

Intel® Iris® Xe MAX Graphics Open Source

Programmer's Reference Manual

For the 2020 Discrete GPU formerly named "DG1"

Volume 8: Command Stream Programming

February 2021, Revision 1.0

ii Doc Ref # IHD-OS-DG1-Vol 8-2.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 iii

Table of Contents

Command Stream Programming ... 1

Introduction .. 1

Workload Submission and Execution Status ... 2

Scheduling and Execlists ... 2

Preemption .. 10

Execution Status ... 11

Commands and Programming Interface .. 13

Command Buffers .. 13

Command Streamer Command Formats ... 17

Execution Control Infrastructure ... 20

MI Commands for Graphics Processing Engines .. 29

Register Access and User Mode Privileges ... 30

Context Management .. 43

Global State ... 43

Context State ... 49

Producer-Consumer Data ordering for MI Commands .. 53

Memory Data Ordering ... 54

MMIO Data Ordering ... 56

Command Fetch ... 57

Advanced Command Prefetch ... 57

Self-Modifying Code .. 57

Doc Ref # IHD-OS-DG1-Vol 8-2.21 1

Command Stream Programming

Command Stream Programming in the new GPU Overview Volume.

Introduction

Command Streamer is the primary interface to the various engines that are part of the graphics

hardware.

The graphics HW consists of multiple parallel engines that can execute different kinds of workloads. E.g

Render engine for 3D and GPGPU tasks, Video Decode engine, Video Enhancement Engine and Blitter

engine.

Some product SKU's have multiple instances of an engine (e.g 2 Video Decode engines).

As shown in figure 1, each of these engines have their own Command Streamer that is responsible for

processing the commands in the workload and enabling execution of the task.

Figure 1: High level view of Command Streamer

2 Doc Ref # IHD-OS-DG1-Vol 8-2.21

As shown in the figure, the command streamer is comprised of a Common Front end and an engine

specific backend.

The common front end allows each engine to provide a uniform software interface (e.g. infrastructure for

submission of commands, synchronization, etc.).

The back ends handle the engine specific commands and the protocols required to control the execution

of the underlying engine.

Workload Submission and Execution Status

This section describes the interface to submit work and obtain status.

Scheduling and Execlists

Execution-List provides a HW-SW interface mechanism to schedule context as a fundamental unit of

submission to GFX-device for execution. GFX-device has multiple engines (Render, Blitter, Video, Video

Enhancement) with each of them having an execution list for context submission. At any given time, all

engines could be concurrently running different contexts.

A context is identified with a unique identifier called Context ID. Each context is associated with an

address space for memory accesses and is assigned a unique ring buffer for command submission.

SW submits workload for a context by programming commands into its assigned ring buffer prior to

submitting context to HW (engine) for execution.

Context State:

Each context programs the engine state according to its workload requirements. All the hardware state

variables of an engine required to execute a context is called context state. Each context has its own

context state. Context state gets programmed on execution of commands from the context ring buffer.

All the contexts designated to run on an engine have the same context format, however the values may

differ based on the individual state programming.

Logical Context Address:

Each context is assigned a Logical Context Address to which the context state is saved by the engine on a

context getting switched out from execution. Similarly, engine restores the context state from the logical

context address of a context on getting switched in for execution.

Logical context address is an absolute graphics virtual address in global virtual memory. Context state

save/restore mechanism by the engine avoids SW from re-programming the state across context

switches.

Each engine has its own hardware state variables and hence they have different context state formats. A

context run on a Render engine can't be submitted to Blitter engine and vice-versa and holds true for

any other engines.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 3

Context Submission:

A context is submitted to an engine for execution by writing the context descriptor to the Execlist Submit

Port (ELSP). Refer ELSP for more details. Context descriptor provides the Context ID, Address space,

Logical Context Address and context valid. Refer context descriptor for more details.

Logical context address points to the context state in global virtual memory which has ring buffer details,

address space setup details and other important hardware state initialization for the corresponding

context. Refer Logical Context Format for more details.

Note that this mechanism cannot be used when the Execlist Enable bit in the corresponding engines

MODE register is not set, i.e. GFX_MODE register for Render Engine, BLT_MODE register for Blitter

Engine, VCS_MODE register for Video Engine, or VECS_MODE register for Video Enhancement Engine.

Context Descriptor Format

Context Descriptor Format

Before submitting a context for the first time, the context image must be properly initialized. Proper

initialization includes the ring context registers (ring location, head/tail pointers, etc.) and the page

directory.

Render CS Only: Render state need not be initialized; the Render Context Restore Inhibit bit in the

Context/Save image in memory should be set to prevent restoring garbage render context. See the

Logical Ring Context Format section for details.

Programming Note on Context ID field in the Context Descriptor

This section describes the current usage by SW.

General Layout:

6

3

6

2

6

1

6

0

5

9

5

8

5

7

5

6

5

5

5

4

5

3

5

2

5

1

5

0

4

9

4

8

4

7

4

6

4

5

4

4

4

3

4

2

4

1

4

0

3

9

3

8

3

7

3

6

3

5

3

4

3

3

3

2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

Eng. ID SW Counter

HW

Use SW Context ID

Eng. ID = Engine ID (a software defined enum to identify RCS, BCS etc.)

SW Counter = Submission Counter. (SW generates a unique counter value on every submission to ensure

GroupID + PASID is unique to avoid ambiguity in fault reporting & handling)

Bit 20 = Is Proxy submission. If Set to true, SW Context ID[19:0] = LRCA [31:20], else it is an index into the

Context Pool.

Direct Submission

Every application gets one context ID of their own.

SW Context ID + Engine ID + SW Counter forms the unique number

4 Doc Ref # IHD-OS-DG1-Vol 8-2.21

The Engine ID is used to identify which engine of a given context needs to be put into wait or ready state

based on Semphore/Page Fault ID value in Semaphore/Page fault FIFO.

This method allows the context to submit work to other engines while its blocked on one.

Proxy Submission

KMD creates one context for submitting work on behalf of various user mode contexts (user mode

application is not using direct submission model).

This method has certain key restrictions and behaviors:

• Work (LRCA) submitted will be scheduled on the CS in the order it was received.

• KMD uses its SW Context ID in [63:32] but uses the LRCA of the user mode context.

o KMD's LRCA is not used for any work submission.

• If a workload hits a wait event, it does not lose its position in the schedule queue.

o Enforces "in order" ness.

• Due to in order execution, same engine - different context semaphore synchronization is not

possible.

o Therefore, cross engine sync is simple because it clears the semaphore of the head.

• Due to in order execution, page fault on a context cannot allow a different context on same engine

to execute (may preempt to idle as a power optimization).

This method allows a clean SW architecture to have KMD submissions and Ring 3 submissions to co-

exist.

Logical Ring Context Format

Context descriptor has the graphics virtual address pointing to the logical context in memory. Logical

context has all the details required for an engine to execute a context. This is the only means through

which software can pass on all the required information to hardware for executing a context. Engine on

selecting a context for execution will restore (fetch-context restore) the logical context from memory to

setup the appropriate state in the hardware. Engine on switching out the context from execution saves

(store- context save) the latest updated state to logical context in memory, the updated state is result of

the command buffer execution.

The Logical Context of each engine (Render, Video, Blitter, Video Enhancement, etc.) primarily consists of

the following sections:

• Per-Process HW Status Page (4K)

• Ring Context (Ring Buffer Control Registers, Page Directory Pointers, etc.)

• Engine Context (PipelineState, Non-pipelineState, Statistics, MMIO)

Per-Process of HW status Page (PPHWSP)

This is a 4KB scratch space memory allocated for each of the context in global address space. First few

cachelines are used by the engine for implicit reports like auto-report of head pointer, timestamp

statistics associated with a context execution, rest of the space is available for software as scratch space

Doc Ref # IHD-OS-DG1-Vol 8-2.21 5

for reporting fences through MI commands. Context descriptor points to the base of Per-Process HW

status page. See the PPHWP format in PPHWSP_LAYOUT.

Logical Ring Context

Logical Ring Context starts immediately following the PPHWSP in memory. Logical ring context is five

cachelines in size. This is the minimal set of hardware state required to be programmed by SW for setting

up memory access and the ring buffer for a context to be executed on an engine. Memory setup is

required for appropriate address translation in the memory interface. Ring buffer details the location of

the ring buffer in global graphics virtual address space with its corresponding head pointer and the tail

pointer. Ring context also has "Context Save/Restore Control Register-CTXT_SR_CTL" which details the

engine context save/restore format. Engine first restores the Logical Ring Context and upon processing

CTXT_SR_CTL it further decides the due course of Engine Context restore. Logical Ring Context is mostly

identical across all engines. Logical ring context is saved to memory with the latest up to date state when

a context is switched out.

Engine Context

Engine context starts immediately following the logical ring context in memory. This state is very specific

to an engine and differs from engine to engine. This part of the context consists of the state from all the

units in the engine that needs to be save/restored across context switches. Engine restores the engine

context following the logical ring context restore. It is tedious for software to populate the engine

context as per the requirements, it is recommended to implicitly use engine to populate this portion of

the context. Below method can be followed to achieve the same:

• When a context is submitted for the first time for execution, SW can inhibit engine from restoring

engine context by setting the "Engine Context Restore Inhibit" bit in CTXT_SR_CTL register of the

logical ring context. This will avoid software from populating the Engine Context. Software must

program all the state required to initialize the engine in the ring buffer which would initialize the

hardware state. On a subsequent context save engine will populate the engine context with

appropriate values.

• Above method can be used to create a complete logical context with engine context populated by

the hardware. This Logical context can be used as an Golden Context Image or template for

subsequently created contexts.

Engine saves the engine context following the logical ring context on switching out a context.

The detailed format of the logical ring context for Blitter, Video, and VideoEnhancement is documented

in the Memory Object Overview/Logical Contexts chapter.

The detailed formats of the Render Logical Ring and Engine Context, including their size, is mentioned in

the Engine Register and State Context topic for each product.

6 Doc Ref # IHD-OS-DG1-Vol 8-2.21

RINGBUF -- Ring Buffer Registers

Register

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

Command Stream Virtual Memory Control

Per-Process GTT (PPGTT) is setup for an engine (Render, Blitter, Video and Video Enhancement) by

programming corresponding Page Directory Pointer (PDP) registers listed below. Refer "Graphics

Translation Tables" in "Memory Overview" for more details on Per-Process page table entries and related

translations.

Context Status

Hardware reports the change in state of context execution to software (scheduler) through Context

Status Dword. Soft-Ware can read the context status dword from time to time to track the state of

context execution in hardware. A context switch reason (Context Switch Status) quad-word (64bits) is

reported to the Soft-Ware (scheduler) on a valid context getting switched out. Context switch could be a

synchronous context switch (from one valid element to the other valid element in the EQ) or

asynchronous context switch (Load-switching from the current executing context to the very first valid

element of the newly updated EQ or on Preempt to Idle). Context switch reason is also reported on HW

executing the very first valid element from EQ coming out of idle indicating hardware has gone busy

from idle state (Idle to Active). Context ID reported in Context Status Dword on Idle-to-Active context

switch is undefined and note that there aren't any active contexts running in hardware coming out of

reset, power-on or idle.

A context switch reason reported is always followed by generation of a context switch interrupt to notify

the Soft-Ware about the context switch. Soft-Ware can selectively mask the context switch status being

reported and the corresponding interrupt due to a specific context switch reason. Refer Context Status

Report controls section for more details.

• A status QW for the context that was just switched away from will be written to the Context Status

Buffer in the Global Hardware Status Page. Context Status Buffer in Global Hardware Status Page is

exercised when IA based scheduling is done. The status contains the context ID and the reason for

the context switch.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 7

Format of Context Status QWord

Context Status

Context Status should be inferred as described in the table below.

IDLE_CTXID Encoding

IDLE_CTXID

0x7FF

S.No
Switch to

New Queue

Ctid Away Ctxid To Switch

Detail

Description

1
1 IDLE_CTXID 0xAB 0 Idle to Active

Ctxid Away: IDLE_CTXID indicates HW was idle when

switched to the new queue.

Ctxid To: 0xAB is the context picked form the newly

submitted queue to execute.

2
1 0xAB IDLE_CTXID 0-5 Preempt to Idle

Ctxid Away: 0xAB is the context that got switched out

due to Preempt To Idle.

Ctxid To: IDLE_CTXID indicates HW will go Idle following

this context switch.

Switch To New Queue field status set distinguishes

between Preempt To Idle Vs Active To Idle Switch.

3
1 IDLE_CTXID IDLE_CTXID X Preempt To Idle, Idle to Active

Preempt To Idle has occurred when HW was idle.

Ctxid Away: IDLE_CTXID indicates HW was idle when

switched to the new queue (Preempt To Idle).

Ctxid To: IDLE_CTXID indicates HW will go Idle following

this context switch.

4
1 0xAB 0x7BC 0 Switched to New queue and also the earlier context is

complete.

Ctxid Away: 0xAB is the context that got switched out

due to submission of new queue and also the context is

complete.

Ctxid To: 0x7BC is the context picked form the newly

submitted queue to execute.

8 Doc Ref # IHD-OS-DG1-Vol 8-2.21

5
1 0xAB 0x7BC 5 Switched to new queue with the earlier context

preempted.

Ctxid Away: 0xAB is the context that got preempted and

switched out due to submission of new queue.

Ctxid To: 0x7BC is the context picked form the newly

submitted queue to execute.

6
1 0xABC 0x7BC 1-4 Switched to new queue, at the time of switch,

executing context was waiting on an un-successful

wait.

Ctxid Away: 0xAB is the context that got switched out on

an un-successful wait due to submission of new queue.

Ctxid To: 0x7BC is the context picked form the newly

submitted queue to execute.

7
1 0xAB 0xAB -NA- Lite restore. Switched to new queue.

8
0 0xAB 0x7AC 0 Element (Synchronous context) switch on context

complete.

Ctxid Away: 0xAB is the context that got switched out

due to context complete.

Ctxid To: 0x7AC is the next element (context) form the

execution queue selected to execute.

9
0 0xAB 0x7AC 1-4 Element (Synchronous context) switch on un-

successful wait.

Ctxid Away: 0xAC is the context that got switched out

due to un-successful wait.

Ctxid To: 0x7AC is the next element (context) form the

execution queue selected to execute.

10
0 0xAB IDLE_CTXID 0-4, 5* Active to Idle.

Ctxid Away: 0xAB is the context that got switched out

due to context complete or un-successful wait.

Ctxid To: IDLE_CTXID indicates HW will go Idle following

this context switch.

Switch To New Queue field reset status distinguishes

between Active To Idle Switch Vs Preempt To Idle.

Switch Detail as 5 is possible on Preempt to Idle.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 9

Context Status Buffer in Global Hardware Status Page

Status QWords are written to the Context Status Buffer in Global Hardware Status Page at incrementing

locations starting from DWORD offset of 28h. The Context Status Buffer has a limited size (see Table

Number of Context Status Entries) and simply wraps around to the beginning when the end is reached.

The status QWs can be examined to determine the contexts executed by the hardware and the reason for

switching out. The most recent location updated in the Context Status Buffer is indicated by the Last

Written Status Offset in Global Hardware Status page at DWORD offset 47h.

Refer Global Hardware Status Page Layout at Hardware Status Page Layout.

Number of Context Status Entries

Number of Status Entries

12 (QW) Entries

Format of the Context Status Buffer starting at DWORD offset 28h in Global Hardware Status page

QW Description

15 Last Written Status Offset. The lower byte of this QWord is written on every context switch with the (pre-

increment) value of the Context Status Buffer Write Pointer. The lower 4 bits increment for every status

Qword write; bits[7:4] are reserved and must be '0'. The lowest 4 bits indicate which of the Context Status

Qwords was just written. The rest of the bits [63:8] are reserved.

14:12 Reserved: MBZ.

11:0
Context Status QWords. A circular buffer of context status QWs. As each context is switched away from, its

status is written here at ascending QWs as indicated by the Last Written Status Offset. Once QW11 has

been written, the pointer wraps around so that the next status is written at QW0.

Format = ContextStatusDW

Controls for Context Switch Status Reporting

This section describes various configuration bits available which control the hardware reporting

mechanism of Context Switch Status.

Hardware reports context switch reason through context switch status report mechanism on every

context switch. "Context Status Buffer Interrupt Mask" register provides mechanism to selectively

mask/un-mask the context switch interrupt and the context switch status report for a given context

switch reason. Hardware will not generate a context switch interrupt and context switch status report on

a context switch reason that is masked in "Context Status Buffer Interrupt Mask" register. Every context

switch reason reported by hardware may not be of interest to the scheduler. Scheduler may selectively

mas/un-mask the context switch reasons of its interest to get notified.

Context Status Buffer Interrupt Mask Register

10 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Preemption

Preemption is a means by which HW is instructed to stop executing an ongoing workload and switch to

the new workload submitted. Preemption flows are different based on the mode of scheduling.

ExecList Scheduling

In ExecList mode of scheduling SW triggers preemption by submitting a new pending execlist to ELSP

(ExecList Submit Port). HW triggers preemption on a preemptable command on detecting the availability

of the new pending execlist, following preemption context switch happens to the newly submitted

execlist. As part of the context switch preempted context state is saved to the preempted context LRCA,

context state contains the details such that on resubmission of the preempted context HW can resume

execution from the point where it was preempted.

Example:

 Ring Buffer

 MI_ARB_ON_OFF // OFF

 MI_BATCH_START // Media Workload

 MI_ARB_ON_OFF // ON

 MI_ARB_CHK // Preemptable command outside media command buffer.

The following table lists Preemptable Commands in ExecList mode of scheduling:

Command Streamer Preemptable Commands

Preemptable Command Condition

MI_ARB_CHECK AP

Element Boundary AP (if allowed)

Semaphore Wait Unsuccessful & AP

Wait for Event Unsuccessful & AP (if allowed)

Table Notes:

AP - Allow Preemption if arbitration is enabled.

For additional preemptable commands specific to any engine type, refer to the engine specific command

interface documentation.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 11

Execution Status

This section describes the infrastructure used to report status that the hardware provides

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the PPHWSP_LAYOUT are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

This page is designed to be read by SW to glean additional details about a context beyond what it can

get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to locate

this page in any region where snooping is illegal (such as in stolen memory).

Hardware Status Page

The hardware status page is a naturally aligned 4KB page residing in memory. This page exists primarily

to allow the device to report status via GGTT writes.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in

Memory Interface Registers) includes a description of the layout of the Hardware Status Page.

12 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit

definition is as follows:

Bit Defintion for Interrupt Control Registers:

Engine Interrupt Vector Definition Table

Blitter Interrupt Vector

Render Engine Interrupt Vector

VideoDecoder Interrupt Vector

VideoEnhancement Interrupt Vector

Compute Engine Interrupt Vector

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to

ISR changes:

Bit Interrupt Bit

ISR Bit Reporting Via

Hardware Status Write

(When Unmasked Via

HWSTAM)

9 Reserved

8 Context Switch Interrupt. Set when a context switch has just occurred. Not supported to be

unmasked.

7 Page Fault. This bit is set whenever there is a pending PPGTT (page or directory)

fault.

 This interrupt is for handling Legacy Page Fault interface for all Command

Streamers (BCS, RCS, VCS, VECS). When Fault Repair Mode is enabled, Interrupt

mask register value is not looked at to generate interrupt due to page fault.

Please refer to vol1c "Page Fault Support" section for more details.

Set when event occurs,

cleared when event cleared.

 Not supported to be

unmasked.

6 Media Decode Pipeline Counter Exceeded Notify Interrupt. The counter

threshold for the execution of the media pipeline is exceeded. Driver needs to

attempt hang recovery.

Not supported to be

unmasked. Only for Media

Pipe.

5 L3 Parity interrupt Only for Render Pipe

4 Flush Notify Enable 0

3 Master Error Set when error occurs,

cleared when error cleared.

2 Reserved

0 User Interrupt 0

Command Streamer > Hardware Status Mask Register

Doc Ref # IHD-OS-DG1-Vol 8-2.21 13

Hardware-Detected Error Bit Definitions (for EIR EMR ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,

EMR, and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.

Any bit set in the EIR will cause the error bit in the ISR to be set. EIR bits will remain set until the

appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with 1 (except for the

unrecoverable bits described below).

The following structures describe the Hardware-Detected Error bits:

The following structures describe the Hardware-Detected Error bits:

Error Bits

RCS Hardware-Detected Error Bit Definitions Structure

BCS Hardware-Detected Error Bit Definitions Structure

VCS Hardware-Detected Error Bit Definitions Structure

VECS Hardware-Detected Error Bit Definitions Structure

ComputeCS Hardware-Detected Error Bit Definitions Structure

The following are the EIR, EMR and ESR registers:

Registes

EIR - Error Identity Register

EMR - Error Mask Register

ESR - Error Status Register

Commands and Programming Interface

This section describes the command supported by command streamer and the programming interface.

Command Buffers

Instructions to be executed by an engine are submitted to the hardware using command buffers.

Command Ring Buffers

Command ring buffers are the memory areas used to pass instructions to the device. Refer to the

Programming Interface chapter for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer

memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear memory. The

length of any one ring buffer is limited to 2MB.

Command Batch Buffers

Command batch buffers are contiguous streams of instructions referenced via an

MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions, Programming

Interface). They are used to transport instructions external to ring buffers.

14 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Programming Note

Context: Command batch buffers in memory objects

Batch buffers can be tagged with any memory type when produced by IA. If WB memory type is used, it should be

tagged with "snoop required" for GPU consumption (to trigger snoop from CPU cache).

Programming Note

Context: Command batch buffers in memory objects

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address is the address of

the last valid QWord in the buffer. The length of any single batch buffer is "virtually unlimited" (i.e., could

theoretically be 4GB in length).

Workaround Batch Buffers

A Workaround batch buffer is a set of commands that is run by the hardware during context load time.

i.e when Command Streamer hardware is restoring the state of the context that it is about to execute

(before execution of any command in the ring buffer). The Workaround batch buffer uses pointers to

command buffers that are setup by the Kernel Mode driver in the context image.

Two flavors of Workaround batch buffers are supported by the hardware. They differ in terms of exactly

when the supplied workaround commands are executed in the context restore process. The mechanisms

supported are:

Indirect Context Pointer (INDIRECT_CTX)

As shown in the figure below, this workaround buffer can be invoked at any cacheline aligned offset in

the engine context.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 15

Command streamer, when enabled through "INDIRECT_CTX" provides a mechanism to pause executing

context restore on a given cacheline aligned offset in the engine context image and execute a command

sequence from a command buffer before resuming context restore flow. This command buffer execution

during context restore is referred to as "Indirect Context Pointer" execution. The start address and the

size of the command buffer to be executed is provided through "INDIRECT_CTX" register and the offset

in the engine context restore is provided through "INDIRECT_CTX_OFFSET". "INDIRECT_CTX" and

"INDIRECT_CTX_OFFSET" registers are part of the context image and gets restored as part of the given

context's context restore flow, these registers are part of the ring context image which are prior to

engine context restore and hence the requirement of the offset being in engine context restore. "Indirect

Context Pointer" is always in the GGTT address space of the virtual function or physical function from

which the context is submitted. "Indirect context pointer" can be programmed differently for each

context providing flexibility to execute different command sequence as part of "Indirect Context Pointer"

execution during context restore flows.

16 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Post Context Restore Workaround Batch Buffer

As shown in the figure, this workaround buffer is invoked at the end of the context restore.

Command streamer, when enabled through "BB_PER_CTX_PTR" provides a mechanism to execute a

command sequence from a batch buffer at the end of the context restore flow during context switch

process. This batch buffer is referred to as "Context Restore Batch Buffer". The batch start address for the

"Context Restore Batch Buffer" gets programmed through "BB_PER_CTX_PTR", which is part of the

context image and gets restored as part of the given context's context restore flow. "Context Restore

Batch Buffer" execution begins (like a regular batch buffer) after the completion of fetching and

execution of all the commands for the context restore flow. "Context Restore Batch Buffer" execution

ends on executing MI_BATCH_BUFFER_END in the command sequence. "Context Restore Batch Buffer" is

always in the GGTT address space of the virtual function or physical function from which the context is

submitted. "BB_PER_CTX_PTR" can be programmed differently for every context giving flexibility to

execute different command sequence (batch buffers) as part of "Context Restore Batch Buffer" execution

or can be programmed to disable execution of the "Context Restore Batch Buffer" for a given context.

This mechanism is especially helpful in programming a set of commands/state that has to be always

executed prior to executing a workload from a context every time it is submitted to HW for execution.

Limited capability is built for "Context Restore Batch Buffer" unlike a regular MI_BATCH_BUFFER_START

due to envisioned usage model, refer BB_PER_CTX_PTR for detailed programming notes.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 17

Command Streamer Command Formats

This section describes the general format of the command streamer commands.

Command streamer commands are defined with various formats. The first DWord of all commands is

called the header DWord. The header contains the only field common to all commands, the client field

that determines the device unit that processes the command data. The Command Parser examines the

client field of each command to condition the further processing of the command and route the

command data accordingly.

Command streamer commands vary in length, though are always multiples of DWords. The length of a

command is either:

• Implied by the client/opcode

• Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows

how much data to copy/process)

• Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be placed in

Ring and Batch Buffers.

The following subsections provide a brief overview of the command streamer commands by client type

provides a diagram of the formats of the header DWords for all commands. Following that is a list of

command mnemonics by client type.

Command Header

Engine Command Header Format

Type Bits

 31:29 28:0

Memory Interface (MI) 000

Engine Command 010, 011

Reserved 001, 100, 101, 110, 111

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by the

2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)

• Hardware synchronization (e.g., flush, wait-for-event)

• Software synchronization (e.g., Store DWORD, report head)

• Graphics buffer definition (e.g., Display buffer, Overlay buffer)

• Miscellaneous functions

All of the following commands are defined in Memory Interface Commands.

18 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Memory Interface Commands for RCP

Opcode

 (28:23) Command Pipes

1 DWord

00h MI_NOOP All

01h MI_SET_PREDICATE All

02h MI_USER_INTERRUPT All

03h MI_WAIT_FOR_EVENT Render, Blitter

04h MI_WAIT_FOR_EVENT_2 Render, Blitter

05h MI_ARB_CHECK All

07h MI_REPORT_HEAD All

08h MI_ARB_ON_OFF All except Blitter

0Ah MI_BATCH_BUFFER_END All

0Bh MI_SUSPEND_FLUSH All

0Ch MI_PREDICATE Render

2+ DWord

10h Reserved

12h MI_LOAD_SCAN_LINES_INCL Render and Blitter

13h MI_LOAD_SCAN_LINES_EXCL Render and Blitter

14h MI_DISPLAY_FLIP Render and Blitter

15h Reserved

17h Reserved

18h MI_SET_CONTEXT Render

1Ah MI_MATH All

1Bh MI_SEMAPHORE_SIGNAL All

1Ch MI_SEMAPHORE_WAIT All

1Dh MI_FORCE_WAKEUP All except Render

1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All

21h MI_STORE_DATA_INDEX All

22h MI_LOAD_REGISTER_IMM All

23h MI_UPDATE_GTT All

24h MI_STORE_REGISTER_MEM All

26h MI_FLUSH_DW All except Render

27h MI_CLFLUSH Render

29h MI_LOAD_REGISTER_MEM All

2Ah MI_LOAD_REGISTER_REG All

Doc Ref # IHD-OS-DG1-Vol 8-2.21 19

Opcode

 (28:23) Command Pipes

2Eh MI_MEM_TO_MEM All

2Fh MI_ATOMIC All

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START Render

32h-35h Reserved

36h MI_CONDITIONAL_BATCH_BUFFER_END All

37h-38h Reserved

39h Reserved All

39h-3Fh Reserved

20 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Execution Control Infrastructure

This section describes the hardware infrastructure that can be used to control command execution.

Watchdog Timers

Watchdog Counter Control

The Watchdog Counter Control determines if the watchdog is enabled, disabled and count mode. The

watchdog is enabled is when the value of the register [30:0] is equal to zero([30:0] = 'd0). If enabled, then

the Watchdog Counter is allowed to increment. The watchdog is disabled is when the value of the

register [30:0] is equal to one where only bit zero is a value of '1'([30:0] = 0x00000001). If disabled, then

the value of Watchdog Counter is reset to a value of zero. Bit 31, specifies the counting mode. If bit 31 is

zero, then we will count based timestamp toggle(refer to Reported Timestamp Count register for toggle

time). If bit 31 is one, then we will count every ungated GPU clock.

This register is context saved as part of engine context.

Watchdog Counter Threshold

If the Watchdog Counter Threshhold is equal to Watchdog Counter, then the interrupt bit is set in the

IIR(bit 6) and the Watchdog Counter is reset to zero.

This register is context saved as part of engine context.

Watchdog Counter

The Watchdog Counter is the count value of the watchdog timer. The Counter can be reset due to the

Watchdog Counter Control being disabled or being equal to the Watchdog Counter Threshhold. The

increment of the Watchdog counter is enabled when the Watchdog Counter Control is enabled and the

current context is valid and execlist is enabled which includes the time to execute, flush and save the

context.

 The increment of the Watchdog counter is under the following conditions:

• Watchdog timer is enabled.

• Context is valid

The increment granularity is based controlled by Watchdog Counter Control mode(bit 31).

This register is not context saved and restored.

Doc Ref # IHD-OS-DG1-Vol 8-2.21 21

Predication

Predicate Render Registers

Register

MI_PREDICATE_SRC0 - Predicate Rendering Temporary Register0

MI_PREDICATE_SRC1 - Predicate Rendering Temporary Register1

MI_PREDICATE_DATA - Predicate Rendering Data Storage

MI_PREDICATE_RESULT - Predicate Rendering Data Result

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

MI_SET_PREDICATE

MI_SET_PREDICATE is a command that allows the driver to conditionally execute or skip a command

during execution time, as detailed in the instruction definition:

The following is a list of commands that can be programmed when the PREDICATE ENABLE field in

MI_SET_PREDICATE allows predication. Commands not listed here will have undefined behavior when

executed with predication enabled:

Command

3DSTATE_URB_VS

3DSTATE_URB_HS

3DSTATE_URB_DS

3DSTATE_URB_GS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

MI_LOAD_REGISTER_IMM

MI_STORE_DATA_IMM

3DSTATE_WM_HZ_OP

MEDIA_VFE_STATE

MEDIA_OBJECT

MEDIA_OBJECT_WALKER

MEDIA_INTERFACE_DESCRIPTOR_LOAD

22 Doc Ref # IHD-OS-DG1-Vol 8-2.21

MI_PREDICATE

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to

enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based

on the result of a previous predicate test. A new state bit, Predicate, has been added to the command

stream. In addition, a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set,

the command is ignored if the Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the

Predicate bit is generated.

Refer to the diagram below and the command description (linked above) for details.

MI_PREDICATE Function

Doc Ref # IHD-OS-DG1-Vol 8-2.21 23

MI_LOAD_REGISTER_MEM commands can be used to load the MItemp0, MItemp1, and PredicateData

registers prior to MI_PREDICATE. To ensure the memory sources of the MI_LOAD_REGISTER_MEM

commands are coherent with previous 3D_PIPECONTROL store-DWord operations, software can use the

new Pipe Control Flush Enable bit in the PIPE_CONTROL command.

CS ALU Programming and Design

Command streamer implements a rudimentary ALU which supports basic Arithmetic (Addition and

Subtraction) and logical operations (AND, OR, XOR) on two 64bit operands. ALU has two 64bit registers

at the input SRCA and SRCB to which the operands should be loaded on which operations will be

performed and outputted to a 64 bit Accumulator. Zero Flag and Carry Flag are set based on

accumulator output.

Access to this ALU is thru the MI_MATH command.

CS_GPR - Command Streamer General Purpose Registers

Following are Command Streamer General Purpose Registers:

CS_GPR - General Purpose Register

Command Streamer (CS) ALU Programming

The command streamer implements a rudimentary Arithmetic Logic Unit (ALU) which supports basic

arithmetic (Addition and Subtraction) and logical operations (AND, OR, XOR) on two 64-bit operands.

The ALU has two 64-bit registers at the input, SRCA and SRCB, to which source operands are loaded. The

ALU result is written to a 64-bit accumulator. The Zero Flag and Carry Flag are assigned based on the

accumulator output.

See the ALU Programming section in the Render Engine Command Streamer, for a description of the ALU

programming model. Programming model is the same for all command streamers that support ALU, but

each command streamer uses its own MMIO address range to address the registers. The following

subsections describe the ALU registers and the programming details.

CS ALU Programming and Design

Generic Purpose Registers

Command streamer implements sixteen 64-bit General-Purpose Registers which are MMIO mapped.

These registers can be accessed similar to any other MMIO mapped registers through LRI, SRM, LRR,

LRM or CPU access path for reads and writes. These registers will be labeled as R0, R1, ... R15 throughout

the discussion. Refer table in the B-spec update section mapping these registers to corresponding MMIO

offset. A selected GPR register can be moved to SRCA or SRCB register using "LOAD" instruction. Outputs

of the ALU, Accumulator, ZF and CF can be moved to any of the GPR using "STORE" instruction.

24 Doc Ref # IHD-OS-DG1-Vol 8-2.21

ALU BLOCK Diagram

Doc Ref # IHD-OS-DG1-Vol 8-2.21 25

Instruction Set

The instructions supported by the ALU can be broadly categorized into three groups:

• To move data from GPR to SRCA/SRCB - LOAD instruction.

• To move data from ACCUMULATOR/CF/ZF to GPR - STORE Instruction.

• To do arithmetic/Logical operations on SRCA and SRCB of ALU - ADD/SUB/AND/XOR/OR. Note:

Accumulator is loaded with value of SRCA - SRCB on a subtraction.

Instruction Format

Each instruction is one Dword in size and consists of an ALU OPCODE, OPERAND1 and OPERAND2 in the

format shown below.

ALU OPCODE Operand-1 Operand-2

12 bits 10 bits 10 bits

NOOP and FENCE Operations

NOOP operation has does no operation but will delay and add operation idle time between commands.

Opcode Operand1 Operand2

31:20 19:10 9:0

NOOP N/A N/A

Arithmetic/Logical Operations

ADD, SUB, AND, OR, and XOR are the Arithmetic and Logical operations supported by Arithmetic Logic

Unit (ALU). When opcode corresponding to a logical operation is performed on SRCA and SRCB, the

result is sent to ACCUMULATOR (ACCU), CF and ZF. Note that ACCU is 64-bit register. A NOOP when

submitted to the ALU doesn't do anything, it is meant for creating bubble or kill cycles.

Opcode Operand1 Operand2

31:20 19:10 9:0

ADD N/A N/A

SUB N/A N/A

OR N/A N/A

XOR N/A N/A

LOAD Operation

The LOAD instruction moves the content of the destination register (Operand2) into the source register

(Operand1). The destination register can be any of the GPR (R0, R1, ..., R15) and the source registers are

SRCA and SRCB of the ALU. This is the only means SRCA and SRCB can be programmed.

26 Doc Ref # IHD-OS-DG1-Vol 8-2.21

LOAD has different flavors, wherein one can load the inverted version of the source register into the

destination register or a hard-coded value of all Zeros and All ones.

 // Loads any of Reg0 to Reg15 into the SRCA or SRCB registers of ALU.

 LOAD <SRCA, SRCB>, <REG0..REG15>

 // Loads inverted (bit wise) value of the mentioned Reg0 to 15 into SRCA or SRCB registers of

ALU.

 LOADINV <SRCA, SRCB>, <REG0..REG15>

 // Loads "0" into SRCA or SRCB

 LOAD0 <SRCA, SRCB>

 // Loads "1" into SRCA or SRCB

 LOAD1 <SRCA, SRCB>

Opcode Operand1 Operand2

31:20 19:10 9:0

LOAD SRCA/SRCB R0,R1..R15

LOADINV SRCA/SRCB R0,R1..R15

LOAD0 SRCA/SRCB N/A

LOAD1 SRCA/SRCB N/A

STORE Operation

The STORE instruction moves the content of the destination register (Operand2) into the source register

(Operand1). The source register can be accumulator (ACCU), CF or ZF. STORE has different flavors,

wherein one can load the inverted version of the source register into destination register via STOREINV.

When CF or ZF are stored, the same value is replicated on all 64 bits.

 // Loads ACCMULATOR or Carry Flag or Zero Flag in to any of the generic registers

 // Reg0 to Reg16. In case of CF and ZF same value is replicated on all the 64 bits.

 STORE <R0.. R15>, <ACCU, CF, ZF >

 // Loads inverted (ACCMULATOR or Carry Flag or Zero Flag) in to any of the

 // generic registers Reg0 to Reg15.

 STOREINV <R0.. R15>, <ACCU, CF, ZF>

Opcode Operand1 Operand2

31:20 19:10 9:0

STORE R0,R1..R15 ACCU/ZF/CF

STOREINV R0,R1..R15 ACCU/ZF/CF

Doc Ref # IHD-OS-DG1-Vol 8-2.21 27

Summary for ALU

Total Opcodes Supported: 12

Total Addressable Registers as source or destination: 21

• 16 GPR (R0, R1 ...R15)

• 1 ACCU

• 1ZF

• 1CF

• SRCA, SRCB

Summary of Instructions Supported

31 20 19 10 9 0

Opcode Operand1 Operand2

LOAD SRCA/SRCB REG0..REG15

LOADINV SRCA/SRCB REG0..REG15

LOAD0 SRCA/SRCB N/A

LOAD1 SRCA/SRCB N?A

ADD N/A N/A

SUB N/A N/A

AND N/A N/A

OR N/A N/A

XOR N/A N/A

NOOP N/A N/A

STORE REG0..REG15 ACCU/CF/ZF

STOREINV REG0..REG15 ACCU/CF/ZF

Table for ALU OPCODE Encodings

In the above-mentioned table, ALU Opcode Encodings look like random numbers. The rationale behind

those encodings is because the ALU Opcode is further broken down into sub-sections for ease-of-design

implementation.

PREFIX OPCODE SUBOPCODE

11 10 9 7 6 0

PREFIX VALUE Description

0 Regular

1 Invert

OPCODE VALUE Description

0 NOOP

28 Doc Ref # IHD-OS-DG1-Vol 8-2.21

PREFIX OPCODE SUBOPCODE

1 LOAD

2 ALU

3 STORE

ALU OPCODE OPCODE ENCODING PREFIX(11:10) OPCODE(9:7) SUB-OPCODE(6:0)

NOOP 0x000 0 0 0

LOAD 0x080 0 1 0

LOADINV 0x480 1 1 0

LOAD0 0x081 0 1 1

LOAD1 0x481 1 1 1

ADD 0x100 0 2 0

SUB 0x101 0 2 1

AND 0x102 0 2 2

OR 0x103 0 2 3

XOR 0x104 0 2 4

STORE 0x180 0 3 0

STOREINV 0x580 1 3 0

Table for Register Encodings

Register Register Encoding

R0 0x0

R1 0x1

R2 0x2

R3 0x3

R4 0x4

R5 0x5

R6 0x6

R7 0x7

R8 0x8

R9 0x9

R10 0xa

R11 0xb

R12 0xc

R13 0xd

R14 0xe

R15 0xf

SRCA 0x20

Doc Ref # IHD-OS-DG1-Vol 8-2.21 29

Register Register Encoding

SRCB 0x21

ACCU 0x31

ZF 0x32

CF 0x33

MI Commands for Graphics Processing Engines

This chapter lists the MI Commands that are supported by Generic Command Streamer Front End

implemented in the graphics processing engines (Render, Video, Blitter and Video Enhancement).

Command

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

30 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Register Access and User Mode Privileges

This section describes access to the MMIO internal to the GPU and funny I/O and how to access the

ranges. Command streamer limits accesses for commands that are executed out of a PPGTT batch buffer.

This is also referred to a non-privilege command buffer.

Below are the Base Addresses of each command streamer and engine blocks. While this is not all the

ranges, it is the ones used to reference which registers are accessible or restricted by command streamer.

Unit MMIO Base Offset Description

RCS 0x2000 Render Command Streamer

POCS 0x18000 Position Command Streamer

BCS 0x22000 Blitter Command Streamer

CCS0 0x1A000 Compute Command Streamer 0

VCS/MFC 0x1C0000 Video Command Streamer 0

VCS1/MFC 0x1C4000 Video Command Streamer 1

VCS2/MFC 0x1D0000 Video Command Streamer 2

VCS3/MFC 0x1D4000 Video Command Streamer 3

VCS4/MFC 0x1E0000 Video Command Streamer 4

VCS5/MFC 0x1E4000 Video Command Streamer 5

VCS6/MFC 0x1F0000 Video Command Streamer 6

VCS7/MFC 0x1F4000 Video Command Streamer 7

VECS/MFC 0x1C8000 Video Enhancement Command Streamer 0

VECS1 0x1D8000 Video Enhancement Command Streamer 1

VECS2 0x1E8000 Video Enhancement Command Streamer 2

VECS3 0x1F8000 Video Enhancement Command Streamer 3

AV1/VDBOX0 0x1C2B00 AV1/Video Decode Block

AV1/VDBOX1 0x1C6B00

AV1/VDBOX2 0x1D2B00

AV1/VDBOX3 0x1D6B00

AV1/VDBOX4 0x1E2B00

AV1/VDBOX5 0x1E6B00

AV1/VDBOX6 0x1F2B00

AV1/VDBOX7 0x1F6B00

HEVC 0x1C2800

HEVC1 0x1C6800

HEVC2 0x1D2800

HEVC3 0x1D6800

HEVC4 0x1E2800

HEVC5 0x1E6800

Doc Ref # IHD-OS-DG1-Vol 8-2.21 31

Unit MMIO Base Offset Description

HEVC6 0x1F2800

HEVC7 0x1F6800

VDENC 0x1c2d00

VDENC1 0x1c6d00

VDENC2 0x1d2d00

VDENC3 0x1d6d00

VDENC4 0x1e2d00

VDENC5 0x1e6d00

VDENC6 0x1f2d00

VDENC7 0x1f6d00

Read Only User Mode Privilege MMIO Access

The tables below specify the offsets that are allowed for MMIO reads within a non-privileged batch

buffer(PPGTT). This is in addition to what is already allowlisted for writes in the User Mode Privileged

Commands section. Refer to Register Access and User Mode Privileges section for Base address for the

below offsets.

CS means all command streamers.

Read Only Whitelist

Name Base Address (default=none) MMIO Offset (hex) Size in DW

All Command Streamers

OAG_PERF_<x> 2700 64

OAG_PERF_<x> 2B00 320

OAG_PERF_<x> D900 192

RenderCS / PositionCS

GPU_TIMESTAMP 2358 2

GPU_TIMESTAMP 18358 2

CS_ENGINE_ID 1808C 1

RP_STATUS0 A01C 1

OAR_PERF_<x> 2800 192

GFXREG_GT 145040 7

GFXREG_IA 145828 13

GFXREG_IO 145928 24

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD1 A288 1

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD2 A28C 1

GFXREG_UNSLICE_FF_COUNT1 A538 1

GFXREG_UNSLICE_FF_COUNT2 A53C 1

32 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Name Base Address (default=none) MMIO Offset (hex) Size in DW

GFXREG_RPPREVUP A058 1

GFXREG_RPPREVDN A064 1

GFXREG_RPUPEI A068 1

GFXREG_RPDNEI A06C 1

GFXREG_GT_GFX_RC6 138108 1

GFXREG_GT_GFX_RC6P 13810C 1

CS_CTX_TIMESTAMP 23A8 1

OASTATUS DAFC 1

OAHEADPTR DB00 1

OATAILPTR DB04 1

ComputeCS

GPU_TIMESTAMP CCS 358 2

RP_STATUS0 A01C 1

GFXREG_GT 145040 7

GFXREG_IA 145828 13

GFXREG_IO 145928 24

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD1 A288 1

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD2 A28C 1

GFXREG_UNSLICE_FF_COUNT1 A538 1

GFXREG_UNSLICE_FF_COUNT2 A53C 1

GFXREG_RPPREVUP A058 1

GFXREG_RPPREVDN A064 1

GFXREG_RPUPEI A068 1

GFXREG_RPDNEI A06C 1

GFXREG_GT_GFX_RC6 138108 1

GFXREG_GT_GFX_RC6P 13810C 1

CS_CTX_TIMESTAMP CCS 3A8 1

OASTATUS DAFC 1

OAHEADPTR DB00 1

OATAILPTR DB04 1

OAC_PERF_<x> 15000 160

BlitterCS

GPU_TIMESTAMP 22358 2

RP_STATUS0 A01C 1

PERFCNT1_LSB 91B8 1

PERFCNT1_MSB 91BC 1

PERFCNT2_LSB 91C0 1

Doc Ref # IHD-OS-DG1-Vol 8-2.21 33

Name Base Address (default=none) MMIO Offset (hex) Size in DW

PERFCNT2_MSB 91C4 1

GFXREG_GT 145040 7

GFXREG_IA 145828 13

GFXREG_IO 145928 24

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD1 A288 1

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD2 A28C 1

GFXREG_UNSLICE_FF_COUNT1 A538 1

GFXREG_UNSLICE_FF_COUNT2 A53C 1

GFXREG_RPPREVUP A058 1

GFXREG_RPPREVDN A064 1

GFXREG_RPUPEI A068 1

GFXREG_RPDNEI A06C 1

GFXREG_GT_GFX_RC6 138108 1

GFXREG_GT_GFX_RC6P 13810C 1

OASTATUS DAFC 1

OAHEADPTR DB00 1

OATAILPTR DB04 1

VideoCS

GPU_TIMESTAMP VCS 358 2

RP_STATUS0 A01C 1

PERFCNT1_LSB 91B8 1

PERFCNT1_MSB 91BC 1

PERFCNT2_LSB 91C0 1

PERFCNT2_MSB 91C4 1

GFXREG_GT 145040 7

GFXREG_IA 145828 13

GFXREG_IO 145928 24

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD1 A288 1

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD2 A28C 1

GFXREG_UNSLICE_FF_COUNT1 A538 1

GFXREG_UNSLICE_FF_COUNT2 A53C 1

GFXREG_RPPREVUP A058 1

GFXREG_RPPREVDN A064 1

GFXREG_RPUPEI A068 1

GFXREG_RPDNEI A06C 1

GFXREG_GT_GFX_RC6 138108 1

GFXREG_GT_GFX_RC6P 13810C 1

34 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Name Base Address (default=none) MMIO Offset (hex) Size in DW

hucStatusRegOffset HUC 0 1

hucUKernelHdrInfoRegOffset HUC 14 1

hucStatus2RegOffset HUC 3B0 1

CS_ENGINE_ID VCS 8C 1

OASTATUS DAFC 1

OAHEADPTR DB00 1

OATAILPTR DB04 1

Perf Profiler Timer Reg D00 1

VideoEnhancementCS

GPU_TIMESTAMP VECS 358 2

RP_STATUS0 A01C 1

PERFCNT1_LSB 91B8 1

PERFCNT1_MSB 91BC 1

PERFCNT2_LSB 91C0 1

PERFCNT2_MSB 91C4 1

GFXREG_GT 145040 7

GFXREG_IA 145828 13

GFXREG_IO 145928 24

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD1 A288 1

GFXREG_UNSLICE_FF_CTRL_FLC_THRSHLD2 A28C 1

GFXREG_UNSLICE_FF_COUNT1 A538 1

GFXREG_UNSLICE_FF_COUNT2 A53C 1

GFXREG_RPPREVUP A058 1

GFXREG_RPPREVDN A064 1

GFXREG_RPUPEI A068 1

GFXREG_RPDNEI A06C 1

GFXREG_GT_GFX_RC6 138108 1

GFXREG_GT_GFX_RC6P 13810C 1

CS_ENGINE_ID VECS 8C 1

OASTATUS DAFC 1

OAHEADPTR DB00 1

OATAILPTR DB04 1

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch

buffer or directly from a ring. Batch buffers in GGTT memory space are privileged and batch buffers in

PPGTT memory space are non-privileged. On parsing privileged command from a non-privileged batch

Doc Ref # IHD-OS-DG1-Vol 8-2.21 35

buffer, a Command Privilege Violation Error is flagged and the command is dropped. Command Privilege

Violation Error is logged in Error identity register of command streamer which gets propagated as

"Command Parser Violation Error" interrupt to SW. Privilege access violation checks in HW can be

disabled by setting "Privilege Check Disable" bit in GFX_MODE register. When privilege access checks are

disabled HW executes the Privilege command as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers Source

MI_UPDATE_GTT Command is converted to NOOP. *CS

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_STORE_DATA_INDEX Command is converted to NOOP. *CS

MI_STORE_REGISTER_MEM Register read is always performed. Memory update is

dropped if Use Global GTT is enabled.

*CS

MI_BATCH_BUFFER_START
Command when executed from a batch buffer can set

its "Privileged" level to its parent batch buffer or lower.

Chained or Second level batch buffer can be

"Privileged" only if the parent or the initial batch buffer

is "Privileged". This is HW enforced.

*CS

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register

accessed is privileged.

*CS

MI_LOAD_REGISTER_MEM
Command is converted to NOOP if Use Global GTT is

enabled.

Command is converted to NOOP if the register

accessed is privileged.

*CS

MI_LOAD_REGISTER_REG Register write to a Privileged Register is discarded. *CS

MI_REPORT_PERF_COUNT Command is converted to NOOP if Use Global GTT is

enabled.

Render CS

PIPE_CONTROL
Still send flush down, Post-Sync Operation is NOOP if

Use Global GTT or Use "Store Data Index" is enabled.

Post-Sync Operation LRI to Privileged Register is

discarded.

Render CS,

ComputeCS

MI_SET_CONTEXT Command is converted to NOOP. Render CS,

ComputeCS

MI_ATOMIC Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is

used for source or destination address.

*CS

MI_SEMAPHORE_WAIT
Command is converted to NOOP if Use Global GTT is

*CS

36 Doc Ref # IHD-OS-DG1-Vol 8-2.21

User Mode Privileged Command Function in Non-Privileged Batch Buffers Source

enabled.

MI_ARB_ON_OFF Command is converted to NOOP. *CS

MI_DISPLAY_FLIP Command is converted to NOOP. *CS

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_FLUSH_DW Still send flush down, Post-Sync Operation is converted

to NOOP if Use Global GTT or Use "Store Data Index"

is enabled.

Blitter CS, Video

CS,

 Video

Enhancement CS

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and

converts the command to a NOOP.

The tables below list the non-privileged registers that can be written to from a non-privileged batch

buffer executed from various command streamers.

The tables below also are part of the allowed registers allowed to be read by a non-Privileged(PPGTT) batch buffer.

Refer to Read Only User Mode Privilege MMIO Access section for the rest of the allowable registers for read access.

User Mode Non-Privileged Registers for Render Command Streamer (RCS) and POSH Command Streamer

(POCS)

MMIO Name MMIO Offset Size in DWords

Cache_Mode_0 0x7000 1

Cache_Mode_1 0x7004 1

GT_MODE 0x7008 1

NOPID 0x2094 1

NOPID (POCS) 0x18094 1

INSTPM 0x20C0 1

INSTPM (POCS) 0x180C0 1

IA_VERTICES_COUNT 0x2310 2

IA_VERTICES_COUNT (POSH) 0x18310 2

IA_PRIMIVTIVES_COUNT 0x2318 2

IA_PRIMITIVES_COUNT (POSH) 0x18318 2

VS_INVOCATION_COUNT 0x2320 2

VS_INVOCATION_COUNT (POSH) 0x18320 2

HS_INVOCATION_COUNT 0x2300 2

DS_INVOCATION_COUNT 0x2308 2

GS_INVOCATION_COUNT 0x2328 2

GS_PRIMITIVES_COUNT 0x2330 2

SO_NUM_PRIMS_WRITTEN0 0x5200 2

SO_NUM_PRIMS_WRITTEN1 0x5208 2

Doc Ref # IHD-OS-DG1-Vol 8-2.21 37

MMIO Name MMIO Offset Size in DWords

SO_NUM_PRIMS_WRITTEN2 0x5210 2

SO_NUM_PRIMS_WRITTEN3 0x5218 2

SO_PRIM_STORAGE_NEEDED0 0x5240 2

SO_PRIM_STORAGE_NEEDED1 0x5248 2

SO_PRIM_STORAGE_NEEDED2 0x5250 2

SO_PRIM_STORAGE_NEEDED3 0x5258 2

SO_WRITE_OFFSET0 0x5280 1

SO_WRITE_OFFSET1 0x5284 1

SO_WRITE_OFFSET2 0x5288 1

SO_WRITE_OFFSET3 0x528C 1

CL_INVOCATION_COUNT 0x2338 2

CL_INVOCATION_COUNT (POSH) 0x18338 2

CL_PRIMITIVES_COUNT 0x2340 2

CL_PRIMITIVES_COUNT (POSH) 0x18340 2

PS_INVOCATION_COUNT 0x2348 2

PS_DEPTH_COUNT 0x2350 2

PS_INVOCATION_COUNT_0 0x22C8 2

PS_DEPTH_COUNT _0 0x22D8 2

PS_INVOCATION_COUNT_1 0x22F0 2

PS_DEPTH_COUNT _1 0x22F8 2

PS_INVOCATION_COUNT_2 0x2448 2

PS_DEPTH_COUNT_2 0x2450 2

PS_INVOCATION_COUNT_3 0x2458 2

PS_DEPTH_COUNT_3 0x2460 2

PS_INVOCATION_COUNT_4 0x2468 2

PS_DEPTH_COUNT_4 0x2470 2

PS_INVOCATION_COUNT_5 0x24A0 2

PS_DEPTH_COUNT_5 0x24A8 2

PS_INVOCATION_COUNT_6 0x25D0 2

PS_DEPTH_COUNT_6 0x25B0 2

PS_INVOCATION_COUNT_7 0x25D8 2

PS_DEPTH_COUNT_7 0x25B8 2

CPS_INVOCATION_COUNT 0x2478 2

GPUGPU_DISPATCHDIMX 0x2500 1

GPUGPU_DISPATCHDIMY 0x2504 1

GPUGPU_DISPATCHDIMZ 0x2508 1

MI_PREDICATE_SRC0 0x2400 1

38 Doc Ref # IHD-OS-DG1-Vol 8-2.21

MMIO Name MMIO Offset Size in DWords

MI_PREDICATE_SRC0 (POSH) 0x18400 1

MI_PREDICATE_SRC0 0x2404 1

MI_PREDICATE_SRC0 (POSH) 0x18404

MI_PREDICATE_SRC1 0x2408 1

MI_PREDICATE_SRC1 (POSH) 0x18408

MI_PREDICATE_SRC1 0x240C 1

MI_PREDICATE_SRC1 (POSH) 0x1840C

MI_PREDICATE_DATA 0x2410 1

MI_PREDICATE_DATA (POSH) 0x18410

MI_PREDICATE_DATA 0x2414 1

MI_PREDICATE_DATA (POSH) 0x18414

MI_PREDICATE_RESULT 0x2418 1

MI_PREDICATE_RESULT (POSH) 0x18418

MI_PREDICATE_RESULT_1 0x241C 1

MI_PREDICATE_RESULT_1 (POSH) 0x1841C

MI_PREDICATE_RESULT_2 0x23BC 1

MI_PREDICATE_RESULT_2 (POSH) 0x183BC

3DPRIM_END_OFFSET 0x2420 1

3DPRIM_END_OFFSET (POSH) 0x18420 1

3DPRIM_START_VERTEX 0x2430 1

3DPRIM_START_VERTEX (POSH) 0x18430 1

3DPRIM_VERTEX_COUNT 0x2434 1

3DPRIM_VERTEX_COUNT (POSH) 0x18434 1

3DPRIM_INSTANCE_COUNT 0x2438 1

3DPRIM_INSTANCE_COUNT (POSH) 0x18438 1

3DPRIM_START_INSTANCE 0x243C 1

3DPRIM_START_INSTANCE (POSH) 0x1843C 1

3DPRIM_BASE_VERTEX 0x2440 1

3DPRIM_BASE_VERTEX (POSH) 0x18440 1

3DPRIM_XP0 0x2690 1

3DPRIM_XP0 (POSH) 0x18690 1

3DPRIM_XP1 0x2694 1

3DPRIM_XP1 (POSH) 0x18694 1

3DPRIM_XP2 0x2698 1

3DPRIM_XP2 (POSH) 0x18698 1

GPGPU_THREADS_DISPATCHED 0x2290 2

BB_OFFSET 0x2158 1

Doc Ref # IHD-OS-DG1-Vol 8-2.21 39

MMIO Name MMIO Offset Size in DWords

BB_OFFSET (POCS) 0x18158 1

CS_GPR (1-16) 0x2600 32

CS_GPR (1-16) (POSH) 0x18600 32

OA_CTX_CONTROL 0x2360 1

OA_CTX_CONTROL_MSG 0x2AA0 1

OACTXID 0x2364 1

OAR_OACONTROL 0x2960 1

OAR_DEBUG_REGISTER 0x2964 1

OAR_OASTATUS 0x2968 1

PR_CTR_CTL_RCSUNIT 0x2178 1

PR_CTR_THRSH_RCSUNIT 0x217C 1

VSR_PUSH_CONSTANT_BASE 0xE518 1

PTBR_PAGE_POOL_SIZE_REGISTER 0x18590 1

OVR_CHICKEN2 0x185A0 1

PSS_MODE 0x7038 1

CMD_BUFF_CTL 0x2084 1

Z_DISCARD_EN 0x7040 1

COMMON_SLICE_CHICKEN2 0x7014 1

AUX_TABLE_BASE_ADDR_LOW 0x4200 1

AUX_TABLE_BASE_ADDR_HIGH 0x4204 1

CCS_AUX_INV 0x4208 1

TRTT_CR 0x4400 1

TRTT_VA_RANGE 0x4404 1

TRTT_L3_BASE_LOW 0x4408 1

TRTT_L3_BASE_HIGH 0x440C 1

TR_NULL_GFX 0x4410 1

TRTT_INVAL 0x4414 1

LSQCREG1 0xB100 1

LSQCREG4 0xB118 1

LSQCREG5 0xB158 1

LSQCREG6 0xB15C 1

L3ALLOCREG 0xB134 1

L3TCCNTLREG 0xB138 1

40 Doc Ref # IHD-OS-DG1-Vol 8-2.21

User Mode Non-Privileged Registers for Compute Command Streamer (CCS)

MMIO Name MMIO Offset Size in DWords

NOPID 0x1A094 1

INSTPM 0x1A0C0 1

GPUGPU_DISPATCHDIMX 0x1A500 1

GPUGPU_DISPATCHDIMY 0x1A504 1

GPUGPU_DISPATCHDIMZ 0x1A508 1

MI_PREDICATE_SRC0 0x1A400 1

MI_PREDICATE_SRC0 0x1A404 1

MI_PREDICATE_SRC1 0x1A408 1

MI_PREDICATE_SRC1 0x1A40C 1

MI_PREDICATE_DATA 0x1A410 1

MI_PREDICATE_DATA 0x1A414 1

MI_PREDICATE_RESULT 0x1A418 1

MI_PREDICATE_RESULT_1 0x1A41C 1

MI_PREDICATE_RESULT_2 0x1A3BC 1

GPGPU_THREADS_DISPATCHED 0x1A290 2

BB_OFFSET 0x1A158 1

CS_GPR (1-16) 0x1A600 32

PR_CTR_CTL_RCSUNIT 0x1A178 1

PR_CTR_THRSH_RCSUNIT 0x1A17C 1

CMD_BUFF_CTL 0x1A084 1

COMPCS0_AUX_TABLE_BASE_ADDR_LOW 0x42C0 1

COMPCS0_AUX_TABLE_BASE_ADDR_HIGH 0x42C4 1

COMPCS0_CCS_AUX_NV 0x42C8 1

COMP_CTX0_TRTT_CR 0x4580 1

COMP_CTX0_TRTT_VA_RANGE 0x4584 1

COMP_CTX0_TRTT_L3_BASE_LOW 0x4588 1

COMP_CTX0_TRTT_L3_BASE_HIGH 0x458C 1

COMP_CTX0_TRTT_NULL 0x4590 1

COMP_CTX0_TRTT_INVAL 0x4594 1

Doc Ref # IHD-OS-DG1-Vol 8-2.21 41

User Mode Non-Privileged Registers for Blitter Command Streamer(BCS)

MMIO Name MMIO Offset Size in DWords

BCS_GPR 0x22600 32

BCS_SWCTRL 0x22200 1

BLIT_CCTL 0x22204 1

PR_CTR_CTL_BCSUNIT 0x22178 1

PR_CTR_THRSH_BCSUNIT 0x2217C 1

BLT_TRTT_CR 0x4480 1

BLT_TRTT_VA_RANGE 0x4484 1

BLT_TRTT_L3_BASE_LOW 0x4488 1

BLT_TRTT_L3_BASE_HIGH 0x448C 1

BLT_TRTT_NULL 0x4490 1

BLT_TRTT_INV 0x4494 1

NOPID 0x22094 1

MI_PREDICATE_RESULT_1 0x2241C 1

MI_PREDICATE_RESULT_2 0x223BC 1

INSTPM 0x220C0 1

Refer to Register Access and User Mode Privileges section for Base address for the below offsets.

User Mode Non-Privileged Registers for Video Enhancement Command Streamer (VECS)

MMIO Name MMIO Base MMIO Offset Size in DWords

VECS_GPR VECS 0x600 32

PR_CTR_CTL_VECSUNIT VECS 0x178 1

PR_CTR_THRSH_VECSUNIT VECS 0x17C 1

NOPID VECS 0x094 1

MI_PREDICATE_RESULT_1 VECS 0x41C 1

MI_PREDICATE_RESULT_2 VECS 0x3BC 1

INSTPM VECS 0x0C0 1

* These registers are not at a standard offset from their corresponding CS MMIO base address and hence

are stated individually per CS in a separate table below.

42 Doc Ref # IHD-OS-DG1-Vol 8-2.21

User Mode Non-Privileged Registers for Video Command Streamer (ALL VCS)

MMIO Name Unit Base MMIO Range Size in DWords

VCS_GPR VCS 0x600 32

PR_CTR_CTL_VCSUNIT VCS 0x178 1

PR_CTR_THRSH_VCSUNIT VCS 0x17C 1

MFC_VDBOX1 VCS 0x800 512

HEVC HEVC 0x00 64

VDENC VDENC 0x00 64

NOPID VCS 0x094 1

MI_PREDICATE_RESULT_1 VCS 0x41C 1

MI_PREDICATE_RESULT_2 VCS 0x3BC 1

INSTPM VCS 0x0C0 1

* These registers are not at a standard offset from their corresponding CS MMIO base address and hence

are stated individually per CS in a separate table below.

VEBOX-1

MMIO Name MMIO Base MMIO Offset Size in DWords

AUX_TABLE_BASE_ADDR_LOW* n/a 0x42B0 1

AUX_TABLE_BASE_ADDR_HIGH* n/a 0x42B4 1

CCS_AUX_INV* n/a 0x42B8 1

TRTT_CR* n/a 0x4560 1

TRTT_VA_RANGE* n/a 0x4564 1

TRTT_L3_BASE_LOW* n/a 0x4568 1

TRTT_L3_BASE_HIGH* n/a 0x456C 1

TRTT_NULL* n/a 0x4570 1

TRTT_INVAL* n/a 0x4474 1

VDBOX-2

MMIO Name MMIO Base MMIO Offset Size in DWords

AUX_TABLE_BASE_ADDR_LOW* n/a 0x4290 1

AUX_TABLE_BASE_ADDR_HIGH* n/a 0x4294 1

CCS_AUX_INV* n/a 0x4298 1

TRTT_CR* n/a 0x4520 1

TRTT_VA_RANGE* n/a 0x4524 1

TRTT_L3_BASE_LOW* n/a 0x4528 1

TRTT_L3_BASE_HIGH* n/a 0x452C 1

Doc Ref # IHD-OS-DG1-Vol 8-2.21 43

MMIO Name MMIO Base MMIO Offset Size in DWords

TRTT_NULL* n/a 0x4530 1

TRTT_INVAL* n/a 0x4534 1

VDBOX-3

MMIO Name MMIO Base MMIO Offset Size in DWords

AUX_TABLE_BASE_ADDR_LOW* n/a 0x42A0 1

AUX_TABLE_BASE_ADDR_HIGH* n/a 0x42A4 1

CCS_AUX_INV* n/a 0x42A8 1

TRTT_CR* n/a 0x4540 1

TRTT_VA_RANGE* n/a 0x4544 1

TRTT_L3_BASE_LOW* n/a 0x4548 1

TRTT_L3_BASE_HIGH* n/a 0x454C 1

TRTT_NULL* n/a 0x4550 1

TRTT_INVAL* n/a 0x4554 1

Context Management

When the scheduler submits a list of workloads through the execution list, the Command streamer

hardware executes one context at a time.

An engine starts executing a context by loading the state (LRCA) in memory that is pointed to by the

context descriptor.

The structure of the LRCA are described in subsequent sections.

Global State

There is only one copy of state variables across contexts running on an engine and changing the settings

of these variables requires explicit programming of these state variables. Typically, global state variables

are programmed only once either at the time of power-on or at the time of GFX driver initialization.

Examples of global sate include:

• MI registers (HWSTAM, SEMA_WAIT_POLL ..etc)

• Configuration Registers (GFX_MODE ..etc)

The global state of an engine is context save/restored during power-off/on regimes.

Following subsections describe the power context images of engines across generations.

44 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Power Context Image

This section lists the power context image of Video Engine, Copy Engine and Video Enhancement Engine

across generations.

CSFE Power context without Display

CSFE Power Context Image with Display

Description Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

NOOP CS 1 0000 CSFE

Load_Register_Immediate header 0x1100_00B5 CS 1 0001 CSFE

GFX_MODE 0x029C CS 2 0002 CSFE

GHWSP 0x0080 CS 2 0004 CSFE

RC_PSMI_CONTROL 0x0050 CS 2 0006 CSFE

RC_PWRCTX_MAXCNT 0x0054 CS 2 0008 CSFE

CTX_WA_PTR 0x0058 CS 2 000A CSFE

NOPID 0x0094 CS 2 000C CSFE

HWSTAM 0x0098 CS 2 000E CSFE

IMR 0x00A8 CS 2 0010 CSFE

EIR 0x00B0 CS 2 0012 CSFE

EMR 0x00B4 CS 2 0014 CSFE

CMD_CCTL_0 0x00C4 CS 2 0016 CSFE

PREEMPT_DLY 0x0214 CS 2 0018 CSFE

CTXT_PREMP_DBG 0x0248 CS 2 001A CSFE

WAIT_FOR_RC6_EXIT 0x00CC CS 2 001C CSFE

RCS_CTXID_PREEMPTION_HINT 0x04CC CS 2 001E CSFE

CS_PREEMPTION_HINT_UDW 0x04C8 CS 2 0020 CSFE

CS_PREEMPTION_HINT 0x04BC CS 2 0022 CSFE

CCID Register 0x0180 CS 2 0024 CSFE

MI_PREDICATE_RESULT_2 0x03BC CS 2 0026 CSFE

CTXT_ST_PTR 0x03A0 CS 2 0028 CSFE

CTXT_ST_BUF 0x0370 CS 24 002A CSFE

CTXT_ST_BUF 0x03C0 CS 24 0042 CSFE

SEMA_WAIT_POLL 0x024C CS 2 005A CSFE

IDLEDELAY 0x023C CS 2 005C CSFE

RCS_FORCE_TO_NONPRIV_0_11 0x04D0 CS 24 005E CSFE

RCS_FORCE_TO_NONPRIV_12_15 0x010 CS 8 0076 CSFE

RCS_FORCE_TO_NONPRIV_16_19 0x1D0 CS 8 007E CSFE

EXECLIST_STATUS_REGISTER 0x0234 CS 2 0086 CSFE

Doc Ref # IHD-OS-DG1-Vol 8-2.21 45

Description Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

CXT_OFFSET 0x01AC CS 2 008A CSBE

STOP_PARSER_CONTROL 0x0424 CS 2 008C CSBE

STOP_PARSER_HINT_ADDR 0x0428 Cs 4 008E CSBE

EXECLIST_SQ_CONTENTS 0x0510-0x054F CS 32 0092 CSFE

CSB_INTERRUPT_MASK 0x0218 CS 2 00B2 CSFE

EQ_ELEMENT_MASK 0x056C CS 2 00B4 CSFE

NOOP CS 8 00B8 CSFE

NOOP CS 2 00B8 CSFE

CSFE Power Context with Display

CSFE Power Context Image with Display

Description Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

NOOP CS 1 0000 CSFE

Load_Register_Immediate header 0x1100_00C7 CS 1 0001 CSFE

GFX_MODE 0x029C CS 2 0002 CSFE

GHWSP 0x0080 CS 2 0004 CSFE

RC_PSMI_CONTROL 0x0050 CS 2 0006 CSFE

RC_PWRCTX_MAXCNT 0x0054 CS 2 0008 CSFE

CTX_WA_PTR 0x0058 CS 2 000A CSFE

NOPID 0x0094 CS 2 000C CSFE

HWSTAM 0x0098 CS 2 000E CSFE

IMR 0x00A8 CS 2 0010 CSFE

EIR 0x00B0 CS 2 0012 CSFE

EMR 0x00B4 CS 2 0014 CSFE

CMD_CCTL_0 0x00C4 CS 2 0016 CSFE

PREEMPT_DLY 0x0214 CS 2 0018 CSFE

CTXT_PREMP_DBG 0x0248 CS 2 001A CSFE

SYNC_FLIP_STATUS 0x02D0 CS 2 001C CSFE

SYNC_FLIP_STATUS_1 0x02D4 CS 2 001E CSFE

SYNC_FLIP_STATUS_2 0x02EC CS 2 0020 CSFE

WAIT_FOR_RC6_EXIT 0x00CC CS 2 0022 CSFE

RCS_CTXID_PREEMPTION_HINT 0x04CC CS 2 0024 CSFE

CS_PREEMPTION_HINT_UDW 0x04C8 CS 2 0026 CSFE

CS_PREEMPTION_HINT 0x04BC CS 2 0028 CSFE

CCID Register 0x0180 CS 2 002A CSFE

MI_PREDICATE_RESULT_2 0x03BC CS 2 002C CSFE

46 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Description Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

CTXT_ST_PTR 0x03A0 CS 2 002E CSFE

CTXT_ST_BUF 0x0370 CS 24 0030 CSFE

CTXT_ST_BUF 0x03C0 CS 24 0048 CSFE

SEMA_WAIT_POLL 0x024C CS 2 0060 CSFE

IDLEDELAY 0x023C CS 2 0062 CSFE

DISPLAY MESSAGE FORWARD STATUS 0x02E8 CS 2 0064 CSFE

RCS_FORCE_TO_NONPRIV_0_11 0x04D0 CS 24 0066 CSFE

RCS_FORCE_TO_NONPRIV_12_15 0x010 CS 8 007E CSFE

RCS_FORCE_TO_NONPRIV_16_19 0x1D0 CS 8 0086 CSFE

EXECLIST_STATUS_REGISTER 0x0234 CS 2 008E CSFE

CXT_OFFSET 0x01AC CS 2 0092 CSBE

STOP_PARSER_CONTROL 0x0424 CS 2 0094 CSBE

STOP_PARSER_HINT_ADDR 0x0428 Cs 4 0098 CSBE

SYNC_FLIP_STATUS_3 0x02B8 CS 2 009A CSFE

SYNC_FLIP_STATUS_4 0x02C0 CS 2 009C CSFE

SYNC_FLIP_STATUS_5 0x02C4 CS 2 009E CSFE

SYNC_FLIP_STATUS_6 0x01F8 CS 2 00A0 CSFE

DISPLAY MESSAGE FORWARD STATUS_2 0x0188 CS 2 00A2 CSFE

DISPLAY MESSAGE FORWARD STATUS_3 0x018C CS 2 00A4 CSFE

EXECLIST_SQ_CONTENTS 0x0510-0x054F CS 32 00A6 CSFE

CSB_INTERRUPT_MASK 0x0218 CS 2 00C6 CSFE

EQ_ELEMENT_MASK 0x056C CS 2 00C8 CSFE

NOOP CS 4 00D0 CSFE

Doc Ref # IHD-OS-DG1-Vol 8-2.21 47

CSFE Power Context

CSFE Power Context Image

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

NOOP CS 1 0 CSFE

Load_Register_Immediate header 0x1100_00DB CS 1 001 CSFE

GFX_MODE 0x029C CS 2 0002 CSFE

GHWSP 0x0080 CS 2 0004 CSFE

RING_BUFFER_CONTROL (Ring Always

Disabled)

0x003C CS 2 0006 CSFE

Ring Head Pointer Register 0x0034 CS 2 0008 CSFE

Ring Tail Pointer Register 0x0030 CS 2 000A CSFE

RING_BUFFER_START 0x0038 CS 2 000C CSFE

RING_BUFFER_CONTROL (Original status) 0x003C CS 2 000E CSFE

Batch Buffer Current Head Register (UDW) 0x0168 CS 2 0010 CSFE

Batch Buffer Current Head Register 0x0140 CS 2 0012 CSFE

Batch Buffer State Register 0x0110 CS 2 0014 CSFE

SECOND_BB_ADDR_UDW 0x011C CS 2 0016 CSFE

SECOND_BB_ADDR 0x0114 CS 2 0018 CSFE

SECOND_BB_STATE 0x0118 CS 2 001A CSFE

RC_PSMI_CONTROL 0x0050 CS 2 001C CSFE

RC_PWRCTX_MAXCNT 0x0054 CS 2 001E CSFE

CTX_WA_PTR 0x0058 CS 2 0020 CSFE

NOPID 0x0094 CS 2 0022 CSFE

HWSTAM 0x0098 CS 2 0024 CSFE

IMR 0x00A8 CS 2 0026 CSFE

EIR 0x00B0 CS 2 0028 CSFE

EMR 0x00B4 CS 2 002A CSFE

CMD_CCTL_0 0x00C4 CS 2 002C CSFE

UHPTR 0x0134 CS 2 002E CSFE

BB_PREEMPT_ADDR_UDW 0x016C CS 2 0030 CSFE

BB_PREEMPT_ADDR 0x0148 CS 2 0032 CSFE

RING_BUFFER_HEAD_PREEMPT_REG 0x014C CS 2 0034 CSFE

PREEMPT_DLY 0x0214 CS 2 0036 CSFE

CTXT_PREMP_DBG 0x0248 CS 2 0038 CSFE

SYNC_FLIP_STATUS 0x02D0 CS 2 003A CSFE

48 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

SYNC_FLIP_STATUS_1 0x02D4 CS 2 003C CSFE

SYNC_FLIP_STATUS_2 0x02EC CS 2 003E CSFE

WAIT_FOR_RC6_EXIT 0x00CC CS 2 0040 CSFE

RCS_CTXID_PREEMPTION_HINT 0x04CC CS 2 0042 CSFE

CS_PREEMPTION_HINT_UDW 0x04C8 CS 2 0044 CSFE

CS_PREEMPTION_HINT 0x04BC CS 2 0046 CSFE

CCID Register 0x0180 CS 2 0048 CSFE

SBB_PREEMPT_ADDRESS_UDW 0x0138 CS 2 004A CSFE

SBB_PREEMPT_ADDRESS 0x013C CS 2 004C CSFE

MI_PREDICATE_RESULT_2 0x03BC CS 2 004E CSFE

CTXT_ST_PTR 0x03A0 CS 2 0050 CSFE

CTXT_ST_BUF 0x0370 CS 24 0052 CSFE

CTXT_ST_BUF 0x03C0 CS 24 006A CSFE

SEMA_WAIT_POLL 0x024C CS 2 0082 CSFE

IDLEDELAY 0x023C CS 2 0084 CSFE

DISPLAY MESSAGE FORWARD STATUS 0x02E8 CS 2 0086 CSFE

RCS_FORCE_TO_NONPRIV 0x04D0 CS 24 0088 CSFE

EXECLIST_STATUS_REGISTER 0x0234 CS 2 00A0 CSFE

CXT_OFFSET 0x01AC CS 2 00A4 CSBE

STOP_PARSER_CONTROL 0x0424 CS 2 00A6 CSBE

STOP_PARSER_HINT_ADDR 0x0428 Cs 4 00A8 CSBE

SYNC_FLIP_STATUS_3 0x02B8 CS 2 00AC CSFE

SYNC_FLIP_STATUS_4 0x02C0 CS 2 00AE CSFE

SYNC_FLIP_STATUS_5 0x02C4 CS 2 00B0 CSFE

SYNC_FLIP_STATUS_6 0x01F8 CS 2 00B2 CSFE

DISPLAY MESSAGE FORWARD STATUS_2 0x0188 CS 2 00B4 CSFE

DISPLAY MESSAGE FORWARD STATUS_3 0x018C CS 2 00B6 CSFE

EXECLIST_SQ_CONTENTS 0x0510-

0x054F

CS 32 00B8 CSFE

CSB_INTERRUPT_MASK 0x0218 CS 2 00D8 CSFE

EQ_ELEMENT_MASK 0x056C CS 2 00DA CSFE

Doc Ref # IHD-OS-DG1-Vol 8-2.21 49

Context State

Context state is associated with a specific context. Context state can be programmed through Command

Stream only when the associated context is being actively executed in the engine. Examples of context

state include

• 3D STATE * commands (Render Engine)

• BCS TILE REGISTER (Copy Engine)

Context state is save/restored through Logical Context.

Logical Contexts

A logical context is an area in memory used to store hardware context state information and the context

is referenced via a context descriptor. Context descriptor carries graphics memory address. Logical

Context is always in global virtual memory. GFX device provides means to save and restore the hardware

context state to logical context. Context state save/restore mechanism is used by SW to avoid re-

programming the HW state across context switches for a given context.

CSFE Execlist Context

This section details the CSFE Execlist Context which is the common layout referred to as part of the

VDBOX, Copy Engine and Video Enhancment context images.

CSFE Execlist Context

Programming Note

Context: MMIO Offset information

MMIO offset mentioned for the registers in the below table are offset form the units "MMIO Base Offset" mentiond

in the table " Base Offset for Video Command Streamers and Media Engine" in the section User Mode Privileged

Commands. For Example: VECS has MMIO Base Offset as "0x1C_8000". In the below table "Context Control" register

has 0x00244 as offset against it, actual MMIO Offset of "Context Control" register for VECS is 0xx1C_8244.

Blitter Engine MMIO base offset must be considered as 0x2_0000.

50 Doc Ref # IHD-OS-DG1-Vol 8-2.21

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

Description MMIO Offset/Command Unit # of DW Offset

NOOP CSEL 1 0

Load_Register_Immediate header 0x1108_1019 CSEL 1 0001

Context Control 0x00244 CSEL 2 0002

Ring Head Pointer Register 0x00034 CSEL 2 0004

Ring Tail Pointer Register 0x00030 CSEL 2 0006

RING_BUFFER_START 0x00038 CSEL 2 0008

RING_BUFFER_CONTROL 0x0003C CSEL 2 000A

Batch Buffer Current Head Register (UDW) 0x00168 CSEL 2 000C

Batch Buffer Current Head Register 0x00140 CSEL 2 000E

Batch Buffer State Register 0x00110 CSEL 2 0010

BB_PER_CTX_PTR 0x001C0 CSEL 2 0012

CS_INDIRECT_CTX 0x001C4 CSEL 2 0014

CS_INDIRECT_CTX_OFFSET 0x001C8 CSEL 2 0016

CCID 0x00180 CSEL 2 0018

SEMAPHORE_TOKEN 0x002B4 CSEL 2 001A

NOOP CSEL 4 001C

NOOP CSEL 1 0020

Load_Register_Immediate header 0x1108_1011 CSEL 1 0021

CTX_TIMESTAMP 0x003A8 CSEL 2 0022

PDP3_UDW 0x0028C CSEL 2 0024

PDP3_LDW 0x00288 CSEL 2 0026

PDP2_UDW 0x00284 CSEL 2 0028

PDP2_LDW 0x00280 CSEL 2 002A

PDP1_UDW 0x0027C CSEL 2 002C

PDP1_LDW 0x00278 CSEL 2 002E

PDP0_UDW 0x00274 CSEL 2 0030

PDP0_LDW 0x00270 CSEL 2 0032

NOOP CSEL 4 0034

NOOP CSEL 8 0038

NOOP {EXISTS IF (VCS, VECS)} CSEL_BE 16 0040

NOOP {EXISTS IF (BCS)} CSEL_BE 1 0040

Load_Register_Immediate header 0x1100_1003 {EXISTS IF (BCS)} CSEL_BE 1 0041

Doc Ref # IHD-OS-DG1-Vol 8-2.21 51

Description MMIO Offset/Command Unit # of DW Offset

BCS TILE REGISTER 0x02200 {EXISTS IF (BCS)} CSEL_BE 2 0042

BLIT_CCTL 0x02204 {EXISTS IF (BCS)} CSEL_BE 2 0044

NOOP {EXISTS IF (BCS)} CSEL_BE 10 0046

NOOP CSFE 1 0050

Load_Register_Immediate header 0x1100_1063 CSFE 1 0051

BB_STACK_WRITE_PORT 0x00588 CSFE 12 0052

EXCC 0x00028 CSFE 2 005E

MI_MODE 0x0009C CSFE 2 0060

INSTPM 0x000C0 CSFE 2 0062

PR_CTR_CTL 0x00178 CSFE 2 0064

PR_CTR_THRSH 0x0017C CSFE 2 0066

TIMESTAMP Register (LSB) 0x00358 CSFE 2 0068

BB_START_ADDR_UDW 0x00170 CSFE 2 006A

BB_START_ADDR 0x00150 CSFE 2 006C

BB_ADD_DIFF 0x00154 CSFE 2 006E

BB_OFFSET 0x00158 CSFE 2 0070

MI_PREDICATE_RESULT_1 0x0041C CSFE 2 0072

CS_GPR (1-16) 0x00600 CSFE 64 0074

IPEHR 0x00068 CSFE 2 00B4

MI_FORCE_WAKEUP {EXISTS IF (VCS, VECS)} CSFE 2 00B6

NOOP {EXISTS IF (BCS)} CSFE 2 00B6

AUX_TTRTT_BASE_ADDRESS_SECTION

(Seperate section for each engine mentioned below)

 CSFE 18 00B8

NOOP* CSFE 2 00CA

NOOP CSFE 4 00CC

52 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Video Enhancement Engine: AUX_TRTT_BASE_ADDRESS_SECTION

Description

MMIO

Offset/Command Unit

of

DW Offset

NOOP CSFE 1 00B6

Load_Register_Immediate

header

0x1102_100F CSFE 1 00B7

TRTT_CR 0x4460 CSFE 2 00BC

TRTT_VA_RANGE 0x4464 CSFE 2 00BE

TRTT_L3_BASE_LOW 0x4468 CSFE 2 00C0

TRTT_L3_BASE_HIGH 0x446C CSFE 2 00C2

TRTT_NULL 0x4470 CSFE 2 00C4

TRTT_INVAL 0x4474 CSFE 2 00C6

AUX_TABLE_BASE_ADDR_LOW 0x4230 CSFE 2 00B8

AUX_TABLE_BASE_ADDR_HIGH 0x4234 CSFE 2 00BA

Video Decode Engine:AUX_TRTT_BASE_ADDRESS_SECTION

Description

MMIO

Offset/Command Unit

of

DW Offset

NOOp CSFE 1 00B6

Load_Register_Immediate

header

0x1102_100F CSFE 1 00B7

TRTT_CR 0x4420 CSFE 2 00BC

TRTT_VA_RANGE 0x4424 CSFE 2 00BE

TRTT_L3_BASE_LOW 0x4428 CSFE 2 00C0

TRTT_L3_BASE_HIGH 0x442C CSFE 2 00C2

TRTT_NULL 0x4430 CSFE 2 00C4

TRTT_INVAL 0x4434 CSFE 2 00C6

AUX_TABLE_BASE_ADDR_LOW 0x4210 CSFE 2 00B8

AUX_TABLE_BASE_ADDR_HIGH 0x4214 CSFE 2 00BA

Copy Engine: AUX_TRTT_BASE_ADDRESS_SECTION

Description

MMIO

Offset/Command Unit

of

DW Offset

NOOP CSFE 1 00B6

Load_Register_Immediate

header

0x1102_100B CSFE 1 00B7

TRTT_CR 0x4480 CSFE 2 00BC

TRTT_VA_RANGE 0x4484 CSFE 2 00BE

TRTT_L3_BASE_LOW 0x4488 CSFE 2 00C0

TRTT_L3_BASE_HIGH 0x448C CSFE 2 00C2

Doc Ref # IHD-OS-DG1-Vol 8-2.21 53

Description

MMIO

Offset/Command Unit

of

DW Offset

TRTT_NULL 0x4490 CSFE 2 00C4

TRTT_INVAL 0x4494 CSFE 2 00C6

NOOP CSFE 2 00B8

NOOP CSFE 2 00BA

Producer-Consumer Data ordering for MI Commands

This section details the explicit data ordering enforced by HW for produce-consume of data between MI

commands and explicit programming notes for data ordering not explicitly enforced by HW.

This section describes the MI commands that result in modification of data in Graphics memory or MMIO

registers. These commands can be treated as producers of data for which consumers can either be SW or

subsequent commands (MI or non-MI) executed by HW.

Operations (memory update or MMIO update) resulting from a command execution can be classified in

to posted or non-posted.

• An operation is classified as posted if the operation initiated by the command is not guaranteed to

complete (data change to be reflected) before HW moves on to the following command to

execute, the posted operation is guaranteed to complete eventually. Posted operations can be

forced to complete through explicit or implicit means, detailed in following section.

o For example, a memory write is called posted if the hardware moves on to the next

command after generating a memory write without waiting for the memory modification to

reach a global observable point.

• An operation is classified as non-posted if the operation initiated by the command is completed

before HW moves on to execute the following command.

o For example, a memory write is called non-posted if the hardware waits for the memory

write to reach a global observable point before it moves on to the next command to

execute.

There are certain commands which supported both posted and non-posted operations and can be

programmed by SW to select the appropriate behavior based on the usage model.

54 Doc Ref # IHD-OS-DG1-Vol 8-2.21

Memory Data Ordering

This section details the produce-consume data for MI commands accessing memory.

Memory Data Producer

This section describes the MI commands that modify data in graphics memory. Few commands always

generate posted memory writes whereas few commands provide programmable option to generate

posted Vs non-posted memory writes.

• A memory write is called posted if the hardware moves on to the next command after generating a

memory write and doesn't wait for the memory modification to reach a global observable point.

Since HW doesn't wait for the memory write completion it can execute the next command

immediately without incurring any additional latency. Read after Write hazard is applicable in this

scenario.

• A memory write is called non-posted if the hardware waits for the memory write to reach a global

observable point before it moves on to the next command to execute. Since HW waits for the

memory write completion before it goes on to the next command, it will incur additional latency

causing a stall at top of the pipe. Read after write hazard will not happen in this scenario.

A write completion of a non-posted memory write will guarantee all the prior posted memory writes are

to global observable (GO) point.

For optimal performance SW must use commands generating non-posted memory writes at the minimal.

For example a single non-posted memory write can be used just before the consume point to flush out

all the prior posted memory writes to global observable point. Based on the usage model SW can use a

combination of commands that generate posted memory writes and non-posted memory writes for

optimal performance.

Table below lists the MI Commands that can update/modify the data in graphics memory and the

associated type of memory write.

Command Memory Write Type

MI_STORE_REGISTER_MEM Posted

MI_COPY_MEM_MEM Posted

MI_STORE_DATA_INDEX Posted

MI_STORE_DATA_IMM (with Wr. Completion) Non-Posted

MI_STORE_DATA_IMM (with out Wr. Completion) Posted

MI_REPORT_HEAD Posted

MI_UPDATE_GTT Posted

MI_REPORT_PERF_COUNT Posted

MI_ATOMIC Posted, Non-Posted

MI_FLUSH_DW (With Post-Sync Operation) Non-Posted

PIPE_CONTROL (non-stalling, with Post-Sync Operation) Posted

PIPE_CONTROL (Stalling, Post-Sync Operation) Non-Posted

Doc Ref # IHD-OS-DG1-Vol 8-2.21 55

Apart from the MI commands that generate Non-Posted memory writes listed in the above table,

execution of following commands will also implicitly ensure all prior posted writes are to Global

Observable point.

Command

PIPE_CONTROL (Stalling)

MI_FLUSH_DWORD

MI_USER_INTERRUPT

PIPE_CONTROL (with Notify Interrupt)

Memory Data - Consumer

Table below lists the MI command that read the data from graphics memory as part of the command

execution. Data in memory should be coherent prior to execution of these command to achieve expected

functional behavior upon execution of these commands, Graphics memory writes by the earlier executed

MI commands must be GO prior to execution of these commands. However, hardware has started

explicitly enforcing data ordering for few of the commands (based on the prevalent usage models) and

mentioned in the table below.

Command Coherency Requirement

MI_LOAD_REGISTER_MEM HW implicitly ensures memory writes by the prior MI commands by the

corresponding engine are coherent for this command execution.

MI_BATCH_BUFFER_START SW must ensure the data cohrency.

MI_CONDITIONAL_BATCH_BUFFER_END SW must ensure the data cohrency.

MI_ATOMIC HW implicitly ensures memory writes by the prior MI commands by the

corresponding engine are coherent for this command execution.

MI_SEMAPHORE_WAIT HW implicitly ensures memory writes by the prior MI commands by the

corresponding engine are coherent for this command execution.

SW can use any of the MI commands that generate non-posted memory writes or the commands that

implicitly force prior memory writes to GO to ensure data is coherent in memory prior to execution of

these commands.

56 Doc Ref # IHD-OS-DG1-Vol 8-2.21

MMIO Data Ordering

This section details the produce-consume data for MI commands accessing MMIO registers.

MMIO Data Producer

Table below lists the MI commands that modify data in MMIO registers and also states if the MMIO

writes generated are posted Vs non-posted.

• A MMIO write is called non-posted if the hardware waits for the MMIO update to occur before it

moves on to the next command to execute.

• A MMIO write is called posted if the hardware moves on to the next command after generating a

MMIO write without waiting for the MMIO update to occur.

All the MI commands listed below generate non-posted MMIO writes and hence HW guarantees the

MMIO modification has taken place before HW moves on the following command.

MI_LOAD_REGISTER_MEM supports both posted and non-posted behavior and can be configured

through "Async Mode Enable" bit in the command header.

Command MMIO Write Type

MI_LOAD_REGISTER_IMM Non-Posted

PIPE_CONTROL Non-Posted

MI_LOAD_REGISTER_MEM Posted, Non-Posted

MI_MATH Non-Posted

MI_LOAD_REGISTER_REG Non-Posted

MMIO Data Consumer

All the commands that modify the MMIO are non-posted and hence any MI command consumer of

MMIO data will always get the latest updated value.

Software must take care of appropriately programming the "Async Mode Enable" bit in

MI_LOAD_REGISTER_MEM command based on the requirements to enforce data ordering between

producer and consumer. Table below lists the MI commands that consume the MMIO data.

Command

MI_STORE_REGISTER_MEM

MI_PREDICATE

MI_LOAD_REGISTER_REG

MI_MATH

MI_SET_PREDICATE

MI_SEMAPHORE_WAIT (register poll)

MI_SEMAPHPORE_SIGNAL

Doc Ref # IHD-OS-DG1-Vol 8-2.21 57

Command Fetch

Command parser implements a DMA engine to fetch the command data from memory. DMA engine

pre-fetches eight cacheline worth of command data into its storage and keeps it ready to be executed, it

keeps fetching command data as and when space is available in the storage.

Advanced Command Prefetch

Advanced command pre-fetch is an enhancement to the existing DMA engine to addresses its limitation

of not being to stream pre-fetches on instructions causing jumps (Ex: Batch Buffer Start and Batch Buffer

End). Advanced command pre-fetch is enabled by default; however software is given flexibility to enable

or disable advanced command pre-fetch at its convenience by following means:

• Global state through MMIO (GFX_MODE) which is part of power context. This MMIO bit must be

enabled or disabled only through CPU path and must be done when there is no context active in

hardware.

• Inline to the command sequence through MI_ARB_CHK, this state is maintained per context. This

mechanism must be used by SW to disable pre-fetch around self-modification-code or around

selective command sequences of interest.

In order for pre-fetch functionality to be enabled both global and per context state should be set to pre-

fetch enable.

Self-Modifying Code

Self-modifying code (SMC) in context to command parser refers to a scenario where in a command

sequence executed by the command parser modifies the upcoming commands to be executed by

command parser. DMA pre-fetch of command data introduces certain programming restriction on

placement of the SMC in the command sequence.

• The modifying commands and the modified commands should be far apart by the number of

cachelines fetched by the CS for latency hiding(See Max Command FIFO Depth below) Or

• The modifying commands and the modified command must be executed after a batch buffer

start(chained or nested)

Advanced command preparser adds additional limitation to the programming of self-modifying code.

Software must explicitly disable the preparser logic before programming a batch buffer whose contents

has been modified by the earlier programmed command sequence (self-modifying code). Preparser logic

must be disabled using MI_ARB_CHECK command prior to programing the MI_BATCH_BUFFER_START

command and pre-fetch logic must be enabled using MI_ARB_CHECK as the first command inside the

batch buffer.

Max Command FIFO Depth

8

