

© 2013 Intel Corporation

Intel Open Source Graphics Programmer’s Reference
Manual (PRM) for the 2013 Intel® Core™ Processor
Family, including Intel HD Graphics, Intel Iris™
Graphics and Intel Iris Pro Graphics

Volume 6: Command Stream Programming (Haswell)

1/21/2014

 1

Copyright
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.

2

Command Stream Programming

Table of Contents

Graphics Command Formats ... 7

Command Header .. 8

Memory Interface Commands .. 11

2D Commands ... 13

3D Commands ... 15

MFX Commands ... 19

Blitter Engine Command Interface ... 22

BCS_RINGBUF—Ring Buffer Registers ... 22

Blitter Engine Command Interface .. 23

BCS_RINGBUF—Ring Buffer Registers .. 23

BLT Watchdog Timer Registers... 24

BLT Interrupt Control Registers .. 25

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) .. 27

BLT Logical Context Support ... 28

Mode Registers ... 29

MI Commands for Blitter Engine.. 30

MI Commands for Render Engine .. 31

Command Access to Privileged Memory ... 32

Privileged Commands .. 33

User Mode Privileged Commands ... 34

User Mode Privileged Commands ... 35

RINGBUF — Ring Buffer Registers .. 37

Render Watchdog Timer Registers ... 38

Render Interrupt Control Registers ... 39

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) .. 40

Logical Context Support .. 41

Context Save Registers .. 42

Mode Registers ... 43

MI Commands for Render Engine ... 44

 3

Command Access to Privileged Memory ... 45

User Mode Privileged Commands .. 46

Video Command Streamer (VCS) ... 48

Video Command Streamer (VCS)... 49

VCS_RINGBUF—Ring Buffer Registers ... 50

Watchdog Timer Registers ... 51

Interrupt Control Registers ... 52

VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR) .. 54

Logical Context Support .. 55

Mode Registers ... 56

Registers in Media Engine .. 57

Memory Interface Commands for Video Codec Engine ... 58

VECS_RINGBUF — Ring Buffer Registers .. 59

VECS_RINGBUF — Ring Buffer Registers .. 60

Watchdog Timer Registers ... 61

Interrupt Control Registers ... 62

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) .. 63

Logical Context Support .. 64

Mode Registers ... 65

MI Commands for Video Enhancement Engine ... 66

Resource Streamer .. 67

Introduction .. 68

Common Abbreviations .. 69

Theory of Operation .. 70

Resource Streamer Functions ... 71

Detailed Resource Streamer Operations .. 73

Introduction ... 73

Resource Streamer Operation Descriptions ... 74

Batch Processing ... 74

Context Save ... 75

HW Binding Table Image .. 75

Gather Push Constants Image ... 76

Push Constant Image .. 76

4

HW Binding Table Generation ... 78

Gather Push Constants ... 79

Constant Buffer Generation (not DX9) ... 80

Commands Actions in the RS ... 81

Resource Streamer Programming Guidelines ... 88

RS Interactions with the 3D Command Streamer ... 89

RS Interactions with Memory Requests .. 90

Fundamental Programming and Operational Assumptions .. 91

Non-Operational Activities ... 92

 5

6

Graphics Command Formats
This section describes the general format of the graphics device commands.

 Graphics commands are defined with various formats. The first DWord of all commands is called the
header DWord. The header contains the only field common to all commands, the client field that
determines the device unit that processes the command data. The Command Parser examines the client
field of each command to condition the further processing of the command and route the command
data accordingly.

Graphics commands vary in length, though are always multiples of DWords. The length of a command is either:

• Implied by the client/opcode
• Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly

knows how much data to copy/process)
• Variable, with a field in the header indicating the total length of the command

 Note that command sequences require QWord alignment and padding to QWord length to be placed in
Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a
diagram of the formats of the header DWords for all commands. Following that is a list of command
mnemonics by client type.

 7

Command Header

 Render Command Header Format

 Bits

TYPE 31:29 28:24 23 22 21:0

Memory
Interface
(MI)

000 Opcode

00h – NOP

0Xh – Single DWord
Commands

1Xh – Two+ DWord
Commands

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

Reserved 001,
010

 Opcode – 11111 23:19

Sub Opcode 00h –
01h

18:16

Re-served

15:0

DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data DWord Count

Reserved 011 00 Opcode – 010 – 111

Single Dword
Command

011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data DWord Count

PIPE_Control 011 11 Opcode – 010 Data DWord Count

3DPrimitive 011 11 Opcode – 011 Data DWord Count

Reserved 011 11 Opcode – 100 – 111

Reserved 100 XX

Reserved 101 XX

8

 Bits

TYPE 31:29 28:24 23 22 21:0

Reserved 110 XX

Fulsim2 111 XX

Notes:

1. The qualifier "NP" indicates that the state variable is non-pipelined and the render pipe is flushed
before such a state variable is updated. The other state variables are pipelined (default).

2. [31:29] == '111' is reserved for fulsim command decodings. It is invalid for HW to parse this
command.

 Video Command Header Format

 Bits

TYPE 31:29 28:24 23 22 21:0

Memory
Interface
(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Reserved

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

 9

 Bits

TYPE 31:29 28:24 23 22 21:0

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for VC1 Common) 011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

10

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by the
2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off,
etc.)

• Hardware synchronization (e.g., flush, wait-for-event)
• Software synchronization (e.g., Store DWORD, report head)
• Graphics buffer definition (e.g., Display buffer, Overlay buffer)
• Miscellaneous functions

All the following commands are defined in Memory Interface Commands.

Memory Interface Commands for RCP

Opcode (28:23) Command

Pipe

Render Video Blitter Video Enhancements

1-DWord

00h MI_NOOP All All All All

01h MI_SET_PREDICATE

02h MI_USER_INTERRUPT All All All All

03h MI_WAIT_FOR_EVENT All All All All

05h MI_ARB_CHECK All All All All

06h MI_RS_CONTROL

07h MI_REPORT_HEAD All All All All

08h MI_ARB_ON_OFF

09h MI_URB_ATOMIC_ALLOC

0Ah MI_BATCH_BUFFER_END All All All All

0Bh MI_SUSPEND_FLUSH All

0Ch MI_PREDICATE

0Dh MI_TOPOLOGY_FILTER

0Eh MI_SET_APPID [DevIVB+]

 11

Opcode (28:23) Command

Pipe

Render Video Blitter Video Enhancements

1-DWord

0Fh MI_RS_CONTEXT [DevHSW+]

2+ DWord

10h Reserved

14h MI_DISPLAY_FLIP [HSW] All

15h Reserved

17h Reserved

18h MI_SET_CONTEXT All

1Ah MI_MATH

1Eh–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All All All All

21h MI_STORE_DATA_INDEX All All All All

22h MI_LOAD_REGISTER_IMM All All All All

24h MI_STORE_REGISTER_MEM All All All All

27h MI_CLFLUSH

28h MI_REPORT_PERF_COUNT

2Bh MI_RS_STORE_DATA_IMM

2Ch MI_LOAD_URB_MEM

2Dh MI_STORE_URM_MEM

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START All All All All

32h–35h Reserved

37h–3Fh Reserved

12

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT engine
state without actually performing a BLT. Most commands are of fixed length, though there are a few
commands that include a variable amount of "inline" data at the end of the command.

All the following commands are defined in Blitter Instructions.

2D Command Map

Opcode
(28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

41h-42h Reserved

43h SRC_COPY_BLT

44h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

 13

Opcode
(28:22) Command

5Ah-70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

14

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter
for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D
Pipeline.

3D Command Map

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 03h Reserved

0h 04h 3DSTATE_CLEAR_PARAMS [HSW] 3D Pipeline

0h 05h 3DSTATE_DEPTH_BUFFER [HSW] 3D Pipeline

0h 06h 3DSTATE_STENCIL_BUFFER [HSW] 3D Pipeline

0h 07h 3DSTATE_HIER_DEPTH_BUFFER [HSW] 3D Pipeline

0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

0h 0Ch Reserved

0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS [HSW] 3D Pipeline

0h 0Eh 3DSTATE_CC_STATE_POINTERS [HSW] 3D Pipeline

0h 10h 3DSTATE_VS [HSW] Vertex Shader

0h 11h 3DSTATE_GS [HSW] Geometry Shader

0h 12h 3DSTATE_CLIP [HSW] Clipper

0h 13h 3DSTATE_SF [HSW] Strips & Fans

0h 14h 3DSTATE_WM [HSW] Windower

0h 15h 3DSTATE_CONSTANT_VS [HSW] Vertex Shader

0h 16h 3DSTATE_CONSTANT_GS [HSW] Geometry Shader

0h 17h 3DSTATE_CONSTANT_PS [HSW] Windower

0h 18h 3DSTATE_SAMPLE_MASK [HSW] Windower

0h 19h 3DSTATE_CONSTANT_HS [HSW] Hull Shader

0h 1Ah 3DSTATE_CONSTANT_DS [HSW] Domain Shader

0h 1Bh 3DSTATE_HS [HSW] Hull Shader

0h 1Ch 3DSTATE_TE [HSW] Tesselator

0h 1Dh 3DSTATE_DS [HSW] Domain Shader

 15

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 1Eh 3DSTATE_STREAMOUT [HSW] HW Streamout

0h 1Fh 3DSTATE_SBE [HSW] Setup

0h 20h 3DSTATE_PS [HSW] Pixel Shader

0h 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP [HSW] Strips & Fans

0h 22h Reserved

0h 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC [HSW] Windower

0h 24h 3DSTATE_BLEND_STATE_POINTERS [HSW] Pixel Shader

0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS [HSW] Pixel Shader

0h 26h 3DSTATE_BINDING_TABLE_POINTERS_VS [HSW] Vertex Shader

0h 27h 3DSTATE_BINDING_TABLE_POINTERS_HS [HSW] Hull Shader

0h 28h 3DSTATE_BINDING_TABLE_POINTERS_DS [HSW] Domain Shader

0h 29h 3DSTATE_BINDING_TABLE_POINTERS_GS [HSW] Geometry Shader

0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS [HSW] Pixel Shader

0h 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS [HSW] Vertex Shader

0h 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS [HSW] Hull Shader

0h 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS [HSW] Domain Shader

0h 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS [HSW] Geometry Shader

0h 2Fh Reserved

0h 30h 3DSTATE_URB_VS [HSW] Vertex Shader

0h 31h 3DSTATE_URB_HS [HSW] Hull Shader

0h 32h 3DSTATE_URB_DS [HSW] Domain Shader

0h 33h 3DSTATE_URB_GS [HSW] Geometry Shader

0h 34h 3DSTATE_GATHER_CONSTANT_VS [HSW] Vertex Shader

0h 35h 3DSTATE_GATHER_CONSTANT_GS [HSW] Geometry Shader

0h 36h 3DSTATE_GATHER_CONSTANT_HS [HSW] Hull Shader

0h 37h 3DSTATE_GATHER_CONSTANT_DS [HSW] Domain Shader

0h 38h 3DSTATE_GATHER_CONSTANT_PS [HSW] Pixel Shader

0h 39h 3DSTATE_DX9_CONSTANTF_VS [HSW] Vertex Shader

0h 3Ah 3DSTATE_DX9_CONSTANTF_PS [HSW] Pixel Shader

0h 3Bh 3DSTATE_DX9_CONSTANTI_VS [HSW] Vertex Shader

0h 3Ch 3DSTATE_DX9_CONSTANTI_PS [HSW] Pixel Shader

0h 3Dh 3DSTATE_DX9_CONSTANTB_VS [HSW] Vertex Shader

0h 3Eh 3DSTATE_DX9_CONSTANTB_PS [HSW] Pixel Shader

0h 3Fh 3DSTATE_DX9_LOCAL_VALID_VS [HSW] Vertex Shader

0h 40h 3DSTATE_DX9_LOCAL_VALID_PS [HSW] Pixel Shader

16

Opcode

Bits 26:24
Sub Opcode
Bits 23:16 Command Definition Chapter

0h 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS [HSW] Vertex Shader

0h 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS [HSW] Pixel Shader

0h 43h 3DSTATE_BINDING_TABLE_EDIT_VS [HSW] Vertex Shader

0h 44h 3DSTATE_BINDING_TABLE_EDIT_GS [HSW] Geometry Shader

0h 45h 3DSTATE_BINDING_TABLE_EDIT_HS [HSW] Hull Shader

0h 46h 3DSTATE_BINDING_TABLE_EDIT_DS [HSW] Domain Shader

0h 47h 3DSTATE_BINDING_TABLE_EDIT_PS [HSW] Pixel Shader

0h 48h-4Bh Reserved [HSW]

0h 4Ch 3DSTATE_WM_CHROMA_KEY Windower

0h 4Dh 3DSTATE_PS_BLEND Windower

0h 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower

0h 4Fh 3DSTATE_PS_EXTRA Windower

0h 50h 3DSTATE_RASTER Strips & Fans

0h 51h 3DSTATE_SBE_SWIZ Strips & Fans

0h 52h 3DSTATE_WM_HZ_OP Windower

0h 53h 3DSTATE_INT (internally generated state) 3D Pipeline

0h 56h-FFh Reserved

1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

1h 03h Reserved

1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

1h 05h Reserved [HSW]

1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

1h 08h 3DSTATE_LINE_STIPPLE Windower

1h 0Ah 3DSTATE_AA_LINE_PARAMS [HSW] Windower

1h 0Bh 3DSTATE_GS_SVB_INDEX [HSW] Geometry Shader

1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 [HSW] Sampling Engine

1h 0Dh 3DSTATE_MULTISAMPLE [HSW] Windower

1h 0Eh 3DSTATE_STENCIL_BUFFER [HSW] Windower

1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER [HSW] Windower

1h 10h 3DSTATE_CLEAR_PARAMS [HSW] Windower

1h 11h 3DSTATE_MONOFILTER_SIZE [HSW] Sampling Engine

1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS [HSW] Vertex Shader

1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS [HSW] Hull Shader

 17

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS [HSW] Domain Shader

1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS [HSW] Geometry Shader

1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS [HSW] Pixel Shader

1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

1h 18h 3DSTATE_SO_BUFFER HW Streamout

1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC [HSW] Resource Streamer

1h 1Ah 3DSTATE_GATHER_POOL_ALLOC [HSW] Resource Streamer

1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC [HSW] Resource Streamer

1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower

1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline

1h 1Eh-FFh Reserved

2h 00h PIPE_CONTROL 3D Pipeline

2h 01h-FFh Reserved

3h 00h 3DPRIMITIVE Vertex Fetch

3h 01h-FFh Reserved

4h-7h 00h-FFh Reserved

Pipeline Type (28:27) Opcode Sub Opcode Command Definition Chapter

Common (pipelined) Bits 26:24 Bits 23:16

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

Common (non-pipelined) Bits 26:24 Bits 23:16

0h 1h 00h Reserved n/a

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 03h SWTESS BASE ADDRESS 3D Pipeline

0h 1h 04h GPGPU CSR BASE ADDRESS Graphics Processing Engine

0h 1h 04h–FFh Reserved n/a

Reserved Bits 26:24 Bits 23:16

0h 2h–7h XX Reserved n/a

18

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format codec
engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a description
of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of
indirect state model is provided here (as a software usage guideline).

Pipeline Type
(28:27)

Opcod
e

(26:24)

Subop
A

(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptabl
e?

MFX Common
(State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE N/A

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE N/A

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_ST
ATE

MFX IMAGE N/A

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_ST
ATE

MFX IMAGE N/A

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE N/A

2h 0h 0h 7-8h Reserved N/A N/A N/A

MFX Common
(Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX N/A Yes

2h 0h 0h 4-1Fh Reserved N/A N/A N/A

AVC Common
(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE N/A

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE N/A

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STAT
E

MFX SLICE N/A

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE N/A

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE N/A

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STA
TE

MFX SLICE N/A

2h 1h 0h 6-1Fh Reserved N/A N/A N/A

AVC Dec

2h 1h 1h 0-7h Reserved N/A N/A N/A

 19

Pipeline Type
(28:27)

Opcod
e

(26:24)

Subop
A

(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptabl
e?

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX N/A No

2h 1h 1h 9-1Fh Reserved N/A N/A N/A

AVC Enc

2h 1h 2h 0-1h Reserved N/A N/A N/A

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE N/A

2h 1h 2h 3-7h Reserved N/A N/A N/A

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJECT MFX N/A N/A

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX N/A Yes

2h 1h 2h A-1Fh Reserved N/A N/A N/A

2h 1h 2h 0-1Fh Reserved N/A N/A N/A

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE N/A

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE N/A

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE N/A

2h 2h 0h 2-1Fh Reserved N/A N/A N/A

VC1 Dec

2h 2h 1h 0-7h Reserved N/A N/A N/A

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX N/A Yes

2h 2h 1h 9-1Fh Reserved N/A N/A N/A

VC1 Enc

2h 2h 2h 0-1Fh Reserved N/A N/A N/A

MPEG2Comm
on

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE N/A

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE N/A

2h 3h 0h 2-1Fh Reserved N/A N/A N/A

MPEG2 Dec

2h 3h 1h 1-7h Reserved N/A N/A N/A

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX N/A Yes

2h 3h 1h 9-1Fh Reserved N/A N/A N/A

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved N/A N/A N/A

The Rest

2h 4-5h, x x Reserved N/A N/A N/A

20

Pipeline Type
(28:27)

Opcod
e

(26:24)

Subop
A

(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptabl
e?

7h

 21

Blitter Engine Command Interface

BCS_RINGBUF—Ring Buffer Registers

Following is a list of ring buffer registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

22

Blitter Engine Command Interface

BCS_RINGBUF—Ring Buffer Registers

Following is a list of ring buffer registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

 23

BLT Watchdog Timer Registers

These are the Watchdog Timer registers:

BCS_CTR_THRSH - BCS Watchdog Counter Threshold

PR_CTR_THRSH - Watchdog Counter Threshold

PR_CTR_CTL - Watchdog Counter Control

24

BLT Interrupt Control Registers
The Interrupt Control Registers described below all share the same bit definition. The bit definition is as
follows:

Bit Definition for Interrupt Control Registers

Bit Description

31:30 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

29 Page Fault:

[Pre-DevHSW,DevHSW:A]: This bit is set whenever there is a pending page or directory fault in blitter
command streamer.

[DevHSW,EXCLUDE(DevHSW:A)]: This bit is set whenever there is a pending GGTT/PPGTT (page or directory)
fault in Blitter command streamer when Fault Repair Mode is disabled.

On Fault Repair mode Enabled, this bit will never get set and will get collapsed with the Render command
streamer page fault error.

Please refer to vol1c "page fault support" section for more details.

28:27 Reserved. MBZ

26 MI_FLUSH_DW Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline document may
optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of the interrupt.

25 Blitter Command Parser Master Error: When this status bit is set, it indicates that the hardware has
detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to the
appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR. Further
information on the source of the error comes from the "Error Status Register" which along with the "Error
Mask Register" determine which error conditions will cause the error status bit to be set and the interrupt to
occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Blitter Instruction Parser encounters an error while parsing an instruction.

24 Sync Status: This bit is set when the Instruction Parser completes a flush with the sync enable bit active in
the INSTPM register. The event will happen after all the blitter engines are flushed. The HW Status DWord
write resulting from this event will cause the CPU's view of graphics memory to be coherent as well (flush
and invalidate the blitter cache). It is the driver's responsibility to clear this bit before the next sync flush with
HWSP write enabled.

23 Reserved. MBZ

22 Blitter Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT instruction is
executed on the Render Command Parser. Note that instruction execution is not halted and proceeds
normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a particular meaning
to a user interrupt.

21:0 Reserved. MBZ

 25

BCS_HWSTAM - BCS Hardware Status Mask Register

BCS_IMR - BCS Interrupt Mask Register

26

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,
EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.
Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the
appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1' (except for the
unrecoverable bits described below).

The following structure describes the Hardware-Detected Error bits:

BCS Hardware-Detected Error Bit Definitions

The following are the the EIR, EMR and ESR registers:

BCS_EIR - BCS Error Identity Register

BCS_EMR - BCS Error Mask Register

BCS_ESR - BCS Error Status Register

 27

BLT Logical Context Support

Following are the Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

28

Mode Registers

The following are Mode Registers:

BCS_MI_MODE - BCS Mode Register for Software Interface

BLT_MODE - Blitter Mode Register

BCS_INSTPM - BCS Instruction Parser Mode Register

The BCS_INSTPM register is used to control the operation of the BCS Instruction Parser. Certain
classes of instructions can be disabled (ignored) – often useful for detecting performance
bottlenecks. Also, "Synchronizing Flush" operations can be initiated – useful for ensuring the
completion (vs. only parsing) of rendering instructions.

Programming Notes:

• All Reserved bits are implemented.

BCS_EXCC - BCS Execute Condition Code Register

BRSYNC - Blitter/Render Semaphore Sync Register

BVSYNC - Blitter/Video Semaphore Sync Register

BVESYNC - Blitter/Video Enhancement Semaphore Sync Register

Programming Note: If this register is written, a workload must subsequently be dispatched to the
render command streamer.

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

 29

MI Commands for Blitter Engine

This section describes MI Commands for the blitter graphics processing engine. The term "for Blitter
Engine" in the title has been added to differentiate this chapter from a similar one describing the MI
commands for the Media Decode Engine and the Rendering Engine.

The commands detailed in this section are used across products within the Gen4 family. However, slight
changes may be present in some commands (i.e., for features added or removed), or some commands
may be removed entirely. Refer to the Configuration chapter for product specific summary.

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

30

MI Commands for Render Engine
This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term "for
Rendering Engine" in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Gen4+ family. However,
slight changes may be present in some commands (i.e., for features added or removed), or some
commands may be removed entirely. Refer to the Preface chapter for product specific summary.

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

 31

Command Access to Privileged Memory

Memory space mapped through the global GTT is considered "privileged" memory. Commands that have
the capability of accessing both privileged and unprivileged (PPGTT space) memory will contain a bit
that, if set, will attempt a "privileged" access through the GGTT rather than an unprivileged access
through the context-local PPGTT.

"User mode" command buffers should not be able to access privileged memory under any
circumstances. These command buffers will be issued by the kernel mode driver with the batch buffer's
Buffer Security Indicator set to "non-secure". Commands in such a batch buffer are not allowed to
access privileged memory. The commands in these buffers are supplied by the user mode driver and will
not be validated by the kernel mode driver. For a batch buffer marked as non-secure if Per-Process
Virtual Address Space is set, the command buffer fetches are generated using the PPGTT space.

"Kernel mode" command buffers are allowed to access privileged memory. The batch buffers Buffer
Security indicator is set to "secure" in this case. In some of the commands that access memory in a
secure batch buffer, a bit is provided in the command to steer the access to Per process or Global virtual
space. Secure batch buffers are executed from the global GTT.

Commands in ring buffers and commands in batch buffers that are marked as secure (by the kernel
mode driver) are allowed to access both privileged and unprivileged memory and may choose on a
command-by-command basis.

GGTT and PPGTT Usage by Command

Command Address Allowed Access

MI_BATCH_BUFFER_START* Command Address Selectable

MI_DISPLAY_FLIP Display Buffer Base GGTT Only

MI_STORE_DATA_IMM* Storage Address Selectable

MI_STORE_DATA_INDEX** Storage Offset Selectable

MI_STORE_REGISTER_MEM* Storage Address Selectable

MI_SEMAPHORE_MBOX Semaphore Address Selectable

PIPE_CONTROL STDW Address Selectable

*Command has a GGTT/PPGTT selector added to it vs. previous Gen family products.

**Added bit allows offset to apply to global HW Status Page or PP HW Status Page found in context
image.

32

Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch
buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, an error
is flagged and the command is dropped. For commands that generates a write, hardware completes the
transaction but the byte enables are turned off. Batch buffers from the User mode driver are passed
directly to the kernel mode driver which does not validate them but issues them with the Security
Indicator set to 'non-secure' to protect the system from an attack using these privileged commands.

Privileged Commands

Privileged Command Function in Non-Privileged Batch Buffers

MI_LOAD_REGISTER_IMM Byte enables are turned off.

MI_UPDATE_GTT Byte enabled are turned off.

MI_STORE_DATA_IMM Command is translated using the Per-process GTT if Per-Process Virtual Address
Space is set.

MI_STORE_DATA_INDEX Command is translated using the Per process hardware status page if Per-Process
Virtual Address Space Enable is set.

MI_STORE_REGISTER_MEM Command is translated and completed with byte enables turned off.

MI_DISPLAY_FLIP Command is ignored by the hardware.

Parsing one of the commands in the table above from a non-secure batch buffer flags an error and
converts the command to a NOOP.

 33

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch
buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, an error
is flagged and the command is dropped. For commands that generates a write, the hardware will
complete the transaction but the byte enables are turned off. Batch buffers from the User mode driver
are passed directly to the kernel mode driver which does not validate them but issues them with the
Security Indicator set to 'non-secure' to protect the system from an attack using these privileged
commands.

User Mode Privileged Commands

User Mode Privileged Command Function in non-privileged batch buffers

MI_LOAD_REGISTER_IMM Command is converted to NOOP

MI_UPDATE_GTT Command is converted to NOOP

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_REGISTER_MEM Command is converted to NOOP

MI_DISPLAY_FLIP Command is converted to NOOP

MI_ARB_ON_OFF Command is converted to NOOP

MI_ARB_CHECK Command is converted to NOOP

MI_WAIT_FOR_EVENT Command is converted to NOOP

34

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch
buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, a
Command Privilege Violation Error is flagged and the command is dropped. Command Privilege
Violation Error is logged in Error identity register of command streamer which gets propagated as
"Command Parser Master Error" interrupt to SW.

Batch buffers from the User mode driver are passed directly to the kernel mode driver which does not
validate them but issues them with the Security Indicator set to 'non-secure' to protect the system from
an attack using these privileged commands.

User Mode Privileged Commands

User Mode Privileged
Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_REGISTER_MEM Register read is always performed. Memory update is dropped if Use Global GTT
is enabled.

MI_LOAD_REGISTER_MEM Command is converted to NOOP.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its "Privileged" level to its
parent batch buffer or lower.
Chained or Second level batch buffer can be "Privileged" only if the parent or the
initial batch buffer is "Privileged". This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP.

MI_REPORT_PERF_COUNT Command is converted to NOOP if Use Global GTT is enabled.

PIPE_CONTROL Still send flush down, Post-Sync Operation is NOOP if Use Global GTT is enabled.
LRI Post-Sync Operation is NOOP.

MI_SET_CONTEXT Command is converted to NOOP.

MI_LOAD_REGISTER_REG Register read is always performed. Memory update is dropped if Use Global GTT is
enabled.

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and
converts the command to a NOOP.

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

 35

MI_FLUSH

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_UPDATE_GTT

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_MBOX

36

RINGBUF — Ring Buffer Registers

See the "Device Programming Environment" chapter for detailed information on these registers.

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

 37

Render Watchdog Timer Registers

These two registers together implement a watchdog timer. Writing ones to the control register enables
the counter, and writing zeroes disables the counter. The 2nd register is programmed with a threshold
value which, when reached, signals an interrupt then resets the counter to 0. Program the threshold value
before enabling the counter or extremely frequent interrupts may result.

Note that the counter itself is not observable. It increments with the main render clock.

PR_CTR_CTL - Watchdog Counter Control

PR_CTR_THRSH - Watchdog Counter Threshold

PR_CTR - Render Watchdog Counter

38

Render Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit
definition is as follows:

Bit Definition for Interrupt Control Registers

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to
ISR changes:

Bit Interrupt Bit
ISR bit Reporting via Hardware Status Write

(when unmasked via HWSTAM)

9 Performance Monitoring Buffer Half-Full Interrupt Set when event occurs, cleared when event
cleared

8 Context Switch Interrupt: Set when a context switch has
just occurred.

Not supported to be unmasked

7 Page Fault: This bit is set whenever there is a pending
PPGTT (page or directory) fault.

Set when event occurs, cleared when event
cleared

[HSW]: Not supported to be unmasked

6 Media Decode Pipeline Counter Exceeded Notify
Interrupt: The counter threshold for the execution of the
media pipeline is exceeded. Driver needs to attempt hang
recovery.

Not supported to be unmasked

5 L3 Parity interrupt

4 PIPE_CONTROL packet - Notify Enable 0

3 Master Error Set when error occurs, cleared when error
cleared

2 Sync Status Toggled every SyncFlush Event

1

0 User Interrupt 0

HWSTAM - Hardware Status Mask Register

IMR - Interrupt Mask Register

 39

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,
EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.
Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the
appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1' (except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Hardware-Detected Error Bits

Hardware-Detected Error Bit Definitions

Following are the the EIR, EMR and ESR registers:

EIR - Error Identity Register

EMR - Error Mask Register

ESR - Error Status Register

40

Logical Context Support

Following are the Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

RCS_BB_STATE - RCS Batch Buffer State Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_STATE - Second Level Batch Buffer State Register

 41

Context Save Registers

Following are the Context Save Registers:

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Head Pointer Register for Upper DWord

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

42

Mode Registers

The following are the Mode Registers:

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

RVSYNC - Render/Video Semaphore Sync Register

RVESYNC - Render/Video Enhancement Semaphore Sync Register

RBSYNC - Render/Blitter Semaphore Sync Register

CTX_SEMA_REG - Context Semaphore Sync Registers

Programming Note:[HSW]: If this register is written, a workload must subsequently be dispatched to the
render command streamer.

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

 43

MI Commands for Render Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term "for
Rendering Engine" in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Gen4+ family. However,
slight changes may be present in some commands (i.e., for features added or removed), or some
commands may be removed entirely. Refer to the Preface chapter for product specific summary.

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

44

Command Access to Privileged Memory

Memory space mapped through the global GTT is considered "privileged" memory. Commands that have
the capability of accessing both privileged and unprivileged (PPGTT space) memory will contain a bit
that, if set, will attempt a "privileged" access through the GGTT rather than an unprivileged access
through the context-local PPGTT.

"User mode" command buffers should not be able to access privileged memory under any
circumstances. These command buffers will be issued by the kernel mode driver with the batch buffer's
Buffer Security Indicator set to "non-secure". Commands in such a batch buffer are not allowed to
access privileged memory. The commands in these buffers are supplied by the user mode driver and will
not be validated by the kernel mode driver. For a batch buffer marked as non-secure if Per-Process
Virtual Address Space is set, the command buffer fetches are generated using the PPGTT space.

"Kernel mode" command buffers are allowed to access privileged memory. The batch buffers Buffer
Security indicator is set to "secure" in this case. In some of the commands that access memory in a
secure batch buffer, a bit is provided in the command to steer the access to Per process or Global virtual
space. Secure batch buffers are executed from the global GTT.

Commands in ring buffers and commands in batch buffers that are marked as secure (by the kernel
mode driver) are allowed to access both privileged and unprivileged memory and may choose on a
command-by-command basis.

GGTT and PPGTT Usage by Command

Command Address Allowed Access

MI_BATCH_BUFFER_START* Command Address Selectable

MI_DISPLAY_FLIP Display Buffer Base GGTT Only

MI_STORE_DATA_IMM* Storage Address Selectable

MI_STORE_DATA_INDEX** Storage Offset Selectable

MI_STORE_REGISTER_MEM* Storage Address Selectable

MI_SEMAPHORE_MBOX Semaphore Address Selectable

PIPE_CONTROL STDW Address Selectable

*Command has a GGTT/PPGTT selector added to it vs. previous Gen family products.

**Added bit allows offset to apply to global HW Status Page or PP HW Status Page found in context
image.

 45

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch
buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, a
Command Privilege Violation Error is flagged and the command is dropped. Command Privilege
Violation Error is logged in Error identity register of command streamer which gets propagated as
"Command Parser Master Error" interrupt to SW.

Batch buffers from the User mode driver are passed directly to the kernel mode driver which does not
validate them but issues them with the Security Indicator set to 'non-secure' to protect the system from
an attack using these privileged commands.

User Mode Privileged Commands

User Mode Privileged
Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_REGISTER_MEM Register read is always performed. Memory update is dropped if Use Global GTT
is enabled.

MI_LOAD_REGISTER_MEM Command is converted to NOOP.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its "Privileged" level to its
parent batch buffer or lower.
Chained or Second level batch buffer can be "Privileged" only if the parent or the
initial batch buffer is "Privileged". This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP.

MI_REPORT_PERF_COUNT Command is converted to NOOP if Use Global GTT is enabled.

PIPE_CONTROL Still send flush down, Post-Sync Operation is NOOP if Use Global GTT is enabled.
LRI Post-Sync Operation is NOOP.

MI_SET_CONTEXT Command is converted to NOOP.

MI_LOAD_REGISTER_REG Register read is always performed. Memory update is dropped if Use Global GTT is
enabled.

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and
converts the command to a NOOP.

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_FLUSH

46

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_UPDATE_GTT

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_MBOX

 47

Video Command Streamer (VCS)
The VCS (Video Command Streamer) unit is primarily served as the software programming interface
between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of
data packets (Media Commands with the header DWord removed) to the front end interface module of
MFX Engine.

Its logic functions include:

• MMIO register programming interface.
• DMA action for fetching of ring data from memory.
• Management of the Head pointer for the Ring Buffer.
• Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine.
• Handling of user interrupts and ring context switch interrupt.
• Flushing the MFX Engine.
• Handle NOP.

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command
Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000
to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL
at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory.
The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head
pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes
equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head
pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail
pointer.

48

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit is primarily served as the software programming interface
between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of
data packets (Media Commands with the header DWord removed) to the front end interface module of
MFX Engine.

Its logic functions include:

• MMIO register programming interface.
• DMA action for fetching of ring data from memory.
• Management of the Head pointer for the Ring Buffer.
• Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine.
• Handling of user interrupts and ring context switch interrupt.
• Flushing the MFX Engine.
• Handle NOP.

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command
Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000
to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL
at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory.
The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head
pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes
equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head
pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail
pointer.

 49

VCS_RINGBUF—Ring Buffer Registers

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

50

Watchdog Timer Registers

The following registers are defined as Watchdog Timer registers:

VCS_CNTR - VCS Counter for the bit stream decode engine

VCS_THRSH - VCS Threshold for the counter of bit stream decode engine

VCS_CNTR - VCS Counter for the bit stream decode engine

 51

Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition is as
follows:

Bit Definition for Interrupt Control Registers

Bit Description

31:21 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

20 Context Switch Interrupt. Set when a context switch has just occurred.

Per-Process Virtual Address Space bit needs to be set for this interrupt to occur.

19 Page Fault: This bit is set whenever there is a pending page or directory fault.

[DevHSW-B0+]: This bit is set whenever there is a pending GGTT/PPGTT (page or directory) fault in
Video command streamer when Fault Repair Mode is disabled.

On Fault Repair mode Enabled, this bit will never get set and will get collapsed with the Render
command streamer page fault error.

Please refer to vol1c "page fault support" section for more details.

18 Timeout Counter Expired: Set when the VCS timeout counter has reached the timeout thresh-hold
value.

17 Reserved

16 MI_FLUSH_DW Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline document
may optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of
the interrupt.

15 Video Command Parser Master Error: When this status bit is set, it indicates that the hardware has
detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one
to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the
IIR. Further information on the source of the error comes from the "Error Status Register" which along
with the "Error Mask Register" determine which error conditions will cause the error status bit to be
set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Video Instruction Parser encounters an error while parsing an
instruction.

14 Sync Status: This bit is set when the Instruction Parser completes a flush with the sync enable bit
active in the INSTPM register. The event will happen after all the MFX engines are flushed. The HW
Status DWord write resulting from this event will cause the CPU's view of graphics memory to be
coherent as well (flush and invalidate the MFX cache).It is the driver's responsibility to clear this bit

52

Bit Description

before the next sync flush with HWSP write enabled

12 Video Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT
instruction is executed on the Video Command Parser. Note that instruction execution is not halted
and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate
a particular meaning to a user interrupt.

11:0 Reserved: MBZ

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to
ISR changes:

Bit Interrupt Bit
ISR bit Reporting via Hardware Status Write

(when unmasked via HWSTAM)

8 Context Switch Interrupt: Set when a context switch
has just occurred.

Not supported to be unmasked

7 Page Fault: This bit is set whenever there is a pending
PPGTT (page or directory) fault.

Set when event occurs, cleared when event
cleared

6 Media Decode Pipeline Counter Exceeded Notify
Interrupt: The counter threshold for the execution of
the media pipeline is exceeded. Driver needs to
attempt hang recovery.

Not supported to be unmasked

5 Reserved

4 MI_FLUSH_DW packet - Notify Enable 0

3 Master Error Set when error occurs, cleared when error
cleared

2 Sync Status Set every SyncFlush Event

0 User Interrupt 0

VCS_HWSTAM - VCS Hardware Status Mask Register

VCS_IMR - VCS Interrupt Mask Register

 53

VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,
EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.
Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the
appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1'(except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Hardware-Detected Error Bits

VCS Hardware-Detected Error Bit Definitions

VCS_EIR - VCS Error Identity Register

VCS_EMR - VCS Error Mask Register

VCS_ESR - VCS Error Status Register

54

Logical Context Support

This section contains the registers for Logical Context Support.

BB_STATE - Batch Buffer State Register

BB_ADDR - Batch Buffer Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

 55

Mode Registers

Following are Mode Registers:

BBA_LEVEL2 - 2nd Level Batch Buffer Address

VCS_MI_MODE - VCS Mode Register for Software Interface

MFX_MODE - Video Mode Register

VCS_INSTPM - VCS Instruction Parser Mode Register

VBSYNC - Video/Blitter Semaphore Sync Register

VRSYNC - Video/Render Semaphore Sync Register

VVESYNC - Video Codec/Video Enhancement Semaphore Sync Register

Programming Note:: If this register is written, a workload must subsequently be dispatched to the
render command streamer.

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

56

Registers in Media Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. The functions performed by some of these registers are discussed in more
detail in the Memory Interface Functions, Memory Interface Instructions, and Programming Environment
chapters.

 57

Memory Interface Commands for Video Codec Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.

The commands detailed in this chapter are used across the later products within the Gen family.
However, slight changes may be present in some commands (i.e., for features added or removed), or
some commands may be removed entirely. Refer to the Preface chapter for details.

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_LOAD_REGISTER_IMM

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_MBOX

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_UPDATE_GTT

MI_WAIT_FOR_EVENT

MI_LOAD_REGISTER_MEM

58

VECS_RINGBUF — Ring Buffer Registers
Following are Ring Buffer Registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

UHPTR - Pending Head Pointer Register

 59

VECS_RINGBUF — Ring Buffer Registers

Following are Ring Buffer Registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

UHPTR - Pending Head Pointer Register

60

Watchdog Timer Registers

Following are Watchdog Timer Registers:

VECS_CTR_THRSH - VECS Threshold for the Counter of Video Enhancement Engine

 61

Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition is as
follows:

Bit Definition for Interrupt Control Registers [HSW]

Bit Description

31:14 Reserved. MBZ: These bits may be assigned to interrupts on future
products/steppings.

13 MI_FLUSH_DW notify

12 VECS error interrupt

11 MMIO sync flush status

10 VECS MI_USER_INTERRUPT

9:0 Reserved: MBZ

VECS_HWSTAM - VECS Hardware Status Mask Register

VECS_IMR - VECS Interrupt Mask Register

62

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,
EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.
Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the
appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1'(except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Hardware-Detected Error Bits

VECS Hardware-Detected Error Bit Definitions

VECS_EIR - VECS Error Identity Register

VECS_EMR - VECS Error Mask Register

VECS_ESR - VECS Error Status Register

 63

Logical Context Support

Following are Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

BB_STATE - Batch Buffer State Register

VECS_TIMESTAMP - VECS Reported Timestamp Count

VCS_TIMESTAMP - VCS Reported Timestamp Count

64

Mode Registers

Following are Mode Registers:

VECS_CXT_SIZE - VECS Context Sizes

VECS_MI_MODE — VECS Mode Register for Software Interface

VEBOX_MODE - Video Mode Register

VECS_INSTPM—VECS Instruction Parser Mode Register

VECS_NOPID — VECS NOP Identification Register

VEBSYNC - Video/Blitter Semaphore Sync Register

VERSYNC - Video/Render Semaphore Sync Register

VEVSYNC - Video Enhancement/Video Semaphore Sync Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

 65

MI Commands for Video Enhancement Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.

The commands detailed in this chapter are used across the later products within the HSW family.
However, slight changes may be present in some commands (i.e., for features added or removed), or
some commands may be removed entirely. Refer to the Preface chapter for details.

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_LOAD_REGISTER_IMM

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_MBOX

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_UPDATE_GTT

MI_WAIT_FOR_EVENT

MI_LOAD_REGISTER_MEM

66

Resource Streamer
This topic is currently under development.

 67

Introduction

The resource streamer is added to offload work from the driver without compromising on GPU
optimizations. In order to reduce latency associated with these offloaded operation, H/W adds a
Resource Streamer. The Resource Streamer is almost S/W invisible; S/W sees a single command stream,
but it may be best for the S/W to be aware that the RS is present, as certain operations might be
emphasized. The resource streamer will run ahead of the 3D Command Streamer and process only the
certain commands. The Cmd steamer processes these same commands for purposes of buffer full
synchronization and buffer consumption.

68

Common Abbreviations

CS Command Streamer. Block in charge of streaming commands. The Resource Streamer (RS) is primarily an
accelerator for the CS.

FF Fixed Function. Any fixed function hardward.

RS The Resource Streamer. Responsible for reducing command latencies for certain command operations.

URB Unified Return Buffer. The mechanism for returning information from a command.

 69

Theory of Operation

This section briefly describes the operation of the Resource Streamer. Specifically, it calls out reset state,
initialization requirements, and major operational tasks of the RS.

70

Resource Streamer Functions

The Resource Streamer (RS) examines the commands in the ring buffer in an attempt to pre-process
certain long latency items for the remainder of the graphics processing. The RS is used for the following
operations:

• Batch Processing – The resource streamer reads ahead of command streamer activity to unwind
batch buffers.

• Context Save – When the Command Streamer signals that context must be saved, the RS makes
certain all previous cycles are completed, saves all context, and signals completion to the
command streamer.

• Gather Push Constants – The RS detects GATHER commands (GATHER_POOL_ALLOC, GATHER_*),
and prefetchs contents needed for further command processing. The RS gets the base address of
the contents by detecting the GATHER_POOL_ALLOC command, and uses other GATHER_*
commands to generate reads for data, and writes out data to memory.

• Constant Buffer Generation – Similar to other constant processes, the RS intercepts the commands
for constants to update state and data.

• HW Binding Table Generation/Flush – The RS detects operations in the command stream to
update binding table state and memory with bind table contents.

 71

Resource Streamer Activity Diagram

72

Detailed Resource Streamer Operations

Introduction

This chapter describes the operation of the Resource Streamer in deeper detail. Most of the operations
of the Resource Streamer are processed from ring buffer shown in the Ring Buffer Organization Figure in
Resource Streamer Operation Descriptions. The RS examines the command stream from the ring buffer
to pre-process information required by the 3D Command Streamer (CS). For a large number of the
commands, the RS takes no action.

 73

Resource Streamer Operation Descriptions

Batch Processing

Batch processing is a method of extending the Ring Buffer by the insertion of additional commands. The
Ring Buffer normally will process all commands in order stepping through each location in the buffer
until the commands are complete. By inserting an MI_BATCH_BUFFER_START into the command stream,
commands are fetched from a new location indicated in this command.

Batch Processing shows an example of a Ring Buffer that uses a batch buffer. The
MI_BATCH_BUFFER_START command is obtained from Ring Buffer, and command processing continues
in the new location. Batch buffers can be chained, as is shown in the diagram. At the end of the second
batch buffer, the MI_BATCH_BUFFER_END command indicates that we are to return to processing from
the Ring Buffer.

74

Context Save

When the CS indicates that there is a context to be saved or restored, the RS saves its context. The CS
provides and address for the RS image and issue a "batch buffer start" (see section Batch
Processing). The RS will consume this image just like any other batch buffer, and stop when it reaches
the MI_BATCH_BUFFER_END command.

The context image for the Resource streamer consists of the following components:

1. HW_BINDING_TABLE_IMAGE
2. GATHER_IMAGE
3. CONSTANT_IMAGE
4. MI_BATCH_BUFFER_END

These will be discussed in the follow subsections.

HW Binding Table Image

While it is not always necessary to save binding table information, "split points" context switches must be
saved, so the binding table contents are always saved. These consist of:

• Binding Table Generate Enable
• Binding Table Pool Base Address
• Binding Table Pool Size
• Binding Table Contents

 75

HW Binding Table Image

Description Dwords Required for Storage

3DSTATE_BINDING_TABLE_POOL_ALLOC 3

3DSTATE_BINDING_TABLE_EDIT_VS 194

3DSTATE_BINDING_TABLE_EDIT_GS 194

3DSTATE_BINDING_TABLE_EDIT_HS 194

3DSTATE_BINDING_TABLE_EDIT_DS 194

3DSTATE_BINDING_TABLE_EDIT_PS 194

3DSTATE_BINDING_TABLE_EDIT_VS 194

Gather Push Constants Image

Since the resource streamer does not support mid-triangle preemption, the resource steamer will have
finished producing all the gather buffers by the end of the batch buffer and the cmd streamer would
have consumed all the gather buffers. The following things need to be saved.

• Gather pool enable
• Gather pool base address
• Gather pool size

Therefore a 3DSTATE_GATHER_POOL_ALLOC command needs to be saved.

Gather Push Constants Image

Description Dwords Required for Storage

3DSTATE_GATHER_POOL_ALLOC 4

Push Constant Image

We assume that the end of the batch buffer can come between any set of cmds. Therefore the following
things will be saved:

• Dx9 Constant enable
• Dx9 Constant pool base address
• Dx9 Constant pool size
• Dx9 local registers (F,I,B)

76

• Dx9 Local Valid
• Dx9 global registers (F,I,B)

Therefore a 3DSTATE_CONSTANT_BUFFER_POOL_ALLOC command will saved. In addition, since the F
register is 256 entries and only a maximum of 63 entries can be contained in a single
3DSTATE_DX9CONSTANTF_* command, 5 CONSTANTF cmds will be saved for global and 5 for local
registers register per FF (VS,PS). There will be 1 3DSTATE_CONSTANTI_* will be save for global and 1 for
local register per FF. There will be 1 3DSTATE_CONSTANTB_* will be save for global and 1 for local
register per FF.

Gather Push Constants Image

Description Dwords Required for Storage

3DSTATE_CONSTANT_BUFFER_POOL_ALLOC 4

3DSTATE_CONSTANTF_VS 1026

3DSTATE_CONSTANTI_VS 130

3DSTATE_CONSTANTB_VS 18

3DSTATE_CONSTANTF_VS 1026

3DSTATE_CONSTANTI_VS 130

3DSTATE_CONSTANTB_VS 18

3DSTATE_LOCAL_VALID_VS 10

3DSTATE_CONSTANTF_PS 1026

3DSTATE_CONSTANTI_PS 130

3DSTATE_CONSTANTB_PS 18

3DSTATE_CONSTANTF_PS 1026

3DSTATE_CONSTANTI_PS 130

3DSTATE_CONSTANTB_PS 18

3DSTATE_LOCAL_VALID_PS 10

 77

HW Binding Table Generation

The RS generates binding tables in hardware to offload this from the driver. There is an on-die set of
binding tables for each fixed-function unit (VS, GS, HS, DS, PS). There are a set of commands generated
by the driver for to update each of these tables (3D_STATE_BINDING_TABLE_POINTER_*). When the RS
encounters any of these commands, it will write the corresponding binding table out to the binding table
pool. When the CS encounters these commands, it will send the binding table points down as pipelined
state.

 HW Binding Table Generation

78

Project: HSW

The following table describes the different types of usages with binding table generation.

RS active* BT Pool Enabled Mode

 0 0 SW Generate BT in Surface State Heap

 0 1 Illegal(Undefined)

 1 0 Illegal**

 1 1 HW Generate BT

 * Active means with RS enabled in Batch buffer and MI_RS_CONTROL field with RS on.

** If RS is enabled, Binding table pool is required to be enabled

Gather Push Constants

Applications can provide up to 16 constant buffers. The compiler does some optimizations of constant
usage and determines which constants should be packed in which constant register for optimal shader
performance. While this gathering and packing of constant elements into push constants optimizes the
shaders, it causes the driver additional work at draw call time, since the driver must gather and pack the
constants at draw time.

The RS offloads the gathering process for the driver by interpreting the
3D_STATE_GATHER_CONSTANT_* for each of the fixed functions (VS, GS, DS, HS, PS). The compiler
generates at gather table which instructs which elements of the buffers should be packed into the gather
buffer. The gather table indexes the binding table to get a surface state which in turn points to the
constant buffer. Once the gather buffer has been filled, the CS will execute the
3D_STATE_GATHER_CONSTANT_* to load the push constant into the URB.

NOTE: The gather push constants can ONLY BE USED if the HW generated binding tables are also
used.

 79

Gather Push Constants Generation

Constant Buffer Generation (not DX9)

The constant model used is a set of registers that the application can incrementally update. The
hardware requires a constant buffer which lives until the last shader using that buffer retires. To offload
the driver the 3D_STATE_CONSTANT*_* commands are used. The constant registers can be either
floating, integer or Boolean (signified by the commands CONSTANTF, CONSTANTI, CONSTANTB,
respectively). The option determines the fixed function for the constants (VS, GS, DS, HS, PS).

When all edits to the constant registers have been completed, the 3D_STATE_GENERATE_ACTIVE_*
command is used to write out a constant buffer to the Constant Buffer Pool. These buffers are fixed at
8Kbytes. The software is required to provide a surface state object that points to the constant buffer
created.

80

Constant Buffer Generation

Commands Actions in the RS

The tables below show all 3D commands processed by the RS. In the following tables, "STOP" indicates
that the RS waits for all engines to complete operations AND invalidates all command data currently in
the command FIFO. "BLOCK" indicates that the RS waits for all engines to complete operation, stops
further command parsing, but retains data in the command FIFO.

Table: MI Commands Processing in the RS

Opcode (28:23) Command RS Handing – No Perf RS Handling Perf Comments

03h MI_WAIT_FOR_EVENT STOP BLOCK

05h MI_ARB_CHECK STOP STOP

06h MI_RS_CONTROL STOP STOP

0Ah MI_BATCH_BUFFER_END STOP STOP

16h MI_SEMAPHORE_MBOX STOP BLOCK

18h MI_SET_CONTEXT STOP STOP

1Ah MI_RS_CONTEXT STOP STOP

31h MI_BATCH_BUFFER_START STOP STOP

36h MI_CONDITIONAL_BATCH_BUFFER_END STOP STOP

 81

Table: Other Commands Processed in the RS

Pipeline
Type

(28:27)
Opcode
(26:24)

Sub
Opcode
(23:16) Command

RS Handling
(no perf)

RS
Handling

(perf) Comments

0h 1h 01h STATE_BASE_ADDRESS RS LATCH RS LATCH RSunit updates the
state base address if
parsed

1h 1h 04h PIPELINE_SELECT STOP STOP Stop only if 3D is not
selected

3h 0h 03h Reserved

3h 0h 04h 3DSTATE_CLEAR_PARAMS [HSW] Refer to 3D Pipeline

3h 0h 05h 3DSTATE_DEPTH_BUFFER [HSW] Refer to 3D Pipeline

3h 0h 06h Reserved

3h 0h 06h 3DSTATE_STENCIL_BUFFER [HSW] Refer to 3D Pipeline

3h 0h 07h Reserved

3h 0h 07h 3DSTATE_HIER_DEPTH_BUFFER [HSW] Refer to 3D Pipeline

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Refer to Vertex Fetch

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Refer to Vertex Fetch

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Refer to Vertex Fetch

3h 0h 0Bh 3DSTATE_VF_STATISTICS Refer to Vertex Fetch

3h 0h 0Ch Reserved

3h 0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTER
S [HSW]

 Refer to 3D Pipeline

3h 0h 10h 3DSTATE_VS [HSW] Refer to Vertex
Shader

3h 0h 11h 3DSTATE_GS [HSW] Refer to Geometry
Shader

3h 0h 12h 3DSTATE_CLIP [HSW] Refer to Clipper

3h 0h 13h 3DSTATE_SF [HSW] Refer to Strips and
Fans

3h 0h 14h 3DSTATE_WM [HSW] Refer to Windower

3h 0h 15h 3DSTATE_CONSTANT_VS [HSW] Refer to Vertex
Shader

3h 0h 16h 3DSTATE_CONSTANT_GS [HSW] Refer to Geometry
Shader

3h 0h 17h 3DSTATE_CONSTANT_PS [HSW] Refer to Windower

3h 0h 18h 3DSTATE_SAMPLE_MASK [HSW] Refer to Windower

3h 0h 19h 3DSTATE_CONSTANT_HS [HSW] Refer to Hull Shader

82

Pipeline

Type
(28:27)

Opcode
(26:24)

Sub
Opcode
(23:16) Command

RS Handling
(no perf)

RS
Handling

(perf) Comments

3h 0h 1Ah 3DSTATE_CONSTANT_DS [HSW] Refer to Domain
Shader

3h 0h 1Bh 3DSTATE_HS [HSW] Refer to Hull Shader

3h 0h 1Ch 3DSTATE_TE [HSW] Refer to Tesselator

3h 0h 1Dh 3DSTATE_DS [HSW] Refer to Domain
Shader

3h 0h 1Eh 3DSTATE_STREAMOUT [HSW] Refer to HW
Streamout

3h 0h 1Fh 3DSTATE_SBE [HSW] Refer to Setup

3h 0h 20h 3DSTATE_PS [HSW] Refer to Pixel Shader

3h 0h 21h Reserved

3h 0h 22h 3DSTATE_VIEWPORT_STATE_POINTER
S_SF_CLIP [HSW]

 Refer to Strips &
Fans

3h 0h 23h 3DSTATE_VIEWPORT_STATE_POINTER
S_CC [HSW]

 Refer to Windower

3h 0h 24h 3DSTATE_BLEND_STATE_POINTERS
[HSW]

 Refer to Pixel Shader

3h 0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POI
NTERS [HSW]

 Refer to Pixel Shader

3h 0h 26h 3DSTATE_BINDING_TABLE_POINTERS_
VS [HSW]

Generate BT
if HW BT
enabled

Generate
BT if HW BT
enabled

3h 0h 27h 3DSTATE_BINDING_TABLE_POINTERS_
HS [HSW]

Generate BT
if HW BT
enabled

Generate
BT if HW BT
enabled

3h 0h 28h 3DSTATE_BINDING_TABLE_POINTERS_
DS [HSW]

Generate BT
if HW BT
enabled

Generate
BT if HW BT
enabled

3h 0h 29h 3DSTATE_BINDING_TABLE_POINTERS_
GS [HSW]

Generate BT
if HW BT
enabled

Generate
BT if HW BT
enabled

3h 0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_
PS [HSW]

Generate BT
if HW BT
enabled

Generate
BT if HW BT
enabled

3h 0h 2Fh Reserved

3h 0h 30h 3DSTATE_URB_VS [HSW] Execute Execute

3h 0h 31h 3DSTATE_URB_HS [HSW] Execute Execute

3h 0h 32h 3DSTATE_URB_DS [HSW] Execute Execute

 83

Pipeline
Type

(28:27)
Opcode
(26:24)

Sub
Opcode
(23:16) Command

RS Handling
(no perf)

RS
Handling

(perf) Comments

3h 0h 33h 3DSTATE_URB_GS [HSW] Execute Execute

3h 0h 34h 3DSTATE_GATHER_VS [HSW] Execute Execute

3h 0h 35h 3DSTATE_GATHER_GS [HSW] Execute Execute

3h 0h 36h 3DSTATE_GATHER_HS [HSW] Execute Execute

3h 0h 37h 3DSTATE_GATHER_DS [HSW] Execute Execute

3h 0h 38h 3DSTATE_GATHER_PS [HSW] Execute Execute

3h 0h 39h 3DSTATE_CONSTANTF_VS [HSW] Execute Execute

3h 0h 3Ah 3DSTATE_CONSTANTF_PS [HSW] Execute Execute

3h 0h 3Bh 3DSTATE_CONSTANTI_VS [HSW] Execute Execute

3h 0h 3Ch 3DSTATE_CONSTANTI_PS [HSW] Execute Execute

3h 0h 3Dh 3DSTATE_CONSTANTB_VS [HSW] Execute Execute

3h 0h 3Eh 3DSTATE_CONSTANTB_PS [HSW] Execute Execute

3h 0h 3Fh 3DSTATE_LOCAL_VALID_VS [HSW] Execute Execute

3h 0h 40h 3DSTATE_LOCAL_VALID_PS [HSW] Execute Execute

3h 0h 41h 3DSTATE_GENERATE_ACTIVE_VS
[HSW]

Execute Execute

3h 0h 42h 3DSTATE_GENERATE_ACTIVE_PS
[HSW]

Execute Execute

3h 0h 43h 3DSTATE_BINDING_TABLE_EDIT_VS
(DevHSW+)

 Refer to Vertex
Shader

3h 0h 44h 3DSTATE_BINDING_TABLE_EDIT_GS
(DevHSW+)

 Refer to Vertex
Shader

3h 0h 45h 3DSTATE_BINDING_TABLE_EDIT_HS
(DevHSW+)

 Refer to Vertex
Shader

3h 0h 46h 3DSTATE_BINDING_TABLE_EDIT_DS
(DevHSW+)

 Refer to Vertex
Shader

3h 0h 47h 3DSTATE_BINDING_TABLE_EDIT_PS
(DevHSW+)

 Refer to Vertex
Shader

3h 0h 4Ch 3DSTATE_WM_CHROMA_KEY

3h 0h 4Dh 3DSTATE_PS_BLEND

3h 0h 4Eh 3DSTATE_WM_DEPTH_STENCIL

3h 0h 4Fh 3DSTATE_PS_EXTRA

3h 0h 50h 3DSTATE_RASTER

3h 0h 51h 3DSTATE_SBE_SWIZ

3h 0h 52h 3DSTATE_WM_HZ_OP

84

Pipeline

Type
(28:27)

Opcode
(26:24)

Sub
Opcode
(23:16) Command

RS Handling
(no perf)

RS
Handling

(perf) Comments

3h 0h 53h 3DSTATE_INT (internally generated
state)

3h 0h 57h 3DSTATE_DX9_CONSTANTF_HS [HSW]

3h 0h 58h 3DSTATE_DX9_CONSTANTI_HS [HSW]

3h 0h 59h 3DSTATE_DX9_CONSTANTB_HS [HSW]

3h 0h 5ah 3DSTATE_DX9_LOCAL_VALID_HS
[HSW]

3h 0h 5bh 3DSTATE_DX9_GENERATE_ACTIVE_HS
[HSW]

3h 0h 5ch 3DSTATE_DX9_CONSTANTF_DS [HSW]

3h 0h 5dh 3DSTATE_DX9_CONSTANTI_DS [HSW]

3h 0h 5eh 3DSTATE_DX9_CONSTANTB_DS [HSW]

3h 0h 5fh 3DSTATE_DX9_LOCAL_VALID_DS
[HSW]

3h 0h 60h 3DSTATE_DX9_GENERATE_ACTIVE_DS
[HSW]

3h 0h 61h 3DSTATE_DX9_CONSTANTF_GS [HSW]

3h 0h 62h 3DSTATE_DX9_CONSTANTI_GS [HSW]

3h 0h 63h 3DSTATE_DX9_CONSTANTB_GS [HSW]

3h 0h 64h 3DSTATE_DX9_LOCAL_VALID_GS
[HSW]

3h 0h 65h 3DSTATE_DX9_GENERATE_ACTIVE_GS
[HSW]

3h 0h 66h 3DSTATE_GATHER_GPGPU

3h 0h 67h-FFh Reserved

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0

3h 1h 03h Reserved

3h 1h 04h 3DSTATE_CHROMA_KEY

3h 1h 05h Reserved [HSW]

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN

3h 1h 08h 3DSTATE_LINE_STIPPLE

3h 1h 0Ah 3DSTATE_AA_LINE_PARAMS

3h 1h 0Bh 3DSTATE_GS_SVB_INDEX

3h 1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1

 85

Pipeline
Type

(28:27)
Opcode
(26:24)

Sub
Opcode
(23:16) Command

RS Handling
(no perf)

RS
Handling

(perf) Comments

3h 1h 0Dh 3DSTATE_MULTISAMPLE [HSW]

3h 1h 0Eh 3DSTATE_STENCIL_BUFFER

3h 1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER

3h 1h 10h 3DSTATE_CLEAR_PARAMS

3h 1h 11h 3DSTATE_MONOFILTER_SIZE

3h 1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_V
S [HSW]

3h 1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_H
S [HSW]

3h 1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_D
S [HSW]

3h 1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_G
S [HSW]

3h 1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_P
S [HSW]

3h 1h 17h 3DSTATE_SO_DECL_LIST

3h 1h 18h 3DSTATE_SO_BUFFER

3h 1h 19h 3DSTATE_BINDING_TABLE_POOL_ALL
OC [HSW]

3h 1h 1Ah 3DSTATE_GATHER_POOL_ALLOC
[HSW]

3h 1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_P
OOL_ALLOC [HSW]

3h 1h 1Ch 3DSTATE_SAMPLE_PATTERN

3h 1h 1Dh-
FFh

Reserved

3h 1h 19h 3DSTATE_BINDING_TABLE_POOL_ALL
OC [HSW]

Execute Execute

3h 1h 1Ah 3DSTATE_GATHER_POOL_ALLOC
[HSW]

Execute Execute

3h 1h 1Bh 3DSTATE_CONSTANT_BUFFER_POOL_
ALLOC [HSW]

Execute Execute

3h 1h 1Ch 3DSTATE_SAMPLE_PATTERN

3h 1h 1Dh-
FFh

Reserved

3h 2h 00h PIPE_CONTROL

86

Pipeline

Type
(28:27)

Opcode
(26:24)

Sub
Opcode
(23:16) Command

RS Handling
(no perf)

RS
Handling

(perf) Comments

3h 2h 01h-FFh Reserved

3h 3h 00h 3DPRIMITIVE Sync Sync 3DPRIMITIVE
command is unique
in that it tells the
engines to send
fence cycles, but
does not stop RSunit
(not a sync point)

 87

Resource Streamer Programming Guidelines

This section describes RS activities and assumptions that are required for programming.

88

RS Interactions with the 3D Command Streamer

Because the Resource Streamer is processing ahead of the Command Streamer, many of the commands
interpreted by the RS are a signal to stop further processing. In these cases, the RS completes pending
activity, and waits for an indication from the Command Streamer to start again.

The specific cases that the CS commands the RS to continue are:

• Batch Buffer command parsing
• Context save

 89

RS Interactions with Memory Requests

The RS is responsible for the generation of a number of memory requests. These are:

• Make batch buffer read requests (when address is supplied from the CS)
• Make push constant gather read requests from the state base offset
• Make push constant gather write of packed data to the gather pool
• Fetch the gather buffer surface base address
• Write out the binding table pointer (BTP)
• Saving BTP, constant buffer and gather constant context data to an offset into the context image
• Writing out constant data

As is the case in all memory accesses, the read requests from the RS can be freely reordered, and may be
returned in any order by the hardware. The RS will consume the cycles, and present the "software" order
transparently.

When accessing the same address, a write operation followed by the read will return the written data.
Writes to non-overlapping addresses may be freely reordered as well. Fencing is used to make certain all
writes up to the fence have completed.

90

Fundamental Programming and Operational Assumptions

The following assumptions have been made in the RS, and these are useful limitations to the
programming.

• The CS can never send a request to a busy RS. The RS will have foreseen the situation, and
stopped it operations prior to the CS action.

• Surface base address will never be changed while in a batch buffer
• Push constant data is expected to be 128-bit aligned
• The GATHER command should have Constant Buffer valid bits set for any indices used in the

command

 91

Non-Operational Activities

There are no specific events or performance counters for the RS.

92

