

Intel® Open Source HD Graphics

Programmers' Reference Manual (PRM)

Volume 14: Observability Performance Counters

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™

Processors based on the "Cherry Trail/Braswell" Platform

(Cherryview/Braswell graphics)

October 2015, Revision 1.1

 Observability Performance Counters

ii Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS

OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS

ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 iii

Table of Contents

Trace ... 1

Performance Visibility ... 1

Motivation For Hardware-Assisted Performance Visibility ... 1

HW Support ... 1

Performance Counter Registers .. 1

Performance Counter Reporting .. 4

MI_REPORT_PERF_COUNT ... 5

Aggregating Counters .. 5

Flexible EU Event Counters ... 8

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 1

Trace

This section contains the following contents:

 Performance Visibility

Performance Visibility

Motivation For Hardware-Assisted Performance Visibility

As the focus on GFX performance and programmability has increased over time, the need for hardware

(HW) support to rapidly identify bottlenecks in HW and efficiently tune the work sent to same has

become correspondingly important. This part of the PRM describes the HW support for Performance

Visibility.

HW Support

This section contains various reporting counters and registers for hardware support for Performance

Visibility.

Performance Counter Registers

The following Performance Statistics registers must be part of the power context:

OAPERF_A0 - Aggregate Perf Counter A0

OAPERF_A0_UPPER - Aggregate Perf Counter A0 Upper DWord

OAPERF_A1 - Aggregate Perf Counter A1

OAPERF_A1_UPPER - Aggregate Perf Counter A1 Upper DWord

OAPERF_A2 - Aggregate Perf Counter 2

OAPERF_A2_UPPER - Aggregate Perf Counter A2 Upper DWord

OAPERF_A3 - Aggregate Perf Counter A3

OAPERF_A3_UPPER - Aggregate Perf Counter A3 Upper DWord

OAPERF_A4 - Aggregate Perf Counter A4

OAPERF_A4_UPPER - Aggregate Perf Counter A4 Upper DWord

OAPERF_A5 - Aggregate Perf Counter A5

OAPERF_A5_UPPER - Aggregate Perf Counter A5 Upper DWord

OAPERF_A6 - Aggregate Perf Counter A6

OAPERF_A6_UPPER - Aggregate Perf Counter A6 Upper DWord

OAPERF_A7 - Aggregate Perf Counter A7

OAPERF_A8 - Aggregate Perf Counter A8

OAPERF_A8_UPPER - Aggregate Perf Counter A8 Upper DWord

OAPERF_A9 - Aggregate Perf Counter A9

 Observability Performance Counters

2 Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15

OAPERF_A9_UPPER - Aggregate Perf Counter A9 Upper DWord

OAPERF_A10 - Aggregate Perf Counter A10

OAPERF_A10_UPPER - Aggregate Perf Counter A10 Upper DWord

OAPERF_A11 - Aggregate Perf Counter A11

OAPERF_A11_UPPER - Aggregate Perf Counter A11 Upper DWord

OAPERF_A12 - Aggregate Perf Counter A12

OAPERF_A12_UPPER - Aggregate Perf Counter A12 Upper DWord

OAPERF_A13 - Aggregate Perf Counter A13

OAPERF_A13_UPPER - Aggregate Perf Counter A13 Upper DWord

OAPERF_A14 - Aggregate Perf Counter A14

OAPERF_A14_UPPER - Aggregate Perf Counter A14 Upper DWord

OAPERF_A15 - Aggregate Perf Counter A15

OAPERF_A15_UPPER - Aggregate Perf Counter A15 Upper DWord

OAPERF_A16 - Aggregate Perf Counter A16

OAPERF_A16_UPPER - Aggregate Perf Counter A16 Upper DWord

OAPERF_A17 - Aggregate Perf Counter A17

OAPERF_A17_UPPER - Aggregate Perf Counter A17 Upper DWord

OAPERF_A18 - Aggregate Perf Counter A18

OAPERF_A18_UPPER - Aggregate Perf Counter A18 Upper DWord

OAPERF_A19 - Aggregate Perf Counter A19

OAPERF_A19_UPPER - Aggregate Perf Counter A19 Upper DWord

OAPERF_A20 - Aggregate Perf Counter A20

OAPERF_A20_UPPER - Aggregate Perf Counter A20 Upper DWord

OAPERF_A21 - Aggregate Perf Counter A21

OAPERF_A21_UPPER - Aggregate Perf Counter A21 Upper DWord

OAPERF_A22 - Aggregate Perf Counter A22

OAPERF_A22_UPPER - Aggregate Perf Counter A22 Upper DWord

OAPERF_A23 - Aggregate Perf Counter A23

OAPERF_A23_UPPER - Aggregate Perf Counter A23 Upper DWord

OAPERF_A24 - Aggregate Perf Counter A24

OAPERF_A24_UPPER - Aggregate Perf Counter A24 Upper DWord

OAPERF_A25 - Aggregate Perf Counter A25

OAPERF_A25_UPPER - Aggregate Perf Counter A25 Upper DWord

OAPERF_A26 - Aggregate Perf Counter A26

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 3

OAPERF_A26_UPPER - Aggregate Perf Counter A26 Upper DWord

OAPERF_A27 - Aggregate Perf Counter A27

OAPERF_A27_UPPER - Aggregate Perf Counter A27 Upper DWord

OAPERF_A28 - Aggregate Perf Counter A28

OAPERF_A28_UPPER - Aggregate Perf Counter A28 Upper DWord

OAPERF_A29 - Aggregate Perf Counter A29

OAPERF_A29_UPPER - Aggregate Perf Counter A29 Upper DWord

OAPERF_A30 - Aggregate Perf Counter A30

OAPERF_A30_UPPER - Aggregate Perf Counter A30 Upper DWord

OAPERF_A31 - Aggregate_Perf_Counter_A31

OAPERF_A31_UPPER - Aggregate Perf Counter A31 Upper DWord

OAPERF_A32 - Aggregate_Perf_Counter_A32

OAPERF_A33 - Aggregate_Perf_Counter_A33

OAPERF_A34 - Aggregate_Perf_Counter_A34

OAPERF_A35 - Aggregate_Perf_Counter_A35

OAPERF_B0 - Boolean_Counter_B0

OAPERF_B1 - Boolean_Counter_B1

OAPERF_B2 - Boolean_Counter_B2

OAPERF_B3 - Boolean_Counter_B3

OAPERF_B4 - Boolean_Counter_B4

OAPERF_B5 - Boolean_Counter_B5

OAPERF_B6 - Boolean_Counter_B6

OAPERF_B7 - Boolean_Counter_B7

 Observability Performance Counters

4 Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15

Performance Counter Reporting

When either the MI_REPORT_PERF_COUNT command is received or the internal report trigger logic

fires, a snapshot of the performance counter values is written to memory. The format used by HW for

such reports is selected using the Counter Select field within the OACONTROL register. The

organization and number of report formats vary per project and are detailed in the following section. In

the following layouts, the RPT_ID is always stored in the lowest addressed DWORD.

OA contains logic to control when performance counter values are reported to memory. This

functionality is controlled using the OA report trigger and OA start trigger registers. More detailed

register descriptions are included in the Hardware Programming interface. The block diagram below

illustrates the logic these registers control.

Note that counters which are 40 bits wide are split in the report format into low DWORD and high byte chunks

for simplicity of HW implementation as well as SW-friendly alignment of report data. The performance counter

read logically done before writing out report data for these 40-bit counters is guaranteed to be an atomic

operation, the counter data is simply swizzled as it is being packed into the report.

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 5

MI_REPORT_PERF_COUNT

MI_REPORT_PERF_Count

Aggregating Counters

The table below described the desired high-level functionality from each of the aggregating counters.

Note that there is no counter of 2x2s sent to pixel shader, this is based on the assumption that the pixel

shader invocation pipeline statistics counter increments for partially lit 2x2s as well and hence does not

require a duplicate performance counter.

Counter # Event Description

A0 Render Engine Busy Render engine is not idle.

 GPU Busy aggregate counter doesn’t increment under the following

conditions:

1. Context Switch in Progress.

2. GPU stalled on executing MI_WAIT_FOR_EVENT.

3. GPU stalled on execution MI_SEMAPHORE_MBOX.

4. RCS idle but other parts of GPU active (e.g. only media engines active)

A1
of Vertex Shader

Threads Dispatched

Count of VS threads dispatched to EUs

A2 # of Hull Shader

Threads Dispatched

Count of HS threads dispatched to EUs

A3 # of Domain Shader

Threads Dispatched

Count of DS threads dispatched to EUs

A4 # of GPGPU Threads

Dispatched

Count of GPGPU threads dispatched to EUs

A5 # of Geometry

Shader Threads

Dispatched

Count of GS threads dispatched to EUs

A6 # of Pixel Shader

Threads Dispatched

Count of PS threads dispatched to EUs

A7 Aggregating EU

counter 0

User-defined (details in Flexible EU Event Counters section)

A8 Aggregating EU

counter 1

User-defined (details in Flexible EU Event Counters section)

A9 Aggregating EU

counter 2

User-defined (details in Flexible EU Event Counters section)

A10 Aggregating EU

counter 3

User-defined (details in Flexible EU Event Counters section)

A11 Aggregating EU

counter 4

User-defined (details in Flexible EU Event Counters section)

 Observability Performance Counters

6 Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15

Counter # Event Description

A12 Aggregating EU

counter 5

User-defined (details in Flexible EU Event Counters section)

A13 Aggregating EU

counter 6

User-defined (details in Flexible EU Event Counters section)

A14 Aggregating EU

counter 7

User-defined (details in Flexible EU Event Counters section)

A15 Aggregating EU

counter 8

User-defined (details in Flexible EU Event Counters section)

A16 Aggregating EU

counter 9

User-defined (details in Flexible EU Event Counters section)

A17 Aggregating EU

counter 10

User-defined (details in Flexible EU Event Counters section)

A18 Aggregating EU

counter 11

User-defined (details in Flexible EU Event Counters section)

A19 Aggregating EU

counter 12

User-defined (details in Flexible EU Event Counters section)

A20 Aggregating EU

counter 13

User-defined (details in Flexible EU Event Counters section)

A21 2x2s Rasterized Count of the number of samples of 2x2 pixel blocks generated from the input

geometry before any pixel-level tests have been applied. (Please note that

2x2s may be in terms of pixels or in terms of samples depending on project

but are consistent between A21-A27.)

A22 2x2s Failing Fast pre-

PS Tests

Count of the number of samples failing fast "early" (i.e. before pixel shader

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in

terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.)

A23 2x2s Failing Slow

pre-PS Tests

Count of the number of samples of failing slow "early" (i.e. before pixel shader

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in

terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.) If a 2x2 sample partially fails the Z/STC test (i.e

some pixels fail and some pixels pass), the OA slow fail counter value will be

incorrect.

A24 2x2s Killed in PS Number of samples entirely killed in the pixel shader as a result of explicit

instructions in the kernel (counted in 2x2 granularity). (Please note that 2x2s

may be in terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.)

 Behavior of this counter changes when MSAA is enabled based on PS

dispatch mode (per-sample versus per-pixel). This leads to discrepancies in

how A24/A25 increment versus how A21-A23 and A26/A27 increment when

both MSAA and per-pixel PS dispatch are enabled.

 Counter may be inaccurate when pixel shader outputs output mask (e.g.

DX11 oMask declaration)

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 7

Counter # Event Description

A25 2x2s Failing post-PS

Tests

Number of samples that entirely fail "late" tests (i.e. tests that can only be

performed after pixel shader execution). Counted at 2x2 granularity. (Please

note that 2x2s may be in terms of pixels or in terms of samples depending on

project but are consistent between A21-A27.)

 Counter may be inaccurate when pixel shader is allowed to modify output

mask (e.g. DX11 oMask declaration)

 Behavior of this counter changes when MSAA is enabled based on PS

dispatch mode (per-sample versus per-pixel). This leads to discrepancies in

how A24/A25 increment versus how A21-A23 and A26/A27 increment when

both MSAA and per-pixel PS dispatch are enabled.

A26 2x2s Written To

Render Target

Number of samples that are written to render target.(counted at 2x2

granularity). MRT case will report multiple writes per 2x2 processed by the

pixel shader. (Please note that 2x2s may be in terms of pixels or in terms of

samples depending on project but are consistent between A21-A27.)

A27 Blended 2x2s

Written to Render

Target

Number of samples of blendable that are written to render target.(counted at

2x2 granularity). MRT case will report multiple writes per 2x2 processed by the

pixel shader. (Please note that 2x2s may be in terms of pixels or in terms of

samples depending on project but are consistent between A21-A27.)

A28 2x2s Requested from

Sampler

Aggregated total 2x2 texel blocks requested from all EUs to all instances of

sampler logic.

A29 Sampler L1 Misses Aggregated misses from all sampler L1 caches. Please note that the number

of L1 accesses varies with requested filtering mode and in other

implementation specific ways. Hence it is not possible in general to draw a

direct relationship between A28 and A29. However, a high number of sampler

L1 misses relative to texel 2x2s requested frequently degrades sampler

performance.

A30 SLM Reads Total read requests from an EU to SLM (including reads generated by atomic

operations).

A31 SLM Writes Total write requests from an EU to SLM (including writes generated by atomic

operations).

A32 Other Shader

Memory Accesses

Reserved, can generate per HDC version by looking at (hdc_cput == 1) &&

(hdc_dest[2:0] == 0b000 || hdc_dest[2:0] == 0b010).

A32 Other Shader

Memory Accesses

Aggregated total requests from all EUs to memory surfaces other than render

target or texture surfaces (e.g. shader constants).

A34 Atomic Accesses Aggregated total atomic accesses from all EUs. This counter increments on

atomic accesses to both SLM and URB.

A35 Barrier Messages Aggregated total completed barriers (one per barrier).

A35 Barrier Messages Aggregated total kernel barrier messages from all Eus (one per thread in

barrier).

 Observability Performance Counters

8 Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15

Flexible EU Event Counters

Since EU performance events are most interesting in many cases when aggregated across all EUs and

many interesting EU performance events are limited to certain APIs (e.g. hull shader kernel stats only

applicable when running a DX11+ workload), CHV, BSW adds some additional flexibility to the

aggregated counters coming from the EU array.

The following block diagram shows the high-level flow that generates each flexible EU event.

Note that no support is provided for differences between flexible EU event programming between EUs

because the resulting output from each EU is eventually merged into a single OA counter anyway.

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 9

Supported Increment Events

Increment Event Encoding Notes

EU FPU0 Pipeline

Active

0b0000 Signal that is high on every EU clock where the EU FPU0 pipeline is actively

executing a Gen ISA instruction.

Please note that FPU0 in this EU is the closest match to previous Gen EU's FPU

pipe.

EU FPU1 Pipeline

Active

0b0001 Signal that is high on every EU clock where the EU FPU1 pipeline is actively

executing a Gen ISA instruction.

Please note that FPU1 in this EU is the closest match to previous Gen EU's EM

pipe.

EU SEND Pipeline

Active

0b0010 Signal that is high on every EU clock where the EU send pipeline is actively

executing a Gen ISA instruction. Only fine event filters 0b0000,0b0101,

0b0110, 0b0111, 0b1000, 0b1001, and 0b1010 are supported with this

increment event.

EU FPU0 & FPU1

Pipelines

Concurrently Active

0b0011 Signal that is high on every EU clock where the EU FPU0 and FPU1 pipelines

are both actively executing a Gen ISA instruction. Only coarse event filters

0b0000, 0b0111, and 0b1000 are supported with this increment event. Only

fine event filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are supported

with this increment event.

Some EU Pipeline

Active

0b0100 Signal that is high on every EU clock where at least one EU pipeline is actively

executing a Gen ISA instruction. Only coarse event filters 0b0000, 0b0111, and

0b1000 are supported with this increment event. Only fine event filters

0b0000,0b0101, 0b0110, 0b0111, 0b1000, 0b1001, and 0b1010 are supported

with this increment event.

At Least 1 Thread

Loaded But No EU

Pipeline Active

0b0101 Signal that is high on every EU clock where at least one thread is loaded but

no EU pipeline is actively executing a Gen ISA instruction. Only coarse event

filters 0b0000, 0b0111, and 0b1000 are supported with this increment event.

Only fine event filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are

supported with this increment event.

Threads loaded

integrator == max

threads for current

HW SKU

0b1000 Implies an accumulator which increases every EU clock by the number of

loaded threads, signal pulses high for one clock when the accumulator

exceeds a multiple of the number of thread slots (e.g. for a 8-thread EU, signal

pulses high every clock where the increment causes a 3-bit accumulator to

overflow). Only coarse event filters 0b0000, 0b0111, and 0b1000 are

supported with this increment event. Only fine event filters 0b0000, 0b0111,

0b1000, 0b1001, and 0b1010 are supported with this increment event.

 Observability Performance Counters

10 Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15

Supported Coarse Event Filters

Coarse Event Filter Encoding Notes

No mask 0b0000 Never masks increment event.

Currently executing thread

came from VS

0b0001 Masks increment event unless the FFID which dispatched the currently

executing thread equals FFID of VS.

Currently executing thread

came from HS

0b0010 Masks increment event unless the FFID which dispatched the currently

executing thread equals FFID of HS.

Currently executing thread

came from DS

0b0011 Masks increment event unless the FFID which dispatched the currently

executing thread equals FFID of DS.

Currently executing thread

came from GS

0b0100 Masks increment event unless the FFID which dispatched the currently

executing thread equals FFID of GS.

Currently executing thread

came from PS

0b0101 Masks increment event unless the FFID which dispatched the currently

executing thread equals FFID of PS.

Currently executing thread

came from TS

0b0110 Masks increment event unless the FFID which dispatched the currently

executing thread equals FFID of TS.

Row = 0 0b0111 Masks increment event unless the row ID for this EU is 0 (control register

is in TDL so only have to check within quarter-slice).

Row = 1 0b1000 Masks increment event unless the row ID for this EU is 1 (control register

is in TDL so only have to check within quarter-slice).

 Observability Performance Counters

Doc Ref # IHD-OS-CHV-BSW-Vol 14-10.15 11

Fine Event Filters

Fine Event Filter Encoding Notes

None 0b0000 Never mask increment event.

Cycles where

hybrid instructions

are being executed

0b0001 Masks increment event unless the instruction(s) being executed on the

pipeline(s) selected by the increment event are hybrid instructions.

 Filter behaves unreliably when shader ISA uses 64-bit immediate values.

Cycles where

ternary instructions

are being executed

0b0010 Masks increment event unless the instruction(s) being executed on the

pipeline(s) selected by the increment event are ternary instructions.

Cycles where

binary instructions

are being executed

0b0011 Masks increment event unless the instruction(s) being executed on the

pipeline(s) selected by the increment event are binary instructions.

Cycles where mov

instructions are

being executed

0b0100 Masks increment event unless the instruction(s) being executed on the

pipeline(s) selected by the increment event are mov instructions.

Cycles where

sends start being

executed

0b0101 Masks increment event unless the instruction(s) being executed on the

pipeline(s) selected by the increment event are send start of dispatch. Note that

if this fine event filter is used in combination with increment events not related

to the EU send pipeline (e.g. FPU0 active), the associated flexible event counter

will increment in an implementation-specific manner.

EU# = 0b00 0b0111 Masks increment event unless the EU number for this EU is 0b00.

EU# = 0b01 0b1000 Masks increment event unless the EU number for this EU is 0b01.

EU# = 0b10 0b1001 Masks increment event unless the EU number for this EU is 0b10.

EU# = 0b11 0b1010 Masks increment event unless the EU number for this EU is 0b11.

