

Intel® Open Source HD Graphics

Programmers' Reference Manual (PRM)

Volume 11: Blitter

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™

Processors based on the "Cherry Trail/Braswell" Platform

(Cherryview/Braswell graphics)

October 2015, Revision 1.1

Blitter

ii Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS

OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS

ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 iii

Table of Contents

Blitter (BLT) Engine Command Streamer .. 1

Software Control Bit Definitions ... 1

Registers for Blitter Engine Command Streamer ... 1

BLT Engine ... 2

Introduction .. 2

Classical BLT Engine Functional Description ... 3

Basic BLT Functional Considerations ... 5

Color Depth Configuration and Color Expansion .. 5

Graphics Data Size Limitations .. 5

Bit-Wise Operations ... 6

Per-Pixel Write-Masking Operations ..10

When the Source and Destination Locations Overlap ...12

Basic Graphics Data Considerations ...16

Contiguous vs. Discontinuous Graphics Data ..16

Source Data ...18

Monochrome Source Data ..18

Pattern Data ..19

Destination Data..23

BLT Programming Examples ...24

Pattern Fill — A Very Simple BLT ..24

Drawing Characters Using a Font Stored in System Memory ...27

BLT Instruction Overview ..31

BLT Engine State ...31

Cacheable Memory Support ..32

Device Cache Coherency: Render & Texture Caches ...32

BLT Engine Instructions..32

BLT Programming Restrictions ...33

2D (XY) BLT Instructions ..34

BLT Engine Instruction Field Definitions ...37

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 1

Blitter (BLT) Engine Command Streamer

This pipeline has its own command streamer and operates completely independently of the other

command streamers. This command streamer supports a separate set of registers starting at offset

20000h.

Software Control Bit Definitions

Registers in the range 22XX are not protected from the load register immediate instruction if the

command is executed in the non-secure batch buffer.

BCS_SWCTRL - BCS SW Control

BCS_TIMESTAMP - BCS Reported Timestamp Count

BCS_CTX_TIMESTAMP - BCS Context Timestamp Count

Registers for Blitter Engine Command Streamer

These are the Registers for the Blitter Engine Command Streamer.

GAB_MODE - Mode Register for GAB

Blitter

2 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

BLT Engine

Introduction

2D Rendering can be divided into 2 categories: classical BLTs, described here, and 3D BLTs. 3D BLTs are

operations which can take advantage of the 3D drawing engine’s functionality and access patterns.

Functions such as Alpha BLTs, arithmetic (bilinear) stretch BLTs, rotations, transposing pixel maps, color

space conversion, and DIBs are all considered 3D BLTs and are covered in the 3D rendering section.

DIBs can be thought of as an indexed texture which uses the texture palette for performing the data

translation. All drawing engines have swappable context. The same hardware can be used by multiple

driver threads where the current state of the hardware is saved to memory and the appropriate state is

loaded from memory on thread switches.

All operands for both 3D and classical BLTs can be in graphics aperture or cacheable system memory.

Some operands can be immediates which are sent through the command stream. Immediate operands

are: patterns, monochrome sources, DIB palettes, and DIB source operands. All non-monochrome

operands which are not tiled have a stride granularity of a double-word (4 bytes).

The classical BLT commands support both linear addressing and X, Y coordinates with and without

clipping. All X1 and Y1 destination and clipping coordinates are inclusive, while X2 and Y2 are exclusive.

Currently, only destination coordinates can be negative. The source and clipping coordinates must be

positive. If clipping is disabled, but a negative destination coordinate is specified, the negative

coordinate is clipped to 0. Linear address BLT commands must supply a non-zero height and width. If

either height or width = 0, then no accesses occur.

Linear address (or non-XY) BLT commands are not supported.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 3

Classical BLT Engine Functional Description

The graphics controller provides a hardware-based BLT engine to off load the work of moving blocks of

graphics data from the host CPU. Although the BLT engine is often used simply to copy a block of

graphics data from the source to the destination, it also has the ability to perform more complex

functions. The BLT engine is capable of receiving three different blocks of graphics data as input as

shown in the figure below. The source data may exist in the frame buffer or the Graphics aperture. The

pattern data always represents an 8x8 block of pixels that can be located in the frame buffer, Graphics

aperture, or passed through a command packet. The pattern data must be located in linear memory.

The data already residing at the destination may also be used as an input. The destination data can also

be located in the frame buffer or graphics aperture.

Blitter

4 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Block Diagram and Data Paths of the BLT Engine

The BLT engine may use any combination of these three different blocks of graphics data as operands,

in both bit-wise logical operations to generate the actual data to be written to the destination, and in

per-pixel write-masking to control the writing of data to the destination. It is intended that the BLT

engine will perform these bit-wise and per-pixel operations on color graphics data that is at the same

color depth that the rest of the graphics system has been set. However, if either the source or pattern

data is monochrome, the BLT engine has the ability to put either block of graphics data through a

process called “color expansion” that converts monochrome graphics data to color. Since the

destination is often a location in the on-screen portion of the frame buffer, it is assumed that any data

already at the destination will be of the appropriate color depth.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 5

Basic BLT Functional Considerations

This topic is currently under development.

Color Depth Configuration and Color Expansion

The graphics system and BLT engine can be configured for color depths of 8, 16, and 32 bits per pixel.

The configuration of the BLT engine for a given color depth dictates the number of bytes of graphics

data that the BLT engine will read and write for each pixel while performing a BLT operation. It is

assumed that any graphics data already residing at the destination which is used as an input is already

at the color depth to which the BLT engine is configured. Similarly, it is assumed that any source or

pattern data used as an input has this same color depth, unless one or both is monochrome. If either

the source or pattern data is monochrome, the BLT engine performs a process called “color expansion”

to convert such monochrome data to color at the color depth to which the BLT engine has been set.

During “color expansion” the individual bits of monochrome source or pattern data that correspond to

individual pixels are converted into 1, 2, or 4 bytes (which ever is appropriate for the color depth to

which the BLT engine has been set). If a given bit of monochrome source or pattern data carries a value

of 1, then the byte(s) of color data resulting from the conversion process are set to carry the value of a

specified foreground color. If a given bit of monochrome source or pattern data carries a value of 0, the

resulting byte(s) are set to the value of a specified background color or not written if transparency is

selected.

The BLT engine is set to a default configuration color depth of 8, 16, or 32 bits per pixel through BLT

command packets. Whether the source and pattern data are color or monochrome must be specified

using command packets. Foreground and background colors for the color expansion of both

monochrome source and pattern data are also specified through the command packets. The source

foreground and background colors used in the color expansion of monochrome source data are

specified independently of those used for the color expansion of monochrome pattern data.

Graphics Data Size Limitations

The BLT engine is capable of transferring very large quantities of graphics data. Any graphics data read

from and written to the destination is permitted to represent a number of pixels that occupies up to

65,536 scan lines and up to 32,768 bytes per scan line at the destination. The maximum number of

pixels that may be represented per scan line’s worth of graphics data depends on the color depth.

Any source data used as an input must represent the same number of pixels as is represented by any

data read from or written to the destination, and it must be organized so as to occupy the same

number of scan lines and pixels per scan line.

The actual number of scan lines and bytes per scan line required to accommodate data read from or

written to the destination are set in the destination width & height registers or using X and Y

coordinates within the command packets. These two values are essential in the programming of the BLT

engine, because the engine uses these two values to determine when a given BLT operation has been

completed.

Blitter

6 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Bit-Wise Operations

The BLT engine can perform any one of 256 possible bit-wise operations using various combinations of

the three previously described blocks of graphics data that the BLT engine can receive as input.

The choice of bit-wise operation selects which of the three inputs will be used, as well as the particular

logical operation to be performed on corresponding bits from each of the selected inputs. The BLT

engine automatically foregoes reading any form of graphics data that has not been specified as an

input by the choice of bit-wise operation. An 8-bit code written to the raster operation field of the

command packets chooses the bit-wise operation. The following table lists the available bit-wise

operations and their corresponding 8-bit codes.

Bit-Wise Operations and 8-Bit Codes (00-3F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

00 writes all 0's 20 D and (P and (notS))

01 not(D or (P or S))) 21 not(S or(D xor P))

02 D and (not(P or S)) 22 D and (notS)

03 not(P or S) 23 not(S or (P and (notD)))

04 S and (not(D or P)) 24 (S xor P) and (D xor S)

05 not(D or P) 25 not(P xor (D and (not(S and P))))

06 not(P or (not(D xor S))) 26 S xor (D or (P and S))

07 not(P or (D and S)) 27 S xor (D or (not(P xor S)))

08 S and (D and (notP)) 28 D and (P xor S)

09 not(P or (D xor S)) 29 not(P xor (S xor (D or (P and S))))

0A D and (notP) 2A D and (not(P and S))

0B not(P or (S and (notD))) 2B not(S xor ((S xor P) and (P xor D)))

0C S and (notP) 2C S xor (P and (D or S))

0D not(P or (D and (notS))) 2D P xor (S or (notD))

0E not(P or (not(D or S))) 2E P xor (S or (D xor P))

0F notP 2F not(P and (S or (notD)))

10 P and (not(D or S)) 30 P and (notS)

11 not(D or S) 31 not(S or (D and (notP)))

12 not(S or (not(D xor P))) 32 S xor (D or (P or S))

13 not(S or (D and P)) 33 notS

14 not(D or (not(P xor S))) 34 S xor (P or (D and S))

15 not(D or (P and S)) 35 S xor (P or (not(D xor S)))

16 P xor (S xor (D and (not(P and S)))) 36 S xor (D or P)

17 not(S xor ((S xor P) and (D xor S))) 37 not(S and (D or P))

18 (S xor P) and (P xor D) 38 P xor (S and (D or P))

19 not(S xor (D and (not(P and S)))) 39 S xor (P or (notD))

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 7

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

1A P xor (D or (S and P)) 3A S xor (P or (D xor S))

1B not(S xor (D and (P xor S))) 3B not(S and (P or (notD)))

1C P xor (S or (D and P)) 3C P xor S

1D not(D xor (S and (P xor D))) 3D S xor (P or (not(D or S)))

1E P xor (D or S) 3E S xor (P or (D and (notS)))

1F not(P and (D or S)) 3F not(P and S)

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (40 - 7F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

40 P and (S and (notD)) 60 P and (D xor S)

41 not(D or (P xor S)) 61 not(D xor (S xor (P or (D and S))))

42 (S xor D) and (P xor D) 62 D xor (S and (P or D))

43 not(S xor (P and (not(D and S)))) 63 S xor (D or (notP))

44 S and (notD) 64 S xor (D and (P or S))

45 not(D or (P and (notS))) 65 D xor (S or (notP))

46 D xor (S or (P and D)) 66 D xor S

47 not(P xor (S and (D xor P))) 67 S xor (D or (not(P or S)))

48 S and (D xor P) 68 not(D xor (S xor (P or (not(D or S)))))

49 not(P xor (D xor (S or (P and D)))) 69 not(P xor (D xor S))

4A D xor (P and (S or D)) 6A D xor (P and S)

4B P xor (D or (notS)) 6B not(P xor (S xor (D and (P or S))))

4C S and (not(D and P)) 6C S xor (D and P)

4D not(S xor ((S xor P) or (D xor S))) 6D not(P xor (D xor (S and (P or D))))

4E P xor (D or (S xor P)) 6E S xor (D and (P or (notS)))

4F not(P and (D or (notS))) 6F not(P and (not(D xor S)))

50 P and (notD) 70 P and (not(D and S))

51 not(D or (S and (notP))) 71 not(S xor ((S xor D) and (P xor D)))

52 D xor (P or (S and D)) 72 S xor (D or (P xor S))

53 not(S xor (P and (D xor S))) 73 not(S and (D or (notP)))

54 not(D or (not(P or S))) 74 D xor (S or (P xor D))

55 notD 75 not(D and (S or (notP)))

56 D xor (P or S) 76 S xor (D or (P and (notS)))

Blitter

8 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

57 not(D and (P or S)) 77 not(D and S)

58 P xor (D and (S or P)) 78 P xor (D and S)

59 D xor (P or (notS)) 79 not(D xor (S xor (P and (D or S))))

5A D xor P 7A D xor (P and (S or (notD)))

5B D xor (P or (not(S or D))) 7B not(S and (not(D xor P)))

5C D xor (P or (S xor D)) 7C S xor (P and (D or (notS)))

5D not(D and (P or (notS))) 7D not(D and (not(P xor S)))

5E D xor (P or (S and (notD))) 7E (S xor P) or (D xor S)

5F not(D and P) 7F not(D and (P and S))

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (80 - BF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

80 D and (P and S) A0 D and P

81 not((S xor P) or (D xor S)) A1 not(P xor (D or (S and (notP))))

82 D and (not(P xor S)) A2 D and (P or (notS))

83 not(S xor (P and (D or (notS)))) A3 not(D xor (P or (S xor D)))

84 S and (not(D xor P)) A4 not(P xor (D or (not(S or P))))

85 not(P xor (D and (S or (notP)))) A5 not(P xor D)

86 D xor (S xor (P and (D or S))) A6 D xor (S and (notP))

87 not(P xor (D and S)) A7 not(P xor (D and (S or P)))

88 D and S A8 D and (P or S)

89 not(S xor (D or (P and (notS)))) A9 not(D xor (P or S))

8A D and (S or (notP)) AA D

8B not(D xor (S or (P xor D))) AB D or (not(P or S))

8C S and (D or (notP)) AC S xor (P and (D xor S))

8D not(S xor (D or (P xor S))) AD not(D xor (P or (S and D)))

8E S xor ((S xor D) and (P xor D)) AE D or (S and (notP))

8F not(P and (not(D and S))) AF D or (notP)

90 P and (not(D xor S)) B0 P and (D or (notS))

91 not(S xor (D and (P or (notS)))) B1 not(P xor (D or (S xor P)))

92 D xor (P xor (S and (D or P))) B2 S xor ((S xor P) or (D xor S))

93 not(S xor (P and D)) B3 not(S and (not(D and P)))

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 9

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

94 P xor (S xor (D and (P or S))) B4 P xor (S and (notD))

95 not(D xor (P and S)) B5 not(D xor (P and (S or D)))

96 D xor (P xor S) B6 D xor (P xor (S or (D and P)))

97 P xor (S xor (D or (not(P or S)))) B7 not(S and (D xor P))

98 not(S xor (D or (not(P or S)))) B8 P xor (S and (D xor P))

99 not(D xor S) B9 not(D xor (S or (P and D)))

9A D xor (P and (notS)) BA D or (P and (notS))

9B not(S xor (D and (P or S))) BB D or (notS)

9C S xor (P and (notD)) BC S xor (P and (not(D and S)))

9D not(D xor (S and (P or D))) BD not((S xor D) and (P xor D))

9E D xor (S xor (P or (D and S))) BE D or (P xor S)

9F not(P and (D xor S)) BF D or (not(P and S))

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (C0 - FF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

C0 P and S E0 P and (D or S)

C1 not(S xor (P or (D and (notS)))) E1 not(P xor (D or S))

C2 not(S xor (P or (not(D or S)))) E2 D xor (S and (P xor D))

C3 not(P xor S) E3 not(P xor (S or (D and P)))

C4 S and (P or (notD)) E4 S xor (D and (P xor S))

C5 not(S xor (P or (D xor S))) E5 not(P xor (D or (S and P)))

C6 S xor (D and (notP)) E6 S xor (D and (not(P and S)))

C7 not(P xor (S and (D or P))) E7 not((S xor P) and (P xor D))

C8 S and (D or P) E8 S xor ((S xor P) and (D xor S))

C9 not(S xor (P or D)) E9 not(D xor (S xor (P and (not(D and S)))))

CA D xor (P and (S xor D)) EA D or (P and S)

CB not(S xor (P or (D and S))) EB D or (not(P xor S))

CC S EC S or (D and P)

CD S or (not(D or P)) ED S or (not(D xor P))

CE S or (D and (notP)) EE D or S

CF S or (notP) EF S or (D or (notP))

D0 P and (S or (notD)) F0 P

Blitter

10 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

D1 not(P xor (S or (D xor P))) F1 P or (not(D or S))

D2 P xor (D and (notS)) F2 P or (D and (notS))

D3 not(S xor (P and (D or S))) F3 P or (notS)

D4 S xor ((S xor P) and (P xor D)) F4 P or (S and (notD))

D5 not(D and (not(P and S))) F5 P or (notD)

D6 P xor (S xor (D or (P and S))) F6 P or (D xor S)

D7 not(D and (P xor S)) F7 P or (not(D and S))

D8 P xor (D and (S xor P)) F8 P or (D and S)

D9 not(S xor (D or (P and S))) F9 P or (not(D xor S))

DA D xor (P and (not(S and D))) FA D or P

DB not((S xor P) and (D xor S)) FB D or (P or (notS))

DC S or (P and (notD)) FC P or S

DD S or (notD) FD P or (S or (notD))

DE S or (D xor P) FE D or (P or S)

DF S or (not(D and P)) FF writes all 1's

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Per-Pixel Write-Masking Operations

The BLT engine is able to perform per-pixel write-masking with various data sources used as pixel

masks to constrain which pixels at the destination are to be written to by the BLT engine. As shown in

the figure below, either monochrome source or monochrome pattern data may be used as pixel masks.

Color pattern data cannot be used. Another available pixel mask is derived by comparing a particular

color range per color channel to either the color already specified for a given pixel at the destination or

source.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 11

Block Diagram and Data Paths of the BLT Engine

The command packets can specify the monochrome source or the monochrome pattern data as a pixel

mask. When this feature is used, the bits that carry a value of 0 cause the bytes of the corresponding

pixel at the destination to not be written to by the BLT engine, thereby preserving whatever data was

originally carried within those bytes. This feature can be used in writing characters to the display, while

also preserving the pre-existing backgrounds behind those characters. When both operands are in the

transparent mode, the logical AND of the 2 operands are used for the write enables per pixel.

The 3-bit field, destination transparency mode, within the command packets can select per-pixel write-

masking with a mask based on the results of color comparisons. The monochrome source background

and foreground are range compared with either the bytes for the pixels at the destination or the source

operand. This operation is described in the BLT command packet and register descriptions.

Blitter

12 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

When the Source and Destination Locations Overlap

It is possible to have BLT operations in which the locations of the source and destination data overlap.

This frequently occurs in BLT operations where a user is shifting the position of a graphical item on the

display by only a few pixels. In these situations, the BLT engine must be programmed so that

destination data is not written into destination locations that overlap with source locations before the

source data at those locations has been read. Otherwise, the source data will become corrupted. The XY

commands determine whether there is an overlap and perform the accesses in the proper direction to

avoid data corruption.

The following figure shows how the source data can be corrupted when a rectangular block is copied

from a source location to an overlapping destination location. The BLT engine typically reads from the

source location and writes to the destination location starting with the left-most pixel in the top-most

line of both, as shown in step (a). As shown in step (b), corruption of the source data has already started

with the copying of the top-most line in step (a) — part of the source that originally contained lighter-

colored pixels has now been overwritten with darker-colored pixels. More source data corruption occurs

as steps (b) through (d) are performed. At step (e), another line of the source data is read, but the two

right-most pixels of this line are in the region where the source and destination locations overlap, and

where the source has already been overwritten as a result of the copying of the top-most line in step

(a). Starting in step (f), darker-colored pixels can be seen in the destination where lighter-colored pixels

should be. This errant effect occurs repeatedly throughout the remaining steps in this BLT operation. As

more lines are copied from the source location to the destination location, it becomes clear that the

end result is not what was originally intended.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 13

Source Corruption in BLT with Overlapping Source and Destination Locations

The BLT engine can alter the order in which source data is read and destination data is written when

necessary to avoid source data corruption problems when the source and destination locations overlap.

The command packets provide the ability to change the point at which the BLT engine begins reading

and writing data from the upper left-hand corner (the usual starting point) to one of the other three

corners. The BLT engine may be set to read data from the source and write it to the destination starting

at any of the four corners of the panel.

The XY command packets perform the necessary comparisons and start at the proper corner of each

operand which avoids data corruption.

Blitter

14 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Correctly Performed BLT with Overlapping Source and Destination Locations

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 15

The following figure illustrates how this feature of the BLT engine can be used to perform the same BLT

operation as was illustrated in the figure above, while avoiding the corruption of source data. As shown

in the figure below, the BLT engine reads the source data and writes the data to the destination starting

with the right-most pixel of the bottom-most line. By doing this, no pixel existing where the source and

destination locations overlap will ever be written to before it is read from by the BLT engine. By the time

the BLT operation has reached step (e) where two pixels existing where the source and destination

locations overlap are about to be over written, the source data for those two pixels has already been

read.

Suggested Starting Points for Possible Source and Destination Overlap Situations

The figure above shows the recommended lines and pixels to be used as starting points in each of 8

possible ways in which the source and destination locations may overlap. In general, the starting point

should be within the area in which the source and destination overlap.

Blitter

16 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Basic Graphics Data Considerations

This topic is currently under development.

Contiguous vs. Discontinuous Graphics Data

Graphics data stored in memory, particularly in the frame buffer of a graphics system, has

organizational characteristics that often distinguish it from other varieties of data. The main distinctive

feature is the tendency for graphics data to be organized in a discontinuous block of graphics data

made up of multiple sub-blocks of bytes, instead of a single contiguous block of bytes.

Representation of On-Screen Single 6-Pixel Line in the Frame Buffer

The figure above shows an example of contiguous graphics data — a horizontal line made up of six

adjacent pixels within a single scan line on a display with a resolution of 640x480. Presuming that the

graphics system driving this display has been set to 8 bits per pixel and that the frame buffer’s starting

address of 0h corresponds to the upper left-most pixel of this display, then the six pixels that make this

horizontal line starting at coordinates (256, 256) occupies the six bytes starting at frame buffer address

28100h, and ending at address 28105h.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 17

In this case, there is only one scan line’s worth of graphics data in this single horizontal line, so the

block of graphics data for all six of these pixels exists as a single, contiguous block comprised of only

these six bytes. The starting address and the number of bytes are the only pieces of information that a

BLT engine would require to read this block of data.

The simplicity of the above example of a single horizontal line contrasts sharply to the example of

discontinuous graphics data depicted in the figure below. The simple six-pixel line of the figure above is

now accompanied by three more six-pixel lines placed on subsequent scan lines, resulting in the 6x4

block of pixels shown.

Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer

Since there are other pixels on each of the scan lines on which this 6x4 block exists that are not part of

this 6x4 block, what appears to be a single 6x4 block of pixels on the display must be represented by a

discontinuous block of graphics data made up of 4 separate sub-blocks of six bytes apiece in the frame

buffer at addresses 28100h, 28380h, 28600h, and 28880h. This situation makes the task of reading what

appears to be a simple 6x4 block of pixels more complex. However, there are two characteristics of this

6x4 block of pixels that help simplify the task of specifying the locations of all 24 bytes of this

Blitter

18 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

discontinuous block of graphics data: all four of the sub-blocks are of the same length, and the four

sub-blocks are separated from each other at equal intervals.

The BLT engine is designed to make use of these characteristics of graphics data to simplify the

programming required to handle discontinuous blocks of graphics data. For such a situation, the BLT

engine requires only four pieces of information: the starting address of the first sub-block, the length of

a sub-block, the offset (in bytes), pitch, of the starting address of each subsequent sub-block, and the

quantity of sub-blocks.

Source Data

The source data may exist in the frame buffer or elsewhere in the graphics aperture where the BLT

engine may read it directly, or it may be provided to the BLT engine by the host CPU through the

command packets. The block of source graphics data may be either contiguous or discontinuous, and

may be either in color (with a color depth that matches that to which the BLT engine has been set) or

monochrome.

The source select bit in the command packets specifies whether the source data exists in the frame

buffer or is provided through the command packets. Monochrome source data is always specified as

being supplied through an immediate command packet.

If the color source data resides within the frame buffer or elsewhere in the graphics aperture, then the

Source Address Register, specified in the command packets is used to specify the address of the source.

In cases where the host CPU provides the source data, it does so by writing the source data to ring

buffer directly after the BLT command that requires the data or uses an IMMEDIATE_INDIRECT_BLT

command packet which has a size and pointer to the operand in Graphics aperture.

The block of bytes sent by the host CPU through the command packets must be quadword-aligned and

the source data contained within the block of bytes must also be aligned.

To accommodate discontinuous source data, the source and destination pitch registers can be used to

specify the offset in bytes from the beginning of one scan line’s worth source data to the next.

Otherwise, if the source data is contiguous, then an offset equal to the length of a scan line’s worth of

source data should be specified.

Monochrome Source Data

The opcode of the command packet specifies whether the source data is color or monochrome. Since

monochrome graphics data only uses one bit per pixel, each byte of monochrome source data typically

carries data for 8 pixels which hinders the use of byte-oriented parameters when specifying the location

and size of valid source data. Some additional parameters must be specified to ensure the proper

reading and use of monochrome source data by the BLT engine. The BLT engine also provides

additional options for the manipulation of monochrome source data versus color source data.

The various bit-wise logical operations and per-pixel write-masking operations were designed to work

with color data. In order to use monochrome data, the BLT engine converts it into color through a

process called color expansion, which takes place as a BLT operation is performed. In color expansion

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 19

the single bits of monochrome source data are converted into one, two, or four bytes (depending on

the color depth) of color data that are set to carry value corresponding to either the foreground or

background color that have been specified for use in this conversion process. If a given bit of

monochrome source data carries a value of 1, then the byte(s) of color data resulting from the

conversion process will be set to carry the value of the foreground color. If a given bit of monochrome

source data carries a value of 0, then the resulting byte(s) will be set to the value of the background

color. The foreground and background colors used in the color expansion of monochrome source data

can be set in the source expansion foreground color register and the source expansion background

color register.

The BLT Engine requires that the bit alignment of each scan line’s worth of monochrome source data be

specified. Each scan line’s worth of monochrome source data is word aligned but can actually start on

any bit boundary of the first byte. Monochrome text is special cased and it is bit or byte packed, where

in bit packed there are no invalid pixels (bits) between scan lines. There is a 3 bit field which indicates

the starting pixel position within the first byte for each scan line, Mono Source Start.

Note that the Monosource surface start Base Address, should always be Cache Line (64byte) aligned.

The BLT engine also provides various clipping options for use with specific BLT commands (BLT_TEXT)

with a monochrome source. Clipping is supported through: Clip rectangle Y addresses or coordinates

and X coordinates along with scan line starting and ending addresses (with Y addresses) along with X

starting and ending coordinates.

The maximum immediate source size is 128 bytes.

Pattern Data

The color pattern data must exist within the frame buffer or Graphics aperture where the BLT engine

may read it directly or it can be sent through the command stream. The pattern data must be located in

linear memory. Note also that the Color Pattern surface start Base Address, should always be Cache Line

(64byte) aligned.

Monochrome pattern data is supplied by the command packet when it is to be used. As shown in figure

below, the block of pattern graphics data always represents a block of 8x8 pixels. The bits or bytes of a

block of pattern data may be organized in the frame buffer memory in only one of three ways,

depending upon its color depth which may be 8, 16, or 32 bits per pixel (whichever matches the color

depth to which the BLT engine has been set), or monochrome.

The maximum color pattern size is 256 bytes.

Blitter

20 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Pattern Data -- Always an 8x8 Array of Pixels

The Pattern Address Register is used to specify the address of the color pattern data at which the block

of pattern data begins. The three least significant bits of the address written to this register are ignored,

because the address must be in terms of quadwords. This is because the pattern must always be

located on an address boundary equal to its size. Monochrome patterns take up 8 bytes, or a single

quadword of space, and are loaded through the command packet that uses it. Similarly, color patterns

with color depths of 8, 16, and 32 bits per pixel must start on 64-byte, 128-byte and 256-byte

boundaries, respectively. The next 3 figures show how monochrome, 8bpp, 16bpp, and 32bpp pattern

data , respectively, is organized in memory.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 21

8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)

16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)

Blitter

22 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)

The opcode of the command packet specifies whether the pattern data is color or monochrome. The

various bit-wise logical operations and per-pixel write-masking operations were designed to work with

color data. In order to use monochrome pattern data, the BLT engine is designed to convert it into color

through a process called “color expansion” which takes place as a BLT operation is performed. In color

expansion, the single bits of monochrome pattern data are converted into one, two, or four bytes

(depending on the color depth) of color data that are set to carry values corresponding to either the

foreground or background color that have been specified for use in this process. The foreground color

is used for pixels corresponding to a bit of monochrome pattern data that carry the value of 1, while the

background color is used where the corresponding bit of monochrome pattern data carries the value of

0. The foreground and background colors used in the color expansion of monochrome pattern data can

be set in the Pattern Expansion Foreground Color Register and Pattern Expansion Background Color

Register.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 23

Destination Data

There are actually two different types of “destination data”: the graphics data already residing at the

location that is designated as the destination, and the data that is to be written into that very same

location as a result of a BLT operation.

The location designated as the destination must be within the frame buffer or Graphics aperture where

the BLT engine can read from it and write to it directly. The blocks of destination data to be read from

and written to the destination may be either contiguous or discontinuous. All data written to the

destination will have the color depth to which the BLT engine has been set. It is presumed that any data

already existing at the destination which will be read by the BLT engine will also be of this same color

depth — the BLT engine neither reads nor writes monochrome destination data.

The Destination Address Register is used to specify the address of the destination.

To accommodate discontinuous destination data, the Source and Destination Pitch Registers can be

used to specify the offset in bytes from the beginning of one scan line’s worth of destination data to the

next. Otherwise, if the destination data is contiguous, then an offset equal to the length of a scan line’s

worth of destination data should be specified.

Blitter

24 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

BLT Programming Examples

This topic is currently under development.

Pattern Fill — A Very Simple BLT

In this example, a rectangular area on the screen is to be filled with a color pattern stored as pattern

data in off-screen memory. The screen has a resolution of 1024x768 and the graphics system has been

set to a color depth of 8 bits per pixel.

On-Screen Destination for Example Pattern Fill BLT

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 25

As shown in the figure above, the rectangular area to be filled has its upper left-hand corner at

coordinates (128, 128) and its lower right-hand corner at coordinates (191, 191). These coordinates

define a rectangle covering 64 scan lines, each scan line’s worth of which is 64 pixels in length — in

other words, an array of 64x64 pixels. Presuming that the pixel at coordinates (0, 0) corresponds to the

byte at address 00h in the frame buffer memory, the pixel at (128, 128) corresponds to the byte at

address 20080h.

Pattern Data for Example Pattern Fill BLT

As shown in figure above, the pattern data occupies 64 bytes starting at address 100000h. As always,

the pattern data represents an 8x8 array of pixels.

The BLT command packet is used to select the features to be used in this BLT operation, and must be

programmed carefully. The vertical alignment field should be set to 0 to select the top-most horizontal

row of the pattern as the starting row used in drawing the pattern starting with the top-most scan line

covered by the destination. The pattern data is in color with a color depth of 8 bits per pixel, so the

dynamic color enable should be asserted with the dynamic color depth field should be set to 0. Since

this BLT operation does not use per-pixel write-masking (destination transparency mode), this field

should be set to 0. Finally, the raster operation field should be programmed with the 8-bit value of F0h

to select the bit-wise logical operation in which a simple copy of the pattern data to the destination

takes place. Selecting this bit-wise operation in which no source data is used as an input causes the BLT

engine to automatically forego either reading source data from the frame buffer.

The Destination Pitch Register must be programmed with number of bytes in the interval from the start

of one scan line’s worth of destination data to the next. Since the color depth is 8 bits per pixel and the

horizontal resolution of the display is 1024, the value to be programmed into these bits is 400h, which is

equal to the decimal value of 1024.

Bits [31:3] of the Pattern Address Register must be programmed with the address of the pattern data.

Blitter

26 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Similarly, bits [31:0] of the Destination Address Register must be programmed with the byte address at

the destination that will be written to first. In this case, the address is 20080h, which corresponds to the

byte representing the pixel at coordinates (128, 128).

This BLT operation does not use the values in the Source Address Register or the Source Expansion

Background or Foreground Color Registers.

The Destination Width and Height Registers (or the Destination X and Y Coordinates) must be

programmed with values that describe to the BLT engine the 64x64 pixel size of the destination

location. The height should be set to carry the value of 40h, indicating that the destination location

covers 64 scan lines. The width should be set to carry the value of 40h, indicating that each scan line’s

worth of destination data occupies 64 bytes. All of this information is written to the ring buffer using

the PAT_BLT (or XY_PAT_BLT) command packet.

Results of Example Pattern Fill BLT

The figure above shows the end result of performing this BLT operation. The 8x8 pattern has been

repeatedly copied (“tiled”) into the entire 64x64 area at the destination.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 27

Drawing Characters Using a Font Stored in System Memory

In this example BLT operation, a lowercase letter “f” is to be drawn in black on a display with a gray

background. The resolution of the display is 1024x768, and the graphics system has been set to a color

depth of 8 bits per pixel.

On-Screen Destination for Example Character Drawing BLT

The figure above shows the display on which this letter “f” is to be drawn. As shown in this figure, the

entire display has been filled with a gray color. The letter “f” is to be drawn into an 8x8 region on the

display with the upper left-hand corner at the coordinates (128, 128).

Blitter

28 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Source Data in System Memory for Example Character Drawing BLT

The figure above shows both the 8x8 pattern making up the letter “f” and how it is represented

somewhere in the host’s system memory — the actual address in system memory is not important. The

letter “f” is represented in system memory by a block of monochrome graphics data that occupies 8

bytes. Each byte carries the 8 bits needed to represent the 8 pixels in each scan line’s worth of this

graphics data. This type of pattern is often used to store character fonts in system memory.

During this BLT operation, the host CPU will read this representation of the letter “f” from system

memory, and write it to the BLT engine by performing memory writes to the ring buffer as an

immediate monochrome BLT operand following the BLT_TEXT command. The BLT engine will receive

this data through the command stream and use it as the source data for this BLT operation. The BLT

engine will be set to the same color depth as the graphics system — 8 bits per pixel, in this case. Since

the source data in this BLT operation is monochrome, color expansion must be used to convert it to an

8 bpp color depth. To ensure that the gray background behind this letter “f” is preserved, per-pixel write

masking will be performed, using the monochrome source data as the pixel mask.

The BLT Setup and Text_immediate command packets are used to select the features to be used in this

BLT operation. Only the fields required by these two command packets must be programmed carefully.

The BLT engine ignores all other registers and fields. The source select field in the Text_immediate

command must be set to 1, to indicate that the source data is provided by the host CPU through the

command packet. Finally, the raster operation field should be programmed with the 8-bit value CCh to

select the bit-wise logical operation that simply copies the source data to the destination. Selecting this

bit-wise operation in which no pattern data is used as an input, causes the BLT engine to automatically

forego reading pattern data from the frame buffer.

The Setup Pattern/Source Expansion Foreground Color Register to specify the color with which the

letter “f” will be drawn. There is no Source address. All scan lines of the glyph are bit packed and the

clipping is controlled by the ClipRect registers from the SETUP_BLT command and the Destination Y1,

Y2, X1, and X2 registers in the TEXT_BLT command. Only the pixels that are within (inclusive

comparisons) the clip rectangle are written to the destination surface.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 29

The Destination Pitch Register must be programmed with a value equal to the number of bytes in the

interval between the first bytes of each adjacent scan line’s worth of destination data. Since the color

depth is 8 bits per pixel and the horizontal resolution of the display is 1024 pixels, the value to be

programmed into these bits is 400h, which is equal to the decimal value of 1024. Since the source data

used in this BLT operation is monochrome, the BLT engine will not use a byte-oriented pitch value for

the source data.

Since the source data is monochrome, color expansion is required to convert it to color with a color

depth of 8 bits per pixel. Since the Setup Pattern/Source Expansion Foreground Color Register is

selected to specify the foreground color of black to be used in drawing the letter “f”, this register must

be programmed with the value for that color. With the graphics system set for a color depth of 8 bits

per pixel, the actual colors are specified in the RAMDAC palette, and the 8 bits stored in the frame

buffer for each pixel actually specify the index used to select a color from that palette. This example

assumes that the color specified at index 00h in the palette is black, and therefore bits [7:0] of this

register should be set to 00h to select black as the foreground color. The BLT engine ignores bits [31:8]

of this register because the selected color depth is 8 bits per pixel. Even though the color expansion

being performed on the source data normally requires that both the foreground and background colors

be specified, the value used to specify the background color is not important in this example. Per-pixel

write-masking is being performed with the monochrome source data as the pixel mask, which means

that none of the pixels in the source data that will be converted to the background color will ever be

written to the destination. Since these pixels will never be seen, the value programmed into the

Pattern/Source Expansion Background Color Register to specify a background color is not important.

The Destination Width and Height Registers are not used. The Y1, Y2, X1, and X2 are used to describe to

the BLT engine the 8x8 pixel size of the destination location. The Destination Y1 and Y2 address (or

coordinate) registers must be programmed with the starting and ending scan line address (or Y

coordinates) of the destination data. This address is specified as an offset from the start of the frame

buffer of the scan line at the destination that will be written to first. The destination X1 and X2 registers

must be programmed with the starting and ending pixel offsets from the beginning of the scan line.

This BLT operation does not use the values in the Pattern Address Register, the Source Expansion

Background Color Register, or the Source Expansion Foreground Color Register.

Blitter

30 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Results of Example Character Drawing BLT

The preceding shows the end result of performing this BLT operation. Only the pixels that form part of

the actual letter “f” have been drawn into the 8x8 destination location on the display, leaving the other

pixels within the destination with their original gray color.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 31

BLT Instruction Overview

This chapter defines the instructions used to control the 2D (BLT) rendering function.

The instructions detailed in this chapter are used across devices. However, slight changes may be

present in some instructions (i.e., for features added or removed), or some instructions may be removed

entirely. Refer to the Device Dependencies chapter for summary information regarding device-specific

behaviors/interfaces/features.

The XY instructions offload the drivers by providing X and Y coordinates and taking care of the access

directions for overlapping BLTs without fields specified by the driver.

Color pixel sizes supported are 8, 16, and 32 bits per pixel (bpp). All pixels are naturally aligned.

BLT Engine State

Most of the BLT instructions are state-free, which means that all states required to execute the

command is within the instruction. If clipping is not used, then there is no shared state for many of the

BLT instructions. This allows the BLT Engine to be shared by many drivers with minimal synchronization

between the drivers.

Instructions which share state are:

All instructions that are X,Y commands and use the Clipping Rectangle by asserting the Clip Enable field

All XY_Setup Commands (XY_SETUP_BLT and XY_SETUP_MONO_PATTERN_SL_BLT, XY_SETUP_CLIP_BLT)

load the shared state for the following commands:

XY_PIXEL_BLT (Negative Stride (=Pitch) Not Allowed)

XY_SCANLINES_BLT

XY_TEXT_BLT (Negative Stride (=Pitch) Not Allowed)

XY_TEXT_IMMEDIATE_BLT (Negative Stride (=Pitch) Not Allowed)

State registers that are saved & restored in the Logical Context:

BR1+ Setup Control (Solid Pattern Select, Clipping Enable, Mono Source

Transparency Mode, Mono Pattern Transparency Mode, Color Depth[1:0],

Raster Operation[7:0], & Destination Pitch[15:0]) + 32bpp Channel

Mask[1:0], Mono / Color Pattern

BR05 Setup Background Color

BR06 Setup Foreground Color

BR07 Setup Pattern Base Address

BR09 Setup Destination Base Address

BR20 DW0 for a Monochrome Pattern

BR21 DW1 for a Monochrome Pattern

BR24 ClipRectY1’X1

BR25 ClipRectY2’X2

Blitter

32 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

Cacheable Memory Support

The BLT Engine can be used to transfer data between cacheable (“system”) memory and uncached

(“main”, or “UC”) graphics memory using the BLT instructions. The GTT must be properly programmed

to map memory pages as cacheable or UC. Only linear-mapped (not tiled) surfaces can be mapped as

cacheable.

Transfers between cacheable sources and cacheable destinations are not supported. Patterns and

monochrome sources can not be located in cacheable memory.

Cacheable write operands do not snoop the processor’s cache nor update memory until evicted from

the render cache. Cacheable read or write operands are not snooped (nor invalidated) from either

internal cache by external (processor, hublink,…) accesses.

Device Cache Coherency: Render & Texture Caches

Software must initiate cache flushes to enforce coherency between the render and texture caches, i.e.,

both the render and texture caches must be flushed before a BLT destination surface can be reused as a

texture source. Color sources and destinations use the render cache, while patterns and monochrome

sources use the texture cache.

BLT Engine Instructions

The Instruction Target field is used as an opcode by the BLT Engine state machine to qualify the control

bits that are relevant for executing the instruction. The descriptions for each DWord and bit field are

contained in the BLT Engine Instruction Field Definition section. Each DWord field is described as a

register, but none of these registers can be written or read through a memory mapped location; they

are internal state only.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 33

BLT Programming Restrictions

Overlapping Source/Destination BLTs:

For all products negative pitch programming is allowed only when the source and destination surfaces

are of the same type: linear source to linear destination copy, or tiled source to tiled destination copy.

This is a must requirement. In such cases:

 Both the pitches must be programmed to be a negative value, if the source and destination

surfaces are overlapping.

 Either of the pitches can be programmed to a negative value if required to do mirroring, but only

if the complete source and destination surfaces are not overlapping anywhere on the surfaces.

Legacy Blits:

The following condition must be avoided when programming the BLT engine: Linear surfaces with a

cache line in scan line Y for the source stream overlapping with a cache line in scan line Y-1 for the dest

stream (=> non-aligned surface pitches). The cache coherency rules combined with the Blitter data

consumption rules result in UNDEFINED operation.

All reserved fields must be programmed to 0s.

When using monosource or text data (bit/byte/word aligned): Do not program pixel widths greater than

32,745 pixels.

The other way to do this is driver should always program a dummy 3D.

NON-PIPELINE state following the BLT commands:

Description

For Monosource and Color Pattern surfaces, and also linear colour source and destination surfaces, the start Base

Address programmed should always be Cache Line (64 byte) aligned.

Blitter

34 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

2D (XY) BLT Instructions

Most BLT instructions (prefixed with “XY_”) use 2D X,Y coordinate specifications vs. lower-level linear

addresses These instructions also support simple 2D clipping against a clip rectangle. The top and left

Clipping coordinates are inclusive. The bottom and right coordinates are exclusive. The BLT Engine

performs a trivial reject for all CLIP BLT instructions before performing any accesses.

Negative destination and source coordinates are supported. In the case of negative source coordinates,

the destination X1 and Y1 are modified by the absolute value of the negative source coordinate before

the destination clip checking and final drawing coordinates are calculated. The absolute value of the

source negative coordinate is added to the corresponding destination coordinate. The BLT engine

clipping also checks for (DX2 [or = DX1) or (DY2 [or = DY1) after this calculation and if true, then the

BLT is totally rejected.

Source and destination pitches have the additional explanation given next. The below statements are

applicable for pitch field in all of the Blit commands:

1. For Linear surfaces, the pitch is programmed in bytes. For Tiled surfaces the pitch programmed is

in Dwords count.

2. For Tiled surfaces this pitch is of 512Byte granularity for Tile-X: This means the tiled-x surface

pitch can be (512, 1024, 1536, 2048...)/4 (in Dwords).

3. For Tiled surfaces this pitch is of 128B granularity for Tile-Y: This means the tiled-y surface pitch

can be (128, 256, 384, 512...)/4 (in Dwords).

4. Another way to indicate this is, for tiled surfaces, the pitch is programmed in Dwords and is an

integral multiple of the tile width.

XY_COLOR_BLT

XY_FULL_BLT

XY_FULL_IMMEDIATE_PATTERN_BLT

XY_FULL_MONO_PATTERN_BLT

XY_FULL_MONO_PATTERN_MONO_SRC_BLT

XY_FULL_MONO_SRC_BLT

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

XY_MONO_PAT_BLT

XY_MONO_PAT_FIXED_BLT

XY_MONO_SRC_COPY_BLT

XY_MONO_SRC_COPY_IMMEDIATE_BLT

XY_PAT_BLT

XY_PAT_BLT_IMMEDIATE

XY_PAT_CHROMA_BLT

XY_PAT_CHROMA_BLT_IMMEDIATE

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 35

XY_PIXEL_BLT

XY_SCANLINES_BLT

XY_SETUP_BLT

XY_SETUP_CLIP_BLT

XY_SETUP_MONO_PATTERN_SL_BLT

XY_SRC_COPY_BLT

XY_SRC_COPY_CHROMA_BLT

XY_TEXT_BLT

XY_TEXT_IMMEDIATE_BLT

Some Equalities & Inequalities for Source Clipping

Blitter

36 Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15

DX1, DY1, CX1, and CY1 are inclusive, while DX2, DY2, CX2, and CY2 are exclusive.

Destination pixel address = (Destination Base Address + (Destination Y coordinate * Destination pitch)

+ (Destination X coordinate * bytes per pixel)).

Source pixel address = (Source Base Address + (Source Y coordinate * Source pitch) + (Source X

coordinate * bytes per pixel)).

Since there is 1 set of Clip Rectangle registers, the Interrupt Ring BLT commands either MUST NEVER

enable clipping with these command and never use the XY_Pixel_BLT, XY_Scanline_BLT, nor XY_Text_BLT

commands or it must use context switching. The Interrupt rings can also use the non-clipped, linear

address commands specified before this section.

The base addresses plus the X and Y coordinates determine if there is an overlap between the source

and destination operands. If the base addresses of the source and destination are the same and the

Source X1 is less than Destination X1, then the BLT Engine performs the accesses in the X-backwards

access pattern. There is no need to look for an actual overlap. If the base addresses are the same and

Source Y1 is less than Destination Y1, then the scan line accesses are performed backwards.

 Blitter

Doc Ref # IHD-OS-CHV-BSW-Vol 11-10.15 37

BLT Engine Instruction Field Definitions

This section describes the BLT Engine instruction fields. These descriptions are in the format of register

descriptions. These registers are internal and are not readable. Some of these registers are state that is

saved and restored for supporting separate software threads.

BR00 - BLT Opcode and Control

BR01 - Setup BLT Raster OP, Control, and Destination Offset

BR05 - Setup Expansion Background Color

BR06 - Setup Expansion Foreground Color

BR07 - Setup Blit Color Pattern Address Lower Order Address bits

BR30 - Setup Blit Color Pattern Address Higher Order Address

BR09 - Destination Address Lower Order Address Bits

BR27 - Destination Address Higher Order Address

BR11 - BLT Source Pitch (Offset)

BR12 - Source Address Lower order Address bits

BR28 - Source Address Higher order Address

BR13 - BLT Raster OP, Control, and Destination Pitch

BR14 - Destination Width and Height

BR15 - Color Pattern Address Lower order Address bits

BR29 - Color Pattern Address Higher order Address

BR16 - Pattern Expansion Background and Solid Pattern Color

BR17 - Pattern Expansion Foreground Color

BR18 - Source Expansion Background and Destination Color

BR19 - Source Expansion Foreground Color

