valid down to bit 3 only.

Value Name

[16, 1023]

1:0

Reserved

Project: All

Format: MBZ

31:.0

Data DWord 0

Format: u32

This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

31:.0

Data Word 1

Format: u32

This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

241




Q"_til

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX

Project: HSW
Source: VideoCS
Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the write
targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is
snooped).

Programming Notes

e Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register
is UNDEFINED.

e This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll uncached memory or device registers).

e This command simply initiates the write operation with command execution proceeding normally.

Although the write operation is guaranteed to complete "eventually”, there is no mechanism to
synchronize command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 [Command Type

Default Value: 0Oh MI_COMMAND

Format: OpCode

28:23 | MI Command Opcode

Default Value: 21h MI_STORE_DATA _INDEX

Format: OpCode

22 |Reserved

Format: MBZ

21 |[Reserved

Project: HSW

Format: MBZ

20:8 |Reserved

Format: MBZ

7.0 |DWord Length

Default Value: Oh Excludes DWord (0,1) = 2 for QWord

Format: =n Total Length - 2

242



MI_STORE_DATA_INDEX

31:12 |Reserved
Format: | MBZ
11:2 | Offset
Format: U10 zero-based DWord offset into the HW status page
Format: GraphicsAddress[11:2]U32
This field specifies the offset (into the hardware status page) to which the data will be written.
For a QWord write, the offset is valid down to bit 3 only.
Value Name
[16, 1023]
Programming Notes
The first few DWords of this status page are reserved for special-purpose data storage -
targeting these reserved locations via this command is UNDEFINED.
1:0 |Reserved
| Format: MBZ |
31:.0 |Data DWord 0
|Format: U32 FormatDesc |
This field specifies the upper DWord value to be written to the targeted QWord location (DW
1).
31:0 |Data Word 1
Format: U32 FormatDesc

This field specifies the upper DWord value to be written to the targeted QWord location (DW
1).

243




Q"_til

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the write
targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is
snooped).

Programming Notes

e Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register
is UNDEFINED.

e This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll uncached memory or device registers).

e This command simply initiates the write operation with command execution proceeding normally.
Although the write operation is guaranteed to complete eventually, there is no mechanism to
synchronize command execution with the completion (or even initiation) of these operations.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 21h MI_STORE_DATA_INDEX
Format: OpCode
22 |Reserved
Project: HSW
21 |Reserved
Project: HSW
Format: MBZ
20:8 |Reserved
Format: MBZ

7:0 |DWord Length

Default Value: |[1h

Format: =n Total Length - 2. Excludes DWord (0,1 ) = 1 for DWord, 2 for QWord.

244



MI_STORE_DATA_INDEX

31:12 | Reserved
Format: | MBZ
11:2 |Offset
Format: U10 zero-based DWord offset into the HW status page.
Format: HardwareStatusPageOffset[11:2]U32
This field specifies the offset (into the hardware status page) to which the data will be written.
Note that the first few DWords of this status page are reserved for special-purpose data storage
- targeting these reserved locations via this command is UNDEFINED. This address must be 8B
aligned for a store QW command.
Value Name
[16, 1023]
1:0 |Reserved
Format: MBZ
31:0 |Data DWord 0
Format: u32
This field specifies the DWord value to be written to the targeted location.For a QWord write this
DWord is the lower DWord of the QWord to be reported (DW 0).
31:0 |Data DWord 1

Format: u32
This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

245



Q"_til

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX

Project: HSW
Source: BlitterCS
Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the write
targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is
snooped).

Programming Notes

Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is
UNDEFINED. This command can be used for general software synchronization through variables in cacheable
memory (i.e., where software does not need to poll uncached memory or device registers). This command
simply initiates the write operation with command execution proceeding normally. Although the write
operation is guaranteed to complete "eventually”, there is no mechanism to synchronize command execution
with the completion (or even initiation) of these operations.

DWord | Bit Description
0 31:29 | Command Type
| Default Value: | oh MI_COMMAND
28:23 | MI Command Opcode
| Default Value: | 21h MI_STORE_DATA_INDEX
22 [Reserved
Project: All
Format: MBZ
21 |[Reserved
Project: HSW
Format: MBZ
20:8 [Reserved
Project: All
Format: MBZ
7:0 |DWord Length
Default Value: 1h Excludes DWord (0,1 ) = 1 for DWord, 2 for QWord
Format: =n Total Length - 2

1 31:12 [ Reserved

Project: All

246



MI_STORE_DATA_INDEX

Format: | MBZ
11:2 | Offset
Project: All
Format: U10 zero-based DWord offset into the HW status page.
Format: HardwareStatusPageOffset[11:2]U32

This field specifies the offset (into the hardware status page) to which the data will be written.
Note that the first few DWords of this status page are reserved for special-purpose data storage
- targeting these reserved locations via this command is UNDEFINED.This address must be 8B
aligned for a store "QW" command.

Value Name

[16, 1023]

1:0 |Reserved

Project: All

Format: MBZ

31:0 [|Data DWord 0

Project: All

Format: u32

This field specifies the DWord value to be written to the targeted location.For a QWord write this
DWord is the lower DWord of the QWord to be reported (DW 0).

31:0 |Data DWord 1

Project: All

Format: u32

This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

247




Q"_til

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_ IMM

Project:
Source:
Length Bias:

HSW
VideoCS
2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command
to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before

the next command is executed.

DWord Bit Description
0 31:29 |Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 22h MI_LOAD_REGISTER_IMM
Format: OpCode
22:12 |Reserved
| Format: MBZ |
11:8 |Byte Write Disables
|Format: |Enab|e[4] (bit 8 corresponds to Data DWord [7:0]). |
Range: Must specify a valid register write operation
If [11:8] is '1111b", then the register write will not occur.
If [11:8] is '0000b’, then the register DW will be updated.
Any other value, the behavior will be specifically specified by the register or the behavior is
undefined.
7.0 |DWord Length
Default Value: 0Oh Excludes DWord (0,1)
Format: =n Total Length - 2
1 31:23 | Reserved
| Format: MBZ |
22:2 |Register Offset
Izwmat: MmioAddress[22:2] |
This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this
field specifies a DWord offset).Mapped
1:0 [Reserved

248




MI_LOAD_REGISTER_IMM

| Format: | MBZ

31:.0

Data DWord

| Format: | U32 FormatDesc

This field specifies the DWord value to be written to the targeted location.

249




Q"_til

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_ IMM

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command
to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before
the next command is executed.

e The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF
register. If this command is disallowed then the command stream converts it to a NOOP.

e If this command is executed from a batch buffer then the behavior of this command is controlled by
Dword 0, Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is non-
secure then the command stream converts this command to a NOOP.

The following addresses should NOT be used for LRIs
1. 0x8800 - 0x88FF

2. >=0x40000
DWord Bit Description
0 31:29 [Command Type

Default Value: 0h MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 22h MI_LOAD_REGISTER_IMM
Format: OpCode

22:12 |Reserved
Project: All
Format: MBZ

11:8 | Byte Write Disables
Project: All
Format: Enable[4] (bit 8 corresponds to Data DWord [7:0]).
Range: Must specify a valid register write operation
If [11:8] is '1111b', then the register write will not occur.
If [11:8] is '0000b’, then the register DW will be updated.
Any other value, the behavior will be specifically specified by the register or the behavior is
undefined.

250



MI_LOAD_REGISTER_IMM

7.0 |DWord Length

Default Value: Oh Excludes DWord (0,1)
Project: All

Format: =n Total Length - 2

31:23 |Reserved
Project: All

Format: MBZ

22:2 |Register Offset
Project: All
Format: MmioAddress[22:2]

This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this
field specifies a DWord offset).Mapped

1:0 |Reserved

Project: All

Format: MBZ
31:0 |Data DWord

Project: All

Format: U3z

This field specifies the DWord value to be written to the targeted location.

251




Q"_til

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_ IMM

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command
to the specified Register Offset (i.e., offset into Memory-Mapped Register Range).

Programming Notes

A stalling flush must be sent down pipeline before issuing this command. The behavior of this command is
controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF register. If this command is disallowed
then the command stream converts it to a NOOP.

If this command is executed from a BB then the behavior of this command is controlled by Dword 0, Bit 8
(Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure then the command
stream converts this command to a NOOP. Note that the corresponding ring buffer must allow a register
update for this command to execute.

To ensure this command gets executed before upcoming commands in the ring, either a stalling pipeControl
should be sent after this command, or MMIO 0x20C0 bit 7 should be set to 1.

When base address of 0x180000 is added to the Register Offset, when executed will result in updating of the
register in the other GT in GTB mode of operation then the GT from which this instruction is executed. When
this instruction is executed by Command Streamer with COREID-0 will result in updating the register in GT with
COREID-1 and vice versa, when base address of 0x180000 is added to the register offset.

The following addresses should NOT be used for LRIs:

1. 0x8800 - Ox88FF
2. >=0xC0000

Limited LRI cycles to the Display Engine 0x40000-0xBFFFF) are allowed, but must be spaced to allow only one
pending at a time. This can be done by issuing an SRM to the same address immediately after each LRL

DWord Bit Description
0 31:29 |Command Type

Default Value: 0Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 22h MI_LOAD_REGISTER IMM
Format: OpCode

22:13 |Reserved
Format: MBZ

12 Reserved

252



MI_LOAD_REGISTER_IMM

| Project: | HSW |
11:8 |Byte Write Disables
| Format: |Enab|e[4] Bit 8 corresponds to Data DWord [7:0] |
Range: Must specify a valid register write operation
If [11:8] is '1111b’, then this command will behave as a NOOP.
Otherwise, the value is forwarded to the destination register.
7.0 |DWord Length
Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2. Excludes DWord (0,1).
31:23 [Reserved
| Format: MBZ |
22:2 |Register Offset
| Format: MmioAddress[22:2] |
This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this
field specifies a DWord offset).
1:0 |Reserved
Format: MBZ
31:0 |Data DWord
Mask: Bytes Write Disables
Format: uU32

This field specifies the DWord value to be written to the targeted location.

253




Q"_til

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM

Project:
Source:

Length Bias:

HSW
BlitterCS
2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command
to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before
the next command is executed.

DWord

Bit

Description

0

31:29

Command Type

| Default Value: Oh MI.COMMAND

28:23

MI Command Opcode

| Default Value: 22h ML

22:12

Reserved

Project: All

Format: MBZ

11:8

Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord [7:0]

Range: Must specify a valid register write operation

If [11:8] is '1111b’, then the register write will not occur.

If [11:8] is '0000b', then the register DW will be updated.

Any other value, the behavior will be specifically specified by the register or the behavior is
undefined.

7:0

DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

31:23

Reserved

Format: MBZ

222

Register Offset

Format: uz1

Format: MmioAddress[22:2]

This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this
field specifies a DWord offset).

1:0

Reserved

254




MI_LOAD_REGISTER_IMM

Project: All

Format: MBZ
31:0 |Data DWord

Mask: Bytes Write Disables

Format: u32

This field specifies the DWord value to be written to the targeted location.

255




Q"_til

MI_UPDATE_GTT

MI_UPDATE_GTT

Project:
Source:

Length Bias:

HSW
VideoCS
2

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a
predictable place in the command flow. An MI_FLUSH should be placed before this command, because work
associated with preceding commands that are still in the pipeline may be referencing GTT entries that will be
changed by its execution. The flush will also invalidate TLBs and read caches that may become invalid as a
result of the changed GTT entries. MI_FLUSH is not required if it can be guaranteed that the pipeline is free of
any work that relies on changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that
is doing only update/mapping activities and no rendering). This is a privileged command.

This command is converted to a no-op and an error is flagged if it is executed from within a non-secure
(PPGTT) batch buffer when execlists are enabled. Note that when execlists are disabled, this command can be
executed from a PPGTT batch buffer.

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 23h ML_UPDATE_GTT
Format: OpCode
22 |Use Global GTT
Reserved: Must be 1h. Updating Per Process Graphics Address is not supported
Value Name Description
Oh Per Process This command will use the Per Process GTT to translate the Address
Graphics and this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.
1h Global This command will use the global GTT to translate the Address and
Graphics this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.
21:6 |Reserved
Format: MBZ
5:0 |DWord Length

Default Value:

Oh

Excludes DWord (0,1)

Format:

=n

Total Length - 2

256




Q"_til

MI_UPDATE_GTT

1 31:12 |Entry Address

Format: | GraphicsAddress[31:12]

This field simply holds the DW offset of the first table entry to be modified. Note that one or
more of the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.

11:0 [Reserved
| Format: MBZ
2.n 31:0 |Entry Data
| Format: Page Table Entry

This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries (PTEs) in
Memory Interface Registers.

257




Q"_til

MI_UPDATE_GTT

MI_UPDATE_GTT

Project: HSW
Source: BlitterCS
Length Bias: 2

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a
predictable place in the command flow. An MI_FLUSH should be placed before this command, because work
associated with preceding commands that are still in the pipeline may be referencing GTT entries that will be
changed by its execution. The flush will also invalidate TLBs and read caches that may become invalid as a
result of the changed GTT entries. MI_FLUSH is not required if it can be guaranteed that the pipeline is free of
any work that relies on changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that
is doing only update/mapping activities and no rendering). This is a privileged command.

This command is converted to a no-op and an error is flagged if is executed from within a non-secure (PPGTT)
batch buffer when execlists are enabled. Note that when execlists are disabled, this command can be executed
from a PPGTT batch buffer.

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 23h ML_UPDATE_GTT
Format: OpCode

22 |Use Global GTT

Reserved: Must be 1h. Updating Per Process Graphics Address is not supported
Value Name Description
Oh Per Process This command will use the Per Process GTT to translate the Address
Graphics and this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.
1h Global This command will use the global GTT to translate the Address and
Graphics this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.
21:6 |Reserved
Format: MBZ
5:0 |DWord Length
Default Value: 0Oh Excludes DWord (0,1)
Format: =n

Total Length - 2

258



Q"_til

MI_UPDATE_GTT

1 31:12 |Entry Address
Format: | GraphicsAddress[31:12]
This field simply holds the DW offset of the first table entry to be modified. Note that one or
more of the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.
11:0 [Reserved
| Format: MBZ
2.n 31:0 |Entry Data
| Format: Table Entry

This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries (PTEs) in
Memory Interface Registers.

259




Q"_til

MI_UPDATE_GTT

MI_UPDATE_GTT

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a
predictable place in the command flow.

An MI_FLUSH should be placed before this command, since work associated with preceding commands that
are still in the pipeline may be referencing GTT entries that will be changed by its execution. The flush also
invalidates TLBs and read caches that may become invalid as a result of the changed GTT entries. MI_FLUSH is
not required if it can be guaranteed that the pipeline is free of any work that relies on changing GTT entries
(such as MI_UPDATE_GTT contained in a paging DMA buffer that is doing only update/mapping activities and
no rendering).

This is a privileged command.

This command is converted to a no-op and an error flagged if it is executed from a non-secure (PPGTT) batch
buffer when execlists are enabled. Note that when execlists are disabled, this command can be executed from a
PPGTT batch buffer.

Note that MI_UPDATE_GTT is mainly for the pages that are strictly used by GT. If driver chooses to update the
CPU used pages thru MI_UPDATE_GTT, it needs to write any value to MMIO address 0x101008 to ensure
system agent TLBs are invalidated before the new pages can be used.

PPGTT updates cannot be done via MI_UPDATE_GTT,; gfx driver will have to use MI_STORE_DATA_IMM for
PPGTT inline updates.

DWord | Bit Description
0 31:29 | Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 23h MI_UPDATE_GTT
Format: OpCode

22 |Use Global GTT

Reserved: Must be 1h. Updating Per Process Graphics Address is not supported.

Value Name Description

Oh Per Process This command will use the Per Process GTT to translate the Address
Graphics and this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.

1h Global This command will use the global GTT to translate the Address and
Graphics this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.

260



MI_UPDATE_GTT

21:8 |Reserved
Format: | MBZ

7.0 [DWord Length
Default Value: Oh
Format: =n Total Length - 2. Excludes DWord (0,1).

Programming Notes Project
The value of this field must not exceed a value 3Fh when programmed in a batch HSW
buffer with resource streamer enabled.
1 31:12 |Entry Address

Format: GraphicsAddress[31:12]
This field simply holds the DW offset of the first table entry to be modified. Note that one or
more of the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.

11:0 [Reserved
| Format: MBZ |

2.n 31:0 |Entry Data

| Format: Table Entry |

This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries (PTEs) in
Memory Interface Registers.

261



Q"_til

MI_UPDATE_GTT

MI_UPDATE_GTT

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a
predictable place in the command flow.

An MI_FLUSH should be placed before this command, since work associated with preceding commands that are
still in the pipeline may be referencing GTT entries that will be changed by its execution. The flush will also
invalidate TLBs and read caches that may become invalid as a result of the changed GTT entries. MI_FLUSH is not
required if it can be guaranteed that the pipeline is free of any work that relies on changing GTT entries (such as
MI_UPDATE_GTT contained in a paging DMA buffer that is doing only update/mapping activities and no
rendering).

This is a privileged command. This command will be converted to a no-op and an error flagged if it is executed
from within an encrypted batch buffer or a non-secure (PPGTT) batch buffer when execlists are enabled. Note
when execlists are disabled, this command can be executed from a PPGTT batch buffer.

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 23h ML_UPDATE_GTT
Format: OpCode

22 |Use Global GTT
Reserved: Must be 1h. Updating Per Process Graphics Address is not supported

Value Name Description

Oh Per Process This command will use the Per Process GTT to translate the Address
Graphics and this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.

1h Global This command will use the global GTT to translate the Address and
Graphics this command must be executing from the ring or a privileged
Address (secure) batch buffer when execlists are enabled.

21:6 |Reserved

Format: MBZ
5:0 |DWord Length

Default Value: 0Oh Excludes DWord (0,1)

Format: =n

262



MI_UPDATE_GTT

Total Length - 2

1 31:12 | Entry Address

Format: GraphicsAddress[31:12]

This field simply holds the DW offset of the first table entry to be modified. Note that one or

more of the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.

11:0 |Reserved

| Format: MBZ |
2.n 31:.0 [Entry Data

| Format: Page Table Entry |

This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries (PTEs) in
Memory Interface Registers.

263



Q"_til

MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM

Project: HSW
Source: CommandStreamer
Length Bias: 2

The MI_STORE_REGISTER_MEM command requests a register read from a specified memory mapped register
location in the device and store of that DWord to memory. The register address is specified along with the
command to perform the read.

Programming Notes

The command temporarily halts command execution.

The memory address for the write is snooped on the host bus.

This command should not be used from within a "non-privilege" batch buffer to access global virtual
space. doing so will be treated as privilege access violation. Refer "User Mode Privilege Command" in
MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access
violation. This command can be used within ring buffers and/or "privilege" batch buffers to access
global virtual space.

This command will cause undefined data to be written to memory if given register addresses for the
PGTBL_CTL_O or FENCE registers.

DWord | Bit Description
0 31:29 | Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 24h MI_STORE_REGISTER_MEM
Format: OpCode
22 |Use Global GTT
Format: Boolean
It is allowed for this bit to be set when executing this command from a privileged (secure)
batch or ring buffer. This bit must be clear when programmed from within a non-privileged
batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear. This command will

264



(intel
MI_STORE_REGISTER MEM

use the global GTT to translate the Address and this command must be executing from a
privileged (secure) batch buffer.

21 (Reserved

Project: DevHSW +

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ
21 (Predicate Enable

Project: DevHSW +

Source: RenderCS

Format: Ul

If set, this command is executed (or not) depending on the current value of the MI Predicate

internal state bit. This command is ignored only if PredicateEnable is set and the Predicate

state bit is 0.
20:8 [Reserved

| Format: MBZ |
7:0 |DWord Length

| Format: =n Total Length - 2 |

Value Name Project
1h Excludes DWord (0,1) [Default] HSW
1 31:23 | Reserved

| Format: MBZ |
22:2 |Register Address

IF_mmat: MMIOAddress[22:2]MMIO_Register |

This field specifies Bits 22:2 of the Register offset the DWord will be read from. As the register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes

e Storing a VGA register is not permitted and will store an UNDEFINED value.

e The values of PGTBL_CTLO or any of the FENCE registers cannot be stored to memory;
UNDEFINED values will be written to memory if the addresses of these registers are
specified.

1.0 |Reserved
| Format: MBZ |
2 31:2 | Memory Address
Project: | Project: HSW |

265



MI_STORE_REGISTER_MEM

DevHSW | Format: | GraphicsAddress[31:2]MMIO_Register

This field specifies the address of the memory location where the register value specified in

the DWord above will be written. The address specifies the DWord location of the data.Range
= GraphicsVirtualAddress[31:2] for a DWord register

1:0 |Reserved

Project: HSW

Format: MBZ

266



MI_FLUSH_DW
MI_FLUSH_DW
Project: HSW
Source: BlitterCS
Length Bias: 2

The MI_FLUSH_DW command is used to perform an internal "flush" operation. The parser pauses on an internal
flush until all drawing engines have completed any pending operations. In addition, this command can also be
used to: Flush any dirty data to memory. Invalidate the TLB cache inside the hardware

Usage note: After this command is completed with a Store DWord enabled, CPU access to graphics
memory will be coherent (assuming the Render Cache flush is not inhibited).

DWord | Bit Description
0 31:29 | Command Type
| Default Value: | 0h MI_COMMAND
28:23 | MI Command Opcode

| Default Value: | 26h MI_FLUSH_DW

22 (Reserved
Project: All
Format: Ul

21 (Store Data Index
Project: HSW
Format: Ul

This field is valid only if the post-sync operation is not 0. If this bit is set, the store data address
is actually an index into the hardware status page. If this bit is set, this command will index
into the per-process hardware status page if executed from within a non-secure batch buffer
and if the Per-Process Virtual Address Space and Execlist Enable bit is set. Else the Global
HW status page is used.

20:19 [ Reserved

Project: All
Format: MBZ
18 |TLB Invalidate
Project: HSW
Format: Ul
Description Project

If ENABLED, all TLBs belonging to Blitter Engine will be invalidated once the flush

267




MI_FLUSH_DW

operation is complete. This bit is only valid when the Post-Sync Operation field is a

value of 1h or 3h.

If GFX_MODE (0x229c¢) bit 13, this command will cause a config write to MMIO HSW
register space with the address 0x4f100.

17 |Reserved
Project: DevHSW +
Format: MBZ

16 |Reserved
Project: All
Format: MBZ

15:14 | Post-Sync Operation
Project: HSW
BitFieldDesc
Value Name Description Project
Oh No Write No write occurs as a result of this instruction. This can |HSW
be used to implement a "trap" operation, etc.
1h Write Immediate Write the QWord containing Immediate Data Low, HSW
Data QWord High DWs to the Destination Address

2h Reserved Reserved HSW
3h Write the TIMESTAMP register to the Destination HSW

Address with a granularity of 80ns.
The upper 28 bits of the TIMESTAMP register are tied
to '0".

Programming Notes

If executed in a non-secure batch buffer, the address given is in a PPGTT address space. If in
a secure ring or batch, the address given is in GGTT space.

13:10 | Reserved
Project: All
Format: MBZ
9 |Reserved
Project: HSW
Format: MBZ
8 | Notify Enable
Project: HSW
Format: Ul

If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt
Control registers) once the sync operation is complete. See Interrupt Control Registers in

268




MI_FLUSH_DW

Memory Interface Registers for details.

7:6 |Reserved
Project: All
Format: MBZ
5:0 |DWord Length
Project: All
Format: =n Total Length - 2
Value Name Project
2h Excludes DWord (0,1) = 1 for DWord, 2 for QWord [Default] HSW
1 31:3 | Address
Project: HSW
Format: GraphicsAddress[31:3]U28
This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. Note
that the address can only be QWord aligned, irrespective of data size.
2 |Destination Address Type
Project: All
Defines address space of Destination Address
Value Name Description Project
Oh PPGTT Use PPGTT address space for DW write All
1h GGTT Use GGTT address space for DW write All
Programming Notes
Ignored if "No write" is the selected in Operation.
1.0 |Reserved
Project: All
Format: MBZ
2.3 31:0 |Immediate Data
Project: Project: HSW
DevHSW

This field specifies the DWord value to be written to the targeted location. DW2 is the lower
DW if QW is desired. Only valid when 15:14 in header is set to 1h

Drivers cannot send a QW write when bit 5 of the address is '1'

269




Q"_til

MI_FLUSH_DW

MI_FLUSH_DW

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_FLUSH_DW command is used to perform an internal "flush" operation. The parser pauses on an internal
flush until all drawing engines have completed any pending operations. In addition, this command can also be
used to:

e Flush any dirty data to memory.
e Invalidate the TLB cache inside the hardware

Usage note: After this command is completed with a Store DWord enabled, CPU access to graphics memory will
be coherent (assuming the Render Cache flush is not inhibited).

DWord Bit Description
0 31:29 | Command Type
| Default Value: | oh MI_COMMAND
28:23 | MI Command Opcode

| Default Value: | 26h MLFLUSH_DW

22 |Reserved
| Project: All

21 |Store Data Index
Project: All
Format: Ul

This field is valid only if the post-sync operation is not 0. If this bit is set, the store data
address is actually an index into the hardware status page.

If this bit is set, this command will index into the per-process hardware status page if
executed from within a non-secure batch buffer and if the Per-Process Virtual Address
Space and Execlist Enable bit is set. Else the Global HW status page is used.

20:19 [ Reserved

Project: All
Format: MBZ
18 |TLB Invalidate
Project: All
Format: Ul

270



Q"_til

MI_FLUSH_DW

Description Project
If ENABLED, all TLBs belonging to Video Enhancement Engine will be invalidated
once the flush operation is complete.
This bit is only valid when the Post-Sync Operation field is a value of 1h or 3h.
If GFX_MODE (0x229c¢) bit 13, this command will cause a config write to MMIO HSW
register space with the address 0x4f100.
17 |[Reserved
Project: DevHSW +
Format: MBZ
16 ([Reserved
Project: All
Format: MBZ
15:14 | Post-Sync Operation
| Project: All
Value Name Description Project
Oh No Write No write occurs as a result of this instruction. This can [All

be used to implement a "trap" operation, etc.

1h Write Immediate
Data

Write the QWord containing Immediate Data Low, High
DWs to the Destination Address

All

2h Reserved

Reserved

All

3h Write TIMESTAMP
register

Write the TIMESTAMP register to the Destination
Address with a granularity of 80ns.

The upper 28 bits of the TIMESTAMP register are tied
to '0".

Programming Notes

If executed in non-secure batch buffer, the address given will be in a PPGTT address space. If
in a secure ring or batch, address given will be in GGTT space

13:10

Reserved

Project:

All

Format:

MBZ

Reserved

Project:

HSW

Format:

MBZ

Notify Enable

Project:

All

Format:

Ul

271




MI_FLUSH_DW

If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt
Control registers) once the sync operation is complete. See Interrupt Control Registers in
Memory Interface Registers for details.

7 |Reserved
Project: All
Format: MBZ
6 |Reserved
Project: HSW
5:0 |DWord Length
Project: All
Format: =n Total Length - 2
Value Name Project
2h Excludes DWord (0,1) = 1 for DWord, 2 for QWord [Default] HSW
1 31:3 | Address
Project: All
Format: GraphicsAddress[31:3]U28
This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. Note
that the address can only be QWord aligned, irrespective of data size.
2 |Destination Address Type
Project: All
Defines address space of Destination Address
Value Name Description Project
Oh PPGTT Use PPGTT address space for DW write All
1h GGTT Use GGTT address space for DW write All
Programming Notes
Ignored if "No write" is the selected in Operation.
1:0 |Reserved
Project: All
Format: MBZ
2.3 31:0 |Immediate Data
Project: Project: HSW
DevHSW

This field specifies the DWord value to be written to the targeted location. DW2 is the lower
DW if QW is desired. Only valid when 15:14 in header is set to 1h

272




MI_FLUSH_DW

Drivers cannot send a QW write when bit 5 of the address is '1'

273




Q"_til

MI_FLUSH_DW

MI_FLUSH_DW

Project: HSW
Source: VideoCS
Length Bias: 2

The MI_FLUSH_DW command is used to perform an internal "flush" operation. The parser pauses on an internal
flush until all drawing engines have completed any pending operations. In addition, this command can also be
used to:Flush any dirty data to memory. Invalidate the TLB cache inside the hardware Usage note: After this
command is completed with a Store DWord enabled, CPU access to graphics memory will be coherent (assuming
the Render Cache flush is not inhibited).

DWord Bit Description
0 31:29 | Command Type
| Default Value: | oh M1 COMMAND |
28:23 | MI Command Opcode
| Default Value: | 26h MLFLUSH_DW |
22 |Reserved
|Project: HSW |
21 |Store Data Index
Project: HSW
Format: Ul

This field is valid only if the post-sync operation is not 0. If this bit is set, the store data
address is actually an index into the hardware status page.

If this bit is set, this command will index into the per-process hardware status page if
executed from within a non-secure batch buffer and if the Per-Process Virtual Address Space
and Execlist Enable bitis set. Else the Global HW status page is used.

20:19 | Reserved

Format: MBZ
18 |TLB Invalidate

Project: HSW

Format: Ul

If ENABLED, all TLBs belonging to Video Engine will be invalidated once the flush operation
is complete. This bit is only valid when the Post-Sync Operation field is a value of 1h or 3h.

17 |Reserved
Project: DevHSW +

274



MI_FLUSH_DW

| Format: | MBZ
16 |Reserved
| Format: | MBZ
15:14 | Post-Sync Operation
| Project: | HSW
BitFieldDesc
Value Name Description Project
Oh No Write No write occurs as a result of this instruction. This can be
used to implement a "trap" operation, etc.
lh Write HW implicitly detects the Data size to be Qword or Dword
Immediate to be written to memory based on the command dword
Data length programmed
. When Dword Length indicates Qword, Writes the QWord
containing Immediate Data Low, High DWs to the
Destination Address
. When Dword Length indicates Dword, Writes the DWord
containing Immediate Data Low to the Destination
Address
2h Reserved Reserved
3h Write the TIMESTAMP register to the Destination Address |HSW
with a granularity of 80ns.
The upper 28 bits of the TIMESTAMP register are tied to
'0'.
Programming Notes
13:10 | Reserved
Project: All
Format: MBZ
9 [Reserved
Project: HSW
Format: MBZ
8 |Notify Enable
Project: HSW
Format: Ul

If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt
Control registers) once the sync operation is complete. See Interrupt Control Registers in
Memory Interface Registers for details.

275




MI_FLUSH_DW

7 |Video Pipeline Cache invalidate
Project: HSW
Format: Ul
Enable the invalidation of the video cache at the end of this flush
6 |[Reserved
| Project: HSW
5.0 |DWord Length
| Format: =n Total Length - 2
Value Name Project
2h Excludes DWord (0,1) = 1 for DWord, 2 for QWord [Default] HSW
1 31:3 | Address
Format: GraphicsAddress[31:3]U28
This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. Note
that the address can only be QWord aligned, irrespective of data size.
2 |Destination Address Type
Defines address space of Destination Address
Value Name Description
Oh PPGTT Use PPGTT address space for DW write
1h GGTT Use GGTT address space for DW write
Programming Notes
Ignored if "No write" is the selected in Operation.
1:0 |Reserved
| Format: | MBZ
2.3 31:0 |Immediate Data
Project: | Project: | HSW
DevHSW

This field specifies the DWord value to be written to the targeted location. DW2 is the
lower DW if QW is desired. Only valid when 15:14 in header is set to 1h.

Drivers cannot send a QW write when bit 5 of the address is '1'

276




MI_CLFLUSH

MI_CLFLUSH

Project: HSW
Source: RenderCS
Length Bias: 2

Flushes out the page given in the command out to system memory. This command is specific to the render
engine. This command is not privileged.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 0Oh ML COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 27h Store DW MI_CLFLUSH
Format: OpCode

22 |Use Global GTT

This bit will be ignored and treated as if clear when executing from a non-privileged batch buffer.
It is allowed for this bit to be clear when executing this command from a privileged (secure)
batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description
Oh Per Process
Graphics Address
1h Global Graphics | This command will use the global GTT to translate the Address and
Address this command must be executing from a privileged (secure) batch
buffer.
21:10 | Reserved
Format: MBZ
9:0 |DWord Length
Default Value: 1h
Format: =n Total Length - 2. Excludes DWord (0,1).
Programming Notes Project
The value of this field must not exceed a value 3Fh when programmed in a batch HSW
buffer with resource streamer enabled.

1 31:12 | Page Base Address
|;wmat: GraphicsAddress[31:12]
4KB aligned Page Address which software requires hardware to flush to DRAM.

277




MI_CLFLUSH

11:6 |Starting Cacheline Offset
| Format: | U6 Zero based starting cacheline offset to the Page Base Address.

5:0 |Reserved
| Format: | MBZ

2 31:16 | Reserved

| Format: | MBZ

15:0 |Page Base Address High
IF_mmat: GraphicsAddress[47:32]
This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the
host's 64-bit virtual address space.

3.n | 31:0 | DW Representing a Half Cache Line

Format: MBZ

The information given to hardware is the DW itself, not the contents. Hardware uses the DW
count of the command to determine the offset from the base to flush out. The offset is % cache
line (8 DW = 1HW) granular so for a full page, the command will need 4096 bytes / 4 bytes per
DW / 8 DW per HW = 128 DW.

Programming Notes

Always even number of "DW Representing 1/2 cacheline" terms must be programmed.

278




MI_LOAD_REGISTER_MEM

MI_LOAD_REGISTER_MEM

Project: HSW
Source: RenderCS, BlitterCS, VideoCS, VideoEnhancementCS
Length Bias: 2

The MI_LOAD_REGISTER_MEM command requests from a memory location and stores that DWord to a register.

Programming Notes

Project

The command temporarily halts commands that will cause cycles down the 3D pipeline.

The following addresses should NOT be used for LRIs:
e 0x8800 - Ox88FF
e >=0xC0000

Limited LRI cycles to the Display Engine 0x40000-0xBFFFF) are allowed, but must be spaced to allow
only one pending at a time. This can be done by issuing an SRM to the same address immediately
after each LRL

Any updates to the memory location exercised by this command must be ensured to be coherent in
memory prior to programming of this command. This must be achieved by programming "16" dummy
MI_STORE_DATA_IMM (write to scratch space) commands prior to programming of this command.
Example:

MI_STORE_REGISTE_MEM (0x2288, 0x2CF0_0000)

MI_STORE_DATA_IMM (16 times) (Dummy data, Scratch Address)
MI_LOAD_REGISTER_MEM(0x2288, 0x2CF0_0000)

HSW

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 29h MI_LOAD_REGISTER_MEM
Format: OpCode
22 |Use Global GTT
Format: Boolean
This bit if set when executing from a non-privileged batch buffer will be treated as privilege
access violation. It is allowed for this bit to be clear when executing this command from a
privileged (secure) batch buffer or ring buffer. This command will use the global GTT to

279




MI_LOAD_REGISTER_MEM

translate the Address and this command must be executing from a privileged (secure) batch
buffer.

21 |Async Mode Enable
If this bit is set then the command stream will not wait for completion of this command before
executing the next command. Please refer to the LOAD_INDIRECT and Predicate registers for
usage of this bit.
20:8 [Reserved
Format: MBZ
7.0 |DWord Length
Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2. Excludes DWord (0,1).
1 31:23 | Reserved
| Format: MBZ |
22:2 |Register Address
Izwmat: MMIOAddress[22:2] |
This field specifies Bits 22:2 of the Register offset the DWord will be written to. As the register
address must be DWord-aligned, Bits 1:0 of that address MBZ.
1:0 |Reserved
Format: MBZ
2 31:2 | Memory Address
Project: Project: HSW
Dy Format: GraphicsAddress[31:2]
This field specifies the address of the memory location where the register value specified in
the DWord above will read from. The address specifies the DWord location of the data.
Range = GraphicsVirtualAddress[31:2] for a DWord register
1:0 |Reserved
Project: All
Format: MBZ

280




MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_REG

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_LOAD_REGISTER_REG command reads from a source register location and writes that value to a
destination register location.

Programming Notes

The command temporarily halts commands that will cause cycles down the 3D pipeline.

Destination register with mask implemented (Ex: All chicken bit registers have bits [31:16] as mask bits and

not get updated with the source register contents.

bits[15:0] as data) will not get updated unless the value read from source register has the bits corresponding to
the mask bits set. Note that any mask implemented register when read returns "0" for the bits corresponding
to mask location. When the source and destination are mask implemented registers, destination register will

DWord | Bit Description
0 31:29 | Command Type
Default Value: 0h MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 2Ah
Format: OpCode
22:8 |Reserved
Format: MBZ
7.0 |DWord Length
Default Value: 1h
Format: =n Total Length - 2. Excludes DWord (0,1).
1 31:23 | Reserved
Format: MBZ

22:2 |Source Register Address

Format: MMIOAddress[22:2]MMIO_Register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

This field specifies Bits 22:2 of the Register offset the DWord will be written to. As the register

1:0 |Reserved

Format: MBZ

281




MI_LOAD_REGISTER_REG

N

31:23 |Reserved
| Format: | MBZ |
22:2 |Destination Register Address
| Format: MMIOAddress[22:2]MMIO_Register |
This field specifies Bits 22:2 of the Register offset the DWord will be written to. As the register
address must be DWord-aligned, Bits 1:0 of that address MBZ.
1.0 |[Reserved
Format: MBZ

282




MI_RS_STORE_DATA_IMM

MI_RS_STORE_DATA_IMM

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_RS_STORE_DATA_IMM command requests a write of the DWord constant supplied in the packet to the
specified Memory Address.

DWord Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 2Bh
Format: OpCode

MIL_RS_STORE_DATA_IMM

22 |Use Global GTT

Project: DevHSW:GT3:A
This bit must be 1 if the Per Process GTT Enable bit is clear.
Value Name Description
Oh Graphics If in PPGTT mode, this will send the data to PPGTT space, else
Address global GTT space.
[Default]
1h Global Graphics |This command will use the global GTT to translate the Address.
Address This command must be executed in a secure buffer (ring or
secure batch).
22 |Reserved
Project: DevHSW, EXCLUDE(DevHSW:GT3:A)
Format: MBZ
21 |Reserved
20:8 | Reserved
Format: MBZ
7:0 |DWord Length
Default Value: 2h
Format: =n Total Length - 2. Excludes DWord (0,1).

283



(intel
1

MI_RS_STORE_DATA_IMM

31:0 |Reserved
Project: Project: HSW
PSS Format: MBZ
2 31:2 | Destination Address
Project: Project: HSW
Dy Format: GraphicsAddress[31:2]
Description Project
This field specifies Bits 31:2 of the Address where the
DWord will be stored.
When render engine is PPGTT enabled this Address is DevHSW,
translated using PPGTT, else GGTT is used for translation. |EXCLUDE(DevHSW:GT3:A)
1 |Reserved
Project: HSW
Format: MBZ
0 |[Core Mode Enable
Project: HSW
This bit is set then the address will be offset by the Core ID:If Core ID 0, then there is no
offsetlf Core ID 1, then the Memory is offset by the size of the data.
3 31:0 |Data DWord 0
Format: u32
This field specifies the DWord value to be written to the targeted location.

284




MI_LOAD_URB_MEM

MI_LOAD_URB_MEM

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_LOAD_URB_MEM command requests from a memory location and stores that DWord to the URB.

Programming Notes

The command temporarily halts commands that will cause cycles down the 3D pipeline.

DWord Bit Description
0 31:29| Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 2Ch MI_LOAD_URB_MEM
Format: OpCode
22:8 |Reserved
Format: MBZ
7:0 |DWord Length
Default Value: 1h
Format: =n

Total Length - 2. Excludes DWord (0,1).

1 31:15 | Reserved

Format: MBZ

14:2 |URB Address
This field specifies Bits 14:2 of the URB offset the DWord will be written in the URB. This

command only supports writing below 32KB of the URB space.

1:0 |Reserved

Format: MBZ
2 31:6 | Memory Address
Project: Project: HSW
v Format: GraphicsAddress[31:6]

The value must be in the first DW location of the cache line. Range =
GraphicsVirtualAddress[31:6]

This field specifies the address of the location of where the value will be read from memory.

285




MI_LOAD_URB_MEM

5:0

Reserved
Project: HSW
Format: MBZ

286




MI_STORE_URB_MEM

MI_STORE_URB_MEM

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_STORE_URB_MEM command requests a URB read from a specified memory mapped URB location in the
device and store of that DWord to memory. The URB address is specified along with the command to perform

the read.

Programming Notes

e The command temporarily halts command execution.

e This command should not be used within a "non-secure” batch buffer to access global virtual space.
Doing so will cause the command parser to perform the write with byte enables turned off. This
command can be used within ring buffers and/or "secure" batch buffers.

DWord Bit Description
0 31:29 | Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 2Dh MI_STORE_URB_MEM
Format: OpCode
22:8 |Reserved
Format: MBZ
7.0 [DWord Length
Default Value: 1h
Format: =n

Total Length - 2. Excludes DWord (0,1).

1 31:15 | Reserved
Format: MBZ

14:2 |URB Address
This field specifies Bits 14:2 of the URB offset the DWord will be read in the URB. This

command only supports reading from the lower 32KB of the URB space.

1.0 |Reserved
Format: MBZ

287



MI_STORE_URB_MEM

(intel
2

31:6 |Memory Address
Project: Project: HSW
PSS Format: GraphicsAddress[31:6]
This field specifies the address of the location of where the value will be written to
memory. The value must be in the first DW location of the cache line.
5:0 |Reserved
Project: HSW
Format: MBZ

288




MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START

Project: HSW
Source: BlitterCS
Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.
For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter
of MI Functions.The batch buffer can be specified as secure or non-secure, determining the operations
considered valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer
Protection in the Device Programming Interface chapter of MI Functions.

Programming Notes

e Batch buffers referenced with physical addresses must not extend beyond the end of the starting
physical page (can't span physical pages). However, a batch buffer initiated using a physical address can
chain to another buffer in another physical page.

e A batch buffer initiated with this command must end either with a MI_BATCH_BUFFER_END command or
by chaining to another batch buffer with an MI_BATCH_BUFFER_START command.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 0Oh ML COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 31h MI_BATCH_BUFFER_START
Format: OpCode

22 |2nd Level Batch Buffer

Project: HSW

The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the batch
head address, and 1 for the 2nd level batch head address. When performing batch buffer
chaining, hardware simply updates the head pointer of the 1st level batch address storage. There
is no stack in hardware.

When this bit is set, hardware uses the 2nd level batch head address storage element. Upon
MI_BATCH_BUFFER_END, it will automatically return to the 1st (traditional) level batch buffer
address. this allows hardware to mimic a simple 3 level stack.

Value Name Description Project

Oh 1st level Place the batch buffer address in the 1st (traditional) level DevHSW +
batch batch address storage element

1h 2nd level Place the batch buffer address in the 2nd level batch address [ DevHSW +

289



MI_BATCH_BUFFER_START

| | batch | storage element
21:9 [Reserved
| Format: | MBZ
8 | Address Space Indicator
Project: HSW
Format: MI_BufferSecurityType
Description Project
When this command is executed directly from a ring buffer while Execlist Enable is set,
this field is used to specify the associated batch buffer as a secure or non-secure
buffer. Certain operations (e.g., MI_STORE_DATA_IMM commands to privileged
memory) are prohibited within non-secure buffers. See Batch Buffer Protection in the
Device Programming Interface chapter of MI Functions. The command streamer will
not allow a batch buffer in PPGTT to call a batch buffer in GGTT space by retaining the
PPGTT value. It is illegal for the driver to program the value of this field to a different
value than the current batch buffer executing this command.
When Per-Process GTT Enable is set and Execlist Enable is clear, it is assumed that all [ HSW
code is in a secure environment, independent of address space. Under this condition,
this bit only specifies the address space (GGTT or PPGTT). All commands are executed
"as-is".
Value | Name Description
Oh GGTT |This batch buffer is secure and will be accessed via the GGTT.
1h PPGTT [ When Execlist Enable is set, this batch buffer is always treated as non-secure and
cannot execute privileged commands nor access privileged (GGTT) memory. It
will always be accessed via the PPGTT.
Programming Notes
This field must be '0' unless the Per-Process GTT Enable is '1'
7.0 [DWord Length
Format: =n
Total - Bias
Value Name Project
Oh Excludes DWord (0,1) [Default] HSW
31:2 | Batch Buffer Start Address
Format: GraphicsAddress[31:2]BatchBuffer
This field specifies Bits 31:2 of the starting address of the batch buffer.
1:0 |Reserved

290




MI_BATCH_BUFFER_START

Format:

| MBZ

291




Q"_til

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START

Project: HSW
Source: RenderCS
Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.
For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter
of MI Functions.

Programming Notes

It is essential that the address location beyond the current page be populated inside the GTT. HW performs
over-fetch of the command addresses and any over-fetch requires a valid TLB entry. A single extra page
beyond the batch buffer is sufficient. Prior to sending batch buffer start command with clear command buffer
enable set, software has to ensure pipe is flushed explicitly by sending MI_FLUSH.

Note: Project

SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every 3D batch buffer HSW
followed by a PIPE_CONTROL with RC flush and CS stall. SW must also program these commands
following preemption as part of the preemption sequence before workload is submitted for execution.
Example below shows the 3DSTATE_CC_STATE_POINTERS and PIPECONTROL commands programmed
at the end of the 3D batch buffer.

Batch Start

State For Workload

Workload

Pipe Control Flush

3DSTATE_CC_STATE_POINTERS // Command due to alternative procedure

PipeControl Flush -Stalling, RC Flush //Command due to alternative procedure

End Batch Buffer

DWord| Bit Description
0 31:29 | Command Type
Default Value: Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 31h MI_BATCH_BUFFER_START
Format: OpCode
22 |2nd Level Batch Buffer
Project: DevHSW +
The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the batch
head address, and 1 for the 2nd level batch head address. When performing batch buffer

292



Q"_til

MI_BATCH_BUFFER_START

chaining, hardware simply updates the head pointer of the 1st level batch address storage. There
is no stack in hardware.

When this bit is set, hardware uses the 2nd level batch head address storage element. Upon
MI_BATCH_BUFFER_END, it will automatically return to the 1st (traditional) level batch buffer
address. this allows hardware to mimic a simple 3 level stack.

Within a second level batch buffer there can't be any chained batch buffers.
MI_BATCH_BUFFER_START command is not allowed inside a second level batch buffer.

Value Name Description

Oh 1st level Place the batch buffer address in the 1st (traditional) level batch address
batch storage element

1h 2nd level Place the batch buffer address in the 2nd level batch address storage
batch element

21:17 | Reserved
Format: MBZ
16 |Add Offset Enable
Project: DevHSW +
Format: Enable

If this bit is set then the value stored in the BB_OFFSET MMIO register will be added to the Batch
Buffer Start Address and the summation will be used as the address to fetch from memory.

15

Predication Enable

Project: DevHSW +

Format: Enable

This bit is used to enable predication of this command. If this bit is set and Bit 0 of the Predicate
Result-1 register is clear, this command is ignored. Otherwise the command is performed
normally.

14 |Reserved

Format: MBZ
13 |Reserved

Project: Pre-DevHSW, DevHSW:GT3:A

Format: MBZ
13 |Non-Privileged

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A)

This field is used to specify whether the batch buffer is privileged or non-privileged, this is
irrespective of the Address Space Indicator set to GGTT or PPGTT. Next level (chained or Second
level) batch buffers called from parent/initial batch buffers can't have this field set to higher
privilege level then parent/initial batch buffer.

Privileged operations (e.g., MI_STORE_DATA_IMM commands with Memory Type set to GGTT)
are prohibited within non-privileged buffers. More details mentioned in User Mode Privileged

293




MI_BATCH_BUFFER_START

command section. When MI_BATCH_BUFFER_START command is executed from within a batch
buffer (i.e., is a "chained" or "second level" batch buffer command), the current active batch
buffer's "Non-Privileged" indicator and this field determine the "Non-Privileged" of the batch
buffer in the chain.

Chained or Second level batch buffer can be in Privileged or non-Privileged if the parent
batch buffer is Privileged.

Chained or Second level batch buffer can only be non-Privileged if the parent batch buffer
is non-privileged. This is enforced by hardware.

Value Name Description
Oh Privileged Batch buffer is Privileged.
1h Non-Privileged Batch buffer is Non-Privileged..
12 |Reserved
Project: DevHSW, EXCLUDE(DevHSW:GT3:A), EXCLUDE(DevHSW:GT3:B)
Format: MBZ
12:11 | Reserved
Project: Pre-DevHSW, DevHSW:GT3:A, DevHSW:GT3:B
10 |Resource Streamer Enable
Project: DevHSW +
Format: Enable

When this bit is set, the Resource Streamer will execute the batch buffer. When this bit is clear
the Resource Streamer will not execute the batch buffer.

Reserved

Address Space Indicator

Description Project

SW must ensure the "Address Space Indicator” of the chained batch buffer to be same |HSW
as the initial batch buffer. Ex: If the MI_BATCH_BUFFER_START executed from Ring
Buffer has "Address Space Indicator" as "PPGTT" then all subsequent chained batch
buffers (not second level Batch Buffers) must be in "PPGTT".

Not complying to above programming will result in unknown behavior of HW.
Second level batch buffer can select its "Address space Indicator" independent of the
parent batch buffer.

This field must be '0' unless the Per-Process GTT Enable is '1'

For second level batch buffer, this field is not inherited from parent batch bufferand |HSW
can be configured independently.
Ex: MI BATCH BUFFER_START command with "2nd level batch buffer" attribute set

294



Q"_til

MI_BATCH_BUFFER_START

can have address space indicator set to GGTT/PPGTT irrespective of the Address Space
Indicator of the batch buffer from which it is invoked.

Value Name Description

Oh GGTT This batch buffer will be accessed via the GGTT.

1h PPGTT This batch buffer will be accessed via the PPGTT.
7:0 |DWord Length

Default Value: 0Oh Excludes DWord (0,1)

Format: =n Total - Bias
31:2 | Batch Buffer Start Address

Format: GraphicsAddress[31:2]BatchBuffer

This field specifies Bits 31:2 of the starting address of the batch buffer.
1.0 |[Reserved

Format: MBZ

295



Q"_til

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START

Project: HSW
Source: VideoCS
Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.
For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter
of MI Functions.The batch buffer can be specified as secure or non-secure, determining the operations
considered valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer
Protection in the Device Programming Interface chapter of MI Functions.

DWord| Bit Description
0 31:29 | Command Type

Default Value: Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 31h MI_BATCH_BUFFER_START
Format: OpCode

22 | 2nd Level Batch Buffer

Project: HSW

The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the batch
head address, and 1 for the 2nd level batch head address. When performing batch buffer
chaining, hardware simply updates the head pointer of the 1st level batch address storage. There
is no stack in hardware. When this bit is set, hardware uses the 2nd level batch head address
storage element. Upon MI_BATCH_BUFFER_END, it will automatically return to the 1st
(traditional) level batch buffer address. this allows hardware to mimic a simple 3 level stack.

Value Name Description

Oh 1st level Place the batch buffer address in the 1st (traditional) level batch address
batch storage element

1h 2nd level Place the batch buffer address in the 2nd level batch address storage
batch element

Programming Notes

e 2nd level batch buffer chaining is not supported.

21:10 [ Reserved

Format: MBZ

9 |Reserved

296



MI_BATCH_BUFFER_START

Address Space Indicator

Project: HSW

Format: MI_BufferSecurityType

Description Project

When this command is executed directly from a ring buffer while Execlist Enable is set,
this field is used to specify the associated batch buffer as a secure or non-secure
buffer. Certain operations (e.g., MI_STORE_DATA_IMM commands to privileged
memory) are prohibited within non-secure buffers. See Batch Buffer Protection in the
Device Programming Interface chapter of MI Functions. The command streamer will
not allow a batch buffer in PPGTT to call a batch buffer in GGTT space by retaining the
PPGTT value. It is illegal for the driver to program the value of this field to a different
value than the current batch buffer executing this command.

When Per-Process GTT Enable is set and Execlist Enable is clear, it is assumed that all HSW
code is in a secure environment, independent of address space. Under this condition,
this bit only specifies the address space (GGTT or PPGTT). All commands are executed
"as-is".

This field must be 0 unless the Per-Process GTT Enable is 1.

Value Name Description

0 MIBUFFER_SECURE (GGTT space)

1 MIBUFFER_NONSECURE (PPGTT space) Secure when Execlist Enable is clear.

7:0

DWord Length

Format: =n Total Length - 2

Value Name Project

Oh Excludes DWord (0,1) [Default] HSW

31:2

Batch Buffer Start Address

Format: GraphicsAddress[31:2]

Programming Notes

e A batch buffer initiated with this command must end either with a
MI_BATCH_BUFFER_END command or by chaining to another batch buffer with an
MI_BATCH_BUFFER_START command.

e The selection of PPGTT vs. GGTT for the batch buffer is determined by the Buffer Security
Indicator (bit8).

1:0

Reserved
Format: MBZ

297



Q"_til

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.
For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter
of Ml Functions.

The batch buffer can be specified as secure or non-secure, determining the operations considered valid when
initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer Protection in the
Device Programming Interface chapter of M/ Functions.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode
28:23 | MI Command Opcode
Default Value: 31h MI_BATCH_BUFFER_START
Format: OpCode

22 |2nd Level Batch Buffer

The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the batch
head address, and 1 for the 2nd level batch head address. When performing batch buffer
chaining, hardware simply updates the head pointer of the 1st level batch address storage. There
is no stack in hardware.

When this bit is set, hardware uses the 2nd level batch head address storage element. Upon
MI_BATCH_BUFFER_END, it will automatically return to the 1st (traditional) level batch buffer
address. this allows hardware to mimic a simple 3 level stack.

Value Name Description

Oh 1st level Place the batch buffer address in the 1st (traditional) level batch address
batch storage element

1h 2nd level Place the batch buffer address in the 2nd level batch address storage
batch element

21:13 [ Reserved

| Format: | MBZ

12 |Reserved

11:9 |Reserved

| Format: | MBZ

8 | Address Space Indicator

298




Q"_til

MI_BATCH_BUFFER_START

Project:

HSW

Format:

MI_BufferSecurityType

When this command is executed directly from a ring buffer while Execlist Enable is set, this field
is used to specify the associated batch buffer as a secure or non-secure buffer. Certain
operations (e.g., MI_STORE_DATA_IMM commands to privileged memory) are prohibited within
non-secure buffers. See Batch Buffer Protection in the Device Programming Interface chapter of
MI Functions. The command streamer will not allow a batch buffer in PPGTT to call a batch

buffer in GGTT space by retaining the PPGTT value. It is illegal for the driver to program the
value of this field to a different value than the current batch buffer executing this command.

When Per-Process GTT Enable is set and Execlist Enable is clear, it is assumed that all code is in
a secure environment, independent of address space. Under this condition, this bit only
specifies the address space (GGTT or PPGTT). All commands are executed "as-is".

This field must be 0 unless the Per-Process GTT Enable is 1.

Value Name Description
0 MIBUFFER_SECURE (GGTT space)
1 MIBUFFER_NONSECURE (PPGTT space) Secure when Execlist Enable is clear.
7:0 |DWord Length (Excludes D-Word 0,1) = 0
Value Name Project
Oh Excludes DWord (0,1) [Default] HSW
31:2 | Batch Buffer Start Address
Format: GraphicsAddress[31:2]
Programming Notes
e A batch buffer initiated with this command must end either with a
MI_BATCH_BUFFER_END command or by chaining to another batch buffer with an
MI_BATCH_BUFFER_START command.
e The selection of PPGTT vs. GGTT for the batch buffer is determined by the Buffer
Security Indicator (bit 8).
1.0 |Reserved
Format: MBZ

299




Q"_til

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL BATCH_BUFFER_END

Project:
Source:
Length Bias:

HSW
RenderCS
2

The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of
commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second
level batch buffer due to this command will also terminate the parent/first level batch buffer.

DWord | Bit Description

0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END
Format: OpCode
22 |Use Global GTT

Default Value: Oh

If set, this command will use the global GTT to translate the Compare Address and this
command must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be
used to translate the Compare Address.

21

Compare Semaphore
Default Value: Oh
If set, the value from the Compare Data Dword is compared to the value from the Compare

Address in memory. If the value at Compare Address is greater than the Compare Data Dword,
execution of current command buffer should continue. If clear, no comparison takes place.

20 |[Reserved
19:8 [Reserved
| Format: MBZ |
7:0 |DWord Length
| Format: =n Total Length - 2. Excludes DWord (0,1). |
Value Name Project
Oh [Default] HSW
1 31:.0 |Compare Data Dword

300




Q"_til

MI_CONDITIONAL BATCH_BUFFER_END

Data dword to compare memory. The Data dword is supplied by software to control execution
of the command buffer. If the compare is enabled and the data at Compare Address is greater
than this dword, the execution of the command buffer should continue.

31:3 | Compare Address

Format: GraphicsAddress[31:3]

Qword address to fetch Data Dword(DW0) from memory.

HW will compare the Data Dword(DWO0) with Compare Data Dword
2:0 |Reserved

Format: MBZ

301




Q"_til

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL BATCH_BUFFER_END

Project: HSW
Source: VideoCS
Length Bias: 2

The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of
commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second
level batch buffer due to this command will also terminate the parent/first level batch buffer.

Programming Notes
This command is only valid with a 1st level batch buffer (bit 22 in MI_BATCH_BUFFER_START is set to 0).

DWord | Bit Description

0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND
Format: OpCode

28:23 | MI Command Opcode
Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END
Format: OpCode
22 |Use Global GTT

Default Value: Oh DefaultVaueDesc
Format: Boolean
Format: Ul FormatDesc

If set, this command will use the global GTT to translate the Compare Address and this command
must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used to
translate the Compare Address.

21 |Compare Semaphore
Default Value: Oh DefaultVaueDesc

Format: Boolean

If set, the value from the Compare Data Dword is compared to the value from the Compare
Address in memory. If the value at Compare Address is greater than the Compare Data Dword,
execution of current command buffer should continue.If clear, no comparison takes place.

20 |Reserved
19:8 | Reserved
Format: MBZ

7:0 |DWord Length

302



Q"_til

MI_CONDITIONAL BATCH_BUFFER_END

| Format: | =n Total Length - 2 |
Value Name Project
Oh Excludes DWord (0,1) [Default] HSW

31:0

Compare Data Dword

Data dword to compare memory. The Data dword is supplied by software to control execution of
the command buffer. If the compare is enabled and the data at Semaphore Address is greater
than this dword, the execution of the command buffer should continue.

31:3

Compare Address
Format: GraphicsAddress[31:3]
Qword address to fetch compare Mask (DWO0) and Data Dword(DW1) from memory. HW will do

AND operation on Mask(DWO0) with Data Dword(DW1) and then compare the result against
Semaphore Data Dword

2:0

Reserved
Format: MBZ

303




Q"_til

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL BATCH_BUFFER_END

Project: HSW
Source: VideoEnhancementCS
Length Bias: 2

The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of
commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second
level batch buffer due to this command will also terminate the parent/first level batch buffer.

Programming Notes
This command is only valid with a 1st level batch buffer (bit 22 in MI_BATCH_BUFFER_START is set to '0")

DWord | Bit Description

0 31:29 | Command Type
Default Value: 0Oh MI_COMMAND

Format: OpCode

28:23 | MI Command Opcode
Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END
Format: OpCode

22 |Use Global GTT
Default Value: Oh

Format: Boolean

If set, this command will use the global GTT to translate the Compare Address and this
command must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be
used to translate the Compare Address.

21 |Compare Semaphore
Default Value: Oh

Format: Boolean

If set, the value from the Compare Data Dword is compared to the value from the Compare
Address in memory. If the value at Compare Address is greater than the Compare Data
Dword, execution of current command buffer should continue.

If clear, no comparison takes place.

20 |Reserved

19:8 | Reserved
Format: MBZ

7:0 |DWord Length

304



Q"_til

MI_CONDITIONAL BATCH_BUFFER_END

| Format: | =n Total Length - 2 |

Value Name Project
Oh Excludes DWord (0,1) [Default] HSW

31:0

Compare Data Dword

Data dword to compare memory. The Data dword is supplied by software to control execution of
the command buffer. If the compare is enabled and the data at Semaphore Address is greater
than this dword, the execution of the command buffer should continue.

31:3

Compare Address
Format: GraphicsAddress[31:3]

Qword address to fetch Data Dword(DWO0) from memory.
HW will compare the Data Dword(DWO0) with Compare Data Dword

2:0

Reserved
Format: MBZ

305




Q"_til

XY_SETUP_BLT

XY_SETUP_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This setup instruction supplies common setup information including clipping coordinates used by the XY
commands: XY_PIXEL_BLT, XY_SCANLINE_BLT, XY_TEXT_BLT, and XY_TEXT_BLT_IMMEDIATE.

These are the only instructions that require that state be saved between instructions other than the Clipping
parameters. There are 5 dedicated registers to contain the state for the 3 setup BLT instructions (XY_SETUP_BLT,
XY_SETUP_MONO_PATTERN_SL_BLT, and XY_SETUP_CLIP_BLT. All other BLTs use a temporary version of these.
The 5 double word registers are: DW1 (Setup Control), DW6 (Setup Foreground color), DWS5 (Setup Background
color), DW7 (Setup Pattern address), and DW4 (Setup Destination Base Address).

DWord | Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
0L Format: Opcode

28:22 |Instruction Target(Opcode)

Default Value: 0l1h
Format: Opcode

21:20 | 32 bpp Byte Mask

Value Name

1xb Write Alpha Channel
x1b Write RGB Channel

19:12 | Reserved
Format: MBZ

11 |Tiling Enable
Value Name Description

0b Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8 |Reserved

| Format: MBZ

7.0 |DWord Length

| Default Value: 06h

306



XY_SETUP_BLT

BRO1

31

Reserved

Format: | MBZ

30

Clipping Enabled

Value Name

0b Disabled

1b Enabled

29

Mono Source Transparency Mode

Value Name

0b Use Background

1b Transparency Enabled

28:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords

2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11
enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be
upto 128Kbytes (or 32KDwords).

BR24

31:16

ClipRect Y1 Coordinate (Top)
(30:16 = 15 bit positive number)

15:0

ClipRect X1 Coordinate (Left)
(14:00 = 15 bit positive number)

BR25

31:16

ClipRect Y2 Coordinate (Bottom)
(30:16 = 15 bit positive number)

15:0

ClipRect X2 Coordinate (Right)
(14:00 = 15 bit positive number)

BRO9

31:0

Setup Destination Base Address

Format: GraphicsAddress[31:0]

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.

310

Setup Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] All

307




XY_SETUP_BLT

BRO5
6 31:0 |Setup Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] (SLB and TB only)
BRO6
7 31:0 |Setup Pattern Base Address for Color Pattern
Format: GraphicsAddress[31:0]
BRO7 (26:06 are implemented) (SLB only) (Note no NPO2 change here). The pattern data must be
located in linear memory.

308



XY_SETUP_CLIP_BLT

XY_SETUP_CLIP_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This command is used to only change the clip coordinate registers. These are the same clipping registers as the

Setup clipping registers above.

DWord Bit Description
0 31:29 Client
Default Value: 02h 2D Processor
0L Format: Opcode
28:22 Instruction Target(Opcode)
Default Value: 03h
Format: Opcode
21:12 Reserved
Format: MBZ
11 Tiling Enable
Value Name
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled (Tile-X or Tile-Y
10:8 Reserved
| Format: MBZ
7:0 DWord Length
|Defau|t Value: 01h
1 31:16 ClipRect Y1 Coordinate (Top)
(30:16 = 15 bit positive number)
BR24 15:0 ClipRect X1 Coordinate (Left)
(14:00 = 15 bit positive number)
2 31:16 ClipRect Y2 Coordinate (Bottom)
(30:16 = 15 bit positive number)
BR25 15:0 ClipRect X2 Coordinate (Right)
(14:00 = 15 bit positive number)

309




Q"_til

XY_SETUP_MONO_PATTERN_SL_BLT

XY_SETUP_MONO_PATTERN_SL BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This setup instruction supplies common setup information including clipping coordinates used exclusively with
the following instruction: XY_SCANLINE_BLT (SLB) - 1 scan line of monochrome pattern and destination are the
only operands allowed.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
0L Format: Opcode

28:22 | Instruction Target(Opcode)

Default Value: 11h

Format: Opcode
21:20 | 32 bpp Byte Mask

Value Name

1xb Write Alpha Channel

x1b Write RGB Channel
19:12 | Reserved

Format: MBZ

11 |Tiling Enable
Value Name

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled (Tile-X or Tile-Y
10:8 |Reserved

| Format: MBZ

7.0 |DWord Length
| Default Value: 07h
1 31 |Solid Pattern Select
(SLB and Pixel only)
BRO1 Value Name
0 No Solid Pattern

Solid Pattern

310



Q"_til

XY_SETUP_MONO_ PATTERN_SL_BLT

30

Clipping Enabled

Value Name

0b Disabled

1b Enabled

29

Reserved

Format: MBZ

28

Mono Pattern Transparency Mode

Value Name

Ob Use Background

1b Transparency Enabled

27:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

0lb 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords

2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11
enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be
upto 128Kbytes (or 32KDwords).

BR24

31:16

ClipRect Y1 Coordinate (Top)
(30:16 = 15 bit positive number)

15:0

ClipRect X1 Coordinate (Left)
(14:00 = 15 bit positive number)

BR25

31:16

ClipRect Y2 Coordinate (Bottom)
(30:16 = 15 bit positive number)

15:0

ClipRect X2 Coordinate (Right)
(14:00 = 15 bit positive number)

BRO9

31:.0

Setup Destination Base Address

Format: GraphicsAddress[31:0]

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.

31:0

Setup Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] All

311




XY_SETUP_MONO_PATTERN_SL BLT

BRO5

6 31:0 | Setup Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] (SLB and TB only)
BRO6

7 31:0 | DWO (least significant) for a Monochrome Pattern

BR20

8 31:0 | DW1 (most significant) for a Monochrome Pattern

BR21

312




XY_PIXEL_BLT

XY_PIXEL BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The Destination X coordinate and Destination Y coordinate is compared with the ClipRect registers. If it is within
all 4 comparisons, then the pixel supplied in the XY_SETUP_BLT instruction is written with the raster operation to
(Destination Y Address + (Destination Y coordinate * Destination pitch) + (Destination X coordinate * bytes per
pixel)).

ROP field must specify pattern or fill with 0's or 1's. There is no source operand.

Negative Stride (= Pitch) specified in the Setup command is Not Allowed

DWord Bit Description
0 31:29 [Client
Default Value: 02h 2D Processor
Y Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 24h
Format: Opcode
21:12 |Reserved
Format: MBZ
11 Tiling Enable
Value Name Description
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.
10:8 Reserved
| Format: MBZ
7:0 DWord Length
| Default Value: 00h
1 31:16 |Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 Destination X1 Coordinate (Left)
16 bit signed number.

313




314



XY_SCANLINES_BLT

XY_SCANLINES BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Solid pattern should use the XY_SETUP_MONO_PATTERN_SL_BLT instruction.

ROP field must specify pattern or fill with 0's or 1's. There is no source operand.

DWord Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
BROO Format: Opcode

28:22 |Instruction Target(Opcode)

Default Value: 25h

Format: Opcode

21:15 |Reserved

Format: MBZ

14:12 | Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:83 |Pattern Vertical Seed
Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0 DWord Length

Default Value: 0lh

315



XY_SCANLINES _BLT

- (2
T

31:16 |Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 Destination X1 Coordinate (Left)
16 bit signed number.
2 31:16 |Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 Destination X2 Coordinate (Right)

16 bit signed number.

316




XY_TEXT_BLT

XY_TEXT_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

All source scan lines and pixels that fall within the ClipRect Y and X coordinates are written. The source address
corresponds to Destination X1 and Y1 coordinate.

Text is either bit or byte packed. Bit packed means that the next scan line starts 1 pixel after the end of the
current scan line with no bit padding. Byte packed means that the next scan line starts on the first bit of the next
byte boundary after the last bit of the current line.

Source expansion color registers are always in the SETUP_BLT.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 26h
Format: Opcode

21:17 |Reserved

Format: MBZ

16 Bit / Byte Packed
Byte packed is for the NT driver.

Value Name

0 Bit

1 Byte

15:12 |Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

Ob Tiling Disabled (Linear Blit)

317



XY _TEXT_BLT
lib  [Tiling Enabled | [DevHSW] [DevHSWI: Tile-X o Tile-Y.
10:8 |[Reserved
| Format: | MBZ
7.0 |DWord Length
|Defau|t Value: 02h
1 31:16 |Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
2 31:16 |Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
3 31:.0 |Source Address
Format: GraphicsAddress[31:0]
BR12

(address of the first byte on scan line corresponding to Dst X1,Y1). (Note no NPO2 change
here)

318




XY_TEXT_IMMEDIATE_BLT

XY_TEXT_IMMEDIATE_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This instruction allows the Driver to send data through the instruction stream that eliminates the read latency of
reading a source from memory.

If an operand is in system cacheable memory and either small or only accessed once, it can be copied directly to
the instruction stream versus to graphics accessible memory. The IMMEDIATE_BLT data MUST transfer an even
number of doublewords.

The BLT engine will hang if it does not get an even number of doublewords. All source scan lines and pixels that
fall within the ClipRect X and Y coordinates are written. The source data corresponds to Destination X1 and Y1
coordinate.

Source expansion color registers are always in the SETUP_BLT. NEGATIVE STRIDE (= PITCH) IS NOT ALLOWED.

DWord Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 31h
Format: Opcode

21:17 |Reserved

Format: MBZ

16 Bit / Byte Packed
Byte packed is for the NT driver.

Value Name

0 Bit

1 Byte

15:12 |[Reserved

Format: MBZ

11 Tiling Enable

319



XY_TEXT_IMMEDIATE_BLT

Value Name Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8 Reserved

| Format: MBZ

7:0 DWord Length

| Default Value: 01h Excludes DWORD 0,1

01 + DWL = (Number of Immediate double words)h

1 31:16 |Destination Y1 Coordinate (Top)
16 bit signed number.

BR22 15:0 Destination X1 Coordinate (Left)

16 bit signed number.

2 31:16 |[Destination Y2 Coordinate (Bottom)
16 bit signed number.

BR23 15:0 Destination X2 Coordinate (Right)
16 bit signed number.
3.n 31:0 |Immediate Data

320



COLOR_BLT

COLOR _BLT

Project:
Source:
Length Bias:

HSW

BlitterCS

2

destination.

This instruction is optimized to run at the maximum memory write bandwidth.

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination (with a possible ROP). The
only operand is the destination operand which is written dependent on the raster operation. The solid pattern
color is stored in the pattern background register.

The typical Raster operation code = FO which performs a copy of the pattern background register to the

DWord

Bit

Description

0

BROO

31:29

Client

Default Value:

02h 2D Processor

Format:

Opcode

28:22

Instruction Target(Opcode)

Default Value:

40h

Format:

Opcode

21:20

32bpp Byte Mask

This field is only used for 32bpp.

Value

Name

1xb

Write Alpha Channel

x1b

Write RGB Channel

19:6

Reserved

| Format:

MBZ

5:0

DWord Length

| Default Value:

03h

31:26

Reserved

| Format:

MBZ

BR13

25:24

Color Depth

Value

Name

00b

8 Bit Color

321




COLOR _BLT
0lb 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 Raster Operation
15:0 Destination Pitch (Signed)
Destination pitch in bytes (Same as before).
2 31:16 Destination Height (in scan lines)
15:0 Destination Byte Width (in bytes)
BR14
3 31.0 Destination Address
Format: GraphicsAddress[31:0]
BRO3 Address of the first byte to be written.
4 31.0 Solid Pattern Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR16

322




SRC_COPY_BLT

SRC_COPY_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This BLT instruction performs a color source copy where the only operands involved is a color source and
destination of the same bit width.

The source and destination operands may overlap. The command must indicate the horizontal and vertical
directions: either forward or backwards to avoid data corruption. The X direction (horizontal) field applies to both
the destination and source operands. The source and destination pitches (stride) are signed.

DWord Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
Y Format: Opcode

28:22 |Instruction Target(Opcode)
Default Value: 43h

Format: Opcode

21:20 |[32bpp Byte Mask
This field is only used for 32bpp.

Value Name
1xb Write Alpha Channel
x1b Write RGB Channel

19:6 Reserved
| Format: MBZ

5.0 DWord Length
| Default Value: 04h

1 31 Reserved

| Format: | MBZ

BR13
30 X Direction

(1 = written from right to left (decrementing = backwards); 0 = incrementing)

29:26 |Reserved

| Format: | MBZ

25:24 [Color Depth

323



SRC_COPY_BLT

Value Name
00b 8 Bit Color
0lb 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 |Raster Operation
15:0 |[Destination Pitch (signed)
Destination pitch in bytes (Same as before).
2 31:16 |Destination Height (in scan lines)
15:0 Destination Byte Width (in bytes)
BR14
3 31.0 Destination Address
| Format: GraphicsAddress[31:0]
BRO3 Address of the first byte to be written.
4 31:16 |Reserved
| Format: MBZ
BR11
15:0 |Source Pitch
(double word aligned and signed)
5 31.0 Source Address
| Format: GraphicsAddress[31:0]
BR12

Address of the first byte to be read.

324




XY_COLOR_BLT

XY_COLOR _BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination (with a possible ROP). The
only operand is the destination operand which is written dependent on the raster operation. The solid pattern
color is stored in the pattern background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical (and fastest) Raster operation code = FO which performs a copy of the pattern background register to
the destination.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
Y Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 50h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name

1xb Write Alpha Channel

x1b Write RGB Channel

19:12 |Reserved
Format: MBZ
11 |Tiling Enable

Value Name Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8 |Reserved

Format: MBZ

7.0 |DWord Length

325



XY_COLOR_BLT

| Default Value: 04h
1 31 |Reserved
| Format: | MBZ
BR13 —
30 |Clipping Enabled
Value Name
Ob Disabled
1b Enabled
29:26 | Reserved
Format: MBZ
25:24 |Color Depth
Value Name
00b 8 Bit Color
0lb 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 |Raster Operation
15:0 |Destination Pitch in DWords
2's complement
For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X, 128B
granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Setup Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.
5 31:0 |Solid Pattern Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR16

326




XY_PAT_BLT

XY_PAT BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

PAT_BLT is used when there is no source and the color pattern is not trivial (is not a solid color only).

If clipping is enabled, all scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only
pixels within the ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = O (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
0L Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 51h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel

19:15 | Reserved

Format: MBZ

14:12 | Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

11 |Tiling Enable

Value Name Description
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSWI: Tile-X or Tile-Y.

327



XY_PAT _BLT

10:8 |Pattern Vertical Seed
Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7.0 [DWord Length

| Default Value: 04h

1 31 |Reserved

| Format: MBZ

BR13
30 |Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 |Reserved

Format: MBZ

25:24 | Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 | Raster Operation

15:0 [Destination Pitch in DWords

2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11
enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be
upto 128Kbytes (or 32KDwords).

2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.

BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.

3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.

BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.

4 31:0 |Destination Base Address

Format: GraphicsAddress[31:0]

BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this

address is limited to 4Kbytes.

5 31:0 |Pattern Base Address

Format: GraphicsAddress[31:0]

328



el

XY_PAT _BLT

BR15

(28:06 are implemented) (Note no NPO2 change here) . The pattern data must be located in

linear memory.

329




Q"_til

XY_MONO_PAT_BLT

XY_MONO_PAT _BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

MONO_PAT_BLT is used when we have no source and the monochrome pattern is not trivial (is not a solid color
only). The monochrome pattern is loaded from the instruction stream.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the pattern is 0. When the pattern bit is 1, then the pattern foreground
color is used in the ROP operation.

DWord | Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 52h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel
19:15 (Reserved
Format: MBZ

14:12 |Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

330



Q"_til

XY_MONO_PAT_BLT

11

Tiling Enable

Value

Name Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled

[DevSNB+] [DevHSW]: Tile-X or Tile-Y.

10:8

Pattern Vertical Seed

Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0

DWord Length

Value Name

07h

BR13

31

Reserved

Format:

MBZ

30

Clipping Enabled

Value

Name

Ob

Disabled

1b

Enabled

29

Reserved

Format:

MBZ

28

Mono Pattern Transparency Mode

Value

Name

0

Use Background

1

Transparency Enabled

27:26

Reserved

Format:

MBZ

25:24

Color Depth

Value

Name

00b

8 Bit Color

01b

16 Bit Color(565)

10b

16 Bit Color(1555)

11b

32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

BR22

31:16

Destination Y1 Coordinate (Top)

16 bit signed number.

15:0

Destination X1 Coordinate (Left)

331




XY_MONO_PAT_BLT

16 bit signed number.

3 31:16 |Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit 11 enabled), this
address is limited to 4Kbytes.
5 31:.0 [Pattern Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR16
6 31:.0 [Pattern Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR17
7 31:0 |[Pattern Data 0
BR20
8 31:0 |Pattern Datal
BR21

332




XY_SRC_COPY_BLT

XY_SRC_COPY_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This BLT instruction performs a color source copy where the only operands involved is a color source and
destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base addresses
of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine
performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the
base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at
Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

Programming Notes Project

This command should not be used if all of the following conditions are met. Either use alternative HSW
methods such as Scratch and temporary memory or break up the BLT commands to avoid this issue.

Source Y1 == Destination Y1 - Explanation: Source and Destination start pixel Y coordinates
(Source(Y1), Destination(Y1)) are same (that is Source and Destination planes are not vertically
shifted to each other, but are aligned)

Source X1 > Destination X1 - Explanation: Destination start pixel X1, is at left (i.e. left shifted)
from the Source start pixel X1. In other words, Source (X1) is > Destination (X1)

Source X1 Virtual Address[31:5] == Destination X1 Virtual Address[31:5] - Explanation: SRC X1
1/2 cacheline virtual address = DST X1 1/2 cacheline virtual address

Destination X2 Virtual Address[31:5] != Destiation X1 Virtual Address[31:5] - Explanation: DST
X2 1/2 cacheline virtual address Not equal to DST X1 1/2 cacheline virtual address.

333



Q"_til

XY_SRC_COPY_BLT

Driver Alternative Procedure: The driver can work around this issue by separating blit operations
into two separate blits. The driver can achieve this by:

Blit 1: Copying the source to another temporary surface which does not overlap with the source
(by giving it a different Base Address)

Blit 2: Copying that temporary surface to the original destination surface which obviously will
also not be overlapping.

DWord Bit Description
0 31:29 (Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 53h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel
19:16 [Reserved
Format: MBZ
15 |[Src Tiling Enable
Value Name Description
0b Tiling Disabled (Linear)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.
14:12 |Reserved
Format: MBZ
11 |[Dest Tiling Enable
Value Name Description
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8 |Reserved

334




XY_SRC_COPY_BLT

Format: | MBZ

7.0 [DWord Length
Value Name
06h
1 31 |Reserved
Format: MBZ
BR13
30 |Clipping Enabled
Value Name
0b Disabled
1b Enabled
29:26 |Reserved
Format: MBZ
25:24 | Color Depth
Value Name
00b 8 Bit Color
0lb 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 |Raster Operation
15:0 |Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
2 31:16 |Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 [Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Dest Tiling is enabled (Bit_11
enabled), this address is limited to 4Kbytes.
5 31:16 [Source Y1 Coordinate (Top)

16 bit signed number.

335




XY_SRC_COPY_BLT

BR26 15:0 |Source X1 Coordinate (Left)
16 bit signed number.
6 31:16 |Reserved
Format: MBZ
BR11
15:0 |Source Pitch (double word aligned) and in DWords
2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,
128B granularity for Tile-Yand can be upto 128Kbytes (or 32KDwords).
7 31:0 |Source Base Address
Format: GraphicsAddress[31:0]
BR12 Base address of the destination surface: X=0, Y=0. When Src Tiling is enabled (Bit_15 enabled),
this address is limited to 4Kbytes.

336




XY_MONO_SRC_COPY_BLT

XY_MONO_SRC_COPY_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This BLT instruction performs a monochrome source copy where the only operands involved is a monochrome
source and destination. The source and destination operands cannot overlap therefore the X and Y directions are
always forward.

All non-text monochrome sources are word aligned. At the end of a scan line of monochrome source, all bits
until the next word boundary are ignored. The monochrome source data bit position field [2:0] indicates the bit
position within the first byte of the scan line that should be used as the first source pixel which corresponds to
the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source background color or de-assert
the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is
used in the ROP operation. The ROP value chosen must involve source and no pattern data in the ROP operation.
Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description
0 31:29 (Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 54h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel

19:17 | Monochrome source data bit position of the first pixel within a byte per scan line.

16:12 |Reserved
Format: MBZ

11 [Tiling Enable

337



XY_MONO_SRC_COPY_BLT

Value Name

Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled

[DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8

Reserved

Format:

MBZ

7:0

DWord Length

Value

Name

06h

BR13

31

Reserved

Format:

MBZ

30

Clipping Enabled

Value

Name

Ob

Disabled

1b

Enabled

29

Mono Source Transparency Mode

Value

Name

0 Use Background

1 Transparency Enabled

28:26

Reserved

Format:

MBZ

25:24

Color Depth

Value

Name

00b

8 Bit Color

01b

16 Bit Color(565)

10b

16 Bit Color(1555)

11b

32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords

2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

BR22

31:16

Destination Y1 Coordinate (Top)
16 bit signed number.

15:0

Destination X1 Coordinate (Left)
16 bit signed number.

31:16

Destination Y2 Coordinate (Bottom)

16 bit signed number.

338




XY_MONO_SRC_COPY_BLT

BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.
5 31:0 |Source Address
Format: GraphicsAddress[31:0]
BR12 (address corresponding to DST X1,Y1) (Note no NPO2 change here).
6 31:0 |Source Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR18
7 31:0 |Source Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR19

339




Q"_til

XY_FULL_BLT

XY_FULL BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source and pattern operands are the same bit width as the destination
operand.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base addresses
of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine
performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the
base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at
Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
0L Format: Opcode

28:22 |Instruction Target(Opcode)

Default Value: 55h

Format: Opcode

21:20 |32bpp Byte Mask
This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

340



XY_FULL BLT

|x1b |Write RGB Channel

19:16

Reserved

| Format: | MBZ

15

Src Tiling Enable

Value Name Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSWI: Tile-X or Tile-Y.

14:12

Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

11

Dest Tiling Enable

Value Name Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8

Pattern Vertical Seed
Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0

DWord Length

| Default Value: 07h

BR13

31

Reserved

| Format: MBZ

30

Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords

2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

31:16

Destination Y1 Coordinate (Top)

341




XY FULL BLT
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 |Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.
5 31:16 |Reserved
Format: MBZ
BR11 Should be programmed all 0's for 48bit addressing.
15:0 |Source Pitch (double word aligned and signed) and in DWords
2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,
128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
6 31:16 |Source Y1 Coordinate (Top)
16 bit signed number.
BR26 15:0 |Source X1 Coordinate (Left)
16 bit signed number.
7 31:0 |Source Address
Format: GraphicsAddress[31:0]
BR12 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_15 enabled),
this address is limited to 4Kbytes.
8 31:.0 |Pattern Base
(28:06 are implemented ) (Note no NPO2 change here). The pattern data must be located in
BR15 linear memory.

342




XY_FULL_MONO_SRC_BLT

XY_FULL_MONO_SRC BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source operand is monochrome and the pattern operand is the same bit
width as the destination.

The monochrome source transparency mode indicates whether to use the source background color or de-assert
the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is
used in the ROP operation.

All non-text and non-immediate monochrome sources are word aligned. At the end of a scan line the
monochrome source, the remaining bits until the next word boundary are ignored. The Monochrome source
data bit position field [2:0] indicates which bit position within the first byte should be used as the first source
pixel which corresponds to the Destination X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED

DWord Bit Description
0 31:29 (Client
Default Value: 02h 2D Processor
00 Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 56h
Format: Opcode

21:20 |32bpp Byte Mask
This field is only used for 32bpp.

343



XY_FULL_MONO_SRC BLT

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel
19:17 | Monochrome source data bit position of the first pixel within a byte per scan line.
16:15 |Reserved
Format: MBZ
14:12 | Pattern Horizontal Seed
(pixel of the scan line to start on corresponding to DST X=0)
11 [Tiling Enable
Value Name Description
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.
10:8 |Pattern Vertical Seed
Starting scan line of the 8x8 pattern corresponding to DSTY = 0.
7.0 |DWord Length
Value Name
07h
1 31 |Reserved
Format: MBZ
BR13
30 |Clipping Enabled
Value Name
Ob Disabled
1b Enabled
29 |Mono Source Transparency Mode
Value Name
0 Use Background
1 Transparency Enabled
28:26 |Reserved
Format: MBZ
25:24 | Color Depth
Value Name
00b 8 Bit Color
0lb 16 Bit Color(565)
10b 16 Bit Color(1555)

344



Q"_til

XY_FULL_MONO_SRC BLT

11b |32 Bit Color

23:16 |Raster Operation
15:0 |[Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 |Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 [Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.
5 31:0 |Mono Source Address
Format: GraphicsAddress[31:0]
BR12 (address corresponds to DST X1, Y1) (Note no NPO2 change here).
6 31:0 [Source Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR18
7 31:0 |Source Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR19
8 31:0 |Pattern Base Address
Format: GraphicsAddress[31:0]
BR15

(28:06 are implemented ) (Note no NPO2 change here). The pattern data must be located in
linear memory.

345




Q"_til

XY_FULL_MONO_PATTERN_BLT

XY_FULL_MONO_PATTERN_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The pattern operand is monochrome and the source operand is the same bit
width as the destination operand.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base addresses
of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine
performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the
base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at
Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the pattern foreground
color is used in the ROP operation.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Setting both Solid Pattern Select =1 and Mono Pattern Transparency = 1 is mutually exclusive. The device
implementation results in NO PIXELs DRAWN.

DWord Bit Description
0 31:29 (Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)

346



XY_FULL_MONO_PATTERN_BLT

Default Value:

57h

Format:

Opcode

21:20

32bpp Byte Mask
This field is only used for 32bpp.

Value

Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:16

Reserved

15

Src Tiling Enable

Value Name

Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled

[DevHSW] [DevHSW]: Tile-X or Tile-Y.

14:12

Pattern Horizontal Seed

(pixel of the scan line to start on corresponding to DST X=0)

11

Dest Tiling Enable

Value Name

Description

Ob Tiling Disabled (Linear Blit)

1b

Tiling Enabled

[DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8

Pattern Vectical Seed

Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0

DWord Length

Value

Name

0Ah

BR13

31

Solid Pattern Select

Value

Name

0 No Solid Pattern

1 Solid Pattern

30

Clipping Enabled

Value

Name

Ob

Disabled

1b

Enabled

29

Reserved

| Format:

MBZ

28:27

Mono Source Transparency Mode

| Value

Name

347




XY_FULL_MONO_PATTERN_BLT

0 Use Background
1 Transparency Enabled
26 |[Reserved
Format: MBZ
25:24 |Color Depth
Value Name
00b 8 Bit Color
01b 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 |Raster Operation
15:0 |Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
2 31:16 |Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 |Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.
5 31:16 |Reserved
Format: MBZ
BR11 - - - -
15:0 |Source Pitch (double word aligned and signed) and in DWords
2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,
128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
6 31:16 |Source Y1 Coordinate (Top)
16 bit signed number.
BR26 15:0 |[Source X1 Coordinate (Left)
16 bit signed number.
7 31:0 |Source Base Address

Format: GraphicsAddress[31:0]

348



Q"_til

XY_FULL_MONO_PATTERN_BLT

BR12 (base address of the source surface: X=0, Y=0). When Src Tiling is enabled (Bit 15 enabled),
this address is limited to 4Kbytes.
8 31:0 |Pattern Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR16
9 31:0 |Pattern Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR17
10 31.0 |Pattern Data 0
(least significant DW)
BR20
11 31:.0 |Pattern Data 1l
(most significant DW)
BR21

349




Q"_til

XY_FULL_MONO_PATTERN_MONO_SRC_BLT

XY_FULL_MONO_PATTERN_MONO_SRC_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The full BLT provides the ability to specify all 3 operands: destination, source, and pattern. The pattern and
source operands are monochrome.

The monochrome source transparency mode indicates whether to use the source background color or de-assert
the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is
used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the monochrome source, the
remaining bits until the next word boundary are ignored. The Monochrome source data bit position field [2:0]
indicates which bit position within the first byte should be used as the first source pixel which corresponds to the
destination X1 coordinate.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the pattern is 0. When the source bit is 1, then the pattern foreground
color is used in the ROP operation. The monochrome source transparency mode works identical to the pattern
transparency mode.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Setting both Solid Pattern Select =1 and Mono Pattern Transparency = 1 is mutually exclusive. The device
implementation results in NO PIXELs DRAWN.

Negative Stride (= Pitch) is NOT ALLOWED.

DWordl Bit | Description

350




Q"_til

XY_FULL_MONO_PATTERN_MONO_SRC_BLT

0 31:29 | Client

Default Value: 02h 2D Processor

BROO

Format: Opcode

28:22 |Instruction Target(Opcode)

Default Value: 58h

Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 | Monochrome source data bit position of the first pixel within a byte per scan line.

16:15 | Reserved

Format: MBZ

14:12 | Pattern Horizontal Seed
(pixel of the scan line to start on corresponding to DST X=0)

11 (Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSWI: Tile-X or Tile-Y.

10:8 |Pattern Vertical Seed
Starting scan line of the 8x8 pattern corresponding to DSTY = 0.

7.0 |DWord Length

Value Name

0Ah

1 31 |Solid Pattern Select

Value Name

BR13 0 No Solid Pattern

1 Solid Pattern

30 |[Clipping Enabled

Value Name

Ob Disabled

1b Enabled

29 |[Mono Source Transparency Mode

Value Name

351




XY_FULL_MONO_PATTERN_MONO_SRC_BLT

0 Use Background

1 Transparency Enabled

28

Mono Pattern Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

27:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

BR22

31:16

Destination Y1 Coordinate (Top)
16 bit signed number.

15:0

Destination X1 Coordinate (Left)
16 bit signed number.

BR23

31:16

Destination Y2 Coordinate (Bottom)
16 bit signed number.

15:0

Destination X2 Coordinate (Right)
16 bit signed number.

BRO9

310

Destination Base Address

Format: GraphicsAddress[31:0]

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.

BR12

31:0

Mono Source Address

Format: GraphicsAddress[31:0]

(address corresponds to DST X1, Y1) (Note no NPO2 change here).

BR18

31:0

Source Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

352




XY_FULL_MONO_PATTERN_MONO_SRC_BLT

7 31:0 |Source Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR19
8 31:0 |Pattern Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR16
9 31:0 |Pattern Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR17
10 31:.0 |Pattern Data O
(least significant DW)
BR20
11 31:.0 |Pattern Data 1
(most significant DW)
BR21

353




Q"_til

XY_MONO_PAT_FIXED_BLT

XY_MONO_PAT_FIXED _BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

MONO_PAT_FIXED_BLT is used when we have no source and the monochrome pattern is not trivial (is not a solid
color only). The monochrome pattern is one of 10 fixed patterns described below. The pattern seeds can still be
used with the fixed patterns, creating even more fixed patterns. This eliminates 2 doublewords compared to the
XY_MONO_PAT_BLT command packet.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = O (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the pattern is 0. When the pattern bit is 1, then the pattern foreground
color is used in the ROP operation.

DWord Bit Description
0 31:29 (Client
Default Value: 02h 2D Processor
BROO Format: Opcode

28:22 |Instruction Target(Opcode)
Default Value: 5%

Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel
19 |Reserved
Format: MBZ

354



XY_MONO_PAT_FIXED _BLT

18:15 |Fixed Pattern
Value Name
0000b HS_HORIZONTAL
0001b HS_VERTICAL
0010b HS_FDIAGONAL
0011b HS_BDIAGONAL
0100b HS_CROSS
0101b HS_DIAGCROSS
0110b Reserved
0111b Reserved
1000b Screen Door
1001b SD Wide
1010b Walking Bit (one)
1011b Walking Zero
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved
14:12 | Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.
11 [Tiling Enable
Value Name Description
Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.
10:8 |Pattern Vertical Seed
Scan line of the 8x8 pattern to start on corresponding to DST Y=0.
7.0 |DWord Length
Value Name
05h
1 31 |Reserved
Format: MBZ
BR13
30 |Clipping Enabled
Value Name
Ob Disabled
1b Enabled
29 [Reserved

355




XY_MONO_PAT_FIXED _BLT

| Format: | MBZ

28

Mono Pattern Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

27:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

BR22

31:16

Destination Y1 Coordinate (Top)
16 bit signed number.

15:0

Destination X1 Coordinate (Left)
16 bit signed number.

BR23

31:16

Destination Y2 Coordinate (Bottom)
16 bit signed number.

15:0

Destination X2 Coordinate (Right)
16 bit signed number.

BRO9

31:0

Destination Base Address

Format: GraphicsAddress[31:0]

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.

BR16

31:.0

Pattern Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

BR17

31:.0

Pattern Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

356




XY_MONO_SRC_COPY_IMMEDIATE_BLT

XY_MONO_SRC_COPY_IMMEDIATE_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This instruction allows the Driver to send monochrome data through the instruction stream, eliminating the read
latency of the source during command execution.

The IMMEDIATE_BLT data MUST transfer an even number of doublewords and the exact number of quadwords.
DWL indicates the total number of Dwords of immediate data.

All non-text monochrome sources are word aligned. At the end of a scan line of monochrome source, all bits
until the next word boundary are ignored. The Monochrome source data bit position field [2:0] indicates the bit
position within the first byte of the scan line that should be used as the first source pixel which corresponds to
the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source background color or de-assert
the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is
used in the ROP operation. The ROP value chosen must involve source and no pattern data in the ROP operation.

The monochrome source data supplied corresponds to the Destination X1 and Y1 coordinates.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 71h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name

00b [Default]

357



Q"_til

XY_MONO_SRC_COPY_IMMEDIATE_BLT

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 | Monochrome source data bit position of the first pixel within a byte per scan line.

16:12 |Reserved

Format: MBZ

11 |Dest Tiling Enable

Value Name Description Project

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled Tile-X or Tile-Y HSW

10:8 |[Reserved

Format: MBZ

7.0 |DWord Length

Default Value: 05h Excludes DWORD 0,1

05 + DWL = (Number of Immediate double words)h

1 31 [Reserved
Format: MBZ
BR13
30 [Clipping Enabled
Value Name
0b Disabled
1b Enabled
29 |Mono Source Transparency Mode
Value Name
Ob Transparency Enabled
1b Use Background
28:26 |Reserved
Format: MBZ
25:24 | Color Depth
Value Name
00b 8 Bit Color
01b 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color

23:16 | Raster Operation

15:0 |Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

358



Q"_til

XY_MONO_SRC_COPY_IMMEDIATE_BLT

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 [Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.
5 31:.0 |Source Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR18
6 31:0 |Source Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR19
7.n 31:.0 |Immediate Data

359




Q"_til

XY_PAT_BLT_IMMEDIATE

XY_PAT_BLT_IMMEDIATE

Project: HSW
Source: BlitterCS
Length Bias: 2

PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not trivial (is not a solid color only)
and the pattern is pulled through the command stream. The immediate data sizes are 64 bytes (16 DWs), 128
bytes (32 DWs), or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

DWL indicates the total number of Dwords of immediate data. All scan lines and pixels that fall within the
ClipRect Y and X coordinates are written. Only pixels within the ClipRectX coordinates and the Destination X
coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = O (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 72h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel
19:15 | Reserved
| Format: MBZ

14:12 | Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

11 |Tiling Enable

| Value | Name Description

360



Q"_til

XY_PAT_BLT_IMMEDIATE

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8 |Pattern Vertical Seed
Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7.0 [DWord Length

| Default Value: 03h Excludes DWORD 0,1

03 + DWL = (Number of Immediate double)h

1 31 |Reserved

| Format: MBZ

BR13 —
30 |Clipping Enabled

Value Name

Ob Disabled

1b Enabled

29:26 |Reserved

Format: MBZ

25:24 | Color Depth

Value Name

00b 8 Bit Color

0lb 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 | Raster Operation

15:0 [Destination Pitch in DWords

2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11
enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be
upto 128Kbytes (or 32KDwords).

2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.

BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.

3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.

BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.

4 31:0 |Destination Base Address

Format: GraphicsAddress[31:0]

BRO9

361




XY_PAT_BLT_IMMEDIATE

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.

5.n 31:0 |Immediate Data

362




XY_SRC_COPY_CHROMA _BLT

XY_SRC_COPY_CHROMA BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

This BLT instruction performs a color source copy with chroma-keying where the only operands involved is a
color source and destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base addresses
of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine
performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the
base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at
Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

Programming Notes Project

This command should not be used if all of the following conditions are met. Either use alternative HSW
methods such as Scratch and temporary memory or break up the BLT commands to avoid this issue.

Source Y1 == Destination Y1 - Explanation: Source and Destination start pixel Y coordinates
(Source(Y1), Destination(Y1)) are same (that is Source and Destination planes are not vertically
shifted to each other, but are aligned)

Source X1 > Destination X1 - Explanation: Destination start pixel X1, is at left (i.e. left shifted)
from the Source start pixel X1. In other words, Source (X1) is > Destination (X1)

Source X1 Virtual Address[31:5] == Destination X1 Virtual Address[31:5] - Explanation: SRC X1
1/2 cacheline virtual address = DST X1 1/2 cacheline virtual address

Destination X2 Virtual Address[31:5] != Destiation X1 Virtual Address[31:5] - Explanation: DST
X2 1/2 cacheline virtual address Not equal to DST X1 1/2 cacheline virtual address.

363



Q"_til

XY_SRC_COPY_CHROMA BLT

Alternative Procedure for Driver: The driver can work around this issue by separating blit
operations into two separate blits. The driver can achieve this by:

2.
Blit 1: Copy the source to another temporary surface which does not overlap with the source
(by giving it a different Base Address)
3.
Blit 2: Copy that temporary surface to the original destination surface which obviously will also
not be overlapping.
DWord Bit Description
0 31:29 |Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 73h
Format: Opcode
21:20 | 32bpp Byte Mask
This field is only used for 32bpp.
Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel
19:17 |Transparency Range Mode
(chroma-key)
16 [Reserved
Format: MBZ
15 |[Src Tiling Enable
Value Name Description
Ob Tiling Disabled (Linear)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.
14:12 [Reserved
Format: MBZ
11 |[Dest Tiling Enable
Value Name Description
Ob Tiling Disabled (Linear Blit)

364




Q"_til

XY_SRC_COPY_CHROMA BLT

lib  [Tiling Enabled | [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8

Reserved

| Format: | MBZ

7:0

DWord Length

Value Name

08h

BR13

31

Reserved

Format: MBZ

30

Clipping Enabled

Value Name

Ob Disabled

1b Enabled

29:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

0lb 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

BR22

31:16

Destination Y1 Coordinate (Top)
16 bit signed number.

15:0

Destination X1 Coordinate (Left)
16 bit signed number.

BR23

31:16

Destination Y2 Coordinate (Bottom)
16 bit signed number.

15:0

Destination X2 Coordinate (Right)
16 bit signed number.

BRO9

31:0

Destination Base Address

Format: GraphicsAddress[31:0]

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled),
this address is limited to 4Kbytes.

365




XY_SRC_COPY_CHROMA BLT

R
T

31:16 |Source Y1 Coordinate (Top)
16 bit signed number.
BR26 15:0 |Source X1 Coordinate (Left)
16 bit signed number.
6 31:16 |Reserved
Format: MBZ
BR11
15:0 [Source Pitch (double word aligned) and in DWords
2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,
128B granularity for Tile-Yand can be upto 128Kbytes (or 32KDwords).
7 31:0 |Source Base Address
Format: GraphicsAddress[31:0]
BR12 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_15 enabled),
this address is limited to 4Kbytes.
8 31:0 [Transparency Color Low
(Chroma-key Low = Pixel Greater or Equal)
BR18
9 31:0 [Transparency Color High
(Chroma-key High = Pixel Less or Equal)
BR19

366




XY_FULL_IMMEDIATE_PATTERN_BLT

XY_FULL IMMEDIATE_PATTERN_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source and immediate pattern operands are the same bit width as the
destination operand. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or 256 (64 DWs) for 8,
16, and 32 bpp color patterns. DWL indicates the total number of Dwords of immediate data.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base addresses
of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine
performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the
base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at
Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
Y Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 74h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

367



XY_FULL IMMEDIATE_PATTERN_BLT

|x1b |Write RGB Channel

19:16

Reserved

| Format: | MBZ

15

Src Tiling Enable

Value Name Description

Ob Tiling Disabled (Linear)

1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

14:12

Pattern Horizontal Seed
(pixel of the scan line to start on corresponding to DST X=0)

11

Dest Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.

10:8

Pattern Vertical Seed
Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0

DWord Length

Default Value: 06h Excludes DWORD 0,1

06 + DWL = (Number of Immediate double words)h

BR13

31

Reserved

Format: MBZ

30

Clipping Enabled

Value Name

Ob Disabled

1b Enabled

29:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

368




Q"_til

XY_FULL IMMEDIATE_PATTERN_BLT

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:.0 [Destination Base Address
Format: GraphicsAddress[31:0]
BROI Base address of the destination surface: X=0, Y=0. When Src Tiling is enabled (Bit_15 enabled),
this address is limited to 4Kbytes.
5 31:16 |Reserved
Format: MBZ
BR11 Should be programmed all 0's for 48bit addressing.
15:0 |Source Pitch (double word aligned and signed) and in DWords
2's complement. For Tiled Src (bit 11 enabled) this pitch is of 512Byte granularity for Tile-X,
128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
6 31:16 | Source Y1 Coordinate (Top)
16 bit signed number.
BR26 15:0 [Source X1 Coordinate (Left)
16 bit signed number.
7 31:0 |Source Address
Format: GraphicsAddress[31:0]
BR12 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit 15 enabled), this
address is limited to 4Kbytes.
8.n 31:0 [Immediate Data 0

369




Q"_til

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

XY_FULL_MONO_SRC _IMMEDIATE_PATTERN_BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source operand is a monochrome and the immediate pattern operand is
the same bit width as the destination. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or
256 (64DWs) for 8, 16, and 32 bpp color patterns.

The monochrome source transparency mode indicates whether to use the source background color or de-assert
the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is
used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the monochrome source, the
remaining bits until the next word boundary are ignored. The Monochrome source data bit position field [2:0]
indicates which bit position within the first byte should be used as the first source pixel which corresponds to the
destination X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = O (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 75h
Format: Opcode

21:20 | 32bpp Byte Mask

370



Q"_til

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel

19:17 | Monochrome source data bit position of the first pixel within a byte per scan line.

16:15 | Reserved

Format: MBZ

14:12 | Pattern Horizontal Seed
(pixel of the scan line to start on corresponding to DST X=0)

11 |Tiling Enable

Value Name Description
0b Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSWI: Tile-X or Tile-Y.

10:8 | Pattern Vertical Seed
Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7.0 |DWord Length

| Default Value: 06h Excludes DWORD 0,1

06 + DWL = (Number of Immediate double words)h

1 31 |Reserved

| Format: MBZ

BR13
30 |Clipping Enabled

Value Name

ob Disabled

1b Enabled

29 [Mono Source Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

28:26 |Reserved

Format: MBZ

25:24 | Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

371



Q"_til

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

10b 16 Bit Color(1555)
11b 32 Bit Color

23:16

Raster Operation

15:0 |Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X,
128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).
2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:0 |Destination Base Address
Format: GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.
5 31:0 [Mono Source Address
Format: GraphicsAddress[31:0]
BR12 (address corresponds to DST X1, Y1) (Note no NPO2 change here).
6 31:.0 |Source Background Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR18
7 31:0 |Source Foreground Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
BR19
8.n 31:0 |Immediate Data

372




XY_PAT_CHROMA _BLT

XY_PAT_ CHROMA BLT

Project: HSW
Source: BlitterCS
Length Bias: 2

PAT_BLT is used when there is no source and the color pattern is not trivial (is not a solid color only).

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = O (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
0L Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 76h
Format: Opcode

21:20 | 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel

19:17 | Transparency Range Mode
(chroma-key) - Dst Chroma-key modes ONLY (SRC ILLEGAL)

16:15 | Reserved

| Format: MBZ

14:12 | Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

11 |Tiling Enable

| Value | Name Description

373



XY_PAT_CHROMA BLT

Ob Tiling Disabled (Linear Blit)
1b Tiling Enabled [DevHSW] [DevHSW]: Tile-X or Tile-Y.
10:8 |Pattern Vertical Seed
Scan line of the 8x8 pattern to start on corresponding to DST Y=0.
7.0 [DWord Length
| Default Value: 06h
1 31 |Reserved
| Format: MBZ
BR13 —
30 |Clipping Enabled
Value Name
0b Disabled
1b Enabled
29:26 |Reserved
Format: MBZ
25:24 | Color Depth
Value Name
00b 8 Bit Color
0lb 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 | Raster Operation
15:0 |Destination Pitch in DWords
2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11
enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be
upto 128Kbytes (or 32KDwords).
2 31:16 | Destination Y1 Coordinate (Top)
16 bit signed number.
BR22 15:0 |Destination X1 Coordinate (Left)
16 bit signed number.
3 31:16 | Destination Y2 Coordinate (Bottom)
16 bit signed number.
BR23 15:0 |Destination X2 Coordinate (Right)
16 bit signed number.
4 31:.0 |[Destination Base Address
Format: GraphicsAddress[31:0]
BR0O9

Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit 11 enabled), this
address is limited to 4Kbytes.

374




Q"_til

XY_PAT_CHROMA BLT

5 31:0 |Pattern Base Address
Format: | GraphicsAddress[31:0]

BR15 (26:06 are used, other bits are ignored) (Note no NPO2 change here). The pattern data must be
located in linear memory.
6 31:0 |Transparency Color Low
(Chroma-key Low = Pixel Greater or Equal)
BR18

7 31:0 |Transparency Color High
(Chroma-key High = Pixel Less or Equal)

BR19

375




Q"_til

XY_PAT_CHROMA _BLT_IMMEDIATE

XY_PAT_CHROMA BLT_IMMEDIATE

Project: HSW
Source: BlitterCS
Length Bias: 2

PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not trivial (is not a solid color only)
and the pattern is pulled through the command stream. The immediate data sizes are 64 bytes (16 DWs), 128
bytes (32 DWs), or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

DWL indicates the total number of Dwords of immediate data. All scan lines and pixels that fall within the
ClipRect Y and X coordinates are written. Only pixels within the ClipRectX coordinates and the Destination X
coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = O (vertical). The alignment is relative to
the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal
seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord | Bit Description
0 31:29 | Client
Default Value: 02h 2D Processor
BROO Format: Opcode
28:22 |Instruction Target(Opcode)
Default Value: 77h
Format: Opcode

21:20 |32bpp Byte Mask
This field is only used for 32bpp.

Value Name
00b [Default]
1xb Write Alpha Channel
x1b Write RGB Channel

19:17 | Transparency Range Mode
(chroma-key) - Dst Chroma-key modes ONLY (SRC ILLEGAL)

16:15 | Reserved

Format: MBZ

14:12 | Pattern Horizontal Seed
Pixel of the scan line to start on corresponding to DST X=0.

376



Q"_til

XY_PAT_CHROMA _BLT_IMMEDIATE

11

Tiling Enable

Value Name Description

Ob Tiling Disabled (Linear Blit)

1b Tiling Enabled [DevHSW] [DevHSWI: Tile-X or Tile-Y.

10:8

Pattern Vertical Seed
Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0

DWord Length

| Default Value: 05h Excludes DWORD 0,1

05 + DWL = (Number of Immediate double)h

BR13

31

Reserved

| Format: MBZ

30

Clipping Enabled

Value Name

0Ob Disabled

1b Enabled

29:26

Reserved

Format: MBZ

25:24

Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16

Raster Operation

15:0

Destination Pitch in DWords
2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-
X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

BR22

31:16

Destination Y1 Coordinate (Top)
16 bit signed number.

15:0

Destination X1 Coordinate (Left)
16 bit signed number.

BR23

31:16

Destination Y2 Coordinate (Bottom)
16 bit signed number.

15:0

Destination X2 Coordinate (Right)
16 bit signed number.

31:.0

Destination Base Address

377




XY _PAT CHROMA BLT IMMEDIATE
| Format: | GraphicsAddress[31:0]
BRO9 Base address of the destination surface: X=0, Y=0. When Tiling is enabled (Bit_11 enabled), this
address is limited to 4Kbytes.
5 31:0 |Transparency Color Low
(Chroma-key Low = Pixel Greater or Equal)
BR18
6 31:0 |Transparency Color High
(Chroma-key High = Pixel Less or Equal)
BR19
7.n 31:0 [Immediate Data

378



STATE_PREFETCH

STATE_PREFETCH

Project: HSW
Source: BSpec
Length Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some
experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into
the GPE-internal cache ("L2 ISC") used to access EU kernel instructions and fixed/shared function indirect state
data. While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this
command may be used to prefetch data not automatically prefetched, such as: 3D viewport state; Media pipeline
Interface Descriptors; EU kernel instructions.

Restriction

DWord Bit Description

0 31:29 |Command Type
| Default Value: 3h GFXPIPE |

28:27 |Command SubType
| Default Value: | Oh GFXPIPE_COMMON |

26:24 | 3D Command Opcode
| Default Value: | Oh GFXPIPE_PIPELINED |

23:16 |3D Command Sub Opcode
| Default Value: | 03h STATE_PREFETCH |

15:8 |Reserved
Project: All

Format: MBZ

7.0 |DWord Length
Project: All

Format: =n Total Length - 2

Value Name Description
Oh DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:6 |Prefetch Pointer
Project: All

Format: GraphicsAddress[31:6]

379




STATE_PREFETCH

Specifies the 64-byte aligned address to start the prefetch from. This pointer is an absolute

virtual address, it is not relative to any base pointer.

5:3 |Reserved
Project: All
Format: MBZ
2:0 |Prefetch Count

Project:

All

Format:

U3-1 count of cache lines

Indicates the number of contiguous 64-byte cache lines that will be prefetched.

Value

Name

Description

[0,7]

indicating a count of [1,8]

380




STATE_BASE_ADDRESS

STATE_BASE_ADDRESS

Project: HSW
Source: BSpec
Length Bias: 2

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect
object accesses by the GPE. (See Table 4-3. Base Address Utilization for details)

Programming Notes

e 3DSTATE_CC_POINTERS

e 3DSTATE_BINDING_TABLE_POINTERS
e 3DSTATE_SAMPLER_STATE_POINTERS
e 3DSTATE_VIEWPORT_STATE_POINTERS
e MEDIA_STATE_POINTERS

The following commands must be reissued following any change to the base addresses

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher

performance
DWord| Bit Description
0 31:29 | Command Type
| Default Value: 3h GFXPIPE |
28:27 | Command SubType

| Default Value:

| 0h GFXPIPE_COMMON

26:24 | 3D Command Opcode

| Default Value:

| 1h GFXPIPE_NONPIPELINED |

23:16 | 3D Command Sub Opcode

| Default Value:

|01h STATE_BASE_ADDRESS

15:8 | Reserved

Project:

All

Format:

MBZ

7.0 [DWord Length

Project: All

Format: =n Total Length - 2

Value Name

Description

8 DWORD_COUNT_n [Default]

Excludes DWord (0,1)

381




STATE_BASE_ADDRESS

1 31:12 | General State Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for general state accesses. See Table 4-3 for details
on where this base address is used.
11:8 |General State Memory Object Control State
Project: All
Format: MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state for indirect state using the General State Base
Address, with the exception of the stateless data port accesses.
7:4 |Stateless Data Port Access Memory Object Control State
Project: All
Format: MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state for stateless data port accesses.
3:1 |Reserved
Project: All
Format: MBZ
0 |General State Base Address Modify Enable
Project: All
Format: Enable
The other fields in this dword are updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated address All
lh Enable Modify the address All
2 31:12 | Surface State Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for binding table and surface state accesses. See
Table 4-3 for details on where this base address is used.
11:8 | Surface State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the Surface State Base
Address.

382




STATE_BASE_ADDRESS

7:1 |Reserved
Project: All
Format: MBZ
0 |Surface State Base Address Modify Enable
Project: All
Format: Enable
The other fields in this dword are updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated address All
lh Enable Modify the address All
Programming Notes Project
Set this bit to 1 in a batch buffer will cause the resource streamer to stop, for DevHSW +

ring buffer.

performance reasons the SW should only place commands with this bit set in the

Prior to programming the Surface State Base Address, the RS must be disabled.
Within a batch buffer where the RS is enabled, RS may be disabled thru a
MI_RS_CONTROL command with Resource Streamer Control cleared prior to the
STATE_BASE_ADDRESS with Surface State Base Address Modify Enable set and then
re-enabled with another MI_RS_CONTROL with Resource Streamer Control set.

31:12

Dynamic State Base Address

Project:

All

Format:

GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for sampler and viewport state accesses. See Table 4-
3 for details on where this base address is used.

11:8

Dynamic State Memory Object Control State

Project:

All

Format:

MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the Dynamic State Base
Address. Push constants defined in 3DSTATE_CONSTANT_(VS | GS | PS) commands do not use
this control state, although they can use the corresponding base address. The memory object
control state for push constants is defined within the command.

7:1 |Reserved
Project: All
Format: MBZ
0 |Dynamic State Base Address Modify Enable

383




STATE_BASE_ADDRESS

Project:

All

Format:

Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project
Oh Disable Ignore the updated address All
1h Enable Modify the address All

4 31:12

Indirect Object Base Address
Project: All
Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT command.
See Table 4-3 for details on where this base address is used.

11:8

Indirect Object Memory Object Control State

Project:

All

Format:

MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect objects using the Indirect Object Base

Address.

7:1

Reserved

Project:

All

Format:

MBZ

Indirect Object Base Address Modify Enable

Project:

All

Format:

Enable

The other fields in this dword are updated only when this bit is set.

5 31:12

Value Name Description Project
Oh Disable Ignore the updated address All
1h Enable Modify the address All
Instruction Base Address
Project: All
Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for all EU instruction accesses.

11:8

Instruction Memory Object Control State

Project:

All

Format:

MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for EU instructions using the Instruction Base

Address.

384




STATE_BASE_ADDRESS

7:1 [Reserved
Project: All
Format: MBZ
0 |Instruction Base Address Modify Enable

31:12

Project: All

Format: Enable
The other fields in this dword are updated only when this bit is set.

Value Name Description Project

Oh Disable Ignore the updated address All

1h Enable Modify the address All
General State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for general state
accesses. This includes all accesses that are offset from General State Base Address (see Table
4-3). Read accesses from this address and beyond will return UNDEFINED values. Data port
writes to this address and beyond will be "dropped on the floor" (all data channels will be
disabled so no writes occur). Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 [Reserved
Project: All
Format: MBZ
0 |General State Access Upper Bound Modify Enable
Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated bound All
1h Enable Modify the bound All
31:12 | Dynamic State Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for dynamic state
accesses. This includes all accesses that are offset from Dynamic State Base Address (see Table
4-3). Read accesses from this address and beyond will return UNDEFINED values. Data port
writes to this address and beyond will be "dropped on the floor" (all data channels will be

385




STATE_BASE_ADDRESS

disabled so no writes occur). Setting this field to 0 will cause this range check to be ignored.
If non-zero, this address must be greater than the Dynamic State Base Address.

11:1 |Reserved

Project: All
Format: MBZ
0 |Dynamic State Access Upper Bound Modify Enable
Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated bound All
lh Enable Modify the bound All
8 31:12 | Indirect Object Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by
an indirect object load in a MEDIA_OBJECT command. Indirect data accessed at this address and
beyond will appear to be 0. Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 |Reserved

Project: All

Format: MBZ
0 |Indirect Object Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project
Oh Disable Ignore the updated bound All
1h Enable Modify the bound All
9 31:12 |Instruction Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (inclusive) maximum Graphics Memory page address
access by an EU instruction. Instruction data accessed beyond this 4K aligned page will return

386




Q"_til

STATE_BASE_ADDRESS

UNDEFINED values. Setting this field to 0 will cause this range check to be ignored.
If non-zero, this address must be greater than or equal to the Instruction Base Address.

Programming Notes

Software must ensure that all addresses falling within the purview of Inbound are pinned and
will not page fault.

11:1

Reserved

Project:

All

Format:

MBZ

Instruction Access Upper Bound Modify Enable

Project:

All

Format:

Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project
Oh Disable Ignore the updated bound All
lh Enable Modify the bound All

387




Q"_til

STATE_SIP
STATE_SIP
Project: HSW
Source: BSpec
Length Bias: 2

The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all

threads in execution.

DWord Bit

Description

0 31:29

Command Type

| Default Value:

3h GFXPIPE |

28:27

Command SubType

| Default Value:

| 0h GFXPIPE_COMMON |

26:24

3D Command Opcode

| Default Value:

| 1h GFXPIPE_NONPIPELINED |

23:16

3D Command Sub Opcode

| Default Value:

02h STATE_SIP |

15:8 | Reserved

Project:

All

Format:

MBZ

7:0

DWord Length

Project:

All

Format:

=n Total Length - 2

Value

Name

Description Project

Oh

DWORD_COUNT_n [Default]

Excludes DWord (0,1) HSW

1 314

System Instruction Pointer

Project: Project:

HSW

DevHSW

Format:

InstructionBaseOffset[31:4]Kernel

Specifies the instruction address of the system routine associated with the current context as a
128-bit granular offset from the Instruction Base Address. SIP is shared by all threads in
execution. The address specifies the double quadword aligned instruction location.

3:0 |Reserved

Project:

All

Format:

MBZ

388




389



Q"_til

SWTESS_BASE_ADDRESS

SWTESS_BASE_ADDRESS

Project: HSW
Source: BSpec
Length Bias: 2

The SWTESS_BASE_ADDRESS command sets the base pointers for SW Tessellation data read access by the TE
unit.

Programming Notes

This base address must also be comprehended in the SURFACE_STATE used by the HS kernel to write the SW
tessellation data.

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

DWord | Bit Description

0 31:29 | Command Type

|Defau|t Value: 3h GFXPIPE

28:27 | Command SubType

| Default Value: | oh GFXPIPE_COMMON

26:24 | 3D Command Opcode

| Default Value: | 1h GFXPIPE_NONPIPELINED

23:16 | 3D Command Sub Opcode

| Default Value: | 03h SWTESS_BASE_ ADDRESS

15:8 | Reserved

Project: All

Format: MBZ

7.0 |DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

Oh DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:12 | SW Tessellation Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for TE unit SW tessellation data read accesses.

390



Q"_til

SWTESS_BASE_ADDRESS

11:8 [SW Tessellation Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state used by the TE unit to read SW tessellation data from
memory.

7:0 |Reserved

Project: All

Format: MBZ

391



Q"_til

GPGPU_CSR_BASE_ADDRESS

GPGPU_CSR _BASE_ADDRESS

Project: HSW
Source: BSpec
Length Bias: 2

The GPGPU_CSR_BASE_ADDRESS command sets the base pointers for EU and L3 to Context Save and Restore EU
State and SLM for GPGPU mid.

DWord Bit Description
0 31:29 [Command Type

Default Value: 3h GFXPIPE
Format: Opcode

28:27 |Command SubType
Default Value: Oh GFXPIPE_.COMMON
Format: Opcode

26:24 |3D Command Opcode
Default Value: 1h GFXPIPE_NONPIPELINED
Format: Opcode

23:16 |3D Command Sub Opcode
Default Value: 04h GPGPU_CSR_BASE_ADDRESS
Format: Opcode

15:8 |[Reserved

| Format: MBZ

7.0 |DWord Length

| Format: =n Total Length -2
Value Name Description Project
Oh [Default] Excludes DWord(0,1) HSW
1 31:12 [GPGPU CSR Base Address
Project: DevHSW Project: HSW
Format: GraphicsAddress[31:12]

Specifies the 256K-byte aligned base address for GPGPU context

11:0 |Reserved

Project: HSW

Format: MBZ

392



MEX_WAIT

MFX_WAIT

Project:
Source:
Length Bias:

HSW
VideoCS
1

This command can be considered the same as an MI_NOOP except that the command parser will not parse the
next command until the following happens

e AVC or VC1 BSD mode: The command will stall the parser until completion of the BSD object

e IT, encoder, and MPEG2 BSD mode: The command will stall the parser until the object package is sent
down the pipelineThis command should be used to ensure the preemption enable window occurs during
the time the object command is being executed down the pipeline.

DWord

Bit

Description

0

31:29

Command Type

Default Value: 03h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27

Command Subtype

Default Value: 01h MFX_SINGLE_DW

Format: OpCode

26:16

Sub-Opcode

Default Value: 0h MFX_WAIT

Format: OpCode

15:10

Reserved

Project: All

Format: MBZ

Reserved

MFX Sync Control Flag
If set, VCS will stall the parser until all prior MFX objects are completed down the MFX
pipeline

7:6

Reserved

Project: All

Format: MBZ

5:0

DWord Length

Default Value: Oh Excludes DWord (0,1)

Project: All

393



MEX_WAIT

| Format:

[=n

Total Length - 2

394




3DSTATE_VF_STATISTICS

3DSTATE_VF_STATISTICS

Project: HSW
Source: RenderCS
Length Bias: 1

The VF stage tracks two pipeline statistics, the number of vertices fetched and the number of objects generated.
VF will increment the appropriate counter for each when statistics gathering is enabled by issuing the
3DSTATE_VF_STATISTICS command with the [Statistics Enable] bit set.

DWord | Bit Description
0 31:29 | Command Type

Default Value: 3h GFXPIPE
Format: Opcode

28:27 | Command SubType
Format: Opcode

Value Name Project

1h Pipelined, Single DWord [Default] HSW

26:24 | 3D Command Opcode
Default Value: Oh 3DSTATE_PIPELINED
Format: Opcode

GFXPIPE[28:27 = 1h, 26:24 = Oh, 23:16 = OBh] (Pipelined, Single DWord)

23:16 | 3D Command Sub Opcode

Default Value: OBh 3DSTATE_VF_STATISTICS

Format: Opcode

GFXPIPE[28:27 = 1h, 26:24 = Oh, 23:16 = 0Bh] (Pipelined, Single DWord)

15:1 |Reserved

| Format: | MBZ

0 |Statistics Enable

| Format: | Enable

If ENABLED, VF will increment the pipeline statistics counters IA_VERTICES_COUNT and
IA_PRIMITIVES_COUNT for each vertex fetched and each object output, respectively, for
3DPRIMITIVE commands issued subsequently.

If DISABLED, these counters will not be incremented for subsequent 3DPRIMITIVE commands.

395




Q"_til

PIPELINE_SELECT

PIPELINE_SELECT

Project: HSW
Source: BSpec
Length Bias: 1
Description Project

The PIPELINE_SELECT command is used to specify which GPE pipeline is to be considered the ‘current’

active pipeline. Issuing 3D-pipeline-specific commands when the Media pipeline is selected, or vice

versa, is UNDEFINED.

Issuing 3D-pipeline-specific commands when the GPGPU pipeline is selected, or vice versa, is HSW
UNDEFINED.

Programming common non pipeline commands (e.g., STATE_BASE_ADDRESS) is allowed in all pipeline
modes.

Programming Notes Project

Software must ensure all the write caches are flushed through a stalling PIPE_CONTROL command HSW
followed by another PIPE_CONTROL command to invalidate read only caches prior to programming
MI_PIPELINE_SELECT command to change the Pipeline Select Mode.

Example:

... Workload-3Dmode

PIPE_CONTROL (CS Stall, Depth Cache Flush Enable, Render Target Cache Flush Enable, DC Flush

Enable)

PIPE_CONTROL (Constant Cache Invalidate, Texture Cache Invalidate, Instruction Cache Invalidate,

State Cache invalidate)

PIPELINE_SELECT ( GPGPU)

Hardware Binding Tables are only supported for 3D workloads. Resource streamer must be enabled HSW

only for 3D workloads. Resource streamer must be disabled for Media and GPGPU workloads. Batch
buffer containing both 3D and GPGPU workloads must take care of disabling and enabling Resource
Streamer appropriately while changing the PIPELINE_SELECT mode from 3D to GPGPU and vice versa.
Resource streamer must be disabled using MI_RS_CONTROL command and Hardware Binding Tables
must be disabled by programming 3DSTATE_BINDING_TABLE_POOL_ALLOC with "Binding Table Pool
Enable" set to disable (i.e. value '0'). Example below shows disabling and enabling of resource
streamer in a batch buffer for 3D and GPGPU workloads.

MI_BATCH_BUFFER_START (Resource Streamer Enabled)

PIPELINE_SELECT (3D)

3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Enabled)

3D WORKLAOD

MI_RS_CONTROL (Disable Resource Streamer)

3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Disabled)

PIPELINE_SELECT (GPGPU)

GPGPU Workload

396




PIPELINE_SELECT

3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Enabled)
MI_RS_CONTROL (Enable Resource Streamer)

3D WORKLOAD

MI_BATCH_BUFFER_END

Note: Project
Note: Software must send a pipe_control with a CS stall and a post sync operation and then a | DevHSW:GT3:A0
dummy DRAW after every MI_SET_CONTEXT and after any PIPELINE_SELECT that is enabling
3D mode. A dummy draw is a 3DPRIMITIVE command with Indirect Parameter Enable set to
0, UAV Coherency Required set to 0, Predicate Enable set to 0, End Offset Enable set to 0, and
Vertex Count Per Instance set to 0. All other parameters are a don't care.
DWord Bit Description
0 31:29 [Command Type
Default Value: 3h GFXPIPE
Format: OpCode
28:27 |Command SubType
Default Value: 1h GFXPIPE_SINGLE_DW
Format: OpCode
26:24 [3D Command Opcode
Format: OpCode
Value Name Project
1h GFXPIPE_NONPIPELINED [Default] HSW
23:16 |3D Command Sub Opcode
Default Value: 04h GFXPIPE
Format: OpCode
15:2 |Reserved
Project: HSW
1.0 [Pipeline Selection
Value | Name Description Project

0 3D 3D pipeline is selected

video playback, and generic media workloads)

1 Media |Media pipeline is selected (Includes HD optical disc playback, HD

2 GPGPU | GPGPU pipeline is selected

HSW

397




Q"_til

MFX_PIPE_MODE_SELECT

MFX_PIPE_MODE_SELECT

Project: HSW
Source: VideoCS
Length Bias: 2

Specifies which codec and hardware module is being used to encode/decode the video data, on a per-frame
basis.

The MFX_PIPE_MODE_SELECT command specifies which codec and hardware module is being used to
encode/decode the video data, on a per-frame basis. It also configures the hardware pipeline according to the
active encoder/decoder operating mode for encoding/decoding the current picture. Commands issued
specifically for AVC and MPEG?2 are ignored when VC1 is the active codec.

DWord| Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_COMMON
Format: OpCode

26:24| Opcode
Default Value: 0Oh MFX_COMMON_STATE
Format: OpCode

23:21 | SubOpA
Default Value: Oh
Format: OpCode

20:16 | SubOpB
Default Value: Oh MFX_PIPE_MODE_SELECT
Format: OpCode

15:12 | Reserved

| Format: MBZ

11:0 |DWord Length

| Format: =n Total Length - 2
Value Name Description
3h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31 |Reserved

398



MFEX_PIPE_MODE_SELECT

30 [Reserved

Project: |HSW
29 |Reserved
28:27 | Reserved
26 |Reserved

Project: HSW

Format: MBZ
25 |Reserved

Format: MBZ
24 |Reserved

Project: HSW+

Format: MBZ
23:19 | Reserved

|Format: |MBZ
18 |Extended stream out enable

| Format: | Ul

This bit can be set only when VDEnc_Mode is set.

When this bit is set and MB stream out is enabled, per MB 1CL of data is streamed out. The
actual contents of the stream out are listed in Media VDBOX > Encoder VDEnc mode StreamQOut
Data Structure Definition.

When this bit is not set, per MB ¥4 CL data is streamed out. The actual contents of the stream out
are listed in Media VDBOX > Encoder StreamOut Mode Data Structure Definition.

17

Decoder Short Format Mode
For IT mode, this bit must be 0.

Value Name Description
1 Long Format Driver [ HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)]
Interface AVC/VC1/MVC/SVC Long Format Mode is in use.
0 Short Format Driver AVC/VC1/MVC/SVC/VP8 Short Format Mode is in use
Interface [Default] Note: There is no Short Format for SVC and VP8 yet, so this
field must be set to 1 for SVC and VP8.

16:15

Decoder Mode select
Each coding standard supports two entry points: VLD entry point and IT (IDCT) entry point. This
field selects which one is in use.This field is only valid if Codec Select is 0 (decoder).

Value| Name Description Project

Oh VLD Mode [All codec minimum must support this mode
Configure the MFD Engine for VLD Mode
Note: All codec minimum must support this
mode

399




MFEX_PIPE_MODE_SELECT

1h IT Mode |Configure the MFD Engine for IT Mode
Note: Only VC1 and MPEG2 support this mode

2h Deblocker |Configure the MFD Engine for Standalone HSW+
Mode Deblocker Mode. Require streamout AVC edge
control information from preceeding decoding
pass.

Note: [HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B,
HSW:GT2:B)] Only AVC, MPEG2 and SVC are

supported.
3h Interlayer |Configure the MFX Engine for standalone SVC | HSW,
Mode interlayer upsampling for motion info, residual | EXCLUDE(HSW:GT3:A,

and reconstructed pixel. Require information HSW:GT3:B, HSW:GT2:B)
being streamout from the preceding encoding
and decoding pass of a reference layer.>

14:13

Reserved
Project: HSW
Format: MBZ

12

Deblocker Stream-Out Enable

Project: HSW+

This field indicates if Deblocker information is going to be streamout during VLD decoding.

For AVC, it is needed to enable the deblocker streamout as the AVC Disable_DLKFilterIdc is a
slice level parameters. Driver needs to determine ahead of time if at least one slice of the current
frame/ has deblocker ON.

For SVC, there are two deblocking control streamout buffers (specified in MFX_BUF_ADDR State
Command). This field is still associated with the slice level SVC Disable.DLK_Filter_Idc.

Value | Name Description

Oh Disable | Disable streamout of deblocking control information for standalone deblocker
operation.

It needs other fields to determine one or two SVC deblocking surface
streamout (Post Deblocking Output Enable, Pre Deblocking Output Enable,
interlayer idc and regular deblock idc).

1h Enable

11

Pic Error/Status Report Enable.

Project: HSW

This field control whether the error/status reporting is enable or not.0: Disablel: Enableln
decoder modes: Error reporting is written out once per frame. The Error Report frame ID listed in
DWS3 along with the VLD/IT error status bits are packed into one cache and written to the
"Decoded Picture Error/Status Buffer address" listed in the MFX_PIPE_BUF_ADDR_STATE
Command. Note: driver shall program different error buffer addresses between pictrues;
otherwise, hardware might overwrite previous written data if driver does not read it fast
enough.In encoder modes: Not used

400




MFEX_PIPE_MODE_SELECT

Value Name

Oh Disable

1h Enable

10

Stream-Out Enable
This field controls whether the macroblock parameter stream-out is enabled during VLD

decoding for transcoding purpose.

Value Name

Oh Disable

Enable

lh

Programming Notes

In decoder modes: The Stream-Out feature is added to support transcoding. While decoding
the input compressed stream, selected decoded information may be used by the encoder for
re-compression.In encoder modes: This feature used to perform dynamic Multipass of PAK for
conformance pupose. Also it provides feedback to host (ENC) for future needs. Software can
use this bit to disable writing PAK steam data to the streamout buffer for last pass of frame in
PAK. Thus, save memory bandwidth.

9 | Post Deblocking Output Enable (PostDeblockOutEnable)
This field controls the output write for the reconstructed pixels AFTER the deblocking filter.In
MPEG?2 decoding mode, if this is enabled, VC1 deblocking filter is used.
Value Name
Oh Disable
1h Enable
8 | Pre Deblocking Output Enable (PreDeblockOutEnable)
This field controls the output write for the reconstructed pixels BEFORE the deblocking filter.
Value Name
Oh Disable
1h Enable
7:6 |Reserved
Project: EXCLUDE(WLV+)
Format: MBZ
5 |Stitch Mode
Exists If: //CodecSel=Encode and StandardSel=AVC
Value Name Description
Oh Not in stitch mode
1h In the special stitch This mode can be used for any Codec as long as bitfield
mode conditions are met.

401




MFEX_PIPE_MODE_SELECT

(lntel
4

Codec Select

Value Name Description
Oh Decode
lh Encode Valid only if StandardSel is AVC, MPEG2 and SVC)
3:0 [Standard Select
Value Name Description Project
0000b MPEG2
0001b VC1
0010b AVC Covers both AVC and MVC
0011b JPEG
0100b SvC HSW+
0110b Reserved
0111b Reserved
2 31 |Reserved
Format: MBZ
30 |Reserved
Project: HSW:GT3:A, HSW:GT3:B, HSW:GT2:B
Format: MBZ
30 |Reserved
|Project: HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)
29 |Reserved
| Format: MBZ
28 [VMB SVC MV Replication for 8x8 Enable (Error Handling)

| Project:

HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)

This bit enables Motion Vector replication on 8x8 level during SVC mode for error handling.

Value

Name

Description

0

Disable [Default]

Disable MV 8x8 replication in SVC mode

1

Enable

Enable MV 8x8 Replication in SVC Mode

27

VMB SVC TLB Dummy Fetch Disable for Performance

Project:

HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)

This bit disables TLB dummy fetch in SVC mode in VMB.

Value

Name

Description

0

Enable [Default]

Enable VMB TLB Dummy Fetch for Performance

1

Disable

Disable VMB TLB Dummy Fetch

28:26

Reserved

402




MFEX_PIPE_MODE_SELECT

Project: HSW:GT3:A, HSW:GT3:B, HSW:GT2:B

Format: MBZ

26

Reserved

Project: HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)

25

Reserved

Project: HSW

Format: MBZ

24

Reserved

Project: HSW:GT3:A, HSW:GT2:B, HSW:GT3e:B

Format: MBZ

24

VHR MVC Field Reference List Logic Enable

Project: HSW, EXCLUDE(HSW:GT3:A, HSW:GT2:B, HSW:GT3e:B)

Value Name Description

0 Disable [Default] Disable MVC Field Logic

1 Enable VHR MVC Field Enable

23

Reserved

Project: HSW +

22:21

Reserved

20:19

Reserved

Project: HSW +

Format: MBZ

18

Reserved

| Format: | MBZ

17

Reserved

| Project: | HSW+

16

Reserved

15

Reserved

14

VLF 720i (Odd Height) in VC1 Mode

Project: HSW +

This bit indicates VLF write out VC1 picture with odd height (in MBs).

Value Name Description

0 Disable [Default]

1 Enable 720i Enable

13

Reserved

403




MFEX_PIPE_MODE_SELECT

|Format: | MBZ
12 |Reserved

|Project: | HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:8, HSW:GT2:B)
12 |Reserved

Project: HSW:GT3:A, HSW:GT3:B, HSW:GT2:B

Format: MBZ
11 |Reserved
10 |MPC pref08x8_disable Flag (Default 0)

Value Name

0 Disable

1 Enable
9 |Reserved

|Format: MBZ
8 |Reserved

|Project: HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)
8 |Reserved

Project: HSW:GT3:A, HSW:GT3:B, HSW:GT2:B

Format: MBZ
7 |Reserved

Clock gate Enable at Slice-level

BitFieldDesc:

Value | Name Description

0 Disable |[Disable Slice-level Clock gating, Unit-level Clock gating will apply

1 Enable |[Enable Slice-level Clock gating, overrides any Unit level Clock gating

Reserved
4 |Reserved

Project: HSW:GT3:A, HSW:GT3:B, HSW:GT2:B
4 |Reserved

Project: HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)

Format: MBZ
3 |Reserved

| Project: | HSW:GT3:A, HSW:GT3:B, HSW:GT2:8
3 | VDS ILDB Calculation

|Project: | HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:8, HSW:GT2:B)

This bit forces all MB into INTRA MBs before doing ILDB control generation in VDS.

404




Q"_til

MFEX_PIPE_MODE_SELECT

Value Name Description
0 Disable [Default] Use original definition for ILDB calculation.
Enable Force neighbor Intra MB = 1 on ILDB BS calculation.

Programming Notes

When the bit is '0', the ILDB control generation will be the same as the original spec
(AVC/VC1/SVC).

2 |Reserved
| Project: | HSW:GT3:A, HSW:GT3:B, HSW:GT2:B
2:1 [Reserved
|Project: |HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)
1.0 |Reserved
Project: HSW:GT3:A, HSW:GT3:B, HSW:GT2:B
Format: MBZ
0 |Reserved
Project: HSW, EXCLUDE(HSW:GT3:A, HSW:GT3:B, HSW:GT2:B)
31:0 |Pic Status/Error Report ID
Exists If: //Decoder Mode Only
Format: u32
In decoder modes: Error reporting is written out once per frame. This field along with the VLD
error status bits are packed into one cache and written to the memory location specified by
"Decoded Picture Error/Status Buffer address” listed in the MFX_PIPE_BUF_ADDR_STATE
Command.
Value Name Description
Oh 32-bit unsigned Unique ID Number
1h Reserved
31:0 | Media Soft-Reset Counter (per 1000 clocks)

Project: HSW

In decoder modes, this indicates the number of clocks (per 1000) VINunit will wait for inactivity
from MFX pipeline before issuing media soft reset. If this counter is set to 0, VINunit will never
issue soft media reset.

In encoder modes: This counter must be set to 0 to disable media soft reset since encoder mode
is not supported.

405




Q"_til

MEDIA_VFE_STATE

MEDIA_VFE_STATE

Project: HSW
Source: RenderCS
Length Bias: 2

An MIL_FLUSH is required before MEDIA_VFE_STATE unless the only bits that are changed are scoreboard related:
Scoreboard Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For these scoreboard related states,
a MEDIA_STATE_FLUSH is sufficient.

MEDIA_STATE_FLUSH (optional, only if barrier dependency is needed)

MEDIA_INTERFACE_DESCRIPTOR_LOAD (optional)

DWord| Bit Description

0 31:29 | Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 | Pipeline

Default Value: 2h Media

Format: OpCode

26:24 | Media Command Opcode

Default Value: Oh MEDIA_VFE_STATE

Format: OpCode

23:16 | SubOpcode

Default Value: Oh MEDIA_VFE_STATE SubOp

Format: OpCode

15:0 | DWord Length

Format: =n Total Length - 2

Value Name Description

06h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:10 | Scratch Space Base Pointer

Format: GeneralStateOffset[31:10]

Specifies the 1k-byte aligned address offset to scratch space for use by the kernel. This pointer is

406



MEDIA_VFE_STATE

relative to the General State Base Address.

9:8 [Reserved
| Format: | MBZ
7:4 |Stack Size
| Project: | HSW
Value Name Description
[0,11] indicating [1KBytes, 2MBytes]
Programming Notes Project
Since the stack starts at the half-way point of the scratch space, HSW
Stack Size =< Per Thread Scratch Space/2
3:0 [Per Thread Scratch Space
Format: u4

Specifies the amount of scratch space allowed to be used by each thread. The driver must
allocate enough contiguous scratch space, pointed to by the Scratch Space Pointer, to ensure
that the maximum threads in the device each get Per Thread Scratch Space size without
exceeding the driver-allocated scratch space.

Note: The definition of this field was different before DevHSW; the encoding changed from a
simple linear to a power of 2 to allow more range.

Value | Name Description Project
[0,10] Indicating [2k bytes, 2 Mbytes] : 0->2k, 1->4k, 2->8k ... 10->2M] HSW
Note: Project

Note: The scratch space should be declared as 2x the desired scratch space. The stack |HSW
will start at the half-way point instead of the end. The upper half of scratch space will
not be accessed and so does not have to be allocated in memory.

31:16

Maximum Number of Threads

Format: U16-1 representing thread count

Range: [0, n-1] where n = (# EUs) * (# threads/EU). See Graphics Processing Engine for listing of
#EUs and #threads in each device.

Specifies the maximum number of simultaneous root threads allowed to be active. Used to
avoid potential deadlock.

If child threads are not planning on being used then this field can be set to its maximum value
and there will be no thread limit beyond what is currently available in the system; the maximum
value can include threads in slices that have been shut down for power reasons.

Programming Notes

407



MEDIA_VFE_STATE

| MSB will be zero due to the range limit below.
15:8 | Number of URB Entries
| Format: | us
Specifies the number of URB entries that are used by the unit.
Value Name Description Project
[0,64] [0,64] Entries DevHSW:GT1, DevHSW:GT2
[0,128] [0,128] Entries DevHSW:GT3, DevHSW:GT4
7 |Reset Gateway Timer
This field controls the reset of the timestamp counter maintained in Message Gateway.
Value Name
Oh Maintaining the existing timestamp state
lh Resetting relative timer and latching the global timestamp
6 |Bypass Gateway Control
This field configures Gateway to use a simple message protocol.
Value Name
Oh Maintaining OpenGateway/ForwardMsg/CloseGateway protocol (legacy mode)
lh Bypassing OpenGateway/CloseGateway protocol
5 |Reserved
Project: HSW
4:3 |Reserved
Project: HSW
Format: MBZ
2 |GPGPU Mode
Project: HSW
This bit indicates whether the VFE is in GPGPU mode (will expect GPGPU_OBJECT and
GPGPU_WALKER commands) or MEDIA mode (will expect MEDIA_OBJECT and MEDIA_WALKER
commands)
Value Name
Oh MEDIA Mode
1h GPGPU Mode
1:0 |Reserved
3 31:8 | Reserved
7:2 |Reserved
Format: MBZ
1.0 |Half-Slice Disable
Project: HSW

408



(intel
MEDIA VFE STATE

This field disables dispatch to half-slices for Media and GPGPU applications. It is used to limit the
amount of scratch space that needs to be allocated for a context. If a particular configuration
doesn't have a half-slice then there is no impact to disabling it.

31:16

Value | Name Description

00b All half-slices are enabled.

01b Half-slices 3 and 2 are disabled.

10b Reserved

11b Half-slices 3, 2, and 1 are disabled; only half-slice 0 is enabled.
URB Entry Allocation Size

Format: ule

Description Project

Specifies the length of each URB entry used by the unit, in 256-bit register increments
- 1. ROB address for URB starts after CURBE Allocated region.

(URB Entry Allocation Size * Number of URB Entries) + CURBE Allocation Size +
Interface Descriptor Entries) must be less than or equal to the number of entries in the
URB as described in 3D-Media-GPGPU Engine/Shared Functions/URB/URB Size.

If SLM is enabled for GPGPU work then the number of available entries will be 1/2 the
maximum URB entries.

Interface Descriptor Entries is 64. HSW

Programming Notes

When Inline data is used with MEDIA_OBJECT or MEDIA_OBJECT_WALKER, then the URB entry
allocation size must match the Inline data size.

If Indirect data is being used with MEDIA_OBJECT then the allocation size does not matter, but
the total Allocation Size * Number of URB Entries should be sufficient for the Indirect data.

If both Inline and Indirect are being used, then the allocation size must match the Inline and
the total space must be enough for both the Indirect and Inline.

15:0

CURBE Allocation Size

Format: ule

Description Project

Specifies the total length allocated for CURBE, in 256-bit register increments.

[DevHSW]: ROB address for CURBE starts at address 64. HSW

(URB Entry Allocation Size * Number of URB Entries) + CURBE Allocation Size +
Interface Descriptor Entries) must be less than or equal to the number of entries in the
URB as described in 3D-Media-GPGPU Engine/Shared Functions/URB/URB Size.

If SLM is enabled for GPGPU work then the number of available entries will be 1/2 the
maximum URB entries.

Interface Descriptor Entries is 64. HSW

409



MEDIA_VFE_STATE

5 31 |Scoreboard Enable
This field enables and disables the hardware scoreboard in the Media Pipeline. If this field is
cleared, hardware ignores the following scoreboard state fields.
Value Name
Oh Scoreboard disabled
1h Scoreboard enabled
Note: Project
Note: For DevHSW always have this bit enabled. To disable the scoreboard, the HSW
Scoreboard Mask should be set to 0x00.
30 |Scoreboard Type
This field selects the type of scoreboard in use.
Value Name Project
Oh Stalling Scoreboard
lh Non-Stalling Scoreboard HSW
29:8 |Reserved
Format: MBZ
7:0 |Scoreboard Mask
Format: Enable[8]
Each bit indicates the corresponding dependency scoreboard is enabled. The scoreboard is
based on the relative (X, Y) distance from the current threads' (X, Y) position.
Bit n (for n = 0...7): Score n is enabled.
6 31:28 | Scoreboard 3 Delta Y
Format: S3
Relative vertical distance of the dependent instance assigned to scoreboard 3, in the form of 2's
compliment.
27:24 | Scoreboard 3 Delta X
Format: S3
Relative horizontal distance of the dependent instance assigned to scoreboard 3, in the form of
2's compliment.
23:20|Scoreboard 2 Delta Y
Format: S3
Relative vertical distance of the dependent instance assigned to scoreboard 2, in the form of 2's
compliment.
19:16 | Scoreboard 2 Delta X

410




Q"_til

MEDIA_VFE_STATE

Format: S3

Relative horizontal distance of the dependent instance assigned to scoreboard 2, in the form of
2's compliment.

15:12 | Scoreboard 1 Delta Y
Format: S3
Relative vertical distance of the dependent instance assigned to scoreboard 1, in the form of 2's
compliment.
11:8 |Scoreboard 1 Delta X
Format: S3
Relative horizontal distance of the dependent instance assigned to scoreboard 1, in the form of
2's compliment.
7:4 |Scoreboard 0 Delta Y
Format: S3
Relative vertical distance of the dependent instance assigned to scoreboard 0, in the form of 2's
compliment.
3:0 |Scoreboard 0 Delta X
Format: S3
Relative horizontal distance of the dependent instance assigned to scoreboard 0, in the form of
2's compliment.
31:28 | Scoreboard 7 Delta Y
Format: S3
Relative vertical distance of the dependent instance assigned to scoreboard 7, in the form of 2's
compliment.
27:24 | Scoreboard 7 Delta X
Format: S3
Relative horizontal distance of the dependent instance assigned to scoreboard 7, in the form of
2's compliment.
23:20 | Scoreboard 6 Delta Y
Format: S3
Relative vertical distance of the dependent instance assigned to scoreboard 6, in the form of 2's
compliment.
19:16 | Scoreboard 6 Delta X

411




MEDIA_VFE_STATE

| Format: S3

Relative horizontal distance of the dependent instance assigned to scoreboard 6, in the form of
2's compliment.

15:12

Scoreboard 5 Delta Y

Format: S3

Relative vertical distance of the dependent instance assigned to scoreboard 5, in the form of 2's
compliment.

11:8

Scoreboard 5 Delta X

Format: S3

Relative horizontal distance of the dependent instance assigned to scoreboard 5, in the form of
2's compliment.

74

Scoreboard 4 Delta Y

Format: S3

Relative vertical distance of the dependent instance assigned to scoreboard 4, in the form of 2's
compliment.

3:0

Scoreboard 4 Delta X

Format: S3

Relative horizontal distance of the dependent instance assigned to scoreboard 4, in the form of
2's compliment.

412




MEDIA_CURBE_LOAD

MEDIA_CURBE_LOAD

Project:
Source:

Length Bias:

HSW
RenderCS
2

DWord

Bit

Description

0

31:29

Command Type

Default Value:

3h GFXPIPE

Format:

OpCode

28:27

Pipeline

Default Value:

2h Media

Format:

OpCode

26:24

Media Command Opcode

Default Value:

Oh MEDIA_CURBE_LOAD

Format:

OpCode

23:16

SubOpcode

Default Value:

1h MEDIA_CURBE_LOAD SubOp

Format:

OpCode

15:0

DWord Length

Project:

All

Format:

=n Total Length - 2

Value

Name

Description

2h DWORD_COUNT_n [Default]

Excludes DWord (0,1)

31:0

Reserved

Project:

All

Format:

MBZ

31:17

Reserved

Project:

All

Format:

MBZ

16:0

CURBE Total Data Length

Project:

All

Format:

U17 In Bytes

413




MEDIA_CURBE_LOAD

Invalidation Enable thru a PIPE_CONTROL command prior to reusing the same
graphics memory space.

VF cache invalidation must be done when any graphics memory space is reused
within the same 64-byte cacheline.

Description Project
This field provides the length in bytes of the CURBE data.
This field must have the same alignment as the Curbe Object Data Start Address.As
the CURBE data are sent directly to ROB, range is limited to CURBE Allocation Size.
This field must be DWord (32-byte) aligned. HSW
3 31:0 | CURBE Data Start Address
Project: All
Format: DynamicStateOffset[31:0] CURBE
Description Project
Specifies the 32-byte (DWord) aligned address of the CURBE data. This pointer is HSW
relative to the Dynamics Base Address.
Value Name
[O,FFFFFFFFh]
Programming Notes Project
Driver must invalidate the vertex fetch cache thru the VF(address based) Cache HSW

414




MFX_SURFACE_STATE

MFX_SURFACE_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This command is common for all encoding/decoding modes, to specify the uncompressed YUV picture (i.e.
destination surface) or intermediate streamout in/out surface (e.g. coefficient/residual) (field, frame or
interleaved frame) format for reading and writing:

e Uncompressed, original input picture to be encoded

e Reconstructed non-filtered/filtered display picturec(becoming reference pictures as well for subsequent
temporal inter-prediction)

e Residual in SVC
e Reconstructed Intra pixel in SVC
e CoeffPred in SVC

Since there is only one media surface state being active during the entire encoding/decoding process, all the
uncompressed/reconstructed pictures are defined to have the same surface state. For each media object call
(decoding or encoding), multiple SVC surfaces can be active concurrently, to distinguish among them, a
surfacelD is added to specify for each type of surface. The primary difference among picture surface states is
their individual programmed base addresses, which are provided by other state commands and not included in
this command. MFX engine is making the association of surface states and corresponding buffer base addresses.
MFX engine currently supports only one media surface type for video and that is the NV12 (Planar YUV420 with
interleaved U (Cb) and V (Cr). For optimizing memory efficiency based on access patterns, only TileY is
supported. For JPEG decoder, only IMC1 and IMC3 are supported. Pitch can be wider than the Picture Width in
pixels and garbage will be there at the end of each line. The following describes all the different formats that are
supported and not supported in Gen7 MFX:

e NV12 - 4:2:0 only; UV interleaved; Full Pitch, U and V offset is set to 0 (the only format supported for video
codec); vertical UV offset is MB aligned; UV xoffsets = 0. JPEG does not support NV12 format because
non-interleave JPEG has performance issue with partial write (in interleaved UV format)

e IMC1 & 3 - Full Pitch, U and V are separate plane; (JPEG only; U plane + garbage first in full pitch
followed by V plane + garbage in full pitch). U and V vertical offsets are block aligned; U and V xoffset =
0; there is no gap between Y, U and V planes. IMC1 and IMC3 are different by a swap of U and V. This is
the only format supported in JPEG for all video subsampling types (4:4:4, 4:2:2 and 4:2:0)

e We are not supporting IMC 2 & 4 - Full Pitch, U and V are separate plane (JPEG only; U plane first in full
pitch followed by V plane in full pitch - U and V plane are side-by-side). U and V vertical offsets are 16-
pixel aligned; V xoffset is half-pitch aligned; U xoffset is 0; there is no gap between Y, U and V planes.
IMC2 and IMC4 are different by a swap of U and V.

e We are not supporting YV12 - half pitch for each U and V plane, and separate planes for Y, U and V (U
plane first in half pitch followed by V plane in half pitch). For YV12, U and V vertical offsets are block
aligned; U and V xoffset = O; there is no gap between Y, U and V planes

415



(intel
MFX_SURFACE_STATE

Note that the following data structures are not specified through the media surface state
e 1D buffers for row-store and other miscellaneous information.
e 2D buffers for per-MB data-structures (e.g. DMV biffer, MB info record, ILDB Control and Tcoeff/Stocoeff).

This surface state here is identical to the Surface State for deinterlace and sample_8x8 messages described in the
Shared Function Volume and Sampler Chapter.

For non pixel data, such as row stores, indirect data (Compressed Slice Data, AVC MV record, Coeff record and
AVC ILDB record) and streamin/out and output compressed bitstream, a linear buffer is employed. For row
stores, the H/W is designed to guarantee legal memory accesses (read and write). For the remaining cases,
indirect object base address, indirect object address upper bound, object data start address (offset) and object
data length are used to fully specified their corresponding buffer. This mechanism is chosen over the pixel
surface type because of their variable record sizes.

All row store surfaces are linear surface. Their addresses are programmed in Pipe_Buf_Base_State or

Bsp_Buf _Base_Addr_State

Programming Notes

VC1 I picture scaling: Even though VC1 allows I reconstructed picture scaling (via RESPIC), as such scaling is
only allowed at I picture. All subsequent P (and B) pictures must have the same picture dimensions with the
preceding I picture. Therefore, all reference pictures for P or B picture can share the same surface state with the
current P and B picture. Note : H/W is not processing RESPIC. Application is no longer expecting intel decoder
pipelineand kernel to perform this function, it is going to be done in the video post-processing scaler or display
controller scale as a separate step and controller.

All video codec surfaces must be NV12 Compliant, except JPEG. U/V vertical must be MB aligned for all video
codec (further contrained for field picture), but JPEG can be block aligned. All video codec and JPEG uses Tiled -
Y format only, for uncompressed pixel surfaces.

Even for JPEG planar 420 surface, application may provide only 1 buffers, but there is still only one single
surface state for all of them. If IMC equal to 1, 2, 3 or 4, U and V have the pitch same as Y. And U and V will
have different offset, each offset is block aligned.

DWord| Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_COMMON
Format: OpCode

26:24 | Opcode
Default Value: 0Oh MFX_COMMON_STATE
Format: OpCode

23:21|SubOpA
Default Value: Oh

416



MFX_SURFACE_STATE

Format: | OpCode
20:16 | SubOpB

Default Value: 1h

Format: OpCode
15:12 | Reserved

|Format: MBZ
11:0 (DWord Length

| Format:

=n Total Length - 2

Value Name Description
4h DWORD_COUNT_n [Default] Excludes DWord (0,1)
31:4 | Reserved
Format: MBZ
3:0 |Surfaceld
Project: DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B
Format: u4
Value Name Description
0000b | Decoded Picture and Reference Pictures, SVC upsampling 8-bit uncompressed
Streamout Reconstructed Pixels/Coeff_pred (Upper Layer Size) data
0001b | SVC Residual Upsampling Stream Out Surface (Upper layer Size) | 16-bit
uncompressed data
0010b | SVC Reconstructed pixel and CoeffPred Upsampling Stream In 8-bit uncompressed
Surface (Lower Layer Size) data.
0011b | SVC Residual Upsampling Stream In Surface (lower layer size) 16-bit
uncompressed data
0100b | Source Input Picture (encoder) 8-bit uncompressed
data
0101b | Reconstructed Scaled Reference Picture 8-bit data
3:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B)
Format: |MBZ
31:18 |Height
Format: U14-1 Height

This field specifies the height of the Picture in units of pixels/residuals. For PLANAR surface
formats, this field indicates the height of the Y (luma) plane. Note : Gen7 Video Codecs must
program less than and equal to 4K.(In future, it will be ideal to have this field define in a WORD

417




MFX_SURFACE_STATE

boundary.)AVC - multiple of 2 MB rows for field pictureVC1 - mulitple of 4 pixels for field
pictureMPEG2 - multiple of 2 MB rows for field picJPEG - mulitple of integral MCU (8 or 16 pixels)
er picture

Value Name Description
[0,16383] representing heights [1,16384]

Programming Notes

e For AVC: For frame picture is a multiple of 16; for field picture is a multiple of 32

e For VC1 : For progressive frames, the frame height and frame width is a multiple of 2
pixels. For interlaced frames, the frame height shall be a multiple of 4 pixels, and its
width is a multiple of 2 pixels, based on a PLANAR_420 surface.

e For SVC: The pixel or residual heights for streamin and streamout.

17:4

Width
Format: U14-1 Width

This field specifies the width of the Picture in units of pixels/residuals. For PLANAR surface
formats, this field indicates the width of the Y (luma) plane.

Value Name Description
[0,16383] representing widths [1,16384]

Programming Notes

e The Width specified by this field multiplied by the pixel size in bytes must be less than or
equal to the surface pitch (specified in bytes via the Surface Pitch field).

e Width (field value + 1) must be a multiple of 2 for PLANAR_420,

e For SVC : the pixel or residual width for streamin and streamout.

e MFX HW does not use this field, the picture width is read from IMG State instead,

because this field may not equal to the actual picture width. This field is used by the
KMD to allocate surface in GTT.

3:2 |Reserved

Format: MBZ
1.0 [Cr(V)/Cb(U) Pixel Offset V Direction

Project: All

Format: U0.2 exactly as shown in the original spec

Specifies the distance to the U/V values with respect to the even numbered Y channels in the V
direction

Programming Notes
This field is ignored for all formats except PLANAR_420_8

31:28

Surface Format

418




(intel
MFX_SURFACE_STATE

Specifies the format of the surface. All of the Y and G channels will use table 0 and all of the
Cr/Cb/R/B channels will use table 1.Usage: For 420 planar YUV surface, use 4; for monochrome
surfaces, use 12. For monochrome surfaces, hardware ignores control fields for Chroma
planes.This field must be set to 4 - PLANAR_420_8, or 12 - Y8_UNORMNot used for MFX, and is
ignored. But for JPEG decoding, this field should be programmed to the same format as
JPEG_PIC_STATE. For video codec, it should set to 4 always.

Value Name Description
0 YCRCB_NORMAL
1 YCRCB_SWAPUVY
2 YCRCB_SWAPUV
3 YCRCB_SWAPY
4 PLANAR_420_8 (NV12,IMCL1,2,3,4, YV12)
5 PLANAR 411 _8 Deinterlace Only
6 PLANAR 422 8 Deinterlace Only
7 STMM_DN_STATISTICS Deinterlace Only
8 R10G10B10A2_UNORM Sample_8x8 Only
9 R8G8BSA8_UNORM Sample_8x8 Only
10 R8B8_UNORM (CrCb Sample_8x8 Only
11 R8_UNORM (Cr/Cb) Sample_8x8 Only
12 Y8_UNORM Sample_8x8 Only
13,15 Reserved

27

Interleave Chroma

Format: Enable

This field indicates that the chroma fields are interleaved in a single plane rather than stored as
two separate planes. This field is only used for PLANAR surface formats.For AVC/VC1/MPEG VLD
and IT modes : set to Enable to support interleave U/V only.For JPEG : set to Disable for all
formats (including 4:2:0) - because JPEG does not support NV12. (This field is needed only if JPEG
will support NV12; otherwise is ignored.)

Value Name
1 Enable
0 Disable
26 (Reserved
| Format: | MBZ
25:22 | Surface Object Control State (MEMORY_OBJECT_CONTROL_STATE)

| Project: | HSW
Memory object control state provides a lighter control over the memory interface caches

compared to PTE settings. However MOCS (Memory Object Control State) is the only way to
manage L3$ caching for a given surface.

419




MFX_SURFACE_STATE

For the latest definition of these 4 bits, please refer to Memory Object Control State (MOCS)
section, under Vollc Memory Interface and Command Stream.

21:20 | Reserved
Project: HSW
Format: MBZ
19:3 [Surface Pitch

Format: U17-1 pitch in Bytes

This field specifies the surface pitch in (#Bytes).

Value Name Description

[0,2047] to [1B, 2048B]

Programming Notes

For tiled surfaces, the pitch must be a multiple of the tile width (i.e.128 bytes aligned). If Half
Pitch for Chroma is set, this field must be a multiple of two tile widths for tiled surfaces, or a
multiple of 2 bytes for linear surfaces.For Y-tiled surfaces: Range = [127, 524287] to
[128B,256KB] = [1 tile, 2048 tiles]

For Each SVC SurfacelD:

00b: 8-bit uncompressed pixel or coeff_pred data - pitch >= upper layer pic width aligned to
128-byte tile.

01b: 16-bit uncompressed residual data - pitch >= 2*upper layer pic width aligned to 128-byte
tile.

10b: 8-bit uncompressed pixel or coeff_pred data - pitch >= lower layer pic width aligned to
128-byte tile.

11b: 16-bit uncompressed residual data - pitch >= 2*lower layer pic width aligned to 128-byte
tile.

Half Pitch for Chroma

Format: Enable

(This field must be set to Disable)This field indicates that the chroma plane(s) will use a pitch
equal to half the value specified in the Surface Pitch field. This field is only used for PLANAR
surface formats.This field is igored by MFX (unless we support YV12)

Tiled Surface

Format: Boolean

(This field must be set to TRUE: Tiled)This field specifies whether the surface is tiled.This field is
ignored by MFX

Value Name Description

0 False Linear

True Tiled

420




Q"_til

MFX_SURFACE_STATE

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable,
snooped). Tiled surfaces can only be mapped to Main Memory.The corresponding cache(s)
must be invalidated before a previously accessed surface is accessed again with an altered state
of this bit.

0 |Tile Walk
Format: 3D_Tilewalk
(This field must be set to 1: TILEWALK_YMAJOR)This field specifies the type of memory tiling
(XMajor or YMajor) employed to tile this surface. See Memory Interface Functions for details on
memory tiling and restrictions.This field is ignored when the surface is linear.This field is ignored
by MFX. Internally H/W is always treated this set to 1 for all video codec and for JPEG.
Value Name Description
Oh XMAJOR TILEWALK_XMAJOR
1h YMAJOR TILEWALK_YMAJOR
Programming Notes
The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit
31 |Reserved
Format: MBZ
30:16 | X Offset for U(Cb)
Project: All
Format: U15 Pixel Offset
This field specifies the horizontal offset in pixels from the Surface Base Address to the start
(origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field
is only used for PLANAR surface formats. This field must be set to zero.X Offset for U(Cb) in pixel
(This field must be zero for NV12 and IMC 1 and 3)
Programming Notes
For PLANAR 420 and PLANAR 422 surface formats, this field must be zero.
15 |Reserved
Project: All
Format: MBZ
14:0 |Y Offset for U(Cb)
Project: All
Format: U15 Pixel Row Offset

This field specifies the veritical offset in rows from the Surface Base Address to the start (origin)
of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only
used for PLANAR surface formats.

421




MFX_SURFACE_STATE

Programming Notes

For PLANAR_420 and PLANAR _422 surface formats, this field must be multiple of 16 pixels - i.e.
multiple MBs. For JPEG, this field must be a multiple of 16 pixels.

31:29 | Reserved
| Format: MBZ
28:16 | X Offset for V(Cr)
|Format: |U13 Offset in Pixels
This field must be zero for NV12 and IMC 1 and 3
This field specifies the horizontal offset in pixels from the Surface Base Address to the start
(origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave
Chroma disabled.
Programming Notes
For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of
pixels.
15:0 |Y Offset for V(Cr)

Format: | U16 Row Offset in Pixels

This field specifies the veritical offset in rows from the Surface Base Address to the start (origin)
of the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma
disabled. This field is ignored by all video codec, only used by JPEG.

Programming Notes

For PLANAR_420 surface formats, this field must be multiple of 16 pixels - i.e. multiple MBs. For

JPEG, this field must be a multiple of 16 pixels.

422



MEDIA_INTERFACE_DESCRIPTOR_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Project:
Source:

Length Bias:

HSW
RenderCS
2

A Media_State_Flush should be used before this command to ensure that the temporary Interface Descriptor
storage is cleared.

DWord

Bit

Description

0

31:29

Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27

Pipeline

Default Value: 2h Media

Format: OpCode

26:24

Media Command Opcode

Default Value: Oh MEDIA_INTERFACE_DESCRIPTOR_LOAD

Format: OpCode

23:16

SubOpcode

Default Value: 2h MEDIA_INTERFACE_DESCRIPTOR_LOAD SubOp

Format: OpCode

15:0

DWord Length

Format: =n Total Length - 2

Value Name Description

2h DWORD_COUNT_n [Default] Excludes DWord (0,1)

310

Reserved

| Format: | MBZ

31:17

Reserved

| Format: | MBZ

16:0

Interface Descriptor Total Length

Format: U1l7 In bytes

This field provides the length in bytes of the Interface Descriptor data. This field must have the
same alignment as the Interface Descriptor Data Start Address.It must be DQWord (32-byte)
aligned. As the Interface Descriptor data are sent directly to ROB, range is limited to CURBE
Allocation Size.

423




MEDIA_INTERFACE_DESCRIPTOR_LOAD

Value Name Project
[32,2048] [1,64] interface descriptor entries DevHSW +
Restriction Project

Restriction : Interface Descriptors are limited to [1,32] when Context Switch is enabled. |HSW

31:0

Interface Descriptor Data Start Address

Format:

DynamicStateOffset[31:0]INTERFACE_DESCRIPTOR_DATA

Description

Project

This bit specifies the 32-byte aligned address of the Interface Descriptor data. This HSW
pointer is relative to the Dynamics Base Address.

Invalidation Enable thru a PIPE_CONTROL command prior to reusing the same
graphics memory space.
VF cache invalidation must be done when any graphics memory space is reused
within the same 64-byte cacheline.

Value Name
[0,FFFFFFFFh]
Programming Notes Project
Driver must invalidate the vertex fetch cache thru the VF(address based) Cache HSW

424




MFX_PIPE_BUF_ADDR_STATE

MFEX_PIPE_BUF_ADDR_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This state command provides the memory base addresses for all row stores, StreamOut buffer and reconstructed
picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores of the Bit
Stream Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level state
command and is common among all codec standards and for both encoder and decoder operating modes.
However, some fields may only applicable to a specific codec standard.All Pixel Surfaces (original, reference
frame and reconstructed frame) in the Encoder are programmed with the same surface state (NV12 and TileY
format), except each has its own frame buffer base address. In the tile format, there is no need to provide buffer
offset for each slice; since from each MB address, the hardware can calculated the corresponding memory
location within the frame buffer directly.

DWord| Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

26:24 | Common Opcode
Default Value: Oh MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

23:21 |SubOpcode A
Default Value: Oh MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

20:16 | SubOpcode B
Default Value: 2h MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

15:12 | Reserved

| Format: | MBZ

11:0 (DWord Length

1l
=]

| Format:

| Total Length

425



MFEX_PIPE_BUF_ADDR_STATE

| Fixed Length

Value Name Description

16h DWORD_COUNT_n [Default] Excludes DWord (0,1)

31:6

Pre Deblocking - Destination Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address for outputting the non-filtered reconstructed
YUV picture (i.e. output of final adder in each codec standard, and prior to the deblocking filter
unit).This field is ignored if PreDeblockOutEnable is set to 0 (disable).

54

Pre Deblocking - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

3:0

Pre Deblocking - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:6

Post Deblocking - Destination Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address for outputting the post-loop filtered
reconstructed YUV picture (i.e. output of the deblocking filter unit)This field is ignored if
PostDeblockOutEnable is set to 0 (disable).

54

Post Deblocking - Arbitration Priority Control

3:0

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Post Deblocking - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

426



MFEX_PIPE_BUF_ADDR_STATE

Specifies the memory object control state for this surface.

31:6

Original Uncompressed Picture - Source Address (CurSrcAddr)
Exists If: //Encoding
Format: GraphicsAddress[31:6]

Specifies the 64 byte aligned frame buffer address for fetching YUV pixel data from the original
uncompressed input picture for encoding.

54

Original Uncompressed Picture - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Original Uncompressed Picture - Memory Object Control State
Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:6

StreamOut Data Destination - Base Address (StreamOutAddr)

Format: GraphicsAddress[31:6]

Specifies the 64 byte aligned address for outputting the per-MB indirect data to memory when
StreamOutEnable is set in the MFX_PIPE_MODE_SELECT command.

For decoder : this field is used for transcoding purpose.

For encoder : this field is used for dynamic repeat of frame in PAK for Rate Control. Also used for
feeding coding information back to the Host, Video Preprocessing Unit and ENC Unit.All data are
written in fixed formats, and therefore all record sizes are known in the hardware. Hardware can
calculate the offset into this base address for per-MB data.

5:4

StreamOut Data Destination - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

3:0

StreamOut Data Destination - Memory Object Control State
Project: HSW

427




MFEX_PIPE_BUF_ADDR_STATE

| Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:6

Intra Row Store Scratch Buffer - Base Address (IntraOSRowStoreAddr)
Format: GraphicsAddress[31:6]

This field provides the base address of the scratch buffer (read/write) used by the AVC
IntraPrediction unit to store MB information of the previous row for processing of each
macroblock in the current row. The Intra Row Store buffer must be 64-byte cacheline
aligned.Hardware uses the horizontal address of the current macroblock to address the Intra Row
Store.This field is ignored in MPEG2 and VC1 mode.Max 256 cachelines for 4K pixels (1 cacheline
for either MBAFF or non-MBAFF)

54

Intra/Overlap Smoothing Row Store Scratch Buffer - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Intra/Overlap Smoothing Row Store Scratch Buffer - Memory Object Control State
Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:6

Deblocking Filter Row Store Scratch Buffer - Base Address (DeblockRowStoreAddr
Format: GraphicsAddress[31:6]

Deblocking Filter Row Store is needed for

AVC and VC1 In-Loop Deblocking Filter

VC1 Overlap-smoothing Filter

AVC, VC1 and MPEG2 Out-of-Loop Deblocking Filter (intel extension)

This field provides the base address of the scratch buffer (read and write) used by the
deblocking filter unit to store MB information of the previous row for filtering of each
macroblock in the current row. The Deblocking Filter Row Store buffer must be 64-byte cacheline
aligned.

Hardware uses the horizontal address of the current macroblock to address the Deblocking
Filter Row Store.Max 6 cachelines for VC1 and MPEG2, and max 4 for AVC (for MBAFF, 2 for non-
MBAFF).

54

Deblocking Filter Row Store Scratch Buffer - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

428




MFEX_PIPE_BUF_ADDR_STATE

Oh Highest priority

1lh Second highest priority
2h Third highest priority
3h Lowest priority

3:0

Deblocking Filter Row Store Scratch Buffer - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

7.22 | 31:6 |Reference Picture (RefAddr[0-15]) - Addresses

Format: | GraphicsAddress[31:6]

Specifies the 64 byte aligned reference frame buffer addresses for the motion compensation
operation in AVC/VC1/MPEG2. AVC can specify up to 16 YUV frame-based surfaces for both
forward and backward references, i.e. LO+L1 total = 16 max. Any entry can be assigned to LO or
L1 or both lists.But VC1 and MPEG2, worst case, can use up to 2 YUV frame-based surfaces for
both forward and backward references:P-MB : RefAddr[0] - temporal closest previous field of a
reference frame (can be the current frame)RefAddr[1] - next temporal closest previous field of a
reference frame (must be different from the current frame)lt is a variant (without the
LongTermRefPic specification) of the RefFramelList[16] defined in AVC DXVA Spec. RefAddr[0-15]
is indexed by frame_storeID >>1.1t is not a packed list, i.e. invalid entries can scatter among the
list. All invalid addresses must be set to a valid address RefAddr[0] by the driver. The same
applies to VC1 and MPEG2.

Programming Notes
AVC: Always specifies all 16 addresses even some of them are not needed as indicated by the
max num of active reference pictures. This is done for preventing data corruption (error, fault
condition, etc.) by having all the references being set to a legal location.
5:4 | Reference Picture (RefAddr[0-15]) - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

3:0 |Reference Picture (RefAddr[0-15]) - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

23 31:6 | Macroblock Status Buffer Base Address (MacroblockStatAddr)

429




MFEX_PIPE_BUF_ADDR_STATE

| Format: | GraphicsAddress[31:6]

Specifies the 64 byte aligned address for reading the per-MB indirect data from memory when
MacroblockStatEnable is set in the MFX_AVC_IMG_STATE Command.For decoder : this field is
ignored by hardware.For encoder: this field is used for dynamic repeat of frame in PAK for Rate
Control. Also used for feeding coding information back to the Host, Video Preprocessing Unit
and ENC Unit.All data are written in fixed formats, and therefore all record sizes are known in the
hardware. Hardware can calculate the offset into this base address for per-MB data.

54

Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

3:0

Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

24

31:6

Macroblock ILDB StreamOut Buffer Base Address

Project: HSW

Format: GraphicsAddress[31:6]

Specifies the 64 byte aligned buffer address for writing MB ILDB parameter per MB to memory
when Debocker streamout enable is set in the MFX_PIPE_MODE_SELECT Command.The ildb MB
control parameters are written by HW at the end of each decoding MB. Only AVC edge
information is being streamed out. It is used in AVC decode mode only.

54

Arbitration Priority Control

3:0

Project: HSW
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority

01b Second Highest priority

10b Third Highest priority

11b Lowest Highest priority

Memory Object Control State

Project: HSW

Format; MEMORY_OBJECT_CONTROL_STATE

430



MFEX_PIPE_BUF_ADDR_STATE

Specifies the memory object control state for this surface.

431




Q"_til

MFX_IND_OBJ_BASE_ADDR_STATE

MFEX_IND_OBJ BASE_ADDR_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This state command provides the memory base addresses for all row stores, StreamOut buffer and
reconstructed picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores
of the Bit Stream Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level
state command and is common among all codec standards and for both encoder and decoder operating
modes. However, some fields may only applicable to a specific codec standard. All Pixel Surfaces (original,
reference frame and reconstructed frame) in the Encoder are programmed with the same surface state (NV12
and TileY format), except each has its own frame buffer base address. In the tile format, there is no need to
provide buffer offset for each slice; since from each MB address, the hardware can calculated the
corresponding memory location within the frame buffer directly.

The MFX_IND_OBJ_BASE_ADDR command sets the memory base address pointers for the corresponding
Indirect Object Data Start Addresses (Offsets) specified in each OBJECT commands. The characteristic of these
indirect object data is their variable size (per MB or per Slice). Hence, each OBJECT command must specify the
indirect object data offset from the base address to start fetching or writing object data.

While the use of base address is unconditional, the indirection can be effectively disabled by setting the base
address to zero. For decoder, there are only 1 read-only per-slice indirect object in the BSD_OBJECT Command,
and 2 read-only per-MB indirect objects in the IT_OBJECT CommandFor decoder: the Video Command
Streamer (VCS) will perform the memory access bound check automatically using the corresponding MFC
Indirect Object Access Upper Bound specification. If any access is at or beyond the upper bound, zero value is
returned. The request to memory is still being sent, but the corresponding codec's BSD unit will detect this
condition and perform the zeroing return. If the Upper Bound is turned off, the beyond bound request will
return whatever on the bus (invalid data).For encoder, there are 1 read-only per-MB indirect object in the
PAK_OBJECT Command, and 1 write-only per-slice indirect object in the PAK Slice_State CommandFor encoder:
whenever an out of bound address accessing request is generated, VMX will detect such requests and snap the
address to the corresponding [indirect object base address + indirect data start address]. VMX will return all Os
as the data to the requester. NotationDefinitionPhysicalAddress[n:m] Corresponding bits of a physical graphics
memory byte address (not mapped by a GTT)GraphicsAddress[n:m] Corresponding bits of an absolute, virtual
graphics memory byte address (mapped by a GTT).

DWord| Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

432



Q"_til

MEX_IND_OBJ BASE_ADDR_STATE

26:24| Common Opcode
Default Value: Oh MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode
23:21 | Sub OpcodeA
Default Value: Oh MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode
20:16 | SubOpcodeB
Default Value: 3h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode
15:12 | Reserved
Project: All
Format: MBZ
11:0 |DWord Length

Default Value:

0009h Excludes DWord (0,1)

Project:

All

Format:

=n Total Length - 2

31:12

MFX Indirect Bitstream Object - Base Address (Decoder and Stitch Modes)
Project: All
Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the read-only indirect data object
pointed in the MFD_XXX_BSD_OBJECT command for fetching (reading) the compressed Slice
Data.This field is only valid in MPEG2, AVC and VC1 decoder VLD mode.

11:6 |Reserved
Project: All
Format: MBZ
5:4 [ MFX Indirect BSD Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority
3:0 [MFX Indirect Bitstream Object - Memory Object Control State

433




MEX_IND_OBJ BASE_ADDR_STATE

Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

2 31:12 | MFX Indirect Bitstream Object - Access Upper Bound (Decoder and Stitch Modes)
Project: All
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by
the indirect data object in the MFD_XXX_BSD_OBJECT command for the compressed Slice Data.
Indirect data accessed at this address and beyond will return as 0 by the hardware. Setting this
field to O will cause this range check to be ignored.If non-zero, this address must be greater than
the MFX Indirect Bitstream ObjectBase Address state.Hardware ignores this field if indirect data is
not present, i.e. the Indirect Data Length field of the MFD_XXX_BSD_OBJECT command is set to
0.This field is only valid in MPEG2, AVC and VC1 decoder VLD mode.
11:0 |Reserved
Project: All
Format: MBZ
3 31:12 | MFX Indirect MV Object - Base Address
Project: All
Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the read-only indirect data object
pointed in the encoder MFC_AVC_PAK_OBJECT command or the decoder MFD_IT_OBJECT
command for fetching the per-MB MV data.This field is only valid in AVC encoder mode or in
AVC decoder IT mode

11:6 |Reserved
Project: All
Format: MBZ
5:4 [ MFX Indirect MV Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

3:0

MFX Indirect MV Object - Memory Object Control State

434




Q"_til

MEX_IND_OBJ BASE_ADDR_STATE

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:12

MFX Indirect MV Object Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by
the indirect data object in the MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command for the per-
MB MV data. Indirect data accessed at this address and beyond will return as 0 by the hardware.
Setting this field to 0 will cause this range check to be ignored.If non-zero, this address must be
greater than the MFX Indirect MV Object Base Address state.Hardware ignores this field if
indirect data is not present, i.e. the Indirect Data Length field of the MFC_AVC_PAK_OBJECT /
MFD_IT_OBJECT command is set to 0.This field is only valid in AVC encoder mode or in AVC
decoder IT mode.

11:0 |Reserved
Project: All
Format: MBZ
31:12 | MFD Indirect IT-COEFF Object - Base Address (Decoder Only)
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only indirect data object
pointed in the MFD_IT_OBJECT command for fetching (reading) the per-MB non-scaled
coefficient data (all inverse scaling and quantization are done in hardware).This field is only valid
in MPEG2, AVC and VC1 decoder IT mode.
11:6 [Reserved
Project: All
Format: MBZ
5:4 | MFD Indirect IT-COEFF Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

435




MEX_IND_OBJ BASE_ADDR_STATE

(lntel
3

:0

MFX Indirect IT-COEFF Object - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:12

MFD Indirect IT-COEFF Object - Access Upper Bound (Decoder Only)

Project: All

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by
the indirect data object in the MFD_IT_OBJECT command for the per-MB non-scaled coefficient
data. Indirect data accessed at this address and beyond will return as 0 by the hardware. Setting
this field to 0 will cause this range check to be ignored.If non-zero, this address must be greater
than the MFD Indirect IT-COEFF Object Base Address state.Hardware ignores this field if indirect
data is not present, i.e. the Indirect COEFF Data Length field of the MFD_IT_OBJECT command is
set to 0.This field is only valid in MPEG2, AVC and VC1 decoder IT mode.

11:0

Reserved

Project: All

Format: MBZ

31:12

MFD Indirect IT-DBLK Object - Base Address (Decoder Only)

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the read-only indirect data object
pointed in the MFD_IT_OBJECT command for fetching (reading) the per-MB Deblocking filter
control data.This field is only valid in AVC decoder IT mode.

11:6 |Reserved
Project: All
Format: MBZ
5:4 [MFD Indirect IT-DBLK Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

3:0

MFX Indirect IT-DBLK Object - Memory Object Control State

436




MEX_IND_OBJ BASE_ADDR_STATE

Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:12

MFD Indirect IT-DBLK Object Access Upper Bound (Decoder Only)
Project: All

Format: GraphicsAddress[31:12]

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by
the indirect data object in the MFD_IT_OBJECT command for the per-MB Deblocking filter control
data. Indirect data accessed at this address and beyond will return as 0 by the hardware. Setting
this field to 0 will cause this range check to be ignored.If non-zero, this address must be greater
than the MFD Indirect IT-DBLK Object Base Address state.Hardware ignores this field if indirect
data is not present, i.e. the Indirect Deblocking Control Data Length field of the MFD_IT_OBJECT
command is set to 0.This field is only valid in AVC decoder IT mode.

11:0 [Reserved
Project: All
Format: MBZ
31:12 | MFC Indirect PAK-BSE Object - Base Address (Encoder Only)
Project: All
Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the write-only indirect data object
pointed in the PAK_SLICE_STATE command for writing out the compressed bitstream.This field is
only valid in AVC encoder mode.

11:6

54

Reserved

Project: All
Format: MBZ
MFC Indirect PAK-BSE Object - Arbitration Priority Control
Project: All

Format: U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

437




MEX_IND_OBJ BASE_ADDR_STATE

(intel
3

:0 | MFX Indirect PAK-BSE Object - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

10 |[31:12 | MFC Indirect PAK-BSE Object - Access Upper Bound (Encoder Only)

Project: All

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by
the indirect data object in the PAK_SLICE_STATE command for the per-slice output bitstream.
Indirect data accessed at this address and beyond will be blocked by the hardware and ignored.
Setting this field to 0 will cause this range check to be ignoredIf non-zero, this address must be
greater than the MFC Indirect PAK-BSE Object Base Address state.This field is only valid in AVC
encoder mode.

11:0 | Reserved

Project: All

Format: MBZ

438



MFX_IND_OBJ_BASE_ADDR_STATE

MFEX_IND_OBJ BASE_ADDR_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This state command provides the memory base addresses for all row stores, StreamOut buffer and
reconstructed picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores
of the Bit Stream Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level
state command and is common among all codec standards and for both encoder and decoder operating
modes. However, some fields may only applicable to a specific codec standard. All Pixel Surfaces (original,
reference frame and reconstructed frame) in the Encoder are programmed with the same surface state (NV12
and TileY format), except each has its own frame buffer base address. In the tile format, there is no need to
provide buffer offset for each slice; since from each MB address, the hardware can calculated the
corresponding memory location within the frame buffer directly.

The MFX_IND_OBJ_BASE_ADDR command sets the memory base address pointers for the corresponding
Indirect Object Data Start Addresses (Offsets) specified in each OBJECT commands. The characteristic of these
indirect object data is their variable size (per MB or per Slice). Hence, each OBJECT command must specify the
indirect object data offset from the base address to start fetching or writing object data.

While the use of base address is unconditional, the indirection can be effectively disabled by setting the base
address to zero.
For decoder, there are:

e 1 read-only per-slice indirect object in the BSD_OBJECT Command, and
e 2 read-only per-MB indirect objects in the IT_OBJECT Command.

For decoder: the Video Command Streamer (VCS) will perform the memory access bound check automatically
using the corresponding MFC Indirect Object Access Upper Bound specification. If any access is at or beyond
the upper bound, zero value is returned. The request to memory is still being sent, but the corresponding
codec's BSD unit will detect this condition and perform the zeroing return. If the Upper Bound is turned off, the
beyond bound request will return whatever on the bus (invalid data).

For encoder, there are:

e 1 read-only per-MB indirect object in the PAK_OBJECT Command, and
e 1 write-only per-slice indirect object in the PAK Slice_State Command

For encoder: whenever an out of bound address accessing request is generated, VMX will detect such requests
and snap the address to the corresponding [indirect object base address + indirect data start address]. VMX
will return all Os as the data to the requestor. NotationDefinitionPhysicalAddress[n:m] Corresponding bits of a
physical graphics memory byte address (not mapped by a GTT) GraphicsAddress[n:m] Corresponding bits of an
absolute, virtual graphics memory byte address (mapped by a GTT).

DWord Bit Description

0 31:29 | Command Type

439




MEX_IND_OBJ BASE_ADDR_STATE

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

26:24 | Common Opcode
Default Value: Oh MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

23:21 [Sub OpcodeA
Default Value: Oh MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

20:16 | SubOpcodeB
Default Value: 3h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

15:12 | Reserved
Format: MBZ

11:0 | DWord Length
Default Value: 0018h Excludes DWord (0,1)
Format: =n Total Length - 2

31:12 | MFX Indirect Bitstream Object - Base Address (Decoder and Stitch

Modes)

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the read-only
indirect data object pointed in the MFD_XXX_BSD_OBJECT command for
fetching (reading) the compressed Slice Data.This field is only valid in
MPEG2, AVC and VC1 decoder VLD mode.

11:6 |Reserved
Format: MBZ
5:4 [MFX Indirect BSD Object - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name

440




Q"_til

MEX_IND_OBJ _BASE_ADDR_STATE

00b Highest priority

01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

MFX Indirect BSD Object - Memory Object Control State

DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Project:

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

2.3 31:0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW:GT2:B)
4 31:12 | MFX Indirect Bitstream Object - Access Upper Bound (Decoder and
Stitch Modes)
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics
Memory address access by the indirect data object in the
MFD_XXX_BSD_OBJECT command for the compressed Slice Data. Indirect
data accessed at this address and beyond will return as 0 by the hardware.
Setting this field to 0 will cause this range check to be ignored.If non-zero,
this address must be greater than the MFX Indirect Bitstream ObjectBase
Address state.Hardware ignores this field if indirect data is not present, i.e.
the Indirect Data Length field of the MFD_XXX_BSD_OBJECT command is
set to 0.This field is only valid in MPEG2, AVC, VP8, and VC1 decoder VLD
mode.
11:0 |Reserved
Format: MBZ
5 31:0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW:GT2:B)
6 31:12 | MFX Indirect MV Object - Base Address

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the read-only
indirect data object pointed in the encoder MFC_AVC_PAK_OBJECT
command or the decoder MFD_IT_OBJECT command for fetching the per-

441




MEX_IND_OBJ BASE_ADDR_STATE

MB MV data.This field is only valid in AVC encoder mode or in AVC
decoder IT mode

11:6

Reserved

Format: MBZ

5:4

MFX Indirect MV Object - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

3:0

MFX Indirect MV Object - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

7.8
Project: DevHSW,
EXCLUDE(DevHSW:GT3:A
DevHSW:GT3:B,
DevHSW:GT2:B)

]

31:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

9

31:12

MFX Indirect MV Object Access Upper Bound

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics
Memory address access by the indirect data object in the
MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command for the per-MB MV
data. Indirect data accessed at this address and beyond will return as 0 by
the hardware. Setting this field to 0 will cause this range check to be
ignored.If non-zero, this address must be greater than the MFX Indirect
MV Object Base Address state.Hardware ignores this field if indirect data is
not present, i.e. the Indirect Data Length field of the
MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command is set to 0.This field is
only valid in AVC encoder mode or in AVC decoder IT mode.

442




Q"_til

MEX_IND_OBJ _BASE_ADDR_STATE

11:0 |Reserved
| Format: | MBZ
10 31:0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW.:.GT2:B)
11 31:12 | MFD Indirect IT-COEFF Object - Base Address (Decoder Only)
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only
indirect data object pointed in the MFD_IT_OBJECT command for fetching
(reading) the per-MB non-scaled coefficient data (all inverse scaling and
guantization are done in hardware).This field is only valid in MPEG2, AVC
and VC1 decoder IT mode.
11:6 |Reserved
Format: MBZ
5:4 | MFD Indirect IT-COEFF Object - Arbitration Priority Control
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.
Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority
3:0 |MFD Indirect IT-COEFF Object - Memory Object Control State
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format;| MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state for this surface.
12.13 31:0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format | MBZ
DevHSW.:.GT2:B)
14 31:12 | MFD Indirect IT-COEFF Object - Access Upper Bound (Decoder Only)

443




MEX_IND_OBJ BASE_ADDR_STATE

| Format: | GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics
Memory address access by the indirect data object in the MFD_IT_OBJECT
command for the per-MB non-scaled coefficient data. Indirect data
accessed at this address and beyond will return as 0 by the hardware.
Setting this field to 0 will cause this range check to be ignored.If non-zero,
this address must be greater than the MFD Indirect IT-COEFF Object Base
Address state.Hardware ignores this field if indirect data is not present, i.e.
the Indirect COEFF Data Length field of the MFD_IT_OBJECT command is
set to 0.This field is only valid in MPEG2, AVC and VC1 decoder IT mode.

11:0 |Reserved
Format: MBZ
15 31:0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW.:.GT2:B)
16 31:12 | MFD Indirect IT-DBLK Object - Base Address (Decoder Only)
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only
indirect data object pointed in the MFD_IT_OBJECT command for fetching
(reading) the per-MB Deblocking filter control data.This field is only valid
in AVC decoder IT mode.
11:6 |Reserved
Format: MBZ
5:4 [MFD Indirect IT-DBLK Object - Arbitration Priority Control
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.
Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority
3:0 | MFD Indirect IT-DBLK Object - Memory Object Control State

| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

444



Q"_til

MEX_IND_OBJ _BASE_ADDR_STATE

DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

17.18
Project: DevHSW,
EXCLUDE(DevHSW:GT3:A,
DevHSW:GT3:B,
DevHSW:GT2:B)

31:.0

Reserved

DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Project:

Format: | MBZ

19

31:12

MFD Indirect IT-DBLK Object - Access Upper Bound (Decoder Only)

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics
Memory address access by the indirect data object in the MFD_IT_OBJECT
command for the per-MB Deblocking filter control data. Indirect data
accessed at this address and beyond will return as 0 by the hardware.
Setting this field to 0 will cause this range check to be ignored.If non-zero,
this address must be greater than the MFD Indirect IT-DBLK Object Base
Address state.Hardware ignores this field if indirect data is not present, i.e.
the Indirect Deblocking Control Data Length field of the MFD_IT_OBJECT
command is set to 0.This field is only valid in AVC decoder IT mode.

11:0

Reserved

Format: MBZ

20
Project: DevHSW,
EXCLUDE(DevHSW:GT3:A,
DevHSW:GT3:B,
DevHSW.:.GT2:B)

31:.0

Reserved

DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Project:

Format: | MBZ

21

31:12

MFC Indirect PAK-BSE Object - Base Address (Encoder Only)

Project: All

Format:

GraphicsAddress[31:12]

Specifies the 4K-byte aligned memory base address for the write-only
indirect data object pointed in the PAK_SLICE_STATE command for writing
out the compressed bitstream.This field is only valid in AVC encoder
mode.

11:6

Reserved

Project: All

Format: MBZ

5:4

MFC Indirect PAK-BSE Object - Arbitration Priority Control

| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

445



MEX_IND_OBJ _BASE_ADDR_STATE

DevHSW:GT2:B)

Format: | U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0 |MFC Indirect PAK-BSE Object - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

22.25 31:0 [Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW:GT2:B)

446



MEDIA_STATE_FLUSH

MEDIA_STATE_FLUSH

Project: HSW
Source: RenderCS
Length Bias: 2

This command updates the Message Gateway state. In particular, it updates the state for a selected Interface
Descriptor.

This command can be considered same as a MI_Flush except that only media parser will get flushed instead of
the entire 3D/media render pipeline. The command should be programmed prior to new Media state, curbe
and/or interface descriptor commands when switching to a new context or programming new state for the same
context.

With this command, pipelined state change is allowed for the media pipe.

It should be cautious when using this command when child_present flag in the media state is enabled. This is
because that CURBE state as well as Interface Descriptor state are shared between root threads and child
threads. Changing these states while child threads are generated on the fly may cause unexpected behavior.
Combining with MI_ARB_ON/OFF command, it is possible to support interruptability with the following
command sequence where interrupt may be allowed only when MI_ARB_ON_OFF is ON:

MEDIA_STATE_FLUSH

VFE_STATE // VFE will hold CS if watermark isn't met

MI_ARB_OFF // There must be at least one VFE command before this one

MEDIA_OBJECT .... MI_ARB_ON

DWord| Bit Description

0 31:29 | Command Type
Default Value: 3h GFXPIPE

Format: OpCode

28:27 | Pipeline
Default Value: 2h Media
Format: OpCode

26:24 | Media Command Opcode
Default Value: Oh MEDIA_STATE_FLUSH

Format: OpCode

23:16 | SubOpcode
Default Value: 4h MEDIA_STATE_FLUSH SubOp

Format: OpCode

15:0 | DWord Length
Project: All
Format: =n Total Length - 2

447



MEDIA_STATE_FLUSH

Value Name Description
Oh DWORD_COUNT_n [Default] Excludes DWord (0,1)
1 31:9 |Reserved
Project: All
Format: MBZ
8 |Disable Pre-emption
Project: DevHSW, EXCLUDE(DevHSW:GT3:A)
Format: Enable
This bit causes the video front-end to ignore pre-emption requests if set. If this bit is set then
ARB_CHECK commands should not be used with it.
A subsequent MEDIA_STATE_FLUSH command with this bit cleared will honor previous pre-
emption requests.
7 | Flush to GO
Project: DevHSW +
Format: Enable
This bit indicates that the write data out of this thread group should be flushed to the point
where it is visible to following commands.
6 | Watermark Required

Project: All

This is a single bit specifying if the MEDIA_STATE_FLUSH should stall further commands until
there is enough room in a half-slice for the following thread group. The characteristics of the
thread group are specified in the Interface Descriptor Offset.

If set, the MEDIA_STATE_FLUSH stalls CS until there are enough threads in a half-slice, and
enough SLM available in the same half-slice, and a free barrier if one is required. An Interface
Descriptors can be updated after a Watermarked MEDIA_STATE_FLUSH only if it has not been
used in the current context. Reusing an interface desciptor requires that this bit is clear to ensure
the ID cache is reloaded.

If clear, the MEDIA_STATE_FLUSH stalls CS until the TDL has dispatched the last thread, allowing
the CURBE and Interface Descriptors to be updated by following commands.

Programming Notes Project

When using mid-thread pre-emption with GPGPU_OBJECT, the entire thread must |HSW
be dispatched as a group, since a partially dispatched group cannot be pre-empted.
For that, a media state flush with the WatermarkRequired bit set and a matching
Interface Descriptor must be used such that media pipe doesn't proceed with the
next group of threads until there are enough hardware thread slots available.

The Interface Descriptor Offset used for the flush must be the same as that used for | DevHSW+
the GPGPU_OBJECTs. GPGPU_WALKER automatically checks the Watermark
conditions before starting a thread, so this bit should not be set before

448



MEDIA_STATE_FLUSH

| GPGPU_WALKER.

Qn_til
|

5:0

Interface Descriptor Offset

| Format:

lue

This field specifies the offset from the interface descriptor base pointer to the interface descriptor
which describes what resources are required to meet the watermark.

449




Q"_til

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR _STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This frame-level state command is used to specify all the buffer base addresses needed for the operation of the
AVC Bit Stream Processing Units (for decoder, it is BSD Unit; for encoder, it is BSE Unit)For both encoder and
decoder, currently it is assumed that all codec standards can share the same BSP_BUF_BASE_STATE. The
simplicity of this command is the result of moving all the direct MV related processing into the ENC Subsystem.
Since all implicit weight calculations and directMV calculations are done in ENC and all picture buffer
management are done in the Host, there is no need to provide POC (POC List - FieldOrderCntList, CurrPic POC -
CurrFieldOrderCnt) information to PAK. For decoder, all the direct mode information are sent in a separate slice-
level command (AVC_DIRECTMODE_STATE command).In addition, in Encoder, the row stores for CABAC
encoding and MB Parameters Construction (MPC) are combined into one single row store.The row stores
specified in this command do not combine with those specified in the MFC_PIPE_BUF_ADDR_STATE command
for hardware simplification reason.

DWord| Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h Pipeline
Format: OpCode

26:24 | Media Command Opcode
Default Value: Oh Common
Format: OpCode

23:21 |SubOpcode A
Default Value: Oh MFX_BSP_BUF_BASE_ADDR_STATE
Format: OpCode

20:16 | SubOpcode B
Default Value: 4h MFX_BSP_BUF_BASE_ADDR_STATE
Format: OpCode

15:12 | Reserved
Project: All
Format: MBZ

11:0 (DWord Length

450



Q"_til

MFX_BSP_BUF _BASE_ADDR_STATE

Default Value: 2h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

31:6 | BSD/MPC Row Store Scratch Buffer Base Address - Read/Write

Project: All

This field provides the base address of the scratch buffer used by BSD (decoder) and MPC
(encoder) unit to store MB information of the previous row for coding each macroblock in the
current row. It is a private buffer used by the BSD (decoder) and MPC (encoder) hardware only.
Its content is not accessible by software. ThisRow Store buffer must be 64-byte cacheline
aligned. Hardware uses the horizontal address of the current macroblock to address this Row
Store.

For AVC BSD, 2 cacheline (CL) per MB when in MBAFF mode (row of MB pair); 1 CL per MB for
non-MBAFF. So, to support 256 MBs per row (4K screen resolution), 2 * 256 * 64 bytes = 32,768
bytes are required. Cacheline alignment should be followed. For AVC MPC, 1 cachline for non-
MBAFF, 2 cachelines for MBAFF per MB. For VC1, the BSD row store is 512-bit (one cacheline)
per MB, times the number of MBs per picture MB row.

5:4 | BSP Row Store Scratch Buffer - Arbitration Priority Control

Project: All

Format: U2 Enumerated Type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01lb Second Highest priority

10b Third Highest Priority

11b Lowest Priority

3:0 |BSP Row Store Scratch Buffer - Memory Object Control State

Project: HSW

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:6 | MPR Row Store Scratch Buffer Base Address - Read/Write (Decoder Only)

Project: | All

This field provides the base address of the scratch buffer used by decoder's MPR unit to store
MB information of the previous row for decoding each macroblock in the current row. It is a
rivate buffer used by the MPR hardware only. Its content is not accessible by software.

Programming Notes

The MPR Row Store buffer must be 64-byte cacheline aligned.Hardware uses the horizontal
address of each macroblock to address the MPR Row Store.Except ILDB Control Data, all other

451



MFX_BSP_BUF _BASE_ADDR_STATE

operations does not cross slice boundary. This field is specified in frame-level.2 cacheline (CL)
per MB when in MBAFF mode (row of MB pair); 1 CL per MB for non-MBAFF, So, to support 256
MBs per row (4K screen resolution), 2 * 256 * 64 bytes = 32,768 bytes are required. Cacheline
alignment should be followed.This field is only valid for AVC decoder mode

5:4 | MPR Row Store Scratch Buffer - Arbitration Priority Control

Project: All

Format: U2 Enumerated type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name Description Project

Oh [Default]

00b Highest priority Desc All

01b Second highest priority Desc All

10b Third highest priority

11b Lowest priority

3:0 | MPR Row Store Scratch Buffer - Memory Object Control State
Project: HSW
Format; MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

3 31:6 | Bitplane Read Buffer Base Address

Project: All

It must be cacheline aligned (i.e. 64 bytes address boundary), so lower bit 0 to 5 are used for
controlling information.(In Cantiga, this field must be dword aligned.)Bitplane buffer is a linear
buffer. In VC1 Long format, it is written by an application. In VC1 Short Format, it is written and
read by H/W only.For VC1 intel Long Format : it is a read-only bufferFor VC1 DXVA2 Short
Format : it is a write and a read bufferThis field is only valid for VC1 decoder mode.

5:4 |Bitplane Read Buffer - Arbitration Priority Control

Project: All
Format: U2 Enumerated type
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name Description Project
00b Highest priority Desc All
01lb Second highest priority Desc All
10b Third highest priority
11b Lowest priority

3:0 |Bitplane Read Buffer - Memory Object Control State

Project: HSW

452



el

MFX_BSP_BUF_BASE_ADDR_STATE

Format:

| MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

453




Q"_til

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR _STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This frame-level state command is used to specify all the buffer base addresses needed for the operation of the
AVC Bit Stream Processing Units (for decoder, it is BSD Unit; for encoder, it is BSE Unit)

For both encoder and decoder, currently it is assumed that all codec standards can share the same
BSP_BUF_BASE_STATE. The simplicity of this command is the result of moving all the direct MV related
processing into the ENC Subsystem. Since all implicit weight calculations and directMV calculations are done in
ENC and all picture buffer management are done in the Host, there is no need to provide POC (POC List -
FieldOrderCntList, CurrPic POC - CurrFieldOrderCnt) information to PAK. For decoder, all the direct mode
information are sent in a separate slice-level command (AVC_DIRECTMODE_STATE command).

In addition, in Encoder, the row stores for CABAC encoding and MB Parameters Construction (MPC) are
combined into one single row store.

The row stores specified in this command do not combine with those specified in the
MFC_PIPE_BUF_ADDR_STATE command for hardware simplification reason.

DWord Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEQO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h Pipeline
Format: OpCode
26:24 | Media Command Opcode
Default Value: Oh MFX_COMMON_STATE
Format: OpCode
23:21|SubOpcode A
Default Value: Oh
Format: OpCode
20:16 | SubOpcode B
Default Value: 4h
Format: OpCode
15:12 | Reserved
Project: All
Format: MBZ

454



Q"_til

MFX_BSP_BUF _BASE_ADDR_STATE

11:0 |DWord Length

Default Value: 8h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2
1 31:6 |BSD/MPC Row Store Scratch Buffer Base Address - Read/Write

This field provides the base address of the scratch buffer used by BSD
(decoder) and MPC (encoder) unit to store MB information of the
previous row for coding each macroblock in the current row. It is a
private buffer used by the BSD (decoder) and MPC (encoder) hardware
only. Its content is not accessible by software. ThisRow Store buffer must
be 64-byte cacheline aligned. Hardware uses the horizontal address of
the current macroblock to address this Row Store.

For AVC BSD, 2 cacheline (CL) per MB when in MBAFF mode (row of MB
pair); 1 CL per MB for non-MBAFF. So, to support 256 MBs per row (4K
screen resolution), 2 * 256 * 64 bytes = 32,768 bytes are required.
Cacheline alignment should be followed. For AVC MPC, 1 cachline for
non-MBAFF, 2 cachelines for MBAFF per MB. For VC1, the BSD row store
is 512-bit (one cacheline) per MB, times the number of MBs per picture
MB row.

5:4 | BSD/MPC Row Store Scratch Buffer - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01b Second Highest priority
10b Third Highest Priority
11b Lowest Priority

3:0 |BSD/MPC Row Store Scratch Buffer - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

2.3 31:0 [Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)

DevHSW:GT3:B,

455




Q"_til

MFX_BSP_BUF _BASE_ADDR_STATE

DevHSW.:.GT2:B)

| Format: | MBZ

4

316

MPR Row Store Scratch Buffer Base Address - Read/Write (Decoder
Only)

This field provides the base address of the scratch buffer used by
decoder's MPR unit to store MB information of the previous row for
decoding each macroblock in the current row. It is a private buffer used by
the MPR hardware only. Its content is not accessible by software.

Programming Notes

The MPR Row Store buffer must be 64-byte cacheline aligned.Hardware
uses the horizontal address of each macroblock to address the MPR Row
Store. Except ILDB Control Data, all other operations does not cross slice
boundary. This field is specified in frame-level.2 cacheline (CL) per MB
when in MBAFF mode (row of MB pair); 1 CL per MB for non-MBAFF, So,
to support 256 MBs per row (4K screen resolution), 2 * 256 * 64 bytes =
32,768 bytes are required. Cacheline alignment should be followed.This
field is only valid for AVC decoder mode

5:4

MPR Row Store Scratch Buffer - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | U2 Enumerated type

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name

Oh [Default]

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

3:0

MPR Row Store Scratch Buffer - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

EXCLUDE(DevHSW:GT3:A,

5.6
Project: DevHSW,

DevHSW:GT3:B,
DevHSW:GT2:B)

31:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

7

31:6

Bitplane Read Buffer Base Address

456




Q"_til

MFX_BSP_BUF_BASE_ADDR_STATE

| Project: | All

It must be cacheline aligned (i.e. 64 bytes address boundary), so lower bit
0 to 5 are used for controlling information.(In Cantiga, this field must be
dword aligned.)Bitplane buffer is a linear buffer. In VC1 Long format, it is
written by an application. In VC1 Short Format, it is written and read by
H/W only.For VC1 intel Long Format : it is a read-only bufferFor VC1
DXVA2 Short Format : it is a write and a read bufferThis field is only valid
for VC1 decoder mode.

5:4

Bitplane Read Buffer - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: |U2 Enumerated type

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Bitplane Read Buffer - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

457




Q"_til

MEX_STATE_POINTER

MEX_STATE_POINTER

Project: HSW
Source: VideoCS
Length Bias: 2

The MFX_STATE_POINTER command, issued at picture level, is used to set up the indirect pointers for VCS to
fetch all the MFX states (Image state, Slice state, etc.) needed for the encoding/decoding process in PAK/IT
mode. The encoding/decoding states are presented by state commands, which are grouped into separate sets
(picture level, slice level, etc.), and each is stored in its own memory buffer referred by an indirect state pointer.
The content of each indirect state buffer is a list of MFX state commands with no special format requirements.
The sequence of commands in each indirect state buffer is terminated by a MI_BATCH_BUFFER_END command
(acts as the last command marker). Therefore, indirect state buffers can have different and variable length of
command sequences.

The indirection is designed to facilitate context switching in the middle of a codec operation. The smallest
granularity of interruption is designed to be at a completed MB row in AVC/VC1/MPEG2 IT and AVC PAK
operating modes as well as in VC1/MPEG2 VLD mode. There is no support for context switch in AVC VLD mode.
Hardware supports up to 4 separate indirect state pointers, allowing software to manage the grouping of state
commands. During context switch, hardware restores (re-issues) the latest version of each indirect state pointer,
if present.

MFX_STATE_POINTER command can only program one indirect state pointer at a time. MI_FLUSH will invalidate
all indirect state buffer pointers inside VCS.

DWord Bit Description
0 31:29 |Command Type

Default Value: 3h GFX_PIPE
Format: OpCode

28:27 |Pipeline
Default Value: 2h Media
Format: OpCode

26:24 | Media Command Opcode
Default Value: 0h MFX_COMMON _STATE
Format: OpCode

23:21 |SubOpcode A
Default Value: Oh
Format: OpCode

20:16 [SubOpcode B
Default Value: 6h
Format: OpCode

458



MEX_STATE_POINTER

15:12 |Reserved
Project: All
Format: MBZ
11:0 |DWord Length
Default Value: Oh DWORD_COUNT._n
Project: All
Format: =n Total Length - 2
31:5 [State Pointer
Format: GeneralStateOffset[31:5]Indirect State Buffer
Specifies the 32-byte aligned address of an Indirect State Buffer. This pointer is relative to
the General State Base Address.
4.2 |Reserved
Project: All
Format: MBZ
1.0 |State Pointer Index

Specifies one of the four indirect state pointers to program.

Value Name Description Project
00b indirect state pointer 0 (image state) All
01b indirect state pointer 1 (slice state)sc All
10b indirect state pointer 2
11b indirect state pointer 3

459




MEX_QM_STATE

MFEX_QM_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a common state command for AVC encoder modes. For encoder, it represents both the forward QM
matrices as well as the decoding QM matrices.This is a Frame-level state. Only Scaling Lists specified by an
application are being sent to the hardware. The driver is responsible for determining the final set of scaling lists
to be used for decoding the current slice, based on the AVC Spec Table 7-2 (Fall-Back Rules A and B).In MFX AVC
PAK mode, PAK needs both forward Q scaling lists and 1Q scaling lists. The IQ scaling lists are sent as in MFD in
raster scan order. But the Forward Q scaling lists are sent in column-wise raster order (column-by-column) to
simplify the H/W. Driver will perform all the scan order conversion for both ForwardQ and IQ.

DWord Bit Description

0 31:29 |Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 |Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 |Media Command Opcode
Default Value: Oh MFX_COMMON_STATE

Format: OpCode

23:21 |SubOpcode A
Default Value: Oh

Format: OpCode

20:16 |SubOpcode B
Default Value: 7h

Format: OpCode

15:12 [Reserved
Project: All

Format: MBZ

11:0 |DWord Length

Default Value: 20h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

460



MEX_QM_STATE

1 31:2 |Reserved
| Format: | MBZ
1.0 |AVC

| Exists If: //AVC- Decoder Only

For AVC QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name

0 AVC_4x4_Intra_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)
1 AVC_4x4_Inter_ MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)
2 AVC_8x8_Intra_MATRIX

3 AVC_8x8_Inter MATRIX

1.0 |MPEG2
Exists If: //MPEG2- Decoder Only
For MPEG2 QM Type: This field specifies which Quantizer Matrix is loaded.
Value Name
0 MPEG_INTRA_QUANTIZER_MATRIX
MPEG_NON_INTRA_QUANTIZER_MATRIX
2-3 Reserved
2.33 31:0 |[Forward Quantizer Matrix
Project: All
Format: u32

The format of a Quantizer Matrix is an 8x8 matrix in raster order. Each element is an
unsigned byte.

461




Q"_til

MEX_FQM_STATE

MFEX_FQM_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a common state command for AVC encoder modes. For encoder, it represents both the forward QM
matrices as well as the decoding QM matrices.This is a Frame-level state. Only Scaling Lists specified by an
application are being sent to the hardware. The driver is responsible for determining the final set of scaling lists
to be used for decoding the current slice, based on the AVC Spec Table 7-2 (Fall-Back Rules A and B).In MFX AVC
PAK mode, PAK needs both forward Q scaling lists and 1Q scaling lists. The IQ scaling lists are sent as in MFD in
raster scan order. But the Forward Q scaling lists are sent in column-wise raster order (column-by-column) to
simplify the H/W. Driver will perform all the scan order conversion for both ForwardQ and IQ.

DWord Bit Description

0 31:29 |Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 |Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 |Media Command Opcode
Default Value: Oh MFX_COMMON_STATE

Format: OpCode

23:21 |SubOpcode A
Default Value: Oh

Format: OpCode

20:16 |SubOpcode B
Default Value: 8h

Format: OpCode

15:12 [Reserved
Project: All

Format: MBZ

11:0 |DWord Length

Default Value: 20h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

462



MFEX_FQM_STATE

1 31:2 |Reserved
| Format: | MBZ
1.0 |AVC

| Exists If: //AVC- Decoder Only

For AVC QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name

0 AVC_4x4_Intra_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)
1 AVC_4x4_Inter_ MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)
2 AVC_8x8_Intra_MATRIX

3 AVC_8x8_Inter MATRIX

1.0 |MPEG2
Exists If: //MPEG2- Decoder Only
For MPEG2 QM Type: This field specifies which Quantizer Matrix is loaded.
Value Name
0 MPEG_INTRA_QUANTIZER_MATRIX
MPEG_NON_INTRA_QUANTIZER_MATRIX
2-3 Reserved
2.33 31:0 |[Forward Quantizer Matrix
Project: All
Format: u32

The format of a Quantizer Matrix is an 8x8 matrix in raster order. Each element is an
unsigned byte.

463




Q"_til

MFX_DBK_OBJECT

MFX_DBK_OBJECT

Project: HSW
Source: VideoCS
Length Bias: 2
DWord| Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_DBK_OBJECT
Format: OpCode
26:24 | Media Command Opcode
Default Value: 0Oh Common
Format: OpCode
23:21 |SubOpcode A
Default Value: Oh MEDIA_
Format: OpCode
20:16 | SubOpcode B
Default Value: 9h MEDIA_
Format: OpCode
15:12 [ Reserved
Format: MBZ
11:0 |DWord Length
Default Value: 3h Excludes DWord (0,1)
Format: =n

Note: Regardless of the mode, inline data must be present in this command

1 31:6 | Pre Deblocking Source Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address for outputting the non-filtered reconstructed
YUV picture (i.e. output of final adder in each codec standard, and prior to the deblocking filter
unit).

5:4 | Pre Deblocking - Arbitration Priority Control

464



Q"_til

MFX_DBK_OBJECT

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Reserved

Pre Deblocking - Graphics Data Type (GFDT)

This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the
GTT. The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field
is ignored for reads.

1:0

Pre Deblocking - Cacheability Control
This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).

Value Name

00b use cacheability control bits from GTT entry

01b data is not cached in LLC or MLC

10b data is cached in LLC but not MLC

11b data is cached in both LLC and MLC

31:6

Deblocking Control Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address as input MB-level deblocking parameters to
control the way hardware deblock the each micro-block. One 512-bit cacheline is allocated for
each Macroblock in raster scan order.

5:4

Deblocking control - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Reserved

Deblocking control - Graphics Data Type (GFDT)

This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the
GTT. The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field
is ignored for reads.

1:0

Deblocking control - Cacheability Control
This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).

465




MFX_DBK_OBJECT

Value Name
00b use cacheability control bits from GTT entry
01b data is not cached in LLC or MLC
10b data is not cached in LLC or MLC
11b data is cached in both LLC and MLC
3 31:6 | Deblocking Destination Address
Format: GraphicsAddress[31:6]
Specifies the 4K byte aligned frame buffer address for outputting the post-loop filtered
reconstructed YUV picture (i.e. output of the deblocking filter unit)
5:4 | Deblocking - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority
Reserved
2 |Deblocking - Graphics Data Type (GFDT)
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the
GTT. The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field
is ignored for reads.
1:.0 |Deblocking - Cacheability Control
This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name
00b use cacheability control bits from GTT entry
01b data is not cached in LLC or MLC
10b data is cached in LLC but not MLC
11b data is cached in both LLC and MLC
4 31:6 | Deblock Row Store Address
Format: GraphicsAddress[31:6]
This field provides the base address of the scratch buffer (read and write) used by the deblocking
filter unit to store MB information of the previous row for filtering of each macroblock in the
current row. The Deblocking Filter Row Store buffer must be 64-byte cacheline aligned.Hardware
uses the horizontal address of the current macroblock to address the Deblocking Filter Row
Store.
5:4 |Deblock Row Store - Arbitration Priority Control

466




Q"_til

MFX_DBK_OBJECT

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Reserved

Deblock Row Store- Graphics Data Type (GFDT)

This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the
GTT. The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field

is ignored for reads.

1:0

Deblock Row Store - Cacheability Control
This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).

Value Name
00b use cacheability control bits from GTT entry
01b data is not cached in LLC or MLC
10b data is cached in LLC but not MLC
11b data is cached in both LLC and MLC

467




Q"_til

MFX_DBK_OBJECT

MFX_DBK_OBJECT

Project: HSW
Source: VideoCS
Length Bias: 2
DWord Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_DBK_OBJECT
Format: OpCode
26:24 | Media Command Opcode
Default Value: Oh Common
Format: OpCode
23:21 [SubOpcode A
Default Value: Oh
Format: OpCode
20:16 [ SubOpcode B
Default Value: 9h
Format: OpCode
15:12 | Reserved
Format: MBZ
11:0 |DWord Length
Default Value: 0Bh Excludes DWord (0,1)
Format: =n
Note: Regardless of the mode, inline data must be present in this
command
1 31:6 |Pre Deblocking Source Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address for outputting the non-
filtered reconstructed YUV picture (i.e. output of final adder in each codec
standard, and prior to the deblocking filter unit).

468




Q"_til

MFX_DBK_OBJECT

54

Pre Deblocking - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
0lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Pre Deblocking - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

2.3
Project: DevHSW,
EXCLUDE(DevHSW:GT3:A,
DevHSW:GT3:B,
DevHSW.:.GT2:B)

31:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

4

316

Deblocking Control Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address as input MB-level
deblocking parameters to control the way hardware deblock the each
micro-block. One 512-bit cacheline is allocated for each Macroblock in
raster scan order.

5:4

Deblocking control - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

3:0

Deblocking control - Memory Object Control State

469




MFX_DBK_OBJECT

DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Project:

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

5.6 31:0 |Rserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW.:.GT2:B)
7 31:6 | Deblocking Destination Address
Format: GraphicsAddress[31:6]
Specifies the 4K byte aligned frame buffer address for outputting the post-
loop filtered reconstructed YUV picture (i.e. output of the deblocking filter
unit)
5:4 |Deblocking Destination- Arbitration Priority Control
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.
Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority
3:0 |Deblocking Destination - Memory Object Control State
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format; | MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state for this surface.
8.9 31:0 [Rserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW.:.GT2:B)
10 31:6 |Deblock Row Store Address

Format: GraphicsAddress[31:6]
This field provides the base address of the scratch buffer (read and write)

470




Q"_til

MFX_DBK_OBJECT

used by the deblocking filter unit to store MB information of the previous

row for filtering of each macroblock in the current row. The Deblocking

Filter Row Store buffer must be 64-byte cacheline aligned.Hardware uses
the horizontal address of the current macroblock to address the
Deblocking Filter Row Store.

5:4

Deblock Row Store - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

for this surface.

This field controls the priority of arbitration used in the GAC/GAM pipeline

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Deblock Row Store - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

471




Q"_til

MFD_IT_OBJECT

MFD_IT OBJECT

Project: HSW

Source: VideoCS

Length Bias: 2

All weight mode (default and implicit) are mapped to explicit mode. But the weights come in either as explicit or
implicit.

DWord| Bit Description

0 31:29 | Command Type

Default Value:

3h PARALLEL_VIDEO_PIPE

Format:

OpCode

28:27 | Pipeline

Default Value:

2h MFD_IT_OBJECT

Format:

OpCode

26:24 | Media Command Opcode

Default Value:

Oh MFX_COMMON_DEC

Format:

OpCode

23:21|SubOpcode A

Default Value: 1h

Format: OpCode
20:16 | SubOpcode B

Default Value: 9h

Format: OpCode
15:12 [ Reserved

Format: MBZ
11:0 (DWord Length

Default 06h Excludes DWord (0,1) For AVC = Ch

Value:

Format: =n Total Length - 2 Note: Regardless of the mode, inline data must be present in

this command.

1 31:10 | Reserved

Format:

MBZ

9:0 |Indirect IT-MV Data Length

Format:

U10 FormatDesc: In bytes

472




Q"_til

MFD_IT_OBJECT

This field provides the length in bytes of the indirect data, which contains all the MVs for the
current MB (in any partitioning and subpartitioning form). A value zero indicates that indirect
data fetching is disabled - subsequently, the Indirect IT-MV Data Start Address field is ignored.
This field must have the same alignment as the Indirect Object Data Start Address.AVC-IT Mode:
It must be DWord aligned (since each MV is 4bytes in size)Driver has to derived this field from
MVsize (MVquantity in DXVA, exact size) *4 bytes per MV.This field is only valid in AVC decoder
IT mode (VC1 and MPEG uses inline MV data).

31:29

Reserved

Format: MBZ

28:0

Indirect IT-MV Data Start Address Offset

This field specifies the memory starting address (offset) of the MV data to be fetched into the IT
pipeline for processing. This pointer is relative to the Indirect IT-MV Object Base
Address.Hardware ignores this field if indirect data is not present, i.e. the Indirect MV Data
Length is set to 0. Alignment of this address depends on the mode of operation.AVC-IT Mode: It
must be DWord aligned (since each MV is 4 bytes in size). This field is only valid in AVC decoder
IT mode (VC1 and MPEG uses inline MV data).

Value Name
[0,512MB)
31:12 | Reserved
|Format: |MBZ |
11:0 (Indirect IT-COEFF Data Length
| Project: | All |

This field provides the length in bytes of the indirect data, which contains all the non-zero
coefficients for the current MB. A value zero indicates that indirect data fetching is disabled -
subsequently, the Indirect IT-COEFF Data Start Address field is ignored. Since each IT-COEFF data
is 1 DW in size, with 12 bits, this field can be extended to support up to 4:4:4 format.(256 pixel *
3 byte pixel components * 4 bytes per coeff).This field must be integer multiple of 16-bytes for
AVC (since each coefficient is 4 bytes in size).This field is only valid in AVC, VC1, MPEG2 decoder
IT mode.

Value Name
[0,3072] In bytes [0, 256*3*4]
31:29 | Reserved
| Format: | MBZ |
28:0 (Indirect IT-COEFF Data Start Address Offset

| Project: | All

This field specifies the memory starting address (offset) of the coeff data to be loaded into the IT
pipeline for processing. This pointer is relative to the Indirect IT-COEFF Object Base
Address.Hardware ignores this field if indirect IT-COEFF data is not present, i.e. the Indirect IT-
COEFF Data Length is set to 0.This field must be DW aligned, since each coeff icient is 4 bytes in
size.Driver will determine the Num of EOB 4x4/8x8 must match the block cbp flags, if not match,

473




MFD_IT_OBJECT

hardware cannot hang - add error handling.This field is only valid in AVC, VC1, MPEG2 decoder
IT mode.
Value Name
[0,512MB)
5 31:6 |Reserved
Format: MBZ
5:0 |Indirect IT-DBLK Control Data Length

Project: All

Format: U6
This field provides the length in bytes of the indirect data, which contains all the deblocker
control information for the current MB (in 4x4 sub-block partitioning). A value zero indicates that
indirect data fetching is disabled - subsequently, the Indirect IT-DBLK Data Start Address field is
ignored. This field must have the same alignment as the Indirect IT-DBLK Data Start Address. It
must be DWord aligned. Each Deblock Control Data record is 48 bytes or 12 DWords in size.This
field is only valid in AVC decoder IT mode.

6 31:29 | Reserved
| Format: MBZ
28:0 |Indirect IT-DBLK Control Data Start Address Offset
| Format: IndirectObjectBaseAddress[28:0]
This field specifies the memory starting address (offset) of the Deblocker control data to be
fetched into the IT Pipeline for processing. This pointer is relative to the Indirect IT-DBLK Object
Base Address.
Hardware ignores this field if indirect data is not present, ie. The indirect IT-DBLK Control Data
Length is set to 0.
It must be DWord aligned. Each Deblock Control Data record is 48 bytes or 12 DWords in size.
This field is only valid in AVC decoder IT mode.
Value Name
[0,512MB)
7.n | 31:0 |Inline Data

Union for all 3 codecs

Includes IT, MC, IntraPred inline data as well as Deblocker control information

AVC-IT Modes: Hardware interprets this data in the specified format.

VC1-IT Modes: Hardware interprets this data in the specified format. MV inline

MPEG2-IT Modes: Hardware interprets this data in the specified format. (IS mode) MV inline
For AVC there 7 DWords of inline data, hence N is equal to 13.

474




MEX_PAK_INSERT_OBJECT

MEX_PAK INSERT_OBJECT

Project: HSW
Source: VideoCS
Length Bias: 2

Description

Project

The MFX_PAK_INSERT_OBJECT command is the first primitive command for
the AVC and MPEG2 Encoding Pipeline.

HSW

The MFX_PAK_INSERT_OBJECT command is the first primitive command for
the AVC, MPEG2 and SVC Encoding Pipeline.

DevHSW,
EXCLUDE(DevHSW:GT3:A,
DevHSW:GT3:B, DevHSW:GT2:B)

This command is issued to setup the control and parameters of inserting a
chunk of compressed/encoded bits into the current bitstream output buffer
starting at the specified bit locationto perform the actual insertion by
transferring the command inline data to the output buffer max, 32 bits at a
time.

It is a variable length command as the data to be inserted are presented as
inline data of this command. It is a multiple of 32-bit (1 DW), as the data bus
to the bitstream buffer is 32-bit wide.

Multiple insertion commands can be issued back to back in a series. It is host
software's responsibility to make sure their corresponding data will properly
stitch together to form a valid H.264 bitstream.

Internally, MFX hardware will keep track of the very last two bytes' (the very
last byte can be a partial byte) values of the previous insertion. It is required
that the next Insertion Object Command or the next PAK Object Command to
perform the start code emulation sequence check and prevention 0x03 byte
insertion with this end condition of the previous insertion.

Hardware will keep track of an output bitstream buffer current byte position
and the associated next bit insertion position index. Data to be inserted can
be a valid H.264 NAL units or a partial NAL unit. Certain NAL unit has a
minimum byte size requirement. As such the hardware will optionally
(enabled by STATE Command) determines the number of
CABAC_ZERO_WORD to be inserted to the end of the current NAL, based on
the minimum byte size of a NAL and the actual bin count of the encoded
Slice. Since prior to the CABAC_ZERO_WORD insertion, the RBSP or EBSP is
already byte-aligned, so each CABAC_ZERO_WORD insertion is actually a 3-
byte sequence 0x00 00 03. The inline data may have already been processed
for start code emulation byte insertion, except the possibility of the last 2
bytes plus the very last partial byte (if any). Hence, when hardware
performing the concatenation of multiple consecutive insertion commands,
or concatenation of an insertion command and a PAK object command, it

475




Q"_til

MFEX_PAK_INSERT_OBJECT

must check and perform the necessary start code emulation byte insert at the
junction.The inline data is required to be byte aligned on the left (first
transmitted bit order) and may or may not be byte aligned on the right (last
transmitted bits).

The command will specify the bit offset of the last valid DW.Each insertion
state command defines a chunk of bits (compressed data) to be inserted at a
specific location of the output compressed bitstream in the output
buffer.Depend on CABAC or CAVLC encoding mode (from Slice State), PAK
Object Command is always ended in byte aligned output bitstream except for
CABAC header insertion which is bit aligned. In the aligned cases, PAK will
perform O filling in CAVLC mode, and 1 filling in CABAC mode.

Insertion data can include:any encoded syntax elements bit data before the
encoded Slice Data (PAK Object Command) of the current SliceSPS NALPPS
NALSEI NALOther Non-Slice NALLeading_Zero_8_bits (as many bytes as there
is)Start Code PrefixNAL Header ByteSlice HeaderAny encoded syntax
elements bit data after the encoded Slice Data (PAK Object Command) of the
current Slice and prior to the next encoded Slice Data of the next Slice or
prior to the end of the bistream, whichever comes firstCabac_Zero_Word or
Trailing_Zero_8bits (as many bytes as there is).

Anything listed above before a Slice DataContext switch interrupt is not
supported by this command.

DWord| Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_PAK_INSERT_OBJECT
Format: OpCode

26:24 | Media Command Opcode
Default Value: 0h MFX_COMMON
Format: OpCode

23:21|SubOpcode A
Default Value: 2h
Format: OpCode

20:16 | SubOpcode B
Default Value: 8h
Format: OpCode

15:12 | Reserved

Format: MBZ

476



MFEX_PAK_INSERT_OBJECT

11:0 |DWord Length
Default Value: Oh Excludes DWord (0,1) = Variable Length in DW
Format: =n Total Length - 2

31:18 | Reserved
Format: MBZ

17:16 | DataByteOffset - SrcDataStartingByteOffset[1:0]

Source Data Starting Byte Position within the very first inline DW.

15

HeaderLengthExcludeFrmSize

In case this flag is on, bits are NOT accumulated during current access unit coding neither for
Cabac Zero Word insertion bits counting or for output in MMIO register
MFC_BITSTREAM_BYTECOUNT_FRAME_NO_HEADER.

When using HeaderLenghtExcludeFrmSize for header insertion, the software needs to make sure
that data comes already with inserted start code emulation bytes. SW shouldn't set
EmulationFlag bit ( Bit 3 of DWORD1 of MFX_PAK_INSERT_OBJECT).

Value Name Description
1 NO_ACCUMULATION Bits during current call are not accumulated
0 ACCUMULATE All bits accumulated

14

Slice Header Indicator

This bit indicates if the insert object is a slice header. In the VDEnc mode, PAK only gets this
command at the beginning of the frame for slice position X=0, Y=0. It internally generates the
header that needs to be inserted per slice. For VDEnc mode, this bit should always be set.

Value Name Description

1 SLICE_HEADER |Insertion Object is a Slice Header. The command is stored internally by
HW and is used for inserting slice headers.

0 LEGACY Legacy Insertion Object command. The PAK Insertion Object command
is not stored in HW.

Programming Notes

In VDENC mode, we support only Slice layer without partitioning RBSP syntax.

The payload for PAK_INS_OBJ should contain only start code for Slice header followed by
NAL_type and slice header (slice_header() in AVC spec).

The payload for PAK_INS_OBJ shouldn't contain CABAC Byte alignment bits. HW adds these
alignment bits which are part of slice_data.

Example PAK_INS_OBJ payload : 00 00 01 <NAL_type> <slice_header_Byte0>

.............. <slice_header_Byte LAST>

Any zero_bytes that are added before slice header can be inserted by any preceding general

PAK_INS_OBJ.

13:8

DataBitsInLastDW - SrCDataEndingBitInclusion[5:0]

Source Data to be included in the very last inline DW. Follows the MSBit is the upper bit of each
byte within the DW. The lower byte is actually processed first.For example,
SrCDataEndingBitInclusion = 9, bit 7:0 and bit 15 are included as valid header data.

477




MEX_PAK INSERT_OBJECT

Value Name
[1,32]
7:4 | SkipEmulByteCnt - Skip Emulation Byte Count
Skip emulation check for number of starting byteslt can be programmed from 0 to 15 bytes.For
example, to skip the start code that has already prefixed in the bitstream.
3 |EmulationFlag - EmulationByteBitsInsertEnable
Value| Name Description
0 NONE No emulation
1 EMULATE | Instruct the hardware to perform Start Code Prefix (0x 00 00 01/02/03/00)
Search and Prevention Byte (0x 03) insertion on the insertion data of this
command. It is required that hardware will handle a start code prefix crossing
the boundary between insertion commands, or an insertion command
followed by a PAK Object command.
2 |LastHeaderFlag - LastSrcHeaderDatalnsertCommandFlag
To process a series of consecutive insertion commands, this flag (=1) indicates the current
command is the last 'header' insertion in the series.In CABAC, hardware must perform the "1"
insert for byte align for Slice Header before Slice Data comes in in the next PAK-OBJECT
command.In CAVLC, hardware ignores this bit
1 |EndOfSliceFlag - LastDstDatalnsertCommandFlag
No more insertion command and no more PAK-OBJECT command follows.Flush data out to
memory
0 |BitstreamStartReset - ResetBitStreamStartingPos
Value | Name Description
1 RESET |Reset the bitstream buffer insertion position to the bitstream buffer starting
position.
0 INSERT [Insert the current command inline data starting at the current bitstream buffer
insertion position
2.n | 31:0 |Insert Data PayLoad

Actual Data to be inserted to the output bitstream buffer.

478




MEX_STITCH_OBJECT

MEX_STITCH_OBJECT

Project: HSW
Source: VideoCS
Length Bias: 2

The MFC_STITCH_OBJECT command is used when stitch-enabled is set to 1, while CodecSel and StandardSel are
set to ENCODE and AVC, respectively. This command is used, for example, to stitch multiple bitstreams to form a
transport stream.

It is a variable length command as the data to be inserted are presented as either inline data and/or indirect data
of this command. Multiple insertion commands can be issued back to back in a series. It is host software's
responsibility to make sure their corresponding data will properly stitch together to form a valid output.
Hardware keeps track of an output bitstream buffer current byte position and the associated next bit insertion
position index. Context switch interrupt is not supported by this command.

DWord | Bit Description
0 31:29 [Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFC_STITCH_OBJECT
Format: OpCode

26:24 | Media Command Opcode
Default Value: Oh MFX_COMMON
Format: OpCode

23:21 |SubOpcode A
Default Value: 2h
Format: OpCode

20:16 | SubOpcode B
Default Value: Ah
Format: OpCode

15:12 | Reserved
Format: MBZ

11:0 |DWord Length
Default Value: Oh Excludes DWord (0,1) = Variable Length in DW (&gt;= 3)
Format: =n Total Length - 2

If it is 3, it indicates the absent of inline data.

479




MEX_STITCH_OBJECT

1 31:18 | Reserved
| Format: | MBZ
17:16 | Source Data Starting Byte Offset
Source Data Starting Byte Position within the very first inline DW.
15:14 | Reserved
| Format: | MBZ
13:8 |Source Data Ending Bit Inclusion
Source Data to be included in the very last inline DW. Follows the MSBit is the upper bit of each
byte within the DW. The lower byte is actually processed first.For example,
SrCDataEndingBitInclusion =9, bit 7:0 and bit 15 are included as valid header data.
Value Name
(1,32]
7:4 |Reserved
Reserved
2 |Last Source Header Data Insert Command Flag
To process a series of consecutive insertion commands, this flag (=1) indicates the current
command is the last 'header' insertion in the series.In CABAC, hardware must perform the "1"
insert for byte align for Slice Header before Slice Data comes in in the next PAK-OBJECT
command.In CAVLC, hardware ignores this bit.
1 |Last Destination Data Insert Command Flag
THIS FIELD MUST BE THE SAME AS Last Source Header Data Insert Command Flag
No more insertion command and no more PAK-OBJECT command follows.Flush data out to
memory
0 [Reserved
2 31:19 | Reserved
Format: MBZ
18:0 [Indirect Data Length
Project: HSW
Format: u19
This field provides the length in bytes of the indirect data. A value zero indicates that indirect
data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This
field must have the same alignment as the Indirect Object Data Start Address.
3 31:0 |Indirect Data Start Address

Format: MfxIndirectBitstreamObjectAddress[31:0]

This field specifies the Graphics Memory starting address of the data to be loaded into the kernel
for processing. This pointer is relative to the MFX Indirect Bitstream Object Base Address.
Hardware ignores this field if indirect data is not present.

480




MEX_STITCH_OBJECT

31:0

Insert Data PayLoad

Inline data to be inserted to the output bitstream buffer

481




Q"_il

MEDIA_OBJECT

MEDIA_OBJECT

Project:
Source:

Length Bias:

HSW
RenderCS
2

DWord

Bit

Description

0

31:29

Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27

Media Command Pipeline

Default Value: 2h Media

Format: OpCode

26:24

Media Command Opcode

Default Value: 1h MEDIA_OBJECT

Format: OpCode

23:16

Media Command Sub-Opcode

Default Value: Oh MEDIA_OBJECT SubOp

Format: OpCode

15:0

DWord Length

Default Value: 4h DWORD_COUNT_n

Project: HSW

Format: =n Total Length - 2

Excludes DWords 0,1

Generic Mode: DWord Length = N+4, where N is in the range of [0,504]. The maximum is 504
DW (equivalent to 63 8-DW registers).

When both inline and indirect data are fetched for this command, the total size in 8-DW
registers must be less than 112

(with both inline data length N and indirect data length rounded up to 8-DW aligned
individually). The minimal inline data length is 0.

31:8

Reserved

7:6

Reserved

| Format: MBZ

5:0

Interface Descriptor Offset

| Project: DevHSW +

482



Q"_til

MEDIA_OBJECT

Format: | u6 |
This field specifies the offset from the interface descriptor base pointer to the interface descriptor
which will be applied to
this object. It is specified in units of interface descriptors.

31

Children Present

Format: Enable

Indicates that the root thread may send spawn messages to spawn child threads and/or
synchronized root threads.

If Children Present is not set, TS signals VFE to dereference the URB handle immediately after it
receives acknowledgement from TD that the thread is dispatched.

If Children Present is set, the URB handle is forwarded to the root thread and serves as the
return URB handle for the root thread. TS does not signal deference at the time of dispatch. TS
signals URB handle deference only when it receives a resource dereference message from the
thread.

In order avoid deadlock, such dereference must be issued once and only once for each URB handle.

30:25 | Reserved
Format: MBZ
24 | Thread Synchronization

This field when set indicates that the dispatch of the thread originated from this command is
based on the "spawn root thread" message.

Value Name

0 No thread synchronization

1 Thread dispatch is synchronized by the ‘spawn root thread' message
23 (Reserved

Format: MBZ
22 (Reserved

Project: HSW

Format: MBZ
21 |Use Scoreboard

This field specifies whether the thread associated with this command uses hardware scoreboard.
Only when this field is set, the scoreboard control fields in the VFE Dword are valid. If this field is
cleared, the thread associated with this command bypasses hardware scoreboard.

Value Name
0 Not using scoreboard
1 Using scoreboard
20 (Reserved
Project: HSW

483




MEDIA_OBJECT

| Format: | MBZ |

19

Slice Destination Select

| Project: | HSW |
This bit along with the half-slice destination select determines the slice that this thread must be
sent to.

Value| Name Description Exists If

00b |Slice0 [Half-Slice Destination Select] !=
'Either half-slice'

0lb [Slicel [Cannot be used in products without a

Slice 1.
00b [Either Hardware will choose the slice and half- |[Half-Slice Destination Select] ==
Slice slice based on load. 'Either half-slice'

Programming Notes

This field must be 0 if the Half-Slice Destination Select is 00

18:17

Half-Slice Destination Select
Project: HSW
This field selects the half slice that this thread must be sent to.
Value Name Description
10b Half-Slice 1 Cannot be used in products without a Half-Slice 1.
01b Half-Slice 0
00b Either half-slice Hardware will choose the slice based on load.

Programming Notes

If "Either half-slice" is selected then the Slice Destination Select must also specify "Either slice".

16:0

Indirect Data Length
Format: U1l7 In bytes

This field provides the length in bytes of the indirect data. A value zero indicates that indirect
data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored.

This field must have the same alignment as the Indirect Object Data Start Address.

It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB, range is
limited to 496 DW. When both inline and indirect data are fetched for this command, the total
size in 8-DW registers must be less than 112 (with both inline data length and indirect data
length rounded up to 8-DW aligned).

310

Indirect Data Start Address
| Format: GraphicsAddress[31:0] |

| Description | Project |

484




Q"_til

MEDIA_OBJECT

This field specifies the Graphics Memory starting address of the data to be loaded into
the kernel for processing. This pointer is relative to the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Alignment of this address depends on the mode of operation.

Invalidation Enable through a PIPE_CONTROL command prior to reusing the same
graphics memory space.

VF cache invalidation must be done when any graphics memory space is reused
within the same 64-byte cacheline.

This field specifies the DWord aligned address of the indirect data. HSW
Value Name
[0,512MB]
Programming Notes Project
Driver must invalidate the vertex fetch cache through the VF(address based) Cache HSW

Bits 31:29 MBZ

31:25

Reserved

| Format: | MBZ

24:16

Scoredboard Y

| Format: | U9

This field provides the Y term of the scoreboard value of the current thread.

159

Reserved

| Format: | MBZ

8.0

Scoreboard X

| Format: | U9

This field provides the X term of the scoreboard value of the current thread.

31:20

Reserved

| Format: | MBZ

19:16

Scoreboard Color

Format: U4

This field specifies which dependency color the current thread belongs to. It affects the
dependency scoreboard control.

15:8

Reserved

485




MEDIA_OBJECT

| Format: | MBZ

7:0 |Scoreboard Mask
| Format: | Boolean
Each bit indicates the corresponding dependency scoreboard is dependent on. This field is
AND'd with the corresponding Scoreboard Mask field in the MEDIA_VFE_STATE command.
Bit n (for n = 0...7): Scoreboard n is dependent, where bit 0 maps to n = 0.
6.n | 31:0 |Inline Data

Generic Mode: The format of this data is specified by software. Hardware does not interpret this
data; it merely passes it to the kernel for processing. The total size for the inline data and indirect
data must not exceed 112 registers.

486




MFEX_AVC_IMG_STATE

MFX_AVC_IMG_STATE

Project:
Source:
Length Bias:

HSW
VideoCS

2

This must be the very first command to issue after the surface state, the pipe select and base address setting
commands. This command supports both Long and Short VLD and IT DXVA2 AVC Decoding Interface.

DWord Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_AVC_IMG_STATE
Format: OpCode
26:24 | Media Command Opcode
Default Value: 1h AVC_COMMON
Format: OpCode
23:21|SubOpcode A
Default Value: Oh
Format: OpCode
20:16 | SubOpcode B
Default Value: Oh
Format: OpCode
15:12 | Reserved
Format: MBZ
11:0 | DWord Length

Default |0Ch Excludes DWord (0,1)

Value:

Format: |=n OOEh, used for normal decode and encode mode000h, a special case to
provide a dummy image state for stitch mode operation. In this case, fields
in DW1 which is part of the dummy image state command are ignored by
hardware.

1 31:16 | Reserved
Format: MBZ
15:0 |Frame Size

487




MFEX_AVC_IMG_STATE

Format: |U16—1 in MB unit

The value for FrameSizeInMBs must match the product of FrameWidthInMBs and
FrameHeightInMBs.Max. Screen resolution is therefore limited to 256 x 256 in MB unit.
It is enough to cover all the Profile-Level specified in the current HD-DVD specification.
E.g., for 1920x1080, FrameSizeInMBs[15:0] = 8160 (1920/16 * 1088/16; rounded up
1080). This parameter is specified for Intel interface only, not present in the DXVA.

Value Name Description
[0,16383] representing Number of MBs [1,16384]
2 31:24 [ Reserved
Format: MBZ

(bit[31:24] must be zero to match the DXVA 16-bit definition for
FrameHeightInMBsMinus1)

23:16

Frame Height

Format: U8-1 in MB unit

It is set to the value of (FrameHeightInMBsMinus1+ 1). Since the max value for
FrameHeightInMBs is 255, the max allowed value for FrameHeightiInMBsMinus1 is only
254. The min value for FrameHeightInMBs is 1.Although the max. value that can be
specified for FrameHeightInMBs is 255 (in the current implementation),
FrameWidthInMBs * FrameHeightInMBs must not exceed the max value of
FrameSizeInMBs[14:0].e.g. for 1920x1080, FrameHeightInMBs[7:0] is equal to 68 (1080
divided by 16, and rounded up, i.e. effectively specified as 1088 instead).It is derived
from FrameHeightInMbs = ( 2 - frame_mbs_only_flag ) * PicHeightiInMapUnits and
PicHeightInMbs = FrameHeightInMbs / (1 + field_pic_flag ) internally done. For MBAFF,
PicHeightInMapUnits is in MB pair unit, so the bitstream sends only half frame height.

Value Name Description

[0,255] representing height [1,256]

15:8 [Reserved
Format: MBZ
(bit[15:8] must be zero to match the DXVA 16-bit definition for
FrameWidthInMBsMinus1)

7:0 |Frame Width
Format: U8-1 in MB unit

It is set to the value of (FrameWidthInMBsMinusl+ 1). Since the max value for
FrameWidthInMBs is 255, the max allowed value for FrameWidthInMBsMinus1 is only
254. The min value for FrameWidthInMBs is 1.Although the max. value that can be
specified for FrameWidthInMBs is 255 (in the current implementation),
FrameWidthInMBs * FrameWidthInMBs must not exceed the max value of
FrameSizeInMBs[14:0].e.g. for 1920x1080, FrameHeightInMBs[7:0] is equal to 68 (1080
divided by 16, and rounded up, i.e. effectively specified as 1088 instead).It is derived

488




(intel
MFX_AVC_IMG_STATE

from FrameWidthInMbs = ( 2 - frame_mbs_only_flag ) * PicWidthInMapUnits and
PicWidthInMbs = FrameWidthInMbs / ( 1 + field_pic_flag ) internally done. For MBAFF,
PicWidthInMapUnits is in MB pair unit, so the bitstream sends only half frame width.

Value Name Description
[0,255] representing width [1,256]
31:29 [ Reserved
Format: MBZ

(bit[31:29] must be zero to match the DXVA2 8-bit definition for InitQpChroma[1])

28:24

Second Chroma QP Offset

Signed integer value. It should be in the range of -12 to +12 (according to AVC spec).It
specifies the offset for determining QP Cr from QP Y. It is set to the upper 5 bits of the
value of the syntax element (Chroma_qp_offset[9:0]) read from the current active
PPS.Chroma_qp_offset [4:0] - chroma_qgp_offset_bits (from the current active
PPS)Chroma_qgp_offset [9:5] - second_chroma_qp_offset_bits

23:21

Reserved

Format: MBZ

(bit[23:21] must be zero to match the DXVA2 8-bit definition for InitQpChroma[1])

20:16

First Chroma QP Offset

Signed integer value. It should be in the range of -12 to +12 (according to AVC spec).It
specifies the offset for determining QP Cb from QP Y. It is set to the lower 5 bits of the
value of the syntax element (Chroma_qp_offset[9:0]) read from the current active
PPS.Chroma_qp_offset [4:0] - chroma_qgp_offset_bits (from the current active
PPS)Chroma_qgp_offset [9:5] - second_chroma_qp_offset_bits

15:14 | Reserved

Format: MBZ

13 |Reserved
Project: HSW
Format: MBZ

12 |Weighted_Pred_Flag
Format: Enable
(This field is defined differently from Gen6, Gen7 follows strictly DXVA2 AVC interface.)
Value Name Description
0 Disable specifies that weighted prediction is not used for P and SP

[Default] slices

1 Enable specifies that weighted prediction is used for P and SP slices

Programming Notes

489



MFEX_AVC_IMG_STATE

This field must set to '0' for B and I pictures.

11:10

Weighted_BiPred_Idc
(DevHSW follows strictly DXVA2 AVC interface.)

Value Name Description
0 DEFAULT Specifies that the default weighted prediction is used for B
[Default] slices

1 EXPLICIT Specifies that explicit weighted prediction is used for B
slices

2 IMPLICIT Specifies that implicit weighted prediction is used for B
slices.

3 Reserved Illegal value

Programming Notes
This field must set to 0 for P and I pictures.

9:83 [ImgStruct - Image Structure, img_structure[1:0]
The current encoding picture structure can only takes on 3 possible values
Value Name
00b Frame Picture
01b Top Field Picture
11b Bottom Field Picture
10b Invalid, not allowed.
Programming Notes
img_structure[0] can be used as a flag to distinguish between frame and field
structure. It must be consistent with the field_pic_flag setting in the Slice Header.This
parameter is specified for Intel interface only, not present in the DXVA as a separate
state (instead the img_structure[1] is embedded inside the DXVA picture definition).
7:0 [Reserved
Format: MBZ
4 31:16 | MinFrameWSize
Default Value: Oh
Format: ule

Minimum Frame Size [15:0] (in Word, 16-bit)(Encoder Only) Mininum Frame Size is
specified to compensate for intel Rate Control Currently zero fill (no need to perform
emulation byte insertion) is done only to the end of the CABAC_ZERO_WORD insertion
(if any) at the last slice of a picture. Intel encoder parameter, not part of DXVA. The
caller should always make sure that the value, represented by Mininum Frame Size, is
always less than maximum frame size FrameBitRateMax (DWORD 10 bits 29:16).This
field is reserved in Decode mode.

490




MFEX_AVC_IMG_STATE

The programmable range 0..2718-1

When MinFrameWSizeUnits is 00.

Programmable range is 0...2220-1 when MinFrameWSizeUnits is 01.
Programmable range is 0...2726-1 when MinFrameWSizeUnits is 10.
Programmable range is 0...2"32-1 when MinFrameWSizeUnits is 11.

15

MbStatEnabled

Format: Enable

Enable reading in MB status buffer (a.k.a. encoding stream-out buffer) Note: For multi-
pass encoder, all passes except the first one need to set this value to 1. By setting the
first pass to 0, it does save some memory bandwidth.

Value Name Description

0 Disable Disable Reading of Macroblock Status Buffer

Enable Enable Reading of Macroblock Status Buffer

14

LoadSlicePointerFlag

Format: Enable

LoadBitStreamPointerPerSlice (Encoder-only)To support multiple slice picture and
additional header/data insertion before and after an encoded slice.When this field is set
to 0, bitstream pointer is only loaded once for the first slice of a frame. For subsequent
slices in the frame, bitstream data are stitched together to form a single output data
stream.When this field is set to 1, bitstream pointer is loaded for each slice of a frame.
Basically bitstream data for different slices of a frame will be written to different
memory locations.

Value | Name Description
0 Disable [ Load BitStream Pointer only once for the first slice of a frame
1 Enable |Load/reload BitStream Pointer only once for the each slice, reload the

start location of the bitstream buffer from the Indirect PAK-BSE Object
Data Start Address field

13 ([Reserved
12 | MvUnpackedFlag
MVUnPackedEnable (Encoder Only)This field is reserved in Decode mode.
Value Name Description
0 PACKED use packed MV format (compliant to DXVA)
1 UNPACKED use unpacked 8MV/32MV format only
11:10 | ChromaFormatldc

Chroma Format IDC, ChromaFormatIdc[1:0]lt specifies the sampling of chroma
component (Cb, Cr) in the current picture as follows :

Value Name Description
00b monochrome picture Desc
01b 4:2:0 picture Desc

491




MFEX_AVC_IMG_STATE

10b 4:2:2 picture (not supported)

11b 4:4:4 picture (not supported)

Programming Notes

It is set to the value of the syntax element read from the current active SPS.The

corresponding Monochrome Flag (monochrome_flag) can be derived from this field.

Reserved

Format: MBZ

MbMvFormatFlag

Use MB level MvFormat flag (Encoder Only)

Value| Name Description Project

0 IGNORE [HW PAK ignore MvFormat in the MB data.

When bit 12 == 0, all MBs use packed MV formatWhen bit
12 == 1, each MB data must use unpacked MV format,
8MV when there is no minor MV involved, and 32MV if
there are some minor MVs.

1 FOLLOW [HW PAK will follow MvFormat value set within each MB HSW
data.

Programming Notes

They must take one of the two values: the 8MV unpacked format (MvFormat =101b),
and the 32MV unpacked format (MvFormat =110b).This bit can be set only when
MvUnpackedFlag (bit 12 of this register) is set otherwise system could hang.

EntropyCodingFlag
Entropy Coding Flag, entropy_coding_flag

Value Name Description
0 CAVLC bit-serial encoding mode Desc
CABAC bit-serial encoding mode. Desc

Programming Notes

It specifies one of the two possible bit stream encoding modes in the AVC. It is set to
the value of the syntax element read from the current active PPS.

ImgDisposableFlag
Current Img Disposable Flag or Non-Reference Picture Flag

Value Name Description

0 REFERENCE |the current decoding picture may be used as a reference picture
for others

1 DISPOSABLE | the current decoding picture is not used as a reference picture
(e.g. a B-picture cannot be a reference picture for any

492



Q"_til

MFEX_AVC_IMG_STATE

| | |subsequent decoding)

Programming Notes

It is derived from ImgDisposableFlag = (nal_ref_idc == 0). nal_ref_idc is a syntax
element from a NAL unit. When this flag is set, no reference picture and DMV are
written out.This field is only valid for VLD decoding mode.

ConstrainedIPredFlag
Constrained Intra Prediction Flag, constrained_ipred_flaglt is set to the value of the
syntax element in the current active PPS.

Value Name Description

0 INTRA_AND_INTER | allows both intra and inter neighboring MB to be used in
the intra-prediction encoding of the current MB.

1 INTRA_ONLY allows only to use neighboring Intra MBs in the intra-
prediction encoding of the current MB. If the neighbor is
an inter MB, it is considered as not available.

Direct8x8InfFlag

Direct 8x8 Inference Flag, direct_8x8_inference_flaglt is set to the value of the syntax
element in the current active SPS.It specifies the derivation process for luma motion
vectors in the Direct MV coding modes (B_Skip, B_Direct_16x16 and B_Direct_8x8).
When frame_mbs_only_flag is equal to O, direct_8x8_inference_flag shall be equal to 1.1t
must be consistent with the frame_mbs_only_flag and transform_8x8_mode_flag
settings.

Value| Name Description

0 SUBBLOCK | allows subpartitioning to go below 8x8 block size (i.e. 4x4, 8x4 or
4x8)

1 BLOCK allows processing only at 8x8 block size. MB Info is stored for 8x8
block size.

Transform8x8Flag

8x8 IDCT Transform Mode Flag, trans8x8_mode_flagSpecifies 8x8 IDCT transform may
be used in this picturelt is set to the value of the syntax element in the current active
PPS.

Value [ Name Description

0 4x4 no 8x8 IDCT Transform, only 4x4 IDCT transform blocks are present
1 8x8 8x8 Transform is allowed
FrameMbOnlyFlag

Frame MB only flag, frame_mbs_only_flaglt is set to the value of the syntax element in
the current active SPS.

Value [ Name Description
0 FALSE | not true ; effectively enables the possibility of MBAFF mode.
1 TRUE |[true, only frame MBs can occur in this sequence, hence disallows the

493



MFEX_AVC_IMG_STATE

|MBAFF mode and field picture.

1 |MbaffFlameFlag

MBAFF mode is active, mbaff_frame_flag.It is derived from MbaffFrameFlag =
(mb_adaptive_frame_field_flag &8& ! field_pic_flag ). mb_adaptive_frame_field_flag is a
syntax element in the current active SPS and field_pic_flag is a syntax element in the
current Slice Header. They both are present only if frame_mbs_only_flag is 0. Although
mbaff_frame_flag is a Slice Header parameter, its value is expected to be the same for
all the slices of a picture.Ilt must be consistent with the mb_adaptive_frame_field_flag,
the field_pic_flag and the frame_mbs_only_flag settings.This bit is valid only when the
img_structure[1:0] indicates the current picture is a frame.

Value Name Description
0 FALSE not in MBAFF mode
TRUE in MBAFF mode
0 |FieldPicFlag

Field picture flag, field_pic_flag, specifies the current slice is a coded field or not.t is set
to the same value as the syntax element in the Slice Header. It must be consistent with
the img_structure[1:0] and the frame_mbs_only_flag settings.Although field_pic_flag is a
Slice Header parameter, its value is expected to be the same for all the slices of a

icture.

Value Name Description
Oh FRAME a slice of a coded frame
1h FIELD a slice of a coded field
5 31 |Trellis Quantization Enabled (TQEnb)
| Format: Enable
[Existslf]Encode The TQ improves output video quality of AVC CABAC encoder by selecting quantized
Only values for each non-zero coefficient so as to minimize the total R-D cost.This flag is
only valid AVC CABAC mode. Otherwise, this flag should be disabled.
Value Name Description Project
Oh Disable Use Normal
1h Enable Use Trellis quantization DevHSW:GT3
30:28 | Trellis Quantization Rounding (TQR)

This rounding scheme is only applied to the quantized coefficients ranging from 0 to 1
when TQEnb is set to 1 in AVC CABAC mode. One of the following values is added to
quantized coefficients before truncating fractional part.

Value Name Description Project
000b Add 1/8 DevHSW:GT3
001b Add 2/8 DevHSW:GT3
010b Add 3/8 DevHSW:GT3
011lb Add 4/8 (rounding 0.5) DevHSW:GT3

494



Q"_til

MFEX_AVC_IMG_STATE

100b Add 5/8 DevHSW:GT3
101b Add 6/8 DevHSW:GT3
110b Default Add 7/8 (Default rounding 0.875) DevHSW:GT3
27 |Trellis Quantization Chroma Disable (TQChromaDisable)
This signal is used to disable chroma TQ. To enable TQ for both luma and chroma,
TQEnb=1, TQChromaDisable=0. To enable TQ only for luma, TQEnb=1,
TQChromaDisable=1.
Value Name Description Project
Oh Enable Trellis Quantization chroma DevHSW:GT3
1h Default | Disable Trellis Quantization chroma DevHSW:GT3
26:21 [ Reserved
Project: HSW
Format: MBZ
20:17 | Reserved
Format: MBZ
16 |NonFirstPassFlag
This signals the current pass is not the first pass. It will imply designate HW behavior:
e.g
Value | Name Description
Oh Disable [ Always use the MbQpY from initial PAK inline object for all passes of
PAK
1h Enable [Use MbQpY from stream-out buffer if MbRateCtrlFlag is set to 1
15:13 | Reserved
| Format: | MBZ
12 |InterMbZeroCbpFlag - InterMB Force CBP to Zero Control Flag
| Project: | HSW
Inter MB Force CBP ZERO mask.
Value | Name Description
Oh Disable | No Effect
1h Enable |Zero out all A/C coefficients for the inter MB violating Inter
Confirmance
11:10 | MinFrameWSizeUnits

This field is the Minimum Frame Size Units

Value Name Description

00b compatibility mode | Minimum Frame Size is in old mode (words, 2bytes)

01b 16 byte Minimum Frame Size is in 16bytes

10b  |4Kb Minimum Frame Size is in 4Kbytes

495



MFEX_AVC_IMG_STATE

|11b |16Kb |Minimum Frame Size is in 16Kbytes

MbRateCtriFlag - MB level Rate Control Enabling Flag
MB Rate Control conformance mask

Value | Name Description

Oh Disable [ Apply accumulative delta QP for consecutive passes on top of the
macroblock QP values in inline data

1h Enable |Apply RC QP delta to suggested QP values in Macroblock Status
Buffer except the first pass.

Programming Notes

This field is ignored when MacroblockStatEnable is disabled or MB level Rate control
flag for the current MB is disable in Macroblock Status Buffer.

Reserved

Format: MBZ

Intra/InterMblIpcmFlag - ForceIPCMControlMask
This field is to Force IPCM for Intra or Inter Macroblock size conformance mask.

Value | Name Description Project

Oh Disable [Do not change intra macroblocks even. HSW

1h Enable [Change intra macroblocks MB_type to IPCM. HSW

Programming Notes

This field is ignored when MacroblockStatEnable is disabled or MB level Intra MB
conformance flag for the current MB is disable in Macroblock Status Buffer.

6:4

Reserved

Format: MBZ

FrameSzUnderFlag - FrameBitRateMinReportMask
This is a mask bit controlling if the condition of frame level bit count is less than
FrameBitRateMin

Value | Name Description

Oh Disable | Do not update bit0 of MFC_IMAGE_STATUS control register.

1h Enable |set bit0 and bit 1of MFC_IMAGE_STATUS control register if the total
frame level bit counter is less than or equal to Frame Bit rate
Minimum limit.

FrameSzOverFlag - FrameBitRateMaxReportMask
This is a mask bit controlling if the condition of frame level bit count exceeds
FrameBitRateMax.

Value | Name Description

0 Disable | Do not update bit0 of MFC_IMAGE_STATUS control register.

496




Q"_til

MFEX_AVC_IMG_STATE

1 Enable |Set bit0 and bit 1 of MFC_IMAGE_STATUS control register if the total
frame level bit counter is greater than or equal to Frame Bit rate
Maximum limit.

1 |InterMbMaxBitFlag - InterMBMaxSizeReportMask
This is a mask bit controlling if the condition of any inter MB in the frame exceeds
InterMBMaxSize.

Value | Name Description

0 Disable | Do not update bit0 of MFC_IMAGE_STATUS control register.

1 Enable |Set bit0 of MFC_IMAGE_STATUS control register if the total bit
counter for the current MB is greater than the Inter MB Conformance
Max size limit.

0 |IntraMbMaxBitFlag - IntraMBMaxSizeReportMask
This is a mask bit controlling if the condition of any intra MB in the frame exceeds
IntraMBMaxSize.

Value | Name Description

Oh Disable | Do not update bit0 of MFC_IMAGE_STATUS control register.

1 Enable |set bit0 of MFC_IMAGE_STATUS control register if the total bit counter
for the current MB is greater than the Intra MB Conformance Max size
limit.

6 31:28 | Reserved
) 27:16 | InterMbMaxSz
[EX|stsCI)f3]I|Encode Format: ul2
J This field, Inter MB Conformance Max size limit,indicates the allowed max bit count size
for Inter MB
15:12 [ Reserved
Format: MBZ
11:0 (IntraMbMaxSz

Exists If: //Intra Only

Format: U1z

This field, Intra MB Conformance Max size limit,indicates the allowed max bit count

size for Intra MB

All IPCM MBs should ignore this Max size limit.

7 31:1 [Reserved
] 0 [Reserved
[EX|stsOIf1I|Encode Project: DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B
y
Format: MBZ

497



MFEX_AVC_IMG_STATE

0 |VSL Top MB Trans8x8flag

| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B)

Value Name Description
0 Disable VSL will only fetch the current MB data.
[Default]
1 Enable When this bit is set VSL will make extra fetch to memory to
fetch the MB data for top MB.

8 31:24 | SliceDeltaQpMax|3]
| Format: S7
[ExistsIflEncode
Only Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for total bit-count above FrameBitRateMax - first
1/8 regionThis field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame
exceeds FrameBitRateMax but is within 1/8 of FrameBitRateMaxDelta above
FrameBitRateMax, i.e., in the range of (FrameBitRateMax, (FrameBitRateMax+
FrameBitRateMaxDelta> > 3).

23:16 | SliceDeltaQpMax|[2]

| Format: us

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/8
and below 1/ 4 This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is
between 1/8 and ¥ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the
range of ((FrameBitRateMax+ FrameBitRateMaxDelta> >3), (FrameBitRateMax+
FrameBitRateMaxDelta> > 2).

15:8 [SliceDeltaQpMax[1]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - abovel/ 4
and below 1/2 This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is
between ¥ and Y2 of FrameBitRateMaxDelta above FrameBitRateMayx, i.e., in the
range of ((FrameBitRateMax+ FrameBitRateMaxDelta> >2), (FrameBitRateMax+
FrameBitRateMaxDelta>>1).

7:0 |SliceDeltaQpPMax[0]

Format: S7

498



Q"_til

MFEX_AVC_IMG_STATE

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/
2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS
control register when total bit count for the entire frame is above FrameBitRateMax by
more than half the distance of FrameBitRateMaxDelta , i.e., in the range of

((FrameBitRateMax+ FrameBitRateMaxDelta> > 1), infinite).

[ExistsIflEncode
Only

31:24

SliceDeltaQpMin|[3]

| Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for total bit-count below FrameBitRateMin - first
1/8 regionThis field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is less
than FrameBitRateMin and greater than or equal to 1/8 the distance of
FrameBitRateMinDelta from FrameBitRateMin, i.e., in the range of [(FrameBitRateMin-
FrameBitRateMinDelta>>3), FrameBitRateMin).

23:16 | SliceDeltaQpMin[2]
| Format: S7
Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count below FrameBitRateMin - below 1/ 8
and above 1/ 4This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is
between one-eighth and quarter the distance of FrameBitRateMinDelta from
FrameBitRateMin, i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta> >2),
(FrameBitRateMin- FrameBitRateMinDelta> > 3)).
15:8 [SliceDeltaQpMin|[1]
Format: S7
Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count below FrameBitRateMin- below 1/4
and above 1/ 2This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is
between quarter and half the distance of FrameBitRateMinDelta from
FrameBitRateMin, i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta> >1),
(FrameBitRateMin- FrameBitRateMinDelta> >2)).
7:0 [SliceDeltaQpMin[0]
| Format: S7

| Range: [0:MAX_QP_DELTA]

499



MFEX_AVC_IMG_STATE

This field is the Slice Level Delta QP for bit-count below FrameBitRateMin - below 1/
2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS
control register when total bit count for the entire frame is below FrameBitRateMin by
more than half the distance of FrameBitRateMinDelta, i.e., in the range of [0,
(FrameBitRateMin- FrameBitRateMinDelta>>1).

10

[ExistsIflEncode
Only

31

FrameBitrateMaxUnit
This field is the Frame Bitrate Maximum Limit Units.

Value [ Name Description

0 Byte FrameBitRateMax is in units of 32 Bytes when
FrameBitrateMaxUnitMode is 1 and in units of 128 Bytes if
FrameBitrateMaxUnitMode is 0

1 Kilo FrameBitRateMax is in units of 4KBytes Bytes when
Byte FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if
FrameBitrateMaxUnitMode is O

30 |FrameBitrateMaxUnitMode
This field is the Frame Bitrate Maximum Limit Units.
Value Name Description
Oh compatibility mode | FrameBitRateMaxUnit is in old mode (128b/16Kb)
1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb)
29:16 | FrameBitRateMax

This field is the Frame Bitrate Maximum Limit. This field along with
FrameBitrateMaxUnit determines maximum allowed bits in a frame before multi-pass
gets triggered (when enabled). In other words, multi-pass is triggered when the actual
frame byte count exceeds this value. When FrameBitrateMaxUnitMode is
0(compatibility mode) bits 16:27 should be used, bits 28 and 29 should be 0..

Value |Name Description
0-512KB The programmable range is 0-512KB when FrameBitrateMaxUnit is
0.
0- The programmable range is 0-8190KB when FrameBitrateMaxUnit
8190KB is 1.

15

FrameBitrateMinUnit
This field is the Frame Bitrate Minimum Limit Units.

Value [ Name Description

0 Byte FrameBitRateMax is in units of 32 Bytes when
FrameBitrateMinUnitMode is 1 and in units of 128 Bytes if
FrameBitrateMinUnitMode is 0

1 Kilo FrameBitRateMax is in units of 4KBytes Bytes when
Byte FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if
FrameBitrateMaxUnitMode is 0

14

FrameBitrateMinUnitMode

500




Q"_til

MFEX_AVC_IMG_STATE

This field is the Frame Bitrate Minimum Limit Units.

Value Name Description
Oh Compatibility mode | FrameBitRateMaxUnit is in old mode (128b/16Kb)
1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb)

13:0 | FrameBitRateMin

RangeThe programmable range 0-512KB When FrameBitrateMinUnit is in
0.Programmable range is 0-8190 KB when FrameBitrateMinUnit is in 1.This field is the
Frame Bitrate Minimum Limit ()This field along with FrameBitrateMinUnit determines
minimum allowed bits in a Frame before Multi-Pass gets triggered (when enabled). In
other words, multi-pass is triggered when the actual frame byte count is less than this
value. When FrameBitrateMinUnitMode is 0 (compatibility mode) bits 0:11 should be
used, bits 12 and 13 should be 0.

11 31 |Reserved
) 30:16 | FrameBitRateMaxDelta
[ExistsIflEncode Format: ULs
Only

This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It
shares the same FrameBitrateMaxUnit. When FrameBitrateMaxUnitMode is
0(compatibility mode) bits 16:27 should be used, bits 28, 29 and 30 should be 0.

Value Name Description
0-1024KB The Programmable range 0-1024KB when
FrameBitRateMaxUnit is O.
0- The Programmable range is 0-16380KB when
16380KB FrameBitRateMaxUnit is 1.
Oh
[Default]

15 |Reserved

Format: MBZ

14:0 | FrameBitRateMinDelta

Range: The programmable range 0-1024KB When FrameBitrateMinUnit is in
32Bytes.Programmable range is 0-16380KB when FrameBitrateMinUnit is in 4Kbytes.

This field is used to select the slice delta QP

when FrameBitRateMin Is exceeded. It shares the same FrameBitrateMinUnit. When
FrameBitrateMinUnitMode is O(compatibility mode) bits 0:11 should be used, bits
12, 13 and 14 should be 0.Note: HW requires the following condition
FrameBitRateMinDelta <= 2*FrameBitRateMinMust be true, otherwise it may cause
unpredicted behavior.

12 31:21 | Reserved

Format: MBZ

20 |VMD Error Logic

501




MFEX_AVC_IMG_STATE

| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B)

Value Name Description
0 Disable [Default]
1 Enable Error Handling
20 [Reserved
Project: DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B
Format: MBZ
19 |Reserved
| Format: MBZ
18 |VAD Error Logic
| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B)
Value Name Description
0 Enable Error reporting ON in case of premature Slice done
[Default]
1 Disable CABAC Engine will auto decode the bitstream in case of
premature slice done.
17 |Reserved
| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B)
18:16 | Reserved
Project: DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B
Format: MBZ
16 |MPEG2 OLDB Mode Select
Project: |DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B)
Exists If: |//For VMDunit Only
Value | Name Description
0 Disable |Set to Original OLDB Determination
1 Enable [Consider all MB as INTRA MB for OLDB Determination
15:0 |Reserved
Format: MBZ
13 31:30 | Reserved
Project: All
Format: MBZ
29 |Current Picture Has Performed MMCO5

502




Q"_til

MFEX_AVC_IMG_STATE

Set to 1 if the current Pic has performed the memory_management_control_operation

28:24

Number of Reference Frames

Format: us

Range: Range 0 to MaxDpbSize (=16 for Level 4.1)

Specifies the maximum number of reference frames (frames, field pairs, unpaired field)
existed in the current DBP for decoding the current picture.

23:22

Reserved

| Format: | MBZ

21:16

Number of Active Reference Pictures from L1

| Format: | ue-1

Specifies the initial maximum reference index value minus 1 to access the L1 Reference
List. It is extracted from PPS. It corresponds to the number of active reference pictures
from L1 to decode the current picture. It can be modified by the slice header if
num_ref_idx_active_override_flag is set. Only valid for B picture.

Value Name
[0,31]
15:14 | Reserved
| Format: | MBZ |
13:8 | Number of Active Reference Pictures from LO

| Format: | ue-1

Specifies the initial maximum reference index value minus 1 to access the LO Reference
List. It is extracted from PPS. It corresponds to the number of active reference pictures
from LO to decode the current picture. It can be modified by the slice header if
num_ref_idx_active_override_flag is set. Valid for both P and B pictures.

Value Name
[0,31]
7:0 |Initial QP Value

| Format: S7

Range: [-26,25]

Initial QP value for a Slice, extracted from PPS. It may further get modified by
slice_gp_delta in slice header and mb_qp_delta in MB header.

14 31:24| Log2_max_pic_order_cnt_Isb_minus4

[ExistsIf] Short
Format only

Exists If: //Short Format Only

It is a SPS syntax element, used to determine how many bits in the bitstream are used
to represent pic_order_cnt_Isb syntax element in the slice header.Unsigned

503




MFEX_AVC_IMG_STATE

23:16

Log2_max_frame_num_minus4

Iasts If: |//Short Format Only

It is a SPS syntax element, used to determine how many bits in the bitstream are used
to represent frame_num syntax element in the slice header.Unsigned.

15

deblocking_filter_control_present_flag

Exists If: |//Short Format Only

It is a PPS syntax element, indicates if more deblocking filter control syntax elements
are present in the slice header.

14:12

num_slice_groups_minusl

Exists If: //Short Format Only

BitField It is a PPS syntax element.Use for Slice Header parsing only, to read in
slice_group_change_cycle, if any, but is not used by H/W, i.e. no slice group
support.Desc

11

redundant_pic_cnt_present_flag

Exists If: |//Short Format Only

It is a PPS syntax element.Use for Slice Header parsing only, to read-in
redundant_pic_cnt, if any, but is not used by H/W, i.e. no support for redundant slice
processing.

10:8

slice_group_map_type

| Exists If: |//Short Format Only

It is a PPS syntax element.Use for Slice Header parsing only, to read in
slice_group_change_cycle, if any, but is not used by H/W, i.e. no slice group support.

74

Reserved

| Format: MBZ

IDR flag is decoded from NAL Header Byte

3:2

Pic_order_cnt_type

| Exists If: |//Short Format Only

It is a SPS syntax element.Use for Slice Header parsing only.

Delta_pic_order_always zero_flag

| Exists If: |//Short Format Only

It is a SPS syntax element.Use for Slice Header parsing only.

Pic_order_present_flag

504




MFEX_AVC_IMG_STATE

Exists If: |//Short Format Only
It is a PPS syntax element.Use for Slice Header parsing only.

15 31:16 | Curr Pic Frame Num
Edstelfl Sh Exists If: //Short Format Only
Xists ort
[Formz?t ailly For.mat: . Ule
Derived from Slice Header syntax element
15:0 |Slice Group Change Rate
Exists If: //Short Format Only
Format: Ule-1
It is a PPS syntax element
Use for Slice Header parsing only, to read in slice_group_change_cycle, if any, but is not
used by H/W, i.e. no slice group support.
16 31 |Inter View Order Disable
Project: DevHSW +
[odsisls Ela Exists If: //Short Format Only
Format only — . —— —— .
It indicates how to append inter-view picture into initial sorted reference list. (due to
ambiguity in the MVC Spec)
Value Name Description
Oh Default [Default] View Order Ascending
1h Disable View ID Ascending
30:22 | Reserved
Project: DevHSW+
Format: MBZ
21:18 | Max View IDXL1
Project: DevHSW +
Exists If: //Short Format Only
It is a PPS syntax element corresponding to Anchor/Non-Anchor Reference ListL1
It indicates the maximum number of inter-view picture for Reference List L1
17:16 | Reserved
Project: DevHSW +
Format: MBZ
15:12 | Max View IDXLO
Project: DevHSW+
Exists If: //Short Format Only

505




MFEX_AVC_IMG_STATE

Reference ListLO
It indicates the maximum number of inter-view picture for Reference List LO

11:10 | Reserved

Project: DevHSW+
Format: MBZ
9:0 |Current Frame View ID
Project: DevHSW+
Exists If: //Short Format Only

It indicates the View ID of the current decoding frame

506



MEDIA_OBJECT_PRT

MEDIA_OBJECT_PRT

Project: HSW
Source: RenderCS
Length Bias: 2

command is for generating Persistent Root Thread for the media pipeline. It only supports loading of inline
data but not indirect data.

This command should be used for a root thread that might have to be present in the system for a period
longer than the certain minimal context-switch interrupt latency. It has to honor the context interrupt signal to
terminate upon request. It should also handle replay from theinterrupted point upon context restore (the same
thread being dispatched more than once). In contrary, if a thread is not a Persistent Root Thread, if dispatched,
it must run to completion.

The command can be used in all VFE modes, except VLD mode.

For simplification, _PRT command has a fixed size of 16 DWORD

DWord| Bit Description

0 31:29 | Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 | Pipeline

Default Value: 2h Media

Format: OpCode

26:24 | Media Command Opcode

Default Value: 1h MEDIA_OBJECT_PRT

Format: OpCode

23:16 | SubOpcode

Default Value: 2h MEDIA_OBJECT_PRT SubOp

Format: OpCode

15:0 (DWord Length

Project: HSW

Format: =n Total Length - 2

Note: Regardless of the mode, inline data must be present in this command. The command size
must fit within 16 dwords.

Value Name Description

OEh DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:6 |Reserved

507




MEDIA_OBJECT_PRT

| Format: | MBZ
Interface Descriptor Offset

Project: DevHSW+

Format: U6

This field specifies the offset from the interface descriptor base pointer to the interface descriptor
which will be applied to this object. It is specified in units of interface descriptors.

31

Children Present

Format: Enable

Indicates that the root thread may send spawn messages to spawn child threads and/or
synchronized root threads.

If Children Present is not set, TS signals VFE to dereference the URB handle immediately after it
receives acknowledgement from TD that the thread is dispatched.

If Children Present is set, the URB handle is forwarded to the root thread and serves as the
return URB handle for the root thread. TS does not signal deference at the time of dispatch. TS
signals URB handle deference only when it receives a resource dereference message from the
thread.

In order avoid deadlock, such de-reference must be issued once and only once for each URB
handle.

30:24 | Reserved
|Format: |MBZ |
23 |PRT_Fence Needed

| Format: | Enable |

This field specifies that a PRT_Fence is generated after dispatching the thread associated with this
MEDIA_OBJECT_PRT. The PRT_Fence prevents additional threads following this persistent root
thread until a thread spawn message is sent. The PRT_Fence is generated on first dispatch of the
persistent root, as well as on re-dispatches of the persistent root after context restore.

22

PRT_FenceType

This field specifies the type of fence the PRT thread uses. If this field is set to 0, the fence is set at
the end of the root thread queue. It will block the dispatch of the next root thread, but allowed
these root threads to be populated through VFE to the root thread queue in TS. If this field is set
to 1, the fence is set at the entry of VFE, similar to the fence set by the MEDIA_STATE_FLUSH
command. No more command can go into the media pipe until a thread spawn message is sent
(by the PRT).

This field is only valid when PRT_Fence Needed is set to 1. Otherwise, it is ignored by hardware.

Value Name Description
Oh Root thread queue Root thread queue fence
1h VFE state flush VFE state flush fence
21:0 |Reserved

508




MEDIA_OBJECT_PRT

|Format: |MBZ
3 31:0 |Reserved

|Format: |MBZ
4.15 | 31:0 |Inline Data

|Format: |U32

509




Q"_til

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_DIRECTMODE_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a picture level command and is issued once per picture. All DMV buffers are treated as standard media
surfaces, in which the lower 6 bits are used for conveying surface states.Current Pic POC number is assumed to
be available in POCList[32 and 33] of the MFX_AVC_DIRECTMODE_STATE Command.This command is only valid
in the AVC decoding in VLD and IT modes, and AVC encoder mode. The same command supports both Long
and Short DXVA2 AVC Interface. The DMV buffers are not required to be programmed for encoder mode.

DWord| Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_SINGLE_DW
Format: OpCode
26:24 | Media Command Opcode
Default Value: 1h AVC
Format: OpCode
23:21|SubOpcodeA
Default Value: Oh MEDIA_
Format: OpCode
20:16 | SubOpcodeB
Default Value: 2h Desc
Format: OpCode
15:12 [ Reserved
Format: MBZ
11:.0 [DWord Length
Default Value: 0043h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:6 | Direct MV Buffer Base Address for Picture 0 (current or reference top field)

Format: GraphicsAddress[31:6]

This field provides the base address of the DMV write buffer to store motion vectors decoded in
the current picture (top field), which may be used later as a collocated motion information read

510



Q"_til

MFX_AVC_DIRECTMODE_STATE

buffer of the associated reference picture in decoding subsequent B-pictures that have MB
coded in direct mode. It is a private buffer used by the MPR hardware only. Its content is not
accessed by software.This buffer must be 64-byte cacheline aligned.The write buffer size is
557,056 bytes for 1 frame. Scalable with frame height, but do not scale with frame width as the
hardware assumes frame width (in MBs) fixed at 128 (smallest power of 2 value larger than 120 -
1920x1088 screen resolution)It is only valid if the current picture is a progressive frame, MbAff
frame, or a top field.There are a total of 32 reference picture (previously decoded) Direct MV
Buffers (0 to 31, not including the DMV write buffer 32 and 33 of the current picture) to read in
the corresponding collocated DMV and motion information. For reference picture, these 32 DMV
read Buffers can be indexed by the frame_store_ID[4:0], which is obtained from RefPicList
LO/L1[RefPicldx]. frame_Store_IDbit[0] (indicator for Top/Bottiom Field).For writing out motion
information during the decoding of the current picture, all 34 DMV buffers can be addressed by [
img_dec_fs_idc[4:0]< <1 + img_structure[1] ].

5:4

Direct MV Buffer - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name Description
00b Highest priority Desc
01b Second highest priority Desc
10b Third highest priority
11b Lowest priority

Programming Notes

This field of Picture 0 DMV Buffer must always be programmed, regardless if this buffer is active
or not, exist or not. H/W only reads this bit to determine the arbitration priority control for all
34 possible DMV buffers. This field is ignored in all the other DMV buffers 1 to 33.

3:0

Direct MV Buffer - Memory Object Control State for Picture 0
Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:6

Direct MV Buffer Base Address for Picture 1 (current or reference bottom field)

Format: GraphicsAddress[31:6]
This field provides the base address of the DMV read/write buffer for the current or reference
picture (bottom field). It is paired with the DMV Buffer of Picture 0 for MB pair retrieval during
read.It follows the same format specification as DMV buffer for Picture OlIt is only valid if the
current picture is a bottom field. It is also valid

54

Direct MV Buffer - Arbitration Priority Con

Format: uz2

This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification

511




MFX_AVC_DIRECTMODE_STATE

bit[5:4] above.

Direct MV Buffer - Memory Object Control State for Picture 1
Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

3.32

31:6

Direct MV Buffer Base Address for Reference Frame 2 to 31
Format: GraphicsAddress[31:6]

This field provides the base address of the DMV buffer for reference frame 2 to 31. They are
needed if the current B-Picture has MBs coded in direct mode. It is a private buffer used by the
MPR hardware only. Its content is not accessed by software.All these buffers must be 64-byte
cacheline aligned.There are a total of 32 possible Direct MV Read Buffers (not including the
current write buffer of the current picture) to read in the corresponding DMV. Each read buffer
size is 557,056 bytes for 1 frame (the selected colPic). Scalable with frame height, but do not
scale with frame width as the hardware assumes frame width (in MBs) fixed at 128 (smallest
power of 2 value larger than 120 - 1920x1088 screen resolution).The adjacent DMV buffers are
paired ([2 and 3], [4 and 5], [N and N+1], ..[30 and 31]).

54

Direct MV Buffer - Arbitration Priority Control
Format: U2

This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[5:4] above.

3:0

Direct MV Buffer - Memory Object Control State for Reference Frame 2 to 31
Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

33.34

31:6

Direct MV Buffer Base Addresses 32 and 33 (Write-Only Buffer), for Current Decoding
Frame/Field

Format: GraphicsAddress[31:6]

This field provides the base address of the DMV write-only buffer for the current decoding
frame/field.It is a private buffer used by the MPR hardware only. Its content is not accessed by
software.All these buffers must be 64-byte cacheline aligned, i.e. the same as the above DMV
read/write buffers.These 2 buffers can only be addressed by [img_dec_fs_idc[4:0]<<1 +
img_structure[1]] for the current picture being decoded.Each write buffer size is 557,056 bytes for
1 frame (the selected colPic). Scalable with frame height, but do not scale with frame width as the
hardware assumes frame width (in MBs) fixed at 128 (smallest power of 2 value larger than 120 -
1920x1088 screen resolution).DMV write buffer 32 is valid only if the current picture is a
progressive frame, MbAff frame, or a top field.DMV write buffer 33 is valid only if the current
picture is a bottom field.

512




Q"_til

MFX_AVC_DIRECTMODE_STATE

5:4 | Direct MV Buffer 32 and 33 (Write-only Buffer) - Arbitration Priority Control
Format: | U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[5:4] above.
3:0 |Direct MV Buffer 32 and 33 (Write-only Buffer) - Memory Object Control State
Project: HSW
Format: MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state for this surface.
35..68 | 31:0 | POC List, POCList[34][31:0]

Each POC value is a signed 32-bit number.One-to-one correspondence with the 34 Direct MV
Buffer Address for Reference and Currrent Frames/FieldsThere are 34 POC entries in the list. For
reference picture, only the lower 32 POC [0-31] entries can be used, and POCList[ ] is indexed by
the frame_store_ID[4:0], which is obtained from RefPicList LO/L1[RefPicldx]. frame_Store_IDbit[0]
(indicator for Top/Bottiom Field).For current picture, all 34 POC entries [0-33] can be addressed
by POCList[ img_dec_fs_idc[4:0]< <1 + img_structure[1] ].For frame-only mode, every other entry
is skipped. For MBAFF and field-only picture, each entry is a field POC, and every two entries are
paired.

513




Q"_til

MFX_AVC_DIRECTMODE_STATE

MFX_AVC _DIRECTMODE_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a picture level command and is issued once per picture. All DMV buffers are treated as standard media
surfaces, in which the lower 6 bits are used for conveying surface states.Current Pic POC number is assumed to
be available in POCList[32 and 33] of the MFX_AVC_DIRECTMODE_STATE Command.This command is only valid
in the AVC decoding in VLD and IT modes, and AVC encoder mode. The same command supports both Long
and Short DXVA2 AVC Interface. The DMV buffers are not required to be programmed for encoder mode.

DWord Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEQO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_SINGLE_DW
Format: OpCode
26:24 | Media Command Opcode
Default Value: 1h AVC_COMMON
Format: OpCode
23:21|SubOpcodeA
Default Value: Oh
Format: OpCode
20:16 [ SubOpcodeB
Default Value: 2h
Format: OpCode
15:12 [ Reserved
Format: MBZ
11:.0 {DWord Length
Default Value: 0045h Excludes DWord (0,1)
Format: =n Total Length - 2
1 31:6 |Direct MV Buffer Base Address for Picture 0 (In Frame)
| Format: GraphicsAddress[31:6] |

| Note:This filed is changed to one per frame (both top and bottom field share the same |

514



Q"_til

MFX_AVC_DIRECTMODE_STATE

Direct MV Buffer Base Address).

This field provides the base address of the DMV write buffer to store motion vectors
decoded in the current picture (top field), which may be used later as a collocated
motion information read buffer of the associated reference picture in decoding
subsequent B-pictures that have MB coded in direct mode. It is a private buffer used by
the MPR hardware only. Itscontent is not accessed by software.

This buffer must be 64-byte cacheline aligned.

The write buffer size is 557,056 bytes for 1 frame. Scalable with frame height, but do not
scale with frame width as the hardware assumes frame width (in MBs) fixed at 128
(smallest power of 2 value larger than 120 - 1920x1088 screen resolution)

It is only valid if the current picture is a progressive frame, MbAff frame, or a top field.
There are a total of 32 reference picture (previously decoded) Direct MV Buffers (0 to 31,
not including the DMV write buffer 32 and 33 of the current picture) to read in the
corresponding collocated DMV and motion information.

For reference picture, these 32 DMV read Buffers can be indexed by the
frame_store_ID[4:0], which is obtained from RefPicList LO/L1[RefPicldx].
frame_Store_IDbit[0] (indicator for Top/Bottiom Field).

For writing out motion information during the decoding of the current picture, all 34

DMV buffers can be addressed by [ img_dec_fs_idc[4:0]< <1 + img_structure[1] ].

5:4 | Direct MV Buffer - Arbitration Priority Control
Project: DevHSW:ULT
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Programming Notes
This field of Picture 0 DMV Buffer must always be programmed, regardless if this buffer
is active or not, exist or not. H/W only reads this bit to determine the arbitration priority
control for all 34 possible DMV buffers. This field is ignored in all the other DMV buffers
1 to 33.
3:0 |Direct MV Buffer - Memory Object Control State

Project: DevHSW:ULT

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

2 31:0 |Reserved
Project: Project: DevHSW:ULT
DevHSW:ULT

515




MFX_AVC_DIRECTMODE_STATE

| Format: | MBZ
3.32 63:48 | Reserved
| Format: | MBZ
47:32 | Reserved
Project: DevHSW:ULT
Format: MBZ
31:6 |Direct MV Buffer Base Address for Reference Frame 1 to 15 (In Frame)
Format: GraphicsAddress[31:6]
Note:This field is changed to one per frame (both top and bottom field shared the same
Direct MV Buffer Base Address)
This field provides the base address of the DMV buffer for reference frame 2 to 31. They
are needed if the current B-Picture has MBs coded in direct mode. It is a private buffer
used by the MPR hardware only. Its content is not accessed by software.
All these buffers must be 64-byte cacheline aligned.
There are a total of 32 possible Direct MV Read Buffers (not including the current write
buffer of the current picture) to read in the corresponding DMV.
Each read buffer size is 557,056 bytes for 1 frame (the selected colPic). Scalable with
frame height, but do not scale with frame width as the hardware assumes frame width
(in MBs) fixed at 128 (smallest power of 2 value larger than 120 - 1920x1088 screen
resolution).
The adjacent DMV buffers are paired ([2 and 3], [4 and 5], [N and N+1], ..[30 and 31]).
5.0 [Reserved
Format: MBZ
Reserved for 64-bit address extension.
33 31:0 [Reserved
Project: Project: DevHSW:ULT
DevHSW:ULT Format: MBZ
34 31:6 | Direct MV Buffer Base Address for Write (Write-Only Buffer)(in frame)

Format: GraphicsAddress[31:6]

This field provides the base address of the DMV write-only buffer for the current
decoding frame/field.

It is a private buffer used by the MPR hardware only. Its content is not accessed by
software.

All these buffers must be 64-byte cacheline aligned, i.e. the same as the above DMV
read/write buffers.

These 2 buffers can only be addressed by [img_dec_fs_idc[4:0]<<1 + img_structure[1]]
for the current picture being decoded.

516



Q"_til

MFX_AVC_DIRECTMODE_STATE

Each write buffer size is 557,056 bytes for 1 frame (the selected colPic). Scalable with
frame height, but do not scale with frame width as the hardware assumes frame width
(in MBs) fixed at 128 (smallest power of 2 value larger than 120 - 1920x1088 screen
resolution).

DMV write buffer 32 is valid only if the current picture is a progressive frame, MbAff
frame, or a top field.
DMV write buffer 33 is valid only if the current picture is a bottom field.

5:4 | Direct MV Buffer (Write-only Buffer) - Arbitration Priority Control
Project: DevHSW:ULT
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer
specification bit[5:4] above.
3:0 |Direct MV Buffer (Write-only Buffer) - Memory Object Control State
Project: DevHSW:ULT
Format: MEMORY_OBJECT_CONTROL_STATE
Specifies the memory object control state for this surface.
35..36 31:0 |Reserved
Project: Project: DevHSW:ULT
DevHSW:ULT Format: MBZ
37.70 31:0 [POC List, POCList[34][31:0]

Each POC value is a signed 32-bit number.

One-to-one correspondence with the 34 Direct MV Buffer Address for Reference and
Currrent Frames/Fields

There are 34 POC entries in the list. For reference picture, only the lower 32 POC [0-31]
entries can be used, and POCList[ ] is indexed by the frame_store_ID[4:0], which is
obtained from RefPicList LO/L1[RefPicldx]. frame_Store_IDbit[0] (indicator for Top/Bottiom

Field).

For current picture, all 34 POC entries [0-33] can be addressed by POCList[
img_dec_fs_idc[4:0]< <1 + img_structure([1] ].

For frame-only mode, every other entry is skipped. For MBAFF and field-only picture, each
entry is a field POC, and every two entries are paired.

517




Q"_til

MEX_AVC_SLICE_STATE

MFX_AVC_SLICE_STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple
slices. The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT modes).

Programming Notes

MFX_AVC_SLICE_STATE command is not issued for AVC DXVA2 Short Format Bitstream decode, instead
MFD_AVC_SLICEADDR command is executed to retrieve the next slice MB Start Address X and Y by H/W itself.

DWord | Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_AVC_SLICE_STATE
Format: OpCode

26:24| Command Opcode
Default Value: 1h AVC
Format: OpCode

23:21|SubOpcodeA
Default Value: Oh MFX_AVC_SLICE_STATE
Format: OpCode

20:16 | Command SubOpcodeB
Default Value: 3h MFX_AVC_SLICE_STATE
Format: OpCode

15:12 | Reserved
Format: MBZ

11:.0 [DWord Length
Default Value: 8h DWORD_COUNT_n
Format: =n

Excludes DWords 0,1

1 31:17 | Reserved

518



MFX_AVC_SLICE_STATE

| Format: | MBZ |
7:4 |Reserved
| Format: | MBZ |
3:0 |Slice Type
It is set to the value of the syntax element read from the Slice Header.
Value Name
0000b P Slice
0001b B Slice
0010b I Slice
0011b-1111b Reserved
Programming Notes
Bits[3:2] must be 0
31:30 | Reserved
| Format: | MBZ |
29:24 | Number of Reference Pictures in Inter-prediction List 1
| Format: | U6 |
This field is valid only for encoding a B Slice, for which it is expected to have at least one entry
in the reference list L1; otherwise (if Slice Type is not a B Slice ), this field must be set to 0.
This field can be derived for a B Slice from the Slice Header syntax element
NumRefldxActiveMinusl as, Num_Ref Idx_L1 = NumRefldxActiveMinus1[1] + 1.
Value Name
0-32
23:22 | Reserved
Format: MBZ
21:16 | Number of Reference Pictures in Inter-prediction List 0
Format: U6
This field is valid for encoding a P or B Slice, for which it is expected to have at least one entry in
the reference list LO; otherwise (if Slice Type is not a P or B Slice ), this field must be set to 0.
This field can be derived for a P or B Slice from the Slice Header syntax element
NumRefldxActiveMinusl as, Num_Ref Idx_LO = NumRefldxActiveMinus1[0] + 1.
Value Name
0-32
15:11 | Reserved
| Format: | MBZ |
10:8 |Log 2 Weight Denom Chroma

IF_ormat: | U3

519




MFX_AVC_SLICE_STATE

Value Name
0-7
7:3 |Reserved
| Format: | MBZ
2:0 |Log 2 Weight Denom Luma

IF_ormat: | U3

It is the base 2 logarithm of the denominator for all Luma weighting factors.
It is set to the value of the syntax element read from the Slice Header Pred_Weight_Table().

Value Name

0-7

3 31:30

Weighted Prediction Indicator

This field indicates the Weighted Prediction mode for a P or B Slice. It is a combined field
corresponding to the syntax element WeightedBiPredIdc or WeightedPredFlag read from the
current active PPS.

If it is a B-Slice, these bits are interpreted as:

00b - Specifies the default weighted inter-prediction to be applied
01b - Specifies the explicit weighted inter-prediction to be applied
10b - Specifies the implicit weighted inter-prediction to be applied
11b - Reserved (not allowed)

If it is a P Slice, these bits are interpreted as:

00b - Disables weighted inter-prediction (Default weighted)
01b - Enables weighted inter-prediction (Explicit weighted)
10b - 11b - Reserved

Programming Notes

Only when in B Slice with Weighted_Pred_Idc = 1 (explicit weighted prediction), will there be a
L1 and/or a LO weight+offset tables being sent to the BSD unit through the Slice_State
command.

Only when in P Slice with Weighted_Pred_Idc = 1, will there be a LO weight+offset table being
sent to the BSD.

If Weighted_Pred_Idc != 1 for B Slice or Weighted_Pred_Idc =0 for P Slice, no Slice_State
command should be issued to send these tables. If still being issued, the data is read but
ignored.

520



Q"_til

MFX_AVC_SLICE_STATE

DXVA specifies Weighted_Bipred and Weighted_Pred in frame-level state. However, these two
flags are combined and specified in slice level for both P and B slice type.

29

Direct Prediction Type
Type of direct prediction used for B Slices. This field is valid only for Slice_Type = B Slice;
otherwise, it must be set to 0.

28:27

Value Name
0 Temporal
1 Spatial
Disable Deblocking Filter Indicator
Value| Name Description
00b FilterInternalEdgesFlag is set equal to 1
01lb Disable all deblocking operation, no deblocking parameter syntax element is

read; filterInternalEdgesFlag is set equal to 0

10b Macroblocks in different slices are considered not available;
filterInternalEdgesFlag is set equal to 1

11b |Reserved | Not defined in AVC

26 |Reserved
Format: MBZ
25:24 | Cabac Init Idc[1:0]

Specifies the index for determining the initialization table used in the context variable
initialization process.

Value Name

0-2

Programming Notes

Cabac initialization is also dependent on the field/frame picture type, Slice type, and the
current SliceQP value.

23:22

Reserved

| Format: MBZ

21:16

Slice Quantization Parameter

Quantization Parameter for current slice. Derived from PPS and slice_delta_gp syntax element in
Slice Header.

It is needed for CABAC context initialization and deblocking filter control. And it is also used as
the starting QP value in the very first MB of a slice.

It is in the range of unsigned integer 0 to 51, for 8-bit pixel bit-depth.

15:12

Reserved

Format: MBZ

11:8

Slice Beta Offset Div2

521




MFX_AVC_SLICE_STATE

| Format: |S3 2's Complement

Range: [-6, 6] Inclusive

Specifies the offset used in accessing the deblocking filter strength tables.

7:4 |Reserved
| Format: MBZ
3:0 |Slice Alpha C0 Offset Div2
| Format: S3 2's Complement
Range: [-6, 6] Inclusive
Specifies the offset used in accessing the deblocking filter strength tables.
4 31:24 | Slice Vertical Position
This field specifies the position in y-direction of the first macroblock in the Slice in unit of
macroblocks.
The fields (Slice_MB_Start_Hor_Pos, Slice_MB_Start_Vert_Pos) are valid in VLD (decoding) mode
only. They are ignored by hardware in decoding IT mode and encoding mode (whereas the
position is provided by the per-macroblock object command).
Derived
Programming Notes
Error Handling: Driver needs to check if FirstMbY starts at 0 on the first slice of frame. If not,
driver needs to add a phantom slice with FirstMbX and FirstMbY set to 0.
23:16| Slice Horizontal Position
This field specifies the position in x-direction of the first macroblock in the Slice in unit of
macroblocks.
Derived
Programming Notes
Error Handling: Driver needs to check if FirstMbY starts at 0 on the first slice of frame. If not,
driver needs to add a phantom slice with FirstMbX and FirstMbY set to 0.
15 [Reserved
| Format: MBZ
14:0 |Slice Start Mb Num
| Exists If: //Decoder Only
The MB number (linear MB address in a picture) at the start of a Slice, it must match with the
Slice Horizontal Position (Slice_MB_Start_Hor_Pos) and Vertical Position
(Slice_MB_Start_Vert_Pos) in the picture.
Programming Notes
In creating the Phantom Slice for error concealment, this field should set to the total number
of MB in the current picture + 1.
5 31:24 | Reserved

522




Q"_til

MFX_AVC_SLICE_STATE

Format: | MBZ

23:16 | Next Slice Vertical Position
This field specifies the position in y-direction of the first macroblock in the next Slice in unit of
macroblocks.
This field is primarily used for error concealment. In the case that current slice is the last slice,
this field should set to the height of picture (since y-direction is zero-based numbering).
15:8 |Reserved
Format: MBZ
7:0 [Next Slice Horizontal Position
This field specifies the position in x-direction of the first macroblock in the next Slice in unit of
macroblocks.
This field is primarily used for error concealment. In the case that current slice is the last slice,
this field should set to 0.
6 31 |Rate Control Counter Enable
To enable the accumulation of bit allocation for rate control
Encoder This field enables hardware Rate Control logic. The rest of the RC control fields are only valid
Only when this field is set to 1. Otherwise, hardware ignores these fields.
Value Name
0 Disable
1 Enable
30 |ResetRateControlCounter
To reset the bit allocation accumulation counter to 0 to restart the rate control.
Value Name
0 Not Reset
1 Reset
29:28 | RC Triggle Mode
Value Name Description
00b | Always Rate Whereas RC becomes active if sum_act > sum_target or sum_act <
Control sum_target
01b |Gentle Rate whereas RC becomes active if sum_act > upper_midpt or sum_act <
Control lower_midpt
10b |Loose Rate whereas RC becomes active if sum_act > sum_max or sum_act <
Control sum_min
11b |Reserved
27:24 | RC Stable Tolerance

Format: U4

This field specifies the tolerance required to deactivate RC once it has been triggered.

Value Name

0-15

523




MFX_AVC_SLICE_STATE

23

RC Panic Enable
If this field is set to 1, RC enters panic mode when sum_act > sum_max. RC Panic Type field

controls what type of panic behavior is invoked.

Value Name

0 Disable

1 Enable

22

RC Panic Type
This field selects between two RC Panic methods

Value Name

0 QP Panic

CBP Panic

Programming Notes

If it is set to 0, in panic mode, the macroblock QP is maxed out, setting to requested QP +
QP_max_pos_mod.

If it is set to 1, for an intra macroblock, AC CBPs are set to zero (note that DC CBPs are not
modified).

For inter macroblocks, AC and DC CBPs are forced to zero.

21

MB Type Direct Conversion Disable

| Exists If. //B-Slice

For all Macroblock type conversions in different slices, refer to Section "Macroblock Type
Conversion Rules" in the same volume.

Value Name

0 Enable direct mode conversion

Disable direct mode conversion

Programming Notes

This field is zero for all other slices other than B-Slice.

20

MB Type Skip Conversion Disable

| Exists If: //P-Slice or B-Slice

For all Macroblock type conversions in different slices, refer to Section "Macroblock Type
Conversion Rules" in the same volume.

Value Name

0 Enable skip type conversion

Disable skip type conversion

Programming Notes

This field is zero for all other slices other than P_Slice or B-Slice. \

19

Is Last Slice

524




MFX_AVC_SLICE_STATE

It is used by the zero filling in the Minimum Frame Size test.

Value Name Description

1

Current slice is the last slice of a picture

0

Current slice is NOT the last slice of a picture

18

Reserved

17

Header Insertion Present in Bitstream

Value [ Name

Description

0

No header insertion into the output bitstream buffer, in front of the current
slice encoded bits.

Header insertion into the output bitstream buffer is present, and is in front of
the current slice encoded bits.

Programming Notes

Note: In VDEnc mode, the slice header PAK object maximum size is 25 DWs.

16

SliceData Insertion Present in Bitstream

Value | Name Description

0

No Slice Data insertion into the output bitstream buffer

1

Slice Data insertion into the output bitstream buffer is present.

15

Tail Insertion Present in bitstream

Value | Name

Description

0

No tail insertion into the output bitstream buffer, after the current slice
encoded bits

Tail insertion into the output bitstream buffer is present, and is after the
current slice encoded bits.

14

Reserved

Format:

MBZ

13

EmulationByteSlicelnsertEnable
To have PAK outputting SODB or EBSP to the output bitstream buffer

Value

Name Description

0

outputting RBSP

1

outputting EBSP

12

CabacZeroWordInsertionEnable
To pad the end of a SliceLayer RBSP to meet the encoded size requirement.

Value | Name Description
0 No Cabac_Zero_Word Insertion
1 Allow internal Cabac_Zero_Word generation and append to the end of RBSP

(effectively can be used as an indicator for last slice of a picture, if the

525




MFX_AVC_SLICE_STATE

assumption is only the last slice of a picture needs to insert
CABAC_ZERO_WORD:s.
11:8 |Reserved
Format: MBZ
7:4 |Slice ID [3:0]
To identify the output data (coding information record) returned for rate control from PAK to
ENC and VPP.
3:2 |Reserved
Format: MBZ
1:0 |Stream ID [1:0]
To identify the output data (coding information record) returned for rate control from PAK to
ENC and VPP.
7 31:29 | Reserved
Format: MBZ
Encoder - -
Only 28:0 [Indirect PAK-BSE Data Start Address (Write)
Exists If: //AVC Encode Mode
This field specifies the memory starting address (offset) to write out the compressed bitstream
data from the BSE processing. This pointer is relative to the MFC Indirect PAK-BSE Object Base
Address.
It is a byte-aligned address for the AVC bitstream data in both CABAC/CAVLC Modes.
For Write, there is no need to have a data length field. It is assumed the global memory bound
check specified in the IND_OBJ_BASE_ADDRESS command (Indirect PAK-BSE Object Access
Upper Bound) will take care of any illegal write access.
Value Name
0 - 512MB
8 31:24 | Magnitude of QP Max Negative Modifier
| Format: us8
Encoder This field specifies the lower limit of the QP modifier.
Only
Value Name
0-51
23:16 | Magnitude of QP Max Positive Modifier
| Format: us8
This field specifies the upper limit of the QP modifier.
Value Name
0-15
15:12 [ Shrink Param - Shrink Resistance
Format: u4
This field specifies the additional points added each time decreased correction is invoked.

526




MFX_AVC_SLICE_STATE

Value Name
0-15
11:8 |Shrink Param - Shrink Init
Format: U4
This field specifies the initial points required to trip decreased control.
Value Name
0-15
7:4 |Grow Param - Grow Resistance
Format: u4
This field specifies the additional points added each time increased correction is invoked.
Value Name
0-15
3:0 |Grow Param - Grow Init
Format: u4
This field specifies the initial points required to trip increased control.
Value Name
0-15
9 31 |RoundInterEnable
| Format: Enable
Encoder When this bit is not set, RoundInter defaults to 2.
Only
30:28 | RoundInter
| Format: u3
Rounding precision for Inter quantized coefficients
Value Name
000b +1/16 [Default]
001b +2/16
010b +3/16
011b +4/16
100b +5/16
101b +6/16
110b +7/16
111b +8/16
27 [RoundIntraEnable
Format: Enable

When this bit is not set, RoundIntra defaults to 4.

527




MFX_AVC_SLICE_STATE

26:24 | RoundIntra

Format: | U3

Rounding precision for Intra quantized coefficients

Value Name

000b +1/16 [Default]

001b +2/16

010b +3/16

011b +4/16

100b +5/16

101b +6/16

110b +7/16

111b +8/16

23:20| Correct 6

Format: U4

This field specifies the points used in the lowermost RC region when sum_act <= sum_min.

Value Name

0-15

19:16 | Correct 5

Format: U4

This field specifies the points used in the fifth RC region when sum_act > sum_min but <=
lower_midpt.

Value Name

0-15

15:12 | Correct 4

Format: U4

This field specifies the points used in the fourth RC region when sum_act > lower_midpt but <=
sum_target.

Value Name

0-15

11:8 | Correct 3

Format: u4

This field specifies the points used in the third RC region when sum_act > sum_target but <=
upper_midpt.

Value Name

0-15

7:4 |Correct 2

Format: U4

528



Q"_til

MFX_AVC_SLICE_STATE

This field specifies the points used in the second RC region when sum_act > upper_midpt but
<= sum_max.

Value Name

0-15

3:0

Correct 1

Format: u4

This field specifies the points used in the topmost RC region when sum_act > sum_max.

Value Name

0-15

10

Encoder
Only

31:28

ClampValues - CV7

27:24

Cve

23:20

Cvs

19:16

cv4

15:12

Ccv3

11:8

Ccv2

74

Ccvl

3:0

CVO0 - Clamp Value 0

Format: U4

If the magnitude of coefficients at locations assigned with CV0 (mapping shown below) exceeds
2-1, they are replaced with 2<°-1. For coefficients at locations marked as 'none’, no clamping
is performed. The following mappings are only applied to luma and chroma blocks\subblocks
containing AC coefficiencts (blocks\sublocks with only DC coeffs will not be clamped).

For 4x4 frame block, each coefficient is mapped to one of the eight CV values as
following:

none | CV7|CV5|CV4
CV7 |CV6|CV4|CV3
CV5 |CV4|Cv2|Cvl
Cv4 |CV3|CV1|CVvo

For 8x8 frame block, each coefficient is mapped to one of the eight CV values as
following:

none [none |CV7|CV6 |CV5|CV4|CV3|CV3
none |CV7 [CV6|CV5|CV4|CV3|CV3|CV2
CV7 |CV6 |CV5|CV4|CV3|CV3|CV2|CV2
CVv6 |CV5 |Cv4|CV3|CV3|CV2|CV2|CVl
CV5 |CVv4 |CV3|CV3|Cv2|Cv2(Ccvl|cvl
Cv4 |CV3 |CV3([Cv2|Cv2|CVl|cvi|cvo
CVv3 |CV3 |CV2|CV2[CV1|CV1|CVO|CVO

529




MFX_AVC_SLICE_STATE

lcvs [ov [eva|eva|evi|evo|cvo|cvol

For 4x4 field block, each coefficient is mapped to one of the eight CV values as following:
none |CV6|CV3|[CV1
CV7 |CV6|CV3|CVl
CV5 |CV4|CV2|CV0

CV5 |Cv4|CV2|CVo
For 8x8 field block, each coefficient is mapped to one of the eight CV values as following:
none |none [CV6 [CV5|CV4|CV3|CV2(|CV1

none [CV7 |CV6|CV5|CV4|CV3|CV2|CV1
CV7 |CV6 |CV5|CVv4|CV3|CV3|CVv2|CVvl
CV7 |CV6 |CV5|Cv4|CV3|CV2|Cv2 |Vl
CV6 |CV5 |CV4|Cv4(|CV3|CV2|CVl|CVo
CV6 |CV5 |CV4|CV3|CV2|CV2|CVl|CVo
CV5 |CV5 |CVv4|CV3|CV2|CV1|CVl|CVo
CV5 |CV5 |CVv4|CV3|CV2|CV1|CVl|CVo

Value Name

530



MEDIA_OBJECT_WALKER

MEDIA_OBJECT WALKER

Project:
Source:

Length Bias:

HSW
RenderCS
2

DWord

Bit

Description

0

31:29

Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27

Pipeline
Default Value: 2h Media
Format: OpCode

26:24

Media Command Opcode
Default Value: 1h MEDIA_OBJECT_WALKER

Format: OpCode

23:16

SubOpcode
Default Value: 03h MEDIA_OBJECT_WALKER SubOp

Format: OpCode

15:0

DWord Length
Default Value: OFh DWORD_COUNT_n

Format: =n Total Length - 2

Note: If this field is greater than 15, it indicates that inline data is present. If present, inline data is
common for all threads generated from this command, If this field is 15, it indicates that inline
data is not present. It should be noted that unlike other media object command, inline data is
optional for this command.

31:8

Reserved

7:6

Reserved

Format: Reserved

5:0

Interface Descriptor Offset
Project: DevHSW+
Format: U6

This field specifies the offset from the interface descriptor base pointer to the interface descriptor
which will be applied to
this object. It is specified in units of interface descriptors.

531




MEDIA_OBJECT_WALKER

2 31 |Children Present
Format: | Boolean
Indicates that the root thread may send spawn messages to spawn child threads and/or
synchronized root threads. If Children Present is not set, TS signals VFE to dereference the URB
handle immediately after it receives acknowledgement from TD that the thread is dispatched. If
Children Present is set, the URB handle is forwarded to the root thread and serves as the return
URB handle for the root thread. TS does not signal deference at the time of dispatch. TS signals
URB handle deference only when it receives a resource dereference message from the thread. In
order avoid deadlock, such dereference must be issued once and only once for each URB handle.
30:25 | Reserved
Format: MBZ
24 | Thread Synchronization
This field when set indicates that the dispatch of the thread originated from this command is
based on the "spawn root thread" message.
Value Name
0 No thread synchronization
1 Thread dispatch is synchronized by the 'spawn root thread' message
23:22 | Reserved
Format: MBZ
21 (Use Scoreboard
This field specifies whether the thread associated with this command uses hardware scoreboard.
Only when this field is set, the scoreboard control fields in the VFE Dword are valid. If this field is
cleared, the thread associated with this command bypasses hardware scoreboard.
Value Name
0 Not using scoreboard
1 Using scoreboard
20:17 | Reserved
| Format: MBZ
16:0 |Indirect Data Length
| Format: U17 in bytes
This field provides the length in bytes of the indirect data. A value zero indicates that indirect
data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored.
This field must have the same alignment as the Indirect Object Data Start Address.
It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB, range is
limited to 496 DW. When both inline and indirect data are fetched for this command, the total
size in 8-DW registers must be less than or equal to 63 (with both inline data length and indirect
data length rounded up to 8-DW aligned).
3 31:0 |Indirect Data Start Address

532




Q"_til

MEDIA_OBJECT _WALKER

Format: | GraphicsAddress[31:0]

Description Project

This field specifies the Graphics Memory starting address of the data to be loaded into
the kernel for processing. This pointer is relative to the Indirect Object Base Address.
Hardware ignores this field if indirect data is not present.

Alignment of this address depends on the mode of operation.

It is the DWord aligned address of the indirect data. HSW

Value Name Description

[0 - 512MB] (Bits 31:29 MBZ)

31:0 |Reserved

Format: MBZ

7:0 [Scoreboard Mask
Format: Boolean

Each bit indicates the corresponding dependency scoreboard is dependent on. This field is
AND'd with the corresponding Scoreboard Mask field in the MEDIA_VFE_STATE. All threads
generated by this walker command share the same dynamic mask.

Bit n (for n = 0...7): Scoreboard n is dependent, where bit 0 maps to n = 0.

31 |Dual Mode

Project: HSW
Format: Boolean
Programming Notes Project
Dual mode should be used in products that have 2 half-slices. DevHSW:GT2
30 |Repel
Project: HSW
Format: Boolean

Programming Notes

Repel should not be combined with either Dual Mode or Quad Mode.

29 |Quad Mode
Project: HSW

Format: Boolean

Programming Notes Project

Quad mode should be used in products that have 4 half-slices. DevHSW:GT3, DevHSW:GT4

533




MEDIA_OBJECT_WALKER

(lntel
2

8 |Reserved
| Format: | MBZ |
27:24 | Color Count Minus One

| Format: | U4

This field specifies the number of repeat of the inner most loop of the walker. Each repeated walk
position is assigned with an incremental Color number. The Color number together with the X
and Y position of the thread is used for dependency scoreboard control.

Usage Example: This allows multiple sets of dependency threads to be dispatched.

23:21 | Reserved
| Format: | MBZ |
20:16 | Middle Loop Extra Steps
| Format: | us |
15:14 | Reserved
| Format: | MBZ |
13:12 | Local Mid-Loop Unit Y
| Format: |Sl |
11:10 | Reserved
| Format: | MBZ |
9:8 |Mid-Loop Unit X
| Format: |Sl |
7.0 |Reserved
| Format: | MBZ |
7 31:26 | Reserved
| Format: | MBZ |
25:16 | Global Loop Exec Count
| Format: | u10 |
15:10 | Reserved
| Format: | MBZ |
9:0 (Local Loop Exec Count
| Format: | u10 |
8 31:25 | Reserved
| Format: | MBZ |
24:16 | Block Resolution Y

| Format: | U9 |

Vertical resolution of the local loop.

534




MEDIA_OBJECT_WALKER

159

Reserved

| Format:

| MBZ

8.0

Block Resolution X

| Format:

Horizontal resolution of the local loop.

31:25

Reserved

| Format:

| MBZ

24:16

Local Start Y

Format:

U9

Starting vertical position of the local loop.

159

Reserved

| Format:

| MBZ

8:0

Local Start X

| Format:

lu9

Starting horizontal position of the local loop.

10

31:25

Reserved

| Format:

| MBZ

24:16

Reserved

Project: DevHSW +

Format: MBZ

15:9

Reserved

Format:

MBZ

8.0

Reserved

Project: DevHSW +

Format: MBZ

11

31:26

Reserved

| Format:

| MBZ

25:16

Local Outer Loop Stride Y

| Format:

Vertical stride of the local outer loop, in 2's complement.

15:10

Reserved

| Format:

| MBZ

535




MEDIA_OBJECT_WALKER

(lntel
9

:0

Local Outer Loop Stride X

| Format:

|s9

Horizontal stride of the local outer loop, in 2's complement.

12

31:26

Reserved

| Format: | MBZ

25:16

Local Inner Loop Unit Y

| Format:

|s9

Vertical stride of the local inner loop, in 2's complement.

15:10

Reserved

| Format: | MBZ

9:0

Local Inner Loop Unit X

Format:

S9

Horizontal stride of the local inner loop, in 2's complement.

13

31:25

Reserved

| Format: | MBZ

24:16

Global Resolution Y

| Format:

Vertical resolution of the global loop.

159

Reserved

| Format: | MBZ

8.0

Global Resolution X

| Format:

Horizontal resolution of the global loop.

14

31:26

Reserved

| Format: | MBZ

25:16

Global Start Y

| Format:

Starting vertical location of the global loop, in 2's complement.

15:10

Reserved

| Format: | MBZ

9:0

Global Start X

Format:

S9

536




MEDIA_OBJECT_WALKER

Starting horizontal location of the global loop, in 2's complement.

15

31:26

Reserved

| Format: | MBZ

25:16

Global Outer Loop Stride Y

| Format:

Vertical stride of the global outer loop, in 2's complement.

15:10

Reserved

| Format: | MBZ

9:0

Global Outer Loop Stride X

| Format:

Horizontal stride of the global outer loop, in 2's complement.

16

31:26

Reserved

| Format: | MBZ

25:16

Global Inner Loop Unit Y

| Format:

|s9

Vertical stride of the global inner loop, in 2's complement.

15:10

Reserved

| Format: | MBZ

9:0

Global Inner Loop Unit X

Format:

S9

Horizontal stride of the global inner loop, in 2's complement.

17.n

310

Inline Data

537




Q"_til

GPGPU_OBJECT

GPGPU_OBJECT

Project: HSW
Source: RenderCS
Length Bias: 2

Programming Notes

If the threads spawned by this command are required to observe memory writes performed by threads
spawned from a previous command, software must precede this command with a command that performs a
memory flush (e.g., MI_FLUSH).

DWord| Bit Description
0 31:29 | Command Type

Default Value: 3h GFXPIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h Media
Format: OpCode

26:24 | Media Command Opcode
Default Value: 1h GPGPU_OBJECT
Format: OpCode

23:16 | SubOpcode
Default Value: 04h GPGPU_OBJECT SubOp
Format: OpCode

15:9 [Reserved

| Format: | MBZ

8 |[Predicate Enable

| Format: | Enable

If set, this command is executed (or not) depending on the current value of the MI Predicate
internal state bit. This command is ignored only if PredicateEnable is set and the Predicate state
bit is 0.

7:0 |DWord Length

Format: | =n Total Length -2

There are 4 DW needed to specify the Thread Group ID and the execution mask.
Value Name Description

6h DWORD_COUNT_n [Default] Excludes DWord (0,1)

538



Q"_til

GPGPU_OBJECT

31:8 | Reserved
7 |Shared Local Memory Fixed Offset
This bit, if set, specifies that the offset into the 64k Shared Local Memory for the current thread
group is specified by software in the Shared Local Memory Offset field.
Value Name Description
0 Thread Groups Offset to start of segment determined by hardware based on
Offset concurrently running thread groups.
1 Shared Local Offset to start of the Shared Local Memory segment supplied in
Memory Offset Shared Local Memory Offset
6 |Reserved
Format: MBZ
5.0 |Interface Descriptor Offset
Project: HSW
Format: U6
This field specifies the offset from the interface descriptor base pointer to the interface descriptor
which will be applied to
this object. It is specified in units of interface descriptors.
31:28 | Shared Local Memory Offset
Format: U4
Description Project
If the Shared Local Memory Fixed Offset is set, this field provides the offset to the start
of the Shared Local Memory for this thread group. The value of this field is multiplied
by 4k to get the starting address. All threads in the thread group must have the same
value.
Offset must be aligned with Shared Local Memory Size of the thread group. HSW
Offset must be aligned with Shared Local Memory Size of the thread group. HSW
27:25| Reserved
| Format: | MBZ |
24 [End of Thread Group
| Project: | HSW |
This bit indicates that this dispatch is the last for the current thread group.
23:20 | Reserved
| Format: | MBZ |
19 |Slice Destination Select

| Project: | HSW |
This bit along with the half-slice destination select determines the slice that this thread must be

539




GPGPU_OBJECT

sent to. This field must be 0 if the Half-Slice Destination Select = 00.

Value Name Description
0 Slice 0
1 Slice 1 Cannot be used in products without a Slice 1
0 Either Slice (if Half-Slice |Hardware will choose the half-slice based on load. If this is
Destination Select = 0) selected then the Half-Slice Destination Select must also
specify "Either half-slice"

18:17

Half-Slice Destination Select
This field selects the half slice that this thread must be sent to.

Value Name Description

10b |Half-Slice 1 [Cannot be used in products without a Half-Slice 1.

01lb |Half-Slice 0

00b |Either Half- |Hardware will choose the slice based on load.
Slice [DevHSW] If this is selected then the Slice Destination Select must also
specify "Either half-slice"

16:0 |Indirect Data Length
Format: U17 in bytes
This field provides the length in bytes of the indirect data. A value zero indicates that indirect
data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. Thread
IDs
This field must have the same alignment as the Indirect Object Data Start Address.
It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB, range is
limited to 496 DW. When both inline and indirect data are fetched for this command, the total
size in 8-DW registers must be less than or equal to 63 (with both inline data length and indirect
data length rounded up to 8-DW aligned).
3 31:0 |Indirect Data Start Address
Format: GraphicsAddress[31:0]
This field specifies the Graphics Memory starting address of the data to be loaded into the kernel
for processing. This pointer is relative to the Indirect Object Base Address.
Hardware ignores this field if indirect data is not present.
The start address is a 64-byte aligned address.
(Bits 31:29 MBZ)
Value Name
[0,512MB)
4 31:.0 |Thread Group ID X
This is the X coordinate of the group id.
5 31:0 |Thread Group ID Y
This is the Y coordinate of the group id for all channels generated by this command.
6 31:0 | Thread Group ID Z

540




Q"_til

GPGPU_OBJECT

This is the Z coordinate of the thread group id.

31:0 | Execution Mask

Format: | Must Be All Ones Must be OxFFFFFFFF
This provides a bit per channel enable for the SIMD32 dispatch. The LSB of the Mask enables the
execution of SIMD32 channel O; the remaining bits enable the corresponding channel numbers.

SIMD16 and SIMDS8 dispatches should use the LSB bits of the mask. Any disabled channel will not
read or write data to memory.

541




Q"_til

MFX_AVC_REF_IDX STATE

MFX_AVC_REF _IDX STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple
slices. The same command is used for AVC encoder (PAK mode) and decoder (VLD mode); it is not need in
decoder IT mode.

The inline data of this command is interpreted differently for encoder as for decoder. For decoder, it is
interpreted as Refldx List LO/L1 as in AVC spec., and it matches with the DXVA2 AVC API data structure for
decoder in VLD mode : RefPicList[2][32] (LO:L1, 0:31 RefPic). But for encoder, it is interpreted as a Reference Index
Mapping Table for LO and L1 reference pictures. For packing the bits at the output of PAK, the syntax elements
must follow the definition of RefldxL0/L1 list according to the AVC spec. However, the decoder pipeline was
designed to use a variation of that standard definition, as such a conversion (mapping) is needed to support the
hardware design.

The Reference lists are needed in processing both P and B slice in AVC codec. For P-MB, only LO list is used; for
B-MB both LO and L1 lists are needed. For a B-MB that is coded in L1-only Prediction, only L1 list is used.

Programming Notes

DXVA2 specifies that an application will create the RefPicList LO and L1 and pass onto the driver. The content of
each entry of RefPicList LO/L1[ ] is a 7-bit picture index. This picture index is the same as that of RefFramelList[ ]
content. This picture index, however, is not defined the same as the frame store ID (0 to 16, 5-bits) we have
implemented in H/W. Hence, driver is required to manage a table to convert between DXVA2 picture index and
intel frame store ID. As such, the final RefPicList LO/L1[ ] that the driver passes onto the H/W is not the same as
that defined in the DXVA2.

DWord | Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h MFX_AVC_REF_IDX_STATE
Format: OpCode

26:24 | Command Opcode
Default Value: 1h AVC
Format: OpCode

23:21 | SubOpcodeA
Default Value: Oh MFX_AVC_REF_IDX_STATE

542



MFEX_AVC_REF _IDX STATE

Format: | OpCode |
20:16 | SubOpcodeB
Default Value: 4h MFX_AVC_REF_IDX_STATE
Format: OpCode
15:12 [ Reserved
Format: MBZ
11:0 |DWord Length
Default Value: 0008h
Format: =n
Excludes DWords 0,1
1 31:1 |Reserved
Format: MBZ
0 |RefPicList Select
Num_ref_idx_I1_active is resulted from the specifications in both PPS and Slice Header for the
current slice. However, since the full reference list LO and/or L1 are always sent, only present
flags are specified instead.
This parameter is specified for Intel interface only, not present in the DXVA.
Value| Name Description
0 RefPicList | The list that followed represents Reflist LO (Decoder VLD mode) or Ref Idx
0 Mapping Table LO (Encoder PAK mode)
1 RefPicListl | The list that followed represents Reflist L1 (Decoder VLD mode) or Ref Idx
Mapping Table L1 (Encoder PAK mode)
2.9 31:0 |Reference List Entry

This set of fields is always present whenever this command is issued.

It always specifies the full 32 reference pictures in the selected list, regardless they are "existing
picture" or not. If a picture is non-existing, the corresponding entry should be set to all ones.
Each list entry is 1 byte. A 32-bit DW can hold 4 list entries in the following format

31:24 entry X+3 (e.g. listY_3)

23:16 entry X+2 (e.g. listY_2)

15:8 entry X+1 (e.g. listY_1)

543




MFEX_AVC_REF _IDX STATE

7:0 entry X (e.g. listY_0)

X is replaced by the paddr[2:0] * 4 ; paddr[5:0] with 0x20 and 0x27, and Y is replaced by O or 1.
The byte definition for a reference picture :

Bit 7 : Non-Existing - indicates that frame store index that should have been at this entry
did not exist and was replaced by an index O (a valid entry) for error concealment

Bit 6 : Long term bit - set this reference picture to be used as long term reference

Bit 5 : Field picture flag - indicates frame/field

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

This is the final Reference List LO or L1 after any reordering specified in the Slice Header as well
as modified by the driver, and its indices values are all translated to the intel specification.

If the reference picture is a frame (Bit5 = 1), frame store ID is always an even number.

This list is used in outputting MV information by the BSD unit in VLD mode. DMV access also
reads and writes MvlistO using this frame store ID.

If this set of fields is interpreted as Reference Index Mapping Table LO/L1, the same field
alignment is followed, i.e. 4 mapping entries per DW. Each mapping entry is one byte in size, but
only the least significant 5 bits [4:0] is relevant. Driver should zero all the upper bits [7:5] for each
entry.

544




GPGPU_WALKER

GPGPU_WALKER

Project:
Source:

Length Bias:

HSW
RenderCS
2

Programming Notes

If the threads spawned by this command are required to observe memory writes performed by threads
spawned from a previous command, software must precede this command with a command that performs a
memory flush (e.g., MI_FLUSH).

DWord

Bit

Description

0

31:29

Command Type

Default Value:

3h GFXPIPE

Format:

OpCode

28:27

Pipeline

Default Value:

2h Media

Format:

OpCode

26:24

Media Command Opcode

Default Value:

1h GPGPU_WALKER

Format:

OpCode

23:16

SubOpcode A

Default Value:

05h GPGPU_WALKER SubOp

Format:

OpCode

15:11

Reserved

| Format:

| MBZ

10

Indirect Parameter Enable

| Format:

| Enable

If set, the values in DW 4, 6, 8 are ignored and replaced by the current values of the
corresponding GPGPU_xxx MMIO registers:

GPGPU_DISPATCHDIMX (instead of DW4)

GPGPU_DISPATCHDIMY (instead of DW6)

545




GPGPU_WALKER

GPGPU_DISPATCHDIMZ (instead of DW8)

9 |Reserved
Project: All
Format: MBZ
8 |Predicate Enable
Format: Enable
If set, this command is executed (or not) depending on the current value of the MI Predicate
internal state bit. This command is ignored only if PredicateEnable is set and the Predicate state
bit is 0.
7.0 [DWord Length
Format: =n Total Length - 2
Value Name Description
9h DWORD_COUNT_n [Default] Allowed value is 9
1 31:8 | Reserved
7:6 |Reserved
Format: MBZ
5.0 |Interface Descriptor Offset
Project: DevHSW +
Format: u6
This field specifies the offset from the interface descriptor base pointer to the interface descriptor
which will be applied to
this object. It is specified in units of interface descriptors.
2 31:30 | SIMD Size
This field determines the size of the payload and the number of bits of the execution mask that
are expected. The kernel pointed to by the interface descriptor should match the SIMD declared
here.
Value Name Description
0 SIMD8 8 LSBs of the execution mask are used
1 SIMD16 16 LSBs used in execution mask
2 SIMD32 32 bits of execution mask used
29:22 | Reserved
Format: MBZ
21:16 | Thread Depth Counter Maximum

The maximum value of the thread depth counter. Since the counter starts at 0, the depth is this

546




(intel
GPGPU WALKER

value + 1. (Thread_Depth_Max+1)*(Thread_Height_Max+1)*(Thread_Width_Max+1) must
equal Number of Threads in GPGPU Thread Group in the Interface Descriptor.

15:14

Reserved

| Format: | MBZ

13:8

Thread Height Counter Maximum
The maximum value of the thread height counter. The height is this value + 1.

7:6 |Reserved
| Format: | MBZ
5:0 |Thread Width Counter Maximum

The maximum value of the thread width counter. The height is this value + 1.

3 31:0 | Thread Group ID Starting X
This is the initial value of the X component of the thread group. When X reaches the maximum
value it rolls around to 0, not to this value.
4 31:0 | Thread Group ID X Dimension
The X dimension of the thread group (maximum X is dimension -1)
5 31:.0 |Thread Group ID Starting Y
This is the initial value of the Y component of the thread group. When Y reaches the maximum
value it rolls around to 0, not to this value.
6 31:0 |Thread Group ID Y Dimension
The Y dimension of the thread group (maximum Y is dimension -1)
7 31:.0 |Thread Group ID Starting Z
This is the initial value of the Z component of the thread group
8 31:0 |Thread Group ID Z Dimension
The Z dimension of the thread group (maximum Z is dimension -1)
9 31:0 |Right Execution Mask
|F_ormat: | Must Be All Ones Must be OxFFFFFFFF
10 31:0 | Bottom Execution Mask

| Format: | Must Be All Ones Must be OXFFFFFFFF

547



Q"_til

MFX_AVC_WEIGHTOFFSET_STATE

MFX_AVC_WEIGHTOFFSET _STATE

Project: HSW
Source: VideoCS
Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple
slices. The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT modes). However,
since for AVC decoder VLD and IT modes, and AVC encoder mode, the implicit weights are computed in
hardware, this command is not issued. For encoder, regardless of the type of weight calculation is active for the
current slice (default, implicit or explicit), they are all sent to the PAK as if they were all in explicit mode. However,
for implicit weight and offset, each entry contains only a 16-bit weight and no offset (offset = 0 always in implicit
mode and can be hard-coded inside the hardware).The weights (and offsets) are needed in processing both P
and B slice in AVC codec. For P-MB, at most only LO list is used; for B-MB both LO and L1 lists may be needed. For
a B-MB that is coded in L1-only Prediction, only L1 list is sent.The content of this command matches with the
DXVA2 AVC API data structure for explicit prediction mode only : Weights[2][32][3][2] (LO:L1, 0:31 RefPic, Y:Ch:Cr,
W:0)

DWord| Bit Description
0 31:29 | Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode
28:27 | Pipeline
Default Value: 2h MFX_ AVC_ WEIGHTOFFSET_STATE
Format: OpCode
26:24 | Media Command Opcode
Default Value: 1h AVC_COMMON
Format: OpCode
23:21 |SubOpcode A
Default Value: Oh
Format: OpCode
20:16 | SubOpcode B
Default Value: 5h
Format: OpCode
15:12 | Reserved
| Format: MBZ |
11:0 (DWord Length
|Defau|t Value: 60h Excludes DWord (0,1) |

548



MFX_AVC _WEIGHTOFFSET _STATE

| Format: | =n Total Length - 2 |
1 31:1 |Reserved
| Format: | MBZ |
0 |Weight and Offset Select
It must be set in consistent with the WeightedPredFlag and WeightedBiPredIdc in the Img_State
command.
This parameter is specified for Intel interface only, not present in the DXVA.
For implicit even though only one entry may be used, still loading the whole 32-entry table.
Value Name Description
0 Weight and Offset LO | The list that followed is associated with the weight and offset
table for RefPicList LO
1 Weight and Offset L1 |The list that followed is associated with the weight and offset
table for RefPicList L1
2.97 | 31:0 |WeightOffset

WeightOffset[L=L0=0 or L1=1][i=0 to 31][Y=0/Cb=1/Cr=2][weight=0/offset=1]
WeightOffset[L][ i=0][Y=0][Weight=0], WeightOffset[L][i=0][Y=0][Offset=1]
WeightOffset[L][ i=0][Cb=1][Weight=0], WeightOffset[L][ i=0][Cb=1][Offset=1]
WeightOffset[L][ i=0][Cr=2][Weight=0], WeightOffset[L][ i=0][Cr=2][Offset=1]:
WeightOffset[L][ i=31][Y=0][Weight=0], WeightOffset[L][ i=31][Y=0][Offset=1]
WeightOffset[L][ i=31][Cb=1][Weight=0], WeightOffset[L][ i=31][Cb=1][Offset=1]
WeightOffset[L][ i=31][Cr=2][Weight=0], WeightOffset[L][ i=31][Cr=2][Offset=1]

Format for explicit: Both Weight and Offset are S15 in two's compliment, with a valid range
from -128 to 128
Format for implicit: S15

This set of fields is always present whenever this command is issued. The full table, one entry
for each reference picture, is always specified. Any reference list LO/L1[i] that does not exist, the
corresponding weight and offset are set to 0.

Weight and Offset are 2 byte each. Apair of Weight and Offset forms a dword, with Weight in
the LOWER word and Offset in the HIGHER word.

WeightOffset[LO=0][i=0 to 31][Y=0] (i.e. luma_weight_IO[ i ]) are specified for the weighting and
offset factors applied to the luma prediction value for list O prediction using RefPicListO[ i ]
(one-to-one correspondence in i). When luma_weight_|0_flag (Slice Header syntax element) is
equal to 1, the value of luma_weight_IO[ i ] shall be in the range of -128 to 127. When
luma_weight_l0_flag is equal to 0, luma_weight_IO[ i ] shall be inferred to be equal to
2luma_log2_weight_denom for RefPicListO[ i ]. luma_log2_weight_denom is a Slice Header
syntax element.

WeightOffset[LO=0][i=0 to 31][Cb=1] (i.e. chromaCb_weight_IO[ i ]) are specified for the
weighting and offset factors applied to the chroma Cb prediction values for list 0 prediction

using RefPicListO[ i ] (one-to-one correspondence in i). When chroma_weight_|0_flag (Slice

549



MFX_AVC_WEIGHTOFFSET_STATE

Header syntax element) is equal to 1, the value of chromaCb_weight_IO[ i ] shall be in the range
of -128 to 127. When chroma_weight_l0_flag is equal to 0, chromaCb_weight_IO[ i ] shall be
inferred to be equal to 2chroma_log2_weight_denom for RefPicListO[ i ].
chroma_log2_weight_denom is a Slice Header syntax element.

WeightOffset[LO=0][i=0 to 31][Cr=2] (i.e. chromaCr_weight_IO[ i ]) are specified for the
weighting and offset factors applied to the chroma Cr prediction values for list O prediction
using RefPicListO[ i ] (one-to-one correspondence in i). When chroma_weight_|0_flag (Slice
Header syntax element) is equal to 1, the value of chromaCr_weight_|O[ i ] shall be in the range
of -128 to 127. When chroma_weight_I0_flag is equal to 0, chromaCr_weight_IO[ i ] shall be
inferred to be equal to 2chroma_log2_weight_denom for RefPicListO[ i ].

550



MEX_SVC_IMG_STATE

MFEX_SVC_IMG_STATE

Project:
Source:
Length Bias:

VideoCS

This must be the very first command to issue after the surface state, the pipe select and base address setting
commands and must be issued before MFX_AVC_IMG_STATE.

DWord Bit Description
0 31:29 | Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 | Pipeline
Default Value: 2h Video Codec
Format: OpCode

26:24 | Media Command OpCode
Default Value: 1h SVC_COMMON
Format: OpCode

23:21 | subOpcodeA
Default Value: Oh
Format: OpCode

20:16 | subOpcodeB
Default Value: 8h
Format: OpCode

15:12 | Reserved
Format: MBZ

11:0 (DWord Length
Default Value: 0027h DWORD_COUNT_n
Format: =n Length -2

1 31:6 |Interlayer Reconstructed Pixel StreamOut Base Address

Format: GraphicsAddress[31:6]

Specifies the 64 byte aligned, tileY, address for outputting the per-MB
reconstructed data to memory when IL_PixStrmOutEnable is set to in the
MFX_SVC_SLICE_STATE command.

Buffer size (in units of cachelines)

551




MEX_SVC_IMG_STATE

Inter-layer 6 * PicWidthinMbs*PicHeightinMbs (of the layer to
upsampling pass which it is upsampled)

This field is only used for streaming out the resampled intra pixels during
the upsampling pass. For the SVC decoding and encoding pass, the Pre
Deblocking Destination Address or Post Deblocking Destination Address in
MFX_PIPE_BUF_ADDR_STATE will be used instead.

All data are written in fixed formats, and therefore all record sizes are known
in the hardware. Hardware can calculate the offset into this base address for
per-MB data. This field is ignored if IL_PixStrmOutEnable is set to 0 (disable).

5:4

Interlayer Reconstructed Pixel StreamOut - Arbitration Priority Control

DevHSW:GT2:B)

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

for this surface.

This field controls the priority of arbitration used in the GAC/GAM pipeline

Value Name
00b Highest Priority
01b Second Highest Priority
10b Third Highest Priority
11b Lowest Priority

3:0

State

Interlayer Reconstructed Pixel StreamOut - Memory Object Control

DevHSW:GT2:B)

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:16 | Reserved

Format: MBZ
15:0 | Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

DevHSW:GT2:B)

Format: | MBZ
31:15 | Reserved

Format: MBZ
14:13 | Reserved

Project: HSW

Format: MBZ
12:10 | Reserved

552




MFEX_SVC_IMG_STATE

Project: HSW
Format: MBZ
9 |Reserved
Project: HSW
Format: MBZ
8:0 [Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
31:6 |Interlayer Residual StreamOut Base Address
Format: GraphicsAddress[31:6]
Specifies the 64 bytes aligned, tileY, address for outputting the per-MB
reconstructed residual data to memory when IL_ResidStrmOutEnable is set
to 1 in the MFX_SVC_SLICE_STATE command.
Buffer size (in units of cachelines)
Decoding pass 12 * PicWidthinMbs*PicHeightinMbs (of the layer to
be decoded)
Encoding pass 12 * PicWidthinMbs*PicHeightinMbs (of the layer to
be encoded)
Inter-layer 12 * PicWidthinMbs*PicHeightinMbs (of the layer to
upsampling pass which it is upsampled)
This field is used for streaming out the reconstructed residuals during the
decoding or encoding pass and for streaming out the resampled residuals
during the upsampling pass.
All data are written in fixed formats, and therefore all record sizes are known
in the hardware. Hardware can calculate the offset into this base address for
per-MB data. This field is ignored if IL_ResidStrmQOutEnable is set to 0
(disable).
5:4 |[Interlayer Residual StreamOut - Arbitration Priority Control
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.
Value Name
00h Highest Priority
01lb Second Highest Priority
10b Third Highest Priority
11b Lowest Priority
3:0 |Interlayer Residual StreamOut - Memory Object Control State

553




MFEX_SVC_IMG_STATE

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:16 | Reserved

Format: MBZ
15:0 | Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

DevHSW:GT2:B)

Format: | MBZ
31:15 | Reserved

Format: MBZ
14:13 | Reserved

Project: HSW

Format: MBZ
12:11 | Reserved

Format: MBZ
10:9 [Reserved

Project: HSW

Format: MBZ
8:0 |Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

DevHSW:GT2:B)

Format: | MBZ
31:6 |Interlayer Coeff StreamOut Base Address

Format: GraphicsAddress[31:6]

Buffer should be in linear format, not tiled, for better performance.

e Specifies the 4K byte aligned frame buffer address for outputting
Interlayer Coeff Data (STCoeff or Tcoeff).

e Specifies the address for outputting the per-MB reconstructed
residual data to memory when IL_stCoeffStrmOutEnable or
IL_tCoeffStrmOutEnable is set to 1 in the MFX_SVC_SLICE_STATE
command.

e This field is used for streaming out the stCoeff (post-IQ, when
IL_stCoeffStrmOutEnable is set to 1) or tCoeff (pre-1Q, when
IL_tCoeffStrmOutEnable is set to 1) during the decoding or encoding
pass

554




Q"_til

MFEX_SVC_IMG_STATE

compression

Buffer size (in units of cachelines)with BW

pass layer to be decoded)

Decoding 1024 + 16 * PicWidthinMbs*PicHeightinMbs (of the

pass layer to be encoded)

Encoding 1024 + 16 * PicWidthinMbs*PicHeightinMbs (of the

Note: The first part of above equation (1024256) is for Coeff Data Size

per MB (one byte per MB containing the number of coefficient CL,

support up to 256x256 MBs per layer). The second part of equation is

the compressed coefficient data.

All data are written in BW compressed formats, but all record sizes are

known in the hardware. Hardware can calculate the offset into this

base address for per-MB data. This field is ignored if both
IL_stCoeffStrmOutEnable and IL_tCoeffStrmOutEnable is set to 0

(disable).

5:4

Interlayer Coeff StreamOut - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Interlayer Coeff StreamOut - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

31:16

Reserved

Format: MBZ

15:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

DevHSW:GT2:B)

Format: | MBZ

31:15

Reserved

555




MFEX_SVC_IMG_STATE

| Format: | MBZ
14:13 | Reserved
Project: HSW
Format: MBZ
12:11 | Reserved
Format: MBZ
10:9 [Reserved
Project: HSW
Format: MBZ
8:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
10 31:6 |Interlayer CoeffPred StreamOut Base Address

Format: GraphicsAddress[31:6]

Specifies the 64 bytes aligned address, tileY, for outputting the per-MB
reconstructed AVC intra data to memory when IL_CoeffPredStrmOutEnable
is set to 1 in the MFX_SVC_SLICE_STATE command. This field is used for
streaming out the reconstructed avc intra data during the decoding or
encoding pass.

Buffer size (in units of cachelines)

Decoding 6 * PicWidthinMbs * PicHeightinMbs (of the layer to be
pass decoded)

Encoding 6 * PicWidthinMbs*PicHeightinMbs (of the layer to be
pass encoded)

All data are written in fixed formats, and therefore all record sizes are
known in the hardware. Hardware can calculate the offset into this base
address for per-MB data. This field is ignored if IL_CoeffPredStrmOutEnable
is set to 0 (disable).

Programming Notes

Note that software must use the same surface for CoeffPred StreamIn and
CoeffPred StreamOut when IL_CoeffPredStrmQOutEnable and
IL_CoeffPredStrmInEnable are both set to 1.

54

Interlayer CoeffPred StreamOut - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline

556




MFEX_SVC_IMG_STATE

for this surface.

Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Interlayer CoeffPred StreamOut - Memory Object Control State

Project:

DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format:

MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.
11 31:16 | Reserved
Format: MBZ
15:0 | Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | MBZ
12 31:15 | Reserved
Format: MBZ
14:13 | Reserved
Project: HSW
Format: MBZ
12:11 | Reserved
Format: MBZ
10:9 | Reserved
Project: HSW
Format: MBZ
8:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | MBZ
13 31:6 |Interlayer Motion Info StreamOut Base Address

Format:

GraphicsAddress[31:6]

Specifies the 64 bytes aligned address to a linear buffer for outputting the
per-MB motion info data to memory when IL_MotionStrmOutEnable is set to
1 in the MFX_SVC_SLICE_STATE command. This field is used for streaming

557




MEX_SVC_IMG_STATE

out the motion info data during the decoding, encoding or upsampling pass
except at the target layer.

Buffer size (in units of cachelines)

Decoding pass 3 * PicWidthinMbs * PicHeightinMbs (of the layer to
be decoded)

Encoding pass 3 * PicWidthinMbs * PicHeightinMbs (of the layer to
be encoded)

Inter-layer 3 * PicWidthinMbs * PicHeightinMbs (of the layer to

upsampling pass which it is upsampled)

All data are written in fixed formats, and therefore all record sizes are known
in the hardware. Hardware can calculate the offset into this base address for
per-MB data. This field is ignored if IL_MotionStrmOutEnable is set to 0
(disable).

Programming Notes

Software should not modify the content of this surface.

54

Interlayer Motion Info StreamOut - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Interlayer Motion Info StreamOut - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

14

31:16 | Reserved
Format: MBZ
Description Project
Reserved. DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW.:GT2:B)
15:0 [Reserved

| Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:8,

558




MFEX_SVC_IMG_STATE

DevHSW:GT2:B)

Format: | MBZ
31:15 | Reserved

Format: MBZ
14:13 | Reserved

Project: HSW

Format: MBZ
12:11 | Reserved

Format: MBZ
10:9 | Reserved

Project: HSW

Format: MBZ

8:0 |Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

31:6 |Interlayer Reconstructed Pixel StreamIn Base Address
Format: GraphicsAddress[31:6]

Specifies the 64 bytes aligned base address, to a tileY buffer, for streaming in
the per-MB reconstructed pixel data from memory when IL_PixStrmInEnable
is set to 1 in the MFX_SVC_SLICE_STATE command.

This field is used for streaming in the ref layer intra pixel data during the
decoding or encoding pass for I_BL reconstruction or inter MB with
combined intra-inter prediction, and for streaming in the ref layer intra pixels
during the upsampling pass.

Buffer size (in units of cachelines)
Decoding pass 6 * PicWidthinMbs * PicHeightinMbs (of the layer to be

decoded)

Encoding pass 6 * PicWidthinMbs * PicHeightinMbs (of the layer to be
encoded)

Inter-layer 6 * RefLayerPicWidthinMbs * RefLayerPicHeightinMbs

upsampling pass | (of the layer to be upsampled, i.e. reference layer)

All data are read in fixed formats, and therefore all record sizes is pixel
data)are known in the hardware. Hardware can calculate the offset into this
base address for per-MB data.

This field is ignored if IL_PixStrmInEnable is set to O (disable).

5:4 |Interlayer Reconstructed Pixel Streamln - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

559




MEX_SVC_IMG_STATE

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Interlayer Reconstructed Pixel StreamlIn - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

17 31:16 | Reserved
Format: MBZ
Description Project
Reserved. DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW.:.GT2:B)
15:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | MBZ
18 31:15 | Reserved
Format: MBZ
14:13 | Reserved
Project: HSW
Format: MBZ
12:11 | Reserved
Format: MBZ
10:9 | Reserved
Project: HSW
Format: MBZ
8:0 |Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

560



Q"_til

MEX_SVC_IMG_STATE

19

31:6

Interlayer Residual StreamIn Base Address

| Format: | GraphicsAddress[31:6]

Specifies the 64 bytes aligned address to a tileY buffer for fetching the per-
MB residual data from memory when IL_ResidStrmInEnable is set to 1 in the
MFX_SVC_SLICE_STATE command.

This field is used for streaming in the upsampled residuals during the
decoding or encoding pass and for streaming in the reconstructed residuals
during the upsampling pass.

Buffer size (in units of cachelines)

Decoding pass 12 * PicWidthinMbs * PicHeightinMbs (of the layer to
be decoded)

Encoding pass 12 * PicWidthinMbs * PicHeightinMbs (of the layer to
be encoded)

Inter-layer 12 * RefLayerPicWidthinMbs * RefLayerPicHeightinMbs
upsampling pass | (of the layer to be upsampled, i.e. reference layer)

All data are read in fixed formats, and therefore all record sizes are known in
the hardware. Hardware can calculate the offset into this base address for
per-MB data. The field is ignored if IL_ResidStrmInEnable is set to 0 (disable).

54

Interlayer Residual Streamln - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

3:0

Interlayer Residual StreamIn - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

20

31:16

Reserved

Format: MBZ

15:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

561



MFEX_SVC_IMG_STATE

| Format: | MBZ
21 31:15 | Reserved
| Format: | MBZ
14:13 | Reserved
Project: HSW
Format: MBZ
12:11 | Reserved
Format: MBZ
10:9 | Reserved
Project: HSW
Format: MBZ
8:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | MBZ
22 31:6 |Interlayer Coeff StreamIn Base Address

Format: GraphicsAddress[31:6]

Specifies the 4K byte aligned frame buffer address for outputting
Interlayer Coeff Data (Tcoeff or Stcoeff).

Specifies the base address of a linear surface for fetching the per-MB
stCoeff or tCoeff data from memory when IL_stCoeffStrmInEnable or
IL_tCoeffStrmInEnable is set to 1 in the MFX_SVC_SLICE_STATE
command.

This field is used for streaming in the stCoeff (post-IQ, when
IL_stCoeffStrmInEnable is set to 1) or tCoeff (pre-IQ, when
IL_tCoeffStrmInEnable is set to 1) during the decoding or encoding
pass.

Buffer size (in units of cachelines) with BW
compression

Decoding 1024 + 16 * PicWidthinMbs * PicHeightinMbs (of the

pass layer to be decoded)
Encoding 1024 + 16 * PicWidthinMbs * PicHeightinMbs (of the
pass layer to be encoded)

Note: The first part of above equation (1024) is for for Coeff Data Size
(one byte per MB containing the number of coefficient CL, support up
to 256x256 MBs per layer). The second part of equation is the
compressed coefficient data.

Programming Notes

562




Q"_til

MFEX_SVC_IMG_STATE

IL_stCoeffStrmInEnable and IL_tCoeffStrmInEnable cannot be both set to 1.
All data are read in compressed formats, but all record sizes are known in
the hardware. Hardware can calculate the offset into this base address for
per-MB data.

The field is ignored if both IL_stCoeffStrmInEnable and
IL_tCoeffStrmInEnable is set to O (disable).

5:4 |Interlayer Coeff Streamln - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

3:0 |Interlayer Coeff Streamln - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

23 31:16 | Reserved
Format: MBZ
15:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | MBZ
24 31:0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW:GT2:B)
25 31:6 |Interlayer CoeffPred StreamIn Base Address
Format: GraphicsAddress[31:6]

Specifies the 64 bytes aligned address of a tileY buffer for fetching the per-
MB AVC intra data from memory when IL_CoeffPredStrmInEnable is set to 1
in the MFX_SVC_SLICE_STATE command. This field is used for streaming in
the intra pixel data during the decoding or encoding pass for reconstruction.

Buffer size (in units of cachelines) with BW compression

Decoding pass | 6 * PicWidthinMbs*PicHeightinMbs (of the layer to be

563




MFEX_SVC_IMG_STATE

decoded)

Encoding pass |6 * PicWidthinMbs*PicHeightinMbs (of the layer to be
encoded)

Inter-layer 6 * RefLayerPicWidthinMbs*RefLayerPicHeightinMbs (of
upsampling the layer to be upsampled, i.e. reference layer)

pass
All data are read in fixed formats, and therefore all record sizes are known in
the hardware. Hardware can calculate the offset into this base address for
per-MB data. The field is ignored if IL_CoeffPredStrmInEnable is set to 0
(disable).

5:4

Interlayer CoeffPred Streamln - Arbitration Priority Control
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Interlayer CoeffPred StreamlIn - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

26 31:16 | Reserved
Format: MBZ
15:0 |Reserved
Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)
Format: | MBZ
27 31:.0 |Reserved
Project: DevHSW, Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
EXCLUDE(DevHSW:GT3:A, DevHSW:GT2:B)
DevHSW:GT3:B, Format: | MBZ
DevHSW:GT2:B)
28 31:6 |Interlayer Motion Info StreamIn Base Address

564




Q"_til

MEX_SVC_IMG_STATE

| Format: | GraphicsAddress[31:6]

Specifies the 64 bytes aligned address for fetching the per-MB motion info
data from memory when IL_MotionStrmInEnable is set to 1 in the
MFX_SVC_SLICE_STATE command. This field is used for streaming in the
motion info data during the decoding, encoding or upsampling pass.

Buffer size (in units of cachelines)

Decoding pass |3 * PicWidthinMbs*PicHeightinMbs (of the layer to be
decoded)

Encoding pass |3 * PicWidthinMbs*PicHeightinMbs (of the layer to be
encoded)

Inter-layer 3 * RefLayerPicWidthinMbs*RefLayerPicHeightinMbs (of
upsampling the layer to be upsampled, i.e. reference layer)
pass

All data are read in fixed formats, and therefore all record sizes are known in
the hardware. Hardware can calculate the offset into this base address for
per-MB data. The field is ignored if IL_MotionStrmInEnable is set to 0
(disable).

5:4

Interlayer Motion Info StreamlIn - Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name
00b Highest priority
01lb Second highest priority
10b Third highest priority
11b Lowest priority

3:0

Interlayer Motion Info StreamIn - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

29

31:16

Reserved

Format: MBZ

15:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

30

310

Reserved

565




Q"_til

MFEX_SVC_IMG_STATE

Project: DevHSW,
EXCLUDE(DevHSW:GT3:A,
DevHSW:GT3:B,
DevHSW:GT2:B)

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

31

31:6

SVC Deblocker Row Store Scratch Buffer Base Address

Format: GraphicsAddress[31:6]

This field provides the base address of the linear format scratch buffer
(read/write) used by the SVC deblocking to store MB information (residual
cbp and QP) of the previous row for processing of each macroblock in the
current row. The Row Store buffer must be 64-byte cacheline aligned.
Hardware uses the horizontal address of the current macroblock to address
the Row Store.

Buffer size (in units of cachelines)

Decoding [(16 bits per MB * pic width in mb ) round up to cachlines ] *
pass pic height in mb

Encoding [(16 bits per MB * pic width in mb ) round up to cachlines ] *
pass pic height in mb

5:4

SVC Deblocker Row Store Scratch Buffer - Arbitration Priority Control

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

This field controls the priority of arbitration used in the GAC/GAM pipeline
for this surface.

Value Name

00b Highest priority

01lb Second highest priority

10b Third highest priority

11b Lowest priority

3:0

SVC Deblocker Row Store Scratch Buffer - Memory Object Control State

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format; | MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

32

31:16

Reserved

Format: MBZ

15:0

Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

566



Q"_til

MFEX_SVC_IMG_STATE

33
Project: DevHSW,
EXCLUDE(DevHSW:GT3:A,
DevHSW:GT3:B,
DevHSW.:.GT2:B)

31:0 |Reserved

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | MBZ

34

31:24

Reserved

| Format: | MBZ |

23:16

MaxRefLayerDQId

| Format: |S7 |
It is set to the maximum value of the RefLayerDQId for the slices of the
current layer representation. For the base layer, MaxRefLayerDQId equals -1.
Note:Slices of current layer presentation can have different RefLayerDQId

values.
Decoding pass Reserved

Encoding pass Reserved

Inter-layer upsampling pass | Reserved

157

Reserved
Format: MBZ

6.0

CurrLayerDQId
Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass | Used
It is set to the value of (Dependencyld <<4) + Qualityld of current layer. HW
may need to check this field to determine if it is a base Layer, enhancement
layer, spatial layer, quality layer as follows:

Dependency Id | Quality Id

Base layer 0 0

Enhancement layer | Spatial layer | >0 0
Quiality layer | DC >0

Programming Notes Project

If QualityID is 0, DependencylD is not 0, DevHSW,
SpatialResolutionChangeFlag is 0, and EXCLUDE(DevHSW:GT3:A,
StoreRefBasePicFlag is 0, then QualitylD DevHSW:GT3:B,

needs to be modified to 1 (or other non-zero | DevHSW:GT2:B)

values) as a software alternative procedure
for correct residual prediction.

35

31:16

CurrL_ScaledRefLayerRightOffset
Format: S15

567




MEX_SVC_IMG_STATE

This field specifies the horizontal offset between the bottom-right luma
sample of a resampled layer picture used for inter-layer prediction and the
bottom-right luma sample of the current picture or current layer picture in
units of two luma samples. The value of this field shall be in the range of -
2715 to 2715 - 1), inclusive (internally HW will set within -2A16 to 2/16-2).
Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass | Used

15:0

CurrL_ScaledRefLayerBottomOffset
Format: S15

This field specifies the vertical offset between the bottom-right luma sample
of a resampled layer picture used for inter-layer prediction and the bottom-
right luma sample of the current picture or current layer picture. The vertical
offset is specified in units of two luma samples when frame_mbs_only_flag is
equal to 1, and it is specified in units of four luma samples when
frame_mbs_only_flag is equal to 0. The value of this field shall be in the
range of -2A15 to 2715 - 1, inclusive. (internally HW will set within -2216 to
2/16-2).

Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass | Used

Programming Notes Project

frame_mbs_only_flag must | DevHSW, EXCLUDE(DevHSW:GT3:A,
be 1. DevHSW:GT3:B, DevHSW:GT2:B)

36

31:16

CurrL_ScaledRefLayerTopOffset
Format: S15

This field specifies the vertical offset between the upper-left luma sample of
a resampled layer picture used for inter-layer prediction and the upper-left
luma sample of the current picture or current layer picture. The vertical offset
is specified in units of two luma samples when frame_mbs_only_flag is equal
to 1, and it is specified in units of four luma samples when
frame_mbs_only_flag is equal to 0. The value of this field shall be in the
range of -2A15 to 2715 - 1, inclusive. (internally HW will set within -2216 to
2716-2).

Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass | Used

Programming Notes

568




Q"_til

MFEX_SVC_IMG_STATE

|frame_mbs_on|y_f|ag must be 1. |

15:0 | CurrL_ScaledRefLayerLeftOffset
| Format: |515 |
This field specifies the horizontal offset between the upper-left luma sample
of a resampled layer picture used for inter-layer prediction and the upper-
left luma sample of the current picture or current layer picture in units of two
luma samples. The value of this field shall be in the range of -2/15 to 2A15 -
1, inclusive. (internally HW will set within -2/16 to 2/ 16-2).
Decoding pass Used
Encoding pass Used
Inter-layer upsampling pass | Used
37 31:26 | Reserved
Format: MBZ
25:16 | RefLayerPicHeightinMBMinus1
Format: ul10
It is set to the value of (RefLayerPicHeightInSamplel >= 4) -1 where
RefLayerPicHeightInSampleL is equal to PicHeightInSamplelL of reference
layer with DQId = MaxReflLayerDQId. The max allowed value for
RefLayerPicHinMBsMinusl is only 255. The min value for
RefLayerPicHinMBsMinusl is 0.
Decoding pass Used
Encoding pass Used
Inter-layer upsampling pass | Used
15:10 | Reserved
| Format: | MBZ |
9:0 [RefLayerPicWidthinMBMinusl
| Format: |U10 |
It is set to the value of (RefLayerPicWidthInSampleL >= 4) -1. The max
allowed value for RefLayerPicWinMBsMinus1 is only 255. The min value for
RefLayerPicHinMBsMinusl is 0.
Decoding pass Used
Encoding pass Used
Inter-layer upsampling pass | Used
38 31:7 | Reserved
| Format: | MBZ |
6 |ProfileFlag
| Format: | Ul |

569




MEX_SVC_IMG_STATE

Decoding pass Not Used

Encoding pass Not Used

Inter-layer upsampling pass [ Not Used

54

Value Name
0 Scalable Baseline Profile
1 Scalable High Profile
RefLayerChromaFormatldc
Decoding pass Used
Encoding pass Used

Inter-layer upsampling pass | Used

It specifies the sampling of chroma component (Cb, Cr) at the reference layer
as listed in the table below; It is set to the value of ChromaFormatldc of
reference layer.

Value Name Description

00b | Monochrome Picture |Not Supported

0lb |4:2:.0 Picture at Reference Layer
10b [4:2:2 Picture (not supported) at Reference Layer
11b (444 Picture (not supported) at Reference Layer
3 |Reserved
Format: MBZ
2 |RefLayerMbaffFrameFlag
It is set to the value of MbaffFrameFlag of reference layer.
Value Name Description
0 Not in MBAFF mode at reference layer
In MBAFF mode at reference layer
Programming Notes
It is not supported at this time and must be 0.
1 |[ReflLayerFieldPicFlag

It is set to the value of MbaffFrameFlag of reference layer.

Value Name Description

0 Reference layer is a coded frame

Reference layer is a coded field

Programming Notes

It is not supported at this time and must be 0.

570




Q"_til

MFEX_SVC_IMG_STATE

RefLayerFrameMBOnlyFlag

It is set to the value of FrameMBOnlyFlag of reference layer.

Decoding pass

Not Used

Encoding pass

Not Used

Inter-layer upsampling pass

Not Used

Value | Name

Description

0 MBAFF mode or field is allowed at reference layer

1 only frame MBs can occur at reference layer

Programming Notes

It must be 1.

39

31:22

Reserved

Format:

MBZ

21

YSpatialRatioEq2Flag

For SVC Scalable Baseline Profile, both x and y direction scaling ratios must
be programmed to the same value.

Decoding pass

Not Used

Encoding pass

Not Used

Inter-layer upsampling pass

Used

20

YSpatialRatioEqlp5Flag

DevHSW:GT2:B)

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

For SVC Scalable Baseline Profile, both x and y direction scaling ratios must
be programmed to the same value.

Decoding pass

Not Used

Encoding pass

Not Used

Inter-layer upsampling pass

Used

19

YSpatialRatioEqlFlag

DevHSW:GT2:B)

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,

For SVC Scalable Baseline Profile, both x and y direction scaling ratios must
be programmed to the same value.

Decoding pass

Not Used

Encoding pass

Not Used

571




MEX_SVC_IMG_STATE

|Inter—|ayer upsampling pass | Used |

Value

Name

Description

0

Spatial resolution change ratio
(ScaledRefLayerPicHeightinSampleL /
RefLayerPicHeightInSamplel) in vertical direction is not 1

1

Spatial resolution change ratio in vertical direction is 1

18

XSpatialRatioEq2Flag

Project:

DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

Format: | U1

For SVC Scalable Baseline Profile, both x and y direction scaling ratios must
be programmed to the same value.

Decoding pass Not Used

Encoding pass Not Used

Inter-layer upsampling pass | Used

Value

Name

Description

0

Spatial resolution change ratio
(ScaledRefLayerPicWidthInSampleL /
RefLayerPicWidthInSamplel) in horizon direction is not 2

1

Spatial resolution change ratio in horizon direction is 2

17

XSpatialRatioEqlp5Flag

Project

: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

For SVC Scalable Baseline Profile, both x and y direction scaling ratios must
be programmed to the same value.

Decoding pass Not Used

Encoding pass Not Used

Inter-layer upsampling pass | Used

Value | Name Description

0 Spatial resolution change ratio
(ScaledRefLayerPicWidthInSampleL /
RefLayerPicWidthInSamplel) in horizon direction is not 1.5

1 Spatial resolution change ratio in horizon direction is 1.5

572




Q"_til

MEX_SVC_IMG_STATE

16

XSpatialRatioEq1Flag

Project: | DevHSW, EXCLUDE(DevHSW:GT3:A, DevHSW:GT3:B,
DevHSW:GT2:B)

For SVC Scalable Baseline Profile, both x and y direction scaling ratios must
be programmed to the same value.

Decoding pass Not Used

Encoding pass Not Used

Inter-layer upsampling pass | Used

Value | Name Description

0 Spatial resolution change ratio
(ScaledRefLayerPicWidthInSampleL /
RefLayerPicWidthInSamplel) in horizon direction is not 1

1 Spatial resolution change ratio in horizon direction is 1
15:14 | Reserved

Format: MBZ
13:11 | DisableIL_DLKFilterldc

This field specifies whether the operation of the deblocking filter for inter-
layer intra prediction is disabled across some block edges of the reference
layer representation, specifies for which edges the filtering is disabled, and
specifies the order of deblocking filter operations for inter-layer intra
prediction.

The value of disable_inter_layer_deblocking_filter_idc shall be in the range of
0 to 6, inclusive. The values 0 to 6 of DisableIL_DLKFilterldc specify the
deblocking filter operations for the deblocking of the intra macroblocks of
the reference layer representation specified by ref_layer_dq_id before
resampling as defined in Valid Values below.

Value | Name Description

0 Specifies that all luma and chroma block edges of the slice
are filtered

1h Specifies that deblocking is disabled for all block edges of
the slice

2h Specifies that all luma and chroma block edges of the slice

are filtered, but with no filtering across slice boundaries.

3h specifies a two stage deblocking filter process for the slice :
All luma and chroma block edges of the slice are filtered,
but with no filtering across slice boundaries (as if
disable_deblocking_filter_idc were equal to 2), Then luma
and chroma block edges that coincide with slice boundaries
are filtered in the second pass.

573




MEX_SVC_IMG_STATE

4h specifies that all luma block edges of the slice are filtered,
but the deblocking of the chroma block edges is entirely
disabled. Similar to case 0, with chroma deblocking disabled

5h specifies that only all luma block edges of the slice are
filtered, but with no filtering across slice boundaries.), and
that deblocking for chroma block edges of the slice is
entirely disabled. Similar to case 2, with chroma deblocking
disabled

6h specifies a two stage deblocking filter process for only luma
block edges of the slice, and that deblocking for chroma
block edges of the slice is entirely disabled. Similar to case
3, with chroma deblocking disabled.

Programming Notes

When DisablelL_DLKFilterldc is present, quality_id is equal to 0, and
SpatialResolutionChangeFlag is equal to 0,
disable_inter_layer_deblocking_filter_idc shall be equal to 1.
DisablelL_DLKFilterIdc Should be the same across the slices.

Interlayer reconstructed pixels prior to the interlayer deblocking are the
same pixels prior to regular reconstructed pixel deblocking.

10 |Reserved
Format: MBZ
9 |TargetLayerFlag

This field speficifies whether the current layer is the target layerto be fully
reconstructed (including inter MB, which require motion compensation
operation) or not. This field can be set when the current layer is the final
target layer or base quality layer (with Dependencyld = DependencyldMax
and (when StoreRefBasePicFlag is set). TargetLayerFlag is set for both Target
Layer or QBL pixel reconstruction. HW does not have notion of QBL. QBL is
always processed in 2 passes - one pass as with TargetLayerFlag set to 1, and
the second pass as a regular spatial upsampled layer (to streamout data for
the next layer).

Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass [ Not Used

Value | Name Description

0 The current layer is not target layer or QBL and does not
need to be reconstructed

1 The current layer is set to target layer or QBL and need to
be reconstructed.

574




Q"_til

MEX_SVC_IMG_STATE

Programming Notes

For encoder, all the layers must be 1.
For decoder, only QBL and target layer is 1, other layers must be 0.

StoreRefBasePicFlag

This field specifies whether the current coded picture's base quality layer
need to be reconstructed for subsequent inter-frame reference. This field is
set equal to store_ref_base_pic_flag of the NALs of the layer to be decoded
or of the layer to be encoded. Quality layers after base quality layer may
need this flag for error detection (and subsequent handling): When
store_ref_base_pic_flag is equal to 1 and quality_id is greater than 0,
base_mode_flag shall be equal to 1.

Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass | Not Used

ConstrainedIntraResamplingFlag

This field specifies whether slice boundaries in the layer picture that is used
for inter-layer prediction are treated similar to layer picture boundaries for
the intra resampling process.

Decoding pass Not Used

Encoding pass Not Used

Inter-layer upsampling pass | Used

Value | Name Description

0 slice boundaries are not treated as layer picture boundaries
and pixels from different slices may be used for intra
resampling process.

1 slice boundaries are treated similar to layer picture
boundaries for intra resampling process. When
ConstrainedIntraResamplingFlag is equal to 1,
DisablelL_DLKFilterldc shall be equal to 1, 2, or 5.

Programming Notes

This field is set equal to constrained_intra_resampling_flag of the layer to
which it is upsampled.

Note: When ConstrainedIntraResamplingFlag is equal to 1, a macroblock
cannot be coded using the inter-layer prediction data (intra pixels) from
more than one slice in the layer picture that is used for inter-layer
prediction.

MaxTcoeffLevelPredFlag
This field is set equal to the maximum value of tcoeff_level_prediction_flag

575




MEX_SVC_IMG_STATE

for the slices of the current layer representation.

Decoding pass

Used

Encoding pass

Used

Inter-layer upsampling pass | Not Used

Value | Name Description

0 No slices at current layer have tcoeff_level_prediction_flag =
0

1 At least one slice at current layer has

tcoeff_level_predicton_flag = 1

MinNolnterlayerPredictionFlag
This field is set equal to the minimum value of NolnterlayerPredFlag for the
slices of the current layer representation.

Decoding pass

Used

Encoding pass

Used

Inter-layer upsampling pass | Used

Value

Name Description

0

At least one slice at current layer has | At least one slice may use
no_inter_layer_prediction_flag = 0 reference layer (specified by

RefLayerDQId) data for
inter-layer prediction.

All slices at current layer have All slices do not use inter-
no_inter_layer_prediction_flag=1 layer prediction.

RestrictedResChangeFlag

Decoding pass

Not Used

Encoding pass

Not Used

Inter-layer upsampling pass | Used

Value

Name

Description

1

Set to 1 when SpatialResChangeFlag is equal to 0 or all of
the following conditions are true:

Condition 1: ScaledRefLayerPicWidthInSamplesL is equal to
RefLayerPicWidthInSamplesL or (2 *
RefLayerPicWidthInSamplesL),

Condition 2: ScaledRefLayerPicHeightInSamplesL is equal to
RefLayerPicHeightInSamplesL or (2 *
RefLayerPicHeightInSamplesL),

Condition 3: (ScaledRefLayerLeftOffset % 16 ) is equal to 0,
Condition 4: ( ScaledRefLayerTopOffset % (16 * (1 +

576




Q"_til

MFEX_SVC_IMG_STATE

FieldPicFlag ) ) ) is equal to 0,

Condition 5: MbaffFrameFlag is equal to 0

Condition 6: RefLayerMbaffFrameFlag is equal to 0,
Condition 7: FieldPicFlag is equal to RefLayerFieldPicFlag.

does not change
across access
units

0 Set to 0 if SpatialResChangeFlag is equal to 1 and any of the
above conditions (conditions 1~7) is not true.

CroppingChangeFlag

Decoding pass Not Used

Encoding pass Not Used

Inter-layer upsampling pass | Used

Value Name Description

0 Cropping window | Set to 1 if MinNolnterLayerPredFlag is equal to

0, quality_id is equal to 0, and
extended_spatial_scalability_idc is equal to 2.

Cropping window

may change
across access
units.

Set to 0 if MinNolInterLayerPredFlag is equal to
1, quality_id is greater than O, or
extended_spatial_scalability_idc is less than 2.

SpatialResChangeFlagNextLayer

Decoding pass

Used

Encoding pass

Used

Inter-layer upsampling pass

Not Used

Value

Name

Description

0

Next layer does not have
spatial resolution change

SpatialResChangeFlag at next layer that
refers to current layer is 0.

does not have

spatial

1 next layer has spatial SpatialResChangeFlag at next layer that
resolution change refers to current layer is 1.

SpatialResChangeFlag

Decoding pass Used

Encoding pass Used

Inter-layer upsampling pass | Not Used

Value Name Description

0 Current layer | This field is set to O if MinNolnterLayerPredFlag is

equal to 1, quality_id is greater than 0, or all of the
following conditions are true.

577




MEX_SVC_IMG_STATE

resolution
change.

Condition 1: CroppingChangeFlag is equal to 0,
Condition 2: ScaledRefLayerPicWidthInSamplesL is
equal to RefLayerPicWidthInSampl