

Intel® Open Source HD Graphics

Programmers' Reference Manual (PRM)

Volume 7: 3D Media GPGPU

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™

Processors based on the "Cherry Trail/Braswell" Platform

(Cherryview/Braswell graphics)

October 2015, Revision 1.1

3D Media GPGPU

ii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS

OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS

ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 iii

Table of Contents

Registers in Render Engine ... 1

Predication .. 2

Predicate Render Registers .. 2

MI_SET_PREDICATE ... 3

MI_PREDICATE .. 3

Predicated Rendering Support in HW .. 4

Registers in Render Engine .. 5

Context Save Registers .. 5

VF Instance Count Registers ... 5

Mode and Misc Ctrl Registers .. 6

Pipelines Statistics Counter Registers.. 7

AUTO_DRAW Registers ... 9

MMIO Registers for GPGPU Indirect Dispatch ... 9

CS ALU Programming and Design ..10

CS ALU Programming and Design ...10

Generic Purpose Registers ..10

ALU BLOCK Diagram ...11

Instruction Set..12

Instruction Format ...12

LOAD Operation ...12

Arithmetic/Logical Operations ..13

STORE Operation ..13

Summary for ALU ...13

Summary of Instructions Supported ..14

Table for ALU OPCODE Encodings ..14

Table for Register Encodings ..16

CS_GPR - Command Streamer General Purpose Registers ..16

Memory Interface Commands for Rendering Engine ..16

State Commands ..17

STATE_BASE_ADDRESS ...17

Synchronization of the 3D Pipeline ..18

3D Media GPGPU

iv Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Top-of-Pipe Synchronization ...18

End-of-Pipe Synchronization ...18

Synchronization Actions ...19

Writing a Value to Memory ..19

PS_DEPTH_COUNT ..20

Generating an Interrupt ...20

Invalidating of Caches ..20

PIPE_CONTROL Command ..20

PIPE_CONTROL ..21

Programming Restrictions for PIPE_CONTROL ..22

Post-Sync Operation ..23

Flush Types ...24

Stall ..24

Render Logical Context Data ...25

Overall Context Layout ..25

Context Layout ...25

Register State Context ...26

Register State Context ..27

Ring Buffer..38

Ring Context ..38

The Per-Process Hardware Status Page ...39

Render Engine Power Context ...40

Command Ordering Rules ..42

PIPELINE_SELECT ..43

PIPE_CONTROL ...43

Common Pipeline State-Setting Commands..43

3D Pipeline-Specific State-Setting Commands ...44

Media Pipeline-Specific State-Setting Commands ..44

3DPRIMITIVE ..44

MEDIA_OBJECT ...44

Resource Streamer .. 45

Resource Streamer Sync Commands ...45

Introduction ..46

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 v

Glossary ...46

Common Abbreviations ..46

Theory of Operation ..47

Resource Streamer Functions ...47

Detailed Resource Streamer Operations ..49

Introduction ...49

Resource Streamer Operation Descriptions ...49

Batch Processing ...49

Context Save ...49

HW Binding Table Image ..50

Gather Push Constants Image ...50

Push Constant Image ..51

HW Binding Table Generation ...52

Gather Push Constants ...53

Constant Buffer Generation (not DX9) ...54

Commands Actions in the RS ...55

Resource Streamer Programming Guidelines ...61

RS Interactions with the 3D Command Streamer ...61

RS Interactions with Memory Requests ..61

Fundamental Programming and Operational Assumptions ..61

Non-Operational Activities ...62

Hardware Binding Tables ..62

3DSTATE_BINDING_TABLE_POOL_ALLOC [CHV, BSW] ...63

Gather Constants ..64

Dx9 Constant Buffer Generation ..65

Vertex Shader Constant ..66

Pixel Shader Constant ..67

Shared Functions .. 68

3D Sampler ...68

Sampling Engine ..69

Texture Coordinate Processing ..71

Texture Coordinate Normalization ..71

Texture Coordinate Computation ..71

3D Media GPGPU

vi Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Texel Address Generation ..73

Level of Detail Computation (Mipmapping) ..73

Base Level Of Detail (LOD) ..74

LOD Bias ...74

LOD Pre-Clamping ...75

Min/Mag Determination ...75

LOD Computation Pseudocode ..76

Intra-Level Filtering Setup ...77

MAPFILTER_NEAREST ...78

MAPFILTER_LINEAR ...78

Bilinear Filter Sampling ..79

MAPFILTER_ANISOTROPIC ...79

MAPFILTER_MONO ..80

Inter-Level Filtering Setup ...82

Texture Address Control ..82

TEXCOORDMODE_MIRROR Mode ..84

TEXCOORDMODE_MIRROR_ONCE Mode ..85

TEXCOORDMODE_WRAP Mode ...86

TEXCOORDMODE_CLAMP Mode ..87

TEXCOORDMODE_CLAMPBORDER Mode ...88

TEXCOORDMODE_CUBE Mode ..88

Texel Fetch ...89

Texel Chroma Keying ...89

Chroma Key Testing ..89

Chroma Key Effects ..90

Shadow Prefilter Compare ...90

Texel Filtering ..91

Texel Color Gamma Linearization ...91

Multisampled Surface Behavior ...92

Multisample Control Surface ..92

State ..93

Surface State Fetch ...93

Sampler State Fetch ...93

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 vii

State Caching..94

SURFACE_STATE ..94

Sampler Output Channel Mapping ...96

SURFACE_STATE for Deinterlace sample_8x8 and VME ... 102

SAMPLER_STATE .. 103

Border Color Programming for Integer Surface Formats .. 104

Messages ... 106

Message Descriptor and Execution Mask .. 106

Execution Mask .. 106

Message Descriptor .. 106

Message Header... 107

Parameter Types ... 111

SIMD Payloads .. 112

Writeback Message ... 114

SIMD16... 114

Return Format = 32-bit ... 114

Return Format = 16-bit ... 115

SIMD8/SIMD8D .. 116

Return Format = 32-bit ... 116

Return Format = 16-bit ... 117

SIMD4x2 .. 118

Shared Functions – Data Port ... 119

Data Cache .. 120

Sampler Cache ... 121

Surfaces .. 121

Surface State Model.. 121

Stateless Model .. 121

Shared Local Memory (SLM) ... 122

Write Commit ... 123

ReadWrite Ordering .. 123

Accessing Buffers .. 124

Accessing Media Surfaces ... 125

Boundary Behavior .. 125

3D Media GPGPU

viii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

State ... 126

BINDING_TABLE_STATE ... 126

SURFACE_STATE ... 126

COLOR_PROCESSING_STATE... 126

Messages ... 127

Global Definitions .. 127

Data Port Messages .. 127

Message Descriptor .. 130

Message Descriptor ... 130

Message Header .. 133

Write Commit Writeback Message .. 134

OWord Block ReadWrite ... 134

Message Descriptor .. 136

Message Payload (Write).. 136

Writeback Message (Read) .. 137

Unaligned OWord Block Read .. 137

Message Descriptor .. 138

Writeback Message (Read) .. 138

OWord Dual Block ReadWrite .. 139

Message Descriptor .. 140

Message Payload ... 141

Additional Message Payload (Write) ... 141

Writeback Message (Read) .. 142

Media Block ReadWrite ... 142

Message Descriptor .. 144

Message Header .. 146

Message Payload (Write).. 149

Writeback Message (Read) .. 150

DWord Scattered ReadWrite ... 150

Message Descriptor .. 151

Message Payload ... 151

Additional Message Payload (Write) ... 152

Writeback Message (Read) .. 152

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 ix

Message Descriptor .. 153

Message Payload ... 154

Source Payload ... 155

Writeback Message .. 155

Byte Scattered ReadWrite ... 156

Message Descriptor .. 157

Message Payload ... 158

Additional Message Payload (Write) ... 158

Writeback Message (Read) .. 159

TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation 160

Typed Surface ReadWrite Message Descriptor ... 166

Typed Surface Read/Write Message Descriptor ... 167

Untyped Surface ReadWrite Message Descriptor .. 168

Typed Atomic Operation Message Descriptor .. 169

Typed Atomic Operation SIMD4x2 Message Descriptor ... 170

Untyped Atomic Operation Message Descriptor ... 171

Untyped Atomic Operation SIMD4x2 Message Descriptor .. 172

Atomic Counter Operation Message Descriptor .. 173

Atomic Counter Operation SIMD4x2 Message Descriptor ... 174

Message Header .. 175

Message Payload ... 175

SIMD16 Address Payload .. 176

SIMD16 Source Payload (Atomic Operation Message Only) .. 177

SIMD16 Source Payload (AOP_CMPWR8B Only) ... 178

SIMD16 Write Data Payload (Write Message Only) .. 179

SIMD8 Address Payload ... 180

SIMD8 Source Payload (Atomic Operation Message Only) ... 181

SIMD8 Write Data Payload (Write Message Only) .. 182

SIMD8 Write Data Payload (Tile W Write Message Only) .. 183

SIMD4x2 Address Payload .. 184

SIMD4x2 Source Payload (Atomic Operation Message Only) 184

SIMD4x2 Source Payload (AOP_CMPWR8B Only) ... 185

SIMD4x2 Write Data Payload (Write Message Only) .. 185

3D Media GPGPU

x Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message .. 185

SIMD8 DWORD Read... 186

SIMD8 QWORD Read .. 186

SIMD16 Read .. 187

SIMD8 Read .. 188

SIMD8 Read (Tile W) ... 189

SIMD4x2 Read .. 190

SIMD16 Atomic Operation .. 191

SIMD16 Atomic Operation (AOP_CMPWR8B Only) .. 192

SIMD8 Atomic Operation .. 193

SIMD8 Atomic Operation (AOP_CMPWR8B Only) .. 194

SIMD4x2 Atomic Operation ... 195

SIMD4x2 Atomic Operation (AOP_CMPWR8B Only) .. 195

A64 Scattered Read or Write ... 196

Message Descriptor .. 197

Message Address Payload ... 198

Additional Message Payload (QWord Write) ... 199

Additional Message Payload (DWord Write) ... 201

Additional Message Payload (8 Byte Write) ... 202

Additional Message Payload (1 or 2 or 4 Byte Write) ... 203

Writeback Message (QWord Read) .. 203

Writeback Message (DWord Read) .. 204

Writeback Message (8 Byte Read) .. 206

Writeback Message (1 or 2 or 4 Byte Read) ... 206

A64 Untyped Atomic Operation .. 207

A64 Untyped Atomic Operation Message Descriptor .. 209

Message Payload ... 211

SIMD8 Address Payload ... 212

SIMD4x2 Address Payload .. 213

SIMD8 Source Payload (QWORD Atomic Operation Message Only) 214

SIMD8 Source Payload (DWORD Atomic Operation Message Only) 215

SIMD8 Source Payload (AOP_CMPWR16B Only) ... 216

SIMD8 Source Payload (AOP_CMPWR8B Only).. 216

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xi

SIMD4x2 Source Payload (QWORD Atomic Operation Message Only) 217

SIMD4x2 Source Payload (DWORD Atomic Operation Message Only) 218

SIMD4x2 Source Payload (AOP_CMPWR16B Only) .. 218

SIMD4x2 Source Payload (AOP_CMPWR8B Only) ... 219

Writeback Message .. 219

SIMD8 Atomic Operation (QWord) ... 219

SIMD8 Atomic Operation (DWord) ... 220

SIMD8 Atomic Operation (AOP_CMPWR16B Only) .. 221

SIMD8 Atomic Operation (AOP_CMPWR8B Only) .. 222

SIMD4x2 Atomic Operation (QWord)... 223

SIMD4x2 Atomic Operation (DWord) ... 223

SIMD4x2 Atomic Operation (AOP_CMPWR16B Only) ... 224

SIMD4x2 Atomic Operation (AOP_CMPWR8B Only) .. 224

A64 Untyped Atomic Float Add Operation ... 225

Untyped Atomic Float Add Operation Message Descriptor .. 225

Message Payload ... 226

SIMD8 Address Payload ... 226

SIMD8 Source Payload (QWORD Atomic Operation Message Only) 227

SIMD8 Source Payload (DWORD Atomic Operation Message Only) 228

Writeback Message .. 228

A64 Untyped Surface Read or Write Operation .. 228

Untyped Surface Read or Write Message Descriptor ... 230

Message Payload ... 230

SIMD8 Address Payload ... 231

SIMD4x2 Address Payload .. 232

SIMD8 DWORD Write Data Payload (Write Message Only) .. 233

SIMD4x2 DWORD Write Data Payload (Write Message Only) 234

Writeback Message .. 234

SIMD8 DWORD Read .. 235

SIMD4x2 DWORD Read ... 236

A64 Block Read or Write Operation ... 236

Message Descriptor .. 237

Message Header .. 238

3D Media GPGPU

xii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Payload (OWord Write) ... 239

Writeback Message (OWord Read) .. 239

Writeback Message (Unaligned OWord Read) .. 239

Message Payload (Dual OWord Write) ... 240

Writeback Message (Dual Oword Read) .. 240

Message Payload (HWord Write) .. 241

Writeback Message (HWord Read) .. 241

Untyped Atomic Float Add Operation .. 241

Untyped Atomic Float Add Operation Message Descriptor .. 243

Message Header .. 244

Message Payload ... 245

SIMD16 Address Payload .. 245

SIMD8 Address Payload ... 246

SIMD16/SIMD8 DWORD Source Payload ... 246

SIMD16/SIMD8 QWORD Source Payload ... 247

Writeback Message .. 248

SIMD16 SIMD8 DWORD Atomic Float Add ... 248

SIMD16/SIMD8 QWORD Atomic Float Add... 248

Read Surface Info ... 249

Message Descriptor .. 249

Address Payload .. 249

Writeback Message .. 249

Transpose Read .. 251

Message Descriptor .. 252

Message Header .. 252

Writeback Message .. 254

Scratch Block Read or Write .. 254

Message Descriptor .. 255

Message Header .. 256

Message Payload (Write).. 256

Message Payload (Read) .. 256

Writeback Message (Read) .. 256

Memory Fence .. 257

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xiii

Message Descriptor .. 258

Message Header .. 259

Writeback Message .. 259

Pixel Data Port .. 260

Cache Agents ... 260

Accessing Render Targets .. 260

Message Sequencing Summary .. 261

Single Source .. 262

Dual Source ... 263

Replicate Data ... 263

Multiple Render Targets (MRT) .. 263

Render Target Read and Write .. 263

SubspanPixel to Slot Mapping .. 267

Message Descriptor ... 270

Message Header ... 270

Message Header... 271

Writeback Message (Read) .. 272

Header for SIMD8_IMAGE_WRITE .. 273

Source 0 Alpha Payload ... 277

oMask Payload .. 278

Color Payload SIMD16 Single Source ... 279

Color Payload .. 279

Color Payload SIMD8 Single Source ... 281

Color Payload SIMD16 Replicated Data .. 283

Color Payload SIMD8 Dual Source .. 284

Render Target Read and Write .. 286

Message Header ... 289

Shared Functions Pixel Interpolater ... 290

Messages ... 290

Initiating Message ... 290

Message Descriptor .. 290

“Per Message Offset” Message Descriptor ... 292

“Sample Position Offset” Message Descriptor .. 292

3D Media GPGPU

xiv Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

“Centroid Position” and “Per Slot Offset” Message Descriptor 292

Message Payload for Most Messages ... 293

SIMD8 Per Slot Offset Message Payload ... 293

SIMD16 Per Slot Offset Message Payload ... 294

Writeback Message ... 295

SIMD8 .. 295

SIMD16 .. 296

Shared Functions - Unified Return Buffer (URB) ... 298

URB Size ... 298

URB Access .. 298

State ... 299

FF_SYNC Messages .. 299

FF_SYNC Message Header ... 299

FF_SYNC Writeback Message ... 300

URB Messages ... 301

Execution Mask ... 302

Message Descriptor .. 302

URB_WRITE and URB_READ ... 304

Message Header .. 304

URB_WRITE_HWORD Write Data Payload ... 306

URB_NOSWIZZLE .. 306

URB_INTERLEAVED ... 307

URB_READ_HWORD Writeback Message .. 308

URB_NOSWIZZLE .. 308

URB_INTERLEAVED ... 309

URB_WRITE_OWORD Write Data Payload ... 310

URB_NOSWIZZLE .. 310

URB_INTERLEAVED ... 311

URB_READ_OWORD Writeback Message .. 312

URB_NOSWIZZLE .. 312

URB_INTERLEAVED ... 313

URB_ATOMIC ... 314

Message Header .. 314

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xv

Writeback Message .. 315

URB_SIMD8_Write and URB_SIMD8_Read ... 316

Message Descriptor .. 316

Message Header .. 317

Per Slot Offset Message Phase .. 318

Channel Mask Message Phase ... 319

Write Data Payload ... 320

Writeback Message .. 321

Message Gateway ... 322

Messages ... 323

Message Descriptor .. 323

OpenGateway Message ... 324

Message Payload ... 325

Writeback Message to Requester Thread ... 326

CloseGateway Message ... 326

Message Payload ... 327

Writeback Message to Requester Thread ... 328

ForwardMsg Message .. 328

Message Payload ... 329

Writeback Message to Requester Thread ... 331

Writeback Message to Recipient Thread ... 331

GetTimeStamp Message ... 331

Message Payload ... 332

Writeback Message to Requester Thread ... 333

BarrierMsg Message ... 334

Message Payload ... 335

Writeback Message to Requester Thread ... 336

Broadcast Writeback Message ... 336

MMIOReadWrite Message ... 336

Message Payload ... 337

Writeback Message to Requester Thread (MMIO Read Only) .. 337

Media Sampler ... 338

Shared Functions – Video Motion Estimation ... 338

3D Media GPGPU

xvi Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Theory of Operation ... 338

Shape Decision ... 338

Minor Shape Decision Prior to FME .. 339

Major Shape Decision Prior to FME .. 342

Shape Update after FME .. 342

Final Code Decision after BME .. 342

Early Decisions .. 343

Surfaces .. 344

State .. 345

BINDING_TABLE_STATE .. 345

SURFACE_STATE ... 345

VME_STATE .. 345

VME_SEARCH_PATH_LUT_STATE .. 345

Software Interface – Bspec Highlights ... 350

Message Structure Overview .. 350

IME and IDM Message Descriptor .. 351

Input GRFs .. 352

Input Message Phases by Type ... 353

Output GRFs .. 353

Output Message Phases by Type .. 354

Binding Table Pointers .. 355

Progressive Content .. 355

Interlaced Content ... 358

RDE Packet Mapping ... 360

Glossary of Messages ... 361

Universal Input Message Phases ... 361

SIC Input Message Phases ... 384

IME Input Message Phases .. 389

FBR Input Message Phases .. 394

IDM Input Message Phases ... 396

Return Data Message Phases ... 397

IME StreamOut ... 408

IDM Stream-Out .. 408

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xvii

IDM16x16 Streamout Message Format ... 409

IDM8x8 Streamout Message Format .. 410

Sample_8x8 State.. 412

SURFACE_STATE for Deinterlace, sample_8x8, and VME ... 412

SAMPLER_STATE for Sample_8x8 Message ... 412

Media Object Dispatch Pseudocode ... 413

Calculate Residual Blocks Pseudocode ... 413

Dispatch Media Object Pseudocode ... 414

SIMD32/64 Payload .. 414

SIMD32 Payload .. 414

SIMD64 Payload .. 415

Vertical Block Number Restrictions ... 421

Payload Parameter Definition .. 422

SIMD32_64 Message Descriptor ... 424

SIMD32_64 Message Header .. 424

Message Header ... 425

SIMD32_64 Payload Parameter Definition .. 427

SIMD32_64 Message Types ... 427

Writeback Message ... 427

SIMD32 .. 428

Sample_unorm* ... 428

Cache_flush ... 432

Sample_8x8 Writeback Messages .. 433

“16 bit Full” Output Format Control Mode .. 434

Sampler_8x8 – Writeback Message for Convolve and 1 Pixel Convolution and 1D Vertical Convolve

 ... 439

Sampler_8x8 – Writeback Message for MinMaxFilter .. 440

"16 Bit Full" Output Format Control Mode .. 440

“8 Bit Full” Output Format Control Mode: .. 442

Sampler_8x8 – Writeback Message for MinMax .. 443

Sampler_8x8 – Writeback Message for Dilate or Erode .. 444

Sampler_8x8 – Writeback Message for Centroid ... 444

Sampler_8x8 – Writeback Message for BoolCentroid/BoolSum 445

Sampler_8x8 – Writeback Message for AVS .. 445

3D Media GPGPU

xviii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

“16 bit Full” Output Format Control Mode .. 445

“16 Bit Chrominance Downsampled” Output Format Control Mode 447

“8 Bit Full” Output Format Control Mode ... 449

“8 Bit Chrominance Downsampled” Output Format Control Mode........................... 450

SIMD32 Surface State ... 452

SIMD32 Sampler State .. 452

3D Pipeline Stages .. 452

3D Pipeline-Level State ... 453

Statistics ... 455

Statistics Gathering .. 455

3D Pipeline Geometry ... 457

Block Diagram .. 457

3D Primitives Overview .. 458

Vertex Data Overview ... 466

Vertex Positions .. 466

Clip Space Position ... 467

NDC Space Position ... 467

Screen-Space Position ... 467

Vertex Fetch (VF) Stage .. 468

State .. 468

Control State .. 468

Index Buffer (IB) State .. 468

Vertex Buffers (VB) State ... 469

VERTEXDATA Buffers – SEQUENTIAL Access .. 469

VERTEXDATA Buffers – RANDOM Access .. 470

INSTANCEDATA Buffers .. 471

Vertex Definition State ... 472

Input Vertex Definition .. 472

3D Primitive Command ... 473

Functions ... 473

Input Assembly ... 473

Vertex Assembly .. 473

Vertex Cache ... 474

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xix

Input Data: Push Model vs. Pull Model .. 475

Generated IDs ... 475

3D Primitive Processing .. 476

Index Buffer Access .. 476

Vertex Element Data Path ... 477

FormatConversion .. 479

DestinationFormatSelection ... 482

Dangling Vertex Removal .. 482

Vertices Generated ... 483

Objects Generated ... 483

Vertex Shader (VS) Stage ... 484

State .. 484

Functions ... 484

Vertex Shader Cache (VS$) .. 484

SIMD4x2 VS Thread Request Generation .. 486

SIMD4x2 VS Thread Execution ... 486

VS Thread Dispatch Masks .. 487

Vertex Output ... 487

Thread Termination .. 487

Primitive Output .. 487

Statistics Gathering ... 488

Payloads ... 488

SIMD4x2 Payload .. 488

SIMD8 Payload ... 490

Hull Shader (HS) Stage ... 493

State .. 493

Functions ... 494

Patch Object Staging ... 494

HS Thread Execution .. 494

HS Thread Dispatch Mask ... 494

Patch URB Entry (Patch Record) Output .. 494

Please Provide Title .. 494

DOMAIN_POINT Structure .. 497

3D Media GPGPU

xx Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Statistics Gathering ... 498

HS Invocations ... 498

Payloads ... 498

SINGLE_PATCH Payload .. 498

Tessellation Engine (TE) Stage ... 503

State .. 503

Functions ... 503

Patch Culling ... 503

Tessellation Factor Limits ... 504

Partitioning .. 504

Domain Types and Output Topologies .. 504

QUAD Domain Tessellation .. 505

TRI Domain Tessellation... 507

ISOLINE Domain Tessellation ... 508

Domain Shader (DS) Stage ... 509

State .. 509

Functions ... 509

SIMD4x2 Thread Execution ... 509

Statistics Gathering ... 510

Payloads ... 510

SIMD4x2 Payload .. 510

SIMD8 Payload ... 513

Geometry Shader (GS) Stage ... 516

GS Stage Overview .. 516

State .. 516

Functions ... 516

Object Staging .. 516

Thread Request Generation .. 517

Object Vertex Ordering .. 517

Thread Execution ... 522

Thread Execution .. 522

GS URB Entry .. 522

GS URB Entry - Output Vertex Count ... 523

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxi

GS Output Topologies .. 525

GS Output StreamID .. 525

Primitive Output .. 526

Statistics Gathering ... 526

Payloads ... 526

Thread Payload High-Level Layout .. 526

SIMD 4x2 Thread Payload .. 527

SIMD8 Thread Payload .. 534

Thread Request Generation ... 541

Thread Control Information ... 542

Thread Payload Generation ... 543

Fixed Payload Header .. 543

Extended Payload Header .. 546

Payload URB Data ... 546

Stream Output Logic (SOL) Stage .. 548

State .. 548

Functions ... 550

Input Buffering ... 550

Stream Output Function ... 553

Stream Output Buffers .. 554

Rendering Disable ... 554

Statistics .. 555

3D Pipeline Rasterization ... 555

Common Rasterization State ... 555

3D Pipeline – CLIP Stage Overview ... 556

Clip Stage – 3D Clipping ... 556

Fixed Function Clipper ... 556

Concepts .. 557

CLIP Stage Input ... 557

State .. 557

VUE Readback ... 558

VertexClipTest Function .. 559

Object Staging .. 562

3D Media GPGPU

xxii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Partial Object Removal .. 562

ClipDetermination Function .. 562

ClipMode State... 564

NORMAL ClipMode ... 565

CLIP_ALL ClipMode .. 565

CLIP_NON_REJECT ClipMode ... 565

REJECT_ALL ClipMode ... 565

ACCEPT_ALL ClipMode ... 565

Object Pass-Through .. 566

Primitive Output ... 567

Other Functionality .. 567

Statistics Gathering ... 568

CL_INVOCATION_COUNT.. 568

3D Pipeline - Strips and Fans (SF) Stage ... 569

Inputs from CLIP ... 569

Attribute Setup/Interpolation Process... 570

Attribute Setup/Interpolation Process .. 570

Outputs to WM ... 570

Primitive Assembly .. 571

Point List Decomposition ... 575

Line List Decomposition ... 576

Line Strip Decomposition ... 576

Triangle List Decomposition ... 578

Triangle Strip Decomposition ... 579

Triangle Fan Decomposition ... 580

Polygon Decomposition ... 581

Rectangle List Decomposition ... 581

Object Setup ... 583

Invalid Position Culling (Pre/Post-Transform) .. 583

Viewport Transformation .. 583

Destination Origin Bias .. 583

Point Rasterization Rule Adjustment ... 584

Drawing Rectangle Offset Application .. 585

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxiii

Point Width Application .. 587

Rectangle Completion ... 587

Vertex XY Clamping and Quantization .. 588

Degenerate Object Culling ... 589

Triangle Orientation (Face) Culling ... 589

Scissor Rectangle Clipping ... 590

Viewport Extents Test ... 591

Line Rasterization ... 591

Zero-Width (Cosmetic) Line Rasterization .. 591

GIQ (Diamond) Sampling Rules – Legacy Mode... 592

GIQ (Diamond) Sampling Rules – DX10 Mode .. 593

Non-Antialiased Wide Line Rasterization .. 595

Anti-Aliased Line Rasterization .. 596

SF Pipeline State Summary .. 597

3DSTATE_RASTER [CHV, BSW] ... 597

3DSTATE_SF ... 598

Attribute Interpolation Setup .. 603

Attribute Swizzling .. 603

Interpolation Modes .. 604

Point Sprites .. 604

Barycentric Attribute Interpolation .. 606

Depth Offset ... 606

Other SF Functions ... 606

Statistics Gathering ... 606

Windower (WM) Stage ... 607

Overview .. 607

Inputs from SF to WM .. 608

Windower Pipelined State .. 608

3DSTATE_WM ... 608

3DSTATE_SAMPLE_MASK ... 613

Rasterization .. 619

Drawing Rectangle Clipping ... 620

Line Rasterization .. 620

3D Media GPGPU

xxiv Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Coverage Values for Anti-Aliased Lines ... 620

3DSTATE_AA_LINE_PARAMS [CHV, BSW] ... 620

Line Stipple .. 621

Polygon (Triangle and Rectangle) Rasterization ... 621

Polygon Stipple ... 622

Multisampling ... 623

Multisample ModesState ... 623

Other WM Functions .. 629

Statistics Gathering ... 629

Pixel... 629

Early Depth/Stencil Processing ... 630

Depth Offset .. 630

Early Depth Test/Stencil Test/Write .. 631

Software-Provided PS Kernel Info .. 632

Hierarchical Depth Buffer ... 632

Depth Buffer Clear .. 634

Depth Buffer Resolve ... 635

Hierarchical Depth Buffer Resolve .. 636

Optimized Depth Buffer Clear and/or Stencil Buffer Clear ... 637

Optimized Depth Buffer Resolve... 638

Optimized Hierarchical Depth Buffer Resolve ... 638

Separate Stencil Buffer... 638

DepthStencil Buffer State ... 639

Pixel Shader Thread Generation ... 639

3DSTATE_PS ... 640

Pixel Grouping (Dispatch Size) Control ... 642

Multisampling Effects on Pixel Shader Dispatch ... 644

MSDISPMODE_PERPIXEL Thread Dispatch.. 644

MSDISPMODE_PERSAMPLE Thread Dispatch .. 644

PS Thread Payload for Normal Dispatch .. 647

PS Thread Payload for Normal Dispatch .. 647

Pixel Backend ... 661

Color Calculator (Output Merger) ... 661

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxv

Overview ... 661

Alpha Coverage .. 662

Alpha Test ... 662

Depth Coordinate Offset .. 663

Stencil Test ... 664

Depth Test .. 665

Pre-Blend Color Clamping ... 665

Pre-Blend Color Clamping When Blending is Disabled .. 666

Pre-Blend Color Clamping When Blending is Enabled .. 666

Color Buffer Blending .. 667

Post-Blend Color Clamping ... 669

Dithering ... 669

Logic Ops .. 670

Buffer Update .. 671

Stencil Buffer Updates .. 671

Depth Buffer Updates ... 672

Color Gamma Correction... 672

Color Buffer Updates ... 672

Pixel Pipeline State Summary ... 672

COLOR_CALC_STATE ... 672

3DSTATE_BLEND_STATE_POINTERS .. 673

3DSTATE_DEPTH_STENCIL_STATE_POINTERS ... 673

COLOR_CALC_STATE ... 673

DEPTH_STENCIL_STATE .. 673

BLEND_STATE ... 673

CC_VIEWPORT .. 673

Other Pixel Pipeline Functions ... 674

Statistics Gathering .. 674

MCS Buffer for Render Target(s) .. 674

Render Target Fast Clear ... 677

Render Target Resolve ... 677

Media GPGPU Pipeline ... 679

Media GPGPU Pipeline .. 679

3D Media GPGPU

xxvi Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming the GPGPU Pipeline .. 679

GPGPU Thread Limits ... 680

GPGPU Commands .. 680

GPGPU Command Workarounds ... 680

GPGPU Indirect Thread Dispatch ... 681

GPGPU Context Switch ... 682

GPGPU Context Switch .. 683

GPGPU Context Switch Workarounds ... 686

Media GPGPU Payload Limitations.. 686

Synchronization of the Media/GPGPU Pipeline ... 687

Mode of Operations .. 688

GPGPU Thread R0 Header .. 688

GPGPU Mode ... 690

Automatic Thread Generation .. 690

Thread Payload .. 691

Execution Masks .. 692

URB Management ... 693

Indirect Payload Storage .. 694

MEDIA_OBJECT_GRPID .. 697

Starting Offset for a Thread Group ID .. 697

Thread Group Tracking ... 698

Shared Local Memory Allocation ... 699

Software Managed Shared Local Memory ... 699

Automatic Barrier Management ... 699

Dispatch Payload .. 700

Generic Media .. 700

Product Evolution ... 702

Media and General Purpose Pipeline ... 705

Introduction ... 705

Terminologies .. 705

Hardware Feature Map in Products .. 706

Media Pipeline Overview ... 708

Generic Mode .. 709

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxvii

Programming Media Pipeline .. 710

Command Sequence .. 710

Command Sequence .. 710

Parameterized Media Walker .. 712

Walker Parameter Description ... 713

Basic Parameters for the Local Loop ... 714

MbAff-Like Special Case in Local Loop... 716

Global Loop ... 717

Walker Algorithm Description .. 718

Barriers and Shared Local Memory .. 722

Flexible Dispatch of Local Loop ... 723

Scoreboard Control ... 724

AVC-Style Dependency Example .. 725

Interface Descriptor Selection .. 727

VC1-Style Dependency Example ... 729

Multiple Slice Considerations .. 729

Interrupt Latency .. 729

Thread Spawner Unit... 730

Root Threads and Child Threads .. 731

Root Threads ... 731

URB Handles .. 732

Root to Child Responsibilities ... 732

Multiple Simultaneous Roots .. 732

Synchronized Root Threads ... 733

Deadlock Prevention .. 733

Child Thread Life Cycle .. 734

Arbitration between Root and Child Threads ... 735

Persistent Root Thread .. 735

Media State Model .. 736

Media State and Primitive Commands .. 737

Media State and Primitive Command Workarounds ... 737

Media Messages ... 738

Thread Payload Messages .. 738

3D Media GPGPU

xxviii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Generic Mode Root Thread ... 739

Root Thread from MEDIA_OBJECT_PRT ... 740

Root Thread from MEDIA_OBJECT_WALKER .. 742

MEDIA_OBJECT_GRPID and MEDIA_OBJECT_WALKER with Groups Payload 742

Thread Spawn Message .. 744

Message Descriptor .. 745

Message Payload ... 745

L3 Cache and URB ... 747

L3 Cache and URB ... 747

Vol 1i L3$/URB ... 748

Overview (8th Generation) ... 748

L3$ Cache Configuration .. 749

Blocks(s) Overview ... 749

Size of L3 for 8th Generation ... 750

ECC Protection .. 750

L3$ Theory of Operation ... 750

Atomics ... 752

L3 Coherency .. 757

Thread level Coherency ... 757

Thread Group Coherency ... 757

GPU/IA level Coherency .. 757

Coherency Usage Models ... 758

Fixed Func. Producing (URB) ... 758

Fixed Func. Producing (Push Constants) .. 758

EUs Producing via HDC ... 758

Invalidation and Flushes .. 759

Node Architecture Impact .. 759

Command Streamer Flows ... 759

Non-IA Coherent Flows .. 760

Top of the Pipe Invalidations ... 760

End of the Pipe Flush - Pipeline Flush .. 760

End of the Pipe Flush - GT3/GT4 ... 760

End of the Pipe Flush - GT2/GT1 ... 760

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxix

IA-Coherent Flows .. 760

EU/Thread Flows .. 760

Global Invalidation .. 761

Power Management Invalidation .. 761

L3 Allocation and Programming ... 762

Non-SLM Mode Allocation .. 762

SLM Mode Allocation ... 763

Shared Local Memory (SLM) .. 764

Save and Restore Requirements .. 765

SLM Context Save in SuperQ ... 766

6SLM Context Restore in SuperQ ... 766

SLM Context Save in L3 .. 767

SLM Context Restore in L3 .. 767

EU Overview ... 768

CoIssue/Dual Issue: .. 769

Thread scheduling: ... 769

Primary Usage Models .. 770

AOS and SOA Data Structures .. 771

SIMD4 Mode of Operation ... 773

SIMD4x2 Mode of Operation .. 774

SIMD16 Mode of Operation... 776

SIMD8 Mode of Operation ... 778

Messages .. 779

Message Payload Containing a Header... 780

Writebacks ... 780

Message Delivery Ordering Rules .. 781

Execution Mask and Messages ... 781

End-Of-Thread (EOT) Message ... 782

Performance ... 783

Message Description Syntax .. 783

Message Errors .. 784

Registers and Register Regions ... 786

Register Files .. 786

3D Media GPGPU

xxx Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF Registers ... 787

ARF Registers ... 788

ARF Registers Overview ... 788

Access Granularity ... 789

Null Register .. 790

Address Register .. 791

Accumulator Registers ... 795

Flag Register .. 800

Channel Enable Register ... 801

Message Control Registers .. 802

Example .. 803

SP Register .. 803

State Register .. 805

Control Register.. 811

Notification Registers ... 817

IP Register ... 819

TDR Registers .. 820

Performance Registers ... 823

Flow Control Registers ... 825

Immediate ... 829

Region Parameters ... 830

Region Addressing Modes ... 834

Direct Register Addressing... 834

Register-Indirect Register Addressing with a 1x1 Index Region ... 835

Register-Indirect Register Addressing with a Vx1 Index Region .. 836

Register-Indirect Register Addressing with a VxH Index Region .. 837

Access Modes .. 839

Execution Data Type .. 840

Register Region Restrictions .. 841

Destination Operand Description .. 850

Destination Region Parameters.. 850

SIMD Execution Control ... 851

Predication .. 851

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxxi

No Predication ... 853

Predication with Horizontal Combination .. 853

Predication with Vertical Combination .. 855

End of Thread ... 855

Assigning Conditional Flags.. 856

Destination Hazard ... 859

Non-present Operands ... 860

Instruction Prefetch .. 860

ISA Introduction ... 861

Introducing the Execution Unit ... 862

EU Terms and Acronyms ... 865

Execution Units (EUs) .. 870

EU Changes by Processor Generation ... 871

EU Notation .. 874

Execution Environment .. 875

EU Data Types .. 875

Fundamental Data Types .. 875

Numeric Data Types ... 876

Integer Numeric Data Types ... 876

Floating-Point Numeric Data Types ... 878

Packed Signed Half-Byte Integer Vector ... 880

Packed UnSigned Half-Byte Integer Vector .. 882

Packed Restricted Float Vector .. 883

Floating Point Modes ... 885

IEEE Floating Point Mode ... 885

Partial Listing of Honored IEEE-754 Rules .. 885

Complete Listing of Deviations or Additional Requirements vs IEEE-754 886

Min Max of Floating Point Numbers .. 887

Alternative Floating Point Mode ... 889

Floating-Point Support ... 891

Floating-Point Types and Values ... 891

Not a Number (NaN) Formats .. 892

Floating-Point Rounding Modes ... 893

3D Media GPGPU

xxxii Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Floating-Point Operations and Precision ... 894

Single Precision Floating-Point Rounding to Integral Values .. 894

Floating-Point to Integer Conversion .. 894

Integer to Floating-Point Conversion .. 896

Floating-Point Min/Max Operations .. 896

IEEE Floating-Point Exceptions ... 897

Signaling Floating-Point Exceptions ... 897

Invalid Operation Exception ... 898

Division by Zero Exception ... 899

Overflow Exception .. 899

Underflow Exception ... 900

Inexact Exception .. 901

Floating-Point Compare Operations ... 901

Type Conversion ... 906

Float to Integer ... 906

Integer to Integer with Same or Higher Precision ... 906

Integer to Integer with Lower Precision ... 907

Integer to Float ... 907

Double Precision Float to Single Precision Float [CHV, BSW] ... 908

Single Precision Float to Double Precision Float [CHV, BSW] ... 908

Exceptions.. 909

Exception-Related Architecture Registers .. 910

System Routine ... 911

Invoking the System Routine .. 911

Returning to the Application Thread ... 912

System IP (SIP) .. 913

System Routine Register Space ... 913

System Scratch Memory Space ... 914

Conditional Instructions Within the System Routine .. 914

Use of NoDDClr ... 915

Exception Descriptions .. 916

Illegal Opcode .. 916

Undefined Opcodes ... 916

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxxiii

Software Exception ... 916

Context Save and Restore .. 916

Events That Do Not Generate Exceptions .. 918

Illegal Instruction Format ... 918

Malformed Message .. 918

GRF Register Out of Bounds ... 918

Hung Thread ... 918

Instruction Fetch Out of Bounds ... 918

FPU Math Errors ... 919

Computational Overflow .. 919

System Routine Example... 920

Instruction Set Summary ... 923

Instruction Set Characteristics .. 923

SIMD Instructions and SIMD Width ... 923

Instruction Operands and Register Regions ... 923

Instruction Execution ... 924

Instruction Formats ... 924

Native Instruction Layouts ... 929

Instruction Fields ... 933

EU Compact Instructions .. 951

EU Compact Instruction Format .. 951

EU Instruction Compaction Tables ... 957

Opcode Encoding.. 963

Move and Logic Instructions .. 963

Flow Control Instructions ... 964

Miscellaneous Instructions .. 965

Parallel Arithmetic Instructions .. 965

Vector Arithmetic Instructions ... 966

Special Instructions ... 968

Native Instruction BNF ... 969

Instruction Groups .. 969

Destination Register ... 970

Source Register .. 971

3D Media GPGPU

xxxiv Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Address Registers .. 972

Register Files and Register Numbers .. 972

Relative Location and Stack Control .. 973

Regions .. 974

Types .. 974

Write Mask ... 974

Swizzle Control ... 974

Immediate Values .. 974

Predication and Modifiers.. 975

Instruction Options ... 976

Instruction Set Summary Tables .. 977

Accumulator Restrictions .. 980

Instruction Set Reference .. 983

Conventions ... 983

Pseudo Code Format .. 983

General Macros and Definitions... 983

Evaluate Write Enable .. 984

EUISA Instructions ... 985

Round Instructions .. 987

rndd – Round Down .. 988

rnde – Round to Nearest or Even ... 989

rndu – Round Up .. 990

rndz – Round to Zero .. 991

Send Message... 991

Send Message [CHV, BSW] ... 992

EUISA Structures ... 995

EUISA Enumerations ... 996

EU Programming Guide ... 998

Assembler Pragmas ... 998

Declarations ... 998

Defaults and Defines .. 998

Example Pragma Usages ... 999

Assembly Programming Guideline ...1001

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 xxxv

Usage Examples ..1002

Vector Immediate ..1002

Supporting DirectX 10 Pixel Shader Indexing ...1002

Supporting OpenGL Vertex Shader Instruction SWZ ...1003

Destination Mask for DP4 and Destination Dependency Control1004

Null Register as the Destination ..1004

Use of LINE Instruction ...1005

Mask for SEND Instruction ..1006

Channel Enables for Extended Math Unit ...1006

Channel Enables for Scratch Memory ..1008

Flow Control Instructions ...1010

Execution Masking ..1010

Branching ...1011

Fast-If ...1011

Cascade Branching ...1012

Compound Branches ...1013

Looping ...1014

Indexed Jump ...1019

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1

Registers in Render Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including

brief descriptions of their use. Refer to each registers description and related feature for more

information on each individual bit. Unless noted otherwise within the description of the bit must only

be updated following a flush to ensure the pipeline is idle.

The registers detailed in this chapter are used across the CHV, BSW family of products and are

extentions to previous projects. However, slight changes may be present in some registers (i.e., for

features added or removed), or some registers may be removed entirely. These changes are clearly

marked within this chapter.

3D Media GPGPU

2 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Predication

Predicate Render Registers

MI_PREDICATE_SRC0 - Predicate Rendering Temporary Register0

MI_PREDICATE_SRC1 - Predicate Rendering Temporary Register1

MI_PREDICATE_DATA - Predicate Rendering Data Storage

MI_PREDICATE_RESULT - Predicate Rendering Data Result

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 3

MI_SET_PREDICATE

MI_SET_PREDICATE is a command that allows the driver to conditionally choose to execute or skip a

command during execution time.

Below is a table of command(s) that are allowed to be programmed when the MI_SET_PREDICATE

PREDICATE ENABLE field allows any type of predication. If a command is not in the table, then it will

have undefined behavior when executed with predication enabled:

MI_SET_PREDICATE

Command

3DSTATE_URB_VS

3DSTATE_URB_HS

3DSTATE_URB_DS

3DSTATE_URB_GS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

MI_LOAD_REGISTER_IMM

3DSTATE_WM_HZ_OP

MEDIA_VFE_STATE

MEDIA_OBJECT

MEDIA_OBJECT_WALKER

MEDIA_INTERFACE_DESCRIPTOR_LOAD

MI_PREDICATE

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to

enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

3D Media GPGPU

4 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based on the

result of a previous predicate test. A new state bit, Predicate, has been added to the command stream. In addition,

a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set, the command is ignored if the

Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the Predicate bit is

generated.

Refer to the diagram below and the command description (linked above) for details.

MI_PREDICATE Function

MI_LOAD_REGISTER_MEM commands can be used to load the MItemp0, MItemp1, and PredicateData registers

prior to MI_PREDICATE. To ensure the memory sources of the MI_LOAD_REGISTER_MEM commands are coherent

with previous 3D_PIPECONTROL store-DWord operations, software can use the new Pipe Control Flush

Enable bit in the PIPE_CONTROL command.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 5

Registers in Render Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including

brief descriptions of their use. Refer to each registers description and related feature for more

information on each individual bit. The registers detailed in this chapter are used across the CHV, BSW

family of products and are extentions to previous projects. However, slight changes may be present in

some registers (i.e., for features added or removed), or some registers may be removed entirely. These

changes are clearly marked within this chapter.

Context Save Registers

VF Instance Count Registers

VF Instance Count Register Set

Register

Type:

MMIO_VF

Address: 08300h - 08384h

Default

Value:

0000 0000h

Access: RO

Size: 1088 bits

Description: Set of Registers for storing the index count values. In case of preempted drawcalls, these register

store index count/number per element. For the non-preempted drawcalls, the values stored are

ignored upon restore.

 These are saved as part of render context.

DWord Bits Description

0 31:0 Index Count 0. Index Count value for Element 0.

 Format: U32

1 31:0 Index Count 1. Index Count value for Element 1.

 Format: U32

... 31:0 ...

33 31:0 Index Count 33. Index Count value for Element 33.

 Format: U32

3D Media GPGPU

6 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes.

MI_MODE - Render Mode Register for Software Interface

FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

SAMPLER_MODE - SAMPLER Mode Register

CACHE_MODE_0 - Cache Mode Register 0

CACHE_MODE_1 - Cache Mode Register 1

GAFS_MODE - Mode Register for GAFS

FBC_RT_BASE_ADDR_REGISTER - FBC_RT_BASE_ADDR_REGISTER

FBC_RT_BASE_ADDR_REGISTER_UPPER - FBC_RT_BASE_ADDR_REGISTER_UPPER

L3CNTLREG - L3 Control Register

B/D/F/Type:

Address Offset: 0x7034

Default Value: 60000060h

Access: RW; RO;

Size: 32 bit

Below Register provides GT2 based L3 sizes.

For GT1 – all sizes need to be multiplied by 0.5.

For GT3 – all sizes need to be multiplied by 2.

For GT4 – all sizes need to be multiplied by 3.

All L3 ways have to be included in the programming to ensure that no ways are left out.

L3CNTLREG - L3 Control Register

GLOBAL_CLEAR_VALUE_0 - Global Clear Value Register 0

GLOBAL_CLEAR_VALUE_1 - Global Clear Value Register 1

GLOBAL_CLEAR_VALUE_2 - Global Clear Value Register 2

GLOBAL_CLEAR_VALUE_3 - Global Clear Value Register 3

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 7

Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and

restored with context but should not be changed by software except to reset them to 0 at context

creation time. Write access to the statistics counter in this section must be done through

MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_REGISTER_REG commands in ring

buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result,

a pipeline flush just prior to reading the registers is necessary to synchronize the counts with the

primitive stream.

IA_VERTICES_COUNT - IA Vertices Count

IA_PRIMITIVES_COUNT - Primitives Generated By VF

VS_INVOCATION_COUNT - VS Invocation Counter

HS_INVOCATION_COUNT - HS Invocation Counter

DS_INVOCATION_COUNT - DS Invocation Counter

GS_INVOCATION_COUNT - GS Invocation Counter

GS_PRIMITIVES_COUNT - GS Primitives Counter

CL_INVOCATION_COUNT - Clipper Invocation Counter

PS_INVOCATION_COUNT - PS Invocation Count

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

PS_DEPTH_COUNT_SLICE3 - PS Depth Count for Slice3

TIMESTAMP - Reported Timestamp Count

SO_NUM_PRIMS_WRITTEN[0:3] - Stream Output Num Primitives Written Counter

SO_PRIM_STORAGE_NEEDED[0:3] - Stream Output Primitive Storage Needed Counters

SO_WRITE_OFFSET[0:3] - Stream Output Write Offsets

WMHWCLRVAL - Window Hardware Generated Clear Value

CS_CTX_TIMESTAMP- CS Context Timestamp Count:

This register provides a mechanism to obtain cumulative run time of a GPU context on HW.

CS_CTX_TIMESTAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP reun time, save/restored during a GPGPU context

switch flow.

3D Media GPGPU

8 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 9

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset

3DPRIM_START_VERTEX - Load Indirect Start Vertex

3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count

3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

3DPRIM_START_INSTANCE - Load Indirect Start Instance

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

MMIO Registers for GPGPU Indirect Dispatch

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from

the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z

TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

3D Media GPGPU

10 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

CS ALU Programming and Design

Command streamer implements a rudimentary ALU which supports basic Arithmetic (Addition and

Subtraction) and logical operations (AND, OR, XOR) on two 64bit operands. ALU has two 64bit registers

at the input SRCA and SRCB to which the operands should be loaded on which operations will be

performed and outputted to a 64 bit Accumulator. Zero Flag and Carry Flag are set based on

accumulator output.

CS ALU Programming and Design

Command streamer implements a rudimentary ALU which supports basic Arithmetic (Addition and

Subtraction) and logical operations (AND, OR, XOR) on two 64bit operands. ALU has two 64bit registers

at the input SRCA and SRCB to which the operands should be loaded on which operations will be

performed and outputted to a 64 bit Accumulator. Zero Flag and Carry Flag are set based on

accumulator output.

Generic Purpose Registers

Command streamer implements sixteen 64 bit General Purpose Registers which are MMIO mapped.

These registers can be accessed similar to any other MMIO mapped registers through LRI, SRM, LRR,

LRM or CPU access path for reads and writes. These registers will be labeled as R0, R1, … R15

throughout the discussion. Refer table in the B-spec update section mapping these registers to

corresponding MMIO offset. A selected GPR register can be moved to SRCA or SRCB register using

“LOAD” instruction. Outputs of the ALU, Accumulator, ZF and CF can be moved to any of the GPR using

“STORE” instruction.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 11

ALU BLOCK Diagram

3D Media GPGPU

12 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Instruction Set

The instructions supported by the ALU can be broadly categorized into three groups:

 To move data from GPR to SRCA/SRCB – LOAD instruction.

 To move data from ACCUMULATOR/CF/ZF to GPR – STORE Instruction.

 To do arithmetic/Logical operations on SRCA and SRCB of ALU - ADD/SUB/AND/XOR/OR.

Instruction Format

Each instruction is one Dword in size and consists of an ALU OPCODE, OPERAND1 and OPERAND2 in

the format shown below.

ALU OPCODE Operand-1 Operand-2

12 bits 10 bits 10 bits

LOAD Operation

The LOAD instruction moves the content of the destination register (Operand2) into the source register

(Operand1). The destination register can be any of the GPR (R0, R1, ..., R15) and the source registers are

SRCA and SRCB of the ALU. This is the only means SRCA and SRCB can be programmed.

LOAD has different flavors, wherein one can load the inverted version of the source register into the

destination register or a hard coded value of all Zeros and All ones.

 // Loads any of Reg0 to Reg15 into the SRCA or SRCB registers of ALU.

 LOAD <SRCA, SRCB>, <REG0..REG15>

 // Loads inverted (bit wise) value of the mentioned Reg0 to 15 into SRCA or SRCB registers

of ALU.

 LOADINV <SRCA, SRCB>, <REG0..REG15>

 // Loads "0" into SRCA or SRCB

 LOAD0 <SRCA, SRCB>

 // Loads "1" into SRCA or SRCB

 LOAD1 <SRCA, SRCB>

31 20 19 10 9 0

Opcode Operand1 Operand2

LOAD SRCA/SRCB R0,R1..R15

LOADINV SRCA/SRCB R0,R1..R15

LOAD0 SRCA/SRCB N/A

LOAD1 SRCA/SRCB N/A

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 13

Arithmetic/Logical Operations

ADD, SUB, AND, OR, and XOR are the Arithmetic and Logical operations supported by Arithmetic Logic

Unit (ALU). When opcode corresponding to a logical operation is performed on SRCA and SRCB, the

result is sent to ACCUMULATOR (ACCU), CF and ZF. Note that ACCU is 64-bit register. A NOOP when

submitted to the ALU doesn’t do anything, it is meant for creating bubble or kill cycles.

31 20 19 10 9 0

Opcode Operand1 Operand2

ADD N/A N/A

SUB N/A N/A

AND N/A N/A

OR N/A N/A

XOR N/A N/A

NOOP N/A NA

STORE Operation

The STORE instruction moves the content of the destination register (Operand1) into the source register

(Operand2). The destination register can be accumulator (ACCU), CF or ZF and GPR (R0, R1 ..R15).

STORE has different flavors, wherein one can load the inverted version of the source register into

destination register via STOREINV. When CF or ZF are stored, the same value is replicated on all 64 bits.

 // Loads ACCMULATOR or Carry Flag or Zero Flag in to any of the generic registers

 // Reg0 to Reg16. In case of CF and ZF same value is replicated on all the 64 bits.

 STORE <R0.. R15>, <ACCU, CF, ZF>

 // Loads inverted (ACCMULATOR or Carry Flag or Zero Flag) in to any of the

 // generic registers Reg0 to Reg15.

 STOREINV <R0.. R15>, <ACCU, CF, ZF>

31 20 19 10 9 0

Opcode Operand1 Operand2

STORE R0,R1..R15 ACCU/ZF/CF

STOREINV R0, R1.. R15 ACCU/ZF/CF

Summary for ALU

Total Opcodes Supported: 12

Total Addressable Registers as source or destination: 21

 16 GPR (R0, R1 …R15)

 1 ACCU

 1ZF

 1CF

 SRCA, SRCB

3D Media GPGPU

14 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Summary of Instructions Supported

31 20 19 10 9 0

Opcode Operand1 Operand2

LOAD SRCA/SRCB REG0..REG15

LOADINV SRCA/SRCB REG0..REG15

LOAD0 SRCA/SRCB N/A

LOAD1 SRCA/SRCB N?A

ADD N/A N/A

SUB N/A N/A

AND N/A N/A

OR N/A N/A

XOR N/A N/A

NOOP N/A N/A

STORE REG0..REG15 ACCU/CF/ZF

STOREINV REG0..REG15 ACCU/CF/ZF

Table for ALU OPCODE Encodings

ALU OPCODE OPCODE ENCODING

NOOP 0x000

LOAD 0x080

LOADINV 0x480

LOAD0 0x081

LOAD1 0x481

ADD 0x100

SUB 0x101

AND 0x102

OR 0x103

XOR 0x104

STORE 0x180

STOREINV 0x580

In the above mentioned table, ALU Opcode Encodings look like random numbers. The rationale behind

those encodings is because the ALU Opcode is further broken down into sub-sections for ease-of-

design implementation.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 15

PREFIX OPCODE SUBOPCODE

11 10 9 7 6 0

PREFIX VALUE Description

0 Regular

1 Invert

OPCODE VALUE Description

0 NOOP

1 LOAD

2 ALU

3 STORE

ALU OPCODE ENCODING PREFIX OPCODE SUBOPCODE

 10 9 7 6 0

NOOP 0x000 0 0 0

LOAD 0x080 0 1 0

LOADINV 0x480 1 1 0

LOAD0 0x081 0 1 1

LOAD1 0x481 1 1 1

ADD 0x100 0 2 0

SUB 0x101 0 2 1

AND 0x102 0 2 2

OR 0x103 0 2 3

XOR 0x104 0 2 4

STORE 0x180 0 3 0

STOREINV 0x580 1 3 0

3D Media GPGPU

16 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Table for Register Encodings

Register Register Encoding

R0 0x0

R1 0x1

R2 0x2

R3 0x3

R4 0x4

R5 0x5

R6 0x6

R7 0x7

R8 0x8

R9 0x9

R10 0xa

R11 0xb

R12 0xc

R13 0xd

R14 0xe

R15 0xf

SRCA 0x20

SRCB 0x21

ACCU 0x31

ZF 0x32

CF 0x33

CS_GPR - Command Streamer General Purpose Registers

Following are Command Streamer General Purpose Registers:

CS_GPR - CS General Purpose Register

Memory Interface Commands for Rendering Engine

MI_SET_CONTEXT

MI_TOPOLOGY_FILTER

MI_URB_CLEAR

MI_URB_ATOMIC_ALLOC

MI_LOAD_URB_MEM

MI_STORE_URB_MEM

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 17

State Commands

This section covers the following commands:

 STATE_PREFETCH command. The STATE_PREFETCH command is provided strictly as an optional

mechanism to possibly enhance pipeline performance by prefetching data into the GPE’s

Instruction and State Cache (ISC).

 STATE_SIP command

STATE_PREFETCH

STATE_SIP

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and

media indirect object accesses by the GPE. (See Memory Access Indirection for details.)

The following commands must be reissued following any change to the base addresses:

 3DSTATE_PIPELINE_POINTERS

 3DSTATE_BINDING_TABLE_POINTERS

 MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher

performance.

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

3D Media GPGPU

18 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top

of the pipe synchronization really enforces the read-only cache invalidation. This synchronization

guarantees that primitives rendered after such synchronization event fetches the latest read-only data

from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not

have outstanding hardware accesses. These are used to implement read and write fences as well as to

write out certain statistics deterministically with respect to progress of primitives through the pipeline

(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is

used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the

beginning of the rendering sequence in a given context. HW may have residual states cached in the

state-caches and read-only surfaces in various caches. With new rendering sequence, read-only surfaces

may go through change in the binding. Hence read-only invalidation is required before such new

rendering sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this

specific pipe-control command, HW invalidates all caches in GT domain that have read-only surfaces

but does not guarantee invalidation beyond GT caches . Further, HW does not guarantee that all prior

accesses to those read-only surfaces have completed. Therefore SW must guarantee that there are no

pending accesses to those read-only surfaces before initializing the top-of-pipe synchronization. PIPE-

CONTROL command described below allows for invalidating individual read-only stream type. It is

recommended that driver invalidates only the required caches on the need basis so that cache warm-up

overhead can be reduced.

End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not

necessarily in memory) so that it can deallocate in-memory rendering state, read-only surfaces,

instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee

that all pending depth tests have completed so that the visible pixel count is complete prior to storing it

to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events

are complete (a “read fence” completion). Read events are still pending if work in the pipeline requires

any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render

cache and/or depth related caches are flushed to memory, where the data will become globally visible.

This type of synchronization is required prior to SW (CPU) actually reading the result data from memory,

or initiating an operation that will use as a read surface (such as a texture surface) a previous render

target and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush

Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are

flushed and doesn’t guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using “Notify Enable” and “Post-

Sync Operation - Write Immediate Data” in the PIPE_CONTROL command. “Notify Enable” and “Post-

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 19

Sync Operation - Write Immediate Data” generate a fence cycle on achieving end-of-pipe-

synchronization for the corresponding PIPE_CONTROL command. Fence cycle ensures all the write

cycles in front of it are to global visible point before they themselves get processed.It is guaranteed the

data flushed out by the PIPE_CONTROL is updated in memory by the time SW receives the

corresponding Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back in to the render engine in coherent

manner, then the render engine has to wait for the fence completion before accessing the flushed data.

This can be achieved by following means on various products:

PIPE_CONTROL command with CS Stall and the required write caches flushed with Post-Sync-Operation as Write

Immediate Data.

Example:

 WorkLoad-1 (3D/GPGPU/MEDIA)

 PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush bits set)

 WorkLoad-2 (Can use the data produced or output by Workload-1)

Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of

the synchronization point must be communicated to the driver. This section describes the actions that

may be taken upon completion of a synchronization point which can achieve this communication.

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to

memory. An immediate value (included with the synchronization command) may be written. In lieu of

an immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP

register may be written out to memory. The captured value will be the value at the moment all

primitives parsed prior to the synchronization commands have been completely rendered, and

optionally after all said primitives have been pushed to memory. It is not required that a value be

written to memory by the synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these

counters are free-running and are not to be reset except at initialization. To obtain the delta, two

PIPE_CONTROL commands should be initiated with the command sequence to be measured between

them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic

about the command sequence.

3D Media GPGPU

20 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the

synchronization command should include the Depth Stall Enable parameter. There is more than one

point at which the global visible pixel count can be affected by the pipeline; once the synchronization

command reaches the first point at which the count can be affected, any primitives following it are

stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible

pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the

visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on

performance and should only be used in order to obtain accurate “visible pixel” counts for a sequence

of primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) “Occlusion Query” function.

Generating an Interrupt

The synchronization command may indicate that a “Sync Completion” interrupt is to be generated (if

enabled by the MI Interrupt Control Registers – see Memory Interface Registers) once the rendering of

all prior primitives is complete. Again, the completion of rendering can be considered to be when the

internal render cache has been updated, or when the cache contents are visible in memory, as selected

by the command options.

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to

reuse referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure

rendering is complete. If additional primitives are initiated after new data is laid over the top of old in

memory following a synchronization point, it is possible that stale cached data will be referenced for the

subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used.

(See PIPE_CONTROL Command description).

PIPE_CONTROL Command

The PIPE_CONTROL command is used to effect the synchronization described above. Parsing a

PIPE_CONTROL command stalls the 3D pipe only if the stall enable bit is set. Commands after

PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may include additional

PIPE_CONTROL commands. The implementation does enforce a practical upper limit (8) on the number

of PIPE_CONTROL commands that may be outstanding at once. Parsing a PIPE_CONTROL command

that causes this limit to be reached will stall the parsing of new commands until the first of the

outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue PIPE_CONTROL when

the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the pipe until the Media

FFs finish processing commands parsed before PIPE_CONTROL. Post-synchronization operations,

flushing of caches and interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this

stalling behavior, only one PIPE_CONTROL command can be outstanding at a time on the Media pipe.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 21

For the invalidate operation of the pipe control, the following pointers are affected. The invalidate

operation affects the restore of these packets. If the pipe control invalidate operation is completed

before the context save, the indirect pointers will not be restored from memory.

 Pipeline State Pointer

 Media State Pointer

 Constant Buffer Packet

It is up to software to program the appropriate read-only cache invalidation such as the sampler and

constant read caches or the instruction and state caches. Once notification is observed, new data may

then be loaded (potentially “on top of” the old data) without fear of stale cache data being referenced

for subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it

to a new location to use as a texture, for example), it must also ensure that the write cache (render

cache) is flushed after the synchronization point is reached so that memory will be updated. This can be

done by setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear

in order for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate

reporting of the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be

invalidated (except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is

done in software, not hardware) Note that the index-based vertex cache is always flushed between

primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.

Therefore only the VF (“address-based”) cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

PIPE_CONTROL

Description

Hardware supports up to 32 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenarios.

3D Media GPGPU

22 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write

Cache

Flush

Notification

Enabled

Non-VF RO

Cache

Invalidate

VF RO Cache

Invalidate

Marker

Sent

Pipeline

Marker

Enable

Completion

Requested

Top of Pipe

Invalidate

Pulse from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

 Post-sync operations

 Flush Types

 Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall

category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no

arguments set is Invalid.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 23

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command

is completed. The table below shows the restrictions:

Argument Bits Restriction

LRI Post Sync

Operation

23 Post Sync Operation ([15:14] of DW1) must be set to 0x0.

LRI Post Sync

Operation

23 Requires stall bit ([20] of DW1) set.

LRI Post Sync

Operation

23 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Global

Snapshot

Count Reset

19 This bit must not be exercised on any product.

 Requires stall bit ([20] of DW1) set.

Generic Media

State Clear

16 Requires stall bit ([20] of DW1) set.

Indirect State

Pointers

Disable

9 Requires stall bit ([20] of DW1) set.

Store Data

Index

21 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0'.

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0' or

0x2520[13] must be set.

TLB inv 18 Requires stall bit ([20] of DW1) set.

Post Sync Op 15:14 LRI Post Sync Operation ([23] of DW1) must be set to '0'.

Post Sync Op 15:14 "CS Stall" must always be set in all PIPE_CONTROL commands having "Post-Sync

Operation" set to "Report PS Depth Count" or "Report Time Stamp" when user wishes to

set "Post-Sync Operation" bit in any of the MI_ATOMIC or MI_SEMAPHORE_SIGNAL

commands programmed.

Post Sync Op 15:14 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Notify En 8 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

3D Media GPGPU

24 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being

requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync

operation or the stall bit. The table below shows the restrictions:

Arguments Bit Restrictions

Depth Stall 13 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Render Target Cache

Flush

12 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Depth Cache Flush 0 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Stall Pixel Scoreboard 1 No Restriction.

DC Flush Enable 5 Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Inst invalidate 11 No Restriction.

Tex invalidate 10 No Restriction.

VF invalidate 4 “Post Sync Operation” must be enabled to “Write Immediate Data” or “Write PS

Depth Count” or “Write Timestamp”.

Constant invalidate 3 No Restriction.

State Invalidate 2 No Restriction.

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments Bit Restrictions

Stall Bit 20
[All Stepping][All SKUs]:

One of the following must also be set:

 Render Target Cache Flush Enable ([12] of DW1)

 Depth Cache Flush Enable ([0] of DW1)

 Stall at Pixel Scoreboard ([1] of DW1)

 Depth Stall ([13] of DW1)

 Post-Sync Operation ([13] of DW1)

 DC Flush Enable ([5] of DW1)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 25

Render Logical Context Data

Logical Contexts are memory images used to store copies of the device’s rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering

contexts are considered device-dependent and software must not access the memory contents directly.

The definition of the logical rendering and power context memory formats is included here primarily for

internal documentation purposes.

Overall Context Layout

Content for this topic is currently under development.

Context Layout

For [CHV, BSW], when Execlists are enabled, the Context Image for the rendering engine consists of 20

4K pages:

Per-Process HW Status Page (4K)

Register State Context

When Execlists are disabled, the context image doesn’t consist the Per-Process HW status page.

Register State context is explained in detail in “Register State Context” Section.

3D Media GPGPU

26 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Register State Context

This section describes programming requirements for the Register State Context.

Programming Note

Context: Register State Context.

 All the MMIO registers part of the “Register State Context Image” are context specific and gets context

save/restored upon a context switch. MMIO register values belonging to a context can be exercised

through HOST/IA MMIO interface only when the context is active in HW. Exercising context specific MMIO

registers through HOST/IA MMIO is completely asynchronous to the context execution in HW and can’t

guarantee a desired sampling point during execution. In execlist mode of scheduling there is no active

context when HW is Idle.

 All the write access to MMIO registers listed in the “Register State Context image” subsections below must

be done through MI commands (MI_LOAD_REGISTER_IMM, MI_LOAD_REG_MEM, MI_LOAD_REGISTER_REG)

in the command sequence.

 MMIO reads or writes to any of the registers listed in the “Register State Context image” subsections

through HOST/IA MMIO interface must follow the steps below:

 SW should set the Force Wakeup bit to prevent GT from entering C6.

 Write 0x2050[31:0] = 0x00010001 (disable sequence).

 Disable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010001).

 Poll/Wait for register bits of 0x22AC[6:0] turn to 0x30 value.

 Read/Write to desired MMIO registers.

 Enable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010000).

 Force Wakeup bit should be reset to enable C6 entry.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 27

Register State Context

Context Color Codes Used

EXECLIST CONTEXT

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

URB_ATOMIC CONTEXT

Register Information

Description MMIO Offset/Command Unit # of DW Address Offset

NOOP CS 1 0

Load_Register_Immediate header 0x1100_1015 CS 1 0001

Context Control 0x2244 CS 2 0002

Ring Head Pointer Register 0x2034 CS 2 0004

Ring Tail Pointer Register 0x2030 CS 2 0006

RING_BUFFER_START 0x2038 CS 2 0008

RING_BUFFER_CONTROL 0x203C CS 2 000A

Batch Buffer Current Head Register (UDW) 0x2168 CS 2 000C

Batch Buffer Current Head Register 0x2140 CS 2 000E

Batch Buffer State Register 0x2110 CS 2 0010

SECOND_BB_ADDR_UDW 0x211C CS 2 0012

SECOND_BB_ADDR 0x2114 CS 2 0014

SECOND_BB_STATE 0x2118 CS 2 0016

NOOP CS 8 0018

NOOP CS 1 0020

Load_Register_Immediate header 0x1100_1011 CS 1 0021

CTX_TIMESTAMP 23A8 CS 2 0022

PDP3_UDW 228C CS 2 0024

PDP3_LDW 2288 CS 2 0026

PDP2_UDW 2284 CS 2 0028

PDP2_LDW 2280 CS 2 002A

PDP1_UDW 227C CS 2 002C

PDP1_LDW 2278 CS 2 002E

PDP0_UDW 2274 CS 2 0030

PDP0_LDW 2270 CS 2 0032

NOOP CS 12 0034

3D Media GPGPU

28 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description MMIO Offset/Command Unit # of DW Address Offset

NOOP CS 1 0040

Load_Register_Immediate header 0x1100_0001 CS 1 0041

R_PWR_CLK_STATE 20C8 CS 2 0042

GPGPU_CSR_BASE_ADDRESS CS 3 0044

NOOP CS 9 0047

NOOP CS 5 0050

Load_Register_Immediate header 0x1100_10D5 CS 1 0055

EXCC 0x2028 CS 2 0056

MI_MODE 0x209C CS 2 0058

INSTPM 0x20C0 CS 2 005A

PR_CTR_CTL 0x2178 CS 2 005C

PR_CTR_THRSH 0x217C CS 2 005E

IA_VERTICES_COUNT 0x2310 CS 4 0062

IA_PRIMITIVES_COUNT 0x2318 CS 4 0066

VS_INVOCATION_COUNT 0x2320 CS 4 006A

HS_INVOCATION_COUNT 0x2300 CS 4 006E

DS_INVOCATION_COUNT 0x2308 CS 4 0072

GS_INVOCATION_COUNT 0x2328 CS 4 0076

GS_PRIMITIVES_COUNT 0x2330 CS 4 007A

CL_INVOCATION_COUNT 0x2338 CS 4 007E

CL_PRIMITIVES_COUNT 0x2340 CS 4 0082

PS_INVOCATION_COUNT_0 0x22C8 CS 4 0086

PS_DEPTH_COUNT _0 0x22D8 CS 4 008A

TIMESTAMP Register (LSB) 0x2358 CS 2 008E

CS_INTERNAL 0x2580 CS 2 0090

GPUGPU_DISPATCHDIMX 0x2500 CS 2 0092

GPUGPU_DISPATCHDIMY 0x2504 CS 2 0094

GPUGPU_DISPATCHDIMZ 0x2508 CS 2 0096

MI_PREDICATE_SRC0 0x2400 CS 2 0098

MI_PREDICATE_SRC0 0x2404 CS 2 009A

MI_PREDICATE_SRC1 0x2408 CS 2 009C

MI_PREDICATE_SRC1 0x240C CS 2 009E

MI_PREDICATE_DATA 0x2410 CS 2 00A0

MI_PREDICATE_DATA 0x2414 CS 2 00A2

MI_PRED_RESULT 0x2418 CS 2 00A4

3DPRIM_END_OFFSET 0x2420 CS 2 00A6

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 29

Description MMIO Offset/Command Unit # of DW Address Offset

3DPRIM_START_VERTEX 0x2430 CS 2 00A8

3DPRIM_VERTEX_COUNT 0x2434 CS 2 00AA

3DPRIM_INSTANCE_COUNT 0x2438 CS 2 00AC

3DPRIM_START_INSTANCE 0x243C CS 2 00AE

3DPRIM_BASE_VERTEX 0x2440 CS 2 00B0

GPGPU_THREADS_DISPATCHED 0x2290 CS 4 00B2

PS_INVOCATION_COUNT_1 0x22F0 CS 4 00B6

PS_DEPTH_COUNT _1 0x22F8 CS 4 00BA

BB_START_ADDR_UDW 0x2170 CS 2 00BE

BB_START_ADDR 0x2150 CS 2 00C0

BB_ADD_DIFF 0x2154 CS 2 00C2

BB_OFFSET 0x2158 CS 2 00C4

RS_PREEMPT_STATUS 0x215C CS 2 00C6

CTX_SEMA_REG 0x24B4 CS 4 00C8

PRODUCE_COUNT_BTP 0x2480 CS 2 00CC

PRODUCE_COUNT_DX9_CONSTANTS 0x2484 CS 2 00CE

PRODUCE_COUNT_GATHER_CONSTANTS 0x248C CS 2 00D0

PARSED_COUNT_BTP 0x2490 CS 2 00D2

PARSED_COUNT_DX9_CONSTANTS 0x2494 CS 2 00D4

MI_PREDICATE_RESULT_1 0x241C CS 2 00D6

CS_GPR (1-16) 0x2600 CS 64 00D8

MI_TAGDATA 0x219C CS 4 011C

PS_INVOCATION_COUNT_2 0x2348 CS 4 0124

PS_DEPTH_COUNT_2 0x2350 CS 4 0128

NOOP CS 12 012C

MI_TOPOLOGY_FILTER CS 1 0138

MI_URB_CLEAR CS 2 0139

PIPELINE_SELECT CS 1 013B

STATE_BASE_ADDRESS CS 16 013C

3DSTATE_PUSH_CONSTANT_ALLOC_VS CS 2 014C

3DSTATE_PUSH_CONSTANT_ALLOC_HS CS 2 014E

3DSTATE_PUSH_CONSTANT_ALLOC_DS CS 2 0150

3DSTATE_PUSH_CONSTANT_ALLOC_GS CS 2 0152

3DSTATE_PUSH_CONSTANT_ALLOC_PS CS 2 0154

3DSTATE_BINDING_TABLE_POOL_ALLOC CS 4 0156

3DSTATE_GATHER_POOL_ALLOC CS 4 015A

3D Media GPGPU

30 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description MMIO Offset/Command Unit # of DW Address Offset

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC CS 4 015E

MI_RS_CONTROL CS 1 0162

MI_URB_ATOMIC_ALLOC CS 1 0163

NOOP CS 12 0164

3DSTATE_VS SVG 9 0170

3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2 0179

3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2 017B

3DSTATE_URB_VS SVG 2 017D

3DSTATE_HS SVG 9 017F

3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2 0188

3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2 018A

3DSTATE_URB_HS SVG 2 018C

3DSTATE_TE SVG 4 018E

3DSTATE_DS SVG 9 0192

3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2 019B

3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2 019D

3DSTATE_URB_DS SVG 2 019F

3DSTATE_GS SVG 10 01A1

3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2 01AB

3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2 01AD

3DSTATE_URB_GS SVG 2 01AF

3DSTATE_STREAMOUT SVG 5 01B1

3DSTATE_CLIP SVG 4 01B6

3DSTATE_SF SVG 4 01BA

3DSTATE_SCISSOR_STATE_POINTERS SVG 2 01BE

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2 01C0

3DSTATE_RASTER SVG 5 01C2

3DSTATE_WM_HZ_OP SVG 5 01C7

3DSTATE_MULTISAMPLE SVG 2 01CC

3DSTATE_CONSTANT_VS SVG 11 01CE

3DSTATE_CONSTANT_HS SVG 11 01D9

3DSTATE_CONSTANT_DS SVG 11 01E4

3DSTATE_CONSTANT_GS SVG 11 01EF

3DSTATE_DRAW_RECTANGULAR SVG 4 01FA

3DSTATE_SW_TE_BASE_ADDRESS SVG 3 01FE

Load_Register_Immediate header 0x1100_1001 SVG 1 0201

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 31

Description MMIO Offset/Command Unit # of DW Address Offset

FF_PERF_REG 0x6b1c SVG 2 0202

NOOP SVG 12 0204

3DSTATE_WM SVL 2 0210

3DSTATE_VIEWPORT_STATE_POINTER_CC SVL 2 0212

3DSTATE_CC_STATE_POINTERS SVL 2 0214

3DSATE_WM_SAMPLEMASK SVL 2 0216

3DSTATE_DEPTH_STENCIL SVL 3 0218

3DSTATE_WM_CHROMAKEY SVL 2 021B

3DSTATE_DEPTH_BUFF SVL 8 021D

3DSTATE_HIZ_DEPTH_BUFF SVL 5 0225

3DSTATE_STC_DEPTH_BUFF SVL 5 022A

3DSTATE_CLEAR_PARAMS SVL 3 022F

3DSTATE_SBE SVL 4 0232

3DSTATE_SBE_SWIZ SVL 11 0236

3DSTATE_PS SVL 12 0241

3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2 024D

STATE_SAMPLER_STATE_POINTERS_PS SVL 2 024F

3DSTATE_BLEND_STATE_POINTERS SVL 2 0251

3DSTATE_PS_EXTRA SVL 2 0253

3DSTATE_PS_BLEND SVL 2 0255

3DSTATE_CONSTANT_PS SVL 11 0257

STATE_SIP SVL 3 0262

3DSTATE_SAMPLE_PATTERN SVL 9 0265

Load_Register_Immediate header 0x1100_1021 SVL 1 026E

Cache_Mode_0 0x7000 SVL 2 026F

Cache_Mode_1 0x7004 SVL 2 0271

GT_MODE 0x7008 SVL 2 0273

FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2 0279

FBC_RT_BASE_ADDR_REGISTER_UPPER 0x7024 SVL 2 027B

SAMPLER_MODE 0x7028 SVL 2 027D

L3_Config 0x7034 SVL 2 0287

GLOBAL_CLEAR_VALUE_0 0x7700 SVL 2 0289

GLOBAL_CLEAR_VALUE_1 0x7704 SVL 2 028B

GLOBAL_CLEAR_VALUE_2 0x7708 SVL 2 028D

GLOBAL_CLEAR_VALUE_3 0x770C SVL 2 028F

NOOP SVL 15 0291

3D Media GPGPU

32 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description MMIO Offset/Command Unit # of DW Address Offset

NOOP TDL 1 02A0

Load_Register_Immediate header 0x1100_103B TDL 1 02A1

TD_CTL E400 TDL 2 02A2

TD_CTL2 E404 TDL 2 02A4

TD_VF_VS_EMSK E408 TDL 2 02A6

TD_GS_EMSK E40C TDL 2 02A8

TD_WIZ_EMSK E410 TDL 2 02AA

TD_TS_EMSK E428 TDL 2 02AC

TD_HS_EMSK E4B0 TDL 2 02AE

TD_DS_EMSK E4B4 TDL 2 02B0

EU_PERF_CNT_CTL0 E458 TDL 2 02CE

EU_PERF_CNT_CTL1 E558 TDL 2 02D0

EU_PERF_CNT_CTL2 E658 TDL 2 02D2

EU_PERF_CNT_CTL3 E758 TDL 2 02D4

EU_PERF_CNT_CTL4 E45C TDL 2 02D6

EU_PERF_CNT_CTL5 E55C TDL 2 02D8

EU_PERF_CNT_CTL6 E65C TDL 2 02DA

NOOP TDL 2 02DE

NOOP WM 1 02E0

Load_Register_Immediate header 0x1100_1005 WM 1 02E1

WMHWCLRVAL 0x5524 WM 2 02E6

3DSTATE_POLY_STIPPLE_PATTERN WM 33 02E8

3DSTATE_AA_LINE_PARAMS WM 3 0309

3DSTATE_POLY_STIPPLE_OFFSET WM 2 030C

3DSTATE_LINE_STIPPLE WM 3 030E

NOOP WM 15 0311

NOOP SC 1 0320

Load_Register_Immediate header 0x1100_1005 SC 1 0321

3DSTATE_MONOFILTER_SIZE SC 2 0328

3DSTATE_CHROMA_KEY SC 16 032A

NOOP SC 6 033A

NOOP DM 1 0340

3DSTATE_SAMPLER_PALETTE_LOAD0 DM 257 0341

NOOP DM 1 0442

3DSTATE_SAMPLER_PALETTE_LOAD1 DM 257 0443

NOOP DM 12 0544

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 33

Description MMIO Offset/Command Unit # of DW Address Offset

NOOP SOL 1 0550

Load_Register_Immediate header 0x1100_1027 SOL 1 0551

SO_NUM_PRIMS_WRITTEN0 0x5200 SOL 4 0552

SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4 0556

SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4 055A

SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4 055E

SO_PRIM_STORAGE_NEEDED0 0x5240 SOL 4 0562

SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4 0566

SO_PRIM_STORAGE_NEEDED2 0x5250 SOL 4 056A

SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4 056E

SO_WRITE_OFFSET0 0x5280 SOL 2 0572

SO_WRITE_OFFSET1 0x5284 SOL 2 0574

SO_WRITE_OFFSET2 0x5288 SOL 2 0576

SO_WRITE_OFFSET3 0x528C SOL 2 0578

3DSTATE_SO_BUFFER SOL 32 057A

NOOP SOL 1 059A

3DSTATE_SO_DECL_LIST SOL 259 059B

NOOP SOL 2 069E

3DSTATE_INDEX_BUFFER VF 5 06A0

3DSTATE_VERTEX_BUFFERS VF 133 06A5

3DSTATE_VERTEX_ELEMENTS VF 69 072A

3DSTATE_VF_STATISTICS VF 1 076F

3DSTATE_VF VF 2 0770

3DSTATE_SGVS VF 2 0772

3DSTATE_VF_INSTANCING VF 69 0774

3DSTATE_VF_TOPOLOGY VF 2 07B9

Load_Register_Immediate header 0x1100_1095 VF 1 07BB

INSTANCE CNT 08300 - 08384h VF 68 07BC

INSTANCE INDX 08400 - 08484h VF 68 0800

COMMITTED VERTEX NUMBER 08390h VF 2 0844

COMMITTED INSTANCE ID 08394h VF 2 0846

COMMITTED PRIMITIVE ID 08398h VF 2 0848

STATUS 0839Ch VF 2 084A

COMMON VERTEX 083A0h VF 2 084C

VF_GUARDBAND 083A4h VF 2 0852

NOOP VF 14 0852

3D Media GPGPU

34 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description MMIO Offset/Command Unit # of DW Address Offset

Load_Register_Immediate header 0x1100_105D VFE 1 0860

TDL0 DATA VFE 94 0861

NOOP VFE 1 08BF

Load_Register_Immediate header 0x1100_105D VFE 1 08C0

TDL1 DATA VFE 94 08C1

NOOP VFE 1 091F

Load_Register_Immediate header 0x1100_105D VFE 1 0920

TDL2 DATA VFE 94 0921

NOOP VFE 1 097F

Load_Register_Immediate header 0x1100_105D VFE 1 0980

TDL3 DATA VFE 94 0981

NOOP VFE 1 09DF

Load_Register_Immediate header 0x1100_105D VFE 1 09E0

TDL4 DATA VFE 94 09E1

NOOP VFE 1 0A3F

Load_Register_Immediate header 0x1100_105D VFE 1 0A40

TDL5 DATA VFE 94 0A41

NOOP VFE 1 0A9F

Load_Register_Immediate header 0x1100_105D VFE 1 0AA0

TDL6 DATA VFE 94 0AA1

NOOP VFE 1 0AFF

Load_Register_Immediate header 0x1100_105D VFE 1 0B00

TDL7 DATA VFE 94 0B01

NOOP VFE 1 0B5F

Load_Register_Immediate header 0x1100_105D VFE 1 0B60

TDL8 DATA VFE 94 0B61

NOOP VFE 1 0BBF

Load_Register_Immediate header 0x1100_1023 VFE 1 0BC0

GW0 DATA VFE 36 0BC1

NOOP VFE 11 0BE5

Load_Register_Immediate header 0x1100_1023 VFE 1 0BF0

GW1 DATA VFE 36 0BF1

NOOP VFE 11 0C15

Load_Register_Immediate header 0x1100_1023 VFE 1 0C20

GW2 DATA VFE 36 0C21

NOOP VFE 11 0C45

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 35

Description MMIO Offset/Command Unit # of DW Address Offset

Load_Register_Immediate header 0x1100_1023 VFE 1 0C50

GW3 DATA VFE 36 0C51

NOOP VFE 11 0C75

Load_Register_Immediate header 0x1100_1023 VFE 1 0C80

GW4 DATA VFE 36 0C81

NOOP VFE 11 0CA5

Load_Register_Immediate header 0x1100_1023 VFE 1 0CB0

GW5 DATA VFE 36 0CB1

NOOP VFE 11 0CD5

Load_Register_Immediate header 0x1100_1023 VFE 1 0CE0

GW6 DATA VFE 36 0CE1

NOOP VFE 11 0D05

Load_Register_Immediate header 0x1100_1023 VFE 1 0D10

GW7 DATA VFE 36 0D11

NOOP VFE 11 0D35

Load_Register_Immediate header 0x1100_1023 VFE 1 0D40

GW8 DATA VFE 36 0D41

NOOP VFE 11 0D65

Load_Register_Immediate header 0x1100_1017 VFE 1 0D70

TSG0 DATA VFE 24 0D71

NOOP VFE 7 0D89

Load_Register_Immediate header 0x1100_1017 VFE 1 0D90

TSG1 DATA VFE 24 0D91

NOOP VFE 7 0DA9

Load_Register_Immediate header 0x1100_1017 VFE 1 0DB0

TSG2 DATA VFE 24 0DB1

NOOP VFE 7 0DC9

Load_Register_Immediate header 0x1100_1017 VFE 1 0DD0

TSG3 DATA VFE 24 0DD1

NOOP VFE 7 0DE9

Load_Register_Immediate header 0x1100_1017 VFE 1 0DF0

TSG4 DATA VFE 24 0DF1

NOOP VFE 7 0E09

Load_Register_Immediate header 0x1100_1017 VFE 1 0E10

TSG5 DATA VFE 24 0E11

NOOP VFE 7 0E29

3D Media GPGPU

36 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description MMIO Offset/Command Unit # of DW Address Offset

Load_Register_Immediate header 0x1100_1017 VFE 1 0E30

TSG6 DATA VFE 24 0E31

NOOP VFE 7 0E49

Load_Register_Immediate header 0x1100_1017 VFE 1 0E50

TSG7 DATA VFE 24 0E51

NOOP VFE 7 0E69

Load_Register_Immediate header 0x1100_1017 VFE 1 0E70

TSG8 DATA VFE 24 0E71

NOOP VFE 7 0E89

Load_Register_Immediate header 0x1100_1009 VFE 1 0E90

VFE Data VFE 10 0E91

NOOP VFE 5 0E9B

MEDIA_VFE_STATE VFE 9 0EA0

MEDIA_CURBE_LOAD VFE 4 0EA9

MEDIA_INTERFACE_DESCRIPTOR_LOAD VFE 4 0EAD

NOOP VFE 15 0EB1

NOOP RS 2 0EC0

3DSTATE_BINDING_TABLE_POOL_ALLOC RS 4 0EC2

3DSTATE_BINDING_TABLE_EDIT_VS RS 258 0EC6

NOOP RS 6 0FC8

3DSTATE_BINDING_TABLE_EDIT_GS RS 258 0FCE

NOOP RS 6 10D0

3DSTATE_BINDING_TABLE_EDIT_HS RS 258 10D6

NOOP RS 6 11D8

3DSTATE_BINDING_TABLE_EDIT_DS RS 258 11DE

NOOP RS 6 12E0

3DSTATE_BINDING_TABLE_EDIT_PS RS 258 12E6

3DSTATE_GATHER_POOL_ALLOC RS 4 13E8

MI_BATCH_BUFFER_END/NOOP *** RS 1 13EC

NOOP RS 5 13ED

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC RS 4 13F2

3DSTATE_DX9_CONSTANTF_VS(Global) RS 1026 13F6

NOOP RS 6 17F8

3DSTATE_DX9_CONSTANTI_VS(Global) RS 130 17FE

NOOP RS 6 1880

3DSTATE_DX9_CONSTANTB_VS(Global) RS 18 1886

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 37

Description MMIO Offset/Command Unit # of DW Address Offset

NOOP RS 6 1898

3DSTATE_DX9_CONSTANTF_VS(local) RS 1026 189E

NOOP RS 6 1CA0

3DSTATE_DX9_CONSTANTI_VS(local) RS 130 1CA6

NOOP RS 6 1D28

3DSTATE_DX9_CONSTANTB_VS(local) RS 18 1D2E

NOOP RS 3 1D40

3DSTATE_DX9_LOCAL_VALID_VS RS 11 1D43

3DSTATE_DX9_CONSTANTF_PS(Global) RS 1026 1D4E

NOOP RS 6 2150

3DSTATE_DX9_CONSTANTI_PS(Global) RS 130 2156

NOOP RS 6 21D8

3DSTATE_DX9_CONSTANTB_PS(Global) RS 18 21DE

NOOP RS 6 21F0

3DSTATE_DX9_CONSTANTF_PS(local) RS 1026 21F6

NOOP RS 6 25F8

3DSTATE_DX9_CONSTANTI_PS(local) RS 130 25FE

NOOP RS 6 2680

3DSTATE_DX9_CONSTANTB_PS(local) RS 18 2686

3DSTATE_DX9_LOCAL_VALID_PS RS 11 2698

MI_BATCH_BUFFER_END RS 1 26A3

NOOP RS 12 26A4

URB_ATOMIC_STORAGE GAFS 8192 26B0

 46B0

 DW 18096

 Kbytes 70.6875

3D Media GPGPU

38 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Ring Buffer

Ring Buffer can exist anywhere in memory mapped via Global GTT. Ring buffer details are mentioned in

the ring context area of LRCA (Ring Buffer - Start Address, Head Offset, Tail Pointer & Control Register)

in Execution List mode of scheduling. Ring Buffer registers are directly programmed in Ring Buffer

mode of scheduling.

Ring Context

Ring Context starts at 4K offset from LRCA. Ring context contains all the details that are needed to be

initialized by SW for submitting a context to HW for execution (Ring Buffer Details, Page Directory

Information ..etc). Ring context is five cachelines in size. Note that the last cacheline of the ring context

is specific for a given Engine and hence SW needs to populate it accordingly.

Ring Context comprises of the EXECLIST CONTEXT, EXECLIST CONTEXT (PPGTT Base) of the register

state context. In Ring Buffer mode of scheduling EXECLIST CONTEXT contents are save/restored as

NOOPS by HW.

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 39

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the table are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

This page is designed to be read by SW to glean additional details about a context beyond what it can

get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to

locate this page in any region where snooping is illegal (such as in stolen memory).

3D Media GPGPU

40 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Render Engine Power Context

Table below captures the data from CS power context save/restored by PM. Address offset in the below

table is relative to the starting location of CS in the overall power context image managed by PM.

Description Offset Unit # of DW Address Offset (PWR)

NOOP CS 1 0

Load_Register_Immediate header 0x1100_10A7 CS 1 0001

GFX_MODE 0x229C CS 2 0002

GHWSP 0x2080 CS 2 0004

RING_BUFFER_CONTROL (Ring Always Disabled) 0x203C CS 2 0006

Ring Head Pointer Register 0x2034 CS 2 0008

Ring Tail Pointer Register 0x2030 CS 2 000A

RING_BUFFER_START 0x2038 CS 2 000C

RING_BUFFER_CONTROL (Original status) 0x203C CS 2 000E

Batch Buffer Current Head Register (UDW) 0x2168 CS 2 0010

Batch Buffer Current Head Register 0x2140 CS 2 0012

Batch Buffer State Register 0x2110 CS 2 0014

SECOND_BB_ADDR_UDW 0x211C CS 2 0016

SECOND_BB_ADDR 0x2114 CS 2 0018

SECOND_BB_STATE 0x2118 CS 2 001A

RC_PSMI_CONTROL 0x2050 CS 2 001C

RC_PWRCTX_MAXCNT 0x2054 CS 2 001E

CTX_WA_PTR 0x2058 CS 2 0020

NOPID 0x2094 CS 2 0026

HWSTAM 0x2098 CS 2 0028

FF_THREAD_MODE 0x20A0 CS 2 002A

IMR 0x20A8 CS 2 002C

EIR (Restoring EIR doesn’t it clear) 0x20B0 CS 2 002E

EMR 0x20B4 CS 2 0030

CMD_CCTL_0 0x20C4 CS 2 0032

GAFS_Mode 0x212C CS 2 0038

UHPTR 0x2134 CS 2 003A

BB_PREEMPT_ADDR_UDW 0x216C CS 2 003C

BB_PREEMPT_ADDR 0x2148 CS 2 003E

RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS 2 0040

CXT_SIZE 0x21A8 CS 2 0042

CXT_OFFSET 0x21AC CS 2 0044

PREEMPT_DLY 0x2214 CS 2 0046

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 41

Description Offset Unit # of DW Address Offset (PWR)

MTCH_CID_RST (should not be required any more) 0x222C CS 2 0048

SYNC_FLIP_STATUS 0x22D0 CS 2 004C

SYNC_FLIP_STATUS_1 0x22D4 CS 2 004E

WAIT_FOR_RC6_EXIT 0x20CC CS 2 0054

RS_OFFSET 0x21B4 CS 2 0056

RCS_CTXID_PREEMPTION_HINT 0x24CC CS 2 0058

RS_PREEMPTION_HINT_UDW 0x24C4 CS 2 005A

RS_PREEMPTION_HINT 0x24C0 CS 2 005C

CS_PREEMPTION_HINT_UDW 0x24C8 CS 2 005E

CS_PREEMPTION_HINT 0x24BC CS 2 0060

CCID Register 0x2180 CS 2 0062

SBB_PREEMPT_ADDRESS_UDW 0x2138 CS 2 0064

SBB_PREEMPT_ADDRESS 0x213C CS 2 0066

URB_CTX_OFFSET 0x21B8 CS 2 0068

MI_PREDICATE_RESULT_2 0x23BC CS 2 006A

CTXT_ST_PTR 0x23A0 CS 2 006C

CTXT_ST_BUF 0x2370 CS 24 006E

SEMA_WAIT_POLL 0x224C CS 2 0086

IDLEDELAY 0x223C CS 2 0088

DISPLAY MESSAGE FORWARD STATUS 0x22E8 CS 2 008A

RCS_FORCE_TO_NONPRIV 0x24D0 CS 24 008C

VF PREMPTION VERTEX HINT 0x83B0 VF 2 00A4

VF PREEMPTION INSTANCE HINT 0x83B4 VF 2 00A6

EXECLIST_STATUS_REGISTER 0x2234 CS 2 00A8

NOOP CS 20 00AA

NOOP CS 1 00BE

MI_BATCH_BUFFER_END CS 1 00BF

3D Media GPGPU

42 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection

describes these restrictions along with some explanation of why they exist. Refer to the various

command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be used to perform

activity within the GPE.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 43

PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before

switching to a different pipeline via use of the PIPELINE_SELECT command. Refer to Fixed and Shared

Function IDs for details on the PIPELINE_SELECT command.

PIPELINE_SELECT

PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor

does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media

pipe. It has special optimizations to support the pipelining capability in the 3D pipe which do not apply

to the Media pipe.

Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This state

is comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function

state.

 STATE_BASE_ADDRESS

 STATE_SIP

 3DSTATE_SAMPLER_PALETTE_LOAD

 3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior to initiating activity

within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3D Media GPGPU

44 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

 3DSTATE_PIPELINED_POINTERS

 3DSTATE_BINDING_TABLE_POINTERS

 3DSTATE_VERTEX_BUFFERS

 3DSTATE_VERTEX_ELEMENTS

 3DSTATE_INDEX_BUFFERS

 3DSTATE_VF_STATISTICS

 3DSTATE_DRAWING_RECTANGLE

 3DSTATE_CONSTANT_COLOR

 3DSTATE_DEPTH_BUFFER

 3DSTATE_POLY_STIPPLE_OFFSET

 3DSTATE_POLY_STIPPLE_PATTERN

 3DSTATE_LINE_STIPPLE

 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing

3DPRIMITIVE.

Media Pipeline-Specific State-Setting Commands

The following command is used to set state specific to the Media pipeline:

 MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing

MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS)

needs to be valid. Thus the commands used to assigned that state must be issued before issuing

3DPRIMITIVE.

MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)

needs to be valid. Therefore the commands used to set this state need to have been issued at some

point prior to the issue of MEDIA_OBJECT.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 45

Resource Streamer

This section contains status registers and controls for the resource streamer.

RS_PREEMPT_STATUS_UDW - RS_PREEMPT_STATUS_UDW

RS_PREEMPT_STATUS - Resource Streamer Preemption Status

MI_RS_CONTEXT

MI_RS_CONTROL

MI_RS_STORE_DATA_IMM

Resource Streamer Sync Commands

Programming Note

Context: Resource Streamer Sync Commands.

If resource streamer is enabled in a batch buffer, an MI_RS_STORE_DATA_IMM with Resource Streamer Flush set

must be programmed before any Resource Streamer Sync Command.

Below is a table of commands that cause the resource streamer to stop and wait until the render

command streamer restarts the resource streamer. If a command does not end the current batch buffer

or disable the resource streamer, then the command streamer will restart the resource streamer before

the next command that is used by the resource streamer.

Resource Streamer Sync Commands: Commands that RS Stops

MI_WAIT_FOR_EVENT

MI_RS_CONTROL

MI_BATCH_BUFFER_END

MI_SEMAPHORE_WAIT

MI_SET_CONTEXT

MI_RS_CONTEXT

MI_BATCH_BUFFER_START

MI_CONDITIONAL_BATCH_BUFFER_END

3D Media GPGPU

46 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Introduction

The resource streamer is added to offload work from the driver without compromising on GPU

optimizations. In order to reduce latency associated with these offloaded operation, H/W adds a

Resource Streamer. The Resource Streamer is almost S/W invisible; S/W sees a single command stream,

but it may be best for the S/W to be aware that the RS is present, as certain operations might be

emphasized. The resource streamer will run ahead of the 3D Command Streamer and process only the

certain commands. The Cmd steamer processes these same commands for purposes of buffer full

synchronization and buffer consumption.

Glossary

No special terms identified at this time.

Common Abbreviations

CS Command Streamer. Block in charge of streaming commands. The Resource Streamer (RS) is primarily an

accelerator for the CS.

FF Fixed Function. Any fixed function hardward.

RS The Resource Streamer. Responsible for reducing command latencies for certain command operations.

URB Unified Return Buffer. The mechanism for returning information from a command.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 47

Theory of Operation

This section briefly describes the operation of the Resource Streamer. Specifically, it calls out reset state,

initialization requirements, and major operational tasks of the RS.

Resource Streamer Functions

The Resource Streamer (RS) examines the commands in the ring buffer in an attempt to pre-process

certain long latency items for the remainder of the graphics processing. The RS is used for the following

operations:

 Batch Processing – The resource streamer reads ahead of command streamer activity to unwind

batch buffers.

 Context Save – When the Command Streamer signals that context must be saved, the RS makes

certain all previous cycles are completed, saves all context, and signals completion to the

command streamer.

 Gather Push Constants – The RS detects GATHER commands (3DSTATE_GATHER_POOL_ALLOC,

3DSTATE_GATHER_CONSTANT_*), and prefetchs contents needed for further command

processing. The RS gets the base address of the contents by detecting the

3DSTATE_GATHER_POOL_ALLOC command, and uses other 3DSTATE_GATHER_CONSTANT_*

commands to generate reads for data, and writes out data to memory.

 Constant Buffer Generation – Similar to other constant processes, the RS intercepts the

commands for constants to update state and data.

 HW Binding Table Generation/Flush – The RS detects operations in the command stream to

update binding table state and memory with bind table contents.

3D Media GPGPU

48 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Resource Streamer Activity Diagram

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 49

Detailed Resource Streamer Operations

Introduction

This chapter describes the operation of the Resource Streamer in deeper detail. Most of the operations

of the Resource Streamer are processed from ring buffer shown in the Ring Buffer Organization Figure

in Resource Streamer Operation Descriptions. The RS examines the command stream from the ring

buffer to pre-process information required by the 3D Command Streamer (CS). For a large number of

the commands, the RS takes no action.

Resource Streamer Operation Descriptions

This section under development.

Batch Processing

When an MI_BATCH_BUFFER_START command is parsed by the render command streamer and the

resource streamer enable bit is set, the command stream flags that the resource streamer is enabled.

Once it parses a non-sync command then it sends the current address for where the RS must start

parsing the batch buffer. The Resource Streamer parses commands until it parses a sync command,

which causes the resource streamer to send a message to the command streamer that it has stopped;

RS then goes idle. The command streamer stalls at a sync command until the resource streamer

specifies it has stopped, and restarts the resource streamer at the next non-sync command. Below is a

link to the topic with sync commands.

BSpec > Command Stream Programming > Resource Streamer > Detailed Resource Streamer

Operations > Resource Streamer Operation Descriptions > Commands Actions in the RS

Context Save

When the CS indicates that there is a context to be saved or restored, the RS saves its context. The CS

provides an address for the RS image and issues a “batch buffer start” (see section Batch Processing).

The RS consumes this image like any other batch buffer, and stops when it reaches the

MI_BATCH_BUFFER_END command.

The context image for the Resource streamer consists of the following components:

1. HW_BINDING_TABLE_IMAGE

2. GATHER_IMAGE

3. CONSTANT_IMAGE

4. MI_BATCH_BUFFER_END

These are discussed in the following subsections.

3D Media GPGPU

50 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

HW Binding Table Image

While it is not always necessary to save binding table information, “split points” context switches must

be saved, so the binding table contents are always saved. These consist of:

 Binding Table Generate Enable

 Binding Table Pool Base Address

 Binding Table Pool Size

 Binding Table Contents

HW Binding Table Image

Description Dwords Required for Storage

3DSTATE_BINDING_TABLE_POOL_ALLOC 3

3DSTATE_BINDING_TABLE_EDIT_VS 194

3DSTATE_BINDING_TABLE_EDIT_GS 194

3DSTATE_BINDING_TABLE_EDIT_HS 194

3DSTATE_BINDING_TABLE_EDIT_DS 194

3DSTATE_BINDING_TABLE_EDIT_PS 194

3DSTATE_BINDING_TABLE_EDIT_VS 194

Gather Push Constants Image

Since the resource streamer does not support mid-triangle preemption, the resource steamer will have

finished producing all the gather buffers by the end of the batch buffer and the cmd streamer would

have consumed all the gather buffers. The following things need to be saved.

 Gather pool enable

 Gather pool base address

 Gather pool size

Therefore a 3DSTATE_GATHER_POOL_ALLOC command needs to be saved.

Gather Push Constants Image

Description Dwords Required for Storage

3DSTATE_GATHER_POOL_ALLOC 4

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 51

Push Constant Image

We assume that the end of the batch buffer can come between any set of cmds. Therefore the following

things will be saved:

 Dx9 Constant enable

 Dx9 Constant pool base address

 Dx9 Constant pool size

 Dx9 local registers (F,I,B)

 Dx9 Local Valid

 Dx9 global registers (F,I,B)

Therefore a 3DSTATE_CONSTANT_BUFFER_POOL_ALLOC command will saved. In addition, since the F

register is 256 entries and only a maximum of 63 entries can be contained in a single

3DSTATE_DX9CONSTANTF_* command, 5 CONSTANTF cmds will be saved for global and 5 for local

registers register per FF (VS,PS). There will be 1 3DSTATE_CONSTANTI_* will be save for global and 1 for

local register per FF. There will be 1 3DSTATE_CONSTANTB_* will be save for global and 1 for local

register per FF.

Gather Push Constants Image

Description Dwords Required for Storage

3DSTATE_CONSTANT_BUFFER_POOL_ALLOC 4

3DSTATE_CONSTANTF_VS 1026

3DSTATE_CONSTANTI_VS 130

3DSTATE_CONSTANTB_VS 18

3DSTATE_CONSTANTF_VS 1026

3DSTATE_CONSTANTI_VS 130

3DSTATE_CONSTANTB_VS 18

3DSTATE_LOCAL_VALID_VS 10

3DSTATE_CONSTANTF_PS 1026

3DSTATE_CONSTANTI_PS 130

3DSTATE_CONSTANTB_PS 18

3DSTATE_CONSTANTF_PS 1026

3DSTATE_CONSTANTI_PS 130

3DSTATE_CONSTANTB_PS 18

3DSTATE_LOCAL_VALID_PS 10

3D Media GPGPU

52 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

HW Binding Table Generation

The RS generates binding tables in hardware to offload this from the driver. There is an on-die set of

binding tables for each fixed-function unit (VS, GS, HS, DS, and PS). There is a set of commands

generated by the driver to update each of these tables (3D_STATE_BINDING_TABLE_POINTER_*). When

the RS encounters any of these commands, it writes the corresponding binding table out to the binding

table pool. When the CS encounters these commands, it sends the binding table points down as

pipelined state.

HW Binding Table Generation

The following table describes the different types of usages with binding table generation.

RS Active * BT Pool Enabled Mode

0 0 SW Generate BT in Surface State Heap

0 1 Illegal (Undefined)

1 0 Illegal **

1 1 HW Generate BT

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 53

Gather Push Constants

Applications can provide up to 16 constant buffers. The compiler does some optimizations of constant

usage and determines which constants should be packed in which constant register for optimal shader

performance. While this gathering and packing of constant elements into push constants optimizes the

shaders, it causes the driver additional work at draw call time, since the driver must gather and pack the

constants at draw time.

The RS offloads the gathering process for the driver by interpreting the

3D_STATE_GATHER_CONSTANT_* for each of the fixed functions (VS, GS, DS, HS, PS). The compiler

generates at gather table which instructs which elements of the buffers should be packed into the

gather buffer. The gather table indexes the binding table to get a surface state which in turn points to

the constant buffer. Once the gather buffer has been filled, the CS will execute the

3D_STATE_GATHER_CONSTANT_* to load the push constant into the URB.

Note: The gather push constants can ONLY BE USED if the HW generated binding tables are also used.

Gather Push Constants Generation

3D Media GPGPU

54 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Constant Buffer Generation (not DX9)

The constant model used is a set of registers that the application can incrementally update. The

hardware requires a constant buffer which lives until the last shader using that buffer retires. To offload

the driver the 3D_STATE_CONSTANT*_* commands are used. The constant registers can be either

floating, integer, or Boolean (signified by the commands CONSTANTF, CONSTANTI, or CONSTANTB,

respectively). The option determines the fixed function for the constants (VS, GS, DS, HS, or PS).

When all edits to the constant registers have been completed, the 3D_STATE_GENERATE_ACTIVE_*

command is used to write out a constant buffer to the Constant Buffer Pool. These buffers are fixed at

8Kbytes. Software is required to provide a surface state object that points to the constant buffer

created.

Constant Buffer Generation

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 55

Commands Actions in the RS

The tables below show all 3D commands processed by the RS. In the following tables, “STOP” indicates

that the RS waits for all engines to complete operations AND invalidates all command data currently in

the command FIFO. “BLOCK” indicates that the RS waits for all engines to complete operation, stops

further command parsing, but retains data in the command FIFO.

MI Commands Processing in the RS

Opcode (28:23) Command RS Handing (No Perf) RS Handling (Perf)

03h MI_WAIT_FOR_EVENT STOP BLOCK

05h MI_ARB_CHECK STOP STOP

06h MI_RS_CONTROL STOP STOP

0Ah MI_BATCH_BUFFER_END STOP STOP

16h MI_SEMAPHORE_MBOX STOP BLOCK

18h MI_SET_CONTEXT STOP STOP

1Ah MI_RS_CONTEXT STOP STOP

31h MI_BATCH_BUFFER_START STOP STOP

36h MI_CONDITIONAL_BATCH_BUFFER_END STOP STOP

Other Commands Processed in the RS

Pipeline

Type

(28:27)

Opcode

(26:24)

Sub

Opcode

(23:16) Command

RS

Handling

(No Perf)

RS

Handling

(Perf) Notes

0h 1h 01h STATE_BASE_ADDRESS RS LATCH RS LATCH RSunit

updates the

state base

address if

parsed

1h 1h 04h PIPELINE_SELECT STOP STOP Stop only if

3D is not

selected

3h 0h 03h Reserved

3h 0h 04h 3DSTATE_CLEAR_PARAMS Refer to 3D

Pipeline

3h 0h 05h 3DSTATE_DEPTH_BUFFER Refer to 3D

Pipeline

3h 0h 06h Reserved

3h 0h 06h 3DSTATE_STENCIL_BUFFER Refer to 3D

Pipeline

3h 0h 07h Reserved

3h 0h 07h 3DSTATE_HIER_DEPTH_BUFFER Refer to 3D

3D Media GPGPU

56 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Pipeline

Type

(28:27)

Opcode

(26:24)

Sub

Opcode

(23:16) Command

RS

Handling

(No Perf)

RS

Handling

(Perf) Notes

Pipeline

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Refer to

Vertex Fetch

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Refer to

Vertex Fetch

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Refer to

Vertex Fetch

3h 0h 0Bh 3DSTATE_VF_STATISTICS Refer to

Vertex Fetch

3h 0h 0Ch Reserved

3h 0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS Refer to 3D

Pipeline

3h 0h 10h 3DSTATE_VS Refer to

Vertex Shader

3h 0h 11h 3DSTATE_GS Refer to

Geometry

Shader

3h 0h 12h 3DSTATE_CLIP Refer to

Clipper

3h 0h 13h 3DSTATE_SF Refer to Strips

and Fans

3h 0h 14h 3DSTATE_WM Refer to

Windower

3h 0h 15h 3DSTATE_CONSTANT_VS Refer to

Vertex Shader

3h 0h 16h 3DSTATE_CONSTANT_GS Refer to

Geometry

Shader

3h 0h 17h 3DSTATE_CONSTANT_PS Refer to

Windower

3h 0h 18h 3DSTATE_SAMPLE_MASK Refer to

Windower

3h 0h 19h 3DSTATE_CONSTANT_HS Refer to Hull

Shader

3h 0h 1Ah 3DSTATE_CONSTANT_DS Refer to

Domain

Shader

3h 0h 1Bh 3DSTATE_HS Refer to Hull

Shader

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 57

Pipeline

Type

(28:27)

Opcode

(26:24)

Sub

Opcode

(23:16) Command

RS

Handling

(No Perf)

RS

Handling

(Perf) Notes

3h 0h 1Ch 3DSTATE_TE Refer to

Tesselator

3h 0h 1Dh 3DSTATE_DS Refer to

Domain

Shader

3h 0h 1Eh 3DSTATE_STREAMOUT Refer to HW

Streamout

3h 0h 1Fh 3DSTATE_SBE Refer to

Setup

3h 0h 20h 3DSTATE_PS Refer to Pixel

Shader

3h 0h 21h Reserved

3h 0h 22h 3DSTATE_VIEWPORT_STATE_POINTERS_

SF_CLIP

 Refer to Strips

& Fans

3h 0h 23h 3DSTATE_VIEWPORT_STATE_POINTERS_

CC

 Refer to

Windower

3h 0h 24h 3DSTATE_BLEND_STATE_POINTERS Refer to Pixel

Shader

3h 0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POIN

TERS

 Refer to Pixel

Shader

3h 0h 26h 3DSTATE_BINDING_TABLE_POINTERS_V

S

Generate BT

if HW BT

enabled

Generate BT

if HW BT

enabled

3h 0h 27h 3DSTATE_BINDING_TABLE_POINTERS_H

S

Generate BT

if HW BT

enabled

Generate BT

if HW BT

enabled

3h 0h 28h 3DSTATE_BINDING_TABLE_POINTERS_D

S

Generate BT

if HW BT

enabled

Generate BT

if HW BT

enabled

3h 0h 29h 3DSTATE_BINDING_TABLE_POINTERS_G

S

Generate BT

if HW BT

enabled

Generate BT

if HW BT

enabled

3h 0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_P

S

Generate BT

if HW BT

enabled

Generate BT

if HW BT

enabled

3h 0h 2Fh Reserved

3h 0h 30h 3DSTATE_URB_VS/td> Execute Execute

3h 0h 31h 3DSTATE_URB_HS Execute Execute

3h 0h 32h 3DSTATE_URB_DS Execute Execute

3D Media GPGPU

58 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Pipeline

Type

(28:27)

Opcode

(26:24)

Sub

Opcode

(23:16) Command

RS

Handling

(No Perf)

RS

Handling

(Perf) Notes

3h 0h 33h 3DSTATE_URB_GS Execute Execute

3h 0h 34h 3DSTATE_GATHER_VS Execute Execute

3h 0h 35h 3DSTATE_GATHER_GS Execute Execute

3h 0h 36h 3DSTATE_GATHER_HS Execute Execute

3h 0h 37h 3DSTATE_GATHER_DS Execute Execute

3h 0h 38h 3DSTATE_GATHER_PS Execute Execute

3h 0h 39h 3DSTATE_CONSTANTF_VS Execute Execute

3h 0h 3Ah 3DSTATE_CONSTANTF_PS Execute Execute

3h 0h 3Bh 3DSTATE_CONSTANTI_VS Execute Execute

3h 0h 3Ch 3DSTATE_CONSTANTI_PS Execute Execute

3h 0h 3Dh 3DSTATE_CONSTANTB_VS Execute Execute

3h 0h 3Eh 3DSTATE_CONSTANTB_PS Execute Execute

3h 0h 3Fh 3DSTATE_LOCAL_VALID_VS Execute Execute

3h 0h 40h 3DSTATE_LOCAL_VALID_PS Execute Execute

3h 0h 41h 3DSTATE_GENERATE_ACTIVE_VS Execute Execute

3h 0h 42h 3DSTATE_GENERATE_ACTIVE_PS Execute Execute

3h 0h 43h 3DSTATE_BINDING_TABLE_EDIT_VS Refer to

Vertex Shader

3h 0h 44h 3DSTATE_BINDING_TABLE_EDIT_GS Refer to

Vertex Shader

3h 0h 45h 3DSTATE_BINDING_TABLE_EDIT_HS Refer to

Vertex Shader

3h 0h 46h 3DSTATE_BINDING_TABLE_EDIT_DS Refer to

Vertex Shader

3h 0h 47h 3DSTATE_BINDING_TABLE_EDIT_PS Refer to

Vertex Shader

3h 0h 48h 3DSTATE_VF_HASHING

3h 0h 49h 3DSTATE_VF_INSTANCING

3h 0h 4Ah 3DSTATE_VF_SGVS

3h 0h 4Bh 3DSTATE_VF_TOPOLOGY

3h 0h 4Ch 3DSTATE_WM_CHROMA_KEY

3h 0h 4Dh 3DSTATE_PS_BLEND

3h 0h 4Eh 3DSTATE_WM_DEPTH_STENCIL

3h 0h 4Fh 3DSTATE_PS_EXTRA

3h 0h 50h 3DSTATE_RASTER

3h 0h 51h 3DSTATE_SBE_SWIZ

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 59

Pipeline

Type

(28:27)

Opcode

(26:24)

Sub

Opcode

(23:16) Command

RS

Handling

(No Perf)

RS

Handling

(Perf) Notes

3h 0h 52h 3DSTATE_WM_HZ_OP

3h 0h 53h 3DSTATE_INT (internally generated

state)

3h 0h 57h 3DSTATE_DX9_CONSTANTF_HS

3h 0h 58h 3DSTATE_DX9_CONSTANTI_HS

3h 0h 59h 3DSTATE_DX9_CONSTANTB_HS

3h 0h 5ah 3DSTATE_DX9_LOCAL_VALID_HS

3h 0h 5bh 3DSTATE_DX9_GENERATE_ACTIVE_HS

3h 0h 5ch 3DSTATE_DX9_CONSTANTF_DS

3h 0h 5dh 3DSTATE_DX9_CONSTANTI_DS

3h 0h 5eh 3DSTATE_DX9_CONSTANTB_DS

3h 0h 5fh 3DSTATE_DX9_LOCAL_VALID_DS

3h 0h 60h 3DSTATE_DX9_GENERATE_ACTIVE_DS

3h 0h 61h 3DSTATE_DX9_CONSTANTF_GS

3h 0h 62h 3DSTATE_DX9_CONSTANTI_GS

3h 0h 63h 3DSTATE_DX9_CONSTANTB_GS

3h 0h 64h 3DSTATE_DX9_LOCAL_VALID_GS

3h 0h 65h 3DSTATE_DX9_GENERATE_ACTIVE_GS

3h 0h 67h-FFh Reserved

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0

3h 1h 03h Reserved

3h 1h 04h 3DSTATE_CHROMA_KEY

3h 1h 05h Reserved

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN

3h 1h 08h 3DSTATE_LINE_STIPPLE

3h 1h 0Ah 3DSTATE_AA_LINE_PARAMS

3h 1h 0Bh 3DSTATE_GS_SVB_INDEX

3h 1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1

3h 1h 0Dh 3DSTATE_MULTISAMPLE

3h 1h 0Eh 3DSTATE_STENCIL_BUFFER

3h 1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER

3h 1h 10h 3DSTATE_CLEAR_PARAMS

3h 1h 11h 3DSTATE_MONOFILTER_SIZE

3D Media GPGPU

60 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Pipeline

Type

(28:27)

Opcode

(26:24)

Sub

Opcode

(23:16) Command

RS

Handling

(No Perf)

RS

Handling

(Perf) Notes

3h 1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS

3h 1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS

3h 1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS

3h 1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS

3h 1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS

3h 1h 17h 3DSTATE_SO_DECL_LIST

3h 1h 18h 3DSTATE_SO_BUFFER

3h 1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC

3h 1h 1Ah 3DSTATE_GATHER_POOL_ALLOC

3h 1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_PO

OL_ALLOC

3h 1h 1Ch 3DSTATE_SAMPLE_PATTERN

3h 1h 1Dh-FFh Reserved

3h 1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Execute Execute

3h 1h 1Ah 3DSTATE_GATHER_POOL_ALLOC Execute Execute

3h 1h 1Bh 3DSTATE_CONSTANT_BUFFER_POOL_AL

LOC

Execute Execute

3h 1h 1Ch 3DSTATE_SAMPLE_PATTERN

3h 1h 1Dh-FFh Reserved

3h 2h 00h PIPE_CONTROL

3h 2h 01h-FFh Reserved

3h 3h 00h 3DPRIMITIVE Sync Sync 3DPRIMITIVE

command is

unique in that

it tells the

engines to

send fence

cycles, but

does not stop

RSunit (not a

sync point)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 61

Resource Streamer Programming Guidelines

This section describes RS activities and assumptions that are required for programming.

RS Interactions with the 3D Command Streamer

Because the Resource Streamer is processing ahead of the Command Streamer, many of the commands

interpreted by the RS are a signal to stop further processing. In these cases, the RS completes pending

activity, and waits for an indication from the Command Streamer to start again.

The specific cases that the CS commands the RS to continue are:

 Batch Buffer command parsing

 Context save

RS Interactions with Memory Requests

The RS is responsible for the generation of a number of memory requests. These are:

 Make batch buffer read requests (when address is supplied from the CS).

 Make push constant gather read requests from the state base offset.

 Make push constant gather write of packed data to the gather pool.

 Fetch the gather buffer surface base address.

 Write out the binding table pointer (BTP).

 Save BTP, constant buffer, and gather constant context data to an offset into the context image.

 Write out constant data.

As is the case in all memory accesses, read requests from the RS can be freely reordered, and may be

returned in any order by the hardware. The RS consumes the cycles and presents the “software” order

transparently.

When accessing the same address, a write operation followed by the read returns the written data.

Writes to non-overlapping addresses may be freely reordered as well. Fencing is used to make certain

all writes up to the fence have completed.

Fundamental Programming and Operational Assumptions

The following assumptions are made in the RS, and these are useful limitations to the programming:

 The CS can never send a request to a busy RS. The RS will have foreseen the situation, and

stopped its operations before the CS action.

 Surface base address is never changed while in a batch buffer.

 Push constant data is 128-bit aligned.

 The GATHER command should have Constant Buffer valid bits set for any indices used in the

command.

3D Media GPGPU

62 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Non-Operational Activities

There are no specific events or performance counters for the resource streamer (RS).

Hardware Binding Tables

The driver spends a considerable amount of time managing the binding tables. A new command is

added, 3DSTATE_BINDING_TABLE_EDIT_*, to offload the binding table generation from the driver. There

is an on-die set of binding tables for each FF (VS, GS, HS, DS, PS). The 3DSTATE_BINDING_TABLE_EDIT_*

commands are used by the driver to update these tables. The 3DSTATE_BINDING_TABLE_POINTER_*

commands are added. When the resource streamer encounters a 3DSTATE_BINDING_TABLE_POINTER_*

command, it writes the binding table out to the binding table pool. When the command streamer

encounters a 3DSTATE_BINDING_TABLE_POINTER_* command, it sends the binding table pointer down

as pipelined state.

Hardware Binding Tables are only supported for 3D workloads. The resource streamer must be enabled

only for 3D workloads. The resource streamer must be disabled for Media and GPGPU workloads. A

batch buffer containing both 3D and GPGPU workloads must take care of disabling and enabling the

Resource Streamer appropriately while changing the PIPELINE_SELECT mode from 3D to GPGPU and

vice versa. The resource streamer must be disabled using MI_RS_CONTROL command and Hardware

Binding Tables must be disabled by programming 3DSTATE_BINDING_TABLE_POOL_ALLOC with

“Binding Table Pool Enable” set to disable (i.e value ‘0’). The following example shows disabling and

enabling of the resource streamer in a batch buffer for 3D and GPGPU workloads:

 MI_BATCH_BUFFER_START (Resource Streamer Enabled)

 PIPELINE_SELECT (3D)

 3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Enabled)

 3D WORKLOAD MI_RS_CONTROL (Disable Resource Streamer)

 3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Disabled)

 PIPELINE_SELECT (GPGPU)

 GPGPU Workload

 PIPELINE_SELECT (3D)

 MI_RS_CONTROL (Enable Resource Streamer)

 3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Enabled)

 3D WORKLOAD

 MI_BATCH_BUFFER_END

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 63

3DSTATE_BINDING_TABLE_POOL_ALLOC [CHV, BSW]

Programming Note

The binding table generator feature has a simple all or nothing model. If HW generated binding tables are

enabled, the driver must enable the pool and use 3D_HW_BINDING_TABLE_POINTER_* commands.

When switching between HW and SW binding table generation, SW must issue a state cache invalidate.

A maximum of 16,383 Binding Tables are allowed in any batch buffer.

If the Binding Table Pool Enable is cleared while the Resource Streamer is enabled within a batch buffer, then the

on chip storage for the binding table will not be context save and restored. To save the Binding Table Pool, before

disabling the Pool enable, disable the resource streamer thru the MI_RS_CONTROL command. And then, before

reenabling the Binding Table Pool, reenable the resource streamer thru the MI_RS_CONTROL command.

The variable length commands are 3DSTATE_BINDING_TABLE_EDIT_HS,

3DSTATE_BINDING_TABLE_EDIT_DS, and 3DSTATE_BINDING_TABLE_EDIT_PS.

3DSTATE_BINDING_TABLE_POOL_ALLOC

3DSTATE_BINDING_TABLE_EDIT_VS

3DSTATE_BINDING_TABLE_EDIT_HS

3DSTATE_BINDING_TABLE_EDIT_DS

3DSTATE_BINDING_TABLE_EDIT_GS

3DSTATE_BINDING_TABLE_EDIT_PS

3D Media GPGPU

64 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Gather Constants

Gather commands support fetching from 16 different constant buffers or one constant buffer of 8KB

size. The compiler does some optimizations of constant usage and determines which elements of which

constants should be packed in which push constant register for optimum shader performance. While

this gathering and packing of constant elements into push constant registers optimizes the shader, it

causes the driver added work at draw call time, because the driver must do the gather and packing at

draw time. New commands (3D_STATE_GATHER_CONSTANT_* and 3DSTATE_GATHER_POOL_ALLOC)

were added to offload the gather and packing functions from the driver. The base address for the push

constant buffer and the enabling of the feature is programmed through the

3DSTATE_GATHER_POOL_ALLOC. There are 5 FF which support push constants (VS, GS, DS, HS, PS) and

they all have corresponding gather commands. The compiler generates a gather table that specifies

what elements of what buffers are packed into the gather buffer. The gather table indexes the BT to get

the surface state which points to the constant buffer. The resource streamer gathers constants by

reading the constant buffer, packs the data and then writes the buffer out to a push constant buffer

based on the base address and the offset in the 3DSTATE_GATHER_CONSTANT_* command.

3DSTATE_GATHER_POOL_ALLOC

3DSTATE_GATHER_CONSTANT_VS

3DSTATE_GATHER_CONSTANT_HS

3DSTATE_GATHER_CONSTANT_DS

3DSTATE_GATHER_CONSTANT_GS

3DSTATE_GATHER_CONSTANT_PS

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 65

Dx9 Constant Buffer Generation

The Dx9 constant model is a set of register that the App can incrementally update. The HW requires a

constant buffer which lives until the last shader using that buffer retires. To offload the driver the

3DSTATE_DX9_CONSTANT*_* cmds are added. These commands allow the on-die constant register to

be maintained. When all the edits to the constant register have been completed, the

3DSTATE_DX9_GENERATE_ACTIVE_* cmd is used to write out a constant buffer to the Dx9 Constant

buffer pool. The Dx9 constant buffers are fixed 8KB in size, with a large portion of the second 4KB

unused.

Programming Note

Context: Dx9 Constant Buffer generation

For buffers, which have no inherent “height,” padding requirements are different. A buffer must be padded to the

next multiple of 256 array elements, with an additional 16 bytes added beyond that to account for the L1 cache

line.

Programming Note

Context: Dx9 Constant Buffer generation.

 The Dx9 constant buffer feature has a simple all or nothing model.

 A maximum of 16,383 Binding Tables are allowed in any batch buffer.

 The Dx9 constants can only be enabled if the binding table generator is also enabled.

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC

3D Media GPGPU

66 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Vertex Shader Constant

This section contains various commands for the vertex shader constant.

3DSTATE_DX9_CONSTANTF_VS

3DSTATE_DX9_CONSTANTI_VS

3DSTATE_DX9_CONSTANTB_VS

3DSTATE_DX9_LOCAL_VALID_VS

DX9 Constant Buffer Map [CHV, BSW]

Offset Cache Line

0x0000 256 4-component Float Constants 0

0x0fff 63

0x1000 32 4-component integer constants 64

0x107f

0x1080 16 1-component boolean constants 72

0x108f

0x1090 unused

0x1fff

3DSTATE_DX9_GENERATE_ACTIVE_VS

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 67

Pixel Shader Constant

This section contains various commands for the pixel shader constant.

3DSTATE_DX9_CONSTANTF_PS

3DSTATE_DX9_CONSTANTI_PS

3DSTATE_DX9_CONSTANTB_PS

3DSTATE_DX9_LOCAL_VALID_PS

DX9 Constant Buffer Map [CHV, BSW]

Offset Cache Line

0x0000 256 4-component Float Constants 0

0x0fff 63

0x1000 32 4-component integer constants 64

0x107f

0x1080 16 1-component boolean constants 72

0x108f

0x1090 unused

0x1fff

3DSTATE_DX9_GENERATE_ACTIVE_PS

3D Media GPGPU

68 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Shared Functions

3D Sampler

The 3D Sampling Engine provides the capability of advanced sampling and filtering of surfaces in

memory.

The sampling engine function is responsible for providing filtered texture values to the Gen Core in

response to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering

modes, address control modes, and other features of the sampling engine. A pointer to the sampler

state is delivered with each message, and an index selects one of 16 states pointed to by the pointer.

Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE

to define the attributes of the surface being sampled. This includes the location, size, and format of the

surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used for any purpose

once returned to the execution core. The 3D Sampler can be used to assist the media sampler in

specific operations such as video scaling.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the

appropriate subfunctions are complete, the 4-component (reduced to fewer components in some

cases) filtered texture value is provided to the Gen Core to complete the sample instruction.

Subfunction Description

Texture

Coordinate

Processing

Any required operations are performed on the incoming pixel's interpolated internal texture

coordinates. These operations may include cube map intersection.

Texel Address

Generation

The Sampling Engine determines the required set of texel samples (specific texel values from

specific texture maps), as defined by the texture map parameters and filtering modes. This

includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample and/or

miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples are read from the texture map. This step may require

decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette

Lookup

For streams which have “paletted” texture surface formats, this function uses the “index” values

read from the texture map to look up texel color data from the texture palette.

Shadow Pre-

Filter Compare

For shadow mapping, the texel samples are first compared to the 3rd (R) component of the

pixel’s texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture

Address Generation function. This “combination” ranges from simply passing through a

“nearest” sample to blending the results of anisotropic filters performed on two mipmap levels.

The output of this function is a single 4-component texel value.

Texel Color

Gamma

 Linearization

Performs optional gamma decorrection on texel RGB (not A) values.

8x8 Video Scaler Performs scaling using an 8x8 filter.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 69

Sampling Engine

3D Sampler Theory of Operation

The 3D sampler (sometimes referred to as texture sampler) is a self-contained functional block within

the Graphics Core which receives messages from other agents in the Graphics Core, fetches data from

external memory sources typically referred to as “surfaces”, performs operations on the data and

returns the results in standard formats to the requester (or directly to a Render Target is requested).

One of the most common applications of the 3D sampler is to return a filtered/blended pixel from a

location in a texture map.

3D Media GPGPU

70 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Sampler Inputs Messages

Input requests to the 3D Sampler are in the form of messages (see Messages sub-section for a

description of message types and formats). A pixel shader kernal executing on the Graphics Core is an

example of an agent which is capable of sending sample messages to the 3D Sampler.

In its most basic form, the sampler receives coordinates to a location within a field of data (often a

texture map or depth map) and returns a value which represents the pixel color or depth which may be

filtered/blended as defined by associated surface and sampler state objects. Sampler can also work on

un-typed data structures called buffers.

Messages are sent in SIMD (Single Instruction Multiple Data) format where there are 8, 16, 32 or 64

coordinate tuples to be processed (i.e. SIMD8, SIMD16 etc.) in the same manner. Some message types

are restricted to SIMD8 and SIMD16 varieties and other are restricted to SIMD32 or SIMD64. See the

section on Texture Coordinate Processing more details on texture coordinate requirements.

SIMD8 and SIMD16 messages are further organized into groups of 4 sets of coordinates which

generally form a 2x2 “subspan” of texel locations. The spatial locality of the texel locations within a sub-

span improves the performance of the sampler and allows the processing of the 4 texel locations in

parallel. A SIMD8 message contains two subspans and a SIMD16 contains 4 subspans.

Sampler Data Fetches

The 3D sampler will automatically fetch required data from surfaces in system memory as needed to

perform each sample operation. Fetched data may be stored in an internal cache to reduce latency for

subsequent fetch operations.

The sampler calculates the address into a surface and uses RENDER_SURFACE_STATE state objects to

determine the location within system memory and the format of the surface being fetched. Sampler can

also receive or calculate the LOD (Level of Detail) of a surface if the surface supports multiple Mips and

will fetch from the correct Mip in this case. See Texture Address Calculation sub-section for more detail

on addresses and LOD calculation.

The sampler will also automatically decompress any supported compression format once data has been

fetched. See the subsection Surface State for a list of supported surface formats, including compressed

formats. Likewise, the sampler can linearize (inverse Gamma) sRGB formats prior to filtering.

Sampler Filtering and Processing

The sampler is capable of performing all basic filtering operations (point, bilinear, trilinear, anisotropic,

cube etc.) based on the SAMPLER_STATE state object associated with the sample operation being

requested.

In most cases, data returned is in the form of 32-bit or 16-bit IEEE floating-point per channel to ensure

maximum precision. See Writeback Message section for a description of the format of returned data.

Output Data is only returned to the requesting agent or written to a designated Render Target (RT).

Sample results are never cached within the sampler or written to system memory.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 71

Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the

texture coordinates that are required before physical addresses of texel samples can be generated.

Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized

coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is

located at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right

edge of the lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the

associated map’s height or width. Here the origin is the located at the upper/left edge of the upper left

texel of the base texture map.

Normalized vs. Unnormalized Texture Coordinates

Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from

(interpolated) screen space back into texture coordinate space by dividing the pixel’s S and T

components by the Q component. This operation is done prior to sending sample operations to the 3D

sampler.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map

faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest

absolute value determines the proper (major) axis, and then the sign of that component is used to

select between the two faces associated with that axis. The coordinates along the two minor axes are

then divided by the coordinate of the major axis, and scaled and translated, to obtain the 2D texture

coordinate ([0,1]) within the chosen face. Note that the coordinates delivered to the sampling engine

must already have been divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided

below:

3D Media GPGPU

72 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Cube Map Coordinate Computation Example

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 73

Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto

the textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral.

Any given pixel of the object may “cover” multiple texels of the map, or only a fraction of one texel. For

each pixel, the usual goal is to sample and filter the texture image in order to best represent the

covered texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are

provided to allow the user to employ quality/performance/footprint tradeoffs in selecting how the

particular texture is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the

texture maps are to be sampled. Outputs of this function include the number of texel to be fetched,

along with the physical addresses of the samples and the filter weights to be applied to the samples

after they are read. This information is computed given the incoming texture coordinate and gradient

values, and the relevant state variables associated with the sampler and surface. This function also

applies the texture coordinate address controls when converting the sample texture coordinates to map

addresses.

Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent

object warping due to a perspective projection, the texture image may become magnified (where a

texel covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an

object. In the case where an object pixel is found to cover multiple texels (texture minification), merely

choosing one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result in severe

aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling

these textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps

of decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are

provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object

is located a significant distance from the viewer), the device will sample the mipmap level(s) offering a

texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X

1 texel. Each successive level has ½ the resolution of the previous level in the U and V directions (to a

minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap

levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the

approximate, log2 measure of the ratio of texels per pixel. The highest resolution map is considered LOD

0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the

magnification filter should be applied.

3D Media GPGPU

74 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture

map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear

interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log2 of

the texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space

distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-

space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates

being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels).

The q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant

0 for 2D surfaces.

The ideal LOD computation is included below.

LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower

miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap

level will trade off image blurring with possibly increased performance (due to better texture cache

reuse). Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing

artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input

message (which can be non-zero only for sample_b messages). The application of LOD Bias is

unconditional, therefore these variables must both be set to zero in order to prevent any undesired

biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore

can be used to control the min-vs-mag crossover point, its use has the undesired effect of actually

changing the LOD used in texture filtering.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 75

LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.

Enabling pre-clamping matches OpenGL semantics .

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by

the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag

Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even

when lower resolution maps may be available. Note that this is the only parameter used to specify the

number of valid mip levels that be can be accessed, i.e., there is no explicit “number of levels stored in

memory” parameter associated with a mip-mapped texture. All mip levels from the base mip level map

through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is

UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where

LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution

mip levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level

filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and

MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down)

or magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel state

variable therefore has the effect of selecting the “base” mip level used to compute Min/Mag

Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect

of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-

resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the

computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable

specifies whether one or two mip levels are to be included in the texture filtering, and how that (or

those) levels are to be determined as a function of the computed LOD.

3D Media GPGPU

76 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the

steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not

shown.

 Bias: S4.8

 MinLod: U4.8

 MaxLod: U4.8

 Base: U4.1

 MIPCnt: U4

 SurfMinLod: U4.8

 ResMinLod: U4.8

 PerSampleMinLOD: float32

 MinLod = max(MinLod, PerSampleMinLOD)

 AdjMaxLod = min(MaxLod, MIPCnt)

 AdjMinLod = min(MinLod, MIPCnt)

 AdjPR_minLOD = ResMinLod – SurfMinLod

 AdjMinLod = max(AdjMinLod, AdjPR_minLOD)

 Out_of_Bounds = AdjPR_minLOD > MIPCnt

 if (sample_b)

 LOD += Bias + bias_parameter

 else if (sample_l or ld)

 LOD = Bias + lod_parameter

 else

 LOD += Bias

Pseudocode

 PreClamp = LODPreClampMode != PRECLAMP_NONE

 if (PreClamp)

 if (PRECLAMP_D3D)

 LOD = min(LOD, AdjMaxLod)

 LOD = max(LOD, AdjMinLod)

 else

 LOD = min(LOD, MaxLod)

 LOD = max(LOD, MinLod)

 MagMode = (LOD - Base <= 0)

Pseudocode

 MagClampMipNone = LODClampMagnificationMode == MAG_CLAMP_MIPNONE

 if ((MagMode && MagClampMipNone) or MipFlt == None)

 LOD = 0

 LOD = min(LOD, ceil(AdjMaxLod))

 LOD = max(LOD, floor(AdjMinLod))

 else if (MipFlt == Nearest)

Pseudocode

 LOD = min(LOD, ceil(AdjMaxLod))

 LOD = max(LOD, floor(AdjMinLod))

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 77

 LOD += 0.5

 LOD = floor(LOD)

 else

 // MipFlt = Linear

 LOD = min(LOD, AdjMaxLod)

 LOD = max(LOD, AdjMinLod)

 TriBeta = frac(LOD)

 LOD0 = floor(LOD)

 LOD1 = LOD0 + 1

 if (! lod) // “LOD” message type

 Lod += SurfMinLod

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced

with zero in all channels, except for surface formats that don’t contain alpha, for which the alpha

channel is replaced with one. These texels then proceed through the rest of the pipeline.

Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state

variable (respectively) is used to select the sampling filter to be used within a mip level (intra-level, as

opposed to any inter-level filter). Note that for volume maps, this selection also applies to filtering

between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number

and texture map coordinates of the texture samples, and the computation of any required filter

parameters. The filtering of the samples occurs later on in the Sampling Engine function.

3D Media GPGPU

78 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter

value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q coordinate is

read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE,

or 3D surface, respectively) surrounding the pixel’s U,V,Q coordinate are read and a

linear filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture

map is generated and “subpixel” samples are taken along the major axis of the

projection (center axis of the longer dimension). The outermost subpixels are

weighted according to closeness to the edge of the projection, inner subpixels are

weighted equally. Each subpixel samples a bilinear 2x2 of texels and the results are

blended according to weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the monochrome

(MONO8) surface format. The monochrome texel block of the specified size

surrounding the pixel is selected and filtered.

MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel’s texture

coordinate is selected and output as the single texel sample coordinates for the level. This is a form of

"Point Sampling".

Corner Texel Mode

MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.

1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the

pixel’s texture coordinate are sampled and later bilinearly filtered. The filter weights each texel’s

contribution according to its distance from the pixel center. Texels further from the pixel center receive

a smaller weight.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 79

Bilinear Filter Sampling

MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of

pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and

later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter

employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the

texture map. LOD is chosen based on the minor axis length in texel space. The anisotropic “ratio” is

equal to the ratio between the major axis length and the minor axis length. The next larger even integer

above the ratio determines the anisotropic number of “ways”, which determines how many subpixels

are chosen. A line along the major axis is determined, and “subpixels” are chosen along this line, spaced

one texel apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and

the pixels are in yellow.

3D Media GPGPU

80 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel

is then blended together using equal weights on all interior subpixels (not including the two endpoint

subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the

“ratio” is to the number of “ways”. This is done to ensure continuous behavior in animation.

MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel

sample location are read and filtered using the kernel described below. The size of this block is

controlled by Monochrome Filter Height and Width (referred to here as Nv and Nu, respectively) state.

Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel

samples) is equal to the size of the filter and the pixel center lies at the exact center of this footprint.

The position of the upper left filter kernel sample (uf, vf) relative to the pixel center at (u, v) is given by

the following:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 81

bu and bv are the fractional parts of uf and vf, respectively. The integer parts select the upper left texel

for the kernel filter, given here as T0,0.

Sampling Using MAPFILTER_MONO

3D Media GPGPU

82 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each

texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and

alpha channels.

Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The

following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after

LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be

rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further

restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results using the distance

between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping

may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip

level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to

generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated

LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for

MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the

(integer bits of) MinLOD and MaxLOD state variables.

Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when

the specific texture coordinate component falls outside of the normalized texture map coordinate range

[0,1).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 83

The table below provides all the supported Address Control modes for each direction.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER Use the texture map’s border color for any texel samples falling outside the

map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_HALF_BORDER Similar to CLAMP_BORDER except texels outside of the map are clamped to a

value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the

same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be

sampled along the edges of faces. This is considered the highest quality

mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each

time an edge is crossed. INVALID for use with unnormalized texture

coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction through the map each

time an edge is crossed. INVALID for use with unnormalized texture

coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the

TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls

provided for the TCW component as it is only used to scale the other 3 components before addressing

modes are applied.

Programming Note

Context: Texture Address Control

TEXCOORDMODE_CUBE can only be used with SURFTYPE_CUBE

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may

result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision

loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level

(choosing the wrong texels for filtering).

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the

texture coordinates. Software needs to specify TEXCOORDMODE_WRAP mode for the sampler that is

provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

3D Media GPGPU

84 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is

flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed

normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal

again, and so on. The second row of pictures in the figure below indicate a map that is mirrored in one

direction and then both directions. You can see that in the mirror mode every other integer map wrap

the base map is mirrored in either direction.

The example below shows how a simple 2D map with TEXCOORDMODE_MIRROR for both TCX and TCY

is mapped.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 85

TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes.

The absolute value of the texture coordinate component is first taken (thus mirroring about 0), and then

the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then clamped

thereafter. This mode is used to reduce the storage required for symmetric maps.

The example below shows how a simple 2D map with TEXCOORDMODE_MIRROR_ONCE for both TCX

and TCY is mapped.

3D Media GPGPU

86 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,

leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being

continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate

values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through

0.0).

The example below shows how a simple 2D map with TEXCOORDMODE_WRAP for both TCX and TCY is

mapped.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 87

TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the texture coordinate

extends outside the [0,1) range of the base texture map. This is contrasted to

TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.

TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be obtained

from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a

texture mapped object with texture coordinates extending outside of the base map region.

Texture Clamp Mode

3D Media GPGPU

88 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the

texture map’s border value BorderColor is to be used for any texel samples that fall outside of the base

map. The border color is specified via a pointer in SAMPLER_STATE.

The example below shows how a simple 2D map with TEXCOORDMODE_CLAMPBORDER for both TCX

and TCY is mapped.

TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering.

When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-level

filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed. This

will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be present.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 89

Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the

texture addresses associated with each texel sample. The texture data is read either directly from the

memory-resident texture map, or from internal texture caches. The texture caches can be invalidated by

the Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable

bit of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered

textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will

automatically decompress from the stored format into the appropriate [A]RGB values. The compressed

texture storage formats and decompression algorithms can be found in the Memory Data Formats

chapter. When the surface format of a texture is defined as being an index into the texture palette

(format names includiong “Px”), the palette lookup of the index determines the appropriate RGB values.

Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of

texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an

RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel

samples against a “key” range, and takes certain actions if any texel samples are found to match the

key.

Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel

values, as defined by ChromaKey[][High,Low] state variables. If each component of a texel sample is

found to lie within the respective (inclusive) range and ChromaKey is enabled, then an action will be

taken to remove this contribution to the resulting texel stream output. Comparison is done separately

on each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

3D Media GPGPU

90 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples from the image.

The ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode

state variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key.

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0).

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample

instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not

done and pixels cannot be killed based on it.

Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed

on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the

“ref” component of the input message, using a compare function selected by ShadowFunction, and

described in the table below. Note that only single-channel texel formats are supported for shadow

mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) ? 0.0 : 1.0

PREFILTEROP_EQUAL (texel == ref) ? 0.0 : 1.0

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0 : 1.0

PREFILTEROP_GREATER (texel > ref) ? 0.0 : 1.0

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0 : 1.0

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0 : 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the

texel’s value which would normally be used).

Software is responsible for programming the ”ref” component of the input message such that it

approximates the same distance metric programmed in the texture map (e.g., distance from a specific

light to the object pixel). In this way, the comparison function can be used to generate “in shadow”

status for each texture sample, and the filtering operation can be used to provide soft shadow edges.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 91

Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel

values on and possibly between texture map layers and levels. The output of this function is a single

texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The

MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results

of any filtering on these separate levels are combined to produce a final texel color. The MinFilter and

MagFilter state variables specify how texel samples are filtered within a level.

Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back

into linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer.

This permits higher quality image blending by performing the blending on colors in linear gamma

space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB” in its name. If

enabled, the pre-filtered texel RGB color to be converted to gamma=1.0 space by applying a ^(2.4)

exponential function.

3D Media GPGPU

92 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Multisampled Surface Behavior

The ld message has added an additional parameter for sample index (si) to support unfiltered loading

from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo

message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface would sample a

surface with double the height and width as indicated in the surface state. Each pixel position on the

original-sized surface is replaced with 2x2 samples that have the following arrangement:

sample 0 sample 2

sample 1 sample 3

This behavior is useful when implementing the multisample resolve operation by selecting

MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source

texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four

underlying samples.

Multisample Control Surface

Three new messages have been defined for the sampling engine, ld_mcs, ld2dms, and ld2dss. A pixel

shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS

surface using the ld_mcs message. This message behaves like the ld message, except that the surface is

defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is

effectively R8_UINT for 4x surfaces and R32_UINT for 8x surfaces, thus data is returned in unsigned

integer format. Following the ld_mcs, the kernel issues a ld2dms message to sample the surface itself.

The integer value from the MCS surface is delivered in the mcs parameter of this messages.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done

using ld2dms. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS and MCS

Enable set to enabled, an optimization is available to enable higher performance for compressed pixels.

The ld2dss message can be used to sample from a particular sample slice on the surface. By examining

the MCS value, software can determine which sample slices to sample from. A simple optimization with

probable large return in performance is to compare the MCS value to zero (indicating all samples are on

sample slice 0), and sample only from sample slice 0 using ld2dss if MCS is zero. Sample slice 0 is the

pixel color in this case. If MCS is not zero, each sample is then obtained using ld2dms messages and the

results are averaged in the kernel after being returned. Refer to the multisample storage format in the

GPU Overview volume for more details.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 93

State

BINDING_TABLE_STATE

SW Generated BINDING_TABLE_STATE

HW Generated BINDING_TABLE_STATE

For SAMPLER_STATE for Sample_8X8 see 3D-Media-GPGPU Engine > Shared Functions > Media

Sampler > Sample_8x8 State > SAMPLER_STATE

The 3D sampler uses both surface state objects (RENDER_SURFACE_STATE) as well as sampler state

objects (SAMPLER_STATE). These objects are cached locally in the sampler state cache

 for improved performance as it is assumed that many sampler messages will utilize the same surface

and sampler states.

Programming Note

Context: Out of Bounds Handling

If a pointer to sampler or surface state goes beyond the end of the sampler or surface state buffer (as defined by

the associated size field of the STATE_BASE_ADDRESS command) the sampler will force the address offset to

cache-line 0 from the defined Base Address. The result of this state fetch is undefined and depends on how the

state buffer has been populated.

Surface State Fetch

Surface state is fetched from system memory using a Binding Table Pointer (BTP). The BTP is a 16-bit

value provided by the command stream (not directly by the shader) which determines the binding-table

to be used. An 8-bit Binding Table Index (BTI) is then provided by the shader via the message

descriptor, which indicates the offset into the Binding Table. The BTP and BTI are relative to the Surface

State Base Address and the binding table itself resides in system memory. The contents of the Binding

Table is a list of pointers to surface state objects. The pointer from the Binding Table is also relative to

the Sampler State Base Address, and points directly to a 256-bit RENDER_SURFACE_STATE object

which sampler will fetch and store in its internal state cache.

For Positional Shaing (POSH) there is a separate set of base addresses for Bindless and Non-Bindless Surface State

called POSH Surface State Offset and POSH Bindless Surface State Base Address. They work exactly the same, but

allow different base addresses for positional shading.

Sampler State Fetch

SAMPLER_STATE objects are fetched independely of surface state and cached locally in the 3D sampler

independently (there may one or more SAMPLER_STATE objects associates with one or more

RENDER_SURFACE_STATE objects). The sampler state is fetched using the Sampler State Pointer (SSP)

which is provided either in the message header or directly from the command stream (message headers

are not required). The SSP is an offset relative to the Dynamic_State_Base_Address and selects a table

of 16 sampler states. The 4-bit Sampler Index (SI) in the message descriptor is used to select the

specific SAMPLER_STATE object to be fetched from system memory and cached locally in the 3D

sampler.

3D Media GPGPU

94 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

For Positional Shading (POSH) there is a separate set of base addresses available for fetching sampler state called

POSH Bindless Surface State Base Address and POSH Dynamic State Base Address.

State Caching

As mentioned above, the 3D Sampler allows for automatic caching of RENDER_SURFACE_STATE

objects and SAMPLER_STATE objects to provide higher performance. Coherency with system memory

in the state cache, like the texture cache is handled partially by software. It is expected that the

command stream or shader will issue Cache Flush operation or Cache_Flush sampler message to ensure

that the L1 cache remains coherent with system memory.

Programming Note

Context: State Cache Coherency

Whenever the value of the Dynamic_State_Base_Addr, Surface_State_Base_Addr are altered, the L1 state cache

must be invalidated to ensure the new surface or sampler state is fetched from system memory.

Whenever the RENDER_SURFACE_STATE object in memory pointed to by the Binding Table Pointer (BTP) and

Binding Table Index (BTI) is modified or SAMPLER_STATE object pointed to by the Sampler State Pointer

(SSP) and Sampler Index (SI) is modified, the L1 state cache must be invalidated to ensure the new surface or

sampler state is fetched from system memory.

SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table or its

own entry in a memory heap in memory. Each surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

 texture maps (1D, 2D, 3D, cube) read by the sampling engine

 buffers read by the sampling engine

 constant buffers read by the data cache via the data port

 render targets read/written by the render cache via the data port

 streamed vertex buffer output written by the render cache via the data port

 media surfaces read from the texture cache or render cache via the data port

 media surfaces written to the render cache via the data port

The surface state definition can be found in the following section:

RENDER_SURFACE_STATE

Surface Formats

The RENDER_SURFACE_STATE contains a 9-bit field called Surface Format, which defines the exact

format of the surface being sampled. The definition of the encodings for each supported format,

including compressed formats can be found in the following section:

SURFACE_FORMAT

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 95

For ASTC formats, the ASTC Enable bit in the RENDER_SURFACE_STATE must be set to 1. When set, the definition

of the 9-bit Surface Format changes. This table describes all supported formats for block based ASTC textures.

SURFACE_FORMAT for All ASTC Formats

Value

[8] LDR/Full

[7] 2D/3D

[6] U8srgb /FLT16

Width

2D [5:3]

3D [5:4]

Height

2D [2:0]

3D [3:2]

Depth

2D: N/A

3D: [1:0]
Binary Form Name (BPE)

000h 000 0 0 000 000 000 ASTC_LDR_2D_4x4_U8sRGB 8.00

008h 000 1 0 000 001 000 ASTC_LDR_2D_5x4_U8sRGB 6.40

009h 000 1 1 000 001 001 ASTC_LDR_2D_5x5_ U8sRGB 5.12

011h 000 2 1 000 010 001 ASTC_LDR_2D_6x5_ U8sRGB 4.27

012h 000 2 2 000 010 010 ASTC_LDR_2D_6x6_ U8sRGB 3.56

021h 000 4 1 000 100 001 ASTC_LDR_2D_8x5_ U8sRGB 3.20

022h 000 4 2 000 100 010 ASTC_LDR_2D_8x6_ U8sRGB 2.67

031h 000 6 1 000 110 001 ASTC_LDR_2D_10x5_ U8sRGB 2.56

032h 000 6 2 000 110 010 ASTC_LDR_2D_10x6_ U8sRGB 2.13

024h 000 4 4 000 100 100 ASTC_LDR_2D_8x8_ U8sRGB 2.00

034h 000 6 4 000 110 100 ASTC_LDR_2D_10x8_ U8sRGB 1.60

036h 000 6 6 000 110 110 ASTC_LDR_2D_10x10_ U8sRGB 1.28

03eh 000 7 6 000 111 110 ASTC_LDR_2D_12x10_ U8sRGB 1.07

03fh 000 7 7 000 111 111 ASTC_LDR_2D_12x12_ U8sRGB 0.89

040h 001 0 0 001 000 000 ASTC_LDR_2D_4x4_FLT16 8.00

048h 001 1 0 001 001 000 ASTC_LDR_2D_5x4_FLT16 6.40

049h 001 1 1 001 001 001 ASTC_LDR_2D_5x5_FLT16 5.12

051h 001 2 1 001 010 001 ASTC_LDR_2D_6x5_FLT16 4.27

052h 001 2 2 001 010 010 ASTC_LDR_2D_6x6_FLT16 3.56

061h 001 4 1 001 100 001 ASTC_LDR_2D_8x5_FLT16 3.20

062h 001 4 2 001 100 010 ASTC_LDR_2D_8x6_FLT16 2.67

071h 001 6 1 001 110 001 ASTC_LDR_2D_10x5_FLT16 2.56

072h 001 6 2 001 110 010 ASTC_LDR_2D_10x6_FLT16 2.13

064h 001 4 4 001 100 100 ASTC_LDR_2D_8x8_FLT16 2.00

074h 001 6 4 001 110 100 ASTC_LDR_2D_10x8_FLT16 1.60

076h 001 6 6 001 110 110 ASTC_LDR_2D_10x10_FLT16 1.28

07eh 001 7 6 001 111 110 ASTC_LDR_2D_12x10_FLT16 1.07

07fh 001 7 7 001 111 111 ASTC_LDR_2D_12x12_FLT16 0.89

3D Media GPGPU

96 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Notes and Workarounds

Programming Note

Context: SURFACE_STATE

 ASTC_LDR_3D* surface types are not supported.

 ASTC_FULL_* surface types are not supported.

Programming Note

Context: ASTC with Multiple LODs

If sampling an ASTC surface with block size of 5X5 or 5X4 and 0 < [(max(Suface_Width»1,1)%10] < 6, and

accessing LOD=2 or higher, then the sampled texels will be shifted to the left by 1.

Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from

the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel

to the corresponding output, thus those formats are not shown in this table.

There are further restrictions listed after the table below on the use of specific surfaces.

Some formats are supported only in DX10/OGL Border Color Mode. Those formats have only that

mode indicated. Formats that behave the same way in both Border Color Modes are indicated by that

column being blank. See the programming notes below the following table for more details on how to

support these surfaces.

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border Color

Mode R G B A

R32G32B32A32_FLOAT R G B A

R32G32B32A32_SINT DX10/OGL R G B A

R32G32B32A32_UINT DX10/OGL R G B A

R32G32B32X32_FLOAT R G B 1.0

R32G32B32_FLOAT R G B 1.0

R32G32B32_SINT DX10/OGL R G B 1.0

R32G32B32_UINT DX10/OGL R G B 1.0

R16G16B16A16_UNORM R G B A

R16G16B16A16_SNORM R G B A

R16G16B16A16_SINT DX10/OGL R G B A

R16G16B16A16_UINT DX10/OGL R G B A

R16G16B16A16_FLOAT R G B A

R32G32_FLOAT DX10/OGL R G 0.0 1.0

R32G32_SINT DX10/OGL R G 0.0 1.0

R32G32_UINT DX10/OGL R G 0.0 1.0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 97

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border Color

Mode R G B A

R32_FLOAT_X8X24_TYPELESS Yes DX10/OGL R 0.0 0.0 1.0

X32_TYPELESS_G8X24_UINT DX10/OGL 0.0 G 0.0 1.0

L32A32_FLOAT DX10/OGL L L L A

R16G16B16X16_UNORM R G B 1.0

R16G16B16X16_FLOAT R G B 1.0

A32X32_FLOAT 0.0 0.0 0.0 A

L32X32_FLOAT L L L 1.0

I32X32_FLOAT I I I I

B8G8R8A8_UNORM Yes R G B A

B8G8R8A8_UNORM_SRGB R G B A

R10G10B10A2_UNORM R G B A

R10G10B10A2_UNORM_SRGB R G B A

R10G10B10A2_UINT DX10/OGL R G B A

R10G10B10_SNORM_A2_UNOR

M

 R G B A

R8G8B8A8_UNORM R G B A

R8G8B8A8_UNORM_SRGB R G B A

R8G8B8A8_SNORM R G B A

R8G8B8A8_SINT DX10/OGL R G B A

R8G8B8A8_UINT DX10/OGL R G B A

R16G16_UNORM DX10/OGL R G 0.0 1.0

R16G16_SNORM DX10/OGL R G 0.0 1.0

R16G16_SINT DX10/OGL R G 0.0 1.0

R16G16_UINT DX10/OGL R G 0.0 1.0

R16G16_FLOAT DX10/OGL R G 0.0 1.0

B10G10R10A2_UNORM R G B A

B10G10R10A2_UNORM_SRGB R G B A

R11G11B10_FLOAT R G B 1.0

R32_SINT DX10/OGL R 0.0 0.0 1.0

R32_UINT DX10/OGL R 0.0 0.0 1.0

R32_FLOAT Yes DX10/OGL R 0.0 0.0 1.0

R24_UNORM_X8_TYPELESS Yes DX10/OGL R 0.0 0.0 1.0

X24_TYPELESS_G8_UINT DX10/OGL 0.0 G 0.0 1.0

L16A16_UNORM L L L A

I24X8_UNORM Yes I I I I

L24X8_UNORM Yes L L L 1.0

3D Media GPGPU

98 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border Color

Mode R G B A

A24X8_UNORM Yes 0.0 0.0 0.0 A

I32_FLOAT Yes I I I I

L32_FLOAT Yes L L L 1.0

A32_FLOAT Yes 0.0 0.0 0.0 A

B8G8R8X8_UNORM Yes R G B 1.0

B8G8R8X8_UNORM_SRGB R G B 1.0

R8G8B8X8_UNORM R G B 1.0

R8G8B8X8_UNORM_SRGB R G B 1.0

R9G9B9E5_SHAREDEXP R G B 1.0

B10G10R10X2_UNORM R G B 1.0

L16A16_FLOAT L L L A

B5G6R5_UNORM Yes R G B 1.0

B5G6R5_UNORM_SRGB R G B 1.0

B5G5R5A1_UNORM Yes R G B A

B5G5R5A1_UNORM_SRGB R G B A

B4G4R4A4_UNORM Yes R G B A

B4G4R4A4_UNORM_SRGB R G B A

R8G8_UNORM DX10/OGL R G 0.0 1.0

R8G8_SNORM Yes DX10/OGL R G 0.0 1.0

R8G8_SINT DX10/OGL R G 0.0 1.0

R8G8_UINT DX10/OGL R G 0.0 1.0

R16_UNORM Yes DX10/OGL R 0.0 0.0 1.0

R16_SNORM DX10/OGL R 0.0 0.0 1.0

R16_SINT DX10/OGL R 0.0 0.0 1.0

R16_UINT DX10/OGL R 0.0 0.0 1.0

R16_FLOAT DX10/OGL R 0.0 0.0 1.0

A8P8_UNORM_PALETTE0 R G B A

A8P8_UNORM_PALETTE1 R G B A

I16_UNORM Yes I I I I

L16_UNORM Yes L L L 1.0

A16_UNORM Yes 0.0 0.0 0.0 A

L8A8_UNORM Yes L L L A

I16_FLOAT Yes I I I I

L16_FLOAT Yes L L L 1.0

A16_FLOAT Yes 0.0 0.0 0.0 A

L8A8_UNORM_SRGB L L L A

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 99

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border Color

Mode R G B A

R5G5_SNORM_B6_UNORM Yes R G B 1.0

P8A8_UNORM_PALETTE0 R G B A

P8A8_UNORM_PALETTE1 R G B A

A1B5G5R5_UNORM CHV, BSW R G B A

A4B4G4R4_UNORM CHV, BSW R G B A

R8_UNORM Yes DX10/OGL R 0.0 0.0 1.0

R8_SNORM DX10/OGL R 0.0 0.0 1.0

R8_SINT DX10/OGL R 0.0 0.0 1.0

R8_UINT DX10/OGL R 0.0 0.0 1.0

A8_UNORM Yes 0.0 0.0 0.0 A

I8_UNORM I I I I

L8_UNORM Yes L L L 1.0

P4A4_UNORM_PALETTE0 R G B A

A4P4_UNORM_PALETTE0 R G B A

P8_UNORM_PALETTE0 R G B A

L8_UNORM_SRGB L L L 1.0

P8_UNORM_PALETTE1 R G B A

P4A4_UNORM_PALETTE1 R G B A

A4P4_UNORM_PALETTE1 R G B A

DXT1_RGB_SRGB R G B 1.0

R1_UNORM R 0.0 0.0 1.0

P2_UNORM_PALETTE0 R G B A

P2_UNORM_PALETTE1 R G B A

BC1_UNORM Yes R G B A

BC2_UNORM Yes R G B A

BC3_UNORM Yes R G B A

BC4_UNORM DX10/OGL R 0.0 0.0 1.0

BC5_UNORM DX10/OGL R G 0.0 1.0

BC1_UNORM_SRGB R G B A

BC2_UNORM_SRGB R G B A

BC3_UNORM_SRGB R G B A

MONO8 N/A N/A N/A N/A

3D Media GPGPU

100 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border Color

Mode R G B A

DXT1_RGB R G B 1.0

FXT1 R G B A

R8G8B8_UNORM CHV, BSW R G B 1.0

R8G8B8_SNORM CHV, BSW R G B 1.0

BC4_SNORM DX10/OGL R 0.0 0.0 1.0

BC5_SNORM DX10/OGL R G 0.0 1.0

R16G16B16_FLOAT R G B 1.0

R16G16B16_UNORM CHV, BSW R G B 1.0

R16G16B16_SNORM CHV, BSW R G B 1.0

BC6H_SF16 CHV, BSW R G B 1.0*

BC7_UNORM CHV, BSW R G B A

BC7_UNORM_SRGB CHV, BSW R G B A

BC6H_UF16 CHV, BSW R G B 1.0*

PLANAR_420_8 CHV, BSW Cr Y Cb 1.0

R8G8B8_UNORM_SRGB CHV, BSW R G B 1.0

ETC1_RGB8 CHV, BSW R G B 1.0

ETC2_RGB8 CHV, BSW R G B 1.0

EAC_R11 CHV, BSW R 0.0 0.0 1.0

EAC_RG11 CHV, BSW R G 0.0 1.0

EAC_SIGNED_R11 CHV, BSW R 0.0 0.0 1.0

EAC_SIGNED_RG11 CHV, BSW R G 0.0 1.0

ETC2_SRGB8 CHV, BSW R G B 1.0

R16G16B16_UINT DX10/OGL R G B 1.0

R16G16B16_SINT DX10/OGL R G B 1.0

ETC2_RGB8_PTA CHV, BSW R G B A

ETC2_SRGB8_PTA CHV, BSW R G B A

ETC2_EAC_RGBA8 CHV, BSW R G B A

ETC2_EAC_SRGB8_A8 CHV, BSW R G B A

R8G8B8_UINT DX10/OGL R G B 1.0

R8G8B8_SINT DX10/OGL R G B 1.0

ASTC CHV, BSW R G B A

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 101

Programming Note

Context: SURFACE_STATE/Shader channel select

It is recommended, for performance reasons, to never use any format of the type L*A*, I* or A*. Instead use R* or

RG* in combination with Shader Channel Select.

3D Media GPGPU

102 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming Note

Context: SURFACE_STATE/Shader channel select

The BC2_NORM, BC3_UNORM, BC5_UNORM, BC5_SNORM and BC7_UNORM surface types must only be used

when the Sampler L2 Bypass Mode Disable field in the RENDER_SURFACE_STATE is set.

Programming Note

Context: NULL Surfaces and Shader Channel Select

Is SURFTYPE_NULL is selected, Shader Channel Select Alpha must be programmed to SCS_ZERO

SURFACE_STATE for Deinterlace sample_8x8 and VME

This section contains media surface state definitions.

Cr(V)/Cb(U) Pixel Offset V Direction

The position of Y is brown and the position of Cr(V)/Cb(U) is blue.

Full Frame Top Field Bottom Field

V Offset 0.5 V Offset 0.25 V Offset 0.75

MEDIA_SURFACE_STATE

Programming Note

Context: SURFACE_STATE for Deinterlace sample_8x

The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to the same for the multi-

surface Video Analytics functions like “LBP Correlation” and “Correlation Search” for both the surfaces.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 103

SAMPLER_STATE

SAMPLER_STATE has different formats, depending on the message type used. For CHV, BSW, the

sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as detailed in the

corresponding sections.

Restriction: The Min LOD and Max LOD fields need range increased from [0.0,13.0] to [0.0,14.0] and fractional

bits increased from six to eight. This requires a few fields to be moved as indicated in the text.

SAMPLER_STATE

SAMPLER_BORDER_COLOR_STATE

If border color is used, all formats must be provided. Hardware will choose the appropriate format

based on Surface Format and Texture Border Color Mode. The values represented by each format

should be the same (other than being subject to range-based clamping and precision) to avoid

unexpected behavior.

DWord Bits Description

0 31:24 Border Color Alpha

 Format = UNORM8

23:16 Border Color Blue

 Format = UNORM8

15:8 Border Color Green

 Format = UNORM8

7:0 Border Color Red

 Format = UNORM8

1 31:0 Border Color Red

 Format = IEEE_FP

2 31:0 Border Color Green

 Format = IEEE_FP

3 31:0 Border Color Blue

 Format = IEEE_FP

4 31:0 Border Color Alpha

 Format = IEEE_FP

5 31:16 Border Color Green

 Format = FLOAT16

15:0 Border Color Red

 Format = FLOAT16

6 31:16 Border Color Alpha

 Format = FLOAT16

15:0 Border Color Blue

 Format = FLOAT16

7 31:16 Border Color Green

 Format = UNORM16

15:0 Border Color Red

3D Media GPGPU

104 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

 Format = UNORM16

8 31:16 Border Color Alpha

 Format = UNORM16

15:0 Border Color Blue

 Format = UNORM16

9 31:16 Border Color Green

 Format = SNORM16

15:0 Border Color Red

 Format = SNORM16

10 31:16 Border Color Alpha

 Format = SNORM16

15:0 Border Color Blue

 Format = SNORM16

11 31:24 Border Color Alpha

 Format = SNORM8

23:16 Border Color Blue

 Format = SNORM8

15:8 Border Color Green

 Format = SNORM8

7:0 Border Color Red

 Format = SNORM8

Border Color Programming for Integer Surface Formats

For integer formats, there are different possible cases depending on the bits per channel (bpc) and bits

per texel (bpt) of the surface format.

Integer Surface Format – Different Types Surface formats

32 bpc, 128 bpt case (4 types)
R32G32B32A32_UINT

R32G32B32_UINT

R32G32B32A32_SINT

R32G32B32_SINT

16 bpc, 64 bpt case (5 types)
R16G16B16A16_UINT, R10G10B10A2_UINT

X32_TYPELESS_G8X24_UINT

R16G16B16_UINT

R16G16B16A16_SINT

R16G16B16_SINT

32 bpc, 64 bpt case (2 types) R32G32_UINT

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 105

Integer Surface Format – Different Types Surface formats

 R32G32_SINT

8 bpc, 32 bpt cases (9 types)
R8G8B8A8_UINT

R8G8_UINT

R8_UINT

X24_TYPELESS_G8_UINT

R8G8B8_UINT

R8G8B8A8_SINT

R8G8_SINT

R8_SINT

R8G8B8_SINT

16 bpc, 32 bpt cases (4 types)
R16G16_UINT

R16_UINT

R16G16_SINT

R16_SINT

32 bpc, 32 bpt case (2 types) R32_UINT

 R32_SINT

HW supports only 1 index for a given Sampler Border Color state and Sampler State. So, SW will have to

program the table in SAMPLER_BORDER_COLOR_STATE at DWord offsets 16 to 19, as per the integer

surface format type (depends on the bits per channel and bits per texel of the surface format). If any

color channel is missing from the surface format, the corresponding border color should be

programmed as zero; if the alpha channel is missing, the corresponding Alpha border color should be

programmed as 1. Some of the representative cases are listed below:

Case 2: R32G32B32A32_SINT (32 bpc, 128 bpt, 4 channel, SINT)

Each of the values in the above table would have be to programmed as sint32 value.

Case 3: R32G32B32_UINT (32 bpc, 128 bpt, 3 channel)

R/G/B values would be programmed like in Case1. Alpha channel value at DWORDN+3 would have to

be programmed as Integer 1.

3D Media GPGPU

106 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Messages

The sampler receives messages from shader clients. These messages contain information to allow the

sampler to perform sample operations and return results. A message consists of four components:

 Execution Mask : Indicates, for a given SIMD, which pixels are valid.

 Message Descriptor: Required information including length of the message, and the lenght of the

response

 Message Header: Optional information which may be required for certain operations (e.g. Direct

Write to Render Target)

 Message Payload: Specific data for each sampler operation including coordinates and other

message parameters.

Programming Notes

A message header is required for GPGPU kernals in order to allow mid-thread pre-emption to allow save/restore

mechanisms to work correctly.

Message Descriptor and Execution Mask

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are

sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the

GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter

mode and at least one pixel in the subspan being valid, the sampling engine assumes that the

parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of

the execution mask, as these are needed for the LOD computation.

SIMD8. The low 8 bits of the execution mask form the valid pixel signals. If LOD needs to be computed

based on MIP filter mode and at least one pixel in the subspan being valid, the sampling engine

assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan are

valid regardless of the execution mask, since these are needed for the LOD computation.

SIMD4x2. The low 8 bits of the execution mask is interpreted in groups of four. If any of the high 4 bits are

asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The Write Channel

Mask rather than the execution mask determines which channels are written back to the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid, and all channels are returned

regardless of the execution mask.

Message Descriptor

Message Descriptor - Sampling Engine

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 107

Message Header

The message header for the sampling engine is the same regardless of the message type. The messasge

header is optional. If the header is not present, the behavior is as if the message was sent with all fields

in the header set to zero and the write channel masks are all enabled and offsets are zero. However, if

the header is not included in the message, the Sampler State Pointer will be obtained from the

command stream input for the given thread. When Response length is 0 for sample_8x8 message then

the data from sampler is directly written out to memory using media write message.

DWord Bits Description

M0.5 31:0 Reserved

M0.4 31:0 Reserved

M0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned

pointer to the sampler state table. This field is ignored for ld

and resinfo message types. This pointer is relative to the

Dynamic State Base Address.

Format = DynamicStateOfffset[31:5]

The Sampler State Pointer does not have to be defined by

the Message Header (many messages do not require a

message header). The Sampler State Pointer may be

delivered from the Command Streamer without the need

for a Message Header.

4:0 Ignored

M0.2 spans so many rows, many for various projects, that the DWord value

is repeated in each row.

M0.2 31:22 Reserved

M0.2 21 Reserved

M0.2 20 Reserved

M0.2 19:18
SIMD32/64 Output Format Control

Specifies the output format of SIMD32/64 messages

(sample_unorm* and sample_8x8). Ignored for other

message types. Refer to the writeback message formats for

details on how this field affects returned data.

This field is ignored for sample_8x8 messages if the

Function is not AVS and MinMaxFilter. For MinMaxFilter

only 16 bit Full and 8 bit Full modes are supported.

0: 16 bit Full

1: 16 bit Chrominance Downsampled

2: 8 bit Full

3: 8 bit Chrominance Downsampled

3D Media GPGPU

108 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

This feature should be programmed to 0h because non-0

values may cause data corruption in returned values.

M0.2 17:16
Gather4 Source Channel Select: Selects the source

channel to be sampled in the gather4* messages. Ignored

for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

For gather4*_c messages, this field must be set to 0 (Red

channel).

M0.2 15
Alpha Write Channel Mask: Enables the alpha channel to

be written back to the originating thread.

0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note

Project: CHV, BSW

Context: 3D Sampler Messages

 A message with all four channels masked is not

allowed.

 This field is ignored for the deinterlace message.

 This field must be set to zero for sample_8x8 in

VSA mode.

 Alpha/Blue/Green/Red channels masked must set

to 0 (no mask is supported).

 CHV, BSW: For Sample_8x8 messages,

Alpha/Blue/Red channels should be always

masked (set to 1) and only Green channel is

enabled (set to 0).

 This field must be set to zero for all gather4*

messages.

 CHV, BSW: This field must be set to zero for all

sample_min/sample_max instructions

M0.2
15

Alpha Write Channel Mask: Enables the alpha channel to

be written back to the originating thread.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 109

DWord Bits Description

0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note

Context: 3D Sampler Messages

 A message with all four channels masked is not

allowed.

 This field is ignored for the deinterlace message.

 This field must be set to zero for sample_8x8 in

VSA mode.

 CHV, BSW: For Sample_8x8 messages,

Alpha/Blue/Red channels should be always

masked (set to 1) and only Green channel is

enabled (set to 0).

 This field must be set to zero for all gather4*

messages.

 CHV, BSW: This field must be set to zero for all

sample_min/sample_max instructions

M0.2 14 Blue Write Channel Mask: See Alpha Write Channel Mask.

M0.2 13 Green Write Channel Mask: See Alpha Write Channel

Mask.

M0.2 12 Red Write Channel Mask: See Alpha Write Channel Mask.

M0.2 11.8
U Offset: The u offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the

Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.

Must be set to zero if _aoffimmi is not specified. Format is

S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

 This field is ignored for the sample_unorm*,

sample_8x8, and deinterlace messages.

 This field is ignored if the offu parameter is

included in the gather4* messages.

Programming Note

Context:

Non-Normalized Floating-Point

Coordinates

Texel offsets can only be applied to messages with

floating-point normalized coordinates or integer non-

normalized coordinates.

3D Media GPGPU

110 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

M0.2 11:8
U Offset: The u offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the

Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.

Must be set to zero if _aoffimmi is not specified. Format is

S3 2’s complement.

M0.2 7:4
V Offset: The v offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the

Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.

Must be set to zero if _aoffimmi is not specified. Format is

S3 2’s complement.

Programming Note

Context: 3DSampler Messages

 This field is ignored for the sample_unorm*,

sample_8x8, and deinterlace messages.

 This field is ignored if the offu parameter is

included in the gather4* messages.

Programming Note

Context:

Non-Normalized Floating-Point

Coordinates

Texel offsets can only be applied to messages with

floating-point normalized coordinates or integer non-

normalized coordinates.

M0.2 3:0
R Offset: The r offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the

Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.

Must be set to zero if _aoffimmi is not specified. Format is

S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

This field is ignored for the sample_unorm*, sample_8x8,

and deinterlace messages.

Programming Note

Context:

Non-Normalized Floating-Point

Coordinates

Texel offsets can only be applied to messages with

floating-point normalized coordinates or integer non-

normalized coordinates.

M0.1 31:0 Reserved

M0.0 31:0 Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 111

Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except

the ‘mcs’, ‘offu’, and ‘offv’ parameters. Usage of the u, v, and r parameters is as follows based on

Surface Type. Normalized values range from [0,1] across the surface, with values outside the surface

behaving as specified by the Address Control Mode in that dimension. Unnormalized values range

from [0,n-1] across the surface, where n is the size of the surface in that dimension, with values outside

the surface being clamped to the surface.

Surface Type u v r ai

SURFTYPE1D normalized ‘x’

coordinate

unnormalized array

index

ignored ignored

SURFTYPE_2D normalized ‘x’

coordinate

normalized ‘y’

coordinate

unnormalized array

index

ignored

SURFTYPE_3D normalized ‘x’

coordinate

normalized ‘y’

coordinate

normalized ‘z’

coordinate

ignored

SURFTYPE_CUBE normalized ‘x’

coordinate

normalized ‘y’

coordinate

normalized ‘z’

coordinate

unnormalized array

index

mcs parameter

The ‘mcs’ parameter delivers the multisample control data. The format of this parameter is always a 32-bit

unsigned integer. Refer to the section titled “Multisampled Surface Behavior” for details on this parameter.

Ld* messages

For the ld message types, all parameters are 32-bit unsigned integers, except the ‘mcs’ parameter.

Usage of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range

from [0,n-1] across the surface, where n is the size of the surface in that dimension. Input of any value

outside of the range returns zero.

Surface Type u v r

SURFTYPE1D unnormalized ‘x’ coordinate unnormalized array index ignored

SURFTYPE_2D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized array index

SURFTYPE_3D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized ‘z’ coordinate

SURFTYPE_BUFFER unnormalized ‘x’ coordinate ignored ignored

3D Media GPGPU

112 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD Payloads

This section contains the SIMD payload definitions.

SIMD16 Payload [CHV, BSW]

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities

(examples of an entity are vertex and pixel). The number of parameters required to sample the surface

depends on the state that the sampler/surface is in. Each parameter takes two message registers, with 8

entities, each a 32-bit floating point value, being placed in each register. Each parameter always takes a

consistent position in the input payload. The length field can be used to send a shorter message, but

intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map

using “sample_b” needs only u, v, and bias, but must send the r parameter as well.

DWord Bits Description

M1.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2.7 31:0 Subspan 3, Pixel 3 (lower right) Parameter 0

M2.6 31:0 Subspan 3, Pixel 2 (lower left) Parameter 0

M2.5 31:0 Subspan 3, Pixel 1 (upper right) Parameter 0

M2.4 31:0 Subspan 3, Pixel 0 (upper left) Parameter 0

M2.3 31:0 Subspan 2, Pixel 3 (lower right) Parameter 0

M2.2 31:0 Subspan 2, Pixel 2 (lower left) Parameter 0

M2.1 31:0 Subspan 2, Pixel 1 (upper right) Parameter 0

M2.0 31:0 Subspan 2, Pixel 0 (upper left) Parameter 0

M3 –

Mn

 Repeat packets 1 and 2 to cover all required parameters.

../../../../Content/3D_Media_GPGPU/Shared_Functions/3D_Sampler/Payload%20Parameter%20Definition.htm

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 113

SIMD8 Payload [CHV, BSW]

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each

message contains sample requests for just 8 pixels.

DWord Bits Description

M1.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2 –

Mn

 Repeat packet 1 to cover all required parameters.

SIMD4x2 Payload [CHV, BSW]

DWord Bits Description

M1.7 31:0
Sample 1 Parameter 3

Specifies the value of the pixel’s parameter 3. The actual parameter that maps to parameter 3 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Sample 1 Parameter 2

M1.5 31:0 Sample 1 Parameter 1

M1.4 31:0 Sample 1 Parameter 0

M1.3 31:0 Sample 0 Parameter 3

M1.2 31:0 Sample 0 Parameter 2

M1.1 31:0 Sample 0 Parameter 1

M1.0 31:0 Sample 0 Parameter 0

M2 Parameters 4-7 if present

M3 Parameters 8-11 if present

../../../../Content/3D_Media_GPGPU/Shared_Functions/3D_Sampler/Payload%20Parameter%20Definition.htm
../../../../Content/3D_Media_GPGPU/Shared_Functions/3D_Sampler/Payload%20Parameter%20Definition.htm

3D Media GPGPU

114 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message

generates a corresponding writeback message of the same type .

SIMD16

Return Format = 32-bit

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is

determined by the write channel mask received in the corresponding input message. Each asserted

write channel mask results in both destination registers of the corresponding channel being skipped in

the writeback message, and all channels with higher numbered registers being dropped down to fill in

the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent

to regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination

register is determined by the execution mask on the “send” instruction.

DWord Bit Description

W0.7 31:0
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1.7 31:0 Subspan 3, Pixel 3 (lower right) Red

W1.6 31:0 Subspan 3, Pixel 2 (lower left) Red

W1.5 31:0 Subspan 3, Pixel 1 (upper right) Red

W1.4 31:0 Supspan 3, Pixel 0 (upper left) Red

W1.3 31:0 Subspan 2, Pixel 3 (lower right) Red

W1.2 31:0 Subspan 2, Pixel 2 (lower left) Red

W1.1 31:0 Subspan 2, Pixel 1 (upper right) Red

W1.0 31:0 Supspan 2, Pixel 0 (upper left) Red

W2 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W3 Subspans 3 and 2 of Green: See W1 definition for pixel locations

W4 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W5 Subspans 3 and 2 of Blue: See W1 definition for pixel locations

W6 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 115

DWord Bit Description

W7 Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

W8.7:1 Reserved (not written): W8 is only delivered when Pixel Fault Mask Enable is enabled.

W8.0 15:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null page

was source for at least one texel.

Return Format = 16-bit

[CHV, BSW]: A SIMD16 writeback message with Return Format of 16-bit consists of up to 4

destination registers. Which registers are returned is determined by the write channel mask received in

the corresponding input message. Each asserted write channel mask results in both destination

registers of the corresponding channel being skipped in the writeback message, and all channels with

higher numbered registers being dropped down to fill in the space occupied by the masked channel.

For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to regid+1. The pixels

written within each destination register is determined by the execution mask on the “send” instruction.

DWord Bit Description

W0.7 31:16
Subspan 3, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Half Float, S15 signed 2’s comp integer, or U16 unsigned integer.

15:0 Subspan 3, Pixel 2 (lower left) Red

W0.6 31:16 Subspan 3, Pixel 1 (upper right) Red

15:0 Supspan 3, Pixel 0 (upper left) Red

W0.5 31:16 Subspan 2, Pixel 3 (lower right) Red

15:0 Subspan 2, Pixel 2 (lower left) Red

W0.4 31:16 Subspan 2, Pixel 1 (upper right) Red

15:0 Supspan 2, Pixel 0 (upper left) Red

W0.3 31:16 Subspan 1, Pixel 3 (lower right) Red

15:0 Subspan 1, Pixel 2 (lower left) Red

W0.2 31:16 Subspan 1, Pixel 1 (upper right) Red

15:0 Supspan 1, Pixel 0 (upper left) Red

W0.1 31:16 Subspan 0, Pixel 3 (lower right) Red

15:0 Subspan 0, Pixel 2 (lower left) Red

W0.0 31:16 Subspan 0, Pixel 1 (upper right) Red

15:0 Supspan 0, Pixel 0 (upper left) Red

W1 Green: See W0 definition for pixel locations

W2 Blue: See W0 definition for pixel locations

W3 Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written): W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:16 Reserved: always written as 0xffff

W4.0 15:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null

3D Media GPGPU

116 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

page was source for at least one texel.

SIMD8/SIMD8D

Return Format = 32-bit

[CHV, BSW]: A SIMD8* writeback message consists of up to 4 destination registers (5 in the case of

sample+killpix). Which registers are returned is determined by the write channel mask received in the

corresponding input message. Each asserted write channel mask results in the destination register of

the corresponding channel being skipped in the writeback message, and all channels with higher

numbered registers being dropped down to fill in the space occupied by the masked channel. For

example, if only red and alpha are enabled, red is sent to regid+0, and alpha to regid+1. The pixels

written within each destination register is determined by the execution mask on the send instruction.

For the sample+killpix message types, an additional register (W4) is included after the last channel

register.

DWord Bits Description

W0.7 31:0
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written) : This W4 is only delivered for the sample+killpix message type

W4.0 31:16 Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the R0 header

in the pixel shader thread.

W4.0 15:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been

killed as a result of chroma key with kill pixel mode. Since the SIMD8 message applies to only 8

pixels, only the low 8 bits within this field are used. The high 8 bits are always set to 1.

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:24 Reserved: always written as 0xff

W4.0 23:16 Reseved: always written as 0xff

W4.0 15:8 Reserved: always written as 0xff

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 117

DWord Bits Description

W4.0 7:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null

page was source for at least one texel.

Return Format = 16-bit

SIMD8* writeback message with Return Format of 16-bit consists of up to 4 destination registers).

Which registers are returned is determined by the write channel mask received in the corresponding

input message. Each asserted write channel mask results in the destination register of the

corresponding channel being skipped in the writeback message, and all channels with higher numbered

registers being dropped down to fill in the space occupied by the masked channel. For example, if only

red and alpha are enabled, red is sent to regid+0, and alpha to regid+1. The pixels written within each

destination register is determined by the execution mask on the send instruction.

DWord Bits Description

W0.7:4 Reserved

W0.3 31:16
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Half Float, S15 signed 2’s comp integer, or U16 unsigned integer.

15:0 Subspan 1, Pixel 2 (lower left) Red

W0.2 31:16 Subspan 1, Pixel 1 (upper right) Red

15:0 Supspan 1, Pixel 0 (upper left) Red

W0.1 31:16 Subspan 0, Pixel 3 (lower right) Red

15:0 Subspan 0, Pixel 2 (lower left) Red

W0.0 31:16 Subspan 0, Pixel 1 (upper right) Red

15:0 Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:24 Reserved: always written as 0xffff

W4.0 23:16 Reserved: always written as 0xff

W4.0 15:8 Reserved: always written as 0xff

W4.0 7:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null

page was source for at least one texel.

3D Media GPGPU

118 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing all four channels

of each of the two “pixels” (called “samples” here, as they are not really pixels) of data. The write

channel mask bits as well as the execution mask on the “send” instruction are used to determine which

of the channels in the destination register are overwritten. If any of the four execution mask bits for a

sample is asserted, that sample is considered to be active. The active channels in the write channel mask

will be written in the destination register for that sample. If the sample is inactive (all four execution

mask bits deasserted), none of the channels for that sample will be written in the destination register.

DWord Bit Description

W0.7 31:0
Sample 1 Alpha: Specifies the value of the pixel’s alpha channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.

W0.6 31:0 Sample 1 Blue

W0.5 31:0 Sample 1 Green

W0.4 31:0 Sample 1 Red

W0.3 31:0 Sample 0 Alpha

W0.2 31:0 Sample 0 Blue

W0.1 31:0 Sample 0 Green

W0.0 31:0 Sample 0 Red

W1.7:1 Reserved (not written) : W1 is only delivered when Pixel Fault Mask Enable is enabled.

W1.0 31:2 Reserved: always written as 0x3fffffff

1:0 Pixel Null Mask: This field has the bit for all samples set to 1 except those pixels in which a null

page was source for at least one texel.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 119

Shared Functions – Data Port

The Data Port provides all memory accesses for the Gen subsystem other than those provided by the

sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes,

and media surface accesses.

CHV, BSW adds the Data Port Data Cache and the Data Cache.

The diagram below shows the four parts of the Data Port (Sampler Cache, Constant Cache, Data Cache, and

Render Cache) and how they connect with the caches and memory subsystem. The execution units and sampling

engine are shown for clarity.

The kernel programs running in the execution units communicate with the data port via messages, the same as for

the other shared function units. The four data ports are considered to be separate shared functions, each with its

own shared function identifier.

3D Media GPGPU

120 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Data Cache

The data cache is a read/write cache that is coherent across the physical instances of this cache. It is

intended to be used for the following surfaces:

 constant buffers

 destination surfaces for media applications

 intermediate working surfaces for media applications

 scratch space buffers

 general read/write access of surfaces

 atomic operations

 shared memory for GPGPU thread groups

The data cache can be accessed via the Data Cache Data Port shared function, and via the load and

store EU messages. Ordering from a single thread is maintained when accessing the data cache using

only one of these mechanisms, but is not maintained when using both of these mechanisms from the

same thread. In these instances, software must ensure ordering by using write commits and/or waiting

for read data to be returned.

Data Cache Coherency

Data cache memory is backed by system memory. The read/write data cache is always coherent

between GPU thread accesses, but might not be coherent with CPU memory accesses.

Coherency Type

Two types of coherency are supported for data cache memory: GPU Coherent and IA Coherent. GPU coherent

accesses are kept coherent with GPU threads but not kept coherent with CPU (LLC) accesses. IA Coherent accesses

are kept coherent with both GPU threads and with CPU accesses.

Two GPU accesses made to the same address but with different coherency types have different cache entries and

are not kept coherent with each other. If a buffer will be accessed with different coherency types, software is

responsible for flushing the GPU cache to system memory, using either a Memory Fence message or a pipeline

flush command.

The surface state field Coherency Type specifes the data cache coherency used with that surface. Stateless

accesses specify their coherency with BTI=255 or BTI=253.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 121

Sampler Cache

The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being

used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be

used for source surfaces in media applications via the data port. The same application may use the

sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

Surfaces

The data elements accessed by the data port are called “surfaces”. There are two models used by the

data port to access these surfaces: surface state model and stateless model.

Surface State Model

The data port uses the binding table to bind indices to surface state, using the same mechanism used

by the sampling engine. The surface state model is used when a Binding Table Index (specified in the

message descriptor) of less than 255 is specified. In this model, the Binding Table Index is used to

index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.

SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,

format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

Stateless Model

The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is

specified.

This model is primarily intended to be used for scratch space buffers.

In this model, the binding table is not accessed, and the parameters that define the surface state are

overloaded as follows:

 Surface Type = SURFTYPE_BUFFER

 Surface Format = R32G32B32A32_FLOAT

 Vertical Line Stride = 0

 Surface Base Address = General State Base Address + Immediate Base Address

 Surface Pitch = 16 bytes

 Utilize Fence = false

 Tiled = false

3D Media GPGPU

122 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Buffer Size Checking

Buffer Size Checking

Buffer Size = checked only against General State Buffer Size

When General State Buffer Size is zero, any stateless access is out-of-bounds.

Shared Local Memory (SLM)

The shared local memory (SLM) is a high bandwidth memory that is not backed up by system memory.

It is enabled by configuring the L3 cache to use a portion of its space for the SLM. One SLM is present

in each half slice, and its contents are shared between all of the active threads in that half slice. Its

contents are uninitialized after creation, and its contents disappear when deallocated.

The SLM is accessed when a Binding Table Index (specified in the message descriptor) of 254 is

specified. The binding table is not accessed, and the parameters that define the surface state are

overloaded as follows:

 Surface Type = SURFTYPE_BUFFER

 Surface Format = RAW

 Surface Base Address = points to the start of the internal SLM (no memory address is applicable)

 Surface Pitch = 1 byte

Due to the predefined surface state attributes for the SLM, only a subset of the data port messages can

be used. This includes the Byte Scattered Read/Write, Untyped Surface Read/Write, and Untyped

Atomic Operation messages. In addition, only the data cache data port is supported; the other data

ports treat Binding Table Index 254 as a normal surface state access.

Programming Note

Context: Shared Local Memory (SLM)

Accesses to SLM don’t have any bounds checking. Addresses beyond the size (64KB) of the SLM wrap around.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 123

Write Commit

For write messages, an optional write commit writeback message can be requested via the Send Write

Commit Message bit in the message descriptor. This bit causes a return message to the thread

indicating when the write has been committed to the in-order cache pipeline and it is safe to issue

another access to the same data with the assurance that it will happen after the first write. A read issued

after the write commit ensures that the read will get the newly written data, and another write issued

after the write commit will be the last to modify the data. "Committed" does not guarantee that the

data has been actually written to the memory subsystem, but only that the write has been scheduled

and cannot be passed by another read or write issued subsequently.

If Send Write Commit Message is used on a Flush Render Cache message, the write commit is sent

only when the render cache has completed its flush to memory. A read issued to another cache after

the write commit is received will be guaranteed to retrieve the “new” data that was written before the

Flush Render Cache message was issued.

The write commit does not modify the destination register, but merely clears the dependency

associated with the destination register. Thus, a simple “mov” instruction using the register as a source

is sufficient to wait for the write commit to occur. The following code sequence indicates this:

 send r12 m1 DPWRITE ; Issue write to render cache.

 mov m1 r3 ; Assemble read message.

 mov r12 r12 ; Block on write commit.

 send r13 m1 DPREAD ; Read same location as write.

ReadWrite Ordering

Reads and writes issued from the same thread are guaranteed to be processed in the same order as

issued. Software mechanisms must still ensure any needed ordering of accesses issued from different

threads.

3D Media GPGPU

124 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant

buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed

vertex buffers. All of these messages support only buffers, and can use the surface state model as well

as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications

OWord Block

Read/Write
 constant buffer reads of a single constant or multiple contiguous constants

 scratch space reads/writes where the index for each pixel/vertex is the same

 block constant reads, scratch memory reads/writes for media

OWord Dual Block

Read/Write

 SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if

there are two indices and they are the same, hardware will optimize the cache accesses

and do only one cache access)

 SIMD4x2 scratch space reads/writes where the indices are different.

DWord Scattered

Read/Write
 SIMD8/16 constant buffer reads where the indices of each pixel are different (read one

channel per message)

 SIMD8/16 scratch space reads/writes where the indices are different (read/write one

channel per message)

 general purpose DWord scatter/gathering, used by media

Streamed Vertex

Buffer Write
 geometry shader streaming vertex data out

These messages generally ignore the surface format field of the state and perform no format

conversion. The exception is the Streamed Vertex Buffer Write, which uses the surface format field to

determine only how many channels are to be written. The data contained in each channel is still not

converted in any way.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 125

Accessing Media Surfaces

The Media Block Read/Write message is intended to be used to access 2D media surfaces. The message

specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D surfaces,

the stateless model cannot be used with this message.

Boundary Behavior

The table below summarizes the behavior of the Media Boundary Pixel Mode field (SURFACE_STATE)

in combination with the Vertical Line Stride and Vertical Line Stride Offset fields (both of which are

subject to being overridden by the Data Port message descriptor fields). The Behavior column illustrates

behavior for a surface with four rows numbered 0 to 3. The bold indicators are off-surface behavior and

the non-bold indicators are on-surface behavior. Input row addresses range from -3 to +7 going left to

right.

Media Boundary Pixel

Mode

Vertical Line

Stride

Vertical Line Stride

Offset Usage Model Behavior

0 0 X normal frame 000001233333

0 1 0 normal field even 000002222222

0 1 1 normal field odd 111113333333

2 0 X frame / progressive 000001233333

2 1 0 field even /

progressive

000002333333

2 1 1 field odd /

progressive

000013333333

3 0 X frame / interlaced 010101232323

3 1 0 field even / interlaced 000002222222

3 1 1 field odd / interlaced 111113333333

3D Media GPGPU

126 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

State

This topic discusses applicable State options for the Data Port.

BINDING_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to State in the Sampling Engine

section for the definition of this state.

SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media surfaces.

COLOR_PROCESSING_STATE

The following state structures contain different states used by the color processing function.

COLOR_PROCESSING_STATE - STD/STE State

COLOR_PROCESSING_STATE - ACE State

COLOR_PROCESSING_STATE - TCC State

COLOR_PROCESSING_STATE - PROCAMP State

COLOR_PROCESSING_STATE - CSC State

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 127

Messages

This section of the BSpec discusses messages applicable to the Data Port.

Global Definitions

For data port messages, part of the message descriptor is used to determine the message type. This

field is documented here. The remainder of the message descriptor is defined differently depending on

the message type, and is documented in the section for the corresponding message.

The Data Port is actually separate targets, Data Port,Sampler Cache, Data Port Constant Cache, and

Data Port Render Cache, each with its own target unit ID. Each target has its own set of message type

encodings as shown below.

Programming Note

Context: Messages

Data port messages may not have the End of Thread bit set in the message descriptor other than the following

exceptions:

 The Render Target Write message may have End of Thread set for pixel shader threads dispatched by the

windower in non-contiguous dispatch mode.

 The Render Target UNORM Write message may have End of Thread set for pixel shader threads

dispatched by the windower in contiguous dispatch mode.

 The Media Block Write message may have End of Thread set for pixel shader threads dispatched by the

windower in contiguous dispatch mode.

Data Port Messages

Most of the messages have an existing definition that is not expected to change. There are several new

messages that are documented here.

Data Cache Data Port Message Summary

Message Type Header Required

Shared Local

Memory Support

Stateless

Support

Address

Modes

Vector

Width

OWord Block Read yes no yes global 1

OWord Block Write yes no yes global 1

Unaligned OWord Block

Read

yes no yes global 1

OWord Dual Block Read
no for stated

yes for stateless

no yes global +

offset

2

OWord Dual Block Write
no for stated

yes for stateless

no yes global +

offset

2

3D Media GPGPU

128 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Type Header Required

Shared Local

Memory Support

Stateless

Support

Address

Modes

Vector

Width

A64 QWord Scattered

Read

no (forbidden) no yes (only) offset 8

A64 QWord Scattered

Write

no (forbidden) no yes (only) offset 8

A64 DWord Scattered

Read

no (forbidden) no yes (only) offset 8

A64 DWord Scattered

Write

no (forbidden) no yes (only) offset 8

A64 Byte Scattered Read no (forbidden) no yes (only) offset 8

A64 Byte Scattered Write no (forbidden) no yes (only) offset 8

A64 Untyped Surface Read no (forbidden) no yes (only) offset 2, 8

A64 Untyped Surface

Write

no (forbidden) no yes (only) offset 2, 8

A64 Untyped Atomic

Operation

no (forbidden) no yes (only) offset 8

A64 Untyped Atomic

Operation SIMD4x2

no (forbidden) no yes (only) offset 2

A64 Block Read/Write yes no yes (only) offset 1

DWord Scattered Read
no for stated

yes for stateless

no yes global +

offset

8, 16

DWord Scattered Write
no for stated

yes for stateless

no yes global +

offset

8, 16

Byte Scattered Read
no for stated

yes for stateless

yes yes global +

offset

8, 16

Byte Scattered Write
no for stated

yes for stateless

yes yes global +

offset

8, 16

Untyped Surface Read
no for stated

yes for stateless

yes yes (1D only) 1D or 2D 2, 8, 16

Untyped Surface Write
no for stated

yes for stateless

yes yes (1D only) 1D or 2D 2, 8, 16

Untyped Atomic Operation
no for stated

yes yes (1D only) 1D or 2D 8, 16

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 129

Message Type Header Required

Shared Local

Memory Support

Stateless

Support

Address

Modes

Vector

Width

yes for stateless

Untyped Atomic Operation

SIMD4x2
no for stated

yes for stateless

yes yes (1D only) 1D or 2D 2

Atomic Counter Operation no2

 Required for inc,

dec, predec

no no implied 8

Atomic Counter Operation

SIMD4x2

no2

 Required for inc,

dec, predec

no no implied 2

Scratch Block Read yes no yes (only) Imm_Buf +

offset

Scratch Block Write yes no yes (only) Imm_Buf +

offset

Memory Fence yes N/A N/A N/A N/A

Typed Surface Read yes no no 1D, 2D, 3D,

4D

2, 8

Typed Surface Write yes no no 1D, 2D, 3D,

4D

2, 8

Typed Atomic Operation yes no no 1D, 2D, 3D,

4D

8

Typed Atomic Operation

SIMD4x2

yes no no 1D, 2D, 3D,

4D

2, 8

Media Block Read yes no no 2D 1

Media Block Write yes no no 2D 1

Transpose Read yes no no 2D 1

Table Notes

“global” is the Global Offset in the message header (if header is not present, Global Offset is zero).

“imm_buf” is the Immediate Buffer Base Address provided in message header register M0.5.

“offset” is in the message payload, and is per-slot.

“handle” is the handle address in the message header.

“URBoffset” is the Global Offset field in the URB message descriptor.

“1D” and “2D” are the address payload.

3D Media GPGPU

130 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Render Cache Data Port Message Summary

Message Type Header Required Address Modes Vector Width

Render Target Write no 2D + RTAI 8, 16

Message Descriptor

This section describes the Data Port message descriptors for various projects.

Message Descriptor

SAMPLER CACHE DATA PORT RENDER CACHE DATA PORT

Bit Description Bit Description

19 Header Present. If set, indicates that the message includes the header.

Note: For the Sampler Cache Data Port, the header must be present for the following message types:

 Unaligned OWord Block Read

 Media block read

 Format = Enable

18 Ignored 18 Ignored

17:14 Message Type

 0000: Read Surface Info

 0001: Unaligned OWord Block Read

 0100: Media Block Read

 All other encodings are reserved.

17:14 Message Type

 1100: Render Target Write

 1101: Render Target Read

 All other encodings are reserved.

13:8 Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface.

 Format = U8

 Range = [0,255]

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT0

DATA CACHE DATA

PORT1

Bit Description Bit Description Bit Description

19 Header Present. If set, indicates that the

message includes the header.

Programming Note: For the Data Cache

Data Port*, the header must be present for

the following message types:

 OWord Block Read/Write

 Unaligned OWord Block Read

 Memory Fence

 Scratch read/write

 Typed read/write/atomics

 Media block read/write

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 131

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT0

DATA CACHE DATA

PORT1

Bit Description Bit Description Bit Description

 Transpose Read

 A64 Block Read/Write

 For the Constant Cache Data Port, the

header must be present for the following

message types:

 OWord Block Read/Write

 Unaligned OWord Block Read

 Format = Enable

18
Ignored 18 Category

 1: Scratch Block

Read/Write messages

 0: Legacy DAP-DC

messages

18:14 Message Type

 00000: Transpose

Read

 00001: Untyped

Surface Read

 00010: Untyped

Atomic Operation

 00011: Untyped

Atomic Operation

SIMD4x2

 00100: Media Block

Read

 00101: Typed

Surface Read

 00110: Typed

Atomic Operation

 00111: Typed

Atomic Operation

SIMD4x2

 01000: Untyped

Atomic Float Add

 01001: Untyped

Surface Write

 01010: Media Block

Write

 01011: Atomic

Counter Operation

 01100: Atomic

Counter Operation

SIMD4x2

 01101: Typed

Surface Write

 10000: A64

17:14 Message Type

 0000: OWord Block Read

 0001: Unaligned OWord Block Read

 0010: OWord Dual Block Read

 0011: DWord Scattered Read

 All other encodings are reserved.

17:14 Category=0 (legacy

dataport)

 Message Type

 0000: OWord Block

Read

 0001: Unaligned

OWord Block Read

 0010: OWord Dual

Block Read

 0011: DWord

Scattered Read

 0100: Byte Scattered

Read

 0111: Memory Fence

 1000: OWord Block

Write

 1010: OWord Dual

Block Write

 1011: DWord

Scattered Write

 1100: Byte Scattered

Write

 All other encodings

are reserved.

 Category=1 (scratch)

 [17]: 0=Read; 1=write

 [16]: Type;

3D Media GPGPU

132 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT0

DATA CACHE DATA

PORT1

Bit Description Bit Description Bit Description

 0=Oword, 1=

Dword

 [15]: Invalidate after

read;

 [14]: <Reserved, mbz>

 [13:12]: Block Size

 11: 8 registers

 10: 4 registers

 01: 2 registers

 00: 1 register

 [11:0]: Addr offset

(Hword based)

Scattered Read

 10001: A64 Untyped

Surface Read

 10010: A64 Untyped

Atomic Operation

 10011: A64 Untyped

Atomic Operation

SIMD4x2

 10100: A64 Block

Read

 10101: A64 Block

Write

 11000: A64 Untyped

Atomic Float Add

 11001: A64 Untyped

Surface Write

 11010: A64

Scattered Write

 All other encodings

are reserved.

13:8 Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface.

 For the data cache data port, two binding table indexes are used to select special surfaces:

254: A binding table index of 254 indicates that the shared local memory (SLM) is to be used.

The SLM is only supported with the Byte Scattered Read/Write, Untyped Surface

Read/Write, and Untyped Atomic Operation messages. Refer to the Shared Local Memory

section earlier in this chapter for further details on its behavior.

255: A binding table index of 255 indicates that a stateless model is to be used. Refer to the

Stateless Model section for details.

253: An alias for Stateless [CHV, BSW]

 Format = U8

 Range = [0,255]

[CHV, BSW] SFID_DP_DC1 is an extension of SFID_DP_DC0 to allow for more message types. They act

as a single logical entity

 The stateless aliases provide a means of SW controlling the coherency properties of an access. The

property is ensured for that access only. Typically, SW will use the same coherency type for all access to

the same address. Proper fencing is required to ensure that reads and writes are visible. L3UC forces the

addressed cache lines out of L3 and the cycles are directly conducted to LLC. This provides a capability

for ensuring coherency on a particular location without having to fence all the other cycles.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 133

Binding table

index Coherency Explanation

255 IA Coherent Coherent within Gen and coherent within the entire IA cache memory

hierarchy.

253 Non-

Coherent

Coherent within Gen, same cache type.

Programming Note

Context: Message Descriptor

The constant, sampler and render cache are always non-coherent.

Message Header

This header applies to the following data port messages:

Data Port Message

OWord Block Read/Write

Unaligned OWord Block Read

OWord Dual Block Read/Write

DWord Scattered Read/Write

Byte Scattered Read/Write

Scratch Block Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord Bits Description

M0.5 31:10
Immediate Buffer Base Address. Specifies the surface base address for messages in which the

Binding Table Index is 255 (stateless model), else this field is ignored. This pointer is relative to the

General State Base Address.

Format = GeneralStateOffset[31:10]

9:8 Ignored

7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:4 Ignored

3:0
Per Thread Scratch Space Specifies the amount of scratch space allowed to be used by this

thread for messages in which the Binding Table Index is 255 (stateless model), else this field is

ignored.

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not altered by

the kernel) to the Data Port in any scratch space access messages. The data port uses this to

3D Media GPGPU

134 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

bounds check scratch space messages. Writes out of bounds are ignored. Reads out of bounds

return 0.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two.

M0.2 31:0
Global Offset.

Specifies the global element offset into the buffer.

For the Unaligned OWord messages, this offset is in units of Bytes but must be DWord-aligned

(bits 1:0 MBZ).

For the other OWord messages, this offset is in units of OWords.

For the DWord messages, this offset is in units of DWords.

For the Byte messages, this offset is in units of Bytes.

Format = U32

Range = [0,FFFFFFFCh] for Unaliged OWord messages.

Range = [0,0FFFFFFFh] for other OWord messages.

Range = [0,3FFFFFFFh] for DWord messages.

Range = [0,FFFFFFFFh] for Byte messages.

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message

bit in the message descriptor is set. The destination register is not modified. Write messages without

the Send Write Commit Message bit set will not return anything to the thread (response length is 0

and destination register is null).

DWord Bit Description

W0.7:0 Reserved

OWord Block ReadWrite

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords

starting at that offset.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 135

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be OWord-aligned.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write

mode when using this message with the render cache in the stateless model.

Applications:

 Constant buffer reads of a single constant or multiple contiguous constants.

 Scratch space reads/writes where the index for each pixel/vertex is the same.

 Block constant reads, scratch memory reads/writes for media.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and

third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The

high 8 bits are used similarly for the second and fourth registers (W1, W3 or M2, M4). For reads, any

mask bit set within a group of four causes the entire OWord to be read and returned to the destination

GRF register. For writes, each mask bit is considered for its corresponding DWord written to the

destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or

the high 4 bits, depending on the position of the OWord to be read or written, are used as the single

group of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two

channels (red and green) of a single scratch register across 16 pixels. A second message would access

the other two channels (blue and alpha). The execution mask is used to ensure that data associated with

inactive pixels are not overwritten.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and do not modify memory.

3D Media GPGPU

136 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Descriptor

Bits Description

13 Reserved: MBZ

12 Ignored

11 Ignored

10:8
Block Size. Specifies the number of contiguous OWords to be read or written

000: 1 OWord, read into or written from the low 128 bits of the destination register.

001: 1 OWord, read into or written from the high 128 bits of the destination register.

010: 2 OWords

011: 4 OWords

100: 8 OWords

All other encodings are reserved.

Programming Note

Context: Message Descriptor

The 6 OWord block size is valid only with Data Port Constant Cache.

Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the

header) depending on the Block Size specified in the message. For the one-constant case, data is taken

from either the high or low half of the payload register depending on the half selected in Block Size. In

this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is

also in units of OWords.

DWord Bits Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1, OWord to be written from the high 128 bits of the

destination, OWord[Offset] will appear in this location.

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 137

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending

on the Block Size specified in the message. For the one-constant case, data is placed in either the high

or low half of the returned register depending on the half selected in Block Size. In this case, the other

half of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is

also in units of OWords.

DWord Bits Description

W0.7:4 127:0 OWord[Offset + 1]. If the block size is 1, OWord to be loaded into the high 128 bits of the

destination, OWord[Offset] will appear in this location.

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

Unaligned OWord Block Read

This message takes one DWord aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous

OWords starting at that offset. This message is identical to the OWord Block Read message except for

the offset alignment. For read/write cache, only the read path supports this unaligned OWord Block

access.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be OWord-aligned.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write

mode when using this message with the render cache in the stateless model.

Applications: Reads with an offset that is not aligned with data size, such as row store usage in media.

Execution Mask. The execution mask is ignored by this message.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0.

3D Media GPGPU

138 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Descriptor

Bits Description

13 Ignored

12:11 Ignored

10:8
Block Size. Specifies the number of contiguous OWords to be read.

000: 1 OWord, read into the low 128 bits of the destination register.

001: 1 OWord, read into the high 128 bits of the destination register.

010: 2 OWords.

011: 4 OWords.

100: 8 OWords.

All other encodings are reserved.

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the

Block Size specified in the message. For the one-constant case, data is placed in either the high or low

half of the returned register depending on the half selected in Block Size. In this case, the other half of

the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in

units of OWord starts at Global Offset.

DWord Bit Description

W0.7:4 127:0 OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits of

the destination, OWord0 will appear in this location

W0.3:0 127:0 OWord0 = Buffer[Global Offset]

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5= *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 139

OWord Dual Block ReadWrite

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset.

The Global Offset is added to each of the specific offsets.

The message header is no longer required for the OWord Dual Block Read/Write messages if sent to the data

cache data port. If header is not sent, the Global Offset field is assumed to be zero. The header is required,

however, if the binding table index is 255 (stateless model), as the Immediate Buffer Base Address field is

required.

3D Media GPGPU

140 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming Restriction: Writes to overlapping addresses have undefined write ordering.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be OWord-aligned.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write

mode when using this message with the render cache in the stateless model.

Applications:

 SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are

two indices and they are the same, hardware will optimize the cache accesses and do only one

cache access).

 SIMD4x2 scratch space reads/writes where the indices are different.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF

registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a

group of four will cause the entire OWord to be read and returned to the destination GRF register. For

writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and do not modify memory contents.

Message Descriptor

Bits Description

13 Reserved: MBZ

12:10 Ignored

9:8
Block Size. Specifies the number of OWords in each block to be read or written:

00: 1 OWord

10: 4 OWords

All other encodings are reserved.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 141

Message Payload

DWord Bits Description

M1.7 31:0 Ignored

M1.6 31:0 Ignored

M1.5 31:0 Ignored

M1.4 31:0
Block Offset 1. Specifies the OWord offset of OWord Block 1 into the surface.

Format = U32

Range = [0,0FFFFFFFh]

M1.3 31:0 Ignored

M1.2 31:0 Ignored

M1.1 31:0 Ignored

M1.0 31:0 Block Offset 0

Additional Message Payload (Write)

For the write operation, the message payload consists of one or four registers (not including the header

or the first part of the payload) depending on the Block Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0

and is in units of OWords. The OWord array index is also in units of OWords.

DWord Bit Description

M2.7:4 127:0 OWord[Offset1]

M2.3:0 127:0 OWord[Offset0]

M3.7:4 127:0 OWord[Offset1+1]

M3.3:0 127:0 OWord[Offset0+1]

M4.7:4 127:0 OWord[Offset1+2]

M4.3:0 127:0 OWord[Offset0+2]

M4.7:4 127:0 OWord[Offset1+3]

M4.3:0 127:0 OWord[Offset0+3]

3D Media GPGPU

142 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the Block

Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0

and is in units of OWords. The OWord array index is also in units of OWords.

DWord Bits Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

Media Block ReadWrite

The read form of this message enables a rectangular block of data samples to be read from the source

surface and written into the GRF. The write form enables data from the GRF to be written to a

rectangular block.

Restrictions

Restriction

The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the stateless

surface model is not supported with this message.

Accesses are allowed to SURFTYPE_NULL, reads return 0 and writes are ignored.

The surface format is used to determine the pixel structure for boundary clamp; the raw data from the surface is

returned to the thread without any format conversion nor filtering operation.

The target cache cannot be the data cache.

The surface base address must be 32-byte aligned.

When a surface is XMajor tiled, (tilewalk field in the surface state is set to TILEWALK_XMAJOR), a memory area

mapped through the Render Cache cannot be read and/or written in mixed frame and field modes. For example, if

a memory location is first written with a zero Vertical Line Stride (frame mode), and later on (without render cache

flush) read back using Vertical Line Stride of one (field mode), the read data stored in the GRF are uncertain.

The block width and offset should be aligned to the size of pixels stored in the surface. For a surface with 8bpp

pixels for example, the block width and offset can be byte-aligned. For a surface with 16bpp pixels, it is word-

aligned.

For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. DWord-aligned).

The write form of this message has the additional restriction that both X Offset and Block Width must be

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 143

Restriction

DWord-aligned.

Pitch must be a multiple of 64 bytes when the surface is linear.

Media block writes to linear or tileX surfaces must have a height of 16 or less.

Applications: Block reads/writes for media.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The

data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the

nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface

are dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be

found in the Surface Formats Section of the Sampling Engine Chapter.

For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary DWord

B0B1B2B3, to replicate the left boundary byte pixel, the out of bound DWords have the format

B0B0B0B0, and the format for the right boundary is B3B3B3B3.

This rule applies to all surface formats with BPE of 8. As the data port does not perform format

conversion, the most likely used surface formats are R8_UINT and R8_SINT.

For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a

boundary dword B0B1B2B3, to replicate the left boundary word pixel, the out of bound DWords have

the format B0B1B0B1, and the format for the right boundary is B2B3B2B3.

This rule applies to all surface formats with BPE of 16. As the data port does not perform format

conversion, only the formats with integer data types may be useful in practice.

For a boundary DWord Y0U0Y1V0, to replicate the left boundary, we get Y0U0Y0V0, and to replicate

the right boundary, we get Y1U0Y1V0.

For a boundary DWord U0Y0V0Y1, to replicate the left boundary, we get U0Y0V0Y0, and to replicate

the right boundary, we get U0Y1V0Y1.

For a surface with 32bpp pixels, the boundary DWord pixel is replicated.

This rule applies to all surface formats with BPE of 32. As the data port does not perform format

conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

NV12 surface state: The width of the surface should be always multiples of 4 pixels. For 16bpp input

message (422 8-bit) the width will always need to be in multiples of 8 bytes and for 32bpp input

message (422 16-bit or 444 8-bit) the width should be in multiples of 16 bytes. Height should be in

multiples of 2 pixels high. (Presently the MFX restriction is that width should be in multiples of 2 pixels.)

The y-offset of the media block write from the EU should always be even.

The x-offset of the media block write from the EU should be in multiples of 4 pixels.

3D Media GPGPU

144 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The media block DWord write can have only the following combinations (when NV12 output format is

used):

 8 pixels wide for 422 8-bit mode

 4 pixels wide for 422 8-bit mode

 4 pixels wide for 422 16-bit

 4 pixels wide for 444 8-bit

 444 16-bit input format cannot be supported when the output format is NV12 (SW should not

use this combination).

 It has to be in multiples of 2 pixels high for all above modes.

If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped

and in case of 422-format the top UV values are used and the bottom UV valuesare dropped if the

output format is NV12 format.

Message Descriptor

Bit Description

13 Reserved: MBZ

12 Reserved: MBZ

11 Reserved: MBZ

10
Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface state should

be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine chapter) is

modified according the following rules:

Vertical Line

Stride

 (in surface state)

Override Vertical Line

Stride

Derived 1-based Surface Height

 (As a function of the 0-based Height in Surface

State)

0 0
Height + 1

(Normal)

0 1
(Height +1) / 2

Restriction: (Height + 1) must be an even number.

1 0 (Height + 1) * 2

1 1
Height + 1

(Normal)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 145

Bit Description

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface state is 0, i.e. a

frame, Height (of the frame) should be 479. When accessing the bottom field of this frame video buffer, if

both Override Vertical Line Stride and Override Vertical Line Stride Offset are set to 1, then the derived surface

height (of the field) is 240 ((Height + 1) / 2). In contrast, if Vertical Line Stride in surface state is 1 and Vertical

Line Stride Offset in surface state is 0, the surface state represents the top field of the video buffer. In this

case, Height (of the top field) should be programmed as 239. Accessing the bottom video field uses the same

surface height of 240. Accessing the video frame (with Override Vertical Line Stride and Override Vertical Line

Stride Offset of 0) results in a derived surface height of 480 ((Height + 1) * 2).

0: Use parameters in the surface state and ignore bits 9:8.

1: Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset.

9
Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of interleaved

(field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines.

8
Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override VerticalLine

Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1).

3D Media GPGPU

146 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Header

DWord Bits Description

M0.5 31:8 Ignored

7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0
Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to be written.

This field is ignored by the read message, all pixels are always returned. This field is used only if

the Message Mode field is set to PIXEL_MASK. The bits in this mask correspond to the pixels

(DWords) as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

Byte Mask One bit per byte indicating which bytes are to be written. This field is ignored by the

read message; all bytes are always returned. This field is used only if the Message Mode is

BYTE_MASK. The Byte Mask is a horizontal mask applied to each row of output.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

M0.2 31:30
Message Mode. This field selects the mode of this message as follows:

00: NORMAL. The Block Height and Block Width fields are set in M0.2. The Pixel Mask is not

explicitly set but behaves as if it is set to all ones.

01: PIXEL_MASK: The Pixel Mask field is set in M0.3. The Block Height and Block Width are not

explicitly set but behave as if they are set to 4 rows and 32 bytes, respectively.

10: BYTE_MASK: The Block Height and Block Width fields are set in M0.2. The Byte Mask in M0.3

is used to qualify which bytes are written.

11: Reserved.

For the Sampler Cache Data Port, this field is also ignored, behaving as if always set to NORMAL.

29 Ignored

28:24
Sub-Register Offset. This field provides the sub-register offset in unit of byte of a media block

read message. This field is ignored (reserved) for a media block write message.

Programming Notes:

Sub-Register Offset must be aligned to BasePitch (therefore will be a multiple of DWords as

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 147

DWord Bits Description

well).

When Register Pitch Control = 0, Sub-Register Offset must align to BasePitch*Block Height

and the output fits in a single GRF register.

In general (and specifically when Sub-Register Offset is greater than 0), when the resulting data

cross a GRF register boundary, the data must be placed symmetrically between GRF registers.

Sub-Register Offset and Register Pitch Control allow software to assemble multiple media

block reads directly into a shared GRF register set. For example, if both are set to zero, the read

data are written to GRF registers, aligning to the least significant bits of the first register, and the

register pitch is equal to the next power-of-2 that is greater than or equal to the Block Width. If

Register Pitch Control is non-zero, multiple media block read messages sharing the same

Register Pitch Control but with different Sub-Register Offset can fill in the same set of GRF

registers with media block data line interleaved.

This field must be zero for Render Cache Data Port.

Format = U5

Range = [0, 28] (Only a multiple of BasePitch, including 0, is valid.)

21:16
Block Height. Height in rows of block being accessed.

Programming Note: The Block Height is restricted to the following maximum values depending

on the Block Width:

Block Width (bytes) Maximum Block Height (rows)

1-4 64

5-8 32

9-16 16

17-32 8

33-64 4

Programming Note: Block width > 32 bytes is allowed only for media block write messages and

only for linear and Tile X surfaces.

Format = U6

Range = [0,63] representing 1 to 64 rows

15:10 Ignored

9:8
Register Pitch Control. This field controls the register pitch for a media block read message.

Register Pitch Control is only allowed to be non-zero if Block Width is a multiple of DWords.

The effective register pitch must be less than or equal to 32 bytes (to fit in a single GRF register).

Defining BasePitch as the next power-of-2 that is greater than or equal to the Block Width,

Register Pitch Control set the register pitch in terms of BasePitch as the following.

3D Media GPGPU

148 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Range = [0,3] representing 1 to 4 BasePitch

Programming Notes:

This field must be zero for Render Cache Data Port.

This field is reserved (must be zero)) for a media block write message.

Programming Restriction: This field must be zero.

7:6 Ignored

5:0
Block Width. Width in bytes of the block being accessed.

Programming Note: Must be DWord-aligned for the write form of the message.

Format = U6

Range = [0,63] representing 1 to 64 bytes

M0.1 31:0
Y offset. The Y offset of the upper left corner of the block into the surface.

Format = S31

Programming Note: If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4.

M0.0 31:0
X offset. The X offset of the upper left corner of the block into the surface.

Must be DWord-aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from the offset in

the surface if Color Processing is enabled due to format conversion.

Format = S31

Programming Note: If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 149

The legal combinations of block width, pitch control, sub-register offset, and block height are given

below:

Block Height for given block width, pitch control, subreg offsets

block width pitch control

sub-register offsets

0 1 2 3 4 5 6 7

1-4 00 1-64 1 1 1 1 1 1 1

01 1-64 1-64 illegal illegal 1-2 1-2 illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-64 1-64 1-64 1-64 illegal illegal illegal illegal

5-8 00 1-32 illegal 1 illegal 1 illegal 1 illegal

01 1-32 illegal 1-32 illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-32 illegal 1-32 illegal 1-32 illegal 1-32 illegal

9-16 00 1-16 illegal illegal illegal 1 illegal illegal illegal

01 1-16 illegal illegal illegal 1-16 illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-16 illegal illegal illegal 1-16 illegal illegal illegal

17-32 00 1-8 illegal illegal illegal illegal illegal illegal illegal

01 1-8 illegal illegal illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-8 illegal illegal illegal illegal illegal illegal illegal

Message Payload (Write)

DWord Bit Description

M1:n Write Data. The format of the write data depends on the Block Height and Block Width. The data

is aligned to the least significant bits of the first register, and the register pitch is equal to the next

power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message

Format field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position

includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0

YUV 4:2:2, 8 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 8 bits per channel alpha (A) luminance (Y) Cb (U) Cr (V)

 63:48 47:32 31:16 15:0

YUV 4:2:2, 16 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 16 bits per channel alpha (A) Cr (V) luminance (Y) Cb (U)

3D Media GPGPU

150 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message (Read)

DWord Bits Description

W0:n 31:0 Read Data. The format of the read data depends on the Block Height, Block Width, Register

Pitch Control, and Sub-Register Offset. The data is aligned to the Sub-Register Offset of the first

register, and the register pitch is set to one or more BasePatch.

DWord Scattered ReadWrite

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset.

The Global Offset is added to each of the specific offsets.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be DWord-aligned.

Writes to overlapping addresses have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped to the nearest

edge of the surface. For write messages with X/Y offsets that are outside the bounds of the surface, the behavior is

undefined.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write

mode when using this message with the render cache in the stateless model.

Hardware does check for and optimize for cases where offsets are equal or contiguous, however for optimal

performance in some of these cases a different message may provide higher performance.

The message header is no longer required for the OWord DWord Scattered Read/Write messages if sent to the data

cache data port. If header is not sent, the Global Offset field is assumed to be zero. The header is required, however,

if the binding table index is 255 (stateless model), as the Immediate Buffer Base Address field is required.

Applications:

 SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel

per message)

 SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per

message)

 General purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask

are used to determine which DWords are read into the destination GRF register (for read), or which

DWords are written to the surface (for write).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 151

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

Message Descriptor

Bits Description

13 Reserved: MBZ

12 Ignored

11:10 Ignored

9:8
Block Size. Specifies the number of DWords read or written:

10: 8 DWords

11: 16 DWords

All other encodings are reserved.

Message Payload

DWord Bits Description

M1.7 31:0
Offset 7. Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0 Offset 15. This message register is included only if the block size is 16 DWords.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

3D Media GPGPU

152 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units

of DWords. The DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7]

M3.6 31:0 DWord[Offset6]

M3.5 31:0 DWord[Offset5]

M3.4 31:0 DWord[Offset4]

M3.3 31:0 DWord[Offset3]

M3.2 31:0 DWord[Offset2]

M3.1 31:0 DWord[Offset1]

M3.0 31:0 DWord[Offset0]

M4.7 31:0 DWord[Offset15]. This message register is included only if the block size is 16 DWords

M4.6 31:0 DWord[Offset14]

M4.5 31:0 DWord[Offset13]

M4.4 31:0 DWord[Offset12]

M4.3 31:0 DWord[Offset11]

M4.2 31:0 DWord[Offset10]

M4.1 31:0 DWord[Offset9]

M4.0 31:0 DWord[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the

block size.

 The DWord array index is also in units of DWords.

DWord Bits Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 153

DWord Bits Description

W1.7 31:0 DWord[Offset15]. This writeback message register is included only if the block size is 16 DWords.

W1.6 31:0 DWord[Offset14]

W1.5 31:0 DWord[Offset13]

W1.4 31:0 DWord[Offset12]

W1.3 31:0 DWord[Offset11]

W1.2 31:0 DWord[Offset10]

W1.1 31:0 DWord[Offset9]

W1.0 31:0 DWord[Offset8]

Message Descriptor

Bit Description

12
Two-Source Message. When this bit is set, there are two data-phases for two sources. Two-source message

is used only for opcode "0111" and for all other opcodes this bit must be 0.

When this bit is 0, M3 is not sent to the data-port.

11:8
Atomic Operation Code: (Please refer to the table below)

Unsupported opcodes:

1101, 1110, 1111

Opcode Operation Return Value

0000 ADD: new = old + src0 Old value

0001 SUB: new = old – src0 Old value

0010 INC : new = old+1 Old value

0011 DEC: new = old-1 Old value

0100 MIN: new = min(old, src0) Old value

0101 MAX: new = max(old, src0) Old value

0110 XCHG: new = src0 Old value

0111 CMPXCHG : new = (old==src1) ? src0 : old Old value

1000 AND: new = old & src0 Old value

1001 OR: new = old | src0 Old value

1010 XOR: new = old ^ src0 Old value

1011 MIN_SINT: new = min(old, src0) Old value(signed)

1100 MAX_SINT: new = max(old, src0) Old value(signed)

1101-1111 Old value

3D Media GPGPU

154 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Payload

DWord Bit Description

M1.7 31:0
Offset 7.

Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 155

Source Payload

Either one or two additional registers (depending on Two-Source Message) of source payload contain

the data to be used as source.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units

of DWords. The DWord array index is also in units of DWords.

DWord Bit Description

M2.7 31:0 DWord[Offset7] Src0

M2.6 31:0 DWord[Offset6] Src0

M2.5 31:0 DWord[Offset5] Src0

M2.4 31:0 DWord[Offset4] Src0

M2.3 31:0 DWord[Offset3] Src0

M2.2 31:0 DWord[Offset2] Src0

M2.1 31:0 DWord[Offset1] Src0

M2.0 31:0 DWord[Offset0] Src0

M3.7 31:0 DWord[Offset7] Src1

M3.6 31:0 DWord[Offset6] Src1

M3.5 31:0 DWord[Offset5] Src1

M3.4 31:0 DWord[Offset4] Src1

M3.3 31:0 DWord[Offset3] Src1

M3.2 31:0 DWord[Offset2] Src1

M3.1 31:0 DWord[Offset1] Src1

M3.0 31:0 DWord[Offset0] Src1

Writeback Message

For the read operation, the writeback message consists of either one or two registers depending on the

block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units

of DWords. The DWord array index is also in units of DWords.

DWord Bit Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

3D Media GPGPU

156 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W0.0 31:0 DWord[Offset0]

Byte Scattered ReadWrite

These messages are supported on CHV, BSW only.

These messages take a set of offsets, and read or write 8 or 16 scattered and possibly misaligned bytes,

words, or DWords starting at each offset. The Global Offset from the message header is added to each

of the specific offsets.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be DWord-aligned.

Writes to overlapping addresses have undefined write ordering.

The surface is treated as a 1-dimensional surface. The element size (pitch) times the number of elements is used to

determine the size of the buffer for out-of-bounds checking if using the surface state model. Out of bounds

checking is done at DWord granularity; if any part of the DWord is out-of-bounds then the whole DWord is

considered out-of-bounds.

The stateless model is supported. Bounds checking for a stateless message is 4GB overflow and < General State

upper bound.

Applications: Byte aligned buffer accesses in GPGPU programs.

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask

are used to determine which slots are read into the destination GRF register (for read), or which slots

are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 157

Message Descriptor

Bit Description

13:12 Ignored

11:10
Data Size. Specifies the data size for each slot.

0: 1 byte

1: 2 bytes

2: 4 bytes

3: Reserved

9 Ignored

8
SIMD Mode. Specifies the SIMD mode of the message (number of slots processed).

0: SIMD8

1: SIMD16

3D Media GPGPU

158 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Payload

DWord Bits Description

M1.7 31:0
Offset 7.

Specifies the byte offset of DWord 7 into the surface.

Format = U32

Range = [0,FFFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0 Offset 15. This message register is included only if the SIMD Mode is SIMD16.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units

of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit

field. The upper bits are ignored for 1 byte and 2 byte Data Size.

DWord Bit Description

M3.7 31:0 Data[Offset7]

M3.6 31:0 Data[Offset6]

M3.5 31:0 Data[Offset5]

M3.4 31:0 Data[Offset4]

M3.3 31:0 Data[Offset3]

M3.2 31:0 Data[Offset2]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 159

DWord Bit Description

M3.1 31:0 Data[Offset1]

M3.0 31:0 Data[Offset0]

M4.7 31:0 Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

M4.6 31:0 Data[Offset14]

M4.5 31:0 Data[Offset13]

M4.4 31:0 Data[Offset12]

M4.3 31:0 Data[Offset11]

M4.2 31:0 Data[Offset10]

M4.1 31:0 Data[Offset9]

M4.0 31:0 Data[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the

block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units

of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit

field and only the requeted bytes are written to the GRF.

DWord Bit Description

W0.7 31:0 Data[Offset7]

W0.6 31:0 Data[Offset6]

W0.5 31:0 Data[Offset5]

W0.4 31:0 Data[Offset4]

W0.3 31:0 Data[Offset3]

W0.2 31:0 Data[Offset2]

W0.1 31:0 Data[Offset1]

W0.0 31:0 Data[Offset0]

W1.7 31:0 Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

W1.6 31:0 Data[Offset14]

W1.5 31:0 Data[Offset13]

W1.4 31:0 Data[Offset12]

W1.3 31:0 Data[Offset11]

W1.2 31:0 Data[Offset10]

W1.1 31:0 Data[Offset9]

W1.0 31:0 Data[Offset8]

3D Media GPGPU

160 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

Six data port messages (Typed Surface Read, Typed Surface Write, Typed Atomic Operation, Untyped

Surface Read, Untyped Surface Write, and Untyped Atomic Operation) allow direct read/write accesses

to surfaces. These messages support three major categories of surfaces:

Typed surfaces. These surfaces are of type SURFTYPE_1D, 2D, 3D, or BUFFER and have a supported

surface format other than RAW.

A typed surface uses U, V, R, and LOD address parameters (the number of parameters used depends on

the surface type), and performs conversion of type to/from the selected surface format as follows:

 Surface formats with UINT require the message data in U32 format.

 Surface formats with SINT require the message data in S32 format.

 All other surface formats require the message data in FLOAT32 format.

The untyped surface categories, both of which use the RAW surface format, perform no type

conversion. A raw buffer uses just the U address parameter, which specifies the byte offset into the

surface, which must be a multiple of 4. A structured buffer uses the U address parameter as an array

index and the V address parameter as a byte offset into the array element (which also must be a

multiple of 4).

For both raw and structured buffers, up to 4 DWords are accessed beginning at the byte address

determined. These 4 dwords correspond to the red, green, blue, and alpha channels in that order with

red mapping to the lowest order DWord. The atomic operation messages only access the first DWord

(corresponding to the red channel for typed messages).

The atomic operation messages cause atomic read-modify-write operations on the “destination”

location addressed. In the table below, the new value of the destination (new_dst) is computed as

indicated based on the old value of the destination (old_dst) and up to two sources included in the

message (src0 and src1). Optionally, a value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that

no read or write to the same memory location from this thread or any other thread can occur between

the read and the write.

The following atomic operations are available, along with the specific operation performed for each and

the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst

AOP_OR old_dst | src0 old_dst

AOP_XOR old_dst ^ src0 old_dst

AOP_MOV src0 old_dst

AOP_INC old_dst + 1 old_dst

AOP_DEC old_dst – 1 old_dst

AOP_ADD old_dst + src0 old_dst

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 161

Atomic Operation new_dst ret

AOP_SUB old_dst – src0 old_dst

AOP_REVSUB src0 – old_dst old_dst

AOP_IMAX imax(old_dst, src0) old_dst

AOP_IMIN imin(old_dst, src0) old_dst

AOP_UMAX umax(old_dst, src0) old_dst

AOP_UMIN umin(old_dst, src0) old_dst

AOP_CMPWR (src0 == old_dst) ? src1 : old_dst old_dst

AOP_PREDEC old_dst – 1 new_dst

AOP_CMPWR8B (src08B == old_dst8B) ? src18B : old_dst8B old_dst8B

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

src08B is 8 bytes, src18B is 8 bytes, and old_dst8B is 8 bytes in length.

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

AOP_CMPWR8B is not supported for SLM.

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

AOP_CMPWR8B addresses must be QWord-aligned.

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

imax/imin assume operands are signed integers, umax/umin assume operands are unsigned integers. All other

operations treat all values as 32-bit unsigned integers. Add and subtract operations wrap without any special

indication.

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

For untyped messages, the Tile Mode must be LINEAR.

For untyped messages, the Surface Format must be RAW and the Surface Type must be SURFTYPE_BUFFER or

SURFTYPE_STRBUF.

For typed messages, the Surface Type must be SURFTYPE_1D, 2D, 3D, or BUFFER.

3D Media GPGPU

162 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Surface Format for Typed Surface Reads

Surface Format Name

R16G16B16A16_UINT

R8G8B8A8_UINT

R16G16_UINT

R32_SINT

R32_UINT

R32_FLOAT

R8G8_UINT

R16_UINT

R8_UINT

Surface Format for Typed Surface Writes

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R16G16B16A16_UNORM

R16G16B16A16_SNORM

R16G16B16A16_SINT

R16G16B16A16_UINT

R16G16B16A16_FLOAT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

B8G8R8A8_UNORM

R10G10B10A2_UNORM

R10G10B10A2_UINT

R8G8B8A8_UNORM

R8G8B8A8_SNORM

R8G8B8A8_SINT

R8G8B8A8_UINT

R16G16_UNORM

R16G16_SNORM

R16G16_SINT

R16G16_UINT

R16G16_FLOAT

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 163

Surface Format Name

B10G10R10A2_UNORM

R11G11B10_FLOAT

R32_SINT

R32_UINT

R32_FLOAT

B5G6R5_UNORM

B5G5R5A1_UNORM

B4G4R4A4_UNORM

R8G8_UNORM

R8G8_SNORM

R8G8_SINT

R8G8_UINT

R16_UNORM

R16_SNORM

R16_SINT

R16_UINT

R16_FLOAT

B5G5R5X1_UNORM

R8_UNORM

R8_SNORM

R8_SINT

R8_UINT

A8_UNORM

General Restrictions

For typed surface writes where the Surface Format has components that are not byte-aligned, each

shader channel select in the surface state must be set to a unique surface channel (SCS_RED,

SCS_GREEN, SCS_BLUE, SCS_ALPHA) and the value of (SCS_ZERO, SCS_ONE) cannot be selected. Also all

channels must be enabled for writing.

The Surface Format for typed atomic operations must be R32_UINT or R32_SINT.

For atomic operations, each shader channel select in the surface state must be set to the same surface

channel (R = SCS_RED, G = SCS_GREEN, B = SCS_BLUE, A = SCS_ALPHA).

For untyped messages accessing SURFTYPE_STRBUF, the V address (byte offset) must be DWord-

aligned (low 2 bits must be zero).

For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord-

aligned (low 2 bits must be zero).

Typed messages only support SIMD8.

3D Media GPGPU

164 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Project-Specific Restrictions

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

The stateless model support is limited to untyped messages. Furthermore, they are treated as SURFTYPE_BUFFER

and Surface Format of RAW. The bounds checking for the stateless message is 4GB overflow and < General State

upper bound.

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

Tile W surfaces must be of format R8_UINT and only support SIMD8. Furthermore, only the RED channel can be

enabled.

Execution Mask

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from

the message header and the resulting mask is used to determine which slots are read into the

destination GRF register (for read), or which slots are written to the surface (for write). If the header is

not present, only the execution mask is used.

SIMD8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from

the message header. For the typed messages, the Slot Group in the message descriptor selects either

the low or high 8 bits. For the untyped messages, the low 8 bits are always selected. The resulting mask

is used to determine which slots are read into the destination GRF register (for read), or which slots are

written to the surface (for write). If the header is not present, only the low 8 bits of the execution mask

are used.

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create

two bits that are used to determine which slots are read into the destination GRF register.

Out–of–Bounds Accesses: Reads to areas outside of the surface return 0, except for the Typed Surface

Read message that returns 1 in the alpha channel and 0 in the other channels. Writes to areas outside of

the surface are dropped and will not modify memory contents.

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

Writes to overlapping addresses have undefined write ordering.

SIMD Mode, Surface Category, and Message Type Combinations Supported

SIMD Mode Surface Category Message Type

SIMD16 Untyped Read

SIMD16 Untyped Write

SIMD16 Untyped Atomic

SIMD8 Untyped Read

SIMD8 Untyped Write

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 165

SIMD Mode Surface Category Message Type

SIMD8 Untyped Atomic

SIMD8 Typed Read

SIMD8 Typed Write

SIMD8 Typed Atomic

SIMD4x2 Untyped Read

SIMD4x2 Untyped Write

SIMD4x2 Untyped Atomic

SIMD4x2 Typed Read

SIMD4x2 Typed Write

SIMD4x2 Typed Atomic

The following table indicates the hardware interpretation of each input parameter based on surface

type. Parameters with blank entries are ignored by hardware if delivered.

Surface Type

“Surface Array” Field

 in SURFACE_STATE U Address V Address R Address LOD

SURFTYPE_1D disabled X pixel address LOD

 enabled X pixel address array index LOD

SURFTYPE_2D disabled X pixel address Y pixel address LOD

 enabled X pixel address Y pixel address array index LOD

SURFTYPE_3D disabled X pixel address Y pixel address Z pixel address LOD

SURFTYPE_BUFFER disabled buffer index

SURFTYPE_STRBUF disabled buffer index byte offset

3D Media GPGPU

166 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Typed Surface ReadWrite Message Descriptor

Bit Description

13
Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution

mask to determine which slots are accessed. This field is ignored if the header is not present.

Format = U1

0: Use low 8 slots

1: Use high 8 slots

12 Ignored

11
Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write message,

indicates that alpha is included in the message payload, and that alpha will be written to the surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 167

Typed Surface Read/Write Message Descriptor

Bit Description

13:12
Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution

mask to determine which slots are accessed. This field is ignored if the header is not present.

Format = U2

00: SIMD4x2

01: Use low 8 slots

10: Use high 8 slots

11: Reserved

11
Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write

message, indicates that alpha is included in the message payload, and that alpha will be written to the

surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

3D Media GPGPU

168 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Untyped Surface ReadWrite Message Descriptor

Bits Description

13:12
SIMD Mode

Format = U2

0: SIMD4x2 (valid for reads & writes)

1: SIMD16

2: SIMD8

3: Reserved

11
Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write

message, indicates that alpha is included in the message payload, and that alpha will be written to the

surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower mask bits

are also zero. This means that the only 4-bit channel mask values allowed are 0000b, 1000b, 1100b, and

1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the 4-bit channel

mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 169

Typed Atomic Operation Message Descriptor

Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

 Format = Enable

12 Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution

mask to determine which slots are accessed.

Format = U1

0: Use low 8 slots

 1: Use high 8 slots

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

 1111: AOP_PREDEC

3D Media GPGPU

170 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Typed Atomic Operation SIMD4x2 Message Descriptor

Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

 Format = Enable

12 Reserved

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

 1111: AOP_PREDEC

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 171

Untyped Atomic Operation Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12
SIMD Mode

Format = U1

0: SIMD16

1: SIMD8

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: 0000: AOP_CMPWR8B

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

3D Media GPGPU

172 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Untyped Atomic Operation SIMD4x2 Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: AOP_CMPWR8B

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 173

Atomic Counter Operation Message Descriptor

Bits Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12
SIMD Mode

Format: U1

0: Reserved

1: SIMD8 (low 8 slots)

11:8
Atomic Operation Type

Specifies the atomic operation to perform:

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: Reserved

1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append

counter field in the surface state. The write data payloads are the same as untyped atomic. The write

backs are the same as untyped atomic. When accessing a surface with the Append Counter Operation, if

the Append Counter enable field of the surface state is not 1, the access is treated as out of bounds,

with writes ignored and reads returning 0.

3D Media GPGPU

174 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Atomic Counter Operation SIMD4x2 Message Descriptor

Bits Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: Reserved

1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append

counter field in the surface state. The write data payloads are the same as untyped atomic 4x2. The

write backs are the same as untyped atomic 4x2.

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of

the surface state is not 1, the access is treated as out of bounds, with writes ignored and reads returning

0.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 175

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,

where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)

calculations, but the corresponding slot on the surface must not be accessed. Typed messages (which

go to the render cache data port) must include the header.

DWord Bits Description

M0.7 31:16 Ignored

15:0
Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for SIMD16 and

SIMD8 messages. All 16 bits are used for SIMD16 messages. For typed SIMD8 messages, Slot

Group selects which 8 bits of this field are used. For untyped SIMD8 messages, the low 8 bits of

this field are used.

If the header is not delivered, this field defaults to all ones. The field is ignored for SIMD4x2

messages.

M0.6 31:0 Ignored

M0.5 31:0
Immediate Buffer Base Address. Specifies the surface base address for messages in which the

Binding Table Index is 255 (stateless model), else this field is ignored. This pointer is relative to the

General State Base Address.

Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Message Payload

The message payload consists of the following:

 For the read messages, only an address payload is delivered.

 For the write messages, an address payload is followed by the write data payload.

 For the atomic operation messages, an address payload is followed by the source payload.

 For SIMD16 and SIMD8 messages, the message length is used to determine how many address

parameters are included in the message. The number of message registers in the write data

payload is determined by the number of channel mask bits that are enabled, and the number of

message registers in the source payload is determined by the atomic operation operation. Thus,

one or neither of these two values (depending on the message type), plus one for the header, can

be subtracted from the message length to determine the number of message registers in the

address payload, from which the number of address parameters can be determined.

3D Media GPGPU

176 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible

address parameters are U and V (since SIMD16 is only supported with untyped messages). The number

of parameters required depends on the surface type being accessed. Each parameter takes two

message registers. Each parameter always takes a consistent position in the input payload. The length

field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is

no way to signal this.

Programming Note

Context: SIMD16 Address Payload

For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent. If V is

sent, it is ignored.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

 Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2.7 31:0 Slot 15 U Address

M2.6 31:0 Slot 14 U Address

M2.5 31:0 Slot 13 U Address

M2.4 31:0 Slot 12 U Address

M2.3 31:0 Slot 11 U Address

M2.2 31:0 Slot 10 U Address

M2.1 31:0 Slot 9 U Address

M2.0 31:0 Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 177

SIMD16 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M5.7 31:0 Slot 7 Source0

Specifies Source0 for slot 7.

 Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0 Slot 6 Source0

M5.5 31:0 Slot 5 Source0

M5.4 31:0 Slot 4 Source0

M5.3 31:0 Slot 3 Source0

M5.2 31:0 Slot 2 Source0

M5.1 31:0 Slot 1 Source0

M5.0 31:0 Slot 0 Source0

M6.7 31:0 Slot 15 Source0

M6.6 31:0 Slot 14 Source0

M6.5 31:0 Slot 13 Source0

M6.4 31:0 Slot 12 Source0

M6.3 31:0 Slot 11 Source0

M6.2 31:0 Slot 10 Source0

M6.1 31:0 Slot 9 Source0

M6.0 31:0 Slot 8 Source0

M7 Slots 7:0 Source1

M8 Slots 15:8 Source1

3D Media GPGPU

178 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD16 Source Payload (AOP_CMPWR8B Only)

DWord Bit Description

M5.7 31:0 Slot 7 Source0[31:0]

Specifies Source0[31:0] for slot 7.

 Format = U32

M5.6 31:0 Slot 6 Source0[31:0]

M5.5 31:0 Slot 5 Source0[31:0]

M5.4 31:0 Slot 4 Source0[31:0]

M5.3 31:0 Slot 3 Source0[31:0]

M5.2 31:0 Slot 2 Source0[31:0]

M5.1 31:0 Slot 1 Source0[31:0]

M5.0 31:0 Slot 0 Source0[31:0]

M6.7 31:0 Slot 15 Source0[31:0]

M6.6 31:0 Slot 14 Source0[31:0]

M6.5 31:0 Slot 13 Source0[31:0]

M6.4 31:0 Slot 12 Source0[31:0]

M6.3 31:0 Slot 11 Source0[31:0]

M6.2 31:0 Slot 10 Source0[31:0]

M6.1 31:0 Slot 9 Source0[31:0]

M6.0 31:0 Slot 8 Source0[31:0]

M7 Slots 7:0 Source0[63:32]

M8 Slots 15:8 Source0[63:32]

M9 Slots 7:0 Source1[31:0]

M10 Slots 15:8 Source1[31:0]

M11 Slots 7:0 Source1[63:32]

M12 Slots 15:8 Source1[63:32]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 179

SIMD16 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included or if some of the channel mask bits are

asserted. Any parameter or write channel not included in the payload is skipped, with message phases

below it being renumbered to take up the vacated space.

DWord Bit Description

M5.7 31:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

 Format = 32 bits raw data.

M5.6 31:0 Slot 6 Red

M5.5 31:0 Slot 5 Red

M5.4 31:0 Slot 4 Red

M5.3 31:0 Slot 3 Red

M5.2 31:0 Slot 2 Red

M5.1 31:0 Slot 1 Red

M5.0 31:0 Slot 0 Red

M6.7 31:0 Slot 15 Red

M6.6 31:0 Slot 14 Red

M6.5 31:0 Slot 13 Red

M6.4 31:0 Slot 12 Red

M6.3 31:0 Slot 11 Red

M6.2 31:0 Slot 10 Red

M6.1 31:0 Slot 9 Red

M6.0 31:0 Slot 8 Red

M7 Slots 7:0 Green

M8 Slots 15:8 Green

M9 Slots 7:0 Blue

M10 Slots 15:8 Blue

M11 Slots 7:0 Alpha

M12 Slots 15:8 Alpha

3D Media GPGPU

180 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address

parameters are U, V, R, and LOD. The number of parameters required depends on the surface type

being accessed. Each parameter takes one message register. Each parameter always takes a consistent

position in the input payload. The length field can be used to send a shorter message, but intermediate

parameters cannot be skipped as there is no way to signal this.

Programming Note

Context: SIMD8 Address Payload.htm

 For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent.

If V is sent it is ignored

 For untyped messages of surface type SURFTYPE_STRBUF, both U and V must be sent.

DWord Bits Description

M1.7 31:0
Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2 Slots 7:0 V Address

M3
Slots 7:0 R Address

Programming Notes:

This register can only be delivered for the Typed message types.

M4
Slots 7:0 LOD

Programming Notes:

This register can only be delivered for the Typed message types.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 181

SIMD8 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M5.7 31:0 Slot 7 Source0

Specifies Source0 for slot 7.

 Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0 Slot 6 Source0

M5.5 31:0 Slot 5 Source0

M5.4 31:0 Slot 4 Source0

M5.3 31:0 Slot 3 Source0

M5.2 31:0 Slot 2 Source0

M5.1 31:0 Slot 1 Source0

M5.0 31:0 Slot 0 Source0

M6 Slots 7:0 Source1

3D Media GPGPU

182 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included or if some of the channel mask bits are

asserted. Any parameter or write channel not included in the payload is skipped, with message phases

below it being renumbered to take up the vacated space.

DWord Bit Description

M5.7 31:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

 Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.

SINT formats use S31, UINT formats use U32, and all other formats use Float.

M5.6 31:0 Slot 6 Red

M5.5 31:0 Slot 5 Red

M5.4 31:0 Slot 4 Red

M5.3 31:0 Slot 3 Red

M5.2 31:0 Slot 2 Red

M5.1 31:0 Slot 1 Red

M5.0 31:0 Slot 0 Red

M6 Slots 7:0 Green

M7 Slots 7:0 Blue

M8 Slots 7:0 Alpha

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 183

SIMD8 Write Data Payload (Tile W Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included.

DWord Bit Description

M5.7 31:8 Ignored

7:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

 For Typed messages: Format = U8

M5.6 31:8 Ignored

7:0 Slot 6 Red

M5.5 31:8 Ignored

7:0 Slot 5 Red

M5.4 31:8 Ignored

7:0 Slot 4 Red

M5.3 31:8 Ignored

7:0 Slot 3 Red

M5.2 31:8 Ignored

7:0 Slot 2 Red

M5.1 31:8 Ignored

7:0 Slot 1 Red

M5.0 31:8 Ignored

7:0 Slot 0 Red

3D Media GPGPU

184 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots.

DWord Bits Description

M1.7 31:0 Slot 1 LOD

Programming Note: This register can only be delivered for the Typed message types.

M1.6 31:0 Slot 1 R Address

Programming Note: This register can only be delivered for the Typed message types.

M1.5 31:0 Slot 1 V Address

 Format = U32

M1.4 31:0 Slot 1 U Address

 Format = U32

M1.3 31:0 Slot 0 LOD

M1.2 31:0 Slot 0 R Address

M1.1 31:0 Slot 0 V Address

M1.0 31:0 Slot 0 U Address

SIMD4x2 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR. All of the remaining

atomic operations require Source0 only.

DWord Bit Description

M2.7 31:0 Ignored

M2.6 31:0 Ignored

M2.5 31:0 Slot 1 Source1

Specifies Source1 for slot 1.

 Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M2.4 31:0 Slot 1 Source0

M2.3 31:0 Ignored

M2.2 31:0 Ignored

M2.1 31:0 Slot 0 Source1

M2.0 31:0 Slot 0 Source0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 185

SIMD4x2 Source Payload (AOP_CMPWR8B Only)

DWord Bit Description

M2.7 31:0 Slot 1 Source1 [63:32]

M2.6 31:0 Slot 1 Source1 [31:0]

M2.5 31:0 Slot 1 Source0 [63:32]

M2.4 31:0 Slot 1 Source0 [31:0]

M2.3 31:0 Slot 0 Source1 [63:32]

M2.2 31:0 Slot 0 Source1 [31:0]

M2.1 31:0 Slot 0 Source0 [63:32]

M2.0 31:0 Slot 0 Source0 [31:0]

SIMD4x2 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages.

DWord Bit Description

M2.7 31:0 Slot 1 Alpha

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

 Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.

SINT formats use S31, UINT formats use U32, and all other formats use Float.

M2.6 31:0 Slot 1 Blue

M2.5 31:0 Slot 1 Green

M2.4 31:0 Slot 1 Red

M2.3 31:0 Slot 0 Alpha

M2.2 31:0 Slot 0 Blue

M2.1 31:0 Slot 0 Green

M2.0 31:0 Slot 0 Red

Writeback Message

This topic is currently under development.

3D Media GPGPU

186 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 DWORD Read

DWord Bit Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

SIMD8 QWORD Read

DWord Bit Description

W0.7

W0.6

63:0 QWord[Offset3]

W0.5

W0.4

63:0 QWord[Offset2]

W0.3

W0.2

63:0 QWord[Offset1]

W0.1

W0.0

63:0 QWord[Offset0]

W1.7

W1.6

63:0 QWord[Offset7]

W1.5

W1.4

63:0 QWord[Offset6]

W1.3

W1.2

63:0 QWord[Offset5]

W1.1

W1.0

63:0 QWord[Offset4]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 187

SIMD16 Read

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the

destination register of the corresponding channel being skipped in the writeback message, and all

channels with higher numbered registers being dropped down to fill in the space occupied by the

masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1,

and alpha to regid+2 and regid+3. The slots written within each destination register is determined by

the execution mask on the “send” instruction.

DWord Bit Description

W0.7 31:0 Slot 7 Red: Specifies the value of the red channel for slot 7.

 Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1.7 31:0 Slot 15 Red

W1.6 31:0 Slot 14 Red

W1.5 31:0 Slot 13 Red

W1.4 31:0 Slot 12 Red

W1.3 31:0 Slot 11 Red

W1.2 31:0 Slot 10 Red

W1.1 31:0 Slot 9 Red

W1.0 31:0 Slot 8 Red

W2 Slots 7:0 Green

W3 Slots 15:8 Green

W4 Slots 7:0 Blue

W5 Slots 15:8 Blue

W6 Slots 7:0 Alpha

W7 Slots 15:8 Alpha

3D Media GPGPU

188 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Read

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the

destination register of the corresponding channel being skipped in the writeback message, and all

channels with higher numbered registers being dropped down to fill in the space occupied by the

masked channel. For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to

regid+1. The slots written within each destination register is determined by the execution mask on the

“send” instruction.

DWord Bit Description

W0.7 31:0 Slot 7 Red: Specifies the value of the red channel for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

 Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.

SINT formats use S31, UINT formats use U32, and all other formats use Float.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1 Slots 7:0 Green

W2 Slots 7:0 Blue

W3 Slots 7:0 Alpha

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 189

SIMD8 Read (Tile W)

The slots written within each destination register is determined by the execution mask on the “send”

instruction.

DWord Bit Description

M5.7 31:8 Reserved (0)

7:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

 For Typed messages: Format = U8

M5.6 31:8 Reserved (0)

7:0 Slot 6 Red

M5.5 31:8 Reserved (0)

7:0 Slot 5 Red

M5.4 31:8 Reserved (0)

7:0 Slot 4 Red

M5.3 31:8 Reserved (0)

7:0 Slot 3 Red

M5.2 31:8 Reserved (0)

7:0 Slot 2 Red

M5.1 31:8 Reserved (0)

7:0 Slot 1 Red

M5.0 31:8 Reserved (0)

7:0 Slot 0 Red

3D Media GPGPU

190 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 Read

A SIMD4x2 writeback message always consists of a single message register containing all four color

channels of each of the two slots. The channel mask bits as well as the execution mask on the “send”

instruction are used to determine which of the channels in the destination register are overwritten. If

any of the four execution mask bits for a slot is asserted, that slot is considered to be active. The active

channels in the channel mask will be written in the destination register for that slot. If the slot is inactive

(all four execution mask bits deasserted), none of the channels for that slot will be written in the

destination register.

DWord Bit Description

W0.7 31:0 Slot 1 Alpha: Specifies the value of the pixel’s alpha channel.

 Format = 32 bits raw data.

W0.6 31:0 Slot 1 Blue

W0.5 31:0 Slot 1 Green

W0.4 31:0 Slot 1 Red

W0.3 31:0 Slot 0 Alpha

W0.2 31:0 Slot 0 Blue

W0.1 31:0 Slot 0 Green

W0.0 31:0 Slot 0 Red

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 191

SIMD16 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data: Specifies the value of the return data for slot 7.

 Format = U32

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

W1.7 31:0 Slot 15 Return Data

W1.6 31:0 Slot 14 Return Data

W1.5 31:0 Slot 13 Return Data

W1.4 31:0 Slot 12 Return Data

W1.3 31:0 Slot 11 Return Data

W1.2 31:0 Slot 10 Return Data

W1.1 31:0 Slot 9 Return Data

W1.0 31:0 Slot 8 Return Data

3D Media GPGPU

192 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD16 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

 Format = U32

W0.6 31:0 Slot 6 Return Data[31:0]

W0.5 31:0 Slot 5 Return Data[31:0]

W0.4 31:0 Slot 4 Return Data[31:0]

W0.3 31:0 Slot 3 Return Data[31:0]

W0.2 31:0 Slot 2 Return Data[31:0]

W0.1 31:0 Slot 1 Return Data[31:0]

W0.0 31:0 Slot 0 Return Data[31:0]

W1.7 31:0 Slot 15 Return Data[31:0]

W1.6 31:0 Slot 14 Return Data[31:0]

W1.5 31:0 Slot 13 Return Data[31:0]

W1.4 31:0 Slot 12 Return Data[31:0]

W1.3 31:0 Slot 11 Return Data[31:0]

W1.2 31:0 Slot 10 Return Data[31:0]

W1.1 31:0 Slot 9 Return Data[31:0]

W1.0 31:0 Slot 8 Return Data[31:0]

W2 Slot 7:0 Return Data[63:32]

W3 Slot 15:8 Return Data[63:32]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 193

SIMD8 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data: Specifies the value of the return data for slot 7.

 Format = U32

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

3D Media GPGPU

194 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0
Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data[31:0]

W0.5 31:0 Slot 5 Return Data[31:0]

W0.4 31:0 Slot 4 Return Data[31:0]

W0.3 31:0 Slot 3 Return Data[31:0]

W0.2 31:0 Slot 2 Return Data[31:0]

W0.1 31:0 Slot 1 Return Data[31:0]

W0.0 31:0 Slot 0 Return Data[31:0]

W1.7 31:0 Slot 7 Return Data[63:32]

W1.6 31:0 Slot 6 Return Data[63:32]

W1.5 31:0 Slot 5 Return Data[63:32]

W1.4 31:0 Slot 4 Return Data[63:32]

W1.3 31:0 Slot 3 Return Data[63:32]

W1.2 31:0 Slot 2 Return Data[63:32]

W1.1 31:0 Slot 1 Return Data[63:32]

W1.0 31:0 Slot 0 Return Data[63:32]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 195

SIMD4x2 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 reserved – not written to GRF

W0.6 31:0 reserved – not written to GRF

W0.5 31:0 reserved – not written to GRF

W0.4 31:0 Slot 1 Return Data: Specifies the value of the return data for slot 1.

 Format = U32

W0.3 31:0 reserved – not written to GRF

W0.2 31:0 reserved – not written to GRF

W0.1 31:0 reserved – not written to GRF

W0.0 31:0 Slot 0 Return Data

SIMD4x2 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 reserved – not written to GRF

W0.6 31:0 reserved – not written to GRF

W0.5 31:0 Slot 1 Return Data: [63:32]

W0.4 31:0 Slot 1 Return Data: [31:0]

W0.3 31:0 reserved – not written to GRF

W0.2 31:0 reserved – not written to GRF

W0.1 31:0 Slot 0 Return Data: [63:32]

W0.0 31:0 Slot 0 Return Data[31:0]

3D Media GPGPU

196 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

A64 Scattered Read or Write

This message takes a set of offsets, and reads or writes SIMD8 scattered Qwords/Dwords/Bytes starting

at each offset. The Qword form of this message requires aligned Qword and the Dword form requires

aligned Dwords.The byte form of this message takes a set of offsets, and reads or writes simd8

scattered and possibly misaligned bytes, words, dwords or qwords starting at each offset.

Programming Note

Context: A64 Scattered Read or Write

Writes to overlapping addresses will have undefined write ordering. Hardware does check for and optimize for

cases where offsets are equal or contiguous, however for optimal performance in some these cases a different

message may provide higher performance.

Programming Note

Context: A64 Scattered Read or Write

Only stateless message can be used. The message header is forbidden these A64 messages, and the offsets are

from a base of absolute 0

Applications:

SIMD8 reads where the indices are different (read one channel per message)

SIMD8 writes where the indices are different (write one channel per message)

general purpose QWord/Dword/Bytes scatter/gathering, used by media

Execution Mask. The low 8 bits execution mask are used to determine which Qwords/Dwords/Bytes

are read into the destination GRF register (for read), or which Qwords/Dwords/Bytes are written to the

surface (for write).

Canonical address check, if post address computation, bits [63:48] don’t match bit [47] then a general

protect fault will occurs. If current mode is an non-faulting mode, this error will be treated as out of

bounds.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 197

Message Descriptor

Bits Description

13 Reserved: MBZ

12 Ignored

11:10
Data Size. Specifies the data size for each slot:

0: 1 block

1: 2 blocks

2: 4 blocks

3: 8 blocks (not valid for QWords)

9:8
Block Size. Specifies the size of blocks to be read or written:

10: QWords

01: DWords

00: Bytes

All other encodings are reserved.

3D Media GPGPU

198 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Address Payload

DWord Bit Description

M1.7

M1.6

63:0
Offset 3.

Specifies the Byte offset of QWord 3

Specifies the Byte offset of DWord 3

Specifies the Byte offset of Byte3

Format = U64

Qword Range = [0,00007FFFFFFFFFF8h] or [FFFF800000000000,FFFFFFFFFFFFFFF8h]

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

Byte Range = [0,00007FFFFFFFFFFFh] or [FFFF800000000000,FFFFFFFFFFFFFFFFh]

M1.5

M1.4

63:0 Offset 2

M1.3

M1.2

63:0 Offset 1

M1.1

M1.0

63:0 Offset 0

M2.7

M2.6

63:0 Offset 7

M2.5

M2.4

63:0 Offset 6

M2.3

M2.2

63:0 Offset 5

M2.1

M2.0

63:0 Offset 4

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 199

Additional Message Payload (QWord Write)

For the write operation, either one or two additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Offset n in the address payload converted to units of QWords. The

QWord array index is also in units of QWords.

DWord Bit Description

M3.7

M3.6

63:0 QWord[Offset3[0]

M3.5

M3.4

63:0 QWord[Offset2[0]

M3.3

M3.2

63:0 QWord[Offset1][0]

M3.1

M3.0

63:0 QWord[Offset0][0]

M4.7

M4.6

63:0 QWord[Offset7][0]

M4.5

M4.4

63:0 QWord[Offset6][0]

M4.3

M4.2

63:0 QWord[Offset5][0]

M4.1

M4.0

63:0 QWord[Offset4][0]

… … …

M9.7

M9.6

63:0 QWord[Offset3][3]

M9.5

M9.4

63:0 QWord[Offset2][3]

3D Media GPGPU

200 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

M9.3

M9.2

63:0 QWord[Offset1][3]

M9.1

M9.0

63:0 QWord[Offset0][3]

M10.7

M10.6

63:0 QWord[Offset7][3]

M10.5

M10.4

63:0 QWord[Offset6][3]

M10.3

M10.2

63:0 QWord[Offset5][3]

M10.1

M10.0

63:0 QWord[Offset4][3]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 201

Additional Message Payload (DWord Write)

For the write operation, either one to four additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Offset nin the address payload converted to units of DWords. The

DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7][0]

M3.6 31:0 DWord[Offset6][0]

M3.5 31:0 DWord[Offset5][0]

M3.4 31:0 DWord[Offset4][0]

M3.3 31:0 DWord[Offset3][0]

M3.2 31:0 DWord[Offset2][0]

M3.1 31:0 DWord[Offset1][0]

M3.0 31:0 DWord[Offset0][0]

M4.7 31:0 DWord[Offset7][1]

M4.6 31:0 DWord[Offset6][1]

M4.5 31:0 DWord[Offset5][1]

M4.4 31:0 DWord[Offset4][1]

M4.3 31:0 DWord[Offset3][1]

M4.2 31:0 DWord[Offset2][1]

M4.1 31:0 DWord[Offset1][1]

M4.0 31:0 DWord[Offset0][1]

… … …

M9.7 31:0 DWord[Offset7][6]

M9.6 31:0 DWord[Offset6][6]

M9.5 31:0 DWord[Offset5][6]

M9.4 31:0 DWord[Offset4][6]

M9.3 31:0 DWord[Offset3][6]

M9.2 31:0 DWord[Offset2][6]

M9.1 31:0 DWord[Offset1][6]

M9.0 31:0 DWord[Offset0][6]

M10.7 31:0 DWord[Offset7][7]

M10.6 31:0 DWord[Offset6][7]

M10.5 31:0 DWord[Offset5][7]

M10.4 31:0 DWord[Offset4][7]

M10.3 31:0 DWord[Offset3][7]

M10.2 31:0 DWord[Offset2][7]

3D Media GPGPU

202 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

M10.1 31:0 DWord[Offset1][7]

M10.0 31:0 DWord[Offset0][7]

Additional Message Payload (8 Byte Write)

For the write operation, two additional registers of payload contain the data to be written.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes.

DWord Bits Description

M3.7 31:0 Byte[Offset3][7:4]

M3.6 31:0 Byte[Offset3][3:0]

M3.5 31:0 Byte[Offset2][7:4]

M3.4 31:0 Byte[Offset2][3:0]

M3.3 31:0 Byte[Offset1][7:4]

M3.2 31:0 Byte[Offset1][3:0]

M3.1 31:0 Byte[Offset0][7:4]

M3.0 31:0 Byte[Offset0][3:0]

M4.7 31:0 Byte[Offset7][7:4]

M4.6 31:0 Byte[Offset7][3:0]

M4.5 31:0 Byte[Offset6][7:4]

M4.4 31:0 Byte[Offset6][3:0]

M4.3 31:0 Byte[Offset5][7:4]

M4.2 31:0 Byte[Offset5][3:0]

M4.1 31:0 Byte[Offset4][7:4]

M4.0 31:0 Byte[Offset4][3:0]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 203

Additional Message Payload (1 or 2 or 4 Byte Write)

For the write operation, two additional registers of payload contain the data to be written.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes. The length of

Data written depends on the Data Size and is right-justified within the 32-bit field. The upper bits are

ignored for 1 byte and 2 byte Data Size.

DWord Bits Description

M3.7 31:0 Byte[Offset7][3:0]

M3.6 31:0 Byte[Offset6][3:0]

M3.5 31:0 Byte[Offset5][3:0]

M3.4 31:0 Byte[Offset4][3:0]

M3.3 31:0 Byte[Offset3][3:0]

M3.2 31:0 Byte[Offset2][3:0]

M3.1 31:0 Byte[Offset1][3:0]

M3.0 31:0 Byte[Offset0][3:0]

Writeback Message (QWord Read)

For the read operation, the writeback message consists of either two to eight registers depending on

the Data size.

The Offsetn referred to below is the Offset n in the address payload converted to units of QWords. The

QWord array index is also in units of QWords.

DWord Bits Description

W0.7

W0.6

63:0 QWord[Offset3][0]

W0.5

W0.4

63:0 QWord[Offset2][0]

W0.3

W0.2

63:0 QWord[Offset1][0]

W0.1

W0.0

63:0 QWord[Offset0][0]

W1.7

W1.6

63:0 QWord[Offset7][0]

3D Media GPGPU

204 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W1.5

W1.4

63:0 QWord[Offset6][0]

W1.3

W1.2

63:0 QWord[Offset5][0]

W1.1

W1.0

63:0 QWord[Offset4][0]

… … …

W6.7

W6.6

63:0 QWord[Offset3][3]

W6.5

W6.4

63:0 QWord[Offset2][3]

W6.3

W6.2

63:0 QWord[Offset1][3]

W6.1

W6.0

63:0 QWord[Offset0][3]

W7.7

W7.6

63:0 QWord[Offset7][3]

W7.5

W7.4

63:0 QWord[Offset6][3]

W7.3

W7.2

63:0 QWord[Offset5][3]

W7.1

W7.0

63:0 QWord[Offset4][3]

Writeback Message (DWord Read)

For the read operation, the writeback message consists of either two to eight registers depending on

the block size.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 205

The Offsetn referred to below is the Offset n in the address payload converted to units of DWords. The

DWord array index is also in units of DWords.

DWord Bits Description

W0.7 31:0 DWord[Offset7][0]

W0.6 31:0 DWord[Offset6][0]

W0.5 31:0 DWord[Offset5][0]

W0.4 31:0 DWord[Offset4][0]

W0.3 31:0 DWord[Offset3][0]

W0.2 31:0 DWord[Offset2][0]

W0.1 31:0 DWord[Offset1][0]

W0.0 31:0 DWord[Offset0][0]

W1.7 31:0 DWord[Offset7][1]

W1.6 31:0 DWord[Offset6][1]

W1.5 31:0 DWord[Offset5][1]

W1.4 31:0 DWord[Offset4][1]

W1.3 31:0 DWord[Offset3][1]

W1.2 31:0 DWord[Offset2][1]

W1.1 31:0 DWord[Offset1][1]

W1.0 31:0 DWord[Offset0][1]

...

W6.7 31:0 DWord[Offset7][6]

W6.6 31:0 DWord[Offset6][6]

W6.5 31:0 DWord[Offset5][6]

W6.4 31:0 DWord[Offset4][6]

W6.3 31:0 DWord[Offset3][6]

W6.2 31:0 DWord[Offset2][6]

W6.1 31:0 DWord[Offset1][6]

W6.0 31:0 DWord[Offset0][6]

W7.7 31:0 DWord[Offset7][7]

W7.6 31:0 DWord[Offset6][7]

W7.5 31:0 DWord[Offset5][7]

W7.4 31:0 DWord[Offset4][7]

W7.3 31:0 DWord[Offset3][7]

W7.2 31:0 DWord[Offset2][7]

W7.1 31:0 DWord[Offset1][7]

W7.0 31:0 DWord[Offset0][7]

3D Media GPGPU

206 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message (8 Byte Read)

For the read operation, the writeback message consists of two register.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes.

DWord Bits Description

W0.7 31:0 Byte[Offset3][7:4]

W0.6 31:0 Byte[Offset3][3:0]

W0.5 31:0 Byte[Offset2][7:4]

W0.4 31:0 Byte[Offset2][3:0]

W0.3 31:0 Byte[Offset1][7:4]

W0.2 31:0 Byte[Offset1][3:0]

W0.1 31:0 Byte[Offset0][7:4]

W0.0 31:0 Byte[Offset0][3:0]

W1.7 31:0 Byte[Offset7][7:4]

W1.6 31:0 Byte[Offset7][3:0]

W1.5 31:0 Byte[Offset6][7:4]

W1.4 31:0 Byte[Offset6][3:0]

W1.3 31:0 Byte[Offset5][7:4]

W1.2 31:0 Byte[Offset5][3:0]

W1.1 31:0 Byte[Offset4][7:4]

W1.0 31:0 Byte[Offset4][3:0]

Writeback Message (1 or 2 or 4 Byte Read)

For the read operation, the writeback message consists of one register.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes. The length of

Data written depends on the Data Size and is right-justified within the 32-bit field and only the

requested bytes are written to the GRF.

DWord Bits Description

W0.7 31:0 Byte[Offset7][3:0]

W0.6 31:0 Byte[Offset6][3:0]

W0.5 31:0 Byte[Offset5][3:0]

W0.4 31:0 Byte[Offset4][3:0]

W0.3 31:0 Byte[Offset3][3:0]

W0.2 31:0 Byte[Offset2][3:0]

W0.1 31:0 Byte[Offset1][3:0]

W0.0 31:0 Byte[Offset0][3:0]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 207

A64 Untyped Atomic Operation

A64 Untyped Atomic Operation allows direct read/write stateless accesses.

This message supports 2 data sizes: DWORD and QWORD.

These messages use the RAW format, perform no type conversion. It uses just the U address parameter,

which specifies the byte offset, which must be a multiple of 8 for QWORD and a multiple of 4 for

DWORD. The atomic operation messages only access the first QWord.

The atomic operation messages cause atomic read-modify-write operations on the “destination”

location addressed. In the table below, the new value of the destination (new_dst) is computed as

indicated based on the old value of the destination (old_dst) and up to two sources included in the

message (src0 and src1). Optionally, a value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that

no read or write to the same memory location from this thread or any other thread can occur between

the read and the write.

The following atomic operations are available for QWORD data size, along with the specific operation

performed for each and the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst

AOP_OR old_dst | src0 old_dst

AOP_XOR old_dst ^ src0 old_dst

AOP_MOV src0 old_dst

AOP_INC old_dst + 1 old_dst

AOP_DEC old_dst – 1 old_dst

AOP_ADD old_dst + src0 old_dst

AOP_SUB old_dst – src0 old_dst

AOP_REVSUB src0 – old_dst old_dst

AOP_IMAX imax(old_dst, src0) old_dst

AOP_IMIN imin(old_dst, src0) old_dst

AOP_UMAX umax(old_dst, src0) old_dst

AOP_UMIN umin(old_dst, src0) old_dst

AOP_CMPWR (src0 == old_dst) ? src1 : old_dst old_dst

AOP_PREDEC old_dst – 1 new_dst

AOP_CMPWR16B (src016B == old_dst16B) ? src116B : old_dst16B old_dst16B

3D Media GPGPU

208 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming Note

Context: A64 Untyped Atomic Operation

 src016B is 16 bytes, src116B is 16 Bytes, and old_dst16B is 16 bytes in length.

 AOP_CMPWR16B is not supported for SLM.

 AOP_CMPWR16B addresses must be OWORD-aligned.

Programming Note

Context: A64 Untyped Atomic Operation

AOP_CMPWR16B is not supported.

Programming Note

Context: A64 Untyped Atomic Operation

imax/imin assume operands are signed 64-bit integers; umax/umin assume operands are unsigned integers. All

other operations treat all values as 64-bit unsigned integers. Add and subtract operations wrap without any

special indication.

The following atomic operations are available for DWORD data size, along with the specific operation

performed for each and the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst

AOP_OR old_dst | src0 old_dst

AOP_XOR old_dst ^ src0 old_dst

AOP_MOV src0 old_dst

AOP_INC old_dst + 1 old_dst

AOP_DEC old_dst – 1 old_dst

AOP_ADD old_dst + src0 old_dst

AOP_SUB old_dst – src0 old_dst

AOP_REVSUB src0 – old_dst old_dst

AOP_IMAX imax(old_dst, src0) old_dst

AOP_IMIN imin(old_dst, src0) old_dst

AOP_UMAX umax(old_dst, src0) old_dst

AOP_UMIN umin(old_dst, src0) old_dst

AOP_CMPWR (src0 == old_dst) ? src1 : old_dst old_dst

AOP_PREDEC old_dst – 1 new_dst

AOP_CMPWR8B (src08B == old_dst8B) ? src18B : old_dst8B old_dst8B

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 209

Programming Note

Context: A64 Untyped Atomic Operation

 src08B is 8 bytes, src18B is 8 Bytes, and old_dst8B is 8 bytes in length.

 AOP_CMPWR8B is not supported for SLM.

 AOP_CMPWR8B addresses must be QWORD-aligned.

Programming Note

Context: A64 Untyped Atomic Operation

AOP_CMPWR8B is not supported for A64 SIMD4x2. Use a SIMD8 message for AOP_CMPRW8B.

Programming Note

Context: A64 Untyped Atomic Operation

imax/imin assume operands are signed 32-bit integers; umax/umin assume operands are unsigned integers. All

other operations treat all values as 32-bit unsigned integers. Add and subtract operations wrap without any

special indication.

Programming Note

Context: A64 Untyped Atomic Operation

 Only stateless messages can be used.

 The stateless model support is limited to untyped messages. Furthermore, they are treated as

SURFTYPE_BUFFER and Surface Format of RAW.

 The message header is forbidden in these A64 messages, and the offsets are from a base of absolute 0.

Execution Mask: The low 8 bits of the execution mask determine which QWords/DWords/Bytes are

read into the destination GRF register (for read), or which QWords/DWords/Bytes are written to the

surface (for write).

Canonical address check: If post address computation, bits [63:48] don’t match bit [47] then a general

protect fault occurs. If the current mode is a non-faulting mode, this error is treated as out of bounds.

Programming Note

Context: A64 Untyped Atomic Operation

Writes to overlapping addresses have undefined write ordering.

A64 Untyped Atomic Operation Message Descriptor

Bits Description

13
Return Data Control

3D Media GPGPU

210 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Bits Description

Specifies whether return data is sent back to the thread.

Format = Enable

12
Data Size

This field controls the data size of the operation

Format = U1

0: DWORD size

1: QWORD

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: 0000: AOP_CMPWR16B / AOP_CMPWR8B

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 211

Message Payload

The message payload consists of the following:

For the read messages, only an address payload is delivered.

For the write messages, an address payload is followed by the write data payload.

For the atomic operation messages, an address payload is followed by the source payload.

The number of message registers in the write data payload is determined by the number of channel

mask bits that are enabled, and the number of message registers in the source payload is determined

by the atomic operation.

3D Media GPGPU

212 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address

parameter is U. Each parameter takes one message register. Each parameter always takes a consistent

position in the input payload.

DWord Bit Description

M1.7

M1.6

63:0
Slot 3 U address.

Specifies the Byte offset of QWord 3

Specifies the Byte offset of DWord 3

Format = U64

Qword Range = [0,00007FFFFFFFFFF8h] or [FFFF800000000000,FFFFFFFFFFFFFFF8h]

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.5

M1.4

63:0 Slot 2 U Address

M1.3

M1.2

63:0 Slot 1 U Address

M1.1

M1.0

63:0 Slot 0 U Address

M2.7

M2.6

63:0 Slot 7 U Address

M2.5

M2.4

63:0 Slot 6 U Address

M2.3

M2.2

63:0 Slot 5 U Address

M2.1

M2.0

63:0 Slot 4 U Address

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 213

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots. The possible

address parameter is U. Each parameter always takes a consistent position in the input payload.

DWord Bit Description

M1.7

M1.6

63:0 ignored

M1.5

M1.4

63:0
Slot 1 U Address

Specifies the U Address for slot 1.

Format = U64

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.3

M1.2

63:0 ignored

M1.1

M1.0

63:0 Slot 0 U Address

3D Media GPGPU

214 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Source Payload (QWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M3.7

M3.6

63:0
Slot 3 Source0

Specifies Source0 for slot 3.

Format = S63 for AOP_IMAX and AOP_IMIN, U64 for all other operations

M3.5

M3.4

63:0 Slot 2 Source0

M3.3

M3.2

63:0 Slot 1 Source0

M3.1

M3.0

63:0 Slot 0 Source0

M4.7

M4.6

63:0 Slot 7 Source0

M4.5

M4.4

63:0 Slot 6 Source0

M4.3

M4.2

63:0 Slot 5 Source0

M4.1

M4.0

63:0 Slot 4 Source0

M5 Slot3:0 Source1

M6 Slot7:4 Source1

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 215

SIMD8 Source Payload (DWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M3.7 31:0
Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M3.6 31:0 Slot 6 Source0

M3.5 31:0 Slot 5 Source0

M3.4 31:0 Slot 4 Source0

M3.3 31:0 Slot 3 Source0

M3.2 31:0 Slot 2 Source0

M3.1 31:0 Slot 1 Source0

M3.0 31:0 Slot 0 Source0

M4 Slots 7:0 Source1

3D Media GPGPU

216 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Source Payload (AOP_CMPWR16B Only)

DWord Bit Description

M6.7

-

M6.4

31:0
Slot 1 Source0[128:0]

Specifies Source0[127:0] for slot 1.

Format = U128

M6.3

-

M6.0

31:0 Slot 0 Source0[127:0]

M7 Slot 3:2 Source0

M8 Slot 5:4 Source0

M9 Slot 7:6 Source0

M10 Slot 1:0 Source1

M11 Slot 3:2 Source1

M12 Slot 5:4 Source1

M13 Slot 7:6 Source1

SIMD8 Source Payload (AOP_CMPWR8B Only)

DWord Bit Description

M6.7

M6.6

Slot 3 Source0[63:0]

Specifies Source0[63:0] for slot 3.

Format = U64

M6.5

M6.4

 Slot 2 Source0[63:0]

M6.3

M6.2

 Slot 1 Source0

M6.1

M6.0

 Slot 0 Source0

M7 Slot 7:4 Source0

M8 Slot 3:0 Source1

M9 Slot 7:4 Source1

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 217

SIMD4x2 Source Payload (QWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M3.7

M3.6

63:0 ignored

M3.5

M3.4

63:0
Slot 1 Source0

Specifies Source0 for slot 1.

Format = S63 for AOP_IMAX and AOP_IMIN, U64 for all other operations

M3.3

M3.2

63:0 ignored

M3.1

M3.0

63:0 Slot 0 Source0

M4 Slot1:0 Source1

3D Media GPGPU

218 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 Source Payload (DWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M3.7 31:0 ignored

M3.6 31:0 ignored

M3.5 31:0 Slot 1 Source1

M3.4 31:0
Slot 1 Source0

Specifies Source0 for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M3.3 31:0 ignored

M3.2 31:0 ignored

M3.1 31:0 Slot 0 Source1

M3.0 31:0 Slot0 Source0

SIMD4x2 Source Payload (AOP_CMPWR16B Only)

DWord Bit Description

M6.7

-

M6.4

31:0
Slot 1 Source0[128:0]

Specifies Source0[127:0] for slot 1.

Format = U128

M6.3

-

M6.0

31:0 Slot 0 Source0[127:0]

M7 Slot 1:0 Source1

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 219

SIMD4x2 Source Payload (AOP_CMPWR8B Only)

DWord Bit Description

M6.7

M6.6

 ignored

M6.5

M6.4

Slot 1 Source0[63:0]

Specifies Source0[63:0] for slot 1.

Format = U64

M6.3

M6.2

 ignored

M6.1

M6.0

 Slot 0 Source0

M7 Slot 1:0 Source1

Writeback Message

The following subsections describe the writeback messages for A64 Untyped Atomic operations.

SIMD8 Atomic Operation (QWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7

W0.6

63:0
Slot 3 Return Data: Specifies the value of the return data for slot 3.

Format = U64

W0.5

W0.4

63:0 Slot 2 Return Data

W0.3

w0.2

63:0 Slot 1 Return Data

W0.1

W0.0

63:0 Slot 0 Return Data

3D Media GPGPU

220 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W1.7

W1.6

63:0 Slot 7 Return Data

W1.5

W1.4

63:0 Slot 6 Return Data

W1.3

W1.2

63:0 Slot 5 Return Data

W1.1

W1.0

63:0 Slot 4 Return Data

SIMD8 Atomic Operation (DWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0
Slot 7 Return Data: Specifies the value of the return data for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 221

SIMD8 Atomic Operation (AOP_CMPWR16B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR16B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7

-

W0.4

Slot 1 Return Data[127:0]: Specifies the value of the return data for slot 1.

Format = U128

W0.3

-

W0.0

 Slot 0 Return Data[127:0]

W1 Slot 3:2 Return Data

W2 Slot 5:4 Return Data

W3 Slot 7:6 Return Data

3D Media GPGPU

222 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

DWord Bit Description

W0.7

W0.6

63:0
Slot 3 Return Data: Specifies the value of the return data for slot 3.

Format = U64

W0.5

W0.4

63:0 Slot 2 Return Data

W0.3

w0.2

63:0 Slot 1 Return Data

W0.1

W0.0

63:0 Slot 0 Return Data

W1.7

W1.6

63:0 Slot 7 Return Data

W1.5

W1.4

63:0 Slot 6 Return Data

W1.3

W1.2

63:0 Slot 5 Return Data

W1.1

W1.0

63:0 Slot 4 Return Data

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 223

SIMD4x2 Atomic Operation (QWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7

W0.6

63:0 reserved

W0.5

W0.4

63:0
Slot 1 Return Data: Specifies the value of the return data for slot 1.

Format = U64

W0.3

w0.2

63:0 reserved

W0.1

W0.0

63:0 Slot 0 Return Data

SIMD4x2 Atomic Operation (DWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field

in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W3.7 31:0 reserved

W3.6 31:0 reserved

W3.5 31:0 reserved

W3.4 31:0
Slot 1 Return Data: Specifies the value of the return data for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

W3.3 31:0 reserved

W3.2 31:0 reserved

W3.1 31:0 reserved

W3.0 31:0 Slot 0 Return Data

3D Media GPGPU

224 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 Atomic Operation (AOP_CMPWR16B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR16B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7

-

W0.4

Slot 1 Return Data[127:0]: Specifies the value of the return data for slot 1.

Format = U128

W0.3

-

W0.0

 Slot 0 Return Data[127:0]

SIMD4x2 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

DWord Bit Description

W0.7

W0.6

63:0 reserved

W0.5

W0.4

63:0
Slot 1 Return Data: Specifies the value of the return data for slot 1.

Format = U64

W0.3

w0.2

63:0 reserved

W0.1

W0.0

63:0 Slot 0 Return Data

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 225

A64 Untyped Atomic Float Add Operation

A64 Untyped Atomic Float Add Operation allows direct read/write stateless accesses.

This message supports 2 data sizes: DWORD and QWORD.

These messages use the RAW format, perform no type conversion. It uses just the U address parameter,

which specifies the byte offset, which must be a multiple of 8 for QWORD and a multiple of 4 for

DWORD. The atomic operation messages will only access the first QWORD.

The atomic operation messages cause atomic read-modify-write operations on the “destination”

location addressed. In the table below, the new value of the destination (new_dst) is computed as

indicated based on the old value of the destination (old_dst) and up to two sources included in the

message (src0 and src1). Optionally, a value can be returned by the message (ret).

Programming Note

Context: A64 Untyped Atomic Float Add Operation

 Only stateless message can be used.

 The message header is forbidden these A64 messages, and the offsets are from a base of absolute 0.

Canonical address check: If post address computation, bits [63:48] don’t match bit [47] then a General

Protect fault occurs. If the current mode is a non-faulting mode, this error is treated as out of bounds.

Untyped Atomic Float Add Operation Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11
Data Size

This field controls the data size of the operation

Format = U1

0: DWORD size

1: QWORD

10:8 Reserved

3D Media GPGPU

226 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Payload

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address

parameter is U. The number of parameters required depends on the surface type being accessed. Each

parameter takes one message register. Each parameter always takes a consistent position in the input

payload. The length field can be used to send a shorter message, but intermediate parameters cannot

be skipped as there is no way to signal this.

DWord Bit Description

M1.7

M1.6

63:0
Slot 3 U address.

Specifies the Byte offset of QWord 3

Specifies the Byte offset of DWord 3

Format = U64

Qword Range = [0,00007FFFFFFFFFF8h] or [FFFF800000000000,FFFFFFFFFFFFFFF8h]

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.5

M1.4

63:0 Slot 2 U Address

M1.3

M1.2

63:0 Slot 1 U Address

M1.1

M1.0

63:0 Slot 0 U Address

M2.7

M2.6

63:0 Slot 7 U Address

M2.5

M2.4

63:0 Slot 6 U Address

M2.3

M2.2

63:0 Slot 5 U Address

M2.1

M2.0

63:0 Slot 4 U Address

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 227

SIMD8 Source Payload (QWORD Atomic Operation Message Only)

For the write operation two additional registers (depending on the block size) of payload contain the

data to be written.

The QWord array index is also in units of QWords.

DWord Bit Description

M3.7

M3.6

63:0 Slot 3 Src0

M3.5

M3.4

63:0 Slot 2 Src0

M3.3

M3.2

63:0 Slot 1 Src0

M3.1

M3.0

63:0 Slot 0 Src0

M4.7

M4.6

63:0 Slot 7 Src0

M4.5

M4.4

63:0 Slot 6 Src0

M4.3

M4.2

63:0 Slot 5 Src0

M4.1

M4.0

63:0 Slot 4 Src0

3D Media GPGPU

228 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Source Payload (DWORD Atomic Operation Message Only)

For the write operation two additional registers (depending on the block size) of payload contain the

data to be written.

The DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 Slot 7 Src0

M3.6 31:0 Slot 6 Src0

M3.5 31:0 Slot 5 Src0

M3.4 31:0 Slot 4 Src0

M3.3 31:0 Slot 3 Src0

M3.2 31:0 Slot 2 Src0

M3.1 31:0 Slot 1 Src0

M3.0 31:0 Slot 0 Src0

Writeback Message

A64 Untyped Surface Read or Write Operation

The A64 untyped surface message, both of which suse the RAW surface format, perform no type

conversions. A raw buffer uses just the U address parameter, which specifies the byte offset, which must

be a multiple of 4.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 229

For both raw messages up to 4 DWords are accessed beginning at the byte address determined. These

4 DWords correspond to the red, green, blue, and alpha channels in that order with red mapping to the

lowest order DWord.

Programming Note

Context: A64 Untyped Surface Read or Write Operation

 Only stateless message can be used. Furthermore, they are treated as SURFTYPE_BUFFER and Surface

Format of RAW.

 For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord-aligned

(low 2 bits must be zero).

 The message header is forbidden in these A64 messages, and the offsets are from a base of absolute 0.

Execution Mask:

SIMD8: The low 8 bits of the execution mask are used to determine which slots are read into the

destination GRF register (for read), or which slots are written to the surface (for write).

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create

two bits used to determine which slots are read into the destination GRF register.

Canonical address check: if post address computation, bits [63:48] don’t match bit [47] then a general

protect fault occurs. If the current mode is a non-faulting mode, this error is treated as out of bounds.

3D Media GPGPU

230 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Untyped Surface Read or Write Message Descriptor

Bits Description

13:12
SIMD Mode

Format = U2

0: SIMD4x2

1: Reserved

2: SIMD8

3: Reserved

11
Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write

message, indicates that alpha is included in the message payload, and that alpha will be written to the

surface.

0: Alpha channel included.

1: Alpha channel not included.

Programming Notes:

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower mask bits

are also zero. This means that the only 4-bit channel mask values allowed are 0000b, 1000b, 1100b, and

1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the 4-bit channel

mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

Message Payload

The following subsections describe the message payloads for A64 Untyped Surface Read or Write

Operations.

Read or write messages use the SIMD8 Address Payload or the SIMD4x2 Address Payload.

Only write messages use the SIMD8 DWORD Write Data Payload or the SIMD4x2 DWORD Write Data

Payload.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 231

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address

parameter is U. Each parameter always takes a consistent position in the input payload. The length field

can be used to send a shorter message, but intermediate parameters cannot be skipped as there is no

way to signal this.

DWord Bits Description

M1.7

M1.6

63:0
Slot 3 U Address

Specifies the U Address for slot 3.

Format = U64

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.5

M1.4

63:0 Slot 2 U Address

M1.3

M1.2

63:0 Slot 1 U Address

M1.1

M1.0

63:0 Slot 0 U Address

M2.7

M2.6

63:0 Slot 7 U Address

M2.5

M2.4

63:0 Slot 6 U Address

M2.3

M2.2

63:0 Slot 5 U Address

M2.1

M2.0

63:0 Slot 4 U Address

3D Media GPGPU

232 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots. The possible

address parameter is U. Each parameter always takes a consistent position in the input payload. The

length field can be used to send a shorter message, but intermediate parameters cannot be skipped as

there is no way to signal this.

DWord Bits Description

M1.7

M1.6

63:0 Ignored

M1.5

M1.4

63:0
Slot 1 U Address

Specifies the U Address for slot 1.

Format = U64

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.3

M1.2

63:0 Ignored

M1.1

M1.0

63:0 Slot 0 U Address

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 233

SIMD8 DWORD Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included or if some of the channel mask bits are

asserted. Any parameter or write channel not included in the payload is skipped, with message phases

below it being renumbered to take up the vacated space.

DWord Bits Description

M3.7 31:0
Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

M3.6 31:0 Slot 6 Red

M3.5 31:0 Slot 5 Red

M3.4 31:0 Slot 4 Red

M3.3 31:0 Slot 3 Red

M3.2 31:0 Slot 2 Red

M3.1 31:0 Slot 1 Red

M3.0 31:0 Slot 0 Red

M4 Slots 7:0 Green

M5 Slots 7:0 Blue

M6 Slots 7:0 Alpha

3D Media GPGPU

234 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 DWORD Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages.

DWord Bits Description

M2.7 31:0
Slot 1 Alpha

Specifies the alpha channel value to write for slot 1.

For Untyped messages:

Format = 32 bits raw data.

M2.6 31:0 Slot 1 Blue

M2.5 31:0 Slot 1 Green

M2.4 31:0 Slot 1 Red

M2.3 31:0 Slot 0 Alpha

M2.2 31:0 Slot 0 Blue

M2.1 31:0 Slot 0 Green

M2.0 31:0 Slot 0 Red

Writeback Message

For A64 Untyped Surface Read or Write operations the writeback messages are SIMD8 DWORD Read

and SIMD4x2 DWORD Read.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 235

SIMD8 DWORD Read

A SIMD8 writeback message consists of up to 8 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the

destination register of the corresponding channel being skipped in the writeback message, and all

channels with higher numbered registers being dropped down to fill in the space occupied by the

masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1,

and alpha to regid+2 and regid+3. The slots written within each destination register are determined by

the execution mask on the “send” instruction.

DWord Bits Description

W0.7 31:0
Slot 7 Red: Specifies the value of the red channel for slot 7.

For Untyped messages:

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1 Slots 7:0 Green

W2 Slots 7:0 Blue

W3 Slots 7:0 Alpha

3D Media GPGPU

236 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 DWORD Read

DWord Bits Description

W0.7 31:0
Slot 1 Alpha

Specifies the alpha channel value to write for slot 1.

For Untyped messages:

Format = 32 bits raw data.

W0.6 31:0 Slot 1 Blue

W0.5 31:0 Slot 1 Green

W0.4 31:0 Slot 1 Red

W0.3 31:0 Slot 0 Alpha

W0.2 31:0 Slot 0 Blue

W0.1 31:0 Slot 0 Green

W0.0 31:0 Slot 0 Red

A64 Block Read or Write Operation

Programming Note

Context: A64 Block Read or Write Operation

 OWord & Dual Oword offsets must be aligned on OWord boundaries.

 Unaligned OWord offsets must be aligned on DWord boundaries.

 HWord offsets must be aligned on HWord boundaries.

Execution Mask (OWord read/write). The low 8 bits of the execution mask are used to enable the 8

channels in the first and third GRF registers returned (W0, W2) for read, or the first and third write

registers sent (M1, M3). The high 8 bits are used similarly for the second and fourth (W1, W3 or M2,

M4). For reads, any mask bit asserted within a group of four will cause the entire OWord to be read and

returned to the destination GRF register. For writes, each mask bit is considered for its corresponding

DWord written to the destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or

the high 4 bits, depending on the position of the OWord to be read or written, is used as the single

group of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two

channels (red and green) of a single scratch register across 16 pixels. A second message would access

the other two channels (blue and alpha). The execution mask is used to ensure that data associated with

inactive pixels are not overwritten.

Execution Mask (Dual Oword read/write). The low 8 bits of the execution mask are used to enable

the 8 channels in the GRF registers returned for read, or each of the write registers sent. For reads, any

mask bit asserted within a group of four causes the entire OWord to be read and returned to the

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 237

destination GRF register. For writes, each mask bit is considered for its corresponding DWord written to

the destination surface.

Execution Mask (Unaligned OWord read/write). The execution mask is ignored by this message sub

type.

Execution Mask (HWord read/write). The low 8 bits of the execution mask are used to enable the 8

channels in the first and third GRF registers returned (W0, W2) for read, or the first and third write

registers sent (M1, M3). The high 8 bits are used similarly for the second and fourth (W1, W3 or M2,

M4). For reads either any mask bit asserted within a group of four will cause the entire OWord to be

read and returned to the destination GRF register or the mask bit control corresponding DWORD based

on the HWord Read/Write Channel Mode. For writes, either any mask bit asserted within a group of

four will cause the entire OWord to be written or each mask bit is considered for its corresponding

DWord written to the destination surface HWord Read/Write Channel Mode.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or

the high 4 bits, depending on the position of the OWord to be read or written, is used as the single

group of four with behavior following that in the preceding paragraph.

Canonical address check: if post address computation, bits [63:48] don’t match bit [47] then a general

protect fault occurs. If current mode is a non-faulting mode, this error is treated as out of bounds.

Message Descriptor

Bits Description

13 Reserved: MBZ

12:11
Message sub-type:

00: OWord Block Read/Write

 01: Unaligned OWord Block Read

 10: OWord Dual Block Read/Write

 11: HWord Block Read/Write

10:8 Block Size. Specifies the number of elements transferred. See table below.

3D Media GPGPU

238 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Header

DWord Bits Description

M0.5 31
HWord Read/Write Channel Mode. This field is only used for HWord read/write messages.

0: OWord – Channel enables in effect at the time of ‘send’ are interpreted such that if one or more

are enabled, the read or write operation occurs on all four DWords.

1: DWord – Channel enables in effect at the time of the ‘send’ are used as DWord enables, causing

the read or write operation to occur only on the DWords where the corresponding channel enable

is set.

30:0 Ignored

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3

M0.2

Block Offset 1. Specifies the Byte offset of OWord Block 1 for OWord Dual reads.

Format = U64

Dual OWord Range = [0,00007FFFFFFFFFF0h] or [FFFF800000000000,FFFFFFFFFFFFFFF0h]

M0.1

M0.0

Block Offset 0. Specifies the Byte offset of Block 0.

Format = U64

Unaliged OWord Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

Dual OWord Range = [0,00007FFFFFFFFFF0h] or [FFFF800000000000,FFFFFFFFFFFFFFF0h]

OWord Range = [0,00007FFFFFFFFFF0h] or [FFFF800000000000,FFFFFFFFFFFFFFF0h]

HWord Range = [0,00007FFFFFFFFFE0h] or [FFFF800000000000,FFFFFFFFFFFFFFE0h]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 239

Message Payload (OWord Write)

For the write operation, the message payload consists of one, two, or four registers (not including the

header) depending on the Block Size specified in the message. For the one-constant case, data is taken

from either the high or low half of the payload register depending on the half selected in Block Size. In

this case, the other half of the payload register is ignored.

DWord Bits Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of the

destination, OWord[Offset] appears in this location.

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

Writeback Message (OWord Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending

on the Block Size specified in the message. For the one-constant case, data is placed in either the high

or low half of the returned register depending on the half selected in Block Size. In this case, the other

half of the register is not changed.

DWord Bits Description

W0.7:4 127:0 OWord[Offset+1]. If the block size is 1 OWord to be loaded into the high 128 bits of the

destination, OWord[Offset] appears in this location.

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

Writeback Message (Unaligned OWord Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the

Block Size specified in the message. For the one-constant case, data is placed in either the high or low

half of the returned register depending on the half selected in Block Size. In this case, the other half of

the register is not changed.

3D Media GPGPU

240 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W0.7:4 127:0 OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits of

the destination, OWord0 appears in this location.

W0.3:0 127:0 OWord0 = *Offset

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5 = *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

Message Payload (Dual OWord Write)

For the write operation, the message payload consists of one or four registers (not including the header

or the first part of the payload) depending on the Block Size specified in the message.

DWord Bits Description

M2.7:4 127:0 OWord[Offset1]

M2.3:0 127:0 OWord[Offset0]

M3.7:4 127:0 OWord[Offset1+1]

M3.3:0 127:0 OWord[Offset0+1]

M4.7:4 127:0 OWord[Offset1+2]

M4.3:0 127:0 OWord[Offset0+2]

M4.7:4 127:0 OWord[Offset1+3]

M4.3:0 127:0 OWord[Offset0+3]

Writeback Message (Dual Oword Read)

For the read operation, the writeback message consists of one or four registers depending on the Block

Size specified in the message.

DWord Bits Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 241

Message Payload (HWord Write)

The table below illustrates the write payload for a message of block size = 4.

DWord Bits Description

M1.7:0 255:0 HWord[Offset]

M2.7:0 255:0 HWord[Offset+1]

M3.7:0 255:0 HWord[Offset+2]

M3.7:0 255:0 HWord[Offset+3]

Writeback Message (HWord Read)

The table below illustrates an example where 4 HWords are read through a scratch block read.

DWord Bits Description

W0.7:0 255:0 HWord[Offset]

W1.7:0 255:0 HWord[Offset+1]

W2.7:0 255:0 HWord[Offset+2]

W3.7:0 255:0 HWord[Offset+3]

Untyped Atomic Float Add Operation

Untyped Atomic Operation allows direct read/write accesses to surfaces. The categories of surface:

Raw buffer (untyped). These surfaces are of type SURFTYPE_BUFFER and have a surface format of

RAW and a surface pitch of 1 byte. Supported via the data cache data port.

Structured buffer (untyped). These surfaces are of type SURFTYPE_STRBUF and have a surface format

of RAW. Supported via the data cache data port.

This message supports 2 data sizes: Single Precision (DWORD) and Double Precision (QWORD).

The untyped surface categories, both of which use the RAW surface format, perform no type

conversion. A raw buffer uses just the U address parameter, which specifies the byte offset into the

surface, which must be a multiple of 8 for QWORD and a multiple of 4 for DWORD. For structured

buffers, the U parameter is the index into an array of structures and the V parameter is the actual byte

offset into the structure instance at index U, which must be DWord/QWord aligned as the case may be.

The atomic operation messages only access the first QWord or DWord.

The atomic operation messages cause atomic read-modify-write operations on the destination location

addressed. The new value of the destination (new_dest) is computed based on the old value of the

destination (old_dest) by adding to it the source value (src0) included in the message. Optionally, the

old value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that

no read or write to the same memory location from this thread or any other thread can occur between

the read and the write.

3D Media GPGPU

242 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Execution Mask:

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from

the message header and the resulting mask is used to determine which slots are read into the

destination GRF register (for read), or which slots are written to the surface (for write). If the header is

not present, only the execution mask is used.

SIMD8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from

the message header. The resulting mask is used to determine which slots are read into the destination

GRF register (for read), or which slots are written to the surface (for write). If the header is not present,

only the low 8 bits of the execution mask are used.

Out–of–Bounds Accesses: Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

Programming Note

Context: Untyped Atomic Float Add Operation

 Writes to overlapping addresses will have undefined write ordering.

 The stateless model support is restricted to SURFTYPE_BUFFER and Surface Format of RAW. The bounds

checking for the stateless message is 4GB overflow and < General State upper bound.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 243

Untyped Atomic Float Add Operation Message Descriptor

Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

 Format = Enable

12 SIMD Mode

Format = U1

0: SIMD16

 1: SIMD8

11 Data Size

This field controls the data size of the operation

Format = U1

0: DWORD size

 1: QWORD

10:8 Reserved

3D Media GPGPU

244 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,

where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)

calculations, but the corresponding slot on the surface must not be accessed.

DWord Bit Description

M0.7 31:16 Ignored

15:0 Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for SIMD16 and

SIMD8 messages. All 16 bits are used for SIMD16 messages. For untyped SIMD8 messages, the

low 8 bits of this field are used.

 If the header is not delivered, this field defaults to all ones. The field is ignored for SIMD4x2

messages.

M0.6 31:0 Ignored

M0.5 31:0 Immediate Buffer Base Address. [CHV, BSW] Specifies the surface base address for messages in

which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This pointer

is relative to the General State Base Address.

 Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 245

Message Payload

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible

address parameters are U and V (since SIMD16 is only supported with untyped messages). The number

of parameters required depends on the surface type being accessed. Each parameter takes two

message registers. Each parameter always takes a consistent position in the input payload. The length

field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is

no way to signal this.

Programming Note

Context: SIMD16 Address Payload

For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent. If V is

sent, it is ignored.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

 Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2.7 31:0 Slot 15 U Address

M2.6 31:0 Slot 14 U Address

M2.5 31:0 Slot 13 U Address

M2.4 31:0 Slot 12 U Address

M2.3 31:0 Slot 11 U Address

M2.2 31:0 Slot 10 U Address

M2.1 31:0 Slot 9 U Address

M2.0 31:0 Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

3D Media GPGPU

246 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address

parameters are U, V. The number of parameters required depends on the surface type being accessed.

Each parameter takes one message register. Each parameter always takes a consistent position in the

input payload. The length field can be used to send a shorter message, but intermediate parameters

cannot be skipped as there is no way to signal this.

Programming Note

Context: SIMD8 Address Payload

 For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent.

If V is sent it is ignored.

 For untyped messages of surface type SURFTYPE_STRBUF, both U and V must be sent.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

 Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2 Slots 7:0 V Address

SIMD16/SIMD8 DWORD Source Payload

Either one or two additional registers (depending on the SIMD mode) of payload contain the sources to

be used.

DWord Bit Description

M3.7 31:0 DWord[slot7]

M3.6 31:0 DWord[slot6]

M3.5 31:0 DWord[slot5]

M3.4 31:0 DWord[slot4]

M3.3 31:0 DWord[slot3]

M3.2 31:0 DWord[slot2]

M3.1 31:0 DWord[slot1]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 247

DWord Bit Description

M3.0 31:0 DWord[slot0]

M4.7 31:0 DWord[slot15]. This message register is included only for SIMD16.

M4.6 31:0 DWord[slot14]

M4.5 31:0 DWord[slot13]

M4.4 31:0 DWord[slot12]

M4.3 31:0 DWord[slot11]

M4.2 31:0 DWord[slot10]

M4.1 31:0 DWord[slot9]

M4.0 31:0 DWord[slot8]

SIMD16/SIMD8 QWORD Source Payload

Either two or four additional registers (depending on the SIMD mode) of payload contain the sources to

use.

DWord Bits Description

M3.7

 M3.6

63:0 QWord[slot3]

M3.5

 M3.4

63:0 QWord[slot2]

M3.3

 M3.2

63:0 QWord[slot1]

M3.1

 M3.0

63:0 QWord[slot0]

M4.7

 M4.6

63:0 QWord[slot7]

M4.5

 M4.4

63:0 QWord[slot6]

M4.3

 M4.2

63:0 QWord[slot5]

M4.1

 M4.0

63:0 QWord[slot4]

M5 Qword[slot11:slot8]. This register is only included for SIMD16.

M6 Qword[slot15:slot12]. This register is only included for SIMD16.

3D Media GPGPU

248 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message

SIMD16 SIMD8 DWORD Atomic Float Add

DWord Bit Description

W0.7 31:0 DWord[slot7]

W0.6 31:0 DWord[slot6]

W0.5 31:0 DWord[slot5]

W0.4 31:0 DWord[slot4]

W0.3 31:0 DWord[slot3]

W0.2 31:0 DWord[slot2]

W0.1 31:0 DWord[slot1]

W0.0 31:0 DWord[slot0]

W1.7 31:0 DWord[slot15]. This message register is included only for SIMD16.

W1.6 31:0 DWord[slot14]

W1.5 31:0 DWord[slot13]

W1.4 31:0 DWord[slot12]

W1.3 31:0 DWord[slot11]

W1.2 31:0 DWord[slot10]

W1.1 31:0 DWord[slot9]

W1.0 31:0 DWord[slot8]

SIMD16/SIMD8 QWORD Atomic Float Add

DWord Bit Description

W0.7

 W0.6

63:0 QWord[slot3]

W0.5

 W0.4

63:0 QWord[slot2]

W0.3

 W0.2

63:0 QWord[slot1]

W0.1

 W0.0

63:0 QWord[slot0]

W1.7

 W1.6

63:0 QWord[slot7]

W1.5

 W1.4

63:0 QWord[slot6]

W1.3

 W1.2

63:0 QWord[slot5]

W1.1 63:0 QWord[slot4]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 249

DWord Bit Description

 W1.0

W2 Qword[slot11:Offset8]. This register is only included for SIMD16.

W3 Qword[slot15:Offset12]. This register is only included for SIMD16.

Read Surface Info

This message is used to determine information about a surface.

Message Descriptor

Bits Description

13:8 Reserved

Address Payload

DWord Bits Description

M1.7 31:0 Reserved

M1.6 31:0 Reserved

M1.5 31:0 Reserved

M1.4 31:0 Reserved

M1.3 31:0 LOD Address

M1.2 31:0 R Address

M1.1 31:0 V Address

M1.0 31:0 U Address

Writeback Message

DWo

rd

Bit

s Description

W0.7 31:

0

Instruction

Base

Address

 [63:32]

Instruction

Base Address

 [63:32]

Instruction Base

Address

 [63:32]

Instruction

Base Address

 [63:32]

Instruction

Base Address

 [63:32]

Instruction

Base Address

 [63:32]

Instruction

Base

Address

 [63:32]

W0.6 31:

0

Instruction

Base

Address

 [31:0]

Instruction

Base Address

 [31:0]

Instruction Base

Address

 [31:0]

Instruction

Base Address

 [31:0]

Instruction

Base Address

 [31:0]

Instruction

Base Address

 [31:0]

Instruction

Base

Address

 [31:0]

W0.5 31:

0

W0.4 31:

0

3D Media GPGPU

250 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWo

rd

Bit

s Description

W0.3 31:

0

W0.2 31:

0

W0.1 31:

0

W0.0 31:

0

W1.7 31:

0

W1.6 31:

0

W1.5 31:

0

0 Surface

Format

Surface Format Surface

Format

Surface

Format

Surface

Format

Surface

Format

W1.4 31:

0

SURFTYPE_

NULL (7h)

SURFTYPE_ST

RBUF (5h)

SURFTYPE_BUFF

ER(4h)

SURFTYPE_C

UBE (3h)

SURFTYPE_3

D (2h)

SURFTYPE_2

D (1h)

SURFTYPE_1

D (0h)

W1.3 31:

0

0 0 0 MIPCount MIPCount MIPCount MIPCount

W1.2 31:

0

0 0 0
Surface Array

?

Depth+1 : 0

(Depth+1)>

>LOD
Surface Array

?

Depth+1 : 0

0

W1.1 31:

0

0 (Height+1)>

>LOD

0 (Height+1)>

>LOD

(Height+1)>

>LOD

(Height+1)>

>LOD
Surface

Array ?

Depth+1 : 0

W1.0 31:

0

0 (Width+1)>>

LOD

(Width+1)>>LO

D

(Width+1)>>

LOD

(Width+1)>>

LOD

(Width+1)>>

LOD

(Width+1)>

>LOD

The 64-bit Instruction Base Address is specified as a 48-bit state base address and is extended to 64 bits

in HW. It is reflected here so SW can read it for conversion of 64-bit instruction pointers.

LOD Information

The LOD is in-bounds if LOD < MIPCount and if MinLOD + LOD < 15. If LOD is not in-bounds then 0 is returned

for the width, height, and depth values.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 251

Transpose Read

This message enables a rectangular block of DWords to be read from the source surface and written

into the GRF.

Programming Note

Context: Transpose Read

Accesses are allowed to SURFTYPE_NULL, reads return 0 and writes are ignored.

 The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the stateless

surface model is not supported with this message.

 The raw data from the surface is returned to the thread without any format conversion nor filtering

operation.

 The target cache must be the data cache.

 The surface base address must be 32-byte aligned.

 The surface width must a multiple of DWORDs.

 The only tiling modes supported are: Tile Y and Linear.

 The only tiling modes supported are: Tile Y and Linear.

 The block width must be 1, 2, 4, or 8 DWORDs.

 The X Offset must be a multiple of the block width in bytes.

 The surface format must be 32 bpp (DWORD).

 Vertical stride, offset and boundary clamping modes from surface state are supported.

 The block height must be 1, 2, 4, or 8 rows.

 The Y Offset must be a multiple of the block height.

 Pitch must be a multiple of 64 bytes when the surface is linear.

Applications:

Block reads/writes for media.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The

data that is read is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the

nearest edge of the surface and the pixel in the position being returned.

3D Media GPGPU

252 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Descriptor

Bits Description

13:8 Reserved

Message Header

DWord Bits Description

M0.5 31:8 Ignored

7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:22 Ignored

21:20
Block Height. Height in rows of block being accessed.

Value Block Height (Rows)

0 1

1 2

2 4

3 8

Format = U2

Range = [0,3] representing 1 to 8 rows

19:2 Ignored

1:0
Block Width. Width in DWORDs of block being accessed.

Value Block Width (DWORDs)

0 1

1 2

2 4

3 8

Format = U2

Range = [0,3] representing 1 to 8 DWORDs

M0.1 31:0
Y offset. The Y offset (in rows) of the upper left corner of the block into the surface.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 253

DWord Bits Description

Format = S31

Programming Note:

This field must be a multiple of the block height.

M0.0 31:0
X offset. The X offset (in bytes) of the upper left corner of the block into the surface.

Format = S31

Programming Notes:

This field must be a multiple of Block Width.

Must be DWord aligned.

3D Media GPGPU

254 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message

DWord Bits Description

W0.7 31:0 DWord[XOffset+0,YOffset+7]

W0.6 31:0 DWord[XOffset+0,YOffset+6]

W0.5 31:0 DWord[XOffset+0,YOffset+5]

W0.4 31:0 DWord[XOffset+0,YOffset+4]

W0.3 31:0 DWord[XOffset+0,YOffset+3]

W0.2 31:0 DWord[XOffset+0,YOffset+2]

W0.1 31:0 DWord[XOffset+0,YOffset+1]

W0.0 31:0 DWord[XOffset+0,YOffset+0]

W1.7 31:0 DWord[XOffset+1,YOffset+7]

W1.6 31:0 DWord[XOffset+1,YOffset+6]

W1.5 31:0 DWord[XOffset+1,YOffset+5]

W1.4 31:0 DWord[XOffset+1,YOffset+4]

W1.3 31:0 DWord[XOffset+1,YOffset+3]

W1.2 31:0 DWord[XOffset+1,YOffset+2]

W1.1 31:0 DWord[XOffset+1,YOffset+1]

W1.0 31:0 DWord[XOffset+1,YOffset+0]

… … …

W7.7 31:0 DWord[XOffset+7,YOffset+7]

W7.6 31:0 DWord[XOffset+7,YOffset+6]

W7.5 31:0 DWord[XOffset+7,YOffset+5]

W7.4 31:0 DWord[XOffset+7,YOffset+4]

W7.3 31:0 DWord[XOffset+7,YOffset+3]

W7.2 31:0 DWord[XOffset+7,YOffset+2]

W7.1 31:0 DWord[XOffset+7,YOffset+1]

W7.0 31:0 DWord[XOffset+7,YOffset+0]

Scratch Block Read or Write

This message performs a read or write operation of between 1 and 4 SIMD8 registers to an HWord

aligned offset to scratch memory. The HWord offset into the scratch memory is provided in the

message descriptor, allowing a single instruction read|write block operation in a single source

instruction. 12 bits are provided for the HWord offset, allowing addressing of 4K Hword locations

(128KB).

Two modes of channel-enable interpretation are provided: DWord, which support a SIMD8 or SIMD16

DWord channel-serial view of a register, and OWord, which supports a SIMD4x2 view of a register. For

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 255

operations using SIMD32 processing, two messages should be used, with one of them indicating ‘H2’ to

select the upper 16b of the execution mask.

This message type can only be used with stateless model memory access. Thus binding table entry 0xFF

is hard-coded into the execution of this message.

Applications: Scratch space reads/writes for register spill/fill operations.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and

third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The

high 8 bits are used similarly for the second and fourth registers (W1, W3 or M2, M4).

For DWord mode, the execution mask delivered with the message dictates DWord-based control of

read or write operations. For OWord mode, any one or more asserted bits within the OWord’s

corresponding execution mask nibble causes read or write operations to occur across all four DWords

of the OWord regardless of the setting of any particular DWord’s bit.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and do not modify memory contents.

Programming Note

Context: Scratch Block Read or Write

Out-of-Bounds check is disabled.

Message Descriptor

Bits Description

17 Operation Type: 0 = Read, 1 = Write

16
Channel Mode:

0: OWord – Channel enables in effect at the time of ‘send’ are interpreted such that, if one or more are

enabled, the read or write operation occurs on all four DWords.

1: DWord – Channel enables in effect at the time of the ‘send’ are used as DWord enables, causing the

read or write operation to occur only on the DWords whose corresponding channel enable is set.

15 Reserved: MBZ.

14 Reserved: MBZ

13:12
Block Size. Indicates the number of SIMD8 registers to be read or written:

00: 1 register

01: 2 registers

10: 4 registers

11: 8 registers

11:0 Offset. A 12-bit HWord offset into the memory Immediate Memory buffer as specified by binding table

0xFF.

3D Media GPGPU

256 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Header

DWord Bits Description

M0.7 31:16 Ignored

15:0 Ignored

M0.6 31:0 Ignored

M0.5 31:0
Immediate Buffer Base Address. Specifies the surface base address for messages in which the

Binding Table Index is 255 (stateless model); otherwise this field is ignored. This pointer is relative

to the General State Base Address.

Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Message Payload (Write)

The table below illustrates the write payload for a message of block size = 4.

DWord Bits Description

M1.7:0 255:0 HWord[Offset]

M2.7:0 255:0 HWord[Offset+1]

M3.7:0 255:0 HWord[Offset+2]

M3.7:0 255:0 HWord[Offset+3]

Message Payload (Read)

Read only requires a message header and has no message address payload.

Writeback Message (Read)

The table below illustrates an example where 4 HWords are read through a scratch block read.

DWord Bits Description

W0.7:0 255:0 HWord[Offset]

W1.7:0 255:0 HWord[Offset+1]

W2.7:0 255:0 HWord[Offset+2]

W3.7:0 255:0 HWord[Offset+3]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 257

Memory Fence

A memory fence message issued by a thread causes further messages issued by the thread to be

blocked until all previous messages issued by the thread to that data port (data cache or render cache)

have been globally observed from the point of view of other threads in the system. This includes both

read and write messages.

Data is called globally observable by other threads in the system when the data values written to the

memory or data cache will now be returned by other threads' read messages when using that same

data port. To read globally observable data that was written to a different data port, the thread issuing

the data port read message needs to flush its cache (using a memory fence or pipe control) after the

program knows that the writing thread issued the memory fence that ensured the global observability.

The memory fence message has an optional commit writeback message. The commit is sent only after

all previous messages by this thread to that data port have been globally observed. This writeback can

be used by threads to ensure that a fence is honored across both data ports, as each data port’s

memory fence only honors the corresponding data port messages.

Notes

CHV, BSW supports page faulting on some data cache operations. In the event of a page fault condition, the

global observability of other data port operations may impacted. For a thread to ensure that typed or untyped

UAV accesses are visible to other threads, the memory fence message is used with the Commit Enable control to

ensure that all page fault conditions in this thread have been handled. When the writeback message is returned to

the thread, then any page fault conditions have been handled and the memory is globally observable to other

threads. The normal usage is to issue a memory fence, source the writeback register, and then issue a gateway

barrier message to release other threads to use the memory data. By using the writeback register from the fence

message before issuing the next memory operation, the program guarantees that the fence has completed before

the next data port message is issued.

Programming Note

Context: Memory Fence

The writeback message returned with Commit Enable does not properly ensure that all page fault conditions in

this thread have been handled. The workaround is to replace the memory fence message commit enable with the

following two messages in this sequence:

 Memory Fence message without Commit Enable

 Read Surface Info message (which returns data in a writeback message)

After the Read Surface Info writeback message is received by the thread, then all page fault conditions in this

thread have been handled.

3D Media GPGPU

258 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Descriptor

Bits Description

13
Commit Enable

Specifies whether the commit is returned to the thread after the fence has been honored.

Format = Enable

12
L3_Flush_RW_Data

If enabled causes the L3 to flush any RW data.

If disabled RW data is not flushed.

11
L3_Flush_Constant_Data

If enabled causes the L3 to flush any Constant data.

If disabled Constant data is not flushed.

10
L3_Flush_Texture_Data

If enabled causes the L3 to flush any Texture data.

If disabled Texture data is not flushed.

9
L3_Flush_Instructions

If enabled causes the L3 to flush any Instructions.

If disabled Instructions are not flushed.

8 Reserved: MBZ

Programming Note

Context: Message Descriptor

Only one of the Flush controls (bits 12:9) may be specified per message.

Programming Note

Context: Message Descriptor

The Flush controls (bits 12:9) are ignored.

Programming Note

Context: Message Descriptor

The L3 has a few different partitioning schemes. In some cases RW data, Constant data and/or texture data can be

mixed in the same partition. If a flush is needed for any data type in the partition then the entire partition is

flushed.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 259

Programming Note

Context: Message Descriptor

The flushing of L3 is normally not needed. It is provided primarily to support workarounds, if needed.

Programming Note

Context: Message Descriptor

SFID_DP_DC0 & SFID_DP_DC1 (unless forced non-coherent) are normally IA-coherent. Therefore no additional

actions are needed by SW to ensure coherence. However, SW must use the memory fence (descriptor bits [12:8]

can be all 0) to ensure that all memory cycles are visible throughout the memory hierarchy.

Message Header

The fence messages consist of a single phase, and is completely ignored. The message length is always

one.

DWord Bits Description

M0.7:0 31:0 Ignored

Writeback Message

The writeback message is only sent if Commit Enable in the message descriptor is set. The destination

register is not modified. Memory fence messages without Commit Enable set do not return anything to

the thread (response length is 0 and destination register is null).

DWord Bits Description

W0.7:0 Reserved

3D Media GPGPU

260 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Pixel Data Port

Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given

application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other

purposes.

The cache to use is selected by the shared function accessed.

Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets

support a large set of surface formats (refer to surface formats table in Sampling Engine for details) with

hardware conversion from the format delivered by the thread. The render target message also causes

numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which

normally causes a read of the render target), and other functions. These functions are covered in the

Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned

by the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-

effects that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of

reads and writes to the same pixel does not occur.

Half Precision Render Target Messages

In addition to 32b components (or channels A, R, G and B), 16b components are supported via Message Specific

Descriptor. These messages are referred to as Half Precision Render Target messages. Pyloads for half precision

render target messages are described in the respective sections.

Programming Note

Context: Accessing Render Targets

Half Precision Render Target Write messages do not support UNIT formats.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 261

Message Sequencing Summary

This section summarizes the sequencing that occurs for each legal render target write message. All

messages have the M0 and M1 header registers if the header is present. If the header is not present, all

registers below are renumbered starting with M0 where M2 appears. All cases not shown in this table

are illegal.

Key:

s0, s1 = source 0, source 1

1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

oM = oMask

Messa

ge

Type

oMas

k

Prese

nt

Sourc

e

Dept

h

Prese

nt

Sourc

e 0

Alpha

Prese

nt M2 M3 M4 M5 M6 M7 M8 M9 M10

M1

1

M1

2

M1

3

M1

4

000 0 0 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 0 0 1 1/0s

0A

3/2s

0A

1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2

A

000 0 1 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s

Z

3/2s

Z

000 0 1 1 1/0s

0A

3/2s

0A

1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2

A

1/0s

Z

3/2s

Z

000 1 0 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 1 0 1 1/0s

oA

3/2s

0A

oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0

A

3/2

A

000 1 1 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s

Z

3/2s

Z

000 1 1 1 1/0s

0A

3/2s

0A

oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0

A

3/2

A

1/0s

Z

3/2s

Z

001 0 0 0 RGB

A

001 1 0 0 oM RGB

A

010 0 0 0 1/0s

0R

1/0s

0G

1/0s

0B

1/0s

0A

1/0s

1R

1/0s

1G

1/0s

1B

1/0s

1A

010 0 1 0 1/0s

0R

1/0s

0G

1/0s

0B

1/0s

0A

1/0s

1R

1/0s

1G

1/0s

1B

1/0s

1A

1/0s

Z

3D Media GPGPU

262 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Messa

ge

Type

oMas

k

Prese

nt

Sourc

e

Dept

h

Prese

nt

Sourc

e 0

Alpha

Prese

nt M2 M3 M4 M5 M6 M7 M8 M9 M10

M1

1

M1

2

M1

3

M1

4

010 1 0 0 oM 1/0s

0R

1/0s

0G

1/0s

0B

1/0s

0A

1/0s

1R

1/0s

1G

1/0s

1B

1/0s

1A

010 1 1 0 oM 1/0s

0R

1/0s

0G

1/0s

0B

1/0s

0A

1/0s

1R

1/0s

1G

1/0s

1B

1/0s

1A

1/0s

Z

011 0 0 0 3/2s

0R

3/2s

0G

3/2s

0B

3/2s

0A

3/2s

1R

3/2s

1G

3/2s

1B

3/2s

1A

011 0 1 0 3/2s

0R

3/2s

0G

3/2s

0B

3/2s

0A

3/2s

1R

3/2s

1G

3/2s

1B

3/2s

1A

3/2s

Z

011 1 0 0 oM 3/2s

0R

3/2s

0G

3/2s

0B

3/2s

0A

3/2s

1R

3/2s

1G

3/2s

1B

3/2s

1A

011 1 1 0 oM 3/2s

0R

3/2s

0G

3/2s

0B

3/2s

0A

3/2s

1R

3/2s

1G

3/2s

1B

3/2s

1A

3/2s

Z

100 0 0 0 R G B A

100 0 0 1 s0A R G B A

100 0 1 0 R G B A sZ

100 0 1 1 s0A R G B A sZ

100 1 0 0 oM R G B A

100 1 0 1 s0A oM R G B A

100 1 1 0 oM R G B A sZ

100 1 1 1 s0A oM R G B A sZ

Single Source

The “normal” render target messages are single source. There are two forms, SIMD16 and SIMD8,

intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each

of the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information

can also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of

SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

The single source message does not cause a write to the render target if Dual Source Blend Enable in

3DSTATE_WM is enabled. However, if Last Render Target Select is set, the message still causes pixel

scoreboard clear and depth/stencil buffer updates if enabled.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 263

Dual Source

The dual source render target messages only have SIMD8 forms due to maximum message length

limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each

message contains two colors (4 channels each) for each pixel in the message payload. In addition to the

first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in

the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and antialias

alpha information can also be delivered with these messages.

Each dual source message delivered clears the corresponding pixel scoreboard bits if the Last Render

Target Select bit in the message descriptor is set.

The dual source message reverts to a single source message using source 0 if Dual Source Blend

Enable in 3DSTATE_WM is disabled.

Replicate Data

The replicate data render target message is used for “fast clear” functionality in cases where the color

data for each pixel is identical. This message performs better than the other messages due to its smaller

message length. This message does not support depth, stencil, or antialias alpha data being sent with it.

This message must target only tiled memory. Access of linear memory using this message type is

UNDEFINED. The depth buffer can be cleared through the “early depth” function in conjunction with a

pixel shader using this message. Refer to the Windower chapter for more details on the early depth

function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last

Render Target Select bit is set in the message descriptor.

Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data messages. Each render

target is accessed with a separate Render Target Write message, each with a different surface indicated

(different binding table index). The depth buffer is written only by the message(s) to the last render

target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

Render Target Read and Write

Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters

contained in the message and state, it may also perform a depth and stencil buffer write and/or a

render target read for a color blend operation. Additional operations enabled in the Color Calculator

state are also initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This

message is intended only for use by pixel shader kernels for writing results to render targets.

3D Media GPGPU

264 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming Note

Context: Render Target Read and Write

 All surface types, except SURFTYPE_STRBUF, are allowed.

 For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the surface.

The Y coordinate must be zero.

 For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input

message to provide an additional coordinate. The Render Target Array Index must be zero for

SURFTYPE_BUFFER.

 The surface format is restricted to the set supported as render target. If source/dest color blend is enabled,

the surface format is further restricted to the set supported as alpha blend render target.

 The last message sent to the render target by a thread must have the End Of Thread bit set in the message

descriptor and the dispatch mask set correctly in the message header to enable correct clearing of the pixel

scoreboard.

 The stateless model cannot be used with this message (Binding Table Index cannot be 255).

 This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader

kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined

behavior.

 The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to

anything other than RTROTATE_0DEG.

 This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

 If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each

SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same Slot

Group Select setting.

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the

surface. The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input

message to provide an additional coordinate. The Render Target Array Index must be zero for

SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is

enabled, the surface format is further restricted to the set supported as alpha blend render target.

The last message sent to the render target by a thread must have the End Of Thread bit set in the

message descriptor and the dispatch mask set correctly in the message header to enable correct

clearing of the pixel scoreboard.

The stateless model cannot be used with this message (Binding Table Index cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader

kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined

behavior.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 265

The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to

anything other than RTROTATE_0DEG.

This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each

SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same

Slot Group Select setting.

Project-Specific Restrictions

Programming Note

Context: Render Target Read and Write

Execution Mask. For messages without header, the execution mask for render target messages (sent as part of

the channel enables on the obus sideband) is used to kill pixels.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and do not modify

memory. However, if the Render Target Array Index is out of bounds, it is set to zero and the surface

write is not surpressed.

The following table indicates the surface formats supported by this message with project restrictions

and whether each format supports Alpha Blend.

Surface Format Name Alpha Blend?

R32G32B32A32_FLOAT Yes

R32G32B32A32_SINT No

R32G32B32A32_UINT No

R16G16B16A16_UNORM Yes

R16G16B16A16_SNORM Yes

R16G16B16A16_SINT No

R16G16B16A16_UINT No

R16G16B16A16_FLOAT Yes

R32G32_FLOAT Yes

R32G32_SINT No

R32G32_UINT No

R16G16B16X16_FLOAT Yes

B8G8R8A8_UNORM Yes

B8G8R8A8_UNORM_SRGB Yes

R10G10B10A2_UNORM Yes

R10G10B10A2_UINT No

R8G8B8A8_UNORM Yes

R8G8B8A8_UNORM_SRGB Yes

R8G8B8A8_SNORM Yes

3D Media GPGPU

266 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Surface Format Name Alpha Blend?

R8G8B8A8_SINT No

R8G8B8A8_UINT No

R16G16_UNORM Yes

R16G16_SNORM Yes

R16G16_SINT No

R16G16_UINT No

R16G16_FLOAT Yes

B10G10R10A2_UNORM Yes

B10G10R10A2_UNORM_SRGB Yes

R11G11B10_FLOAT Yes

R32_SINT No

R32_UINT No

R32_FLOAT Yes

B8G8R8X8_UNORM Yes

B8G8R8X8_UNORM_SRGB Yes

B5G6R5_UNORM Yes

B5G6R5_UNORM_SRGB Yes

B5G5R5A1_UNORM Yes

B5G5R5A1_UNORM_SRGB Yes

B4G4R4A4_UNORM Yes

B4G4R4A4_UNORM_SRGB Yes

R8G8_UNORM Yes

R8G8_SNORM Yes

R8G8_SINT No

R8G8_UINT No

R16_UNORM Yes

R16_SNORM Yes

R16_SINT No

R16_UINT No

R16_FLOAT Yes

B5G5R5X1_UNORM Yes

B5G5R5X1_UNORM_SRGB Yes

A1B5G5R5_UNORM Yes

A4B4G4R4_UNORM Yes

R8_UNORM Yes

R8_SNORM Yes

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 267

Surface Format Name Alpha Blend?

R8_SINT No

R8_UINT No

A8_UNORM Yes

A1B5G5R5_UNORM No

A4B4G4R4_UNORM No

R16G16B16X16_FLOAT No

R32G32B32X32_FLOAT No

SubspanPixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader

dispatch depending on the number of samples and message size. This table applies to all devices.

NumSamples Support

NumSamples Support

NumSamples = 1X, 2X, or 4X is supported for all projects.

NumSamples = 8X is supported.

Pixels are numbered as follows within a subspan:

0 = upper left

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Dispatch

Size

Num

Samples

Slot Mapping

 (SSPI = Starting Sample Pair

Index)

SIMD32 1X
Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =

Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] =

Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] =

Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] =

Subspan[4].Pixel[3:0].Sample[0]

3D Media GPGPU

268 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dispatch

Size

Num

Samples

Slot Mapping

 (SSPI = Starting Sample Pair

Index)

Slot[23:20] =

Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] =

Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] =

Subspan[7].Pixel[3:0].Sample[0]

2X
Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =

Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] =

Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] =

Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] =

Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] =

Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] =

Subspan[3].Pixel[3:0].Sample[0]

Slot[31:28] =

Subspan[3].Pixel[3:0].Sample[1]

4X
Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =

Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] =

Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] =

Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] =

Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] =

Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] =

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 269

Dispatch

Size

Num

Samples

Slot Mapping

 (SSPI = Starting Sample Pair

Index)

Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] =

Subspan[1].Pixel[3:0].Sample[3]

SIMD16 8X
Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =

Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] =

Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] =

Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] =

Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] =

Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] =

Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] =

Subspan[0].Pixel[3:0].Sample[7]

1X
Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =

Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] =

Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] =

Subspan[3].Pixel[3:0].Sample[0]

2X
Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =

Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] =

Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] =

3D Media GPGPU

270 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dispatch

Size

Num

Samples

Slot Mapping

 (SSPI = Starting Sample Pair

Index)

Subspan[1].Pixel[3:0].Sample[1]

Programming Note

Context: SubspanPixel to Slot Mapping

 When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16 messages,

the following must hold:

 All the slots (as described above) must have a corresponding render target write irrespective of the slot's

validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS thread

must send two SIMD8 render target writes to cover all the slots.

 PS thread must send SIMD render target write messages with increasing slot numbers. For example,

SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the first SIMD8 render target

write must send Slot[7:0] and the next one must send Slot[15:8].

Message Descriptor

This section contains descriptors for the render target read and write functions.

Message Descriptor - Render Target Write

Message Header

The render target write message has a two-register message header.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 271

Message Header

DWord Bits Description

M0.5 31:8 Ignored

7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread on thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0
Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill instruction

activity in the pixel shader. This mask is used to control actual writes to the color buffer. This field is

ignored by the read message, all pixels are always returned.

The bits in this mask correspond to the pixels as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

M0.1 31:0
Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row aligned

(Bits 1:0 MBZ).

Format = S31

M0.0 31:0
X offset. The X offset of the upper left corner of the block into the surface. This is a pixel offset

assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

3D Media GPGPU

272 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message (Read)

A SIMD16 writeback message consists of up to 8 destination registers. If a channel/component is not

present in the RT format, the corresponding GRF is filled with zeroes or 1.0 in float/int depending on

whether RGB or Alpha are disabled.

DWord Bits Description

W0.7 31:0
Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1.7 31:0 Slot 15 Red

W1.6 31:0 Slot 14 Red

W1.5 31:0 Slot 13 Red

W1.4 31:0 Slot 12 Red

W1.3 31:0 Slot 11 Red

W1.2 31:0 Slot 10 Red

W1.1 31:0 Slot 9 Red

W1.0 31:0 Slot 8 Red

W2 Slots 7:0 Green

W3 Slots 15:8 Green

W4 Slots 7:0 Blue

W5 Slots 15:8 Blue

W6 Slots 7:0 Alpha

W7 Slots 15:8 Alpha

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 273

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the

destination register of the corresponding channel being filled with zeroes or 1.0 in float/int depending

on whether RGB or Alpha are disabled.

DWord Bits Description

W0.7 31:0
Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1 Slots 7:0 Green

W2 Slots 7:0 Blue

W3 Slots 7:0 Alpha

Header for SIMD8_IMAGE_WRITE

DWord Bits Description

M0.5 31:10 Ignored

9:8
Color Code: This ID is assigned by the Windower unit and is used to track synchronizng events.

Format: Reserved for HW Implementation Use.

7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique

identifier for the thread. It is used to free up resources used by the thread upon thread

completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:3 Ignored

2:0
Render Target Index. Specifies the render target index that will be used to select blend state

from BLEND_STATE.

Format = U3

M0.1 31:6
ColorCalculatorState Pointer. Specifies the 64-byte aligned pointer to the color calculator state.

This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

3D Media GPGPU

274 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

For SIMD8_IMAGE_WR message under normal GPGPU usage model, we recommend that SW

program a dummy color-calc state such that all operations controlled by this state are disabled.

5:0 Ignored

M0.0 31 Ignored

30:27
Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

SIMD8_IMAGE_WR message type this field is ignored by hardware.

26:16
Render Target Array Index. Specifies the array index to be used for the following surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “z” or “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

SURFTYPE_BUFFER: must be zero.

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

The Render Target Array Index used by hardware for access to the Render Target is overridden

with the Minimum Array Element defined in SURFACE_STATE if it is out of the range between

Minimum Array Element and Depth. For cube surfaces, a depth value of 5 is used for this

determination.

For SMD8_IMAGE_WRITE:

For SURFTYPE_2D, this field must be 0.

For SURFTYPE_3D, this field may not be 0 for "Write-3D-Image" operation.

15:8 Ignored

7:0
Pixel Masks for SIMD8 messages.

1: Pixel is enabled.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 275

DWord Bits Description

0: Pixel is disabled. In this case the corresponding (x,y) should be ignored by hardware.

M1.7 31:16
Y7: y-coordinate for pixel 7

Format = U16

15:0
X7: x-coordinate for pixel 7

Format = U16

M1.6 31:16
Y6: y-coordinate for pixel 6

Format = U16

15:0
X6: x-coordinate for pixel 6

Format = U16

M1.5 31:16
Y5: y-coordinate for pixel 5

Format = U16

15:0
X5: x-coordinate for pixel 5

Format = U16

M1.4 31:16
Y4: y-coordinate for pixel 4

Format = U16

15:0
X4: x-coordinate for pixel 4

Format = U16

M1.3 31:16
Y3: y-coordinate for pixel 3

Format = U16

15:0
X3: x-coordinate for pixel 3

Format = U16

M1.2 31:16
Y2: y-coordinate for pixel 2

Format = U16

15:0
X2: x-coordinate for pixel 2

Format = U16

3D Media GPGPU

276 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

M1.1 31:16
Y1: y-coordinate for pixel 1

Format = U16

15:0
X1: x-coordinate for pixel 1

Format = U16

M1.0 31:16
Y0: y-coordinate for pixel 0

Format = U16

15:0
X0: x-coordinate for pixel 0

Format = U16

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 277

Source 0 Alpha Payload

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if

present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are not

supported for dual source messages.

DWord Bit Description

M2.7 31:0
Source 0 Alpha for Slot 7

Format = IEEE_Float

This and the next register is only included if Source 0 Alpha Present bit is set.

M2.6 31:0 Source 0 Alpha for Slot 6

M2.5 31:0 Source 0 Alpha for Slot 5

M2.4 31:0 Source 0 Alpha for Slot 4

M2.3 31:0 Source 0 Alpha for Slot 3

M2.2 31:0 Source 0 Alpha for Slot 2

M2.1 31:0 Source 0 Alpha for Slot 1

M2.0 31:0 Source 0 Alpha for Slot 0

M3.7 31:0 Source 0 Alpha for Slot 15

M3.6 31:0 Source 0 Alpha for Slot 14

M3.5 31:0 Source 0 Alpha for Slot 13

M3.4 31:0 Source 0 Alpha for Slot 12

M3.3 31:0 Source 0 Alpha for Slot 11

M3.2 31:0 Source 0 Alpha for Slot 10

M3.1 31:0 Source 0 Alpha for Slot 9

M3.0 31:0 Source 0 Alpha for Slot 8

3D Media GPGPU

278 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

oMask Payload

The oMask payload, if present, follows source 0 alpha. The value of ‘p’ depends on whether the header

and source 0 alpha are present.

Sample “n” for that pixel will be killed (not written to the render target or depth buffer) if bit “n” of the

oMask is zero. Bits numbers where “n” is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the Message Type

encoding.

DWord Bit Description

Mp.7 31:16
oMask for Slot 15

Format = 16-bit mask

This register is only included if oMask Present bit is set.

 15:0 oMask for Slot 14

Mp.6 31:16 oMask for Slot 13

 15:0 oMask for Slot 12

Mp.5 31:16 oMask for Slot 11

 15:0 oMask for Slot 10

Mp.4 31:16 oMask for Slot 9

 15:0 oMask for Slot 8

Mp.3 31:16 oMask for Slot 7

 15:0 oMask for Slot 6

Mp.2 31:16 oMask for Slot 5

 15:0 oMask for Slot 4

Mp.1 31:16 oMask for Slot 3

 15:0 oMask for Slot 2

Mp.0 31:16 oMask for Slot 1

 15:0 oMask for Slot 0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 279

Color Payload SIMD16 Single Source

Color Payload

This payload is included if the Message Type is SIMD16 single source. The value of ‘m’ depends on

whether the header, source 0 alpha, and oMask are present.

DWord Bits Description

Mm.7 31:0
Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being

accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1).7 31:0 Slot 15 Red

M(m+1).6 31:0 Slot 14 Red

M(m+1).5 31:0 Slot 13 Red

M(m+1).4 31:0 Slot 12 Red

M(m+1).3 31:0 Slot 11 Red

M(m+1).2 31:0 Slot 10 Red

M(m+1).1 31:0 Slot 9 Red

M(m+1).0 31:0 Slot 8 Red

M(m+2) Slot[7:0] Green. See Mm definition for slot locations.

M(m+3) Slot[15:8] Green. See M(m+1) definition for slot locations.

M(m+4) Slot[7:0] Blue. See Mm definition for slot locations.

M(m+5) Slot[15:8] Blue. See M(m+1) definition for slot locations.

M(m+6) Slot[7:0] Alpha. See Mm definition for slot locations.

M(m+7) Slot[15:8] Alpha. See M(m+1) definition for slot locations.

3D Media GPGPU

280 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Color Payload: CHV, BSW

DWord Bits Description

Mm.7 31:0
Slot 15 Red

Slot 14 Red

Mm.6 31:0
Slot 13 Red

Slot 12 Red

Mm.5 31:0
Slot 11 Red

Slot 10 Red

Mm.4 31:0
Slot 9 Red

Slot 8 Red

Mm.3 31:0
Slot 7 Red

Slot 6 Red

Mm.2 31:0
Slot 5 Red

Slot 4 Red

Mm.1 31:0
Slot 3 Red

Slot 2 Red

Mm.0
31:16

15:0

Slot 1 Red

Slot 0 Red

M(m+1) Slot[15:0] Green. See Mm definition for slot locations.

M(m+2) Slot[15:0] Blue. See Mm definition for slot locations.

M(m+3) Slot[15:0] Alpha. See M(m+1) definition for slot locations.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 281

Color Payload SIMD8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. The value of

‘m’ depends on whether the header, source 0 alpha, and oMask are present.

DWord Bits Description

Mm.7 31:0
Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.

SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations.

M(m+2) Slot[7:0] Blue. See Mm definition for slot locations.

M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations.

3D Media GPGPU

282 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Color Payload: SIMD8 Single Source: CHV, BSW

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. The value of ‘m’

depends on whether the header, source 0 alpha, and oMask are present.

DWord Bits Description

Mm.3
31:16

15:0

Slot 7 Red

Slot 6 Red

Mm.2
31:16

15:0

Slot 5 Red

Slot 4 Red

Mm.1
31:16

15:0

Slot 3 Red

Slot 2 Red

Mm.0
31:16

15:0

Slot 1 Red

Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations.

M(m+2) Slot[7:0] Blue. See Mm definition for slot locations.

M(m+3) Slot[7:0] Alpha. See M(m+1) definition for slot locations.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 283

Color Payload SIMD16 Replicated Data

This payload is included if the Message Type specifies a single source message with replicated data.

One set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data; oMask is also legal with this message. The registers for depth,

stencil, and antialias alpha data cannot be included with this message, and the corresponding bits in the

message header must indicate that these registers are not present.

The value of ‘m’ depends on whether the header and oMask are present.

Note: This message is allowed only on tiled surfaces.

DWord Bits Description

Mm.7:4 31:0 Reserved

Mm.3 31:0
Alpha. Specifies the value of the alpha channel for all slots.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.

SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.2 31:0 Blue

Mm.1 31:0 Green

Mm.0 31:0 Red

Color Payload: SIMD16 Replicated Data: CHV, BSW

This payload is included if the Message Type specifies single source message with replicated data. One set of

R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data only; oMask is also legal with this message. The registers for depth, stencil,

and antialias alpha data cannot be included with this message, and the corresponding bits in the message header

must indicate that these registers are not present.

The value of ‘m’ depends on whether the header and oMask are present.

Note: This message is allowed only on tiled surfaces.

DWord Bits Description

Mm.7:2 31:0 Reserved

Mm.1
31:16

15:0

Alpha

Blue

Mm.0
31:16

15:0

Green

Red

3D Media GPGPU

284 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Color Payload SIMD8 Dual Source

This payload is included if the Message Type specifies dual source message. The value of ‘m’ depends

on whether the header, source 0 alpha, and oMask are present.

Programming Note

Context: Color Payload SIMD8 Dual Source

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord Bits Description

Mm.7 31:0
Slot 7 Source 0 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.

SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Source 0 Red

Mm.5 31:0 Slot 5 Source 0 Red

Mm.4 31:0 Slot 4 Source 0 Red

Mm.3 31:0 Slot 3 Source 0 Red

Mm.2 31:0 Slot 2 Source 0 Red

Mm.1 31:0 Slot 1 Source 0 Red

Mm.0 31:0 Slot 0 Source 0 Red

M(m+1) Slot[7:0] Source 0 Green. See Mm definition for slot locations.

M(m+2) Slot[7:0] Source 0 Blue. See Mm definition for slot locations.

M(m+3) Slot[7:0] Source 0 Alpha. See Mm definition for slot locations.

M(m+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations.

M(m+5) Slot[7:0] Source 1 Green. See Mm definition for slot locations.

M(m+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations.

M(m+7) Slot[7:0] Source 1 Alpha. See Mm definition for slot locations.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 285

Color Payload: SIMD8 Dual Source: CHV, BSW

This payload is included if the Message Type specifies dual source message. The value of ‘m’ depends on whether

the header, source 0 alpha, and oMask are present.

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord Bits Description

Mm.7
31:16

15:0

Slot 7 Source 1 Red

Slot 6 Source 1 Red

Mm.6
31:16

15:0

Slot 5 Source 1 Red

Slot 4 Source 1 Red

Mm.5
31:16

15:0

Slot 3 Source 1 Red

Slot 2 Source 1 Red

Mm.4
31:16

15:0

Slot 1 Source 1 Red

Slot 0 Source 1 Red

Mm.3
31:16

15:0

Slot 7 Source 0 Red

Slot 6 Source 0 Red

Mm.2
31:16

15:0

Slot 5 Source 0 Red

Slot 4 Source 0 Red

Mm.1
31:16

15:0

Slot 3 Source 0 Red

Slot 2 Source 0 Red

Mm.0
31:16

15:0

Slot 1 Source 0 Red

Slot 0 Source 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations.

M(m+2) Slot[7:0] Blue. See Mm definition for slot locations.

M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations.

3D Media GPGPU

286 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Render Target Read and Write

Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters

contained in the message and state, it may also perform a depth and stencil buffer write and/or a

render target read for a color blend operation. Additional operations enabled in the Color Calculator

state are also initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This

message is intended only for use by pixel shader kernels for writing results to render targets.

Programming Note

Context: Render Target Read and Write

 All surface types, except SURFTYPE_STRBUF, are allowed.

 For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the surface.

The Y coordinate must be zero.

 For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input

message to provide an additional coordinate. The Render Target Array Index must be zero for

SURFTYPE_BUFFER.

 The surface format is restricted to the set supported as render target. If source/dest color blend is enabled,

the surface format is further restricted to the set supported as alpha blend render target.

 The last message sent to the render target by a thread must have the End Of Thread bit set in the message

descriptor and the dispatch mask set correctly in the message header to enable correct clearing of the pixel

scoreboard.

 The stateless model cannot be used with this message (Binding Table Index cannot be 255).

 This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader

kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined

behavior.

 The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to

anything other than RTROTATE_0DEG.

 This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

 If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each

SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same Slot

Group Select setting.

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the

surface. The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input

message to provide an additional coordinate. The Render Target Array Index must be zero for

SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is

enabled, the surface format is further restricted to the set supported as alpha blend render target.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 287

The last message sent to the render target by a thread must have the End Of Thread bit set in the

message descriptor and the dispatch mask set correctly in the message header to enable correct

clearing of the pixel scoreboard.

The stateless model cannot be used with this message (Binding Table Index cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader

kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined

behavior.

The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to

anything other than RTROTATE_0DEG.

This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each

SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same

Slot Group Select setting.

Project-Specific Restrictions

 Programming Note

Context: Render Target Read and Write

Execution Mask. For messages without header, the execution mask for render target messages (sent as part of

the channel enables on the obus sideband) is used to kill pixels.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and do not modify

memory. However, if the Render Target Array Index is out of bounds, it is set to zero and the surface

write is not surpressed.

The following table indicates the surface formats supported by this message with project restrictions

and whether each format supports Alpha Blend.

Surface Format Name Alpha Blend?

R32G32B32A32_FLOAT Yes

R32G32B32A32_SINT No

R32G32B32A32_UINT No

R16G16B16A16_UNORM Yes

R16G16B16A16_SNORM Yes

R16G16B16A16_SINT No

R16G16B16A16_UINT No

R16G16B16A16_FLOAT Yes

R32G32_FLOAT Yes

R32G32_SINT No

R32G32_UINT No

R16G16B16X16_FLOAT Yes

B8G8R8A8_UNORM Yes

3D Media GPGPU

288 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Surface Format Name Alpha Blend?

B8G8R8A8_UNORM_SRGB Yes

R10G10B10A2_UNORM Yes

R10G10B10A2_UINT No

R8G8B8A8_UNORM Yes

R8G8B8A8_UNORM_SRGB Yes

R8G8B8A8_SNORM Yes

R8G8B8A8_SINT No

R8G8B8A8_UINT No

R16G16_UNORM Yes

R16G16_SNORM Yes

R16G16_SINT No

R16G16_UINT No

R16G16_FLOAT Yes

B10G10R10A2_UNORM Yes

B10G10R10A2_UNORM_SRGB Yes

R11G11B10_FLOAT Yes

R32_SINT No

R32_UINT No

R32_FLOAT Yes

B8G8R8X8_UNORM Yes

B8G8R8X8_UNORM_SRGB Yes

B5G6R5_UNORM Yes

B5G6R5_UNORM_SRGB Yes

B5G5R5A1_UNORM Yes

B5G5R5A1_UNORM_SRGB Yes

B4G4R4A4_UNORM Yes

B4G4R4A4_UNORM_SRGB Yes

R8G8_UNORM Yes

R8G8_SNORM Yes

R8G8_SINT No

R8G8_UINT No

R16_UNORM Yes

R16_SNORM Yes

R16_SINT No

R16_UINT No

R16_FLOAT Yes

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 289

Surface Format Name Alpha Blend?

B5G5R5X1_UNORM Yes

B5G5R5X1_UNORM_SRGB Yes

A1B5G5R5_UNORM Yes

A4B4G4R4_UNORM Yes

R8_UNORM Yes

R8_SNORM Yes

R8_SINT No

R8_UINT No

A8_UNORM Yes

A1B5G5R5_UNORM No

A4B4G4R4_UNORM No

R16G16B16X16_FLOAT No

R32G32B32X32_FLOAT No

Message Header

DWord Bits Description

M0.5 31:8 Ignored

7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread on thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0
Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill instruction

activity in the pixel shader. This mask is used to control actual writes to the color buffer. This field is

ignored by the read message, all pixels are always returned.

The bits in this mask correspond to the pixels as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

M0.1 31:0
Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row aligned

(Bits 1:0 MBZ).

Format = S31

M0.0 31:0
X offset. The X offset of the upper left corner of the block into the surface. This is a pixel offset

assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

3D Media GPGPU

290 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Shared Functions Pixel Interpolater

The Pixel Interpolator provides barycentric parameters at various offsets relative to the pixel location.

These barycentric parameters are in the same format and layout as those received in the pixel shader

dispatch. Please refer to the “Windower” chapter in the “3D Pipeline” volume for more details on

barycentric parameters.

Barycentric parameters delivered in the pixel shader payload are at pre-defined positions based on

Barycentric Interpolation Mode bits selected in 3DSTATE_WM. The pixel interpolator allows

barycentric parameters to be computed at additional locations.

Messages

The following is the message definition for the Pixel Interpolator shared function.

Programming Note

Context: Messages

Pixel Interpolator messages can only be delivered by pixel shader kernels.

Execution Mask. Each bit in the execution mask enables the corresponding slot’s barycentric parameter

return to the destination registers.

Initiating Message

This topic is currently under development.

Message Descriptor

Bits Description

19
Header Present: Specifies whether the message includes a header phase. Must be zero for all Pixel

Interpolator messages.

Format = Enable

18:17 Ignored

16
SIMD Mode. Specifies the SIMD mode of the message being sent.

Format = U1

0: SIMD8 mode

1: SIMD16 mode

15 Ignored

14
Interpolation Mode. Specifies which interpolation mode is used.

Format = U1

0: Perspective Interpolation

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 291

Bits Description

1: Linear Interpolation

Programming Note

Context: Message Descriptor

This field cannot be set to “Linear Interpolation” unless Non-Perspective Barycentric Enable in

3DSTATE_CLIP is enabled.

13:12
Message Type. Specifies the type of message being sent when pixel-rate evaluation requested.

Format = U2

0: Per Message Offset (eval_snapped with immediate offset)

1: Sample Position Offset (eval_sindex)

2: Centroid Position Offset (eval_centroid)

3: Per Slot Offset (eval_snapped with register offset)

Programming Note

Context: Message Descriptor

When Message Type is Sample Position, requesting an attribute at sample index beyond the range

defined by the Forced Sample Count (aka NUM_RASTSAMPLES) is illegal.

11
Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the X/Y addresses and centroid position. For 8- and 16-pixel dispatches,

SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set correctly

for each message based on which slots are currently being processed.

0: SLOTGRP_LO: Choose bypassed data for slots 15:0.

1: SLOTGRP_HI: Choose bypassed data for slots 31:16.

Programming Note

Context: Message Descriptor

This field must be set to SLOTGRP_LO for SIMD8 messages. SIMD8 messages always use bypassed data

for slots 7:0.

10:8 Ignored

7:0 Message Specific Control. Refer to the sections below for the definition of these bits based on Message

Type.

3D Media GPGPU

292 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

“Per Message Offset” Message Descriptor

Bit Description

7:4
Per Message Y Pixel Offset

Specifies the Y Pixel Offset that applies to all slots.

Format = S4 2’s complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

3:0
Per Message X Pixel Offset

Specifies the X Pixel Offset that applies to all slots.

Format = S4 2’s complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

“Sample Position Offset” Message Descriptor

Bits Description

7:4
Sample Index

Specifies the sample index that applies to all slots.

[CHV, BSW]: Sample Index must not exceed the value of NUM_RASTSAMPLES when NUM_RASTSAMPLES >

1. From API, perspective, Forced Sample Count Defines the maximum allowable index in this message.

Format = U4

Range

[0, 15]

3:0 Ignored

“Centroid Position” and “Per Slot Offset” Message Descriptor

Bit Description

7:0 Ignored

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 293

Message Payload for Most Messages

This message payload applies to the following message types:

 Per Message Offset

 Sample Position Offset

 Centroid Position Offset

DWord Bit Description

M0.7:0 Ignored

SIMD8 Per Slot Offset Message Payload

This message payload applies only to the SIMD8 Per Slot Offset message type. The message length is 2.

DWord Bit Description

M0.7 31:0
Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M0.6 31:0 Slot 6 X Pixel Offset

M0.5 31:0 Slot 5 X Pixel Offset

M0.4 31:0 Slot 4 X Pixel Offset

M0.3 31:0 Slot 3 X Pixel Offset

M0.2 31:0 Slot 2 X Pixel Offset

M0.1 31:0 Slot 1 X Pixel Offset

M0.0 31:0 Slot 0 X Pixel Offset

M1.7 31:0
Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M1.6 31:0 Slot 6 Y Pixel Offset

M1.5 31:0 Slot 5 Y Pixel Offset

M1.4 31:0 Slot 4 Y Pixel Offset

M1.3 31:0 Slot 3 Y Pixel Offset

M1.2 31:0 Slot 2 Y Pixel Offset

M1.1 31:0 Slot 1 Y Pixel Offset

M1.0 31:0 Slot 0 Y Pixel Offset

3D Media GPGPU

294 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD16 Per Slot Offset Message Payload

This message payload applies only to the SIMD16 Per Slot Offset message type. The message length is

4.

DWord Bit Description

M0.7 31:0
Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M0.6 31:0 Slot 6 X Pixel Offset

M0.5 31:0 Slot 5 X Pixel Offset

M0.4 31:0 Slot 4 X Pixel Offset

M0.3 31:0 Slot 3 X Pixel Offset

M0.2 31:0 Slot 2 X Pixel Offset

M0.1 31:0 Slot 1 X Pixel Offset

M0.0 31:0 Slot 0 X Pixel Offset

M1.7 31:0 Slot 15 X Pixel Offset

M1.6 31:0 Slot 14 X Pixel Offset

M1.5 31:0 Slot 13 X Pixel Offset

M1.4 31:0 Slot 12 X Pixel Offset

M1.3 31:0 Slot 11 X Pixel Offset

M1.2 31:0 Slot 10 X Pixel Offset

M1.1 31:0 Slot 9 X Pixel Offset

M1.0 31:0 Slot 8 X Pixel Offset

M2.7 31:0
Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M2.6 31:0 Slot 6 Y Pixel Offset

M2.5 31:0 Slot 5 Y Pixel Offset

M2.4 31:0 Slot 4 Y Pixel Offset

M2.3 31:0 Slot 3 Y Pixel Offset

M2.2 31:0 Slot 2 Y Pixel Offset

M2.1 31:0 Slot 1 Y Pixel Offset

M2.0 31:0 Slot 0 Y Pixel Offset

M3.7 31:0 Slot 15 Y Pixel Offset

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 295

DWord Bit Description

M3.6 31:0 Slot 14 Y Pixel Offset

M3.5 31:0 Slot 13 Y Pixel Offset

M3.4 31:0 Slot 12 Y Pixel Offset

M3.3 31:0 Slot 11 Y Pixel Offset

M3.2 31:0 Slot 10 Y Pixel Offset

M3.1 31:0 Slot 9 Y Pixel Offset

M3.0 31:0 Slot 8 Y Pixel Offset

Writeback Message

This topic is currently under development.

SIMD8

The response length for all SIMD8 messages is 2. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord Bit Description

W0.7
31:0

Barycentric[1] for Slot 7

Format = IEEE_Float

W0.6
31:0 Barycentric[1] for Slot 6

W0.5
31:0 Barycentric[1] for Slot 5

W0.4
31:0 Barycentric[1] for Slot 4

W0.3
31:0 Barycentric[1] for Slot 3

W0.2
31:0 Barycentric[1] for Slot 2

W0.1
31:0 Barycentric[1] for Slot 1

W0.0
31:0 Barycentric[1] for Slot 0

W1.7
31:0

Barycentric[2] for Slot 7

Format = IEEE_Float

W1.6
31:0 Barycentric[2] for Slot 6

W1.5
31:0 Barycentric[2] for Slot 5

3D Media GPGPU

296 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W1.4
31:0 Barycentric[2] for Slot 4

W1.3
31:0 Barycentric[2] for Slot 3

W1.2
31:0 Barycentric[2] for Slot 2

W1.1
31:0 Barycentric[2] for Slot 1

W1.0
31:0 Barycentric[2] for Slot 0

SIMD16

The response length for all SIMD16 messages is 4. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord Bit Description

W0.7
31:0

Barycentric[1] for Slot 7

Format = IEEE_Float

W0.6
31:0 Barycentric[1] for Slot 6

W0.5
31:0 Barycentric[1] for Slot 5

W0.4
31:0 Barycentric[1] for Slot 4

W0.3
31:0 Barycentric[1] for Slot 3

W0.2
31:0 Barycentric[1] for Slot 2

W0.1
31:0 Barycentric[1] for Slot 1

W0.0
31:0 Barycentric[1] for Slot 0

W1.7
31:0

Barycentric[2] for Slot 7

Format = IEEE_Float

W1.6
31:0 Barycentric[2] for Slot 6

W1.5
31:0 Barycentric[2] for Slot 5

W1.4
31:0 Barycentric[2] for Slot 4

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 297

DWord Bit Description

W1.3
31:0 Barycentric[2] for Slot 3

W1.2
31:0 Barycentric[2] for Slot 2

W1.1
31:0 Barycentric[2] for Slot 1

W1.0
31:0

Barycentric[2] for Slot 0

Format = IEEE_Float

W2.7
31:0 Barycentric[1] for Slot 15

W2.6
31:0 Barycentric[1] for Slot 14

W2.5
31:0 Barycentric[1] for Slot 13

W2.4
31:0 Barycentric[1] for Slot 12

W2.3
31:0 Barycentric[1] for Slot 11

W2.2
31:0 Barycentric[1] for Slot 10

W2.1
31:0 Barycentric[1] for Slot 9

W2.0
31:0 Barycentric[1] for Slot 8

W3.7
31:0 Barycentric[2] for Slot 15

W3.6
31:0 Barycentric[2] for Slot 14

W3.5
31:0 Barycentric[2] for Slot 13

W3.4
31:0 Barycentric[2] for Slot 12

W3.3
31:0 Barycentric[2] for Slot 11

W3.2
31:0 Barycentric[2] for Slot 10

W3.1
31:0 Barycentric[2] for Slot 9

W3.0
31:0 Barycentric[2] for Slot 8

3D Media GPGPU

298 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Shared Functions - Unified Return Buffer (URB)

The Unified Return Buffer (URB) is a general-purpose buffer used for sending data between different

threads, and, in some cases, between threads and fixed-function units (or vice-versa). A thread accesses

the URB by sending messages.

URB Size

An URB entry is a logical entity within the URB, referenced by an entry handle and comprised of some

number of consecutive rows. A row corresponds in size to a 256-bit EU GRF register. Read/write access

to the URB is generally supported on a row-granular basis.

URB Size URB Rows URB Rows when SLM Enabled

See the Configurations volume.

URB Access

The URB can be written by the following agents:

 Command Stream (CS) can write constant data into Constant URB Entries (CURBEs) as a result of

processing CONSTANT_BUFFER commands.

 The Video Front End (VFE) fixed-function unit of the Media pipeline can write thread payload data

in to its URB entries.

 The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data into its URB

entries.

 GEN4 threads can write data into URB entries via URB_WRITE messages sent to the URB shared

function.

The URB can be read by the following agents:

 The Thread Dispatcher (TD) is the main source of URB reads. As a part of spawning a thread,

pipeline fixed-functions provide the TD with a number of URB handles, read offsets, and lengths.

The TD reads the specified data from the URB and provide that data in the thread payload pre-

loaded into GRF registers.

 The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D pipeline can read

selected parts of URB entries to extract vertex data required by the pipeline.

 The Windower (WM) FF unit reads back depth coefficients from URB entries written by the

Strip/Fan unit.

Programming Note

Context: URB Access

The CPU cannot read the URB directly.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 299

State

The URB function is stateless, with all information required to perform a function being passed in the

write message.

See URB Allocation (Graphics Processing Engine) for a discussion of how the URB is divided amongst

the various fixed functions.

FF_SYNC Messages

FF_SYNC messages pass critical information between GS/Clip threads and the GS/Clip FF units, as well

as providing GS/Clip thread synchronization (ordering). GS threads report various counts resulting from

running the GS and/or SO functions, prior to performing any output (to SOB buffers or to URB handles).

Clip threads report only the number of handles required. A message response (writeback) length of 1

GRF is indicated on the ‘send’ instruction if the thread requires response data and/or synchronization.

Refer to the GS/Clip stage chapter for details.

FF_SYNC Message Header

DWord Bits Description

M0.5 31:8 Ignored

7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique

identifier for the thread. It is used to free up resources used by the thread on thread completion.

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:7 Ignored

M0.1 31:16 Ignored

15:0
(GS-only) NumGSPrimsGenerated. The number of objects (e.g., triangles) generated by the GS

function performed by the thread. If the GS function is not enabled, this field MBZ.

Format: U16

Range: [0,1024]

M0.0 31:16
(GS-only) NumSOVertsToWrite. The number of (expanded-to-list) vertices generated by the SO

function performed by the thread. This represents the number of vertices the thread attempts to

write to the SOBs in memory, once it obtains the SVBIs in the FF_SYNC writeback. Note that

overflow may occur either (a) prior to the SVBIs being returned in the writeback or (b) in the

process of this thread outputting to the SOBs. In either case, the thread needs to check for

overflow once it receives the writeback, based on the returned SVBIs and the number of vertices it

must attempt to output.

If the SO function is not enabled, this field MBZ.

This field is ignored if the SVBI Post Increment field is set in the GS_3DSTATE, described in the 3D

pipeline volumes.

3D Media GPGPU

300 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Format: U16

Range: [0,3066] (1024-vertex tristrip = 1022 triangles = 3066 trilist vertices)

15:0
(GS-only) NumSOPrimsNeeded. The number of objects (e.g., triangles within a trilist) generated

by the SO function performed by the thread (exclusive of any SOB overflow). If the SO function is

not enabled, this field MBZ.

This field is ignored if the SVBI Post Increment field is set in the GS_3DSTATE, described in the 3D

pipeline volumes.

Format: U16

Range: [0,1024]

FF_SYNC Writeback Message

(Both GS & Clip): DWord W0.0 of the writeback data contains initial handle information. If Handle Valid

is clear, the FF unit did not have a handle available to be allocated as the initial handle – the thread

must use the URB_WRITE message to obtain the initial handle. Otherwise the Handle ID and URB Return

Handle fields are valid and can be used to write the first VUE.

(GS-only): The writeback data contains the SVBI values used as starting write indices by the GS thread. It

is the responsibility of the GS thread to perform SOB overflow processing. If the GS thread is not

performing StreamOutput and was simply using the writeback to provide GS vertex output

synchronization, the return data is to be ignored.

(Clip-only): Dwords W0.1-7 of the writeback data are ignored.

DWord Bits Description

W0.7:5 31:0 Reserved

W0.4 31:0
(GS-only): Streamed Vertex Buffer Index 3

This field represents the value of SVBI[3] that is the starting index for the GS thread. If the thread is

not performing StreamOutput, this field is ignored.

Format = U32

Range = [0,227-1]

W0.3 31:0 (GS-only) Streamed Vertex Buffer Index 2

W0.2 31:0 (GS-only) Streamed Vertex Buffer Index 1

W0.1 31:0 (GS-only) Streamed Vertex Buffer Index 0

W0.0 31:24 Reserved

23:16
Handle ID. This ID is assigned by the FF unit and links the thread to a specific entry within the FF

unit.

Format: Reserved for Implementation Use

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 301

DWord Bits Description

15:12 Reserved

11:0
URB Return Handle. This is the initial destination URB handle passed to the thread. If the thread

does output URB entries, this identifies the first destination URB entry.

Format: U12 256-bit URB Handle Address

URB Messages

This section documents the global aspects of the URB messages. The actual data stored in URB entries

differs for each fixed function – refer to 3D Pipeline and the fixed-function chapters or details on 3D

URB data formats and Media for media-specific URB data formats.

URB Handles: Unlike prior products where the URB handle contents was not specified for software use,

URB handles are now specified as offsets into the URB partition in the L3 cache, in 512-bit units. Thus,

kernels can now perform math operations on URB handles.

The End of Thread bit in the message descriptor may be set on URB messages only in threads

dispatched by the vertex shader (VS), hull shader (HS), domain shader (DS), and geometry shader (GS).

The End of Thread bit cannot be set on URB_READ* or URB_ATOMIC* messages.

Execution Mask. The low 8 bits of the execution mask on the send instruction determines which

DWords from each write data phase are written or which DWords from each read phase are written to

the destination GRF register. The execution mask is ignored on URB_ATOMIC* messages, because this is

a scalar operation that is always enabled.

Out-of-Bounds Accesses. Reads to addresses outside of the URB region allocated in the L3 cache

return 0. Writes to addresses outside of the URB region are dropped and do not modify any URB data.

Message Type

Header

Required

Shared Local Memory

Support

Stateless

Support Address Modes

Vector

Width

URB Read

HWORD

yes N/A N/A
handle + URBoffset

or

handle + URBoffset +

offset

1, 2

URB Write

HWORD

yes N/A N/A
handle + URBoffset

or

handle + URBoffset +

offset

1, 2

URB Read

OWORD

yes N/A N/A
handle + URBoffset

or

handle + URBoffset +

1, 2

3D Media GPGPU

302 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Type

Header

Required

Shared Local Memory

Support

Stateless

Support Address Modes

Vector

Width

offset

URB Write

OWORD

yes N/A N/A
handle + URBoffset

or

handle + URBoffset +

offset

1, 2

URB Atomic

MOV

yes N/A N/A handle + URBoffset 1

URB Atomic INC yes N/A N/A handle + URBoffset 1

URB Atomic

ADD

yes N/A N/A handle + URBoffset 1

“offset” is in the message payload, and is per-slot.

 “handle” is the handle address in the message header.

 “URBoffset” is the Global Offset field in the URB message descriptor.

Execution Mask

The Execution Mask specified in the ‘send’ instruction determines which DWords within each message

register are read/written to the URB.

Message Descriptor

Bit Description

19
Header Present

This bit must be 1 for all URB messages.

18 Ignored.

17
Per Slot offset: If clear, the slot offset fields in the header are ignored.

If set the slot offset fields are added to the global offset to obtain the overall offset.

Programming Notes:

 This bit must be 0 for URB_ATOMIC_* messages.

16
Ignored.

15
Swizzle Control. This field specifies which “swizzle” operation is performed on the write data. It indirectly

specifies whether one or two handles are valid.

0: URB_NOSWIZZLE

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 303

Bit Description

The message accesses a single URB entry (using URB Handle 0).

1: URB_INTERLEAVED

The message accesses two URB entries. The data is interleaved such that the upper DWords (7:4) of each

256-bit unit contain data associated with URB Handle 1, and the lower DWords (3:0) contain data associated

with URB Handle 0.

Programming Notes:

 This bit must be 0 for URB_ATOMIC_* messages.

14:4
Global Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB entry(s), as

referenced by URB Handle n, at which the data (if any) is written to or read from.

When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB entries.

If the Per Slot Offset bit is set, this offset is added to the per-slot offsets in the header to obtain the overall

offset.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.

For the URB_ATOMIC* messages, this offset is in 32-bit units instead of 256-bit units.

Format = U11

Range = [0, 1023] for URB_*_HWORD messages.

Range = [0, 2047] for URB_*_OWORD messages.

Range = [0, 2047] for URB_ATOMIC* messages.

3:0
URB Opcode

0: URB_WRITE_HWORD

1: URB_WRITE_OWORD

2: URB_READ_HWORD

3: URB_READ_OWORD

4: URB_ATOMIC_MOV

5: URB_ATOMIC_INC

6: URB_ATOMIC_ADD

7: URB_SIMD8_WRITE (see URB_SIMD8_* for descriptor details)

8: URB_SIMD8_READ (see URB_SIMD8_* for descriptor details)

9-15: Reserved

3D Media GPGPU

304 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

URB_WRITE and URB_READ

The URB_WRITE* and URB_READ* messages share the same header definition. URB_WRITE has

additional payload containing the write data, but has no writeback message. URB_READ has no payload

beyond the header (message length is always one), but always has a writeback message.

URB_WRITE_SIMD4x2 has a single-phase payload with the per-slot offsets followed by the write data,

and has no writeback message. URB_READ_SIMD4x2 has a single phase payload containing the per-slot

offsets.

Message Header

M0.5[7:0] bits in message header are used for enabling DWs in cull test, at HDC unit by HS kernel, while

writing TF data using URB write messages. Cull test is performed on outside TF and HS kernel set the

appropriate DW enable, which carry the TF for different domain types. When DW is enabled and if cull

test is positive, HS stage will be informed by HDC unit, to cull the HS handle early at HS stage itself.

DWord Bits Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:17 Ignored

16
High OWORD Enable

For URB_READ_OWORD and URB_WRITE_OWORD with NOSWIZZLE indicates whether the 128

bits of the GRF register is used.

0: 1 OWord, read into or written from the low 128 bits of the GRF register.

1: 1 OWord, read into or written from the high 128 bits of the GRF register.

15
Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask

When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1 DATA[3].

When Swizzle Control = URB_NOSWIZZLE this bit controls Vertex 0 DATA[7].

This bit is ANDed with the corresponding channel enable to determine the final channel

enable. For the URB_READ_OWORD & URB_READ_HWORD messages, when final channel

enable is 1 it indicates that Vertex 1 DATA [3] will be included in the writeback message. For

the URB_WRITE_OWORD & URB_WRITE_HWORD messages, when final channel enable is 1 it

indicates that Vertex 1 DATA [3] will be written to the surface.

0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included.

1: Vertex DATA [3] / Vertex 0 DATA[7] channel included.

14 Vertex 1 DATA [2] Channel Mask

13 Vertex 1 DATA [1] Channel Mask

12 Vertex 1 DATA [0] Channel Mask

11 Vertex 0 DATA [3] Channel Mask

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 305

DWord Bits Description

10 Vertex 0 DATA [2] Channel Mask

9 Vertex 0 DATA [1] Channel Mask

8 Vertex 0 DATA [0] Channel Mask

7:0 Reserved

M0.4 31:0
Slot 1 Offset. This field, after adding to the Global Offset field in the message descriptor,

specifies the offset (in 256-bit units) from the start of the URB entry, as referenced by URB

Handle 1, at which the data will be accessed. This field is ignored unless Swizzle Control is set

to URB_INTERLEAVED.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.

Format = U32

Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must fall

within the range [0, 1023] or behavior is undefined.

Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must fall

within the range [0, 2047] or behavior is undefined.

M0.3 31:0
Slot 0 Offset. This field, after adding to the Global Offset field in the message descriptor,

specifies the offset (in 256-bit units) from the start of the URB entry, as referenced by URB

Handle 0, at which the data will be accessed.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.

Format = U32

Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must fall

within the range [0, 1023] or behavior is undefined.

Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must fall

within the range [0, 2047] or behavior is undefined.

 31:0 Reserved.

M0.1 31:16 Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel 1 to a

specific entry within the fixed function unit. This field is ignored unless Swizzle Control

indicates Interleave mode.

15:14 Reserved.

13:0 URB Handle 1. This is the URB handle where channel 1’s results are to be written or read. This

field is ignored unless Swizzle Control indicates interleave mode.

M0.0 31:16 Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0 to a

specific entry within the fixed function unit. This field is ignored unless Swizzle Control

indicates Interleave mode.

15:14 Reserved.

13:0 URB Handle 0. This is the URB handle where channel 0’s results are to be written or read.

3D Media GPGPU

306 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

URB_WRITE_HWORD Write Data Payload

Programming Restriction: The write data payload can be between 1 and 8 message phases long.

For the URB_WRITE_HWORD messages, the message payload will be written to the URB entries

indicated by the URB return handles in the message header.

Payload Usage

URB_NOSWIZZLE The message payload contains data to be written to a single URB entry (e.g., one Vertex URB

entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle’.

URB_INTERLEAVED The message payload contains data to be written to two separate URB entries. The payload

data is provided in a high/low interleaved fashion. The Swizzle Control field of the message

descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data swizzling

applied).

Programming Note

Context: URB_NOSWIZZLE

The URB function will use (not ignore) the Channel Enables associated with this message.

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a

URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing n pairs of 4-DWord vertex

elements (where for the example, n is >2).

DWord Bit Description

M1.7 31:0 Vertex Data [7]

M1.6 31:0 Vertex Data [6]

M1.5 31:0 Vertex Data [5]

M1.4 31:0 Vertex Data [4]

M1.3 31:0 Vertex Data [3]

M1.2 31:0 Vertex Data [2]

M1.1 31:0 Vertex Data [1]

M1.0 31:0 Vertex Data [0]

M2.7 31:0 Vertex Data [15]

M2.6 31:0 Vertex Data [14]

M2.5 31:0 Vertex Data [13]

M2.4 31:0 Vertex Data [12]

M2.3 31:0 Vertex Data [11]

M2.2 31:0 Vertex Data [10]

M2.1 31:0 Vertex Data [9]

M2.0 31:0 Vertex Data [8]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 307

DWord Bit Description

… …

Mn.7 31:0 Vertex Data [8(n-1)+7]

Mn.6 31:0 Vertex Data [8(n-1)+6]

Mn.5 31:0 Vertex Data [8(n-1)+5]

Mn.4 31:0 Vertex Data [8(n-1)+4]

Mn.3 31:0 Vertex Data [8(n-1)+3]

Mn.2 31:0 Vertex Data [8(n-1)+2]

Mn.1 31:0 Vertex Data [8(n-1)+1]

Mn.0 31:0 Vertex Data [8(n-1)+0]

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing n 4-DWord vertex elements (n>1).

Programming Note

Context: URB_INTERLEAVED

 The URB function will use (not ignore) the Channel Enables associated with this message.

 Writes to overlapping addresses of vertex0 and vertex1 will have undefined write ordering.

DWord Bit Description

M1.7 31:0 Vertex 1 Data [3]

M1.6 31:0 Vertex 1 Data [2]

M1.5 31:0 Vertex 1 Data [1]

M1.4 31:0 Vertex 1 Data [0]

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

M2.7 31:0 Vertex 1 Data [7]

M2.6 31:0 Vertex 1 Data [6]

M2.5 31:0 Vertex 1 Data [5]

M2.4 31:0 Vertex 1 Data [4]

M2.3 31:0 Vertex 0 Data [7]

M2.2 31:0 Vertex 0 Data [6]

M2.1 31:0 Vertex 0 Data [5]

M2.0 31:0 Vertex 0 Data [4]

3D Media GPGPU

308 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

… …

Mn.7 31:0 Vertex 1 Data [4(n-1)+3]

Mn.6 31:0 Vertex 1 Data [4(n-1)+2]

Mn.5 31:0 Vertex 1 Data [4(n-1)+1]

Mn.4 31:0 Vertex 1 Data [4(n-1)+0]

Mn.3 31:0 Vertex 0 Data [4(n-1)+3]

Mn.2 31:0 Vertex 0 Data [4(n-1)+2]

Mn.1 31:0 Vertex 0 Data [4(n-1)+1]

Mn.0 31:0 Vertex 0 Data [4(n-1)+0]

URB_READ_HWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message

header are read and returned in the writeback message. The amount of read data returned is

determined by the Response Length field.

Programming Restriction: The writeback message can be between 1 and 8 message phases long.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The

description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB

Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE The writeback message contains data read from a single URB entry (e.g., one Vertex URB

entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle’.

URB_INTERLEAVED The writeback message contains data read from two separate URB entries. The data is

provided in a high/low interleaved fashion. The Swizzle Control field of the message

descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving

applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a

URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing n pairs of 4-

DWord vertex elements (where for the example, n is >2).

DWord Bit Description

W0.7 31:0 Vertex Data [7]

W0.6 31:0 Vertex Data [6]

W0.5 31:0 Vertex Data [5]

W0.4 31:0 Vertex Data [4]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 309

DWord Bit Description

W0.3 31:0 Vertex Data [3]

W0.2 31:0 Vertex Data [2]

W0.1 31:0 Vertex Data [1]

W0.0 31:0 Vertex Data [0]

W1.7 31:0 Vertex Data [15]

W1.6 31:0 Vertex Data [14]

W1.5 31:0 Vertex Data [13]

W1.4 31:0 Vertex Data [12]

W1.3 31:0 Vertex Data [11]

W1.2 31:0 Vertex Data [10]

W1.1 31:0 Vertex Data [9]

W1.0 31:0 Vertex Data [8]

… …

Wn.7 31:0 Vertex Data [8n+7]

Wn.6 31:0 Vertex Data [8n+6]

Wn.5 31:0 Vertex Data [8n+5]

Wn.4 31:0 Vertex Data [8n+4]

Wn.3 31:0 Vertex Data [8n+3]

Wn.2 31:0 Vertex Data [8n+2]

Wn.1 31:0 Vertex Data [8n+1]

Wn.0 31:0 Vertex Data [8n+0]

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing n 4-DWord vertex elements (n>1).

DWord Bit Description

W0.7 31:0 Vertex 1 Data [3]

W0.6 31:0 Vertex 1 Data [2]

W0.5 31:0 Vertex 1 Data [1]

W0.4 31:0 Vertex 1 Data [0]

W0.3 31:0 Vertex 0 Data [3]

W0.2 31:0 Vertex 0 Data [2]

W0.1 31:0 Vertex 0 Data [1]

W0.0 31:0 Vertex 0 Data [0]

W1.7 31:0 Vertex 1 Data [7]

W1.6 31:0 Vertex 1 Data [6]

3D Media GPGPU

310 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W1.5 31:0 Vertex 1 Data [5]

W1.4 31:0 Vertex 1 Data [4]

W1.3 31:0 Vertex 0 Data [7]

W1.2 31:0 Vertex 0 Data [6]

W1.1 31:0 Vertex 0 Data [5]

W1.0 31:0 Vertex 0 Data [4]

… …

Wn.7 31:0 Vertex 1 Data [4n+3]

Wn.6 31:0 Vertex 1 Data [4n+2]

Wn.5 31:0 Vertex 1 Data [4n+1]

Wn.4 31:0 Vertex 1 Data [4n+0]

Wn.3 31:0 Vertex 0 Data [4n+3]

Wn.2 31:0 Vertex 0 Data [4n+2]

Wn.1 31:0 Vertex 0 Data [4n+1]

Wn.0 31:0 Vertex 0 Data [4n+0]

URB_WRITE_OWORD Write Data Payload

For the URB_WRITE_OWORD messages, the message payload will be written to the URB entries

indicated by the URB return handles in the message header.

Payload Usage

URB_NOSWIZZLE The message payload contains data to be written to a single URB entry (e.g., one Vertex URB

entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle’.

URB_INTERLEAVED The message payload contains data to be written to two separate URB entries. The payload

data is provided in a high/low interleaved fashion. The Swizzle Control field of the message

descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into a single 128-bit URB location (no data swizzling

applied).

Programming Note

Context: URB_NOSWIZZLE

The URB function will use (not ignore) the Channel Enables associated with this message.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 311

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a

URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements

and HIGH OWORD ENABLE is 0.

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Ignored

M1.5 31:0 Ignored

M1.4 31:0 Ignored

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a

URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements

and HIGH OWORD ENABLE is 1.

DWord Bit Description

M1.7 31:0 Vertex 0 Data [3]

M1.6 31:0 Vertex 0 Data [2]

M1.5 31:0 Vertex 0 Data [1]

M1.4 31:0 Vertex 0 Data [0]

M1.3 31:0 Ignored

M1.2 31:0 Ignored

M1.1 31:0 Ignored

M1.0 31:0 Ignored

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing 4-DWord vertex elements.

Programming Note

Context: URB_INTERLEAVED

 The URB function will use (not ignore) the Channel Enables associated with this message.

 Writes to overlapping addresses of vertex0 and vertex1 will have undefined write ordering.

DWord Bit Description

M1.7 31:0 Vertex 1 Data [3]

M1.6 31:0 Vertex 1 Data [2]

3D Media GPGPU

312 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

M1.5 31:0 Vertex 1 Data [1]

M1.4 31:0 Vertex 1 Data [0]

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

URB_READ_OWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message

header are read and returned in the writeback message. The amount of read data returned is

determined by the Response Length field.

Programming Note

Context: URB_READ_OWORD Writeback Message

Response Length must be set to 1.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The

description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB

Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE The writeback message contains data read from a single URB entry (e.g., one Vertex URB

entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle’.

URB_INTERLEAVED The writeback message contains data read from two separate URB entries. The data is

provided in a high/low interleaved fashion. The Swizzle Control field of the message

descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving

applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a

URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord

vertex elements and HIGH OWORD ENABLE is 0.

DWord Bit Description

W0.7 31:0 Reserved (not written to GRF)

W0.6 31:0 Reserved (not written to GRF)

W0.5 31:0 Reserved (not written to GRF)

W0.4 31:0 Reserved (not written to GRF)

W0.3 31:0 Vertex Data [3]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 313

DWord Bit Description

W0.2 31:0 Vertex Data [2]

W0.1 31:0 Vertex Data [1]

W0.0 31:0 Vertex Data [0]

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a

URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord

vertex elements and HIGH OWORD ENABLE is 1.

DWord Bit Description

W0.7 31:0 Vertex Data [3]

W0.6 31:0 Vertex Data [2]

W0.5 31:0 Vertex Data [1]

W0.4 31:0 Vertex Data [0]

W0.3 31:0 Reserved (not written to GRF)

W0.2 31:0 Reserved (not written to GRF)

W0.1 31:0 Reserved (not written to GRF)

W0.0 31:0 Reserved (not written to GRF)

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing 4-DWord vertex elements.

DWord Bit Description

W0.7 31:0 Vertex 1 Data [3]

W0.6 31:0 Vertex 1 Data [2]

W0.5 31:0 Vertex 1 Data [1]

W0.4 31:0 Vertex 1 Data [0]

W0.3 31:0 Vertex 0 Data [3]

W0.2 31:0 Vertex 0 Data [2]

W0.1 31:0 Vertex 0 Data [1]

W0.0 31:0 Vertex 0 Data [0]

3D Media GPGPU

314 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

URB_ATOMIC

The URB_ATOMIC messages implement atomic operations on a single DWord in the URB. The location

of the DWord within the URB is specified by the single URB handle and the Global Offset field in the

message descriptor, which for these messages is a DWord offset from the URB handle. The DWord

selected is operated on according to the following table:

URB Opcode new_dst ret

URB_ATOMIC_MOV 0 none

URB_ATOMIC_INC old_dst + 1 old_dst

URB_ATOMIC_ADD old_dst + src0 old_dst

The previous contents of the DWord are returned in the destination register for operations that update

the DWord value, such as URB_ATOMIC_INC. The URB_ATOMIC_MOV opcode does not return data

(response length must be zero).

The URB_ATOMIC* messages consist only of the header. A single URB handle is specified.

Message Header

DWord Bits Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0
Source0 Data

Specifies the source 0 data for the atomic operation. This field is ignored for the URB_ATOMIC_INC

message.

Format = U32

M0.1 31:0 Ignored

M0.0 31:16 Ignored

15:0 URB Handle. The URB handle to access.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 315

Writeback Message

A writeback message is only returned for URB atomic operations that update the DWord value, such as

URB_ATOMIC_INC. Only the low 32 bits of the destination GRF register are overwritten with the return

data.

DWord Bits Description

W0.7:1 Reserved (not written to GRF)

W0.0 31:0
Return Data

Specifies the value of the return data for the atomic operation.

Format = U32

3D Media GPGPU

316 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

URB_SIMD8_Write and URB_SIMD8_Read

Programming Note

Context: URB_SIMD8_Write and URB_SIMD8_Read

The constant, sampler, and render caches are always non-coherent.

Message Descriptor

Bit Description

19
Header Present

This bit must be set to one for all URB messages.

18 Ignored

17
Per Slot offset Present: If clear, then slot offset message phase is absent.

If set then slot offset message phase is present and the per slot offsets are added to the global offset to

obtain the overall offset.

16
Ignored

15 Channel Mask Present: If clear then the channel Mask Message phase is not present.

If set then the channel mask message phase is present and will be used to mask data elements read or

written.

14:4 Global Offset. This field specifies a destination offset (in 128-bit units) from the start of the URB entry(s), as

referenced by URB Handle n, at which the data (if any) will be written to or read from.

If the Per Slot Offset bit is set, this offset is added to the per-slot offsets in the header to obtain the overall

offset.

Format = U11

Range = [0, 2047]

3:0 URB Opcode

0: URB_WRITE_HWORD

1: URB_WRITE_OWORD

2: URB_READ_HWORD

3: URB_READ_OWORD

4: URB_ATOMIC_MOV

5: URB_ATOMIC_INC

6: URB_ATOMIC_ADD

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 317

Bit Description

7: URB_SIMD8_WRITE

8: URB_SIMD8_READ

9-15: Reserved

Message Header

DWord Bits Description

M0.7 31:16 Handle ID 7. This ID is assigned by the fixed function unit and links the work in channel 7 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 7. This is the URB handle where channel 7’s results are written or read.

M0.6 31:16 Handle ID 6. This ID is assigned by the fixed function unit and links the work in channel 6 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 6. This is the URB handle where channel 6’s results are written or read.

M0.5 31:16 Handle ID 5. This ID is assigned by the fixed function unit and links the work in channel 5 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 5. This is the URB handle where channel 5’s results are written or read.

M0.4 31:16 Handle ID 4. This ID is assigned by the fixed function unit and links the work in channel 4 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 4. This is the URB handle where channel 4’s results are written or read.

M0.3 31:16 Handle ID 3. This ID is assigned by the fixed function unit and links the work in channel 3 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 3. This is the URB handle where channel 3’s results are written or read.

M0.2 31:16 Handle ID 2. This ID is assigned by the fixed function unit and links the work in channel 2 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 2. This is the URB handle where channel 2’s results are written or read.

M0.1 31:16 Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel 1 to a

specific entry within the fixed function unit.

15:14 Reserved

13:0 URB Handle 1. This is the URB handle where channel 1’s results are written or read.

M0.0 31:16 Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0 to a

specific entry within the fixed function unit.

15:14 Reserved

3D Media GPGPU

318 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

13:0 URB Handle 0. This is the URB handle where channel 0’s results are written or read.

Per Slot Offset Message Phase

When the Per Slot offset Present bit in the descriptor is set then the Per slot offset message phase is

sent by the EUs. The per slot message phase occurs immediately after the header.

DWord Bit Description

M1.7 31:0
Slot 7 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 7, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.6 31:0
Slot 6 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 6, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.5 31:0
Slot 5 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 5, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.4 31:0
Slot 4 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 4, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.3 31:0
Slot 3 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 3, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.2 31:0
Slot 2 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 2, at

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 319

DWord Bit Description

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.1 31:0
Slot 1 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 1, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

M1.0 31:0
Slot 0 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies

the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 0, at

which the data will be accessed.

Format = U32

Range = [0, 2047]

Channel Mask Message Phase

When the Channel Mask Present bit in the descriptor is set then the channel mask message phase is

sent by the EUs. The channel mask message phase occurs after the per slot message phase if the per

slot message phase exists else it occurs after the header.

DWord Bit Description

M2.7
31:24 Reserved.

23
Vertex 7 DATA [7] Channel Mask

This bit is ANDed with the corresponding channel enable to determine the final channel enable.

For the URB_SIMD8_READ messages, when final channel enable is 1 it indicates that Vertex 7

DATA [7] will be included in the writeback message. For the URB_SIMD8_WRITE messages, when

final channel enable is 1 it indicates that Vertex 7 DATA [7] will be written to the surface.

0: Vertex 7 DATA [7] channel not included

1: Vertex 7 DATA [7] channel included

22 Vertex 7 DATA [6] Channel Mask

21 Vertex 7 DATA [5] Channel Mask

20 Vertex 7 DATA [4] Channel Mask

19 Vertex 7 DATA [3] Channel Mask

18 Vertex 7 DATA [2] Channel Mask

17 Vertex 7 DATA [1] Channel Mask

16 Vertex 7 DATA [0] Channel Mask

3D Media GPGPU

320 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

15:0 Reserved.

M2.6
31:24 Reserved.

23:16 Vertex 6 DATA [7:0] Channel Mask

15:0 Reserved.

M2.5
31:24 Reserved.

23:16 Vertex 5 DATA [7:0] Channel Mask

 15:0 Reserved.

M2.4
31:24 Reserved.

23:16 Vertex 4 DATA [7:0] Channel Mask

15:0 Reserved.

M2.3
31:24 Reserved.

23:16 Vertex 3 DATA [7:0] Channel Mask

15:0 Reserved.

M2.2
31:24 Reserved.

23:16 Vertex 2 DATA [7:0] Channel Mask

15:0 Reserved.

M2.1
31:24 Reserved.

23:16 Vertex 1 DATA [7:0] Channel Mask

 15:0 Reserved.

M2.0
31:24 Reserved.

23:16 Vertex 0 DATA [7:0] Channel Mask

15:0 Reserved.

Write Data Payload

The write data payload can be between 1 and 8 message phases long.

DWord Bit Description

M3.7 31:0 Vertex 7 DATA [0]

M3.6 31:0 Vertex 6 DATA [0]

M3.5 31:0 Vertex 5 DATA [0]

M3.4 31:0 Vertex 4 DATA [0]

M3.3 31:0 Vertex 3 DATA [0]

M3.2 31:0 Vertex 2 DATA [0]

M3.1 31:0 Vertex 1 DATA [0]

M3.0 31:0 Vertex 0 DATA [0]

… … …

M10.7 31:0 Vertex 7 DATA [7]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 321

DWord Bit Description

M10.6 31:0 Vertex 6 DATA [7]

M10.5 31:0 Vertex 5 DATA [7]

M10.4 31:0 Vertex 4 DATA [7]

M10.3 31:0 Vertex 3 DATA [7]

M10.2 31:0 Vertex 2 DATA [7]

M10.1 31:0 Vertex 1 DATA [7]

M10.0 31:0 Vertex 0 DATA [7]

Writeback Message

The writeback message can be between 1 and 8 message phases long.

DWord Bit Description

M0.7 31:0 Vertex 7 DATA [0]

M0.6 31:0 Vertex 6 DATA [0]

M0.5 31:0 Vertex 5 DATA [0]

M0.4 31:0 Vertex 4 DATA [0]

M0.3 31:0 Vertex 3 DATA [0]

M0.2 31:0 Vertex 2 DATA [0]

M0.1 31:0 Vertex 1 DATA [0]

M0.0 31:0 Vertex 0 DATA [0]

… … …

M7.7 31:0 Vertex 7 DATA [7]

M7.6 31:0 Vertex 6 DATA [7]

M7.5 31:0 Vertex 5 DATA [7]

M7.4 31:0 Vertex 4 DATA [7]

M7.3 31:0 Vertex 3 DATA [7]

M7.2 31:0 Vertex 2 DATA [7]

M7.1 31:0 Vertex 1 DATA [7]

M7.0 31:0 Vertex 0 DATA [7]

3D Media GPGPU

322 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Gateway

The Message Gateway shared function provides a mechanism for active thread-to-thread communication. Such

thread-to-thread communication is based on direct register access. One thread, a requester thread, is capable of

writing into the GRF register space of another thread, a recipient thread. Such direct register access between two

threads in a multi-processor environment some time is referred to as remote register access. Remote register

access may include read or write. The architecture supports remote register write, but not remote register read

(natively). Message Gateway facilitates such remote register write via message passing. The requester thread sends

a message to Message Gateway requesting a write to the recipient thread’s GRF register space. Message Gateway

sends a writeback message to the recipient thread to complete the register write on behalf of the requester. The

requester thread and the recipient thread may be on the same EU or on different EUs.

Please see Thread Spawn Message Section of Media Chapter for child thread termination using Message Gateway

messages with EOT bit set.

When Bypass Gateway Control is set to 1, the commands OpenGateway and CloseGateway are no longer used, the

gateway parameters are taking the default values as the following:

 RegBase = 0

 Gateway Size check and Key check are bypassed.

 Gateway Open (an internal signal that is used to be set by OpenGateway message) check is bypassed

A separate Gateway exists per half-slice in the architecture. For ForwardMsg this is handled transparently, but

barriers can only be accessed by threads in the local half-slice. This means that all threads that access a shared

barrier need to use the half-slice select in GPGPU_OBJECT and MEDIA_OBJECT to stay on a single half-slice.

GPGPU_WALKER handles this automatically.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 323

Messages

Message Gateway supports such thread-to-thread communication with the following messages:

 OpenGateway: Opens a gateway for a requester thread. Once a thread successfully opens its

gateway, it can be a recipient thread to receive remote register write.

 CloseGateway: Closes the gateway for a requester thread. Once a thread successfully closes its

gateway, Message Gateway blocks any future remote register writes to this thread.

 ForwardMsg: Forwards a formatted message (remote register write) from a requester thread to a

recipient thread.

 GetTimeStamp: Reads absolute and relative timestamps for a requester thread.

 BarrierMsg: A set of threads sends this message to the Gateway. When all threads in a group

have sent the message, a reply (both a register write and an N0 notification) is sent to each

member of the group.

 UpdateGatewayState: Updates the internal state of the Message Gateway.

One example usage is to allow a control thread to change Barrier Byte to convey dynamic state

information. This may be used to support interrupt when persistent compute/worker threads are

synchronized using Barrier.

MMIO Read/Write: allows a message to read or write an MMIO register. The MEDIA_VFE_STATE command has a

field which limits the accesses for security.

Message Descriptor

The following message descriptor applies to all messages supported by Message Gateway.

Bits Description

19 Header Present. This bit must be 0 for all Message Gateway messages.

18:17 Ignored.

16:15
Notify. Send Notification Signal. This is a two-bit field indicating which notify event is sent.

00b: No notify.

01b: Increment recipient thread’s N0 notification counter.

10b: Increment recepient thread’s N2 notification counter.

11b: Reserved.

This field is only valid for a ForwardMsg message. It is ignored for other messages. The BarrierMsg

message always increments the N0 notification counter.

14
AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return message is required.

Message Gateway sends a writeback message containing the error code to the requester thread using the

post destination register address. When this bit is 0, no writeback message is sent to the requesting

3D Media GPGPU

324 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

thread by Message Gateway, even if an error occurs.

This field is valid for OpenGateway, CloseGateway, ForwardMsg, and BarrierMsg messages.

When this bit is 1, post destination register must be valid and the response length must be 1.

When this bit is 0, post destination register must be null and the response length must be 0.

This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined.

0: No Acknowledgement is required.

1: Acknowledgement is required.

13:3 Reserved: MBZ

2:0
SubFuncID. Identify the supported sub-functions by Message Gateway. Encodings are:

000b: OpenGateway. Open the gateway for the requester thread.

001b: CloseGateway. Close the gateway for the requester thread.

010b: ForwardMsg. Forward the formatted message to the recipient thread with the given offset from

the recipient’s register base.

011b: GetTimeStamp. Read absolute and relative timestamps.

100b: BarrierMsg. Record an additional thread reaching the barrier.

101b: UpdateGatewayState. Update the barrier byte for a barrier.

Value Description

110b Reserved.

110b MMIO Read/Write.

111b: Reserved.

OpenGateway Message

The OpenGateway message opens a communication channel between the requesting thread and other

threads. It specifies a key for other threads to access its gateway, as well as the GRF register range

allowed to be written. The message consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting

thread after completion of the OpenGateway function. Only the least significant DWord in the post

destination register is overwritten.

If the EOT is set for this message, Message Gateway ignores this message; instead, it closes the gateway

for the requesting thread regardless of the previous state of the gateway.

It is software’s policy to determine how to generate the key.

The BarrierMsg command does not use an OpenGateway message.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 325

Message Payload

DWord Bits Description

M0.5 31:29 Reserved: MBZ

28:21
RegBase: The register base address to be stored in the Message Gateway. It is used to compute

the destination GRF register address from the offset field in ForwardMsg. RegBase contains 256-

bit GRF aligned register address.

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for

ForwardMsg.

Note 2: The most significant bit of this field must be zero.

Format = U8

Range = [0,127]

20:11 Reserved: MBZ

10:8
Gateway Size: The range limit for messages through the Message Gateway.

000b: 1 GRF Register

001b: 2 GRF Registers

010b: 4 GRF Registers

011b: 8 GRF Registers

100b: 16 GRF Registers

101b: 32 GRF Registers

110b: 64 GRF Registers

111b: 128 GRF Registers

7:0
Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function (therefore, not a child

thread) and EOT bit is set for the message.

M0.4 31:16 Reserved: MBZ

15:0 Reserved: MBZ.

M0.3:0 31:0 Ignored

3D Media GPGPU

326 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bits Description

W0.7:1 31:0 Reserved (not overwritten)

W0.0 31:20 Reserved

19:16 Shared Function ID. The message gateway’s shared function ID.

15:3 Reserved

2:0
Error Code

000b: Successful. No Error (Normal).

101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

Other codes: Reserved.

CloseGateway Message

The CloseGateway message closes a communication channel for the requesting thread that was

previously opened with OpenGateway. Each thread is allowed to have only one open gateway at a time,

thus no additional information in the message payload is required to close the gateway. The message

consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting

thread after completing the CloseGateway function. Only the least significant DWord in the post

destination register is overwritten.

Programming Note

Context: CloseGateway Message

The BarrierMsg command does not use a CloseGateway message.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 327

Message Payload

DWord Bit Description

M0.7:6 Ignored

M0.5
31:8 Ignored

7:0
Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a child

thread) and EOT bit is set for the message.

M0.4:0 Ignored

3D Media GPGPU

328 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway’s shared function ID.

 15:3 Reserved

2:0
Error Code

000: Successful. No Error (Normal)

101: Opcode Error. Attempt to send a message which is not either open/close/forward

other codes: Reserved

ForwardMsg Message

The ForwardMsg message gives the ability for a requester thread to write a data segment in the form

of a byte, a dword, 2 dwords, or 4 dwords to a GRF register in a recipient thread. The message consists

of a single 256-bit message payload, which contains the specially formatted data segment.

The ForwardMsg message utilizes a communication channel previously opened by the recipient thread.

The recipient thread has communicated its EUID, TID, and key to the requester thread previously via

some other mechanism. Generally, this is done through the thread spawn message from parent to child

thread, allowing each child (requester) to then communicate with its parent through a gateway opened

by the parent (recipient). The child could then use ForwardMsg message to communicate its own EUID,

TID, and key back to the parent to enable bi-directional communication after opening its own gateway.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requester thread

after completion of the ForwardMsg function. Only the least significant DWord in the post destination

register is overwritten.

If the Notify bit in the message descriptor is set, a ‘notification’ is sent to the recipient thread in order to

increment the recipient thread’s notification counter. This allows multiple messages to be sent to the

recipient without waking up the recipient thread. The last message, having this bit set, will then wake up

the recipient thread.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 329

Message Payload

DWord Bits Description

M0.5 31:29 Reserved: MBZ

28:16
Offset: It provides the destination register position in the recipient thread GRF

register space as the offset from the RegBase stored in the recipient thread’s

gateway entry. The offset is in unit of byte, such that bits [28:21] is the 256-bit

aligned register offset and bits [4:0] is the sub-register offset. The sub-register

offset must be aligned to the Length field in bits [10:8]. The subfields of Offset are

further illustrated as the following.

Offset[28:21]: Register offset from the gateway base (Range [0, 127]: bit 12 MBZ)

Offset[20:18]: DW offset

Offset[17:16]: Byte offset (must be 00b for all DW length cases)

Programming Restriction: R0 cannot be used as destination GRF register for

ForwardMsg. NULL register is also not allowed as destination.

15:11 Reserved: MBZ

10:8
Length: The length of the data segment.

000: 1 byte

001: 1 word

010: 1 DWord

011: 2 DWords

100: 4 DWords

101-111: Reserved

7:0
Dispatch ID: This ID is assigned by the fixed function unit and is a unique

identifier for the thread. It is used to free up resources used by the thread upon

thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function

(therefore, not a child thread) and EOT bit is set for the message.

M0.4 31:30 Ignored

31:30 SliceID: The SliceID identifies the slice of the message destination EU. The

behavior of sending a message to a non-existent or disabled slice is undefined.

29:28 SubSliceID: The sub-slice ID identifies the sub-slice containing the message

destination EU. The behavior of sending a message to a non-existent or disabled

slice is undefined.

27:24 EUID: The Execution Unit ID as part of the Recipient field is used to identify the

recipient thread to which the message is forwarded.

3D Media GPGPU

330 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

23:19 Ignored

18:16 TID: The Thread ID as part of the Recipient field is used to identify the recipient

thread to which the message is forwarded.

15:0
Key: The key to match with the one stored in the recipient thread’s entry in

Message Gateway.

CHV, BSW: Ignored.

 28:26 SliceID: The Slice ID as part of the Recipient field is used to identify the slice

containing the EU to which the message is forwarded.

 25:24 SubSliceID: The sub-slice ID identifies the sub-slice containing the message

destination EU. The behavior of sending a message to a non-existent or disabled

slice is undefined.

 23:20 EUID: The Execution Unit ID as part of the Recipient field is used to identify the

recipient thread to which the message is forwarded.

 19 Ignored

 18:16 TID: The Thread ID as part of the Recipient field is used to identify the recipient

thread to which the message is forwarded.

 15:0 Ignored

M0.3 31:0 Data Segment DWord 3: Valid only for the 4-DWord data segment length.

M0.2 31:0 Data Segment DWord 2: Valid only for the 4-DWord data segment length.

M0.1 31:0 Data Segment Dword 1: Valid only for the 2- and 4-DWord data segment

lengths.

M0.0 31:24
Data Segment Byte 0: The same byte must be copied to all four positions within

this DWord. Valid only for the 1-Byte data segment length.

Data Segment Dword 0: Valid only for the 1-, 2-, and 4-DWord data segment

lengths.

23:16 Data Segment Byte 0

15:8 Data Segment Byte 0

7:0 Data Segment Byte 0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 331

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bits Description

W0.7:1 31:0 Reserved (not overwritten)

W0.0 31:20 Reserved

19:16 Shared Function ID. The message gateway’s shared function ID.

15:3 Reserved

2:0
Error Code

000b: Successful. No Error (Normal).

001b: Reserved.

010b: Gateway Closed. Attempt to send a message through a closed gateway.

011b: Reserved.

100b: Reserved.

101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

110b: Invalid Message Size. Attempt to forward a message with length greater than 4 DWords.

111b: Reserved.

Writeback Message to Recipient Thread

This message contains the byte or dwords data segment indicated in the message written to the GRF

register offset indicated. Only the byte/dword(s) will be enabled, all other data in the GRF register is

untouched.

GetTimeStamp Message

The GetTimeStamp message gives the ability for a requester thread to read the timestamps back from

the message gateway. The message consists of a single 256-bit message payload.

AbsoluteTimeLap is based on an absolute wall clock in unit of nSec/uSec that is independent of context

switch or GPU frequency adjustment. Message Gateway shares the same GPU timestamp. Details can be

found in the TIMESTAMP register section in vol1c Memory Interface and Command Stream.

RelativeTimeLap is based on a relative time count that is counting the GPU clocks for the context. The

relative time count is saved/restored during context switch.

3D Media GPGPU

332 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Payload

DWord Bits Description

M0.5 31
Return to High GRF:

0: The return 128-bit data goes to the first half of the destination GRF register.

1: The return 128-bit data goes to the second half of the destination GRF register.

30:8 Reserved: MBZ

7:0
Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function (therefore, not a child

thread) and EOT bit is set for the message.

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 333

Writeback Message to Requester Thread

As the writeback message is only sent if the AckReq bit in the message descriptor is set, AckReq bit

must be set for this message.

Only half of the destination GRF register is updated (via write-enables). The other half of the register is

not changed. This is determined by the Return to High GRF control field.

Writeback Message if Return to High GRF is set to 0:

DWord Bit Description

W0.7:4 Reserved (not overwritten)

W0.3 31:0
RelativeTimeLapHigh: This field returns the MSBs of time lap for the relative clock since the

previous reset. This field represents 1.024 uSec increment of the time stamp. Hardware handles

the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

W0.2
31:20

RelativeTimeLapLow: This field returns the LSBs of time lap for the relative clock since the

previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware handles the

wraparound (over 64 bit boundary) of the timestamp.

Format: U12

19:0 Reserved : MBZ

W0.1 31:0
AbsoluteTimeLapHigh: This field returns the MSBs of time lap for the absolute clock since the

previous reset. This field represents 1.024 uSec increment of the time stamp. Hardware handles

the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

W0.0
31:20

AbsoluteTimeLapLow: This field returns the LSBs of time lap for the absolute clock since the

previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware handles the

wraparound (over 64 bit boundary) of the timestamp.

Format: U12

19:0 Reserved : MBZ

3D Media GPGPU

334 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message if Return to High GRF is set to 1:

DWord Bit Description

W0.7 31:0 RelativeTimeLapHigh

W0.6
31:20 RelativeTimeLapLow

19:0 Reserved : MBZ

W0.5 31:0 AbsoluteTimeLapHigh

W0.4
31:20 AbsoluteTimeLapLow

19:0 Reserved : MBZ

W0.3:0 Reserved : MBZ

BarrierMsg Message

The BarrierMsg message gives the ability for multiple threads to synchronize their progress. This is

useful when there are data shared between threads. The message consists of a single 256-bit message

payload.

Upon receiving one such message, Message Gateway increments the Barrier counter and marks the

Barrier requester thread. There is no immediate response from the Message Gateway when the

incremented counter is not equal to the terminating thread count. When the incremented counter value

does equal the Barrier Thread Count, Message Gateway sends a response back to all the Barrier

requester threads and resets the Barrier count to zero.

Programming Note

Context: BarrierMsg Message

The Message Gateway assumes that the barrier ID sent in barrier message payload is valid and was allocated by

TSG. In the event of a programming error specifying an invalid barrier ID, the results are undefined, and may cause

the Message Gateway to stop responding to barrier messages for any thread that it services.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 335

Message Payload

DWord Bits Description

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31 Ignored

30 Ignored

29:28 Ignored

27:24
BarrierID. This field indicates which one from the 16 Barrier States is updated.

Format: U4

Note: This field location matches with that of R0 header.

23:16 Ignored

15
Barrier Count Enable. Allows the message to reprogram the terminating barrier count. If set, the

stored value of the terminating barrier count is set to the value of Barrier Count field (below), and

used for this barrier operation. If clear, the stored value of the terminating barrier count is not

modified and the stored value is used for this barrier operation.

Programming Note: This control is intended only for Hull Shader threads. Do not use this control

if the barrier is linked with other barriers in other subslices

Format: Enable

14:9 Barrier Count. If Barrier Count Enable is set, this field specifies the terminating barrier count.

Otherwise this field is ignored. All threads that belong to a single barrier must deliver the same

value for this field for a particular barrier iteration.

8:0 Ignored

M0.1 31:0 Ignored

M0.0 31:4 Ignored

3D Media GPGPU

336 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Writeback Message to Requester Thread

The writeback message is sent only if the AckReq bit in the message descriptor is set.

DWord Bits Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

19:16 Shared Function ID. Contains the message gateway’s shared function ID.

15:3 Reserved

2:0
Error Code

000: Successful. No Error (Normal).

001: Error (Barrier is inactive) [CHV, BSW]

Other encodings are reserved.

Broadcast Writeback Message

Description

When the count for a Barrier reaches Barrier.Count, the Message Gateway sends the notification bit N0 to each

EU/Thread that reached the barrier. A Barrier Return Byte is not sent.

DWord Bits Description

W0.7:1 Reserved (not overwritten)

W0.0
31:16 Reserved (not overwritten)

15:8 Reserved (not overwritten)

7:0 Reserved (not overwritten)

MMIOReadWrite Message

MMIO read/write is not allowed to registers that are associated with a particular slice.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 337

Message Payload

DWord Bits Description

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:1 Ignored

0
MMIO R/W:

0 – MMIO Read – A response is sent to the EU with read data.

1 – MMIO Write – No response is sent to EU (unless acknowledge is requested in sideband).

M0.2 31:28 Ignored

22:0
MMIO Address:

The MMIO Byte address to be accessed.

The bottom 2 bits must be zero.

M0.1 31:0 Ignored

M0.0 31:0 MMIO Write Data (Only if MMIO R/W = 1, otherwise ignored).

Writeback Message to Requester Thread (MMIO Read Only)

DWord Bit Description

R0.7 31:0 Ignored

R0.6 31:0 Ignored

R0.5 31:0 Ignored

R0.4 31:0 Ignored

R0.3 31:0 Ignored

R0.2 31:0 Ignored

R0.1 31:0 Ignored

R0.0 31:0 MMIO Read Data

3D Media GPGPU

338 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Media Sampler

This section describes the functionality of the Media Sampler.

Shared Functions – Video Motion Estimation

The Video Motion Estimation (VME) engine is a shared function that provides motion estimation

services. It includes motion estimation for various block sizes and also standard specific operations such

as

 Motion estimation and mode decision for AVC

 Intra prediction and mode decision for AVC

 Motion estimation and mode decision for MPEG2

 Motion estimation and mode decision for VC1

The motion estimation engine may also be used for other coding standards or other video processing

applications.

Theory of Operation

VME performs a sequence of operations to find the best mode for a given macroblock. Each operation

step can be enabled/disabled through the control of the income message. Early termination, skipping of

subsequent operation steps, is also supported when certain search criteria are met.

VME contains the following operation steps:

1. Skip check

2. IME: Integer motion estimation

3. FME: Fractional motion estimation

4. BME: Bidirectional motion estimation

5. IPE: Intra prediction estimation (AVC only)

Shape Decision

As a terminology, we call sub-block shapes: 8x4, 4x8, and 4x4 minor shapes (corresponding to sub-

partitions of 8x8 sub-macroblock), and 16x16, 16x8, 8x16, and 8x8 major shapes (corresponding to sub-

macroblocks of a 16x16 macroblock).

If the maximal allowed number of motion vectors MaxNumMVs (MaxNumMVs =

MaxNumMVsMinusOne + 1) is less than 4, we will set minor MV flag off: MinorMVsFlag = 0, i.e. no

minor motion vectors will be generated.

The reason of having this parameter MaxNumMVs is due to high level AVC conformance restrictions

for certain profiles: the total number of motion vectors of any two consecutive macroblocks not exceeding

16 (or 32). The mechanism here allows a reasonable degree of user control. In disable cases,

MaxNumMVs should be set to 32.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 339

In the coding process of VME, the shape decision is done in multiple locations:

1. After IME and before FME, intermediate shape decision is performed to reduce the FME searching

candidates

2. After FME and before BME, existing shape decision is revised among the remaining candidates

and to see if there is further reduction.

3. Final shape decision is done after BME.

Partition decision before BME uses unidirectional motion vector count to meet MaxNumMVs

requirement. Adding BME for the partition candidates may exceed MaxNumMVs. As BME is performed

on a block by block basis using the block order for a given partition, BME step for a given block is

skipped and the best unidirectional motion vectors are used for the block if the overall motion vector

count exceeds MaxNumMVs when that particular block is switched to bidirectional. The process

continues to the last block of the partition.

Note: This is a sub-optimal solution to simplify the hardware implementation. For some cases,

bidirectional modes with larger sub-partitions might be better than unidirectional modes with finer sub-

partitions.

The VME implementation has the following restriction: Multiple partition candidates are only enabled if

PartCandidateEn is set. And this only applies to source block of size 16x16.

If PartCandidateEn is not set, only the best partition is kept in state 1 (after IME) above and carried

through FME and BME. In other words, FME if enabled only operates on one partition candidate, and

BME if enabled only operates on one partition candidate. Bidirectional mode check only applies to the

partition candidates that meet the bidirectional restriction provided by BiSubMbPartMask. For

example, if a minor partition determined based on best unidirectional cost function is not 8x8 but one

of 4x8, 8x4 or 4x4, VME skips the bidirectional mode check.

If PartCandidateEn is set, up to two sets of candidates are maintained by VME hardware, if the second

best partition candidate is within PartToleranceThrhd from the best one. The second best partition is

selected only from the two major partition candidates based on the unidirectional motion vector count,

subject to that the major partition is enabled:

 1MV: The 16x16 partition

 4MV: The 4x(8x8) partition with no minor shape

The following partitions are not supported as alternative partition.

 2MV: The best of 2x(16x8) and 2x(8x16) partitions

 More than 4MV: The best of all 4x(8x8) partitions with at least one 8x8 having minor shape of 8x4,

4x8 or 4x4

Minor Shape Decision Prior to FME

If any minor shapes are selected, we decide the best minor first.

For each 8x8 sub-block, before performing bidirectional, we reduce code candidates to no more than

three based on the best unidirectional motion search results (best of the forward and backward):

3D Media GPGPU

340 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

0)One MV, i.e. the best in shape of 8x8.

1)Up to two MVs, i.e. the best in shapes 8x8, 8x4, or 4x8. And

2)Up to four MVs, i.e. the best for the sub-block 8x8.

Now for the first and the second sub-blocks, we can merge them into up to six candidates of 2, 3, 4, 5,

6, and 8 possible motion vectors.

Do the same to the third and the fourth sub-blocks; we have similarly up to six candidates.

Now we further combine these two groups, and find the best solution under the constraint of not

exceeding the number of motion vectors more than MaxNumMVs (see pseudo-code below for detail).

Consequently, we have the best combined 8x8 solutions with N motion vectors for some N less or

equal to MaxNumMVs.

Assume distA[k][s] is the cost-adjusted distortion of the best forward or backward motion vector

mix of the k-th 8x8 sub-block of the sub-shape s, where s=0, 1, 2, and 3 represent shape partitioning

8x8, 8x4, 4x8, and 4x4 respectively. Assume distA[k][s] is the bidirectional one of the corresponding

bus-block and sub-shape. And assume some large number, say 128x16=2048 is assigned to the

variable, if there were no valid corresponding codes. Hence, the following pseudo-code explains the

code selection algorithm.

Let’s first explain the case where MaxNumMVs is disabled, i.e. MaxNumMVs>=16:

 void SelectBestCombinedMinors(

 short *distA,

 short *MinorShape,

 short *MinorDisto)

 {

 short s[4], d[4];

 s = ShapeList;

 d = DistoList;

 for (int k=0; k<4; k++) {

 s[k] = 0;

 d[k] = distA[k][0];

 if (distA[k][1])<d[k]) { d[k] = distA[k][1]; s[k] = 1; }

 if (distA[k][2])<d[k]) { d[k] = distA[k][3]; s[k] = 2; }

 if (distA[k][3])<d[k]) { d[k] = distA[k][3]; s[k] = 3; }

 }

 * MinorDisto = d[0] + d[1] + d[2] + d[3];

 * MinorShape = s[0] | (s[1]«2) | (s[2]«4) | ({s[3]«6};

 }

Now for the case of using MaxNumMVs control:

 void SelectBestCombinedMinors(

 short *distA,

 int MaxNumMVs,

 short *MinorShape,

 short *MinorDisto)

 {

 int k, n;

 short dist, best0 = 0, best1 = 0;

 if (MaxNumMVs < 4) { // We reset other parameters.

 switch (MaxNumMvs) {

 case 0:

 DoIntraInter &= (~DO_INTER); // Not do Inter

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 341

 break;

 case 1:

 ShapeMask |= (NO_16X8 | NO_8X16);

 BidirMask |= NO_16X16;

 break;

 case 2:

 case 3:

 ShapeMask |= (NO_8X8 | NO_8X4 | NO_4X8 | NO_4X4);

 BidirMask |= (NO_16X8 | NO_8X16);

 break;

 }

 }

 if (MaxNumMVs >= 16) { // It should use unrestricted code selection.

 SelectBestCombinedMinors(DistA,MinorShape,MinorDisto);

 return;

 }

 short *s, ShapeList[18];

 short *d, DistoList[18];

 s = ShapeList;

 d = DistoList;

 for (k=0; k<4; k++){

 s[0] = 0; // 1 mv

 d[0] = distA[k][0];

 s[4] = (distA[k][2] < distA[k][1]) + 1; // 2 mvs

 d[4] = distA[k][s[1]];

 s[8] = 3; // 4 mvs

 d[8] = distA[k][3];

 s ++, d ++;

 }

 // Merge two:

 s = ShapeList;

 d = DistoList;

 for (k=0; k<2; k++) {

 s[16] = 0x33; // 8 mvs

 d[16] = d[8] + d[10];

 s[12] = (d[4] + d[10] < d[6] + d[8]) ? (s[4] | 0x30) : (0x03 | (s[6] « 4)); // 6

mvs

 d[12] = (d[4] + d[10] < d[6] + d[8]) ? (d[4] + d[10]) < (d[6] + d[8]);

 s[10] = (d[0] + d[10] < d[8] + d[2]) ? 0x30 : 0x03; // 5 mvs

 d[10] = (d[0] + d[10] < d[8] + d[2]) ? (d[0] + d[10]) < (d[8] + d[2]);

 s[8] = s[4] | (s[6] « 4); // 4 mvs

 d[8] = d[4] + d[6];

 s[6] = (d[4] + d[2] < d[0] + d[6]) ? s[4] : (s[6] « 4); // 3 mvs

 d[6] = (d[4] + d[2] < d[0] + d[6]) ? (d[4] + d[2]) < (d[0] + d[6]);

 s[4] = 0; // 2 mvs

 d[4] = d[0] + d[2];

 if (d[6] > d[4]) d[6] = d[4];

 if (d[8] > d[6]) d[8] = d[6];

 if (d[10] > d[8]) d[10] = d[8];

 if (d[12] > d[10]) d[12] = d[10];

 d[14] = d[12];

 if (d[16] > d[12]) d[16] = d[12];

 s ++; d ++;

3D Media GPGPU

342 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 }

 s = ShapeList;

 d = DistoList;

 * MinorDisto = 2048;

 for (k=0; k<8; k++) {

 n = MaxNumMVs – k;

 if ((n>=2 && n<=8) <2) {

 dist = d[(k « 1) + 1] + d[n « 1];

 if (dist < *MinorDisto) {

 *MinorDisto = dist;

 best0 = (n « 1);

 best1 = (k « 1) + 1;

 }

 }

 }

 while (best0 > 1 && d[best0] == d[best0-2]) best0 -= 2;

 while (best1 > 1 && d[best1] == d[best1-2]) best1 -= 2;

 *MinorShape = s[best0] | (s[best1] « 2);

 }

Major Shape Decision Prior to FME

Now considering the best of each 8x8 is done, and we have the total cost-adjusted-distortion for this

sub-block level partition. Now among the four choices: the resulting 8x8 sub-partitioning, one 16x16,

two 16x8, and two 8x16, the one gives the best cost-adjusted-distortion, will determine the final

decision of partitioning shape. Any among these four, if its cost-adjusted-distortion is within the

intermediate tolerance (which is a predefined system state) from the best distortion will be marked as

candidate shapes.

Notice that, when the intermediate tolerance is set to 0, only the best shape will be selected as the

candidate. When the intermediate tolerance is large, all four shapes will become candidates.

Assume we have all the distortions for majors enumerated in DistoMajor[k], where k = 0, 1, 2, 3, 4, and

5, for 16x16, 16x8, 8x16, the combined minors, 16x8 field, and 8x8 field respectively. Assume BestDisto

is equal to the minimal of the six values DistoMajor[k], for k = 0, …5. Assume the intermediate tolerance

is IntTol, the major shape k is a candidate shape if and only if DistoMajor[k]<=BestDisto+IntTol.

Shape Update after FME

Among all the candidate shapes, we recheck the distortion, if any of them is no longer with in the

intermediate tolerance DistortionTolerance from the best choice; we drop it for reduced calculation.

Final Code Decision after BME

For any given candidate shape, for each motion vector, if we do have improved distortion by switch

from the single direction to bi-direction, then we do it, unless the increased number of motion vectors

hits above MaxNumMVs; in this case, we take as many as possible first the ones generate the most

improvement.

Then, we choose the best among the improved candidate shapes.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 343

Early Decisions

There are 5 programmable early decision states are available for fine control of the VME process. All

stored in one byte of U4U4 format to representing a value of (B«S), (where B, called base, is the 4-LSB

of the byte and S, called shift, is the 4-MSB of the byte), they are the following:

1. ESS: EarlySkipSuccess = Early successful return after Skip is checked

2. EIS: EarlyImeStop = Early IME stop when a good match is found inside of IME process.

3. ITG: ImeTooGood = Early successful return after IME is done when a good enough match is

found.

4. ITB: ImeTooBad = Early termination do skip fractional and bidirectional refinement after IME is

done with a hopelessly bad match as the best result.

5. EFS: EarlyFmeSuccess = Early Success after Fractional ME to skip bidirectional search.

3D Media GPGPU

344 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

For any reason, if all possible code types are not chosen, VME will return Intra16x16 type with all modes

set to 0, and the MinDist is set to 0x3FFF.

Surfaces

The data elements accessed by VME are called “surfaces”. Surfaces are accessed using the surface state

model.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 345

VME uses the binding table to bind indices to surface state, using the same mechanism used by the

sampling engine. A Binding Table Index (specified in the message descriptor) of less than 255 is used

to index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.

SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,

format, and size.

State

This topic is currently under development.

BINDING_TABLE_STATE

VME uses the binding table to retrieve surface state. Refer to Sampling Engine for the definition of this

state.

SURFACE_STATE

VME uses the surface state for current and reference surfaces. Refer to Sampling Engine for the

definition of this state.

VME_STATE

This state structure contains the state used by the VME engine for data processing. VME state contains

the motion search path location tables and rate-distortion weight look-up-tables. As the two sets of

tables are fairly large, they are accessed as two separate states via state indexing mechanism so that

applications can inter-mix the use of the search path tables and RDLUT tables.

Even though VME engine has its unique shared function ID (see Target Function ID field in the SEND

instruction), the VME state is delivered through the Sampler State Pointer. When the General Purpose

Pipe is used, the Sampler State Pointer is programmed in the MEDIA_INTERFACE_DESCRIPTOR_LOAD

command and delivered directly to Sampler/VME by hardware. This posts one usage limitation. As the

VME state is overloaded on top of the Sampler State Pointer, VME messages cannot be intermixed with

other Sampler messages.

Each VME state may contain up to 8 VME_SEARCH_PATH_LUT_STATE. When multiple

VME_SEARCH_PATH_LUT_STATE are used, they need to be stored in memory contiguously. Each

VME_SEARCH_PATH_LUT_STATE contains 32 dwords in comparison of 4 dwords of a Sampler State.

When enabling sampler state pre-fetch (programming the Sampler Count field in the

MEDIA_INTERFACE_DESCRIPTOR_LOAD command), one VME_SEARCH_PATH_LUT_STATE is equivalent

to 8 Samplers. Hardware may support up to two VME_SEARCH_PATH_LUT_STATE to be pre-fetched (See

See 3D_Media_GPGPU chapter, Media_GPGPU_Pipeline for more details).

VME_SEARCH_PATH_LUT_STATE

Up to eight VME_SEARCH_PATH_LUT_STATE allowed for a message to select. Each state contains one

set of search path locations, and four sets of rate distortion cost function LUT for various modes and

rate distortion cost function LUT for motion vectors (relative to ‘cost center’). Motion vector cost

3D Media GPGPU

346 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

function is provided as a piece-wise-linear curve with only the values of the power-of-2 positions

provided.

DWord Bit Description

0:13

Search Path

0 31:24 Search Path Location [3] (X, Y) – Relative distance from location [2]

23:16 Search Path Location [2] (X, Y) – Relative distance from location [1]

15:8 Search Path Location [1] (X, Y) – Relative distance from location [0]

7:4 Search Path location [0] (Y) – specifies relative Y distance of the next walk from the starting

position in unit of Search Unit (SU) in U4

Format = U4, (e.g. 0x3 + 0xE = 0x1)

3:0 Search Path Distance [0] (X) – specifies relative X distance of the next walk from the starting

position in unit of SU.

Format = U4

1:13

Search Path Location [4 – 55] (X, Y)

14:31
 RD LUT SET 0-4

14 31:24
LUT_MbMode [9] for Set 1

Format = U4U4 (encoded value must fit in 12-bits)

 23:16
LUT_MbMode [8] for Set 1

Format = U4U4 (encoded value must fit in 12-bits)

 15:8
LUT_MbMode [9] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

 7:0
LUT_MbMode [8] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

15 31:24
LUT_MbMode [9] for Set 3

Format = U4U4 (encoded value must fit in 12-bits)

 23:16
LUT_MbMode [8] for Set 3

Format = U4U4 (encoded value must fit in 12-bits)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 347

DWord Bit Description

 15:8
LUT_MbMode [9] for Set 2

Format = U4U4 (encoded value must fit in 12-bits)

 7:0
LUT_MbMode [8] for Set 2

Format = U4U4 (encoded value must fit in 12-bits)

16 31:24
LUT_MbMode [3] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

 23:16
LUT_MbMode [2] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

 15:8
LUT_MbMode [1] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

 7:0
LUT_MbMode [0] for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

17 31:24
LUT_MbMode [7] for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 23:16
LUT_MbMode [6] for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 15:8
LUT_MbMode [5] for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 7:0
LUT_MbMode [4] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

18 31:24
LUT_MV [3] – For MV = 4 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 23:16
LUT_MV [2] – For MV = 2 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 15:8
LUT_MV [1] – For MV = 1 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

3D Media GPGPU

348 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

 7:0
LUT_MV [0] – For MV = 0 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

19 31:24
LUT_MV [7] – For MV = 64 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 23:16
LUT_MV [6] – For MV = 32 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 15:8
LUT_MV [5] – For MV = 16 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

 7:0
LUT_MV [4] – For MV = 8 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

20-23
 Finish RD LUT SET 1

24-27
 Finish RD LUT SET 2

28-31
 Finish RD LUT SET 3

The assignment of LUT_MbMode entries is according to the MbTypeEx definition:

Index to

LUT_MbMode MbTypeEx Description AVC VC1 MPEG2

0 MODE_INTRA_NONPRED For INTRA8x8 and INTRA4x4 only. Added per

8x8 for INTRA8x8, and per 4x4 for INTRA4x4

Yes n/a n/a

1
MODE_INTRA

MODE_INTRA_16x16

Added per 16x16 macroblock Yes Yes Yes

2 MODE_INTRA_8x8 Added per 16x16 macroblock Yes n/a n/a

3
MODE_INTRA_4x4 Added per 16x16 macroblock Yes n/a n/a

8 MODE_INTER

MODE_INTER_16x16

Added per 16x16 macroblock Yes Yes Yes

9
MODE_INTER_BWD

Added for RefIdx (per partition for major type

or 8x8 for minor types)

Yes Yes Yes

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 349

Index to

LUT_MbMode MbTypeEx Description AVC VC1 MPEG2

4
MODE_INTER_16x8

MODE_INTER_8x16

Added per 16x16 macroblock Yes n/a n/a

5 MODE_INTER_8x8q Added per 8x8 subblock Yes Yes n/a

6 MODE_INTER_8x4q Added per 8x8 subblock Yes n/a n/a

6 MODE_INTER_4x8q Added per 8x8 subblock Yes n/a n/a

7 MODE_INTER_4x4q Added per 8x8 subblock Yes n/a n/a

6 MODE_INTER_FIELD_16x8 Added per 16x16 macroblock n/a ? Yes

7 MODE_INTER_FIELD_8x8q Added per 16x16 macroblock n/a n/a n/a

The value of each byte of the LUTs will be viewed as a pair of 4-bit units: (shift, base), and constructed

as

base « shift.

For example, an entry 0x4A represents the value (0xA«0x4) = 10*16 = 160. Encoded value must fit in 12-

bits (unsigned number); otherwise, the hardware behavior is undefined.

The only exception is for Index of 9, MODE_INTER_BWD, which is used as a bias for the two search

directions. It is a signed number instead, in the form of (SU3U4) = (sign, shift, base). The sign bit

indicates whether the bias is added to the forward (if sign = 1) or the backward (if sign = 0). The bias

has a magnitude of (base « shift), which has 11-bits precision. It should be noted that the number is

always added, there is no subtraction.

Intra Modes only apply to AVC standard. The mode penalty doesn’t apply to Skip Mode Checking. Note

that while other mode penalty applies to a fixed macroblock partition, MODE_INTRA_NONPRED applies

to all three intra modes. It is a constant cost adder for intra-mode coding regardless of the block size.

For source block that is less than 16x16 (like a 16x8 source block), the proper mode penalty that is

stated as “added per 16x16 macroblock” is added once to the source block (like MODE_INTER_16x8 is

added once to a 16x8 source block). It will not be divided by the source block size.

The LUT_MV is added to all motion vector coordinate deltas in quarter-pel unit except for the SKIP

mode, which no costing penalty applies. Given motion vector coordinate, e.g. mvx, which is in quarter-

pel precision (S5.2), the mv delta is defined to be its difference from the given costing center, e.g. ccx,

and the costing penalty is applied to dx = |mvx-ccx|. The cost penalty is a piecewise linear interpolation

from the LUT_MV table whereas the values on power-of-2 integer samples are provided. The piecewise

linear interpolation is performed using quarter-pel precision, while the LUT_MV are only provided for

the given power-of-2 integer positions. The maximum distance provided in the table is 64 pixels. A

linear ramp with gradient of 1 on integer distance is applied for bigger distances with maximum penalty

capped to 0x3FF (10 bits). Thus

Costing_penalty_x = LUT_MV[int(dx)], if dx < 3 and dx = int(dx);

Costing_penalty_x = LUT_MV[p+1], else if dx = 2p, for any p£6;.

3D Media GPGPU

350 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Costing_penalty_x = LUT_MV[p+1] + ((LUT_MV[p+2] – LUT_MV[p+1])*k)»p,

else if dx = 2p+k, for any p<6 and k<.2p, and

Costing_penalty_x = min (LUT_MV[7] + int(dx)– 64, 255), else if dx > 64.

The total costing penalty for a motion vector is

Costing_penalty = Costing_penalty_x + Costing_penalty_y

As a convention, a (0,0) relative search path distance (meaning a repeat search path location) is treated

as the ending of the search path. Or the search path may also end when Max Predetermined Search

Path Length is reached, or one of the Early Success conditions is reached.

Software must program the search path to terminate with at least one (0,0).

Software Interface – Bspec Highlights

This topic is currently under development.

Message Structure Overview

 The contents of each message are different, but they have structural similarities to reduce coding

complexity.

 The first 3 input phases (‘Message Phase’ == 1 GRF of the message payload) are structurally the

same, given the mnemonic "Universal". Individual fields within the Universal phase are ignored

based on message type.

 Additional input phases are appended to each message type to fulfill the required inputs only

exclusive to that message type.

 Specifically, 4 message phases are appended to SIC (SIC0-SIC3), either 2, 4 or 6 message phases

(based on streamin\streamout) are appended to IME (IME0-IME5), and 4 message phases are

appended to FBR (FBR0-FBR3).

 The programmer is required to pack the necessary GRFs together to generate the correct

message phase sequence before calling VME (i.e. 7 phases for SIC; 5, 7, or 9 phases for IME; and 7

phases for FBR).

 The return data is structurally common for all 3 message types, given in 7 phases. The only

exception is IME return data when streamout data is present, then 2 or 4 additional phases are

returned.

 Additionally, the placement of individual fields within the message phases is generally identical to

that of previous generations.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 351

IME and IDM Message Descriptor

Bits Description

19
Header Present. If set, indicates that the message includes the header. This bit must be 1 for all VME

messages.

Format = Enable

18 Reserved: MBZ

17
Stream-Out Enable 2nd-Best. If set, additional message phases of record stream-out are present with the

output of IME message containing the 2nd best candidates for each shape partition: 4 additional phases

only when search control (M0.3 10:8) is 111b (dual reference & dual record) and 2 additional phases

otherwise.

Format = Enable

16
Stream-In Enable. If set, additional message phases of record stream-in are present with the input of IME

message: 4 additional phases only when search control (M0.3 10:8) is 111b (dual reference & dual record)

and 2 additional phases otherwise.

Format = Enable

15
Stream-Out Enable. If set, additional message phases of record stream-out are present with the output of

IME message: 4 additional phases only when search control (M0.3 10:8) is 111b (dual reference & dual

record) and 2 additional phases otherwise.

Format = Enable

14:13
Message Type

00: IDM [CHV, BSW]

01: Reserved

10: IME

11: Reserved

12:8 Reserved: MBZ

7:0
Binding Table Index. Specifies the index into the binding table for the source surface.

Format = U8

Range = [0,254]

3D Media GPGPU

352 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Input GRFs

GR

F Name Msgs New Major Contents

0
Uni0

ALL No Universal control data

1
Uni1

ALL No Universal control data

2
Uni2

ALL No Costs, FT Matrix, FBR Modes

3
Uni3

ALL
Yes

8 CostCenter MVs

4
SIC0

SIC No 8 Skip MVs

5
SIC1

SIC No Luma intra pix, modes, masks

6
SIC2

SIC No Luma intra pix, modes, masks

7
SIC3

SIC No Chroma intra pix & masks

8
IME0

IME No Search Path

9
IME1

IME No Search Path

10
IME2

IME No Streamin\Streamout

11
IME3

IME No Streamin\Streamout

12
IME4

IME No Streamin\Streamout

13
IME5

IME No Streamin\Streamout

14
FBR0

FBR No 8 Inter 4x4 MVs

15
FBR1

FBR No 8 Inter 4x4 MVs

16
FBR2

FBR No 8 Inter 4x4 MVs

17
FBR3

FBR No 8 Inter 4x4 MVs

18
IDM0

IDM
Yes

Source Pixel Mask

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 353

Input Message Phases by Type

VME message types require only a subset of the total GRFs of control data.

Phase SIC IME FBR IDM

0 Uni0 Uni0 Uni0 Uni0

1 Uni1 Uni1 Uni1 Uni1

2 Uni2 Uni2 Uni2 Uni2

3 Uni3 Uni3 Uni3 Uni3

4 SIC0 IME0 FBR0 IDM0

5 SIC1 IME1 FBR1

6 SIC2 IME2 FBR2

7 SIC3 IME3 FBR3

8 IME4

9 IME5

Output GRFs

GRF Name Msgs New Major Contents

0
Ret0

ALL No Best MB Control Data

1
Ret1

ALL No 8 Inter 4x4 MVs

2
Ret2

ALL No 8 Inter 4x4 MVs

3
Ret3

ALL No 8 Inter 4x4 MVs

4
Ret4

ALL No 8 Inter 4x4 MVs

5
Ret5

ALL No Inter Block Distortions

6
Ret6

ALL No Block Ref Indices & FTQ Data

7
IME2

IME No Streamin/Streamout

8
IME3

IME No Streamin/Streamout

9
IME4

IME No Streamin/Streamout

10
IME5

IME No Streamin/Streamout

11
IDM0

IDM
Yes

16 Search Point Dists

3D Media GPGPU

354 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

12
IDM1

IDM
Yes

16 Search Point Dists

13
IDM2

IDM
Yes

16 Search Point Dists

14
IDM3

IDM
Yes

16 Search Point Dists

15
IDM4

IDM
Yes

16 Search Point Dists

16
IDM5

IDM
Yes

16 Search Point Dists

17
IDM6

IDM
Yes

16 Search Point Dists

18
IDM7

IDM
Yes

16 Search Point Dists

19
IDM8

IDM
Yes

16 Search Point Dists

20
IDM9

IDM
Yes

16 Search Point Dists

21
IDM10

IDM
Yes

16 Search Point Dists

22
IDM11

IDM
Yes

16 Search Point Dists

23
IDM12

IDM
Yes

16 Search Point Dists

24
IDM13

IDM
Yes

16 Search Point Dists

25
IDM14

IDM
Yes

16 Search Point Dists

26
IDM15

IDM
Yes

16 Search Point Dists

Output Message Phases by Type

All message types return 7 phases except IDM. IME returns 2 or 4 additional phases of streamout if it is

enabled (2 for uni, 4 for bi). Note the IME streamout message phases are structurally identical to the

IME streamin phases. The IDM message will return only the 16 phases of distortion mesh output.

Phase SIC IME FBR IDM

0 Ret0 Ret0 Ret0 IDM0

1 Ret1 Ret1 Ret1 IDM1

2 Ret2 Ret2 Ret2 IDM2

3 Ret3 Ret3 Ret3 IDM3

4 Ret4 Ret4 Ret4 IDM4

5 Ret5 Ret5 Ret5 IDM5

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 355

6 Ret6 Ret6 Ret6 IDM6

7 IME2 IDM7

8 IME3 IDM8

9 IME4 IDM9

10 IME5 IDM10

11 IDM11

12 IDM12

13 IDM13

14 IDM14

15 IDM15

Binding Table Pointers

The following gives the driver and HW perspective of how the RefID will map to the binding table

pointers indices (and hence surface state). The fixed mapping simplifies the HW definition.

Progressive Content

 Driver View Universal Input M1.6 RefIDs (4b Value per Block) Conversion

BTI Direction Number Field

FWD

0

BWD

0

FWD

1

BWD

1

FWD

2

BWD

2

FWD

3

BWD

3 BTI Equation

0 Source N/A N/A
N/A N/A N/A N/A N/A N/A N/A N/A

= From input

1 FWD 0
N/A

0
N/A

0
N/A

0
N/A

0
N/A = RefID * 2 +

1

2 BWD 0
N/A N/A

0
N/A

0
N/A

0
N/A

0
= RefID * 2 +

2

3 FWD 1
N/A

1
N/A

1
N/A

1
N/A

1
N/A = RefID * 2 +

1

4 BWD 1
N/A N/A

1
N/A

1
N/A

1
N/A

1
= RefID * 2 +

2

5 FWD 2
N/A

2
N/A

2
N/A

2
N/A

2
N/A = RefID * 2 +

1

6 BWD 2
N/A N/A

2
N/A

2
N/A

2
N/A

2
= RefID * 2 +

2

7 FWD 3
N/A

3
N/A

3
N/A

3
N/A

3
N/A = RefID * 2 +

3D Media GPGPU

356 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 Driver View Universal Input M1.6 RefIDs (4b Value per Block) Conversion

BTI Direction Number Field

FWD

0

BWD

0

FWD

1

BWD

1

FWD

2

BWD

2

FWD

3

BWD

3 BTI Equation

1

8 BWD 3
N/A N/A

3
N/A

3
N/A

3
N/A

3
= RefID * 2 +

2

9 FWD 4
N/A

4
N/A

4
N/A

4
N/A

4
N/A = RefID * 2 +

1

10 BWD 4
N/A N/A

4
N/A

4
N/A

4
N/A

4
= RefID * 2 +

2

11 FWD 5
N/A

5
N/A

5
N/A

5
N/A

5
N/A = RefID * 2 +

1

12 BWD 5
N/A N/A

5
N/A

5
N/A

5
N/A

5
= RefID * 2 +

2

13 FWD 6
N/A

6
N/A

6
N/A

6
N/A

6
N/A = RefID * 2 +

1

14 BWD 6
N/A N/A

6
N/A

6
N/A

6
N/A

6
= RefID * 2 +

2

15 FWD 7
N/A

7
N/A

7
N/A

7
N/A

7
N/A = RefID * 2 +

1

16 BWD 7
N/A N/A

7
N/A

7
N/A

7
N/A

7
= RefID * 2 +

2

17 FWD 8
N/A

8
N/A

8
N/A

8
N/A

8
N/A = RefID * 2 +

1

18 BWD 8
N/A N/A

8
N/A

8
N/A

8
N/A

8
= RefID * 2 +

2

19 FWD 9
N/A

9
N/A

9
N/A

9
N/A

9
N/A = RefID * 2 +

1

20 BWD 9
N/A N/A

9
N/A

9
N/A

9
N/A

9
= RefID * 2 +

2

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 357

 Driver View Universal Input M1.6 RefIDs (4b Value per Block) Conversion

BTI Direction Number Field

FWD

0

BWD

0

FWD

1

BWD

1

FWD

2

BWD

2

FWD

3

BWD

3 BTI Equation

21 FWD 10
N/A

10
N/A

10
N/A

10
N/A

10
N/A = RefID * 2 +

1

22 BWD 10
N/A N/A

10
N/A

10
N/A

10
N/A

10
= RefID * 2 +

2

23 FWD 11
N/A

11
N/A

11
N/A

11
N/A

11
N/A = RefID * 2 +

1

24 BWD 11
N/A N/A

11
N/A

11
N/A

11
N/A

11
= RefID * 2 +

2

25 FWD 12
N/A

12
N/A

12
N/A

12
N/A

12
N/A = RefID * 2 +

1

26 BWD 12
N/A N/A

12
N/A

12
N/A

12
N/A

12
= RefID * 2 +

2

27 FWD 13
N/A

13
N/A

13
N/A

13
N/A

13
N/A = RefID * 2 +

1

28 BWD 13
N/A N/A

13
N/A

13
N/A

13
N/A

13
= RefID * 2 +

2

29 FWD 14
N/A

14
N/A

14
N/A

14
N/A

14
N/A = RefID * 2 +

1

30 BWD 14
N/A N/A

14
N/A

14
N/A

14
N/A

14
= RefID * 2 +

2

31 FWD 15
N/A

15
N/A

15
N/A

15
N/A

15
N/A = RefID * 2 +

1

32 BWD 15
N/A N/A

15
N/A

15
N/A

15
N/A

15
= RefID * 2 +

2

3D Media GPGPU

358 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Interlaced Content

 Driver View Universal Input M1.6 RefIDs (4b Value per Block) Conversion

BTI Direction Number Field

FWD

0

BWD

0

FWD

1

BWD

1

FWD

2

BWD

2

FWD

3

BWD

3 BTI Equation

0 Source N/A N/A
N/A N/A N/A N/A N/A N/A N/A N/A

= From input

1 FWD 0 Top 0
N/A

0
N/A

0
N/A

0
N/A

= RefID * 2 +

1

2 BWD 0 Top
N/A

0
N/A

0
N/A

0
N/A

0 = RefID * 2 +

2

3 FWD 0 Bot 1
N/A

1
N/A

1
N/A

1
N/A

= RefID * 2 +

1

4 BWD 0 Bot
N/A

1
N/A

1
N/A

1
N/A

1 = RefID * 2 +

2

5 FWD 1 Top 2
N/A

2
N/A

2
N/A

2
N/A

= RefID * 2 +

1

6 BWD 1 Top
N/A

2
N/A

2
N/A

2
N/A

2 = RefID * 2 +

2

7 FWD 1 Bot 3
N/A

3
N/A

3
N/A

3
N/A

= RefID * 2 +

1

8 BWD 1 Bot
N/A

3
N/A

3
N/A

3
N/A

3 = RefID * 2 +

2

9 FWD 2 Top 4
N/A

4
N/A

4
N/A

4
N/A

= RefID * 2 +

1

10 BWD 2 Top
N/A

4
N/A

4
N/A

4
N/A

4 = RefID * 2 +

2

11 FWD 2 Bot 5
N/A

5
N/A

5
N/A

5
N/A

= RefID * 2 +

1

12 BWD 2 Bot
N/A

5
N/A

5
N/A

5
N/A

5 = RefID * 2 +

2

13 FWD 3 Top 6
N/A

6
N/A

6
N/A

6
N/A

= RefID * 2 +

1

14 BWD 3 Top
N/A

6
N/A

6
N/A

6
N/A

6 = RefID * 2 +

2

15 FWD 3 Bot 7
N/A

7
N/A

7
N/A

7
N/A

= RefID * 2 +

1

16 BWD 3 Bot
N/A

7
N/A

7
N/A

7
N/A

7 = RefID * 2 +

2

17 FWD 4 Top 8
N/A

8
N/A

8
N/A

8
N/A

= RefID * 2 +

1

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 359

 Driver View Universal Input M1.6 RefIDs (4b Value per Block) Conversion

BTI Direction Number Field

FWD

0

BWD

0

FWD

1

BWD

1

FWD

2

BWD

2

FWD

3

BWD

3 BTI Equation

18 BWD 4 Top
N/A

8
N/A

8
N/A

8
N/A

8 = RefID * 2 +

2

19 FWD 4 Bot 9
N/A

9
N/A

9
N/A

9
N/A

= RefID * 2 +

1

20 BWD 4 Bot
N/A

9
N/A

9
N/A

9
N/A

9 = RefID * 2 +

2

21 FWD 5 Top 10
N/A

10
N/A

10
N/A

10
N/A

= RefID * 2 +

1

22 BWD 5 Top
N/A

10
N/A

10
N/A

10
N/A

10 = RefID * 2 +

2

23 FWD 5 Bot 11
N/A

11
N/A

11
N/A

11
N/A

= RefID * 2 +

1

24 BWD 5 Bot
N/A

11
N/A

11
N/A

11
N/A

11 = RefID * 2 +

2

25 FWD 6 Top 12
N/A

12
N/A

12
N/A

12
N/A

= RefID * 2 +

1

26 BWD 6 Top
N/A

12
N/A

12
N/A

12
N/A

12 = RefID * 2 +

2

27 FWD 6 Bot 13
N/A

13
N/A

13
N/A

13
N/A

= RefID * 2 +

1

28 BWD 6 Bot
N/A

13
N/A

13
N/A

13
N/A

13 = RefID * 2 +

2

29 FWD 7 Top 14
N/A

14
N/A

14
N/A

14
N/A

= RefID * 2 +

1

30 BWD 7 Top
N/A

14
N/A

14
N/A

14
N/A

14 = RefID * 2 +

2

31 FWD 7 Bot 15
N/A

15
N/A

15
N/A

15
N/A

= RefID * 2 +

1

32 BWD 7 Bot
N/A

15
N/A

15
N/A

15
N/A

15 = RefID * 2 +

2

3D Media GPGPU

360 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

RDE Packet Mapping

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 361

Glossary of Messages

This section describes the glossary of messages in regard to Media Sampler.

Universal Input Message Phases

Major changes from the previous generation:

 Many fields are only required for one or two of the message types.

 MV cost and mode cost are moved into the message payload.

 RefID per block are new inputs.

 Enables for forward transform skip check, chroma searching.

 Thresholds and control data for forward transform skip check.

 Many of the performance thresholds have been removed (IME success, skip success, etc).

ValidMsgType = “…” identifies the given field is required for each message type. Hardware ignores these

fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

DWord Bits Description

M0.5 31:24
Reference Region Height (RefHeight): This field specifies the reference region height in pixels.

When bidirectional search is enabled, this applies to both search regions. Minus 16 provides the

number of search point in vertical direction.

The value must be a multiple of 4.

ValidMsgType = IME

Format = U8

Range = [8, 64]

23:16
Reference Region Width (RefWidth): This field specifies the search region width in pixels. When

bidirectional search is enabled, this applies to both search regions. Minus 16 provides the number

of search point in horizontal direction.

The value must be a multiple of 4.

ValidMsgType = IME

Format = U8

Range = [20, 128]

Note: Please make sure the reference windows are not completely outside of the video frame. In

that case, VME behavior is undefined.

Note: Reference Window size must be <= Surface Size, otherwise VME behavior is undefined.

15:8 Ignored

7:0
Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.

3D Media GPGPU

362 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

ValidMsgType = SIC, IME, FBR

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31 Reserved: MBZ

30:24
Sub-Macroblock Sub-Partition Mask (SubMbPartMask): This field defines the bit-mask for

disabling sub-partition and sub-macroblock modes.

The lower 4 bits are for the major partitions (sub-macroblock) and the higher 3 bits for minor

partitions (with sub-partition for 4x(8x8) sub-macroblocks.

xxxxxx1 : 16x16 sub-macroblock disabled

xxxxx1x : 2x(16x8) sub-macroblock within 16x16 disabled

xxxx1xx : 2x(8x16) sub-macroblock within 16x16 disabled

xxx1xxx : 1x(8x8) sub-partition for 4x(8x8) within 16x16 disabled

xx1xxxx : 2x(8x4) sub-partition for 4x(8x8) within 16x16 disabled

x1xxxxx : 2x(4x8) sub-partition for 4x(8x8) within 16x16 disabled

1xxxxxx : 4x(4x4) sub-partition for 4x(8x8) within 16x16 disabled

1111111: Invalid

Note: Invalid to have all partions disabled in the IME call.

ValidMsgType = IME

Usage Note: One example usage of only enabling 4x(4x4) sub-partition while all other partitions

are disabled is for video processing, where parallel motion searches are performed for 16 4x4

blocks. For that no further block combination (into larger sub-partitions/sub-macroblocks) is

needed.

23:22
Intra SAD Measure Adjustment (IntraSAD): This field specifies distortion measure adjustments used

for the motion search SAD comparison. This field applies to both luma and chroma intra

measurement.

00b: None

01b: Reserved

10b: Haar transform adjusted

11b: Reserved

ValidMsgType = SIC

21:20
Inter SAD Measure Adjustment (InterSAD):This field specifies distortion measure adjustments used

for the motion search SAD comparison. This field applies to both luma and chroma intra

measurement.

00b: None

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 363

DWord Bits Description

01b: Reserved

10b: Haar transform adjusted

11b: Reserved

ValidMsgType = SIC, IME, FBR, IDM

Note: IDM msgs cannot have InterSAD set to 10b (Haar transform adjusted) if IdmSrcPixelMask is

used.

InterSAD must be set to 00b (None) if either IDMShapeMode5x5 or IDMShapeMode7x7 is

enabled.

19
Block-Based Skip Enabled: When this field is set on the skip thresholding passing criterion will be

based on the maximal distortion of individual blocks (8x8’s or 4x4’s) instead of their sum (i.e. the

distortion of 16x16). The block size is 8x8 if and only if the Transform 8x8 Flag is set to ON and the

source size is 16x16.

ValidMsgType = SIC

18
BME disable for FBR Message (BMEDisableFBR): FBR messages that do not want bidirectional

motion estimation performed will set this bit and VME will only perform fractional refinement on

the shapes identified by subpredmode. Note: only the LSB of the subpredmode for each shape will

be considred in FBR (a shape is either FWD or BWD as input of FBR, output however could change

to BI if BME is enabled).

0 = BME enabled

1 = BME disabled

ValidMsgType = FBR

17
Forward Transform Skip Check Enable (FTEnable): This field enables the forward transform

calculation for skip check. It does not override the other skip calculations but it does decrease the

performance marginially so don’t enable it unless the transform is necessary.

0 = FT disabled

1 = FT enabled

ValidMsgType = SIC

16
Process Inter Chroma Pixels Mode (InterChroaZmaMode): This bit switches the inter operations

from luma mode to chroma mode.

All shapes sizes are referred to as UV pairs. For instance, the 4x4 shape is a 8x4 of pixel

components (16 U and 16 V, interleaved vertically) and the 8x8 shape is a 16x8 of pixel

components.

MBMode is always 8x8.

MBSubShape is either 8x8 or 4x4 indicated by LSB[1:0]. Bits[7:2] are MBZ.

3D Media GPGPU

364 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

For MBSubShape of 4x4, SubPredMode is mapped to each 4x4 shape.

Only 8x8 and 4x4 ModeCost are valid.

Source block size is ignored.

Streamin/streamout distortions are overloaded on 16x16 (Chroma8x8) and 8x8 (Chroma4x4).

BilinearEnable is ignored (Chroma can only perform bilinear filtering)

Restrictions when set: Intra operations are disabled (SIC), valid ref window sizes are 32x20, 24x24

(max Xsus), 16x32 (max Xsus), and 10x20 (max Xsus) (IME), adaptive is disabled (IME), no backward

penalty cost (ALL), and only 4x4 and 8x8 shapes are valid (ALL).

ValidMsgType = SIC, IME, FBR

15
Disable Field Cache Allocation: This field, when set to 1, disables the optimized field cache line

method in the Sampler Cache for reference block data when RefAccess is 1 (field based). It is

ignored by hardware if RefAccess is 0.

0 – Frame or field cache lines according to RefAccess

1 – Always frame cache lines

ValidMsgType = IME, IDM

14
Skip Mode Type

For B_DIRECT_16x16, both motion vectors of the skip center pair 0 are used.

For B_DIRECT_8x8s, all four skip center pairs are fully used (VME never tries to combine them with

non-skip shapes from IME, FME, or BME).

0 : SKIP_1MVP – one MV pair for 16x16

1 : SKIP_4MVP – Four MV pairs for 8x8s (in this case and only this case, SkipCenter Delta 1-3 is

used)

Note: SkipModeType should be programmed to 1MVP for non-16x16 Source size.

ValidMsgType = SIC

13:12
Sub-Pel Mode (SubPelMode)

This field defines the half/quarter pel modes. The mode is inclusive, ie., higher precision mode

samples lower precision locations.

00b: Integer mode searching

01b: Half-pel mode searching

10b: Reserved

11b: Quarter-pel mode searching

ValidMsgType = FBR

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 365

DWord Bits Description

11
Dual Search Path Option

Used only for dual record cases, this field flags whether two searching records uses the same or

the different paths.

0: Use the same path as specified by the Search Path Location array

1: Use the different paths, the first one uses the even entries of the Search Path Location array and

the second one uses the odd entries of the Search Path Location array.

ValidMsgType = IME

10:8
Search Control (SearchCtrl)

This field specifies how the motion search is performed.

ValidMsgType = IME

The following table shows the valid encodings. Other encodings are reserved.

Code Mode

000b
Single reference, single record and single start.

Search is performed only on reference 0; only cost center 0 and start 0 are used. There is

only one record. Adaptive search is also allowed. However, when AdaptiveEn is on, LenSU

must be at least 2 as the adaptive search in VME is one-step delayed.

This is the common single directional motion search mode.

001b
Single reference, single record and dual start.

Search is performed only on reference 0; only cost center 0 is used. There is only one

record. Search performs first on start 0 and then on start 1. Then if LenSP is not reached,

the predetermined search path will start on start 1 with increment added to start 1

location. It then is followed by adaptive search.

This is used for single direction adaptive search.

011b
Single reference, dual record (and implied dual start).

Search is performed only on reference 0; both cost center 0 and 1 and start 0 and 1 are

used. Two records are used for both paths during IME.

When integer search is complete, the two records are combined to find the best search.

Sub-pel refinement is only performed from the best one.

This may be used for search for multiple motion search candidates/predicators.

111b
Dual reference, dual record (and implied dual start).

Search is performed on references 0/1 with both cost centers 0/1 and starts 0/1. Two

records are used for both paths during IME.

When integer search is complete, and then sub-pel refinement is also performed

3D Media GPGPU

366 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

separately, the two records are combined to find the best search on a subblock basis.

This may be used for bidirectional motion search, or multi-reference P search. Whether

bidirectional is enabled or not depends on the bidirection sub-macroblock mask.

If BiSubMbPartMask is set to 1111’b, bidirectional search is disabled. VME outputs only

the best unidirectional search results. Otherwise, BME is performed.

Note that bidirectional search and sub-pel refinement are orthogonal features that can be

enabled independently.

7
Reference Access (RefAccess)

This field defines how the reference blocks are accessed from the reference frames. It indicates if

the source picture is a frame picture or a field picture.

Programming Note: For all known video coding standards, reference pictures always have the

same picture type as the source picture. Therefore, this field should be programmed to be the

same as SrcAccess.

0: Frame based

1: Field based

ValidMsgType = SIC, IME, FBR, IDM

6
Source Access (SrcAccess)

This field defines how the source block is accessed from the source frame. It indicates if the source

picture is a frame picture or a field picture. It is similar to the Picture Type used in video standards.

0: Frame based

1: Field based

ValidMsgType = SIC, IME, FBR, IDM

5:4
Inter MbType Remap (MbTypeRemap): This field controls the mapping of the output MbType

when the VME output is an Inter (IntraMbFlag = INTER). The intended usage, for example, is for

two forward (or backward) references or for two search regions from the same reference picture in

one VME call. Hardware ignores this field if the VME output is an intra type (IntraMbFlag = INTRA).

00b: No remapping

01b: Remapping MbType to forward only (1-3 mapped to 1, even numbers in [4-14h] mapped to

4, odd numbers in [5-15h] mapped to 5, and 16h is unchanged)

10b: Remapping MbType to backward only (1-3 mapped to 2, even numbers in [4-14h] mapped to

6, odd numbers in [5-15h] mapped to 7, and 16h is unchanged)

11b: Reserved

ValidMsgType = IME, FBR

3
Reserved: MBZ

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 367

DWord Bits Description

2
Reserved: MBZ

1:0
Source Block Size (SrcSize)

This field defines how the 16x16 source block is formed. When Source Block Size is less than

16x16, SU larger than 4x4 is used.

00b: 16x16

01b: 16x8

10b: Reserved (for 8x16)

11b: 8x8

ValidMsgType = SIC, IME, FBR, IDM

Note: For IDM message, the source block size should be always programmed to 16x16.

M0.2 31:16
Source Y (SrcY)

This field defines the vertical position (of the block’s upper-left pixel) in units of pixels for the

source block in the source frame.

Restriction

The Y address restriction is removed. Exception: for SIC messages where Intra Compute Type is

set to 00 (Luma + Chroma enabled), SrcY must be a multiple of 2.

ValidMsgType = SIC, IME, FBR, IDM

Format = U16

15:0
Source X (SrcX)

This field defines the horizontal position (of the block’s upper-left pixel) in units of pixels for the

source block in the source picture.

The source block must be within the source picture starting at any integer grid.

For SIC messages where Intra Compute Type is set to 00 (Luma + Chroma enabled), SrcX must be

a multiple of 2.

ValidMsgType = SIC, IME, FBR, IDM

Format = U16

M0.1 31:16
Reference 1 Y Delta (Ref1Y)

This field defines the vertical position (of the upper-left corner of the reference region) in units of

pixels for the Reference 1 region relative to the surface origin.

3D Media GPGPU

368 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Project Restriction

CHV, BSW
The Y address restriction is removed.

ValidMsgType = IME

Format = S15

Hardware Range: [-2048 to 2047]

Format = U16

15:0
Reference 1 X Delta (Ref1X)

This field defines the horizontal position (of the upper-left corner of the reference region) in units

of pixels for the Reference 1 region relative to the surface origin.

The resulting reference region is allowed to be outside the picture. Pixel replication is applied to

generate out of bound reference pixels.

This field is only valid when dual reference mode is selected.

Note: For search control=3, this must equal Ref0X.

ValidMsgType = IME

Format = S15

Hardware Range: [-2048 to 2047]

M0.0 31:16
Reference 0 Y Delta (Ref0Y)

This field defines the vertical position (of the upper-left corner of the reference region) in units of

pixels for the Reference 0 region relative to the surface origin.

Project Restriction

CHV, BSW
The Y address restriction is removed.

ValidMsgType = IME, IDM

Format = S15

Hardware Range: [-2048 to 2047]

Format = U16

15:0
Reference 0 X Delta (Ref0X)

This field defines the horizontal position (of the upper-left corner of the reference region) in units

of pixels for Reference 0 region relative to the surface origin.

The resulting reference region is allowed to be outside the picture. Pixel replication is applied to

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 369

DWord Bits Description

generate out of bound reference pixels.

ValidMsgType = IME, IDM

Format = S15

Hardware Range: [-2048 to 2047]

M1.7 31:24
Skip Center Enable Mask (SkipCenterMask):

[bits 31…24]

xxxx xxx1: Ref0 Skip Center 0 is enabled [corresponds to M2.0]

xxxx xx1x: Ref1 Skip Center 0 is enabled [corresponds to M2.1]

xxxx x1xx: Ref0 Skip Center 1 is enabled [corresponds to M2.2]

xxxx 1xxx: Ref1 Skip Center 1 is enabled [corresponds to M2.3]

xxx1 xxxx: Ref0 Skip Center 2 is enabled [corresponds to M2.4]

xx1x xxxx: Ref1 Skip Center 2 is enabled [corresponds to M2.5]

x1xx xxxx: Ref0 Skip Center 3 is enabled [corresponds to M2.6]

1xxx xxxx: Ref1 Skip Center 3 is enabled [corresponds to M2.7]

Illegal cases:

Disable both Ref0 and Ref1 Skip Center 0 in case of Skip_1MVP.

Disable both Ref0 and Ref1 for any Skip Center pair in case of Skip_4MVP.

ValidMsgType = SIC ValidMsgType = SIC

23
IDM Shape Mode Select (IDMShapeMode): [Also see M1.1 bits 30 and 31]

This bit selects what shape size the IDM is searching for.

0: 16x16

1: 8x8

ValidMsgType = IDM

Note: Only ref window size of 32x32 (shape16x16), 24x24(shape8x8), 128x16 (shape16x16), and

32x16 (shape16x16) are supported. Search control[2:0] defaults to single ref and single start. Luma

only.

22
RefID Cost Mode Select (RefIDCostMode)

Selects the RefID costing mode.

0 = Mode0 (AVC)

1 = Mode1 (linear)

3D Media GPGPU

370 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

ValidMsgType = SIC, IME, FBR, IDM

21
Enable AC-Only HAAR (AConlyHAAR)

This bit zeros out the DC component in the HAAR SATD block.

0 = AC+DC HAAR

1 = AC HAAR

ValidMsgType = SIC, IME, FBR

20
Enable Weighted-SAD\HAAR (WeightedSADHAAR)

Project Restriction

CHV,

BSW
This bit enables weighted SAD\HAAR.

0: No weighted-SAD

1: Enable weighted-SAD

Note: if this bit is 1, ShapeMask is ignored and only 16x16 shapes are accumulated

(no partitioning).

Restrictions: Only supported for source-type luma 16x16. Only support unidirectional

search (on Ref0).

See M1.3 for individual sub-block weight control.

ValidMsgType = IME, IDM

19
Source Field Polarity Select (SrcFieldPolarity)

If SrcAccess = 1 (M0.3-6), meaning field based, than the hardware requires this value to derive the

correct location on the source surface in memory to fetch pixels. This is because the source is

stored as a frame picture with both fields interleaved in memory and the SrcY value (M0.2-31:16) is

the location on the field picture (in other words, it does not convey the field polarity).

Hence, the starting y-pixel coordinate fetched from memory is:

SrcY* 2 + SrcFieldPolarity

Else, this field is ignored by the hardware.

ValidMsgType = SIC, IME, FBR, IDM

Format = U1

18
Bilinear Filter Enable (BilinearEnable)

If set, the fractional filter implements a simple bilinear interpolation filter instead of the 4-tap filter.

Note: This is supported for both hpel and qpel interpolation.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 371

DWord Bits Description

ValidMsgType = SIC, FBR

Format = Enable

17:16
MV Cost Scaling Factor (MVCostScaleFactor)

This term allows the user to redefine the precision of the lookup into the LUT_MV based on the

MV cost difference from the cost center. The piecewise linear cost function is defined from 0 to 64

in powers of 2 intervals, and the precision of the difference is set by this field. There are 4 precision

choices:

00b: Qpel [Qpel difference between MV and cost center: eff cost range 0-15pel]

01b: Hpel [Hpel difference between MV and cost center: eff cost range 0-31pel]

10b: Pel [Pel difference between MV and cost center: eff cost range 0-63pel]

11b: 2pel [2Pel difference between MV and cost center: eff cost range 0-127pel]

ValidMsgType = SIC, IME, FBR, IDM

Format = U2

15:8
Macroblock Intra Structure (MbIntraStruct): This is a bitmask that specifies neighbor macroblock

availability. This allows software to constrain intra prediction mode search.

Note: The user must set Bit6=Bit5.

The bit positions in the following table are relative positions within the field. For example, bit 7 in

the table is bit 15 in the containing DWord.

Bit MotionVerticalFieldSelect Index

7 Reserved: MBZ (for IntraPredAvailFlagF – F (pixel[-1,7] available for MbAff)

6 Reserved: MBZ (for IntraPredAvailFlagA/E – A (left neighbor top half for MbAff)

5 IntraPredAvailFlagE/A – A (Left neighbor or Left bottom half)

4 IntraPredAvailFlagB – B (Upper neighbor)

3 IntraPredAvailFlagC – C (Upper left neighbor)

2 IntraPredAvailFlagD – D (Upper right neighbor)

1:0 Reserved: MBZ (ChromaIntraPredMode)

ValidMsgType = SIC

7
Luma Intra Source Corner Swap (IntraCornerSwap): This field specifies the format of the intra luma

neighbor pixel format in the message.

0: Top neighbors are in sequential order.

1: Left-top corner is swapped with the last left-edge neighbor.

3D Media GPGPU

372 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

ValidMsgType = SIC

6
Non Skip MB Mode Cost Added (NonSkipModeAdded)

This field indicates that the distortion of the survived motion vectors becomes non-skip, and the

MB mode cost is added to its distortion.

ValidMsgType = SIC

5
Non Skip Zero MV Cost Added (NonSkipZMvAdded)

This field indicates that the distortion of the survived motion vectors becomes non-skip, and the

zero MV component costs are added to its distortion.

ValidMsgType = SIC

4:0
Luma Intra Partition Mask (IntraPartMask)

This field specifies which Luma Intra partition is enabled/disabled for intra mode decision.

xxxx1: luma_intra_16x16 disabled

xxx1x: luma_intra_8x8 disabled

xx1xx: luma_intra_4x4 disabled

Note: For SIC message with IntraComputeType == 00 or 01, at least 1 partition must be enabled.

Bits [4:3] MBZ

ValidMsgType = SIC

M1.6 31:28 Bwd Block 3 RefID

27:24 Fwd Block 3 RefID

23:20 Bwd Block 2 RefID

19:16 Fwd Block 2 RefID

15:12 Bwd Block 1 RefID

11:8 Fwd Block 1 RefID

7:4 Bwd Block 0 RefID

3:0
Fwd Block 0 RefID

M1.6 contains 8 input RefIDs, 1 per block. The RefID is used to penalize selection of shapes away

from the optimal RefID similar to how MVCost penalizes shapes with motion vectors far from the

cost center.

Project Restriction

CHV, BSW
Note: All 4 Bwd RefID are ignored by HW for IDM message type.

Format = U4

ValidMsgType = SIC, IME, FBR, IDM

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 373

DWord Bits Description

 31:16 Reserved: MBZ

 15:0 Reserved: MBZ

 31:16 Reserved: MBZ

 15:0 Reserved: MBZ

M1.3 31:30 Weighted SAD Control Sub-block 15 (F)

29:28 Weighted SAD Control Sub-block 14 (E)

27:26 Weighted SAD Control Sub-block 13 (D)

25:24 Weighted SAD Control Sub-block 12 (C)

23:22 Weighted SAD Control Sub-block 11 (B)

21:20 Weighted SAD Control Sub-block 10 (A)

19:18 Weighted SAD Control Sub-block 9

17:16 Weighted SAD Control Sub-block 8

15:14 Weighted SAD Control Sub-block 7

13:12 Weighted SAD Control Sub-block 6

11:10 Weighted SAD Control Sub-block 5

9:8 Weighted SAD Control Sub-block 4

7:6 Weighted SAD Control Sub-block 3

5:4 Weighted SAD Control Sub-block 2

3:2 Weighted SAD Control Sub-block 1

1:0
Weighted SAD Control Sub-block 0

When the Weighted SAD control is enabled (M1.7 bit 20) these values are used to decrease the

magnitude of each sub-block by dividing the 4x4 SAD\HAAR output mapped to that 4x4 of the

source MB. The control value divides the 4x4 SAD\HAAR output by 2^control value.

0: »0 (div by 1)

1: »1 (div by 2)

2: »2 (div by 4)

3: »3 (div by 8)

The output produces 4 16x16 macroblock results each with different weighted-SAD control. The

values from M1.3 31:0 are mapped onto the sub-blocks of the source MB in the traditional Z-order

for the first 16x16 weighted-SAD result:

16x16_0 Weighted-SAD Control Mapping:

0145

2367

89CD

ABEF

The HW will horizontally, vertically, and diagonallay map these weights from M1.3 31:0 to produce

3D Media GPGPU

374 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

the weights for the other 3 16x16 macroblock results.

16x16_1 Weighted-SAD Control Mapping (Horizontal reflection):

5410

7632

DC98

FEBA

16x16_2 Weighted-SAD Control Mapping (Vertical reflection):

ABEF

89CD

2367

0145

16x16_3 Weighted-SAD Control Mapping (Diagonal reflection:

FEBA

DC98

7632

5410

ValidMsgType = IME, IDM

M1.2 31:28
Start Center 1 Y (Start1Y)

This field defines the Y position of Search Path 1 relative to the reference Y location. It is in units of

SU.

ValidMsgType = IME

Format = U4

27:24
Start Center 1 (Start1X)

This field defines the X position of Search Path 1 relative to the reference X location. It is in units of

SU.

The corresponding reference block must be fully within the reference region.

ValidMsgType = IME

Format = U4

23:20
Start Center 0 Y (Start0Y)

This field defines the Y position of Search Path 1 relative to the reference Y location. It is in units of

SU.

ValidMsgType = IME

Format = U4

19:16
Start Center 0 X (Start0X)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 375

DWord Bits Description

This field defines the X position of Search Path 1 relative to the reference X location. It is in units of

SU.

The corresponding reference block must be fully within the reference region.

ValidMsgType = IME

Format = U4

15:8
Maximum Search Path Length (MaxNumSU)

This field defines the maximum number of SUs per reference including the predetermined SUs and

the adaptively generated SUs.

Note: Every SU in fixed path is counted (including the out-bound ones and repeated ones), and in

addition for adaptive SUs only the ones actually searched are added.

ValidMsgType = IME

Format = U8, with valid range of [1,63]

7:0
Max Fixed Search Path Length (LenSP)

This field defines the maximum number of SUs per reference which are evaluated by the

predetermined SUs. When adaptive walk is enabled, adaptive walk starts when this number is

reached.

Note: Every SU in fixed path is counted (including the out-bound ones and repeated ones).

ValidMsgType = IME

Format = U8, with valid range of [1,63]

M1.1 31 Reserved: MBZ

30 Reserved: MBZ

29
Ref pixel bias enable

If set perform following to reference pixel:

»1+64

ValidMsg type - IME, SIC, FBR, IDM

28
Unidirectional Mix Disable (UniMixDisable): If it is on, all unidirectional resulting motion vectors

must share the same direction, i.e. either all are forward, or all are backward. If this field is off, each

partition, down to 8x8 subblock, may have a different mix of forward and backward motion

vectors. (Within each 8x8 subblock, only one common choice is allowed.)

Programming Note: For the case when BMEdisableFBR is set, only the input subpredmode

direction is refined. If BMEdisableFBR is not set, both directions undergo fractional refinement

before bidirectional refinement, but the subpredmode output never inverts directions if the

refinement yields a better result (subpredmode could change to bidirectional in this case though).

This field is MBZ except for cases of Search Control = 111’b (e.g. 7, dual reference).

3D Media GPGPU

376 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

ValidMsgType = IME

27:24 Reserved: MBZ

23:22
Reserved: MBZ

[Fixed7x7Weights -- GxMask, GyMask]

21:16
Bidirectional Weight (BiWeight)

This field defines the weighting for the backward and forward terms to generate the bidirectional

term. This field is only valid for bidirectional search (SearchCtrl = 111).

ValidMsgType = SIC, FBR

Format = U6

Valid Values: [16, 21, 32, 43, 48]

15:8
RefId Polarity Bits

Bit15->bwd block3

Bit14->bwd block2

Bit13->bwd block1

Bit12->bwd block0

Bit11->fwd block3

Bit10->fwd block2

Bit9->fwd block1

Bit8->fwd block0

ValidMsg type - IME, SIC, FBR, IDM

7 Reserved: MBZ

6
Extended MV Cost Range

This bit specifies if the increased 12-bit mvcost range is used vs. the legacy 10-bit range.

0 = Disable

1 = Enable

ValidMsgType = SIC,IME, FBR

5:0
Maximum Number of Motion Vectors (MaxNumMVs)

This field specifies the maximum number of motion vectors allowed for the current macroblock.

This field affects the macroblock partition decision. VME returns the best partition with

MvQuantity not exceeding MaxNumMVs. MaxNumMVs = 0 only allows skip as a valid Inter mode.

Note: This value is used ONLY for 16x16 source MB mode.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 377

DWord Bits Description

Usage Example: Certain profiles/levels for AVC standard have restrictions for the maximum

number of motion vectors allowed for two consecutive macroblocks (MaxMvsPer2Mb may be 16

or 32).

ValidMsgType = IME

Format = U6

M1.0 31:24
Early IME Successful Stop Threshold (EarlyImeStop)

This field specifies the threshold value for the IME distortion computes of single 16x16 mode

below which no more search is performed within the IME unit.

This field only takes effect if EarlyImeSuccessEn is set.

Note: Early IME exit only looks at ref0, and uses 8x8 for source 8x8 and 2 16x8 0 for source 16x8.

ValidMsgType = IME

Format = U4U4 (encoded value should fit in 14 bits)

23:16 Reserved: MBZ

15:8 Reserved: MBZ

7
Transform 8x8 Flag For Inter Enable (T8x8FlagForInterEn)

This field specifies whether Transform8x8Flag is updated for inter mode according to the resulting

inter-mode sub-partition size.

0: Disable

1: Enable

ValidMsgType = SIC, IME, FBR

6 X only search

This field enables searching in only the x dimension.

ValidMsg type - IME, IDM

5
Early IME Success Enable (EarlyImeSuccessEn)

This field specifies whether the Early Success may terminate on full-pel precision. When this field is

not set, if early out does occur on full-pel location, hardware continues to local sub-pel refinement

search and so on. When this field is set, however, the local sub-pel refinement step is skipped and

intra search is also skipped.

This field only takes effect if EarlySuccessEn is set.

Usage Example: This may be used for cases with large static area where (0,0) motion vector

delivers very good results that no FME refinement is needed and also intra check is also skipped.

This may also be used in place of Skip Mode Checking when the skip center(s) happens to be an

integer location inside the SU of the Start Center(s).

3D Media GPGPU

378 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

0: Disable

1: Enable

ValidMsgType = IME

4:3 Reserved: MBZ

2
Bidirectional Mix Disable (BiMixDis): If it is on, all resulting motion vectors must share the same

direction, i.e. either all are unidirectional (i.e. forward or backward), or all bidirectional. If this field

is off, each partition may have different search direction (forward, backward, or bidirectional).

Usage Example: MPEG2 bidirectional decision is at whole macroblock level, while AVC decision is

at subblock level.

0: Bidirectional decision on subblock level that bidirectional mode is enabled.

1: Bidirectional decision on whole macroblock.

Note: This must be disabled for SubMbShape with any minors (8x4/4x8/4x4) in the MB.

ValidMsgType = FBR

1
Adaptive Search Enable (AdaptiveEn): This field defines whether adaptive searching is enabled for

IME. When Adaptive Search is enabled, there must be at least two search steps preceded. It is

either from a single start with step of >=2 or from a dual-start.

0: Disable

1: Enable

ValidMsgType = IME

0
Skip Mode Enable (SkipModeEn): This field specifies whether the skip mode checking is performed

before the motion search. If this field is set, Skip Center, which may have a sub-pel precision, is

first tested before IME.

0: Disable

1: Enable

M2.7 31:24 SIC Forward Transform Coeff Threshold Matrix[6] - Highest Freq

23:16 SIC Forward Transform Coeff Threshold Matrix[5]

15:8 SIC Forward Transform Coeff Threshold Matrix[4]

7:0 SIC Forward Transform Coeff Threshold Matrix[3]

M2.6 31:24 SIC Forward Transform Coeff Threshold Matrix[2]

23:16 SIC Forward Transform Coeff Threshold Matrix[1]

15:0
SIC Forward Transform Coeff Threshold Matrix[0]

Values of the threshold matrix[0..6] are provided here.

Matrix[0] contains the DC threashold for the Forward Transform Skip check. It has increased

precision vs. the other thresholds due to the larger size of DC coeffieicients. Matrix[1] through

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 379

DWord Bits Description

Matrix[6] have lower precision.

Threshold Matrix for 4x4 transform is as follows:

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

Matrix[0] Format = U16

Matrix[1..6] Format = U8

ValidMsgType = SIC

M2.5 31:24 Reserved: MBZ

23:16
FBR SubPredMode Input

VME uses this to select the appropriate shapes from the input message to perform FME on.

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

00: Forward

01: Backward

10: Bidirectional

11: Illegal

Note: Only the LSB of the subpredmode for each shape is considered in FBR (a shape is either

FWD or BWD as input of FBR).

ValidMsgType = FBR

15:8
FBR SubMBShape Input

This field is used to specify the subshape per block for fractional and bidirectional refinement.

Bits [1:0]: SubMbShape[0]

Bits [3:2]: SubMbShape[1]

Bits [5:4]: SubMbShape[2]

Bits [7:6]: SubMbShape[3]

00: 8x8

01: 8x4

3D Media GPGPU

380 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

10: 4x8

11: 4x4

ValidMsgType = FBR

7:2 Reserved: MBZ

1:0
FBR MbMode Input

This field is used to specify the inter macroblock type in the same format as VME output.

00: 16x16

01: 16x8

10: 8x16

11: 8x8

ValidMsgType = FBR

M2.4 31:24 MV 7 Cost

23:16 MV 6 Cost

15:8 MV 5 Cost

7:0 MV 4 Cost

M2.3 31:24 MV 3 Cost

23:16 MV 2 Cost

15:8 MV 1 Cost

7:0
MV 0 Cost

Motion vector costings. See 6.3.3.1 for details. In short, the cost is linearly interpolated between

control points.

Format = U4U4 (encoded value must fit in 10 bits)

Project Note

CHV, BSW ValidMsgType = SIC, IME, FBR, IDM

M2.2 31:24
Chroma Intra Mode Cost

Penalty for chroma intra modes.

DC = 0x

Horz = 1x

Vert = 1x

Plane = 2x

Format = U4U4 (encoded value must fit in 12-bits)

ValidMsgType = SIC, IME, FBR

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 381

DWord Bits Description

23:16
RefID Cost

RefID costing base penalty. Under AVC or Linear mode, different scaling are applied on top of this.

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR, IDM

15:8
Mode 9 Cost

MODE_INTER_BWD

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR

7:0
Mode 8 Cost

MODE_INTER_16x16

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR, IDM

M2.1 31:24
Mode 7 Cost

MODE_INTER_4x4q

MODE_INTER_FIELD_8x8q

Format = U4U4 (encoded value must fit in 10 bits)

ValidMsgType = SIC, IME, FBR

23:16
Mode 6 Cost

MODE_INTER_8x4q

MODE_INTER_4x8q

MODE_INTER_FIELD_16x8

Format = U4U4 (encoded value must fit in 10 bits)

ValidMsgType = SIC, IME, FBR

15:8
Mode 5 Cost

MODE_INTER_8x8q

Format = U4U4 (encoded value must fit in 10 bits)

ValidMsgType = SIC, IME, FBR, IDM

7:0
Mode 4 Cost

MODE_INTER_16x8

3D Media GPGPU

382 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

MODE_INTER_8x16

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR

M2.0 31:24
Mode 3 Cost

MODE_INTRA_4x4

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR

23:16
Mode 2 Cost

MODE_INTRA_8x8

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR

15:8
Mode 1 Cost

MODE_INTRA_16x16

Format = U4U4 (encoded value must fit in 12 bits)

ValidMsgType = SIC, IME, FBR

7:0
Mode 0 Cost

MODE_INTRA_NONPRED

Format = U4U4 (encoded value must fit in 10 bits)

ValidMsgType = SIC, IME, FBR

M3.7 31:0 BWD Cost Center 3

M3.6 31:0 FWD Cost Center 3

M3.5 31:0 BWD Cost Center 2

M3.4 31:0 FWD Cost Center 2

M3.3 31:0 BWD Cost Center 1

M3.2 31:0 FWD Cost Center 1

M3.1 31:16
BWD Cost Center 0 Delta Y (BWDCostCenter0Y)

This field defines the Y value for the first cost center relative to the picture source MB Y value for

the BWD direction.

All 4 Bwd Cost Center Deltas are ignored by HW for IDM message type.

ValidMsgType = SIC, IME, FBR

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 383

DWord Bits Description

Format = S13.2 (2’s comp)

Hardware Range: [-512.00 to 511.75]

15:0
BWD Cost Center 0 Delta X (BWDCostCenter0X)

This field defines the X value for the first cost center relative to the picture source MB X value for

the BWD direction.

Major shape mapping to each cost center:

CC0: 16x16_0, 16x8_0, 8x16_0, 8x8_0

CC1: 8x16_1, 8x8_1

CC2: 16x8_1, 8x8_2

CC3: 8x8_3

All 4 Bwd Cost Center Deltas are ignored by HW for IDM message type.

ValidMsgType = SIC, IME, FBR

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

M3.0 31:16
FWDCostCenter 0 Delta Y (FWDCostCenter0Y): This field defines the Y value for the first cost

center relative to the picture source MB Y value for the FWD direction.

ValidMsgType = SIC, IME, FBR, IDM

Format = S13.2 (2’s comp)

Hardware Range: [-512.00 to 511.75]

15:0
FWDCostCenter 0 Delta X (FWDCostCenter0X): This field defines the X value for the first cost

center relative to the picture source MB X value for the FWD direction.

Major shape mapping to each cost center:

CC0: 16x16_0, 16x8_0, 8x16_0, 8x8_0

CC1: 8x16_1, 8x8_1

CC2: 16x8_1, 8x8_2

CC3: 8x8_3

ValidMsgType = SIC, IME, FBR, IDM

Format = S13.2 (2’s comp)

3D Media GPGPU

384 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Hardware Range: [-2048.00 to 2047.75]

SIC Input Message Phases

Major changes

 Addition of chroma pixel pairs (CbCr as 16b value) for the left 8, top 8, and top-left 1 corner.

 Addition of chroma mode masks (only 4 modes possible, so 4b mask).

 Addition of intra compute type (Y+CbCr, Y only, disabled).

ValidMsgType = “...” identifies the given field is required for each message type. Hardware will ignore

these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X” in “WX+...” below is:

Project Value Any Description

CHV,

BSW

4 CHV, BSW added 1 additional universal message

phase.

DWord Bits Name

WX+0.7 31:0
Ref1 SkipCenter 3 Delta XY

Ref1 Skip Center 3 Delta Y:

This field defines the Y value for the forward skip center relative to the 8x8 block offset from the

source MB Y location in quarter-pel precision associated with Ref1.

To match the relative 8x8 block location, the HW will add fixed offsets to the 4 skip centers in each

direction to generate the correct pixel location to fetch the data.

For SkipCenter 0: VME will add 0 to the user-input Y value.

For SkipCenter 1: VME will add 0 to the user-input Y value.

For SkipCenter 2: VME will add 32 to the user-input Y value.

For SkipCenter 3: VME will add 32 to the user-input Y value.

ValidMsgType = SIC

 Format = S13.2 (2’s comp)

Hardware Range: [-512.00 to 511.75]

For chroma skip:

Format = S12.3 (2’s comp)

Hardware Range: [-256.000 to 255.875]

Ref1SkipCenter3 Delta X:

This field defines the X value for the forward skip center relative to the 8x8 block offset from the

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 385

DWord Bits Name

source MB X location in quarter-pel precision associated with Ref1.

To match the relative 8x8 block location, the HW will add fixed offsets to the 4 skip centers in each

direction to generate the correct pixel location to fetch the data.

For SkipCenter 0: VME will add 0 to the user-input X value.

For SkipCenter 1: VME will add 32 to the user-input X value.

For SkipCenter 2: VME will add 0 to the user-input X value.

For SkipCenter 3: VME will add 32 to the user-input X value.

 Format = S13.2 (2’s comp)

 Hardware Range: [-2048.00 to 2047.75]

For chroma skip:

Format = S12.3 (2’s comp)

Hardware Range: [-1024.000 to 1023.875]

WX+0.6 31:0 Ref0 SkipCenter 3 Delta XY(for definition see M3.7)

WX+0.5 31:0 Ref1 SkipCenter 2 Delta XY (for definition see M3.7)

WX+0.4 31:0 Ref0 SkipCenter 2 Delta XY (for definition see M3.7)

WX+0.3 31:0 Ref1 SkipCenter 1 Delta XY (for definition see M3.7)

WX+0.2 31:0 Ref0 SkipCenter 1 Delta XY (for definition see M3.7)

WX+0.1 31:0 Ref1 SkipCenter 0 Delta XY (for definition see M3.7)

WX+0.0 31:0 Ref0 SkipCenter 0 Delta XY (for definition see M3.7)

WX+1.7 31:0 Neighbor pixel Luma value [23, -1] to [20, -1]. Upper-right pixels from neighbor macroblock C

WX+1.6 31:0 Neighbor pixel Luma value [19, -1] to [16, -1]. Upper-right edge pixels from neighbor

macroblock C

WX+1.5 31:0 Neighbor pixel Luma value [15, -1] to [12, -1]. Top edge pixels from neighbor macroblock B

WX+1.4 31:0 Neighbor pixel Luma value [11, -1] to [8, -1]. Top edge pixels from neighbor macroblock B

WX+1.3 31:0 Neighbor pixel Luma value [7, -1] to [4, -1]. Top edge pixels from neighbor macroblock B

WX+1.2
31:24 Neighbor pixel Luma value [3, -1]. Fourth top edge pixel from neighbor macroblock B

23:16 Neighbor pixel Luma value [2, -1]. Third top edge pixel from neighbor macroblock B

15:8 Neighbor pixel Luma value [1, -1]. Second top edge pixel from neighbor macroblock B

7:0 Neighbor pixel Luma value [0, -1]. First top edge pixel from neighbor macroblock B

WX+1.1
31:24 Corner Neighbor pixel 0. Its content depends on IntraCornerSwap field. It swaps with Corner

Neighbor pixel 1.

23:10
Reserved: MBZ

9:8
Intra Compute Type (IntraComputeType)

3D Media GPGPU

386 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Name

This field specifies the pixel components measured for intra prediction.

00: Luma + Chroma enabled

01: Luma only

1X: Intra disabled

7:4
AVC Intra Chroma Mode Mask (IntraChromaModeMask)

The following mask disables the chroma intra modes from the output.

xxx1: VERT

xx1x: HORZ

x1xx: DC

1xxx: PLANAR

3:0
AVC Intra 16x16 Mode Mask (Intra16x16ModeMask):

Disables given intra mode as follows.

xxx1:

xx1x:

x1xx:

 1xxx:

WX+1.0 31:25
Reserved: MBZ

24:16
AVC Intra 8x8 Mode Mask (Intra16x16ModeMask):

Disables given intra mode as follows.

x xxxx xxx1:

x xxxx xx1x:

x xxxx x1xx:

x xxxx 1xxx:

x xxx1 xxxx:

x xx1x xxxx:

x x1xx xxxx:

x 1xxx xxxx:

 1 xxxx xxxx:

15:9
Reserved: MBZ

8:0
AVC Intra 4x4 Mode Mask (Intra16x16ModeMask):

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 387

DWord Bits Name

 Disables given intra mode as follows.

x xxxx xxx1:

x xxxx xx1x:

x xxxx x1xx:

x xxxx 1xxx:

x xxx1 xxxx:

x xx1x xxxx:

x x1xx xxxx:

x 1xxx xxxx:

 1 xxxx xxxx:

WX+2.7 31:24 Reserved: MBZ

 23:16
Penalty for Intra4x4 non-DC prediction mode

Format: U8

 15:8
Penalty for Intra8x8 non-DC prediction mode

Format: U8

 7:0
Penalty for Intra16x16 non-DC prediction mode

Format: U8

WX+2.6 31:0 Reserved: MBZ

WX+2.5
31:16 Reserved: MBZ

15:0
Neighbor pixel Chroma value CbCr pair [-1, -1]

Corner neighbor pixel pair (CbCr pair, each U8).

WX+2.4
31:28 Intra Predictor Mode for Neighbor B15 (IntraMxMPredModeB15): This field carries the intra

prediction mode of the fourth bottom 4x4 block (Block 15 in Numbers of Block4x4 in a 16x16

region) of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1

and 8.3.2 of the AVC specification.

27:24 Intra Predictor Mode for Neighbor B14 (IntraMxMPredModeB14): This field carries the intra

prediction mode of the third bottom 4x4 block (Block 14 in Numbers of Block4x4 in a 16x16

region) of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1

and 8.3.2 of the AVC specification.

23:20 Intra Predictor Mode for Neighbor B11 (IntraMxMPredModeB11): This field carries the intra

prediction mode of the second bottom 4x4 block (Block 11 in Numbers of Block4x4 in a 16x16

region) of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1

and 8.3.2 of the AVC specification.

19:16 Intra Predictor Mode for Neighbor B10 (IntraMxMPredModeB10): This field carries the intra

3D Media GPGPU

388 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Name

prediction mode of the first bottom 4x4 block (Block 10 in Numbers of Block4x4 in a 16x16

region)of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1 and

8.3.2 of the AVC specification.

15:12 Intra Predictor Mode for Neighbor A15 (IntraMxMPredModeA15): This field carries the intra

prediction mode of the fourth rightmost 4x4 block (Block 15 in Numbers of Block4x4 in a 16x16

region) of the left neighbor A. Definition of the term is according to Sections 8.3.1 and 8.3.2 of the

AVC specification.

11:8 Intra Predictor Mode for Neighbor A13 (IntraMxMPredModeA13): This field carries the intra

prediction mode of the third rightmost 4x4 block (Block 13 in Numbers of Block4x4 in a 16x16

region) of the left neighbor A. Definition of the term is according to Sections 8.3.1 and 8.3.2 of the

AVC specification.

7:4 Intra Predictor Mode for Neighbor A7 (IntraMxMPredModeA7): This field carries the intra

prediction mode of the second rightmost 4x4 block (Block 7 in Numbers of Block4x4 in a 16x16

region) of the left neighbor A.

3:0
Intra Predictor Mode for Neighbor A5 (IntraMxMPredModeA5): This field carries the intra

prediction mode of the first rightmost 4x4 block (Block 5 in Numbers of Block4x4 in a 16x16

region) of the left neighbor A. Definition of the term is according to Sections 8.3.1 and 8.3.2 of the

AVC specification.

Intra Predictor Modes for Neighbor A and B are only used if MODE_INTRA_NOPRED is not zero.

For intra mode selection, bias is applied to the predicted mode if a predictor is present for a

partition. This is achieved by applying a penalty term MODE_INTRA_NONPRED defined in the VME

state to the cost functions for non-predicted modes.

The predictor for a given partition is from its left neighbor and top neighbor. The intra decision for

a partition serves as the predictor for the next partition in the partition order as defined in

Numbers of Block4x4 in a 16x16 region and Numbers of Block4x4 in an 8x8 region or numbers of

Block8x8 in a 16x16 region.

This set of intra predictor mode for neighbor macroblocks are only used for INTRA8x8 and

INTRA4x4 modes.

 Format : U4 (The value of this field is defined in Definition of Intra4x4PredMode which is the same

as that in Definition of Intra8x8PredMode.)

WX+2.3
31:24

Corner Neighbor pixel 1. Its content depends on IntraCornerSwap field. It swaps with Corner

Neighbor pixel 0.

Neighbor pixel Luma value [-1, -1]. The one upper-left edge pixel from neighbor macroblock D,

which is the right most edge pixel of D, if IntraCornerSwap field is 1. Or

Neighbor pixel Luma value [-1, 15]. The last left edge pixel from neighbor macroblock A, which

is the left most edge pixel of D, if IntraCornerSwap field is 0.

23:0 Neighbor pixel Luma value [-1, 14] to [-1, 12]. Left edge pixels from neighbor macroblock A

WX+2.2 31:0 Neighbor pixel Luma value [-1, 11] to [-1, 8]. Left edge pixels from neighbor macroblock A

WX+2.1 31:0 Neighbor pixel Luma value [-1, 7] to [-1, 4]. Left edge pixels from neighbor macroblock A

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 389

DWord Bits Name

WX+2.0
31:24 Neighbor pixel Luma value [-1, 3]. Fourth left edge pixel from neighbor macroblock A

23:16 Neighbor pixel Luma value [-1, 2]. Third left edge pixel from neighbor macroblock A

15:8 Neighbor pixel Luma value [-1, 1]. Second left edge pixel from neighbor macroblock A

7:0 Neighbor pixel Luma value [-1, 0]. First left edge pixel from neighbor macroblock A

WX+3.7 31:0 Neighbor pixel Chroma value CbCr pair [7, -1] to [6, -1]

WX+3.6 31:0 Neighbor pixel Chroma value CbCr pair [5, -1] to [4, -1]

WX+3.5 31:0 Neighbor pixel Chroma value CbCr pair [3, -1] to [2, -1]

WX+3.4 31:0 Neighbor pixel Chroma value CbCr pair [1, -1] to [0, -1]

WX+3.3 31:0 Neighbor pixel Chroma value CbCr pair [-1, 7] to [-1, 6]

WX+3.2 31:0 Neighbor pixel Chroma value CbCr pair [-1, 5] to [-1, 4]

WX+3.1 31:0 Neighbor pixel Chroma value CbCr pair [-1, 3] to [-1, 2]

WX+3.0 31:0 Neighbor pixel Chroma value CbCr pair [-1, 1] to [-1, 0]

IME Input Message Phases

Major changes:

 Addition of the search path, no longer accessed via LUT, will come in message payload.

 Streamin\streamout now contains the 9 major shape reference indices per direction.

 Distortion precisions increased to 16b.

ValidMsgType = “...” identifies the given field is required for each message type. Hardware will ignore

these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X” in “WX+...” below is:

Project Value Any Description

CHV,

BSW

4 CHV, BSW added 1 additional universal message

phase.

DWord Bits Name

WX+0.7 31:0 IME Search Path Delta 28-31

WX+0.6 31:0 IME Search Path Delta 24-27

WX+0.5 31:0 IME Search Path Delta 20-23

WX+0.4 31:0 IME Search Path Delta 16-19

WX+0.3 31:0 IME Search Path Delta 12-15

WX+0.2 31:0 IME Search Path Delta 8-11

WX+0.1 31:0 IME Search Path Delta 4-7

WX+0.0 31:0
IME Search Path Delta 0-3

[7:4] (Y) – specifies relative Y distance to the next SU from previous SU in units of SU.

3D Media GPGPU

390 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Name

[3:0] (X) – specifies relative X distance to the next SU from previous SU in units of SU.

Format = U8

WX+1.7
31:0

Reserved MBZ

WX+1.6
31:0

Reserved MBZ

WX+1.5 31:0 IME Search Path Delta 52-55

WX+1.4 31:0 IME Search Path Delta 48-51

WX+1.3 31:0 IME Search Path Delta 44-47

WX+1.2 31:0 IME Search Path Delta 40-43

WX+1.1 31:0 IME Search Path Delta 36-39

WX+1.0 31:0 IME Search Path Delta 32-35

WX+2.7
31:0

Reserved MBZ

WX+2.6
31:28 Rec0 Shape 8x8_3 RefID

27:24 Rec0 Shape 8x8_2 RefID

23:20 Rec0 Shape 8x8_1 RefID

19:16 Rec0 Shape 8x8_0 RefID

15:12 Rec0 Shape 8x16_1 RefID

11:8 Rec0 Shape 8x16_0 RefID

7:4 Rec0 Shape 16x8_1 RefID

3:0
Rec0 Shape 16x8_0 RefID

Format = U4

WX+2.5
31:16 Rec0 Shape 16x16 Y (relative to source MB)

15:0 Rec0 Shape 16x16 X (relative to source MB)

WX+2.4 31:20
Reserved MBZ

19:16
Rec0 Shape 16x16 RefID

Format = U4

15:0
Rec0 Shape 16x16 Distortion

Format = U16

WX+2.3
31:16

Rec0 Shape 8x8_3 Distortion

Format = U16

Hardware only uses 14 bits. Upper bits ignored (True for all 8x8_X Distortions).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 391

DWord Bits Name

15:0
Rec0 Shape 8x8_2 Distortion

Format = U16

WX+2.2
31:16

Rec0 Shape 8x8_1 Distortion

Format = U16

15:0
Rec0 Shape 8x8_0 Distortion

Format = U16

WX+2.1
31:16

Rec0 Shape 8x16_1 Distortion

Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 8x16_X Distortions).

15:0
Rec0 Shape 8x16_0 Distortion

Format = U16

WX+2.0
31:16

Rec0 Shape 16x8_1 Distortion

Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 16x8_X Distortions).

15:0
Rec0 Shape 16x8_0 Distortion

Format = U16

WX+3.7
31:16 Rec0 Shape 8x8_3 Y (relative to source MB)

15:0 Rec0 Shape 8x8_3 X (relative to source MB)

WX+3.6
31:16 Rec0 Shape 8x8_2 Y (relative to source MB)

15:0 Rec0 Shape 8x8_2 X (relative to source MB)

WX+3.5
31:16 Rec0 Shape 8x8_1 Y (relative to source MB)

15:0 Rec0 Shape 8x8_1 X (relative to source MB)

WX+3.4
31:16 Rec0 Shape 8x8_0 Y (relative to source MB)

15:0 Rec0 Shape 8x8_0 X (relative to source MB)

WX+3.3
31:16 Rec0 Shape 8x16_1 Y (relative to source MB)

15:0 Rec0 Shape 8x16_1 X (relative to source MB)

WX+3.2
31:16 Rec0 Shape 8x16_0 Y (relative to source MB)

15:0 Rec0 Shape 8x16_0 X (relative to source MB)

WX+3.1
31:16 Rec0 Shape 16x8_1 Y (relative to source MB)

15:0 Rec0 Shape 16x8_1 X (relative to source MB)

3D Media GPGPU

392 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Name

WX+3.0
31:16 Rec0 Shape 16x8_0 Y (relative to source MB)

15:0 Rec0 Shape 16x8_0 X (relative to source MB)

WX+4.7
31:0

Reserved MBZ

WX+4.6
31:28 Rec1 Shape 8x8_3 RefID

27:24 Rec1 Shape 8x8_2 RefID

23:20 Rec1 Shape 8x8_1 RefID

19:16 Rec1 Shape 8x8_0 RefID

15:12 Rec1 Shape 8x16_1 RefID

11:8 Rec1 Shape 8x16_0 RefID

7:4 Rec1 Shape 16x8_1 RefID

3:0
Rec1 Shape 16x8_0 RefID

Format = U4

WX+4.5
31:16 Rec1 Shape 16x16 Y (relative to source MB)

15:0 Rec1 Shape 16x16 X (relative to source MB)

WX+4.4 31:20
Reserved MBZ

19:16
Rec1 Shape 16x16 RefID

Format = U4

15:0
Rec1 Shape 16x16 Distortion

Format = U16

WX+4.3
31:16

Rec1 Shape 8x8_3 Distortion

Format = U16

Hardware only uses 14 bits. Upper bits ignored (True for all 8x8_X Distortions).

15:0
Rec1 Shape 8x8_2 Distortion

Format = U16

WX+4.2
31:16

Rec1 Shape 8x8_1 Distortion

Format = U16

15:0
Rec1 Shape 8x8_0 Distortion

Format = U16

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 393

DWord Bits Name

WX+4.1
31:16

Rec1 Shape 8x16_1 Distortion

Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 8x16_X Distortions).

15:0
Rec1 Shape 8x16_0 Distortion

Format = U16

WX+4.0
31:16

Rec1 Shape 16x8_1 Distortion

Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 16x8_X Distortions).

15:0
Rec1 Shape 16x8_0 Distortion

Format = U16

WX+5.7
31:16 Rec1 Shape 8x8_3 Y (relative to source MB)

15:0 Rec1 Shape 8x8_3 X (relative to source MB)

WX+5.6
31:16 Rec1 Shape 8x8_2 Y (relative to source MB)

15:0 Rec1 Shape 8x8_2 X (relative to source MB)

WX+5.5
31:16 Rec1 Shape 8x8_1 Y (relative to source MB)

15:0 Rec1 Shape 8x8_1 X (relative to source MB)

WX+5.4
31:16 Rec1 Shape 8x8_0 Y (relative to source MB)

15:0 Rec1 Shape 8x8_0 X (relative to source MB)

WX+5.3
31:16 Rec1 Shape 8x16_1 Y (relative to source MB)

15:0 Rec1 Shape 8x16_1 X (relative to source MB)

WX+5.2
31:16 Rec1 Shape 8x16_0 Y (relative to source MB)

15:0 Rec1 Shape 8x16_0 X (relative to source MB)

WX+5.1
31:16 Rec1 Shape 16x8_1 Y (relative to source MB)

15:0 Rec1 Shape 16x8_1 X (relative to source MB)

WX+5.0
31:16 Rec1 Shape 16x8_0 Y (relative to source MB)

15:0 Rec1 Shape 16x8_0 X (relative to source MB)

3D Media GPGPU

394 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

FBR Input Message Phases

Major changes:

 Consists of the 32 sub-block motion vectors following the same 32MV format as the rest of VME.

ValidMsgType = “...” identifies the given field is required for each message type. Hardware will ignore

these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X” in “WX+...” below is:

Project Value Any Description

CHV,

BSW

4 CHV, BSW added 1 additional universal message

phase.

DWord Bits Name

WX+0.7
31:0 Ref1 Sub-block XY 3

WX+0.6
31:0 Ref0 Sub-block XY 3

WX+0.5
31:0 Ref1 Sub-block XY 2

WX+0.4
31:0 Ref0 Sub-block XY 2

WX+0.3
31:0 Ref1 Sub-block XY 1

WX+0.2
31:0 Ref0 Sub-block XY 1

WX+0.1
31:0 Ref1 Sub-block XY 0

WX+0.0
31:16

Ref0 Sub-block Y 0

The y-coordinate of Motion Vector 0 for Reference 0, relative to source MB location.

Note: All MVs must be replicated for each shape. (e.g. for luma 16x16 shape and chroma 8x8, all

Sub-block MVs must be the same. For luma 8x8 shape and chroma 4x4, each 8x8 must have its

respective Sub-block MVs be replicated).

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

15:0
Ref0 Sub-block X 0

The x-coordinate of Motion Vector 0 for Reference 0, relative to source MB location.

Note: All MVs must be replicated for each shape. (e.g. for luma 16x16 shape and chroma 8x8, all

Sub-block MVs must be the same. For luma 8x8 shape and chroma 4x4, each 8x8 must have its

respective Sub-block MVs be replicated).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 395

DWord Bits Name

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

WX+1.7
31:0 Ref1 Sub-block XY 7

WX+1.6
31:0 Ref0 Sub-block XY 7

WX+1.5
31:0 Ref1 Sub-block XY 6

WX+1.4
31:0 Ref0 Sub-block XY 6

WX+1.3
31:0 Ref1 Sub-block XY 5

WX+1.2
31:0 Ref0 Sub-block XY 5

WX+1.1
31:0 Ref1 Sub-block XY 4

WX+1.0
31:0 Ref0 Sub-block XY 4

WX+2.7
31:0 Ref1 Sub-block XY 11

WX+2.6
31:0 Ref0 Sub-block XY 11

WX+2.5
31:0 Ref1 Sub-block XY 10

WX+2.4
31:0 Ref0 Sub-block XY 10

WX+2.3
31:0 Ref1 Sub-block XY 9

WX+2.2
31:0 Ref0 Sub-block XY 9

WX+2.1
31:0 Ref1 Sub-block XY 8

WX+2.0
31:0 Ref0 Sub-block XY 8

WX+3.7
31:0 Ref1 Sub-block XY 15

WX+3.6 31:0 Ref0 Sub-block XY 15

WX+3.5 31:0 Ref1 Sub-block XY 14

WX+3.4 31:0 Ref0 Sub-block XY 14

WX+3.3 31:0 Ref1 Sub-block XY 13

WX+3.2 31:0 Ref0 Sub-block XY 13

3D Media GPGPU

396 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Name

WX+3.1 31:0 Ref1 Sub-block XY 12

WX+3.0 31:0 Ref0 Sub-block XY 12

IDM Input Message Phases

Major changes:

 Consists of the 256b source pixel mask.

ValidMsgType = “...” identifies the given field is required for each message type. Hardware will ignore

these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X” in “WX+...” below is:

Project Value Any Description

CHV,

BSW

4 CHV, BSW added 1 additional universal message

phase.

DWord Bits Name

MX+0.7 31:0 Source MB Pixel Mask Row 14, 15

MX+0.6 31:0 Source MB Pixel Mask Row 12, 13

MX+0.5 31:0 Source MB Pixel Mask Row 10, 11

MX+0.4 31:0 Source MB Pixel Mask Row 8, 9

MX+0.3 31:0 Source MB Pixel Mask Row 6, 7

MX+0.2 31:0 Source MB Pixel Mask Row 4, 5

MX+0.1 31:0 Source MB Pixel Mask Row 2, 3

MX+0.0
31:16 Source MB Pixel Mask Row 1

15:0
SourceMB Pixel Mask Row 0

These fields disable a given pixel of the 16x16 source MB.

They are arranged from left to right with bit 0 being the

left-most pixel and bit 15 being the right-most pixel of the

source MB.

Format = disable

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 397

Return Data Message Phases

Major changes:

Major Change

Many of the fields are not valid output for all message types.

Addition of new message phase, which has the block reference IDs and forward transform skip check data.

Intra chroma distortion and best mode are reported.

All U14 distortion values are now U16.

ValidMsgType = “…” identifies the given field is required for each message type. Hardware ignores these

fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

DWord Bits Description

W0.7 31:16
Total VME Stalled Clocks: Counts the number of clocks VME is stalled or starved while

processing this request, due to cache misses.

Format: U16

ValidMsgType = SIC, IME, FBR

15:0
Total VME Compute Clocks: Counts the number of clocks VME is processing this request,

but not stalled or starved as a result of cache misses.

Format: U16

ValidMsgType = SIC, IME, FBR

W0.6 31:26
Alternate Search Path Length: Counts the number of unique search units computed by

VME for the alternate search path for dual reference or dual search path. If the search path

would return to a previously processed SU, it would not be reprocessed and hence not

recounted. The value of [W0.1 15:8] is the overall total search units processed from both

paths whereas this value is the contribution only from the second search path.

Note: Whenever VME is in a mode that processes only a single search path, this field is 0x0.

Format: U6, Range of 0-48

ValidMsgType = IME

25
MaxMV Occurred:

This bit is set if the MaxMV event prevented the lowest distortion solution is rejected due to

lack of motion vectors.

Format: U1

Valid only for Luma Source Size = 16x16.

ValidMsgType = IME

24
EarlyIMEStop Occurred:

3D Media GPGPU

398 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

This bit is set if the EarlyIMEStop threshold is satisfied and IME discontinues searching.

Format: U1

ValidMsgType = IME

23:16
Sub-Macroblock Prediction Mode (SubMbPredMode): If InterMbMode is INTER8x8, this

field describes the prediction mode of the sub-partitions in the four 8x8 sub-macroblock. It

contains four subfields each with 2 bits, corresponding to the four 8x8 sub-macroblocks in

sequential order.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant

information as MbType.

If InterMbMode is INTER16x16, INTER16x8 or INTER8x16, this field carries the prediction

modes of the sub macroblock (one 16x16, two 16x8, or two 8x16). The unused bits are set to

zero.

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

ValidMsgType = SIC, IME, FBR

15:8
Sub-Macroblock Shape (SubMbShape): This field describes the subdivision of the four 8x8

sub-macroblocks. It contains four subfields each with 2 bits, corresponding to the four 8x8

sub macroblocks in sequential order.

This field is derived from sub_mb_type for a BP_8x8 or equivalent macroblock.

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively carries redundant

information as MbType.

This field is only valid if InterMbMode is INTER8x8; otherwise, it is set to zero.

Bits [1:0]: SubMbShape[0]

Bits [3:2]: SubMbShape[1]

Bits [5:4]: SubMbShape[2]

Bits [7:6]: SubMbShape[3]

ValidMsgType = SIC, IME, FBR

7:0
Macroblock Intra Structure (MbIntraStruct): This is a bitmask that specifies neighbor

macroblock availability. This allows software to constrain intra prediction mode search.

This field is simply copied from the input message (to reduce software overhead of forming

the output message to PAK).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 399

DWord Bits Description

Bits MotionVerticalFieldSelect Index

7 Reserved: MBZ (for IntraPredAvailFlagF – F (pixel[-1,7] available for MbAff)

6 Reserved: MBZ (for IntraPredAvailFlagA/E – A (left neighbor top half for MbAff)

5 IntraPredAvailFlagE/A – A (Left neighbor or Left bottom half)

4 IntraPredAvailFlagB – B (Upper neighbor)

3 IntraPredAvailFlagC – C (Upper left neighbor)

2 IntraPredAvailFlagD – D (Upper right neighbor)

1:0 ChromaIntraPredMode

Note: This 8b field is MBZ when IntraComputeType == 1X (when intra is disabled).

ValidMsgType = SIC

W0.5 31:16 LumaIntraPredModes[3]

15:0 LumaIntraPredModes[2]

W0.4 31:16 LumaIntraPredModes[1]

15:0
LumaIntraPredModes[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one

intra16x16 of a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block

(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but

only the LSBit[1:0] is valid, since there are only 4 intra modes.

Note: The LumaIntraPredModes are MBZ when IntraComputeType == 1X (when intra is

disabled).

ValidMsgType = SIC

W0.3 31:16
BestChromaIntraDistortion

This field provides the ChromaIntraMode distortion (sum of Cb and Cr dist).

Note: this field is MBZ when IntraComputeType == 1X (when intra is disabled).

Format = U16

ValidMsgType = SIC

15:0
BestIntraDistortion

This field provides redundant information.

The IntraMbMode indicates if this is a 16x16/8x8/4x4 distortion.

Note: This field is MBZ when IntraComputeType == 1X (when intra is disabled).

3D Media GPGPU

400 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Format = U16

ValidMsgType = SIC

W0.2 31:16
SkipRawDistortion

This field contains Skip Raw Distortion which may be used by software to further refine the

skip decision.

Note: this field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U16

ValidMsgType = SIC

15:0
InterDistortion

This field provides the best inter distortion.

Format = U16

ValidMsgType = SIC, IME, FBR

W0.1 31:27 Reserved: MBZ

26:16
Sum Ref1 Inter Dist Upper 10 bits (SumInterDistL1Upper)

Contains the sum distortion of all 16x16 Inter shape of Ref1 within the searched SU of this

search window. MSB 11 bits only.

Format = U11

ValidMsgType = IME

15:8
Search Path Length: This field returns the number of SU it takes in the integer search. It

includes predetermined search path and dynamic search path.

Format: U8

ValidMsgType = IME

7:4
Reference 1 border reached: Bitmask indicating whether any border of reference 1 is

reached by one or more motion vectors in the winning inter mode.

xxx1: left border reached

xx1x: right border reached

x1xx: top border reached

1xxx: bottom border reached

ValidMsgType = IME

3:0
Reference 0 border reached: Bitmask indicating whether any border of reference 0 is

reached by one or more motion vectors in the winning inter mode.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 401

DWord Bits Description

xxx1: left border reached

xx1x: right border reached

x1xx: top border reached

1xxx: bottom border reached

ValidMsgType = IME

W0.0 31:29 Reserved: MBZ

28:24
MvQuantity: Specifies the number of MVs in packed format (in units of motion vectors).

Note: This field is provided to help software meet conformance requirements such as

maximum number of motion vectors for two consecutive macroblocks.

Format: U5, valid from 0 to 32

ValidMsgType = SIC, IME, FBR

23
ExtendedForm: This field specifies that LumaIntraMode’s are fully replicated in 4x4 sub-

blocks respectively. And motion vectors must be in unpacked form as well. This non-DXVA

form is used for optimal kernel performance.

This is reserved MBZ and the HW always extends.

ValidMsgType = SIC

22:21 Reserved: MBZ

20:16
IntraMbType

This field is encoded to match with the inter type determined as described in the next

section. It follows a unified encoding for intra macroblocks according to the AVC Spec.

Note: This field is MBZ when IntraComputeType == 1X (when intra is disabled).

ValidMsgType = SIC

15
Transform8x8Flag (Transform 8x8 Flag)

This field indicates that 8x8 transform is recommended.

It is set to 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8.

For IntraMbFlag = INTER. If T8x8FlagForInterEn = 0, this field is set to 0 by VME hardware.

If T8x8FlagForInterEn = 1, this field is set to 1 if there is no sub macroblock size less than

8x8 (noSubMbPartSizeLessThan8x8Flag = 1).

0: 4x4 integer transform

1: 8x8 integer transform

Note: This bit is always 0 for non-16x16 source block cases.

ValidMsgType = IME, FBR

3D Media GPGPU

402 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

14
FieldMbFlag

This field indicates the inter prediction result is field or frame.

It is always set to SrcAccess.

0: Frame macroblock

1: Field macroblock

ValidMsgType = SIC, IME, FBR

13 Reserved: MBZ

12:8
InterMbType

This field is encoded to match with the inter type determined as described in the next

section. It follows a unified encoding for inter macroblocks according to AVC Spec.

ValidMsgType = SIC, IME, FBR

7
FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Unique for AVC standard, within an MbAff frame picture, this field may be different per

macroblock and is set to 1 only for the second macroblock in an MbAff pair if FieldMbFlag is

set. Otherwise, it is set to 0.

Within a field picture in most coding standard, this field is a constant for the whole field

picture. It is set to 1 if the current picture is the bottom field picture. Otherwise, it is set to 0.

This field is reserved and MBZ for a progressive frame picture.

VME hardware set this field to 1 if the source block is a field block from the bottom field and

otherwise sets it to 0. This is accomplished by the following equation using input signals

SrcAccess and SrcY: SrcAccess && (bit0(SrcY) ==1).

0 = Current macroblock is a field macroblock from the top field.

1 = Current macroblock is a field macroblock from the bottom field.

Equals SrcAccess && SrcFieldPolarity(M1.7[19])

ValidMsgType = SIC, IME, FBR

6 Reserved: MBZ

5:4
IntraMbMode

This field is provided to carry redundant information as that in MbType. The full extended

definition of this field allows kernel software to help update the MbType field when

outputting controls to the MFX PAK encoding.

VME outputs this field regardless of MbIntraFlag value if intra mode is enabled.

ValidMsgType = SIC

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 403

DWord Bits Description

3:2 Reserved: MBZ

1:0
InterMbMode

This field is provided to carry redundant information as that in MbType. The full extended

definition of this field allows kernel software to help update the MbType field when

outputting controls to the MFX PAK encoding.

VME outputs this field regardless of MbIntraFlag value if inter mode is enabled.

ValidMsgType = SIC, IME, FBR

W1.7 to

W1.2

31:0

Each
MVb[3] to MVb[1]. Motion vectors 3 to 1 for Reference 1, and

MVa[3] to MVa[1]. Motion vectors 3 to 1 for Reference 0

See note in W1.0 bits 15:0.

ValidMsgType = SIC, IME, FBR

W1.1 31:16
MVb[0].y: Returning the y-coordinate of Motion Vector 0 for Reference 1, relative to source

MB location.

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

ValidMsgType = SIC, IME, FBR

15:0
MVb[0].x: Returning the x-coordinate of Motion Vector 0 (co-located w/ sublbock_4x4_0)

for Reference 1, relative to source MB location. Its meaning is determined by MbType.

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

ValidMsgType = SIC, IME, FBR

W1.0 31:16
MVa[0].y: Returning the y-coordinate of Motion Vector 0 for Reference 0, relative to source

MB location.

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

ValidMsgType = SIC, IME, FBR

15:0
MVa[0].x: Returning the x-coordinate of Motion Vector 0 (co-located w/ the first pixel in 6

by 2 block) for Reference 0, relative to source MB location. Its meaning is determined by

MbType.

Hardware Range: [-2048.00 to 2047.75]

3D Media GPGPU

404 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

ValidMsgType = IME

MVa[0].x: Returning the x-coordinate of Motion Vector 0 (co-located w/ sublbock_4x4_0)

for Reference 0, relative to source MB location. Its meaning is determined by MbType.

The returned motion vectors are placed in a fixed data format, with up to 16 motion vectors

for one reference and the motion vectors from reference 0 and 1 interleaved.

If M1.7:20 (Enable WeightedSAD) is set true (1), then this field and the rest of W1 through

W4 are redefined as follows:

W1.0 from 31:0 = Minimum 16x16 distortion when applying 1st weighting pattern

(16x16_0)

W1.1 from 31:0 = Reserved

W1.2 from 31:0 = Minimum 16x16 distortion when applying 2nd weighting pattern

(16x16_1)

W1.3 from 31:0 = Reserved

W1.4 from 31:0 = Minimum 16x16 distortion when applying 3rd weighting pattern

(16x16_2)

W1.5 from 31:0 = Reserved

W1.6 from 31:0 = Minimum 16x16 distortion when applying 4th weighting pattern

(16x16_3)

W1.7 from 31:0 = Reserved

W2 through W4 = Reserved

Format = S13.2 (2’s comp)

Hardware Range: [-2048.00 to 2047.75]

ValidMsgType = SIC, IME, FBR

W2.7 to

W2.0

31:0

Each
MVb[7] to MVb[4]. Motion vectors 7 to 4 for Reference 1, and

MVa[7] to MVa[4]. Motion vectors 7 to 4 for Reference 0

See note in W1.0 bits 15:0.

ValidMsgType = SIC, IME, FBR

W3.7 to

W3.0

31:0

Each
MVb[11] to MVb[8]. Motion vectors 11 to 8 for Reference 1, and

MVa[11] to MVa[8]. Motion vectors 11 to 8 for Reference 0

See note in W1.0 bits 15:0.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 405

DWord Bits Description

ValidMsgType = SIC, IME, FBR

W4.7 to

W4.0

31:0

Each
MVb[15] to MVb[12]. Motion vectors 15 to 12 for Reference 1, and

MVa[15] to MVa[12]. Motion vectors 15 to 12 for Reference 0

See note in W1.0 bits 15:0.

ValidMsgType = SIC, IME, FBR

W5.7 to

W5.1
31:0

Each

InterDistortion[15] to InterDistortion[2]. Inter-prediction-distortion associated with

motion vector 15 to 2. Its meaning is determined by sub-shape.

See note in W1.0 bits 15:0.

ValidMsgType = SIC, IME, FBR

W5.0 31:16
InterDistortion[1]. Inter-prediction-distortion with motion vector 1 (co-located with

subblock_4x4_1). Its meaning is determined by sub-shape.

Format = U16

See note in W1.0 bits 15:0.

ValidMsgType = SIC, IME, FBR

15:0
InterDistortion[0]. Inter-prediction-distortion associated with motion vector 0 (co-located

with subblock_4x4_0). Its meaning is determined by sub-shape. It must be zero if the

corresponding sub-shape is not chosen.

This field may be associated with MVa[0] and/or MVb[0], depending on the resulting

prediction mode for the sub-block. If the corresponding MV field is created by “duplication”,

this field must be zero.

For 1MVP skip messages, the 16x16 distortion (sad + mv cost + ref cost) is present here.

For 4MVP skip messages, the 4 8x8 distortions (sad + mv cost + ref cost) are present here.

Note: This set of inter-prediction-distortion fields contains detailed information for all sub-

shapes. It may be used to assist a multi-pass motion search algorithm. The overall distortion

for the macroblock is provided in W0.1.

Format = U16

If M1.7:20 (Enable WeightedSAD) is set true (1), then this field and the rest of W5 are

redefined as follows:

W5.0 from 15:0 = Minimum 16x16 distortion when applying 1st weighting pattern (16x16_0

3D Media GPGPU

406 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

with corresponding MV at W1.0)

W5.0 from 31:16 = Minimum 16x16 distortion when applying 2nd weighting pattern

(16x16_1 with corresponding MV at W1.2)

W5.1 from 15:0 = Minimum 16x16 distortion when applying 3rd weighting pattern (16x16_2

with corresponding MV at W1.4)

W5.1 from 31:16 = Minimum 16x16 distortion when applying 4th weighting pattern

(16x16_3 with corresponding MV at W1.6)

W5.7 to W5.2 = Reserved

W6.7 31:16
Max Ref1 Inter Dist (MaxRef1InterDist)

Contains the distortion of the 16x16 Inter shape of Ref1 with the maximum distortion within

the searched SU of this search window.

Format = U16

ValidMsgType = IME

15:0
Max Ref0 Inter Dist (MaxRef0InterDist)

Contains the distortion of the 16x16 Inter shape of Ref0 with the maximum distortion within

the searched SU of this search window.

Format = U16

ValidMsgType = IME

W6.6 31:27 Reserved: MBZ

26:0
Sum Ref0 Inter Dist (SumRef0InterDist)

Contains the sum distortion of all 16x16 Inter shape of Ref0 within the searched SU of this

search window.

Format = U27

ValidMsgType = IME

W6.5 31:16
Block 0 Chroma Cr Coeff Magnitude Clip Sum

Sum of how much all the coefficients across 1 block exceeded their respective threshold.

Note: This field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U16

ValidMsgType = SIC

15:0
Block 0 Chroma Cb Coeff Magnitude Clip Sum

Sum of how much all the coefficients across 1 block exceeded their respective threshold.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 407

DWord Bits Description

Note: This field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U16

ValidMsgType = SIC

 31:16
Sum Ref1 Inter Dist lower 16 bits (SumInterDistL1Lower)

Contains the sum distortion of all 16x16 Inter shape of Ref1 within the searched SU of this

search window. Lower 16 bits.

Format = U16

ValidMsgType = IME

 15:8
Block 0 Chroma Cr NZC

Count of the coefficients across 1 block that exceeded their respective threshold.

Note: This field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U8

ValidMsgType = SIC

 7:0
Block 0 Chroma Cb NZC

Count of the coefficients across 1 block that exceeded their respective threshold.

Note: This field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U8

ValidMsgType = SIC

W6.3 31:16 Block 3 Luma Coeff Magnitude Clip Sum

15:0 Block 2 Luma Coeff Magnitude Clip Sum

W6.2 31:16 Block 1 Luma Coeff Magnitude Clip Sum

15:0
Block 0 Luma Coeff Magnitude Clip Sum

Sum of how much all the coefficients across 1 block exceeded their respective threshold.

Note: This field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U16

ValidMsgType = SIC

W6.1 31:24 Block 3 Luma NZC

23:16 Block 2 Luma NZC

15:8 Block 1 Luma NZC

7:0
Block 0 Luma NZC

3D Media GPGPU

408 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Count of the coefficients across 1 block that exceeded their respective threshold.

Note: This field is MBZ when SkipModeEn is not set (when skip is disabled).

Format = U8

ValidMsgType = SIC

W6.0 31:28 Bwd Block 3 RefID

27:24 Fwd Block 3 RefID

23:20 Bwd Block 2 RefID

19:16 Fwd Block 2 RefID

15:12 Bwd Block 1 RefID

11:8 Fwd Block 1 RefID

7:4
Bwd Block 0 RefID

Reference ID for backward block 0.

Note: Even if shape is 16x16, this field is defined per block, hence VME will replicate the

RefID for larger shapes.

Replication happens only in IME.

For CRE (SIC/FBR), this is a pass through field.

Format = U4

ValidMsgType = SIC, IME, FBR

3:0
Fwd Block 0 RefID

Reference ID for forward block 0.

Note: Even if shape is 16x16, this field is defined per block, hence VME will replicate the

RefID for larger shapes.

Replication happens only in IME.

For CRE (SIC/FBR), this is a pass through field.

Format = U4

ValidMsgType = SIC, IME, FBR

IME StreamOut

IME Streamout follows the same format as the IME Streamin message phases (IME2-IME5).

IDM Stream-Out

Because the IDM output message only contains distortion values without their corresponding motion

vectors, a direct mapping system is used to derive the MV associated with a given distortion.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 409

This mapping allows the user to derive the location of a given distortion easily by applying the

following equations.

ShapeMode == 16x16 ShapeMode == 8x8

MV.x = (GRF# % 4) * 4 + W# % 4 + Ref.x MV.x = ((GRF# / 4) % 2) * 4 + W# % 4 + Ref.x

MV.y = (GRF# / 4) * 4 + W# / 4 + Ref.y MV.y = ((GRF# / 4) / 2) * 4 + W# / 4 + Ref.y

 GRF#: The 256b return message phase number.

 W#: The 16 16b word within each 256b return message.

IDM16x16 Streamout Message Format

DWord Bits Description

W15 31:0 Distortion Mesh Block 15 Search Points 0-15

W14 31:0 Distortion Mesh Block 14 Search Points 0-15

W13 31:0 Distortion Mesh Block 13 Search Points 0-15

W12 31:0 Distortion Mesh Block 12 Search Points 0-15

W11 31:0 Distortion Mesh Block 11 Search Points 0-15

W10 31:0 Distortion Mesh Block 10 Search Points 0-15

W9 31:0 Distortion Mesh Block 9 Search Points 0-15

W8 31:0 Distortion Mesh Block 8 Search Points 0-15

W7 31:0 Distortion Mesh Block 7 Search Points 0-15

W6 31:0 Distortion Mesh Block 6 Search Points 0-15

W5 31:0 Distortion Mesh Block 5 Search Points 0-15

3D Media GPGPU

410 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W4 31:0 Distortion Mesh Block 4 Search Points 0-15

W3 31:0 Distortion Mesh Block 3 Search Points 0-15

W2 31:0 Distortion Mesh Block 2 Search Points 0-15

W1 31:0 Distortion Mesh Block 1 Search Points 0-15

W0.7
31:16 Distortion Mesh Block 0 Search Point 15

15:0 Distortion Mesh Block 0 Search Point 14

W0.6
31:16 Distortion Mesh Block 0 Search Point 13

15:0 Distortion Mesh Block 0 Search Point 12

W0.5
31:16 Distortion Mesh Block 0 Search Point 11

15:0 Distortion Mesh Block 0 Search Point 10

W0.4
31:16 Distortion Mesh Block 0 Search Point 9

15:0 Distortion Mesh Block 0 Search Point 8

W0.3
31:16 Distortion Mesh Block 0 Search Point 7

15:0 Distortion Mesh Block 0 Search Point 6

W0.2
31:16 Distortion Mesh Block 0 Search Point 5

15:0 Distortion Mesh Block 0 Search Point 4

W0.1
31:16 Distortion Mesh Block 0 Search Point 3

15:0 Distortion Mesh Block 0 Search Point 2

W0.0
31:16 Distortion Mesh Block 0 Search Point 1

15:0
Distortion Mesh Block 0 Search Point 0

This is the distortion value at the location (0,0) within the search window.

Each 256b (8 DW) message phase contains 16 distortion values for a given 4x4 search unit of the

search window.

Each word of a message phase contains a single 16x16 distortion at a given search point. The

individual distortion values are arranged in raster-scan (row-major order) within the 4x4.

For ShapeMode == 16, the 16 message phases comprise the 16 SUs (4x4) of the 32x32 search

window for each 16x16 distortion and are returned in raster-scan (row-major order).

Format = U16

IDM8x8 Streamout Message Format

DWord Bits Description

W15 31:0 Distortion Mesh Block 3 SU3 Search Points 0-15

W14 31:0 Distortion Mesh Block 2 SU3 Search Points 0-15

W13 31:0 Distortion Mesh Block 1 SU3 Search Points 0-15

W12 31:0 Distortion Mesh Block 0 SU3 Search Points 0-15

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 411

DWord Bits Description

W11 31:0 Distortion Mesh Block 3 SU2 Search Points 0-15

W10 31:0 Distortion Mesh Block 2 SU2 Search Points 0-15

W9 31:0 Distortion Mesh Block 1 SU2 Search Points 0-15

W8 31:0 Distortion Mesh Block 0 SU2 Search Points 0-15

W7 31:0 Distortion Mesh Block 3 SU1 Search Points 0-15

W6 31:0 Distortion Mesh Block 2 SU1 Search Points 0-15

W5 31:0 Distortion Mesh Block 1 SU1 Search Points 0-15

W4 31:0 Distortion Mesh Block 0 SU1 Search Points 0-15

W3 31:0 Distortion Mesh Block 3 SU0 Search Points 0-15

W2 31:0 Distortion Mesh Block 2 SU0 Search Points 0-15

W1 31:0 Distortion Mesh Block 1 SU0 Search Points 0-15

W0.7
31:16 Distortion Mesh Block 0 SU0 Search Point 15

15:0 Distortion Mesh Block 0 SU0 Search Point 14

W0.6
31:16 Distortion Mesh Block 0 SU0 Search Point 13

15:0 Distortion Mesh Block 0 SU0 Search Point 12

W0.5
31:16 Distortion Mesh Block 0 SU0 Search Point 11

15:0 Distortion Mesh Block 0 SU0 Search Point 10

W0.4
31:16 Distortion Mesh Block 0 SU0 Search Point 9

15:0 Distortion Mesh Block 0 SU0 Search Point 8

W0.3
31:16 Distortion Mesh Block 0 SU0 Search Point 7

15:0 Distortion Mesh Block 0 SU0 Search Point 6

W0.2
31:16 Distortion Mesh Block 0 SU0 Search Point 5

15:0 Distortion Mesh Block 0 SU0 Search Point 4

W0.1
31:16 Distortion Mesh Block 0 SU0 Search Point 3

15:0 Distortion Mesh Block 0 SU0 Search Point 2

W0.0
31:16 Distortion Mesh Block 0 SU0 Search Point 1

15:0
Distortion Mesh Block 0 SU0 Search Point 0

This is the distortion value at the location (0,0) within the search window.

Each 256b (8 DW) message phase contains 16 distortion values for a given 4x4 search unit of the

search window.

Each word of a message phase contains a single 8x8 distortion at a given search point. The

individual distortion values are arranged in raster-scan (row-major order) within the 4x4.

For ShapeMode == 8, the first 4 message phases comprise the 1st SU of the 24x24 search window

for all 4 block8x8_0-block8x8_1 distortions and are returned in raster-scan (row-major order). The

next 4 message phases contain the 2nd SU and so on.

Format = U16

3D Media GPGPU

412 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Sample_8x8 State

This section contains different state definitions.

This state definition is used only by the deinterlace message. This state is stored as an array of up to 8

elements, each of which contains the dwords described here. The start of each element is spaced 8

dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7

that selects which element is being used is multiplied by 2 to determine the Sampler Index in the

message descriptor.

SURFACE_STATE for Deinterlace, sample_8x8, and VME

This section contains media surface state definitions.

MEDIA_SURFACE_STATE

Restrictions: The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to

the same for the multi-surface Video Analytics functions like “LBP Correlation” and “Correlation Search”

for both the surfaces.

SAMPLER_STATE for Sample_8x8 Message

SAMPLER_STATE has different formats, depending on the message type used. For CHV, BSW, the

sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as detailed in the

corresponding sections.

SAMPLER_STATE

 [CHV, BSW] Function AVS Scaling : State is 154DWs

 [CHV, BSW] Function Convolve : State is 144DWs

 [CHV, BSW] Function MinMaxfilter/Erode/Dilate : State is 8DWs

 [CHV, BSW] Function MinMax/BoolCentroid/Centroid : State is 0DWs. The sampler state is not required.

 [CHV, BSW]

This state definition is used only by the sample_8x8 message only for specific function and the length of the

state varies according to the function programmed in the message header.

For AVS and Convolve the state is stored as an array of up to 48 elements (192 DWs), (upsize to 64

elements, 256DWs), each of which contains the dwords described here. The start of each of this state is

spaced 256 dwords apart. The first element of the array is aligned to a 64-byte boundary. The sampler

index in the message descriptor is multiplied by 32 to determine the offset from the base where the

sampler state is to be read from. Sampler states with lower foot print than 32 elements should be packed at

lower offsets and this sampler state for sample_8x8 message should be kept at the end. We can reuse

existing sampler_index if the result of the multiplication of 32 is not overlapping with the existing states

already programmed at the lower offsets. Two adjacent state of this type should have a space of 2 sample

index.

For MinMaxFilter, Erode and Dilate the state is stored as an array of up to 2 elements (8 DWs), each of

which contains the dwords as described in following section. The start of each of this state is spaced 8

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 413

dwords apart. The first element of the array is aligned to a 32-byte boundary. The sampler index in the

message descriptor is multiplied by 2 to determine the offset from the base where the sampler state is to

be read from. Sampler states with lower foot print than 2 elements should be packed at lower offsets and

this sampler state for sample_8x8 message should be kept after it. Sampler states with larger footprint

(192DWs) as described earlier should be packed after this. We can reuse existing sampler_index if the result

of the multiplication of 2 is not overlapping with the existing states already programmed at the lower

offsets. Two adjacent state of this type should have a space of 1 sample index.

SAMPLER_STATE_8x8_AVS

SAMPLER_STATE_8x8_AVS_COEFFICIENTS

SAMPLER_STATE_8x8_CONVOLVE [CHV, BSW]

SAMPLER_STATE_8x8_ERODE_DILATE_MINMAXFILTER

Media Object Dispatch Pseudocode

 // Variables:

 Frame Height in pixels => frame_height

 Frame Width in pixels => frame_width

 Frame Height in Blocks => fh

 Frame Width in Blocks => fw

 Block Height in Pixels => block_height = Interlaced ? 4 : 8

 // Code:

 fw = frame_width / 16;

 fh = frame_height / block_height;

Calculate Residual Blocks Pseudocode

 If (fh % (2**stride)) ≠ 0 {

 Y_Blocks_Remainder = (fh % (2**stride))

 If (Y_Blocks_Remainder > (2**stride) / 2) {

 Y_Blocks_Remainder_HS1 = (2**stride) / 2

 Y_Blocks_Remainder_HS2 = Y_Blocks_Remainder - (2**stride) / 2

 }

 Else {

 Y_Blocks_Remainder_HS1 = Y_Blocks_Remainder

 Y_Blocks_Remainder_HS2 = 0

 }

 }

 Else {

 Y_Blocks_Remainder_HS1 = 0

 Y_Blocks_Remainder_HS2 = 0

 }

http://gfxspecs.intel.com/Predator/Home/Index/12501

3D Media GPGPU

414 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dispatch Media Object Pseudocode

 total_media_obj_cnt = fw * fh;

 reminder_media_obj_cnt_HS1 = fw * Y_Blocks_Remainder_HS1;

 reminder_media_obj_cnt_HS2 = fw * Y_Blocks_Remainder_HS2;

 ping_pong_media_obj_cnt = total_media_obj_cnt – (reminder_media_obj_cnt_HS1 +

reminder_media_obj_cnt_HS1);

 for (i = 0; i < ping_pong_media_obj_cnt; i++) {

 if (i % 2 == 0) {

 dispatch_media_object_hs1;

 }

 else {

 dispatch_media_object_hs2;

 }

 }

 for (i = 0; i < reminder_media_obj_cnt_HS1; i++) {

 dispatch_media_object_hs1;

 }

 for (i = 0; i < reminder_media_obj_cnt_HS2; i++) {

 dispatch_media_object_hs2;

 }

SIMD32/64 Payload

SIMD32 Payload

DWord Bits Description

M1.7 31:0 Reserved

M1.6 31:0
U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Format = IEEE_Float in normalized space.

M1.5 31:0
Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

 This field is ignored for the deinterlace message type.

 Negative Delta V are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.4
31:0

Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 415

DWord Bits Description

sample_unorm* message types.

 This field is ignored for the deinterlace message type.

 Negative Delta U are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.3 31:0
Pixel 0 V Address

Format: sample_unorm* : IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,2046])

[CHV, BSW]: Specifies the address for the pixel at the top left of the group and not the top of the

message block sent in.

M1.2 31:0
Pixel 0 U Address

Format: sample_unorm* : IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,4095])

Specifies the address for the pixel at the top left of the group and not the top of the message block

sent in.

M1.1 31:0 Reserved

M1.0 31:0 Ignored

SIMD64 Payload

DWord Bits Description

M1.7 31:28
Functionality

Value Function

0000b AVS scaling

0001b Convolve

0010b MINMAX

0011b MINMAXFILTER

0100b ERODE

0101b Dilate

0110b BoolCentroid / BoolSum

0111b Centroid

Other Reserved

 27
Reserved

3D Media GPGPU

416 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

 26:23
Control

[26:25] Message_Seq:

When Functionality is AVS:

11: 4x4 (only supported with Shuffle_OutputWriteback=1)

10: 16x8

01: 8x4 (only supported with Shuffle_OutputWriteback=1)

00: 16x4

When Functionality is Convolve/MinMaxFilter/LBP Correlation/LBP Creation:

11: 1x1 – This would be used in MinMaxFilter case & 1pixel convolve only for operation in

scattered regions and don’t want to waste the power. This mode is not used and is reserved for

2D/1D Convolve, LBP Creation, and LBP Correlation.

10: 16x1 – This would be used in case we require the operation in scattered regions and don’t want

to waste the throughput. 1-D Horizontal this will be 1x16. Not supported in LBP creation and LBP

correlation.

0x: 16x4 – except for 1-D Horizontal this will be 4x16; illegal for 1 pixel convolve.

When Functionality is Erode/Dilate:

11: 32x1 – This would be used in case we require the operation in scattered regions and don’t want

to waste the throughput.

10: 64x1 – This would be used in case we require the operation in scattered regions and don’t want

to waste the throughput.

01: 32x4

00: 64x4

When Functionality is MINMAX/BoolCentroid/Centroid

1x: These modes should always force this to 1 since we don’t have SI sequencing.

0x: Unexpected behavior

[24:23]:

When Functionality is MinMaxFilter/MinMax/LBP Creation Only:

11: Reserved

10: Disable Max Filter. (Min Filter only)/5x5 LBP

01: Disable Min Filter. (Max Filter only)/3x3 LBP

00: Both Min and Max filter/Both 3x3 and 5x5 LBP

When Functionality is Convolve:

Description

1x: Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 417

DWord Bits Description

00: (default used for kernel size lesser than 15x15 size)

Reserved for all other functionality.

 22 Reserved: MBZ

 21:0
Group ID Number

Used to group messages for reorder for sample_8x8 messages. All messages with the same Group

ID must have the following in common: SURFACE_STATE, SAMPLER_STATE, Destination register on

send instruction, M0, and M1 except for Horizontal and Vertical Block Number.

M1.6 31:0
Function = AVS:

U 2nd Derivative: Defines the change in the delta U for adjacent pixels in the X direction.

Programming Note

Context: SIM64 Payload

 This field is ignored for messages other than sample_8x8.

 (64 – (2*du))/35 >= ddu >= -du/18

 2*ddu <= du

Format = IEEE_Float in normalized space

If function != AVS this field is ignored and assumed to be 0 (Reserved: MBZ).

M1.5
31:0

Function = AVS:

Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Note

Context: SIMD64 Payload

 CHV, BSW: Delta V multiplied by Height in SURFACE_STATE must be less than or equal to

3 for sample_unorm* message types.

 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8

message type.

 This field is ignored for the deinterlace message type and VA sample_8x8 messages.

 Negative Delta V is not supported and should be clamped to 0.

Format = IEEE_Float in normalized space

If function != AVS this field is ignored and assumed to be 1.

M1.4 31:0
Function = AVS:

3D Media GPGPU

418 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Note

Context: SIMD64 Payload

 CHV, BSW: Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3

for sample_unorm* message types.

 Delta U multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8

message type.

 This field is ignored for the deinterlace message type and VA sample_8x8 messages.

 Negative Delta U is not supported and should be clamped to 0.

Format = IEEE_Float in normalized space

If function != AVS this field is ignored and assumed to be 1.

M1.3 31:0
Pixel 0 V Address

Specifies the address for the pixel at the top left of the group and not the top of the message

block sent in.

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

Programming Note

Context: SIMD64 Payload

 V Address should be programming within the range 0.0 to 1.0 for sampler_8x8 VA

centroid and boolcentroid functions.

 V Address should be programming within the range -1.0 to 2.0 for other sample_8x8 VA

function in Mirror mode.

M1.2 31:0
Pixel 0 U Address

Specifies the address for the pixel at the top left of the group and not the top of the message

block sent in.

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

Programming Note

Context: SIMD64 Payload

 V Address should be programming within the range 0.0 to 1.0 for sampler_8x8 VA

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 419

DWord Bits Description

centroid and boolcentroid functions.

 V Address should be programming within the range -1.0 to 2.0 for other sample_8x8 VA

function in Mirror mode.

M1.1 8:0
Vertical Block Number

Specifies the vertical block offset for the block being sent for the sample_8x8 message. This will be

equal to the vertical pixel offset from the given address pixel 0 V address in multiples of blocks as

defined below.

Vertical Offset:

if Functionality= (1D_Horz_Convolve OR Box_Filter_4x16 OR Box_Filter_8x8) :

Vertical Block number multiplied by 0 represents the offset from the V address

Else if Message_seq[1] = 0 :

Vertical Block number multiplied by 4 represents the offset from the V address

Else if Message_seq[1] = 1 :

If “Functionality = AVS” :

If “Message_seq[0] = 0” :

Vertical Block number multiplied by 8 represents the offset from the V address.

Else

Vertical Block number multiplied by 4 represents the offset from the V address.

Else

Vertical Block number multiplied by 1 represents the offset from the V address.

Horizontal Offset:

Vertical Block number multiplied by 0 represents the offset from the U address

Function = MinMax OR BoolCentroid OR Centroid or onepixelconvolve or correlation_search

Vertical Block Number is not supported and must be MBZ.

Format: U9

Refer to Vertical Block Number Restriction for further details.

M1.0 31:0
Function = AVS:

V 2nd Derivative

Defines the change in the delta V for adjacent pixels in the Y direction.

Programming Note

Context: SIMD4 Payload

This field is ignored for messages other than sample_8x8.

3D Media GPGPU

420 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Format = IEEE_Float in normalized space

For functionality other than AVS this would always be programmed to 0.

Function = Centroid:

[31:4] Reserved

[3:0] Vertical Size

To control the size of the centroid in vertical direction if less than 8 is required.

Function = BoolCentroid:

[31:10] Reserved

[9:4] Horizontal Size

To control the size of the Boolcentroid in Horizontal direction if less than 64 is required. ‘0’

represents the default size of 64.

[3:0] Vertical Size

To control the size of the Boolcentroid in vertical direction if less than 4 is required. ‘0’ represents

the default size of 4.

[31:16] Y-offset for Top right block from the top-left Co-ordinate

[15:0] X-offset for Top right block from the top-left Co-ordinate

Restrictions for using 16x8 Message with AVS function in Sample_8x8 Message:

OFC Mode Channels Enabled Notes

0 All Channels Not Supported

Only Y-channel Supported

Only UV channels Supported

1 All Channels Not Supported

Only Alpha Channel Disabled Supported

Only Y-channel Supported

Only UV channels Supported

All Other combinations Not Supported

2 X Supported

3 X Supported

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 421

Vertical Block Number Restrictions

 Function Msg Seq

Vblk

Multiplier

Restrictions / Comments

Dword

M1.7 M1.7 Vertical block (vblk) is used for vertical offset except in 1D

horizontal convolution where it is used as horizontal offset.

Bits [31:28] [26:25]

 AVS Scaling 16x4 4 With Rotation of 90 and 270 the vblk should not be used and

should be zero always.

 16x8 8

 Convolve 16x4 4

 16x1 1

 MinMax 0 Vblk is not used and should be zero.

 MinMaxFilter 16x4 4

 16x1 or

1x1

1

 Erode or

Dilate

32x1 or

64x1

1

 32x4 or

64x4

4

 BoolCentroid 0 Vblk is not used and should be zero.

 Centroid 0 Vblk is not used and should be zero.

3D Media GPGPU

422 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Payload Parameter Definition

The table below shows all of the message types supported by the sampling engine. The Message Type

field in the message descriptor determines which message is being sent. The SIMD Mode field

determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback

messages. The Header Present field determines whether a header is delivered as the first phase of the

message or the default header from R0 of the thread’s dispatch is used. The Message Length field is

used to vary the number of parameters sent with each message. Higher-numbered parameters are

optional, and default to a value of 0 if not sent but needed for the surface being sampled. Parameter 0

is required except for the sampleinfo message for [CHV, BSW], which has no parameter 0.

The message lengths are computed as follows, where “N” is the number of parameters (“N” is rounded

up to the next multiple of 4 for SIMD4x2), and “H” is 1 if the header is present, 0 otherwise. The

maximum message length allowed to the sampler is 11.

SIMD Mode Message Length

SIMD4x2 H + (N/4)

SIMD8

 SIMD8D

H + N

SIMD16 H + (2*N)

The response lengths are computed as follows:

SIMD Mode

Response Length

 Return Format = 32-bit

Response Length

 Return Format = 16-bit ***

SIMD4x2 1 not allowed

SIMD8
sample+killpix 5 not allowed

all other message types 4 2 **

SIMD16 8 * 4 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

** [CHV, BSW]: For SIMD8*, phases in the response length are reduced by 1 for each channel that is

masked.

*** [CHV, BSW] only

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which

case they are not supported. This includes some forms of sample_b_c, sample_l_c, and gather4_po_c

message types. Note that even for these messages, if 5 or fewer parameters are included in the

message, the SIMD16 form of the message is allowed. SIMD16 forms of sample_d and sample_d_c are

not allowed, regardless of the number of parameters sent.

[CHV, BSW]: Response Length of zero is allowed on all SIMD8* and SIMD16* sampler messages except

sample+killpix, resinfo, sampleinfo, LOD, and gather4*. Header Present must be enabled and Pixel Null

Mask Enable must be disabled. The Write Channel Mask for all four channels in the header must be 0

(channel enabled). A shader containing one or more of these messages is not allowed to send any

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 423

render target read or write messages to the data port. When response length is set to zero, the

following behavior occurs:

 When the sampler completes processing of the message, the resulting channels are delivered as

input to the Render Cache Data Port in the form of a Render Target Write message without a

header. Refer to the Data Port section for more details on this message.

 The fields normally set in the message descriptor for Render Target Write are set as follows:

 End of Thread (EOT) comes from the EOT on the sampler message. These response length

zero sampler messages are the only sampler messages allowed to have EOT enabled.

 Last Render Target Select is set to true.

 Slot Group Select is derived from EOT: If EOT is enabled, set to SLOTGRP_LO, otherwise

SLOTGRP_HI.

 RT Write Message Type is derived from the sampler’s SIMD Mode field as follows: SIMD8

=> SIMD8_LO, SIMD16 => SIMD16

 Binding Table Index is set to the value set in the Render Target Binding Table Index field

of the message header.

SIMD4x2 Messages

Message Type Mnemonic

Parameters

0 1 2 3 4 5 6 7 8 9 10

00010 sample_l u v r ai lod

00100 sample_d u v r ai dudx dudy dvdx dvdy drdx drdy mlod

00110 sample_l_c u v r ai ref lod

00111 ld u v r lod

01000 gather4 u v r ai

01010 resinfo lod

01011 sampleinfo

10000 gather4_c u v r ai ref

10001 gather4_po u v r ai offu offv

10010 gather4_po_c u v r ref offu offv

10100 sample_d_c u v r ai dudx dudy dvdx dvdy drdx drdy ref

11100 ld2dms_w u v r lod si mcsl mcsh

11101 ld_mcs u v r lod

11110 ld2dms u v r lod si mcs

3D Media GPGPU

424 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD32/SIMD64 Messages

Message Type mnemonic Payload Layout Message Length Response Length

00000 sample_unorm Pixel Shader H + 1 8 **

00010 sample_unorm+killpix Pixel Shader H + 1 9 **

01000 deinterlace Pixel Shader H + 1 †

01100 sample_unorm Media H + 1 8 **

01010 sample_unorm+killpix Media H + 1 9 **

01011 sample_8x8 Media H + 1 16 *

11111 cache_flush no payload 1 1

SIMD32/SIMD64 Messages

Message Type mnemonic Payload Layout Message Length Response Length

00000 sample_unorm Pixel Shader H + 1 8 **

00010 sample_unorm+killpix Pixel Shader H + 1 9 **

01000 deinterlace Pixel Shader H + 1 †

01100 sample_unorm Media H + 1 8 **

01010 sample_unorm+killpix Media H + 1 9 **

01011 sample_8x8 Media H + 1 16 *

11111 cache_flush no payload 1 1

* For sample_8x8, phases in the response length are reduced by 4 for each channel that is masked.

** For sample_unorm, phases in the response length are reduced by 2 for each channel that is masked.

† For deinterlace, response length depending on certain state fields. Refer to writeback message

definition for details.

SIMD32_64 Message Descriptor

Please refer to the 3D Sampler Message Descriptor definition at Message Descriptor - Sampling

Engine.

SIMD32_64 Message Header

Please refer to the 3D Sampler Message Header definition at Message Header.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 425

Message Header

The message header for the sampling engine is the same regardless of the message type. If the header

is not present, the behavior is as if the message was sent with all fields in the header set to zero (write

channel masks are all enabled and offsets are zero). When Response length is 0 for sample_8x8

message then the data from sampler is directly written out to memory using media write message.

Message header needs to be present if mid-thread pre-emption is required.

DWord Bits Description

M0.5 31:0 Ignored

M0.4 31:0 Reserved

M0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to the sampler state table. This field

is ignored for “ld” and “resinfo” message types. This pointer is relative to the Dynamic State Base

Address.

Format = DynamicStateOfffset[31:5]

4:1 Ignored

0 Ignored

M0.2 31:24 Ignored

31:24
Render Target or Destination Binding Table Index:

Specifies the index into the binding table for the render target or HDC for messages with response

length of zero (the binding table index for the sampler surface is in the message descriptor).

Format = U8

Range = [0,255]

23:22 Reserved

21 Ignored

20 Ignored

19:18
SIMD32/64 Output Format Control

Specifies the output format of SIMD32/64 messages (sample_unorm* and sample_8x8). Ignored

for other message types. Refer to the writeback message formats for details on how this field

affects returned data.

0: 16 bit Full

1: 16 bit Chrominance Downsampled

2: 8 bit Full

3: 8 bit Chrominance Downsampled

Programming Note

Context: Message Header

This field is ignored for sample_8x8 messages if the Function is not AVS and MinMaxFilter. For

3D Media GPGPU

426 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

MinMaxFilter only 16bit Full and 8bit Full modes are supported.

17:16
Gather4 Source Channel Select: Selects the source channel to be sampled in the gather4*

messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

Note that for gather4*_c messages, this field must be set to 0 (Red channel).

15
Alpha Write Channel Mask: Enables the alpha channel to be written back to the originating

thread.

0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note

Context: Message Header

 A message with all four channels masked is not allowed.

 This field is ignored for the deinterlace message.

 This field must be set to zero for sample_8x8 in VSA mode.

 This field must be set to zero for all gather4* messages.

Programming Note

Context: Message Header

For Sample_8x8 messages, Alpha/Blue/Red channels should be always masked (set to 1) and only

Green channel is enabled (set to 0).

14 Blue Write Channel Mask: See Alpha Write Channel Mask.

13 Green Write Channel Mask: See Alpha Write Channel Mask.

12 Red Write Channel Mask: See Alpha Write Channel Mask.

11:8
U Offset: The u offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10.

Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note

Context: Message Header

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 427

DWord Bits Description

 This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

 This field is ignored if the “offu” parameter is included in the gather4* messages.

7:4
V Offset: The v offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10.

Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note

Context: Message Header

 This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

 This field is ignored if the “offu” parameter is included in the gather4* messages.

3:0
R Offset: The r offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10.

Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

M0.1 31:0 Ignored

M0.0 31:0 Ignored

SIMD32_64 Payload Parameter Definition

Please refer to the 3D Sampler Payload Parameter Definition at Payload Parameter Definition.

SIMD32_64 Message Types

Please refer to the 3D Sampler Message Types definition at Message Types.

Writeback Message

3D Media GPGPU

428 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD32

Sample_unorm*

Pixels are numbered as follows:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Which registers are returned is determined by the write channel mask received in the corresponding

input message. Each asserted write channel mask results in both destination registers of the

corresponding channel being skipped in the writeback message, and all channels with higher numbered

registers being dropped down to fill in the space occupied by the masked channel. For example, if only

red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3 (using

16 bit Full mode as an example).

“16 bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:16
Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 11 & 10 Red

W0.4 Pixel 9 & 8 Red

W0.3 Pixel 7 & 6 Red

W0.2 Pixel 5 & 4 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 27 & 26 Red

W1.4 Pixel 25 & 24 Red

W1.3 Pixel 23 & 22 Red

W1.2 Pixel 21 & 20 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2 Pixels 15:0 Green

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 429

DWord Bit Description

W3 Pixels 31:16 Green

W4 Pixels 15:0 Blue

W5 Pixels 31:16 Blue

W6 Pixels 15:0 Alpha

W7 Pixels 31:16 Alpha

“16 Bit Chrominance Downsampled” Output Format Control Mode

In this mode the odd pixel red & blue channels are not included.

DWord Bit Description

W0.7 31:16
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 28 Red

W0.6 Pixel 26 & 24 Red

W0.5 Pixel 22 & 20 Red

W0.4 Pixel 18 & 16 Red

W0.3 Pixel 14 & 12 Red

W0.2 Pixel 10 & 8 Red

W0.1 Pixel 6 & 4 Red

W0.0 Pixel 2 & 0 Red

W1.7 31:16 Pixel 15 Green

 15:0 Pixel 14 Green

W1.6 Pixel 13 & 12 Green

W1.5 Pixel 11 & 10 Green

W1.4 Pixel 9 & 8 Green

W1.3 Pixel 7 & 6 Green

W1.2 Pixel 5 & 4 Green

W1.1 Pixel 3 & 2 Green

W1.0 Pixel 1 & 0 Green

W2.7 Pixel 31 & 30 Green

W2.6 Pixel 29 & 28 Green

W2.5 Pixel 27 & 26 Green

W2.4 Pixel 25 & 24 Green

W2.3 Pixel 23 & 22 Green

W2.2 Pixel 21 & 20 Green

W2.1 Pixel 19 & 18 Green

3D Media GPGPU

430 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W2.0 Pixel 17 & 16 Green

W3.7 31:16 Pixel 30 Blue

 15:0 Pixel 28 Blue

W3.6 Pixel 26 & 24 Blue

W3.5 Pixel 22 & 20 Blue

W3.4 Pixel 18 & 16 Blue

W3.3 Pixel 14 & 12 Blue

W3.2 Pixel 10 & 8 Blue

W3.1 Pixel 6 & 4 Blue

W3.0 Pixel 2 & 0 Blue

W4.7 31:16 Pixel 15 Alpha

 15:0 Pixel 14 Alpha

W4.6 Pixel 13 & 12 Alpha

W4.5 Pixel 11 & 10 Alpha

W4.4 Pixel 9 & 8 Alpha

W4.3 Pixel 7 & 6 Alpha

W4.2 Pixel 5 & 4 Alpha

W4.1 Pixel 3 & 2 Alpha

W4.0 Pixel 1 & 0 Alpha

W5.7 Pixel 31 & 30 Alpha

W5.6 Pixel 29 & 28 Alpha

W5.5 Pixel 27 & 26 Alpha

W5.4 Pixel 25 & 24 Alpha

W5.3 Pixel 23 & 22 Alpha

W5.2 Pixel 21 & 20 Alpha

W5.1 Pixel 19 & 18 Alpha

W5.0 Pixel 17 & 16 Alpha

“8 Bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:24
Pixel 31 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16 Pixel 30 Red

 15:8 Pixel 29 Red

 7:0 Pixel 28 Red

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 431

DWord Bit Description

W0.6 Pixel 27:24 Red

W0.5 Pixel 23:20 Red

W0.4 Pixel 19:16 Red

W0.3 Pixel 15:12 Red

W0.2 Pixel 11:8 Red

W0.1 Pixel 7:4 Red

W0.0 Pixel 3:0 Red

W1 Pixels 31:0 Green

W2 Pixels 31:0 Blue

W3 Pixels 31:0 Alpha

“8 Bit Chrominance Downsampled” Output Format Control Mode

If either red or blue channel (but not both) are masked, the W0 register is included in the payload but

the masked channel is not written to the GRF. If both are masked, W0 is not included in the payload

(reducing the response length by one).

DWord Bit Description

W0.7 31:24
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 23:16 Pixel 28 Red

 15:8 Pixel 26 Red

 7:0 Pixel 24 Red

W0.6 Pixel 22, 20, 18, 16 Red

W0.5 Pixel 14, 12, 10, 8 Red

W0.4 Pixel 6, 4, 2, 0 Red

W0.3 Pixel 30, 28, 26, 24 Blue

W0.2 Pixel 22, 20, 18, 16 Blue

W0.1 Pixel 14, 12, 10, 8 Blue

W0.0 Pixel 6, 4, 2, 0 Blue

W1.7 31:24 Pixel 31 Green

 23:16 Pixel 30 Green

 15:8 Pixel 29 Green

 7:0 Pixel 28 Green

W1.6 Pixel 27:24 Green

W1.5 Pixel 23:20 Green

W1.4 Pixel 19:16 Green

3D Media GPGPU

432 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W1.3 Pixel 15:12 Green

W1.2 Pixel 11:8 Green

W1.1 Pixel 7:4 Green

W1.0 Pixel 3:0 Green

W2.7 Pixel 31:28 Alpha

W2.6 Pixel 27:24 Alpha

W2.5 Pixel 23:20 Alpha

W2.4 Pixel 19:16 Alpha

W2.3 Pixel 15:12 Alpha

W2.2 Pixel 11:8 Alpha

W2.1 Pixel 7:4 Alpha

W2.0 Pixel 3:0 Alpha

Additional Writeback Phase for sample_unorm+killpix

For the sample_unorm+killpix messages, an additional writeback phase is returned. The value of “n”

depends on which channels are enabled for return and the Output Format Control Mode, this register

will immediately follow the first part of the writeback message.

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0
Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been

killed as a result of chroma key with kill pixel mode.

The bits in this mask correspond to the pixels as follows and they are listed from upper left (MSB)

lower right LSB:

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Cache_flush

The writeback message is for cache_flush indicates that the flush has been completed. The destination

register is not modified.

DWord Bit Description

W0.7:0 Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 433

Sample_8x8 Writeback Messages

The writeback message for sample_8x8 consists of up to 16 destination registers. Which registers are

returned is determined by the write channel mask received in the corresponding input message. Each

asserted write channel mask results in all four destination registers of the corresponding channel being

skipped in the writeback message, and all channels with higher numbered registers being dropped

down to fill in the space occupied by the masked channel.

3D Media GPGPU

434 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Pixels are numbered as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

“16 bit Full” Output Format Control Mode

DWord Bits Description

W0.7 31:16
Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 11 & 10 Red

W0.4 Pixel 9 & 8 Red

W0.3 Pixel 7 & 6 Red

W0.2 Pixel 5 & 4 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1 Pixel 31:16 Red

W2 Pixels 47:32 Red

W3 Pixels 63:33 Red

W4 Pixels 15:0 Green

W5 Pixels 31:16 Green

W6 Pixels 47:32 Green

W7 Pixels 63:33 Green

W8 Pixels 15:0 Blue

W9 Pixels 31:16 Blue

W10 Pixels 47:32 Blue

W11 Pixels 63:33 Blue

W12 Pixels 15:0 Alpha

W13 Pixels 31:16 Alpha

W14 Pixels 47:32 Alpha

W15 Pixels 63:33 Alpha

“16 Bit Chrominance Downsampled” Output Format Control Mode

In this mode the odd pixel red & blue channels are not included.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 435

DWord Bits Description

W0.7 31:16
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 28 Red

W0.6 Pixel 26 & 24 Red

W0.5 Pixel 22 & 20 Red

W0.4 Pixel 18 & 16 Red

W0.3 Pixel 14 & 12 Red

W0.2 Pixel 10 & 8 Red

W0.1 Pixel 6 & 4 Red

W0.0 Pixel 2 & 0 Red

W1.7 Pixel 62 & 60 Red

W1.6 Pixel 58 & 56 Red

W1.5 Pixel 54 & 52 Red

W1.4 Pixel 50 & 48 Red

W1.3 Pixel 46 & 44 Red

W1.2 Pixel 42 & 40 Red

W1.1 Pixel 38 & 36 Red

W1.0 Pixel 34 & 32 Red

W2.7 31:16 Pixel 15 Green

 15:0 Pixel 14 Green

W2.6 Pixel 13 & 12 Green

W2.5 Pixel 11 & 10 Green

W2.4 Pixel 9 & 8 Green

W2.3 Pixel 7 & 6 Green

W2.2 Pixel 5 & 4 Green

W2.1 Pixel 3 & 2 Green

W2.0 Pixel 1 & 0 Green

W3 Pixel 31:16 Green

W4 Pixel 47:32 Green

W5 Pixel 63:48 Green

W6.7 31:16 Pixel 30 Blue

 15:0 Pixel 28 Blue

W6.6 Pixel 26 & 24 Blue

W6.5 Pixel 22 & 20 Blue

3D Media GPGPU

436 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W6.4 Pixel 18 & 16 Blue

W6.3 Pixel 14 & 12 Blue

W6.2 Pixel 10 & 8 Blue

W6.1 Pixel 6 & 4 Blue

W6.0 Pixel 2 & 0 Blue

W7.7 Pixel 62 & 60 Blue

W7.6 Pixel 58 & 56 Blue

W7.5 Pixel 54 & 52 Blue

W7.4 Pixel 50 & 48 Blue

W7.3 Pixel 46 & 44 Blue

W7.2 Pixel 42 & 40 Blue

W7.1 Pixel 38 & 36 Blue

W7.0 Pixel 34 & 32 Blue

W8.7 31:16 Pixel 15 Alpha

 15:0 Pixel 14 Alpha

W8.6 Pixel 13 & 12 Alpha

W8.5 Pixel 11 & 10 Alpha

W8.4 Pixel 9 & 8 Alpha

W8.3 Pixel 7 & 6 Alpha

W8.2 Pixel 5 & 4 Alpha

W8.1 Pixel 3 & 2 Alpha

W8.0 Pixel 1 & 0 Alpha

W9 Pixel 31:16 Alpha

W10 Pixel 47:32 Alpha

W11 Pixel 63:48 Alpha

“8 Bit Full” Output Format Control Mode

DWord Bits Description

W0.7 31:24
Pixel 31 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16 Pixel 30 Red

 15:8 Pixel 29 Red

 7:0 Pixel 28 Red

W0.6 Pixel 27:24 Red

W0.5 Pixel 23:20 Red

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 437

DWord Bits Description

W0.4 Pixel 19:16 Red

W0.3 Pixel 15:12 Red

W0.2 Pixel 11:8 Red

W0.1 Pixel 7:4 Red

W0.0 Pixel 3:0 Red

W1.7 Pixel 63:60 Red

W1.6 Pixel 59:56 Red

W1.5 Pixel 55:52 Red

W1.4 Pixel 51:48 Red

W1.3 Pixel 47:44 Red

W1.2 Pixel 43:40 Red

W1.1 Pixel 39:36 Red

W1.0 Pixel 35:52 Red

W2 Pixels 31:0 Green

W3 Pixels 63:32 Green

W4 Pixels 31:0 Blue

W5 Pixels 63:32 Blue

W6 Pixels 31:0 Alpha

W7 Pixels 63:32 Alpha

“8 Bit Chrominance Downsampled” Output Format Control Mode

DWord Bits Description

W0.7 31:24
Pixel 62 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16 Pixel 60 Red

 15:8 Pixel 58 Red

 7:0 Pixel 56 Red

W0.6 Pixel 54, 52, 50, 48 Red

W0.5 Pixel 46, 44, 42, 40 Red

W0.4 Pixel 38, 36, 34, 32 Red

W0.3 Pixel 30, 28, 26, 24 Red

W0.2 Pixel 22, 20, 18, 16 Red

W0.1 Pixel 14, 12, 10, 8 Red

W0.0 Pixel 6, 4, 2, 0 Red

W1.7
31:24 Pixel 31 Green

3D Media GPGPU

438 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

23:16 Pixel 30 Green

15:8 Pixel 29 Green

7:0 Pixel 28 Green

W1.6 Pixel 27:24 Green

W1.5 Pixel 23:20 Green

W1.4 Pixel 19:16 Green

W1.3 Pixel 15:12 Green

W1.2 Pixel 11:8 Green

W1.1 Pixel 7:4 Green

W1.0 Pixel 3:0 Green

W2 Pixel 63:32 Green

W3.7 31:24 Pixel 62 Blue

 23:16 Pixel 60 Blue

 15:8 Pixel 58 Blue

 7:0 Pixel 56 Blue

W3.6 Pixel 54, 52, 50, 48 Blue

W3.5 Pixel 46, 44, 42, 40 Blue

W3.4 Pixel 38, 36, 34, 32 Blue

W3.3 Pixel 30, 28, 26, 24 Blue

W3.2 Pixel 22, 20, 18, 16 Blue

W3.1 Pixel 14, 12, 10, 8 Blue

W3.0 Pixel 6, 4, 2, 0 Blue

W4.7 31:24 Pixel 31 Alpha

 23:16 Pixel 30 Alpha

 15:8 Pixel 29 Alpha

 7:0 Pixel 28 Alpha

W4.6 Pixel 27:24 Alpha

W4.5 Pixel 23:20 Alpha

W4.4 Pixel 19:16 Alpha

W4.3 Pixel 15:12 Alpha

W4.2 Pixel 11:8 Alpha

W4.1 Pixel 7:4 Alpha

W4.0 Pixel 3:0 Alpha

W5 Pixel 63:32 Alpha

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 439

Sampler_8x8 – Writeback Message for Convolve and 1 Pixel Convolution and 1D Vertical

Convolve

DWord Bits Description

W0.7
Pixel 15 & 14 Row 0

W0.6
Pixel 13 & 12 Row 0

W0.5
Pixel 11 & 10 Row 0

W0.4
Pixel 9 & 8 Row 0

W0.3
Pixel 7 & 6 Row 0

W0.2
Pixel 5 & 4 Row 0

W0.1
Pixel 3 & 2 Row 0

W0.0 31:16
Pixel 1 Row 0

Format = 16-bit SINT

15:0 Pixel 0 Row 0

W1
Pixel [15:0] Row 1

Only for 16x4 Message. Not present for 16x1 and 1x1 message.

W2
Pixel [15:0] Row 2

Only for 16x4 Message. Not present for 16x1 and 1x1 message.

W3
Pixel [15:0] Row 3

Only for 16x4 Message. Not present for 16x1 and 1x1 message.

3D Media GPGPU

440 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Sampler_8x8 – Writeback Message for MinMaxFilter

"16 Bit Full" Output Format Control Mode

DWord Bit Description

W0.7
31:24

Pixel 7 Max MSB Row 0 if input is 16bits

Pixel 7 Max Row 0 if input is 8bits

Reserved if 1x1 message

23:16
Pixel 7 Max LSB Row 0 if input is 16bits

Reserved if 1x1 message (or) 8bit input

15:8
Pixel 7 Min MSB Row 0 if input is 16bits

Pixel 7 Min Row 0 if input is 8bits

Reserved if 1x1 message

 7:0
Pixel 7 Min LSB Row 0 if input is 16bits

Reserved if 1x1 message (or) 8bit input

W0.6
Pixel 6 Min/Max Row 0

(Format same as above depending on 8bit or 16bit)

Reserved if 1x1 message

W0.5
Pixel 5 Min/Max Row 0

(Format same as above depending on 8bit or 16bit)

Reserved if 1x1 message

W0.4
Pixel 4 Min/Max Row 0

(Format same as above depending on 8bit or 16bit)

Reserved if 1x1 message

W0.3
Pixel 3 Min/Max Row 0

(Format same as above depending on 8bit or 16bit)

Reserved if 1x1 message

W0.2
Pixel 2 Min/Max Row 0

(Format same as above depending on 8bit or 16bit)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 441

DWord Bit Description

Reserved if 1x1 message

W0.1
Pixel 1 Min/Max Row 0

(Format same as above depending on 8bit or 16bit)

Reserved if 1x1 message

W0.0
Pixel 0 Row 0 if input is 16bits

[31:0] Pixel 0 Max

[15:0] Pixel 0 Min

Pixel 0 Row 0 if input is 8bits

[31:24] Pixel 0 Max

[23:16] Reserved

[15:8] Pixel 0 Min

[7:0] Reserved

The Min or Max could be disabled. Then the corresponding values is invalid and should be

ignored.

W1 Pixel [15:8] Row 0

W2
Pixel [7:0] Row 1

Only for 16x4 Message. Not present for 16x1 message

W3
Pixel [15:8] Row 1

Only for 16x4 Message. Not present for 16x1 message

W4
Pixel [7:0] Row 2

Only for 16x4 Message. Not present for 16x1 message

W5
Pixel [15:8] Row 2

Only for 16x4 Message. Not present for 16x1 message

W6
Pixel [7:0] Row 3

Only for 16x4 Message. Not present for 16x1 message

W7
Pixel [15:8] Row 3

Only for 16x4 Message. Not present for 16x1 message

3D Media GPGPU

442 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

“8 Bit Full” Output Format Control Mode:

DWord Bit Description

W0.7
31:24

Pixel 15 Max Row 0

Reserved if 1x1 message

23:16
Pixel 14 Max Row 0

Reserved if 1x1 message

15:8
Pixel 15 Min Row 0

Reserved if 1x1 message

 7:0
Pixel 14 Min Row 0

Reserved if 1x1 message

W0.6
Pixel [13:12] Min/Max Row 0

Reserved if 1x1 message

W0.5
Pixel [11:10] Min/Max Row 0

Reserved if 1x1 message

W0.4
Pixel [9:8] Min/Max Row 0

Reserved if 1x1 message

W0.3
Pixel [7:6] Min/Max Row 0

Reserved if 1x1 message

W0.2
Pixel [5:4] Min/Max Row 0

Reserved if 1x1 message

W0.1
Pixel [3:2] Min/Max Row 0

Reserved if 1x1 message

W0.0
Pixel [1:0] Min/Max Row 0

Reserved if 1x1 message

W1
Pixel [15:0] Row 1

Only for 16x4 Message. Not present for 16x1 message

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 443

DWord Bit Description

W2
Pixel [15:0] Row 2

Only for 16x4 Message. Not present for 16x1 message

W3
Pixel [15:0] Row 3

Only for 16x4 Message. Not present for 16x1 message

Sampler_8x8 – Writeback Message for MinMax

DWord Bit Description

W0.7 31:0 Reserved

W0.6 31:0 Reserved

W0.5 31:0 Reserved

W0.4 31:0 Reserved

W0.3 31:0 Reserved

W0.2 31:0 Reserved

W0.1 31:0 Reserved

W0.0 31:24
Pixel 0 Max MSB if input is 16bits

Pixel 0 Max Row 0 if input is 8bits

 23:16
Pixel 0 Max LSB if input is 16bits

Reserved if input is 8bits

 15:8
Pixel 0 Min MSB if input is 16bits

Pixel 0 Min Row 0 if input is 8bits

 7:0
Pixel 0 Min LSB if input is 16bits

Reserved if input is 8bits

3D Media GPGPU

444 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Sampler_8x8 – Writeback Message for Dilate or Erode

DWord Bit Description

W0.7 31:0
Pixel [63:32] Row 3

Only for 64x4 message. Not present for 32x4 or 64x1 or 32x1 message

W0.6
Pixel [31:0] Row 3

Only for 64x4 or 32x4 Message. Not present for 64x1 or 32x1 message

W0.5
Pixel [63:32] Row 2

Only for 64x4 message. Not present for 32x4 or 64x1 or 32x1 message

W0.4
Pixel [31:0] Row 2

Only for 64x4 or 32x4 Message. Not present for 64x1 or 32x1 message

W0.3
Pixel [63:32] Row 1

Only for 64x4 message. Not present for 32x4 or 64x1 or 32x1 message

W0.2
Pixel [31:0] Row 1

Only for 64x4 or 32x4 Message. Not present for 64x1 or 32x1 message

W0.1
Pixel [63:32] Row 0

Only for 64x4 or 64x1 Message. Not present for 32x4 or 32x1 message

W0.0 Pixel [31:0] Row 0

Sampler_8x8 – Writeback Message for Centroid

DWord Bit Description

W0.7 31:0 Divisor/Sum Column 3

W0.6 jSum Column 3

W0.5 Divisor/Sum Column 2

W0.4 jSum Column 2

W0.3 Divisor/Sum Column 1

W0.2 jSum Column 1

W0.1 Divisor/Sum Column 0

W0.0 jSum Column 0

W1 Divisor/Sum & jSum for Column [7:4]

W2 Divisor/Sum & jSum for Column [11:8]

W3 Divisor/Sum & jSum for Column [15:12]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 445

Sampler_8x8 – Writeback Message for BoolCentroid/BoolSum

DWord Bit Description

W0.7 31:0 Reserved

W0.6 31:0 Sum 16b Column 1

W0.5 31:0 jSum 16b Column 1

W0.4 31:0 iSum 16b Column 1

W0.3 31:0 Reserved

W0.2 31:0 Sum 16b Column 0

W0.1 31:0 jSum 16b Column 0

W0.0 31:0 iSum 16b Column 0

W1 Column[3:2] same as above

Sampler_8x8 – Writeback Message for AVS

The writeback message for sample_8x8 consists of up to 16 destination registers for 16x4 and 16x8

message type. 16x8 AVS messages have restrictions mentioned in section SIMD32/64 payload for [CHV,

BSW] which limits the writeback to only 16 destination registers. Which registers are returned is

determined by the write channel mask received in the corresponding input message. Each asserted

write channel mask results in all four destination registers of the corresponding channel being skipped

in the writeback message, and all channels with higher numbered registers being dropped down to fill

in the space occupied by the masked channel.

Pixels are numbered as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

“16 bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:16
Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 11 & 10 Red

W0.4 Pixel 9 & 8 Red

W0.3 Pixel 7 & 6 Red

3D Media GPGPU

446 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bit Description

W0.2 Pixel 5 & 4 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 27 & 26 Red

W1.4 Pixel 25 & 24 Red

W1.3 Pixel 23 & 22 Red

W1.2 Pixel 21 & 20 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2 Pixels 47:32 Red

W3 Pixels 63:48 Red

W4 Pixels 15:0 Green

W5 Pixels 31:16 Green

W6 Pixels 47:32 Green

W7 Pixels 63:48 Green

W8 Pixels 15:0 Blue

W9 Pixels 31:16 Blue

W10 Pixels 47:32 Blue

W11 Pixels 63:48 Blue

W12 Pixels 15:0 Alpha

W13 Pixels 31:16 Alpha

W14 Pixels 47:32 Alpha

W15 Pixels 63:48 Alpha

 Below is valid only for 16x8 messages

W16 Pixels 79:64 Red

W17 Pixels 95:80 Red

W18 Pixels 111:96 Red

W19 Pixels 127:112 Red

W20 Pixels 79:64 Green

W21 Pixels 95:80 Green

W22 Pixels 111:96 Green

W23 Pixels 127:112 Green

W24 Pixels 79:64 Blue

W25 Pixels 95:80 Blue

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 447

DWord Bit Description

W26 Pixels 111:96 Blue

W27 Pixels 127:112 Blue

W28 Pixels 111:96 Alpha

W29 Pixels 127:112 Alpha

W30 Pixels 111:96 Alpha

W31 Pixels 127:112 Alpha

“16 Bit Chrominance Downsampled” Output Format Control Mode

In this mode the odd pixel red & blue channels are not included.

DWord Bits Description

W0.7 31:16
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 28 Red

W0.6 Pixel 26 & 24 Red

W0.5 Pixel 22 & 20 Red

W0.4 Pixel 18 & 16 Red

W0.3 Pixel 14 & 12 Red

W0.2 Pixel 10 & 8 Red

W0.1 Pixel 6 & 4 Red

W0.0 Pixel 2 & 0 Red

W1.7 Pixel 62 & 60 Red

W1.6 Pixel 58 & 56 Red

W1.5 Pixel 54 & 52 Red

W1.4 Pixel 50 & 48 Red

W1.3 Pixel 46 & 44 Red

W1.2 Pixel 42 & 40 Red

W1.1 Pixel 38 & 36 Red

W1.0 Pixel 34 & 32 Red

W2.7 31:16 Pixel 15 Green

 15:0 Pixel 14 Green

W2.6 Pixel 13 & 12 Green

W2.5 Pixel 11 & 10 Green

W2.4 Pixel 9 & 8 Green

W2.3 Pixel 7 & 6 Green

3D Media GPGPU

448 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W2.2 Pixel 5 & 4 Green

W2.1 Pixel 3 & 2 Green

W2.0 Pixel 1 & 0 Green

W3 Pixel 31:16 Green

W4 Pixel 47:32 Green

W5 Pixel 63:48 Green

W6.7 31:16 Pixel 30 Blue

 15:0 Pixel 28 Blue

W6.6 Pixel 26 & 24 Blue

W6.5 Pixel 22 & 20 Blue

W6.4 Pixel 18 & 16 Blue

W6.3 Pixel 14 & 12 Blue

W6.2 Pixel 10 & 8 Blue

W6.1 Pixel 6 & 4 Blue

W6.0 Pixel 2 & 0 Blue

W7.7 Pixel 62 & 60 Blue

W7.6 Pixel 58 & 56 Blue

W7.5 Pixel 54 & 52 Blue

W7.4 Pixel 50 & 48 Blue

W7.3 Pixel 46 & 44 Blue

W7.2 Pixel 42 & 40 Blue

W7.1 Pixel 38 & 36 Blue

W7.0 Pixel 34 & 32 Blue

W8.7 31:16 Pixel 15 Alpha

 15:0 Pixel 14 Alpha

W8.6 Pixel 13 & 12 Alpha

W8.5 Pixel 11 & 10 Alpha

W8.4 Pixel 9 & 8 Alpha

W8.3 Pixel 7 & 6 Alpha

W8.2 Pixel 5 & 4 Alpha

W8.1 Pixel 3 & 2 Alpha

W8.0 Pixel 1 & 0 Alpha

W9 Pixel 31:16 Alpha

W10 Pixel 47:32 Alpha

W11 Pixel 63:48 Alpha

 Below DWs is only valid for 16x8 message

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 449

DWord Bits Description

W12 Pixel [94,92,90,88,86,84,82,80,78,76,74,72,70,68,66,64] Red

W13 Pixel [126,124,122,120,118,116,114,112,110,108,106,104,102,100,98,96] Red

W14 Pixel [79:64] Green

W15 Pixel [95:80] Green

W16 Pixel [111:96] Green

W17 Pixel [127:112] Green

W18 Pixel [94,92,90,88,86,84,82,80,78,76,74,72,70,68,66,64] Blue

W19 Pixel [126,124,122,120,118,116,114,112,110,108,106,104,102,100,98,96] Blue

W20 Pixel [79:64] Alpha

W21 Pixel [95:80] Alpha

W22 Pixel [111:96] Alpha

W23 Pixel [127:112] Alpha

“8 Bit Full” Output Format Control Mode

DWord Bits Description

W0.7 31:24
Pixel 31 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16 Pixel 30 Red

 15:8 Pixel 29 Red

 7:0 Pixel 28 Red

W0.6 Pixel 27:24 Red

W0.5 Pixel 23:20 Red

W0.4 Pixel 19:16 Red

W0.3 Pixel 15:12 Red

W0.2 Pixel 11:8 Red

W0.1 Pixel 7:4 Red

W0.0 Pixel 3:0 Red

W1.7 Pixel 63:60 Red

W1.6 Pixel 59:56 Red

W1.5 Pixel 55:52 Red

W1.4 Pixel 51:48 Red

W1.3 Pixel 47:44 Red

W1.2 Pixel 43:40 Red

W1.1 Pixel 39:36 Red

3D Media GPGPU

450 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W1.0 Pixel 35:52 Red

W2 Pixels 31:0 Green

W3 Pixels 63:32 Green

W4 Pixels 31:0 Blue

W5 Pixels 63:32 Blue

W6 Pixels 31:0 Alpha

W7 Pixels 63:32 Alpha

 Below DWs is only valid for 16x8 message

W8 Pixel [95:64] Red

W9 Pixel [127:96] Red

W10 Pixel [95:64] Green

W11 Pixel [127:96] Green

W12 Pixel [95:64] Blue

W13 Pixel [127:96] Blue

W14 Pixel [95:64] Alpha

W15 Pixel [127:96] Alpha

“8 Bit Chrominance Downsampled” Output Format Control Mode

DWord Bits Description

W0.7 31:24
Pixel 62 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16 Pixel 60 Red

 15:8 Pixel 58 Red

 7:0 Pixel 56 Red

W0.6 Pixel 54, 52, 50, 48 Red

W0.5 Pixel 46, 44, 42, 40 Red

W0.4 Pixel 38, 36, 34, 32 Red

W0.3 Pixel 30, 28, 26, 24 Red

W0.2 Pixel 22, 20, 18, 16 Red

W0.1 Pixel 14, 12, 10, 8 Red

W0.0 Pixel 6, 4, 2, 0 Red

W1.7
31:24 Pixel 31 Green

23:16 Pixel 30 Green

15:8 Pixel 29 Green

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 451

DWord Bits Description

7:0 Pixel 28 Green

W1.6 Pixel 27:24 Green

W1.5 Pixel 23:20 Green

W1.4 Pixel 19:16 Green

W1.3 Pixel 15:12 Green

W1.2 Pixel 11:8 Green

W1.1 Pixel 7:4 Green

W1.0 Pixel 3:0 Green

W2 Pixel 63:32 Green

W3.7 31:24 Pixel 62 Blue

 23:16 Pixel 60 Blue

 15:8 Pixel 58 Blue

 7:0 Pixel 56 Blue

W3.6 Pixel 54, 52, 50, 48 Blue

W3.5 Pixel 46, 44, 42, 40 Blue

W3.4 Pixel 38, 36, 34, 32 Blue

W3.3 Pixel 30, 28, 26, 24 Blue

W3.2 Pixel 22, 20, 18, 16 Blue

W3.1 Pixel 14, 12, 10, 8 Blue

W3.0 Pixel 6, 4, 2, 0 Blue

W4.7 31:24 Pixel 31 Alpha

 23:16 Pixel 30 Alpha

 15:8 Pixel 29 Alpha

 7:0 Pixel 28 Alpha

W4.6 Pixel 27:24 Alpha

W4.5 Pixel 23:20 Alpha

W4.4 Pixel 19:16 Alpha

W4.3 Pixel 15:12 Alpha

W4.2 Pixel 11:8 Alpha

W4.1 Pixel 7:4 Alpha

W4.0 Pixel 3:0 Alpha

W5 Pixel 63:32 Alpha

 Below DWs is only valid for 16x8 message

W6.7: 6.4 Pixel [126,124,122,120,118,116,114,112,110,108,106,104,102,100,98,96] Red

W6.3: 6.0 Pixel [94,92,90,88,86,84,82,80,78,76,74,72,70,68,66,64] Red

W7 Pixel [95:64] Green

3D Media GPGPU

452 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

W8 Pixel [127:96] Green

W9.7: 9.4 Pixel [126,124,122,120,118,116,114,112,110,108,106,104,102,100,98,96] Blue

W9.3 :9.0 Pixel [94,92,90,88,86,84,82,80,78,76,74,72,70,68,66,64] Blue

W10 Pixel [95:64] Alpha

W17 Pixel [127:96] Alpha

SIMD32 Surface State

Please refer to the 3D Surface State definition in the SURFACE_STATE topic.

SIMD32 Sampler State

Please refer to the 3D Sampler State definition at Sampler State.

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream (CS)
The Command Stream stage is responsible for managing the 3D pipeline and passing

commands down the pipeline. In addition, the CS unit reads “constant data” from

memory buffers and places it in the URB.

Note that the CS stage is shared between the 3D, GPGPU and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing commands, is

responsible for reading vertex data from memory, reformatting it, and writing the results

into Vertex URB Entries. It then outputs primitives by passing references to the VUEs

down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming vertices by

passing them to VS threads.

Hull Shader (HS) The Hull Shader is responsible for processing (shading) incoming patch primitives as

part of the tessellation process.

Tessellation Engine (TE) The Tessellation Engine is responsible for using tessellation factors (computed in the HS

stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS) The Domain Shader stage is responsible for processing (shading) the domain points

(generated by the TE stage) into corresponding vertices.

Geometry Shader (GS) The Geometry Shader stage is responsible for processing incoming objects by passing

each object’s vertices to a GS thread.

Stream Output Logic (SOL) The Stream Output Logic is responsible for outputting incoming object vertices into

Stream Out Buffers in memory.

Clipper (CLIP) The Clipper stage performs Clip Tests on incoming objects and clips objects if required.

Objects are clipped using fixed-function hardware.

Strip/Fan (SF) The Strip/Fan stage performs object setup. Object setup uses fixed-function hardware.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 453

Pipeline Stage Functions Performed

Windower/Masker (WM) The Windower/Masker performs object rasterization and determines visibility coverage.

3D Pipeline-Level State

This section contains table commands for the 3D Pipeline Level.

Programming Note

Context: 3D Pipeline-Level State - Push Constant URB Allocation

The push constants are buffered in the Push Constant section of the URB which is part of the L3$. Software is

required to program the hardware to allocate space in the URB for each shader push constant. The software is

limited to the low addresses of the URB and must ensure that none of the shaders have overlapping handles.

Software may use some if not all of the Push Constant region of the URB for pr-stage handle allocations as long as

none of the push constants and handle allocations overlap.

Refer to the various 3DSTATE_PUSH_CONSTANT_ALLOC_xx state commands for details regarding the maximum

size of the Push Constant and other state programming information.

3D Media GPGPU

454 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER command for

a fixed function shader:

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and being an

even number in length. If the constant buffer starts on an odd cacheline and has an odd number length then there

will only be a bubble at the beginning of the buffer in the URB. If the constant buffer in memory starts on a cache

line boundary and has an odd number length then the bubble will only be at the end of the constant buffer in the

URB. Once the constant buffer is written to the GRF space then all the bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one

constant buffer from memory. This includes any buffering to write the 512b aligned requests from

memory into the URB. Because the L3$ only supports writes from memory in 512b chunks, the URB may

have some bubbles between each constant buffer fetch.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 455

Statistics

This topic is currently under development.

Statistics Gathering

The table below describes how the device supports the required API statistics counters.

API-level Statistic HW Support

IAVertices = # of vertices IA generated. May or may not

include (a) vertices in partial primitives, (b) unused adjacent-

only vertices. Not affected by vertex caching.

VF maintains IA_VERTICES_COUNT.

Will include unused adjacent-only vertices. Will

not include vertices in partial primitives.

IAPrimitives = # of primitives (objects) IA generated. May or

may not include partial primitives.
VF maintains IA_PRIMITIVES_COUNT.

Will not include partial primitives. Will not count

patch topologies that do not match what the HS

or GS expects as input , if enabled (i.e.,

mismatching patch topologies are discarded by

VF).

VSInvocations = # of times VS is executed. May be affected

by vertex caching. May or may not include (a) shared vertices

in non-indexed strips, (b) vertices in partial primitives, (c)

unused adjacent-only vertices.

VS maintains VS_INVOCATION_COUNT.

Impacted by vertex caching. Will not include

vertices in partial primitives. Will include unused

adjacent-only vertices. Will not include shared

vertices in non-indexed strips, unless pre-empted.

Increments even if VS Function Enable is

DISABLED.

HSInvocations = # of patches executed by HS. HS maintains HS_INVOCATION_COUNT. This

gets incremented by 1 for each patch whenever

HS is enabled.

DSInvocations = # of times DS is executed to shade a domain

point. Allows HW to shade identical domain points multiple

times, with the exception of point outputs where only unique

domain points can be generated.

DS maintains DS_INVOCATION_COUNT. This is

incremented for each domain point passed to a

DS thread.

GSInvocations = # of times GS is executed. Obviously does

not include partial primitives. May be incremented when

StreamOut enabled, even if NULL_GS.

GS maintains GS_INVOCATION_COUNT,

incrementing it by GSInvocations Increment

Value for each dispatched instance.

Will not be incremented if NULL_GS.

GSPrimitives = # of primitives GS generated. Does not include

primitives passing through a disabled GS stage. May or may

not include partial primitives output by GS.

GS maintains GS_PRIMITIVE_COUNT. GS unit will

increment this as it parses the GS thread output.

Will not include partial primitives output by GS

3D Media GPGPU

456 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

API-level Statistic HW Support

threads.

NumPrimitivesWritten[<stream#>] = # of complete

primitives written to the stream’s SO buffer, subject to buffer

overflow.

SOL maintains SO_NUM_PRIMS_WRITTEN[0-3].

PrimitiveStorageNeeded[<stream#>] = # of complete

primitives which would have been written to the stream’s SO

buffer ignoring any overflow.

SOL maintains SO_PRIM_STORAGE_NEEDED[0-

3].

CInvocations = # of primitives entering rasterization (which

starts with the clipper) and isn’t affected by any actual clipping.

Does not increment when rasterization is disabled (e.g., when

StreamOut is the last enabled stage). May or may not include

partial primitives.

CL OSB maintains CL_INVOCATION_COUNT.

Will not include partial primitives. Note that the

SOL (regardless of SO enabled) will discard

primitives if rendering is disabled, so these

primitives will not reach the CL unit.

CPrimitives = # of primitives output from clipper. I.e., doesn’t

increment if TrivReject or dropped due to NaNs, increments by

1 if TrivAccept, or increments by number of primitives

generated if MustClip. Does not increment when rasterization

is disabled. May or may not include partial primitives.

Accomodates infinite or no guardband.

SF OSB maintains CL_PRIMITIVES_COUNT.

Will not include partial primitives.

PSInvocations = # of times PS is executed, including unlit

“helper pixels” within a subspan that need to go through the

PS shader to provide 2x2 gradients. Accomodates early

depth/stencil. Does not increment if NULL PS. Multisampling:

counts pixels shaded If PERPIXEL or samples shaded if

PERSAMPLE.

WIZ maintains PS_INVOCATION_COUNT.

Occlusion = # of “visible” multisamples which passed both

depth and stencil testing. Doesn’t include PS-discarded pixels

or oMask/AlphaToCoverage-killed samples. Both (a) a disabled

test (depth or stencil) and (b) no bound RT or Depth/Stencil

buffer conditions count as always passing.

WIZ & PBE maintain PS_DEPTH_COUNT.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 457

3D Pipeline Geometry

This topic is currently under development.

Block Diagram

The following block diagram shows the stages of the Geometry Pipeline and where they are positioned

in the overall 3D Pipeline.

3D Media GPGPU

458 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be

processed by the 3D pipeline. Typically the processing results in the rendering of pixel data into the

render targets, but this is not required.

There is considerable confusion surrounding the term ‘primitive’, e.g., is a triangle strip a ‘primitive’, or is

a triangle within a triangle strip a ‘primitive’? Some APIs use the term ‘topology’ to describe the higher-

level construct (e.g., a triangle strip), and uses the term ‘primitive’ when discussing a triangle within a

triangle strip. In this spec, we will try to avoid ambiguity by using the term ‘object’ to represent the

basic shapes (point, line, triangle), and ‘topology’ to represent input geometry (strips, lists, etc.).

Unfortunately, terms like ‘3DPRIMITIVE’ must remain for legacy reasons.

The following table describes the basic primitive topology types supported in the 3D pipeline.

Programming Note

Project: All

Context:

 3D Primitives Overview

 There are several variants of the basic topologies. These have been introduced to allow slight variations in

behavior without requiring a state change.

 Number of vertices and Dangling Vertices: Topologies have an “expected” number of vertices in order to

form complete objects within the topologies (e.g., LINELIST is expected to have an even number of

vertices). The actual number of vertices specified in the 3DPRIMITIVE command, and as output from the GS

unit, is allowed to deviate from this expected number, in which case any “dangling” vertices are discarded.

The removal of dangling vertices is initially performed in the VF unit. To filter out dangling vertices emitted

by GS threads, the CLIP unit also performs dangling-vertex removal at its input.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 459

3D Primitive Topology Types

3D Primitive Topology

Type (ordered

alphabetically) Description

LINELIST  A list of independent line objects (2 vertices per line).

 Normal usage expects a multiple of 2 vertices, though incomplete objects are

silently ignored.

LINELIST_ADJ
 A list of independent line objects with adjacency information (4 vertices per

line).

 Normal usage expects a multiple of 4 vertices, though incomplete objects are

silently ignored.

 Not valid as output from GS thread.

LINELOOP  Similar to a 3DPRIM_LINESTRIP, though the last vertex is connected back to

the initial vertex via a line object. The LINELOOP topology is converted to

LINESTRIP topology at the beginning of the 3D pipeline.

 Normal usage expects at least 2 vertices, though incomplete objects are

silently ignored. (The 2-vertex case is required by OGL).

 Not valid after the GS stage (i.e., must be converted by a GS thread to some

other primitive type).

LINESTRIP  A list of vertices connected such that, after the first vertex, each additional

vertex is associated with the previous vertex to define a connected line object.

 Normal usage expects at least 2 vertices, though incomplete objects are

silently ignored.

LINESTRIP_ADJ  A list of vertices connected such that, after the first vertex, each additional

vertex is associated with the previous vertex to define connected line object.

The first and last segments are adjacent–only vertices.

 Normal usage expects at least 4 vertices, though incomplete objects are

silently ignored.

 Not valid as output from GS thread.

LINESTRIP_BF  Similar to LINESTRIP, except treated as “backfacing’ during rasterization

(stencil test).

 This can be used to support “line” polygon fill mode when two-sided stencil is

enabled.

LINESTRIP_CONT  Similar to LINESTRIP, except LineStipple (if enabled) is continued (vs. reset) at

the start of the primitive topology.

 This can be used to support line stipple when the API-provided primitive is

split across multiple tolopologies.

3D Media GPGPU

460 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Primitive Topology

Type (ordered

alphabetically) Description

LINESTRIP_CONT_BF Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST A list of point objects (1 vertex per point).

POINTLIST_BF  Similar to POINTLIST, except treated as “backfacing’ during rasterization

(stencil test).

 This can be used to support “point” polygon fill mode when two-sided stencil

is enabled.

POLYGON  Similar to TRIFAN, though the first vertex always provides the “flat-shaded”

values (vs. this being programmable through state).

 Normal usage expects at least 3 vertices, though incomplete objects are

silently ignored.

QUADLIST  A list of independent quad objects (4 vertices per quad).

 The QUADLIST topology is converted to POLYGON topology at the beginning

of the 3D pipeline.

 Normal usage expects a multiple of 4 vertices, though incomplete objects are

silently ignored.

QUADSTRIP  A list of vertices connected such that, after the first two vertices, each

additional pair of vertices are associated with the previous two vertices to

define a connected quad object.

 Normal usage expects an even number (4 or greater) of vertices, though

incomplete objects are silently ignored.

RECTLIST  A list of independent rectangles, where only 3 vertices are provided per

rectangle object, with the fourth vertex implied by the definition of a

rectangle. V0=LowerRight, V1=LowerLeft, V2=UpperLeft. Implied V3 = V0-

V1+V2.

 Normal usage expects a multiple of 3 vertices, though incomplete objects are

silently ignored.

 The RECTLIST primitive is supported specifically for 2D operations (e.g., BLTs

and “stretch” BLTs) and not as a general 3D primitive. Due to this, a number of

restrictions apply to the use of RECTLIST:

 Must utilize “screen space” coordinates (VPOS_SCREENSPACE) when the

primitive reaches the CLIP stage. The W component of position must be 1.0

for all vertices. The 3 vertices of each object should specify a screen-aligned

rectangle (after the implied vertex is computed).

 Clipping: Must not require clipping or rely on the CLIP unit’s ClipTest logic to

determine if clipping is required. Either the CLIP unit should be DISABLED, or

the CLIP unit’s Clip Mode should be set to a value other than

CLIPMODE_NORMAL.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 461

3D Primitive Topology

Type (ordered

alphabetically) Description

 Viewport Mapping must be DISABLED (as is typical with the use of screen-

space coordinates).

RECTLIST_SUBPIXEL The subpixel precise, axis-aligned bounding box of the object's 3 vertices is rendered.

TRIFAN  Triangle objects arranged in a fan (or polygon). The initial vertex is maintained

as a common vertex. After the second vertex, each additional vertex is

associated with the previous vertex and the common vertex to define a

connected triangle object.

 Normal usage expects at least 3 vertices, though incomplete objects are

silently ignored.

TRIFAN_NOSTIPPLE  Similar to TRIFAN, but poylgon stipple is not applied (even if enabled).

 This can be used to support “point” polygon fill mode, under the combination

of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are different (so the final

fill mode is not known to the driver)

(b) one of the fill modes is “point” and the other is “solid”

(c) point mode is being emulated by converting the point into a trifan

(d) polygon stipple is enabled. In this case, polygon stipple should not be applied to

the points-emulated-as-trifans.

TRILIST  A list of independent triangle objects (3 vertices per triangle).

 Normal usage expects a multiple of 3 vertices, though incomplete objects are

silently ignored.

TRILIST_ADJ  A list of independent triangle objects with adjacency information (6 vertices

per triangle).

 Normal usage expects a multiple of 6 vertices, though incomplete objects are

silently ignored.

 Not valid as output from GS thread.

TRISTRIP  A list of vertices connected such that, after the first two vertices, each

additional vertex is associated with the last two vertices to define a connected

triangle object.

 Normal usage expects at least 3 vertices, though incomplete objects are

silently ignored.

TRISTRIP_ADJ  A list of vertices where the even-numbered (including 0th) vertices are

connected such that, after the first two vertex pairs, each additional even-

numbered vertex is associated with the last two even-numbered vertices to

3D Media GPGPU

462 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Primitive Topology

Type (ordered

alphabetically) Description

define a connected triangle object. The odd-numbered vertices are adjacent-

only vertices.

VFUNIT will complete a drawcall with the topology of tristrip_adj even if there is a

preemption request in the middle of the draw call.

 Normal usage expects at least 6 vertices, though incomplete objects are

silently ignored.

 Not valid as output from GS thread.

TRISTRIP_REVERSE Similar to TRISTRIP, though the sense of orientation (winding order) is reversed – this

allows SW to break long tristrips into smaller pieces and still maintain correct face

orientations.

[CHV, BSW]: PATCHLIST_n List of n-vertex “patch” objects. These topologies cannot be rendered directly – the

tessellation units must be used to convert them into points, lines, or triangles to

produce rasterization results. (VS, GS, and StreamOutput operations can also be

performed.)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 463

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have

the same definition with respect to the information provided in the diagrams).

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles

that are to be considered having “clockwise” winding order in screen space. Effectively, the arrows show

the order in which vertices are used in the cross-product (area, determinant) computation. Note that for

TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product

or the sign of the result of the normally-ordered cross-product be flipped (these are identical

operations).

3D Media GPGPU

464 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 465

3D Media GPGPU

466 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information

packets. (These packets are not directly visible to software.) Much of the data associated with a vertex is

passed indirectly via a VUE handle. The information provided in vertex packets includes:

 The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any

required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

 Primitive Topology Information: This information is used to identify/delineate primitive

topologies in the 3D pipeline. Initially, the VF unit supplies this information, which then passes

through the VS stage unchanged. GS and CLIP threads must supply this information with each

vertex they produce (via the URB_WRITE message). If a FF unit directly outputs vertices (that were

not generated by a thread they spawned), that FF unit is responsible for providing this

information.

 PrimType: The type of topology, as defined by the corresponding field of the 3DPRIMITIVE

command.

 StartPrim: TRUE only for the first vertex of a topology.

 EndPrim: TRUE only for the last vertex of a topology.

 (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

Vertex Positions

(For brevity, the following discussion uses the term map as a shorthand for “compute screen space

coordinate via perspective divide followed by viewport transform”.)

The “Position” fields of the Vertex Header are the only vertex position coordinates exposed to the 3D

Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions.

The VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though

this information is not directly exposed to the FF units. For example, the Clip Space position will likely

be required in the VUE (outside of the Vertex Header) to perform correct and robust 3D Clipping in the

CLIP thread.

CLIP unit uses the 3DSTATE_CLIP.PerspectiveDivideDisable bit to deteremine whether to perform a

perspective projection (divide by w) of the read-back 4D Position.

When Perspective Divide is enabled, the Clip Space position is defined in a homogeneous 4D

coordinate space (pre-perspective divide), where the visible “view volume” is defined by the APIs. The

API’s VS, GS or DS shader program will include geometric transforms in the computation of this clip

space position such that the resulting coordinate is positioned properly in relation to the view volume

(i.e., it will include a “view transform” in this computation path). When Perspective Divide is enabled, the

3D FF pipeline will perform a perspective projection (division of x,y,z by w), perform clip-test on the

resulting NDC (Normalized Device Coordinates), and eventually perform viewport mapping (in the SF

unit) to yield screen-space (pixel) coordinates.

When Perspective Divide is disabled, the read-back Position does not undergo perspective projection

by the 3D FF pipeline.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 467

Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after

perspective projection (division by W), the visible “view volume” is some canonical (3D) cuboid. Typically

the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The API’s VS or

GS shader program will include geometric transforms in the computation of this clip space position

such that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will

include a “view transform” in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space

Z coordinate.

A vertex’s clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is

performed in clip space.

In [CHV, BSW], vertex clip-space positions must be included in the Vertex Header, so that they can be

read-back (prior to Clipping) and then subjected to perspective projection (in hardware) and

subsequent use by the FF pipeline.

NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z,RHW] NDC

(Normalized Device Coordinates) space position. Here “normalized” means that visible geometry is

located within the [-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

 The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the clip-

space W coordinate (or, more correctly, the clip-space X,Y,Z coordinates are multiplied by the

reciprocal of the clip space W coordinate).

o Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see below).

 The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under

normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC

space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform

perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

Screen-Space Position

Screen-space coordinates are defined as:

 X,Y coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex X,Y

Clamping and Quantization in the SF section for a discussion of the limitations/restrictions placed

on screenspace X,Y coordinates.

 Z coordinate has been mapped into the range used for DepthTest.

 RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of

the view-space Z coordinate).

3D Media GPGPU

468 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Vertex Fetch (VF) Stage

 The Vertex Fetch Stage performs one major function: executing 3DPRIMITIVE commands. This is

handled by the VF’s InputAssembly function.

State

This section contains various state registers.

Control State

3DSTATE_VF

3DSTATE_VF_TOPOLOGY

Index Buffer (IB) State

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in subsequent

3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB.

The IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8, 16

or 32-bit index values. These index values will be fetched by the InputAssembly function, and

subsequently used to compute locations in VERTEXDATA buffers from which the actual vertex data is to

be fetched. (This is opposed to the SEQUENTIAL access mode were the vertex data is simply fetched

sequentially from the buffers).

The following table lists which primitive topology types support the presence of Cut Indices.

Definition Cut Index?

3DPRIM_POINTLIST Y

3DPRIM_LINELIST Y

3DPRIM_LINESTRIP Y

3DPRIM_TRILIST Y

3DPRIM_TRISTRIP Y

3DPRIM_LINELIST_ADJ Y

3DPRIM_LINESTRIP_ADJ Y

3DPRIM_TRILIST_ADJ Y

3DPRIM_TRISTRIP_ADJ Y

3DPRIM_TRISTRIP_REVERSE Y

3DPRIM_RECTLIST N

3DPRIM_POINTLIST_BF Y

3DPRIM_LINESTRIP_CONT Y

3DPRIM_LINESTRIP_BF Y

3DPRIM_LINESTRIP_CONT_BF Y

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 469

Definition Cut Index?

3DPRIM_TRIFAN_NOSTIPPLE N

3DSTATE_INDEX_BUFFER

Vertex Buffers (VB) State

The 3DSTATE_VERTEX_BUFFERS and 3DSTATE_INSTANCE_STEP_RATE commands are used to define

Vertex Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D array of structures, where

the size of the structure as defined by the VB’s BufferPitch. VBs are accessed either as VERTEXDATA

buffers or INSTANCEDATA buffers, as defined by the VB’s BufferAccessType. The VB’s access type will

determine whether the VF-computed VertexIndex or InstanceIndex is used to access data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided

by an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect

accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

3DSTATE_VERTEX_BUFFERS

VERTEX_BUFFER_STATE

VERTEXDATA Buffers – SEQUENTIAL Access

Description

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = SEQUENTIAL and (b) vertex

elements with InstancingEnable set to DISABLED. Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x

VBState.BufferPitch”, the address of the byte immediately beyond the last valid byte of the buffer is determined by

“VBState.StartingBufferAddress + VBState.BufferSize”.

3D Media GPGPU

470 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

VERTEXDATA Buffers – RANDOM Access

Description

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = RANDOM and (b) vertex elements

with InstancingEnable set to DISABLED. Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x

VBState.BufferPitch”, the address of the byte immediately beyond the last valid byte of the buffer is determined by

“VBState.StartingBufferAddress + VBState.BufferSize”.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 471

INSTANCEDATA Buffers

Description

This section pertains to vertex elements with InstancingEnable set to ENABLED. Instead of

“VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of the byte immediately

beyond the last valid byte of the buffer is determined by “VBState.StartingBufferAddress + VBState.BufferSize”.

3D Media GPGPU

472 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Vertex Definition State

The following subsections define the state information for vertex data and describe some related

processing.

Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex

data and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the

VF unit.

Two additional commands are added. 3DSTATE_VF_INSTANCING specifies the InstanceStepRate on a per-vertex-

element basis. 3DSTATE_VF_SGVS specifies optional insertion of VertexID and/or InstanceID into the input vertex

data (logically following the processing of the VERTEX_ELEMENT_STATE structures).

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored

during processing of the 3DPRIMITIVE command.

VERTEX_ELEMENT_STATE

3DSTATE_VERTEX_ELEMENTS

3D_Vertex_Component_Control

3DSTATE_VF_INSTANCING

3DSTATE_VF_SGVS

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 473

3D Primitive Command

Following are 3D Primitive Commands:

3DPRIMITIVE

3D Primitive Topology Type Encoding

The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for

details, programming restrictions, diagrams, and a discussion of the basic primitive types.

3D_Prim_Topo_Type

Functions

This section covers the various functions for Vertex Fetch.

Input Assembly

The VF’s InputAssembly function includes (for each vertex generated):

 Generation of VertexIndex and InstanceIndex for each vertex, possibly via use of an Index Buffer.

 Lookup of the VertexIndex in the Vertex Cache (if enabled)

 If a cache miss is detected:

 Use of computed indices to fetch data from memory-resident vertex buffers

 Format conversion of the fetched vertex data

 Assembly of the format conversion results (and possibly some internally generated data) to

form the complete “input” (raw) vertex

 Storing the input vertex data in a Vertex URB Entry (VUE) in the URB

 Output of the VUE handle of the input vertex to the VS stage

 If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage

(marked as a cache hit to prevent any VS processing).

Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the

vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description of

the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each

DWord is considered a “component” of the vertex element. The starting destination DWord offset of the

vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with

monotonically increasing VUE offsets. For each component, the source of the component is specified.

The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstanceID or PrimitiveID), or a

component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the

case of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source

data with that VB are specified.

3D Media GPGPU

474 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The VF’s Vertex Assembly process can be envisioned as the VF unit stepping through the

VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if

memory resident), and storing the results in the destination VUE.

The information supplied via the 3DSTATE_VF_SGVS command is also used to optionally insert VertexID and/or

InstanceID into the input vertex data, after the VERTEX_ELEMENT structures are processed.

Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D

pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D

pipeline results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,

and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual

vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either

case, the contents of the cache (VUE handles) are tagged with the VertexIndex value used to fetch the

input vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or

parameters change) a vertex with the same VertexIndex as a previous vertex will have the same input

data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition),

or any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the

Vertex Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one

instance per 3DPRIMITIVE command and the inclusion of instance data in the input vertex) will

effectively invalidate the cache between instances, as the InstanceIndex is not included in the cache tag.

See Vertex Caching in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly

disabled, etc.)

Modern 3D APIs include the notion of native support for instanced geometry. The premise is that the

application models a high-level object, and then proceeds to process (render) multiple instances of the

object, with each instance including some modification to the data associated with the object. For

example, a single chair object could be modeled and rendered multiple times, with each instance using

a different position transformation (to place several chairs around a table). That transformation matrix

would be considered instance data, in that it would be fixed for each instance of the object, changing

only between instances. This is opposed to the vertex data, which could be unique for each vertex of the

object. Note that the instance data is replicated at each vertex as part of the Input Assembly process,

and so could also be considered “vertex data” in that respect. In fact, the notion of instance data is

confined to the VF stage, and the remainder of the 3D pipeline is unaware of the distinction.

Although the ability to perform instanced geometry (“manually”) was available in legacy APIs, modern

APIs add support for a single Draw() call to process multiple instances. The application specifies the

number of instances, and the number of vertices in the instanced object (instance) in addition to other

parameters discussed later. The Draw() support effectively becomes a nested loop, with the outer loop

dealing with instance variables, and the inner loop sequencing through the object vertices.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 475

Given the flexibility and programmability of the 3D pipeline, the division between vertex and instance

data is arbitrary. The application simply marks input data buffers as either containing vertex or instance

data. In the outer instance loop, the data specified as coming from instance buffers is (effectively)

fetched/generated and then associated with each vertex of the instance in the inner loop and combined

with the vertex data. New instance data is then gathered for the next instance (the “stepping” of

instance data is specified on a per-buffer basis, and different portions of the instance data are allowed

to step at different rates -- refer to details below).

The hardware interface to supply instancing state information is slightly different. Individual vertex elements

(instead of buffers) are tagged as instanced or not.

Input Data: Push Model vs. Pull Model

Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from

memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into

the front of the pipeline or defer the data access (pull) to the shaders that require it. Modern APIs

directly support the latter model via auto-generated IDs in the Input Assembly function. An

incrementing VertexID, InstanceID, and PrimitiveID are generated in the Input Assembly process, and

these values can be declared as input to the “first enabled, relevant” shader. That shader can, for

example, use the HW-generated ID as an index into a memory resource such as a constant buffer or

vertex buffer. The 3D pipeline HW supports these IDs as required by the APIs.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always

better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data

fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB

entries which will be holding redundant data (as the instance data for vertices of an object are by

definition the same). Regardless, the GEN 3D pipeline supports both models.

Generated IDs

Note that the generated IDs are considered separate from any offset computations performed by the

VF unit, and are therefore described separately here.

The VF generates InstanceID, VertexID, and PrimitiveID values as part of the InputAssembly process.

VertexID and InstanceID are only allowed to be inserted into the input vertex data as it is gathered and

written into the URB as a VUE.

3D Media GPGPU

476 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The definition/use of PrimitiveID is more complicated than the other auto-generated IDs. PrimitiveID is

associated with an “object” and not a particular vertex.

Description

It is only available to the GS and HS as a special non-vertex input and the PS as a constant-interpolated attribute.

It is not seen by the VS or DS at all.

The PrimitiveID therefore is kept separate from the vertex data. Take for example a TRILIST primitive

topology: It should be possible to share vertices between triangles in the list (i.e., reuse the VS output of

a vertex), even though each triangle has a different PrimitiveID associated with it.

The optional insertion of VertexID and/or InstanceID into the input vertex data occurs as a separate step after the

processing of VERTEX_ELEMENT structures, and is controlled via the 3DSTATE_VF_SGVS command.

PrimitiveID is generated by hardware, plumbed down into the HS, GS and SF stages. It is passed along in HS/GS

thread payloads. Software can also select PrimitiveID to be swizzled into vertex attribute data in the SF stage,

though only if neither the HS nor GS stages are enabled.

3D Primitive Processing

Index Buffer Access

The following figure illustrates how the Index Buffer is accessed.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 477

Vertex Element Data Path

The following diagram shows the path by which a vertex element within the destination VUE is

generated and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the

generation.

3D Media GPGPU

478 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 479

FormatConversion

Once the VE source data has been fetched, it is subjected to format conversion. The output of format

conversion is up to 4 32-bit components, each either integer or floating-point (as specified by the

Source Element Format). See Sampler for conversion algorithms.

The following table lists the valid Source Element Format selections, along with the format and

availability of the converted components (if a component is listed as -, it cannot be used as the source

of a VUE component). Note: This table is a subset of the list of supported surface formats defined in the

Sampler chapter. Please refer to that table as the “master list”. This table is here only to identify the

components available (per format) and their format.

Source Element Formats Supported in VF Unit

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R32G32B32A32_FLOAT FLOAT R G B A

R32G32B32A32_SINT SINT R G B A

R32G32B32A32_UINT UINT R G B A

R32G32B32A32_UNORM FLOAT R G B A

R32G32B32A32_SNORM FLOAT R G B A

R64G64_FLOAT FLOAT R G - -

R32G32B32A32_SSCALED FLOAT R G B A

R32G32B32A32_USCALED FLOAT R G B A

R32G32B32A32_SFIXED FLOAT R G B A

R64G64_PASSTHRU NONE R G - -

R32G32B32_FLOAT FLOAT R G B -

R32G32B32_SINT SINT R G B -

R32G32B32_UINT UINT R G B -

R32G32B32_UNORM FLOAT R G B -

R32G32B32_SNORM FLOAT R G B -

R32G32B32_SSCALED FLOAT R G B -

R32G32B32_USCALED FLOAT R G B -

R32G32B32_SFIXED FLOAT R G B -

R16G16B16A16_UNORM FLOAT R G B A

R16G16B16A16_SNORM FLOAT R G B A

R16G16B16A16_SINT SINT R G B A

R16G16B16A16_UINT UINT R G B A

R16G16B16A16_FLOAT FLOAT R G B A

R32G32_FLOAT FLOAT R G - -

R32G32_SINT SINT R G - -

3D Media GPGPU

480 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R32G32_UINT UINT R G - -

R32G32_UNORM FLOAT R G - -

R32G32_SNORM FLOAT R G - -

R64_FLOAT FLOAT R - - -

R16G16B16A16_SSCALED FLOAT R G B A

R16G16B16A16_USCALED FLOAT R G B A

R32G32_SSCALED FLOAT R G - -

R32G32_USCALED FLOAT R G - -

R32G32_SFIXED FLOAT R G - -

R64_PASSTHRU NONE R - - -

B8G8R8A8_UNORM FLOAT B G R A

R10G10B10A2_UNORM FLOAT R G B A

R10G10B10A2_UINT UINT R G B A

R10G10B10_SNORM_A2_UNORM FLOAT R G B A

R8G8B8A8_UNORM FLOAT R G B A

R8G8B8A8_SNORM FLOAT R G B A

R8G8B8A8_SINT SINT R G B A

R8G8B8A8_UINT UINT R G B A

R16G16_UNORM FLOAT R G - -

R16G16_SNORM FLOAT R G - -

R16G16_SINT SINT R G - -

R16G16_UINT UINT R G - -

R16G16_FLOAT FLOAT R G - -

B10G10R10A2_UNORM FLOAT R G B A

R11G11B10_FLOAT FLOAT R G B -

R32_SINT SINT R - - -

R32_UINT UINT R - - -

R32_FLOAT FLOAT R - - -

R32_UNORM FLOAT R - - -

R32_SNORM FLOAT R - - -

R10G10B10X2_USCALED FLOAT R G B -

R8G8B8A8_SSCALED FLOAT R G B A

R8G8B8A8_USCALED FLOAT R G B A

R16G16_SSCALED FLOAT R G - -

R16G16_USCALED FLOAT R G - -

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 481

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R32_SSCALED FLOAT R - - -

R32_USCALED FLOAT R - - -

R8G8_UNORM FLOAT R G - -

R8G8_SNORM FLOAT R G - -

R8G8_SINT SINT R G - -

R8G8_UINT UINT R G - -

R16_UNORM FLOAT R - - -

R16_SNORM FLOAT R - - -

R16_SINT SINT R - - -

R16_UINT UINT R - - -

R16_FLOAT FLOAT R - - -

R8G8_SSCALED FLOAT R G - -

R8G8_USCALED FLOAT R G - -

R16_SSCALED FLOAT R - - -

R16_USCALED FLOAT R - - -

R8_UNORM FLOAT R - - -

R8_SNORM FLOAT R - - -

R8_SINT SINT R - - -

R8_UINT UINT R - - -

R8_SSCALED FLOAT R - - -

R8_USCALED FLOAT R - - -

R8G8B8_UNORM FLOAT R G B -

R8G8B8_SNORM FLOAT R G B -

R8G8B8_SSCALED FLOAT R G B -

R8G8B8_USCALED FLOAT R G B -

R8G8B8_SINT SINT R G B -

R8G8B8_UINT UINT R G B -

R64G64B64A64_FLOAT FLOAT R G B A

R64G64B64_FLOAT FLOAT R G B A

R16G16B16_FLOAT FLOAT R G B -

R16G16B16_UNORM FLOAT R G B -

R16G16B16_SNORM FLOAT R G B -

R16G16B16_SSCALED FLOAT R G B -

R16G16B16_USCALED FLOAT R G B -

R16G16B16_UINT UINT R G B -

3D Media GPGPU

482 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R16G16B16_SINT SINT R G B -

R32_SFIXED FLOAT R - - -

R10G10B10A2_SNORM FLOAT R G B A

R10G10B10A2_USCALED FLOAT R G B A

R10G10B10A2_SSCALED FLOAT R G B A

R10G10B10A2_SINT SINT R G B A

B10G10R10A2_SNORM FLOAT R G B A

B10G10R10A2_USCALED FLOAT R G B A

B10G10R10A2_SSCALED FLOAT R G B A

B10G10R10A2_UINT UINT R G B A

B10G10R10A2_SINT SINT R G B A

R64G64B64A64_PASSTHRU NONE R G B A

R64G64B64_PASSTHRU NONE R G B -

DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis, which destination

components will be written and with which value. The supported selections are the converted source

component, VertexID, InstanceID, PrimitiveID, the constants 0 or 1.0f, or nothing (VFCOMP_NO_STORE).

If a converted component is listed as ‘-‘ (not available) in Source Element Formats supported in VF Unit.

It must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the

destination component.

The selection process sequences from component 0 to 3. Once a Component Select of

VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be

programmed as VFCOMP_NO_STORE. It is therefore not permitted to have ‘holes’ in the destination VE.

Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of “dangling”

vertices. This stage includes the discarding of primitive topologies without enough vertices for a single

object (e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not

form a complete primitive (e.g., the last two vertices of a 5-vertex TRILIST). 3D APIs typically require

these vertices to be (effectively) discarded before the VS stage.

Statistics Gathering

This function is best described as a filter operating on the vertex stream emitted from the processing of

the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart, and PrimEnd values associated with the

generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires

the filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices

from the pipeline and dereference the associated VUE handles.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 483

3DSTATE_VF_STATISTICS

Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume Ia, GPU)

for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex

buffer in memory. Any “dangling” vertices (fetched vertices that are part of an incomplete object) will

not be included.

Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in vol1a System

Overview) for each object (point, line, triangle, or quadrilateral) that it forwards down the pipeline.

Note

For LINELOOP, the last (closing) line object is counted.

3D Media GPGPU

484 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Vertex Shader (VS) Stage

The Vertex Shader (VS) stage of the 3D Pipeline is used to perform processing (“shading”) of vertices

after they are assembled and written to the URB by the VF function. The primary function of the VS

stage is to pass vertices that miss in the VS Cache to VS threads, and then pass the VS thread-generated

vertices down the pipeline. Vertices that hit in the VS Cache have already been shaded and are

therefore passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

State

3DSTATE_VS

3DSTATE_CONSTANT_VS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_SAMPLER_STATE_POINTERS_VS

3DSTATE_URB_VS

Functions

This topic is currently under development.

Vertex Shader Cache (VS$)

Note: The VS$ should not be confused with input data caches used by the VF stage when fetching data

from index or vertex buffers in memory.

The 3D Pipeline employs a Vertex Shader Cache (VS$) that is shared between the VF and VS stages. (See

Vertex Fetch chapter for additional information). The vertex index generated by the VF stage is used as

the cache tag. The cached data contains the URB handle of a VUE, which in turn typically contains the

vertex data output from a previously-executed VS shader, though if the VS function is disabled the VUE

will contain the input vertex data generated by the VF stage.

When the VF stage processes a vertex, it will first perform a lookup in the VS$. If the vertex hits in the

VS$, the VS stage will return the hit VUE handle to the VF stage, and the VF stage will subsequently pass

the returned VUE handle back down the FF pipeline to VS. If the vertex misses in the VS$ (or always, if

the VS$ is disabled), the VS stage will allocate a VUE handle for the miss vertex and return this to the VF

stage. The VF stage will then proceed to fetch/generate the input vertex data, store the results into the

VUE, and then pass the VUE down to the VS stage. If the VS function is enabled, the VUE handle/data

will be used as input to a VS shader thread, and that thread will overwrite the VUE with the shader

results.

The VS$ may be explicitly DISABLED via the Vertex Cache Disable bit in 3DSTATE_VS. Even when

explicitly ENABLED, the VS stage will (by default) implicitly disable the VS$ whenever it detects one of

the following conditions:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 485

Condition

Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a don’t care as there would

not be any VS$ hits).

The implicit disable persists as long as one of these conditions persist, afterwhich the VS$ is invalidated.

The VS$ is implicitly invalidated between 3DPRIMITIVE commands and between instances within a

3DPRIMITIVE command – therefore use of InstanceID in a Vertex Element is not a condition under

which the cache is implicitly disabled.

The following table summarizes the modes of operation of the VS$.

VS$

VS

Function

Enable Mode of Operation

 DISABLED

(implicitly or

explicitly)

DISABLED
The VS$ is not used. VF stage assembles all vertices and writes them into the VUE

supplied by the VS stage. VS stage subsequently passes references to these VUEs

down the pipeline without spawning any VS threads.

Usage Model: This is an exceptional condition, only required for when the VF-

generated vertices contain PrimitiveID. Otherwise the VS$ should be enabled.

ENABLED
The VS$ is not used. VF stage assembles all vertices and writes them into the VUE

supplied by the VS stage. VS stage subsequently spawns VS threads to process all

vertices, overwriting the input data with the results. The VS stage pass references to

these VUEs down the pipeline.

Usage Model: This mode is only used when the VS function is required, but either

(a) the VS kernel produces a side effect (e.g., writes to a memory buffer) which in

turn requires every vertex to be processed by a VS thread, or (b) the input vertex

contains PrimitiveID.

ENABLED DISABLED
The VS$ is used to provide reuse of VF-generated vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. In either

case, the VS stage passes references to vertices (that hit or miss) down the pipeline

without spawning any VS threads.

Usage Model: Normal operation when the VS function is not required (e.g., SW has

detected a VS shader that simply copies outputs to inputs).

ENABLED
The VS$ is used to provide reuse of VS-processed vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. The VS

stage only processes (shades) the vertices that missed in the VS$. The VS stage

sends references to hit or missed vertices down the pipeline in the correct order.

Usage Model: Normal operation when the VS function is required and use of the

VS$ is permissible.

3D Media GPGPU

486 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 VS Thread Request Generation

Project Description

CHV, BSW CHV, BSW adds SIMD8 VS thread request generation, which is described in a following section.

The following discussion assumes the VS Function is ENABLED.

When the Vertex Cache is disabled, the VS unit passes each pair of incoming vertices to a VS thread.

Under certain circumstances (e.g., prior to a state change or pipeline flush) the VS unit spawns a VS

thread to process a single vertex. Note that, in this case, the “unused” vertex slot is “disabled” via the

Execution Mask provided by the VS unit to the GEN4 subsystem as part of the thread dispatch (See the

EU ISA volume). The VS thread is itself unaware of the single-vertex case, and therefore a single VS

kernel can be used to process one or two vertices. (The performance of single-vertex processing

roughly equals the two-vertex case.)

When the Vertex Cache is enabled, the VF unit detects vertices that hit in the cache and marks these

vertices so that they bypass VS thread processing and are output via a reference to the cached VUE. The

VS unit keeps track of these cache-hit vertices as it proceeds to process cache-miss vertices. The VS unit

guarantees that vertices exit the unit in the order they are received. This may require the VS unit to

issue single-vertex VS threads to process a cache-miss vertex that has yet to be paired up with another

cache-miss vertex (if this condition is preventing the VS unit from producing any output).

SIMD4x2 VS Thread Execution

Project Description

CHV, BSW CHV, BSW adds SIMD8 VS thread execution, which is described in a following section.

A VS kernel (with one exception mentioned below) assumes it is to operate on two vertices in parallel.

Input data is either passed directly in the thread payload (including the input vertex data) or indirectly

via pointers passed in the payload.

Refer to the EU ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

Refer to the 3D Pipeline Stage Overview (3D Overview) for information on FF-unit/thread interactions.

In the (unlikely) event that the VS kernel needs to determine whether it is processing one or two

vertices, the kernel can compare the URB Return Handle 0 and URB Return Handle 1 fields of the

thread payload. These fields differ if two vertices are being processed, and identical if one vertex is

being processed. An example of when this test may be required is if the kernel outputs some vertex-

dependent results into a memory buffer; without the test the single vertex case might incorrectly output

two sets of results. Note that this is not the case for writing the URB destinations, as the Execution Mask

prevents the write of an undefined output.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 487

VS Thread Dispatch Masks

The VS stage controls the initial alue loaded into the EU's Dispatch Mask state register as part of thread

dispatch.

SIMD4x2 Dispatch Mask

In SIMD4x2 dispatch mode, the EU Dispatch Mask is initialized as a function of the number of vertices included in

the thread dispatch, as follows:

 1 vertex: 0x0000000F

 2 vertices: 0x000000FF

SIMD8 Dispatch Mask

In SIMD8 dispatch mode, the EU Dispatch Mask is initialized as a function of the number of vertices included in

the thread dispatch, as follows:

 1 vertex: 0x00000001

 2 vertices: 0x00000003

 3 vertices: 0x00000007

 4 vertices: 0x0000000F

 5 vertices: 0x0000001F

 6 vertices: 0x0000003F

 7 vertices: 0x0000007F

 8 vertices: 0x000000FF

Vertex Output

VS threads must always write the destination URB entries whose handles are passed in the thread

payload. Refer to Vertex Data Overview for details on any required contents/formats.

Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output to the URB

shared function. Refer to the ISA doc for details on End-Of-Thread indication.

Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference received from the

VF unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim

information associated with input vertices to the output vertices, and does not use this information in

any way. Neither does the VS unit perform any readback of URB data.

3D Media GPGPU

488 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Statistics Gathering

The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex

shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the

shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in

VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume Ia,

GPU) will be incremented for each vertex that is dispatched to a VS thread. This counter will often need

to be incremented by 2 for each thread invoked since 2 vertices are dispatched to one VS thread in the

general case.

Project Description

CHV,

BSW

When VS Function Enable is DISABLED and Statistics Enable is ENABLED, VS_INVOCATION_COUNT

increments by one for every vertex that passes through the VS stage, even though no VS threads are

spawned.

Payloads

This topic is currently under development.

SIMD4x2 Payload

The following table describes the payload delivered to VS threads.

VS Thread Payload (SIMD4x2)

DWord Bits Description

 30:0 Reserved

R0.6 31:24 Reserved

 23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset: Specifies the extent of the scratch space allocated to the thread,

specified as a 1KB-granular offset from the General State Base Address. See Scratch Space

Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9 Reserved

 8:0
FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 489

DWord Bits Description

Project Format

CHV, BSW U9

Range:

Project Range

CHV, BSW 0-503

 9:0

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Addressor the

Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

 4 Reserved

 3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

(See 3D Pipeline for further description).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

R0.1 31:16 Reserved

 15:0
URB Return Handle 1: This is the 64B-aligned URB offset where the EU’s upper channels

(DWords 7:4) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will effectively be ignored

(no results are stored for these channels, as controlled by the thread’s Channel Mask).

(See Generic FF Unit for further description).

Format:

Project Format

CHV, BSW U14 64B-aligned URB offset.

R0.0 31:16 Reserved

 15:0
URB Return Handle 0: This is the 64B-aligned URB offset where the EU’s lower channels

3D Media GPGPU

490 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

(DWords 3:0) results are to be stored.

(See Generic FF Unit for further description).

Format:

Project Format

CHV, BSW U14 64B-aligned URB offset.

[Varies]

optional

255:0
Constant Data (optional):

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is

defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_VS command (taking

the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies 255:0
Vertex Data: Data from (possibly) one or (more typically) two Vertex URB Entries is passed to

the thread in the thread payload. The Vertex URB Entry Read Offset and Vertex URB Entry

Read Length state variables define the regions of the URB entries that are read from the URB

and passed in the thread payload. These SVs can be used to provide a subset of the URB data as

required by SW.

The vertex data is laid out in the thread header in an interleaved format. The lower DWords (0-

3) of these GRF registers always contain data from a Vertex URB Entry. The upper DWords (4-7)

may contain data from another Vertex URB Entry. This allows two vertices to be processed

(shaded) in parallel SIMD8 fashion. The VS kernel is not aware of the validity of the upper vertex.

SIMD8 Payload

The following table describes the payload delivered to VS threads.

SIMD8 VS Thread Payload

DWord Bits Description

R0.7 31

30:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread, specified

as a 1KB-granular offset from the General State Base Address. See Scratch Space Base Offset

description in VS_STATE.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 491

DWord Bits Description

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9 Reserved

8:0
FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

Project Format

CHV, BSW U9

Range:

Project Range

CHV, BSW 0-503

 9:0

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5] [CHV, BSW]

4 Project Description

CHV, BSW Reserved.

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two is raised to (over determine the amount of

scratch space).

(See 3D Pipeline for further description.)

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 :

R0.0

31:0 Reserved: MBZ

R1.7 31:0 Vertex 7 URB Return Handle (see R1.0)

R1.6 31:0 Vertex 6 URB Return Handle (see R1.0)

3D Media GPGPU

492 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

R1.5 31:0 Vertex 5 URB Return Handle (see R1.0)

R1.4 31:0 Vertex 4 URB Return Handle (see R1.0)

R1.3 31:0 Vertex 3 URB Return Handle (see R1.0)

R1.2 31:0 Vertex 2 URB Return Handle (see R1.0)

R1.1 31:0 Vertex 1 URB Return Handle (see R1.0)

R1.0 31:16 Reserved

 15:0
Vertex 0 URB Return Handle. This is the offset within the URB where Vertex 0 is to be stored.

Format: 64B-granular offset into the URB

[Varies]

optional

255:0
Constant Data (optional):

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is

defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_VS command (taking

the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Vertex Data:

Input data for the 8 input vertices is located here. Vertex0 data is passed in DW0 of these GRFs,

and Vertex 7 data is passed in DW7. The first GRF contains Element 0 Component 0 for all 8

vertices, followed by components 1-3 in the three subsequent GRFs. This is followed by GRFs

containing Element 1, and so on, up to the number of elements specified by Vertex URB Read

Length. Note that the maximum limit is 30 elements per vertex, though the practical limiit

imposed by the compiler is likely lower.

Rv.7 31:0 Vertex 7 Element 0 Component 0

Rv.6 31:0 Vertex 6 Element 0 Component 0

Rv.5 31:0 Vertex 5 Element 0 Component 0

Rv.4 31:0 Vertex 4 Element 0 Component 0

Rv.3 31:0 Vertex 3 Element 0 Component 0

Rv.2 31:0 Vertex 2 Element 0 Component 0

Rv.1 31:0 Vertex 1 Element 0 Component 0

Rv.0 31:0 Vertex 0 Element 0 Component 0

Rv+1.7 31:0 Vertex 7 Element 0 Component 1

Rv+1.6 31:0 Vertex 6 Element 0 Component 1

Rv+1.5 31:0 Vertex 5 Element 0 Component 1

Rv+1.4 31:0 Vertex 4 Element 0 Component 1

Rv+1.3 31:0 Vertex 3 Element 0 Component 1

Rv+1.2 31:0 Vertex 2 Element 0 Component 1

Rv+1.1 31:0 Vertex 1 Element 0 Component 1

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 493

DWord Bits Description

Rv+1.0 31:0 Vertex 0 Element 0 Component 1

.. Vertex 0-7 Element 0 Component 2,3

.. Vertex 0-7 Element 1 Component 0-3

.. Vertex 0-7 Element 2-N Component 0-3

Hull Shader (HS) Stage

The Hull Shader (HS) stage of the pipeline is used to process patchlist (PATCHLIST_n) topologies in

support of higher-order surface (HOS) tessellaton. If the HS stage is enabled, each incoming patch

object is processed by a possible series of HS threads. The combined output of these threads is a Patch

URB Entry (“patch record”) written to the URB. This patch record is used by subsequent stages (TE, DS)

to complete the HOS tessellation operations.

Programming Note

Context: Hull Shader (HS) Stage

For SW Tessellation mode, the HS thread can also write tessellated domain point topologies to memory. The

domain point count and starting memory address of the domain points are passed via the Patch Header in the

patch record.

The vertices associated with patchlist primitives are also referred to as “Input Control Points” (ICPs) to

contrast them with any “Output Control Points” the HS threads may write to the patch record. (The

definition and use of OCPs are outside the scope of this document).

The HS stage also performs statistics counting. Incomplete topologies do not reach the HS stage.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all

topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are

enabled, only patchlist topologies should be issued to the pipeline, otherwise behavior is UNDEFINED.

Programming Note

Context: Hull Shader (HS) Stage

Tessellation is not supported in HPCXTs in which case the HS, TE, and DS stages must all be disabled.

State

This section contains the state registers for the Hull Shader.

3DSTATE_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_URB_HS

3D Media GPGPU

494 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Functions

This topic is currently under development.

Patch Object Staging

The HS unit accepts patchlist topologies as a stream of incoming vertices. Depending on the number of

vertices per patch object (as specified by the PATCHLIST_n topology), the HS thread assembles each

complete patch object and passes it (its vertices, PrimitiveID, etc.) to HS thread(s) as described below.

HS Thread Execution

Input to HS threads is comprised of:

 Input Control Points (incoming patch vertices), pushed into the payload and/or passed indirectly

via URB handles.

 Push Constants (common to all threads)

 Patch Data handle

 Resources available via binding table entries (accessed through shared functions)

 Miscellaneous payload fields (Instance Number, etc.)

Typically the only output of the HS threads is the Patch URB Entry (patch record). All thread instances

for an input patch are passed the same patch record handle. As the (possibly concurrent) threads can

both read and write the patch record, it is up to the kernels to ensure deterministic results. One

approach would be to use the thread’s Instance Number as an index for URB write destinations.

HS Thread Dispatch Mask

The HS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of

thread dispatch.

SINGLE_PATCH Dispatch Mask

In SINGLE_PATCH mode, the EU Dispatch Mask is initialized at thread dispatch to 0x000000FF.

Patch URB Entry (Patch Record) Output

For each patch, the HS thread(s) generate a single patch record, starting with a fixed 32B Patch Header.

When the final thread instance terminates, the patch record handle is passed down the pipeline to the

Tessellation Engine (TE).

Please Provide Title

Patch Header DW0-7

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 495

The first 8 DWords of the patch record is defined as a “Patch Header”. The Patch Header is written by an

HS thread and read by the TE stage. It normally contains up to six Tessellation Factors (TFs) that

determine how finely the TE stage needs to tessellate a domain (if at all).

In SW Tessellation mode, the header contains Domain Point Count and Domain Point Buffer Starting Address

fields, which identify the domain points generated by an HS thread.

The following table shows the fixed layouts of the Patch Header DW0-7, depending on the SW Tessellation Mode.

Also see the fixed layouts depending on DomainType that follow.

Patch Header (SW Tessellation Mode)

DWord Bits Description

7 31:0
Domain Point Count

Specifies the number of DOMAIN_POINT structures in the domain point list in memory. If 0, there

are no domain points defined, the patch will considered “culled”, and the TE stage will discard the

patch. Otherwise the TS stage will send this number of domain points down the pipeline.

Format: U32

6 31:6
Domain Point Buffer Starting Address (DPBSA)

This field specifies the starting memory offset from SW Tessellation Base Address (set by the

SWTESS_BASE_ADDRESS command) at which the HS thread has written a list of DOMAIN_POINT

structures. This field is ignored if Domain Point Count is 0.

Format: 64B-aligned offset from SW Tessellation Base Address

5:0 Reserved: MBZ

5-0 31:0 Reserved: MBZ

The following tables show the fixed layouts of the Patch Header DW0-7, depending on DomainType.

Patch Header (QUAD Domain)

DWord Bits Description

7 31:0 UEQ0 Tessellation Factor

 Format: FLOAT32

6 31:0 VEQ0 Tessellation Factor

 Format: FLOAT32

5 31:0 UEQ1 Tessellation Factor

 Format: FLOAT32

4 31:0 VEQ1 Tessellation Factor

 Format: FLOAT32

3 31:0 Inside U Tessellation Factor

 Format: FLOAT32

2 31:0 Inside V Tessellation Factor

 Format: FLOAT32

3D Media GPGPU

496 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

1 31:0 Reserved : MBZ

0 31:1 Reserved : MBZ

 0 Description

TR DS Cache Disable

Setting this bit will cause the DS Cache to be disabled for tessellator-output topologies resulting

from the tessellation of stitch-transition regions. Note that the DS Cache will remain enabled for

other topologies generated for the patch (i.e., the inner region if one exists, or the entire

tessellated patch if there are no transition regions). The HS kernel shall clear this bit when the

patch output topology is POINT.

While disabling the DS Cache usually results in reduced performance, when domain points hit in

this cache more than 11 times per patch a more significant performance penalty may be incurred.

Therefore it is recommended that the HS kernel include an algorithm to set this bit when such

conditions are met. A more conservative algorithm (i.e., setting the bit when conditions are close

to being met) can be employed in order to limit the execution overhead of this algorithm. Such an

algorithm could possibly examine the ratio of each outer edge’s tessellation factor to the

corresponding inner tessellation factor, thus determining the (possibly-approximated) count of

triangles including any given domain point in that transition region. If any of the transition region

domain points are included in more than 11 triangles (or may approach that number), the bit

should be set for the patch. Note that some domain points (such as the corners of the inside

region) can be connected to two adjacent transition regions, therefore cache hits from both

regions must be considered. Other exceptional cases include when the inner region of patch with

EVEN or INTEGER partitioning collapses to a single point, in which case that central domain point

is included in every tessellated triangle.

Patch Header (TRI Domain)

DWord Bits Description

7 31:0 UEQ0 Tessellation Factor

 Format: FLOAT32

6 31:0 VEQ0 Tessellation Factor

 Format: FLOAT32

5 31:0 WEQ0 Tessellation Factor

 Format: FLOAT32

4 31:0 Inside Tessellation Factor

 Format: FLOAT32

3-1 31:0 Reserved : MBZ

0 31:1 Reserved : MBZ

 0 Description

TR DS Cache Disable

See description of the corresponding bit in the QUAD domain patch header (above).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 497

Patch Header (ISOLINE Domain)

DWord Bits Description

7 31:0 Line Detail Tessellation Factor

 Format: FLOAT32

6 31:0 Line Density Tessellation Factor

 Format: FLOAT32

5-0 31:0 Reserved : MBZ

HW Bug: The Tessellation stage will incorrectly add domain points along patch edges under the following

conditions, which may result in conformance failures and/or cracking artifacts:

 QUAD domain

 INTEGER partitioning

 All three TessFactors in a given U or V direction (e.g., V direction: UEQ0, InsideV, UEQ1) are all exactly 1.0

 All three TessFactors in the other direction are > 1.0 and all round up to the same integer vaule (e.g, U

direction: VEQ0 = 3.1, InsideU = 3.7, VEQ1 = 3.4)

DOMAIN_POINT Structure

In SW Tessellation Mode (i.e., when the TE State is SW_TESS), the TE stage reads a sequence of

DOMAIN_POINT structures from memory, starting at the Domain Point Buffer Starting Address field of

the patch header. (The DPBSA is treated as an offset from the SW Tessellation Base Address as set by

the SWTESS_BASE_ADDRESS command.)

DOMAIN_POINT Memory Structure (SW Tessellation)

DWord Bits Description

0 31 PrimStart

 Set on the first domain point of the topology (e.g., first vertex in a TRISTRIP).

 30 PrimEnd

 Set on the last domain point of the topology (e.g., last vertex in a TRISTRIP).

 Programming note: Software must ensure that incomplete primitives are not output, or behavior

is UNDEFINED.

 29 PatchEnd

 Set on the last domain point for the patch. By definition, PrimEnd must also be set.

Programming Note: Software must ensure that the Domain Point Count coincides with the

domain point marked with PatchEnd.

 28:24 PrimType

 This is the primitive topology type.

 Format: See 3DPRIMITIVE for encodings

 Valid values:POINTLIST, LINESTRIP, LINELIST, TRISTRIP, TRISTRIP_REV, TRILIST, TRIFAN.

 23:19 Reserved

 18:17 DS Tag [16:15]

3D Media GPGPU

498 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

 This field provides bits [16:15] of the DS Tag value for this domain point. See DS Tag [14:0]

 Format: U2

 16:0 U Coordinate

 Format: U1.16

1 31:17 DS Tag [14:0]

 This field provides bits [14:0] of the DS Tag value for this domain point.

 In order to utilize the DS cache, the 17-bit DS Tag must be unique for the associated U,V

coordinate. If software cannot guarantee this, the DS cache must be disabled when in SW

Tessellation mode.

 Format: U15

 16:0 V Coordinate

 Format: U1.16

Statistics Gathering

HS Invocations

The HS unit controls the HS_INVOCATIONS counter, which counts the number of patches processed by

the HS stage.

Payloads

This topic is currently under development.

SINGLE_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage

Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference

(URB handle pushed in the payload).

SINGLE_PATCH HS Thread Payload

GRF

DWord Bits Description

R0.7 31

30:0 Reserved.

R0.6 31
Dereference Thread

This bit is defined to send back the Handle ID back to HS to dereference the input handles for

this thread.

30:24 Reserved.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 499

GRF

DWord Bits Description

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved.

8:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format:

Project Format

CHV, BSW U9

Range:

Project Range

CHV, BSW 0-503

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not altered

by the kernel) to the Data Port in any scratch space access messages, but the Data Port ignores

it.

Format = U4 power of two (in excess of 10)

3D Media GPGPU

500 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

DWord Bits Description

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:24 Reserved.

23:17
Instance Number. A patch-relative instance number between 0 and InstanceCount-1.

Format = U7

16:13
Barrier Index. This index is to be used in any BarrierMsgs sent by this thread to the Gateway.

Format = U4

12:0 Reserved.

R0.1 31:0
Primitive ID. This field contains the Primitive ID associated with the patch.

Format: U32

R0.0 31:16 Reserved.

15:0
Patch Data Record URB Return Handle.

Format:

Project Format

CHV, BSW U14 64B-aligned URB offset.

R1 is only included for dispatches that have Include Vertex Handles enabled.

R1.7 31:16 ICP 7 Handle ID

15:0
ICP 7 Handle

Format:

Project Format

CHV, BSW U14 64B-aligned URB offset.

R1.6 31:16 ICP 6 Handle ID

15:0 ICP 6 Handle

R1.5 31:16 ICP 5 Handle ID

15:0 ICP 5 Handle

R1.4 31:16 ICP 4 Handle ID

15:0 ICP 4 Handle

R1.3 31:16 ICP 3 Handle ID

15:0 ICP 3 Handle

R1.2 31:16 ICP 2 Handle ID

15:0 ICP 2 Handle

R1.1 31:16 ICP 1 Handle ID

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 501

GRF

DWord Bits Description

15:0 ICP 1 Handle

R1.0 31:16 ICP 0 Handle ID

15:0 ICP 0 Handle

R2 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >7

R2.7 31:16 ICP 15 Handle ID

15:0 ICP 15 Handle

R2.6 31:16 ICP 14 Handle ID

15:0 ICP 14 Handle

R2.5 31:16 ICP 13 Handle ID

15:0 ICP 13 Handle

R2.4 31:16 ICP 12 Handle ID

15:0 ICP 12 Handle

R2.3 31:16 ICP 11 Handle ID

15:0 ICP 11 Handle

R2.2 31:16 ICP 10 Handle ID

15:0 ICP 10 Handle

R2.1 31:16 ICP 9 Handle ID

15:0 ICP 9 Handle

R2.0 31:16 ICP 8 Handle ID

15:0 ICP 8 Handle

R3 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >15

R3.7 31:16 ICP 23 Handle ID

15:0 ICP 23 Handle

R3.6 31:16 ICP 22 Handle ID

15:0 ICP 22 Handle

R3.5 31:16 ICP 21 Handle ID

15:0 ICP 21 Handle

R3.4 31:16 ICP 20 Handle ID

15:0 ICP 20 Handle

R3.3 31:16 ICP 19 Handle ID

15:0 ICP 19 Handle

R3.2 31:16 ICP 18 Handle ID

15:0 ICP 18 Handle

R3.1 31:16 ICP 17 Handle ID

15:0 ICP 17 Handle

R3.0 31:16 ICP 16 Handle ID

3D Media GPGPU

502 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

DWord Bits Description

15:0 ICP 16 Handle

R4 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >23

R4.7 31:16 ICP 31 Handle ID

15:0 ICP 31 Handle

R4.6 31:16 ICP 30 Handle ID

15:0 ICP 30 Handle

R4.5 31:16 ICP 29 Handle ID

15:0 ICP 29 Handle

R4.4 31:16 ICP 28 Handle ID

15:0 ICP 28 Handle

R4.3 31:16 ICP 27 Handle ID

15:0 ICP 27 Handle

R4.2 31:16 ICP 26 Handle ID

15:0 ICP 26 Handle

R4.1 31:16 ICP 25 Handle ID

15:0 ICP 25 Handle

R4.0 31:16 ICP 24 Handle ID

15:0 ICP 24 Handle

[Varies]

optional

255:0
Constant Data (optional):

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is

defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_HS command (taking

the buffer enables into account).

[Varies]

optional

255:0
ICP Vertex Data (optional):

There can be up to 32 vertices supplied, each with a size defined by the Vertex URB Entry Read

Length state.

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1 DWord 0

immediately follows the last DWord of Vertex 0, and so on.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 503

Tessellation Engine (TE) Stage

When enabled, the Tessellation Engine (TE) stage performs fixed-function domain tessellation

(decomposition into smaller objects) of incoming patches, as referenced by an HS-generated input PDR

handle and as controlled by TE state and Tessellation Factors (TFs) read from the Patch URB Entry (patch

record). The TE stage is entirely fixed-function and does not spawn threads.

Description

The TE stage can also operate in SW Tessellation mode, where it simply reads “pre-tessellated” domain point

topologies from memory and passes them down the pipeline.

The fixed-function tessellation algorithm is considered an implementation detail and is therefore

beyond the scope of this document. That detail includes both the order of output topologies as well as

the order of vertices (domain points) within the output topologies. Only a high-level overview is

provided to describe how the (few) state variables can be used to control aspects of tessellation

behavior. The implementation will generate deterministic results (given the same exact inputs it will

produce exactly the same outputs).

Several domain types (QUAD, TRI, and ISOLINE) are supported. Depending on the domain type, the TE

stage outputs the required point/line/triangle topologies including a domain point per vertex. These

topologies will be output to the DS stage, where the domain points will be converted to 3D object

vertices, resulting in 3D objects as typically input to the 3D pipeline when HOS tessellation is not used.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all

topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are

enabled, only patchlist topologies should be issued to the pipeline, else behavior is UNDEFINED. The

MI_TOPOLOGY_FILTER command can be used to ensure this happens, i.e., it can be used to have the

Command Stream ignore 3DPRIMITIVE commands that do not match a specific topology type.

State

This section contains the state registers for the Tessellation Engine.

3DSTATE_TE

Functions

This topic is currently under development.

Patch Culling

Normally, if any “outside” TF is <= 0.0 or NaN, the entire patch is culled at the TE stage.

Inside TFs are not used to cull patches.

3D Media GPGPU

504 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Tessellation Factor Limits

After the Patch Culling test is performed, the TessFactors undergo a min() clamp to either the

MaxTessFactorOdd (for FRACTIONAL_ODD partitioning) or MaxTessFactorNotOdd (for

FRACTIONAL_EVEN or INTEGER partitioning). Exception: If the ISOLINE domain is specified, the

LineDensity TessFactor will be clamped to the MaxFactorNotOdd value even if FRACTIONAL_ODD

partitioning is specified).

Usage Note: These max TessFactor values shall be programmed to values required by the APIs (refer to the

3DSTATE_TE definition).

Partitioning

The Partitioning state controls how the TFs are used to divide their corresponding edges.

 INTEGER: The edge is divided into an integral number of equal segments (given some fixed-point

tolerance).

After clamping, the TF is rounded up to an integer value. The edge is divided into that many

equal segments.

 EVEN_FRACTIONAL: The edge is divided into an even number of possibly-unequal segments. The

total number of segments is determined by rounding up the post-clamped TF to an even number.

More specifically, the edge is divided exactly in half. Like the endpoints of the edge, the midpoint

of the edge is by definition a tessellation point. Each half contains some number of equal

segments and possibly one smaller segment. The size of the smaller segment is determined by

the position of the TF value within the range defined by the TF rounded down and up to even

numbers. The closer the TF is to the smaller value, the smaller the segment size is. When the TF

reaches the smaller even value, the smaller segment disappears. The closer the TF gets to the

larger even value, the closer the smaller segment size approaches the size of the other segments.

When the TF reaches the larger even value, all segments are equal. The position of the smaller

segment along the half edge varies as a function of the TF value.

 ODD_FRACTIONAL: The edge is divided into an odd number of possibly-unequal segments. The

tessellation scheme is very similar to EVEN_FRACTIONAL partitioning, except that the edge

midpoint is not included as a tessellation point. This, and the fact that the tessellation points are

mirrored about the edge midpoint, causes an “odd” segment (which may or may not be the

“smaller” segment) to straddle the edge midpoint, therefore resulting in the number of segments

for the edge always being odd.

Domain Types and Output Topologies

The major (if only) task of the TE stage is to tessellate a 2D (u,v) domain region, as selected by the

Domain state, into some number of 2D object topologies. (If the patch is culled, that number may be

zero). The options for Domain state are:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 505

 QUAD: A square 2D region within a u,v Cartesian (rectanguar) space. The region extends from the

origin to u=1 and v=1. Within the region, tessellation domain locations are determined. The

possible output topologies include points, clockwise triangles, and counter-clockwise triangles.

 TRI: A triangular 2D region with u,v,w barycentric (areal) coordinates. The three edges correspond

to u=0, v=0, and w=0 boundaries. In barycentric coordinates, w = 1 – u – v, therefore points

within the region are fully defined as 2D (u,v) coordinates. Within the region, tessellation domain

locations are determined. The possible output topologies include points, clockwise triangles, and

counter-clockwise triangles.

 ISOLINE: A series of points within a QUAD domain, where the points lie on lines parallel to the u

axis and extending from [0,1) in the v direction. Either the segmented lines (linestrips) or

individual point topologies can be output.

QUAD Domain Tessellation

The four “outside” TFs (TF.UEQ0, TF.VEQ0, TF.UEQ1, TF.VEQ1) are used to specify the level of tessellation

along the four corresponding edges of the 2D quad domain. The two “inside” TFs (TF.InsideU,

TF.InsideV) are used to determine the level of tessellation within a 2D “interior” region. Typically the

interior region appears as a “regularly-tessellated 2D grid”, however under certain conditions the

interior region may collapse in which case only the outside TFs are relevant.

In general, a transition region exists between each edge of the interior region and the corresponding

outside edge. The topologies generated for these regions effectively “stitch together” locations along

the outside and inside edges, as each of these edges can contain a different number of tessellated

segments. In the case where all TFs in a given direction (e.g., TF.VEQ0, TF.InsideU, and TF.VEQ1) are the

same value, it appears as if the regularly-tessellated interior region extends all the way to the outside

edges. If this condition simultaneously exists for both u and v directions, the entire domain will appear

to be tessellated into a regular grid, with no noticeable transition regions.

3D Media GPGPU

506 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

QUAD Domain

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 507

TRI Domain Tessellation

Tessellation of the TRI domain is similar to the QUAD domain, except only three outside edges/TFs are

used, and the tessellation of the interior region is controlled by a single TF.

TRI Domain

3D Media GPGPU

508 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

ISOLINE Domain Tessellation

Tessellation of the ISOLINE domain is different but much simpler than QUAD and TRI domains. The

TF.LineDetail TF controls how finely the U direction is tessellated, while the TF.LineDensity TF controls

how finely the V direction is tessellated. When LINE output topology is selected, a series of segmented

lines parallel to the U axis (constant V) are output. When POINT output topology is selected, only the

line segment endpoints are output (as point objects). In either case there is no topology output for the

V=1 edge, which avoids overlapping lines for adjacent patches.

ISOLINE Domain

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 509

Domain Shader (DS) Stage

The DS stage is very similar to the VS stage in that it is responsible for dispatching EU threads to shade

vertices and maintaining a cache (with reference counts) of the shaded vertex outputs of these threads.

Major differences are as follows:

 The DS receives topologies with “domain points” instead of vertices. The only data specific to a

domain point are its U,V coordinates. These coordinates (plus a default or computed W

coordinate) are passed directly in the DS thread payload. There is no other vertex-specific “input

vertex data”.

 The concatenation of the domain point U,V coordinates (vs. a vertex index) is used as the cache

tag.

 The cache is invalidated between patches.

The DS stage accepts state information via the inline 3DSTATE_DS command.

State

This section contains the state registers for the Domain Shader.

3DSTATE_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_DS

3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_URB_DS

Functions

This topic is currently under development.

SIMD4x2 Thread Execution

Project Description

CHV,

BSW

A DS kernel assumes it is to operate on up to eight domain points in parallel using the EU's SIMD8

execution model, or on two domain points in parallel (using the EU’s SIMD4x2 execution model).

Refer to the ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

DS threads must always write the destination URB handles passed in the payload. DS threads are not

permitted to request additional destination handles. Refer to 3D Pipeline Stage Overview (3D Overview)

for details on how destination vertices are written and any required contents/formats.

DS threads must signal thread termination on the last message output to the URB shared function.

3D Media GPGPU

510 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Statistics Gathering

The DS stage maintains the DS_INVOCATIONS statistics counter, which counts the number of incoming

domain points, irrespective of cache hit/miss. Note that this is different than VS_INVOCATIONS, which

counts shader invocations and therefore doesn’t count cache hits.

Payloads

This topic is currently under development.

SIMD4x2 Payload

The following table describes the payload delivered to DS threads.

DS Thread Payload (SIMD4x2)

DWord Bits Description

R0.7 31

30:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,

specified as a 1KB-granular offset from the General State Base Address. See Scratch Space

Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9 Reserved

8:0
FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

[CHV, BSW] Format = U9

 9:0

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 511

DWord Bits Description

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or

Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

R0.1 31:26 Reserved

25:16 Description

Handle ID 1. This ID is assigned by the FF unit and used to identify the URB Return Handle 1

to the FF unit (as FF-specific index value, not a URB address).

If only one vertex is to be processed (shaded) by the thread, this field will effectively be

ignored (no results are stored for these channels, as controlled by the thread’s Channel

Mask).

Format = Reserved for HW Implementation Use.

15:14 Reserved

13:0
URB Return Handle 1: This is the URB handle where Vertex 1 data (the EU’s upper channels

(DWords 7:4)) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will effectively be

ignored (no results are stored for these channels, as controlled by the thread’s Channel Mask).

Format:

Project Format

CHV, BSW U14 handle (512-bit granular)

R0.0 31:26 Reserved

25:16 Description

Handle ID 0. This ID is assigned by the FF unit and used to identify the URB Return Handle 0

to the FF unit (as FF-specific index value, not a URB address).

Format = Reserved for HW Implementation Use.

15:14 Reserved

3D Media GPGPU

512 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

13:0
URB Return Handle 0: This is the URB handle where Vertex 0 data (the EU’s lower channels

(DWords 3:0)) results are to be stored.

Format:

Project Format

CHV, BSW U14 handle (512-bit granular)

R1.7 31:0
PrimitiveID. This is the 32-bit PrimitiveID value associated with the patch. It is common to all

output vertices resulting from the tessellation of the patch.

Format: U32

R1.6 31:0
Domain Point 1 W Coordinate. (See Domain Point 0 W Coordinate)

Format: FLOAT32

R1.5 31:0
Domain Point 1 V Coordinate. (See Domain Point 0 V Coordinate)

Format: FLOAT32

R1.4 31:0
Domain Point 1 U Coordinate. (See Domain Point 0 U Coordinate)

Format: FLOAT32

R1.3 31:14 Reserved

13:0
Patch URB Handle. This is the URB handle of the Patch Record (common to both vertices).

Format:

Project Format

CHV, BSW U14 handle)

R1.2 31:0
Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will

receive the computed value (1 – U – V) for Domain Point 0. Otherwise it is passed as 0.0.

Format: FLOAT32

R1.1 31:0
Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.

Format: FLOAT32

R1.0 31:0
Domain Point 0 U Coordinate. U coordinate associated with Domain Point 0.

Format: FLOAT32

Varies

[Optional]

255:0
Constant Data (optional).

Some amount of constant data (possible none) can be extracted from the push constant

buffer (PCB) and passed to the thread following the R0 Header. The amount of data provided

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 513

DWord Bits Description

is defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_DS command

(taking the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies

[Optional]

255:0
Patch URB Data (optional). Some amount of Patch Data (possible none) can be extracted

from the URB and passed to the thread in this location in the payload. The amount of data

provided is defined by the Patch URB Entry Read Length state (3DSTATE_DS).

The Patch Data arrives in a non-interleaved format.

SIMD8 Payload

The following table describes the payload delivered to DS threads.

DS Thread Payload (SIMD8)

DWord Bits Description

R0.7 31

30:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,

specified as a 1KB-granular offset from the General State Base Address. See Scratch Space

Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9 Reserved

8:0
FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

[CHV, BSW] Format: U9

 9:0

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

3D Media GPGPU

514 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

R0.1 31:0
PrimitiveID. This is the 32-bit PrimitiveID value associated with the patch. It is common to all

output domain points resulting from the tessellation of the patch.

Format: U32

R0.0 31:27 Reserved

26:16
Patch Handle ID. This ID is assigned by the FF unit and used to identify the patch URB entry

to the FF unit (as FF-specific index value, not a URB address).

Format = Reserved for HW Implementation Use.

15:0
Patch URB Offset. This is the offset within the URB where the patch data is stored.

Format: U14 64B-granular offset into the URB

R1.7 31:0 Domain Point 7 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.6 31:0 Domain Point 6 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.5 31:0 Domain Point 5 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.4 31:0 Domain Point 4 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.3 31:0 Domain Point 3 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.2 31:0 Domain Point 2 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.1 31:0 Domain Point 1 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.0 31:0
Domain Point 0 U Coordinate. U coordinate associated with Domain Point 0.

Format: FLOAT32

R2.7 31:0 Domain Point 7 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.6 31:0 Domain Point 6 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.5 31:0 Domain Point 5 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.4 31:0 Domain Point 4 V Coordinate. (See Domain Point 0 V Coordinate.)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 515

DWord Bits Description

R2.3 31:0 Domain Point 3 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.2 31:0 Domain Point 2 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.1 31:0 Domain Point 1 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.0 31:0
Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.

Format: FLOAT32

R3.7 31:0 Domain Point 7 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.6 31:0 Domain Point 6 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.5 31:0 Domain Point 5 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.4 31:0 Domain Point 4 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.3 31:0 Domain Point 3 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.2 31:0 Domain Point 2 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.1 31:0 Domain Point 1 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.0 31:0
Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will receive

the computed value (1 – U – V) for Domain Point 0. Otherwise it is passed as 0.0.

Format: FLOAT32

R4.7 31:0 Domain Point 7 URB Return Handle. (See R4.0.)

R4.6 31:0 Domain Point 6 URB Return Handle. (See R4.0.)

R4.5 31:0 Domain Point 5 URB Return Handle. (See R4.0.)

R4.4 31:0 Domain Point 4 URB Return Handle. (See R4.0.)

R4.3 31:0 Domain Point 3 URB Return Handle. (See R4.0.)

R4.2 31:0 Domain Point 2 URB Return Handle. (See R4.0.)

R4.1 31:0 Domain Point 1 URB Return Handle. (See R4.0.)

R4.0 31:16 Reserved

15:0 Domain Point 0 URB Return Handle. This is the offset within the URB where domain point 0

is to be stored.

Format: U14 64B-granular offset into the URB

Varies

[Optional]

255:0 Constant Data (optional).

Some amount of constant data (possible none) can be extracted from the push constant

buffer (PCB) and passed to the thread following the R0 Header. The amount of data provided

is defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_DS command

(taking the buffer enables into account).

Varies

[Optional]

255:0 Patch URB Data (optional).

Some amount of Patch Data (possible none) can be extracted from the URB and passed to the

thread in this location in the payload. The amount of data provided is defined by the Patch

URB Entry Read Length state (3DSTATE_DS).

3D Media GPGPU

516 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Geometry Shader (GS) Stage

This topic currently under development.

GS Stage Overview

The GS stage of the 3D Pipeline converts objects within incoming primitives into new primitives through

use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the vertices

of each individual object within the primitives, and passes those object vertices (along with other data)

to the graphics subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general

description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these

“common” functions. I.e., most stage state variables and GS thread payload parameters are described in

3D Pipeline, and although they are listed here for completeness, that chapter provides the detailed

description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits

with respect to common FF unit functions.

State

This sections contains the state registers for the Geometry Shader.

For CHV, BSW and CHV, BSW, the state used by GS is defined with this inline state packet.

3DSTATE_GS

3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT(Body)

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_SAMPLER_STATE_POINTERS_GS

3DSTATE_URB_GS

Functions

This topic is currently under development.

Object Staging

The GS unit’s Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,

and spawns a thread for each individual object within the topology.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 517

Thread Request Generation

This topic is currently under development.

Object Vertex Ordering

The following table defines the number and order of object vertices passed in the Vertex Data portion

of the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the

thread is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants)

are called out.

The following table also shows which vertex is selected to provide PrimitiveID (bold, underlined vertex

number). In general, the vertex selected is the last vertex for non-adjacent prims, and the next-to-last

vertex for adjacent prims. Note, however, that there are exceptions:

 reorder-enabled TRISTRIP[_REV], TRISTRIP_ADJ

 “odd-numbered” objects in TRISTRIP_ADJ

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [

{modified PrimType

passed to thread}]

POINTLIST
[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

POINTLIST_BF N/A

LINELIST

 (N is multiple of 2)

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ

 (N is multiple of 4)

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1)] = (N-4,N-3,N-

2,N-1)

LINESTRIP

 (N >= 2)

[0] = (0,1);

[1] = (1,2); …;

[N-2] = (N-2,N-1)

3D Media GPGPU

518 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [

{modified PrimType

passed to thread}]

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT

 (N >= 4)

[0] = (0,1,2,3);

[1] = (1,2,3,4); …;

[N-4] = (N-4,N-3,N-2,N-

1)

LINESTRIP_ADJ_CONT is added. LINESTRIP_ADJ_CONT is

generated by the Vertex Fetch unit on a restore of a

mid-draw pre-empted 3DPRIMITIVE.

LINESTRIP_BF N/A

LINESTRIP_CONT Same as LINESTRIP Handled same as LINESTRIP

LINESTRIP_CONT_BF Same as LINESTRIP Handled same as LINESTRIP

LINELOOP

 (N >= 2)

[0] = (0,1);

[1] = (1,2);

[N] = (N-1,0);

Not supported after GS.

TRILIST

 (N is multiple of 3)

[0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST,

RECTLIST_SUBPIXEL

Same as TRILIST Handled same as TRILIST

TRILIST_ADJ

 (N is multiple of 6)

[0] = (0,1,2,3,4,5);

[1] = (6,7,8,9,10,11); …;

[(N/6)-1] = (N-6,N-5,N-

4,N-3,N-2,N-1)

TRISTRIP (Reorder Leading)

 (N >= 3)

[0] = (0,1,2); {TRISTRIP}

[1] = (1,3,2);

{TRISTRIP_REV}

[k even] = (k,k+1,k+2)

{TRISTRIP}

[k odd] = (k,k+2,k+1)

{TRISTRIP_REV}

[N-3] = (see above)

“Odd” triangles have vertices reordered and identified

as TRISTRIP to inform the thread.

TRISTRIP (Reorder Trailing)

[0] = (0,1,2) {TRISTRIP}

“Odd” triangles have vertices reordered and identified

as TRISTRIP_REV to inform the thread.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 519

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [

{modified PrimType

passed to thread}]

 (N >= 3) [1] = (2,1,3)

{TRISTRIP_REV}; …

[k even] = (k,k+1,k+2)

{TRISTRIP}

[k odd] = (k+1,k,k+2)

{TRISTRIP_REV}

[N-3] = (see above)

TRISTRIP_REV (Reorder

Leading)

(N >= 3)

[0] = (0,2,1)

{TRISTRIP_REV};

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k,k+2,k+1)

{TRISTRIP_REV}

[k odd] = (k,k+1,k+2)

{TRISTRIP}

[N-3] = (see above)

“Even” triangles have vertices reordered and identified

as TRISTRIP to inform the thread.

TRISTRIP_REV (Reorder

Trailing)

(N >= 3)

[0] = (1,0,2)

{TRISTRIP_REV}

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k+1,k,k+2,)

{TRISTRIP_REV}

[k odd] = (k,k+1,k+2)

{TRISTRIP}

[N-3] = (see above)

“Even” triangles have vertices reordered and identified

as TRISTRIP_REV to inform the thread.

TRISTRIP_ADJ (Reorder

Leading)

(N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,7,4,0); …;

N >= 10:

[0] = (0,1,2,6,4,3);

Objects have vertices reordered.

3D Media GPGPU

520 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [

{modified PrimType

passed to thread}]

[1] = (2,5,6,8,4,0); …;

[k>1, even] = (2k,2k-2,

2k+2, 2k+6,2k+4, 2k+3);

[k>2, odd] = (2k, 2k+3,

2k+4, 2k+6, 2k+2, 2k-

2);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-

8,N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-6,N-

3,N-2,N-1,N-4,N-8);

TRISTRIP_ADJ (Reorder

Trailing)

(N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (4,0,2,5,6,7); …;

N >= 10:

[0] = (0,1,2,6,4,3);

[1] = (4,0,2,5,6,8); …;

[k>1, even] = (2k,2k-2,

2k+2, 2k+6,2k+4, 2k+3);

[k>2, odd] = (2k+2, 2k-2,

2k, 2k+3, 2k+4, 2k+6);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-

8,N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-4,N-

8,N-6,N-3,N-2,N-1);

OpenGL ordering rules (last non-adjacent vertex is the

last – aka provoking – vertex of the triangle). Even

triangles have the same ordering as Leading Vertex,

odd triangle ordering is different (rotated 2 vertices).

TRIFAN

 (N > 2)

[0] = (0,1,2);

[1] = (0,2,3); …;

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 521

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [

{modified PrimType

passed to thread}]

[N-3] = (0, N-2, N-1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON, POLYGON_CONT Same as TRIFAN POLYGON_CONT is added. POLYGON_CONT is

generated by the Vertex Fetch unit on a restore of a

mid-draw pre-empted 3DPRIMITIVE.

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1] = (N-4,N-3,N-

2,N-1);

Not supported after GS.

 [CHV, BSW]: QUADLIST primitives are converted into

POLYGONS in VF, and therefore never reach the GS.

[0] = (0,1,3,2);

[1] = (2,3,5,4); … ;

[(N/2)-2] = (N-4,N-3,N-

1,N-2);

Not supported after GS.

 [CHV, BSW]: QUADSTRIP primitives are converted into

POLYGONS in VF, and therefore never reach the GS.

Project: CHV, BSW

[CHV, BSW]:

PATCHLIST_1

PATCHLIST_2

PATCHLIST_3..32

[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

similar to above

3D Media GPGPU

522 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Thread Execution

A GS thread is capable of performing arbritrary algorithms given the thread payload (especially vertex)

data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the

form of vertices output to the FF pipeline (at the GS unit) and/or data written to memory buffers via the

DataPort.

The primary usage models for GS threads include (possible combinations of):

 Compiled application-provided “GS shader” programs, specifying an algorithm to convert the

vertices of an input object into some output primitives. For example, a GS shader may convert

lines of a line strip into polygons representing a corresponding segment of a blade of grass

centered on the line. Or it could use adjacency information to detect silhouette edges of triangles

and output polygons extruding out from the those edges. Or it could output absolutely nothing,

effectively terminating the pipeline at the GS stage.

 Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream

Output below). This may be required whether or not an app-provided GS shader is enabled.

 Driver-generated instructions usedto emulate API functions not supported by specialized

hardware. These functions might include (but are not limited to):

 Conversion of API-defined topologies into topologies that can be rendered (e.g.,

LINELOOP➜LINESTRIP, POLYGON➜TRIFAN, QUADs➜TRIFAN, etc.)

 Emulation of “Polygon Fill Mode”, where incoming polygons can be converted to points,

lines (wireframe), or solid objects.

 Emulation of wide/sprite points.

When rendering is required, concurrent GS threads must use the FF_SYNC message (URB shared

function) to request an initial VUE handle and synchronize output of VUEs to the pipeline (see URB in

Shared Functions). Only one GS thread can be outputting VUEs to the pipeline at a time. To achieve

parallelism, GS threads should perform the GS shader algorithm (along with any other required

functions) and buffer results (either in the GRF or scratch memory) before issuing the FF_SYNC message.

The issuing GS thread is stalled on the FF_SYNC writeback until it is that thread’s turn to output VUEs.

As only one GS thread at a time can output VUEs, the post-FF_SYNC output portion of the kernel should

be optimized as much as possible to maximize parallelism.

Thread Execution

This topic is currently under development.

GS URB Entry

All outputs of a GS thread are stored in the single GS thread output URB entry. Cut (1 bit/vertex) or

StreamID (2 bits/vertex) bits are packed into an optional 1-8 32B header. The Control Data Format and

Control Data Header Size states specify the size and contents of the header data (if any).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 523

Following the optional header is a variable number of 16B or 32B-aligned/granular vertices:

 When rendering is DISABLED, typically output vertices are 32B-aligned, with the exception of 16B-

alignment for vertices <= 16B in length.

 The absolute worst case size comes from three DW scalars output per vertex. If these are,

say, three “.x” outputs, you need to store each DW in a 128b (16B) element, plus another

pad 16B to keep the 32B alignment. So you require 4*16B = 64B/vertex. You have to have

room for 1024 scalars / 3 scalar/vtx = 341 vertices. 341*64B = 21,824B. Then add 96B to

hold 2b/vtx streamID and you get 21,920B entries.

 When rendering is ENABLED, each output vertex is 32B-aligned. Here the vertex header and

vertex ‘position’ are required and therefore the minimum size vertex is 32B.

 Here the worst case size isn’t as bad as render-disabled, as you have to have a 4DW

position output, plus any additional output. So, say you output 5 DW per vertex. You need

64B/vertex (16B vtx header, 16B position, 16B for the 2nd element, and 16B of pad). You

have to have room for 1024 scalars / 5 = 204 vertices. 204*64 = 13,056B. Then add 64B to

hold 2b/vtx streamID and you get 13,120B entries.

The size of the URB entry should be based on the declared maximum # of output vertices and the

declared output vertex size (the union of per-stream vertex structures, if required).

GS URB Entry - Output Vertex Count

The GS URB entry is the same as in the two previous generations with the following exception: If Static

Output (3DSTATE_GS) is clear, the URB entry starts with a 32B OUTPUT_VERTEX_COUNT structure as

defined below. Ths control header (if present) immediately follows this structure. If Static Output is set,

the control header (if present) appears at the very start of the URB entry (as described above).

3D Media GPGPU

524 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GS OUTPUT_VERTEX_COUNT

DWord Bit Description

7:6 31:0 Reserved

0 31:16 Reserved

15:0
Output Vertex Count. Indicates the number of vertices output from this GS shader invocation.

Format = U16

Range: [0:1024]

This structure (if present) increases the maximum URB entry sizes (described above) by 32B.

The following diagram illustrates the possible layouts of a GS URB Entry:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 525

GS Output Topologies

The following table lists which primitive topology types are valid for output by a GS thread.

PrimTopologyType Supported for GS Thread Output?

LINELIST Yes

LINELIST_ADJ No

LINESTRIP Yes

LINESTRIP_ADJ No

LINESTRIP_BF Yes

LINESTRIP_CONT Yes

LINESTRIP_CONT_BF Yes

LINELOOP No

POINTLIST Yes

POINTLIST_BF Yes

POLYGON Yes

QUADLIST No

QUADSTRIP No

RECTLIST Yes

TRIFAN Yes

TRIFAN_NOSTIPPLE Yes

TRILIST Yes

TRILIST_ADJ No

TRISTRIP Yes

TRISTRIP_ADJ No

TRISTRIP_REV Yes

PATCHLIST_xxx Yes

GS Output StreamID

When the GS Enable is DISABLED, output vertices are assigned a StreamID = 0;

When the GS Enable is ENABLED, output vertices are assigned a StreamID = Default StreamID under

the following conditions:

 Control Data Format = 0, or

 Control Data Format > 0 and Control Data Format = GSCTL_CUT

When the GS is enabled, Control Data Format > 0 and Control Data Format = GSCTL_SID, output

vertices are assigned a StreamID as programmed in the Control Data output by the thread.

3D Media GPGPU

526 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Primitive Output

(This section refers to output from the GS unit to the pipeline, not output from the GS thread)

The GS unit will output primitives (either passed-through or generated by a GS thread) in the proper

order. This includes the buffering of a concurrent GS thread’s output until the preceding GS thread

terminates. Note that the requirement to buffer subsequent GS thread output until the preceding GS

thread terminates has ramifications on determining the number of VUEs allocated to the GS unit and

the number of concurrent GS threads allowed.

Statistics Gathering

There are a number of GS/StreamOutput pipeline statistics counters associated with the GS stage and

GS threads. This subsection describes these counters and controls depending on device, even in the

cases where functions outside of the GS stage (e.g., DataPort) are involved in the statistics gathering.

Refer to the Statistics Gathering summary provided earlier in this specification. Refer to the Memory

Interface Registers chapter for details on these MMIO pipeline statistics counter registers, as well as the

chapters corresponding to the other functions involved (e.g., DataPort, URB shared functions).

Payloads

This topic is currently under development.

Thread Payload High-Level Layout

Thread Payload High-Level Layoutshows the high-level layout of the payload delivered to GS threads.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 527

GS Dispatch Layouts

Subsequent sections provide detailed layouts for different processor generations.

SIMD 4x2 Thread Payload

The table below shows the layout of the payload delivered to GS threads.

Refer to 3D Pipeline Stage Overview for details on fields that are common among the various pipeline

stages.

../../../../Content/3D_Media_GPGPU/3D_Pipeline/Geometry/Geometry_Shader/3D%20Pipeline%20Stage%20Overview.htm

3D Media GPGPU

528 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

R0.7 31

30:0 Reserved.

R0.6 31 Dereference Thread. This bit is defined to send back the Handle ID back to HS to dereference

the input handles for this thread.

30:24 Reserved.

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved

8:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table used by this thread,

specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space.Specifies the amount of scratch space allowed for this thread. The

value specifies the power that two is raised to (over determine the amount of scratch space).

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not altered

by the kernel) to the Data Port in any scratch space access messages, but the Data Port ignores

it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:24
Semaphore Index. This is a DWord index used in URB_ATOMIC commands if the thread is using

data pulled from input handles. This information is only required for pull-model vertex inputs

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 529

GRF

 DWord Bits Description

and InstanceCount > 1.

Format = U8

23 Reserved.

22
Hint. This is a copy of the corresponding 3DSTATE_GS bit.

Format: U1

21:16
Primitive Topology Type. This field identifies the Primitive Topology Type associated with the

primitive containing this object. It indirectly specifies the number of input vertices included in

the thread payload. Note that the GS unit may toggle this value between TRISTRIP and

TRISTRIP_REV. If the Discard Adjacency bit is set, the topology type passed in the payload is

UNDEFINED.

Format: See 3D Pipeline.

15:13 Reserved

12:0
Semaphore Handle. This is the URB offset pointing to the first GS semaphore DWord in the

URB. Software is responsible for statically allocating the semaphore DWords in the URB. Refer to

Semaphore Handle field in 3DSTATE_GS for size of semaphore allocation.

R0.1 31:27
GS Instance ID 1. For each input object, the GS unit can spawn multiple threads (instances). This

field starts at zero for the first instance of an object and increments for subsequent instances.

If “dispatch mode” is DUAL_OBJECT this field is not valid.

Format: U5

26:16 Reserved.

15:0
URB Return Handle 1. This is the URB offset where the EU’s upper channels (DWords 7:4)

results are stored.

If only one object/instance is processed (shaded) by the thread, this field is effectively ignored

(no results are stored for these channels, as controlled by the thread’s Channel Mask).

R0.0 31:27
GS Instance ID 0. For each input object, the GS unit can spawn multiple threads (instances). This

field starts at zero for the first instance of an object and increments for subsequent instances.

If “dispatch mode” is DUAL_OBJECT, this field is not valid.

Format: U5

26:16 Reserved.

15:0
URB Return Handle 0. This is the URB offset where the EU’s lower channels (DWords 3:0)

results are stored.

3D Media GPGPU

530 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

The following register is included only if Include PrimitiveID is enabled.

R1.7-R1.5 31:0 Reserved: MBZ.

R1.4 31:0
Primitive ID 1. This field contains the Primitive ID associated with (all instances) of input object

1. Only valid in DUAL_OBJECT mode.

Format: U32

R1.3-R1.1 31:0 Reserved: MBZ.

R1.0 31:0
Primitive ID 0. This field contains the Primitive ID associated with (all instances) of input object

0.

Format: U32

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled.

Rn.7 31:16 ICP 7 Handle ID

15:0 ICP 7 Handle

Rn.6 31:16 ICP 6 Handle ID

15:0 ICP 6 Handle

Rn.5 31:16 ICP 5 Handle ID

15:0 ICP 5 Handle

Rn.4 31:16 ICP 4 Handle ID

15:0 ICP 4 Handle

Rn.3 31:16 ICP 3 Handle ID

15:0 ICP 3 Handle

Rn.2 31:16 ICP 2 Handle ID

15:0 ICP 2 Handle

Rn.1 31:16 ICP 1 Handle ID

15:0 ICP 1 Handle

Rn.0 31:16 ICP 0 Handle ID

15:0 ICP 0 Handle

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled

and ICP Count > 7.

Rn+1.7 31:16 ICP 15 Handle ID

15:0 ICP 15 Handle

Rn+1.6 31:16 ICP 14 Handle ID

15:0 ICP 14 Handle

Rn+1.5 31:16 ICP 13 Handle ID

15:0 ICP 13 Handle

Rn+1.4 31:16 ICP 12 Handle ID

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 531

GRF

 DWord Bits Description

15:0 ICP 12 Handle

Rn+1.3 31:16 ICP 11 Handle ID

15:0 ICP 11 Handle

Rn+1.2 31:16 ICP 10 Handle ID

15:0 ICP 10 Handle

Rn+1.1 31:16 ICP 9 Handle ID

15:0 ICP 9 Handle

Rn+1.0 31:16 ICP 8 Handle ID

15:0 ICP 8 Handle

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled

and ICP Count > 15.

Rn+2.7 31:16 ICP 23 Handle ID

15:0 ICP 23 Handle

Rn+2.6 31:16 ICP 22 Handle ID

15:0 ICP 22 Handle

Rn+2.5 31:16 ICP 21 Handle ID

15:0 ICP 21 Handle

Rn+2.4 31:16 ICP 20 Handle ID

15:0 ICP 20 Handle

Rn+2.3 31:16 ICP 19 Handle ID

15:0 ICP 19 Handle

Rn+2.2 31:16 ICP 18 Handle ID

15:0 ICP 18 Handle

Rn+2.1 31:16 ICP 17 Handle ID

15:0 ICP 17 Handle

Rn+2.0 31:16 ICP 16 Handle ID

15:0 ICP 16 Handle

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled

and ICP Count > 23.

Rn+3.7 31:16 ICP 31 Handle ID

15:0 ICP 31 Handle

Rn+3.6 31:16 ICP 30 Handle ID

15:0 ICP 30 Handle

Rn+3.5 31:16 ICP 29 Handle ID

15:0 ICP 29 Handle

Rn+3.4 31:16 ICP 28 Handle ID

3D Media GPGPU

532 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

15:0 ICP 28 Handle

Rn+3.3 31:16 ICP 27 Handle ID

15:0 ICP 27 Handle

Rn+3.2 31:16 ICP 26 Handle ID

15:0 ICP 26 Handle

Rn+3.1 31:16 ICP 25 Handle ID

15:0 ICP 25 Handle

Rn+3.0 31:16 ICP 24 Handle ID

15:0 ICP 24 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled.

Rn.7 31:16 Object 1 ICP 3 Handle ID

15:0 Object 1 ICP 3 Handle

Rn.6 31:16 Object 1 ICP 2 Handle ID

15:0 Object 1 ICP 2 Handle

Rn.5 31:16 Object 1 ICP 1 Handle ID

15:0 Object 1 ICP 1 Handle

Rn.4 31:16 Object 1 ICP 0 Handle ID

15:0 Object 1 ICP 0 Handle

Rn.3 31:16 Object 0 ICP 3 Handle ID

15:0 Object 0 ICP 3 Handle

Rn.2 31:16 Object 0 ICP 2 Handle ID

15:0 Object 0 ICP 2 Handle

Rn.1 31:16 Object 0 ICP 1 Handle ID

15:0 Object 0 ICP 1 Handle

Rn.0 31:16 Object 0 ICP 0 Handle ID

15:0 Object 0 ICP 0 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP

Count > 3.

Rn+1.7 31:16 Object 1 ICP 7 Handle ID

15:0 Object 1 ICP 7 Handle

Rn+1.6 31:16 Object 1 ICP 6 Handle ID

15:0 Object 1 ICP 6 Handle

Rn+1.5 31:16 Object 1 ICP 5 Handle ID

15:0 Object 1 ICP 5 Handle

Rn+1.4 31:16 Object 1 ICP 4 Handle ID

15:0 Object 1 ICP 4 Handle

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 533

GRF

 DWord Bits Description

Rn+1.3 31:16 Object 0 ICP 7 Handle ID

15:0 Object 0 ICP 7 Handle

Rn+1.2 31:16 Object 0 ICP 6 Handle ID

15:0 Object 0 ICP 6 Handle

Rn+1.1 31:16 Object 0 ICP 5 Handle ID

15:0 Object 0 ICP 5 Handle

Rn+1.0 31:16 Object 0 ICP 4 Handle ID

15:0 Object 0 ICP 4 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP

Count > 7.

Rn+2.7 31:16 Object 1 ICP 11 Handle ID

15:0 Object 1 ICP 11 Handle

Rn+2.6 31:16 Object 1 ICP 10 Handle ID

15:0 Object 1 ICP 10 Handle

Rn+2.5 31:16 Object 1 ICP 9 Handle ID

15:0 Object 1 ICP 9 Handle

Rn+2.4 31:16 Object 1 ICP 8 Handle ID

15:0 Object 1 ICP 8 Handle

Rn+2.3 31:16 Object 0 ICP 11 Handle ID

15:0 Object 0 ICP 11 Handle

Rn+2.2 31:16 Object 0 ICP 10 Handle ID

15:0 Object 0 ICP 10 Handle

Rn+2.1 31:16 Object 0 ICP 9 Handle ID

15:0 Object 0 ICP 9 Handle

Rn+2.0 31:16 Object 0 ICP 8 Handle ID

15:0 Object 0 ICP 8 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP

Count > 11.

Rn+3.7 31:16 Object 1 ICP 15 Handle ID

15:0 Object 1 ICP 15 Handle

Rn+3.6 31:16 Object 1 ICP 14 Handle ID

15:0 Object 1 ICP 14 Handle

Rn+3.5 31:16 Object 1 ICP 13 Handle ID

15:0 Object 1 ICP 13 Handle

Rn+3.4 31:16 Object 1 ICP 12 Handle ID

15:0 Object 1 ICP 12 Handle

3D Media GPGPU

534 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

Rn+3.3 31:16 Object 0 ICP 15 Handle ID

15:0 Object 0 ICP 15 Handle

Rn+3.2 31:16 Object 0 ICP 14 Handle ID

15:0 Object 0 ICP 14 Handle

Rn+3.1 31:16 Object 0 ICP 13 Handle ID

15:0 Object 0 ICP 13 Handle

Rn+3.0 31:16 Object 0 ICP 12 Handle ID

15:0 Object 0 ICP 12 Handle

Varies

(optional)

31:0
Constant Data (optional):

Some amount of constant data (possibly none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is

defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_GS command (taking

the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies 31:0
Pushed Vertex Data. There can be up to 32 vertices supplied, each with a size defined by the

Vertex URB Entry Read Length state. The amount of data provided for each vertex is defined

by the Vertex URB Entry Read Length state.

For SINGLE or DUAL_INSTANCE dispatch modes, the pushed data for Vertex 0 immediately

follows any pushed constant data. The pushed data for Vertex 1 immediately follows Vertex 0,

and so on. There is no upper/lower swizzling of data.

For DUAL_OBJECT dispatch mode, the pushed vertex data is split into upper and lower halves

with Object 0 input vertices in the lower half, and Object 1 input vertices in the upper half.

SIMD8 Thread Payload

The table below shows the layout of the payload delivered to GS threads.

Refer to the 3D Pipeline Stage Overview section for details on those fields that are common among

the various pipeline stages.

GRF

 DWord Bits Description

R0.7 31

30:0 Reserved.

R0.6 31 Dereference Thread. This bit is defined to send the Handle ID back to HS to dereference the

input handles for this thread.

30:24 Reserved.

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 535

GRF

 DWord Bits Description

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved

8:0
FFTID. This ID is assigned by the fixed function unit and is a relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format:

Project Format

CHV, BSW U9

Range:

Project Range

CHV, BSW 0-503

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table used by this thread,

specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Programming Notes: This amount is available to the kernel for information only. It is passed

verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but

the Data Port ignores it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:24 Reserved.

23 Reserved.

3D Media GPGPU

536 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

22
Hint. This is a copy of the corresponding 3DSTATE_GS bit.

Format: U1

21:16
Primitive Topology Type. This field identifies the Primitive Topology Type associated with the

primitive containing this object. It indirectly specifies the number of input vertices included in the

thread payload. Note that the GS unit may toggle this value between TRISTRIP and TRISTRIP_REV.

If the Discard Adjacencybit is set, the topology type passed in the payload is UNDEFINED.

Format: See 3D Pipeline.

15:13 Reserved.

12:0 Reserved.

R0.1-

R0.0

31:0 Reserved.

R1.7 31:0 GS Instance ID / URB Return Handle for Object 7 (See R1.0)

R1.6 31:0 GS Instance ID / URB Return Handle for Object 6 (See R1.0)

R1.5 31:0 GS Instance ID / URB Return Handle for Object 5 (See R1.0)

R1.4 31:0 GS Instance ID / URB Return Handle for Object 4 (See R1.0)

R1.3 31:0 GS Instance ID / URB Return Handle for Object 3 (See R1.0)

R1.2 31:0 GS Instance ID / URB Return Handle for Object 2 (See R1.0)

R1.1 31:0 GS Instance ID / URB Return Handle for Object 1 (See R1.0)

R1.0 31:27
GS Instance ID 0. For each input object, the GS unit can spawn multiple threads (instances). This

field starts at zero for the first instance of an object and increments for subsequent instances.

Format: U5

26:16 Reserved.

15:0
URB Return Handle 0. This field is the URB offset where the EU lower channels (DWords 3:0)

results are stored.

Format: U14 64B-aligned URB Offset

The following register is included only if Include PrimitiveID is enabled.

R2.7 31:0
Primitive ID 7. This field contains the Primitive ID associated with input object 7 (or the single

input object if InstanceCount > 1).

Format: U32

R2.6 31:0
Primitive ID 6. This field contains the Primitive ID associated with input object 6 (or the single

input object if InstanceCount > 1).

Format: U32

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 537

GRF

 DWord Bits Description

R2.5 31:0
Primitive ID 5. This field contains the Primitive ID associated with input object 5 (or the single

input object if InstanceCount > 1).

Format: U32

R2.4 31:0
Primitive ID 4. This field contains the Primitive ID associated with input object 4 (or the single

input object if InstanceCount > 1).

Format: U32

R2.3 31:0
Primitive ID 3. This field contains the Primitive ID associated with input object 3 (or the single

input object if InstanceCount > 1).

Format: U32

R2.2 31:0
Primitive ID 2. This field contains the Primitive ID associated with input object 2 (or the single

input object if InstanceCount > 1).

Format: U32

R2.1 31:0
Primitive ID 1. This field contains the Primitive ID associated with input object 1 (or the single

input object if InstanceCount > 1).

Format: U32

R2.0 31:0
Primitive ID 0. This field contains the Primitive ID associated with input object 0 (or the single

input object if InstanceCount > 1).

Format: U32

The following registers are included only if Include Vertex Handlesis enabled and InstanceCount == 1.

Rn.7 31:16 Project Description

CHV, BSW Object 7 ICP 0 Handle ID.

15:0 Object 7 ICP 0 Handle.

Rn.6 31:16 Project Description

CHV, BSW Object 6 ICP 0 Handle ID.

15:0 Object 6 ICP 0 Handle.

Rn.5 31:16 Project Description

CHV, BSW Object 5 ICP 0 Handle ID.

15:0 Object 5 ICP 0 Handle.

Rn.4 31:16 Project Description

CHV, BSW Object 4 ICP 0 Handle ID.

15:0 Object 4 ICP 0 Handle.

3D Media GPGPU

538 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

Rn.3 31:16 Project Description

CHV, BSW Object 3 ICP 0 Handle ID.

15:0 Object 3 ICP 0 Handle.

Rn.2 31:16 Project Description

CHV, BSW Object 2 ICP 0 Handle ID.

15:0 Object 2 ICP 0 Handle.

Rn.1 31:16 Project Description

CHV, BSW Object 1 ICP 0 Handle ID.

15:0 Object 1 ICP 1 Handle.

Rn.0 31:16 Project Description

CHV, BSW Object 0 ICP 0 Handle ID.

15:0 Object 0 ICP 0 Handle.

[Rn+1] 255:0 Project Description

CHV, BSW ICP 1 Handle/HandleID for Objects 0-7.

[Rn+2] 255:0 Project Description

CHV, BSW ICP 2 Handle/HandleID for Objects 0-7.

[Rn+3] 255:0 Project Description

CHV, BSW ICP 3 Handle/HandleID for Objects 0-7.

[Rn+4] 255:0 Project Description

CHV, BSW ICP 4 Handle/HandleID for Objects 0-7.

[Rn+5] 255:0 Project Description

CHV, BSW ICP 5 Handle/HandleID for Objects 0-7.

The following registers are included only if Include Vertex Handlesis enabled and InstanceCount > 1.

Rn.7 31:16 Reserved.

15:0 Reserved.

Rn.6 31:16 Reserved.

15:0 Reserved.

Rn.5 31:16 Project Description

CHV, BSW ICP 5 Handle ID (if required).

15:0 ICP 5 Handle (if required).

Rn.4 31:16 Project Description

CHV, BSW ICP 4 Handle ID (if required).

15:0 ICP 4 Handle (if required).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 539

GRF

 DWord Bits Description

Rn.3 31:16 Project Description

CHV, BSW ICP 3 Handle ID (if required).

15:0 ICP 3 Handle (if required).

Rn.2 31:16 Project Description

CHV, BSW ICP 2 Handle ID (if required).

15:0 ICP 2 Handle (if required).

Rn.1 31:16 Project Description

CHV, BSW ICP 1 Handle ID (if required).

15:0 ICP 1 Handle (if required).

Rn.0 31:16 Project Description

CHV, BSW ICP 0 Handle ID (if required).

15:0 ICP 0 Handle.

Varies

optional

31:0
Constant Data (optional):

Some amount of constant data (possibly none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is defined

by the sum of the read lengths in the last 3DSTATE_CONSTANT_GS command (taking the buffer

enables into account).

The Constant Data arrives in a non-interleaved format.

Varies
Pushed Vertex Data (InstanceCount == 1 Case):

Input data for the 8 input objects is located here. Object 0 (starting with Vertex 0 of Object 0)

data is passed in DW0 of these GRFs, and Object 7 data is passed in DW7. The first GRF contains

Vertex 0 Element 0 Component 0 for all 8 objects, followed by components 1-3 in the three

subsequent GRFs. This is followed by GRFs containing Vertex 0 Element 1 (if it exists), and so on,

up to the number of Vertex 0 elements specified by Vertex URB Read Length. This is followed

by the data for Vertex 1 for all objects (if it exists), and so on until all relevant vertices are passed.

Note that the amount of data passed is limited by the number of GRFs supported by EUs.

Software is responsible for comprehending this limit and resorting to the pull model as required.

Rv.7 31:0 Object 7 Vertex 0 Element 0 Component 0

Rv.6 31:0 Object 6 Vertex 0 Element 0 Component 0

Rv.5 31:0 Object 5 Vertex 0 Element 0 Component 0

Rv.4 31:0 Object 4 Vertex 0 Element 0 Component 0

Rv.3 31:0 Object 3 Vertex 0 Element 0 Component 0

Rv.2 31:0 Object 2 Vertex 0 Element 0 Component 0

Rv.1 31:0 Object 1 Vertex 0 Element 0 Component 0

Rv.0 31:0 Object 0 Vertex 0 Element 0 Component 0

3D Media GPGPU

540 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GRF

 DWord Bits Description

Rv+1 31:0 Object 0-7 Vertex 0 Element 0 Component 1

 and so on

Varies
Pushed Vertex Data (InstanceCount > 1 Case):

Input data for the single input object (shared across all instances) is located here.

The pushed data for Vertex 0 immediately follows any pushed constant data. The pushed data for

Vertex 1 immediately follows Vertex 0, and so on. There is no upper/lower swizzling of data.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 541

Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the information required to

submit the thread request to the Thread Dispatcher. This information is divided into several categories,

as listed below and subsequently described in detail.

 Thread Control Information: This is the information required (from the FF unit) to establish the

execution environment of the thread.

 Thread Payload Header: This is the first portion of the thread payload passed in the GRF,

starting at GRF R0. This is information passed directly from the FF unit. It precedes the Thread

Payload Input URB Data.

 Thread Payload Input URB Data: This is the second portion of the thread payload. It is read

from the URB using entry handles supplied by the FF unit.

3D Media GPGPU

542 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to

the Thread Dispatcher and which affect the thread execution environment. Note that this information is

not directly passed to the thread in the thread payload (though some fields may be subsequently

accessed by the thread via architectural registers).

State Variables Included in Thread Control Information

State

Variable Usage FFs

Kernel Start

Pointer
This field, together with the General State Pointer, specifies the starting

location (1st GEN4 core instruction) of the kernel program run by threads

spawned by this FF unit. It is specified as a 64-byte-granular offset from the

General State Pointer.

All FFs spawning

threads

GRF Register

Block Count

Specifies, in 16-register blocks, how many GRF registers are required to run the

kernel. The Thread Dispatcher will only seek candidate EUs that have a sufficient

number of GRF register blocks available. Upon selecting a target EU, the Thread

DIspatcher will generate a logical-to-physical GRF mapping and provide this to

the target EU.

All FFs spawning

threads

Single

Program

Flow (SPF)

Specifies whether the kernel program has a single program flow (SIMDnxm with

m = 1) or multiple program flows (SIMDnxm with m > 1). See CR0 description in

ISA Execution Environment.

All FFs spawning

threads

Thread

Dispatch

Priority

The Thread Dispatcher will give priority to those thread requests with Thread

Dispatch Priority of HIGH_PRIORITY over those marked as LOW_PRIORITY.

Within these two classes of thread requests, the Thread Dispatcher applies a

priority order (e.g., round-robin --- though this algorithm is considered a device

implementation-dependent detail).

All FFs spawning

threads

Floating

Point Mode

This determines the initial value of the Floating Point Mode bit of the EU’s CR0

architectural register that controls floating point behavior in the EU core. (See

ISA.)

All FFs spawning

threads

Exceptions

Enable

This bitmask controls the exception handing logic in the EU. (See ISA.) All FFs spawning

threads

Sampler

Count
This is a hint which specifies how many indirect SAMPLER_STATE structures

should be prefetched concurrent with thread initiation. It is recommended that

software program this field to equal the number of samplers, though there may

be some minor performance impact if this number gets large.

This value should not exceed the number of samplers accessed by the thread as

there would be no performance advantage. Note that the data prefetch is

treated as any other memory fetch (with respect to page faults, etc.).

All stages

supporting

sampling (VS,

GS, WM)

Binding

Table Entry

Count

This is a hint which specifies how many indirect BINDING_TABLE_STATE

structures should be prefetched concurrent with thread initiation. (The notes

included in Sampler Count (above) also apply to this field).

All FFs spawning

threads

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 543

Thread Payload Generation

FF units are responsible for generating a thread payload – the data pre-loaded into the target EU’s GRF

registers (starting at R0) that serves as the primary direct input to a thread’s kernel. The general format

of these payloads follow a similar structure, though the exact payload size/content/layout is unique to

each stage. This subsection describes the common aspects – refer to the specific stage’s chapters for

details on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB

data. The payload header contains information passed directly from the FF unit, while the payload URB

data is obtained from URB locations specified by the FF unit.

The first 256 bits of the thread payload (the initial contents of R0, aka “the R0 header”) is specially

formatted to closely match (and in some cases exactly match) the first 256 bits of thread-generated

messages (i.e., the message header) accepted by shared functions. In fact, the send instruction supports

having a copy of a GR’s contents (such as R0) used as the message header. Software must take this

intention into account (i.e., “don’t muck with R0 unless you know what you’re doing”). This is especially

important given the fact that several fields in the R0 header are considered opaque to SW, where use or

modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,

variable-sized extended payload header section. In general the size, content and layout of both payload

header sections are FF-specific, though many of the fixed payload header fields are common amongst

the FF stages. The extended header is used by the FF unit to pass additional information specific to that

FF unit. The extended header is defined to start after the fixed payload header and end at the offset

defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF

Start Register for URB Data field to insert padding into the extended header in order to maintain a

fixed offset for the start of the URB data.

Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This

information is a mixture of SW-provided state information (state table pointers, etc.), primitive

information received by the FF unit from the FF pipeline, and parameters generated/computed by the

FF unit. Most of the fields of the fixed header are common between the FF stages. These non-FF-specific

fields are described in Fixed Payload Header Fields (non-FF-specific). Note that a particular stage’s

header may not contain all these fields, so they are not “common” in the strictest sense.

3D Media GPGPU

544 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Fixed Payload Header Fields (non-FF-specific)

Fixed Payload

Header Field

(non-FF-

specific) Description FFs

FF Unit ID Function ID of the FF unit. This value identifies the FF unit within the GEN4

subsystem. The FF unit uses this field (when transmitted in a Message Header

to the URB Function) to detect messages emanating from its spawned

threads.

All FFs spawning

threads

Snapshot Flag All FFs spawning

threads

Thread ID This field uniquely identifies this thread within the FF unit over some period.

All FFs spawning

threads

Scratch Space

Pointer

This is the starting location of the thread’s allocated scratch space, specified

as an offset from the General State Base Address. Note that scratch space is

allocated by the FF unit on a per-thread basis, based on the Scratch Space

Base Pointer and Per-Thread Scratch Space Size state variables. FF units

assign a thread an arbitrarily-positioned region within this space. The scratch

space for multiple (API-visible) entities (vertices, pixels) is interleaved within

the thread’s scratch space.

All FFs spawning

threads

Dispatch ID This field identifies this thread within the outstanding threads spawned by

the FF unit. This field does not uniquely identify the thread over any

significant period.

Implementation Note: This field is effectively an “active thread index”. It is

used on a thread’s URB allocation request to identify which thread’s handle

pool is to source the allocation. It is used upon thread termination to free up

the thread’s scratch space allocation.

All FFs spawning

threads

Binding Table

Pointer

This field, together with the Surface State Base Pointer, specifies the

starting location of the Binding Table used by threads spawned by the FF

unit. It is specified as a 64-byte-granular offset from the Surface State Base

Pointer.

 See Shared Functions for a description of a Binding Table.

All FFs spawning

threads

Sampler State

Pointer

This field, together with the General State Base Pointer, specifies the

starting location of the Sampler State Table used by threads spawned by the

FF unit. It is specified as a 64-byte-granular offset from the General State

Base Pointer.

 See Shared Functions for a description of a Sampler State Table.

All FFs spawning

threads which

sample (VS, GS,

WM)

Per Thread

Scratch Space

This field specifies the amount of scratch space allocated to each thread

spawned by the FF unit.

 The driver must allocate enough contiguous scratch space, starting at the

Scratch Space Base Pointer, to ensure that the Maximum Number of

All FFs spawning

threads

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 545

Fixed Payload

Header Field

(non-FF-

specific) Description FFs

Threads can each get Per-Thread Scratch Space size without exceeding the

driver-allocated scratch space.

Handle ID <n> This ID is assigned by the FF unit and links the thread to a specific entry

within the FF unit. The FF unit will use this information upon detecting a

URB_WRITE message issued by the thread.

 Threads spawned by the GS, CLIP, and SF units are provided with a single

Handle ID / URB Return Handle pair. Threads spawned by the VS are

provided with one or two pairs (depending on how many vertices are to be

processed). Threads spawned by the WM do not write to URB entries, and

therefore this info is not supplied.

VS, GS, CLIP, SF

URB Return

Handle <n>

This is an initial destination URB handle passed to the thread. If the thread

does output URB entries, this identifies the destination URB entry.

 Threads spawned by the GS, CLIP, and SF units are provided with a single

Handle ID / URB Return Handle pair. Threads spawned by the VS are

provided with one or two pairs (depending on how many vertices are to be

processed). Threads spawned by the WM do not write to URB entries, and

therefore this info is not supplied.

VS, GS, CLIP, SF

Primitive

Topology Type

As part of processing an incoming primitive, a FF unit is often required to

spawn a number of threads (for example, for each individual triangle in a

TRIANGLE_STRIP). This field identifies the type of primitive which is being

processed by the FF unit, and which has lead to the spawning of the thread.

GEN4 kernels written to process different types of objects can use this value

to direct that processing. E.g., when a CLIP kernel is to provide clipping for all

the various primitive types, the kernel would need to examine the Primitive

Topology Type to distinguish between point, lines, and triangle clipping

requests.

Note: In general, this field is identical to the Primitive Topology Type

associated with the primitive vertices as received by the FF unit. Refer to the

individual FF unit chapters for cases where the FF unit modifies the value

before passing it to the thread. (for example, certain units perform toggling

of TRIANGLESTRIP and TRIANGLESTRIP_REV).

GS, CLIP, SF, WM

3D Media GPGPU

546 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state

programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the

Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used

to place the payload URB data at a specific starting GRF register, irrespective of the size of the extended

header. A kernel can therefore reference the payload URB data at fixed GRF locations, while

conditionally referencing extended payload header information.

Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as

input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either

by a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only

knows the location of this data in the URB, and is never exposed to the contents. For each URB entry,

the FF unit will supply a sequence of handles, read offsets and read lengths to the GEN4 subsystem. The

subsystem will read the appropriate 256-bit locations of the URB, optionally perform swizzling (VS only),

and write the results into sequential GRF registers (starting at Dispatch GRF Start Register for URB

Data).

State Variables Controlling Payload URB Data

State Variable Usage FFs

Dispatch GRF

Start Register

for URB Data

This SV identifies the starting GRF register receiving payload URB data.

 Software is responsible for ensuring that URB data does not overwrite the Fixed

or Extended Header portions of the payload.

FFs

spawning

threads

Vertex URB

Entry Read

Offset

This SV specifies the starting offset within VUEs from which vertex data is to be

read and supplied in this stage’s payloads. It is specified as a 256-bit offset into

any and all VUEs passed in the payload.

This SV can be used to skip over leading data in VUEs that is not required by the

stage’s threads (e.g., skipping over the Vertex Header data at the SF stage, as

that information is not required for setup calculations). Skipping over irrelevant

data can only help to improve performance.

 Specifying a vertex data source extending beyond the end of a vertex entry is

UNDEFINED.

VS, GS

Vertex URB

Entry Read

Length

This SV determines the amount of vertex data (starting at Vertex URB Entry

Read Offset) to be read from each VUEs and passed into the payload URB data.

It is specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

 Specifying a vertex data source extending beyond the end of a VUE is

UNDEFINED.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 547

Programming Restrictions: (others may already been mentioned)

 The maximum size payload for any thread is limited by the number of GRF registers available to

the thread, as determined by min(128, 16 * GRF Register Block Count). Software is responsible

for ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.

o The Dispatch GRF Start Register for URB Data SV.

o The amount of CURBE data included (via Constant URB Entry Read Length)

o The number of VUEs included (as a function of FF unit, it’s state programming, and

incoming primitive types)

o The amount of VUE data included for each vertex (via Vertex URB Entry Read Length)

o (For WM-spawned PS threads) The amount of Primitive URB Entry data.

 For any type of URB Entry reads:

o Specifying a source region (via Read Offset, Read Length) that goes past the end of the

URB Entry allocation is illegal.

 The allocated size of Vertex/Primitive URB Entries is determined by the URB Entry

Allocation Size value provided in the pipeline state descriptor of the FF unit owning

the VUE/PUE.

 The allocated size of CURBE entries is determined by the URB Entry Allocation Size

value provided in the CS_URB_STATE command.

3D Media GPGPU

548 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Stream Output Logic (SOL) Stage

The Stream Output Logic (SOL) stage receives 3D topologies originating in the VF, DS or GS stage. If

enabled, the SOL stage uses programmed state information to copy portions of the vertex data

associated with the incoming topologies across one or more Stream Output (SO) Buffers.

State

This section contains state commands and structures pertaining to the StreamOut Logic (SOL) stage of

the 3D pipeline.

3DSTATE_STREAMOUT

The 3DSTATE_STREAMOUT command specifies control information for the SOL stage. Included are

enables and sizes for input streams and enables for output buffers.

The SOL unit incorrectly double buffers MMIO/NP registers and only moves them into the design for

usage when control topology is received with the SOL unit dirty state.

If the state does not change, need to resend the same state.

There is no need to send a pipeline state update to the SOL unit after SOL unit MMIO registers or non-pipeline

state are written.

3DSTATE_STREAMOUT

3DSTATE_SO_DECL_LIST Command

The 3DSTATE_SO_DECL_LIST instruction defines a list of Stream Output (SO) declaration entries

(SO_DECLs) and associated information for all specific SO streams in parallel.

3DSTATE_SO_DECL_LIST

SO_DECL

3DSTATE_SO_BUFFER

The 3DSTATE_SO_BUFFER command specifies the location and characteristics of an SO buffer in

memory.

3DSTATE_SO_BUFFER

The SOL Unit also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT provides 3DSTATE_WM,

3DSTATE_PS_EXTRA, and 3DSTATE_DEPTH_STENCIL_STATE fields.

Signal [CHV, BSW] Description Formula

SOL_INT::Render_Enable If clear, the SO stage will not forward any

topologies down the pipeline.

If set, the SO stage will forward

topologies associated with Render Stream

Select down the pipeline.

 This bit is used even if SO Function

 = (3DSTATE_STREAMOUT::Force_Rending == Force_On) ||

 (

 (3DSTATE_STREAMOUT::Force_Rending != Force_Off) &&

 !(3DSTATE_GS::Enable && 3DSTATE_GS::Output Vertex

Size == 0) &&

 !3DSTATE_STREAMOUT::API_Render_Disable &&

 (

 3DSTATE_DEPTH_STENCIL_STATE::Stencil_TestEnable

||

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 549

Enable is DISABLED. 3DSTATE_DEPTH_STENCIL_STATE::Depth_TestEnable ||

 3DSTATE_DEPTH_STENCIL_STATE::Depth_WriteEnable ||

 3DSTATE_PS_EXTRA::PS_Valid ||

 3DSTATE_WM::Legacy Depth_Buffer_Clear ||

 3DSTATE_WM::Legacy Depth_Buffer_Resolve_Enable ||

 3DSTATE_WM::Legacy

Hierarchical_Depth_Buffer_Resolve_Enable

)

)

DW1[21] DW1[20] Stream Offset Action

Full legacy mode. HW doesn’t LOAD or STORE, it simply updates the MMIO register during stream out. SW can

can the LOAD/STORE using MI_LOAD_REG/ MI_STORE_REG.

0 0 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = no action

0 0 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = no action

SW can cause the LOAD of the SO_OFFSET using MI_LOAD_REG, and HW performs the STORE.

0 1 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = No action,

 write SO_WRITE_OFFSET[x] to memory

0 1 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = No action,

 write SO_WRITE_OFFSET[x] to memory

HW performs the LOAD, and SW can cause the STOREs using MI_STORE_REG_MEM.

1 0 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = stream offset

1 0 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = load from memory

HW performs both the LOAD and STORE.

1 1 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = stream offset,

 write SO_WRITE_OFFSET[x] to memory

1 1 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = load from memory,

 write SO_WRITE_OFFSET[x] to memory

“SO_WRITE_OFFSET[x] =” occurs before the execution of the primitive, while write SO_WRITE_OFFSET[x] to

memory occurs after the execution of the primitive.

3D Media GPGPU

550 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Functions

This topic is currently under development.

Input Buffering

For the purposes of stream output, the SOL stage breaks incoming topologies into independent objects

without adjacency information. In the process, any adjacent-only vertices are ignored. For example, it

converts TRISTRIP_ADJ into independent 3-vertex triangles. However, if rendering is enabled, incoming

topologies are passed to the Clip stage unmodified and therefore the Clip unit must be enabled if there

is any possibility of “ADJ” topologies reaching it.

Note that the SOL unit will not see incomplete objects: the VF will remove incomplete input objects, the

GS will remove GS-generated incomplete objects, and the DS does not output incomplete objects as

only complete topologies are generated by the TE stage.

The OSB (Object Staging Buffer) reorders the vertices of odd-numbered triangles in TRISTRIP topologies

to match API requirements.

Incoming topologies are tagged with a 2-bit StreamID. The StreamID is 0 for topologies originating

from the VF stage (i.e., 3DPRIMITIVE_xxx). For topologies output from the GS stage, the StreamID is set

by the GS shader. A Stream n Vertex Length is associated with each stream, and defines how much data

is read from the URB for vertices in that stream.

The following table specifies how the SOL stage streams out object vertices for each incoming topology

type.

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

POINTLIST

 POINTLIST_BF

[0] = (0);

 [1] = (1); …;

 [N-2] = (N-2);

LINELIST

 (N is multiple of 2)

[0] = (0,1);

 [1] = (2,3); …;

 [(N/2)-1] = (N-2,N-

1)

LINELIST_ADJ

 (N is multiple of 4)

[0] = (1,2);

 [1] = (5,6); …;

 [(N/4)-1)] = (N-3,N-

2)

LINESTRIP

 LINESTRIP_BF

 LINESTRIP_CONT

 LINESTRIP_CONT_BF

 (N >= 2)

[0] = (0,1);

 [1] = (1,2); …;

 [N-2] = (N-2,N-1)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 551

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT

 (N >= 4)

[0] = (1,2);

 [1] = (2,3); …;

 [N-4] = (N-3,N-2)

LINESTRIP_ADJ_CONT is added.

LINESTRIP_ADJ_CONT is generated by the Vertex Fetch unit

on a restore of a mid-draw pre-empted 3DPRIMITIVE.

LINELOOP N/A Not supported after VF.

TRILIST

 (N is multiple of 3)

[0] = (0,1,2);

 [1] = (3,4,5); …;

 [(N/3)-1] = (N-3,N-

2,N-1)

RECTLIST, RECTLIST_SUBPIXEL Same as TRILIST Handled same as TRILIST.

TRILIST_ADJ

 (N is multiple of 6)

[0] = (0,2,4);

 [1] = (6,8,10); …;

 [(N/6)-1] = (N-6,N-

4,N-2)

TRISTRIP

 (N >= 3)

 REORDER_LEADING

[0] = (0,1,2);

 [1] = (1,3,2);

 [k even] =

(k,k+1,k+2)

 [k odd] =

(k,k+2,k+1)

 [N-3] = (see above)

“Odd” triangles have vertices reordered to yield increasing

leading vertices starting with v0.

TRISTRIP

 (N >= 3)

 REORDER_TRAILING

[0] = (0,1,2);

 [1] = (2,1,3);

 [k even] =

(k,k+1,k+2)

 [k odd] =

(k+1,k,k+2)

 [N-3] = (see above)

“Odd” triangles have vertices reordered to yield increasing

trailing vertices starting with v2.

TRISTRIP_REV

 (N >= 3)

 REORDER_LEADING

[0] = (0,2,1)

 [1] = (1,2,3);…;

 [k even] =

(k,k+2,k+1)

 [k odd] =

(k,k+1,k+2)

 [N-3] = (see above)

“Even” triangles have vertices reordered to yield increasing

leading vertices starting with v0.

TRISTRIP_REV

 (N >= 3)

 REORDER_TRAILING

[0] = (1,0,2)

 [1] = (1,2,3);…;

 [k even] =

(k+1,k,k+2)

 [k odd] =

(k,k+1,k+2)

“Even” triangles have vertices reordered to yield increasing

trailing vertices starting with v2.

3D Media GPGPU

552 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

 [N-3] = (see above)

TRISTRIP_ADJ

 (N even, N >= 6)

 REORDER_LEADING

N = 6 or 7:

 [0] = (0,2,4)

 N = 8 or 9:

 [0] = (0,2,4);

 [1] = (2,6,4); …;

 N > 10:

 [0] = (0,2,4);

 [1] = (2,6,4); …;

 [k>1, even] = (2k,

2k+2, 2k+4);

 [k>2, odd] = (2k,

2k+4, 2k+2);…;

 Trailing object:

 [(N/2)-3, even] =

(N-6,N-4,N-2);

 [(N/2)-3, odd] =

(N-6,N-2,N-4);

“Odd” objects have vertices reordered to yield increasing-

by-2 leading vertices starting with v0.

TRISTRIP_ADJ

 (N even, N >= 6)

 REORDER_TRAILING

N = 6 or 7:

 [0] = (0,2,4)

 N = 8 or 9:

 [0] = (0,2,4);

 [1] = (4,2,6); …;

 N > 10:

 [0] = (0,2,4);

 [1] = (4,2,6); …;

 [k>1, even] = (2k,

2k+2, 2k+4);

 [k>2, odd] =

(2k+2,2k, 2k+4,);…;

 Trailing object:

 [(N/2)-3, even] =

(N-6,N-4,N-2);

 [(N/2)-3, odd] =

(N-4,N-6,N-2);

“Odd” objects have vertices reordered to yield increasing-

by-2 trailing vertices starting with v4.

TRIFAN

 (N > 2)

[0] = (0,1,2);

 [1] = (0,2,3); …;

 [N-3] = (0, N-2, N-

1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON, POLYGON_CONT Same as TRIFAN POLYGON_CONT is added. POLYGON_CONT is generated

by the Vertex Fetch unit on a restore of a mid-draw pre-

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 553

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

empted 3DPRIMITIVE.

QUADLIST

 QUADSTRIP

N/A Not supported after VF.

PATCHLIST_1 [0] = (0);

 [1] = (1); …;

 [N-2] = (N-2);

PATCHLIST_2 [0] = (0,1);

 [1] = (2,3); …;

 [(N/2)-1] = (N-2,N-

1)

PATCHLIST_3..32 similar to above

Stream Output Function

As previously mentioned, incoming 3D topologies are targeted at one of the four streams. The SOL

stage contains state information specific to each of the four streams.

A stream’s list of SO declarations (SO_DECL structures) is used to perform the SO function for objects

targeted to that particular stream. The 3DSTATE_SO_DECL_LIST command is used to specify the list of

SO_DECL structures for all four streams in parallel. Software is required to scan the SO_DECL lists of

streams to determine which SO buffers are targeted. The Stream To Buffer Selects bits in

3DSTATE_SO_DECL_LIST must be programmed accordingly (if the buffer is targeted, the select bit must

set, else it must be cleared).

If a stream has no SO_DECL state defined (NumEntries is 0), incoming objects targeting that stream are

effectively ignored. As there is no attempt to perform stream output, overflow detection is neither

required nor performed.

Otherwise, an overflow check is performed. First any attempt to output to a disabled buffer is detected.

This occurs when the stream has a Stream To Buffer Selects bit set but the corresponding SO Buffer

Enable is clear. Assuming all targeted buffers are enabled, an additional check is made to ensure that

there is enough room in each targeted buffer to hold the number of vertices which be output to it (for

the input object). Here the buffer’s current end address is compared to what the write offset would be if

the output was performed. The latter value is computed as (write_offset + vertex_count * buffer_pitch).

If this value is greater than the end address, an overflow is signalled. This check is performed for each

buffer included in Stream To Buffer Selects.

If an overflow is not signaled, the SO function is performed. The SO_DECL list for the targeted stream is

traversed independently for each object vertex, and the operation specified by the SO_DECL structure is

performed (typically causing data to be appended to an SO buffer). In the process, SO buffer Write

Offsets are incremented.

3D Media GPGPU

554 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Stream Output Buffers

Up to four SO buffers are supported. The SO buffer parameters (start/end address, etc.) are specified by

the 3DSTATE_SO_BUFFER command.

The 3DSTATE_STREAMOUT command specifies an SO Buffer Enable bit for each of the buffers. If a

buffer is disabled, its state is ignored and no output will be attempted for that buffer. Any attempt to

output to that buffer will immediately signal an overflow condition.

The SOL stage maintains a current Write Offset register value for each SO buffer. These registers can be

written via MI_LOAD_REGISTER_MEM or MI_LOAD_REGISTER_IMM commands. The SOL stage will

increment the Write Offsets as a part of the SO function. Software can cause a Write Offset register to

be written to memory via an MI_STORE_REGISTER_MEM command, though a preceding flush operation

may be required to ensure that any previous SO functions have completed.

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R32G32B32_FLOAT

R32G32B32_SINT

R32G32B32_UINT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

R32_SINT

R32_UINT

R32_FLOAT

Rendering Disable

Independent of SOL function enable, if rendering (i.e, 3D pipeline functions past the SOL stage) is

enabled (via clearing the Rendering Disable bit), the SOL stage will pass topologies for a specific input

stream (as selected by Render Stream Select) down the pipeline, with the exception of PATCHLIST_n

topologies which are never passed downstream. Software must ensure that the vertices exiting the SOL

stage include a vertex header and position value so that the topologies can be correctly processed by

subsequent pipeline stages. Specifically, rendering must be disabled whenever 128-bit vertices are

output from a GS thread.

If Rendering Disable is set, the SOL stage will prevent any topologies from exiting the SOL stage.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 555

Statistics

The SOL stage controls the incrementing of two 64-bit statistics counter registers for each of the four

output buffer slots, SO_NUM_PRIMS_WRITTEN[] and SO_PRIM_STORAGE_NEEDED[].

3D Pipeline Rasterization

This topic is currently under development.

Common Rasterization State

This section contains rasterization state pointers.

3DSTATE_VIEWPORT_STATE_POINTERS_CC

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_SCISSOR_STATE_POINTERS

3DSTATE_RASTER

3D Media GPGPU

556 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Pipeline – CLIP Stage Overview

The CLIP stage of the GEN 3D Pipeline is similar to the GS stage in that it can be used to perform

general processing on incoming 3D objects via spawned GEN4 threads. However, the CLIP stage also

includes specialized logic to perform a ClipTest function on incoming objects. These two usage models

of the CLIP stage are outlined below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general

description of a 3D Pipeline stage, as much of the CLIP stage operation and control falls under these

“common” functions. I.e., many of the CLIP stage state variables and CLIP thread payload parameters

are described in 3D Overview, and although they are listed here for completeness, that chapter provides

the detailed description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the ClipTest function, and

any exceptions the CLIP stage exhibits with respect to common FF unit functions.

Clip Stage – 3D Clipping

The ClipTest fixed function is provided to optimize the CLIP stage for support of generalized 3D

Clipping. The CLIP FF unit examines the position of incoming vertices, performs a fixed function

VertexClipTest on these positions, and then examines the results for the vertices of each independent

object in ClipDetermination.

The results of ClipDetermination indicate whether an object is to be clipped (MustClip), discarded

(TrivialReject) or passed down the pipeline unmodified (TrivialAccept). In the MustClip case, the fixed

function clipping hardware is responsible for performing the actual 3D Clipping algorithm. The

CLIP hardware is passed the source object vertex data and is able to output a new, arbitrary 3D

primitive (e.g., the clipped primitive), or no output at all. Note that the output primitive is comprised of

newly-generated vertex positions, barycentric attributes and shares vertices with the source primitive

for rest of the attributes.The CLIP unit maintains the proper ordering of CLIP-generated primitives and

any surrounding trivially-accepted primitives and processes all the primitives in order.

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage (now including

the read-back VUE Vertex Header data such as Vertex Position (NDC or screen space), RTAIndex,

VPIndex, PointWidth) and control information (PrimType, PrimStart, PrimEnd) while the remainder of the

vertex data remains in the VUE in the URB.

Fixed Function Clipper

For CHV, BSW, the GPU supports Fixed Function Clipping.

Note: In an earlier generation, clipping was done in the EU. However the clipper thread latency was

high and caused a bottleneck in the pipeline. Hence the motivation for a fixed function clipper.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 557

Concepts

This section provides an overview of 3D clip-testing and clipping concepts, as defined by the Direct3D*

and OpenGL* APIs. It is provided as background material. Some of the concepts impact HW

functionality while others impact CLIP kernel functionality.

* Other names and brands may be claimed as the property of others.

CLIP Stage Input

As a stage of the GEN 3D pipeline, the CLIP stage receives inputs from the previous (GS) stage. Refer to

3D Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this

subsection describes the inputs specific to the CLIP stage.

State

This section contains state clips for the Clip Stage. For each processor generation, the state used by the

clip stage is defined by the appropriate inline state packet, linked below.

3DSTATE_CLIP

3D_STATE_CLIP

The Clip unit will unconditionally reject incoming PATCHLIST topologies, if not already discarded by SOL. So there

is no need for SW to explicitly set the CLIP_mode to reject PATCHLIST topologies.

Clip Unit also receives 3DSTATE_RASTER. It also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT

provides 3DSTATE_VS, 3DSTATE_DS and 3DSTATE_GS fields.

Signal [CHV, BSW] Description Formula

CLIP_INT::Front_Winding Determines whether a triangle object is

considered “front facing” if the screen

space vertex positions, when traversed in

the order, result in a clockwise (CW) or

counter-clockwise (CCW) winding order.

Does not apply to points or lines.

= 3DSTATE_RASTER::FrontWinding

CLIP_INT::CullMode Controls removal (culling) of triangle

objects based on orientation. The cull

mode only applies to triangle objects and

does not apply to lines, points, or

rectangles.

= 3DSTATE_RASTER::CullMode

CLIP_INT::Viewport Z

ClipTest Enable

This field is used to control whether the

Viewport Z extents (near, far) are

considered in VertexClipTest.

= 3DSTATE_RASTER::Viewport Z

ClipTest Enable

CLIP_INT::User Clip Distance

Cull Test Enable Bitmask
This 8-bit mask field selects which of the

8 user clip distances against which trivial

reject/trivial accept determination needs

to be made (does not cause a must clip).

 = (3DSTATE_CLIP::ForceUser Clip

Distance Cull Test Enable

Bitmask == Force) ?

 3DSTATE_CLIP::User Clip

Distance Cull Test Enable

Bitmask :

3D Media GPGPU

558 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 DX10 allows simultaneous use of

ClipDistance and Cull Distance test of up

to 8 distances.

This mask must be mutually exclusive to

final CLIP_INT::User Clip Distance Clip

Test Enable Bitmask. Same mask bit can't

be set for both.

 3DSTATE_GS::GS_Enable ?

 3DSTATE_GS:: GS User Clip

Distance Cull Test Enable

Bitmask :

 3DSTATE_DS:DS_Enable ?

 3DSTATE_DS:: DS User Clip

Distance Cull Test Enable

Bitmask :

 3DSTATE_INT:VS_Enable ?

 3DSTATE_VS:: VS User Clip

Distance Cull Test Enable

Bitmask :

 0

CLIP_INT::User Clip Distance

Clip Test Enable Bitmask
This 8-bit mask field selects which of the

8 user clip distances against which trivial

reject/trivial accept determination needs

to be made (does not cause a must clip).

 DX10 allows simultaneous use of

ClipDistance and Clip Distance test of up

to 8 distances.

This mask must be mutually exclusive to

final CLIP_INT::User Clip Distance Cull

Test Enable Bitmask. Same mask bit can't

be set for both.

 = (3DSTATE_CLIP::ForceUser Clip

Distance Clip Test Enable

Bitmask == Force) ?

 3DSTATE_CLIP::User Clip

Distance Clip Test Enable

Bitmask :

 3DSTATE_GS:GS_Enable ?

 3DSTATE_GS::GS User Clip

Distance Clip Test Enable

Bitmask :

 3DSTATE_DS::DS_Enable ?

 3DSTATE_DS::DS User Clip

Distance Clip Test Enable

Bitmask :

 3DSTATE_VS::VS_Enable ?

 3DSTATE_VS::VS User Clip

Distance Clip Test Enable

Bitmask :

 0

VUE Readback

Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to the VUE handle.

For example, the CLIP unit’s VertexClipTest function needs the vertex position, as does the SF unit’s

functions. This information is obtained by the 3D pipeline reading a portion of each vertex’s VUE data

directly from the URB. This readback (effectively) occurs immediately before the CLIP VertexClipTest

function, and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous VUE Formats

subsection (above) for details on the content and format of the Vertex Header.) Additional Clip/Cull

data (located immediately past the Vertex Header) may be read prior to clipping.

This readback occurs automatically and is not under software control. The only software implication is

that the Vertex Header must be valid at the readback points, and therefore must have been previously

loaded or written by a thread.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 559

VertexClipTest Function

The VertexClipTest function compares each incoming vertex position (x,y,z,w) with various viewport and

guardband parameters (either hard-coded values or specified by state variables).

The RHW component of the incoming vertex position is tested for NaN value, and if a NaN is detected,

the vertex is marked as “BAD” by setting the outcode[BAD]. If a NaN is detected in any vertex

homogeneous x,y,z,w component or an enabled ClipDistance value, the vertex is marked as “BAD” by

setting the outcode[BAD].

In general, any object containing a BAD vertex will be discarded, as how to clip/render such objects is

undefined.

However, in the case of CLIP_ALL mode, a CLIP thread will be spawned even for objects with “BAD”

vertices. The CLIP kernel is required to handle this case, and can examine the Object Outcode [BAD]

payload bit to detect the condition. (Note that the VP and GB Object Outcodes are UNDEFINED when

BAD is set.)

If the incoming RHW coordinate is negative (including negative 0) the NEGW outcode is set. Also, this

condition is used to select the proper comparison functions for the VP and GB outcode tests (below).

Next, the VPXY and GB outcodes are computed, depending on the corresponding enable SV bits. If one

of VPXY or GB is disabled, the enabled set of outcodes are copied to the disabled set of outcodes. This

effectively defines the disabled boundaries to coincide with the enabled boundaries (i.e., disabling the

GB is just like setting it to the VPXY values, and vice versa).

The VPZ outcode is computed as required by the API mode SV.

Finally, the incoming UserClipFlags are masked and copied to corresponding outcodes.

The following algorithm is used by VertexClipTest:

 //

 // Vertex ClipTest

 //

 // On input:

 // if (CLIP.PreMapped)

 // x,y are viewport mapped

 // z is NDC ([0,1] is visible)

 // else

 // x,y,z are NDC (post-perspective divide)

 // w is always 1/w

 //

 // Initialize outCodes to “inside”

 //

 outCode[*] = 0

 //

 // Check if w is NaN

 // Any object containing one of these “bad” vertices will likely be discarded

 //

 if (ISNAN(homogeneous x,y,z,w or enabled ClipDistance value)

 {

 outCode[BAD] = 1

 }

 //

 // If 1/w is negative, w is negative and therefore outside of the w=0 plane

 //

3D Media GPGPU

560 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 //

 rhw_neg = ISNEG(rhw)

 if (rhw_neg)

 {

 outCode[NEGW] = 1

 }

 //

 // View Volume Clip Test

 // If Premapped, the 2D viewport is defined in screen space

 // otherwise the canonical NDC viewvolume applies ([-1,1])

 //

 if (CLIP_STATE.PreMapped)

 {

 vp_XMIN = CLIP_STATE.VP_XMIN

 vp_XMAX = CLIP_STATE.VP_XMAX

 vp_YMIN = CLIP_STATE.VP_YMIN

 vp_YMAX = CLIP_STATE.VP_YMAX

 } else {

 vp_XMIN = -1.0f

 vp_XMAX = +1.0f

 vp_YMIN = -1.0f

 vp_YMAX = +1.0f

 }

 if (CLIP_STATE.ViewportXYClipTestEnable) {

 outCode[VP_XMIN] = (x < vp_XMIN)

 outCode[VP_XMAX] = (x > vp_XMAX)

 outCode[VP_YMIN] = (y < vp_YMIN)

 outCode[VP_YMAX] = (y > vp_YMAX)

 #ifdef (BW-E0)

 if (rhw_neg) {

 outCode[VP_XMIN] = (x >= vp_XMIN)

 outCode[VP_XMAX] = (x <= vp_XMAX)

 outCode[VP_YMIN] = (y >= vp_XMIN)

 outCode[VP_YMAX] = (y <= vp_XMAX)

 }

 #endif

 if (rhw_neg) {

 outCode[VP_XMIN] = (x > vp_XMIN)

 outCode[VP_XMAX] = (x < vp_XMAX)

 outCode[VP_YMIN] = (y > vp_XMIN)

 outCode[VP_YMAX] = (y < vp_XMAX)

 }

 }

 if (CLIP_STATE.ViewportZClipTestEnable) {

 if (CLIP_STATE.APIMode == APIMODE_D3D) {

 vp_ZMIN = 0.0f

 vp_ZMAX = 1.0f

 } else { // OGL

 vp_ZMIN = -1.0f

 vp_ZMAX = 1.0f

 }

 outCode[VP_ZMIN] = (z < vp_ZMIN)

 outCode[VP_ZMAX] = (z > vp_ZMAX)

 #ifdef (BW-E0)

 if (rhw_neg) {

 outCode[VP_ZMIN] = (z >= vp_ZMIN)

 outCode[VP_ZMAX] = (z <= vp_ZMAX)

 }

 #endif

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 561

 if (rhw_neg) {

 outCode[VP_ZMIN] = (z > vp_ZMIN)

 outCode[VP_ZMAX] = (z < vp_ZMAX)

 }

 }

 //

 // Guardband Clip Test

 //

 if {CLIP_STATE.GuardbandClipTestEnable) {

 gb_XMIN = CLIP_STATE.Viewport[vpindex].GB_XMIN

 gb_XMAX = CLIP_STATE.Viewport[vpindex].GB_XMAX

 gb_YMIN = CLIP_STATE.Viewport[vpindex].GB_YMIN

 gb_YMAX = CLIP_STATE.Viewport[vpindex].GB_YMAX

 outCode[GB_XMIN] = (x < gb_XMIN)

 outCode[GB_XMAX] = (x > gb_XMAX)

 outCode[GB_YMIN] = (y < gb_YMIN)

 outCode[GB_YMAX] = (y > gb_YMAX)

 #ifdef (BW-E0)

 if (rhw_neg) {

 outCode[GB_XMIN] = (x >= gb_XMIN)

 outCode[GB_XMAX] = (x <= gb_XMAX)

 outCode[GB_YMIN] = (y >= gb_YMIN)

 outCode[GB_YMAX] = (y <= gb_YMAX)

 }

 #endif

 if (rhw_neg) {

 outCode[GB_XMIN] = (x > gb_XMIN)

 outCode[GB_XMAX] = (x < gb_XMAX)

 outCode[GB_YMIN] = (y > gb_YMIN)

 outCode[GB_YMAX] = (y < gb_YMAX)

 }

 }

 //

 // Handle case where either VP or GB disabled (but not both)

 // In this case, the disabled set take on the outcodes of the enabled set

 //

 if (CLIP_STATE.ViewportXYClipTestEnable && !CLIP_STATE.GuardbandClipTestEnable) {

 outCode[GB_XMIN] = outCode[VP_XMIN]

 outCode[GB_XMAX] = outCode[VP_XMAX]

 outCode[GB_YMIN] = outCode[VP_YMIN]

 outCode[GB_YMAX] = outCode[VP_YMAX]

 } else if (!CLIP_STATE.ViewportXYClipTestEnable && CLIP_STATE.GuardbandClipTestEnable) {

 outCode[VP_XMIN] = outCode[GB_XMIN]

 outCode[VP_XMAX] = outCode[GB_XMAX]

 outCode[VP_YMIN] = outCode[GB_YMIN]

 outCode[VP_YMAX] = outCode[GB_YMAX]

 }

 //

 // X/Y/Z NaN Handling

 //

 xyorgben = (CLIP_STATE.ViewportXYClipTestEnable || CLIP_STATE.GuardbandClipTestEnable)

 if (isNAN(x)) {

 outCode[GB_XMIN] = xyorgben

 outCode[GB_XMAX] = xyorgben

 outCode[VP_XMIN] = xyorgben

 outCode[VP_XMAX] = xyorgben

 }

 if (isNAN(y)) {

 outCode[GB_YMIN] = xyorgben

 outCode[GB_YMAX] = xyorgben

 outCode[VP_YMIN] = xyorgben

 outCode[VP_YMAX] = xyorgben

3D Media GPGPU

562 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 }

 if (isNaN) {

 outCode[VP_ZMIN] = CLIP_STATE.ViewportZClipTestEnable

 outCode[VP_ZMAX] = CLIP_STATE.ViewportZClipTestEnable

 }

 //

 // UserClipFlags

 //

 ExamineUCFs

 for (i=0; i<7; i++)

 {

 outCode[UC0+i] = userClipFlag[i] & CLIP_STATE.UserClipFlagsClipTestEnableBitmask[i]

 }

 outCode[UC7] = userClipFlag[i] & CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]

Object Staging

The CLIP unit’s Object Staging Buffer (OSB) accepts streams of input vertex information packets, along

with each vertex’s VertexClipTest result (outCode). This information is buffered until a complete object

or the last vertex of the primitive topology is received. The OSB then performs the ClipDetermination

function on the object vertices, and takes the actions required by the results of that function.

Partial Object Removal

The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that it may receive

from the preceding stage (GS). Partial object removal is not supported for other primitive types due to

either (a) the GS is not permitted to output those primitive types (e.g., primitives with adjacency info),

and the VF unit will have removed the partial objects as part of 3DPRIMITIVE processing, or (b) although

the GS thread is allowed to output the primitive type (e.g., LINELIST), it is assumed that the GS kernel

will be correctly implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED).

An object is considered ‘partial’ if the last vertex of the primitive topology is encountered (i.e., PrimEnd

is set) before a complete set of vertices for that object have been received. Given that only LINESTRIP

and TRISTRIP primitive types are subject to CLIP unit partial object removal, the only supported cases of

partial objects are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

ClipDetermination Function

In ClipDetermination, the vertex outcodes of the primitive are combined in order to determine the clip

status of the object (TR: trivially reject; TA: trivial accept; MC: must clip; BAD: invalid coordinate). Only

those vertices included in the object are examined (3 vertices for a triangle, 2 for a line, and 1 for a

point). The outcode bit arrays for the vertices are separately ANDed (intersection) and ORed (union)

together (across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is computed as the

logical OR of the appropriate objANDCode bits, as the vertices need only be outside of one common

boundary to be trivially rejected. The TA status is computed as the logical NOR of the appropriate

objORCode bits, as any vertex being outside of any of the boundaries prevents the object from being

trivially accepted.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 563

If any vertex contains a BAD coordinate, the object is considered BAD and any computed TR/TA results

will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status of the object. If

the object is TR against any viewport or enabled UC plane, the object is considered TR. Note that, by

definition, being TR against a VPXY boundary implies that the vertices will be TR agains the

corresponding GB boundary, so computing TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable state. If

DISABLED, an object that is not TR against the UCFs is considered TA against them. Put another way,

objects will only be culled (not clipped) with respect to the UCFs. If ENABLED, the UCF outcodes are

treated like the other outcodes, in that they are used to determine TR, TA or MC status, and an object

can be passed to a CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

The following logic is used to compute the final TR, TA, and MC status.

 //

 // ClipDetermination

 //

 // Compute objANDCode and objORCode

 //

 switch (object type) {

 case POINT:

 {

 objANDCode[...] = v0.outCode[...]

 objORCode[...] = v0.outCode[...]

 } break

 case LINE:

 {

 objANDCode[...] = v0.outCode[...] & v1.outCode[...]

 objORCode[...] = v0.outCode[...] | v1.outCode[...]

 } break

 case TRIANGLE:

 {

 objANDCode[...] = v0.outCode[...] & v1.outCode[...] & v2.outCode[...]

 objORCode[...] = v0.outCode[...] | v1.outCode[...] | v2.outCode[...]

 } break

 }

 //

 // Determine TR/TA against interesting boundary subsets

 //

 TR_VPXY = (objANDCode[VP_L] | objANDCode[VP_R] | objANDCode[VP_T] | objANDCode[VP_B])

 TR_GB = (objANDCode[GB_L] | objANDCode[GB_R] | objANDCode[GB_T] | objANDCode[GB_B])

 TA_GB = !(objORCode[GB_L] | objORCode[GB_R] | objORCode[GB_T] | objORCode[GB_B])

 TA_VPZ = !(objORCode[VP_N] | objORCode[VP_Z])

 TR_VPZ = (objANDCode[VP_N] | objANDCode[VP_Z])

 TA_UC = !(objORCode[UC0] | objORCode[UC1] | ... | objORCode[UC7])

 TR_UC = (objANDCode[UC0] | objANDCode[UC1] | ... | objANDCode[UC7])

 BAD = objORCode[BAD]

 TA_NEGW = !objORCode[NEGW]

 TR_NEGW = objANDCode[NEGW]

 //

 // Trivial Reject

 //

 // An object is considered TR if all vertices are TR against any common boundary

 // Note that this allows the case of the VPXY being outside the GB

3D Media GPGPU

564 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 //

 TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC || TR_NEGW

 #else

 TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC

 //

 // Trivial Accept

 //

 // For an object to be TA, it must be TA against the VPZ and GB, not TR,

 // and considered TA against and NEGW

 // If the UCMC mode is disabled, an object is considered TA against the UC

 // as long as it isn’t TR against the UC.

 // If the UCMC mode is enabled, then the object really has to be TA against the UC

 // to be considered TA

 // In this way, enabling the UCMC mode will force clipping if the object is neither

 // TA or TR against the UC

 //

 TA = !TR && TA_GB && TA_VPZ && TA_NEGW

 UCMC = CLIP_STATE.UserClipFlagsMustClipEnable

 TA = TA && ((UCMC && TA_UC) || (!UCMC && !TR_UC))

 //

 // MustClip

 // This is simply defined as not TA or TR

 // Note that exactly one of TA, TR and MC will be set

 //

 MC = !(TA || TR)

ClipMode State

The ClipMode state determines what action the CLIP unit takes given the results of ClipDetermination.

The possible actions are:

 PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not spawned.

 DISCARD: Remove the object from the pipeline and dereference object vertices as required (that

is, dereferencing will not occur if the vertices are shared with other objects).

 SPAWN: Pass the object to a CLIP thread. In the process of initiating the thread, the object

vertices may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or DISCARD or

SPAWN).

 //

 // Use the ClipMode to determine the action to take

 //

 switch (CLIP_STATE.ClipMode) {

 case NORMAL:

 {

 PASSTHRU = TA && !BAD

 DISCARD = TR || BAD

 SPAWN = MC && !BAD

 }

 case CLIP_ALL:

 {

 PASSTHRU = 0

 DISCARD = 0

 SPAWN = 1

 }

 case CLIP_NOT_REJECT:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 565

 {

 PASSTHRU = 0

 DISCARD = TR || BAD

 SPAWN = !(TR || BAD)

 }

 case REJECT_ALL:

 {

 PASSTHRU = 0

 DISCARD = 1

 SPAWN = 0

 }

 case ACCEPT_ALL:

 {

 PASSTHRU = !BAD

 DISCARD = BAD

 SPAWN = 0

 }

 } endswitch

NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and passed to a CLIP

thread if MC. Those mode is typically used when the CLIP kernel is only used to perform 3D Clipping

(the expected usage model).

CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP threads. Note that this

includes BAD objects. This mode can be used to perform arbritrary processing in the CLIP thread, or as

a backup if for some reason the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are not

sufficient for controlling 3D Clipping.

CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all other (TA, MC)

objects are passed to CLIP threads. Usage of this mode assumes that the CLIP unit fixed functions

(VertexClipTest, ClipDetermination) are sufficient at least in respect to determining trivial reject.

REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This mode effectively clips

out all objects.

ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This mode partially

disables the CLIP stage. BAD objects will still be discarded, and incomplete primitives (generated by a

GS thread) will be discarded.

Primitive topologies with adjacency are also handled, in that the adjacent-only vertices are dereferenced

and only non-adjacent objects are passed down the pipeline. This condition can arise when primitive

3D Media GPGPU

566 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

topologies with adjacency are generated but the GS stage is disabled. If this condition is allowed, the

CLIP stage must not be completely disabled – as this would allow adjacent vertices to pass through the

CLIP stage and lead to unpredictable results as the rest of the pipeline does not comprehend adjacency.

Object Pass-Through

Depending on ClipMode, objects may be passed directly down the pipeline. The PrimTopologyType

associated with the output objects may differ from the input PrimTopologyType, as shown in the table

below.

Programming Note: The CLIP unit does not tolerate primitives with adjacency that have “dangling

vertices”. This should not be an issue under normal conditions, as the VF unit does not generate these

sorts of primitives and the GS thread is restricted (though by specification only) to not output these

sorts of primitives.

Input

 PrimTopologyType

Pass-Through

Output

 PrimTopologyType Notes

POINTLIST POINTLIST

POINTLIST_BF POINTLIST_BF

LINELIST LINELIST

LINELIST_ADJ LINELIST Adjacent vertices removed.

LINESTRIP LINESTRIP

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT

LINESTRIP
Adjacent vertices removed.

LINESTRIP_ADJ_CONT is added. LINESTRIP_ADJ_CONT is

generated by the Vertex Fetch unit on a restore of a mid-draw

pre-empted 3DPRIMITIVE.

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT LINESTRIP_CONT

LINESTRIP_CONT_BF LINESTRIP_CONT_BF

LINELOOP N/A Not supported after GS.

TRILIST TRILIST

RECTLIST RECTLIST

TRILIST_ADJ TRILIST Adjacent vertices removed.

TRISTRIP TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects

See Tristrip Clipping subsection.

TRISTRIP_REV TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects.

See Tristrip Clipping subsection.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 567

Input

 PrimTopologyType

Pass-Through

Output

 PrimTopologyType Notes

TRISTRIP_ADJ TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects.

Adjacent vertices removed.

See Tristrip Clipping subsection.

TRIFAN TRIFAN

TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE

POLYGON,

POLYGON_CONT

POLYGON POLYGON_CONT is added. POLYGON_CONT is generated by

the Vertex Fetch unit on a restore of a mid-draw pre-empted

3DPRIMITIVE.

QUADLIST N/A Not supported after GS.

QUADSTRIP N/A Not supported after GS.

Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the CLIP thread)

The CLIP unit will output primitives (either passed-through or generated by a CLIP thread) in the proper

order. This includes the buffering of a concurrent CLIP thread’s output until the preceding CLIP thread

terminates. Note that the requirement to buffer subsequent CLIP thread output until the preceding CLIP

thread terminates has ramifications on determining the number of VUEs allocated to the CLIP unit and

the number of concurrent CLIP threads allowed.

Other Functionality

Introduction for this section under development.

3D Media GPGPU

568 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Statistics Gathering

The CLIP unit includes logic to assist in the gathering of certain pipeline statistics . The statistics take the

form of MI counter registers (see Memory Interface Registers), where the CLIP unit provides signals

causing those counters to increment.

Software is responsible for controlling (enabling) these counters in order to provide the required

statistics at the DDI level. For example, software might need to disable statistics gathering before

submitting non-API-visible objects (e.g., RECTLISTs) for processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of PIPELINED_STATE_POINTERS) for it to affect

the statistics counters. This might lead to a pathological case where the CLIP unit needs to be ENABLED

simply to provide statistics gathering. If no clipping functionality is desired, Clip Mode can be set to

ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage ENABLED.

The statistic the CLIP unit affects (if enabled) is CL_INVOCATION_COUNT, incremented for every object

received from the GS stage.

CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the CL_INVOCATION_COUNT

register for every complete object received from the GS stage.

To maintain a count of application-generated objects, software must clear the CLIP unit’s Statistic

Enable whenever driver-generated objects are rendered.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 569

3D Pipeline - Strips and Fans (SF) Stage

The Strips and Fan (SF) stage of the 3D pipeline is responsible for performing “setup” operations

required to rasterize 3D objects.

This functionality is handled completely in hardware, and the SF unit no longer has the ability to spawn

threads.

Inputs from CLIP

The following table describes the per-vertex inputs passed to the SF unit from the previous (CLIP) stage

of the pipeline.

SF’s Vertex Pipeline Inputs

Variable Type Description

primType enum
Type of primitive topology the vertex belongs to. Primitive Assembly for a list

of primitive types supported by the SF unit. See 3D Pipeline for descriptions of

these topologies.

Notes:

The CLIP unit will convert any primitive with adjacency (3DPRIMxxx_ADJ) it

receives from the pipeline into the corresponding primitive without adjacency

(3DPRIMxxx).

QUADLIST, QUADSTRIP, LINELOOP primitives are not supported by the SF unit.

Software must use a GS thread to convert these to some other (supported)

primitive type.

[CHV, BSW] If an object is clipped by the hardware clipper, the CLunit would

force this field to “3DPRIM_POLYGON”. SFunit would process this incoming

object just as it would any other “3DPRIM_POLYGON”. SFunit selects vertex 0

as the provoking vertex.

primStart,primEnd boolean Indicate vertex’s position within the primitive topology

vInX[] float Vertex X position (screen space or NDC space)

vInY[] float Vertex Y position (screen space or NDC space)

vInZ[] float Vertex Z position (screen space or NDC space)

vInInvW[] float Reciprocal of Vertex homogeneous (clip space) W

hVUE[] URB

address

Points to the vertex’s data stored in the URB (one VUE handle per vertex)

renderTargetArrayIndex uint
Index of the render target (array element or 3D slice), clamped to 0 by the GS

unit if the max value was exceeded.

If this vertex is the leading vertex of an object within the primitive topology,

this value will be associated with that object in subsequent processing.

3D Media GPGPU

570 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Variable Type Description

viewPortIndex uint
Index of a viewport transform matrix within the SF_VIEWPORT structure used

to perform Viewport Transformation on object vertices and scissor operations

on an object.

If this vertex is the leading vertex of an object within the primitive topology,

this value will be associated with that object in the Viewport Transform and

Scissor subfunctions, otherwise the value is ignored. Note that for primitive

topologies with vertices shared between objects, this means a shared vertex

may be subject to multiple Viewport Transformation operations if the

viewPortIndex varies within the topology.

pointSize uint If this vertex is within a POINTLIST[_BF] primitive topology, this value specifies

the screen space size (width,height) of the square point to be rasterized about

the vertex position. Otherwise the value is ignored.

Attribute Setup/Interpolation Process

The following sections describe the Attribute Setup/Interpolation Process.

Attribute Setup/Interpolation Process

Hardware computes all needed parameters, as there is no setup thread.

Outputs to WM

The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific

information required for the rasterization of objects. The types of information is summarized below, but

as the interface is not exposed to software a detailed discussion is not relevant to this specification.

 PrimType of the object

 VPIndex, RTAIndex associated with the object

 Coefficients for Z, 1/W, perspective and non-perspective b1 and b2 per vertex, and attribute

vertex deltas a0, a1, and a2 per attribute.

 Information regarding the X,Y extent of the object (e.g., bounding box, etc.).

 Edge or line interpolation information (e.g., edge equation coefficients, etc.).

 Information on where the WM is to start rasterization of the object.

 Object orientation (front/back-facing).

 Last Pixel indication (for line drawing).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 571

Primitive Assembly

The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive vertex information is

buffered and, when a sufficient number of vertices are received, converted into basic 3D objects which

are then passed to the Viewport Transformation subfunction.

The number of vertices passed with each primitive is constrained by the primitive type. Primitive

Assembly. Passing any other number of vertices results in UNDEFINED behavior. Note that this

restriction only applies to primitive output by GS threads (which is under control of the GS kernel). See

the Vertex Fetch chapter for details on how the VF unit automatically removes incomplete objects

resulting from processing a 3DPRIMITIVE command.

SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction

3DPRIM_TRILIST nonzero multiple of 3

3DPRIM_TRISTRIP

 3DPRIM_TRISTRIP_REVERSE

>=3

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

>=3

3DPRIM_LINELIST nonzero multiple of 2

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

>=2

3DPRIM_RECTLIST nonzero multiple of 3

3DPRIM_POINTLIST

 3DPRIM_POINTLIST_BF

nonzero

3D Media GPGPU

572 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Primitive Assembly for a list of the 3D object types.

3D Object Types

objectType generated by primType Vertices/Object

3DOBJ_POINT 3DPRIM_POINTLIST

 3DPRIM_POINTLIST_BF

1

3DOBJ_LINE
3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

2

3DOBJ_TRIANGLE
3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

3

3DOBJ_RECTANGLE 3DPRIM_RECTLIST 3 (expanded to 4 in RectangleCompletion)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 573

Primitive Assembly for the outputs of Primitive Decomposition.

Primitive Decomposition Outputs

Variable Type Description

objectType enum Type of object. Primitive Assembly

nV uint The number of object vertices passed to Object Setup. Primitive Assembly

v[0..nV-1]* various Data arrays associated with object vertices. Data in the array consists of X, Y, Z, invW

and a pointer to the other vertex attributes. These additional attributes are not used

by directly by the 3D fixed functions but are made available to the SF thread. The

number of valid vertices depends on the object type. Primitive Assembly

invertOrientation enum Indicates whether the orientation (CW or CCW winding order) of the vertices of a

triangle object should be inverted. Ignored for non-triangle objects.

backFacing enum Valid only for points and line objects, indicates a back facing object. This is used later

for culling.

provokingVtx uint Specifies the index (into the v[] arrays) of the vertex considered the “provoking”

vertex (for flat shading). The selection of the provoking vertex is programmable via

SF_STATE (xxx Provoking Vertex Select state variables.)

polyStippleEnable boolean TRUE if Polygon Stippling is enabled. FALSE for TRIFAN_NOSTIPPLE. Ignored for non-

triangle objects.

continueStipple boolean Only applies to line objects. TRUE if Line Stippling should be continued (i.e., not

reset) from where the previous line left off. If FALSE, Line Stippling is reset for each

line object.

renderTargetIndex uint Index of the render target (array element or 3D slice), clamped to 0 by the GS unit if

the max value was exceeded. This value is simply passed in SF thread payloads and

not used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used to

perform Viewport Transformation on object vertices and scissor operations on an

object.

pointSize unit For point objects, this value specifies the screen space size (width,height) of the

square point to be rasterized about the vertex position. Otherwise the value is

ignored.

3D Media GPGPU

574 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following table defines, for each primitive topology type, which vertex’s VPIndex/RTAIndex applies

to the objects within the topology.

 VPIndex/RTAIndex Selection

PrimTopologyType Viewport Index Usage

POINTLIST

POINTLIST_BF

Each vertex supplies the VPIndex for the corresponding point object

LINELIST
The leading vertex of each line supplies the VPIndex for the corresponding line object.

V0.VPIndex→ Line(V0,V1)

V2.VPIndex→ Line(V2,V3)

...

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT_BF

The leading vertex of each line segment supplies the VPIndex for the corresponding line

object.

V0.VPIndex→ Line(V0,V1)

V1.VPIndex→ Line(V1,V2)

...

NOTE: If the VPIndex changes within the topology, shared vertices will be processed

(mapped) multiple times.

TRILIST

 RECTLIST

The leading vertex of each triangle/rect supplies the VPIndex for the corresponding

triangle/rect objects.

V0.VPIndex→ Tri(V0,V1,V2)

V3.VPIndex→ Tri(V3,V4,V5)

...

TRISTRIP

 TRISTRIP_REVERSE

The leading vertex of each triangle supplies the VPIndex for the corresponding triangle

object.

V0.VPIndex→ Tri(V0,V1,V2)

V1.VPIndex→ Tri(V1,V2,V3)

...

NOTE: If the VPIndex changes within the primitive, shared vertices will be processed

(mapped) multiple times.

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

The first vertex (V0) supplies the VPIndex for all triangle objects.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 575

Point List Decomposition

The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a list of independent

points.

3DPRIM_POINTLIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects that are then

passed individually and in order to the Object Setup subfunction. The provokingVertex of each object is,

by definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state whether they are

back-facing or front-facing points. Primitives of type 3DPRIM_POINTLIST_BACKFACING are

decomposed exactly the same way as 3DPRIM_POINTLIST primitives, but the backFacing variable is set

for resulting point objects being passed on to object setup.

 PointListDecomposition()

 {

 objectType = 3DOBJ_POINT

 nV = 1

 provokingVtx = 0

 if (primType == 3DPRIM_POINTLIST)

 {

 backFacing = FALSE

 }

 else // primType == 3DPRIM_POINTLIST_BACKFACING

 {

 backFacing = TRUE

 }

 for each (vertex in [0..vertexCount-1])

 {

 v[0] ← vIn[i] // copy all arrays

 // (for example, v[]X, v[]Y, and so on)

 ObjectSetup()

 }

 }

3D Media GPGPU

576 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Line List Decomposition

The 3DPRIM_LINELIST primitive specifies a list of independent lines.

3DPRIM_LINELIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects that are then

passed individually and in order to the Object Setup stage. The lines are generated with the following

object vertex order: v0, v1; v2, v3; and so on. The provokingVertex of each object is taken from the Line

List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

 LineListDecomposition()

 {

 objectType = 3DOBJ_LINE

 nV = 2

 provokingVtx = Line List/Strip Provoking Vertex Select continueStipple = FALSE

 for each (vertex I in [0..vertexCount-2] by 2)

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 ObjectSetup()

 }

 }

Line Strip Decomposition

The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and

3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 577

3DPRIM_LINESTRIP_xxx Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects that are then

passed individually and in order to the Object Setup stage. The lines are generated with the following

object vertex order: v0,v1; v1,v2; and so on. The provokingVertex of each object is taken from the Line

List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state whether they are

back-facing or front-facing lines. Primitives of type 3DPRIM_LINESTRIP[_CONT]_BF are decomposed

exactly the same way as 3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the

resulting line objects being passed on to object setup. Likewise 3DPRIM_LINESTRIP_CONT[_BF]

primitives are decomposed identically to basic line strips, but the continueStipple variable is set to true

so that the line stipple pattern will pick up from where it left off with the last line primitive, rather than

being reset.

 LineStripDecomposition()

 {

 objectType = 3DOBJ_LINE

 nV = 2

 provokingVtx = Line List/Strip Provoking Vertex Select

 if (primType == 3DPRIM_LINESTRIP)

 {

 backFacing = FALSE

 continueStipple = FALSE

 } else if (primType == 3DPRIM_LINESTRIP_BF)

 {

 backFacing = TRUE

 continueStipple = FALSE

 } else if (primType == 3DPRIM_LINESTRIP_CONT)

 {

 backFacing = FALSE

 continueStipple = TRUE

 } else if (primType == 3DPRIM_LINESTRIP_CONT_BF)

 {

 backFacing = TRUE

3D Media GPGPU

578 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 continueStipple = TRUE

 }

 for each (vertex I in [0..vertexCount-1])

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 ObjectSetup()

 continueStipple = TRUE

 }

 }

Triangle List Decomposition

The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

3DPRIM_TRILIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v3,v4,v5; and so on. The provokingVertex of each object is taken

from the Triangle List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

 TriangleListDecomposition() {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

 invertOrientation = FALSE

 provokingVtx = Triangle List/Strip Provoking Vertex Select

 polyStippleEnable = TRUE

 for each (vertex I in [0..vertexCount-3] by 3)

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 v[2] arrays ← vIn[i+2] arrays

 ObjectSetup()

 }

 }

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 579

Triangle Strip Decomposition

The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of triangles arranged

in a strip, as illustrated below.

3DPRIM_TRISTRIP[_REVERSE] Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE objects that are

then passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v1,v2,v3; v2,v3,v4; and so on. Note that the winding order of the

vertices alternates between CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of

each object is taken from the Triangle List/Strip Provoking Vertex Select state variable, as

programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-facing and back-

facing triangles (Triangle Orientation (Face) Culling below). Therefore, the 3D pipeline must account for

the alternation of winding order in strip triangles. The invertOrientation variable is generated and used

for this purpose.

To accommodate the situation where the driver is forced to break an input strip primitive into multiple

tristrip primitive commands (for example, due to ring or batch buffer size restrictions), two tristrip

primitive types are supported. 3DPRIM_TRISTRIP is used for the initial section of a strip, and wherever a

continuation of a strip starts with a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is

used for a continuation of a strip that starts with a triangle with a CCW winding order.

3D Media GPGPU

580 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 TriangleStripDecomposition()

 {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

 provokingVtx = Triangle List/Strip Provoking Vertex Select

 if (primType == 3DPRIM_TRISTRIP)

 invertOrientation = FALSE

 else // primType == 3DPRIM_TRISTRIP_REVERSE

 invertOrientation = TRUE

 polyStippleEnable = TRUE

 for each (vertex I in [0..vertexCount-3])

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 v[2] arrays ← vIn[i+2] arrays

 ObjectSetup()

 invertOrientation = ! invertOrientation

 }

 }

Triangle Fan Decomposition

The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of triangles arranged

in a fan, as illustrated below.

3DPRIM_TRIFAN Primitive

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 581

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v0,v2,v3; v0,v3,v4; and so on. As there is no alternation in the

vertex winding order, the invertOrientation variable is output as FALSE unconditionally. The

provokingVertex of each object is taken from the Triangle Fan Provoking Vertex state variable, as

programmed via SF_STATE.

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same way, except the

polyStippleEnable variable is FALSE for the resulting objects being passed on to object setup. This will

inhibit polygon stipple for these triangle objects.

 TriangleFanDecomposition()

 {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

 invertOrientation = FALSE

 provokingVtx = Triangle Fan Provoking Vertex Select

 if (primType == 3DPRIM_TRIFAN)

 polyStippleEnable = TRUE

 else // primType == 3DPRIM_TRIFAN_NOSTIPPLE

 polyStippleEnable = FALSE

 v[0] arrays ← vIn[0] arrays

 // the 1st vertex is common

 for each (vertex I in [1..vertexCount-2])

 {

 v[1] arrays ← vIn[i] arrays

 v[2] arrays ← vIn[i+1] arrays

 ObjectSetup()

 }

 }

Polygon Decomposition

The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the exception that

the provokingVtx is overridden with 0. This support has been added specifically for OpenGL support,

avoiding the need for the driver to change the provoking vertex selection when switching between

trifan and polygon primitives.

Rectangle List Decomposition

The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned rectangles. Only

the lower right, lower left, and upper left vertices (in that order) are included in the command – the

upper right vertex is derived from the other vertices (in Object Setup).

3D Media GPGPU

582 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3DPRIM_RECTLIST Primitive

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the 3DPRIM_TRILIST

decomposition, with the exception of the objectType variable.

 RectangleListDecomposition()

 {

 objectType = 3DOBJ_RECTANGLE

 nV = 3

 invertOrientation = FALSE

 provokingVtx = 0

 for each (vertex I in [0..vertexCount-3] by 3)

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 v[2] arrays ← vIn[i+2] arrays

 ObjectSetup()

 }

 }

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 583

Object Setup

The Object Setup subfunction of the SF stage takes the post-viewport-transform data associated with

each vertex of a basic object and computes various parameters required for scan conversion. This

includes generation of implied vertices, translations and adjustments on vertex positions, and culling

(removal) of certain classes of objects. The final object information is passed to the Windower/Masker

(WM) stage where the object is rasterized into pixels.

Invalid Position Culling (Pre/Post-Transform)

At input the the SF stage, any objects containing a floating-point NaN value for Position X, Y, Z, or RHW

will be unconditionally discarded. Note that this occurs on an object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN value for post-

transform Position X, Y or Z will be unconditionally discarded.

Viewport Transformation

If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport transformation is applied to

each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the Viewport Matrix

Element data from the corresponding element of the SF_VIEWPORT structure in memory. For each

object vertex, the following scale and translate transformation is applied to the position coordinates:

x’ = m00 * x + m30

y’ = m11 * y + m31

z’ = m22 * z + m32

Software is responsible for computing the matrix elements from the viewport information provided to it

from the API.

Destination Origin Bias

The positioning of the pixel sampling grid is programmable and is controlled by the Destination Origin

Horizontal/Vertical Bias state variables (set via SF_STATE). If these bias values are both 0, pixels are

sampled on an integer grid. Pixel (0,0) will be considered inside the object if the sample point at XY

coordinate (0,0) falls within the primitive.

If the bias values are both 0.5, pixels are sampled on a “half” integer grid (i.e., X.5, Y.5). Pixel (0,0) will be

considered inside the object if the sample point at XY coordinate (0.5,0.5) falls within the primitive. This

positioning of the sample grid corresponds with the OpenGL rasterization rules, where “fragment

centers” lay on a half-integer grid. It also corresponds with the Intel740 rasterizer (though that device

did not employ “top left” rules).

Note that subsequent descriptions of rasterization rules for the various objects will be with reference to

the pixel sampling grid.

3D Media GPGPU

584 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Destination Origin Bias

Point Rasterization Rule Adjustment

POINT objects are rasterized as square RECTANGLEs, with one exception: The Point Rasterization Rule

state variable (in SF_STATE) controls the rendering of point object edges that fall directly on pixel

sample points, as the treatment of these edge pixels varies between APIs.

RASTRULE_UPPER_LEFT

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 585

Drawing Rectangle Offset Application

The Drawing Rectangle Offset subfunction offsets the object’s vertex X,Y positions by the pixel-exact,

unclipped drawing rectangle origin (as programmed via the Drawing Rectangle Origin X,Y values in

the 3DSTATE_DRAWING_RECTANGLE command). The Drawing Rectangle Offset subfunction (at least

with respect to Color Buffer access) is unconditional, and therefore to (effectively) turn off the offset

function the origin would need to be set to (0,0). A non-zero offset is typically specified when window-

relative or viewport-relative screen coordinates are input to the device. Here the drawing rectangle

origin would be loaded with the absolute screen coordinates of the window’s or viewport’s upper-left

corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the pipeline. Note

that this clipping is based on the “clipped” draw rectangle (as programmed via the Clipped Drawing

Rectangle values in the 3DSTATE_DRAWING_RECTANGLE command), which must be clamped by

software to the rendertarget boundaries. The unclipped drawing rectangle origin, however, can extend

outside the screen limits in order to support windows whose origins are moved off-screen. This is

illustrated in the following diagrams.

3D Media GPGPU

586 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Onscreen Draw Rectangle

Partially-offscreen Draw Rectangle

3DSTATE_DRAWING_RECTANGLE

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 587

Point Width Application

This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object is converted from

a single vertex to four vertices located at the corners of a square centered at the point’s X,Y position.

The width and height of the square are specified by a point width parameter. The Point Width

Source value in SF_STATE determines the source of the point width parameter: the point width is either

taken from the Point Width value programmed in SF_STATE or the PointWidth specified with the vertex

(as read back from the vertex VUE earlier in the pipeline).

The corner vertices are computed by adding and subtracting one half of the point width. Point Width

Application.

Point Width Application

Z and W vertex attributes are copied from the single point center vertex to each of the four corner

vertices.

Rectangle Completion

This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y coordinates of the 4th

(upper right) vertex of the rectangle object is computed from the first 3 vertices as shown in the

following diagram. The other vertex attributes assigned to the implied vertex (v[3]) are UNDEFINED as

they are not used. The Object Setup subfunction will use the values at only the first 3 vertices to

compute attribute interpolants used across the entire rectangle.

3D Media GPGPU

588 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Rectangle Completion

Vertex XY Clamping and Quantization

At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel) coordinates. These

positions are quantized to subpixel precision by rounding the incoming values to the nearest subpixel

(using round-to-nearest-or-even rules matching the DirectX reference device). The device supports

rasterization with either 4 or 8 fractional (subpixel) position bits, as specified by the Vertex SubPixel

Precision Select bit of SF_STATE.

The vertex X and Y screenspace coordinates are also clamped to the fixed-point “guardband” range

supported by the rasterization hardware, as listed in the following table:

Per-Device Guardband Extents

Supported X,Y ScreenSpace “Guardband” Extent

 Maximum Post-Clamp Delta

 (X or Y)

[-32K,32K-1] N/A

Note that this clamping occurs after the Drawing Rectangle Origin has been applied and objects have

been expanded (i.e., points have been expanded to squares, etc.). In almost all circumstances, if an

object’s vertices are actually modified by this clamping (i.e., had X or Y coordinates outside of the

guardband extent the rendered object will not match the intended result. Therefore software should

take steps to ensure that this does not happen – e.g., by clipping objects such that they do not exceed

these limits after the Drawing Rectangle is applied.

In addition, in order to be correctly rendered, objects must have a screenspace bounding box not

exceeding 8K in the X or Y direction. This additional restriction must also be comprehended by

software, i.e., enforced by use of clipping.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 589

Degenerate Object Culling

At this stage of the pipeline, “degenerate” objects are discarded. This operation is automatic and cannot

be disabled. (The object rasterization rules would by definition cause these objects to be “invisible” –

this culling operation is mentioned here to reinforce that the device implementation optimizes these

degeneracies as early as possible).

Degenerate Object Culling for definitions of degenerate objects.

Degenerate Objects

objType Degenerate Object Definition

3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius quantized to zero)

3DOBJ_LINE The endpoints are coincident

3DOBJ_TRIANGLE All three vertices are collinear or any two vertices are coincident and SOLID fill mode applies

to the triangle

3DOBJ_RECTANGLE Two or more corner vertices are coincident

Triangle Orientation (Face) Culling

At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded based on the “face

orientation” of the object. This culling operation does not apply to the other object types.

This operation is typically called “back face culling”, though front facing objects (or all 3DOBJ_TRIANGLE

objects) can be selected to be discarded as well. Face culling is typically used to eliminate triangles

facing away from the viewer, thus reducing rendering time.

The “winding order” of a triangle is defined by the the triangle vertex’s 2D (X,Y) screen space position

when traversed from v0 to v1 to v2. That traversal proceeds in either a clockwise (CW) or counter-

clockwise (CCW) direction. The “winding order” of a triangle is defined by the the triangle vertex’s 2D

(X,Y) screen space position when traversed from v0 to v1 to v2. That traversal will proceed in either a

clockwise (CW) or counter-clockwise (CCW) direction. A degenerate triangle is considered “backfacing”,

regardless of the FrontWinding state.

Triangle Winding Order

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles are considered as

having a “front-facing” orientation (at which point non-front-facing triangles are considered “back-

3D Media GPGPU

590 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

facing”). The internal variable invertOrientation associated with the triangle object is then used to

determine whether the orientation of a that triangle should be inverted. Recall that this variable is set in

the Primitive Decomposition stage to account for the alternating orientations of triangles in strip

primitives resulting form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are discarded according to their

resultant orientation. See Degenerate Objects.

Cull Mode

CullMode Definition

CULLMODE_NONE The face culling operation is disabled.

CULLMODE_FRONT Triangles with “front facing” orientation are discarded.

CULLMODE_BACK Triangles with “back facing” orientation are discarded.

CULLMODE_BOTH All triangles are discarded.

Scissor Rectangle Clipping

A scissor operation can be used to restrict the extent of rendered pixels to a screen-space aligned

rectangle. If the scissor operation is enabled, portions of objects falling outside of the intersection of

the scissor rectangle and the clipped draw rectangle are clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in SF_STATE. If enabled,

the VPIndex associated with the leading vertex of the object is used to select the corresponding

SF_VIEWPORT structure. Up to 16 structures are supported. The Scissor Rectangle X,Y Min,Max fields

of the SF_VIEWPORT structure defines a scissor rectangle as a rectangle in integer pixel coordinates

relative to the (unclipped) origin of the Drawing Rectangle. The scissor rectangle is defined relative to

the Drawing Rectangle to better support the OpenGL API. (OpenGL specifies the “Scissor Box” in

window-relative coordinates). This allows instruction buffers with embedded Scissor Rectangle

definitions to remain valid even after the destination window (drawing rectangle) moves.

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all polygons to be discarded

for a given viewport (effectively a null scissor rectangle).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 591

Viewport Extents Test

Viewport extents test can be used to restrict the extent of rendered pixels to the viewport extents. If this

operation is enabled, portion of the objects falling outside of the intersection of the scissor rectangle (if

enabled) and the clipped draw rectangle and viewport extents are clipped (pixels discarded). This

operation similar to the scissor test except both have different enables and the viewport extents can be

programmed to the fractional float values.

This operation is enabled by the View Transform Enable state variable in SF_STATE. If enabled, the

VPIndex associated with the leading vertex of the object is used to select the corresponding

SF_CLIP_VIEWPORT structure. Up to 16 structures are supported. The X/Y Min/Max ViewPort fields of

the SF_CLIP_VIEWPORT structure defines viewport extents as a rectangle in float screen pixel

coordinates relative to the (unclipped) origin of the Drawing Rectangle. Please note that these co-

ordinates can be fractional values and hardware will do appropriate rounding and convert it to integer

pixel co-ordinates. This View Transform Enable state also controls the viewport transform so

appropriate the viewport transform coefficients need to be populated in the SF_CLIP_VIEPWORT

structure along with the viewport extents.

Final clip rectangle used to define the rendering area will now depend on three rectangles namely

drawing rectangle, Scissor rectangle, Viewport Extents. If both Scissor Rectangle Enable and View

transform enable are set then intersection of all rectangles (Viewport extents, Scissor rectangle, Draw

rectangle) becomes final clip rectangle, while If only Scissor Rectangle Enable is enabled then the

intersection of (Scissor rectangle, Draw rectangle) becomes final clip rectangle. If only View transform

enable is enabled then intersection of (Viewport extents, Draw rectangle) become the final clip

rectangle, while If none is enabled then (Draw rectangle) is the final clip rectangle.

Line Rasterization

The device supports three styles of line rendering: zero-width (cosmetic) lines, non-antialiased lines, and

antialiased lines. Non-antialiased lines are rendered as a polygon having a specified width as measured

parallel to the major axis of the line. Antialiased lines are rendered as a rectangle having a specified

width measured perpendicular to the line connecting the vertices.

The functions required to render lines are split between the SF and WM units. The SF unit is responsible

for computing the overall geometry of the object to be rendered, including the pixel-exact bounding

box, edge equations, etc., and therefore is provided with the screen-geometry-related state variables.

The WM unit performs the actual scan conversion, determining the exact pixels included/excluded and

coverage values for anti-aliased lines.

Zero-Width (Cosmetic) Line Rasterization

Note: The specification of zero-width line rasterization would be more correctly included in the WM

Unit chapter, though is being included here to keep it with the rasterization details of the other line

types.

When the Line Width is set to zero, the device will use special rules to rasterize zero-width (“cosmetic”)

lines. The Anti-Aliasing Enable state variable is ignored when Line Width is zero.

3D Media GPGPU

592 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

When the LineWidth is set to zero, the device will use special rules to rasterize “cosmetic” lines. The

rasterization rules also comply with the OpenGL conformance requirements (for 1-pixel wide non-

smooth lines). Refer to the appropriate API specifications for details on these requirements.

The GIQ rules basically intersect the directed, ideal line connecting two endpoints with an array of

diamond-shaped areas surrounding pixel sample points. Wherever the line exits a diamond (including

passing through a diamond), the corresponding pixel is lit. Special rules are used to define the subpixel

locations that are considered interior to the diamonds, as a function of the slope of the line. When a

line ends in a diamond (and therefore does not exit that diamond), the corresponding pixel is not

drawn. When a line starts in a diamond and exits that diamond, the corresponding pixel is drawn.

GIQ (Diamond) Sampling Rules – Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is ENABLED, zero-width lines are

rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last

pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample

point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample

point. Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the

following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the

open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line slope is not exactly one, in which

case the left corner subpixel is inclusive. Including the right corner subpixel ensures that lines

with slopes in the range (1, +infinity] or [-infinity, -1) touch a diamond even when they cross

exactly between pixel diamonds. Including the left corner on slope=1 lines is required for proper

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 593

handling of slope=1 lines (see (3) below) – where if the right corner was inclusive, a slope=1 line

falling exactly between pixel centers would wind up lighting pixel on both sides of the line (not

desired).

3. The subpixels along the bottom left edge are inclusive only if the line slope = 1. This is to

correctly handle the case where a slope=1 line falls enters the diamond through a left or bottom

corner and ends on the bottom left edge. One does not consider this “passing through” the

diamond (where the normal rules would have us light the pixel). This is to avoid the following

case: One slope=1 line segment enters through one corner and ends on the edge, and another

(continuation) line segments starts at that point on the edge and exits through the other corner.

If simply passing through a corner caused the pixel to be lit, this case would case the pixel to be

lit twice – breaking the rule that connected line segments should not cause double-hits or

missing pixels. So, by considering the entire bottom left edge as “inside” for slope=1 lines, we will

only light the pixel when a line passes through the entire edge, or starts on the edge (or the left

or bottom corner) and exits the diamond.

4. The subpixels along the bottom right edge are inclusive only if the line slope = -1. Similar

case as (3), except slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel

sample point (sample.x, sample.y), given additional information about the slope (slopePosOne,

slopeNegOne).

 delta_x = point.x – sample.x

 delta_y = point.y – sample.y

 distance = abs(delta_x) + abs(delta_y)

 interior = (distance < 0.5)

 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

 left_corner = (delta_x == –0.5) && (delta_y == 0.0)

 right_corner = (delta_x == 0.5) && (delta_y == 0.0)

 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior || bottom_corner || (slopePosOne ? left_corner : right_corner) ||

(slopePosOne && left_edge) || (slopeNegOne && right_edge)

GIQ (Diamond) Sampling Rules – DX10 Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is DISABLED, zero-width lines are

rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last

pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample

point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.

3D Media GPGPU

594 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample

point. Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the

following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the

open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line is not X Major (X Major is defined

as -1 <= slope <= 1). Including the right corner subpixel ensures that lines with slopes in the

range (>1, +infinity] or [-infinity, <-1) touch a diamond even when they cross exactly between

pixel diamonds.

3. The left corner subpixel is never inclusive. For Y Major lines, having the right corner subpixel as

always inclusive requires that the left corner subpixel should never be inclusive, since a line falling

exactly between pixel centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This is to correctly handle the

case where a line enters the diamond through a left or bottom corner and ends on the bottom

left edge. One does not consider this “passing through” the diamond (where the normal rules

would have us light the pixel). This is to avoid the following case: One line segment enters

through one corner and ends on the edge, and another (continuation) line segments starts at that

point on the edge and exits through the other corner. If simply passing through a corner caused

the pixel to be lit, this case would cause the pixel to be lit twice – breaking the rule that

connected line segments should not cause double-hits or missing pixels. So, by considering the

entire bottom left edge as “inside”, the pixel is only lit when a line passes through the entire edge,

or starts on the edge (or the left or bottom corner) and exits the diamond.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 595

5. The subpixels along the bottom right edge are always inclusive. Same as case as (4), except

slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel

sample point (sample.x, sample.y), given additional information about the slope (XMajor).

 delta_x = point.x – sample.x

 delta_y = point.y – sample.y

 distance = abs(delta_x) + abs(delta_y)

 interior = (distance < 0.5)

 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

 left_corner = (delta_x == –0.5) && (delta_y == 0.0)

 right_corner = (delta_x == 0.5) && (delta_y == 0.0)

 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior || bottom_corner || (!XMajor && right_corner) || (bottom_left_edge)

|| (bottom_right_edge)

Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are centered on, and

aligned to, the line joining the endpoint vertices. Pixels sampled interior to the parallelogram are

rendered; pixels sampled exactly on the parallelogram edges are rendered according to the polygon

“top left” rules.

The parallelogram is formed by first determining the major axis of the line (diagonal lines are

considered x-major). The corners of the parallelogram are computed by translating the line endpoints

by +/-(Line Width / 2) in the direction of the minor axis, as shown in the following diagram.

Non-Antialiased Line Rasterization

3D Media GPGPU

596 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Anti-Aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the line joining the

endpoint vertices. For each pixel in the rectangle, a fractional coverage value (referred to as Antialias

Alpha) is computed – this coverage value is normally used to attenuate the pixel’s alpha in the pixel

shader thread. The resultant alpha value is therefore available for use in those downstream pixel

pipeline stages to generate the desired effect (e.g., use the attenuated alpha value to modulate the

pixel’s color, and add the result to the destination color, etc.). Note that software is required to explicitly

program the pixel shader and pixel pipeline to obtain the desired anti-aliasing effect – the device simply

makes the coverage-attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the coverage value

computation, are programmed via the Line Width, Line AA Region, and Line Cap AA Region state

variables, as shown below. The edges parallel to the line are located at the distance (LineWidth/2) from

the line (measured in screen pixel units perpendicular to the line). The end-cap edges are perpendicular

to the line and located at the distance (LineCapAARegion) from the endpoints.

Anti-aliased Line Rasterization

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 597

Along the parallel edges, the coverage values ramp from the value 0 at the very edges of the rectangle

to the value 1 at the perpendicular distance (LineAARegion/2) from a given edge (in the direction of the

line). A pixel’s coverage value is computed with respect to the closest edge. In the cases where

(LineAARegion/2) < (LineWidth/2), this results in a region of fractional coverage values near the edges of

the rectangle, and a region of “fully-covered” coverage values (i.e., the value 1) at the interior of the line.

When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling exactly on the line can

generate fully-covered coverage values. If (LineAARegion/2) > (LineWidth/2), no pixels can be fully-

covered (it is expected that this case is not typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line endpoint to the value 0

at the cap edge – itself at a perpendicular distance (LineCapAARegion) from the endpoint. Note that,

unlike the line-parallel edges, there is only a single parameter (LineCapAARegion) controlling the

extension of the line at the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by distances from both

the line-parallel and end cap edges – here the two coverage values are multiplied together to provide a

composite coverage value.

The computed coverage value for each pixel is passed through the Windower Thread Dispatch payload.

The Pixel Shader kernel should be passed (unmodified) by the shader to the Render Cache as part of it’s

output message.

SF Pipeline State Summary

3DSTATE_RASTER [CHV, BSW]

3DSTATE_RASTER

Signal SF_INT::Multisample Rasterization Mode

Description This field determines whether multisample rasterization is enabled and how pixel sample points are defined.

Formula

See Table: WM_INT::Multisample Rasterization Mode in 3D Pipeline Windower [CHV, BSW] > Windower Pipelined State

> 3DSTATE_WM > 3DSTATE_WM [CHV, BSW]

3D Media GPGPU

598 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3DSTATE_SF

The state used by the SF stage is defined by this inline state packet.

3DSTATE_SF

The SF Unit also receives 3DSTATE_RASTER. It also receives 3DSTATE_INT which is transparent to SW.

3DSTATE_INT provides 3DSTATE_WM, 3DSTATE_WM_HZ_OP, 3DSTATE_DETPH_BUFFER, and

3DSTATE_MULTISAMPLE fields.

Signal [CHV, BSW] SF_INT::Number of Multisamples

Description Set the number of multisamples.

Formula
= (WM_INT::WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP::Number of Multisamples :

3DSTATE_MULTISAMPLE::Number of Multisamples

Signal [CHV, BSW] SF_INT::Pixel Position Offset Enable

Description Enables the device to offset pixel positions by 0.5 both in horizontal and vertical directions.

Formula
= (WM_INT::WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP:: Pixel Position Offset Enable:

3DSTATE_MULTISAMPLE:: Pixel Position Offset Enable

Signal [CHV,

BSW]

SF_INT::Pixel Position Offset

Description

Causes the device to offset pixel positions by 0.5 both in horizontal and vertical directions.

It is to be noted this is done to adjust the pixel co-ordinate system to DX9 like, so any screen

space rectangles (eg: HiZ Clear, Resolve etc) generated internally by driver in this mode needs to

be aware of this offset adjustment and send the rectangles according to alignment restriction

taking this offset adjustment into consideration.

Formula
= (SF_INT::Number of Multisamples >1) &&

 (3DSTATE_MULTISAMPLE:: Pixel Location == PIXLOC_UL_CORNER) &&

SF_INT::Pixel Position Offset Enable

Signal [CHV, BSW] SF_INT::Global Depth Offset Enable Solid

Description Enables computation and application of Global Depth Offset for SOLID objects.

Formula = 3DSTATE_RASTER:: Global Depth Offset Enable Solid

Signal SF_INT::Global Depth Offset Enable Wireframe

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 599

Description Enables computation and application of Global Depth Offset when triangles are rendered in WIREFRAME mode.

Formula = 3DSTATE_RASTER:: Global Depth Offset Enable Wireframe

Signal [CHV,

BSW]

SF_INT::Global Depth Offset Enable Point

Description

Enables computation and application of Global Depth Offset when triangles are rendered in

POINT mode.

Formula = 3DSTATE_RASTER::Global Depth Offset Enable Point

Signal [CHV, BSW] SF_INT::FrontFace Fill Mode

Description This state controls how front-facing triangle and rectangle objects are rendered.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

SOLID :

3DSTATE_RASTER:: FrontFace Fill Mode

Signal [CHV, BSW] SF_INT::BackFace Fill Mode

Description This state controls how Back-facing triangle and rectangle objects are rendered.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

SOLID :

3DSTATE_RASTER:: BackFace Fill Mode

Signal [CHV,

BSW]

SF_INT::FrontWinding

Description

Determines whether a triangle object is considered “front facing” if the screen space vertex

positions, when traversed in the order, result in a clockwise (CW) or counter-clockwise (CCW)

winding order. Does not apply to points or lines.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

FRONTWINDING_CW :

3DSTATE_RASTER::FrontWinding

Signal [CHV,

BSW]

SF_INT::Cull Mode

Description

Controls removal (culling) of triangle objects based on orientation. The cull mode only applies

to triangle objects and does not apply to lines, points or rectangles.

Formula
= SF_INT::WM_HZ_OP ?

CULLMODE_BACK :

3D Media GPGPU

600 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3DSTATE_RASTER:: Cull Mode

Signal [CHV,

BSW]

SF_INT::Scissor Rectangle Enable

Description

This field is used to control whether the Viewport Z extents (near, far) are considered in

VertexClipTest.

Formula
= SF_INT::WM_HZ_OP ?

3DSTATE_WM_HZ_OP:: Scissor Rectangle Enable :

3DSTATE_RASTER::Scissor Rectangle Enable

Signal [CHV, BSW] SF_INT::Anti-aliasing Enable

Description This field enables “alpha-based” line antialiasing.

Formula
= = SF_INT::WM_HZ_OP ?

3DSTATE_WM_HZ_OP:: Scissor Rectangle Enable :

3DSTATE_RASTER::Anti-aliasing Enable

Signal [CHV, BSW] SF_INT::Global Depth Offset Constant

Description Specifies the constant term in the Global Depth Offset function.

Formula = 3DSTATE_RASTER::Global Depth Offset Constant

Signal [CHV, BSW] SF_INT::Global Depth Offset Scale

Description Specifies the constant term in the Global Depth Offset function.

Formula = 3DSTATE_RASTER::Global Depth Offset Scale

Signal [CHV, BSW] SF_INT::Global Depth Offset Clamp

Description

Specifies the clamp term used in the Global Depth Offset

function.

Formula = 3DSTATE_RASTER::Global Depth Offset Clamp

Signal [CHV, BSW] SF_INT::Line Stipple Enable

Description

Specifies the clamp term used in the Global Depth Offset

function.

Formula = 3DSTATE_WM::Line Stipple Enable

Signal [CHV, BSW] SF_INT::RT Independent Rasterization Enable

Description Enables RT Independent Rasterization.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 601

Formula
= 3DSTATE_INT::WM_HZ_OP ?

Disable :

3DSTATE_RASTER::ForcedSampleCount != NUMRASTSAMPLES_0

Signal [CHV, BSW] SF_INT::WM_HZ_OP

Description Enables WM_HZ_OP.

Formula
= (3DSTATE_WM_HZ_OP::DepthBufferClear ||

3DSTATE_WM_HZ_OP::DepthBufferResolve ||

3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||

3DSTATE_WM_HZ_OP::StencilBufferClear) ?

Enable :

Disable

Signal [CHV, BSW] SF_INT:: View Transform Enable

Description Enables View Transform

Formula
= SF_INT::WM_HZ_OP ?

Disable :

3DSTATE_SF::View Transform Enable

Signal [CHV, BSW] SF_INT::Render Target Array index

Description Render Target Array index being render to

Formula
= 3DSTATE_INT::WM_HZ_OP ?

0 :

Render Target Array index pipelined from clipper

Signal [CHV, BSW] SF_INT::Depth Buffer Surface Format

Description Depth format being used

Formula = 3DSTATE_INT:: Depth Buffer Surface Format

Signal [CHV, BSW] SF_INT::Viewport index

Description Viewport being used.

Formula
= SF_INT::WM_HZ_OP ?

0 :

Viewport index pipelined from clipper

3D Media GPGPU

602 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SF_CLIP_VIEWPORT

The viewport-specific state used by both the SF and CL units (SF_CLIP_VIEWPORT) is stored as an array of up to 16

elements, each of which contains the DWords described below. The start of each element is spaced 16 DWords

apart. The location of the first element of the array, as specified by both Pointer to SF_VIEWPORT and Pointer to

CLIP_VIEWPORT, is aligned to a 64-byte boundary.

SCISSOR_RECT

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 603

Attribute Interpolation Setup

With the attribute interpolation setup function being implemented in hardware for [CHV, BSW], a

number of state fields in 3DSTATE_SF are utilized to control interpolation setup.

Number of SF Output Attributes sets the number of attributes that will be output from the SF stage,

not including position. This can be used to specify up to 32, and may differ from the number of input

attributes. The number of input attributes is derived from the Vertex URB Entry Read Length field.

Note that this field is also used to specify whether swizzling is to be performed on Attributes 0-15 or

Attributes 16-32. See the state field definition for details.

Attribute Swizzling

The first or last set of 16 attributes can be swizzled according to certain state fields. Attribute Swizzle

Enable enables the swizzling for all 16 of these attributes, and each of the attributes has a 2-bit Swizzle

Select field that controls swizzling with the following settings:

 INPUTATTR – This attribute is sourced from AttrInputReg[SourceAttribute].

 INPUTATTR_FACING – This attribute is sourced from AttrInputReg[SourceAttribute] if the object is

front-facing, otherwise it is sourced from AttrInputReg[SourceAttribute+1].

 INPUTATTR_W – This attribute is sourced from AttrInputReg[SourceAttribute]. WYZW (the W

component of the source is copied to the X component of the destination).

 INPUTATTR_FACING – If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute]. WYZW (the W component of the source is copied to the X

component of the destination). If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute+1]. WYZW.

Each of the first or last set of 16 attributes also has a 5-bit Source Attribute field which specify, per

output attribute (not component), which input attribute sources the output attribute when INPUTATTR

is selected for Swizzle Select. A Source Attribute value of 0 corresponds to the 128-bit attribute

immediately following the vertex 4D position. If INPUTATTR_FACING is selected, this specifies the first of

two consecutive (front,back) input attributes, where the SourceAttribute value can be an odd or even

number (just not 31, as that would place the back-face input attribute past the end of the input max

complement of input attributes).

Constant overriding is also available for the first or last set of 16 attributes. Each attribute has a

Constant Source field which specifies the constant values per swizzled attribute, with the following

settings available:

 XYZW = 0000

 XYZW = 0001

 XYZW = 1111

Each channel of each attribute has a Component Override field to control whether the corresponding

channel is overridden with the constant value defined in Constant Source.

3D Media GPGPU

604 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Interpolation Modes

All 32 attributes have a Constant Interpolation Enable state field bit to specify whether all

components of the post-swizzled attribute are to be interpolated as constant values (not varying over

the pixels of the object). If set, the attribute at the provoking vertex is copied to a0, and a1 and a2 are

set to zero – this results in a constant interpolation of the provoking vertex value. If clear, the attribute

is linearly interpolated. Attributes 0-15 are further subjected to Wrap Shortest processing on a per-

component basis, via the Attribute WrapShortest Enables state bitfields. WrapShortest processing

modifies the a1 and/or a2 values depending on attribute deltas. All

The table below indicates the output values of a0, a1, and a2 depending on interpolation mode

settings.

 a0 a1 a2

Constant A0 0.0 0.0

Linear A0 A1-A0 A2-A0

Wrap Shortest

A0
(A1-A0)+1 (A1-A0) <= -0.5

(A1-A0)-1 (A1-A0) >= 0.5

(A1-A0) otherwise

(A2-A0)+1 (A2-A0) <= -0.5

(A2-A0)-1 (A2-A0) >= 0.5

(A2-A0) otherwise

Point Sprites

Normally all vertex attributes (including texture coordinates) other than position are simply replicated

from the incoming point center vertex to the generated point object (corner) vertices. However, both

DX9 and OGL support “sprite points”, where some/all texture coordinates are replaced with full-scale 2D

texture coordinates.

A 32-bit PointSprite TextureCoordinate Enable bit mask controls whether the corresponding vertex

attribute is to be replaced by a sprite point texture coordinate. The global (not per-attribute) Point

Sprite TextureCoordinate Origin field controls how the point object vertex (top/bottom, left/right)

texture coordinates are generated:

UPPERLEFT Left Right

Top (0,0,0,1) (1,0,0,1)

Bottom (0,1,0,1) (1,1,0,1)

LOWERLEFT Left Right

Top (0,1,0,1) (1,1,0,1)

Bottom (0,0,0,1) (1,0,0,1)

The state used by “setup backend” is defined by the following inline state packet.

3DSTATE_SBE

The state used by “setup backend” is defined by the following inline state packet.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 605

3DSTATE_SBE_SWIZ

SBE Unit also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT provides 3DSTATE_VS, 3DSTATE_DS,

and 3DSTATE_GS fields.

Signal [CHV,

BSW]

SBE_INT::Vertex URB Entry Read Length

Description

Specifies the amount of URB data read for each Vertex URB entry, in 256-bit register

increments.

Formula
= (3DSTATE_SBE::Force Vertex URB Entry Read Length == Force) ?

3DSTATE_SBE::Vertex URB Entry Read Length :

3DSTATE_GS::GS_Enable ? 3DSTATE_GS::Vertex URB Entry Output Length :

3DSTATE_DS::DS_Enable ? 3DSTATE_DS::Vertex URB Entry Output Length :

3DSTATE_VS::Vertex URB Entry Output Length

Signal [CHV, BSW] SBE_INT::Vertex URB Entry Read Offset

Description Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB

Formula
= (3DSTATE_SBE::Force Vertex URB entry Offset == Force) ?

3DSTATE_SBE::Vertex URB Entry Read Offset:

3DSTATE_GS::GS_Enable ? 3DSTATE_GS:: Vertex URB Entry Output Read Offset:

3DSTATE_DS:DS_Enable ? 3DSTATE_DS:: Vertex URB Entry Output Read Offset :

3DSTATE_VS:: Vertex URB Entry Output Read Offset

Signal [CHV, BSW] SBE_INT::PrimId_override

Description When true indicates that SBE provides the Primitive ID.

Formula
= 3DSTATE_GS::GS_Enable ? false :

3DSTATE_SBE::Primitive ID Override Component Select !=0

3D Media GPGPU

606 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Barycentric Attribute Interpolation

Given hardware clipper and setup, some of the previous flexibility in the algorithm used to interpolate

attributes is no longer available. Hardware uses barycentric parameters to aid in attribute interpolation,

and these parameters are computed in hardware per-pixel (or per-sample) and delivered in the thread

payload to the pixel shader. Also delivered in the payload are a set of vertex deltas (a0, a1, and a2) per

channel of each attribute.

There are six different barycentric parameters that can be enabled for delivery in the pixel shader

payload. These are enabled via the Barycentric Interpolation Mode bits in 3DSTATE_WM.

In the pixel shader kernel, the following computation is done for each attribute channel of each

pixel/sample given the corresponding attribute channel a0/a1/a2 and the pixel/sample’s b1/b2

barycentric parameters, where A is the value of the attribute channel at that pixel/sample:

A = a0 + (a1 * b1) + (a2 * b2)

Depth Offset

The state for depth offset in 3DSTATE_SF controls the depth offset function. Since this function was

previously contained in the Windower stage, refer to the “Depth Offset” section in the Windower

chapter for more details on this function.

Other SF Functions

The only other SF-related function is statistics gathering.

Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts the number of

objects being output by the clipper on the clipper’s behalf, since it is less feasible to have the CLIP unit

figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the

number of objects it receives from the CLIP stage since it is decomposing the output primitive

topologies into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT

Register (see Memory Interface Registers in Volume Ia, GPU) once for each object in each primitive

topology it receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline

statistics are desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since objects

SF receives are not considered “primitives output by the clipper” unless the clipper is enabled. Note that

the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS command with

Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 607

Windower (WM) Stage

This topic is currently under development.

Overview

As mentioned in the SF Unit chapter, the SF stage prepares an object for scan conversion by the

Window/Masker (WM) unit Refer to the SF Unit chapter for details on the screen-space geometry of

objects to be rendered The WM unit uses the parameters provided by the SF unit in the object-specific

rasterization algorithms.

The WM stage of the 3D pipeline performs the following operations (at a high level)

 Pre-scan-conversion modification of some primitive attributes, including

o Application of Depth Offset to the position Z attribute

 Scan-conversion of the various primitive types, including

o 2D clipping to the scissor/draw rectangle intersection

 Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-conversion

The spawned Pixel Shader (PS) threads are responsible for the following (high-level) operations

 interpolation of vertex attributes (other than X,Y,Z) to the pixel location

 performing any “Pixel Shader” operations dictated by the API PS program

o Using the Sampler shared function to sample data from “texture” surfaces

o Using the DataPort to perform general memory I/O

 Submitting the shaded pixel results to the DataPort for any subsequent “blending” (aka Output

Merger) operation and write to the RenderCache.

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads in order to

guarantee in-order rasterization results This allows the WM unit to overlap processing of several

objects.

3D Media GPGPU

608 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Inputs from SF to WM

The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific

information required for the rasterization of objects The types of information is summarized below, but

as the interface is not exposed to software a detailed discussion is not relevant to this specification.

 PrimType of the object

 VPIndex, RTAIndex associated with the object

 Handle of the Primitive URB Entry (PUE) that was written by the SF (Setup) thread This handle will

be passed to all WM (PS) threads spawned from the WM’s rasterization process.

 Information regarding the X,Y extent of the object (e.g., bounding box, etc.)

 Edge or line interpolation information (e.g., edge equation coefficients, etc.)

 Information on where the WM is to start rasterization of the object

 Object orientation (front/back-facing)

 Last Pixel indication (for line drawing)

Windower Pipelined State

3DSTATE_WM

The following inline state packets define the state used by the windower stage for different generations.

3DSTATE_WM

Programming Note

Context: XYZ

Note: WM Unit also receives 3DSTATE_WM_HZ_OP, 3DSTATE_RASTER, 3DSTATE_MULTISAMPLE,

3DSTATE_WM_CHROMAKEY, 3DSTATE_PS_BLEND, and 3DSTATE_PS_EXTRA

Signal [CHV, BSW] WM_INT::ThreadDispatchEnable

Description This bit, if set, indicates that it is possible for a PS thread to modify a render target.

Formula
= (3DSTATE_WM::ForceThreadDispatch == ON) ||

(

(3DSTATE_WM::ForceThreadDispatch != OFF) &&

! WM_INT::WM_HZ_OP &&

3DSTATE_PS_EXTRA::PixelShaderValid &&

(

 (!3DSTATE_PS_EXTRA::PixelShaderDoesNotWriteRT &&

 3DSTATE_PS_BLEND::HasWriteableRT

) ||

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 609

 (3DSTATE_PS_EXTRA::PixelShaderHasUAV)

 ||

 WM_INT:: Pixel Shader Kill Pixel ||

 (WM_INT::Pixel Shader Computed Depth Mode != PSCDEPTH_OFF &&

 (WM_INT::Depth Test Enable || WM_INT::Depth Write Enable)

) || (3DSTATE_PS_EXTRA::Computed Stencil && WM_INT::Stencil Test

Enable) ||

 (3DSTATE_WM::EDSC_Mode == 1 &&

 (WM_INT::Depth Test Enable ||

 WM_INT::Depth Write Enable ||

 WM_INT::Stencil Test Enable)

) ||

 (WM_INT::RT Independent Rasterization Enable

)

)

)

Signal [CHV, BSW] WM_INT::Pixel Shader Computed Depth Mode

Description This field specifies the computed depth mode for the pixel shader.

Formula
= (3DSTATE_PS_EXTRA::ForceComputedDepth == Force) ?

3DSTATE_PS_EXTRA::Pixel Shader Computed Depth Mode :

(WM_INT::WM_HZ_OP || WM_INT::RT Independent Rasterization Enable) ?

PSCDEPTH_OFF:

3DSTATE_PS_EXTRA::Pixel Shader Computed Depth Mode

Signal [CHV,

BSW]

WM_INT::Pixel Shader Uses Source Depth

Description

This bit, if ENABLED, indicates that the PS kernel requires the source depth value (vPos.z) to

be passed in the payload.

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Uses Source Depth

Signal [CHV,

BSW]

WM_INT::Pixel Shader Uses Source W

3D Media GPGPU

610 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description

This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value

(vPos.w) to be passed in the payload

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Uses Source W

Signal [CHV,

BSW]

WM_INT::Pixel Shader Uses Input Coverage Mask

Description

This bit, if ENABLED, indicates that the PS kernel requires the input coverage mask to be

passed in the payload.

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Uses Input Coverage Mask

Signal [CHV,

BSW]

WM_INT::Multisample Rasterization Mode

Description

This field determines whether multisample rasterization is enabled and how pixel sample

points are defined.

Formula See Table below: WM_INT::Multisample Rasterization Mode

WM_INT::Multisample Rasterization Mode

3DSTATE_RASTE

R::

Force

Multisampling

Force Force Force Force Normal Normal Normal

3DSTATE_RASTE

R::

DX Multisample

Rasterization

Mode

MSRASTMO

DE_

OFF_PIXEL

MSRASTMO

DE_

OFF_PATTE

RN

MSRASTMO

DE_

ON_PIXEL

MSRASTMO

DE_

ON_PATTER

N

* * *

WM_INT::WM_H

Z_OP

* * * * True True False

3DSTATE_WM_H

Z_OP::

Number of

Multisamples

* * * * >

NUMSAMPL

ES_1

NUMSAMPL

ES_1

*

WM_INT::Multisa

mple

Rasterization

Mode

OFF_PIXEL OFF_PATTE

RN

ON_PIXEL ON_PATTER

N

ON_PATTER

N

ON_PIXEL Determine

d from

Table 1 in

3D

Pipeline

Windower

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 611

[CHV,

BSW] >

Multisamp

ling [CHV,

BSW] >

Multisamp

le

Modes/Sta

te)

Note: OFF_PIXEL, OFF_PATTERN, ON_PIXEL, ON_PATTERN modes are described in 3D Pipeline Windower [CHV,

BSW] > Multisampling [CHV, BSW] > Multisample Modes/State.

Signal [CHV, BSW] WM_INT::Multisample Dispatch Mode

Description This bit, determines how PS threads are dispatched

Formula
= (WM_INT::RT Independent Rasterization Enable)?

PerPixel:

(3DSTATE_PS_EXTRA::PixelShaderIsPerSample) ?

PerSample :

PerPixel

Signal [CHV,

BSW]

WM_INT::Pixel Shader Kill Pixel

Description

This bit, if ENABLED, indicates that the PS kernel or color calculator has the ability to kill (discard)

pixels or samples, other than due to depth or stencil testing.

Formula
= (3DSTATE_WM::ForceKillPixel == ON) ||

(

(3DSTATE_WM::ForceKillPixel != Off) &&

! WM_INT::WM_HZ_OP &&

! 3DSTATE_WM::EDSC_Mode == 2 &&

(WM_INT::Depth Write Enable ||

 WM_INT::Stencil Write Enable) &&

(

3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||

3DSTATE_PS_EXTRA:: oMask Present to RenderTarget ||

3DSTATE_PS_BLEND::AlphaToCoverageEnable ||

3DSTATE_PS_BLEND::AlphaTestEnable ||

3D Media GPGPU

612 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable

)

)

Signal [CHV, BSW] WM_INT::Early Depth/Stencil Control

Description This field specifies the behavior of early depth/stencil test.

Formula
= (WM_INT::WM_HZ_OP) ?

EDSC_NORMAL :

 WM_INT::RT Independent Rasterization Enable ?

EDSC_PSEXEC :

3DSTATE_WM::Early Depth/Stencil Control

Signal [CHV, BSW] WM_INT::RT Independent Rasterization Enable

Description Enables Render Target Independent Rasterization.

Formula
=

(WM_INT::WM_HZ_OP ?

Disable :

(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) ?

Enable :

Disable

Signal [CHV, BSW] WM_INT::Statistics Enable

Description Enables Statistics

Formula
= (WM_INT::WM_HZ_OP) ?

Disable :

3DSTATE_WM:: Statistics Enable

Signal [CHV, BSW] WM_INT::Polygon Stipple Enable

Description Enables Poly Stipple

Formula
= (WM_INT::WM_HZ_OP) ?

Disable :

3DSTATE_WM::Polygon Stipple Enable

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 613

Signal [CHV, BSW] WM_INT::WM_HZ_OP

Description Enables WM_HZ_OP

Formula
= (3DSTATE_WM_HZ_OP::DepthBufferClear ||

3DSTATE_WM_HZ_OP::DepthBufferResolve ||

3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||

3DSTATE_WM_HZ_OP::StencilBufferClear) ?

Enable :

Disable

Signal WM_INT:: Pixel Location

Description Sets the input pixel location to Center if UL and doing multisampling

Formula (3DSTATE_MULTISAMPLE::Pixel Location && 3DSTATE_MULTISAMPLE::Pixel Position Offset Enable

&& WM_MULTISAMPLE_INT::Number of Multisamples > 0) ? 0 : 3DSTATE_MULTISAMPLE::Pixel

Location

3DSTATE_SAMPLE_MASK

The following inline state packets define the sample mask state used by the windower stage for

different generations.

3DSTATE_SAMPLE_MASK

Signal [CHV, BSW] WM_INT:: Sample Mask Enable

Description Sets Sample Mask used in rasterization

Formula
Switch(WM_MULTISAMPLE_INT::Number of Multisamples

{

Case NUMSAMPLES_1: WM_INT:: Sample Mask Enable = 0x0001; break;

Case NUMSAMPLES_2: WM_INT:: Sample Mask Enable = 0x0003; break;

Case NUMSAMPLES_4: WM_INT:: Sample Mask Enable = 0x000F; break;

Case NUMSAMPLES_8: WM_INT:: Sample Mask Enable = 0x00FF; break;

}

Signal [CHV, BSW] WM_INT:: Sample Mask

Description Sets Sample Mask used in rasterization

Formula
= WM_INT:: Sample Mask Enable &

(WM_INT::WM_HZ_OP) ?

3DSTATE_WM_HZ_OP::Sample Mask:

3DSTATE_SAMPLE_MASK::Sample Mask

)

3D Media GPGPU

614 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3DSTATE_WM_CHROMAKEY

3DSTATE_WM_HZ_OP

State Restrictions

State Restriction

3DSTATE_PS::Render Target Fast Clear Enable Must be disabled

3DSTATE_PS:: Render Target Resolve Enable Must be disabled

3DSTATE_WM:: Legacy Depth Buffer Clear Must be disabled

3DSTATE_WM:: Legacy Depth Buffer Resolve Must be disabled

3DSTATE_WM:: Legacy Hierarchical Depth

Buffer Resolve Enable

Must be disabled

3DSTATE_MULTISAMPLE::Pixel Location Must be set according to the API being used.

3DSTATE_CLEAR_PARAMS CHV, BSW:Depth

Clear Value

Must be programmed according to the API when

3DSTATE_WM_HZ_OP::Depth Buffer Clear is set

3DSTATE_CLEAR_PARAMS CHV, BSW:Depth

Clear Value Valid

Must be enabled when 3DSTATE_WM_HZ_OP::Depth Buffer Clear

is set

State Overrides

State Stencil buffer Clear Depth buffer clear

Depth Buffer

Resolve Enable

Hierarchical Depth

Buffer Resolve

Enable

SF_INT:: Statistics

Enable

Disable Disable Disable Disable

SF_INT:: View

Transform Enable

Disable Disable Disable Disable

SF_INT::Multisam

ple Rasterization

Mode

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

SF_INT::Cull Mode CULLMODE_BACK CULLMODE_BACK CULLMODE_BACK CULLMODE_BACK

SF_INT::Scissor

Rectangle Enable

3DSTATE_WM_HZ_OP:

: Scissor Rectangle

Enable

3DSTATE_WM_HZ_OP:

: Scissor Rectangle

Enable

3DSTATE_WM_HZ_OP:

: Scissor Rectangle

Enable

3DSTATE_WM_HZ_OP:

: Scissor Rectangle

Enable

SF_INT::RT

Independent

Rasterization

Enable

Disable Disable Disable Disable

SF_INT::FrontFace SOLID SOLID SOLID SOLID

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 615

State Stencil buffer Clear Depth buffer clear

Depth Buffer

Resolve Enable

Hierarchical Depth

Buffer Resolve

Enable

Fill Mode

SF_INT::FrontWin

ding

FRONTWINDING_CW FRONTWINDING_CW FRONTWINDING_CW FRONTWINDING_CW

SF_INT::Render

Target Array

index

0 0 0 0

SF_INT::Viewport

index

0 0 0 0

SF_INT::

Geometry

Hashing Disable

Disable Disable Disable Disable

WM_INT::StencilT

estEnable

Enable
Stencil buffer Clear ?

Enable :

Disable

Disable Disable

WM_INT::Stencil

WriteEnable

Enable
Stencil buffer Clear ?

Enable :

Disable

Disable Disable

WM_INT::DepthTe

stEnable

Disable Disable Enable Disable

WM_INT::DepthW

riteEnable
Depth buffer Clear ?

Enable :

Disable

Enable Enable Enable

WM_INT::DepthTe

stFunction

NEVER NEVER NEVER NEVER

WM_INT::StencilT

estFunction

ALWAYS
Stencil buffer Clear ?

ALWAYS:

No Override

No Override No Override

WM_INT::StencilP

assDepthPassOp

REPLACE
Stencil buffer Clear ?

REPLACE:

No Override

No Override No Override

WM_INT::

Statistics Enable

Disable Disable Disable Disable

3D Media GPGPU

616 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

State Stencil buffer Clear Depth buffer clear

Depth Buffer

Resolve Enable

Hierarchical Depth

Buffer Resolve

Enable

WM_INT::ThreadD

ispatchEnable

Disable Disable Disable Disable

WM_INT:: Pixel

Shader Kill Pixel

Disable Disable Disable Disable

WM_INT:: Pixel

Shader

Computed Depth

Mode

PSCDEPTH_OFF PSCDEPTH_OFF PSCDEPTH_OFF PSCDEPTH_OFF

WM_INT::RT

Independent

Rasterization

Enable

Disable Disable Disable Disable

WM_INT::Polygon

Stipple Enable

Disable Disable Disable Disable

WM_INT::Multisa

mple

Rasterization

Mode

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

MULTISAMPLE_IN

T::Number of

Multisamples

3DSTATE_WM_HZ_OP:

: Number of

Multisamples

3DSTATE_WM_HZ_OP:

: Number of

Multisamples

3DSTATE_WM_HZ_OP:

: Number of

Multisamples

3DSTATE_WM_HZ_OP:

: Number of

Multisamples

WM_INT::Sample

Mask

3DSTATE_WM_HZ_OP:

:Sample Mask

3DSTATE_WM_HZ_OP:

:Sample Mask

3DSTATE_WM_HZ_OP:

:Sample Mask

3DSTATE_WM_HZ_OP:

:Sample Mask

WM_INT::Early

Depth/Stencil

Control

EDSC_NORMAL EDSC_NORMAL EDSC_NORMAL EDSC_NORMAL

WM_INT:: Full

Surface Depth

Clear

Depth buffer clear ?

WM_HZ_OP:: Full

Surface Depth Clear :

Disable

WM_HZ_OP:: Full

Surface Depth Clear

Disable Disable

WM_INT:: Full

Surface Depth

Clear

Depth buffer clear ?

WM_HZ_OP:: Full

Surface Depth Clear :

Disable

WM_HZ_OP:: Full

Surface Depth Clear

Disable Disable

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 617

3DSTATE_WM_DEPTH_STENCIL

Signal [CHV, BSW] WM_INT::StencilWriteEnable

Description Enables writes to the Stencil Buffer

Formula
= 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&

3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&

(

 (WM_INT::WM_HZ_OP ?

 Use the WM_INT::StencilWriteEnable from WM_HZ_OP table :

 WM_INT::StencilTestEnable &&

 3DSTATE_WM_DEPTH_STENCIL::StencilBufferWriteEnable

)

)

Signal [CHV, BSW] WM_INT::StencilTestEnable

Description Enables Stencil Test

Formula
= 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&

(

WM_INT::WM_HZ_OP ?

Use the WM_INT::StencilTestEnable from WM_HZ_OP table :

(3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable &&

!WM_INT::RT Independent Rasterization Enable)

)

Signal [CHV, BSW] WM_INT::DepthTestEnable

Description Enables Depth Test

Formula
= (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&

(

WM_INT::WM_HZ_OP ?

Use the WM_INT::DepthTestEnable from WM_HZ_OP table :

(3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&

! WM_INT::RT Independent Rasterization Enable)

)

3D Media GPGPU

618 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Signal [CHV, BSW] WM_INT::DepthWriteEnable

Description Enables Depth Write

Formula
= (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&

3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE &&

(

WM_INT::WM_HZ_OP ?

Use the WM_INT::DepthWriteEnable from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable

)

Signal [CHV, BSW] WM_INT::DepthTestFunction

Description Depth Test Function

Formula
WM_INT::WM_HZ_OP ?

Use the WM_INT::DepthTestFunction from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::DepthTestFunction

Signal [CHV, BSW] WM_INT::StencilTestFunction

Description Stencil Test Function

Formula
WM_INT::WM_HZ_OP ?

Use the WM_INT::StencilTestFunction from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::StencilTestFunction

Signal [CHV, BSW] WM_INT::StencilPassDepthPassOp

Description StencilPassDepthPassOp

Formula
WM_INT::WM_HZ_OP ?

Use the WM_INT::StencilPassDepthPassOp from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::StencilPassDepthPassOp

Signal [CHV, BSW] WM_INT::Stencil Test Mask

Description Stencil test Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL::Stencil Test Mask

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 619

Signal [CHV, BSW] WM_INT::Stencil Write Mask

Description Stencil Write Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL::Stencil Write Mask

Signal [CHV, BSW] WM_INT::BackFace Stencil Test Mask

Description Stencil test Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL:: Backface Stencil Test Mask

Signal [CHV, BSW] WM_INT:: BackFace Stencil Write Mask

Description Stencil Write Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL::Backface Stencil Write Mask

Rasterization

The WM unit uses the setup computations performed by the SF unit to rasterize objects into the

corresponding set of pixels Most of the controls regarding the screen-space geometry of rendered

objects are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see Pixels with a

SubSpan below) which, after being subjected to various inclusion/discard tests, are grouped and passed

to spawned Pixel Shader (PS) threads for subsequent processing Once these PS threads are spawned,

the WM unit provides only bookkeeping functions on the pixels Note that the WM unit can proceed on

to rasterize subsequent objects while PS threads from previous objects are still executing.

Pixels with a SubSpan

3D Media GPGPU

620 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Drawing Rectangle Clipping

The Drawing Rectangle defines the maximum extent of pixels which can be rendered Portions of objects

falling outside the Drawing Rectangle will be clipped (pixels discarded) Implementations will typically

discard objects falling completely outside of the Drawing Rectangle as early in the pipeline as possible

There is no control to turn off Drawing Rectangle clipping – it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the destination buffer

extents (The Drawing Rectangle Origin, used to offset relative X,Y coordinates earlier in the pipeline, is

permitted to lie offscreen). The Clipped Drawing Rectangle X,Y Min,Max state variables (programmed

via 3DSTATE_DRAWING_RECTANGLE – See SF Unit) defines the intersection of the Drawing Rectangle

and the Color Buffer It is specified with non-negative integer pixel coordinates relative to the

Destination Buffer upper-left origin.

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the rectangle is

inclusive) For example, to render to a full-screen 1280x1024 buffer, the following values would be

required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023

For “full screen” rendering, the Drawing Rectangle coincides with the screen-sized buffer For “front-

buffer windowed” rendering it coincides with the destination “window”.

Line Rasterization

See SF Unit chapter for details on the screen-space geometry of the various line types.

Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line End Cap Anti-

aliasing Region Width state variables (in WM_STATE) in order to compute the coverage values for

anti-aliased lines.

3DSTATE_AA_LINE_PARAMS [CHV, BSW]

3DSTATE_AA_LINE_PARAMETERS

The slope and bias values should be computed to closely match the reference rasterizer results Based

on empirical data, the following recommendations are offered:

The final alpha for the center of the line needs to be 148 to match the reference rasterizer In this case,

the Lo to edge 0 and edge 3 will be the same Since the alpha for each edge is multiplied together, we

get:

edge0alpha * edge1alpha = 148/255 = 0.580392157

Since edge0alpha = edge3alpha we get:

(edge0alpha)2 = 0.580392157

edge0alpha = sqrt(0.580392157) = 0.761834731 at the center pixel

The desired alpha for pixel 1 = 54/255 = 0.211764706

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 621

The slope is (0.761834731 – 0.211764706) = 0.550070025

Since we are using 8 bit precision, the slope becomes

AA Coverage [EndCap] Slope = 0.55078125

The alpha value for Lo = 0 (second pixel from center) determines the bias term and is equal to

(0.211764706 – 0.550070025) = -0.338305319

With 8 bits of precision the programmed bias value

Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE, discards certain pixels

that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via

3DSTATE_LINE_STIPPLE: the 16-bit Line Stipple Pattern (p), Line Stipple Repeat Count I, and Line

Stipple Inverse Repeat Count. Sofware must compute Line Stipple Inverse Repeat Count as 1.0f /

Line Stipple Repeat Count and then converted from float to the required fixed point encoding (see

3STATE_LINE_STIPPLE).

The WM unit maintains an internal Line Stipple Counter state variable (s) The initial value of s is zero; s

is incremented after production of each pixel of a line segment (pixels are produced in order, beginning

at the starting point and working towards the ending point). S is reset to 0 whenever a new primitive is

processed (unless the primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every line

segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:

A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are numbered with 0

being the least significant and 15 being the most significant.

3DSTATE_LINE_STIPPLE

Polygon (Triangle and Rectangle) Rasterization

The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a “pixel sampling grid”

to be defined This grid is defined as an axis-aligned array of pixel sample points spaced exactly 1 pixel

unit apart If a sample point falls within one of these objects, the pixel associated with the sample point

is considered “inside” the object, and information for that pixel is generated and passed down the

pipeline

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the object, the

associated pixel is considered “inside” the object if the intersecting edge is a “left” or “top” edge (or,

more exactly, the intersected edge is not a “right” or “bottom” edge) Note that “top” and “bottom”

edges are by definition exactly horizontal. See TRIANGLE and RECTANGLE Edge Types below for the

edge types for representative TRIANGLE and RECTANGLE objects (solid edges are inclusive, dashed

edges are exclusive).

3D Media GPGPU

622 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TRIANGLE and RECTANGLE Edge Types

Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state variable in WM_STATE,

allows only selected pixels of a repeated 32x32 pixel pattern to be rendered Polygon stipple is applied

only to the following primitive types:

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the 3DSTATE_POLY_STIPPLE_PATTERN

command. This is a non-pipelined command which incurs an implicit pipeline flush when executed.

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables programmed via

the 3DSTATE_POLY_STIPPLE_OFFSET command The offsets are pixel offsets from the Color Buffer origin

to the upper left corner of the stipple pattern. This is a non-pipelined command which incurs an implicit

pipeline flush when executed.

3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_PATTERN

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 623

Multisampling

The multisampling function has two components:

 Multisample Rasterization: multisample rasterization occurs at a subpixel level, wherein each

pixel consists of a number of “samples” at state-defined positions within the pixel footprint.

Coverage of the primitive as well as color calculator operations (stencil test, depth test, color

buffer blending, etc.) are done at the sample level. In addition the pixel shader itself can

optionally run at the sample level depending on a separate state field.

 Multisample Render Targets (MSRT): The render targets, as well as the depth and stencil

buffers, now have the ability to store per-sample values. When combined with multisample

rasterization, color calculator operations such as stencil test, depth test, and color buffer blending

are done with the destination surface containing potentially different values per sample.

3DSTATE_MULTISAMPLE

Signal [CHV, BSW] WM_MULTISAMPLE_INT::Number of Multisamples

Description Set the number of multisamples

Formula
= (WM_INT::WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP::Number of Multisamples :

3DSTATE_MULTISAMPLE::Number of Multisamples

3DSTATE_SAMPLE_PATTERN

Multisample ModesState

A number of state variables control the operation of the multisampling function. The following table

indicates the states and their location. Refer to the state definition for more details.

State Element Source Description

 WM_INT::Multisample Rasterization

Mode

Controls whether rasterization of non-lines is

performed on a pixel or sample basis (PIXEL vs.

PATTERN), and whether multisample rasterization of

lines is enabled (OFF vs. ON). From this generation

forward, this state element becomes an internal signal

computed by other state variables (also listed here)

unless certain modes are set, which can be seen in

the WM_INT equation for the signal.

 WM_INT::Multisample Dispatch Mode

Number of

Multisamples

3DSTATE_MULTISAMPLE and

SURFACE_STATE

Indicates the number of samples per pixel contained

on the surface. This field in 3DSTATE_MULTISAMPLE

must match the corresponding field in

SURFACE_STATE for each render target. The depth,

hierarchical depth, and stencil buffers inherit this field

from 3DSTATE_MULTISAMPLE.

3D Media GPGPU

624 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

State Element Source Description

 3DSTATE_RASTER::ForcedSampleCount

 3DSTATE_RASTER::ForcedSampleCount

!= NUMRASTSAMPLES_0

Pixel Location 3DSTATE_MULTISAMPLE Indicates the subpixel location where values specified

as “pixel” are sampled. This is either the upper left

corner or the center.

 3DSTATE_SAMPLE_PATTERN

 3DSTATE_SAMPLE_PATTERN

API Mode 3DSTATE_RASTER One of the deciding factors of what the Multisample

Rasterization Mode should be according to

WM_INT::Multisample Rasterization Mode. Software

sets this field according to the API's version.

DX

Multisample

Rasterization

Enable

3DSTATE_RASTER Controls ON/OFF part of Multisample Rasterization

Mode, depending on the API Mode according to

WM_INT::Multisample Rasterization Mode.

This table does not apply if (3DSTATE_RASTER::ForceMultisampleRasterMode == Force) or (WM_INT::WM_HZ_OP

== true).

Table 1: Multisample Rasterization Modes [CHV, BSW]

Number

of

Multisam

ples

NUMSAMPL

ES_1

NUMSAMPL

ES_1

>

NUMSAMPL

ES_1

>

NUMSAMPL

ES_1 Any Any Any Any

DX

Multisamp

le

Rasterizati

on Enable

0 1 0 1 0 1 0 1

Rast

Number

of

Samples

Disabled Disabled Disabled Disabled NUMRA

ST

SAMPLE

S_1

NUMRA

ST

SAMPLE

S_1

>

NUMRAST

SAMPLES_

1

>

NUMRAS

T

SAMPLES

_1

API Mode

==

DX9.0/OG

L

OFF_PIXEL OFF_PIXEL OFF_PIXEL ON_PATTER

N

Invalid Invalid Invalid Invalid

API Mode OFF_PIXEL ON_PIXEL OFF_PIXEL ON_PATTER OFF_PIX Invalid Invalid Invalid

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 625

==

DX10.0

N EL

API Mode

==

DX10.1+

OFF_PIXEL ON_PIXEL OFF_PATTER

N

ON_PATTER

N

OFF_PIX

EL

ON_PIX

EL

OFF_PATT

ERN

ON_PATT

ERN

Definitions for lines terms used in Table 2 through Table 4:

 Legacy Lines: Way of drawing lines that allows Diamond Lines (SF_STATE::Line Width == 0.0), Non-anti-

aliased Wide Lines (SF_STATE::Line Width != 0.0), and Line Stippling (3DSTATE_WM:: Line Stipple Enable ==

1).

 AA Lines: Way of drawing lines that allows Anti-aliased line. These are lines rendered as rectangles that are

centered on, and aligned to, the line joining the endpoint vertices with coverage value (referred to as Anti-

alias Alpha) computed per pixel.

Project

AA Line Support

 Requirement

CHV, BSW SF_INT::Anti-aliasing Enable == 1

 MSAA Lines: Way of drawing lines that allows Multisample Anti-aliased lines. These are lines rendered as

rectangles that are centered on, and aligned to, the line joining the endpoint vertices, but no Anti alias

alpha coverage is computed.

Table 2: Type of Line Algorithm Given an Arrangement of State Variables [CHV, BSW]

Multisample

 Rasterization

 Mode Anti-Aliasing Enable SF_STATE::Line Width Line Algorithm

OFF_* 0 Non-Zero Non-Anti-aliased Wide Lines

OFF_* 0 0.0 Diamond Lines

OFF_* 1 Non-Zero See Note A below.

OFF_* 1 0.0 Diamond Lines

ON_* * * MSAA Lines

Note A: Anti-Aliasing Details for Table 2

Anti-Aliasing Details

Anti-Aliased Lines with Alpha Coverage

Table 3: Multisample Modes with RTIR Disabled [CHV, BSW]

Number of

Multisamples

MS RAST

MODE

MS DISP

MODE HW Mode

NUMSAMPLES_1 OFF_PIXEL PERSAMPLE
Legacy Non-MSAA Mode

1X rasterization, using Pixel Location

3D Media GPGPU

626 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Legacy lines or AA-line rasterization

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PIXEL PERSAMPLE
1X Multisampling Mode

1X rasterization, using Pixel Location

MSAA lines only, using Pixel Location

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

- PERPIXEL Treated the same as PERSAMPLE

ON_PATTERN - Invalid

OFF_PATTERN - Invalid

n where n >

NUMSAMPLES_1

OFF_PIXEL PERPIXEL
MSRT Only, PerPixel PS

1X rasterization, using Pixel Location

See Note B below.

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

PERSAMPLE
MSRT Only, PerSample PS

1X rasterization, using Pixel Location

See Note B below.

nX PS, all samples at Pixel Location

nX output merge, eval Depth at Pixel Location

ON_PIXEL PERPIXEL
Multibuffering MSAA, PerPixel PS

1X rasterization, using Pixel Location

MSAA lines only

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

PERSAMPLE
Multibuffering MSAA, PerSample PS

1X rasterization, using Pixel Location

MSAA lines only

nX PS, all samples at Pixel Location

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 627

nX output merge, eval Depth at Pixel Location

OFF_PATTERN PERPIXEL
Mixed Mode, PerPixel PS

See Note B below.

Non-Lines: nX rasterization, using Sample

Offsets

1X PS, sample at Pixel Location

nX output merge, eval depth at Sample Offsets

PERSAMPLE
Mixed Mode, PerSample PS

See Note B below.

Non-Lines: nX rasterization, using Sample

Offsets

nX PS, sample at Pixel Location or Sample

Offsets

nX output merge, eval depth at Sample Offsets

ON_PATTERN PERPIXEL
Pattern MSAA, PerPixel PS

nX rasterization, using Sample Offsets

MSAA lines only

1X PS, sample at Pixel Location

nX output merge, eval depth at Sample Offsets

PERSAMPLE
Pattern MSAA, PerSample PS

nX rasterization, using Sample Offsets

MSAA lines only

nX PS, sample at Pixel Location or Sample

Offsets

nX output merge, eval depth at Sample Offsets

Note B: Line Details for Table 3 and Table 4

Line Details

Legacy lines or AA-line rasterization. For PERPIXEL or PERSAMPLE in Table 3 use pixel location. For OFF_PATTERN

in Table 4 use pixel location.

Table 4: Multisample Modes with RTIR Enabled [CHV, BSW]

3D Media GPGPU

628 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Rast Number of

 Samples MS RAST MODE HW Mode

NUMRASTSAMPLES_1 OFF_PIXEL
Legacy Non-MSAA Mode

1X rasterization, using Pixel Location

Legacy lines or AA-line rasterization

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PIXEL
1X Multisampling Mode

1X rasterization, using Pixel Location

MSAA lines only, using Pixel Location

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PATTERN Invalid

OFF_PATTERN Invalid

n where n >

NUMRASTSAMPLES_1

OFF_PIXEL Invalid

ON_PIXEL Invalid

OFF_PATTERN
Mixed Mode, PerPixel PS

See Note B above.

Non-Lines: nX rasterization, using Sample Offsets

1X PS, sample at Pixel Location

1X output merge, eval depth atPixel Location

ON_PATTERN
Pattern RTIR, PerPixel PS

nX rasterization, using Sample Offsets

MSAA lines only

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

Note: Multisample Dispatch Mode is not taken into account in Table 4 given that with RTIR:

Details

The value of PERSAMPLE is converted to PERPIXEL internally.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 629

Other WM Functions

The only other WM function is Statistics Gathering.

Statistics Gathering

If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the

PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a

Pixel Shader thread.

If Early Depth Test Enable is set it is possible for pixels or samples to be discarded before reaching the

Pixel Shader due to failing the depth or stencil test. PS_INVOCATIONS_COUNT will still be incremented

for these pixels or samples since the depth test occurs after the pixel shader from the point of view of

SW.

Pixel

This section contains the following subsections:

 Depth and Stencil, which covers the Depth and Stencil test functions

 Pixel Dispatch, which covers pixel shader state, pixel grouping, multisampling effects on pixel

shader dispatch, and pixel shader thread payload

 Pixel Backend, which covers backend processing

3D Media GPGPU

630 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Early Depth/Stencil Processing

The Windower/IZ unit provides the Early Depth Test function, a major performance-optimization feature

where an attempt is made to remove pixels that fail the Depth and Stencil Tests prior to pixel shading.

This requires the WM unit to perform the interpolation of pixel (“source”) depth values, read the current

(“destination”) depth values from the cached depth buffer, and perform the Depth and Stencil Tests As

the WM unit has per-pixel source and destination Z values, these values are passed in the PS thread

payload, if required.

Depth Offset

Note: The depth offset function is contained in SF unit, thus the state to control it is also contained in

SF unit.

There are occasions where the Z position of some objects need to be slightly offset to reduce artifacts

due to coplanar or near-coplanar primitives. A typical example is drawing the edges of triangles as

wireframes – the lines need to be drawn slightly closer to the viewer to ensure they will not be occluded

by the underlying polygon. Another example is drawing objects on a wall – without a bias on the z

positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset on the object’s z

slope Note that there is no clamping applied at this stage after the Z position is offset – clamping to

[0,1] can be performed later after the Z position is interpolated to the pixel. This is preferable to

clamping prior to interpolation, as the clamping would change the Z slope of the entire object.

The Global Depth Offset function is controlled by the Global Depth Offset Enable state variable in

WM_STATE Global Depth Offset is only applied to 3DOBJ_TRIANGLE objects.

When Global Depth Offset Enable is ENABLED, the pipeline will compute:

MaxDepthSlope = max(abs(dZ/dX),abs(dz/dy)) // approximation of max depth slope for polygon

When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):

 Bias = GlobalDepthOffsetConstant * r + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the minimum representable value > 0 in the depth buffer format, converted to float32 (note:

If state bit Legacy Global Depth Bias Enable is set, the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:

Bias = GlobalDepthOffsetConstant * 2^(exponent(max z in primitive) – r) + GlobalDepthOffsetScale *

MaxDepthSlope

Where r is the # of mantissa bits in the floating point representation (excluding the hidden bit), e.g. 23

for float32 (note: If state bit Legacy Global Depth Bias Enable is set, no scaling is applied to the

GobalDepthOffsetConstant).

Adding Bias to z:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 631

 if (GlobalDepthOffsetClamp > 0)

Bias = min(DepthBiasClamp, Bias)

else if(GlobalDepthOffsetClamp < 0)

Bias = max(DepthBiasClamp, Bias)

// else if GlobalDepthOffsetClamp == 0, no clamping occurs

z = z + Bias

Biasing is constant for a given primitive. The biasing formulas are performed with float32 arithmetic

Global Depth Bias is not applied to any point or line primitives.

Early Depth Test/Stencil Test/Write

When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard depth-occluded pixels

during scan conversion (before processing them in the Pixel Shader). Pixels are only discarded when the

WM unit can ensure that they would have no impact to the ColorBuffer or DepthBuffer. This function is

therefore only a performance feature.

Note: For [CHV, BSW], the Early Depth Test Enable bit is no longer present. This function is always

enabled.

If some pixels within a subspan are discarded, only the pixel mask is affected indicating that the

discarded pixels are not active. If all pixels within a subspan are discarded, that subspan will not even be

dispatched.

3D Media GPGPU

632 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Software-Provided PS Kernel Info

For the WM unit to properly perform Early Depth Test and supply the proper information in the PS

thread payload (and even determine if a PS thread needs to be dispatched), it requires information

regarding the PS kernel operation This information is provided by a number of state bits in WM_STATE,

as summarized in the following table.

State Bit Description

Pixel Shader

Kill Pixel
This must be set when there is a chance that valid pixels passed to a PS thread may be discarded.

This includes the discard of pixels by the PS thread resulting from a “killpixel” or “alphatest”

function or as dictated by the results of the sampling of a “chroma-keyed” texture The WM unit

needs this information to prevent early depth/stencil writes for pixels which might be killed by

the PS thread, etc.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader

Computed

Depth

This must be set when the PS thread computes the “source” depth value (i.e., from the API POV,

writes to the “oDepth” output) In this case the WM unit can’t make any decisions based on the

WM-interpolated depth value.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader

Uses Source

Depth

Must be set if the PS thread requires the WM-interpolated source depth value. This forces the

source depth to be passed in the thread payload where otherwise the WM unit would not have

seen it as required.

See WM_STATE/3DSTATE_WM for more information.

Hierarchical Depth Buffer

A hierarchical depth buffer is supported to reduce memory traffic due to depth buffer accesses. This

buffer is supported only in Tile Y memory.

The Surface Type, Height, Width, Depth, Minimum Array Element, Render Target View Extent, and

Depth Coordinate Offset X/Y of the hierarchical depth buffer are inherited from the depth buffer. The

height and width of the hierarchical depth buffer that must be allocated are computed by the following

formulas, where HZ is the hierarchical depth buffer and Z is the depth buffer. The Z_Height, Z_Width,

and Z_Depth values given in these formulas are those present in 3DSTATE_DEPTH_BUFFER incremented

by one.

The value of Z_Height and Z_Width must each be multiplied by 2 before being applied to the table below if

Number of Multisamples is set to NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and Z_Width

must be multiplied by 4 before being applied to the table below if Number of Multisamples is set to

NUMSAMPLES_8.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 633

Surface Type HZ_Width (Bytes) HZ_Height (Rows) HZ_Qpitch (Rows)

SURFTYPE_1D ceiling(Z_Width / 16) * 16 ceiling((HZ_QPitch/2)/8) *8 * Z_Depth see below

SURFTYPE_2D ceiling(Z_Width / 16) * 16 ceiling((HZ_QPitch/2)/8) *8 * Z_Depth see below

SURFTYPE_3D ceiling(Z_Width / 16) * 16 see below not applicable

SURFTYPE_CUBE ceiling(Z_Width / 16) * 16 ceiling((HZ_QPitch/2)/8) *8 * 6 * Z_Depth see below

To compute the minimum QPitch for the HZ surface, the height of each LOD in pixels is determined using the

equations for hL in the GPU Overview volume, using a vertical alignment j=8. The following equation gives the

minimum HZ_QPitch based on largest LOD m defined in the surface:

If m is less than 2, treat all hL with L > m as zero and use the above equation.

The minimum HZ_Height required for a 3D surface must be computed based on hL parameters documented in the

GPU Overview volume, and the maximum LOD m:

The format of the data in the hierarchical depth buffer is not documented here, as this surface needs

only to be allocated by software. Hardware will read and write this surface during operation and its

contents are discarded once the last primitive is rendered that uses the hierarchical depth buffer.

The hierarchical depth buffer can be enabled whenever a depth buffer is defined, with its effect being

invisible other than generally higher performance. The only exception is the hierarchical depth buffer

must be disabled when using software tiled rendering.

If HiZ is enabled, you must initialize the clear value by either:

1. Perform a depth clear pass to initialize the clear value.

2. Send a 3dstate_clear_params packet with valid = 1.

Without one of these events, context switching will fail, as it will try to save off a clear value even

though no valid clear value has been set. When context restore happens, HW will restore an

uninitialized clear value.

3D Media GPGPU

634 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Depth Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special

clear mechanism described here to clear the hierarchical depth buffer and the depth buffer. This is

enabled though the Depth Buffer Clear field in WM_STATE or 3DSTATE_WM or using the

3DSTATE_WM_HZ_OP. This bit can be used to clear the depth buffer in the following situations:

 Complete depth buffer clear.

 Partial depth buffer clear with the clear value the same as the one used on the previous clear.

 Partial depth buffer clear with the clear value different than the one used on the previous clear

can use this mechanism if a depth buffer resolve is performed first.

The following is required when performing a depth buffer clear using any of the above clearing

methods (WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP).

 The hierarchical depth buffer enable must be set in the 3DSTATE_DEPTH_BUFFER.

 The fields in 3DSTATE_CLEAR_PARAMS are set to indicate the source of the clear value and (if

source is in this command) the clear value itself.

 The clear value must be between the min and max depth values (inclusive) defined in the

CC_VIEWPORT. If the depth buffer format is D32_FLOAT, then +/-DENORM values are also

allowed.

 The following alignment restrictions need to be met while doing the fast-clear:

Alignment Restriction

The following restrictions apply only if the depth buffer surface type is D16_UNORM and software

does not use the “full surf clear”:

If Number of Multisamples is NUMSAMPLES_1, the rectangle must be aligned to an 8x4 pixel block

relative to the upper left corner of the depth buffer, and contain an integer number of these pixel

blocks, and all 8x4 pixels must be lit.

If Number of Multisamples is NUMSAMPLES_2, the rectangle must be aligned to a 4x4 pixel block

(8x4 sample block) relative to the upper left corner of the depth buffer, and contain an integer

number of these pixel blocks, and all samples of the 4x4 pixels must be lit.

If Number of Multisamples is NUMSAMPLES_4, the rectangle must be aligned to a 4x2 pixel block

(8x4 sample block) relative to the upper left corner of the depth buffer, and contain an integer

number of these pixel blocks, and all samples of the 4x2 pixels must be lit.

If Number of Multisamples is NUMSAMPLES_8, the rectangle must be aligned to a 2x2 pixel block

(8x4 sample block) relative to the upper left corner of the depth buffer, and contain an integer

number of these pixel blocks, and all samples of the 2x2 pixels must be lit.

The minimum granularity of clear is one pixel, but all samples of the pixel must be cleared. Clearing

partial samples of a pixel is not supported. If a newly allocated depth buffer is not 8x4 pixel aligned

(if MSAA enabled, 4x4 for 2X, 4x2 for 4X, 2x2 for 8X), and if the first operation on the depth buffer

does not clear the entire width and height of the surface, then first a HiZ ambiguate must be done

on the portions of the depth buffer that are not cleared. If the depth buffer clear operation does

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 635

Alignment Restriction

clear the entire width and height of the surface, then the “full surface clear” bit in 3DSTATE_WM_OP

must be set to 1.

The following is required when performing a depth buffer clear with using the WM_STATE or

3DSTATE_WM:

 If other rendering operations have preceded this clear, a PIPE_CONTROL with depth cache flush

enabled, Depth Stall bit enabled must be issued before the rectangle primitive used for the depth

buffer clear operation.

 Depth Test Enable must be disabled and Depth Buffer Write Enable must be enabled (if depth

is being cleared).

 Stencil buffer clear can be performed at the same time by enabling Stencil Buffer Write Enable.

Stencil Test Enable must be enabled and Stencil Pass Depth Pass Op set to REPLACE, and the

clear value that is placed in the stencil buffer is the Stencil Reference Value from

COLOR_CALC_STATE.

 Note also that stencil buffer clear can be performed without depth buffer clear. For stencil only

clear, Depth Test Enable and Depth Buffer Write Enable must be disabled.

In some cases Depth Buffer Clear cannot be enabled and the legacy method of clearing must be used:

 If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.

 If stencil test is enabled but the separate stencil buffer is disabled.

Depth buffer clear pass using any of the methods (WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP)

must be followed by a PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits “set”

before starting to render. DepthStall and DepthFlush are not needed between consecutive depth clear

passes nor is it required if the depth-clear pass was done with “full_surf_clear” bit set in the

3DSTATE_WM_HZ_OP.

Note: If using the optimized depth buffer clear, this pipecontrol should be done after the resetting of

the clear/resolve bits in the 3DSTATE_WM_HZ_OP (step #8).

Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering

is complete If the depth buffer is retained and used for another purpose (i.e as input to the sampling

engine as a shadow map), it must first be “resolved” This is done by setting the Depth Buffer Resolve

Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle. Once

this is complete, the depth buffer will contain the same contents as it would have had the rendering

been performed with the hierarchical depth buffer disabled. In a typical usage model, depth buffer

needs to be resolved after rendering on it and before using a depth buffer as a source for any

consecutive operation. Depth buffer can be used as a source in three different cases: using it as a

texture for the nest rendering sequence, honoring a lock on the depth buffer to the host OR using the

depth buffer as a blit source.

3D Media GPGPU

636 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following is required when performing a depth buffer resolve:

 The surface must have been initialized with a Depth Buffer Clear after its allocation to initialize the

Depth Clear Value.

 A rectangle primitive of the same size as the previous depth buffer clear operation must be

delivered, and depth buffer state cannot have changed since the previous depth buffer clear

operation.

 Depth Test Enable must be enabled with the Depth Test Function set to NEVER. Depth Buffer

Write Enable must be enabled. Stencil Test Enable and Stencil Buffer Write Enable must be

disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth

must all be disabled.

Programming Note

Context: HTML

HW uses the clear value from the 3DSTATE_CLEAR_PARAM. If you change the value in the

3DSTATE_CLEAR_PARAMS before resolve, it will flush the depth caches and have the new-clear value in its

register. When doing the resolve pass, it is driver’s responsibility to make sure that the clear-value for the depth

buffer is the same one as the clear-pass.

Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if

the depth buffer is written to outside of the 3D rendering operation If this occurs, the hierarchical depth

buffer must be resolved to avoid incorrect device behavior. This is done by setting the Hierarchical

Depth Buffer Resolve Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target

sized rectangle. Once this is complete, the hierarchical depth buffer will contain contents such that

rendering will give the same results as it would have had the rendering been performed with the

hierarchical depth buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

 A rectangle primitive covering the full render target must be delivered.

 Depth Test Enable must be disabled. Depth Buffer Write Enable must be enabled. Stencil Test

Enable and Stencil Buffer Write Enable must be disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel, and Pixel Shader Computed Depth

must all be disabled.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 637

Optimized Depth Buffer Clear and/or Stencil Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special

clear mechanism described here to clear the hierarchical depth buffer and the depth buffer This is

enabled though the Depth Buffer Clear field in 3DSTATE_WM_HZ_OP This bit can be used to clear the

depth buffer in the following situations:

 All 3D units before SF will be bypassed by WM_HZ_OP and states for those units need not be

set/restored for these rectangles.

 Complete depth buffer clear

 Partial depth buffer clear with the clear value the same as the one used on the previous clear

 Partial depth buffer clear with the clear value different than the one used on the previous clear

can use this mechanism if a depth buffer resolve is performed first.

 The minimum granularity of clear is one pixel, but all samples of the pixel must be cleared.

Clearing partial samples of a pixel is not supported

Stencil Buffer Clears can be alone or at the same time as depth buffer clears by using the Stencil Buffer

Clear bit in 3DSTATE_WM_HZ_OP.

The proper sequence of commands is as follows:

1. Setup 3DSTATE_DEPTH_BUFFER (as needed). Render Target Array index will be internally force to

zero. SW must set 3DSTATE_DEPTH_BUFFER::MinimumArrayElement to render to the array to be

cleared.

2. Setup 3DSTATE_HIER_DEPTH_BUFFER (as needed)

3. Setup 3DSTATE_STENCIL_BUFFER (as needed)

4. Setup 3DSTATE_CLEAR_PARMS (as needed)

5. Setup 3DSTATE_DRAWING_RECTANGLE (as needed and only if it is different from already existing

drawing rectangle)

6. 3DSTATE_WM_HZ_OP w/ 1 of the clear/resolve bits set

 // This overrides existing state and forces them to what is needed for the clear

 // This also carries the vertex info for doing the clear

7. PIPE_CONTROL w/ all bits clear except for “Post-Sync Operation” must set to “Write Immediate

Data” enabled.

 // This causes 3DSTATE_WM_HZ_OP state to be committed to SF and WM as a pipeline state.

Once state is committed to SF, causes to spawn a rectangle to be drawn

8. 3DSTATE_WM_HZ_OP w/ none of the clear/resolve bits set

 // This clears the overrides

9. Restore 3DSTATE_DEPTH_BUFFER (as needed).

10. Restore 3DSTATE_HIER_DEPTH_BUFFER (as needed)

11. Restore 3DSTATE_STENCIL_BUFFER (as needed)

3D Media GPGPU

638 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Arbitrary size rectangles are supported using the Top Left X, Top Left Y, Bottom Right X, Bottom Right Y

fields in the 3DSTATE_WM_HZ_OP.

Optimized Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering

is complete If the depth buffer is retained and used for another purpose (i.e locked by the app), it must

first be “resolved” This is done by setting the Depth Buffer Resolve Enable field in

3DSTATE_WM_HZ_OP. The depth buffer resolve uses the same sequence as the optimized Depth buffer

clear (see above) except the Depth Buffer Resolve Enable bit is set. Once this is complete, the depth

buffer will contain the same contents as it would have had the rendering been performed with the

hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be resolved after

rendering on it and before using a depth buffer as a source for any consecutive operation. Depth buffer

can be used as a source in three different cases: using it as a texture for the nest rendering sequence,

honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

Doing a resolve operation requires that a preceding Depth Buffer Clear operation is required to have

initialized the Depth Clear Value.

Optimized Hierarchical Depth Buffer Resolve

For CHV, BSW, if the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain

incorrect results if the depth buffer is written to outside of the 3D rendering operation. If this occurs,

the hierarchical depth buffer must be “resolved” to avoid incorrect device behavior. This is done by

setting the Hierarchical Depth Buffer Resolve Enable field in 3DSTATE_WM_HZ_OP and specifying a

full render target sized rectangle. The depth buffer resolve uses the same sequence as the optimized

Depth buffer clear (see above) except the Hierarchical Depth Buffer Resolve Enable bit is set. Once

this is complete, the hierarchical depth buffer will contain contents such that rendering will give the

same results as it would have had the rendering been performed with the hierarchical depth buffer

disabled.

The following is required when performing a hierarchical depth buffer resolve:

 A rectangle primitive covering the full render target must be programmed on Xmin, Ymin, Xmax,

and Ymax in the 3DSTATE_WM_HZ_OP command.

 The rectangle primitive size must be aligned to 8x4 pixels.

Separate Stencil Buffer

The following tables describe the separate stencil buffer for different generations.

The separate stencil buffer is always enabled, thus the field in 3DSTATE_DEPTH_BUFFER to explicitly enable the

separate stencil buffer has been removed. Surface formats with interleaved depth and stencil are no longer

supported.

The stencil buffer has a format of R8_UNIT, and shares Surface Type, Height, Width, and Depth, Minimum

Array Element, Render Target View Extent, Depth Coordinate Offset X/Y, LOD, and Depth Buffer Object

Control State fields of the depth buffer.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 639

DepthStencil Buffer State

This section contains the state registers for the Depth/Stencil Buffers.

3DSTATE_DEPTH_BUFFER

3DSTATE_STENCIL_BUFFER

3DSTATE_HIER_DEPTH_BUFFER

3DSTATE_CLEAR_PARAMS

Pixel Shader Thread Generation

After a group of object fragments have been rasterized, the Pixel Shader (PSD) function is invoked to

further compute output information and cause results to be written to output surfaces (like color,

depth, stencil, UAvs etc). Fragments can be P or S.

For each fragment, the Pixel Shader calculates the values of the various vertex attributes that are to be

interpolated across the object using the interpolation coefficients. It then executes an API-supplied Pixel

Shader Program. Instructions in this program permit the accessing of texture map data, where Texture

Samplers are employed to sample and filter texture maps (see the Shared Functions chapter). Arithmetic

operations can be performed on the texture data, input fragment information, and Pixel Shader

Constants to compute the resultant fragment’s output. The Pixel Shader program also allows the pixel

to be discarded from further processing.

3D Media GPGPU

640 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3DSTATE_PS

This command is used to set state used by the pixel shader dispatch stage.

3DSTATE_PS

Programming Note

Context: Pixel Shader Thread Generation

Note: The PS Unit also receives 3DSTATE_PS_BLEND, 3DSTATE_SAMPLEMASK, 3DSTATE_MULTISAMPLE, and

3DSTATE_PS_EXTRA.

Signal [CHV,

BSW]

PS_INT::oMask Present to RenderTarget

Description

This bit is inserted in the PS payload header and made available to the DataPort (either via the

message header or via header bypass) to indicate that oMask data (one or two phases) is

included in Render Target Write messages. If present, the oMask data is used to mask off

samples.

Formula = 3DSTATE_PS_EXTRA::oMask Present to RenderTarget

Signal [CHV,

BSW]

PS_INT::Dual Source Blend Enable

Description

This field is set if dual source blend is enabled. If this bit is disabled, the data port dual source

message reverts to a single source message using source 0.

Formula
= 3DSTATE_PS_BLEND::ColorBufferBlendEnable &&

(PS_INT::UsesSrc1BlendFactor ||

(PS_INT::IndependentAlphaUsesSrc1BlendFactors &&

3DSTATE_PS_BLEND::Independent Alpha Blend Enable)

)

Signal [CHV, BSW] PS_INT::UsesSrc1BlendFactor

Description

Formula
=

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 641

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA)

Signal [CHV, BSW] PS_INT::IndependentAlphaUsesSrc1BlendFactors

Description

Formula
=

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA)

Signal [CHV,

BSW]

PS_INT::PS UAV-only

Description Pixel Shader UAV-only render target

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Has UAV && !3DSTATE_PS_EXTRA:: Pixel Shader Does not

write to RT

3DSTATE_PS_EXTRA

This command is used to set state used by the pixel shader dispatch stage.

3DSTATE_PS_BLEND

This command is used to set state used by the pixel shader dispatch stage.

3DSTATE_CONSTANT_PS

3DSTATE_BINDING_TABLE_POINTERS_PS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

3DSTATE_SAMPLER_STATE_POINTERS_PS

3D Media GPGPU

642 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Pixel Grouping (Dispatch Size) Control

The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels), or 8 subspans (32

pixels) to a Pixel Shader thread. Software should take into account the following considerations when

determining which groupings to support/enable during operation. This determination involves a

tradeoff of these likely conflicting issues. Note that the size of the dispatch has significant impact on the

kernel program. (It is certainly not transparent to the kernel.) Also note that there is no implied spatial

relationship between the subspans passed to a PS thread, other than the fact that they come from the

same object.

 Thread Efficiency: In general, there is some amount of overhead involved with PS thread

dispatch, and if this can be amortized over a larger number of pixels, efficiency will likely increase.

This is especially true for very short PS kernels, as may be used for desktop composition, etc.

 GRF Consumption: Processing more pixels per thread requires a larger thread payload and likely

more temporary register usage, both of which translate into a requirement for a larger GRF

register allocation for the threads. This increased GRF usage could lead to increased use of

scratch space (for spill/fill, etc.) and possibly less efficient use of the EUs (as it would be less likely

to find an EU with enough free physical GRF registers to service the thread).

 Object Size: If the number of very small objects (e.g., covering 2 subspans or fewer) is expected

to comprise a significant portion of the workload, supporting the 8-pixel dispatch mode may be

advantageous. Otherwise there could be a large number of 16-pixel dispatches with only 1 or 2

valid subspans, resulting in low efficiency for those threads.

 Intangibles: Kernel footprint & Instruction Cache impact; Complexity; ….

The groupings of subspans that the WM unit is allowed to include in a PS thread payload is controlled

by the 32,16,8 Pixel Dispatch Enable state variables programmed in WM_STATE. Using these state

variables, the WM unit attempts to dispatch the largest allowed grouping of subspans. The following

table lists the possible combinations of these state variables.

Please note that, the valid column in the table indicates which products supports the combination

dispatch. Combinations that are not listed in the table are not available on any product.

The letter codes A, B, D, and E used in the Variable Pixel Dispatch table below are valid for all projects

with some specific mode restrictions for specific projects for B, D, and E as indicated in the next few

tables.

D is like B with an added general restriction, that it cannot be used in non-1x PERSAMPLE mode.

 E cannot be used in PERSAMPLE mode with number of multisamples >= 2.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 643

Variable Pixel Dispatch

 Contiguous

64 Pixel

Dispatch

Enable

 Contiguous

32 Pixel

Dispatch

Enable

 32 Pixel

Dispatch

Enable

 16 Pixel

Dispatch

Enable

 8 Pixel

Dispatch

Enable Valid

 IP for n-pixel

Contiguous

Dispatch

IP for n-pixel

Dispatch

(KSP offsets are in

128-bit instruction

units)

n=64 n=32 n=32 n=16 n=8

0 0 0 0 1 A KSP[0]

0 0 0 1 0 B KSP[0]

0 0 0 1 1 D KSP[2] KSP[0]

0 0 1 0 0 B KSP[0]

0 0 1 1 0 E KSP[1] KSP[2]

0 0 1 1 1 D KSP[1] KSP[2] KSP[0]

0 1 1 1 0 D KSP[2] KSP[1] KSP[0]

1 0 1 1 0 D KSP[2] KSP[1] KSP[0]

Each of the three KSP values is separately specified. In addition, each kernel has a separately-specified

GRF register count.

Depending on the subspan grouping selected, the WM unit will modify the starting PS Instruction

Pointer (derived from the Kernel Start Pointer in WM_STATE) as a means to inform the PS kernel of the

number of subspans included in the payload. The modified IP is a function of the enabled modes and

the dispatch size, as shown in the table below.

The driver must ensure that the PS kernel begins with a corresponding jump table to properly handle

the number of subspans dispatched. The WM unit will “OR” in the two LSBs of the Kernel Pointer (bits

5:4) to create an instruction level address. (Note that the pointer from WM_STATE is 64-byte aligned

which corresponds to four 128-bit instructions.)

If only one dispatch mode is enabled, the Jitter should not include any jump table entries at the

beginning of the PS kernel. If multiple dispatch modes are enabled, a two entry jump table should

always be inserted, regardless of which modes are enabled (jump table entry for 8 pixel dispatch,

followed by jump table entry for 32 pixel dispatch).

Note that for SIMD32 dispatch, pixel shader dispatch function increments GRF Start Register for URB

Data state by 2 to account for the additional SIMD16 payload. The Pixel Shader kernel needs to

comprehend this modification for SIMD32.

 if (32PixelDispatchEnable && n > 7)

 Dispatch 32 Pixels

 else if (16PixelDispatchEnable && (n > 2 || ! 8PixelDispatchEnable))

 Dispatch 16 Pixels

 else

 Dispatch 8 Pixels

 end if

3D Media GPGPU

644 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Multisampling Effects on Pixel Shader Dispatch

The pixel shader payloads are defined in terms of subspans and pixels. The slots in the pixel shader

thread previously mapped 1:1 with pixels. With multisampling, a slot could contain a pixel or may just

contain a single sample, depending on the mode. Payload definitions now refer to slot to make the

definition independent of multisampling mode.

MSDISPMODE_PERPIXEL Thread Dispatch

In PERPIXEL mode, the pixel shader kernel still works on 2/4/8 separate subspans, depending on

dispatch mode. The fact that rasterization and the depth/stencil tests are being performed on a per-

sample (not per-pixel) basis is transparent to the pixel shader kernel.

MSDISPMODE_PERSAMPLE Thread Dispatch

In PERSAMPLE mode, the pixel shader needs to operate on a sample vs. pixel basis (although this

collapses in NUMSAMPLES_1 mode) Instead of processing strictly different subspans in parallel , the PS

kernel processes different sample indices of one or more subspans in parallel For example, a SIMD16

dispatch in PERSAMPLE/NUMSAMPLES_4 mode would operate on a single subspan, with the usual “4

Subspan0 pixel slots” used for the “4 Sample0 locations of the (single) subspan” Subspan1 slots would

be used for the Sample1 locations, and so on This layout allows the pixel shader to compute

derivatives/LOD based on deltas between corresponding sample locations in the subspan in the same

fashion as LEGACY pixel shader execution, and as required by DX10.1.

Depending on the dispatch mode (8/16/32 pixels) and multisampling mode (1X/4X), there are different

mappings of subspans/samples onto dispatches and slots-within-dispatch In some cases, more than

one subspan may be included in a dispatch, while in other cases multiple dispatches are be required to

process all samples for a single subspan In the latter case, the StartingSamplePairIndex value is

included in the payload header so the Render Target Write message will access the correct samples with

each message.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 645

PERSAMPLE SIMD16 4X Dispatch

PERSAMPLE Dispatch

The following table provides the complete dispatch/slot mappings for all the MS/Dispatch

combinations.

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

SIMD32 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

 2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

3D Media GPGPU

646 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

 4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

 8X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

SIMD16 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

 2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

 4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 647

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

 8X
Dispatch[i]: (i=0, 2)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

SIMD8 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

 2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

 4X
Dispatch[i]: (i=0..1)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

 8X
Dispatch[i]: (i=0, 1, 2, 3)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

PS Thread Payload for Normal Dispatch

The following table lists all possible contents included in a PS thread payload, in the order they are

provided. Certain portions of the payload are optional, in which case the corresponding phase is

skipped.

This payload does not apply to the contiguous dispatch modes. The payload for these modes is

documented in the section titled PS Thread Payload for Contiguous Dispatch.

PS Thread Payload for Normal Dispatch

The following payload table applies to CHV, BSW. All registers are numbered starting at 0, but many

registers are skipped depending on configuration. This causes all registers below to be renumbered to

fill in the skipped locations. The only case where actual registers may be skipped is immediately before

the constant data and again before the setup data.

3D Media GPGPU

648 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

PS Thread Payload for Normal Dispatch [CHV, BSW]

DWord Bits Description

R0.7 31
Reserved.

30:24 Reserved

23:0
Primitive Thread ID: This field contains the primitive thread count passed to the Windower from

the Strips Fans Unit.

Format: Reserved for HW Implementation Use.

R0.6 31:24 Reserved

23:0
Thread ID: This field contains the thread count which is incremented by the Windower for every

thread that is dispatched.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer: Specifies the 1K-byte aligned pointer to the scratch space available for

this PS thread. This is specified as an offset to the General State Base Address.

Format = GeneralStateOffset[31:10]

9:8 Reserved

7:0
FFTID: This ID is assigned by the WM unit and is an identifier for the thread. It is used to free up

resources used by the thread upon thread completion.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to the Sampler State table. It is

specified as an offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this

thread.

Programming Notes: This amount is available to the kernel for information only. It will be passed

verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but

the Data Port will ignore it.

Format = U4

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 649

DWord Bits Description

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:0 Reserved: Delivered as zeros (reserved for message header fields).

R0.1 31:6
Color Calculator State Pointer: Specifies the 64-byte aligned pointer to the Color Calculator state

(COLOR_CALC_STATE structure in memory). It is specified as an offset from the Dynamic State

Base Address. This value is eventually passed to the ColorCalc function in the DataPort and is

used to fetch the corresponding CC_STATE data.

Format = DynamicStateOffset[31:5]

5:0 Reserved

R0.0 31 Reserved

30:27
Viewport Index: Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

26:16
Render Target Array Index: Specifies the array index to be used for the following surface types:

SURFTYPE_1D: specifies the array index Range = [0,2047]

SURFTYPE_2D: specifies the array index Range = [0,2047]

SURFTYPE_3D: specifies the “r” coordinate Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier Range = [0,5]

Face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

15
Front/Back Facing Polygon: Determines whether the polygon is front or back facing. Used by the

render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

14 Reserved

13 Source Depth to Render Target: Indicates that source depth will be sent to the render target.

12 oMask to Render Target: Indicates that oMask will be sent to the render target.

3D Media GPGPU

650 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

11:9 Reserved

8 Reserved for expansion of Starting Sample Pair Index.

7:6
Starting Sample Pair Index: Indicates the index of the first sample pair of the dispatch.

Format = U2

Range = [0,3]

5 Reserved

4:0
Primitive Topology Type: This field identifies the Primitive Topology Type associated with the

primitive spawning this object. The WM unit does not modify this value (e.g., objects within

POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline.)

R1.7 31:16
Pixel/Sample Mask (SubSpan[3:0]): Indicates which pixels within the four subspans are lit. If 32

pixel dispatch is enabled, this field contains the pixel mask for the first four subspans.

Note: This is not a duplicate of the Dispatch Mask that is delivered to the thread. The dispatch

mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations to

occur correctly.

This field must not be modified by the Pixel Shader kernel.

15:0 Pixel/Sample Mask Copy (SubSpan[3:0]): This is a duplicate copy of the pixel mask. This copy

can be modified as the pixel shader thread executes in order to turn off pixels based on kill

instructions.

R1.6 31:0 Reserved

R1.5 31:16
Y3: Y coordinate (screen space) for upper-left pixel of subspan 3 (slot 12).

Format = U16

15:0
X3: X coordinate (screen space) for upper-left pixel of subspan 3 (slot 12).

Format = U16

R1.4 31:16
Y2: Y coordinate (screen space) for upper-left pixel of subspan 2 (slot 8).

Format = U16

15:0
X2: X coordinate (screen space) for upper-left pixel of subspan 2 (slot 8).

Format = U16

R1.3 31:16
Y1: Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4).

Format = U16

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 651

DWord Bits Description

15:0
X1: X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4).

Format = U16

R1.2 31:16
Y0: Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0).

Format = U16

15:0
X0: X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0).

Format = U16

R1.1 31:0 Reserved

R1.0 31:20 Reserved

15:12
Slot 3 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

11:8
Slot 2 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

7:4
Slot 1 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

3:0
Slot 0 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

3D Media GPGPU

652 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

 R2: Delivered only if this is a 32-pixel dispatch.

R2.7 31:16
Pixel/Sample Mask (SubSpan[7:4]): Indicates which pixels within the upper four subspans are lit.

This field is valid only when the 32 pixel dispatch state is enabled. This field must not be modified

by the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered to the thread. The dispatch

mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations to

occur correctly.

This field must not be modified by the Pixel Shader kernel.

15:0 Pixel/Sample Mask Copy (SubSpan[7:4]): This is a duplicate copy of pixel mask for the upper 16

pixels. This copy will be modified as the pixel shader thread executes to turn off pixels based on

kill instructions.

R2.6 31:0 Reserved

R2.5 31:16
Y7: Y coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

15:0
X7: X coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

R2.4 31:16 Y6

15:0 X6

R2.3 31:16 Y5

15:0 X5

R2.2 31:16 Y4

15:0 X4

R2.1 31:0 Reserved

R2.0 31:16 Reserved

15:12
Slot 7 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 653

DWord Bits Description

16X MSAA range [0..15]

11:8
Slot 6 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

7:4
Slot 5 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

3:0
Slot 4 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

 R3-R26: Delivered only if the corresponding Barycentric Interpolation Mode bit is set. Register

phases containing Slot 8-15 data are not delivered in 8-pixel dispatch mode.

R3.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 7

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = IEEE_Float

R3.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

R3.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

R3.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

3D Media GPGPU

654 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

R3.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

R3.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

R3.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

R3.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

R4 Perspective Pixel Location Barycentric[2] for Slots 7:0

R5.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 15

R5.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 14

R5.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 13

R5.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 12

R5.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 11

R5.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 10

R5.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 9

R5.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 8

R6 Perspective Pixel Location Barycentric[2] for Slots 15:8

R7:10 Perspective Centroid Barycentric

R11:14 Perspective Sample Barycentric

R15:18 Linear Pixel Location Barycentric

R19:22 Linear Centroid Barycentric

R23:26 Linear Sample Barycentric

 R27: Delivered only if Pixel Shader Uses Source Depth is set.

R27.7 31:0
Interpolated Depth for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth (WM_STATE)

is set.

R27.6 31:0 Interpolated Depth for Slot 6

R27.5 31:0 Interpolated Depth for Slot 5

R27.4 31:0 Interpolated Depth for Slot 4

R27.3 31:0 Interpolated Depth for Slot 3

R27.2 31:0 Interpolated Depth for Slot 2

R27.1 31:0 Interpolated Depth for Slot 1

R27.0 31:0 Interpolated Depth for Slot 0

 R28: Delivered only if Pixel Shader Uses Source Depth is set and this is not an 8-pixel dispatch.

R28.7 31:0 Interpolated Depth for Slot 15

R28.6 31:0 Interpolated Depth for Slot 14

R28.5 31:0 Interpolated Depth for Slot 13

R28.4 31:0 Interpolated Depth for Slot 12

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 655

DWord Bits Description

R28.3 31:0 Interpolated Depth for Slot 11

R28.2 31:0 Interpolated Depth for Slot 10

R28.1 31:0 Interpolated Depth for Slot 9

R28.0 31:0 Interpolated Depth for Slot 8

 R29: Delivered only if Pixel Shader Uses Source W is set.

R29.7 31:0
Interpolated W for Slot 7

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader Uses Source W (WM_STATE) is

set.

R29.6 31:0 Interpolated W for Slot 6

R29.5 31:0 Interpolated W for Slot 5

R29.4 31:0 Interpolated W for Slot 4

R29.3 31:0 Interpolated W for Slot 3

R29.2 31:0 Interpolated W for Slot 2

R29.1 31:0 Interpolated W for Slot 1

R29.0 31:0 Interpolated W for Slot 0

 R30: Delivered only if Pixel Shader Uses Source W is set and this is not an 8-pixel dispatch.

R30.7 31:0 Interpolated W for Slot 15

R30.6 31:0 Interpolated W for Slot 14

R30.5 31:0 Interpolated W for Slot 13

R30.4 31:0 Interpolated W for Slot 12

R30.3 31:0 Interpolated W for Slot 11

R30.2 31:0 Interpolated W for Slot 10

R30.1 31:0 Interpolated W for Slot 9

R30.0 31:0 Interpolated W for Slot 8

 R31: Delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or

POSOFFSET_SAMPLE.

R31.7 31:24
Position Offset Y for Slot 15

This field contains either the CENTROID or SAMPLE position offset for Y, depending on the state of

Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

23:16
Position Offset X for Slot 15

This field contains either the CENTROID or SAMPLE position offset for X, depending on the state

3D Media GPGPU

656 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

15:8 Position Offset Y for Slot 14

7:0 Position Offset X for Slot 14

R31.6 31:24 Position Offset Y for Slot 13

23:16 Position Offset X for Slot 13

15:8 Position Offset Y for Slot 12

7:0 Position Offset X for Slot 12

R31.5:4 Position Offset X/Y for Slot[11:8]

R31.3:2 Position Offset X/Y for Slot[7:4]

R31.1:0 Position Offset X/Y for Slot[3:0]

 R32: Delivered only if Pixel Shader Uses Input Coverage Mask is set.

R32.7 31:0
Input Coverage Mask for Slot 7

Format = U32

This and the next register phase is only included if Pixel Shader Uses Input Coverage Mask

(3DSTATE_PS) is set.

This field always encodes sample Coverage Mask.

R32.6 31:0 Input Coverage Mask for Slot 6

R32.5 31:0 Input Coverage Mask for Slot 5

R32.4 31:0 Input Coverage Mask for Slot 4

R32.3 31:0 Input Coverage Mask for Slot 3

R32.2 31:0 Input Coverage Mask for Slot 2

R32.1 31:0 Input Coverage Mask for Slot 1

R32.0 31:0 Input Coverage Mask for Slot 0

 R33: Delivered only if Pixel Shader Uses Input Coverage Mask is set and this is not an 8-pixel

dispatch.

R33.7 31:0 Input Coverage Mask for Slot 15

R33.6 31:0 Input Coverage Mask for Slot 14

R33.5 31:0 Input Coverage Mask for Slot 13

R33.4 31:0 Input Coverage Mask for Slot 12

R33.3 31:0 Input Coverage Mask for Slot 11

R33.2 31:0 Input Coverage Mask for Slot 10

R33.1 31:0 Input Coverage Mask for Slot 9

R33.0 31:0 Input Coverage Mask for Slot 8

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 657

DWord Bits Description

 R34-R57: Delivered only if the corresponding Barycentric Interpolation Mode bit is set and this

is a 32-pixel dispatch.

R34.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 23

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = IEEE_Float

R34.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 22

R34.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 21

R34.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 20

R34.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 19

R34.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 18

R34.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 17

R34.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 16

R35 Perspective Pixel Location Barycentric[2] for Slots 23:16

R36.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 31

R36.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 30

R36.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 29

R36.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 28

R36.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 27

R36.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 26

R36.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 25

R36.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 24

R37 Perspective Pixel Location Barycentric[2] for Slots 31:24

R38:41 Perspective Centroid Barycentric

R42:45 Perspective Sample Barycentric

R46:49 Linear Pixel Location Barycentric

R50:53 Linear Centroid Barycentric

R54:57 Linear Sample Barycentric

 R58-R59: Delivered only if Pixel Shader Uses Source Depth is set and this is a 32-pixel dispatch.

R58.7 31:0
Interpolated Depth for Slot 23

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth (WM_STATE)

bit is set.

R58.6 31:0 Interpolated Depth for Slot 22

R58.5 31:0 Interpolated Depth for Slot 21

3D Media GPGPU

658 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

R58.4 31:0 Interpolated Depth for Slot 20

R58.3 31:0 Interpolated Depth for Slot 19

R58.2 31:0 Interpolated Depth for Slot 18

R58.1 31:0 Interpolated Depth for Slot 17

R58.0 31:0 Interpolated Depth for Slot 16

R59.7 31:0 Interpolated Depth for Slot 31

R59.6 31:0 Interpolated Depth for Slot 30

R59.5 31:0 Interpolated Depth for Slot 29

R59.4 31:0 Interpolated Depth for Slot 28

R59.3 31:0 Interpolated Depth for Slot 27

R59.2 31:0 Interpolated Depth for Slot 26

R59.1 31:0 Interpolated Depth for Slot 25

R59.0 31:0 Interpolated Depth for Slot 24

 R60-R61:Delivered only if Pixel Shader Uses Source W is set and this is a 32-pixel dispatch.

R60.7 31:0
Interpolated W for Slot 23

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader Uses Source W (WM_STATE) bit

is set.

R60.6 31:0 Interpolated W for Slot 22

R60.5 31:0 Interpolated W for Slot 21

R60.4 31:0 Interpolated W for Slot 20

R60.3 31:0 Interpolated W for Slot 19

R60.2 31:0 Interpolated W for Slot 18

R60.1 31:0 Interpolated W for Slot 17

R60.0 31:0 Interpolated W for Slot 16

R61.7 31:0 Interpolated W for Slot 31

R61.6 31:0 Interpolated W for Slot 30

R61.5 31:0 Interpolated W for Slot 29

R61.4 31:0 Interpolated W for Slot 28

R61.3 31:0 Interpolated W for Slot 27

R61.2 31:0 Interpolated W for Slot 26

R61.1 31:0 Interpolated W for Slot 25

R61.0 31:0 Interpolated W for Slot 24

 R62: Delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or

POSOFFSET_SAMPLE and this is a 32-pixel dispatch.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 659

DWord Bits Description

R62.7 31:24
Position Offset Y for Slot 31

This field contains either the CENTROID or SAMPLE position offset for Y, depending on the state of

Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

23:16
Position Offset X for Slot 31

This field contains either the CENTROID or SAMPLE position offset for X, depending on the state

of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

15:8 Position Offset Y for Slot 30

7:0 Position Offset X for Slot 30

R62.6 31:24 Position Offset Y for Slot 29

23:16 Position Offset X for Slot 29

15:8 Position Offset Y for Slot 28

7:0 Position Offset X for Slot 28

R62.5:4 Position Offset X/Y for Slot[27:24]

R62.3:2 Position Offset X/Y for Slot[23:20]

R62.1:0 Position Offset X/Y for Slot[19:16]

 R63-R64: Delivered only if Pixel Shader Uses Input Coverage Mask is set and this is a 32-pixel

dispatch.

R63.7 31:0
Input Coverage Mask for Slot 23

Format = U32

This and the next register phase are only included if Pixel Shader Uses Input Coverage Mask

(3DSTATE_PS) is set.

R63.6 31:0 Input Coverage Mask for Slot 22

R63.5 31:0 Input Coverage Mask for Slot 21

R63.4 31:0 Input Coverage Mask for Slot 20

R63.3 31:0 Input Coverage Mask for Slot 19

R63.2 31:0 Input Coverage Mask for Slot 18

R63.1 31:0 Input Coverage Mask for Slot 17

R63.0 31:0 Input Coverage Mask for Slot 16

R64.7 31:0 Input Coverage Mask for Slot 31

R64.6 31:0 Input Coverage Mask for Slot 30

3D Media GPGPU

660 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

R64.5 31:0 Input Coverage Mask for Slot 29

R64.4 31:0 Input Coverage Mask for Slot 28

R64.3 31:0 Input Coverage Mask for Slot 27

R64.2 31:0 Input Coverage Mask for Slot 26

R64.1 31:0 Input Coverage Mask for Slot 25

R64.0 31:0 Input Coverage Mask for Slot 24

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 661

Pixel Backend

This section contains the following subsections:

 MCS Buffer for Render Target(s) [CHV, BSW]

 Render Target Fast Clear [CHV, BSW]

 Render TargetResolve [CHV, BSW]

Color Calculator (Output Merger)

Overview

Note: The Color Calculator logic resides in the Render Cache backing Data Port (DAP) shared

function. It is described in this chapter as the Color Calc functions are naturally an extension of the 3D

pipeline past the WM stage. See the DataPort chapter for details on the messages used by the Pixel

Shader to invoke Color Calculator functionality.

The Color Calculator (referred to as “Output Merger in the DX Spec) function within the Data Port

shared function completes the processing of rasterized pixels after the pixel color and depth have been

computed by the Pixel Shader. This processing is initiated when the pixel shader thread sends a Render

Target Write message (see Shared Functions) to the Render Cache. (Note that a single pixel shader

thread may send multiple Render Target Write messages, with the result that multiple render targets

get updated.) The pixel variables pass through a pipeline of fixed (yet programmable) functions, and the

results are conditionally written into the appropriate buffers.

The word “pixel” used in this section is effectively replaced with the word “sample” if multisample

rasterization is enabled.

Pipeline Stage Description

Alpha Coverage It generates coverage masks using AlphaToCoverage AND/OR AlphaToOne functions based

on src0.alpha.

Alpha Test Compare pixel alpha with reference alpha and conditionally discard pixel.

Stencil Test Compare pixel stencil value with reference and forward result to Buffer Update stage.

Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer and forward result to Buffer

Update stage.

Color Blending Combine pixel color with corresponding color in color buffer according to programmable

function.

Gamma

Correction

Adjust pixel’s color according to gamma function for SRGB destination surfaces.

Color

Quantization

Convert “full precision” pixel color values to fixed precision of the color buffer format.

Logic Ops Combine pixel color logically with existing color buffer color (mutually exclusive with Color

Blending).

Buffer Update Write final pixel values to color and depth buffers or discard pixel without update.

The following logic describes the high-level operation of the Pixel Processing pipeline:

3D Media GPGPU

662 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 PixelProcessing() {

 AlphaCoverage()

 AlphaTest()

 DepthBufferCoordinateOffsetDisable

 StencilTest()

 DepthTest()

 ColorBufferBlending()

 GammaCorrection()

 ColorQuantization()

 LogicalOps()

 BufferUpdate()

 }

Alpha Coverage

Alpha coverage logic is supported for CHV, BSW and can be controlled using three state variables:

 AlphaToCoverage Enable, when enabled Color Calculator modifies the sample mask. This

function (along with AlphaToOne) come at the top of the pixel pipeline. The sample’s

Source0.Alpha value (possibly being replicated from the pixel’s Source0.Alpha) is used to

compute a (optionally dithered) 1/2/4-bit mask (depending on NumSamples).

 The AlphaToCoverage Dither Enable SV is used to control the dithering of the

AlphaToCoverage mask. The bit corresponding to the sample# is then ANDed with the sample’s

incoming mask bits – allowing the sample to be masked off depending on alpha.

 AlphaToOne Enable, when enabled, Color Calculator must replace Source0.Alpha (if present)

with 1.0f.

 If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.

If Pixel Shader outputs oMask, AlphaToCoverage is disabled in hardware, regardless of the state setting for this

feature.

Notes:

 Src0.alpha needs to be first multiplied with AA alpha before applying AlphaToCoverage and

AlphaToOne functions.

 An alpha value of NaN results in a no coverage (zero) mask.

 Alpha values from the pixel shader are treated as FLOAT32 format for computing the

AlphaToCoverage Mask.

Alpha Test

The Alpha Test function can be used to discard pixels based on a comparison between the incoming

pixel’s alpha value and the Alpha Test Reference state variable in COLOR_CALC_STATE. This operation

can be used to remove transparent or nearly-transparent pixels, though other uses for the alpha

channel and alpha test are certainly possible.

This function is enabled by the Alpha Test Enable state variable in COLOR_CALC_STATE. If ENABLED,

this function compares the incoming pixel’s alpha value (pixColor.Alpha) and the reference alpha value

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 663

specified by via the Alpha Test Reference state variable in COLOR_CALC_STATE. The comparison

performed is specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is performed using fixed-

point (UNORM8) or FLOAT32 values. Accordingly, it determines whether the Alpha Reference Value is

passed in a UNORM8 or FLOAT32 format. If UNORM8 is selected, the pixel’s alpha value will be

converted from floating-point to UNORM8 before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are discarded at this point

in the pipeline.

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

The Alpha Test function is supported in conjunction with Multiple Render Targets (MRTs). If delivered in

the incoming render target write message, source 0 alpha is used to perform the alpha test. If source 0

alpha is not delivered, the normal alpha value is used to perform the alpha test.

Depth Coordinate Offset

The Depth Coordinate Offset function applies a programmable constant offset to the RenderTarget X,Y

screen space coordinates in order to generate DepthBuffer coordinates.

The function has been specifically added to allow the OpenGL driver to deal with a RenderTarget and

DepthBuffer of differing sizes.

OpenGL defines a lower-left screen coordinate origin. This requires the driver to incorporate a “Y

coordinate flipping” transformation into the viewport mapping function. The Y extent of the RT is used

in this flipping transformation. If the DepthBuffer extent is different, the wrong pixel Y locations within

the DepthBuffer will be accessed.

The least expensive solution is to provide a translation offset to be applied to the post-viewport-

mapped DepthBuffer Y pixel coordinate, effectively allowing the alignment of the lower-left origins of

the RT and DepthBuffer. [Note that the previous DBCOD feature performed an optional translation of

post-viewport-mapping RT pixel (screen) coordinates to generate DepthBuffer pixel (window)

coordinates. Specifically, the Draw Rect Origin X,Y state could be subtracted from the RT pixel

coordinates.]

This function uses Depth Coordinate Offset X,Y state (signed 16-bit values in

3DSTATE_DEPTH_RECTANGLE) that is unconditionally added to the RT pixel coordinates to generate

DepthBuffer pixel coordinates.

3D Media GPGPU

664 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The previous DBCOB feature can be supported by having the driver program Depth Coordinate X,Y

Offset to the two’s complement of the the Draw Rect Origin. By programming Depth Coordinate X,Y

Offset to zeros, the current “normal” operation (DBCOD disabled) can be achieved.

Programming Note

Context: Depth Coordinate Offset

 Only simple 2D RTs are supported (no mipmaps).

 Software must ensure that the resultant DepthBuffer Coordinate X,Y values are non-negative.

 There are alignment restrictions – see 3DSTATE_DEPTH_BUFFER command.on SFID_DP_DC2) are IA

coherent.

Stencil Test

The Stencil Test function can be used to discard pixels based on a comparison between the [Backface]

Stencil Test Reference state variable and the pixel’s stencil value. This is a general purpose function

used for such effects as shadow volumes, per-pixel clipping, etc. The result of this comparison is used in

the Stencil Buffer Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the current stencil buffer

value for this pixel is read.

A 2nd set of the stencil test state variables is provided so that pixels from back-facing objects, assuming

they are not culled, can have a stencil test performed on them separate from the test for normal front-

facing objects. The separate stencil test for back-facing objects can be enabled via the Double Sided

Stencil Enable state variable. Otherwise, non-culled back-facing objects will use the same test function,

mask and reference value as front-facing objects. The 2nd stencil state for back-facing objects is most

commonly used to improve the performance of rendering shadow volumes which require a different

stencil buffer operation depending on whether pixels rendered are from a front-facing or back-facing

object. The backface stencil state removes the requirement to render the shadow volumes in 2 passes

or sort the objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state variable name>.

The Backface set of state variables are only used if Double Sided Stencil Enable is ENABLED and the

object is considered back-facing. Otherwise the normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the pixel’s stencil value

value after logically ANDing both values by [Backface] Stencil Test Mask. The comparison performed

is specified by the [Backface] Stencil Test Function state variable. The result of the comparison is

passed down the pipeline for use in the Stencil Buffer Update function. The Stencil Test function does

not in itself discard pixels.

If Stencil Test Enable is DISABLED, a result of “stencil test passed” is propagated down the pipeline.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 665

Depth Test

The Depth Test function can be used to discard pixels based on a comparison between the incoming

pixel’s depth value and the current depth buffer value associated with the pixel. This function is typically

used to perform the “Z Buffer” hidden surface removal. The result of this pipeline function is used in the

Stencil Buffer Update function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the pixel’s (“source”) depth

value is first computed. After computation the pixel’s depth value is clamped to the range defined by

Minimum Depth and Maximum Depth in the selected CC_VIEWPORT state. Then the current

(“destination”) depth buffer value for this pixel is read.

This function then compares the source and destination depth values. The comparison performed is

specified by the Depth Test Function state variable.

The result of the comparison is propogated down the pipeline for use in the subsequent Depth Buffer

Update function. The Depth Test function does not in itself discard pixels.

If Depth Test Enable is DISABLED, a result of “depth test passed” is propagated down the pipeline.

Programming Note:

 Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

Pre-Blend Color Clamping

Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable OR Pre-Blend Source Only

Clamp Enable and Color Clamp Range states in COLOR_CALC_STATE, is affected by the enabling of

Color Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color Clamping.

Blending RT Format Pre-Blend Color Clamp Post-Blend Color Clamp

Off UNORM, Must be enabled with range = RT

range or [0,1] (same function)

N/A, state ignored

 SNORM Must be enabled with range = RT

range or [-1,1] (same function)

N/A, state ignored

 FLOAT (except for

R11G11B10_FLOAT)

Must be enabled (with any

desired range)

N/A, state ignored

 R11G11B10_FLOAT Must be enabled with either [0,1]

or RT range

N/A, state ignored

 UINT, SINT State ignored, implied clamp to

RT range

N/A, state ignored

On

(where

permitted)

UNORM, UNORM_SRGB Must be enabled with range = RT

range or [0,1] (same function)

Must be enabled with range = RT

range or [0,1] (same function)

3D Media GPGPU

666 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Blending RT Format Pre-Blend Color Clamp Post-Blend Color Clamp

 SNORM Must be enabled with range = RT

range or [-1,1] (same function)

Must be enabled with range = RT

range or [-1,1] (same function)

 FLOAT (except for

R11G11B10_FLOAT)

Can be disabled or enabled (with

any desired range)

Must be enabled (with any

desired range)

 R11G11B10_FLOAT Can be disabled or enabled (with

any desired range)

Must be enabled with either [0,1]

or RT range

Pre-Blend Color Clamping When Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp Enable. If ENABLED,

all source color components are clamped to the range specified by Color Clamp Range. If DISABLED,

no clamping is performed.

Programming Note

Context: Pre-Blend Color Clamping When Blending is Disabled

 Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is expected and highly

recommended that, when blending is disabled, software set Pre-Blend Color Clamp Enable to ENABLED

and select an appropriate Color Clamp Range.

 When using SINT or UINT rendertarget surface formats, Blending must be DISABLED. The Pre-Blend Color

Clamp Enable and Color Clamp Range fields are ignored, and an implied clamp to the rendertarget

surface format is performed.

Pre-Blend Color Clamping When Blending is Enabled

The clamping of source, destination and constant color components is controlled by Pre-Blend Color

Clamp Enable. If ENABLED, all these color components are clamped to the range specified by Color

Clamp Range. If DISABLED, no clamping is performed on these color components prior to blending.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 667

Color Buffer Blending

The Color Buffer Blending function is used to combine one or two incoming “source” pixel color+alpha

values with the “destination” color+alpha read from the corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state variable (in

COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp functions are disabled for all

RenderTargets, and the pixel values (possibly subject to Pre-Blend Clamp) are passed through

unchanged.

The Color Buffer Blend Enable is in the per-render-target BLEND_STATE, and the field in

SURFACE_STATE is no longer supported.

Programming Note

Context: Color Buffer Blending, Logic Ops, DataPort, surface formats, render targets

 Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is UNDEFINED.

 Dual source blending: The DataPort only supports dual source blending with a SIMD8-style message.

 Only certain surface formats support Color Buffer Blending. Refer to the Surface Format tables in Sampling

Engine. Blending must be disabled on a RenderTarget if blending is not supported.

The incoming “source” pixel values are modulated by a selected “source” blend factor, and the possibly

gamma-decorrected “destination” values are modulated by a “destination” blend factor. These terms

are then combined with a “blend function”. In general:

src_term = src_blend_factor * src_color

dst_term = dst_blend_factor * dst_color

color output = blend_function(src_term, dst_term)

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used and,

correspondingly, there is no alpha component computed by this function.

Dual Source Blending: When using “Dual Source” Render Target Write messages, the Source1 pixel

color+alpha passed in the message can be selected as a src/dst blend factor. See Color Buffer Blend

Color Factors. In single-source mode, those blend factor selections are invalid. If SRC1 is included in a

src/dst blend factor and a DualSource RT Write message is not used, results are UNDEFINED. (This

reflects the same restriction in DX APIs, where undefined results are produced if “o1” is not written by a

PS – there are no default values defined). If SRC1 is not included in a src/dst blend factor, dual source

blending must be disabled.

The blending of the color and alpha components is controlled with two separate (color and alpha) sets

of state variables. However, if the Independent Alpha Blend Enable state variable in

COLOR_CALC_STATE is DISABLED, then the “color” (rather than “alpha”) set of state variables is used for

both color and alpha. Note that this is the only use of the Independent Alpha Blend Enable state – it

does not control whether Blending occurs, only how.

Per Render Target Blend State: Blend state is selected based on Render Target Index contained in

the message header, and appropriate blend state is applied to Render Target Write messages.

3D Media GPGPU

668 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following table describes the color source and destination blend factors controlled by the Source

[Alpha] Blend Factor and Destination [Alpha] Blend Factor state variables in COLOR_CALC_STATE.

Note that the blend factors applied to the R,G,B channels are always controlled by the

Source/Destination Blend Factor, while the blend factor applied to the alpha channel is controlled

either by Source/Destination Blend Factor or Source/Destination Alpha Blend Factor.

Color Buffer Blend Color Factors

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels

 (oN = output from PS to RT#N)

 (o1 = 2nd output from PS in Dual-Souce mode only)

 (rtN = destination color from RT#N)

 (CC = Constant Color)

BLENDFACTOR_ZERO 0.0, 0.0, 0.0, 0.0

BLENDFACTOR_ONE 1.0, 1.0, 1.0, 1.0

BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a

BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a

BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a

BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a

BLENDFACTOR_SRC1_COLOR o1.r, o1.g, o1.b, o1.a

BLENDFACTOR_INV_SRC1_COLOR 1.0-o1.r, 1.0-o1.g, 1.0-o1.b, 1.0-o1.a

BLENDFACTOR_SRC1_ALPHA o1.a, o1.a, o1.a, o1.a

BLENDFACTOR_INV_SRC1_ALPHA 1.0-o1.a, 1.0-o1.a, 1.0-o1.a, 1.0-o1.a

BLENDFACTOR_DST_COLOR rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR 1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

BLENDFACTOR_CONST_COLOR CC.r, CC.g, CC.b, CC.a

BLENDFACTOR_INV_CONST_COLOR 1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA CC.a, CC.a, CC.a, CC.a

BLENDFACTOR_INV_CONST_ALPHA 1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f,f,1.0 where f = min(1.0 – rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend Function state

variable and the Alpha Blend Function state variable (when in independent alpha blend mode).

Color Buffer Blend Functions

Blend Function Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_SUBTRACT DstColor*DstFactor - SrcColor*SrcFactor

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 669

Blend Function Operation (for each color component)

BLENDFUNCTION_MIN
min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL “min” function.

BLENDFUNCTION_MAX
max (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL “max” function.

Post-Blend Color Clamping

(See Pre-Blend Color Clamping above for a summary table regarding clamping)

Post-Blend Color clamping is available only if Blending is enabled.

If Blending is enabled, the clamping of blending output color components is controlled by Post-Blend

Color Clamp Enable. If ENABLED, the color components output from blending are clamped to the

range specified by Color Clamp Range. If DISABLED, no clamping is performed at this point.

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is enabled color

components will be automatically clamped to (at least) the rendertarget surface format range at this

stage of the pipeline.

Dithering

Dithering is used to give the illusion of a higher resolution when using low-bpp channels in color

buffers (e.g., with 16bpp color buffer). By carefully choosing an arrangement of lower resolution colors,

colors otherwise not representable can be approximated, especially when seen at a distance where the

viewer’s eyes will average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands

seen on smooth-shaded objects.

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on the pixel’s X and Y

screen coordinate. The pixel’s X and Y screen coordinates are first offset by the Dither Offset X and

Dither Offset Y state variables (these offsets are used to provide window-relative dithering). Then the

two LSBs of the pixel's screen X coordinate are used to address a column in the dither matrix, and the

two LSBs of the pixel's screen Y coordinate are used to address a row. This way, the matrix repeats every

four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise) truncated bits of the

component being dithered. It is then added with the component and the result is truncated to the bit

depth of the component given the color buffer format.

3D Media GPGPU

670 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dithering Process (5-Bit Example)

Logic Ops

The Logic Ops function is used to combine the incoming “source” pixel color/alpha values with the

corresponding “destination” color/alpha contained in the ColorBuffer, using a logic function.

The Logic Op function is enabled by the LogicOp Enable state variable. If DISABLED, this function is

ignored and the incoming pixel values are passed through unchanged.

Programming Notes

Programming Note

Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is UNDEFINED.

Logic Ops are supported on all blendable render targets and render targets with *INT formats.

The following table lists the supported logic ops. The logic op is selected using the Logic Op Function

field in COLOR_CALC_STATE.

Logic Ops

LogicOp Function Definition (S=Source, D=Destination)

LOGICOP_CLEAR all 0’s

LOGICOP_NOR NOT (S OR D)

LOGICOP_AND_INVERTED (NOT S) AND D

LOGICOP_COPY_INVERTED NOT S

LOGICOP_AND_REVERSE S AND NOT D

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 671

LogicOp Function Definition (S=Source, D=Destination)

LOGICOP_INVERT NOT D

LOGICOP_XOR S XOR D

LOGICOP_NAND NOT (S AND D)

LOGICOP_AND S AND D

LOGICOP_EQUIV NOT (S XOR D)

LOGICOP_NOOP D

LOGICOP_OR_INVERTED (NOT S) OR D

LOGICOP_COPY S

LOGICOP_OR_REVERSE S OR NOT D

LOGICOP_OR S OR D

LOGICOP_SET all 1’s

Buffer Update

The Buffer Update function is responsible for updating the pixel’s Stencil, Depth and Color Buffer

contents based upon the results of the Stencil and Depth Test functions. Note that Kill Pixel and/or

Alpha Test functions may have already discarded the pixel by this point.

Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the Stencil Fail Op,

Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op state (or their backface counterparts if

Double Sided Stencil Enable is ENABLED and the pixel is from a back-facing object) and the results of

the Stencil Test and Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is modified if the stencil

test fails. Stencil Pass Depth Fail Op and Backface Stencil Pass Depth Fail Op specify how/if the

stencil buffer is modified if the stencil test passes but the depth test fails. Stencil Pass Depth Pass Op

and Backface Stencil Pass Depth Pass Op specify how/if the stencil buffer is modified if both the

stencil and depth tests pass. The operations (on the stencil buffer) that are to be performed under one

of these (mutually exclusive) conditions is summarized in the following table.

Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

STENCILOP_ZERO Store a 0

STENCILOP_REPLACE Store the StencilTestReference reference value

STENCILOP_INCRSAT Saturating increment (clamp to max value)

STENCILOP_DECRSAT Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

3D Media GPGPU

672 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Stencil Operation Description

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil Buffer Write

Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil Buffer Write Mask

state variables provide an 8-bit mask that selects which bits of the stencil write value are modified.

Masked-off bits (i.e., mask bit == 0) are left unmodified in the Stencil Buffer.

Programming Note

Context: Stencil Buffer Updates

The Stencil Buffer can be written even if depth buffer writes are disabled via Depth Buffer Write Enable

Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write Enable state variable. If

there is no Depth Buffer, writes must be explicitly disabled with this state variable, or operation is

UNDEFINED.

If depth testing is disabled or the depth test passed, the incoming pixel’s depth value is written to the

Depth Buffer. If depth testing is enabled and the depth test failed, the pixel is discarded – with no

modification to the Depth or Color Buffers (though the Stencil Buffer may have been modified).

Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color Buffer.

This function is automatically invoked whenever the destination surface (render target) has an SRGB

format (see surface formats in Sampling Engine). For these surfaces, the computed RGB values are

converted from gamma=1.0 space to gamma=2.4 space by applying a ^(2.4) exponential function.

Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is written into the

Color Buffer. The Surface Format of the color buffer indicates which channel(s) are written (e.g.,

R8G8_UNORM are written with the Red and Green channels only). The Color Buffer Component Write

Disables from the Color Buffer’s SURFACE_STATE provide an independent write disable for each

channel of the Color Buffer.

Pixel Pipeline State Summary

COLOR_CALC_STATE

This topic is currently under development.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 673

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS does not exist. It has been replaced by

3DSTATE_WM_DEPTH_STENCIL. (See Vol2a.11 3D Pipeline – Windower for details.)

COLOR_CALC_STATE

COLOR_CALC_STATE

DEPTH_STENCIL_STATE

DEPTH_STENCIL_STATE does not exist. It has been replaced by 3DSTATE_WM_DEPTH_STENCIL. (See 3D

Pipeline – Windower for details).

BLEND_STATE

BLEND_STATE

Signal [CHV, BSW] CC_INT::AlphaTestEnable

Description AlphaTestEnable

Formula
= BLEND_STATE::AlphaTestEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferResolveEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferClear &&

!3DSTATE_WM_HZ_OP::StencilBufferClear

Signal [CHV, BSW] CC_INT::AlphaToCoverageEnable

Description AlphaToCoverageEnable

Formula
= BLEND_STATE::AlphaToCoverageEnable &&

!3DSTATE_PS_EXTRA::PixelShaderDisableAlphaToCoverage

CC_VIEWPORT

CC_VIEWPORT

3D Media GPGPU

674 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Other Pixel Pipeline Functions

Statistics Gathering

If Statistics Enable is set in 3DSTATE_WM, the PS_DEPTH_COUNT register (see Memory Interface

Registers in Volume 1a, GPU Overview) is incremented once for each pixel (or sample) that passes the

depth, stencil and alpha tests. Note that each of these tests is treated as passing if disabled. This count

is accurate regardless of whether Early Depth Test Enable is set. To obtain the value from this register

at a deterministic place in the primitive stream without flushing the pipeline, however, the

PIPE_CONTROL command must be used. See Volume 2a, 3D Pipeline, for details on PIPE_CONTROL.

MCS Buffer for Render Target(s)

MCS buffer can be enabled for two purposes described below. MCS buffer can be controlled using two

mechanisms:

1. MMIO bit Cache Mode 1 (0x2124) register bit 5

2. RT surface state

The following table summarizes modes of operation related to MCS buffer:

Cache Mode

MMIO Bit

(Please refer to

Vol 1c)

MSC Enable

(Surface

State)
Operation

1 (feature disable) X Normal mode of operation i.e. no MSAA compression and no color clear

0 0 Normal mode of operation i.e. no MSAA compression and no color clear

0 1 Depending on the Number of multi-samples, either MSAA compression OR

color clear is enabled

Project MSAA Width of Clear Rect Height of Clear Rect

CHV, BSW 2x Ceil(1/8*width) Ceil(1/2*height)

CHV, BSW 4X Ceil(1/8*width) Ceil(1/2*height)

CHV, BSW 8X Ceil(1/2*width) Ceil(1/2*height)

 MSAA Compression: Multi-sample render target is bound to the pipeline and MSAA

compression feature is enabled. In this case, MCS buffer stores the information required for

MSAA compression algorithm. The size and layout of the MCS buffer is based on per-pixel RT. For

4X and 8X MSAA, MCS buffer element is 8bpp and 32bpp respectively. Height, width, and layout

of MCS buffer in this case must match with Render Target height, width, and layout. MCS buffer is

tiledY. When MCS buffer is enabled and bound to MSRT, it is required that it is cleared prior to

any rendering. A clear value can be specified optionally in the surface state of the corresponding

RT. Clear pass for this case requires that scaled down primitive is sent down with upper left

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 675

coordinate to coincide with actual rectangle being cleared. For MSAA, clear rectangle’s height

and width need to as show in the following table in terms of (width,height) of the RT.

 Fast Color Clear: When non multi-sample render target is bond to the pipeline and MSC buffer is

enabled, MCS buffer is used as an intermediate (coarse granular) buffer per RT. Hence, MCS

buffer is used to improve render target clear. When MCS is buffer is used for color clear of non-

multisampler render target, the following restrictions apply:

Color Clear of Non-MultiSampler Render Target Restrictions

Restrictions

Support is limited to tiled render targets.

Mip-mapped and arrayed surfaces are supported with MCS buffer layout with these alignments in the RT

space: Horizontal Alignment = 256 and Vertical Alignment = 128.

Clear is supported only on the full RT; i.e., no partial clear or overlapping clears.

The following table describes the RT alignment:

 Pixels Lines

TiledY RT CL

bpp

32 8 4

64 4 4

128 2 4

TiledX RT CL

bpp

32 16 2

64 8 2

128 4 2

MCS buffer for non-MSRT is supported only for RT formats 32bpp, 64bpp, and 128bpp.

Clear pass must have a clear rectangle that must follow alignment rules in terms of pixels and lines as

shown in the table below. Further, the clear-rectangle height and width must be multiple of the following

dimensions. If the height and width of the render target being cleared do not meet these requirements, an

MCS buffer can be created such that it follows the requirement and covers the RT.

Clear rectangle must be aligned to two times the number of pixels in the table shown below due to 16X16

hashing across the slice.

 Pixels Lines

TiledY RT

bpp

32 128 128

64 64 128

128 32 128

3D Media GPGPU

676 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TiledX RT

bpp

32 256 64

64 128 64

128 64 64

To optimize the performance MCS buffer (when bound to 1X RT) clear similarly to MCS buffer clear for

MSRT case, clear rect is required to be scaled by the following factors in the horizontal and vertical

directions:

 Horizontal Scale Down Factor Vertical Scale Down Factor

MCS CL for TiledY RCC

bpp

32 64 64

64 32 64

128 16 64

MCS CL for TiledX RCC

bpp

32 128 32

64 64 32

128 32 32

Resolve rectangle must not be scaled if MCS Resolve Optimization is disabled in the Cache Mode

register.

The following SW requirements for MCS buffer clear functionality apply in addition to the general SW

requirements listed below:

 For non-MSRTs, loss less compression of render targets is supported for 32, 64, and 128 bpp surfaces as

described in the Shared Functions Data Port under Render Target Write. Lossless RT compression can be

enabled for each RT surface with auxiliary surface control bits as described in the Surface State. This feature

changes the MSC layout for various tiled and BPP formats as described in above sections. Fast clear, render,

and resolve operations are fundamentally the same. Since Sampler support reading this auxiliary (MCS)

buffer for non-MSRTs, resolve passes can be avoided in the cases when fast cleared and possibly

compressed RTs are consumed by the sampler.

 SW does not need to compile any PS for clear and resolve passes but must ensure that PS dispatch enable

bit is set.

 Any transition from any value in {Clear, Render, Resolve} to a different value in {Clear, Render, Resolve}

requires end of pipe synchronization.

The following are the general SW requirements for MCS buffer clear functionality:

 At the time of Render Target creation, SW needs to create clear-buffer, i.e., MCS buffer.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 677

 At the clear time, clear value for that RT must be programmed and clear enable bit must be set in

the surface state of the corresponding RT.

 SW must clear the RT with setting a RT clear bit set in the PS state during the clear pass as

described in the following sub-section.

 Since only one RT is bound with a clear pass, only one RT can be cleared at a time. To clear

multiple RTs, multiple clear passes are required.

 If Software wants to enable Color Compression without Fast clear, Software needs to initialize

MCS with zeros.

 Lossless compression and CCS initialized to all F (using HW Fast Clear or SW direct Clear) on the

same surface is not supported

 Before binding the “cleared” RT to texture OR honoring a CPU lock OR submitting for flip, SW

must ensure a resolve pass. Such a resolve pass is described in the following sub-section.

Render Target Fast Clear

Fast clear of the render target is performed by setting the Render Target Fast Clear Enable field in

3DSTATE_PS and rendering a rectangle The size of the rectangle is related to the size of the MCS.

The following is required when performing a render target fast clear:

 The render target(s) is/are bound as they normally would be, with the MCS surface defined in

SURFACE_STATE.

 A rectangle primitive of the same size as the MCS surface is delivered.

 The pixel shader kernel requires no attributes, and delivers a value of 0xFFFFFFFF in all channels of

the render target write message The replicated color message should be used.

 Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write

Enable, and Alpha Test Enable must all be disabled.

 After Render target fast clear, pipe-control with color cache write-flush must be issued before

sending any DRAW commands on that render target.

Render Target Resolve

If the MCS is enabled on a non-multisampled render target, the render target must be resolved before

being used for other purposes (display, texture, CPU lock) The clear value from SURFACE_STATE is

written into pixels in the render target indicated as clear in the MCS. This is done by setting the Render

Target Resolve Enable field in 3DSTATE_PS and rendering a full render target sized rectangle. Once

this is complete, the render target will contain the same contents as it would have had the rendering

been performed with MCS surface disabled. In a typical usage model, the render target(s) need to be

resolved after rendering and before using it as a source for any consecutive operation.

When performing a render target resolve, PIPE_CONTROL with end of pipe sync must be delivered.

A rectangle primitive must be scaled down by the following factors with respect to render target being resolved:

3D Media GPGPU

678 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 Horizontal scale down factor Vertical scale down factor

MSC CL for

 TiledY RCC

bpp

32 64 64

64 32 64

128 16 64

MSC CL for

 TiledX RCC

bpp

32 128 32

64 64 32

128 32 32

The pixel shader kernel requires no attributes, but must deliver a render target write message covering all pixels

and all render targets desired to be resolved The color data in these messages is ignored (the replicated color

message is required).

Programming Note

Context: Render Target Resolve

 Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write Enable, and

Alpha Test Enable must all be disabled.

 This render target resolve procedure is not supported on multisampled render targets. Unresolved

multisampled render targets are directly supported by the sampling engine, which resolves clear values in

addition to decompressing the surface This applies to both ld2dms and sample2dms messages.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 679

Media GPGPU Pipeline

This section of the BSpec discusses Programming the GPGPU Pipeline, Thread Group Tracking, Generic

Media, and other related topics.

Media GPGPU Pipeline

This section of the BSpec discusses Programming the GPGPU Pipeline, Thread Group Tracking, Generic

Media, and other related topics.

Programming the GPGPU Pipeline

1. In MEDIA_VFE_STATE choose whether to set DW2.6 Bypass Gateway Control. Usually this will be

set, allowing the gateway to be used without OpenGateway/CloseGateway.

2. Set up interface descriptor with # of threads in barrier. The barrier id is not specified here because

can Gen7 automatically assigns barriers to thread groups when they are free. The amount of

CURBE data to deliver per thread dispatch is set in the interface descriptor.

3. Set up CURBE with thread ids and common data for all thread dispatches in the thread group.

4. Set up a GPGPU_WALKER command or a set of GPGPU_OBJECT commands with the thread group

ids to dispatch the threads. The CURBE data is sent in sections for each thread dispatch in the

thread group; a new thread group starts sending the CURBE data from the beginning of the

buffer.

Note: Gen7 can either have the barriers and SLM automatically managed by hardware or specified by

software. Mixing software managed and hardware managed in the same set of threads is allowed, but

may cause stalls if there is an allocation conflict.

Note: When using GPGPU_OBJECT, finish dispatching a thread group before starting a different one.

The kernel should handle the barriers as follows:

The BarrierMsg message contains the barrier id and a way to reprogram the barrier count. The barrier

count reprogram is not normally used for GPGPU workloads. When all threads in the group have

reached the barrier, the gateway returns a notification bit 0.

The kernel must wait for the barrier to finish with a WAIT N0.

If a GPGPU kernel is going to access the Render Cache then the Fixed Function DOP Clock Gate Disable should be

set to prevent the clock gating of the DAP used to access the Render Cache. This should be reset as soon as all the

kernels that are accessing the Render Cache are finished and the Render cache flushed.

3D Media GPGPU

680 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GPGPU Thread Limits

GPGPU requires 1024 SIMD channels to be available for a maximum size thread group. In a system with

10 EUs per subslice, each with 7 hardware threads, this means that a maximum size thread group will fit

in a subslice if SIMD16 instructions are used, but not if SIMD8 are used. These limits can be

circumvented for thread groups which do not need access to a barrier or SLM, in which case the thread

group can cross sub-slices.

The Configurations section should be referenced to determine what SIMD is required to fit in the

subslice of the targeted configuration.

GPGPU Commands

This section contains various commands for GPGPU, including a number of them shared with media

mode.

MEDIA_VFE_STATE with varying definitions for different generations and projects:

MEDIA_VFE_STATE

MEDIA_CURBE_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Interface Descriptor Data payload as pointed to by the Interface Descriptor Data Start Address, with

varying definitions for different generations and projects:

INTERFACE_DESCRIPTOR_DATA

MEDIA_STATE_FLUSH

GPGPU_WALKER

GPGPU Command Workarounds

GPGPU Commands have some subtle programming restrictions and workarounds to be aware of, as

described below.

The MEDIA_STATE_FLUSH command is updated to specify all the resources required for the next thread group via

an interface descriptor – if the resources are not available the group cannot start.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 681

GPGPU Indirect Thread Dispatch

Indirect thread dispatch allows one thread group to control the group size of a following thread group.

This is the sequence of commands in the ring buffer:

GPGPU_OBJECT/WALKER // Either a set of objects or a walker to dispatch a thread group which will write

the next group's properties to memory.

MI_FLUSH // Make sure the thread group has finished executing.

MEDIA_CURBE_LOAD // Load the thread ids for new group.

MI_LOAD_REGISTER_MEMORY // Load the indirect MMIO GPGPU registers from the mem written by the previous

group.

GPGPU_WALKER (indirect) // A walker with the indirect bit set.

The first thread group writes this data to memory:

1. The thread ids delivered in the CURBE - written where the following MEDIA_CURBE_LOAD will

read them.

2. The GPGPU_WALKER parameters are written to memory where the MI_LOAD_REGISTER_MEMORY

will read them.

a. GPGPU_DISPATCHDIMX - the X dimension of the number of thread groups to dispatch in:

DWord Project

7 CHV, BSW

b. GPGPU_DISPATCHDIMY - the Y dimension of the number of thread groups to dispatch in:

DWord Project

10 CHV, BSW

c. GPGPU_DISPATCHDIMZ - the Z dimension of the number of thread groups to dispatch in:

DWord Project

12 CHV, BSW

See vol1c Memory Interface and Command Stream for the MMIO register addresses and formats.

3D Media GPGPU

682 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GPGPU Context Switch

The GPGPU pipeline supports interruption of GPGPU workloads on thread group boundaries. This is

needed for general purpose GPGPUs that are so large that there is a risk of the display becoming non-

responsive if the work cannot be interrupted for other jobs.

A workload is interrupted with the MI_ARB_CHECK command with the UHPTR register. The

MI_ARB_CHECK command is placed throughout the command buffer. The driver updates the UHPTR

register when a new context is needed; MI_ARB_CHECK checks for this and reprograms the head and

tail pointers to the new batch of commands. The driver waits for the preemption to occur without going

into RS2.

The GPGPU needs to modify this to allow a GPGPU_WALKER command to be interrupted. This is done

by following each GPGPU_WALKER command with a MEDIA_STATE_FLUSH. This causes the CS to stop

fetching commands until either the command completes or until the UHPTR valid bit is set.

GPGPU workloads can be dispatched with either GPGPU_OBJECT commands or GPGPU_WALKER

commands. In the case of GPGPU_OJBECT, the MEDIA_STATE_FLUSH/ MI_ARB_CHECK pair must be

placed in the batch buffer at thread group boundaries, since preemption cannot occur with a thread

group partially dispatched. GPGPU_WALKER commands can dispatch multiple thread groups, in this

case the MEDIA_STATE_FLUSH/ MI_ARB_CHECK follows each GPGPU_WALKER and the hardware takes

care of noticing the UHPTR update and stopping at the next thread group boundary.

The commands in the batch buffer will look something like this:

Command Ring Notes

MI_SET_CONTEXT Go to GPGPU context

MI_BATCH_BUFFER_START If new context, set address to top of batch. Otherwise, address needs to be set to the

command preempted (given in the HWSP). The GP GPGPU bit must be set.

Command Batch Notes

GPGPU_OBJECT

GPGPU_OBJECT

... (more threads forming a complete thread group)

MEDIA_STATE_FLUSH Check for preemption at thread group boundary. “Preemption” defined by the UHPTR

valid bit set.

MI_ARB_CHECK Move the head only if UHPTR valid bit is set.

...

GPGPU_WALKER

MEDIA_STATE_FLUSH Check for preemption at thread group boundary internal to GPGPU_WALKER command.

“Preemption” defined by the UHPTR valid bit set.

MI_ARB_CHECK Move the head only if UHPTR valid bit is set.

...

MI_BATCH_BUFFER_END GPCS batch workload bit is cleared.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 683

The context saved will consist of the state commands for VFE and a modified GPGPU_WALKER

command with a new starting thread group id. On context restore, the commands are executed to start

the GPGPU_WALKER where it left off before continuing with the rest of the command buffer.

An example software model for starting a preemption goes like this:

1. The UHPTR is reprogrammed to point to the current tail of the ring buffer.

2. Insert new commands:

a. LRI to UHPTR to clear valid.

b. Store Register to mem the preempted batch offset.

c. Store Register to mem the preempted ring offset.

d. Pipe_control notification.

e. An MI_SET_CONTEXT to the new context is put into the ring.

3. Insert commands for new context. i.e. batch buffers.

4. Update Tail Pointer.

Programming Note

Context: GPGPU Context Switch

 2-3 items above could happen during execution of a thread group so the HW may see the tail pointer

updated before preemption starts.

 The driver needs to turn off RC6 during items 1 and 4.

GPGPU_CSR_BASE_ADDRESS

GPGPU Context Switch

Context switch allows the switch to take place in the middle of a thread group to provide better

response time.

The command sequence has been simplified – MEDIA_STATE_FLUSH and MI_ARB_CHECK are now

optional between commands for preemption to occur. MEDIA_STATE_FLUSH is now only needed before

MEDIA_LOAD_CURBE commands to ensure CURBE is done being read before reloading it. The

watermark bit in MEDIA_STATE_FLUSH is not needed, since the check is done automatically before a

thread group is started.

3D Media GPGPU

684 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Preemption can occur on commands listed here:

 MI_ARB_CHECK

 MEDIA_STATE_FLUSH

 PIPE_CONTROL

 MI_WAIT_FOR_EVENT

 MI_SEMAPHORE_WAIT

 GPGPU_WALKER – Preemption can occur at any time, with thread groups partially complete; the

system state is saved/restored for context save and restore

 MI_WAIT_FOR_EVENT

 MI_SEAMPHORE_WAIT

Media commands like MEDIA_OBJECT and MEDIA_OBJECT_WALKER are not preemptable.

Messages to the Sampler must use headers (controlled by bit 19 of the Message Descriptor) when pre-

emption is enabled.

See GPGPU Context Switch Workarounds for information about programming restrictions and

workarounds.

Note that command preemption is not supported for MEDIA_OBJECT_* commands – MI_ARB_ON/OFF

should be used to prevent preemption except at frame boundaries, where an MI_ARB_CHECK should be

inserted.

The memory map of the context image that is saved from GPGPU pipeline includes SLM and EU State. A

contiguous space is allocated to save the SLM and EU State starting from the address provided in

GPGPU_CSR_BASE_ADDRESS.

Maximum Upper Bound

Project Description

CHV,

BSW

The maximum upper bound is set to 4MB for GT2 and

GT3.

In GPGPU context save/restore mode, hardware writes to this location and does NOT use the surface

state or scratch space.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 685

Memory Map of the GPGPU Context Image

The address offsets computed by hardware depend on the number of slices, subslices, EUs, and threads.

Base Address Calculation

Base Address = CSR_Base_Address + A* [Config.NumSlmBanks] + B*SubSliceId + C*EuId + D*ThreadId

+ Message_Offset

A = 0x10000 // 64K SLM per SubSlice

B = C * [Config.NumEusPerSubSlice]

C = D * [Config.NumThreadsPerEu]

D = 0x2000 // 8KB

Note: The slicenumber and EUIDs may require re-mapping such that a contiguous space is used with

no gaps inbetween.

3D Media GPGPU

686 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GPGPU Context Switch Workarounds

The GPGPU Context Switch support has some subtle programming restrictions and workarounds, as

described below.

In products with slices that have an unequal number of EUs (for example, 1 slice with 23 EUs and 2 slices with 24)

there will sometimes be a delay in pre-emption while the hardware waits for threads to exit in the smaller slice.

Media GPGPU Payload Limitations

There are 3 types of payload that the media/GPGPU instructions can have, but not all of them are

allowed. The following table lists the legal combinations:

Workload Commands Data Stored

GPGPU GPGPU_WALKER CURBE

GPGPU_WALKER INDIRECT

Media(Legacy) Media_Object CURBE

Media_Object INDIRECT

Media_Object INLINE

Media_Object CURBE+INLINE

Media_Object CURBE+INDIRECT

Media_Object INLINE+INDIRECT

Media_Object CURBE+ INLINE+INDIRECT

Media_Object_Walker CURBE

Media_Object_Walker INLINE

Media_Object_Walker CURBE+INLINE

Media using Barrier/SLM Media_Object_GRPID CURBE

Media_Object_GRPID INDIRECT

Media_Object_GRPID INLINE

Media_Object_Walker (with group id) CURBE

Media_Object_Walker (with group id) INLINE

Indirect and CURBE payloads are fetched during thread dispatch from memory using the Dynamic State

MOCS (specified in [Instruction] STATE_BASE_ADDRESS).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 687

Synchronization of the Media/GPGPU Pipeline

The Media/GPGPU Pipeline is synchronized in the same way as the 3D pipeline using the

PIPE_CONTROL command.

See the Bspec section on 3D pipe synchronization: vol2a 3D Pipeline - Overview [CHV, BSW] > 3D

Pipeline > Synchronization of the 3D Pipeline.

3D Media GPGPU

688 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Mode of Operations

This section contains registers for GPGPU Object and GPGPU Command. It also covers GPGPU Mode.

GPGPU Thread R0 Header

The RO header of the Thread Dispatch Payload for the GPGPU thread:

DWord Bits Description

R0.7 31:0 Thread Group ID Z: This field identifies the Z component of the thread group that this thread

belongs to.

R0.6 31:0 Thread Group ID Y: This field identifies the Y component of the thread group that this thread

belongs to.

R0.5 31:10
Scratch Space Pointer. Specifies the 1K-byte aligned pointer to the scratch space (used for the

GPGPU local memory space).

Format = GeneralStateOffset[31:10]

9
GPGPU Dispatch.

Indicates that this dispatch is from the GPGPU pipe (see PIPELINE_SELECT command).

8:0
FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other

concurrent threads (of any thread group). It is used to free up resources used by the thread upon

thread completion.

Format = U9.

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4 Reserved: MBZ

3:0
Indicates the stack memory size.

Range = [0,11] indicating [1K bytes, 2M bytes]

Programming Note: Exception handling on stack overflow is not supported when GPGPU mid-

thread pre-emption is desired.

R0.3 31:5
Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0
Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities, allowed

to be used by this thread. The value specifies the power that two is raised to, to determine the

amount of scratch space.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 689

DWord Bits Description

Format = U4

Range = [0,10] indicating [2K bytes, 2M bytes] in powers of two.

3:0
Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities, allowed

to be used by this thread. The value specifies the power that two is raised to, to determine the

amount of scratch space.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two.

 31 Reserved: MBZ

R0.2 30 Reserved: MBZ

29 Barrier Enable: This field indicates that a barrier has been allocated for this kernel.

28 SLM Enable: This field indicates that Shared Local Memory has been allocated for this kernel.

27:24
BarrierID: This field indicates the barrier that this kernel is associated with.

Format: U4

23:15 Reserved

14:10 Reserved: MBZ

3:0 Reserved: MBZ

R0.1 31:0 Thread Group ID X: This field identifies the X component of the thread group that this thread

belongs to.

R0.0 31:30 Reserved: MBZ

29:28 Reserved: MBZ

27:24
Shared Local Memory Index: Indicates the starting index for the shared local memory for the

thread group. Each index points to the start of a 4K memory block, 16 possibilities cover the entire

64K shared memory per half-slice.

Format = U4

23:16 Reserved: MBZ

15:0 URB Handle: This is the URB handle indicating the URB space for use by the thread.

Cross-thread CURBE if present is in R1 and above, followed by the X/Y/Z thread id values for each

channel in the thread.

Project Description

CHV, BSW The GPGPU_WALKER command is supported.

CHV, BSW At least one form of payload (either indirect or CURBE) must be sent with the GPGPU_WALKER.

GPGPU_WALKER

3D Media GPGPU

690 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GPGPU Mode

The general purpose (GPGPU) mode allows the Gen7 architecture to be used by general purpose

parallel APIs:

 GPGPU

 DX11 GPGPU

This is similar to the Generic mode with additional support for automatic generation of threads, Shared

Local Memory, and Barriers.

Automatic Thread Generation

A single GPGPU job may require thousands or even millions of GPU_OBJECT commands. Rather than

create them separately, it would be better to generate them algorithmically. To do this a

GPGPU_WALKER command is created.

Rather than modifying the Media Walker, a simple Thread Group Walker is created instead:

The X/Y/Z counters for the thread group will have an initial and maximum value. The thread group ID

sent with each dispatch consists of these 3 numbers. These counters are 32 bits since the spec does not

limit the size of the thread ID.

The 3 thread counters count the number of dispatches in a single thread group – up to 32 dispatches

for SIMD32 or 64 dispatches for SIMD16/8. There are 3 thread counters in order to select the execution

masks correctly – see the section Execution Masks. Each one is 6 bits to allow full flexibility of any

dimension going to 64 while the rest do not increment.

A thread is generated each time one of the thread counters increment. When all the counters reach

their maximum values, the thread group is done and the thread group counter can increment and start

a new thread group. When the thread group X counter reaches its maximum it is reset to 0, and the Y

counter is incremented.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 691

The compiler determines how many SIMD channels are needed per thread group, and then decides

how these are split among EU threads. The number of threads is programmed in the thread counter,

and the SIMD mode (SIMD8/SIMD16/SIMD32) is specified in the GPGPU_WALKER command.

Project Security Description

CHV,

BSW

WA.Restriction The maximum thread group size must fit into a single subslice and run in parallel, so the

number of EU threads must be less than the number specified in Configurations for

threads per subslice.

CHV,

BSW

WA.ProgNote Some tables do not have this broken out separately. The threads per subslice = (Thread

count) / (Slice Count * Samplers).

Thread Payload

The payload to each thread dispatched is:

1. A thread group id which identifies the group the set of threads belong to. This is in the form of a

set of 3, 32-bit X/Y/Z values.

2. The set of X/Y/Z that form the thread ID for each channel. If Z is not used then only X/Y are

needed.

3. The execution mask which indicates which channels are active.

Thread IDs form a 2D or 3D surface which has to be mapped into SIMD32, SIMD16 or SIMD8

dispatches. Rather than have the hardware force a particular mapping of thread IDs to channels, the

mapping will be supplied by the compiler. The VFE will receive a simple count of the number of threads

per thread group which will be used to count the number of dispatches. The thread IDs for all threads in

a thread group are put in a constant buffer with the MEDIA_CURBE_LOAD command. A single set of

thread IDs can be used repeatedly for all thread groups, since the thread IDs are the same for each

thread group ID output by the GPGPU_WALKER.

The data required is up to the compiler, but here is an example set of payloads for a 2 Z x 2Y x 12 X and

a SIMD16 dispatch. This thread group requires 3 dispatches:

In this case the thread counter width would be programmed with a maximum value of 3 (since all the

execution masks are all F, it doesn’t matter how the thread counters are programmed as long as they

count to 3 before finishing the thread group).

3D Media GPGPU

692 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The first dispatch would tell the TS (who would tell the TD) that the payload starts at the beginning of

the constant buffer and has a length of 3. The next dispatch would have a payload starting at

constant_buffer_start + 3. The final dispatch payload starts at constant_buffer_start + 6. If there are

more thread groups in the command they would get exactly the same payload – the only difference is

the thread group ID (as well as a different barrier and shared local memory space).

Execution Masks

The number of channels required by the GPGPU job may not evenly fit into the number of SIMD

channels. That can leave some channels idle. The execution mask is used to tell the hardware which

channels are to be used.

A thread group is modeled as a 3D solid with each channel acting as one X/Y/Z point in the solid. This

can take the form of a line with 1024 channels with X from 0 to 1023 and constant Y/Z, a square with

X=0 to 32 and Y=0 to 32, or a cube with X=0 to 9, Y=0 to 9, Z=0 to 9. Software needs to determine how

these shapes are mapped onto the 32 SIMD32 channels per dispatch (or 16 SIM16, etc). The mapping

per thread is assumed to be a 2D square of channels such as 8x4, 16x2, 32x1. Below is a diagram of a

22x6 thread group that is mapped onto a set of 8x4 SIMD32 channels:

Note that the dispatches to the top and left have execution masks of all-F, while all the right edge

dispatches have the same execution mask; likewise all the bottom edge dispatches have the same

execution mask. The bottom right is the logical-AND of the right and bottom edge dispatches.

A 32-bit right and bottom mask is sent with the GPGPU_WALKER command, and the thread width,

height and depth counters are used to determine when they are used (width, height and depth are used

instead of X/Y/Z, since it is not required that width = X – width and height are the two variables that are

changing in a single SIMD dispatch even if they are Y and Z).

For each dispatch the width counter is incremented until it reaches the maximum – the dispatch with

width=max will use the right execution mask. The height counter is then incremented and process

repeated. If at any time the height counter = max then the execution mask is the bottom execution

mask. When the height and width counters are both max then the dispatch will be the AND of the right

and bottom and the depth counter will increment.

The same 2Z x 2Y x 12X thread group described above dispatched as SIMD32 with each dispatch

delivering a 16X x 2Y shape would require 2 dispatches with empty bits in the right execution mask and

all F in the bottom.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 693

The width and height counter would have a maximum of 1, and the depth counter would have a

maximum of 2. The two dispatches would use the AND of the two masks, but since the bottom mask is

F it would be the same as just the right mask.

The execution masks can also be used when the software wants to pack the channels rather than lay

them out in a regular pattern:

In this case the width counter can have a maximum of 2, and the height and depth counters with a

maximum of 1. The first dispatch will use the bottom mask only (all-F) and the second will use the right

AND bottom mask to remove the channels that are not used.

URB Management

The VFE manages the URB in GPGPU and generic/media modes.

Description

The first 64 URB entries are reserved for the interface description, and CURBE data is placed after the IDs. URB

handles are needed for indirect data and parent/child communication; when the VFE starts up it creates up to 128

handles by partitioning the remaining URB space into evenly spaced addresses and saving the resulting handles in

a FIFO. The handles can then be treated just like ones created by the URBM - send to TD on dispatch and

3D Media GPGPU

694 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description

recovered on the handle return bus.

MEDIA_VFE_STATE specifies the amount of CURBE space, the URB handle size and the number of URB handles.

The driver must ensure that:

 ((URB_handle_size * URB_num_handle) – CURBE – 64) <= URB_allocation_in_L3.

Indirect Payload Storage

The GPGPU commands are extended to allow indirect input as an alternative to CURBE. The mechanism

used for CURBE will be used in exactly the same way for indirect: the same offset is used which specifies

what data is delivered to all threads, and then a count which specifies how much data is delivered per

thread. A single indirect pointer points to both the Cross-Thread and Per-Thread Constant Data, which

is stored in the URB. The position of the Cross-Thread and Per-Thread constants are swapped in the EU

GRF.

To use indirect payload storage, the (URB Entry Allocation Size * Number of URB Entries) product must

be enough to cover the sum of the Cross-Thread and Per-Thread Indirect data to be loaded. These state

variables are set in the MEDIA_VFE_STATE command. The URB Entry Allocation must be equal or greater

than th GPGPU_WALKER's Indirect Data Length. In general the maximum number of URB Entries that

fills the URB space should be used to ensure that a shortage of handles doesn’t cause a performance

problem.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 695

CURBE Payload

Example of CURBE command sequence:

MEDIA_STATE_FLUSH // Make sure dispatch is not accessing CURBE

MEDIA_CURBE_LOAD

GPGPU_WALKER

MEDIA_STATE_FLUSH

MEDIA_CURBE_LOAD

GPGPU_WALKER

3D Media GPGPU

696 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Figure for Indirect Payload

Example of Indirect Command Sequence:

GPGPU_WALKER // Indirect pointer included in command

GPGPU_WALKER // No need to flush between commands for CURBE.

The differences between CURBE and Indirect are:

 The indirect uses a 32-bit memory pointer for the start address.

 The Constant URB Entry Read Offset is not used.

 The Cross-Thread Constant Data Read Length and the Constant Entry Read Length is multiplied

by 32 to convert it into bytes.

 The X/Y/Z payload in the EU GRF comes before the Cross-Thread Constant Data.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 697

MEDIA_OBJECT_GRPID

GPGPU_OBJECT already allows barriers and SLM to be allocated, but does not allow the scoreboard to

be used. We need a single command which allows both.

A new command called MEDIA_OBJECT_GRPID is created which is the same as the basic MEDIA_OBJECT

command with the addition of a 32-bit group id and an end-of-group bit. The group id will be used to

allocate barriers and SLM based on the Interface Descriptor.

Restrictions that are currently in place for GPGPU would carry over to Media use of these features:

 All threads that use them must be on the same Tslice unless cross-slice barriers are enabled.

 We only dispatch a single group at a time – this is naturally supported by using only the most

outer loop numbers for the in MEDIA_OBJECT_WALKER, but must be enforced by the

programmer for MEDIA_OBJECT_GRPID.

Starting Offset for a Thread Group ID

The GPGPU_WALKER command has starting values for the Thread Group IDs that the walker generates

per thread group, but they are designed to allow context save and restore rather than provide a true

initial value. When walking a 2D set of groups in X/Y, when the X value reaches the maximum, the Y

increments and the next X is 0, rather than going back to Xstart. This behavior is expected on context

restore where the true initial values are 0,0 and the starting values are actually the resume values of the

restore.

3D Media GPGPU

698 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Thread Group Tracking

The TSG needs to keep track of the threads outstanding in a group to know when the thread group

barrier and Shared Local Memory can be reclaimed. This can be done by keeping a counter per active

thread group (up to 16 per half-slice) which increments when a new thread is sent out and

decremented when the thread retires. The assigned barrier ID (with half-slice bit) is unique per thread

group and much smaller than the thread group ID and so will be used to keep track of the thread group

instead.

Since TSL sends the thread retirement via the Message Channel rather than the thread retirement bus,

the barrier ID used to identify the thread group can be sent at the same time. A CAM will then match

the ID with the counter to decrement.

There is a potential corner case of a thread group without barriers being partly dispatched, then retiring

before the rest of the thread group is sent. This should be OK, since the lack of barriers means that

there are no dependencies between threads.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 699

Shared Local Memory Allocation

The Shared Local Memory is a 64k block per half-slice in the L3 that must be shared between all thread

groups on that half-slice. A new memory manager simular to the Scratch Space memory manager is

used to allocate this space.

We are only dispatching threads from a single Interface Descriptor at a time. If a new Interface

Descriptor is requested the pipe is drained and all shared memory recovered before starting to allocate

new shared memory. This means that only a single size of shared memory needs to be supported at

once.

For simplicity, only power-of-2 sizes from 4k to 64k are allowed. The thread request will specify how

much is needed. The first thread of a Thread Group is marked as requiring a new shared local memory –

if not the old Shared Local Memory offset is sent with the dispatch.

A simple set of 16-bits is used to allocate 4k shared memory, with fewer bits used for larger sizes. A

priority encoder finds the first unused bit and the offset remembered as being associated with a

particular barrier id. The barrier id is then used to track the thread group.

When the Thread Group Tracking indicates that a thread group is completely retired, that section of

shared local memory can be reclaimed.

Software Managed Shared Local Memory

Software can optionally manage shared local memory. In this case, each thread command or thread

group command will have the shared memory offset included – each command in a thread group must

have the same offset, of couse. If the offset requested is still being used then the command is stalled

until the thread group using that offset is done.

Hardware will track the usage of this section of shared memory as before, recording the offset as being

used and recording it as being available after the thread group is done.

Automatic Barrier Management

Description

Since we have an automatic shared memory allocation it makes sense to make barrier management automatic

too. Instead of the barrier id in the Interface Descriptor, there is now a thread count per thread group.

If a new thread group id comes in without a barrier allocated (checked with a CAM match across 16 barriers), the

TSG picks a unused barrier and sends this count in a message to GWunit. It then needs to wait for an accept

message back from GW before sending the dispatch to ensure that a barrier message doesn’t arrive at the GW

before the barrier is programmed. The barrier ID picked is sent with every dispatch from this thread group.

When the thread group tracker determines that a thread group has finished, the barrier becomes available to new

thread groups.

3D Media GPGPU

700 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dispatch Payload

The payload for a general purpose thread will have to include the execution mask with a bit per 32-

channel. SIMD16 and SIMD8 use the LSB bits of the execution mask. The 5-bit number transferred from

VFE will be expanded to produce the 32-bit mask. This will use the Dmask currently used by the pixel

shader dispatch in the transparent header.

Generic Media

This introduction provides a brief overview of the Media product features. It includes Media functions,

feature benefits, and how the features fit into graphics products as part of a whole solution.

Media product features include:

 Multi-format codec engine

 Video front end

 Media fixed functions

 Video encoding

 Video decoding

 Sampling

These product features support specific applications, such as interactive gaming, videogames, social

media, virtual reality, and augmented reality.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 701

The following block diagram shows the Main Render Engine, unified for 3D graphics and Media.

 Fixed Function (FF) pipelines: Provide thread generation and control.

 3D graphics or Media FF: Controls EU array at a given time. The EU (Execution Unit) array is

shared between 3D and Media; ISA is optimized for both.

 Shared functions: Are accelerators to run filtered load, scatter, gather, and filter/blended store

operations.

 MFX: Is a parallel codec engine that runs in a separate context.

3D Media GPGPU

702 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Product Evolution

Block diagrams in this section describe the evolution of Media products, by project. They include

definitions of the main components and how they integrate with each other.

CHV, BSW GT2 Media Pipelines

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 703

Additions/Changes:

 2xVEBOX: Two instances of VEBOX on the same chip.

 DM: De-Mosaic (image processing used to reconstruct a full-color image from sensor

output, which is usually in Bayer format).

 WB: White Balance is the process of removing unrealistic color casts.

 VA: Computer Vision/Analytics - Accelerators for commonly used mathematical operations for

computer vision functions.

 Decode HW: AVC, MPEG-2, MVC, VC-1, VP8, JPEG and legacy formats (AVS, MPEG-4p2).

 Encode HW: AVC, MPEG-2, MVC, JPEG, and VP8.

3D Media GPGPU

704 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Converged CHV, BSW (14nm) Solution

CHV, BSW GT Media Pipelines: This solution maximizes re-use of existing assets while providing

legacy codec coverage.

 Re-use HW Scheduler and Interrupt Handler.

 Same stack for all Codecs.

 Re-use existing CS HW.

 Re-use Watchdog Timer Reset:

 Updated Interface.

 DHG Media Pipeline: IP from the Digital Home Group.

 Tie into GA*.

 Re-use SVN and Page Fault supports in GT*.

 Re-use Reset, Clock, PM in GT*.

 Re-use existing DHG Media Pipeline, but update to Frequency and Interfaces.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 705

Media and General Purpose Pipeline

Introduction

This section covers the programming details for the media (general purpose) fixed function pipeline.

The media pipeline is positioned in parallel with the 3D fixed function pipeline. It provides media

functions and has media specific fixed function capability. However, the fixed functions are designed to

have the general capability of controlling the shared functions and resources, feeding generic threads

to the Execution Units to be executed, and interacting with these generic threads during run time. The

media pipeline can be used for non-media applications, and therefore, can also be referred to as the

general purpose pipeline. For the rest of this chapter, we refer to this fixed function pipeline as the

media pipeline, keeping in mind its general purpose capability.

Concurrency of the media pipeline and the 3D pipeline is not supported. In other words, only one

pipeline can be activated at a given time. Switching between the two pipelines within a single context is

supported using the MI_PIPELINE_SELECT command.

Following are some media application examples that can be mapped onto the media pipeline. All these

applications are functional; however, the level of performance that can be achieved depends on the

hardware configuration and is beyond the scope of this document.

Application

MPEG-2 decode acceleration with HWMC (e.g. DXVA HWMC interface)

MPEG-2 decode acceleration with IS/IDCT and forward (e.g. DXVA IDCT interface)

MPEG-2 decode acceleration with VLD and forward (e.g. DXVA VLD interface)

AVC decode acceleration with HWMC and forward including Loop Filter

VC1 decode acceleration with HWMC and forward including Loop Filter

Advanced deinterlace filter (motion detected or motion compensated deinterlace filter)

Video encode acceleration (with various level of hardware assistance)

Terminologies

Term Description

AVC Advanced Video Coding. An international video coding standard jointly developed by

MPEG and ITU. It is also known as H.264 (ITU), or MPEG-4 Part 10 (MPEG).

Child Thread A thread corresponding to a leaf-node or a branch-node in a thread generation hierarchy.

All thread originated from kernels running on the execution units are child threads.

EOB End of Block. It is a 1-bit flag in the non-zero DCT coefficient data structure indicating the

end of an 8x8 block in a DCT coefficient data buffer.

IDCT Inverse Discrete Cosine Transform. It is the stage in the video decoding pipe between IQ

and MC.

IQ Inverse Quantization. It is a stage in the video decoding pipe between IS and IDCT.

IT Inverse Integer Transform. It is the stage in AVC or VC1 video decoding pipe between IQ

and MC.

3D Media GPGPU

706 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Term Description

MPEG Motion Picture Expert Group. MPEG is the international standard body JTC1/SC29/WG11

under ISO/IEC that has defined audio and video compression standards such as MPEG-1,

MPEG-2, and MPEG-4, etc.

MC Motion Compensation. It is part of the video decoding pipe.

MVFS Motion Vector Field Selection – a four-bit field selecting reference fields for the motion

vectors of the current macroblock.

PRT
A persistent root thread in general stays in the system for a long period of time. It is

normally a parent thread. Only one PRT is allowed in the system.

Hardware is responsible for re-dispatching the incomplete PRT at context restore, and a

PRT can continue operations from that previously left-over state.

Parent Thread A thread corresponding to a root-node or a branch-node in thread generation hierarchy. A

parent thread may be a root thread or a child thread depending on its position in the

thread generation hierarchy.

Root Thread A thread corresponding to a root-node in a thread generation hierarchy. In the general-

purpose pipeline, all threads originated from VFE unit are root threads.

Synchronized Root

Thread

A root thread that is dispatched by TS upon a ‘dispatch root thread’ message.

TS Thread Spawner. It is the second (and the last) fixed function in the general-purpose

pipeline.

Unsynchronized

Root Thread

A root thread that is automatically dispatched by TS.

VFE Video Front End. It is the first fixed function in the general-purpose pipeline.

VLD Variable Length Decode. It is the first stage of the video decoding pipe that consists mainly

of bit-wide operations. Hardware MPEG-2 VLD acceleration is supported in the VFE fixed

function stage.

Hardware Feature Map in Products

The following table lists the hardware features in the media pipe.

Video Front End Features in Device Hardware

Features/

Device
[CHV, BSW]

Generic Mode
Y

Root Threads
Y

Parent/Child Threads
Y

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 707

Features/

Device
[CHV, BSW]

SRT (Synchronized Root Threads)
Y

PRT (Persistent Root Thread)
Y

Interface Descriptor Remapping
N

IS Mode (HW Inverse Scan)
N

VLD Mode (HW MPEG2 VLD)
N

AVC MC Mode
N

AVC IT Mode (HW AVC IT)
N

AVC ILDB Filter (in Data Port)
N

VC1 MC Mode
N

VC1 IT Mode (HW VC1 IT)
N

Stalling HW Scoreboard
Y

Non-stalling HW Scoreboard
Y

HW Walker
Y

HW Timer
Y

Pipelined State Flush
Y

HW Barrier
Y

3D Media GPGPU

708 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Media Pipeline Overview

The media (general purpose) pipeline consists of two fixed function units: Video Front End (VFE) unit

and Thread Spawner (TS) unit. VFE unit interfaces with the Command Streamer (CS), writes thread

payload data into the Unified Return Buffer (URB), and prepares threads to be dispatched through TS

unit. VFE unit also contains a hardware Variable Length Decode (VLD) engine for MPEG-2 video decode.

TS unit is the only unit of the media pipeline that interfaces to the Thread Dispatcher (TD) unit for new

thread generation. It is responsible for spawning root threads (short for the root-node parent threads)

originated from VFE unit and for spawning child threads (can be either a leaf-node child thread or a

branch-node parent thread) originated from the Execution Units (EU) by a parent thread (can be a root-

node or a branch-node parent thread).

The fixed functions, VFE and TS, in the media pipeline, in most cases, share the same basic building

blocks as the fixed functions in the 3D pipeline. However, there are some unique features in media fixed

functions as highlighted by the followings.

 VFE manages URB and only has write access to URB; TS does not interface to URB.

 When URB Constant Buffer is enabled, VFE forwards TS the URB Handler for the URB Constant

Buffer received from CS.

 TS interfaces to TD; VFE does not.

 TS can have a message directed to it like other shared functions (and thus TS has a shared

function ID), and it does not snoop the Output Bus as some other fixed functions in the 3D

pipeline do.

 A root thread generated by the media pipeline can only have up to one URB return handle.

 If a root thread has a URB return handle, VFE creates the URB handle for the payload to initiating

the root thread and also passes it alone to the root thread as the return handle. The root thread

then uses the same URB handle for child thread generation.

 If URB Constant Buffer is enabled and an interface descriptor indicates that it is also used for the

kernel, TS requests TD to load constant data directly to the thread’s register space. For root

thread, constant data are loaded after R0 and before the data from the other URB handle. For

child thread, as the R0 header is provided by the parent thread, Thread Spawner splits the URB

handles from the parent thread into two and inserts the constant data after the R0 header.

 A root thread must terminate with a message to TS. A child thread should also terminate with a

message to TS.

 High streaming performance of indirect media object load is achieved by utilizing the large vertex

cache available in the Vertex Fetch unit (of the 3D pipeline).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 709

Top level block diagram of the Media Pipeline

Generic Mode

In the Generic mode, VFE serves as a conduit for general-purpose kernels fully configured by the host

software. As there is no special fixed function logic used, the Generic mode can also be viewed as a

‘pass-through’ mode. In this mode, VFE generates a new thread for each MEDIA_OBJECT command. The

payload contained in the MEDIA_OBJECT command (inline and/or indirect) is streamed into URB. The

interface descriptor pointer is computed by VFE based on the interface descriptor offset value and the

interface descriptor base pointer stored in the VFE state. VFE then forwards the interface descriptor

pointer and the URB handle to TS to generate a new root thread. Many media processing applications

can be supported using the Generic mode: MPEG-2 HWMC, frame rate conversion, advanced

deinterface filter, to name a few.

3D Media GPGPU

710 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming Media Pipeline

The Programming Media Pipeline is programmed with command sequences. The media hardware

threads are created through the parameterized media walker. The dispatch of thread is controlled by a

scoreboard mechanism.

Command Sequence

Media pipeline uses a simple programming model. Unlike the 3D pipeline, it does not support pipelined

state changes. Any state change requires an MI_FLUSH or PIPE_CONTROL command. When

programming the media pipeline, it should be cautious to not use the pipelining capability of the

commands described in the Graphics Processing Engine chapter.

To emphasize the non-pipeline nature of the media pipeline programming model, the programmer

should note that if any one command is issued in the “Primitive Command” step, none of the state

commands described in the previous steps cannot be issued without preceding with a MI_FLUSH or

PIPE_CONTROL command.

Note for [CHV, BSW]: With the addition of MEDIA_STATE_FLUSH command, pipelined state changes are

allowed on the media pipeline. The MEDIA_STATE_FLUSH serves as a fence for state change by flushing

the VFE/TS front ends but not waiting for threads to retire.

The basic steps in programming the media pipeline are listed below. Some of the steps are optional;

however, the order must be followed strictly. Some usage restrictions are highlighted for illustration

purpose. For details, refer to the respective chapters for these commands.

Command Sequence

For [CHV, BSW], the media pipeline is further simplified with fixed functions like MPEG2 VLD and

AVC/VC1 IT removed. The addition includes:

1. The CURBE command is now unique to the media pipeline.

2. The interface descriptors are delivered directly as a media state command instead of being

loaded through indirect state.

The programming model requires the following steps:

Step 1: MI_FLUSH/PIPE_CONTROL:

 This step is mandatory.

 Multiple such commands in step 1 are allowed, but not recommended for performance reasons.

Step 2: State command PIPELINE_ SELECT:

 This step is optional. This command can be omitted if it is known that within the same context the

media pipeline was selected before Step 1.

 Multiple such commands in step 2 are allowed, but not recommended for performance reasons.

Step 3: State commands configuring pipeline states:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 711

 STATE_BASE_ADDRESS:

 This command is mandatory for this step (i.e. at least one).

 Multiple such commands in this step are allowed. The last one overwrites previous ones.

 This command must precede any other state commands below.

 Particularly, the fields Indirect Object Base Address and Indirect Object Access Upper

Bound are used to control indirect Media object load in VF.

 The fields Dynamics Base Address and Dynamics Base Access Upper Bound are used to

control indirect Curbe and Interface Descriptor object load in VF.

 Note: This command may be inserted before (and after) any commands listed in the

previous steps (Step 1 and 2). For example, this command may be placed in the ring buffer

while the others are put in a batch buffer.

 STATE_SIP:

 This command is optional for this step. It is only required when SIP is used by the kernels.

 MEDIA_VFE_STATE:

 This command is mandatory for this step (i.e. at least one).

 This command cause destruction of all outstanding URB handles in the system. A new set

of URB handles will be generated based on state parameters, no. of URB and URB length,

programmed in VFE FF state.

 Multiple such commands in this step are allowed. The last one overwrites previous ones.

 MEDIA_CURBE_LOAD:

 This command is optional.

 Multiple such commands in this step are allowed. The last one overwrites previous ones.

 MEDIA_INTERFACE_DESCRIPTOR_LOAD:

 This command is mandatory for this step (i.e. at least one).

 Multiple such commands in this step are allowed. The last one overwrites previous ones.

Step 4: Primitive commands:

 MEDIA_OBJECT:

 This step is optional, but it does not make practical sense to not issue media primitive

commands after going through the previous steps to set up the media pipeline.

 Multiple such commands in step 4 can be issued to continue processing media primitives.

With the addition of MEDIA_STATE_FLUSH command, pipelined state changes are allowed on the media

pipeline. To support context switch for barrier groups, watermark and barrier dependencies are added

to the MEDIA_STATE_FLUSH command. The usage of barrier group may have strict restriction that all

threads belonging to a barrier group must all be present to avoid deadlock during context switch. Here

are the example programming sequences to allow context switch.

Project Notes

CHV, BSW The use of MEDIA_OBJECT_PRT and MI_ARB_ON_OFF are optional.

3D Media GPGPU

712 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 MEDIA_VFE_STATE

 MEDIA_INTERFACE_DESCRIPTOR_LOAD

 MEDIA_CURBE_LOAD (optional)

 MEDIA_GATEWAY_STATE (for example for barrier group 1)

 MEDIA_OBJECT_PRT (with VFE_STATE_FLUSH set and PRT NEEDED set)

 MEDIA_STATE_FLUSH (with watermark set for group 1)

 MI_ARB_ON_OFF (OFF) // Arbitration must be turned off while sending objects for group 1

 Several MEDIA_OBJECT command (for barrier group 1)

 MI_ARB_ON_OFF (ON) // Arbitration is allowed

 MEDIA_STATE_FLUSH (optional, only if barrier dependency is needed)

 MEDIA_INTERFACE_DESCRIPTOR_LOAD (optional)

 MEDIA_CURBE_LOAD (optional)

 MEDIA_GATEWAY_STATE (for example for barrier group 2)

 MEDIA_STATE_FLUSH (with watermark set for group 1)

 MI_ARB_ON_OFF (OFF) // Arbitration must be turned off while sending objects for group 2

 Several MEDIA_OBJECT command (for barrier group 2)

 MI_ARB_ON_OFF (ON) // Arbitration is allowed

 ...

 MI_FLUSH

Commands for the GPGPU pipe (GPGPU_OBJECT and GPGPU_WALKER) should be separated from

commands for the Media pipe (MEDIA_OBJECT*) by an MI_FLUSH.

Parameterized Media Walker

The Parameterized Media Walker is a hardware thread generation mechanism that creates threads

associated with units in a generalized 2-dimensional space, for example, blocks in a 2D image. With a

small number of unit step vectors, the walker can implement a large number of walking patterns as

described hereafter. This command may provide functions that are normally handled by the host

software, thus, may be used to simplify the host software and GPU interface.

The walker described herein is doubly nested, where essentially a “local” walker can perform a variety of

2-dimensional walking patterns and a “global” walker can perform similar 2-dimensional walking

patterns upon many local walkers. The local walker has 3 levels (outer, middle, and inner) while the

global walker has 2 levels (outer and inner). Thus, the algorithm has 5-nested loops that modify local

state based on user-defined unit step vectors.

The Walker’s programmability is derived from:

 The walker traverses a unit-normalized surface. Some example unit sizes:

o 1x1: Walking pixels

o 4x4: Walking sub-blocks

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 713

o 16x16: Walking macro-blocks

o 32x16: Walking macro-block-pairs

 The use of unit step vectors to describe the motion at each of level of nesting

 Starting locations for the local and global walkers

 Block sizes of the local and global walker

 And a small number of special mode controls for the inner-most loop which are aimed at

efficiently dividing an image into two balanced workloads for dual-slice designs.

Walker Parameter Description

The global and local loops are both described by the same four parameters:

 Resolution

 Starting location

 Outer unit vector

 Inner unit vector

The local inner loop has some special modes that will be described later. A table of the user inputs and

some example values are given below:

It should be emphasized that the value of what a “unit” represents is implicitly defined by the user. In

other words, the walker traverses a “unit normalized space” that is not inherently bound to pixel

walking. If the smallest unit of work the user wants to walk is a 4x3 block of pixels, you can program the

inner loop to step (4,3) or (1,1):

 In the first case (4,3) the user is walking in units of pixels

 In the second case (1,1) the user is walking in units of 4x3 blocks of pixels.

3D Media GPGPU

714 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

It should be noted that hardware doesn’t contain enough bits for pixel walking for pixel resolution like

1920x1088. The intended usage of the walker is for block walking whereas the block size is not relevant

to the walker parameters.

Basic Parameters for the Local Loop

The local inner and outer loop xy-pair parameters alone can describe a large variety of primitive walking

patterns. Below are 9 primitive walking patterns generated by varying only the inner and outer unit step

vectors of the local loop:

 The top row shows the outer unit vector pointing down (+Y) and the inner unit vector pointing

right (+X). Rows and columns can easily be skipped by increasing the unit step vectors above one.

 The middle row the outer unit vector pointing right (+X) and the inner unit vector pointing down

(+Y). Again, rows and columns are skipped by increasing the unit step vectors beyond one.

 The last row shows the capability to walk angles not perpendicular to the edge. The 1st shows a

45º walking pattern by setting the inner unit vector to (-1,1). The 2nd shows a checkerboard

pattern by skipping every other outer loop and retaining the inner unit vector of (-1,1). The 3rd

shows a 26.5º walking pattern by setting the inner unit vector to (-2,1).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 715

The block resolution, shown as [8,8], and the starting location, currently [0,0], can be varied and the

above patterns can be stretched and rotated many ways. The diagram below shows an example of

where the start position and unit step vectors can be set to achieve a full rotation of the same pattern:

3D Media GPGPU

716 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

MbAff-Like Special Case in Local Loop

The local loop has an additional middle loop that is used to achieve some specific walking patterns,

with MBAFF mode especially in mind. A pattern to handle MBAFF AVC content is to walk the top

macroblocks of all macroblock pairs (MB-pairs) on a wavefront followed by the respective bottom

macroblocks. The pattern is shown below.

The outer loop unit step vector would be [1, 0] and the inner loop unit step vector would be [-2, 2]. A

third loop is necessary to repeat the inner loop, only shifted down a unit before restarting. Thus, a

middle loop with a unit step vector of [0,1] would achieve this MBAFF pattern. Additionally, the number

of “extra steps” taken by the middle loop would be 1 in this case.

The addition of a middle loop also creates more overall flexibility, which seems necessary due to the

integer-based unit step vector solution proposed (Manhattan distance issues etc.).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 717

Global Loop

The same set of general parameters is used to describe the global loop as well. Thus, a global loop that

is walking a raster-scan pattern can be combined with a local loop that is walking a 26.5º pattern (or

vice-versa). As shown in the example below, if the local block size [8,8] is not an even multiple of the

global resolution [20,20], the slack is still processed by dynamically changing the local block resolution.

The global loop will always resolve to be the upper-left corner of the local loop, shown above black

circles. Note that local loop can still start in any corner of the local block, but the local (0,0) will always

be the location where global loop begins the local loop, hence the upper-left corner.

The user can specify the starting location of the global loop as with the local loop. If the user were to

set the global starting location to (16,16) in the previous example, after inverting the global outer and

global inner unit step vectors the same pattern would be achieved in the reverse order. Note that the

slack would still be handled along the right and bottom edge of the global image in that case. The user

could have also started at (12,12) in which case the slack would be handled on the left and top faces.

3D Media GPGPU

718 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Walker Algorithm Description

The walker algorithm has been tested and optimized in software. A high-level pseudo-code description

is given below:

 Walker(){ //C-Style Pseudo-Code of Walker Algorithm

 Load_Inputs_And_Initialize();

 While (Global_Outer_Loop_In_Bounds()){

 Global_Inner_Loop_Intialization();

 While (Global_Inner_Loop_In_Bounds()){

 Local_Block_Boundary_Adjustment();

 Local_Outer_Loop_Initialization();

 While (Local_Outer_Loop_In_Bounds()){

 Local_Middle_Loop_Initialization();

 While (Local_Middle_Steps_Remaining()){

 Local_Inner_Loop_Initialization();

 While (Local_Inner_Loop_Is_Shrinking()){

 Execute();

 Calculate_Next_Local_Inner_X_Y();

 } //End Local Inner Loop

 Calculate_Next_Local_Middle_X_Y();

 } //End Local Middle Loop

 Calculate_Next_Local_Outer_X_Y();

 Calculate_Next_Local_Inverse_Outer_X_Y();

 } //End Local Outer Loop

 Calculate_Next_Global_Inner_X_Y();

 } //End Global Inner Loop

 Calculate_Next_Global_Outer_X_Y();

 } //End Global Outer Loop

 } //End Walker

The pseudo-code has the following characteristics:

 There are 5 levels of iteration

 The highest 2 levels are called “global” and the lowest 3 levels are called “local”

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 719

o The global loop is split into an outer and an inner loop.

o The local loop is split into an outer, a middle, and an inner loop.

o A bounding box for the global and local resolution is defined by the user.

o The starting location within each bounding box is also specified by the user.

 Each of the 5 loops has its own persistent

o Current position (x,y)

o Unit step vector (x,y)

 The final output (x,y) is a summation of the global x,y and the local x,y.

 The next (x,y) for given level can be calculated while the next lower level is still executing.

Additionally, the result can be used to check to see if the current level will execute again once

control is returned.

The flow of the global outer and inner loops is:

1. Check a bound condition

2. Initialize the next level loop

3. Execute the next level loop

4. When the next level loop fails its condition, calculate the next position for the current loop

level and repeat.

3D Media GPGPU

720 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Walker algorithm flowchart for the Global Loop

Take note of the grey box “Local Block Boundary Adjustment”. This logic is necessary to adjust the local

block size when the distance between the current global position to the edge of the image is less than

the local resolution. Additionally, the local starting positions might be modified here as well if the

defined starting position is larger than the new local block size.

The flow of the 3 local loops does not vary much from the 2 global loops. The differences are:

 In addition to a boundary check, the local middle loop also ensures the number of middle

steps is less than or equal to the user defined “number of extra steps”.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 721

 The local inner loop only checks to see if the prior distance between the x,y starting and

ending points are greater than their current distance. If this is true, it implies that the two

inner loops are converging towards each other.

 When the middle loop check fails, both the starting points (local outer) and ending points

(local inner) are updated.

Walker algorithm flowchart for the Local Loop

3D Media GPGPU

722 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Barriers and Shared Local Memory

Barriers and Shared Local Memory can provide advantages to general media applications. Barriers can

be used to synchronize between media threads more efficiently than using atomics, while SLM can be

used to share data between tightly associated threads.

CHV, BSW allows Barriers and SLM to be used with a more generalized walker, as well as adding the

ability to use the scoreboard at the same time. To implement this there needs to be an identifying

number similar to the Thread Group ID which can be used to track and free resources.

For MEDIA_OBJECT_WALKER there are already numbers available which can be used as the group id –

the various loop counts that the walker maintains. To provide flexibility, the programmer will be allowed

to specify which loop counts will form the group id and which will count the threads inside each group.

If cross-slice barriers are disabled (see section 1.7), the walker will be required to ensure that all threads

in a group are dispatched to a single subslice so that the barrier and SLM are available to all group

members. The programmer is responsible to ensure that the number of threads generated per group is

not larger than the threads available in a subslice.

MEDIA_OBJECT_WALKER adds the X/Y values for the various loops added together to produce a single

X/Y. Since walking patterns can be produced which have overlapping X/Y values, this can’t be used for

the global id, instead the execution counts (a count of how many times each loop is executed) are

concatenated together to produce an id number. The GPGPU thread group id is a 96-bit number, so the

49 bits created by all the execution counts will fit easily.

The media walker has 5 nested loops for producing the X/Y; in addition there is an innermost color

loop:

1. Color loop – 4 bits

2. Inner local loop execution count – 10 bits

3. Mid local loop execution count – 5 bits

4. Outer local loop execution count – 10 bits

5. Inner global loop execution count – 10 bits

6. Outer global loop execution count – 10 bits

The bits to use as the global id are specified with a parameter which specifies at which point to switch

between the group id and the per thread id. Unused loops will always have execution counts of 0. The

group id is formed from whichever execution counts are enabled in the Group ID Loop Select, with the

selected execution counts concatenated into the LSBs of the group id, with any unused MSBs 0.

Example: if a MEDIA_OBJECT_WALKER specifies that the Outer local loop count and above will form the

group id, then every iteration of the color, inner local, and mid local will dispatch a thread with the same

group id. TSG will allocate a shared barrier and SLM (depending on what is specified in the Interface

Descriptor) and ensure that all the threads go to the same subslice. The programmer ensures that this

number of threads will fit on a single subslice, unless only global barriers are used, in which case the

number of thread must fit on the system. The group id for this example is formed by cat(outer global

exec count, inner global exec count, outer local exec count).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 723

When the group id increments, the TSG will allocate a new barrier and SLM and pick an available

subslice.

Before the MEDIA_OBJECT_WALKER command with groups there should be a MEDIA_STATE_FLUSH

with a watermark bit and matching Interface Descriptor.

Flexible Dispatch of Local Loop

The local loop is automatically split between the availble subslices in such a way as to keep adjacent

blocks next to each other to improve cache and execution efficency. The length of a single iteration of

the local loop is split into equal segments, one for each subslice that is currently powered up.

The dispatches for the local loop are done such that one thread from each segment is dispatched

before repeating the process: for example segment 0, thread 0 is followed by segment 1, thread 0

rather than segment 0, thread 1.

Example of splitting a wavefront between 6 destinations

Each color indicates a separate segment which is dispatched to a different subslice.

3D Media GPGPU

724 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

In the example above, each local loop walks a diagnal line from the lower left to the upper right, while

the global loop steps between the lines. This is a typical usage model where the dependencies are to

the left and above. The first few iterations are in the upper right corner and so have few blocks

dispatched per local loop. Farther down, the length of the local loop gets large enough that the 6

available subslices are full of threads from each segment running in parallel and being dispatched in an

even manner.

Scoreboard Control

A hardware mechanism controls the dispatch of root threads. Without using this hardware mechanism,

only the dispatch of a SRT is managed by a parent root thread using the SRT message to TS.

There is a scoreboard hardware in TS unit. The scoreboard is addressed by the 18-bit (X, Y) scoreboard

field in VFE DWord, where (X, Y) is typically used as the Cartesian coordinate of the working unit in a 2D

frame but may be interpolated in other ways. When a root thread is dispatched, the entry at (X, Y) is

marked. When the root thread is terminated, the corresponding bit in the scoreboard is cleared.

Each root thread may have up to eight dependencies. The dependency relation is described by the state

value of Scoreboard Controls in terms of related distance of (deltaX, deltaY). There is a global

scoreboard enabling in the state as well as the-per thread enabling for each dependency.

TS stalls the dispatch of a root thread if any scoreboard entry, which is denoted by (Scoreboard X +

deltaX, Scoreboard Y + deltaY), matching with any enabled dependencies is marked as in-flight. The

thread is dispatched only after all dependencies are cleared.

For a root thread, TS stalls the dispatch of the thread only if the dependent scoreboard entries of the

thread are marked. It does not automatically stalls the dispatch for destination collision if (deltaX = 0,

deltaY=0) is not set in the scoreboard state. This kind of scoreboard destination collision is due to the

scoreboard wrap-around (or aliasing), which must be avoided. With 9-bit per X, Y field, the hardware

scoreboard can support a frame that is subdivided up to 512x512 threads without a scoreboard aliasing.

In addition to the above ‘stalling scoreboard’, Media Pipe may also support a non-stalling scoreboard.

With non-stalling, a thread is dispatched with the dependent threads marked. The thread dependency

affects the issuing of a sendc instruction. See vol5d Execution Unit ISA for details.

Scoreboard Support in Device Hardware

Device Stalling scoreboard Non-Stalling scoreboard

[CHV, BSW] Yes Yes

Programming Note

Context: Scoreboard Control

 The hardware scoreboard only handles root threads, but not child threads. This limitation may be revisited

when future application requirement changes.

 The usage of hardware scoreboard and SRT are mutually exclusive. In other words, when hardware

scoreboard is used, SRT should not be issued.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 725

AVC-Style Dependency Example

For AVD decoding, dependencies for a given macroblock may be set based on the availability of

neighbor macroblocks, namely A, B, C, D and left-bottom neighbors (left-bottom only if MbAff = 1), as

well as the current macroblock’s address, MbAff flag and FieldMbFlag. For a macroblock in a

progressive frame picture or a field picture, one macroblock may depend on up to four neighbors, A, B,

C and D as shown in Neighbor addresses of a macroblock in a progressive frame picture (MbAff = 0) or

a field picture with up to 4 dependencies. For a macroblock in a MbAff pair, it may depend on up to

three, five or eight neighbors as shown in Neighbor addresses of the first macroblock in a MbAff frame

picture (MbAff = 1) with up to 8 dependencies and Neighbor addresses of the second macroblock in a

MbAff frame picture (MbAff = 1) with up to 8 dependencies, based on the current macroblock’s address

and FieldMbFlag.

The neighbor’s availability depends on the corresponding IntraPredAvailFlagA|B|C|D|E flags for the

macroblock (or the macroblock pair). Hardware assumes that the flags are set correctly in the

MEDIA_OBJECT_EX command as shown in Macroblock indices for field picture destination. For

simplicity, the left neighbor pair (A0 and A1) availability for a MbAff macroblock can be determined as a

group by IntraPredAvailFlagA | IntraPredAvailFlagE. For the second macroblock in a ‘frame’ MbAff

pair, it depends on the first macroblock in the pair and it is always available.

Neighbor addresses of a macroblock in a progressive frame picture (MbAff = 0) or a field picture

with up to 4 dependencies

Neighbor addresses of the first macroblock in a MbAff frame picture (MbAff = 1) with up to 8

dependencies

3D Media GPGPU

726 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Neighbor addresses of the second macroblock in a MbAff frame picture (MbAff = 1) with up to 8

dependencies

Neighbor Availability

MbAff FieldMbFlag VertOrigin[0] A B C D LB Description

0 0/1 0/1
   

 Progressive or Field picture

1 0 0
    

1st Frame MbAff macroblock

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 727

MbAff FieldMbFlag VertOrigin[0] A B C D LB Description

1 0 1


na 0 na


2nd Frame MbAff macroblock

1 1 0
    

1st Field MbAff macroblock

1 1 1
    

2nd Field MbAff macroblock

Interface Descriptor Selection

In VLD mode, the Interface Descriptor Offset field in the MEDIA_OBJECT command is ignored by

hardware. Instead, the interface descriptor offset is computed by hardware based on the decoded

macroblock parameters and a remapping table.

First a macroblock index is computed based on parameters such as picture structure, motion type,

prediction type, DCT type, intra-coding type and motion vector present information. Interface Descriptor

Selection provides the macroblock index table for a frame-picture destination buffer (with Picture

Structure = 11). Interface Descriptor Selection shows macroblock indices for a field-picture destination

buffer (with Picture Structure = 01 or 10). As Picture Structure is a state variable that is not changed

until a pipeline flush, the macroblock indices can be computed separately for different Picture Structure.

After the macroblock index is computed, it is used as the index into the Interface Descriptor Remap

Table to derive the final interface descriptor offset value. The Interface Descriptor Remap Table is

provided as part of the VLD state.

The interface descriptor offset value multiplied by the interface descriptor size is then added to the

interface descriptor base pointer to generate the interface descriptor pointer for the post-VLD thread.

The last three columns in Interface Descriptor Selection and Interface Descriptor Selection indicate

whether a macroblock index is applicable for a given Picture Coding type (I, P or B). A ‘Y’ (or a ‘N’)

means the macroblock index on the row is valid (or invalid) for the Picture Type shown on the column.

Taking a frame picture destination for example, only macroblock indices 0 and 8 are valid for an I-

picture; indices 0-3 and 8-11 are valid for a P-picture; and for a B-picture, only indices 3 and 11 are not

valid.

Developers can use the remap table for kernel development to fine-tune system performance and

reduce software complexity. For example, if the destination is a frame picture, the kernel for a

macroblock with dual-prime motion in a P-picture (macroblock index = 3) may be identical to that for a

macroblock with bidirection field motion in a B picture (macroblock index = 7). A common set of

interface descriptors can be configured once for frame picture destinations, and reused without change

when the destination is of I-, P- and B- picture coding type.

In another case, if it is determined that kernel software is responsible for handling DCT types for a frame

picture destination, then macroblock index i and i+8 , for i = 0 to 7, can be mapped to the same

interface descriptor.

3D Media GPGPU

728 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Macroblock Indices for Frame Picture Destination

Macroblock

Index

Interface Descriptor Kernel Function

(Frame Picture Destination) I P B

0 I macroblock Y Y Y

1 Forward frame motion N Y Y

2 Forward field motion N Y Y

3 P picture, dual-prime motion N Y N

4 Backward frame motion N N Y

5 Backward field motion N N Y

6 Bidirectional frame motion N N Y

7 Bidirectional field motion N N Y

8 I macroblock with field DCT Y Y Y

9 Forward frame motion with field DCT N Y Y

10 Forward field motion with field DCT N Y Y

11 P picture, dual-prime motion with field DCT N Y N

12 Backward frame motion with field DCT N N Y

13 Backward field motion with field DCT N N Y

14 Bidirectional frame motion with field DCT N N Y

15 Bidirectional field motion with field DCT N N Y

Macroblock Indices for Field Picture Destination

Macroblock Index

Interface Descriptor Kernel Function

(Field Picture Destination) I P B

0 I macroblock Y Y Y

1 Forward field motion N Y Y

2 Forward 16x8 motion N Y Y

3 P picture, dual-prime motion N Y N

4 Backward field motion N N Y

5 Backward 16x8 motion N N Y

6 Bidirectional field motion N N Y

7 Bidirectional 16x8 motion N N Y

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 729

VC1-Style Dependency Example

For VC1, only one dependency may be set depending on the availability of the upper neighbor

macroblock.

Macroblock sequence order in a VC-1 picture with WidthInMblk = 5 and HeightInMblk = 6

0 1 2 3 4

0
0 1 2 3 4

1
5 6 7 8 9

2
10 11 12 13 14

3
15 16 17 18 19

4
20 21 22 23 24

5
25 26 27 28 29

Multiple Slice Considerations

For products with multiple slices, the Render Cache is separate per slice with no hardware coherency.

This means that the programmer must ensure coherency by one of these methods:

 Using write commit when writing to the Render Cache.

 Using Data Cache instead of the Render Cache.

 Different slices only access separate cache lines. using a hashing algorithm combined with the

slice select bits of the MEDIA_OBJECT/GPGPU_OBJECT commands.

Interrupt Latency

Command Streamer is capable of context switching between primitive commands.

For all independent threads, it is not much a problem. The interrupt latency is dictated by the longest

command that is likely to have the largest number of threads. For VLD mode, such a command may be

corresponding to a largest slice in a high definition video frame. This is application dependent, there are

not much host software can do. For Generic mode, programmer should consider to constrain the

compute workload size of each thread.

In modes with child threads, a root thread may persist in the system for long period of time – staying

until its child threads are all created and terminated. Therefore, the corresponding primitive command

may also last for long time. The Software designer should partition the workload to restrict the duration

3D Media GPGPU

730 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

of each root thread. For example, this may be achieved by partitioning a video frame and assigning

separate primitive commands for different data partitions.

In modes with synchronized root threads, a synchronized root thread is dependent on a previous root

or child thread. This means context switch is not allowed between the primitive command for the

synchronized root thread and the one for the depending thread. So no command queue arbitration

should be allowed between them. Software designer should also restrict the duration of such non-

interruptible primitive command segments.

Thread Spawner Unit

The Thread Spawner (TS) unit is responsible for making thread requests (root and child) to the Thread

Dispatcher, managing scratch memory, maintaining outstanding root thread counts, and monitoring the

termination of threads.

Thread Spawner block diagram

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 731

Root Threads and Child Threads

Thread requests sourced from VFE are called root threads. These threads may be creating subsequent

child threads.

Root Threads

A root thread may be a macroblock thread created by VFE as in VLD mode, or may be a general-

purpose thread assembled by VFE according to full description provided by host software in Generic

mode. Thread requests are stored in the Root Thread Queue. TS keeps everything needed to get the

root threads ready for dispatch and then tracks dispatched threads until their retirement.

TS arbitrates between root thread and child thread. The root thread request queue is in the arbitration

only if the number of outstanding threads does not exceed the maximum root thread state variable.

Otherwise, the root thread request queue is stalled until some other root threads retire/terminate.

Once a root thread is selected to be dispatched, its lifecycle can be described by the following steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor cache (a small fully

associated cache containing up to 4 interface descriptors). The interface descriptor is either

found in the cache or a corresponding request is forwarded to the L2 cache. Interface

descriptors return back to TS in requesting order.

 Once TS receives the interface descriptor, it checks whether maximum concurrent root

thread number has reached to determine whether to make a thread dispatch request or to

stall the request until some other root threads retire. If the thread requests the use of scratch

memory, it also generates a pointer into the scratch space.

2. TS then builds the transparent header and the R0 header.

3. Finally, TS makes a thread request to the Thread Dispatcher.

4. TS keeps track of dispatched thread, and monitors messages from the thread (resource

dereference and/or thread termination). When it receives a root thread termination message, it

can recover the scratch space and thread slot allocated to it. The URB handle may also be

dereferenced for a terminated root thread for future reuse. It should be noted that URB handle

dereference may occur before a root thread terminates. See detailed description in the Media

Message section.

 It is the root thread’s responsibility (software) to guarantee that all its children have retired

before the root thread can retire.

3D Media GPGPU

732 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

URB Handles

VFE is in charge of allocating URB handles for root threads. One URB handle is assigned to each root

thread. The handle is used for the payload into the root thread.

Children Present is a command variable in the _OBJECT command.

If Children Present is not set (root-without-child case), TS signals VFE to dereference the URB handle

immediately after it receives acknowledgement from TD that the thread is dispatched.

If Children Present is set (root-with-child case), the URB handle is forwarded to the root thread and

serves as the return URB handle for the root thread. TS does not signal deference at the time of

dispatch. TS signals URB handle deference only when it receives a resource dereference message from

the thread.

Root to Child Responsibilities

Any thread created by another thread running in an EU is called a child thread. Child threads can create

additional threads, all under the tree of a root which was requested via the VFE path.

A root thread is responsible of managing pre-allocated resources such as URB space and scratch space

for its direct and indirect child threads. For example, a root thread may split its URB space into sections.

It can use one section for delivering payload to one child thread as well as forwarding the section to the

child thread to be used as return URB space. The child thread may further subdivide the URB section

into subsections and use these subsections for its own child threads. Such process may be iterated.

Similarly, a root thread may split its scratch memory space into sections and give one scratch section for

one child thread.

TS unit only enforces limitation on number of outstanding root threads. It is the root threads’

responsibility to limit the number of child threads in their respected trees to balance performance and

avoid deadlock.

Multiple Simultaneous Roots

Multiple root threads are allowed concurrently running in GEN4 execution units. As there is only one

scratch space state variable shared for all root threads, all concurrent root thread requiring scratch

space share the same scratch memory size. Multiple Simultaneous Roots depicts two examples of

thread-thread relationship. The left graph shows one single tree structure. This tree starts with a single

root thread that generates many child threads. Some child threads may create subsequent child

threads. The right graph shows a case with multiple disconnected trees. It has multiple root threads,

showing sibling roots of disconnected trees. Some roots may have child threads (branches and leafs)

and some may not.

There is another case (as shown in Multiple Simultaneous Roots) where multiple trees may be connected.

If a root is a synchronized root thread, it may be dependent on a preceding sibling root thread or on a

child thread.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 733

Examples of thread relationship

A example of thread relationship with root sibling dependency

Synchronized Root Threads

A synchronized root thread (SRT) originates from a MEDIA_OBJECT command with Thread

Synchronization field set. Synchronized root threads share the same root thread request queue with the

non-synchronized roots. A SRT is not automatically dispatched. Instead, it stays in the root thread

request queue until a spawn-root message is at the head of the child thread request queue. Conversely,

a spawn-root message in the child thread request queue will block the child thread request queue until

the head of root thread request queue is a SRT. When they are both at the head of queues, they are

taken out from the queue at the same time.

A spawn-root message may be issued by a root thread or a child thread. There is no restriction.

However, the number of spawn-root messages and the number of SRT must be identical between state

changes. Otherwise, there can be a deadlock. Furthermore, as both requests are blocking, synchronized

root threads must be used carefully to avoid deadlock.

When Scoreboard Control is enabled, the dispatch of a SRT originated from a MEDIA_OBJECT_EX

command is still managed by the same way in addition to the hardware scoreboard control.

Deadlock Prevention

Root threads must control deadlock within their own child set. Each root is given a set of preallocated

URB space; to prevent deadlock it must make sure that all the URB space is not allocated to

intermediate children who must create more children before they can exit.

There are limits to the number of concurrent threads. The upper bound is determined by the number of

execution units and the number of threads per EU. The actual upper bound on number of concurrent

3D Media GPGPU

734 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

threads may be smaller if the GRF requirement is large. Deadlock may occur if a root or intermediate

parent cannot exit until it has started its children but there is no space (for example, available thread

slot in execution units) for its children to start.

To prevent deadlock, the maximum number of root threads is provided in VFE state. The Thread

Spawner keeps track of how many roots have been spawned and prevents new roots if the maximum

has been reached. When child threads are present, it is software’s responsibility to constrain child

thread generation, particularly the generation of child threads that may also spawn more child threads.

Child thread dispatch queue in TS is another resource that needs to be considered in preventing

deadlock. The child thread dispatch queue in TS is used for (1) message to spawn a child thread, (2)

message to spawn a synchronized root thread, and (3) thread termination message. If this queue is full,

it will prevent any thread to terminate, causing deadlock.

For example, if an application only has one root thread (max # of root threads is programmed to be

one). This root thread spawns child threads. In order to avoid deadlock, the maximum number of

outstanding child thread that this root thread can spawn is the sum of the maximum available thread

slots plus the depth of the child thread dispatch queue minus one.

Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue Depth – 1)

Adding other root threads (synchronized and/or non-synchronized) to the above example, the situation

is more complicated. A conservative measure may have to use to prevent deadlock. For example, the

root thread spawning child threads may have to exclude the max number of root threads as in the

following equation to compute the maximum number of outstanding child threads to be dispatched.

Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue Depth – 1) – (Max Root

Threads-1)

Child Thread Life Cycle

When a (parent) thread creates a child thread, the parent thread behaves like a fixed function. It

provides all necessary information to start the child thread, by assembling the payload in URB (including

R0 header) and then sending a spawn thread message to TS with following data:

 An interface descriptor pointer for the child thread.

 A pointer for URB data

The interface descriptor for a child may be different from the parent – how the parent determines the

child interface descriptor is up to the parent, but it must be one from the interface descriptor array on

the same interface descriptor base address.

The URB pointer is not the same as a URB handle. It does not have an URB handle number and does not

appear in any handle table. This is acceptable because the URB space is never reclaimed by TS after a

child is dispatched, but rather when the parent releases its original handles and/or retires.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 735

Programming Note

Context: Child Thread Life Cycle

The child request is stored in the child thread queue. The depth of the queue is limited to 8, overrun is prevented

by the message bus arbiter which controls the message bus. The arbiter knows the depth of the queue and will

only allow 8 requests to be outstanding until the TS signals an entry has been removed.

As mentioned previously, child threads have higher priority over root threads. Once TS selects a child

thread to dispatch, it follows these steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor cache (a small fully

associated cache containing up to 4 interface descriptors). The interface descriptor is either

found in the cache or a corresponding request is forwarded to the L2 cache. Interface

descriptors return back to TS in requesting order.

2. TS then builds the transparent header but not the R0 header.

3. Finally, TS makes a thread request to the Thread Dispatcher.

4. Once the dispatch is done, TS can forget the child – unlike roots, no bookkeeping is done that

has to be updated when the child retires.

If more data needs to be transferred between a parent thread and its child thread than that can fit in a

single URB payload, extra data must be communicated via shared memory through data port.

Arbitration between Root and Child Threads

When both root thread queue and child thread queue are both non-empty, TS serves the child thread

queue. In other words, child threads have higher priority over root threads. The only condition that the

child thread queue is stalled by the root thread queue is that the head of child thread queue is a root-

synchronization message and the head of root thread queue is not a synchronized root thread.

Persistent Root Thread

A persistent root thread in general stays in the system for a long period of time. It is normally a parent

thread, and only one PRT is allowed in the system at a time.

On a context switch interrupt, instead of proceeding to completion, a PRT can save its software context

and terminate. The PRT can be restarted later, even if it had completed normally the last time it was

executed. Therefore, the PRT must always save enough context (via data port messages to a predefined

surface) to allow it to restart from where it left off (including determining that it has nothing left to do).

Because only one PRT can execute at a time, once the next PRT starts, the previous one will never be

restarted, thus the context save surface can be reused from one PRT to the next.

A PRT may check the Thread Restart Enable bit in the R0 header to find out whether it is a fresh start or

resumed from a previous interrupt and then can continue operations from that previously saved

context.

3D Media GPGPU

736 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

A PRT can be interleaved with other root (such as parent root thread, or synchronized root thread) and

child threads. A parent root thread is not necessarily a PRT, and doesn’t have to be as long as it can be

finished in deterministic time that is shorter than required for fine-grain context switch interrupt.

Use of PRT must follow the following rule:

 There can only be one PRT in the media pipeline at a given time. That means, there shall not be

any other media primitive commands (MEDIA_OBJECT or MEDIA_OBJECT_EX) between it and the

previous MI_FLUSH command. In other words, when multiple such PRTs are used in a sequence of

media primitive commands, MI_FLUSH must be inserted.

Media State Model

The media state model is based on in-line state load mechanism. VFE state, URB configuration and

Interface Descriptors are loaded to VFE hardware through state commands.

All Interface Descriptors have the same size and are organized as a contiguous array in memory. They

can be selected by Interface Descriptor Index for a given kernel. This allows different kinds of kernels to

coexist in the system.

Pipeline

(Media)

Bits[28:27]

Opcode

Bits[26:24]

Sub Opcode

Bits[23:16] Command

2h 0h 00h MEDIA_VFE_STATE

2h 0h 01h MEDIA_CURBE_LOAD

2h 0h 02h MEDIA_INTERFACE_DESCRIPTOR_LOAD

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 737

Media State and Primitive Commands

This section contains various commands for media, all with the RenderCS source.

MEDIA_VFE_STATE

MEDIA_CURBE_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Interface Descriptor Data payload as pointed to by the Interface Descriptor Data Start Address:

INTERFACE_DESCRIPTOR_DATA

Programming Restriction: Back to back interface descriptor load commands, must have a VFE State

command inserted between them.

MEDIA_STATE_FLUSH

The MEDIA_OBJECT command is the basic media primitive command for the media pipeline. It supports

loading of inline data as well as indirect data. At least one form of payload (either inline, indirect, or

CURBE) must be sent with the MEDIA_OBJECT.

MEDIA_OBJECT

MEDIA_OBJECT_PRT

MEDIA_OBJECT_GRPID

The MEDIA_OBJECT_WALKER command uses the hardware walker in VFE for generating threads

associated with a rectangular shaped object. It only supports loading of inline data or CURBE but not

indirect data. At least one form of payload must be sent. Control of scoreboards (up to 8) is implicit

based on the (X, Y) address of the generated thread and the scoreboard control state.

The command can be used only in Generic modes.

When Use Scoreboard field is set, the (X, Y) address and the Color field of the generated thread are

used in the hardware scoreboard and the thread dependencies are set by states from the

MEDIA_VFE_STATE command.

One or more threads may be generated by this command. This command does not support indirect

object load. When inline data is present, it is repeated for all threads it generates. Unlike CURBE, which

requires pipeline flush for change, continued change of this kind of ‘global’ (in the sense of shared by

multiple threads from this command) data is supported when MEDIA_OBJECT_WALKER commands are

issued without a pipeline flush in between.

Media State and Primitive Command Workarounds

Media State and Primitive Commands have some subtle programming restrictions and workarounds, as

listed below.

Programming Note

The MEDIA_STATE_FLUSH command is updated to optionally specify all the resources required for the next thread

group via an interface descriptor – if the resources are not available the group cannot start.

3D Media GPGPU

738 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Media Messages

All message formats are given in terms of dwords (32 bits) using the following conventions:

 Dispatch Messages: Rp.d

 SEND Instruction Messages: Mp.d

Thread Payload Messages

The root thread’s register contents differ from that of child threads, as shown in Thread Payload

Messages. The register contents for a synchronized root thread (also referred to as ‘spawned root

thread’) and an unsynchronized one are also different. Whether the URB Constant data field is present

or not is determined by the interface descriptor of a given thread. This applies to both root and child

threads. When URB Constant data field is present for a synchronized root thread, URB constant data

field is before the data field received from the spawning thread, which is also before the URB payload

data.

Thread payload message formats for root and child threads

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 739

Generic Mode Root Thread

The following table shows the R0 register contents for a Generic mode root thread, which is generated

by TS. The remaining payloads are application dependent.

R0 Header of a Generic Mode Root Thread

DWord Bits Description

R0.5 31:10
Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This field is

only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

9 Reserved: MBZ

8:0
FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other

concurrent root threads. It is used to free up resources used by the thread upon thread

completion.

Format = U9

R0.4 31:5
Binding Table Pointer. The 32-byte aligned pointer to the Binding Table. It is specified as an

offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved: MBZ

R0.3 31:5
Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0
Per Thread Scratch Space. The amount of scratch space, in 1K-byte quantities, allowed to be

used by this thread. The value specifies the power that two is raised to, to determine the amount

of scratch space.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two

R0.2 31:28 Reserved: MBZ

27:16 Reserved: MBZ

15:10 Reserved: MBZ

9:4
Interface Descriptor Offset. The offset from the interface descriptor base pointer to the interface

descriptor that applies to this object, in units of interface descriptors.

Format = U6

3:0
Scoreboard Color (only with MEDIA_OBJECT_EX): This field specifies which dependency color the

3D Media GPGPU

740 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

current thread belongs to. It affects the dependency scoreboard control.

Format = U4

R0.1 31:28 Reserved: MBZ

26:25 Reserved: MBZ

24:16
Scoreboard Y

This field provides the Y term of the scoreboard value of the current thread.

Format = U9

15:11 Reserved: MBZ

10:9 Reserved: MBZ

8:0
Scoreboard X

This field provides the X term of the scoreboard value of the current thread.

Format = U9

R0.0 31:24
Scoreboard Mask. Each bit indicates the corresponding dependency scoreboard is dependent on.

This field is AND’d with the corresponding Scoreboard Mask field in the MEDIA_VFE_STATE.

Bit n (for n = 0…7): Scoreboard n is dependent, where bit 24 maps to n = 0.

Format = TRUE/FALSE

23:16 Reserved: MBZ

15:0 URB Handle. This is the URB handle indicating the URB space for use by the root thread and its

children.

Root Thread from MEDIA_OBJECT_PRT

The root thread payload message for a MEDIA_OBJECT_PRT command has a fixed format independent

of the VFE mode (e.g. Generic mode or AVC-IT mode). One example GRF register location is given for

the condition that CURBE is disabled.

Root Thread Payload Layout for a MEDIA_OBJECT_PRT Command

GRF Register Example Description

R0 R0 R0 header

 R1 – R(m) N/A
Constants from CURBE when CURBE is enabled

m is a non-negative value.

R(m+1) R1 In-line Data block.

The R0 header field is as the following, which is the same as in other modes except the Thread Restart

Enable bit (bit 0 of R0.2).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 741

R0 Header of the Thread Payload of a MEDIA_OBJECT_PRT Command

DWord Bit Description

R0.5 31:10
Scratch Space Pointer. Specifies the 1K-byte aligned pointer to the scratch space. This field is

only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

9:8 Reserved: MBZ

7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other

concurrent root threads. It is used to free up resources used by the thread upon thread

completion.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved: MBZ

R0.3 31:5
Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0
Per Thread Scratch Space. Specifies the amount of scratch space, in 1K-byte quantities, allowed

to be used by this thread. The value specifies the power that two is raised to, to determine the

amount of scratch space.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two

R0.2 31:4
Interface Descriptor Pointer. Specifies the 16-byte aligned pointer to this thread’s interface

descriptor. Can be used as a base from which to offset child thread’s interface descriptor pointers.

Format = GeneralStateOffset[31:4]

3:1 Reserved: MBZ

0
Thread Restart Enable. If set, indicates that the persistent root thread (PRT) is being restarted,

and context should be restored from the context save area before executing.

Format = Enable

R0.1 31:0 Reserved: MBZ

R0.0 31:16 Reserved: MBZ

15:0 URB Handle. This is the URB handle indicating the URB space for use by the root thread and its

children.

The inline data block field is the same as in the MEDIA_OBJECT_EX command with zero-filled partial

GRF.

3D Media GPGPU

742 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Root Thread from MEDIA_OBJECT_WALKER

The root thread payload message for an MEDIA_OBJECT_WALKER command, which must be in Generic

mode, has the same format as that of the generic mode root thread format.

Root thread payload layout for a MEDIA_OBJECT_WALKER command

GRF Register Example Description

R0 R0 R0 header

R1 – R(m) n/a
Constants from CURBE when CURBE is enabled

m is a non-negative value

R(m+1) R1 In-line Data block.

The R0 header field is identical to that of Generic Mode Root Thread.

The inline data block field is the same as in the MEDIA_OBJECT command with zero-filled partial GRF.

There is no indirect data block field.

MEDIA_OBJECT_GRPID and MEDIA_OBJECT_WALKER with Groups Payload

The RO header of the MEDIA_OBJECT_GRPID & MEDIA_OBJECT_WALKER Payload with groups enabled:

DWord Bits Description

R0.7 31:0
Group ID LSB. This is the LSBs of the Group ID. For MEDIA_OBJECT_GRPID threads this

is the entire group id. For MEDIA_OBJECT_WALKER threads the interpretation depends

on the Group ID Loop Select:

0: No groups, field is 0.

1: cat(InnerGlobalCnt[6:0], OuterLocalCnt[9:0], MidLocalCnt[4:0], InnerLocalCnt[9:0]);

rest of group id is in R0.2.

2: cat(OuterGlobalCnt[6:0], InnerGlobalCnt[9:0], OuterLocalCnt[9:0], MidLocalCnt[4:0]);

rest of group id is in R0.2.

3: cat(2’b0, OuterGlobalCnt[9:0], InnerGlobalCnt[9:0], OuterLocalCnt[9:0]).

4: cat(12’b0, OuterGlobalCnt[9:0], InnerGlobalCnt[9:0]).

5: cat(22’b0, OuterGlobalCnt[9:0]).

R0.5 31:10
Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This

field is only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

9 Reserved: MBZ

8:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison

to other concurrent root threads. It is used to free up resources used by the thread

upon thread completion.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 743

DWord Bits Description

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved: MBZ

R0.3 31:5
Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state

table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0
Per Thread Scratch Space. Specifies the amount of scratch space, in 1K-byte

quantities, allowed to be used by this thread. The value specifies the power to which

two is raised to determine the amount of scratch space.

Format = U4

 Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two

R0.2

R0.1 31:28 Reserved: MBZ

27 Reserved

26:25 Reserved: MBZ

24:16 Scoreboard Y. This field provides the Y term of the scoreboard value of the current

thread.

Format = U9

15:11 Reserved: MBZ

10:9 Reserved: MBZ

8:0 Scoreboard X. This field provides the X term of the scoreboard value of the current

thread.

Format = U9

R0.0 31:30 Reserved: MBZ

29:28 Reserved: MBZ

27:24 SLM ID. This field indicates the index to the SLM starting offset associated with this

kernel.

Format: U4

23:16 Scoreboard Mask. Each bit indicates the corresponding dependency that the

scoreboard is dependent on. This field is AND’d with the corresponding Scoreboard

Mask field in the MEDIA_VFE_STATE.

Bit n (for n = 0..7): Scoreboard n is dependent, where bit 23 maps to n = 0.

Format = TRUE/FALSE

15:0 URB Handle. This is the URB handle where indicating the URB space for use by the

root thread and its children.

3D Media GPGPU

744 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Thread Spawn Message

The thread spawn message is issued to the TS unit by a thread running on an EU. This message contains

only one 8-DWord register. The thread spawn message may be used to:

 Spawn a child thread.

 Spawn a root thread (start dispatching a synchronized root thread).

 Dereference an URB handle.

 Indicate a thread termination, dereference other TS managed resource and may or may not

dereference URB handle.

 Release a PRT_Fence.

To end a root thread, the end of thread message must be targeted at the thread spawner. In this case,

the root thread sends a message with a “dereference resource” in the Opcode field. The thread spawner

does not snoop the messages sideband to determine when a root thread has ended. Thread Spawner

does not track when a child thread terminates, to be consistent a child thread should also terminate

with a “dereference resource” message to the Thread Spawner. Software must set the Requester Type

(root or child thread) field correctly.

TS dispatches one synchronized root thread upon receiving a ‘spawn root thread’ message (from a

synchronization thread). The synchronizing thread must send the number of ‘spawn root thread’

message exactly the same as the subsequent ‘synchronized root thread’. No more, no less. Otherwise,

hardware behavior is undefined.

URB Handle Offset field in this message (in M0.4) has 10 bits, allowing addressing of a large URB space.

However, when a parent thread writes into the URB, it subjects to the maximum URB offset limitation of

the URB write message, which is only 6 bits (see Unified Return Buffer Chapter for details). In this case,

the parent thread may have to modify the URB Return Handle 0 field of the URB write message to

subdivide the large URB space that the thread manages.

Only a persistent root thread can use this message to dispatch a root thread if preemption exceptions

are possible. The root thread requested by this message is not guaranteed to dispatch, and the

persistent root thread must handle the case where it does not dispatch. When a context switch interrupt

is recognized by the persistent root thread, all other root threads that had been dispatched have

completed and no more will be dispatched.

Child threads requested by this message are guaranteed to dispatch in all cases, so long as the

persistent root thread does not also dispatch synchronized root threads. A child thread does not

dispatch if it is behind a synchronized root thread that is not dispatched due to a preemption

exception.

In addition to monitor ‘end of thread message’ targeted to Thread Spawner, Thread Spawner also

monitors the message targeting to Message Gateway for EOT signal. Therefore, a child thread, who

doesn’t hold any hardware resource (URB handle or scratch memory) that Thread Spawner manages,

can terminate with a Gateway message with EOT on. The reason of this new TS feature is to avoid a

possible risk condition as described below.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 745

In a system running child threads, a parent thread is monitoring the status of the child threads by

communications through Message Gateway. When a child thread is about to terminate, it sends a

message to the parent through Message Gateway and then sends a second message of EOT (end of

thread) to TS.

There is a latency between sending a message to parent thread and the EOT to TS due to message bus

arbitration. The parent thread may acknowledge the GW message and issue a new child dispatch before

the EOT was processed; basically threads are issued faster than retired.

Because the messages for new child dispatch and EOT go to the same queue in TS, if the queue gets

full, EOTs will get blocked. In the case when all the EUs/Threads are full, this will create a system

deadlock: no EOTs can be acknowledged by TS (to free up EU resource) and no child threads can be

dispatched (to free up TS queue to receive EOT message).

Message Descriptor

The following table shows the lower 20 bits of the message descriptor within the SEND instruction for a

thread spawn message.

Thread Spawn Message Descriptor

Message Payload

DWord Bits Description

M0.5 31:8 Ignored.

7:0
FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other

concurrent root threads. It is used to free up resources used by a root thread upon thread

completion.

This field is valid only if the Opcode is “dereference resource”, and is ignored by hardware

otherwise.

M0.4 31:16 Ignored.

15:10
Dispatch URB Length. Indicates the number of 8-DWord URB entries contained in the Dispatch

URB Handle that will be dispatched. When spawning a child thread, the URB handle contains most

of the child thread's payload including the R0 header. When spawning a root thread, the URB

handle contains the message passed from the requesting thread to the spawned “peer” root

thread. The number of GRF registers that are initialized at the start of the spawned child thread is

the sum of this field and the number of URB constants if present. The number of GRF registers that

are initialized at the start of a spawned root thread is the sum of this field, the number of URB

constants if present, and the URB handle received from VFE.

This field is ignored if the Opcode is “dereference resource”.

A Length of 0 can be used while spawning child threads to indicate that there is no payload

beyond the required R0 header. A Length of 0 while spawning a root thread indicates that there is

no payload at all from the parent thread. A spawned root has R0 supplied by the Media_Object

command indirect/inline data.

3D Media GPGPU

746 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Format = U6

Range = [0,63] for child threads.

9:0
URB Handle Offset. Specifies the 8-DWord URB entry offset into the URB handle that determines

where the associated dispatch payload will be retrieved from when the spawned child or root

thread is dispatched.

This field is ignored if the Opcode is “dereference resource”.

Format = U10

Range = [0,1023]

M0.3 31:0 Ignored.

M0.2 31:28 Ignored.

27:24
BarrierID. This field indicates which one of the 16 Barriers this kernel is associated with.

Format: U4

23:16 Ignored.

15:10 Ignored.

3:0
Scoreboard Color (only with MEDIA_OBJECT_EX). This field specifies which dependency color the

current thread belongs to. It affects the dependency scoreboard control.

Format = U4

M0.1 31:0 Ignored.

M0.0 31:28 Ignored.

27:24
Shared Local Memory Index. Indicates the starting index for the shared local memory for the

thread group. Each index points to the start of a 4K memory block, 16 possibilities cover the entire

64K shared memory per half-slice.

Format = U4

23:16 Reserved: MBZ

15:0
Dispatch URB Handle.

If Opcode (and Requester Type) is “spawn a child thread”: Specifies the URB handle for the child

thread.

If Opcode (and Requester Type) is “spawn a root thread”: Specifies the URB handle containing

message (e.g. requester’s gateway information) from the requesting thread to the spawned root

thread.

If Opcode is “dereference resource”: This field is required on end of thread messages if the

Children Present bit is set, as the handle must be dereferenced, otherwise this field is ignored.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 747

L3 Cache and URB

This section describes the GFX L3 Cache, which is a large storage that backs up various L2/L1 caches on

many clients. It provides a simple way based partitioning option for each of a cluster of clients to get a

dedicated chunk of the cache. It also acts as a GFX URB and can be configured as highly banked

memory for EUs/ROWs.

L3 Cache and URB

This section discusses GFX L3 cache for CHV, BSW. The included topics are:

 Overview

 Atomics

 L3 Coherency

 L3 Allocation & Programming

 Shared Local Memory (SLM)

 Dynamic Parity Feature for GFX L3 Cache

3D Media GPGPU

748 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Vol 1i L3$/URB

Overview (8th Generation)

GFX L3 cache is introduced for Gen7 GFX core as a large storage which backs up various L2/L1 caches

on many clients. It provides a simple way based partitioning option for each or a cluster of clients to get

a dedicated chunk of the cache. It also acts as a GFX URB and can be configured as highly banked

memory (shared local memory) for EUs/ROWs.

For CHV, BSW which is a generation 8 derivative, the bank count has been reduced to 2 (i.e. 2x192KB)

 Formed as 2 individual banks each with 192KB in size

 Each logical bank consists of

o Data Array

o Tag Array

o LRU Array (implements a Pseudo Least Recently Used algorithm)

o State Array

o SuperQ Buffer

o Atomic Processing Units

 The rest of the support logic around L3 are

o SuperQ (main scheduler)

o Ingress/Egress queues to L3/SQ (L3 arbiter)

o CAM structures to maintain coherency.

o Crossbars for data routing

 Use of 2x/1x clocking

 A portion of L3 can be allocated as highly banked memory and/or unified buffer (URB)

Gen8 L3 controller added an optimization where back 2 back accesses to the same address are

performed full bandwidth rather than partial serialization that was on previous generations. This

optimization eliminates the need for software work around of distributing or moving of high accesses

buffers within a short temporal period.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 749

L3$ Cache Configuration

 2x192KB cache, 96 logical ways

o Upto 64 ways tagged for L3$, remaining is treated as memory.

o Shared local memory capable (up to 256KB per slice, i.e. GT2)

 64B Cacheline with a portion capable of highly banked memory (with 16x4B)

 Interface 2x64B to SQDB for the fill/write path, 2x64B Read/Evict path to SQDB. Additional 2x64B

read and 2x64B write capability for SLM

 Data Array built via 6T cells

o Data protection via parity/ECC

 TAG/LRU/STATE (using gen-ram via RLS flows)

o 39-bit addressing support in TAG

o 6 bit state

o Intel pseudo-LRU implementation for selecting the line to be replaced

 Repetition rates for each operation

o All operations – 1 every 2x clock

 With b2b restriction for same type of accesses (i.e. read to read or write to write)

Blocks(s) Overview

L3 is formed via 2 logical banks that are very similar to each other in formation. The major blocks in

each logical banks

 L3 Cache Arrays & Controller

 Super Q and related data buffer

 Ingress queues and related CAMs with arbitration

 Atomics Block/SLM pipeline & crossbar for data routing

Rest of the document will go through the details of these blocks and provide details of their logical

operation. In addition there will be specific sections that will go through the requirements for

coherency.

Vision is to build a compute scalable cache where with each additional compute both the size and

bandwidth is scaled while maintaining the functional single cache concept. Each added bank becomes

an additional cache rather than an independent content. The concept is to be able to keep a single copy

of a line and service all requesters via distributing their accesses over many physical caches.

3D Media GPGPU

750 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Size of L3 for 8th Generation

Non-SLM Mode

 GT1 (384KB) GT0.5 (192KB)

URB 128KB-192KB 64KB-96KB

Shared local Mem 0KB 0KB

L3$ 192KB-256KB 96KB-128KB

SLM Mode

 GT1 GT1

URB 64KB 32KB

Shared local Mem 128KB 64KB

L3$ 192KB 96KB

ECC Protection

8th generation L3 has added ECC (SECDED) protection on a 32B level to provide better data protection.

The algorithm is an industry standard. Double bit errors are reported to s/w.

L3$ Theory of Operation

L3/URB operation is required for various clients to access L3 as their back-up cache or memory space.

The following clients are listed as L3/URB clients.

L3 Clients:

 Data Cluster (i.e. spill/fills, load/stores, global memory accesses, ...) (read/write)

 Sampler (L2$ - MT) (read)

 IME (motion estimation) (read)

 I$ (Instruction Cache) (read)

 State Arbiter (L3 is state cache replacement) (read)

 Constant cache (read)

 Tesselator (always un-cacheable for SW tessellation)

URB Clients:

 TD-L (read client) – Local Thread Dispatcher

 SBE (read client) – SF Backend

 SOL (read client) – Stream Out

 CL (read client) – Clipper

 GS (read client) – Geometry Shader

 TE (read Client) – Tessalator

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 751

 DC (read/write client) – Data Cluster

 VF/(VFE/CS) (write client) – VF acts on behalf of all

L3 vs. URB accesses are separated with a simple field on the request field; for most clients this is only

one direction with the exception of the data port where both could be addressed L3 or URB. The

destination field is part of the request and could be set to redirect the request to:

1. L3 cache

2. URB

3. State Arbiter

4. SLM (highly banked memory)

L3 access/cacheability is determined via request field as well; such parameter will be part of the surface

state or base address programming of L3 clients and will be communicated to L3 Cluster along with the

request packet.

3D Media GPGPU

752 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Atomics

An atomic operation may involve both reading from and then writing to a memory location. Atomic

operations apply only to either u# (Unordered Access Views) or g# (Thread Group Shared Memory). It is

guaranteed that when a thread issues an atomic operation on a memory address, no write to the same

address from outside the current atomic operation by any thread can occur between the atomic read

and write.

If multiple atomic operations from different threads target the same address, the operations are

serialized in an undefined order. This serialization occur due to L3 serialization rules to the same

address.

Atomic operations do not imply a memory or thread fence. If the program author/compiler does not

make appropriate use of fences, it is not guaranteed that all threads see the result of any given memory

operation at the same time, or in any particular order with respect to updates to other memory

addresses. However atomic operations are always stated on a global level (except on shared local

memory), when atomic is operation is complete final result is always visible to all thread groups.

On Gen7, Atomicity is implemented at 32-bit granularity. If a load or store operation spans more than

32-bits, the individual 32-bit operations are atomic, but not the whole.

Gen7.5 extended the atomic support with the addition of “Atomic_CMP/WR8B” where 64-bit atomic

operations are introduced. An additional change was to move the global atomics to GPU interface to

keep the operation coherent between GPU and IA cores. In addition full 64B atomic access option was

provided to both SLM and Global atomics to increase the throughput. Gen7.5 (GT3 option) can support

up to 128 atomic ops per clock on SLM and 16 atomic ops per clock on Global memory (8B and

compare exchange atomics are subject to less due to amount of data needs to be carried)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 753

Gen8 atomics has following features introduced:

 Double size operands where 8B atomic operations are introduced for 64-bit data types. There is

also an addition 16B “atomic_cmp/wr16B” to the table. All these new operands are applicable to

global memory only

 Floats for 4B/8B accesses, only floating point adder is used.

 Move global atomic ops to L3 (keep the GTI support for non-coherent L3 mode) and share same

atomic OPs as SLM.

Programming Note

Context: Atomics

Atomic operations on Thread Group Shared Memory are atomic with respect to other atomic operations, as well

as operations that only perform reads (“load”s). However atomic operations on Thread Group Shared Memory are

NOT atomic with respect to operations that perform only writes (“store”s) to memory. Mixing of atomics and

stores on the same Thread Group Shared Memory address without thread synchronization and memory fencing

between them produces undefined results at the address involved.

This restriction arises because some implementations of loads and stores do not honor the locking semantics for

implementing atomics. It turns out this has no impact on loads, since they are guaranteed to retrieve a value

either before or after an atomic (they will not retrieve partially updated values, given they are all defined at 32-bit

quanta). However store operations could find their way into the middle of an atomic operation and thus have their

effect possibly lost.

In L3 or SLM, the atomic operation leads to a read-modify-write operation on the destination location

with the option of returning value back to requester. The table below is defined as a list of atomic

operations needed:

Atomic

 Operation Opcode Description

New

Destination

 Value Applicable

Return

Value

(optional)

Atomic_AND 0000_0001 Single component 32-bit bitwise AND of

operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

“old_dst” AND

“src0”

global/SLM old_dst

Atomic_OR 0000_0010 Single component 32-bit bitwise OR of

operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

“old_dst” OR

“src0”

global/SLM old_dst

Atomic_XOR 0000_0011 Single component 32-bit bitwise XOR of

operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

“old_dst” XOR

“src0”

global/SLM old_dst

Atomic_MOVE 0000_0100 Replacement of the dst with src0. “src0” global/SLM old_dst

Atomic_INC 0000_0101 Single component 32-bit integer

increment of dst back into dst

“old_dst + 1” global/SLM old_dst

3D Media GPGPU

754 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Atomic

 Operation Opcode Description

New

Destination

 Value Applicable

Return

Value

(optional)

Atomic_DEC 0000_0110 Single component 32-bit integer

decrement of dst back into dst

“old_dst - 1” global/SLM old_dst

Atomic_ADD 0000_0111 Single component 32-bit integer add of

operand src0 into dst at 32-bit per

component address performed

atomically. Insensitive to sign

“old_dst +

src0”

global/SLM old_dst

Atomic_SUB 0000_1000 Single component 32-bit integer

subtraction of operand src0 into dst at

32-bit per component address

performed atomically. Insensitive to sign

“old_dst - src0” global/SLM old_dst

Atomic_RSUB 0000_1001 Single component 32-bit integer

subtraction of operand dst from src0

into dst at 32-bit per component

address performed atomically.

Insensitive to sign

“src0 - old_dst” global/SLM old_dst

Atomic_IMAX 0000_1010 Single component 32-bit signed MAX of

operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

IMAX (old_dst,

src0)

global/SLM old_dst

Atomic_IMIN 0000_1011 Single component 32-bit signed MIN of

operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

IMIN (old_dst,

src0)

global/SLM old_dst

Atomic_UMAX 0000_1100 Single component 32-bit unsigned MAX

of operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

UMAX

(old_dst, src0)

global/SLM old_dst

Atomic_UMIN 0000_1101 Single component 32-bit unsigned MIN

of operand src0 into dst at 32-bit per

component address dstAddress,

performed atomically.

UMIN (old_dst,

src0)

global/SLM old_dst

Atomic_

CMP/WR

0000_1110 Single component 32-bit value compare

of operand src0 with dst at 32-bit per

component address dstAddress

(src0 ==

old_dst)?

global/SLM old_dst

If the compared values are identical, the

single-component 32-bit value in src1 is

written to destination memory, else the

destination is not changed

src1:

The entire compare+write operation is

performed atomically

old_dst

Atomic_
0000_1111 Single component 32-bit integer “old_dst - 1” global/SLM new_dst

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 755

Atomic

 Operation Opcode Description

New

Destination

 Value Applicable

Return

Value

(optional)

PREDEC decrement of dst back into dst

Atomic_AND8B 0010_0001 Single component 64-bit bitwise AND of

operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

“old_dst8B”

AND “src08B”

global old_dst8B

Atomic_OR8B 0010_0010 Single component 64-bit bitwise OR of

operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

“old_dst8B” OR

“src08B”

global old_dst8B

Atomic_XOR8B 0010_0011 Single component 64-bit bitwise XOR of

operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

“old_dst8B”

XOR “src08B”

global old_dst8B

Atomic_

MOVE8B

0010_0100 Replacement of the dst with src0. “src08B” global old_dst8B

Atomic_INC8B 0010_0101 Single component 64-bit integer

increment of dst back into dst

“old_dst8B +

1”

global old_dst8B

Atomic_DEC8B 0010_0110 Single component 64-bit integer

decrement of dst back into dst

“old_dst8B - 1” global old_dst8B

Atomic_ADD8B 0010_0111 Single component 64-bit integer add of

operand src0 into dst at 64-bit per

component address performed

atomically. Insensitive to sign

“old_dst8B +

src08B”

global old_dst8B

Atomic_SUB8B 0010_1000 Single component 64-bit integer

subtraction of operand src0 into dst at

64-bit per component address

performed atomically. Insensitive to sign

“old_dst8B -

src08B”

global old_dst8B

Atomic_

RSUB8B

0010_1001 Single component 64-bit integer

subtraction of operand dst from src0

into dst at 64-bit per component

address performed atomically.

Insensitive to sign

“src08B -

old_dst8B”

global old_dst8B

Atomic_IMAX8B 0010_1010 Single component 64-bit signed MAX of

operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

IMAX

(old_dst8B,

src08B)

global old_dst8B

Atomic_IMIN8B 0010_1011 Single component 64-bit signed MIN of

operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

IMIN

(old_dst8B,

src08B)

global old_dst8B

3D Media GPGPU

756 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Atomic

 Operation Opcode Description

New

Destination

 Value Applicable

Return

Value

(optional)

Atomic_

UMAX8B

0010_1100 Single component 64-bit unsigned MAX

of operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

UMAX

(old_dst8B,

src08B)

global old_dst8B

Atomic_

UMIN8B

0010_1101 Single component 64-bit unsigned MIN

of operand src0 into dst at 64-bit per

component address dstAddress,

performed atomically.

UMIN

(old_dst8B,

src08B)

global old_dst8B

Atomic_

CMP/WR8B

0010_1110 Single component 64-bit value compare

of operand src0 with dst at 64-bit per

component address dstAddress

(src08B ==

old_dst8B)?

global old_dst8B

If the compared values are identical, the

single-component 64-bit value in src1 is

written to destination memory, else the

destination is not changed

src18B:

The entire compare+write operation is

performed atomically

old_dst8B

Atomic_

PREDEC8B

0010_1111 Single component 64-bit integer

decrement of dst back into dst

“old_dst8B - 1” global new_dst8B

Atomic_

CMP/WR16B

0100_1110 Single component 64-bit value compare

of operand src0 with dst at 64-bit per

component address dstAddress

(src0_16B ==

old_dst16B)?

global old_dst16B

If the compared values are identical, the

single-component 64-bit value in src1 is

written to destination memory, else the

destination is not changed

src1_16B:

The entire compare+write operation is

performed atomically

old_dst_16B

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 757

L3 Coherency

Coherency is one of the crucial topics within L3; there are multiple levels of coherency that are checked

and ensured via L3. The list of domains and flows depends on the usage models, however the basic

premise is always the same.

The coherency levels:

1. Thread Level Coherency within a Thread Group

2. Thread Group Coherency between multiple domains

Besides these special domains, basic producer/consumer models are followed, which are listed as:

1. Fixed function is producing.

2. Data Port is producing.

All these high level coherency models are investigated and addressed.

Note: GPU/IA level coherency is not supported by CHV, BSW Hardware. This level of coherency must be

enforced via Software, same as Gen 7.5.

Thread level Coherency

A given thread group is contained within a quarter slice in Gen8, where its writes and reads target the

L3 for global memory and SLM for shared local memory. Given the shared local memory view is same

for all quarter slice accesses there is no question about the coherency or data sharing within the thread

group. Local syncs are executed up to HDC boundary and not exposed to L3.

Thread Group Coherency

Thread groups can be distributed to multiple quarter slices that are physically far from each other. The

coherency between thread groups can only be maintained for their global memory accesses. There are

two implications of this coherency depending on the mode we are operating at:

1. Non IA-Coherent L3 mode: This is the same methodology that was introduced on Gen7.5 with the

addition of GT4 support. The cross thread group coherency is maintained via Sync Global which is

processed by L3 as well as introducing WT mode to be able to update global memory with latest

data.

2. IA-Coherent L3 mode: For the new mode of operation, there is no need to have WT behavior. The

data in L3 is already visible to all consumers (i.e. other thread groups of GPU or IA cores).

Sync’global has no affect given the data in L3 is already globally visible to all consumers.

GPU/IA level Coherency

In non-coherent L3 mode (i.e. Gen7.5 behavior), data sharing between GPU and IA happens via a SW

controlled flow which requires the internal GPU caches to be flushed in order to make the data visible;

similarly same caches need to be invalidated when IA produces data.

3D Media GPGPU

758 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Coherency Usage Models

This section is to give some examples of usage models and high level handling within L3. They are

specific to L3 flows and not meant to represent over coherency usage models on the system level.

Fixed Func. Producing (URB)

Fixed functions clients and slice clients consuming is a very common usage model for URB based data

sharing. In this mode, FF sends writes to URB and shifts to their pipeline, rest of the pipeline clients

including slice clients will read their content from URB.

Process is achieved via URB writes completion from the GO point which would be the *slice node* for

gen8. Once slice node consumes the write and schedules for BANK the completion is returned back to

producer which enables the consumer. The time consumers start, the data is already at the point of GO

where BANK superQ will keep the ordering.

Note that a node should not be scheduling writes from ingress queues if there are no credits and no

progress can be made. The completion from a node is only given once the write from the producer

leaves the node ingress queue.

Fixed Func. Producing (Push Constants)

Push constants are also similarly processed, in fact the target is the same: URB. However URB accesses

are processed with their URB offsets via TAG, their original address is based on virtual memory pointing

to buffer location in memory. The delivery mechanism makes the CAMs not possible hence the

completions are managed once access is deemed towards SuperQ of the corresponding L3 Bank.

There are additional constraints independent L3 handling of push constants which are defined as part

of the Global Arbitration fabric.

EUs Producing via HDC

Data port is the producer for Global and Shared Local memory types. The local memory is specific to a

data port, hence L3 does not have to do anything special to maintain coherency but to keep accesses to

SLM in-order.

For Global memory coherency is maintained via combination of many mechanisms.

1. Completion tracking: Each HDC tracks their writes towards L3 and wait for them to reach to GO.

GO message is given by L3

a. For Non-coherent/virtual addressed Write: Once the ingress queue retires the write in the

corresponding node to targeted bank.

b. For Coherent/physical addressed Write: Once the ownership is obtained for the write (i.e. read-

for-ownership or invalid-to-modified) which means write is GO with respect to IA cores.

GO information is used within data port to make sure handle releases are gated until the producers

updates are globally visible.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 759

2. Thread Level Flush: EU threads have the capability to push globally tagged data from L3 to next

level caches.

Invalidation and Flushes

Cache invalidation and flush flows need to analyzed and defined as the u-arch changes for gen8.

Fundamentally there are two different sources to initiate these sequences:

 Command Streamer initiated

 EU/thread initiated

Both cases need to be analyzed for two modes of operation

 Non-IA coherent L3

In addition there are side flows that back up the various flows and they do require invalidation/flush

sequences to be executed for their purpose. Their behavior has no impact between two modes of L3

operation.

 Global Invalidation

 Power Management Invalidation

Node Architecture Impact

The idea behind the node architecture is to make each L3 node to be independent and easily scalable;

this is done via standardizing the flows and using common interfaces to exchange information between

blocks. Invalidations and Flushes are meant to be tuned to similarly to fit into the concept.

Each node will have to be notified on all invalidations as soon as possible (signals) and their behavior is

to make that particular stream un-cacheable even if it did not start the invalidation process already. The

process is much simpler when it comes to operations which do not require a feedback back to

originator. The command streamer top of the pipe invalidations are under this category. Each node can

process these invalidations independently but act on it for turning the particular stream to look

uncacheable right away.

For the invalidation and flush processes where feedback is required, the event needs to be synchronized

between nodes.

Each node receiving the invalidation or flush will push their ingress FIFOs to make sure their content is

also covered as part of the flush event.

Command Streamer Flows

Command streamer can do top of the pipe invalidations which are direct connections from command

streamer unit to L3 in respective slices, as well as pipeline flush which runs through the data port to

respective slice L3 node. Both flows are handled separately.

There is no definition of a particular context using a coherent vs non-coherent L3. Hence L3 has no

register bit that says it is running in coherent vs non-coherent mode. In the operation time, both modes

3D Media GPGPU

760 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

will co-exist simultaneously where some lines in the cache are following a coherent protocol (i.e.

physical address) and remaining lines are following non-coherent protocol (i.e. virtual address).

Non-IA Coherent Flows

This is the traditional flow where the content of L3 needs to be invalidated or flushed similar to gen7.5

flows.

Top of the Pipe Invalidations

The nodes process invalidations independently. Each top and bottom slice (slice0 and slice1 OR slice2

and slice3) will get their top of the pipe invalidations from their command streamer. They will process

them independently (via communicating to L3 blocks) and getting a feedback for completion. They will

also communicate the invalidation to across cores (via horizontal communication).

Nodes are responsible to serialize the invalidation and use double buffering for each event.

End of the Pipe Flush - Pipeline Flush

GT4/GT3/GT2/GT1 pipeline invalidation is much simpler where the pipeline flush needs to be

coordinated between two slice or not need to be coordinated at all.

End of the Pipe Flush - GT3/GT4

GT3 has only two/three slices stacked, the flush event needs to be coordinated between two slices.

Once both nodes receive the flush, they will perform what is needed and report back their status.

End of the Pipe Flush - GT2/GT1

GT2 and GT1 has a single slice hence no cross communication dependency is needed.

IA-Coherent Flows

In principle IA-coherent flow is same from node perspective, the only difference is within the banks

given the data that we are trying to flush or invalidate is already coherent with IA. Such case eliminates

the need to push any bank content explicitly out to LLC.

All that is needed from the bank is to make sure LSQC content is posted into the bank where it is IA

visible for a bank to return flush/invalidation completion status to the node.

EU/Thread Flows

As part of Gen7.5, we added the capability for EUs to be able to perform flush/invalidation events that

are not coordinated between other EUs. HDC will relate the request to corresponding L3 and require

the entire content of this buffer to be invalidated or flushed to relative coherency domain.

Similar to pipeline flush and top of the pipe invalidations, each node receiving this event will have to

communicate with other nodes and make the corresponding traffic uncacheable before returning the

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 761

response back to corresponding HDC, allowing progress. The actual invalidation/flush will be deferred

and performed once all nodes agree on what needs to be done.

The IA-coherent vs non-IA coherent treatment is same as command streamer flows and still applicable

for EU/Thread Flows for invalidation/flush.

Global Invalidation

As part of a mitigation plan to plug holes, a global invalidation flow is introduced where each L3 will get

the request from their SARB (or config agent) and again coordinate between the nodes. Once

invalidation/flush is performed, completion will be returned back to config agent to clear the flags

allowing SW to observe the end of the global invalidation.

Global invalidation will invalidate/flush the entire content of L3 regardless of the coherency mode.

Power Management Invalidation

Corresponding PM will message to L3 config agent to request a flush when needed. Main usage mode

is prior to entering RC6. The rest of the treatment in the nodes is the same. Once flush/invalidate event

is complete, message(s) will be sent back to PM with the completion status.

3D Media GPGPU

762 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

L3 Allocation and Programming

L3 Cache allocation is done on a per way basis which should be consistent across all 4 banks (2 banks

for GT1). The way allocation between URB and any of the L3 clients can only be changed post pipeline

flush where L3 contains no data. This is required for stream based flushes to be dependent on the way

allocation of these corresponding streams. S/W should not be removing ways under a particular stream

and expect a later pipelined stream flush to target all the corresponding locations. The stream based

flush will be performed on the existing way allocation of that stream, there is no history of previous way

allocation tracked in the hardware.

L3 Cache has been divided into following client pools:

 Shared Local Memory: When enabled its size is always fixed to 128KB (64KB for GT1)

 URB: Local memory space, provides a flexible allocation on per 8KB granularity

 DC: Data Cluster Data type

 Inst/State: Both instructions and state allocation is combined

 Constants: Pull constants for EUs

 Textures: texture allocation to back-up L2$

In addition to these sub-groups, a collection of groups are generated to bundle multiple clients under

the same allocation set:

 All L3 Clients: DC, Inst/State, Constants & Textures

 Read-Only Clients: Inst/State, Constants & Textures

Each of the L3 way allocations are managed via pLRU, hence best performance can be attained via

assigning a power-of-2 number of ways. This is to ensure pLRU to distribute the ways w/o hot spotting

within that client’s group. Even though design provides a flexible (per way basis) programming model

for way allocation for each client following table is given for validation and s/w programming models.

The programming options in the following table represents most likely cases for different operation

modes.

For GT1, hardware will retain 2 of the L3 banks hence all following allocations will be reduced half the

size.

The URB size programming given in this section shows L3 capability but does not necessarily dictate the

s/w programming requirements. The programming should be based on what s/w chooses in 3d

command for 3DState_URB_* selection. Once the URB size is determined, the remaining area can be

given to L3$.

Non-SLM Mode Allocation

Normal L3/URB mode (non-SLM mode), uses all 4 banks of L3 equally to distribute cycles. The following

allocation is a suggested programming model. Note all numbers below are given in KBytes.

The following settings are given for GT1.

GT0.5 has the half of the allocation listed below.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 763

Normal Banked - No SLM

 SLM URB Rest DC RO(I/S/C/T) I/S C T Sum

0 0 192 192 0 0 0 0 0 384

1 0 192 0 64 128 0 0 0 384

2 0 128 0 64 192 0 0 0 384

3 0 128 0 0 256 0 0 0 384

4 0 128 256 0 0 0 0 0 384

SLM Mode Allocation

With the existence of Shared Local Memory, a 64KB chunk from each of the 2 L3 banks will be reserved

for SLM usage. The remaining cache space is divided between the remaining clients.

Shared Local Memory Mode - highly banked Memory

 SLM URB Rest DC RO(I/S/C/T) I/S C T Sum

1 128 64 192 0 0 0 0 0 384

2 128 64 0 64 128 0 0 0 384

3 128 64 0 128 64 0 0 0 384

Unlike previous generation logic is simplified via combining RO clients under one pool, given most

clients have already their L1 and L2 caches. Bundling them greatly reduces the timing paths and

complexity in trying to determine which client belongs to which way.

Similar to previous generations before changing the configuration of L3, the entire contents needs to

be flushed and invalidated. This is to prevent any false hits post configuration update. The invalidation

can be achieved either through command streamer’s pipeline flush + top of the pipe invalidations or

the global invalidation option within L3. Both options will work for non-coherent option of L3.

For coherent L3 the only option is to follow pipeline invalidation via an L3 global invalidation. That

would push all coherent content out of L3 as well allowing a programming update in allocation.

3D Media GPGPU

764 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Shared Local Memory (SLM)

Shared local memory (aka highly-banked memory) is a portion of L3 which will be dedicated to EUs as a

local memory when enabled. The accesses are only possible through data cluster with the destination

flag set as SLM. In order to support a highly banked design, 2 of the L3 banks are structured to have

16x4KB portion which could be accessed independently per clock. This part of the L3 can support 16

DW size accesses (per SLM) in a given clock cycle.

These 16 banks can either be used as L3/URB or used as shared local memory with parallel accesses to

all banks. The choice of enabling SLM mode is done through MMIO programming.

Bits Access

Default

Value Description

0
RW/C 0

Enable Shared Local Memory: When set, it enables the use of 2 banks of L3 as shared

local memory which allows 64KB of L3 to be banked as 16x4KB and allows independent

accesses to all banks within the same clock cycle.

Note: This mode can only be enabled once L3 content is completely flushed.

In gen7, SLM is structured as 64KB per half slice (6 EUs) and each 64KB allow up to 16 accesses to a

particular 4KB bank. Each 4KB bank is addressed separately where their requests are placed on a 160bit

address bus where each 10-bit correspond to a bank sequentially. Each bank gets addressed with 10bits

and provides 4B access with a total of 4KB per bank. When SLM mode is not enabled, SLM banks are

considered a part of L3 and used for cache or URB.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 765

SLM requests are forked around the L3 arbiter, post ingress FIFOs for DC. L3 arbiter delivers

request/data to SLM controller upon the availability of credits. Request will be crossed to 2x clock

domain routed to corresponding banks. Individual bank controls are managed via SLM controller which

are muxed with L3/URB accesses. Note that SLM accesses do carry byte enables and needs to be

honored towards the banks. If the request has atomic requirements, SLM controller will provide the

data to ALU along with the atomic type. Output data is again managed with SLM controller towards the

output cross bars.

SLM should not be accessed through the 3D pipe.

Save and Restore Requirements

At the pre-emption time for GPGPU the contents of shared local memory will be saved to memory. The

flow requires some special handling both in SuperQ and L3 pipeline and will be managed via a small

DMA engine which will need to interface to L3 arbiter.

The SAVE time will be reported via messages to state arbiter which later relates that message to DMA

controllers on either side for GT2 (only one for GT1), restore will be processed similar to save and will be

communicated back as completed.

Note that GFX virtual buffer given for save and restore has to be 128KB aligned (64KB for GT1).

As part of the process of preemption, the GPGPU controller will ensure there is no more messages from

EUs to shared local memory. Once guaranteed, there will be a message to State Arbiter which in turn

converted to a message to SLM DMA controller block. From this point on SLM DMA controller will

interface with L3 arbiter like any other GFX client with the credit protocol that are defined.

Once all requests are retired to L3 arbiter, DMA controller will send a completion signal to SARB. State

arbiter will wait for both DMA controllers to send their completion signals before sending the response

back to GPGPU controller (note for GT1 – I response is good enough)

3D Media GPGPU

766 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

A new simple DMA controller will be designed to generate the accesses that are needed, this block will

be used for both save and restore transaction.

For Save, once the signal is received from State Arbiter to kick-off the save along with the address

within the gfx virtual space, DMA controller will start generating following special cycles towards L3

arbiter. Similarly for restore another special request will be sent.

 Save SLM Request

 Restore SLM Request

The request to L3 controller will be 64B size and carry a gfx address similar to any other request that L3

arbiter supports. DMA controller will walk all 64KB address space (1024 entries) via an increment and

using the provided address as the base address for request to L3 arbiter.

The interface between the SLM DMA controller and L3 arbiter will be no different than any other client

which is a credit based protocol.

Once the Save or Restore cycles are all posted to L3 arbiter, DMA controller will signal back to State

Arbiter to send the ACK message back to requester.

In L3 arbiter, the save and restore requesters from DMA controller is treated as any other request

interface. There is no data involvement so only request queues are needed. A 4 deep structure (ingress

FIFO) is provided giving 4 credits to SLM DMA controller to consume.

L3 arbiter will mux in the new ingress FIFO output with DC read paths and arbitrate Fixed Priority (SLM

DMA controller > DC reads).

The only remaining requirement for L3 arbiter to ensure the flush of this ingress FIFO upon a pipelined

Flush received from DC.

In processing save and restore cycles existing flows will be overloaded in SuperQ, both the save and

restore request is treated slightly different in SQ FSM.

SLM Context Save in SuperQ

Context Save request is a special request that SQ will generate towards L3 pipeline. They will look like

URB reads however will use the destination information for SLM. The GFX address is passed along to L3

to locate the line being asked.

SuperQ will eventually get a data response from L3 stating the readiness of line in SQDB. This will be

followed with a write request to Pixel arbiter (through crossbar) similar to eviction writes.

6SLM Context Restore in SuperQ

Context Restore for SLM will be also a special cycle and will look like prefetch-to-URB. Where SQ will

read the corresponding GFX address from memory and bring the data into SQDB. Than it will follow

with a write request to SLM – this is similar to write to URB however it will have the SLM as destination.

Similar to SuperQ, L3 pipeline will have some slight differences for SLM requests coming from the SQ.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 767

SLM Context Save in L3

Once the new context Save instruction is received, it is treated like a URB read where URB pipeline is

used with the new SLM vs URB flag in the request. At the TOP of the Data Pipeline, this flag is used to

direct the cycle towards the ways that are populated for SLM. The address will be used which WAY/SET

needs to be read same as URB address mapping to physical sets/ways.

SLM Context Restore in L3

The restore request will be treated like a URB write in L3 pipeline where the URB FIFO is used with the

new flag to indicate SLM destination. The rest will be similar to Save where the provided address and

flag is used to direct the data towards SLM space.

3D Media GPGPU

768 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

EU Overview

The GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and

media computations. Support for 3D graphics API (Application Programming Interface) Shader

instructions is mostly native, meaning that GEN efficiently executes Shader programs. Depending on

Shader program operation modes (for example, a Vertex Shader may be executed on a base of a vertex

pair, while a Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D graphics

API Shader instruction streams into GEN native instructions may be required. In addition, there are

many specific capabilities that accelerate media applications. The following feature list summarizes the

GEN instruction set architecture:

 SIMD (single instruction multiple data) instructions. The maximum number of data elements per

instruction depends on the data type.

 SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.

 Instruction level variable-width SIMD execution.

 Conditional SIMD execution via destination mask, predication, and execution mask.

 Instruction compaction.

 An instruction may executed in multiple cycles over a SIMD execution pipeline.

 Most GEN instructions have three operands. Some instructions have additional implied source or

destination operands. Some instructions have explicit dual destinations.

 Region-based register addressing.

 Direct or indirect (indexed) register addressing.

 Scalar or vector immediate source operand.

 Higher precision accumulator registers are architecturally visible.

 Self-modifying code is not allowed (instruction streams, including instruction caches, are read-

only).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 769

CoIssue/Dual Issue:

The EM Pipe has been expanded to handle general integer and all the float operations that FPU pipe

can execute as well.

Thread scheduling:

Threads are scheduled with the "oldest first" policy: a thread runs as long as no dependency is

encountered. When a switch is required, the oldest thread i.e., the thread which has been spawned the

first is the next to execute. After scheduling the next instruction from the currently executing thread, if

any of the four units are free, the EU tries to fill them from instructions from other threads (processed in

oldest to newest order).

Description:

 Opcodes: All opcodes except DX11 special opcodes.

 Datatype: All datatypes except bytes.

 Accessmode:

o Align1:

 No Scattering or Gathering data. This means data in source and destination registers are

aligned and packed (data is contiguous in a register).

 //Example:

 // allowed, data is contiguous and source and destination regioning map one

to one.

 mov (8) r10.0:f r11.0<8;8,1>:f

 // not allowed, data from source is strided and requires gathering to write

to destination

 mov (8) r10.0:f r11.0<4;4,2>:f

 // not allowed, data from source is contiguous but not aligned with

destination.

 //Destination register requires scattering

 mov (8) r10.0<2>:w r11.0<8;8,1>:w

 //not allowed, data from source is contiguous but destination is not

aligned to source

 mov (8) r10.1:f r11.0<4;4,1>:f

 // allowed. Source and destination have stride but are aligned

 mov (4) r10.1:f r11.1<4;4,1>:f

 A scalar on 32b/64b datatype is allowed.

o Align16

 Addressmode: Direct Addressing

 Register File: GRF/NULL/Immediates. No access to Accumulator.

3D Media GPGPU

770 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Primary Usage Models

In describing the usage models of the GEN instruction set, the following sections forward reference

terminology, syntax, and instructions described later in this specification. For clarity reasons, not all

forward references are explained at the point of reference. See the Instruction Set Summary chapter for

information about instruction fields and syntax.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 771

AOS and SOA Data Structures

With the Align1 and Align16 access modes, the GEN instruction set provides effective SIMD

computation whether data is arranged in array of structures (AOS) form or in structure of arrays (SOA)

form. The AOS and SOA data structures are illustrated by the examples in AOS and SOA Data Structures.

The example shows two different ways of storing four vectors in four SIMD registers. For simplicity, the

data vector and the SIMD register both have four data elements. The four data elements in a vector are

denoted by X, Y, Z, and W just as for a vertex in 3D geometry. The AOS structure stores one vector in a

register and the next vector in another register. The SOA structure stores one data element of each

vector in a register and the next element of each vector in the next register and so on. The two

structures can be related by a matrix transpose operation.

AOS and SOA Data Structures

GEN 3D and media applications take advantage of such broad architecture support and use both AOS

and SOA data arrangements.

 Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS form and use

SIMD4x2 and SIMD4 modes, respectively, as detailed below.

 Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA form and use SIMD8 and SIMD16

modes as detailed below.

 Pixels in media are primarily arranged in SOA form, and occasionally in AOS form with possibly

mixed modes of operation that uses region-based addressing extensively.

These are preferred methods; alternative arrangements may also be possible. Shared function resources

provide data transpose capability to support both modes of operations: The sampler has a transpose

for sample reads, the data port has a transpose for render cache writes, and the URB unit has a

transpose for URB writes.

The following 3D graphics API Shader instruction is used in the following sections to illustrate various

operation modes:

 add dst.xyz src0.yxzw src1.zwxy

3D Media GPGPU

772 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

This example is a SIMD instruction that takes two source operands src0 and src1, adds them, and stores

the result to the destination operand dst. Each operand contains four floating-point data elements. The

data type is determined by the instruction opcode. This instruction also uses source swizzles (.yxzw for

src0 and .zwxy for src1) and a destination mask (.xyz). Please refer to the programming specifications of

3D graphics API Shader instructions for more details.

A general register has 256 bits, which can store 8 floating point data elements. For 3D graphics, the

mode of operation is (loosely) termed after the data structure as SIMDmxn, where m is the size of the

vector and n is the number of concurrent program flows executed in SIMD.

Execution with AOS data structures:

 SIMD4 (short for SIMD4x1) indicates that a SIMD instruction operates on 4-element vectors

storedin registers. There is one program flow.

 SIMD4x2 indicates that a SIMD instruction operates on a pair of 4-element vectors in registers.

There are effectively two programs running side by side with one vector per program.

Execution with SOA data structures, also referred to as “channel serial” execution, mostly uses:

 SIMD8 (short for SIMD1x8) indicates a SIMD instruction based on the SOA data structure where

one register contains one data element (the same one) for each of 8 vectors. Effectively, there are

8 concurrent program flows.

 SIMD16 (short for SIMD1x16) indicates that a SIMD instruction operates on a pair of registers

that contain one data element (the same one) for each of 16 vectors. SIMD16 has 16 concurrent

program flows.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 773

SIMD4 Mode of Operation

With a register mapping of src0 to doublewords 0-3 of r2, src1 to doublewords 4-7 of r2 and dst to

doublewords 0-3 of r3, the example 3D graphics API Shader instruction can be translated into the

following GEN instruction:

add (4) r3<4>.xyz:f r2<4>.yzwx:f r2.4<4>.zwxy:f {NoMask}

Without diving too much into the syntax definition of a GEN instruction, it is clear that a GEN instruction

also takes two source operands and one destination operands. The second term, (4), is the execution

size that determines the number of data elements processed by the SIMD instruction. It is similar to the

term SIMD Width used in the literature. Each operand is described by the register region parameters

such as ‘<4>’ and data type (e.g. “:f”). These will be detailed in the SIMD8 Mode of Operation section.

The instruction option field, {NoMask}, ensure that the execution occurs for the execution channels

shown in the instruction, instead of, possibly, being masked out by the conditional masks of the thread

(See Instruction Summary chapter for definition of MaskCtrl instruction field).

The operation of this GEN instruction is illustrated in the following figure. In this example, both source

operands share the same physical GRF register r2. The two are distinguished by the subregister number.

The source swizzles control the routing of source data elements to the parallel adders corresponding to

the destination data elements. The shaded areas in the destination register r3 are not modified. In

particular, doublewords 4-7 are unchanged as the execution size is 4; doubleword 3 is unchanged due

to the destination mask setting.

In this mode of operation, there is only one program flow – any branch decision will be based on a

scalar condition and apply to the whole vector of four elements. Option {NoMask} ensures that the

instruction is not subject to the masks. In fact, most of the instructions in a thread should have

{NoMask} set.

Even though the execution only performs four parallel add operations, the GEN instruction still executes

in 2 cycles (with no useful computation in the second cycle).

A SIMD4 Example

3D Media GPGPU

774 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD4x2 Mode of Operation

In this mode, two corresponding vectors from the two program flows fill a GEN register. With a register

mapping of src0 to r2, src1 to r3 and dst to r4, the example 3D graphics API Shader instruction can be

translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<4>.yxzw:f r3<4>.zwxy:f

This instruction is subject to the execution mask, which initiated from the dispatch mask. If both

program flows are available (e.g. Vertex Shader executed with two active vertices), the dispatch mask is

set to 0x00FF. The operation of this GEN instruction is illustrated in SIMD4x2 Mode of Operation (a). The

source swizzles control the routing of source data elements to the parallel adders corresponding to the

destination data elements. The shaded areas in the destination register r3 (doublewords 3 and 7) are

unchanged due to the destination mask setting. If only one program flow is available (e.g. the same

SIMD4x2 Vertex Shader with only one active vertex), the dispatch mask is set to 0x000F. The operation

of the same instruction is shown in SIMD4x2 Mode of Operation (b).

SIMD4x2 Examples with Different Emasks

The two source operands only need to be 16-byte aligned, not have to be GRF register aligned. For

example, the first source operand could be a 4-element vector (e.g. a constant) stored in doublewords

0-3 in r2, which is shared by the two program flows. The example 3D graphics API Shader instruction

can then be translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<0>.yzwx:f r3<4>.zwxy:f

The only difference here is that the vertical stride of the first source is 0. The operation of this GEN

instruction is illustrated in SIMD4x2 Mode of Operation.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 775

A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows

3D Media GPGPU

776 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode,

two corresponding vectors from the two program flows fill a GEN register.

With the following register mappings

src0:r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),

src1:r10-r17,

dst:r18-r25,

the example 3D graphics API Shader instruction can be translated into the following three GEN

instructions:

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f// dst.x = src0.y + src1.z

add (16) r20<1>:f r6<8;8,1>:f r16<8;8,1>:f// dst.y = src0.z + src1.w

add (16) r22<1>:f r8<8;8,1>:f r10<8;8,1>:f // dst.z = src0.w + src1.x

The three GEN instructions correspond to the three enabled destination masks As there is no output for

the W elements of dst, no instruction is needed for that element. The first instruction inputs the Y

elements of src0 and the Z elements of src1 and outputs the X elements of dst. The operation of this

instruction is shown in SIMD16 Mode of Operation.

With more than one program flow, the above instructions are also subject to the execution mask. The

16-bit dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by

the Windower, each 4-bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel

Shader instance, the corresponding 4-bit group in the dispatch mask is not set. Therefore, the same

instructions can be used independent of the number of available subspans without creating bogus data

in the subspans that are not valid.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 777

A SIMD16 Example

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the

first source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS

format). The example 3D graphics API Shader instruction can then be translated into the following GEN

instruction:

add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr}// dst.x = src0.y + src1.z

add (16) r20<1>:f r2.2<0;1,0>:f r16<8;8,1>:f {Compr}// dst.y = src0.z + src1.w

add (16) r22<1>:f r2.3<0;1,0>:f r10<8;8,1>:f {Compr}// dst.z = src0.w + src1.x

The register region of the first source operand represents a replicated scalar. The operation of the first

GEN instruction is illustrated in SIMD16 Mode of Operation.

 Another SIMD16 Example with an AOS Shared Constant

3D Media GPGPU

778 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SIMD8 Mode of Operation

Each compressed instruction has two corresponding native instructions. Taking the example instruction

shown in SIMD16 Mode of Operation, it is equivalent to the following two instructions.

add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f // dst.x[7:0] = src0.y + src1.z

add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {SecHalf}// dst.x[15:8] = src0.y + src1.z

Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent

program flows, some time SIMD8 instruction must be used due to architecture restrictions. For example,

the address register a0 only have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions

are not allowed.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 779

Messages

Communication between the EUs and the shared functions and between the fixed function pipelines

(which are not considered part of the “Subsystem”) and the EUs is accomplished via packets of

information called messages. Message transmission is requested via the send instruction. Refer to the

send instruction definition in the ISA Reference chapter for details.

The information transmitted in a message falls into two categories:

 Message Payload.

 Associated (“sideband”) information provided by:

o Message Descriptor. Specified with the send instruction. Included in the message

descriptor is control and routing information such as the target function ID, message

payload length, response length, etc.

o Additional information provided by the send instruction, e.g., the starting destination

register number, the execution mask (EMASK), etc.

o A small subset of Thread State, such as the Thread ID, EUID, etc.

The software view of messages is shown in Messages . There are four basic phases to a message’s

lifetime as illustrated below:

1. Creation.

2. Delivery. The thread issues the message for delivery via the send instruction. The send

instruction also specifies the destination shared function ID (SFID), and where in the GRF any

response is to be directed. The messaging subsystem enqueues the message for delivery and

eventually routes the message to the specified shared function.

3. Processing. The shared function receives the message and services it accordingly, as defined by

the shared function definition.

4. Writeback. If called for, the shared function delivers an integral number of registers of data to

the thread’s GRF in response to the message.

3D Media GPGPU

780 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Data Flow Associated With Messages

Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the

message (or simply the message header). Consequently, the rest of the message payload is referred to

as the data payload.

Messages to Extended Math do not have a header and only contain data payload. Those messages may

be referred to as header-less messages. Messages to Gateway combine the header and data payloads

in a single message register.

Writebacks

Some messages generate return data as dictated by the ‘function-control’ (opcode) field of the ‘send’

instruction (part of the <desc> field). The Gen4 execution unit and message passing infrastructure do

not interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields

in the ‘send’ instruction to the execution unit the starting GRF register and count of returning data. The

execution unit uses this information to set in-flight bits on those registers to prevent execution of any

instruction which uses them as an operand until the register(s) is(are) eventually written in response to

the message. If a message is not expected to return data, the ‘send’ instruction’s writeback destination

specifier (<post_dest>) must be set to ‘null’ and the response length field of <desc> must be 0 (see

‘send’ instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified

by the starting GRF register and length as specified in the ‘send’ instruction. As each register is written

back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If

a thread was suspended pending return of that register, the dependency is lifted and the thread is

allowed to continue execution (assuming no other dependency for that thread remains outstanding).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 781

Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were

sent. Messages to different shared functions originating from a single thread may arrive at their

respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further

individual destination registers resulting from a single message may return out of order, potentially

allowing execution to continue before the entire response has returned (depending on the dependency

chain inherent in the thread).

Execution Mask and Messages

The Gen4 Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field

identifies which SIMD computation channels are enabled for that instruction. Since the ‘send’

instruction is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further

the execution size has no impact on the size of the ‘send' instruction’s implicit move (it is always 1

register regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which

SIMD channels were enabled at the time of the ‘send’. A shared function may interpret or ignore this

field as dictated by the functionality it exposes. For instance, the Extended Math shared function

observes this field and performs the specified operation only on the operands with enabled channels,

while the DataPort writes to the render cache ignore this field completely, instead using the pixel mask

included in-band in the message payload to indicate which channels carry valid data.

3D Media GPGPU

782 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

End-Of-Thread (EOT) Message

The final instruction of all threads must be a send instruction that signals ‘End-Of-Thread’ (EOT). An EOT

message is one in which the EOT bit is set in the send instruction’s 32b <desc> field. When issuing

instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further

execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as

shown in the table below.

Target Shared Functions

supporting EOT messages

Target Shared Functions

not supporting EOT messages

Null, DataPortWrite, URB, MessageGateway, ThreadSpawner DataPortRead, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each

thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification by

snooping all message transmissions, regardless of the explicit destination, looking for messages which

signal end-of-thread. The Thread Spawner in the media pipeline does not snoop for EOT. As it is also a

shared function, all threads generated by Thread Spawner must send a message to Thread Spawner to

explicity signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource

usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed

functions require end-of-thread notification to maintain accounting as to which threads it issued have

completed and which remain outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon

those from threads which they originated, as indicated by the 4b fixed-function ID present in R0 of end-

of-thread message payload. This 4b field is attached to the thread at new-thread dispatch time and is

placed in its designated field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the

fixed-function ID, the typical end-of-thread message generally supplies R0 from the GRF as the first

register of an end-of-thread message.

As an optimization, an end-of-thread message may be overload upon another “productive” message,

saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-

of-thread message, most threads issue a message just prior to their termination (for instance, a

Dataport write to the framebuffer) so the overloaded end-of-thread is the common case. The

requirement is that the message contains R0 from the GRF (to supply the fixed-function ID), and that

destination shared function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as

these functions reside on the O-Bus. In the case where the last real message of a thread is to some

other shared function, the thread must issue a separate message for the purposes of signaling end-of-

thread to the “null” shared function.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 783

Performance

The Gen4 Architecture imposes no requirement as to a shared function’s latency or throughput. Due to

this as well as factors such as message queuing, shared bus arbitration, implementation choices in bus

bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a

response to a message is non-deterministic. It is expected that a Gen4 implementation has some notion

of fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

Description

Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load early in the

thread for data that is required late in the thread).

Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256

bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is

the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits

[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For

writeback messages, the register number indicates the offset from the specified starting destination

register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters

in the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See

the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread

that initiated the message.

The bits within each DWord are given in the second column in each table.

3D Media GPGPU

784 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the

possibility that a message may be sent containing one or more errors in its descriptor or payload

contents. There are two points of error detection in the message passing system: (a) the message

delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b)

the shared functions contain various error detection mechanisms which identify bad sub-function

codes, bad message lengths, and other misc errors. The error detection capabilities are specific to each

shared function. The execution unit hardware itself does not perform message validation prior to

transmission.

In both cases, information regarding the erroneous message is captured and made visible through

MMIO registers, and the driver notified via an interrupt mechanism.

The set of possible errors is listed in Message Errors with the associated outcome.

Error Cases

Error Outcome

Bad Shared Function ID The message is discarded before reaching any shared function. If the message specified

a destination, those registers will be marked as in-flight, and any future usage by the

thread of those registers will cause a dependency which will never clear, resulting in a

hung thread and eventual time-out.

Unknown opcode

Incorrect message

length

The destination shared function detects unknown opcodes (as specified in the ‘send’

instructions <desc> field), and known opcodes where the message payload is either too

long or too short, and threats these cases as errors. When detected, the shared function

latches and makes available via MMIO registers the following information: the EU and

thread ID which sent the message, the length of the message and expected response,

and any relevant portions of the first register (R0) of the message payload. The shared

function alerts the driver of an erroneous message through and interrupt mechanism

then continues normal operation with the subsequent message.

Bad message contents

in payload

Detection of bad data is an implementation decision of the shared function. Not all

fields may be checked by the shared function, so an erroneous payload may return

bogus data or no data at all. If an erroneous value is detected by the shared function, it

is free to discard the message and continue with the subsequent message. If the thread

was expecting a response, the destination registers specified in the associated ‘send’

instruction are never cleared potentially resulting in a hung thread and time-out.

Incorrect response

length
Case: too few registers specified – the thread may proceed with execution prior to all

the data returning from the shared function, resulting in the thread operating on bad

data in the GRF.

Case: too many registers specified – the message response does not clear all the

registers of the destination. In this case, if the thread references any of the residual

registers, it may hand and result in an eventual time-out.

Improper use of End-

Of-Thread (EOT)
Any ‘send’ instruction which specifies EOT must have a ‘null’ destination register. The EU

enforces this and, if detected, will not issue the ‘send’ instruction, resulting in a hung

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 785

Error Outcome

thread and an eventual time-out.

The ‘send’ instruction specifies that EOT is only recognized if the <desc> field of the

instruction is an immediate. Should a thread attempt to end a thread using a <desc>

sourced from a register, the EOT bit will not be recognized. In this case, the thread will

continue to execute beyond the intended end of thread, resulting in a wide range of

error conditions.

Two outstanding

messages using

overlapping GRF

destinations ranges

This is not checked by HW. Due to varying latencies between two messages, and out-of-

order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may

be the result from the first message, or the result from the second message, or a

combination of both.

3D Media GPGPU

786 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Registers and Register Regions

This topic is currently under development.

Register Files

GEN registers are grouped into different name spaces called register files. There are two register files,

the General Register File and the Architecture Register File. A third encoding of some register file

instruction fields indicates immediate operands within instructions rather than a register file.

 General Register File (GRF): The GRF contains general-purpose read-write registers.

 Architecture Register File (ARF): The ARF contains all architectural registers defined for specific

purposes, including address registers (a#), accumulators (acc#), flags (f#), notification count (n#),

instruction pointer (ip), null register (null), etc.

 Immediate: Certain instructions can take immediate source operands. A distinct register file field

encoding indicates an immediate operand.

Each thread executed in an EU has its own thread context, a dedicated register space that is not shared

between threads, whether executing on a common EU or on a different EU. In the rest of the chapters in

this volume, register access is relative to a given thread.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 787

GRF Registers

Number of Registers: Various

Default Value: None

Normal Access: RW

Elements: Various

Element Size: Various

Element Type: Various

Access Granularity: Byte

Write Mask Granularity: Byte

Indexable? Yes

Registers in the General Register File are the most commonly used read-write registers. During the

execution of a thread, GRF registers are used to store the temporary data, and serve as the destination

to receive data from shared function units (and some times from a fixed function unit). They are also

used to store the input (initialization) data when a thread is created. By allowing fixed function hardware

to initialize some portion of GRF registers during thread dispatch time, GEN architecture can achieve

better parallelism. A thread’s execution efficiency can also be improved as some data are already in the

register to be executed upon. Besides these registers containing thread’s payload, the rest of GRF

registers of a thread are not initialized.

Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) r#
General purpose read write registers

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all

threads on the EU. Each thread has a dedicated space of 128 register, r0 through r127.

GRF registers can be accessed using region-based addressing at byte granularity (both read and write).

A source operand must be contained within two adjacent registers. A destination operand must be

contained within one register. GRF registers support direct addressing and register-indirect addressing.

Register-indirect addressing uses the address registers (ARF registers a#) and an immediate address

offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either

through direct or indirect addressing, the result is unpredictable.

Register Size Allocation Granularity Number per Thread

256 bits Fixed allocation of 128 registers 128 registers

3D Media GPGPU

788 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

ARF Registers

This topic is currently under development.

ARF Registers Overview

Besides registers that are directly indicated by a unique register file coding, all other registers belong to

the Architecture Register File (ARF). Encodings of architecture register types are based on the MSBs of

the register number field, RegNum, in the instruction word. The RegNum field has 8 bits. The 4 MSBs,

RegNum[7:4], represent the architecture register type. This is summarized in the Summary of

Architecture Registers table below.

Description

GRF registers are directly indicated by a unique register file encoding.

Summary of Architecture Registers

Register

Type

 (RegNum

[7:4])

Register

Name

Register

Count Description

0000b null 1 Null register

0001b a0.# 1 Address register

0010b acc# 10 Accumulator register

0011b f#.# 2 Flag register

0100b ce# 1 Channel Enable register

0101b msg# 32 Message Control Register

0110b sp 1 Stack Pointer Register

0111b sr0.# 1 State register

1000b cr0.# 1 Control register

1001b n# 2 Notification Count register

1010b ip 1 Instruction Pointer register

1011b tdr 1 Thread Dependency register

1100b tm0 2 TimeStamp register

1101b fc#.# 39 Flow Control register

1110b Reserved Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 789

Programming Note

Context: ARF Registers Overview

The remaining register number field RegNum[3:0] is used to identify the register number of a given architecture

register type. Therefore, the maximum number of registers for a given architecture register type is limited to 16.

The subregister number field, SubRegNum, in the instruction word has 5 bits. It is used to address subregister

regions for an architecture register supporting register subdivision.

The SubRegNum field is in units of bytes. Therefore, the maximum number of bytes of an architecture register is

limited to 32. Depending on the alignment restriction of a register type, only certain encodings of SubRegNum

field apply for an architecture register. The detailed definitions are provided in subsequent sections.

Programming Note

Context: ARF Registers Overview

In general an ARF register can be dst (destination) or src0 (source 0, first source operand) for an instruction.

Depending on the register and the instruction, other restrictions may apply.

Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and

following the same rule of region-based addressing for GRF.

The machine code for register number and subregister number of ARF follows the same rule as for

other register files with byte granularity. For an ARF as a source operand, the region-based address

controls the source swizzle mux. The destination subregister number and destination horizontal stride

can be used to generate the destination write mask at byte level.

Subregister fields of an ARF register may not all be populated (indicated by the subregister being

indicated as reserved). Writes to unpopulated subregisters are dropped; there are no side effect. Reads

from unpopulated subregisters, if not specified, return unpredictable data.

Some ARF registers are read-only. Writes to read-only ARF registers are dropped and there are no side

effects.

3D Media GPGPU

790 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Null Register

Null Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0000b

Number of Registers: 1

Default Value: N/A

Normal Access: N/A

Elements: N/A

Element Size: N/A

Element Type: N/A

Access Granularity: N/A

Write Mask Granularity: N/A

SecHalf Control? N/A

Indexable? No

The null register is a special encoding for an operand that does not have a physical mapping. It is

primarily used in instructions to indicate non-existent operands. Writing to the null register has no side

effect. Reading from the null register returns an undefined result.

The null register can be used where a source operand is absent. For example, for a single source

operand instruction such as MOV or NOT, the second source operand src1 must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed

results are not stored in any registers. However, implied writes to the accumulator register, if applicable,

may still occur for the instruction. When the conditional modifier is present, updates to the selected flag

register also occur. In this case, the register region fields of the ‘null’ operand are valid.

Another example use is to use the null register as the posted destination of a send instruction for data

write to indicate that no write completion acknowledgement is required. In this case, however, the

register region fields are still valid. The null register can also be the first source operand for a send

instruction indicating the absent of the implied move. See the send instruction for details.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 791

Address Register

Address Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0001b

Number of Registers: 1

Default Value: None

Normal Access: RW

Elements: 16

Element Size: 16 bits

Element Type: UW or UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? N/A

Indexable? No

Description

There are sixteen address subregisters forming a 16-element vector. Each address subregister

contains 16 bits. Address subregisters can be used as regular source and destination operands, as

the indexing addresses for register-indirect-addressed access of GRF registers, and also as the

source of the message descriptor for the send instruction.

3D Media GPGPU

792 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Register and Subregister Numbers for Address Register

RegNum[3:0] SubRegNum[4:0]

0000b = a0

All other encodings

are reserved.

When register a0 or subregisters in a0 are used as the address register for register-indirect

addressing, the address subregisters must be accessed as unsigned word integers.

Therefore, the subregister number field must also be word-aligned.

00000b = a0.0:uw

00010b = a0.1:uw

00100b = a0.2:uw

00110b = a0.3:uw

01000b = a0.4:uw

01010b = a0.5:uw

01100b = a0.6:uw

01110b = a0.7:uw

10000b = a0.8:uw

10010b = a0.9:uw

10100b = a0.10:uw

10110b = a0.11:uw

11000b = a0.12:uw

11010b = a0.13:uw

11100b = a0.14:uw

11110b = a0.15:uw

All other encodings are reserved.

However, when register a0 or subregisters in a0 are explicit source and/or destination

registers, other data types are allowed as long as the register region falls in the 128-bit

range.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 793

Address Register Fields

DWord Bits Description

7 31:16 Address subregister a0.15:uw. Follows the same format as a0.3.

15:0 Address subregister a0.14:uw. Follows the same format as a0.2.

6 31:16 Address subregister a0.13:uw. Follows the same format as a0.3.

15:0 Address subregister a0.12:uw. Follows the same format as a0.2.

5 31:16 Address subregister a0.11:uw. Follows the same format as a0.3.

15:0 Address subregister a0.10:uw. Follows the same format as a0.2.

4 31:16 Address subregister a0.9:uw. Follows the same format as a0.3.

15:0 Address subregister a0.8:uw. Follows the same format as a0.2.

3 31:16 Address subregister a0.7:uw. Follows the same format as a0.3.

15:0 Address subregister a0.6:uw. Follows the same format as a0.2.

2 31:16
Address subregister a0.5:uw.

Follows the same format as a0.3.

15:0
Address subregister a0.4:uw.

Follows the same format as a0.2.

1 31:16
Address subregister a0.3:uw. This field, with only the lower 12 bits populated can be used as an

unsigned integer for register-indirect register addressing.

Format: U12

15:0
Address subregister a0.2:uw. This field, with only the lower 12 bits populated can be used as an

unsigned integer for register-indirect register addressing.

Format: U12

0 31:16
Address subregister a0.1:uw. This field can be used for register-indirect register addressing or

serve as message descriptor for a send instruction. When used for register-indirect register

addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the higher 16 bits of

<desc>.

Format: U12 or U16.

15:0
Address subregister a0.0:uw. This field can be used for register-indirect register addressing or

serve as message descriptor for a send instruction. When used for register-indirect register

addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the lower 16 bits of

<desc>.

Format: U12 or U16.

3D Media GPGPU

794 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

When used as a source or destination operand, the address subregisters can be accessed individually or

as a group. In the following example, the first instruction moves 8 address subregisters to the first half

of GRF register r1, the second instruction replicates a0.4:uw as an unsigned word to the second half of

r1, the third instruction moves the first 4 words in r1 into the first 4 address subregisters, and the fourth

instruction replicates r1.4 as a unsigned word to the next 4 address subregisters.

 mov (8) r1.0<1>:uw a0.0<8;8,1>:uw // r1.n = a0.n for n = 0 to 7 in words

 mov (8) r1.8<1>:uw a0.4<0;1,0>:uw // r1.m = a0.4 for m = 8 to 15 in words

 mov (4) a0.0<1>:uw r1.0<4;4,1>:uw // a0.n = r1.n for n = 0 to 3 in words

 mov (4) a0.4<1>:uw r1.4<0;1,0>:uw // a0.m = r1.4 for m = 4 to 7 in words

When used as the register-indirect addressing for GRF registers, the address subregisters can be

accessed individually or as a group. When accessed as a group, the address subregisters must be

group-aligned. For example, when two address subregisters are used for register indirect addressing,

they must be aligned to even address subregisters. In the following example, the first instruction is

legal. However, the second one is not. As ExecSize = 8 and the width of src0 is 4, two address

subregisters are used as row indices, each pointing to 4 data elements spaced by HorzStride = 1 dword.

For the first instruction, the two address subregisters are a0.2:uw and a0.3:uw. The two align to a DWord

group in the address register. However, the two address subregisters for the second instruction are

a0.3:uw and a0.4:uw. They are not DWord-aligned in the address register and therefore violate the

above mentioned alignment rule.

 mov (8) r1.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 are used for src1

 mov (8) r1.0<1>:d r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Implementation restriction: When used as the source operand <desc> for the send instruction, only

the first dword subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the

combination of a0.0:uw and a0.1:uw). In addition, it must be of UD type and in the following form

<desc> = a0.0<0;1,0>:ud.

Restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest of the elements (a0.2:uw through a0.7:uw) only

have 12 bits populated each. 12-bit precision supports full indirect-addressing capability for the largest GRF

register range. Software must observe the asymmetry of the implementation. When a0.0:uw and a0.1:uw are the

source or destination, full 16-bit precision is preserved. However, when a0.2:uw to a0.7:uw are the destination, the

high 4 bits for each element are dropped; when they are the source, hardware inserts zero to the high 4 bits for

each element.

Performance Note: There is only one scoreboard for the whole address register. When a write to some

subregisters is in flight, hardware stalls any instruction writing to other subregisters. Software may use the

destination dependency control { NoDDClr} to improve performance in this case. Similarly, when a write to some

subregisters is in flight, hardware stalls any instruction sourcing other subregisters until the write retires.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 795

Accumulator Registers

Accumulator Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0010b

Number of Registers: 10

Default Value: None

Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.

To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data

elements. However, as described in the Implementation Precision Restriction notes below, each data

element may have higher precision with added guard bits not indicated by the numeric data type.

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel

Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator

support.

See the Accumulator Restrictions section for information about additional general accumulator

restrictions and also accumulator restrictions for specific instructions.

Accumulator Registers

There are 10 accumulator registers. The accumulator registers are of two types.

Register and Subregister Numbers for Accumulator Registers

RegNum[3:0] SubRegNum[4:0]

0000b-1001b = acc0-acc9

All other encodings are reserved.

Reserved: MBZ

 Accumulators are updated implicitly only if the AccWrCtrl bit is set in the instruction. The

Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCtrl

for implicit accumulator updates. The write enable in word granularity for the instruction is used

to update the accumulator. Data in disabled channels is not updated.

 When an accumulator register is an implicit source or destination operand, hardware always uses

acc0 by default and also uses acc1 if the execution size exceeds the number of elements in acc0.

When implicit access to acc1 is required, QtrCtrl is used. Note that QtrCtrl can be used only if

acc1 is accessible for a given data type. If acc1 is not accessible for a given data type, QtrCtrl

defaults to acc0.

Description

acc0 and acc1 are supported for half-precision (HF, Half Float) and single-

precision (F, Float). Use QtrCtrl of Q2 or Q4 to access acc1 for Float. use

QtrCtrl of H2 to access acc1 for Half Float.

3D Media GPGPU

796 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Examples:

 // Updates acc0 and acc1 because it is SIMD16:

 add (16) r10:f r11:f r12:f {AccWrEn}

 // Updates acc0 because it is SIMD8:

 add (8) r10:f r11:f r12:f {AccWrEn}

 // Updates acc1. Implicit access to acc1 using QtrCtrl:

 add (8) r10:f r11:f r12:f {AccWrEn, Q2}

 // Updates acc1 for Half Floats using QtrCtrl:

 add (16) r10:hf r11:hf r12:hf {AccWrEn, H2}

 It is illegal to specify different accumulator registers for source and destination operands in an

instruction (e.g. “add (8) acc1:f acc0:f”). The result of such an instruction is unpredictable.

Limits on SIMD16 Float Operations

Accumulator registers may be accessed explicitly as src0

operands only.

 Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in

an instruction.

 Reading accumulator content with a datatype different from the previous write will result in

undeterministic values.

 Word datatype write to accumulator is not allowed when destination is odd offset strided by 2.

 For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of

data, with only acc0 supported.

 When an accumulator register is an explicit destination, it follows the rules of a destination

register. If an accumulator is an explicit source operand, its register region must match that of the

destination register with the exception(s) described below.

Exceptions

When HalfFloats access accumulator, interleaved reads/writes is

not allowed. This means, accumulator must be accessed in pairs of

half-floats.

When OWords of accumulators are accessed, the source and

destination OWords may be different. For example, the following

instructions are allowed:

 mov (4) r10.4<1>:f acc0.0<1>:f

 add (4) r10.0<1>:f acc0.4<1>:f r11.0<1>:f

 mov (8) r10.8<1>:uw acc0.0<1>:uw

 add (8) r10.0<1>:uw acc0.8<1>:uw r11.0<1>:uw

The source and destination datatypes MUST be the same for such

access of accumulator.

If destination is contained within one register, source must also be

contained within one accumulator register.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 797

Exceptions

When source and destination datatypes are mixed between floats

and half-floats, the source and destination Owords may be

different. A half float source can be aligned to either the lower or

the upper word. Refer to Special Case Handling of Mixed Mode

datatypes in Section: Register Region Restrictions.

 mul (4) r8.0<1>:f acc0.1<2>:hf r7<1>:f

 mov (4) r8.0<1>:f acc0.1<2>:hf

Half floats can be written to either the lower or the upper word of

the accumulator. However, this is not supported for integer word

operations.

Accumulator should not be used as destination for double-float to

float format conversion.

When HalfFloats access accumulator, use of Q3/Q4 quarter control

is not allowed.

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and

UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source

modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result

becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of

accumulators. Consequently, the results are unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and

UW), it is sufficient to store the multiplication result of two Word operands with and without source

modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with

bit 32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before

running into a risk of overflowing. When overflow occurs, only modular addition can generate a correct

result. But in this case, conditional flags may be incorrect. When saturation is used, the output is

unpredictable. This is also true for other operations that may result in more than 33 bits of data. For

example, adding UD (FFFFFFFFh) with D (FFFFFFFFh) results in 1FFFFFFFEh. The sign bit is now at bit 34

and is lost when stored in the accumulator. When it is read out later from the accumulator, it becomes a

negative number as bit 32 now becomes the sign bit.

Accumulator Channel Precision

Data

Type

Accumulator

 Number

Number

of

Channels

Bits Per

Channel Description

DF acc0 4 64 When accumulator is used for Double Float, it

has the exact same precision as any GRF

register.

DF N/A N/A N/A Accumulator is not supported for this data

3D Media GPGPU

798 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Data

Type

Accumulator

 Number

Number

of

Channels

Bits Per

Channel Description

type.

F acc0/acc1 8 32 When accumulator is used for Float, it has the

exact same precision as any GRF register.

HF N/A N/A N/A Not supported data type.

HF acc0/acc1 16 16 When accumulator is used for Half Float, it has

the exact same precision as any GRF register.

Q N/A N/A N/A Not supported data type.

D

(UD)

acc0 8 33/64
When the internal execution data type is

doubleword integer, each accumulator register

contains 8 channels of (extended) doubleword

integer values. The data are always stored in

accumulator in 2's complement form with 64

bits total regardless of the source data type.

This is sufficient to construct the 64-bit D or UD

multiplication results using an instruction

macro sequence consisting of mul, mach, and

shr (or mov).

W

(UW)

acc0 16 33 When the internal execution data type is word

integer, each accumulator register contains 16

channels of (extended) word integer values. The

data are always stored in accumulator in 2's

complement form with 33 bits total. This

supports single instruction multiplication of two

word sources in W and/or UW format.

B

(UB)

N/A N/A N/A Not supported data type.

Accumulators

Accumulators acc2-acc9

These are accumulator registers defined for a special purpose. They are used to emulate IEEE-compliant

fdiv and sqrt macro operations. The access is different from acc0 and acc1. Each of these accumulator

registers are defined as 256-bit registers having 8 DWords. These may be accessed explicitly or

implicitly.

 These registers may be accessed explicitly only by a mov operation, with no source modifiers,

condition modifiers, or saturation. When accessed explicitly, the datatype must be D. On reads,

the low 2 bits of each DWord are valid data. The other bits are undefined. On writes, the low two

bits are updated and other bits are dropped.

Example:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 799

 // Move 256 bits from acc2 to r10. Just low two bits of each DWord are valid:

 mov (8) r10:ud acc2:ud

 // Move 256 bits from r10 to acc2. Just low two bits of each DWord are updated:

 mov (8) acc2:ud r10:ud

 These registers are accessed implicitly by three opcodes defined for the macro operations. Note:

These macro operations are defined under the math opcode section. The macro descriptions also

define the restrictive implicit uses of these registers.

 Implicit access across accumulator registers is required for each source operand for these macro

instructions. These opcodes are accessed in Align16 mode only. The Channel Select bits in the

instruction are used to implicitly address the different accumulators for each source. Similarly the

Channel Enable bits are used to implicitly address the accumulators for destination. The noacc

value is specified when no write to accumulator is required; think of it as a null.

Channel Select/Channel Enable Encoding for Implicit Source/Destination Access

Encoding Accumulator Register

00000000b acc2

00000001b acc3

00000010b acc4

00000011b acc5

00000100b acc6

00000101b acc7

00000110b acc8

00000111b acc9

00001000b noacc

Project: CHV, BSW

On a context save, the sequence of operations shown below MUST be used to save acc2-acc9 registers.

mov(8) r113:ud acc2:ud { NoMask } //acc2

 mov(8) r114:ud acc2.yx:ud {Align16} //acc3

 mov(8) r115:ud acc2.zx:ud {Align16} //acc4

 mov(8) r116:ud acc2.wx:ud {Align16} //acc5

mov(8) r113:ud acc2.xy:ud {Align16} //acc6

mov(8) r114:ud acc2.yy:ud {Align16} //acc7

mov(8) r115:ud acc2.zy:ud {Align16} //acc8

 mov(8) r116:ud acc2.wy:ud {Align16} //acc9

On a context restore, the sequence of operations shown below MUST be used to restore acc2-acc9 registers.

mov(8) acc2:ud r100:ud { NoMask } //acc2

mov(8) acc2.x:ud r101:ud {Align16} //acc3

3D Media GPGPU

800 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Project: CHV, BSW

 mov(8) acc2.y:ud r102:ud {Align16} //acc4

 mov(8) acc2.xy:ud r103:ud {Align16} //acc5

mov(8) acc2.z:ud r100:ud {Align16} //acc6

 mov(8) acc2.xz:ud r101:ud {Align16} //acc7

 mov(8) acc2.yz:ud r102:ud {Align16} //acc8

 mov(8) acc2:ud r103:ud {Align16} //acc9

Flag Register

Flag Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0011b

Number of Registers: 2

Default Value: None

Normal Access: RW

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? Yes

Indexable? No

Description

There are two flag registers, f0 and f1.

Each flag register contains two 16-bit subregisters. Each flag bit corresponds to a data channel.

Predication uses flag values to enable or disable channels. Conditional modifiers assign flag values. If an

instruction uses both predication and conditional modifiers, both features use the same flag register or

subregisters.

Description

Flags can be split to halfs, quarters, or eighths using the QtrCtrl and NibCtrl instruction fields.

Those fields affect the selection of flags for predication and conditional modifiers, but do not

affect reading or writing flags as explicit instruction operands.

The values held in the individual bits of a flag register are the result of the most recent instruction with

a conditional modifier and specifying that flag register. For example:

 add.nz.f0.0 ...

Updates flag subregister f0.0 with the per-channel results of the not zero condition.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 801

The flag register has per-bit write enables. When being updated as the secondary destination

associated with a conditional modifier, only the bits corresponding to the enabled channels in EMask

are updated. Other bits in the flag subregister are unchanged.

Flag registers and subregisters can also be explicit source or destination operands.

The sel instruction does not update flags.

Register and Subregister Numbers for Flag Register

RegNum[3:0] SubRegNum[4:0]

0000b = f0:ud

0001b = f1:ud

Other encodings are reserved.

00000b = fn.0:uw

00010b = fn.1:uw

Other encodings are reserved.

Project Description

CHV,

BSW

Reference an entire flag register as f0:ud or f1:ud. Reference the flag subregisters as f0.0:uw,

f0.1:uw, f1.0:uw, and f1.1:uw.

Channel Enable Register

Channel Enable Register Summary [CHV, BSW]

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0100b

Number of Registers: 1

Default Value: N/A

Normal Access: RO

Elements: 1

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

3D Media GPGPU

802 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Register and Subregister Numbers for Channel Enable Register [CHV, BSW]

RegNum[3:0] SubRegNum[4:0]

0000b = ce

All other encodings are reserved.

00000b = ce:ud.

All other encodings are reserved.

Channel Enable Register Fields [CHV, BSW]

DWord Bits Description

0 31:0
Channel Enable Register ce0.0:ud

Format: U32

This field contains 32 bits of Channel Enables for the current instruction.

Message Control Registers

Message Control Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0101b

Number of Registers: 8

Default Value: None

Normal Access: RW

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: Word

Write Mask Granularity: Word

Register and SubRegister Numbers for Message Control Registers

RegNum[3:0] SubRegNum[4:0]

0000b - 0111 = msg0 - msg7

All other encodings are reserved.

MBZ

These are specific control registers used to track messaging. These may be saved and restored by the

kernel only when a thread is in the context save/restore mode. Access of these registers otherwise, will

result in undeterministic behaviour.

Each thread has 8 registers. The granularity of access is always one full register, i.e., 256b. These

registers must be accessed with a MOV with no predication, src modifiers or conditional modifiers. They

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 803

MUST be accessed in direct addressing more only. Access mode is ignored when reading/writing these

registers.

These registers must be accessed in order, i.e., reads/writes are in order from msg0 to msg7.

On a context save, the message control register is written to the upper oword of a register.

On a context restore, the upper oword of register must be moved to message control register. However, since

these move operations require data from lower oword of a register, it is required to move the upper oword to

lower oword before moving to these registers.

Example

Context Save Cycle:

 mov (8) r113.0:ud msg0.0:ud { NoMask }

The above operation saves content of fc0.0 to the upper oword of r113

Context Restore Cycle:

 mov (4) rtmp.0:ud r113.4<4;4,1>:ud { NoMask }

 mov (8) msg0.0:ud rtmp:ud { NoMask }

The above operation restores content from upper oword of r113 by moving to lower oword of rtmp.

Programming Note

Context: Message Control Registers

Message Control Registers must never be saved or restored

SP Register

SP Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0110b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 2

Element Size: 64 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control No

Indexable No

3D Media GPGPU

804 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The SP register can be accessed as a unsigned DWord integer. It is a read-write register, containing the

current stack pointer, which is relative to the Generate State Base Address. The stack pointer is inserted

into the message header when data is stored into scratch space as a stack. The stack pointer is

managed by software. If the stack pointer exceeds the limit or the space allocated, an exception is

triggered. See the Stack Pointer Exception in the Exceptions Section.

Register and Subregister Numbers for SP Register

RegNum[3:0] SubRegNum[4:0]

0000b = sp

All other encodings are reserved.

00000b = sp:uq.

01000b = sp_limit:uq

All other encodings are reserved.

SP Register Fields

DWord Bits Description

0..1 63:48 Reserved. MBZ.

47:0
sp. Specifies the current stack pointer. This pointer is relative to the General State Base Address.

This register is initialized at thread load to the top of the per thread Scratch Space. The register is

R/W.

sp = [scratch space pointer] + [scratch space] - 1

Alternatively, this register may be updated by Software to any flat address space. In such cases,

the stack is NOT relative to the General State Base Address. Software must ensure that the

address is exclusive for the thread.

2..3 63:48 Reserved. MBZ.

47:0
sp limit. Specifies the upper limit for the stack pointer. This pointer is relative to the General

State Base Address. This register is initialized at thread load to the limit allocated for stack in the

state. See the GPGPU Thread Payload description for details. The register is R/W.

sp_limit = [scratch space pointer] + [stack space limit]

Alternatively, this register may be updated by software, similar to the sp register. In such cases,

software is responsible for allocating the right thread stack pointer limit.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 805

State Register

State Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0111b

Number of Registers: 2

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

Element Type: UD

Access Granularity: Byte

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

On a context restore, SIP must ensure all pending context restore cycles to the GRF are committed/completed

before restoring SR1.

Example:

 send (8) rdest0 rsrc0 <msg_dscpt>

 send (8) rdest1 rsrc1 <msg_dscpt>

 send (8) rdest2 rsrc2 <msg_dscpt>

 send (8) rdest3 rsrc3 <msg_dscpt>

 send (8) rdest4 rsrc4 <msg_dscpt>

 // the following mov’s are required to ensure all previous reads are complete

 mov (8) null rdest0

 mov (8) null rdest1

 mov (8) null rdest2

 mov (8) null rdest3

 mov (8) null rdest4

 // restore the grfsb

 mov (8) sr1 rsrc

3D Media GPGPU

806 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Register and Subregister Numbers for State Register

RegNum[3:0] SubRegNum[4:0]

0000b = sr0

All other encodings are reserved.

Valid encoding range:

00000b – 01100b

All other encodings are reserved.

0001b = sr1

All other encodings are reserved.

Valid encoding range:

00000b

All other encodings are reserved.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 807

State Register Fields

DWord Bits Description

0

(sr0.0:ud)

31:28 Reserved. MBZ.

27:24 FFID (Fixed Function Identifier). Specifies which fixed function unit generates the

current thread. This field is set at thread dispatch and is forwarded on the message

bus for all out-going messages from this thread.

23
Priority Class. This field, when set, indicates the thread belongs to the high

priority class, which has higher scheduling priority over any thread with this field

cleared. The priority field below determines the relative priority within the same

priority class. This field is initialized by the thread dispatcher at thread dispatch

time and stays unchanged throughout the life span of the thread.

This field is forwarded on the message bus to the message bus arbiter for all out-

going messages. It serves as a priority hint for the target shared function. See the

Shared Function chapters for whether and how a shared function uses this priority

hint.

0 = Low priority class.

1 = High priority class.

22:19 Reserved. MBZ.

18:16
Priority. This field is the relative aging priority of the thread. This field indicates

the ‘age’ of this thread relative to other threads within the EU. No two threads in

the same EU can have the same priority number (independent of the priority class

value). Within the same priority class, an older thread (with a larger priority

number) has higher schedule priority over a younger thread.

This field is set to zero at a thread’s dispatch.

During a thread’s run time, this field may or may not be incremented when a new

thread is dispatched to the same EU. It is only incremented when another thread’s

priority number is incremented and reaches the same value. For example, if

currently there is a thread with priority 0 on an EU, then dispatching a new thread

to that EU causes the old thread’s priority number to increment to 1. However, if

the active thread (assuming for simplicity that there is only one) on an EU has a

priority number 1 (or 2 or 3), then dispatching a new thread to this EU does not

change the old thread’s priority number. As threads on an EU may terminate in

arbitrary order, the exact number for a thread depends on the dynamic execution

of threads.

When thread context is saved and restored after pre-emption, the Priority is not

restored to the original state. Instead the priority is initiated as if new threads were

loaded.

15:8
[15:14] Slice ID.

[13:12] SubSlice ID.

3D Media GPGPU

808 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

[11:8] EUID.

3 Reserved. MBZ.

7:3 Reserved. MBZ.

2:0 TID (The thread identifier). Specifies the thread slot that the current thread is

assigned to. This field is set at thread dispatch.

1

(sr0.1:ud)

31:23 FFTID (Fixed Function Thread ID). There is no connection between this thread ID,

assigned in fixed functions, and the TID assigned in the EUs.

22 Reserved.

21 Hardware Defined State. The byte is defined for hardware use only. The content

is saved and restored in the event of mid thread preemption.

20
Page Fault Status. This bit speficies if the thread has hit a page fault on a memory

read, memory write or instruction fetch operation.

The bit is cleared when the thread is restarted after a fault.

19 Reserved.

18:16 Page Fault Code. The fault code indicates the type of fault encountered.

15:8 Hardware Defined State. The byte is defined for hardware use only. The content

is saved and restored in the event of mid thread preemption.

7:0
IEEE Exception. The exception bits are sticky bits set by the opcode when one of

the exception is triggered. These bits are defined per thread and all channels

update one sticky bit. These bits may be cleared by software or on a thread load.

Updates to these bits may be turned OFF by the IEEE Exception trap enable in the

CR register. When these bits are required as source of an operation, the previous

instruction must use a {Switch}. This ensures all asynchronous flag updates are

complete before using as source operand. The following table describes these bits:

Bits Definition

[7:5] Reserved

4 Inexact Exception

3 Overflow

2 Underflow

1 Divide by Zero

0 Invalid Operation

 20
Page Fault Status. This bit speficies if the thread has hit a page fault on a memory

read, memory write or instruction fetch operation.

The bit is cleared when the thread is restarted after a fault.

 19 Reserved.

 18:16 Page Fault Code. The fault code indicates the type of fault encountered.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 809

DWord Bits Description

 15:7 Hardware Defined State. The byte is defined for hardware use only. The content

is saved and restored in the event of mid thread preemption.

 6:0
IEEE Exception. The exception bits are sticky bits set by the opcode when one of

the exception is triggered. These bits are defined per thread and all channels

update one sticky bit. These bits may be cleared by software or on a thread load.

Updates to these bits may be turned OFF by the IEEE Exception trap enable in the

CR register. When these bits are required as source of an operation, the previous

instruction must use a {Switch}. This ensures all asynchronous flag updates are

complete before using as source operand. The following table describes these bits:

Bits Definition

[6:5] Reserved

4 Inexact Exception

3 Overflow

2 Underflow

1 Divide by Zero

0 Invalid Operation

1

(sr0.1:ud)

31:22 FFTID (Fixed Function Thread ID). There is no connection between this thread ID,

assigned in fixed functions, and the TID assigned in the EUs.

21 Reserved.

20
Page Fault Status. This bit speficies if the thread has hit a page fault on a memory

read, memory write or instruction fetch operation.

The bit is cleared when the thread is restarted after a fault.

18:16 Page Fault Code. The fault code indicates the type of fault encountered.

15:7 Hardware Defined State. The byte is defined for hardware use only. The content

is saved and restored in the event of mid thread preemption.

6:0
IEEE Exception. The exception bits are sticky bits set by the opcode when one of

the exception is triggered. These bits are defined per thread and all channels

update one sticky bit. These bits may be cleared by software or on a thread load.

Updates to these bits may be turned OFF by the IEEE Exception trap enable in the

CR register. When these bits are required as source of an operation, the previous

instruction must use a {Switch}. This ensures all asynchronous flag updates are

complete before using as source operand. The following table describes these bits:

Bits Definition

[6:5] Reserved

4 Inexact Exception

3 Overflow

2 Underflow

1 Divide by Zero

3D Media GPGPU

810 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

0 Invalid Operation

2

(sr0.2:ud)

31:0
Dispatch Mask (DMask). This 32-bit field specifies which channels are active at

Dispatch time. This field is used by hardware to initialize the mask register.

Format: U32

3

(sr0.3:ud)

31:0
Vector Mask (VMask). This 32-bit field contains, for each 4-bit group, the OR of

the corresponding 4-bit group in the dispatch mask. This field is used by hardware

to initialize the mask register.

Format: U32

0

(sr1.0:ud)

31:0 Hardware Defined State Register. The contents of these register are hardware

defined and are required only for handling page-fault. These bits are saved and

restored by SIP when threads are pre-empted. Writes to these registers must

follow the sequence described in ‘send’ instruction for the correct behavior of

hardware.

1

(sr1.1:ud)

31:0 Hardware Defined State Register. Same as sr1.0

2

(sr1.2:ud)

31:0 Hardware Defined State Register. Same as sr1.0

3

(sr1.3:ud)

31:0 Hardware Defined State Register. Same as sr1.0

Implementation Restriction on Register Access: When the state register is used as a source and/or

destination, hardware does not ensure execution pipeline coherency. Software must set the thread

control field to ‘switch’ for an instruction that uses state register as an explicit operand. This is important

as the state register is an implicit source or destination for many instructions. For example, fields like

IEEE Exception may be an implicit destination updated by multiple back to back instructions. Therefore,

if the instructions updating the state register doesn’t set ‘switch’, subsequent instructions may have

undefined results.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 811

Control Register

Control Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1000b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed

individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating-point mode and the

accumulator disable. It also contains the master exception status/control field that allows software to

switch back to the application thread from the System Routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields

are arranged in significance-decreasing order from MSB to LSB. This arrangement allows the System

Routine to use the lzd instruction to find the high priority exceptions and handle them first. As each

exception is mapped to a single bit, another exception priority order may be implemented by software.

The System Routine may choose to handle one exception at a time, by handling the exception detected

by an lzdinstruction and returning to the application thread. Or it may choose to handle all the

concurrent exceptions, by looping through the exception fields until all outstanding exceptions are

handled before returning back to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception causes hardware to jump to

the System Routine or not. Exception status and control bits (bits 31:16 in cr0.1:ud) indicate which

exceptions have occurred, and are used by the system routine to clear the exception. Even if a given

exception is disabled, the corresponding exception status and control bit still reflects its status, whether

an exception event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Values written to this subregister are dropped; the result of reading from this

subregister is unpredictable.

Fields in Control registers also reference a virtual register called System IP (SIP). SIP is the virtual

register holding the global System IP, which is the initial instruction pointer for the System Routine.

3D Media GPGPU

812 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

There is only one SIP for the whole system. It is virtual only from a thread’s point of view, as it is not

visible (i.e. not readable and not writeable) to the thread software executed on a GEN EU. It can only be

accessed indirectly by the hardware to respond to exception events. Upon an exception, hardware

performs some bookkeeping (e.g. saving the current IP into AIP) and then jumps to SIP. Upon finishing

exception handling, the System Routine may return back to the application by clearing the Master

Exception Status and Control field in cr0, which causes the hardware to load AIP to IP register. See the

STATE_SIP command for how to set SIP.

The SIP is widened to 48 bits. However the EU still only uses the low 32 bits.

Register and Subregister Numbers for Control Register

RegNum[3:0] SubRegNum[4:0]

0000b = cr0

All other encodings are reserved.

00000b = cr0.0:ud. It contains general thread control fields.

00100b = cr0.1:ud. It contains exception status and control.

01000b = cr0.2:ud. It contains AIP.

All other encodings are reserved.

Control Register Fields

DWord Bits Description

0 31
Master Exception State and Control. This bit is the master state and control for

all exceptions. Reading a 0 indicates that the thread is in normal operation state

and a 1 means the thread is in exception handle state. Upon an exception event,

hardware sets this bit to 1 and switches to SIP. Writing 1 to this bit has no effect.

Writing 0 to this bit also has no effect if the previous value is 0. In both cases, the

bit keeps the previous value. If the previous value of this bit is 1, software writing

a 0 causes the thread to return to AIP. This transition is automatic – software does

not have to move AIP to IP. The value of this bit then stays as 0. This bit is

initialized to 0.

0 = The thread is in normal state.

1 = The thread is in exception state.

30:16 Reserved. MBZ.

14:13 Reserved. MBZ.

12 Reserved. MBZ.

11 Reserved. MBZ.

10 Reserved. MBZ.

9
IEEE Exception Trap Enable. This bit enables trapping IEEE exception flags. This

control bit may updated by software. It is initially zero on thread load. If enabled,

IEEE floating-point exceptions set sticky bits in the IEEE Exceptions field of sr0.1.

Note that IEEE floating-point exceptions do not transfer control to any handler.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 813

DWord Bits Description

0 = IEEE Exception flags are NOT trapped.

1 = IEEE Exception flags are trapped.

7
Single Precision Denorm Mode. This bit determines how denormal numbers are

handled for the F (Float) type when using the IEEE floating-point mode. It is

ignored in the ALT floating-point mode, which always flushs denorms. This bit is

initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm

calculation results to zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

6
Double Precision Denorm Mode. This bit determines how denormal numbers

are handled for the DF (Double Float) type. It is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm

calculation results to zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

5:4
Rounding Mode. This field specifies the FPU rounding mode. It is initialized by

Thread Dispatch.

00b = Round to Nearest or Even (RTNE)

01b = Round Up, toward +inf (RU)

10b = Round Down, toward -inf (RD)

11b = Round Toward Zero (RTZ)

3
Vector Mask Enable (VME). This bit indicates DMask or Vmask should be used

by EU for execution. This bit is set by the Thread Dispatch.

0: Use Dispatch Mask (DMASK)

1: Use Vector Mask (VMASK)

2
Single Program Flow (SPF). Specifies whether the thread has a single program

flow (SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1).

This bit affects the operation of all branch instructions. In Single Program Flow

mode, all execution channels branch and/or loop identically. This bit is initialized

by the Thread Dispatch.

0: Multiple Program Flows

1: Single Program Flow

Programming Restrictions:

Only H1/Q1/N1 are allowed in SPF mode.

3D Media GPGPU

814 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

Power Optimization: If an entire shader does not do SIMD branching, the driver

can set the SPF bit to 1 to save power in HW.

SPF mode must be set to 0 at the start of context restore.

1
Accumulator Disable. This bit controls the update of the accumulator by the

instruction field AccWrCtrl. If this bit is cleared, the accumulator is updated for all

instructions with AccWrCtrl enabled. If set, the accumulator is disabled for all

update operations, maintaining its value prior to being disabled. Setting this bit

has no effect if the accumulator is the explicit destination operand for an

instruction. This bit is initialized to 0.

0: Enable accumulator update.

1: Disable accumulator update.

Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not

expected to use the accumulator, though it may need to use instructions that

implicitly update the accumulator. To use such instructions in the System Routine,

but still preserve the accumulator contents on returning to the application kernel,

the System Routine would either (a) save and restore the accumulator, or (b)

prevent the accumulator from being unintentionally modified. This control bit has

been added for the latter method.

Software has the option to limit the setting of this control bit to strictly within the

System Routine. If, by convention, this bit is clear within application kernels, the

System Routine can simply set the bit upon entry and clear it before returning

control to the application kernel. This usage model would not necessarily require

cr0.0 to be saved/restored in the System Routine. However, if by convention

application kernels are permitted to set this bit, then the System Routine is

required to preserve the content of this bit.

0
Single Precision Floating Point Mode (FP Mode). This bit specifies whether the

current single-precision floating-point operation mode is IEEE mode (IEEE

Standard 754) or the ALT (alternative mode). This bit does not affect the floating-

point mode used for other floating-point data types. This bit is also forwarded on

the message sideband for all out-going messages, for example, to control the

floating-point mode of the Sampler. Software may modify this bit to dynamically

switch between the two floating-point modes. This bit is initialized by Thread

Dispatch.

0 = IEEE floating-point mode for the F (Float) type.

1 = ALT (alternative) floating-point mode for the F (Float) type.

 30
External Halt Exception Status and Control. This bit indicates the External Halt

exception. It is set by EU hardware on receiving the broadcast External Halt signal.

The System Routine should reset this bit before returning to an application

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 815

DWord Bits Description

routine to avoid infinite loops.

This bit may be set or cleared by software. This bit is initialized to 0.

 29
Software Exception Control. This bit is the control bit for software exceptions.

Setting this bit to 1 in an application routine causes an exception. Clearing this bit

in an application routine has no effect. Upon entering the system routine, the

hardware maintains this bit as 1 to signify a software exception. The System

Routine should reset this bit before returning to an application routine.

This bit may be set or cleared by software. This bit is initialized to 0.

 28
Illegal Opcode Exception Status. This bit, when set, indicates an illegal opcode

exception. The exception handler routine normally does not return back to the

application thread upon an illegal opcode exception. Leaving this bit set has no

effect on hardware; if system software adversely returns to an application routine

leaving this bit set, it doesn’t cause any exception. This bit should not be set by

software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

 27
Stack Overflow Exception Status. This bit when set, indicates a stack overflow

exception. The exception handler routine normally does not return back to the

application thread upon a stack overflow exception. Leaving this bit set has no

effect on hardware; if system software adversely returns to an application routine

leaving this bit set, it doesn’t cause any exception. This bit should not be set by

software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

 25 Context Save Status. This bit when set, indicates a Context Save process has

been initiated. The system routine must reset this bit after saving the context to

terminate the thread.

 24 Context Restore Status. This bit when set, indicates a Context Restore process

has been initiated. The system routine must reset this bit after restoring the

context. The reset of this bit is required before invoking application routine.

 23:16 Reserved. MBZ.

 13
Software Exception Enable. This bit enables or disables the software exception.

Enabling or disabling this bit may allow host software to turn on/off certain

features (such as profiling) without changing the kernel program.

This bit is initialized by the Thread Dispatcher.

Format = ENABLED:

0: Disabled

1: Enabled

3D Media GPGPU

816 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

DWord Bits Description

 12
Illegal Opcode Exception Enable. This bit specifies whether the illegal opcode

exception is enabled or not. The Illegal opcode exception includes illegal opcodes

and undefined opcodes, caused by bad programs or run-time data corruption.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor. Even though

this mechanism is provided to disable the illegal opcode exception, it should be

used with extreme caution.

Format = ENABLED:

0: Disabled

1: Enabled

 11
Stack Overflow Exception Enable. This bit specifies whether the stack overflow

exception is enabled or not. The stack overflow exception includes an overflow or

an underflow in the stack space allocated for the thread.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor.

Format = ENABLED:

0: Disabled

1: Enabled

 10:0 Reserved. MBZ.

2

(cr0.2:ud)

31:3
Application IP (AIP). This is the register storing the instruction pointer before an

exception is handled. Upon an exception, hardware automatically saves the

current IP into the AIP register, and then sets the Master Exception State and

Control field to 1, which forces a switch to the System IP (SIP). The AIP register

may contain either the pointer to the instruction that causes the exception (such

as breakpoint) or the one after (such as masked stack overflow/underflow

exceptions). This is shown in the following table, where IP is the instruction that

generated the exception.

Exception Type AIP Value

External Halt N/A (1)

Software Exception IP + 1

Illegal Opcode IP

(1) External Halt exception is asynchronous and not associated with an

instruction.

When the System Routine changes the Master Exception State and Control field

from 1 to 0, hardware restores IP from this register. This field is writable allowing

the returning IP to be altered after an exception is handled.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 817

DWord Bits Description

2:0 Reserved. MBZ.

Programming Note

Context:

Implementation Restriction on Register Access: When the control register is used as an explicit source and/or

destination, hardware does not ensure execution pipeline coherency. Software must set the thread control field to

‘switch’ for an instruction that uses control register as an explicit operand. This is important as the control register

is an implicit source for most instructions. For example, fields like FPMode and Accumulator Disable control the

arithmetic and/or logic instructions. Therefore, if the instruction updating the control register doesn’t set ‘switch’,

subsequent instructions may have undefined results.

Notification Registers

Notification Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1001b

Number of Registers: 3

Default Value: No

Normal Access: RO (RW – Context save/restore only)

Elements: 3

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These

registers are read-only, except under context restore, and can be accessed in 32-bit granularity. Write

access to this register is allowed only when context is restored.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the

maximum allowed number of concurrent threads in the system. Therefore, the range of the thread-to-

thread notification count in n0, is larger than the maximum number of threads computed by EUID * TID.

There is only one bit for the host-to-thread notification count in n1.

When directly accessed, this register is read-only. If the value is non zero, the only way to alter the value

is to use the wait instruction to decrement the value until zero is reached. A wait instruction on a zero

notification subregister causes the thread to stall, waiting for a notification signal from outside targeting

the same subregister. See the wait instruction for details.

3D Media GPGPU

818 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Implementation Restriction: The notification registers are initialized to 0 after hardware/software

reset. However, these registers are not reset at thread dispatch time.

Register and Subregister Numbers for Notification Registers

RegNum[3:0] SubRegNum[4:0]

0000b = n0

All other encodings are reserved.

00000b = n0.0:ud

00100b = n0.1:ud

01000b = n0.2:ud

All other encodings are reserved.

Notification Register 0 Fields

DWord Bits Description

0 31:16 Reserved. MBZ.

15:0
Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-

thread synchronization. The value read from this register specifies the outstanding notifications

received from other threads. It can be changed indirectly by using the WAIT instruction. See the

WAIT instruction for details.

Format: U16

Notification Register 1 Fields

DWord Bits Description

0 31:1 Reserved. MBZ.

0
Host to Thread Notification. This register is used by the WAIT instruction for host-to-thread

synchronization via MMIO registers.

Format: U1

Notification Register 2 Fields

DWord Bits Description

0 31:16 Reserved. MBZ.

15:0
Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-

thread synchronization. The value read from this register specifies the outstanding notifications

received from other threads. It can be changed indirectly by using the WAIT instruction. See the

WAIT instruction for details.

Format: U16

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 819

Format of the Notification Register

IP Register

IP Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1010b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 1

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current

instruction pointer, which is relative to the Generate State Base Address. Reading this register returns

the instruction pointer of the current instruction. The 3 LSBs are always read as zero. Writing this

register causes program flow to jump to the new address. When it is written, the 3 LSBs are dropped by

hardware.

Register and Subregister Numbers for IP Register

RegNum[3:0] SubRegNum[4:0]

0000b = ip

All other encodings are reserved.

00000b = ip:ud

All other encodings are reserved.

3D Media GPGPU

820 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

IP Register Fields

DWord Bits Subfield Description

0 31:3 Ip. Specifies the current instruction pointer. This pointer is relative to the General State Base

Address.

2:0 Reserved. MBZ.

TDR Registers

TDR Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1011b

Number of Registers: 8

Default Value: No

Normal Access: RO/CW

Elements: 8

Element Size: 16 bits

Element Type: UW

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? No

Indexable? No

There are 8 thread dependency registers (tdr0.0:uw to tdr0.7:uw) used by HW for the sendc instruction.

These registers are read-only and can be accessed in 16-bit granularity.

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and

are reset by broadcasting end of thread messages after a thread retired. The FFTID’s can only be

changed with a thread dispatch. Any write into any of the TDR registers will clear the valid bit for the

particular TDR if the write enable is true, the FFTID portion is strictly read only.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 821

Register and Subregister Numbers for TDR Registers

RegNum[3:0] SubRegNum[4:0]

1011b = tdr0

All other encodings are reserved.

00000b = tdr0.0:uw

00010b = tdr0.1:uw

00100b = tdr0.2:uw

00110b = tdr0.3:uw

01000b = tdr0.4:uw

01010b = tdr0.5:uw

01100b = tdr0.6:uw

01110b = tdr0.7:uw

All other encodings are reserved.

3D Media GPGPU

822 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

TDR Registers Fields [CHV, BSW]

DWord Bits Description

3 31 Valid7. This field indicates whether the thread specified by FFTID7 is still in-flight.

30:25 Reserved. MBZ

24:16
FFTID7. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

15 Valid6. This field indicates whether the thread specified by FFTID6 is still in-flight.

14:9 Reserved. MBZ

8:0
FFTID6. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

2 31 Valid5. This field indicates whether the thread specified by FFTID5 is still in-flight.

30:25 Reserved. MBZ

24:16
FFTID5. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

15 Valid4. This field indicates whether the thread specified by FFTID4 is still in-flight.

14:9 Reserved. MBZ

8:0
FFTID4. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

1 31 Valid3. This field indicates whether the thread specified by FFTID3 is still in-flight.

30:25 Reserved. MBZ

24:16
FFTID3. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

15 Valid2. This field indicates whether the thread specified by FFTID2 is still in-flight.

14:9 Reserved. MBZ

8:0
FFTID2. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

0 31 Valid1. This field indicates whether the thread specified by FFTID1 is still in-flight.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 823

30:25 Reserved. MBZ

24:16
FFTID1. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

15 Valid0. This field indicates whether the thread specified by FFTID0 is still in-flight.

14:9 Reserved. MBZ

8:0
FFTID0. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U9

Performance Registers

Performance Registers Summary

Attribute Value

ARF Register Type Encoding

(RegNum[7:4]):

1100b

Number of Registers: 1

Default Value: 0h

Normal Access: RO/RW

Elements: 3

Element Size: 32 bits

Element Type: UD

Timestamp Register

This register is a low latency timestamp source, “TM”, available as part of a thread's Architectural

Register File (ARF). This is a is free running counter, 64b in size, and exposed to the ISA as individual 32b

high ‘TmHigh’ and low ‘TmLow’ unsigned integer source operands. As part of the EU's register space,

access to the timestamp has a low and deterministic latency and therefore can be used for intra-kernel

high resolution performance profiling.

The TM features provides a 1-bit indicator ‘TmEvent’ which identifies the occurrence of a time-

impacting event such as context switch or frequency change since the last time any portion of the

Timestamp register value was read by that thread. Software that uses the Timestamp capability should

check this bit to identify when a relative time calculation may be suspect. To properly use this additional

information, the instrumentation code should operate on the Timestamp register value as a whole (i.e.

as an 8 dword register) so that the 64b time and this 1b value are captured simultaneously, as opposed

to 32b portions, to eliminate the chance of missing a TmEvent that might occur between accesses to

32b portions of this register.

3D Media GPGPU

824 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Programming Note

Context: Performance Registers

The Timestamp register is saved as part of thread state on context-save, but only ‘TmEvent’ is restored (and

technically always restored to ‘1’ as a context switch had occurred).

Register and Subregister Numbers for Performance Register

RegNum[3:0] SubRegNum[4:0]

0000b = tm0

All other encodings are reserved.

00000b = tm0.0:ud.

00100b = tm0.1:ud.

01000b = tm0.2:ud

01100b = tm0.3:ud

10000b = tm0.4:ud

All other encodings are reserved.

Performance Register Fields

DWord Bits Description

0

(tm0.0:ud)

31:0
TmLow. The lower 32b of the 64b timestamp value sourced from Cr clock.

Read-only.

Format: U32

1

tm0.1:ud

31:0
TmHigh. The upper 32b of the 64b timestamp value sourced from Cr clock.

Read-only.

Format: U32

2

tm0.2:ud

31:1 Reserved

0 TmEvent. Indicates a discontinuous time-impacting event (e.g. context switch,

frequency change) occurred since any portion of the Timestamp register was

last read, thus making any relative duration calculation based on this counter

suspect. This bit is reset at the time a new thread is loaded, and on each read of

any portion of the ‘Timestamp’ register.

3

tm0.3

(pm0)

31:0
Undefined

Format: U32

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 825

Flow Control Registers

Flow Control Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1101b

Number of Registers: 39

Default Value: None

Normal Access: RW*

Register and Subregister Numbers for Flow Conrol Registers

RegNum[3:0] SubRegNum[4:0]

0000b = fc0 00000b-11111b = fc0.0–fc0.31.

0001b = fc1 00000b = fc1.0.

 All other encodings are reserved.

0010b = fc2 00000b = fc2.0.

 All other encodings are reserved.

0011b = fc3 00000b = fc3.0.

 00001b = fc3.1.

 00010b = fc3.2.

 00011b = fc3.3.

 All other encodings are reserved.

0100b = fc4 00000b = fc4.0.

 All other encodings are reserved.

These are special hardware registers used in handling flow control operations. These registers may be

accessed ONLY in context save/restore operation using the SIP. These registers are accessed with the

‘MOV’ opcode. Use of any other opcode or access of these registers in non-context save/restore modes

may result in undeterministic behaviour of hardware.

These registers are accessed as 256b registers. Parts of the 256b register may be redundant, depending

on the hardware implementation of each register. The fields “RegNum” and “SubRegNum” are used

together to address these registers.

When restoring to fc4.0, the DW0 of the register must be copied to DW1 of the register before restoring to fc4.0.

Example:

 mov (8) fc4.0 r4.0

This must be replaced with:

 mov (1) r4.1:ud r4.0:ud

 mov (8) fc4.0 r4.0

Once context save of fc0 is done, 0 must be copied to fc0 register.

3D Media GPGPU

826 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

On a context save, the flow control register is written to the upper oword of a register.

On a context restore, the upper oword of register must be moved to flow control register. However, since these

move operations require data from lower oword of a register, it is required to move the upper oword to lower

oword before moving to these registers.

Example:

Context Save Cycle:

 mov (8) r113.0:ud fc0.0:ud { NoMask }

The above operation saves content of fc0.0 to the upper oword of r113.

Context Restore Cycle:

 mov (4) rtmp.0:ud r113.4<4;4,1>:ud { NoMask }

 mov (8) fc0.0:ud rtmp:ud { NoMask }

 The above operation restores content from upper oword of r113 by moving to lower oword of rtmp.

On a context restore, the sequence of operations shown below MUST be used to restore Flow Control Register.

The registers used are as an example.

 // Restore fc0.28 to fc0.31 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (2) r104.1:ud r100.0<2;2,1>:ud { NoMask }

 mov (2) r105.1:ud r101.0<2;2,1>:ud { NoMask }

 mov (2) r106.1:ud r102.0<2;2,1>:ud { NoMask }

 mov (2) r107.1:ud r103.0<2;2,1>:ud { NoMask }

 mov (8) fc0.28:ud r104:ud { NoMask }

 mov (8) fc0.29:ud r105:ud { NoMask }

 mov (8) fc0.30:ud r106:ud { NoMask }

 mov (8) fc0.31:ud r107:ud { NoMask }

 // Restore fc0.24 to fc0.27 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (2) r104.2:ud r100.0<2;2,1>:ud { NoMask }

 mov (2) r105.2:ud r101.0<2;2,1>:ud { NoMask }

 mov (2) r106.2:ud r102.0<2;2,1>:ud { NoMask }

 mov (2) r107.2:ud r103.0<2;2,1>:ud { NoMask }

 mov (8) fc0.24:ud r104:ud { NoMask }

 mov (8) fc0.25:ud r105:ud { NoMask }

 mov (8) fc0.26:ud r106:ud { NoMask }

 mov (8) fc0.27:ud r107:ud { NoMask }

 // Restore fc0.20 to fc0.23 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 827

 mov (2) r104.3:ud r100.0<2;2,1>:ud { NoMask }

 mov (2) r105.3:ud r101.0<2;2,1>:ud { NoMask }

 mov (2) r106.3:ud r102.0<2;2,1>:ud { NoMask }

 mov (2) r107.3:ud r103.0<2;2,1>:ud { NoMask }

 mov (8) fc0.20:ud r104:ud { NoMask }

 mov (8) fc0.21:ud r105:ud { NoMask }

 mov (8) fc0.22:ud r106:ud { NoMask }

 mov (8) fc0.23:ud r107:ud { NoMask }

 // Restore fc0.16 to fc0.19 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (2) r104.4:ud r100.0<2;2,1>:ud { NoMask }

 mov (2) r105.4:ud r101.0<2;2,1>:ud { NoMask }

 mov (2) r106.4:ud r102.0<2;2,1>:ud { NoMask }

 mov (2) r107.4:ud r103.0<2;2,1>:ud { NoMask }

 mov (8) fc0.16:ud r104:ud { NoMask }

 mov (8) fc0.17:ud r105:ud { NoMask }

 mov (8) fc0.18:ud r106:ud { NoMask }

 mov (8) fc0.19:ud r107:ud { NoMask }

 // Restore fc0.12 to fc0.15 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (2) r104.5:ud r100.0<2;2,1>:ud { NoMask }

 mov (2) r105.5:ud r101.0<2;2,1>:ud { NoMask }

 mov (2) r106.5:ud r102.0<2;2,1>:ud { NoMask }

 mov (2) r107.5:ud r103.0<2;2,1>:ud { NoMask }

 mov (8) fc0.12:ud r104:ud { NoMask }

 mov (8) fc0.13:ud r105:ud { NoMask }

 mov (8) fc0.14:ud r106:ud { NoMask }

 mov (8) fc0.15:ud r107:ud { NoMask }

 // Restore fc0.8 to fc0.11 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (2) r104.6:ud r100.0<2;2,1>:ud { NoMask }

 mov (2) r105.6:ud r101.0<2;2,1>:ud { NoMask }

 mov (2) r106.6:ud r102.0<2;2,1>:ud { NoMask }

 mov (2) r107.6:ud r103.0<2;2,1>:ud { NoMask }

 mov (8) fc0.8:ud r104:ud { NoMask }

 mov (8) fc0.9:ud r105:ud { NoMask }

 mov (8) fc0.10:ud r106:ud { NoMask }

 mov (8) fc0.11:ud r107:ud { NoMask }

 // Restore fc0.4 to fc0.7 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

3D Media GPGPU

828 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (1) r104.7:ud r100.0:ud { NoMask }

 mov (1) r104.0:ud r100.1:ud { NoMask }

 mov (1) r105.7:ud r101.0:ud { NoMask }

 mov (1) r105.0:ud r101.1:ud { NoMask }

 mov (1) r106.7:ud r102.0:ud { NoMask }

 mov (1) r106.0:ud r102.1:ud { NoMask }

 mov (1) r107.7:ud r103.0:ud { NoMask }

 mov (1) r107.0:ud r103.1:ud { NoMask }

 mov (8) fc0.4:ud r104:ud { NoMask }

 mov (8) fc0.5:ud r105:ud { NoMask }

 mov (8) fc0.6:ud r106:ud { NoMask }

 mov (8) fc0.7:ud r107:ud { NoMask }

 // Restore fc0.0 to fc0.3 into registers r100 to r103 (Send operation)

 mov (4) r100.0:ud r100.4<4;4,1>:ud { NoMask }

 mov (4) r101.0:ud r101.4<4;4,1>:ud { NoMask }

 mov (4) r102.0:ud r102.4<4;4,1>:ud { NoMask }

 mov (4) r103.0:ud r103.4<4;4,1>:ud { NoMask }

 mov (8) fc0.0:ud r100:ud { NoMask }

 mov (8) fc0.1:ud r101:ud { NoMask }

 mov (8) fc0.2:ud r102:ud { NoMask }

 mov (8) fc0.3:ud r103:ud { NoMask }

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 829

Immediate

Two forms of immediate are provided as a source operand: scalar and vector.

Project Description

CHV,

BSW

The immediate field may be 64 bits or 32 bits. For a word, unsigned word, or half-float immediate

data, software must replicate the same 16-bit immediate value to both the lower word and the

high word of the 32-bit immediate field in a GEN instruction. The 64-bit immediate takes up two

DWords of the instruction bit field. Hence a 64-bit immediate is supported ONLY for a MOV

operation. The field is denoted by imm32:type for 32-bit immediates and imm64:type for 64-bit

immediates.

Project Description

CHV,

BSW

For a scalar immediate, the numeric data types supported are :uw, :w, :ud, :d, :uq, :q for

integers AND :hf, :f, :df for floats. Refer to the Instruction Machine format topics for the

encoding of these immediates.

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. Both

integer and float immediate vectors are supported.

An immediate integer vector is denoted by type v or uv as imm32:v or imm32:uv, where the 32-bit

immediate field is partitioned into 8 4-bit subfields. Refer to the Numeric DataType topic for description

of the packing of vector integers to a DWord.

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit immediate field is

partitioned into 4 8-bit subfields. Refer to the Numeric DataType topic for the description of the

packing of vector floats to a DWord.

When an immediate vector is used in an instruction, the destination must be 128-bit aligned with

destination horizontal stride equivalent to a word for an immediate integer vector (v) and equivalent to

a DWord for an immediate float vector (vf).

3D Media GPGPU

830 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-

bit aligned SIMD data registers, a region-based register addressing scheme is employed in GEN

architecture. The region-based register addressing capability significantly improves the SIMD

computation efficiency by providing per-instruction-based multiple data gathering from register file.

This avoids instruction overhead to perform data pack, unpack, and shuffling, which has been observed

on other SIMD architectures. One benefit of such capability is allowing various kinds of 3D Graphics API

Shader compute models to run efficiently on GEN. Another benefit is allowing high throughput of

media applications, which tend to operate on byte or word data elements.

This can be illustrated by the example shown in Region Parameters and Region Parameters. As shown in

Region Parameters, a sequence of SIMD instruction is executed on a conventional load/store based

superscalar machine with SIMD instruction extension. The data parallelism can be achieved by first level

of loop unrolling. As shown, there is a second level of loop for the task. Before a given SIMD compute

instruction, Process (i), can proceed, there might be a load, a data rearrange and a data unpack (and

conversion) instruction to load and prepare the input data. After the compute instruction is complete, it

might also require pack, re-arrange and store instructions, to format and save the same to memory. At

the loop, other scalar computations such as loop count and address generation may be needed. For the

same program, when the data can fit in the large GEN GRF register file, the outer loop may be unrolled

for GEN. Here one or a few block loads (using send instruction) may be sufficient to move the working

set into GRF. Then the data shuffle can be combined with the processing operation with region-based

addressing capability. Per operand float type and mixed data type operation may also allow GEN to

combine data conditioning operations with computing operations. These techniques in GEN

architecture help to achieve high compute efficiency and throughput for graphics and media

applications.

Conventional SIMD Instruction Sequence

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 831

GEN SIMD Instruction Sequence for the Same Program

In a GEN instruction, each operand defines a region in the register file. A region may contain multiple

data elements. Each data element is assigned to an execution channel in the EU. The total number of

data elements of a region is called the size of the region, or the size of the operand. The number of

execution channels is called the execution size (ExecSize), which is specified in the instruction word.

ExecSize determines the size of region for source and destination operands in an instruction.

 For an instruction with two source operands, the sizes of the two source operands must be the

same.

 The size of a destination operand generally matches the execution size, therefore equals to the

number of source operand(s) in the same instruction.

o Exception of this rule is present for the integer reduction instructions (such as sad2 and

sada2) where the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named

the horizontal dimension (data elements within a row) and the second dimension is termed the

vertical dimension (data elements in a column). Here, horizontal/vertical and row/column are just

symbolic notations.

Description

When the GRF registers are viewed as a row-major 2D array of memory, such a notation normally matches well

with the geometric locations of the data elements of an operand.

However, as the register region is fully described by the parameters discussed below, the data elements

of a register region may not form a regular rectangular shape. For example, Vertical Stride parameter is

allowed to be smaller than Horizontal Stride, making the rows of a register region interleave with each

other. It should also note that the meanings of horizontal/vertical here is different than that used for the

flag control in Section Flag Register

3D Media GPGPU

832 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

An example of a register region (r4.1<16;8,2>:w) with 16 elements

Region Parameters shows another example where the rows are interleaved. The region, having word

data elements, starts at location r5.0:w. HorzStride, the distance within a row, is 2 words. So the second

element (channel number 1) is at location 5.2:w. And there are 8 elements per row. VertStride, the

distance between two rows, is only 1 word, which is less than HorzStride. Therefore, the first element of

the second row (channel number 8) is at r5.1:w, just next to channel number 0. It is clear from the

picture that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides

more details on the region-based register addressing. However, there are restrictions imposed by

hardware implementation, which can be found in the later sections of this chapter.

A 16-element register region with interleaved rows (r5.0<1;8,2>:w)

Without considering the source channel swizzle and destination register region description, the above

row-major-order region description provides the data assignment to each execution channel. The

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 833

following pseudo code computes the addresses of data elements assigned to execution channels for a

special case when the destination register is aligned to 256-bit register boundary.

// Input: Type: ub | b | uw | w | ud | d | f | v

//RegNum: In unit of 256-bit register

//SubRegNum: In unit of data element size

//ExecSize, Width, VertStride, HorzStride: In unit of data elements

// Output: Address[0:ExecSize-1] for execution channels

int ElementSize = (Type==“b”||Type==“ub”) ? 1 : (Type==“w”|Type==“uw”) ? 2 : 4;

int Height = ExecSize / Width;

int Channel = 0;

int RowBase = RegNum«5 + SubRegNum * ElementSize;

for (int y=0; y<Height; y++) {

int Offset = RowBase;

for (int x=0; x<Width; x++) {

Address [Channel++] = Offset;

Offset += HorzStride*ElementSize;

}

RowBase += VertStride * ElementSize;

}

As HorzStride and VertStride are specified independently (note that VertStride might be smaller than or

equal to HorzStride), the region may take various shapes from a replicated scalar, a replicated vector, a

vector of replicated scalars, a sliding window, to a non-overlapped 2D array.

A region-based description of a destination operand can take the following simplified format

RegFile RegNum.SubRegNum<HorzStride>:type

The destination operand is only allowed to have a 1 dimensional region. The Register Region Origin and

Type are the same as for a source operand. The total number of elements is given by ExecSize. However,

only HorzStride is required to describe the 1D region, not VertStride and Width.

As a source register region may cross multiple physical GRF registers, an instruction with such source

operands may take more than two execution cycles to gather source data elements for execution. The

destination register region is restricted to be within a physical GRF register. In other words, destination

scatter writes over multiple registers are not supported.

3D Media GPGPU

834 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Region Addressing Modes

There are two different register addressing modes: Direct register addressing and register-indirect

register addressing. Depending on the register region description, the register-indirect register

addressing mode can be further divided into three usages: 1x1 index region where only the origin of

register region is provided by the address register, Vx1 index region where the offset of each row of the

register region is provided by an address register, VxH index region where the offset of each data

element is provided by an address register.

Direct Register Addressing

In this mode, all register region parameters are specified for an operand using fields in the instruction

word.

Direct Register Addressing and Direct Register Addressing are two examples of direct register addressing.

For the example in Direct Register Addressing, all operands are 2D rectangular regions having the same

size of 16 data elements. The two source operands, Src0 and Src1, have 16 bytes. The destination

operand, Dst, has 16 words. There are 8 elements in a row for Src0 and Src1. The vertical stride of 16

bytes for Src0 and Src1 indicates that the first element and the 9’th element are 16 bytes apart in the

register file. Note that Src0 falls into the 256-bit physical GRF register starting at r1.0, but Src1 crosses

the 256-bit physical GRF register boundary between r2 and r3. The numbers in the shaded regions are

the values of the data elements. Observing the upper right corners of the source/destination regions

(first data element), we have C = 3+9.

A region description example in direct register addressing

For the example in Direct Register Addressing, the sizes of areas of Src0 and Src1 are the same, but Src0

contains a vector of replicated scalars. With HorzStride = 0 and Width = 8, the first row of 8 elements in

Src0 is a replication of the byte at r1.14. Comparing ExecSize of 16 to Width of 8 indicates that there is a

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 835

second row of 8 elements in Src0. With VertStride = 16, the second row in Src0 is a replication of the

byte at r1.20 (20 = 14+16). Effectively, the 16 data elements of Src0 are {1,1,1,1,1,1,1,1, 4,4,4,4,4,4,4,4}.

A region description example in direct register addressing with src0 as a vector of replicated

scalars

Register-Indirect Register Addressing with a 1x1 Index Region

In the register-indirect register addressing mode with 1x1 index region, the region origin is provided by

the content of the address register, the rest of region parameters are provided by the fields in the

instruction word.

Register-Indirect Register Addressing with a 1x1 Index Region depicts an example for this addressing

mode. For example, the presence of a full region description <16;8,1> for Src0 indicates that only the

origin of the region is provided by the address register a0.0.

An example illustrating register-indirect register addressing mode with a 1x1 index region

3D Media GPGPU

836 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 Register-Indirect Register Addressing with a Vx1 Index Region

In the register-indirect register addressing mode with Vx1 index region, the horizontal dimension is

described by the fields in the instruction word and the vertical dimension is described by an address

register region. Specifically, the origin of each row of the data region is provided by the contents of an

address register region. The rows are described by the width and the horizontal stride. The first address

register is provided and the following contiguous address registers are for the following rows. The total

number of address registers used is inferred from the parameters ExecSize and Width.

Within the 16-bit address register, bits 15:5 determine RegNum and bits 4:0 determine SubRegNum.

An example is provided in Register-Indirect Register Addressing with a Vx1 Index Region. The assembly

syntax notion of a register region without vertical stride, <4,1>, corresponding to the special encoding

of vertical stride of 0xF in the instruction word, indicates the VxH or Vx1 mode of indirect register

addressing. In this case, the origin for each row of src0 is provided by the address register. As

ExecSize/Width = 2, there are two address registers a0.0 and a0.1, each pointing to a row of 4 data

elements.

 An example illustrating register-indirect-register addressing mode with a Vx1 index region

(src0)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 837

Register-Indirect Register Addressing with a VxH Index Region

In the register-indirect register addressing mode with VxH index region, the position of each data

element is provided by the contexts in an address register region. This mode has the identical syntax as

the Vx1 index region mode, and in fact, can be viewed as a special case of the Vx1 mode. When Width

of the region is 1, the number of address registers used equals ExecSize.

An example is provided in Register-Indirect Register Addressing with a VxH Index Region. The absent of

vertical stride in the region description <1,0> with width = 1 indicates that the origin for each row of 1

data element of Src0 is provided by the address register. As ExecSize/Width = 8, there are 8 address

registers from a0.0 to a0.7, each pointing to a single data elements.

An example illustrating register-indirect register addressing mode with a VxH index region

(Src0).

3D Media GPGPU

838 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 839

Access Modes

There are two basic GEN register access modes controlled by a single bit instruction subfield called

Access Mode.

 16-byte Aligned Access Mode (align16): In this mode, the origins of all operands (sources and

destination), whether it is by direct addressing or register-indirect addressing, are 16-byte

aligned. For example a row in the region description starts at 16-bype aligned and the width the

row must be 4 and the 4 data elements within a row must span 16-bytes. In this access mode

(and with other restrictions put forward later), full-channel swizzle for both source operands and

per-channel mask for destination operand are supported on a 4-component basis. In other

words, the control and setting of full source swizzle and destination mask are repeated for every 4

components up to total of ExecSize channels.

o The align16 access mode can be used for AOS operations. See examples provided in the Primary

Usage Model section for SIMD4x2 and SIMD4x1 modes of operation to support 3D API Vertex

Shader and Geometric Shader execution.

 1-byte Aligned Access Mode (align1): In this mode, the origins of all operands may be aligned to

their data type and could be 1-byte if the operand is of byte type. In this access mode, full region

register descriptions are supported, however, source swizzle or destination mask are not

supported.

o The align1 access mode can be used for SOA operations. See examples provided in the Primary

Usage Model section for SIMD8 and SIMD16 modes of operation to support 3D API Pixel Shader.

Many media applications also operate well in align1 access mode.

3D Media GPGPU

840 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Execution Data Type

The GEN architecture carries out arithmetic and logical operations using a smaller set of data types than

the variety supported as source or destination operands. These are the execution data types. A particular

arithmetic or logical instruction has one execution data type, from those listed in the table.

Execution Data Types

Type Description

W Word. 16-bit signed integer.

D Doubleword. 32-bit signed integer.

Q Quadword. 64-bit signed integer.

F Float. 32-bit single precision floating-point number.

DF Double Float. 64-bit double precision floating-point number.

HF Half Float. 16-bit half precision floating-point number.

The following rules explain the conversion of multiple source operand types, possibly a mix of different

types, to one common execution type:

 For floating-point sources, all source operands must have the same floating-point type, with the

exceptions below:

 A two-source floating-point instruction can have Float as the src0 type and VF (Packed

Restricted Float Vector) as the immediate src1 type.

When single precision and half precision floats are mixed between source operands or between

source and destination operand. In such cases, singple precision float is the execution datatype.

 Mixing floating-point and integer source types is not allowed. Either all source types must be one

floating-point type or all source types must be integer types.

 Unsigned integers are converted to signed integers.

 Byte (B) or Unsigned Byte (UB) values are converted to a Word or wider integer execution type.

 If source operands have different integer widths, use the widest width specified to choose the

signed integer execution type.

Note that when the execution data type is an integer type, it is always a signed integer type. For integer

execution types, extra precision is provided within the hardware, including the accumulators, so that

conversions from unsigned to signed do not affect instruction correctness.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 841

Register Region Restrictions

A register region is described as packed if its elements are adjacent in memory, with no intervening

space, no overlap, and no replicated values. If there is more than one element in a row, elements must

be adjacent. If there is more than one row, rows must be adjacent. When two registers are used, the

registers must be adjacent and both must exist.

The following register region rules apply to the GEN implementation.

1. General Restrictions Based on Operand Types

There are these general restrictions based on operand types:

1. Where n is the largest element size in bytes for any source or destination operand type,

ExecSize * n must be <= 64.

2. When the Execution Data Type is wider than the destination data type, the destination must

be aligned as required by the wider execution data type and specify a HorzStride equal to

the ratio in sizes of the two data types. For example, a mov with a D source and B

destination must use a 4-byte aligned destination and a Dst.HorzStride of 4.

2. General Restrictions on Regioning Parameters

The mapping of data elements within the region of a source operand is in row-major order and is

determined by the region description of the source operand, the destination operand, and the

ExecSize, with these restrictions:

1. ExecSize must be greater than or equal to Width.

2. If ExecSize = Width and HorzStride ≠ 0, VertStride must be set to Width * HorzStride.

3. If ExecSize = Width and HorzStride = 0, there is no restriction on VertStride.

4. If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and VertStride.

5. If ExecSize = Width = 1, both VertStride and HorzStride must be 0.

6. If VertStride = HorzStride = 0, Width must be 1 regardless of the value of ExecSize.

7. Dst.HorzStride must not be 0.

8. VertStride must be used to cross GRF register boundaries. This rule implies that elements

within a ‘Width’ cannot cross GRF boundaries.

3. Region Alignment Rules for Direct Register Addressing

1. In Direct Addressing mode, a source cannot span more than 2 adjacent GRF registers.

2. A destination cannot span more than 2 adjacent GRF registers.

3. When a source or destination spans two registers, there are restrictions that vary by project,

described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

3D Media GPGPU

842 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Source or Destination Spans Two Registers

Restriction

When an instruction has a source region spanning two registers and a

destination region contained in one register, the number of elements

must be the same between two sources and one of the following must

be true:

1. The destination region is entirely contained in the lower OWord

of a register.

2. The destination region is entirely contained in the upper OWord

of a register.

3. The destination elements are evenly split between the two

OWords of a register.

When destination spans two registers, the source may be one or two

registers. The destination elements must be evenly split between the

two registers.

 // Case (a) Two destination registers with one source

registers.

 mov (8) r10.4<1>:f r11.5<8;8,1>:w

 // Case (b) Two destination registers with two source

registers.

 mov (8) r10.4<1>:f r11.12<8;8,1>:w

4. Special Cases for Byte Operations

1. When the destination type is byte (UB or B) only a ‘raw move’ using the mov instruction

supports a packed byte destination register region: Dst.HorzStride = 1 and Dst.DstType =

(UB or B). This packed byte destination register region is not allowed for any other

instructions, including a ‘raw move’ using the selinstruction, because the sel instruction is

based on Word or DWord wide execution channels.

2.

This relaxed alignment rule does not apply for this stepping.

There is a relaxed alignment rule for byte destinations. When the destination type is byte

(UB or B), destination data types can be aligned to either the lowest byte or the second

lowest byte of the execution channel. For example, if one of the source operands is in word

mode (a signed or unsigned word integer), the execution data type will be signed word

integer. In this case the destination data bytes can be either all in the even byte locations or

all in the odd byte locations.

This rule has two implications illustrated by this example:

 // Example:

 mov (8) r10.0<2>:b r11.0<8;8,1>:w

 mov (8) r10.1<2>:b r11.0<8;8,1>:w

 // Dst.HorzStride must be 2 in the above example so that the destination

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 843

 // subregisters are aligned to the execution data type, which is :w.

 // However, the offset may be .0 or .1.

 // This special handling applies to byte destinations ONLY.

5. Special Cases for Word Operations

There are some special cases for word operations for specific projects, described in the following

table. If you are viewing a version of the BSpec limited to other particular projects, the table may

not show and there are no special cases in this category.

There is a relaxed alignment rule for word destinations. When the destination type is word (UW, W, HF),

destination data types can be aligned to either the lowest word or the second lowest word of the execution

channel. This means the destination data words can be either all in the even word locations or all in the odd

word locations.

 // Example:

 add (8) r10.0<2>:hf r11.0<8;8,1>:f r12.0<8;8,1>:hf

 add (8) r10.1<2>:hf r11.0<8;8,1>:f r12.0<8;8,1>:hf

 // Note: The destination offset may be .0 or .1 although the destination subregister

 // is required to be aligned to execution datatype.

6. Special Requirements for Handling Double Precision Data Types

There are special requirements for handling double precision data types that vary by project,

described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

Special Requirements for Handling Double Precision Data Types

Requirement

In Align1 mode, all regioning parameters must use the syntax of a pair of packed floats, including

channel selects and channel enables.

 // Example:

 mov (8) r10.0.xyzw:df r11.0.xyzw:df

 // The above instruction moves four double floats. The .x picks the

 // low 32 bits and the .y picks the high 32 bits of the double float.

In Align1 mode, all regioning parameters like stride, execution size, and width are in units of element

size. However in Align16 mode, the channel selects and channel enables must always be used in pairs of

packed floats, because these parameters are defined for DWord elements ONLY.

 // Example:

 mov (4) r10.0<1>:df r11.0<4;4,1>:df

 // The above instruction moves four double floats.

When source or destination datatype is 64b or operation is integer DWord multiply, regioning in Align1

must follow these rules:

1. Source and Destination horizontal stride must be aligned to the same qword.

3D Media GPGPU

844 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Requirement

Example:

 // mov (4) r10.0:df r11.0<16;8,2>:f // Source stride must be 2 since datatype

is smaller.

 // mov (4) r10.0<2>:f r11.0<4;4,1>:df // Destination stride must be 2 since

datatype is smaller.

 // mul (4) r10.0<2>:d r11.0<8;4,2>:d

2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.

3. Source and Destination offset must be the same, except the case of scalar source.

When source or destination datatype is 64b or operation is integer DWord multiply, indirect addressing

must not be used.

ARF registers must never be used with 64b datatype or when operation is integer DWord multiply.

If Align16 is required for an operation with QW destination and non-QW source datatypes, the execution

size cannot exceed 2.

In Align16 mode, format conversion from double-float to floats is not allowed when source is immediate

data

When source or destination datatype is 64b or operation is integer DWord multiply, DepCtrl must not be

used.

7. Special Requirements for Handling Mixed Mode Float Operations

There are some special requirements for handling mixed mode float operations for specific

projects, described in the following table. If you are viewing a version of the BSpec limited to

other particular projects, the table may appear with no data rows.

Requirement

In Align16 mode, when half float and float data types are mixed between source operands OR between source

and destination operands, the register content are assumed to be packed. In such cases the execution size

reflects the number of float elements. Since a stride of 1 is assumed, source is selected in packed form and 16 bit

packed data is updated on the destination operand, if the datatype is half-float.

For Align16 mixed mode, both input and output packed f16 data must be oword aligned, no oword crossing in

packed f16.

Examples:

 Case (a)

 mad (8) r10.0.xy:hf r11.0.xxxx:f r12.xyzw:hf r13.yyyy:hf

 // The 16b of each word (r12.0, r12.1, r12.2, r12.3.. and so on) forms the source operand.

 // r13.1 and r13.5 is replicated for source operand.

 // The lower 16b of a Dword is updated for destination. With channel enables .xy , r10.0,

r10.1, r10.4 and r10.5 are updated.

 Case (b)

 mad (8) r10.0.xy:f r11.0.xxxx:f r12.xyzw:hf r13.yyyy:hf

 // The example is similar to Case(a), except that entire DWord is updated on the

destination.

In Align16 mode, replicate is supported and is coissueable.

 mad(8) r20.xyzw:hf r3.0.r:f r6.0.xyzw:hf r6.0.xyzw:hf {Q1}

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 845

Requirement

No SIMD16 in mixed mode when destination is packed f16 for both Align1 and Align16.

 mad(8) r3.xyzw:hf r4.xyzw:f r6.xyzw:hf r7.xyzw:hf

 add(8) r20.0<1>:hf r3<8;8,1>:f r6.0<8;8,1>:hf {Q1}

No accumulator read access for Align16 mixed float.

When source is float or half float from accumulator register and destination is half float with a stride of 1, the

source must register aligned. i.e., source must have offset zero.

No swizzle is allowed when an accumulator is used as an implicit source or an explicit source in an instruction. i.e.

when destination is half float with an implicit accumulator source, destination stride needs to be 2.

 mac(8) r3<2>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

 mov(8) r3<1>:f acc0.0<8;4,2>:hf

In Align16, vertical stride can never be zero for f16

 add(8) r3.xyzw:hf r4.0<4>xyzw:f r6.0<0>.xyzw:hf

Math operations for mixed mode:

- In Align16, only packed format is supported

 math(8) r3.xyzw:hf r4.0.<4>xyzw:f r6.0<0>.xyzw:hf 0x09

- In Align1, f16 inputs need to be strided

 math(8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

In Align1, destination stride can be smaller than execution type. When destination is stride of 1, 16 bit packed

data is updated on the destination. However, output packed f16 data must be oword aligned, no oword crossing

in packed f16.

 add(8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

When packed f16 is used as destination datatype, the subregister MUST be 0.

No SIMD16 in mixed mode when destination is f32. Instruction Execution size must be no more than 8.

Indirect Addressing on source is not supported when source and destination data types are mixed float.

No mixed mode select instruction with f16 packed destination. For example:

 (f0.0) (8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

8. Regioning Rules for Register Indirect Addressing

Regioning rules for register indirect addressing vary for specific projects, described in the

following table. If you are viewing a version of the BSpec limited to other particular projects, the

table may appear with no data rows.

3D Media GPGPU

846 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Rules

1. When the execution size and destination regioning parameters require two adjacent

registers, these registers are accessed using one index register ONLY.

 // Example:

 mov (16) r[a0.0]:f r10:f

 // The above instruction behaves the same as the following two

instructions:

 mov (8) r[a0.0]:f r10:f

 mov (8) r[a0.0, 8*4]:f r11:f

2. When the destination requires two registers and the sources are 1x1 indirect mode, the

sources must be assembled from two GRF registers accessed by a single index register. The

data for each destination GRF register is entirely derived from one source register. This is

ensured by appropriate use of regioning parameters. The exception to this is the use of

indirect scalar sources, where the same element is used across the execution size.

 // Example:

 // Case (a)

 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]:f

 // The above instruction behaves the same as the following two

instructions:

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]:f

 add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4, 8*4]:f

 // Note that the immediate for the second instruction is based on

regioning.

 // In this case, it is 8 DWs.

 // Case (b)

 add (16) r[a0.0]:ud r[a0.2]<4;8,1>:w r10<8;8,1>:ud

 // The above instruction behaves the same as the following two

instructions:

 add (8) r[a0.0]:f r[a0.2]<4;8,1>:w r10<8;8,1>:ud

 add (8) r[a0.0, 8*4]:f r[a0.2, 4*2]<4;8,1>:w r11<8;8,1>:ud

 // Note that the immediate for the second instruction is based on

regioning.

 // VertStride of 4 with data type of word.

 // Case (c):

 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

 // The above instruction behaves the same as the following two

instructions:

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

 add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4]<0;1,0>:f

 // Note that the src1 indirect address does not change.

3. Indirect addressing on src1 must be a 1x1 indexed region mode.

4. When a Vx1 or a VxH addressing mode is used on src0, the destination may use one or two

registers.

 // Example:

 // Case (a)

 add (16) r[a0.0]<1>:d r[a0.0]<4,1>:ud r16.0<8;8,1>:ud

 // The above instruction behaves the same as the following two

instructions:

 add (8) r[a0.0]<1>:d r[a0.0]<4,1>:ud r16.0<8;8,1>:ud

 add (8) r[a0.0, 8*4]<1>:d r[a0.2]<4,1>:ud r17.0<8;8,1>:ud

 // Since the pointer (index register) is incremented every 4 elements

 // (width), the second instruction moves from a0.0 to a0.2.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 847

Rules

 // Case (b)

 add (16) r10.0<2>:uw r[a0.0, 0]<1,0>:uw r16.0<8;8,1>:uw

 // The above instruction behaves the same as the following two

instructions:

 add (8) r10.0<2>:uw r[a0.0, 0]<1,0>:uw r16.0<8;8,1>:uw

 add (8) r11.0<2>:uw r[a0.8, 0]<1,0>:uw r17.0<8;8,1>:uw

 // Since the pointer (index register) is incremented every 1 element

 // (width), the second instruction moves from a0.0 to a0.8.

5. Indirect addressing on the destination must be a 1x1 indexed region mode.

Execution size of 32 is NOT supported in Vx1 or VxH modes.

1. Special Restrictions

There are some special restrictions on register region access for specific projects, described

in the following table. If you are viewing a version of the BSpec limited to other particular

projects, the table may appear with no data rows.

Restriction

In Align16 mode, the channel selects and channel

enables apply to a pair of half-floats, because

these parameters are defined for DWord elements

ONLY. This is applicable when both source and

destination are half-floats.

 // Example:

 mad (8) r10.0.xy:hf r11.0.xxxx:hf

r12.0.xyzw:hf r13.xyzw:hf

 // The .xxxx on the channel select

implies the pair of half-floats, r11.0

and r11.1 is replicated.

 // The .xy on the channel enable implies

that 2 DWs or 4 half-floats r10.0, r10.1,

r10.2 and r10.3 are updated.

Ternary instruction with condition modifiers must

not use SIMD32.

The mul/mach macro sequence MUST not use

Align16 Access Mode.

All flow control (branching) instructions must use

the Align1 access mode.

When destination regioning spans two general

registers and execution size is less than 8:

1. The flag registers cannot be used for

implicit update (by condition modifiers).

2. The flag registers cannot be used in a select

operation (opcode SEL).

3D Media GPGPU

848 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Restriction

A POW/FDIV operation must not be followed by an

instruction that requires two destination registers.

When using Align16 mode for conversion of data

elements of different sizes, both source and

destination must be one register each.

In Align16 mode, each destination register gets all

data from one source register. This means, the

data for one destination register is never scattered

across two source registers.

 // Example:

 // Allowed – all sources are contained

within one register.

 mul (8) r10.0:f r11.0:f r12.4<0>:f

 // NOT Allowed – src1 (r14) is scattered

across two registers.

 mad (8) r10.0:f r12.0<0>:f r14.4:f

r16.0:f

Conversion between Integer and HF (Half Float)

must be DWord-aligned and strided by a DWord

on the destination.

 // Example:

 add (8) r10.0<2>:hf r11.0<8;8,1>:w

r12.0<8;8,1>:w

 // Destination stride must be 2.

 mov (8) r10.0<2>:w r11.0<8;8,1>:hf

 // Destination stride must be 2.

Conversion between Integer and HF (Half

Float) must be DWord-aligned and strided by a

DWord on the destination.

For CHV:A, such format conversion is not allowed

in Align16 mode.

 // Example:

 add (8) r10.0<2>:hf r11.0<8;8,1>:w

r12.0<8;8,1>:w

 // Destination stride must be 2.

 mov (8) r10.0<2>:w r11.0<8;8,1>:hf

 // Destination stride must be 2.

When Source is vector immediate, destination

must NOT be a byte datatype.

When destination spans two registers, if the

execution size is equal to width, horizontal stride

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 849

Restriction

must NOT be 0.

Any instruction with indirect addressing using vx1

or vxh must use {NoDDCLr}

The src, dst overlapping behavior with the second

half src and the first half destination to the same

register must not be used with any compressed

instruction.

3D Media GPGPU

850 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Destination Operand Description

This topic is currently under development.

Destination Region Parameters

Based on the above restrictions, a subset of register region parameters are sufficient to describe the

destination operand:

 Destination Register Origin

o Destination Register Number and Destination Subregister Number for direct register addressing

mode

o A Scalar Destination Register Index for register-indirect-register addressing mode

 Destination Register ‘Region’ – Note that destination register region does not have full region

description parameters

o Destination Horizontal Stride

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 851

SIMD Execution Control

This section of the BSpec discusses SIMD execution, both with and without predication. See the

subtopics for more details.

Predication

Predication is the conditional SIMD channel selection for execution on a per instruction basis. It is an

efficient way of dynamic SIMD channel enabling without paying branch instruction overhead. When

predication is enabled for an instruction, a Predicate Mask (PMask), which contains 16-bit channel

enables, is generated internally in EU. Note that PMask is not a software visible register. It is provided

here to explain how SIMD execution control works. PMask generation is based on the Predication

Control (PredCtrl) field, Predication Inversion (PredInv) field and the flag source register in the

instruction word. See Instruction Summary chapter for definition of these fields.

Predicationshows the block diagram of the hardware logic to generate PMask. PMask is generated

based on combinatory logic operation of the bits in the flag register. Instruction field PredCtrl controls

the horizontal evaluation unit and vertical evaluation unit. MUX A in the figure selects whether

horizontally-evaluated results or vertically-evaluated results are sent to the Predication Invertion unit.

The PredInv field controls the Prediction Inversion unit. Either one 16-bit flag subregister or the whole

flag register may be selected to generate the PMask depending on the predication control modes. MUX

B indicates that predication can be enabled and disabled. Predication can be grouped into the following

three categories. Predication functionality also depends on the Access Mode of the instruction.

 No predication: Of course, predication can be disabled. This is the most commonly used case.

 Predication with horizontal combination: the predicate mask is generated based on combinatory

logic operation of bits within a selected flag subregister.

 Predication with vertical combination: the predicate mask is generated based on combinatory

logic operation of bits across flag multiple subregisters.

3D Media GPGPU

852 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Generation of predication mask

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 853

No Predication

When PredCtrl field of a given instruction is set to 0 (“no predication”), it indicates that no predication is

applied to this instruction. Effectively, the resulting PMask is all 1’s. This is shown by the 2:1 multiplexer

B controlled by the Pred Enable signal in Predication. Where predication is not enabled for an

instruction, multiplex B is selected to output 0xFF to PMask.

Predication with Horizontal Combination

Predication with horizontal combination inputs the 16 bits of a single flag subregister (f0.0:uw or

f0.1:uw) and passes them through combinatory logic of the Horizontal Evaluation unit to create PMask.

The simplest combination is ‘no combination’ – the same 16 bits from selected flag subregister are

output to MUX A. In this case, a bit in the selected flag subregister controls the conditional execution of

the corresponding execution channel. Let the selected flag subregister be denoted as f0.#, the following

pseudo code describes the predicate mask generation for predication with sequential flag channel

mapping.

If (PredCtrl == “Sequential flag channel mapping”) {

For (ch=0; ch<16; ch++)

PMask[ch] = (PredInv == TRUE) ? ~f0.#[ch] : f0.#[ch];

}

More complex horizontal evaluation is based on channel grouping. A group of adjacent channels (bits

from flag subregister) are evaluated together and a single bit is replicated to the group. The size of

groups is in power of 2. The supported combination depends on the Access Mode of an instruction.

In Align16 access mode, horizontal combination is based on 4-channel groups.

 Channel replication: PredCtrl of ‘.x’, ‘.y’, ‘.z’ and ‘.w’ select a single channel from each 4-channel

group and replicate it as the output for the group. For example, PredCtrl = ‘.x’ means that channel

0 in each group is replicated.

 OR combination: PredCtrl of ‘.any4h’ means that if any of the channel in a group is enabled,

outputs for the 4 channels in the group are all enabled.

 AND combination: PredCtrl of ‘.all4h’ means that only when all of the channels in a group are

enabled, the output for the group is enabled.

3D Media GPGPU

854 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

These combinations in Align16 mode can be described by the following pseudo-code.

If (Access Mode == Align16) {

For (ch = 0; ch < 16; ch += 4)

Switch (PredCtrl) {

Case ‘.x’: bTmp = f0.#[ch]; break;

Case ‘.y’: bTmp = f0.#[ch+1]; break;

Case ‘.z’: bTmp = f0.#[ch+2]; break;

Case ‘.w’: bTmp = f0.#[ch+3]; break;

Case ‘.any4h’: bTmp = f0.#[ch] | f0.#[ch+1] | f0.#[ch+2] | f0.#[ch+3]; break;

Case ‘.all4h’: bTmp = f0.#[ch] & f0.#[ch+1] & f0.#[ch+2] & f0.#[ch+3]; break;

}

bTmp = (PredInv == TRUE) ? ~bTmp : bTmp;

PMask[ch] = PMask[ch+1] = PMask[ch+2] = PMask[ch+3] = bTmp;

} }

In Align1 access mode, horizontal combination is based on AND combination ‘.any#h’ and OR

combination ‘.all#h’ on channel groups with various sizes, where # is the number of channels in a group

ranging from 2 to 16. This is described by the following pseudo-code.

If (Access Mode == Align1) {

Switch (PredCtrl) {

Case ‘.any2h’: groupSize = 2; <op> = ‘|’; break;

Case ‘.all2h’: groupSize = 2; <op> = ‘&’; break;

Case ‘.any4h’: groupSize = 4; <op> = ‘|’; break;

Case ‘.all4h’: groupSize = 4; <op> = ‘&’; break;

Case ‘.any8h’: groupSize = 8; <op> = ‘|’; break;

Case ‘.all8h’: groupSize = 8; <op> = ‘&’; break;

Case ‘.any16h’: groupSize = 16; <op> = ‘|’; break;

Case ‘.all16h’: groupSize = 16; <op> = ‘&’; break;

}

For (ch = 0; ch < 16; ch += groupSize) {

For (inc = 0, bTmp = FALSE; inc < groupSize; inc ++)

bTmp = bTmp <op> f0.#[ch+inc];

For (inc = 0; inc < groupSize; inc ++)

PMask[ch+inc] = bTmp;

} }

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 855

Predication with Vertical Combination

Predication with vertical combination uses both flag subregister as inputs. The AND or OR combination

is across the subregisters on a channel by channel basis. This is shown by the following pseudo-code.

If (Access Mode == Align1) {

For (ch = 0; ch < 16; ch ++) {

If (PredCtrl == ‘any2v’)

PMask[ch] = f0.0[ch] | f0.1[ch]

Else If (PredCtrl == ‘any2h’)

PMask[ch] = f0.0[ch] & f0.1[ch]

}

}

End of Thread

There is no special instruction opcode (such as an END instruction) to cause the thread to terminate

execution. Instead, the end of thread is signified by a send instruction with the end-of-thread (EOT)

sideband bit set. Upon executing a send instruction with EOT set, the EU stops on the thread. Upon

observing an EOT signal on the output message bus, the Thread Dispatcher makes the thread’s

resource available. If a thread uses pre-allocated resource managed by a fixed function, such as URB

handles and scratch memory, some fixed function protocol also requires the thread to terminate with

the message header phase to carry the information in order for the fixed function to release the pre-

allocated resource.

EU hardware guarantees that if a terminated thread has in-flight read messages or loads at the time of

‘end’ that their writebacks will not interfere with either other threads in the system or new threads

loaded in the system in the future.

More details can be found in the send instruction description in Instruction Reference chapter.

3D Media GPGPU

856 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Assigning Conditional Flags

Instructions can output two sets of conditional signals, one set from before the outputs clamping/re-

normalizing/format conversion logic, we call this the pre conditional signals. The second set is

generated from the final results after clamping and re-normalizing/format conversion logic, and we call

this the post conditional signals. The post conditional signals are used for fusing the DirectX compare

instruction. Note: The flags generated from the post conditional signals should be equivalent to the

flags generated by a separate cmp instruction after the current arithmetic instruction.

The pre conditional signals are used to generated flags for cmp/cmpn instructions only, this logically

does the compare of the two input sources. The post conditional signals are used to generated flags for

all the other arithmetic instructions, this logically does the compare of the result with zero.

cmpn with both sources as NaNs is a don't care case as this doesn't impact the MIN/MAX operations.

The pre conditional signals include the following:

 pre_sign bit: This bit reflects the sign of the computed result before going through any kind of

clamping, normalizing, or format conversion logic.

 pre_zero bit: This bit reflects whether the computed result is zero before any kind of clamping,

normalizing, or format conversion logic.

The post conditional signals include the following:

 post_sign bit: This bit reflects the sign of the final result after all the clamping, normalizing, or

format conversion logic.

 post_zero bit: This bit reflects whether the final result is zero after all the clamping, normalizing,

or format conversion logic.

 OF bit: This bit reflects whether an overflow occured in any of the computation of the current

instruction, including clamping, re-normalizing, and format conversion.

 NC bit: The NaN computed bit indicates whether the computed result is not a number. It carries

valid information for instructions operating on floating point values. For an operation on integer

operands, this bit is always 0.

 NS0 bit: The NaN Source 0 bit indicates whether src0 of an execution channel is not a number. It

carries valid information for instructions operating on floating point values. For an operation on

integer operands, this bit is always 0.

 NS1 bit: The NaN Source 1 bit indicates whether src1 of an execution channel is not a number. It

carries valid information for instructions operating on floating point values. For an operation on

integer operands, this bit is always 0. For an operation with one source operand, this bit is also set

to 0. This bit is only used for the comparison instruction cmpn, which is specifically provided to

emulate MIN/MAX operations. For any other instructions, this bit is undefined.

 Note that the bits generated at the output of a compute are before the .sat.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 857

Flag Generation for cmp Instructions (The Supported Conditional Modifiers are .e, .ne, .g, .ge, .l,

and .le.)

Conditional

Modifier Meaning Resulting Flag Value (for an execution channel)

.e Equal-to
(pre_zero & ! (NS0 | NS1)). This conditional modifier tests whether the two

sources are equal.

If either source is NaN (i.e. NC is true), the flag is forced to false.

.ne Not-Equal-to ! (pre_zero & ! (NS0 | NS1)). This conditional modifier test whether the two

sources are equal. It takes exactly the reverse polarity as the modifier .e.

.g Greater-than
(! pre_sign & ! pre_zero & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is greater than src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.ge Greater-than-or-

equal-to
((! pre_sign | pre_zero) & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is greater than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.l Less-than
(pre_sign & !pre_zero & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is less than src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.le Less-than-or-

equal-to
((pre_sign | pre_zero) & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is less than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

3D Media GPGPU

858 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Flag Generation for All Instructions Other than cmp/cmpn Instructions (The Supported

Conditional Modifiers are .e, .ne, .g, .ge, .l, .le, .o, and .u.)

Conditional

Modifier Meaning Resulting Flag Value (for an execution channel)

.e Equal-to
(post_zero & ! NC). This conditional modifier tests whether the result is equal

to zero.

If either source is NaN (i.e. NC is true), the flag is forced to false.

.ne Not-Equal-to
! (post_zero & ! NC). This conditional modifier test whether the result is not

equal to zero.

It takes exactly the reverse polarity as modifier .e.

.g Greater-than
(! post_sign & ! post_zero & ! NC). This conditional modifier tests whether

result is greater than zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.ge Greater-than-

or-equal-to
((! post_sign | post_zero) & ! NC). This conditional modifier tests whether

result is greater than or equal to zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.l Less-than
(post_sign & ! post_zero & ! NC). This conditional modifier tests whether

result is equal to zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.le Less-than-or-

equal-to
((post_sign | post_zero) & ! NC). This conditional modifier tests whether result

is equal to or less than zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.o Overflow
OF. This conditional modifier tests whether the computed result causes

overflow – the computed result is outside the range of the destination data

type.

Note: The legacy condition modifier behavior is different from IEEE exception

Overflow flag. For inf float to int conversion, .o will set the legacy Overflow flag,

but IEEE exception Overflow flag won’t be set.

All other internal conditional signals are ignored.

.u Unordered
NC. This conditional modifier tests whether the computed result is a NaN

(unordered).

All other internal conditional signals are ignored.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 859

Destination Hazard

GEN architecture has built-in hardware to avoid destination hazard.

Destination Hazard stands for the risk condition when multiple operations are trying to write to the

same destination and the result of the destination may be ambiguous. This may or may not happen on

GEN for two instructions with the same destination, or with destinations that have overlapped register

region, depending on the ordering of the arrival of destination results. Let’s consider two instructions in

a thread with potential destination hazard. There may be other instruction between them as long as

there is no instruction sourcing the same destination. Using register scoreboards, GEN hardware

automatically takes care of the destination hazard by not issuing the second instruction until the

destination scoreboard is cleared. However, for certain cases, in fact for most cases, such destination

hazard indicated by the register scoreboard is false, causing unnecessary delay of instruction issuing.

This may result in lower performance. The destination dependency control field in the instruction word

{NoDDClr } allows software to selectively override such hardware destination dependency mechanism.

Such performance optimization hooks must be used with extreme caution. When it is not certain that it

is a false destination hazard, the programmer should rely on hardware to resolve the dependency.

As the destination dependency control field does not apply to send instruction, there is only one

condition that a programmer may use the {NoDDClr } capability.

Description

Instructions other than send, may use this control as long as operations that have different pipeline latencies are

not mixed. The operations that have longer latencies are:

 Opcodes pln, lrp, dp*.

 Operations involving double precision computation.

 Integer DW multiplication where both source operands are DWs.

When a sequence of NoDDClr is used, the last instruction that completes the scoreboard clear must have a non-

zero execution mask. This means, if any kind of predication can change the execution mask or channel enable of

the last instruction, the optimization must be avoided. This is to avoid instructions being shot down the pipeline

when no writes are required.

Example:

(f0.0) mov r10.0 r11.0 {NoDDClr}

(-f0.0) mov r10.0 r11.0 { NoDDClr}

In the above case, if predication can disable all writes to r10 for the second instructions, the instruction maybe

shot down the pipeline resulting in un-deterministic behavior. Hence, This optimization must not be used in these

cases.

3D Media GPGPU

860 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Non-present Operands

Some instructions do not have two source operands and one destination operand. If an operand is not

present for an instruction the operand field in the binary instruction must be filed with null. Otherwise,

results are unpredictable.

Specifically, for instructions with a single source, it only uses the first source operand src0. In this case,

the second source operand src1 must be set to null and also with the same type as the first source

operand src0. It is a special case when src0 is an immediate, as an immediate src0 uses DW3 of the

instruction word, which is normally used by src1. In this case, src1 must be programmed with register

file ARF and the same data type as src0.

Instruction Prefetch

Due to prefetch of the instruction stream, the EUs may attempt to access up to 8 instructions (128

bytes) beyond the end of the kernel program – possibly into the next memory page. Although these

instructions will not be executed, they must be accounted for the prefetch in order to avoid invalid page

access faults. GFX software is required to pad the end of all kernel programs with 512b data. A more

efficient approach would be to ensure that the page after all kernel programs is at least valid (even if

mapped to a dummy page). Note that the General State Access Upper Bound field of the

STATE_BASE_ADDRESS command can be used to prevent memory accesses past the end of the General

State heap (where kernel programs must reside).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 861

ISA Introduction

This chapter contains these sections that introduce this volume.

 Introducing the Execution Unit

 EU Terms and Acronyms

 EU Changes by Processor Generation

 EU Notation

Subsequent chapters cover:

 EU Data Types

 Execution Environment

 Exceptions

 Instruction Set Summary

 Instruction Set Reference

 EU Programming Guide

The EU Programming Guide provides some useful examples and information but is not a complete or

comprehensive programming guide.

../../../../Content/3D_Media_GPGPU/Execution_Units/IntroEU.htm#_TocIntroEU
../../../../Content/3D_Media_GPGPU/Execution_Units/IntroTermsAndAcronyms.htm#_TocIntroTermsAndAcronyms
../../../../Content/3D_Media_GPGPU/Execution_Units/IntroChangesByGen.htm#_TocIntroChangesByGen
../../../../Content/3D_Media_GPGPU/Execution_Units/IntroNotation.htm#_TocIntroNotation

3D Media GPGPU

862 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Introducing the Execution Unit

This section introduces the Execution Unit (EU), a simple and capable processor within the GPU that

supports graphics processing within the graphics pipelines, can do general purpose computing

(GPGPU), and responds to exceptional conditions via the System Routine.

The EU provides parallelism at two levels: thread and data element. Multiple threads can execute on the

EU; the number executing concurrently depends on the processor and is transparent to EU code. Each

thread has its own registers (GRF and ARF, described below). Most EU instructions operate on arrays of

data elements; the number of data elements is normally the ExecSize (execution size) or number of

channels for the instruction. A channel is a logical unit of execution for data element access, masking,

and flow control within instructions. The number of channels is independent of the number of physical

ALUs or FPUs for a particular graphics processor.

EU native instructions are 128 bits (16 bytes) wide. Some combinations of instruction options can use

compact instruction formats that are 64 bits (8 bytes) wide. Identifying instructions that can be

compacted and creating the compact representations is done by software tools, including compilers

and assemblers.

Data manipulation instructions have a destination operand (dst) and one, two, or three source operands

(src0, src1, or src2). The instruction opcode determines the number of source operands. An instruction's

last source operand can be an immediate value rather than a register.

Data read or written by a thread is generally in the thread's GRF (General Register File), 128 general

registers, each 32 bytes. A data element address within the GRF is denoted by a register number (r0 to

r127) and a subregister number. In the instruction syntax, subregister numbers are in units of data

element size. For example, a :d (Signed Doubleword Integer) element can be in subregister 0 to 7,

corresponding to byte numbers in the instruction encoding of 0, 4, ... 28.

The EU cannot directly read or write data in system memory.

Specialized registers used to implement the ISA are in a distinct per thread Architecture Register File

(ARF). Each such register or group of related registers has its own distinct name. For example, ip is the

instruction pointer and f0 is a flags register. An ARF register can be a src0 or dst operand but not a src1

or src2 operand. There are restrictions on how particular ARF registers are accessed that should be

understood before directly reading or writing those registers. See the ARF Registers section for more

information.

The EU supports both integer and floating-point data types, as described in the Numeric Data Types

section.

For EU flow control, each channel has its own per-channel instruction pointer (PcIP[n]) and only

executes an instruction when IP == PcIP[n] and any other masks enable the channel. Most flow control

instructions use signed offsets from the current instruction address to reference their targets.

Unconditional branches are done using mov with IP as the destination. Flow control can also use SPF

(Single Program Flow) mode to execute with a single instruction pointer (IP).

The EU ISA supports predication, masking, regioning, swizzling, some type conversions, source

modification, saturation, accumulator updates, and flag updates as part of instruction execution:

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 863

 Predication creates a bit mask (PMask) to enable or disable channels for a particular instruction

execution. Pmask is derived from flag register and subregister values using boolean formulas

determined by the PredCtrl (Predicate Control) and PredInv (Predicate Inversion) instruction fields.

See the Predication section.

 Masking is the overall process of determining which channels execute for a given instruction

based on five factors:

 Number of channels (only channels in [0, ExecSize - 1] can execute)

 Execution mask (EMask)

 Whether the channel is on the instruction (if not in Single Program Flow mode and

MaskCtrl is not NoMask)

 Predicate mask (PMask)

 In Align16 mode, any enabling of channels using the Dst.ChanEn instruction field (if

MaskCtrl is not NoMask).

 Regioning specifies an array of data elements contained in one or two registers, with options for

scattering, interleaving, or repeating data elements in registers using width and stride values,

subject to significant constraints. Regioning also includes access mode (Align1 or Align16) and

addressing mode (Direct or Indirect). See the Registers and Register Regions section.

 Swizzling allows small scale reordering of data elements within groups of four at the input using

the modulo 4 channel names x, y, z, and w. For example, a swizzle of .wzyx with an ExecSize of 8

reads execution channels 0 to 7 from these input channels: 3, 2, 1, 0, 7, 6, 5, and 4. Swizzling is

only available in the Align16 access mode, described in the Execution Environment chapter.

 Type Conversions do any needed conversion from source data type to execution data type and

from execution data type to destination data type. See Execution Data Type for more information.

Each instruction description indicates what combinations of data types are supported.

 Source Modification modifies a source operand just before doing the requested operation. For a

numeric operation, the choices are:

 No modification (normal).

 - indicating negation.

 (abs) indicating absolute value.

 -(abs) indicating a forced negative value.

 Source modification logically occurs after any conversion from source data type to execution

data type. Each instruction description indicates whether it supports source modification.

 Saturation clamps result values to the nearest value within a saturation range determined by the

destination type. For a floating-point type, the saturation range is [0.0, 1.0]. For an integer type,

the saturation range is the entire range for that type, for example [0, 65535] for the UW

(Unsigned Word) type. Each instruction description indicates whether it supports saturation.

 Accumulator Updates optionally update the accumulator register or registers in the ARF with

destination values as a side effect of instruction execution. The AccWrCtrl instruction field enables

accumulator updates. The Accumulator Disable flag in control register 0 (cr0) can be used to

3D Media GPGPU

864 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

disable accumulator updates, regardless of AccWrCtrl values; for example, this flag may be used

in the System Routine.

 Flag Updates optionally update a flags register and subregister (f0.0, f0.1, f1.0, or f1.1) with

conditional flags based on the CondModifier (Condition Modifier) instruction field. For example, a

CondModifier of .nz (not zero) assigns flag bits based on whether result elements are not zero (1)

or zero (0). Each instruction description indicates whether it supports the Condition Modifier and

any restrictions on the values supported.

The EU is not required to execute steps in its internal pipeline sequentially or in order, so long as it

produces correct results.

The assembler syntax uses spaces between operands and encloses ExecSize and any predicate in

parentheses. Instruction mnemonics, register names, conditional modifiers, predicate controls, and type

designators use lowercase. Function names used with the math instruction are UPPERCASE.

(pred) inst cmod sat (exec_size) dst src0 src1 { inst_opt, ... }

General register destination regions use the syntax rm.n<HorzStride>:type. General register directly

addressed source regions use the syntax rm.n<VertStride;Width,HorzStride>:type. You need to

understand more about register regioning to understand all of these terms.

The following example assembly language instruction adds two packed 16-element single-precision

Float arrays in r4/r5 and r2/r3 writing results to r0/r1, only on those channels enabled by the predicate

in f0.0 along with any other applicable masks.

 (f0.0) add (16) r0.0<1>:f r2.0<8;8,1>:f r4.0<8;8,1>:f

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 865

EU Terms and Acronyms

This section provides three tables describing EU general terms and acronyms, EU data types, and EU

selected ARF registers.

EU General Terms and Acronyms

Term Description

ALT mode A floating-point execution mode that maps +/- inf to +/- fmax, +/- denorm to +/-0, and NaN to

+0 at the FPU inputs and never produces infinities, denormals, or NaN values as outputs. See IEEE

mode.

ALU Arithmetic Logic Unit. A functional block that performs integer arithmetic and logic operations, as

distinct from instruction fetch and decode, floating-point operations (see FPU), or messaging.

AOS Array Of Structures. Also see SOA.

ARF Architecture Register File, a distinct register file containing registers used to implement specific

ISA features. For example the Instruction Pointer and condition flags are in ARF registers. See GRF.

byte An 8-bit value aligned on an 8-bit boundary and the basic unit of addressing. Bits within a byte

are denoted 0 to 7 from LSB to MSB.

channel
A logical unit of SIMD data parallel execution within a thread and within the EU. The number of

physical ALUs or FPUs is not directly related to the number of channels.

CHV, BSW supports up to 32 channels.

compact

instruction

A 64-bit instruction encoded as described in the EU Compact Instructions section. Only some

combinations of instruction parameters can be encoded as compact instructions. See native

instruction.

compressed

instruction

An instruction that writes to two destination registers. For example a SIMD16 instruction with

Float operands can write channels 0 to 7 to one 32-byte general register and channels 8 to 15 to a

second, consecutive 32-byte general register.

denorm A very small but nonzero number in IEEE mode, with a magnitude less than the smallest

normalized floating-point number representable in a particular floating-point format. Denormals

lose precision as their values approach zero, called gradual underflow.

DWord Doubleword. A 32-bit (4-byte) value aligned on a 32-bit (4-byte) boundary. Bits within a DWord

are denoted 0 to 31 from LSB to MSB.

EOT End of Thread. A flag set on a send or sendc instruction to terminate a thread's execution on the

EU.

EU Execution Unit. The single GPU unit described in this volume. This volume describes individual

data parallel execution paths within a thread in the EU as channels. A few fields, like EUID, use EU

to refer to a particular hardware resource used to implement the overall EU.

exception An error or interrupt condition that arises during execution that may transfer control to the

System Routine. Some exceptions can be disabled, preventing such transfers. As defined in this

volume, some errors do not produce exceptions.

ExecSize The number of execution channels for a particular instruction. Channels within that number are

enabled or disabled by various masks.

../../../../Content/3D_Media_GPGPU/Execution_Units/EU%20Compact%20Instructions.htm#_TocEUCompactInstructions

3D Media GPGPU

866 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Term Description

floating-point Numeric types that allow fractional values and often a wider range than integer types. The EU

supports binary floating-point types including the single precision type and the double precision

type defined by the IEEE 754 standard.

GEN GEN is sometimes used to refer to Intel's mainstream GPU architecture integrated with recent CPU

generations.

GRF General Register File, a distinct register file containing 128 general registers, r0 to r127. Each

general register is 256 bits (32 bytes), can contain any type of data, and can be accessed with any

valid combination of addressing mode, access mode, and region parameters. A general register is

directly addressed using a register number and subregister number, or indirectly addressed using

an address subregister (index register) and an address immediate offset.

IEEE mode A floating-point execution mode that supports all the kinds of floating-point values described by

the IEEE 754 standard: normalized finite nonzero binary floating-point numbers, signed zeros,

signed infinities, signed denormals that are closer to zero than any normalized value but still

nonzero, and NaN (not a number) values. See ALT mode.

index register An address subregister when used for indirect addressing.

inf Infinity, +inf or -inf, as a floating-point value in IEEE mode.

instruction In this volume, instruction always refers to an EU instruction.

ISA Instruction Set Architecture, processor aspects visible to programs and programmers and

independent of a particular implementation, including data types, registers, memory access,

addressing modes, exceptions, instruction encodings, and the instruction set itself. An ISA does

not include instruction timing, hardware pipeline details, or the number of physical resources

(ALUs, FPUs, instruction decoders) mapped to logical constructs (threads, channels). This volume

also includes a recommended assembly language syntax, closely related to the ISA but logically

distinct from it.

LSB Least significant bit.

message A data structure transmitted from a thread to another thread, to a shared function, or to a fixed

function. Message passing is the primary communication mechanism of the GEN architecture.

MSB Most significant bit.

NaN Not a Number. A non-numeric value allowed in the standard single precision and double

precision floating-point number formats. Quiet NaNs propagate through calculations and

signaling NaNs cause exceptions. NaNs are not used in the ALT floating-point mode.

native

instruction

A 128-bit instruction, the regular instruction format that allows all defined instruction parameters

and options. Some instructions can also be encoded using a 64-bit compact instruction format.

OWord Octword. A 128-bit (16-byte) value aligned on a 128-bit (16-byte) boundary. Bits within an OWord

are denoted 0 to 127 from LSB to MSB. This term is used rarely and may be dropped from future

versions of this volume.

packed
A register region is described as packed if its elements are adjacent in memory, with no

intervening space, no overlap, and no replicated values. If there is more than one element in a

row, elements must be adjacent. If there is more than one row, rows must be adjacent. When two

registers are used, the registers must be adjacent and both must exist.

The immediate vector data types are all described as Packed because each such type packs several

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 867

Term Description

small data elements into a 32-bit immediate value.

QWord Quadword. A 64-bit (8-byte) value aligned on a 64-bit (8-byte) boundary. Bits within a QWord are

denoted 0 to 63 from LSB to MSB.

region A collection of data locations in registers and subregisters for a source or destination operand.

The associated regioning parameters allow regions to be arrays with various layouts.

register Part of the directly accessible state of an EU program, such as a general register in the GRF or an

architecture register in the ARF. Note that system memory is not directly accessible.

SIMD Single Instruction Multiple Data. Each EU instruction can operate on multiple data elements in

parallel, as specified by the instruction's ExecSize.

SIP System Instruction Pointer, the starting IP value for the System Routine.

SOA Structure of Arrays. Also see AOS.

SPF Single Program Flow. A mode in which every execution channel uses the common instruction

pointer, IP in the ip register. The SPF bit in the control register is 1 to enable SPF and 0 to disable

it. If SPF is disabled, then each execution channel n has its own instruction pointer, PcIP[n] and

each channel n is only eligible to execute, subject to other masking, when PcIP[n] == IP.

swizzle Rearrange data elements within a vector. The EU supports modulo four swizzling of register

source operands at the input in the Align16 access mode.

System

Routine

A global EU exception handling routine. Any enabled exception from any EU thread transfers

control to this routine.

thread An instance of a program executing on the EU. The life cycle for a thread on the EU starts with the

first instruction after being dispatched to the EU by the Thread Dispatcher and ends after

executing a send or sendc instruction with EOT set, signaling thread termination. Threads can be

independent or can communicate with each other via the Message Gateway shared function.

word A 16-bit (2-byte) value aligned on a 16-bit (2-byte) boundary. Bits within a word are denoted 0 to

15 from LSB to MSB. Word has denoted a 16-bit unit for Intel processors since the 8086 and 8088

processors were introduced in 1978.

The next table lists all EU numeric data types. See the Numeric Data Types section for more information

about each data type.

3D Media GPGPU

868 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

EU Numeric Data Types (Listed Alphabetically by Short Name)

Short

Name

Assembler

 Syntax

Long

 Name

Size

in

Bytes

Size

in

 Bits

Integral

 or

Float Description

B :b Signed Byte Integer 1 8 I Signed integer in the range -128 to

127.

D :d Signed Doubleword

Integer

4 32 I Signed integer in the range -231 to 231

- 1.

DF :df Double Float 8 64 F CHV, BSW: Double precision

floating-point number.

F :f Float 4 32 F Single precision floating-point

number.

HF :hf Half Float 2 16 F CHV, BSW: Half precision floating-

point number.

Q :q Signed Quadword

Integer

8 64 I CHV, BSW: Signed integer in the

range -263 to 263 - 1.

UB :ub Unsigned Byte

Integer

1 8 I Unsigned integer in the range 0 to

255.

UD :ud Unsigned

Doubleword Integer

4 32 I Unsigned integer in the range 0 to

232 - 1.

UQ :uq Unsigned Quadword

Integer

8 64 I CHV, BSW: Unsigned integer in the

range 0 to 264 - 1.

UV :uv Packed Unsigned

Half Byte Integer

Vector

4 32 I Eight 4-bit unsigned integer values

each in the range 0 to 15. Only used

as an immediate value.

UW :uw Unsigned Word

Integer

2 16 I Unsigned integer in the range 0 to

65,535.

V :v Packed Signed Half

Byte Integer Vector

4 32 I Eight 4-bit signed integer values

each in the range -8 to 7. Only used

as an immediate value.

VF :vf Packed Restricted

Float Vector

4 32 F Four 8-bit restricted float values.

Only used as an immediate value.

W :w Signed Word Integer 2 16 I Signed integer in the range -32,768

to 32,767.

The next table lists the seven ARF registers that you should understand first, omitting several others.

See the ARF Registers section for more information, including descriptions of additional registers not

listed below.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 869

EU Selected ARF Registers (Listed Alphabetically by Name)

Name

Assembler

Syntax Description

Accumulators acc0, acc1
Data registers that can hold integer or floating-point values of various

sizes. Many instructions can implicitly update accumulators with a copy of

destination values, done by setting the AccWrCtrl instruction option. A few

instructions, like mac (Multiply Accumulate), use the accumulators as an

implicit source operand, useful for some iterative calculations.

For CHV, BSW there are added accumulator registers acc2 to acc9 for

special purposes; these added accumulators are not generally used.

Address

Register

a0.s
Holds subregisters primarily used for indirect addressing. Each subregister

is a 16-bit UW (Unsigned Word) value. For an indirectly addressed

operand or element, the subregister value plus an AddrImm signed offset

field determines the byte address (RegNum and SubRegNum) within the

register file (GRF).

For CHV, BSW there are 16 address subregisters.

Control

Register

cr0.s Contains bit fields for floating-point modes, flow control modes, and

exception enable/disable. Also contains exception indicator flags and

saves the AIP (Application Instruction Pointer) on transferring control to

the System Routine to handle an exception.

Flags fr.s Used as the outputs for various channel conditional signals, such as

equality/zero or overflow. Used as the inputs for predication. There are

two 32-bit flags registers each containing two 16-bit subregisters.

Instruction

Pointer

 (IP)

ip References the current instruction in memory, as an unsigned offset from

the General State Base Address. IP is the thread's overall instruction

pointer. Each channel n can have its own instruction pointer (PcIP[n]). If

not in Single Program Flow mode (SPF is 0) then only those channels

where PcIP[n] == IP are eligible to execute the instruction, if enabled by

all other applicable masks.

Null Register null
Indicates a non-existent operand. Unused operands in the instruction

format, like the unused second source operand field in a mov instruction,

are encoded as null.

For present source operands, reading a null source operand returns

undefined values.

For null destination operands, results are discarded but any implicit

updates to accumulators or flags still occur.

State Register sr0.s Contains thread identification and scheduling fields, and mask fields for

enabling or disabling channels.

3D Media GPGPU

870 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Execution Units (EUs)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data

of the same type in parallel (though not necessarily on the same instant in time). In addition, each EU

can support a number of execution contexts called threads that are used to avoid stalling the EU during

a high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a

completely different workload with minimal latency while waiting for the high-latency operation to

complete.

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU

may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the

EU. Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If

that thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler

result arrives back at the EU, the EU can switch back to the original thread and use the returned data as

it continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be ignored by

software. There are some exceptions to this rule: e.g., for:

Description

thread-to-thread communication (see Message Gateway, Media)

synchronization of thread output to memory buffers (see Geometry Shader)

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 871

EU Changes by Processor Generation

This section describes how the EU changes for particular processor generations. Instruction compaction

tables can differ for each generation, so that is not mentioned in these lists. Particular readers and

audiences can see only certain content in this section. Workarounds for particular generations, SKUs, or

steppings are not included in these lists. Some small changes in instruction layouts are not included in

these lists.

Description

These features or behaviors are added for CHV, BSW, continuing to later generations:

 The maximum ExecSize increases to 32, for byte or word operands.

 Increase the number of flag registers from one to two.

 Add the NibCtrl field, used with QtrCtrl to select groups of channels or flags.

 Add the DF (Double Float) data type, the first time an 8-byte data type is supported. DF only supports the

IEEE floating-point mode and not the ALT floating-point mode.

 Add a shared source data type field and a destination data type field for instructions with three source

operands, allowing F (Float), DF (Double Float), D (Signed Doubleword Integer), or UD (Unsigned

Doubleword Integer) types to be specified.

 Add bit manipulation instructions: bfi1, bfi2, bfrev, cbit, fbh, and fbl.

 Add the integer addc (Add with Carry) and subb (Subtract with Borrow) instructions.

 Add the brc (Branch Converging) and brd (Branch Diverging) instructions.

 For the cmp and cmpn instructions, relax the accumulator restrictions.

 For the sel instruction, remove the accumulator restriction.

 Add the Rounding Mode and Double Precision Denorm Mode fields in Control Register 0.

These features or behaviors are added for CHV, BSW, continuing to later generations:

 DF (Double Float) operands use an element size of 8. Regioning and channel parameters for the DF type

are determined normally, in the same way as for other types.

 Add the channel enable register, flow control registers, and stack pointer register in the ARF.

 In the Control Register, add the Force Exception Status and Control, Context Save Status, and Context

Restore Status bits.

 Relative instruction offsets (JIP, UIP) are now 32-bit values in units of bytes (rather than 16-bit values using

8-byte units) for some instructions: brc, brd, call, and jmpi.

 A call instruction can get the relative instruction offset (JIP) from a register.

 Add the calla (Call Absolute) instruction.

 A mov instruction with different source and destination types can now use conditional modifiers.

These features or behaviors are added for CHV, BSW, continuing to later generations:

 Add the HF (Half Float) type and a corresponding HF execution data type and execution path.

 Add flags to indicate IEEE floating-point exceptions and to enable or disable exception reporting to those

3D Media GPGPU

872 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description

flags.

 Add the Single Precision Denorm Mode bit in Control Register 0. It can be enabled to allow calculations

using the F (Float) type in IEEE floating-point mode to support denormals and gradual underflow.

 Add the Q (Signed Quadword Integer) and UQ (Unsigned Quadword Integer) types. Integer source types

cannot mix 64-bit and 8-bit operands. Some integer instructions (e.g., avg) do not support Q or UQ source

types.

 Instructions with one source operand and a 64-bit source type can have immediate 64-bit source operands.

 The JIP and UIP relative instruction offset fields in all remaining flow control instructions are 32-bit values in

units of bytes (rather than 16-bit values using 8-byte units).

 The instruction layout is noticeably different. The SrcType and DstType instruction fields are widened to

allow for more type encodings as three types are added. The AddrSubRegNum instruction field is widened

to allow for 16 address subregisters rather than 8. The layout now supports 64-bit immediate source

operands for one-source instructions and 32-bit relative instruction offset fields for flow control

instructions.

 In the 3-source instruction format, widen the SrcType and DstType fields and add an encoding for the HF

(Half Float) type.

 Add a compact instruction format for 3-source instructions.

 Use a different source modifier interpretation for logical (and, not, or, xor) instructions.

 An accumulator source operand for a logical instruction can now have a source modifier.

 Add eight address subregisters, increasing the number of address subregisters from 8 to 16.

 For the brc and brd instructions do not allow the Switch instruction option.

 For the cmp and cmpn instructions, remove the accumulator restrictions.

 Add the goto instruction, reusing the opcode for the discontinued fork instruction.

 Add the join instruction.

 For the lzd instruction, remove the accumulator restriction.

 The mach instruction reverses the roles of the two source operands compared to previous generations.

 Add the madm instruction.

 Enhance the math instruction to allow some immediate source values and support the INVM and RSQRTM

functions.

 For the mul instruction, relax the accumulator restriction on source operands so it applies for only integer

source operands.

 For the rounding instructions (rndd, rnde, rndu, and rndz), remove the accumulator restrictions.

 Revise the shl and shr instructions to use the low 6 bits of the shift count in QWord mode, versus the low 5

bits otherwise.

 Add the smov instruction.

 Add eight accumulator registers, acc2 to acc9, used only for the special purpose of emulating IEEE-

compliant fdiv and sqrt operations.

 Add message control registers.

 Widen the sp (Stack Pointer) register to 64 bits.

 Add the IEEE Exception, Page Fault Status, and Page Fault Code bit fields in the State Register.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 873

Description

 Remove some regioning restrictions when operands span two registers.

These features or behaviors are specific to CHV:

 Calculations using the HF (Half Float) type do not support denormals or gradual underflow.

 Revise the Slice ID and SubSlice ID (previously HalfSlice ID) bit fields in the State Register.

 The System IP (SIP) is widened to 48 bits. However the EU still only uses the low 32 bits.

3D Media GPGPU

874 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

EU Notation

The Courier New font is used for code examples and for the Syntax, Format, and Pseudocode sections

in the instruction reference.

The italic font style is used for instruction mnemonics outside of code (e.g., the send instruction), for

syntactic production names, for key values in algorithms (ExecSize), and to emphasize a word or phrase.

For example: When bit 10 is set, the destination register scoreboard is not cleared.

The bold font weight is used for the short name and long name of a bit field being described, for value

names being defined, for syntactic terminals, for unnumbered subheadings, and for the terms Note or

Workaround used to introduce a paragraph.

Bit field names and value names used where not being defined and not as syntactic terminals are in

plain text. Bit field values in hex use the 0x prefix. The BSpec currently uses the 0x prefix for hex in some

parts and the h suffix for hex in other parts. For single bits, values appear as simply 0 or 1. For multi-bit

binary values, the appropriate number of binary digits appears with a b suffix.

Instruction mnemonics are lowercase. Function names invoked using the math instruction are

UPPERCASE. For example, SQRT.

Device names in the new syntax do not use the Dev prefix or square brackets and often appear in

tagged tables with a blue background. For example: Device names in the old syntax are in plain text in

square brackets.

Tables describing bit field layouts or registers proceed from most significant to least significant bits.

Figures showing bit fields or registers show most significant bits on the left and least significant bits on

the right.

Any bit, field, or register described as Reserved should be regarded as undefined and unpredictable.

Such bits should be treated as follows:

 When testing values, do not depend on the state of reserved bits. Mask out or otherwise ignore

such bits.

 Sometimes software must initialize reserved bits. For example, a compiler must write complete

instruction values when creating an instruction stream, including reserved bits. In such cases,

write reserved bits as zeros unless otherwise indicated.

 Do not use reserved bits as extra storage for software-defined values; put nothing in such bits.

 When saving state and restoring state, save and restore any reserved bits as well.

 Do not assume that reserved bits are invariant between explicit writes. Software should function

even if reserved bits change in undefined and unpredictable ways.

Any value, encoding, or combination of values or encodings described as Reserved must not be used.

The EU's behavior is undefined in this case.

When a combination of instruction parameters or an EU state is described as producing undefined

results or behavior, do not assume that undefined results or behavior are confined to specific

instructions, operands, registers, or channels.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 875

Execution Environment

This topic is currently under development.

EU Data Types

Fundamental Data Types

Numeric Data Types

Floating Point Modes

o IEEE Floating Point Mode

o Partial Listing of Honored IEEE 754 Rules

o Complete Listing of Deviations or Additional Requirements vs IEEE 754

o Min/Max of Floating Point Numbers

o Alternative Floating Point Mode

Floating-Point Support [CHV, BSW]

o IEEE Floating-Point Exceptions [CHV, BSW]

o Floating-Point Compare Operations [CHV, BSW]

Type Conversion

Fundamental Data Types

The fundamental data types in the GEN architecture are halfbyte, byte, word, doubleword (DW),

quadword (QW), double quadword (DQ) and quad quadword (QQ). They are defined based on the

number of bits of the data type, ranging from 4 bits to 256 bits. As shown in the figure below, a

halfbyte contains 4 bits, a byte contains 8 bits, a word contains two bytes, a doubleword (DWord)

contains two words, and so on. Halfbyte is a special data type that is not accessed directly as a

standalone data element; it is only allowed as a subfield of the numeric data type of “packed signed

halfbyte integer vector” described in the next section.

3D Media GPGPU

876 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Fundamental Data Types

With the exception of halfbyte, the access of a data element to/from a GEN register or to/from memory

must be aligned on the natural boundaries of the data type. The natural boundary for a word has an

even-numbered address in units of bytes. The natural boundary for a doubleword has an address

divisible by 4 bytes. Similarly, the natural boundary for a quadword, double quadword, and quad

quadword has an address divisible by 8, 16, and 32 bytes, respectively. Double quadword, and quad

quadword do not have corresponding numeric data types. Instead, they are used to describe a group (a

vector) of numeric data elements of smaller size aligned to larger natural boundaries.

Numeric Data Types

The numeric data types defined in the GEN architecture include signed and unsigned integers and

floating-point numbers (floats) of various sizes. These numeric data types are described below.

Integer Numeric Data Types

The Execution Unit supports the following integer data types. Signed integer types use two's

complement representation for negative numbers.

UB: Unsigned Byte, 8-bit Unsigned Integer

7 0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 877

B: Byte, 8-bit Signed Integer

7 6 0

S

UW: Unsigned Word, 16-bit Unsigned Integer

1

 5 0

W: Word, 16-bit Signed Integer

1

 5

1

 4 0

S

UD: Unsigned Doubleword, 32-bit Unsigned Integer

3

 1 0

D: Doubleword, 32-bit Signed Integer

3

 1

3

 0 0

S

UQ: Unsigned Quadword, 64-bit Unsigned Integer CHV, BSW

6

 3 0

Q: Quadword, 64-bit Signed Integer CHV, BSW

6

 3

6

 2 0

S

UV: Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer

3

 1

2

 8

2

 7

2

 4

2

 3

2

 0

1

 9

1

 6

1

 5

1

 2

1

 1 8 7 4 3 0

3D Media GPGPU

878 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

V: Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer

3

 1

2

 8

2

 7

2

 4

2

 3

2

 0

1

 9

1

 6

1

 5

1

 2

1

 1 8 7 4 3 0

S S S S S S S S

The following table summarizes the EU integer data types.

Execution Unit Integer Data Types

Notation Size in Bits Name Range

UB 8 Unsigned Byte Integer [0, 255]

B 8 Signed Byte Integer [-128, 127]

UW 16 Unsigned Word Integer [0, 65535]

W 16 Signed Word Integer [-32768, 32767]

UD 32 Unsigned Doubleword Integer [0, 232 – 1]

D 32 Signed Doubleword Integer [–231, 231 – 1]

UQ 64 Unsigned Quadword Integer [0, 264 – 1]

Q 64 Signed Quadword Integer [–263, 263 – 1]

UV 32 Packed Unsigned Half-Byte

 Integer Vector

[0, 15] in each of eight 4-bit immediate vector elements.

V 32 Packed Signed Half-Byte

 Integer Vector

[-8, 7] in each of eight 4-bit immediate vector elements.

Restriction: Only a raw move using the mov instruction supports a packed byte destination register

region. For information about raw moves, refer to the Description in mov – Move.

Restriction: Q/UQ data types are not supported in Align16 mode.

Floating-Point Numeric Data Types

The Execution Unit supports the following floating-point data types.

Type or Description

The Float type uses the single precision format specified in IEEE Standard 754-1985 for Binary Floating-Point

Arithmetic.

The Double Float type uses the double precision format specified in IEEE Standard 754-1985 for Binary Floating-

Point Arithmetic.

In the ALT floating-point mode, representations for infinities, denorms, and NaNs within those formats are not

used.

The EU does not support the double extended precision (80-bit) floating-point format found in the x86/x87/Intel

64 floating-point registers.

All floating-point formats are signed using signed magnitude representation (a distinct sign bit, separate from the

magnitude information).

The Half Float type uses the binary16 format specified in IEEE Standard 754-2008.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 879

Type or Description

The F (Float) type supports both the ALT and IEEE floating-point modes, controlled by the Single Precision

Floating-Point Mode bit in the Control Register.

Whether IEEE mode F calculations support denorms or flush denormalized values to zero is controlled by the

Single Precision Denorm Mode bit in the Control Register.

The DF (Double Float) type only supports the IEEE floating-point mode. Whether DF calculations support denorms

or flush denormalized values to zero is controlled by the Double Precision Denorm Mode bit in the Control

Register.

The HF (Half Float) type only supports the IEEE floating-point mode.

HF calculations flush denormalized values to zero and gradual underflow is not supported.

HF: Half Float, 16-bit Half-Precision Floating-Point Number CHV, BSW

1

 5

1

 4

1

 0 9 0

S biased exp. fraction

F: Float, 32-bit Single-Precision Floating-Point Number

3

 1

3

 0

2

 3

2

 2 0

S biased exponent fraction

DF: Double Float, 64-bit Double-Precision Floating-Point Number CHV, BSW

6

 3

6

 2

5

 2

5

 1 0

S biased exponent fraction

VF: Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point Number

3

 1

3

 0

2

 8

2

 7

2

 4

2

 3

2

 2

2

 0

1

 9

1

 6

1

 5

1

 4

1

 2

1

 1 8 7 6 4 3 0

S b. exp. frac. S b. exp. frac. S b. exp. frac. S b. exp. frac.

3D Media GPGPU

880 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following table summarizes the EU floating-point data types.

Execution Unit Floating-Point Data Types

Notation

Size in

Bits Name Range

HF 16 Half Float
Half precision, 1 sign bit, 5 bits for the biased exponent, and 10 bits for

the significand:

[–(2–2-10)31…–2-40, 0.0, 2-40… (2–2-10)31]

F 32 Float
Single precision, 1 sign bit, 8 bits for the biased exponent, and 23 bits for

the significand:

[–(2–2-23)127…–2-149, 0.0, 2-149… (2–2-23)127]

DF 64 Double Float
Double precision, 1 sign bit, 11 bits for the biased exponent, and 52 bits

for the significand:

[–(2–2-52)1023…–2-1074, 0.0, 2-1074… (2–2-52)1023]

VF 32 Packed

Restricted

 Float Vector

Restricted precision. Each of four 8-bit immediate vector elements has 1

sign bit,

 3 bits for the biased exponent (bias of 3), and 4 bits for the significand:

[–31…–0.125, 0, 0.125… 31]

Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers contained in a

doubleword. Each signed halfbyte integer element has a range from -8 to 7 with the sign on bit 3. This

numeric data type is only used by an immediate source operand of doubleword in a GEN instruction. It

cannot be used for the destination operand or a non-immediate source operand. GEN hardware

converts the vector into an 8-element signed word vector by sign extension. This is illustrated in

Numeric Data Types.

The short hand format notation for a packed signed half-byte vector is V.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 881

Converting a Packed Half-Byte Vector to a 128-bit Signed Integer Vector

3D Media GPGPU

882 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Packed UnSigned Half-Byte Integer Vector

A packed unsigned halfbyte integer vector consists of 8 unsigned halfbyte integers contained in a

doubleword. Each unsigned halfbyte integer element has a range from 0 to 15. This numeric data type

is only used by an immediate source operand of doubleword in a GEN instruction. It cannot be used for

the destination operand or a non-immediate source operand. GEN hardware converts the vector into an

8-element signed word vector.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 883

Packed Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a doubleword. Each

restricted float has the sign at bit 7, a 3-bit coded exponent in bits 4 to 6, a 4-bit fraction in bits 0 to 3,

and an implied integer 1. The exponent is in excess-3 format – having a bias of 3. Restricted float

provides zero, positive/negative normalized numbers with a small range (3-bit exponent) and small

precision (4-bit fraction). This numeric data type is only used by an immediate source operand of

doubleword in a GEN instruction. It cannot be used for the destination operand, or a non-immediate

source operand.

The following figure shows how to convert an 8-bit restricted float into a single precision float.

Converting a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is by adding 4, or

equivalently copying bit 2 to bit 7 and putting the inverted bit 2 to bits 6:2. A special logic is also

needed to take care of positive/negative zeros.

Conversion from a Restricted 8-bit Float to a Single-Precision Float

The following table shows all possible numbers of the restricted 8-bit float. Only normalized float

numbers can be represented, including positive and negative zero, and positive and negative finite

numbers. Normalized infinites, NaN, and denormalized float numbers cannot be represented by this

type. It should be noted that this 8-bit floating point format does not follow IEEE-754 convention in

describing numbers with small magnitudes. Specifically, when the exponent field is zero and the fraction

field is not zero, an implied one is still present instead of taking a denormalized form (without an

implied one). This results in a simple implementation but with a smaller dynamic range – the magnitude

of the smallest non-zero number is 0.125.

3D Media GPGPU

884 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Examples of Restricted 8-bit Float Numbers

Class Hex #

Sign

[7]

Exponent

[6:4]

Fraction

[3:0]

Extended

 8-bit

Exponent

Floating Number

 in Decimal

Positive Normalized

Float

0x70-0x7F 0 111 0000 … 1111 1000 0011 16 … 31

0x60-0x6F 0 110 0000 … 1111 1000 0010 8 … 15.5

0x50-0x5F 0 101 0000 … 1111 1000 0001 4 … 7.75

0x40-0x4F 0 100 0000 … 1111 1000 0000 2 … 3.875

0x30-0x3F 0 011 0000 … 1111 0111 1111 1 … 1.9375

0x20-0x2F 0 010 0000 … 1111 0111 1110 0.5 … 0.96875

0x10-0x1F 0 001 0000 … 1111 0111 1101 0.25 … 0.484375

0x01-0x0F 0 000 0001 … 1111 0111 1100 0.125 … 0.2421875

0x00 0 000 0000 0000 0000 0 (+zero)

Negative Normalized

Float

0xF0-0xFF 1 111 0000 … 1111 1000 0011 -16 … -31

0xE0-0xEF 1 110 0000 … 1111 1000 0010 -8 … -15.5

0xD0-

0xDF

1 101 0000 … 1111 1000 0001 -4 … -7.75

0xC0-

0xCF

1 100 0000 … 1111 1000 0000 -2 … -3.875

0xB0-

0xBF

1 011 0000 … 1111 0111 1111 -1 … -1.9375

0xA0-

0xAF

1 010 0000 … 1111 0111 1110 -0.5 … -0.96875

0x90-0x9F 1 001 0000 … 1111 0111 1101 -0.25 … -0.484375

0x81-0x8F 1 000 0001 … 1111 0111 1100 -0.125 … -

0.2421875

0x80 1 000 0000 0000 0000 -0 (-zero)

The following figure shows the conversion of a packed exponent-only float to a 4-element vector of

single precision floats.

The shorthand format notation for a packed signed half-byte vector is VF.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 885

Floating Point Modes

GEN architecture supports two floating point operation modes, namely IEEE floating point mode (IEEE

mode) and alternative floating point mode (ALT mode). Both modes follow mostly the requirements in

IEEE-754 but with different deviations. The deviations will be described in details in later sections. The

primary difference between these modes is on the handling of Infs, NaNs and denorms. The IEEE

floating point mode may be used to support newer versions of 3D graphics API Shaders and the

alternative floating point mode may be used to support early Shader versions. Taking DirectX 3D

graphics API Shaders for example, shader models before version 3.0 may use the alternative floating

point mode, while version 3.0 and following shader models may use the IEEE floating point mode.

These two modes are supported by all units that perform floating point computations, including GEN

execution units, GEN shared functions like Extended Math, the Sampler and the Render Cache color

calculator, and fixed functions like VF, Clipper, SF and WIZ. Host software sets floating point mode

through the fixed function state descriptors for 3D pipeline and the interface descriptor for media

pipeline. Therefore different modes may be associated with different threads running concurrently.

Floating point mode control for EU and shared functions are based on the floating point mode field (bit

0) of cr0 register.

IEEE Floating Point Mode

This topic is currently under development.

Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in GEN architecture. Refer to IEEE-754 for

topics not mentioned.

 INF – INF = NaN

 0 * (+/–)INF = NaN

 1 / (+INF) = +0 and 1 / (–INF) = –0

o (+/–)INF / (+/–)INF = NaN as A/B = A * (1/B)

 INV (+0) = RSQ (+0) = +INF, INV (–0) = RSQ (–0) = –INF, and SQRT (–0) = –0

 RSQ (–finite) = SQRT (–finite) = NaN

 LOG (+0) = LOG (–0) = –INF, LOG (–finite) = LOG (–INF) = NaN

 NaN (any OP) any-value = NaN with one exception for min/max mentioned below. Resulting NaN

may have different bit pattern than the source NaN.

 Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or both operands

is NaN, returns FALSE. Normal comparison of NE, when either or both operands is NaN, returns

TRUE.

o Note: Normal comparison is either a cmp instruction or an instruction with conditional

modifier

3D Media GPGPU

886 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when the second source

operand is NaN, returns TRUE, regardless of the first source operand, and when the second

source operand is not NaN, but first one is, returns FALSE. Cmpn of NE, when the second source

operand is NaN, returns FALSE, regardless of the first source operand, and when the second

source operand is not NaN, but first one is, returns TRUE.

o This is used to support the proposed IEEE-754R rule on min or max operations. For

which, if only one operand is NaN, min and max operations return the other operand as

the result.

 Both normal and special comparisons of any non-NaN value against +/– INF return exact result

according to the conditional modifier. This is because that infinities are exact representation in

the sense that +INF = +INF and –INF = –INF.

o NaN is unordered in the sense that NaN != NaN.

 IEEE-754 requires floating point operations to produce a result that is the nearest representable

value to an infinitely precise result, known as "round to nearest even" (RTNE). 32-bit floating point

operations must produce a result that is within 0.5 Unit-Last-Place (0.5 ULP) of the infinitely

precise result. This applies to addition, subtraction, and multiplication.

 All arithmetic floating point instructions does Round To Nearest Even at the end of the

computation, except the round instructions.

Complete Listing of Deviations or Additional Requirements vs IEEE-754

For a result that cannot be represented precisely by the floating point format, the EU uses rounding to

nearest or even to produce a result that is within 0.5 Unit-Last-Place(0.5 ULP) of the infinitely precise

result.

Description

The rounding mode is specified by the Rounding Mode field in the Control Register.

Source modifiers are not applied to NAN.

Handle denorms as follows:

 When inputs are denorms in mixed mode (one of the source operand is half float and other

is single precision float OR source is half float and destination is single precision float), on

upconversion, they are non-denorms. So computes in 32b can handle this.

 When outputs are denorms, the denorms are retained if there is a format conversion.

 Mixed mode operations should always behave like sum of individual operations.

Other information regarding floating-point behaviors:

 NaN input to an operation always produces NaN on output, however the exact bit pattern of the

NaN is not required to stay the same (unless the operation is a raw “mov” instruction which does

not alter data at all.)

 x*1.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 887

 x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern change for

NaN). But -0 + 0 = +0.

 Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results out of 32-bit

float range, but whose final results would be within 32-bit float range if intermediate results were

kept at greater precision. In this case, implementations are permitted to produce either the

correct result, or else ±inf. Thus, compatibility between a fused operation, such as mac, with the

unfused equivalent, mul followed by add in this case, is not guaranteed.

 As the accumulator registers have more precision than 32-bit float, any instruction with

accumulator as a source/destination operand may produce a different result than that using more

general registers, as indicated in this table:

Description

Such an instruction may produce a different result than that using GRF registers.

 API Shader divide operations are implemented as x*(1.0f/y). With the two-step method, x*(1.0f/y),

the multiply and the divide each independently operate at the 32-bit floating point precision level

(accuracy to 1 ULP).

 See the Type Conversion section for rules on converting to and from float representations.

Min Max of Floating Point Numbers

A special comparison called Compare-NaN is introduced in the GEN architecture to handle the

difference of above mentioned floating-point comparison and the rules on supporting MIN/MAX. To

compute the MIN or MAX of two floating-point numbers, if one of the numbers is NaN and the other is

not, MIN or MAX of the two numbers returns the one that is not NaN. When two numbers are NaN,

MIN or MAX of the two numbers returns source1.

When both the sources are NaN inputs, the special case in the section 2.4.8 Floating point Min/Max Operations

describe the results.

When one source is SNAN, DX and IEEE treat the outputs differently. The special case section 2.4.8 Floating point

Min/Max operations described the results.

Min and Max is supported by conditional select.

Note even though f0.0 is specified in the instruction, the flag register is not touched by this instruction.

The following tables detail the rules for this special compare-NaN operation for floating-point numbers.

Notice that excepting “Not-Equal-To” comparison-NaN, last columns in all other tables have ‘T’.

3D Media GPGPU

888 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Results of “Less-Than” Comparison-NaN – CMPN.L [CHV, BSW]

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf F T T T T T T T
T

-Fin F
T/F

T T T T T T
T

-denorm F F F F F F T T
T

-0 F F F F
T F

T T
T

+0 F F F F F F T T
T

+denorm F F F F F F T T
T

+Fin F F F F F F
T/F

T
T

+inf F F F F F F F F
T

NaN F F F F F F F F
F

Results of “Greater-Than or Equal-To” Comparison-NaN – CMPN.GE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf
T

F F F F F F F
T

-Fin T
T/F

F F F F F F
T

-denorm T T
T T T T

F F
T

-0 T T
T T F T

F F
T

+0 T T
T T T T

F F
T

+denorm T T
T T T T

F F
T

+Fin T T T T T T
T/F

F
T

+inf T T T T T T T
T T

NaN F F F F F F F F F

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 889

Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf, and denorm are not

expected for an application to pass into the graphics pipeline, and the graphics hardware must not

generate NaN, Inf, or denorm as computation result. For example, a result that is larger than the

maximum representable floating point number is expected to be flushed to the largest representable

floating point number, i.e., +fmax. The fmax has an exponent of 0xFE and a mantissa of all one’s, which

is the same for IEEE floating point mode.

Note that this mode is applicable ONLY to Single Precision Float datatype.

Description

This also implies that ALT mode is not supported when Single precision datatype is involved in format conversion

to double precision or half precision.

ALT_MODE is supported for Single Precision float ONLY. Hence, ALT_MODE is NOT supported in mixed mode

operation.

Here is the complete list of the differences of legacy graphics mode from the relaxed IEEE-754 floating

point mode.

 Any +/- INF result must be flushed to +/- fmax, instead of being output as +/- INF.

 Extended mathematics functions of log(), rsq(), and sqrt() take the absolute value of the sources

before computation to avoid generating INF and NaN results.

Alternative Floating Point Mode shows the support of these differences in various hardware units.

Supported Legacy Float Mode and Impacted Units

IEEE-754 Deviations VF Clipper SF WIZ EU EM Sampler RC

Any +/- INF result flushed to

 +/- fmax

Y Y Y Y Y Y Y Y

Log, rsq, sqrt take abs() of sources N/A N/A N/A N/A N/A Y N/A N/A

Alternative Floating Point Mode shows some of the desired or recommended alternative floating point

mode behaviors that do not have hardware design impact. The reasons of not needing special hardware

support for these items are also provided. This is based on the compliance requirement that can be

found in the DirectX 9 specification: “Handling of NaNs, Infs, and denorms is undefined.

Applications should not pass in such values into the graphics pipeline.”

3D Media GPGPU

890 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Dismissed Legacy Behaviors

Suggested IEEE-754 Deviations Reason for Dismiss

Mov forces (+/-)INF to (+/-)fmax (+/-)INF is never present as input

(+/-)INF – (+/-)INF = +/- fmax instead of NaN (+/-)INF is never present as input

Denorm must be flushed to zero in all cases (including

trivial mov and point sampling)

Denorm is never present as input

Anything*0=0 (including NaN*0=0 and INF*0=0) NaN and INF are never present as input

Except propagated NaN, NaN is never generated NaN is never present as input and GEN never generates

NaN based on rules in the previous table

An input NaN gets propagated excepting (a)-(d) NaN is never present as input

(a) Rcp (and rsq) of 0 yields fmax N/A, as it is already covered by the general rule “Any +/-

INF result flushed to +/- fmax”

(b) Sampler honors 0/0 = 0 as if (1/0)*0 There is no divide in Sampler

I Rcp (and rsq) of INF yields +/- 0 (+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if (1/INF)=0

followed by Anything*0 = 0

There is no divide in Sampler

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 891

Floating-Point Support

The following sections describe CHV, BSW floating-point support relative to the IEEE Standard for

Floating-Point Arithmetic, currently IEEE Standard 754-2008. These sections cover binary floating-point

arithmetic, as the EU provides no support for decimal floating-point arithmetic.

Note: Hardware alone is usually not fully conformant to the IEEE standard. It requires software functions

to supplement the hardware.

Compared to previous generations, CHV, BSW does the following:

 Adds the HF (Half Float) type and a corresponding HF execution data type and execution path.

 Adds flags to indicate IEEE floating-point exceptions and to enable or disable exception reporting

to those flags.

 Adds the Single Precision Denorm Mode bit in Control Register 0. It can be enabled to allow

calculations using the F (Float) type in IEEE floating-point mode to support denormals and

gradual underflow.

Floating-Point Types and Values

The EU supports 16-bit (HF, Half Float), 32-bit (F, Float), and 64-bit (DF, Double Float) types in the IEEE

Standard formats (respectively binary16, binary32, and binary64 in IEEE 754-2008). See Floating-Point

Numeric Data Types for the layout of the supported floating-point types.

Any bit pattern for a floating-point value corresponds to a value defined by the standard: ± finite

(normalized nonzero finite number), ± 0 (signed zero), ± inf (signed infinity), ± denorm (denormalized,

very small but nonzero number), or NaN (Not a Number). A NaN can be a signaling NaN (sNaN) or

quiet NaN (qNaN).

These operating modes are available for the different floating-point types:

 Half Float uses the IEEE floating-point mode.

Project Description

CHV,

BSW

Half Float does not support denormals. Flush denorms to zero when reading source operands

and flush denorm calculation results to zero. Denorm flushing preserves sign.

 Float can use the ALT (Alternative Floating-Point Mode) or the IEEE floating-point mode. In IEEE

mode, support for denormals and gradual underflow is controlled by the Single Precision Denorm

Mode bit in the Control Register.

 Double Float uses the IEEE floating-point mode. Support for denormals and gradual underflow is

controlled by the Double Precision Denorm Mode bit in the Control Register.

Flush to zero is not defined by IEEE Standard 754, but is implementation-specific and required by some

APIs (including DirectX), thus the EU ISA supports either using or flushing Float or Double Float

denorms based on the respective Denorm Mode bits.

Specifications in this volume sometimes reference ±fmax, the largest finite magnitude representable in

a format, and ±fmin, the smallest normalized nonzero magnitude representable in a format. Calculating

3D Media GPGPU

892 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

those values uses the extreme exponent values for finite nonzero floating-point values, Emax and Emin

below, along with the number of explicit fraction bits (not counting the implicit bit in the significand).

The following table provides these values, with the fmax and fmin values generally approximate.

Floating-Point Type Parameters

Type

Exp.

 Bits

Exp.

 Bias Emax Emin

Explicit

 Fraction

 Bits fmax fmin

HF 5 15 15 -14 10 65504.0 about 6.1E-5

F 8 127 127 -126 23 about 3.4E38 about 1.18E-38

DF 11 1023 1023 -1022 52 about 1.79E308 about 2.23E-308

Where f is the number of explicit fraction bits, the general formula for fmax is (2.0 - 2-f) * 2Emax.

The general formula for fmin is 2Emin.

Not a Number (NaN) Formats

A NaN has a biased exponent field with all bits set (as if encoding an exponent of Emax + 1), a nonzero

fraction field (as a zero fraction field with that exponent indicates infinity), and either sign bit.

As specified in IEEE Standard 754-2008, the MSB of the fraction field, what would be the first bit

following the binary point in a numeric value, determines a NaN's type:

0 - Signaling NaN (sNaN). The remaining fraction bits cannot all be zero.

1 - Quiet NaN (qNaN). The remaining fraction bits can have any value.

When an sNaN is an input, an operation normally signals the Invalid Operation exception and quietizes

the NaN, producing the equivalent qNaN value, with MSB set to 1, at the output. Raw moves do not

check for NaNs and do not signal exceptions or quietize NaN values.

When QNAN as one of the input to an operation this results in QNAN without raising the exception

flag. This silently propagates and the output is the same QNAN as in the input.

Intel specifies the value qNaN Indefinite as a quiet NaN with all zeros in the remaining fraction bits,

those other than the MSB. This value is useful because it is never produced by quietizing an sNaN, thus

qNaN Indefinite may be used to initialize floating-point values that are not otherwise initialized by

software, allowing the uninitialized case to be distinguished.

The EU applies numeric source modifiers (-, (abs), or -(abs)) to NaN source values as well as to other

values, possibly changing the sign bit of a NaN value when it is propagated. NaN sign bits are normally

don't care values.

Per IEEE Standard 754-2008, a NaN's payload is contained in all fraction field bits other than the fraction

MSB. Thus in the overall floating-point format, the sign bit, biased exponent, and fraction MSB are not

part of the payload. NaN payload values are not affected by quietizing or by source modifiers. As noted

above, an sNaN must have a nonzero payload and a qNaN can have any payload.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 893

Floating-Point Rounding Modes

The EU supports the four rounding modes required in IEEE Standard 754 for binary floating-point

arithmetic. If the unrounded result of infinite precision and range is exactly representable in the

destination format, then that exact result is produced and no exception is signaled. For an unrounded

result of infinite precision and range that is not exactly representable in the destination format (an

inexact result), rounding chooses a numerically adjacent value in the destination format, while signaling

the Inexact, Overflow, or Underflow exceptions when appropriate. The four rounding modes are:

RNE - Round to nearest or even. Choose the value in the destination precision nearest to the

unrounded result. If the unrounded result is midway between two such values, choose the value

with its least significant fraction bit as 0 (even).

RD - Round down, toward minus infinity.

RU - Round up, toward plus infinity.

RZ - Round toward zero.

The rounding mode is specified by the Rounding Mode field in the Control Register. It is initialized by

Thread Dispatch. The normal default value is round to nearest or even. The Rounding Mode can be read

to check the mode and written to change it. The Control Register and the Rounding Mode value are

thread-specific; the Rounding Mode applies to all floating-point types, all execution channels, and all

floating-point instructions executed by the thread after it is assigned.

Rounding an inexact result signals the Inexact Exception.

Rounding an inexact result preserves the sign of the result.

Infinities and NaNs are exact results and are not affected by the rounding mode.

Zeros are exact results, but the signs of zero results are affected by the rounding mode in certain cases:

X - X = +0 for RNE, RU, RZ

X - X = -0 for RD

(+0) + (-0) = (-0) + (+0) = +0 for RNE, RU, RZ

(+0) + (-0) = (-0) + (+0) = -0 for RD

Regardless of the rounding mode, (+0) + (+0) = +0 and (-0) + (-0) = -0.

The directed rounding modes are round down, round up, and round toward zero.

In IEEE mode, when a floating-point overflow occurs the result is determined by the sign of the result

and the rounding mode:

+ and (RNE or RU): + inf

+ and (RD or RZ): + fmax

- and (RU or RZ): - fmax

- and (RNE or RD): - inf

3D Media GPGPU

894 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Note that for floating-point overflow in IEEE mode, RNE always produces ± inf and RZ always produces

± fmax.

Floating-Point Operations and Precision

IEEE Standard 754-2008 requires the following floating-point operations to be precise within <= 0.5 ulp

(unit in the last place) when using the round to nearest or even rounding mode:

ADD (add instruction)

DIV (math instruction with FDIV function code)

FMA (fused multiply add, mad instruction)

MUL (mul instruction)

SQRT (math instruction with SQRT function code)

SUB (add instruction using one - source modifier)

Conversions (float to float, float to int, and int to float)

Min/Max

Compare

Single Precision Floating-Point Rounding to Integral Values

The rndd (Round Down), rnde (Round to Nearest or Even), rndu (Round Up), and the rndz (Round to

Zero) instructions round arbitary Float values to integral Float values. Each instruction specifies its

rounding mode so these instructions are not affected by the Rounding Mode in the Control Register.

An integral source value produces the same value for the destination (ignoring any saturation). For

magnitudes >= 8,388,608 (223) all Float values are integral.

The rounding instructions are sign preserving.

Signed zeros are propagated. In IEEE mode, signed infinities are propagated. In IEEE mode, sNaN inputs

are quietized, the equivalent qNaN is produced, and the Invalid Operation exception is indicated. In IEEE

mode, qNaN inputs are propagated.

No other exceptions are signaled for these instructions. For example if the source and result values

differ, the Inexact exception is not signaled.

The Single Precision Denorm Mode in the Control Register affects the results of the rndd and rndu

instructions for denorm source values.

Floating-Point to Integer Conversion

The mov and sel instructions can be used to convert floating-point values to integers. In the tables

below, Imin is the smallest representable value in a signed integer type, Imax is the largest

representable value in an integer type, and f is a finite floating-point value after rounding to an integral

value using the current rounding mode.

../../../../Content/3D_Media_GPGPU/Execution_Units/rndd%20Round%20Down.htm
../../../../Content/3D_Media_GPGPU/Execution_Units/rnde%20Round%20to%20Even.htm
../../../../Content/3D_Media_GPGPU/Execution_Units/rndu%20Round%20Up.htm
../../../../Content/3D_Media_GPGPU/Execution_Units/rndz%20Round%20to%20Zero.htm
../../../../Content/3D_Media_GPGPU/Execution_Units/rndd%20Round%20Down.htm
../../../../Content/3D_Media_GPGPU/Execution_Units/rndu%20Round%20Up.htm

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 895

Converting unrepresentable floating-point values, including infinities, NaNs, and values that convert to

integers outside of the destination type's range, signal Invalid Operation exceptions. When the

destination integer type is unsigned, normalized nonzero negative inputs signal Invalid Operation

exceptions and negative denorm inputs signal Inexact exceptions.

Data written in accumulator using implicit or explicit destination will not be IEEE compliant.

Floating-Point to Integer Conversion Results and Exceptions for Signed Integer Types

FP Value Integer Result FP Exception

qNaN 0 Invalid Operation

sNaN 0 Invalid Operation

+inf Imax Invalid Operation

f > Imax Imax Invalid Operation

Imin <= f <= Imax f Inexact if rounding changed f

f < Imin Imin Invalid Operation

-inf Imin Invalid Operation

Floating-Point to Integer Conversion Results and Exceptions for Unsigned Integer Types

FP Value Integer Result FP Exception

qNaN 0 Invalid Operation

sNaN 0 Invalid Operation

+inf Imax Invalid Operation

f > Imax Imax Invalid Operation

0 <= f <= Imax f Inexact if rounding changed f

f = -0 0 Inexact

-1 < f < -0 0 Inexact

-1 < f < -0 Real Indefinite Invalid Operation

-fmax <= f <= -1 Real Indefinite Invalid Operation

-inf Real Indefinite Invalid Operation

Note: Real Indefinite is encoded as Integer value 0.

3D Media GPGPU

896 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Integer to Floating-Point Conversion

Integer to floating-point conversion follows these rules in IEEE mode:

 The result is never ± inf, never NaN, and never -0.

 If the integer source value is not exactly representable in the destination floating-point format,

use the current rounding mode to choose an adjacent floating-point value and signal the Inexact

Exception.

 If the integer source value is too large to represent in the destination floating-point format (only

possible when converting to Half Float from D, UD, or UW) then signal the Overflow Exception.

Based on the sign and the current rounding mode, the result is ± fmax or ± inf, as described in

the Overflow Exception section.

Floating-Point Min/Max Operations

In the following Min/Max operations, sNaN inputs are preferred to non-NaN inputs and non-NaN

inputs are preferred to qNaN inputs.

Min(x, qNaN) = Min(qNaN, x) = x with no exceptions signaled.

Min(x, sNaN) = Min(sNaN, x) = qNaN (quietized value corresponding to the input sNaN) and signal the

Invalid Operation exception.

Note: DX deviates from this rule:

The DX behavior is inferred from the denorm bit.

Min(x, sNaN) = Min(sNaN, x) = x

Max(x, qNaN) = Max(qNaN, x) = x with no exceptions signaled.

Max(x, sNaN) = Max(sNaN, x) = qNaN (quietized value corresponding to the input sNaN) and signal the

Invalid Operation exception.

Note: DX deviates from this rule:

The DX behavior is inferred from the denorm bit.

Max(x, sNaN) = Max(sNaN, x) = x

Special cases(when both sources are NaN inputs)

Min(qNaN, qNan) = qNaN (of the first source) and no exception raised

Min(qNaN, sNaN) = Min(sNaN, qNaN) = qNaN (quiet-ized sNaN and signal the Invalid Operation

exception)

Min(sNaN, sNaN) = qNaN(of the first source and signal Invalid Operation Exception)

Max(qNaN, qNan) = qNaN (of the first source) and no exception raised

Max(qNaN, sNaN) = Max(sNaN, qNaN) = qNaN (quiet-ized sNaN and signal the Invalid Operation

exception)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 897

Max(sNaN, sNaN) = qNaN(of the first source and signal Invalid Operation Exception)

IEEE Floating-Point Exceptions

The EU detects the five floating-point exceptions defined by IEEE Standard 754:

Invalid Operation

Division by Zero

Overflow

Underflow

Inexact

Description

When converting from float to int, IEEE exception flags are not updated correctly.

Non IEEE compliant instructions updating exception flags

float_to_int conversion is supported in HW only for RTZ mode

Signaling Floating-Point Exceptions

When enabled in the Control Register, floating-point exceptions are detected and set sticky flag bits in

the State Register. There is no mechanism for automatic transfer to a handler, so floating-point

exceptions are not handled like other exceptions described in the Exceptions chapter.

Setting flags to indicating Floating-Point exceptions is the default exception handling approach

specified by IEEE Standard 754. The flag bits are sticky because in normal operation the EU only sets

these bits as exceptions occur, and does not clear these bits, so a set value sticks until cleared by

software. The Control Register and State Register are cleared at reset and initialized at thread load. Both

are read/write registers. These fields are used:

 IEEE Exception Trap Enable (Control Register cr0.0:ud bit 9). This bit enables trapping IEEE

exception flags. This control bit may be updated by software. It is initially zero on thread load. If

enabled, IEEE floating-point exceptions set sticky bits in the IEEE Exception field of sr0.1, in the

State Register. Note: Software must set this flag at thread start to use the IEEE Exception flags.

 IEEE Exception. (State Register sr0.1:ud bits 7:0). The IEEE exception bits are sticky bits set by the

opcodes when floating-point exceptions are triggered. These bits are defined per thread and all

channels update one set of sticky bits. These bits are cleared on thread load and may be cleared

by software. Exception updates to these bits may be disabled by clearing the IEEE Exception Trap

Enable bit in the Control Register. The following table specifies the IEEE exception bits:

Bits Definition

7:5 Reserved

4 Inexact Exception

3 Overflow Exception

2 Underflow Exception

3D Media GPGPU

898 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Bits Definition

1 Division by Zero Exception

0 Invalid Operation Exception

The IEEE exception flags are per thread, shared by all channels. (Maintaining separate per channel

exception flags for 32 channels would require 160 bits per thread.)

Invalid Operation Exception

An Invalid Operation exception is signaled by any operation on a signaling NaN (sNaN) or by certain

combinations of operations and operands with undefined results, always producing a quiet NaN (qNaN)

result.

The following specific operations signal Invalid Operation, where x is a positive, finite, nonzero, and

normalized number:

+inf - (+inf) or (-inf) - (-inf)

± 0 / ± 0

± inf / ± inf

± 0 × ± inf or ± inf × ± 0

Remainder(± x, ± 0)

Remainder(± inf, ± x)

Sqrt(-x)

Note that Sqrt(-0) is -0 per IEEE Standard 754 and does not cause any exception.

These instructions can signal specific Invalid Operation exceptions (and also on sNaN inputs except for

Float inputs in ALT mode), producing a qNaN result:

add

dp2, dp3, dp4, and dph (the Dot Product instructions)

line

lrp

mac

mad

madm

math with the FDIV, SQRT, or RSQRTM function codes

mul

pln

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 899

These other instructions signal Invalid Operation exceptions on sNaN inputs (except for Float inputs in

ALT mode), producing a qNaN result:

cmp, cmpn

frc

math with all other function codes for floating-point operations

mov except for raw moves

rndd, rnde, rndu, and rndz (the Round instructions)

sel

smov except for raw moves

Division by Zero Exception

The operation ± x / ± 0, where x is a positive, finite, nonzero, and normalized number, signals the

Division by Zero Exception and produces a correctly signed ± inf result. Note that in accordance with

the standard, ± 0 / ± 0 signals Invalid Operation, does not signal Division by Zero, and produces a

qNaN result. This behavior can occur for the math instruction with the FDIV function code.

The operation LOG2(± 0) signals the Division by Zero Exception and produces -inf as the result. This

behavior can occur for the math instruction with the LOG function code.

Overflow Exception

A floating-point overflow occurs when an operation with a finite result produces an internal result with

magnitude > fmax, the maximum representable finite value in the destination format. The internal result

is rounded to the destination precision with the current rounding mode but has an unbounded

exponent. An overflow produces ± inf or ± fmax as the result, depending on the sign and the rounding

mode.

The following algorithm describes floating-point overflow processing:

1. Compute the result with infinite precision and unbounded range.

2. Normalize the result using an unbounded exponent.

3. Round the result to the destination precision using an unbounded exponent and the current

rounding mode.

4. If (abs(rounded unbounded result) > fmax(destination format)) {

Set the Overflow Exception flag to 1.

Output = ± inf or ± fmax depending on the sign and the rounding mode:

+ and (RNE or RU): + inf

+ and (RD or RZ): + fmax

- and (RU or RZ): - fmax

3D Media GPGPU

900 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

- and (RNE or RD): - inf

}

}

Note: The first three steps of the overflow and underflow algorithms are identical.

Underflow Exception

An underflow occurs when an operation produces a tiny but nonzero inexact result x, with abs(x) < fmin,

where fmin = 2Emin. See the Floating-Point Type Parameters table for the fmin and Emin values for

different floating-point types.

IEEE Standard 754 allows underflow to be determined before or after rounding. The Execution Unit

determines underflow after rounding, which is consistent with the behavior of the x87 and SSE

instructions in the CPU.

When denorms are flushed to zero, no underflow exceptions are signaled. Flush to zero is not defined

by IEEE Standard 754, but is implementation specific and required by some APIs (including DirectX),

thus the EU ISA supports either using or flushing Float or Double Float denorms based on the

respective Denorm Mode bits.

When denorms are enabled, if an operation's internal result rounded to the destination precision, but

using an unbounded exponent range, has a magnitude that is less than fmin but nonzero AND the

denorm result in the destination format is inexact, then signal the Underflow Exception.

The rounded result can be ± 0, ± fmin, or (when denorms are enabled) ± denorm.

IEEE Standard 754 requires the non-intuitive behavior that an exact denorm result does not set the

Underflow Exception flag.

The following algorithm describes floating-point underflow processing:

1. Compute the result with infinite precision and unbounded range.

2. Normalize the result using an unbounded exponent.

3. Round the result to the destination precision using an unbounded exponent and the current

rounding mode.

4. If (0 < abs(rounded unbounded result) < fmin(destination format) {

if (flush denorms to zero) {

Output = 0; // No underflow exception.

}

Else {

Renormalize to the bounded exponent with the original infinite precision value...

...and round that value to the destination precision using the current rounding mode.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 901

If (the just computed value differs from the value computed in step (3) in exponent or mantissa)

{

Set the Underflow Exception flag to 1.

} // Note: Underflow is not set if the tiny result is the same as when computed with an

unbounded exponent.

Output = rounded result using the destination precision and destination exponent range;

}

}

Else { // Not a tiny number.

Output = rounded number;

}

Inexact Exception

An Inexact Exception occurs when the internal unrounded result, with infinite precision and unbounded

exponent range, differs from the generated result after format conversion, normalizing or

denormalizing, and rounding. An Inexact Exception occurs irrespective of any saturation to exact zero or

exact +1.0. The Inexact Exception is normal and may occur more often than not. For example, the

calculation 1.0 / 3.0 is inexact in any binary floating-point format. These rules determine whether a

result is inexact:

 Infinities and NaNs are never inexact.

 Flushing a denorm internal result to zero (always for Half Float and if the appropriate Denorm

Mode is 0 for Float and Double Float) is always inexact.

 If any rounding occurs using the current Rounding Mode, so the rounded result differs from the

internal unrounded result, the result is inexact. However explicit round to integral using any of the

rounding instructions (rndd, rnde, rndu, and rndz) is never inexact.

Floating-Point Compare Operations

Four mutually exclusive relations are possible between two floating-point values, src0 and src1:

Less than. src0 < src1 and neither source is NaN.

Equal. src0 = src1 and neither source is NaN.

Greater than. src0 > src1 and neither source is NaN.

Unordered. Any source is NaN.

Any NaN compares unordered to any value, including itself.

Infinities of the same sign compare as equal.

Zeros compare as equal regardless of sign: -0 = +0.

3D Media GPGPU

902 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Floating-Point Compare Relations

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf E L L L L L L L U

-fin G * L L L L L L U

-

denorm

G G *^ L^ L^ L^ L L U

-0 G G G^ E E L^ L L U

+0 G G G^ E E L^ L L U

+denor

m

G G G^ G^ G^ *^ L L U

+fin G G G G G G * L U

+inf G G G G G G G E U

NaN U U U U U U U U U

Notes

* Relation can be L, E, or G.

^ When denorms are flushed to zero then all denorms and zeros compare as E.

The next six tables show the results of six specific comparisons, corresponding to the .g, .l, .e, .ne, .ge,

and .le conditional modifiers used with the cmp instruction and a floating-point source type. Any NaN

source produces a false comparison result for these modifiers other than .ne and produces a true

comparison result for the .ne modifier.

Results of Greater Than Comparison — cmp.g

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F F F F F F F F F

-fin T * F F F F F F F

-

denorm

T T *^ F^ F^ F^ F F F

-0 T T T^ F F F^ F F F

+0 T T T^ F F F^ F F F

+denor

m

T T T^ T^ T^ *^ F F F

+fin T T T T T T * F F

+inf T T T T T T T F F

NaN F F F F F F F F F

Notes

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 903

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F F F F F F F F F

-fin T * F F F F F F F

-

denorm

T T *^ F^ F^ F^ F F F

-0 T T T^ F F F^ F F F

+0 T T T^ F F F^ F F F

+denor

m

T T T^ T^ T^ *^ F F F

+fin T T T T T T * F F

+inf T T T T T T T F F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .g comparison result F.

Results of Less Than Comparison — cmp.l

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F T T T T T T T F

-fin F * T T T T T T F

-

denorm

F F *^ T^ T^ T^ T T F

-0 F F F^ F F T^ T T F

+0 F F F^ F F T^ T T F

+denor

m

F F F^ F^ F^ *^ T T F

+fin F F F F F F * T F

+inf F F F F F F F F F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .l comparison result F.

3D Media GPGPU

904 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Results of Equal Comparison — cmp.e

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf T F F F F F F F F

-fin F * F F F F F F F

-

denorm

F F *^ F^ F^ F^ F F F

-0 F F F^ T T F^ F F F

+0 F F F^ T T F^ F F F

+denor

m

F F F^ F^ F^ *^ F F F

+fin F F F F F F * F F

+inf F F F F F F F T F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .e comparison result T.

Results of Not Equal Comparison — cmp.ne

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F T T T T T T T T

-fin T * T T T T T T T

-

denorm

T T *^ T^ T^ T^ T T T

-0 T T T^ F F T^ T T T

+0 T T T^ F F T^ T T T

+denor

m

T T T^ T^ T^ *^ T T T

+fin T T T T T T * T T

+inf T T T T T T T F T

NaN T T T T T T T T T

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .ne comparison result F.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 905

Results of Greater Than or Equal Comparison — cmp.ge

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf T F F F F F F F F

-fin T * F F F F F F F

-

denorm

T T *^ F^ F^ F^ F F F

-0 T T T^ T T F^ F F F

+0 T T T^ T T F^ F F F

+denor

m

T T T^ T^ T^ *^ F F F

+fin T T T T T T * F F

+inf T T T T T T T T F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .ge comparison result T.

Results of Less Than or Equal Comparison — cmp.le

src1

src0
-inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf T T T T T T T T F

-fin F * T T T T T T F

-

denorm

F F *^ T^ T^ T^ T T F

-0 F F F^ T T T^ T T F

+0 F F F^ T T T^ T T F

+denor

m

F F F^ F^ F^ *^ T T F

+fin F F F F F F * T F

+inf F F F F F F F T F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .le comparison result T.

3D Media GPGPU

906 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Type Conversion

This topic is currently under development.

Float to Integer

Converting from float to integer is based on rounding toward zero(RTZ is for DX, IEEE expects all four

rounding modes). If the floating point value is +0, -0, +Denorm, -Denorm, +NaN –r -NaN, the resulting

integer value is always 0. If the floating point value is positive infinity (or negative infinity), the

conversion result takes the largest (or the smallest) represent-able integer value. If the floating point

value is larger (or smaller) than the largest (or the smallest) represent-able integer value, the conversion

result takes the largest (or the smallest) represent-able integer value. The following table shows these

special cases. The last two rows are just examples. They can be any number outside the represent-able

range of the output integer type (UD, D, UW, W, UB and B).

Input Format Output Format

F UD D UW W UB B

+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000

+/- Denorm 00000000 00000000 00000000 00000000 00000000 00000000

NAN 00000000 00000000 00000000 00000000 00000000 00000000

-NAN 00000000 00000000 00000000 00000000 00000000 00000000

INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-INF 00000000 80000000 00000000 00008000 00000000 00000080

+232 (*)
FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-232-1 (*)
00000000 80000000 00000000 00008000 00000000 00000080

Integer to Integer with Same or Higher Precision

Converting an unsigned integer to a signed or an unsigned integer with higher precision is based on

zero extension.

Converting an unsigned integer to a signed integer with the same precision is based on modular wrap-

around. Without saturation, a larger than represent-able number becomes a negative number. With

saturation, a larger than represent-able number is saturated to the largest positive represent-able

number.

Converting a signed integer to a signed integer with higher precision is based on sign extension.

Converting a signed integer to an unsigned integer with higher precision is based on sign extension.

Without saturation, a negative number becomes a large positive number with the sign bit wrapped-up.

With saturation, a negative number is saturated to zero.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 907

Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with lower precision is

based on bit truncation. Without saturation, only the lower bits are kept in the output regardless of the

sign-ness of input and output. With saturation, a number that is outside the represent-able range is

saturated to the closest represent-able value.

Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to round to the closest

representable float number. For any integer number with magnitude less than or equal to 24 bits,

resulting float number is a precise representation of the input. However, if it is more than 24 bits, by

default a “round to nearest even” is performed.

3D Media GPGPU

908 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Double Precision Float to Single Precision Float [CHV, BSW]

.

Double Precision Float Single Precision Float

-inf -inf

-finite -finite/-denorm/-0

-denorm -0

-0 -0

+0 +0

+denorm +0

+finite +finite/+denorm/+0

+inf +inf

NaN NaN

The upper Dword of every Qword will be written with undefined value when converting DF to F.

Single Precision Float to Double Precision Float [CHV, BSW]

Converting a single precision floating-point number to a double precision floating-point number will produce a

precise representation of the input.

Single Precision Float Double Precision Float

-inf -inf

-finite -finite

-denorm -finite

-0 -0

+0 +0

+denorm +finite

+finite +finite

+inf +inf

NaN NaN

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 909

Exceptions

The GEN Architecture defines a basic exception handling mechanism for several exception cases. This

mechanism supports both normal operations such as extensions of the mask-stack depth, as well as

detecting some illegal conditions.

Exception Types

Type Trigger / Source Sync/Async Recognition

Software Exception Thread code Synchronous

Breakpoint  A bit in the instruction word

 Breakpoint IP match

 Breakpoint Opcode match

Synchronous

Illegal Opcode
Hardware Synchronous

Halt MMIO register write Asynchronous

Context Save/Restore Preemption Interrupt Asynchronous

Threads may choose which exceptions to recognize and which to ignore. This mask information is

specified on a per-kernel basis in fixed function state generated by the driver, and delivered to the EU

as part of a new thread dispatch. Upon arrival at the EU, the exception-mask information is used to

initialize the exception enable fields of that thread's cr0.1 register, which controls exception recognition.

This register is instantiated on a per-thread basis, allowing independent control of exception type

recognition across hardware threads. The exception enable bits in the cr0.1 register are read/write, and

thus can be enabled/disabled via software at any time during thread execution.

The exception handling mechanism relies on the System Routine, a single subroutine that provides

common exception handling for all threads on all EUs in the system. This System Routine is defined per-

context and is identified via a System IP (SIP) register in context state. At the time of each context

switch, the appropriate SIP for that context is loaded into each EU, allowing each context to have

custom implementation of exception handling routines if so desired.

The mechanism does not support handling recursive system routine access. This means when a thread

cannot be asynchronously interrupted to an exception when executing a SIP.

Example:

 An Exception is not supported when hardware is executing a SIP for context save and restore

operations.

3D Media GPGPU

910 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Exception-Related Architecture Registers

Exception-related registers are architecture registers cr0.0 through cr0.2. These registers are instantiated

on a per-thread basis providing each hardware thread with unique control over exception recognition

and handling. The registers provide the capability to mask exception types, determine the type of raised

exception, store the return address, and control exiting from the System Routine back to the application

thread.

Many of the bits in these registers are manipulated by both hardware and software. In all cases, the

read/write operations by hardware and software occur at exclusive times in a thread's lifetime, thus

there is no need for atomic read-modify-write operations when accessing these registers.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 911

System Routine

The following diagram illustrates the basic flow of exception handling and the structure of the System

Routine.

Invoking the System Routine

The System Routine is invoked in response to a raised exception. Once an exception is raised, no further

instructions from the application thread are issued until the System Routine has executed and returned

control back to the application thread.

After an exception is recognized by hardware, the EU saves the thread's IP into its AIP register (cr0.2),

and then moves the System Routine offset, SIP, into the thread's IP register. At this point the next

instruction issued for that thread is the first instruction of the System Routine.

The System Routine maintains the same execution priority, GRF register space, and thread state as the

application thread from which it is invoked.

3D Media GPGPU

912 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Due to assuming the same priority, there may be significant absolute time between an exception being

raised and invoking the System Routine, as other higher priority threads within the EU continue to

execute. From a thread's perspective, once an exception is recognized, the next instruction issued is

from the System Routine.

At the time of System Routine invocation, there may still be outstanding registers in-flight from the

application thread. Depending on the instruction sequence in the System Routine, an in-flight register

may be referenced by the System Routine and cause a register-in-flight dependency. These

dependencies are honored by the System Routine and may cause the System Routine to be suspended

until the register retires.

Exception processing is not nested within the System Routine. If a future exception is detected while

executing the System Routine, the exception is latched into cr0.1, but does not cause a nested re-

invocation of the System Routine. The exception recognition hardware recognizes only one outstanding

exception of each type; i.e., once a specific exception type is detected and latched in cr0.1, and until the

exception is cleared, any further exception of that type is lost.

Accumulators are not natively preserved across the System Routine. To make sure the accumulators are

in the identical state once control is returned to the application thread, the System Routine must either

set the Accumulator Disable bit of cr0.0 before using any instruction that modifies an accumulator, or

save and restore the accumulators (using GRF registers or system thread scratch memory) around the

System Routine. Saving and restoring accumulators, including their extended precision bits, can be

accomplished by a short series of moves and shifts of the accumulator register. Also note that the state

of the Accumulator Disable bit itself must be preserved unless, by convention, the driver software limits

its manipulation to only the System Routine.

Further, upon System Routine entry, the execution-related masks (Continue, Loop, If, and Active masks,

contained in the Mask Register) will remain set as they were in the application thread. Thus only a

subset of channels may be active for execution. To enable execution on all channels, the System Routine

may choose to use the instruction option ‘NoMask’, or may choose to set the mask registers to the

desired value so long as it saves/restores the original masks upon System Routine entry/exit.

Similarly there is no hardware mechanism to preserve flags, mask-stacks, or other architecture registers

across the System Routine. The System Routine must ensure that these values are preserved (see the

Conditional Instructions Within the System Routinesection for related information).

Returning to the Application Thread

Prior to returning control to the application thread, the System Routine should clear the proper

Exception Status and Control bit in cr0.1. Failure to do so forces the thread's execution to reenter the

System Routine before any further instructions are executed from the application thread. (Note that

single-stepping functionality is the one exception where the exception's Status and Control bit is not

reset before exit.)

The System Routine may choose to loop within a single invocation of the System Routine until all

pending exceptions are serviced, or may choose to service exceptions one at a time (a simpler solution,

but less efficient).

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 913

The System Routine is exited, and control returned to the application thread, via a write to the Master

Exception State and Control bit in cr0.0. Upon clearing this bit, the value of AIP (cr0.2) is restored to the

thread’s IP register and, with no further exceptions pending, execution resumes at that address. The

System Routine must follow any write to the Master Exception State and Control bit with at least one

SIMD-16 nop instruction to allow control to transition. Throughout the System Routine, the AIP register

maintains its value at the time the exception was raised unless directly modified by the System Routine.

(See the AIP register definition for specifics on the IP value saved to AIP).

System IP (SIP)

The System IP (SIP) is the 16 byte-aligned offset of the first instruction of the System Routine, relative to

the General State Base Address. SIP is assigned by the STATE_SIP command to the command streamer

which updates SIP in the EU.

The SIP is widened to 48 bits. However the EU still only uses the low 32 bits (bits 31:4 with bits 3:0 as zero).

When the System Routine is invoked, the application thread's current IP is first saved into the AIP field

of cr0.2. The SIP address is then loaded into the thread's IP register and execution continues within the

System Routine. Thus each invocation of the System Routine has a common entry point. Returning from

the System Routine loads IP from AIP, continuing thread execution.

The SIP used for GPGPU Context Save routine must follow these rules:

a. All FC and MSG registers must write to odd GRF register and all other registers must write to even GRF register.

This may change the context image and affects the context restore sequence accordingly.

b. IEEE macro operations must never be used if preemption is desired.

System Routine Register Space

The System Routine uses the same GRF space as the thread that invokes it.

As such all of the calling thread's registers and their contents are visible to the System Routine. Further,

the System Routine must only use r0..r15 of the GRF, as a minimal thread may have requested and been

allocated this few. If the System Routine requires more registers than this, the driver should establish a

higher minimum allocation for all threads.

The System Routine may encounter any residual register dependencies of the calling thread until such

time that they clear by the return of in-flight writebacks.

Only one 32-bit GRF location, r0.4, is reserved for System Routine use. This location is sufficient to allow

the System Routine to calculate the appropriate offset of its private scratch memory in the larger system

scratch memory space (as dictated by binding table entry 254). The offset is left as a driver convention,

but is likely based on a combination of Thread and EU IDs (see the example system handler in the)

section. Other than the reserved r0.4 register field, there is no explicit GRF register space dedicated to

the System Routine, and any GRF needs must be accomplished via (a) convention between the System

3D Media GPGPU

914 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Routine and application code, or (b) the System Routine temporarily spilling the thread's GRF register

contents to scratch memory and restoring those contents before System Routine exit.

No persistent storage is automatically allocated to the System Routine, although a driver

implementation may set aside part of system scratch memory for the System Routine.

Any parameter passing to the System Routine (for use by software exceptions) is done via the GRF

based on system thread/application thread convention.

System Scratch Memory Space

There is a single unified system scratch memory space per context shared by all EUs. It is anticipated

that block is further partitioned into a unique scratch sub-space per thread via conventions

implemented in the System Routine, with each hardware thread having a uniform block size at a

calculated offset from the base address. The block address for a thread can be based on an offset

derived from the thread's execution unit ID and thread ID made available through the TID and EUID

field of architecture register sr0.0.

Per_Thread_Block_Size = System_Scratch_Block_Size / (EU_Count * Thread_Per_EU);

Offset = (sr0.0.EID * Threads_Per_EU + sr0.0.TID) * Per_Thread_Block_Size;

where in GEN:

Threads_Per_EU = 4

EU_Count = 8

System_Scratch_Block_Size is a driver choice.

Access to system scratch memory is performed through the Data Port via linear single register or block-

based read/write messages. The driver may choose to use any binding table index for system scratch

surface description. As a practical matter, the same index is expected to be used across all binding

tables, as the index is typically hard coded in Data Port messages used within the System Routine

coupled with the fact that a single System Routine is used for all threads. Read/write messages to the

Data Port contain the address of the binding table (provided in r0 of all threads) and an offset, from

which the Data Port calculates the final target address.

It is expected that the system scratch memory space is allocated by the driver at context-create time

and remains persistent at a constant memory address throughout a context's lifetime.

Conditional Instructions Within the System Routine

It is expected that most, if not all, control flow within the System Routine is scalar in nature. If so, the

System Routine should set SPF (Single Program Flow, cr0.0) to enable scalar branching. In this mode,

conditional/loop instructions do not update the mask stacks and therefore do not have restrictions on

their use nor require the save/restore of hardware mask stack registers.

If SIMD branching is desired within the System Routine, special considerations must be taken. Upon

entry to the System Routine, the depth of the mask stacks is unknown at that point, and may be near

full. If so, a subsequent conditional instruction and its associated mask ‘push’ may cause a stack

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 915

overflow. This would generate an exception within the system routine, an unsupported occurrence. To

prevent this, if the System Routine uses SIMD conditional instructions, it must save the mask stacks

prior to the first SIMD conditional instruction, and restore them after the last SIMD conditional

instruction. As a general solution, it may be easiest to simply implement the save/restore as part of the

entry/exit code sequence, using an available GRF register pair as a storage location. Once saved, the

stacks should be reset to their empty condition, namely depth = 0 and top of stack = 0xFFFFFFFF.

Use of NoDDClr

The GEN instruction word defines an instruction option NoDDClr that overrides the native register

dependency clearing mechanism of the typical instruction. When specified, NoDDClr does not clear, at

register writeback time, the dependency placed on the destination register of the instruction. Use of this

mechanism may provided increased performance when a kernel can guarantee no dependency issues

between instructions, but may cause issues with exception handling in some circumstances as discussed

here.

Typically NoDDClr is used in an instruction series to enable a sequence of writes to sub-fields of a GRF

register without paying a dependency penalty on each instruction. In this case, NoDDClr is used across

an instruction sequence to allow the first instruction to set the destination dependency, interior

instructions to write to the GRF register without dependency checks, and the last instruction to clear the

dependency. (This sequence is referred to as a NoDDClr code block going forward). By only allowing

the last instruction to clear the dependency, program execution is prevented from going beyond a

certain point until all writes of that sequence are known to retire.

The problem arises if an exception is raised within a NoDDClr code block. In this case, there exists the

potential for the System Routine to hang while attempting to save/restore a register used as a

destination register by the NoDDCLr code block, as the outstanding dependency on that register will

not clear until the final instruction of the NoDDCLr block is executed, sometime after the System

Routine returns. Should the System Routine attempt to use that register, it hangs waiting on a

dependency to be cleared by an instruction not yet issued.

Note: This is a known condition and will in some cases not allow the full GRF contents to be externally

visible in System Routine scratch space during a break or halt exception.

To avoid this condition, guidelines are provided below for consideration. (Note that these are general

guidelines, some of which can be alleviated through careful coding and register usage conventions and

restrictions.)

Guideline

NoDDClr code blocks should only be used where absolutely necessary.

Instructions that may generate exceptions should not be placed within NoDDClr blocks. This includes most

conditional branch instructions (if, do, while, ...).

If possible, use NoDDClr on registers high in the thread's register allocation (e.g. r120), thus even if a System

Routine hang occurs, as much of the GRF is visible as possible. (Note that this would also require the System

Routine to update the progress of the GRF dump, perhaps with each GRF block written, or to initialize the System

Routine's scratch space to a known value, to be able to distinguish valid/locations from unwritten locations).

3D Media GPGPU

916 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Also a driver implementation may consider a disable-NoDDclr option in which jitted code does not use

the NoDDClr capability. In this case, there is no change to the code that is jitted other than removal of

the NoDDClr instruction option. The code executes as normal, but with a higher number of thread

switches in what would have been a NoDDClr code block.

Exception Descriptions

This section describes conditions that can cause exceptions and transfer control to the System Routine.

Illegal Opcode

The GEN ISA defines a single illegal opcode. The byte value of the illegal opcode is 0x00 due to it being

a likely byte value encountered by a wayward instruction pointer value. The illegal instruction signals an

exception if exception handling is enabled and invokes the system interrupt routine. If exception

handling is NOT enabled, the illegal opcode is executed resulting in undetermined behavior including a

system hang. Hardware decodes all legal opcodes supported. Any byte value that is not in the legal

opcode list is decoded as an illegal opcode to trigger exception.

CALLA is not recognized as a legal opcode. When calla is used, illegal opcode exception must be disabled.

Undefined Opcodes

All undefined opcodes in the 8-bit opcode space (which includes instruction bit 7, reserved for future

opcode expansion) are detected by hardware. If an undefined opcode is detected, the opcode is

overridden by hardware, forcing the opcode value within the pipeline to the defined illegal opcode. The

offending instruction, should it eventually be issued down the execution unit’s pipeline, generates an

Illegal Opcode exception as described in the section . The memory location of the offending opcode

keeps its original value. That location can be queried to determine the opcode value.

Software Exception

A mechanism is provided to allow an application thread to invoke an exception and is triggered using

the Software Exception Set and Clear bit of cr0.1. Sub-function determination and parameter passing

into and out of the exception handler is left to convention between the system-thread and application-

thread. The thread's IP is incremented before saving AIP and entering the System Routine, causing

execution to resume at the next application-thread instruction after returning from the System Routine.

Context Save and Restore

The System Routine is also used to save and restore the context of the Execution Unit. This feature is

enabled in GPGPU workloads only.

When the execution engine receives a preemption or an interrupt, the application thread invokes the

System Routine. The System Routine is invoked only when all in-flight registers have retired. The system

routine is used to save all the state of the EU to memory. When the sequence is complete, the master

exception control bit is cleared. This action stops all execution for the given thread and invalidates the

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 917

thread. This means a new thread from a different context may be loaded. When the master exception

control bit is cleared, software must ensure that all outstanding messages from the EU are dispatched

out of the execution message pipeline. This is achieved by creating a dependency on the last send that

is saving EU state. A dummy instruction before clearing the master exception control bit ensures that

this is achieved.

The System Routine is also invoked on a context restore request. In this case a dummy thread is loaded

into the EU which starts with the System Routine. This routine now restores the state of the EU. The

restore sequence used in such a case should be consistent with the save sequence to ensure that state

is restored correctly. After completing the restore sequence, the System Routine must clear the master

exception control bit in the Control Register. This enables hardware to switch to the application thread

which continues execution.

Programming Note

Context: Context Save and Restore

When context save and restore is required to be supported for GPGPU work loads, Stack Overflow exception

handling will not be supported. Software will either need to ensure stack is either completely disabled OR used in

such a way, an exception will not trigger.

3D Media GPGPU

918 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Events That Do Not Generate Exceptions

The conditions described in this section are either not recognized or do not generate an exception.

Illegal Instruction Format

This condition includes malformed instructions in which the opcode is legal, but the source or

destination operands or other instruction attributes do not comply with the instruction specification.

There is no direct hardware support to detect these cases and the outcome of issuing a malformed

instruction is undefined.

Note that GEN does not support self-modifying code, therefore the driver has an opportunity to detect

such cases before the thread is placed in service.

Malformed Message

A message's contents, destination registers, lengths, and descriptors are not interpreted in any way by

the execution unit. Errors in specifying message fields do not raise exceptions in the EU but may be

detected and reported by the shared functions.

GRF Register Out of Bounds

Unique GRF storage is allocated to each thread which, at a minimum, satisfies the register requirements

specified in the thread's declaration. References to GRF register numbers beyond that called for in the

thread's declaration do not generate exceptions. Depending on the implementation, out-of-bounds

register numbers may be remapped to r0..r15, although this functionality should not be relied upon by

the thread. The hardware guarantees the isolation of each thread's register space, thus there is no

possibility of direct register manipulation via an out-of-bounds register access.

Hung Thread

There is no hardware mechanism in the EU to detect a hung thread and such a thread may remain hung

indefinitely. It is expected that one or more hung threads will eventually cause the driver to recognize a

context timeout and take appropriate recovery action.

Instruction Fetch Out of Bounds

The EU implements a full 32-bit instruction address range (with the 4 LSBs don’t care), making it

possible for a thread to attempt to jump to any 16-byte aligned offset in the 32-bit instruction address

range. (Instruction addresses are offsets from the General State Base Address.) The EU does not provide

any type of address checking on instruction fetch requests sent to the memory/cache hierarchy,

although error conditions for memory addresses are reported via the Page Table Error Register and

other memory interface registers.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 919

FPU Math Errors

The EU's floating point units (FPUs) have defined behaviors for traditional floating point errors and do

not generate exceptions. There is no support for signaling FPU math errors as exceptions.

Adds the IEEE Exception Trap Enable bit, which enables trapping IEEE exception flags. If enabled, IEEE floating-

point exceptions set sticky bits in the IEEE Exceptions field of sr0.1. Note that IEEE floating-point exceptions still do

not transfer control to any handler.

Computational Overflow

Depending on source operand types and values, destination type, and the operation being performed,

overflows may occur in the execution pipelines. Many instructions support the overflow (.o) conditional

modifier that assigns flag bits based on whether or not an overflow occurs.

The EU never signals exceptions for overflows. Software must provide any overflow handling.

3D Media GPGPU

920 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

System Routine Example

The following code sequence illustrates some concepts of the System Routine. It is intended to be just a

shell, without getting into the specifics of each exception handler.

The example frees enough MRF and GRF space to get the routine started, then jumps to the handler for

the specific exception. Many other implementations are also valid, including single exception servicing

(as opposed to looping) per invocation, and saving only the GRF or MRF space required by the

exception being serviced.

 #define ACC_DISABLE_MASK 0xFFFFFFFD

 #define MASTER_EXCP_MASK 0x7FFFFFFF

 #define SYSROUTINE_SCRATCH_BLKSIZE 16384 // for example

 // Shared function IDs:

 #define DPR 0x04000000

 #define DPW 0x05000000

 // Message lengths:

 #define ML5 0x00500000

 #define ML9 0x00900000

 // Response lengths:

 #define RL0 0x00000000

 #define RL4 0x00040000

 #define RL8 0x00080000

 // Data port block sizes:

 #define BS1_LOW 0x0000

 #define BS1_HIGH 0x0100

 #define BS2 0x0200

 #define BS4 0x0300

 // Scratch Layout:

 #define SCR_OFFSET_GRF 512 // + 16 MRF registers

 #define SCR_OFFSET_ARF 512 + 4096 // + 16 MRF + 128 GRF registers

 // Write data port constants:

 // target=dcache, type= oword_block_wr, binding_tbl_offset=0

 #define DPW 0x000

 // Read data port constants:

 // target=dcache, type= oword_block_rd, binding_tbl_offset=0

 #define DPR 0x000

 Sys_Entry: // Entry point to the System Routine.

 // Disable accumulator for system routine:

 and (1) cr0.0 cr0.0 ACC_DISABLE_MASK {NoMask}

 // Calc scratch offset for this thread into r0.4:

 shr (1) r0.4 sr0.0:uw 6 {NoMask}

 add (1) r0.4 r0.4 sr0.0:ub {NoMask}

 mul (1) r0.4 r0.4 SYSROUTINE_SCRATCH_BLKSIZE {NoMask}

 // Setup m0 with block offset:

 mov (8) m0 r0{NoMask}

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 921

 // Save r0..r1 to system scratch:

 // Note: done as a single register to guarantee external visibility

 // See Use of NoDDClr mov (16) m1 r0 {NoMask}

 send (8) m0 null null DPW|ML2|RL0 {NoMask}

 // Save r2..r3 to free some room:

 mov (16) m3 r2 {NoMask}

 add (1) m0.2 r0.4 SCR_OFFSET_GRF + 64 {NoMask}

 send (8) m0 null null DPW|ML4|RL0 {NoMask}

 // Save r4..r7 to free some room (optional, depending on needs):

 mov (16) m8 r4 {NoMask}

 mov (16) m10 r6 {NoMask}

 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 128) {NoMask}

 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // Save r8..r11 to free some room (optional, depending on needs):

 mov (16) m1 r8 {NoMask}

 mov (16) m3 r10 {NoMask}

 add (1) m0.2 r0.4 (SCR_OFFSET_GRF + 256) {NoMask}

 send (8) m0 null null DPW|ML5|RL0 {NoMask}

 // Save r12..r15 to free some room (optional, depending on needs):

 mov (16) m8 r12 {NoMask}

 mov (16) m10 r14 {NoMask}

 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 384) {NoMask}

 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // Save selected ARF registers (optional, depending on use):

 // flags, others ...

 // Save f0.0:

 mov (1) r1.0:uw f0.0 {NoMask}

 Next: // Exceptions pending? If not, exit.

 cmp.e (1) f0.0 cr0.4:uw 0:uw {NoMask}

 (f0.0) mov (1) IP EXIT {NoMask}

 // Find highest priority exception:

 lzd (1) r1.1:uw cr0.4:uw {NoMask}

 // Jump table to service routine:

 jmpi (1) r1.1:uw{NoMask}

 mov (1) IP CRService_0 {NoMask}

 mov (1) IP CRService_1 {NoMask}

 mov (1) IP CRService_2 {NoMask}

 ...

 mov (1) IP CRService_15{NoMask}

 mov (1) IP Next

 Service_0:

 // Clear exception from cr0.1.

 // Perform service routine.

 // Jump to exit (or if looping on exceptions, go to next loop).

 ...

 Service_15:

 // Clear exception from cr0.1.

 // Perform service routine.

 // Jump to exit (or if looping on exceptions, go to next loop).

 Exit:

 // Restore f0.0.

3D Media GPGPU

922 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 // Restore other ARF registers (as required).

 // Restore r12..r15.

 // Restore r8..r11.

 // Restore r4..r7.

 // Restore r0..r3.

 // Restore m8..m15.

 // Restore m0..m7.

 // Clear Master Exception State bit in cr0.0:

 and (1) cr0.0 cr0.0 MASTER_EXCP_MASK

 nop (16)

Below is a code sequence to programmatically clear the GRF scoreboard in case of a timeout waiting on

a register that may never return.

At this point, all we know is we have a hung thread. We’d like to copy the GRF to scratch memory to

make it visible, but there may be a register that is hung with an outstanding dependency. To get around

any hung dependency, walk the GRF using NoDDChk, using an execution mask of f0 == 0 so we don’t

touch the register contents.

 Clear_Dep:

 mov f0 0x00

 (f0) mov r0 0x00 {NoDDChk}

 (f0) mov r1 0x00 {NoDDChk}

 (f0) mov r2 0x00 {NoDDChk}

 ...

 (f0) mov r127 0x00 {NoDDChk}

 // GRF scoreboard now cleared. Do I delete the entire highlighted text?

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 923

Instruction Set Summary

This topic is currently under development.

Instruction Set Characteristics

This topic is currently under development.

SIMD Instructions and SIMD Width

GEN instructions are SIMD (single instruction multiple data) instructions. The number of data elements

per instruction, or the execution size, depends on the data type. For example, the execution size for

GEN instructions operating on 256-bit wide vectors can be up to 8 for 32-bit data types, and be up to

16 for 16-bit data. The maximum execution size for GEN instructions for 8-bit data types is also limited

to 16.

An instruction compression mode is supported for 32-bit instructions (including mixed 32-bit and 16-

bit data computation). A compressed GEN instruction works on twice as much SIMD data as that for a

non-compressed GEN instruction. A compressed instruction is converted into two native instructions by

the instruction dispatcher in the EU.

GEN instructions are executed on a narrower SIMD execution pipeline. Therefore, GEN native

instructions take multiple execution cycles to complete.

Instruction Operands and Register Regions

Most GEN instructions may have up to three operands, two sources and one destination. Each operand

is able to address a register region. Source operands support negate and absolute modifier and channel

swizzle, and the destination operand supports channel mask.

Dual destination instructions are also supported (four-operand instructions in a general sense): One

case is for the implied destination – flag register, where the conditional modifiers and the predicate

modifiers may apply. Another case is the message header creation (implied move or implied assembling

of the header) in the send instruction.

Each execution channel contains an accumulator that is wider than the input data to support back-to-

back accumulation operations with increased precision. The added precision (see accumulator register

description in Execution Environment chapter) determines the maximum number of accumulations

before possible overflow. The accumulator can be pre-loaded through the use of mov. It can also be

pre-loaded by arithmetic instructions such as add or mul, since the result of these instructions can go to

the accumulator. The accumulator registers are per thread and therefore safe for thread switching.

Register access can be direct or register-indirect. Register-indirect register access uses address registers

plus an immediate offset term to compute the register addresses, and only applies to the first source

operand (src0) and/or the destination operand.

There is one address register.

3D Media GPGPU

924 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Description

There are 16 address sub-registers.

Each sub-register contains a 16-bit unsigned value. The leading two sub-registers form a special

doubleword that can be used as the descriptor for the send instruction.

Source operand can also be immediate value (also referred to as inline constants). For instructions with

two source operands, only the second operand src1 is allowed to be immediate. For instructions with

only one source operand, the source operand src0 is used and it can be an immediate.

An immediate source operand can be a scalar value of specified type up to 32-bit wide, which is

replicated to create a vector with length of Execution Size. An immediate operand can also be a special

32-bit vector with 8 elements each of 4-bit signed integer value, or a 32-bit vector with 4 elements each

of 8-bit restricted float value.

Instruction Execution

It is implied that all instructions operate across all channels of data unless otherwise specified either via

destination mask, predication, execution mask (caused by SIMD branch and loop instructions), or

execution size.

Instruction execution size can be specified per instruction, from scalar (ExecSize = 1) up to the maximal

execution size supported for the data type, with the restriction that execution size can only be in power

of 2.

Instruction Formats

This section shows the machine formats of the GEN instruction set. The instructions in the GEN

architecture have a fixed length of 128 bits in the native format. A compact format, discussed separately

in this volume, can represent some instructions using 64 bits. Out of the 128 bits in the native format,

there are 120 bits in use, and the remaining bits are reserved for future extensions. One instruction

consists of instruction fields that control various stages of execution. These fields are roughly grouped

into the 4 DWords as follows:

 Instruction Operation Doubleword (DW0) contains the Opcode and other general instruction

control fields.

 Instruction Destination Doubleword (DW1) specifies the destination operand (dst) and the

register file and type of source operands.

 Instruction Source 0 Doubleword (DW2) contains the first source operand (src0).

 Instruction Source 1 Doubleword (DW3) contains the second source operand (src1) and is used to

hold any 32-bit immediate source (Imm32 as src0 or src1).

Instructions with one source operand of type DF, Q, or UQ can use an Imm64 64-bit immediate source

operand in DWord 2 and DWord3.

Most instructions have 1 or 2 source operands and use a common instruction format. Within that

format, there are variations based on AddrMode and AccessMode. There is a separate instruction

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 925

format for a small number of instructions with 3 source operands. Send, math, and branching

instructions have format variations described separately.

The 3-source instructions have the following restrictions:

 Only GRF registers can be sources and only GRF registers can be the destination.

 Subregister numbers have DWord granularity if AccessMode is Align16.

 AccessMode is Align16, uses Align16-style swizzling, with extra replication control. There is no

other regioning support.

The next two subsections describe the instruction formats for various processor generations using

tables. The following diagrams provide another view of the same information. The first diagram is for

native instructions with one or two source operands.

3D Media GPGPU

926 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GEN Instruction Format – 1-src and 2-src [CHV, BSW]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 927

The next diagram is for native instructions with three source operands.

GEN Instruction Format – 3-src [CHV, BSW]

3D Media GPGPU

928 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

GEN Instruction Format – 3-src [CHV, BSW]

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 929

Native Instruction Layouts

This section describes the Execution Unit instruction formats.

DWord 0, bits 31:0 of the 128-bit instruction, has the same format regardless of the number of source

operands.

The following three tables cover the most common instruction format, for instructions with 1 or 2

source operands; then the format for the few instructions with 3 source operands; and finally format

variations used by a few specific instructions, including branching instructions.

Execution Unit Instruction Format for 1 or 2 Source Operands CHV, BSW

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

Any Imm32 32-bit or Imm64 64-bit immediate operand uses bits 127:96, replacing the following fields.

127:122 Reserved

121 Varies based on

AddrMode

Reserved Src1.AddrImm[9]

120:117 Src1.VertStride

116 Varies based on

AccessMode

Reserved Src1.Width Reserved Src1.Width

115:114 Src1.ChanSel

[7:4]

Src1.ChanSel[7

:4]

113:112 Src1.HorzStrid

e

111 Src1.AddrMode

110:109 Src1.SrcMod

108:105 Src1.SrcMod Src1.RegNum Src1.AddrSubRegNum

104:101 Src1.AddrImm

[8:4]

Src1.AddrImm[8:0]

100

99:96 Src1.ChanSel

[3:0]

Src1.ChanSel[3

:0]

Any Imm64 64-bit immediate operand uses bits 127:64, replacing the following fields.

95 Varies based on

AddrMode

Reserved Src0.AddrImm[9]

94:91 Src1.SrcType

90:89 Src1.RegFile

88:85 Src0.VertStride

84 Varies based on

AccessMode

Reserved Src0.Width Reserved Src0.Width

83:82 Src0.ChanSel

[7:4]

Src0.ChanSel[7

:4]

3D Media GPGPU

930 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

81:80 Src0.HorzStrid

e

79 Src0.AddrMode

78:77 Src0.SrcMod

76:73 Varies based on

AddrMode and

AccessMode

Src0.RegNum Src0.AddrSubRegNum

72:69 Src0.AddrImm

[8:4]

Src0.AddrImm[8:0]

68

67:64 Src0.ChanSel

[3:0]

Src0.ChanSel[3

:0]

63 Dst.AddrMode

62:61 Varies based on

AccessMode

Reserved Dst.HorzStride Reserved Dst.HorzStride

60:57 Varies based on

AddrMode and

AccessMode

Dst.RegNum Dst.AddrSubRegNum

56:53 Dst.AddrImm[

8:4]

Dst.AddrImm[8:0]

52

51:48 Dst.ChanEn[3

:0]

Dst.ChanEn[3:0

]

47 Varies based on

AddrMode

Reserved : MBZ Dst.AddrImm[9]

46:43 Src0.SrcType

42:41 Src0.RegFile

40:37 Dst.DstType

36:35 Dst.RegFile

34 MaskCtrl

33:32 FlagRegNum / FlagSubRegNum

31 Saturate

29 CmptCtrl

28 AccWrCtrl

27:24 CondModifier

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl

13:12 QtrCtrl

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 931

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

11 NibCtrl

10:9 DepCtrl

8 AccessMode

7 Reserved (for future Opcode expansion)

6:0 Opcode

The 3-source operand instructions are:

1. bfe - Bit Field Extract

2. bfi2 - Bit Field Insert 2

3. lrp - Linear Interpolation

4. mad - Multiply Add

5. madm - Multiply Add for Macro

In the 3-source instruction format, the upper QWord contains three groups of 21 bits for the three

source operands, where each group contains four fields in 20 bits and otherwise adjacent groups are

separated by single reserved bits.

Specific instructions have different instruction formats as described below. These instructions include

send / sendc, math, and branch instructions.

3D Media GPGPU

932 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Execution Unit Instruction Format for Specific Instructions [CHV, BSW]

Bits

Regular 1 or 2

 Source Operands

 Description

Empty white areas mean Same,

use the regular description

send /

sendc math

Branch

 Instructions

127 Reserved EOT JIP[31:0]

126:125 Reserved Imm[28:0]

/ Reg32 124:121 Reserved

120:117 Src1.VertStride

116:112 Varies based on

AccessMode

111 Src1.AddrMode

110:109 Src1.SrcMod

108:96 Varies based on

AddrMode and

AccessMode

95 Reserved UIP[31:0]

 (2-offset

 branches)
94:91 Src1.SrcType

90:89 Src1.RegFile

88:85 Src0.VertStride

84:80 Varies based on

AccessMode

79 Src0.AddrMode

78:77 Src0.SrcMod

76:64 Varies based on

AddrMode and

AccessMode

63 Dst.AddrMode

62:61 Varies based on

AccessMode

60:48 Varies based on

AddrMode and

AccessMode

47 Reserved

46:43 Src0.SrcType

42:41 Src0.RegFile

40:37 Dst.DstType

36:35 Dst.RegFile

34 MaskCtrl

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 933

33:32 FlagRegNum /

FlagSubRegNum

31 Saturate

30

29 CmptCtrl

28 AccWrCtrl

27:24 CondModifier SFID[3:0] FC[3:0] MBZ

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl

13:12 QtrCtrl

11 NibCtrl

10:9 DepCtrl

8 AccessMode

7 Reserved (for future

Opcode expansion)

6:0 Opcode

Instruction Fields

This section contains two large tables that together describe all instruction fields. The first table

describes common instruction fields that are not specific to a source or destination operand. The

second table describes fields used to describe source or destination operands, including fields that

describe register regioning and immediate operand fields.

Notable changes for CHV, BSW instructions include adding three new data types (Q, UQ, HF), widening

all type fields to four bits each to accomodate the new type encodings, providing a new source modifier

interpretation for logical operations, widening the AddrSubRegNum fields to four bits to accomodate

16 (rather than 8) address subregisters, and supporting 64-bit immediate (Imm64) source values for

instructions with single source operands.

In the assembler syntax, some fields appear in the positions used for destination or source operands

but are not normal operands. Such fields appear in the Common Instruction Fields table, notably the JIP

and UIP instruction offsets used in some flow control instructions.

3D Media GPGPU

934 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Common Instruction Fields (Alphabetically by Short Name) [CHV, BSW]

Field Description

AccessMode
Access Mode. This field controls operand access for the instruction. It applies

to all source and destination operands.

When it is clear (Align1), the instruction uses byte-aligned addressing for

source and destination operands. Source swizzle control and destination mask

control are not supported. Elements must still be aligned on element-size

boundaries. For example, a DWord operand must be aligned on a 4-byte

boundary.

When it is set (Align16), the instruction uses 16-byte-aligned addressing for

source and destination operands. Source swizzle control and destination mask

control are supported in this mode. A register region must start on 16-byte

aligned address, but individual elements do not. For example, a packed array of

16 bytes can be an operand, where only the first byte, at offset 0, is at a 16-

byte aligned address.

0 = Align1

1 = Align16

AccWrCtrl/

 BranchCtrl
Accumulator Write Control. Enable or disable implicitly writing results to the

accumulator as well as to the destination.

0 = Do not write results to the accumulator; write results only to the

destination.

1 = AccWrEn. Write results to the accumulator as well as to the destination.

This bit should not be set if the accumulator is the explicit destination operand.

Some instructions do not allow this option, including mov and send.

Branch Control. Used by the goto instruction to control branching. See the

goto instruction description for more information about BranchCtrl.

CmptCtrl
Compaction Control. Indicates whether the instruction is compacted to the

64-bit compact instruction format. When this bit is set, the 64-bit compact

instruction format is used. The EU decodes the compact format using lookup

tables internal to the hardware, but documented for use by software tools.

Only some instruction variations can be compacted, the variations supported

by those lookup tables and the compact format. See EU Compact Instruction

Format [CHV, BSW] for more information.

0 = No Compaction. No compaction. 128-bit native instruction supporting all

instruction options.

1 = CmptCtrl. Compaction is enabled. 64-bit compact instruction supporting

only some instruction variations.

CondModifier
Condition Modifier. This field sets the flag register based on internal

../../../../Content/3D_Media_GPGPU/Execution_Units/EU%20Compact%20Instruction%20Format%20DevBDW.htm#_TocEUCompactInstructionFormatDevBDW
../../../../Content/3D_Media_GPGPU/Execution_Units/EU%20Compact%20Instruction%20Format%20DevBDW.htm#_TocEUCompactInstructionFormatDevBDW

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 935

Field Description

conditional signals output from the execution pipe such as sign, zero, overflow,

NaNs, etc. If this field is 0000b, no flag registers are updated. Flag registers are

not updated for instructions with embedded compares.

This field applies to all instructions except send, sendc, and math.

0000b = Do not modify the flag register (normal)

0001b = Zero or Equal (.z or .e)

0010b = Not Zero or Not Equal (.nz or .ne)

0011b = Greater than (.g)

0100b = Greater than or equal (.ge)

0101b = Less than (.l)

0110b = Less than or equal (.le)

0111b = Reserved

1000b = Overflow (.o)

1001b = Unordered with Computed NaN (.u)

1010b-1111b = Reserved

DepCtrl
Destination Dependency Control. This field selectively disables destination

dependency check and clear for this instruction.

When it is set to 00b, normal destination dependency control is performed for

the instruction; hardware checks for destination hazards to ensure data

integrity. Specifically, a destination register dependency check is conducted

before the instruction is made ready for execution. After the instruction is

executed, the destination register scoreboard is cleared when the destination

operands retire.

When NoDDClr is set, the destination register scoreboard is not cleared when

destination operands retire. When this field is not 00b, hardware does not

protect against destination hazards for the instruction. These settings are

typically used to assemble data in a fine grained fashion (for example, a matrix-

vector compute with dot-product instructions), where data integrity is

guaranteed by software based on the intended usage of instruction sequences.

00b = Destination dependency checked and cleared (normal).

01b = NoDDClr. Destination dependency checked but not cleared.

10b = Reserved

11b = NoDDClr. Destination dependency not cleared.

See the Destination Hazard and the Use of NoDDClr sections for more

information.

EOT
End of Thread. For a send or sendc instruction, this bit controls thread

3D Media GPGPU

936 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

termination. It is not used for other instructions. For a send or sendcinstruction,

if this field is set, the EU terminates the thread and also sets the EOT bit in the

message sideband.

0 = The thread is not terminated.

1 = End of thread (EOT).

ExDesc Extended message descriptor. A 32 bit immediate extended message

descriptor for send and sendc instructions. This field is not used for other

instructions.

ExecSize
Execution Size. Specifies the number of parallel execution channels and data

elements for the instruction, a power of 2 from 1 to 32. The size cannot exceed

the maximum number of channels allowed for the largest data type specified

for a source or destination operand.

ExecSize x largest data type size in bytes <= 64.

000b = 1 Channels (scalar operation).

001b = 2 Channels. Any data type.

010b = 4 Channels. Any data type.

011b = 8 Channels. Any data type.

100b = 16 Channels. 4-byte or smaller data types. Excludes DF, Q, and UQ

types.

101b = 32 Channels. 2-byte or 1-byte data types. Excludes D, DF, F, Q, UD, and

UQ types.

110b-111b = Reserved.

An operand's Width must be <= ExecSize.

FC
Function Control. Specifies the extended math function carried out by the

mathinstruction. Not used for any other instruction. This field is in the same

position as the CondModifier instruction field, so the math instruction does not

support conditional modifiers.

See the math Extended Math Function [CHV, BSW] instruction description for

more information about this field.

FlagRegNum/

FlagSubRegNum

Flag Register Number/Flag Sub-Register Number. Selects the 32-bit flag

register (f0 or f1) and the 16-bit flag subregister (.0 or .1). The specified flag

subregister is the source for any predication and the destination for new flag

values produced by any enabled conditional modifier. A flag subregister can be

both a predication source and a conditional modifier destination in the same

instruction. The number of flag bits used or updated depends on the execution

size.

../../../../Content/3D_Media_GPGPU/Execution_Units/math%20Extended%20Math%20Function.htm

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 937

Field Description

00b f0.0

01b f0.1

10b f1.0

11b f1.1

JIP Jump Instruction Pointer. A Doubleword Signed Integer offset relative to the

current IP (which references the current instruction) in units of bytes. Typically

an immediate value in the instruction. For the brc (Branch Converging)

instruction, both JIP and UIP can be contained in a register.

MaskCtrl
Mask Control (formerly WECtrl/Write Enable Control). This flag disables the

normal write enables; it should normally be 0.

0 = Use the normal write enables in Dst.ChanEn (normal setting).

1 = NoMask. Write all channels except those disabled by predication or by

other masks besides the write enables.

MaskCtrl = NoMask also skips the check for PcIP[n] == ExIP before enabling a

channel, as described in the Evaluate Write Enable section.

NibCtrl
Nibble Control. This field is used in some instructions along with QtrCtrl. See

the description of QtrCtrl below. NibCtrl is only used for SIMD4 instructions

with a 64bit datatype as source or destination.

0 = Use an odd 1/8th for DMask/VMask and ARF (first, third, fifth, or seventh

depending on QtrCtrl).

1 = Use an even 1/8th for DMask/VMask and ARF (second, fourth, sixth, or

eighth depending on QtrCtrl).

Note that if eighths are given zero-based indices from 0 to 7, then NibCtrl = 0

indicates even indices and NibCtrl = 1 indicates odd indices.

OpCode
Operation Code. Contains the instruction operation code. Each opcode used is

given a unique mnemonic. For example, the opcode 0x01 has the mnemonic

mov indicating a Move instruction.

See the Opcode Encoding section for details of opcode encoding.

PredCtrl
Predicate Control. This field, together with PredInv, controls generating the

predication mask (PMask) for the instruction. It allows per-channel conditional

execution the instruction based on the content of the selected flag register.

The encoding depends on the access mode. See the Predication section for

more information about predication.

In Align16 access mode, there are eight encodings (including no predication).

All encodings are based on group-of-4 predicate bits, including channel

sequential, replication swizzles and horizontal any or all operations. The same

3D Media GPGPU

938 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

configuration is repeated for each group-of-4 execution channels.

In Align1 access mode, there are twelve encodings (including no predication).

The encodings apply to all execution channels with explicit channel grouping

from a single channel up to a group of 16 channels.

Predicate Control in Align16 access mode:

0000b = No predication (normal).

0001b = Predication with sequential flag channel mapping.

0010b = Predication with replication swizzle .x.

0011b = Predication with replication swizzle .y.

0100b = Predication with replication swizzle .z.

0101b = Predication with replication swizzle .w.

0110b = Predication with .any4h.

0111b = Predication with .all4h.

1000b-1111b = Reserved.

Predicate Control in Align1 access mode:

0000b = No predication (normal).

0001b = Predication with sequential flag channel mapping.

0010b = Predication with .anyv (f0.0 OR f0.1 on the same channel).

0011b = Predication with .allv (f0.0 AND f0.1 on the same channel).

0100b = Predication with .any2h (any in group of 2 channels).

0101b = Predication with .all2h (all in group of 2 channels).

0110b = Predication with .any4h (any in group of 4 channels).

0111b = Predication with .all4h (all in group of 4 channels).

1000b = Predication with .any8h (any in group of 8 channels).

1001b = Predication with .all8h (all in group of 8 channels).

1010b = Predication with .any16h (any in group of 16 channels).

1011b = Predication with .all16h (all in group of 16 channels).

1100b = Predication with .any32h (any in group of 32 channels).

1101b = Predication with .all32h (all in group of 32 channels).

1110b-1111b = Reserved.

PredInv
Predicate Inverse. Together with PredCtrl, controls generation of the

predication mask (PMask) for the instruction. When it is set and PredCtrl is not

0000b, predication uses the inverse of the predication bits produced by

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 939

Field Description

PredCtrl. In other words, the effect of PredInv happens after the effects of

PredCtrl.

This field is ignored if PredCtrl is 0000b; there is no predication.

0 = +. Positive polarity of predication. Use the predication mask produced by

PredCtrl.

1 = –. Negative polarity of predication. If PredCtrl is nonzero, invert the

predication mask.

PMask is the final predication mask produced by the effects of both fields.

QtrCtrl
Quarter Control. This field provides explicit control for ARF selection.

This field combined with ExecSize determines which channels are used for the

ARF registers.

Along with NibCtrl, 1/8 DMask/VMask and ARF can be selected.

QtrCtrl NibCtrl ExecSize Syntax Description

00b 0 8 1Q
Use first quarter for DMask/VMask.

Use first half for everything else.

01b 0 8 2Q
Use second quarter for DMask/VMask.

Use second half for everything else.

10b 0 8 3Q
Use third quarter for DMask/VMask.

Use first half for everything else.

11b 0 8 4Q
Use fourth quarter for DMask/VMask.

Use second half for everything else.

00b 0 16 1H
Use first half for DMask/VMask.

Use all channels for everything else.

10b 0 16 2H
Use second half for DMask/VMask.

Use all channels for everything else.

00b 0 4 1N Use first 1/8th for DMask/VMask and

ARF.

00b 1 4 2N Use second 1/8th for DMask/VMask and

ARF.

01b 0 4 3N Use third 1/8th for DMask/VMask and

ARF.

3D Media GPGPU

940 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

01b 1 4 4N Use fourth 1/8th for DMask/VMask and

ARF.

10b 0 4 5N Use fifth 1/8th for DMask/VMask and

ARF.

10b 1 4 6N Use sixth 1/8th for DMask/VMask and

ARF.

11b 0 4 7N Use seventh 1/8th for DMask/VMask

and ARF.

11b 1 4 8N Use eighth 1/8th for DMask/VMask and

ARF.

2H is only allowed for SIMD16 instruction in Single Program Flow mode (SPF =

1).

NibCtrl is only allowed for SIMD4 instructions with a 64bit datatype as source

or destination type.

Reg32 In a send or sendc instruction refers to the option of providing the message

descriptor field DWord, of which bits 28:0 are used, in the first two words of

the Address Register rather than as an immediate operand.

Saturate
Saturate. Enables or disables destination saturation.

When it is set, output values to the destination register are saturated. The

saturation operation depends on the destination data type. Saturation is the

operation that converts any value outside the saturation target range for the

data type to the closest value in the target range.

For a floating-point destination type, the saturation target range is [0.0, 1.0].

For a floating-point NaN, there is no “closest value”; any NaN saturates to 0.0.

Note that enabling Saturate overrides all of the NaN propagation behaviors

described for various numeric instructions. Any floating-point number greater

than 1.0, including +INF, saturates to 1.0. Any negative floating-point number,

including -INF, saturates to 0.0. Any floating-point number in the range 0.0 to

1.0 is not changed by saturation.

For an integer destination type, the maximum range for that type is the

saturation target range. For example, the saturation range for B (Signed Byte

Integer) is [-128, 127].

When Saturate is clear, destination values are not saturated. For example, a

wrapped result (modulo) is output to the destination for an overflowed integer

value. See the Numeric Data Types section for information about data types

and their ranges.

0 = No destination modification (normal).

1 = sat. Saturate the output.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 941

Field Description

SFID Shared Function ID. Specifies a shared function that is the target of a sendor

sendc instruction. This field is not used for any other instructions. This field is in

the same position as the CondModifier instruction field, so the send and

sendcinstructions do not support conditional modifiers.

ThreadCtrl
Thread Control. This field provides explicit control for thread switching.

If this field is set to 00b, it is up to the Execution Unit to manage thread

switching. This is the normal operating mode. In this mode, for example, if the

current instruction cannot proceed due to operand dependencies, the EU

switches to the next available thread to fill the compute pipe. For another

example, if the current instruction is ready to run but another thread with

higher priority also has an instruction ready, the EU switches to that thread.

If this field is Switch, a forced thread switch occurs after the current instruction

executes and before the next instruction. In addition, a long delay (longer than

the execution pipe latency) for the current thread is introduced for the thread.

Particularly, the instruction queue of the current thread is flushed after the

current instruction is dispatched for execution.

If this field is Atomic, the next instruction gets highest priority in the thread

arbitration for the execution pipelines.

Switch is designed primarily as a safety feature in case there are race

conditions for certain instructions.

00b = Normal Thread Control. Execution may or may not be preempted by

another thread following this instruction.

01b = Atomic. Prevent any thread switch immediately following this

instruction. Always execute the next instruction (which may not be next

sequentially if the current instruction branches).

Atomic can be used with send, sends, sendc, sendsc ONLY.

10b = Switch. Force a switch to another thread after this instruction and

before the next instruction.

11b = Reserved

UIP Update Instruction Pointer. A Doubleword Signed Integer offset relative to

the current IP (which references the current instruction) in units of bytes.

Typically an immediate value in the instruction. For the brc (Branch Converging)

instruction, both JIP and UIP can be contained in a register.

In the following table of operand fields, use just the last part of the field name. For example, to find the

Src1.ChanSel field, look for ChanSel.

3D Media GPGPU

942 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Source or Destination Operand Fields (Alphabetically by Short Name) [CHV, BSW]

Field Description

AddrImm
Address Immediate. A 10-bit signed integer offset in units of bytes, only used with the

Indirect Addressing Mode. In that addressing mode, the Address Immediate value is added to

an address subregister value to determine the operand's address in the GRF.

Allowed for any GRF register operand, destination or source. ARF registers cannot be accessed

with indirect addressing.

The Address Immediate field cannot cover the 4K-byte range of the thread's GRF. Whatever

address subregister value is used along with this offset provides a window into the GRF,

limited by the offset range.

In the Align16 Access Mode, the low four bits of AddrImm are zero and do not appear in the

instruction format.

Format = S9

Range = [-512, 511]

AddrMode
Addressing Mode. Whether the destination register and subregister are encoded in the

instruction (Direct Addressing) or calculated using the contents of an address subregister and

an offset (Indirect Addressing). This field applies to source and destination register operands,

for instructions with 1 or 2 source operands.

0 = Direct Addressing (“Direct”). Direct register addressing.

1 = Indirect Addressing (“Register-Indirect” or “Indirect”). Register-indirect register addressing.

Instructions with 3 source operands use Direct Addressing.

AddrSubRegNum
Address Sub-Register Number. The address register contains 16 Word-sized subregisters.

This field is only used with the Indirect Addressing Mode and specifies the address subregister

containing a value added to the Address Immediate value to determine the operand address.

Format = U4

Range = [0, 15]

Some variations of Indirect Addressing use multiple address subregisters, where

AddrSubRegNum determines the first subregister used.

ChanEn
Channel Enable. Dst.ChanEn, used only for the destination operand and only in the Align16

Access Mode.

Provides four channel enable bits applied modulo four to all ExecSize channels. For example,

0xF enables all channels, 0 disables all channels, 0xA enables odd-numbered channels, and so

on.

The assembler mnemonics are x, y, z, and w for channels 0, 1, 2, and 3 respectively.

If MaskCtrl is 1 (mnemonic NoMask) then all channels are enabled regardless of the ChanEn

value, equivalent to ChanEn of 0xF (xyzw). Predication and execution masking, in addition to

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 943

Field Description

ChanEn and MaskCtrl, determine what channels are actually written.

For i in 0, 1, 2, 3:

Bit i = 0 For channel j where j % 4 == i, disable writing that channel.

Bit i = 1 For channel j where j % 4 == i, enable writing that channel.

ChanSel
Channel Select. This field controls the channel swizzle for a non-immediate source operand

in the Align16 access mode. It is not used for immediate operands, destination operands, or in

the Align1 access mode. The normally sequential channel assignment can be altered by

explicitly identifying neighboring data elements for each channel. Out of the 8-bit field, 2 bits

are assigned for each channel within the group of 4. ChanSel[1:0], [3:2], [5:4] and [7:6] are for

channel 0 (x), 1 (y), 2 (z), and 3 (w) in the group, respectively. When operating on 64-bit

operands, these channel selects must be used in pairs to select a contiguous 64-bit source.

For example with an execution size of 8, r0.0<4>.zywz:f assigns the channels as follows: Chan0

= Data2, Chan1 = Data1, Chan2 = Data3, Chan3 = Data2; Chan4 = Data6, Chan5 = Data5,

Chan6 = Data7, Chan7 = Data6.

The 2-bit Channel Selection field for each channel within the group of 4 is defined as:

00b = x. Channel 0 is selected for the corresponding execution channel.

01b = y. Channel 1 is selected for the corresponding execution channel.

10b = z. Channel 2 is selected for the corresponding execution channel.

11b = w. Channel 3 is selected for the corresponding execution channel.

Note: When using channel select for 64-bit operands, the valid selects are .xy and .zw. This is

required to pick a pair of DWords.

Desc Message descriptor. A 31 bit immediate message descriptor for send, sendc, sends and sendsc

instructions.This field is not used for other instructions.

DstType
Destination Type. Dst.DstType specifies the numeric data type of the destination operand

dst. The bits of the destination operand are interpreted as the identified numeric data type,

rather than coerced into a type implied by the operator. For a send or sendc instruction, this

field applies to CurrDst, the current destination operand. Three source instructions use a 3-bit

encoding that allows fewer data types.

Encoding for one or two source instructions:

0000b = :ud. Unsigned Doubleword integer.

0001b = :d. Signed Doubleword integer.

0010b = :uw. Unsigned Word integer.

0011b = :w. Signed Word integer.

0100b = :ub. Unsigned Byte integer.

0101b = :b. Signed Byte integer.

3D Media GPGPU

944 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

0110b = :df. Double precision Float (64-bit).

0111b = :f. Single precision Float (32-bit).

1000b = :uq. Unsigned Quadword integer.

1001b = :q. Signed Quadword integer.

1010b = :hf. Half Float (16-bit).

1011b to 1111b = Reserved.

Encoding for three source instructions:

000b = :f. Single precision Float (32-bit).

001b = :d. Signed Doubleword integer.

010b = :ud. Unsigned Doubleword integer.

011b = :df. Double precision Float (64-bit).

100b = :hf. Half precision Float (16-bit).

101b - 111b. Reserved.

ExDesc Extended message descriptor. A 32 bit immediate extended message descriptor for send,

sendc, sends and sendsc instructions.This field is not used for other instructions.

HorzStride
Horizontal Stride. Is the distance in units of data element size between two adjacent data

elements within a row (horizontal) in the register region for an operand.

A horizontal stride of 0 is used for a row that is one-element wide, useful when an instruction

repeats a column value or repeats a scalar value. For example, adding a single column to

every column in a 2D array or adding a scalar to every element in a 2D array uses HorzStride

of 0.

A horizontal stride of 1 indicates that elements are adjacent within a row.

References to HorzStride in this volume normally reference the value not the encoding, so

there are references to HorzStride of 4, which is encoded as 11b.

This field applies to both source and destination register operands.

This field is used with both direct and indirect addressing.

00b = 0 Elements

01b = 1 Element

10b = 2 Elements

11b = 4 Elements

See the Register Region Restrictions section for rules that constrain HorzStride in relation to

other region parameters.

Imm[28:0] A 29-bit immediate message descriptor for a send or sendc instruction. This field is not used

for other instructions.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 945

Field Description

Imm32
A 32-bit immediate data field for an immediate source operand. Only one source operand can

be immediate, the last source operand. Of course a destination operand is never immediate.

For a two-source instruction, src1 can be immediate; for a one-source instruction src0 can be.

The source type for an immediate operand cannot be B or UB (signed or unsigned byte). The

source type can be one of the packed vector types that are only allowed as immediate

operands: V, UV, or VF.

For the W or UW (signed or unsigned word) source types, the 16-bit value must be replicated

in both the low and high words of the 32-bit immediate value.

The low order bits are directly used when fewer than 32-bits are needed for the source type.

The 32-bit value is not coerced into the designated type.

See the Numeric Data Types section for information about data types and their ranges.

Imm64 A 64-bit immediate data field for an immediate source operand, only used for a one-source

instruction with a 64-bit Source Type (DF, Q, or UQ).

RegFile
Register File. Select a source or destination register file or indicate an immediate source

operand:

00b = ARF Architecture Register File. Only allowed for src0 or destination.

01b = GRF General Register File. Allowed for any source or destination.

10b = Reserved.

11b = Immediate operand. Only allowed for the last source operand. Not allowed for the

destination operand or for any other source operand. Note that for flow control instructions

requiring two offsets, regfile of source0 is required to be immediate since the 64b for

immediates occupy the DW2 and DW3.

RegNum
Register Number. The register number for the operand. For a GRF register, is the part of a

register address that aligns to a 256-bit (32-byte) boundary. For an ARF register, this field is

encoded such that MSBs identify the architecture register type and LSBs provide the register

number.

An ARF register can only be dst or src0. Any src1 or src2 operands cannot be ARF registers.

RegNum and SubRegNum together provide the byte-aligned address for the origin of a

register region. RegNum provides bits 12:5 of that address. For one-source and two-source

instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be

DWord-aligned; SubRegNum provides bits 4:2 of the address and bits 1:0 are zero.

This field is present for the direct addressing mode and not present for indirect addressing.

This field applies to both source and destination operands.

Format = U8, if RegFile = GRF.

0x00 to 0x7F = Register number in the range [0, 127].

0x80 to 0xFF = Reserved.

3D Media GPGPU

946 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

Format = 8-bit encoding, if RegFile = ARF.

This field encodes the architecture register type as well as providing the register number. See

the ARF Registers Overview section and the sections for individual ARF registers for details.

RepCtrl
Replicate Control. This field is only present in three-source instructions, for each of the three

source operands. It controls replication of the starting channel to all channels in the execution

size. ChanSel does not apply when Replicate Control is set. This is applicable to 32b datatypes

and 16b datatype. 64b datatypes cannot use the replicate control.

0 = No replication.

1 = Replicate across all channels.

SelReg32Desc
Select Reg32 for message descriptor. In sends or sendsc instruction, refers to the selection

of Reg32 for the message descriptor field.

0 = Desc.

1 = Reg32. First Dword of Address Register is used for message descriptor.

SrcMod
Source Modifier. Specify any numeric (normally) or logical (for logic instructions)

modification to a source value before delivery to the execution pipe.

The numeric value of each data element of a source operand can optionally have its absolute

value taken, its sign inverted (arithmetic negation), or both (absolute value followed by

arithmetic negation producing a guaranteed negative value).

When used with logic instructions (and, not, or, xor), this field indicates whether the source

bits are inverted (bitwise NOT) before delivery to the execution pipe, regardless of the source

type.

This field only applies to source operands. It does not apply to the destination.

This field is not present for an immediate source operand.

For no modification, there is no assembler notation or syntax.

Encoding for all instructions other than logic instructions:

00b = No modification (normal).

01b = (abs). Absolute value.

10b = –. Negation.

11b = –(abs). Negation of the absolute value (forced negative value).

Encoding for logic instructions:

00b = No modification (normal).

01b = No modification (normal). This encoding cannot be selected in the assembler syntax.

10b = – Indicates a bitwise NOT, inverting the source bits.

11b = No modification (normal). This encoding cannot be selected in the assembler syntax.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 947

Field Description

SrcType
Source Type. Specifies the numeric data type of a source operand. In a two-source

instruction, each source operand has its own source type field. In a three-source instruction,

one source type is used for all three source operands.

The bits of a source operand are interpreted as the identified numeric data type, rather than

coerced into a type implied by the operator.

Depending on the RegFile field for the source, this field uses one of two encodings. For a non-

immediate source (from a register file), use the Source Register Type Encoding, which is

identical to the Destination Type encoding. For an immediate source, use the Source

Immediate Type Encoding, which does not support signed or unsigned byte immediate values

and does support the three packed vector types, V, UV, and VF.

Note that three-source instructions do not support immediate operands, that only the second

source (src1) of a two-source instruction can be immediate, and that 64-bit immediate values

(DF, Q, or UQ) can only be used with one-source instructions.

In a two-source instruction with a V (Packed Signed Half-Byte Integer Vector) or UV (Packed

Unsigned Half-Byte Integer Vector) immediate operand, the other source operand must have

a type compatible with packed word execution mode, one of B, UB, W, or UW.

Note that DF (Double Float) and HF (Half Float) have different encodings in the Source

Regster Type Encoding and the Source Immediate Type Encoding.

The Source Register Type Encoding and Source Immediate Type Encoding lists apply to

instructions with one or two source operands.

Source Register Type Encoding:

0000b = UD. Unsigned Doubleword integer.

0001b = D. Signed Doubleword integer.

0010b = UW. Unsigned Word integer.

0011b = W. Signed Word integer.

0100b = UB. Unsigned Byte integer.

0101b = B. Signed Byte integer.

0110b = DF. Double precision Float (64-bit).

0111b = F. Single precision Float (32-bit).

1000b = UQ. Unsigned Quadword integer.

1001b = Q. Signed Quadword integer.

1010b = HF. Half Float (16-bit).

1011b to 1111b = Reserved.

Source Immediate Type Encoding:

0000b = UD. Unsigned Doubleword integer.

0001b = D. Signed Doubleword integer.

3D Media GPGPU

948 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

0010b = UW. Unsigned Word integer.

0011b = W. Signed Word integer.

0100b = UV. Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer.

0101b = VF. Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point

Number.

0110b = V. Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer.

0111b = F. Single precision Float (32-bit).

1000b = UQ. Unsigned Quadword integer.

1001b = Q. Signed Quadword integer.

1010b = DF. Double precision Float (64-bit).

1011b = HF. Half Float (16-bit).

1100b to 1111b = Reserved.

Three source instructions use one SrcType field for all source operands, with a 3-bit encoding

that allows fewer data types:

Encoding for three source instructions:

000b = :f. Single precision Float (32-bit).

001b = :d. Signed Doubleword integer.

010b = :ud. Unsigned Doubleword integer.

011b = :df. Double precision Float (64-bit).

100b = :hf. Half precision Float (16-bit).

101b - 111b. Reserved.

Three source instructions can use operands with mixed-mode precision. When SrcType field

is set to :f or :hf it defines precision for source 0 only, and fields Src1Type and Src2Type

define precision for other source operands:

0b = :f. Single precision Float (32-bit).

1b = :hf. Half precision Float (16-bit).

SubRegNum
Sub-Register Number. The subregister number for the operand. For a GRF register, is the

byte address within a 256-bit (32-byte) register. For an ARF register, determines the sub-

register number according to the specified encoding for the given architecture register.

RegNum and SubRegNum together provide the byte-aligned address for the origin of a GRF

register region. RegNum provides bits 12:5 of that address. For one-source and two-source

instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be

DWord-aligned; SubRegNum provides bits 4:2 of the address and bits 1:0 are zero.

Note: The recommended instruction syntax uses subregister numbers within the GRF in units

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 949

Field Description

of actual data element size, corresponding to the data type used. For example for the F (Float)

type, the assembler syntax uses subregister numbers 0 to 7, corresponding to subregister byte

addresses of 0 to 28 in steps of 4, the element size.

This field is present for the direct addressing mode and not present for indirect addressing.

This field applies to both source and destination operands.

Format = U5, if RegFile = GRF and the instruction has fewer than three source operands.

0x00 to 0x1F = Sub-Register number in the range of [0, 31].

Format = U3, if RegFile = GRF and the instruction has three source operands.

0x0 to 0x7 = Sub-Register number MSBs in the range of [0,7]. The two LSBs are zero.

Format = U4, if RegFile = GRF and the instruction has three source operands.

0x0 to 0x15 = Sub-Register number MSBs in the range of [0,15].

Format = 5-bit encoding, if RegFile = ARF.

See the ARF Registers Overview section and the sections for individual ARF registers for

details.

VertStride
Vertical Stride. The vertical stride of a source operand's register region in units of data

element size.

Supported values are 0, powers of 2 from 1 to 32, and a special encoding used for indirect

addressing in Align1 mode.

Values greater than 32 are not supported due to the restriction that a source operand must

reside within two adjacent 256-bit registers (64 bytes total).

The special encoding 1111b (0xF) is only valid when the operand is in register-indirect

addressing mode (AddrMode = 1). If this field is set to 0xF, one or more sub-registers of the

address registers may be used to compute source addresses. Each address sub-register

provides the origin for a row of data elements. The number of address sub-registers used is

equal to instruction's ExecSize / source operand's Width.

This field only applies to source operands. It does not apply to the destination.

For Align16 access mode, only encodings of 0000b, 0010b, and 0011b are allowed. Other

codes are reserved.

Note 1: A Vertical Stride larger than 32 is not allowed due to the restriction that a source

operand must reside within two adjacent 256-bit registers (64 bytes total).

Note 2: In Align16 access mode, as encoding 1111b is reserved, only single-index indirect

addressing is supported.

Note 3: If indirect addressing is supported for src1, the encoding 1111b is reserved for src1

and only single-index indirect addressing is supported.

3D Media GPGPU

950 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Field Description

Note 4: The encoding 0010b is used for 64-bit operands (types DF, Q, or UQ).

0000b = 0 Elements

0001b = 1 Element. Align1 mode only.

0010b = 2 Elements

0011b = 4 Elements

0100b = 8 Elements. Align1 mode only.

0101b = 16 Elements (applies to byte or word operands only). Align1 mode only.

0110b = 32 Elements (applies to byte operands only). Align1 mode only.

0111b-1110b = Reserved.

1111b = VxH or Vx1 mode (only valid for register-indirect addressing in Align1 mode).

Width
Width. The number of elements in the horizontal dimension of the region for a source

operand. This field cannot exceed the ExecSize field of the instruction.

This field only applies to source operands. It does not apply to the destination.

000b = 1 Element

001b = 2 Elements

010b = 4 Elements

011b = 8 Elements

100b = 16 Elements

101b-111b = Reserved

Note that with ExecSize of 32, because the maximum Width is 16, there are at least two rows

in a source region.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 951

EU Compact Instructions

On receiving an instruction with bit 29 (CmptCtrl) set, HW recognizes it as a 64-bit compact instruction.

Hardware then uses the index fields inside the compact instruction to lookup values in the associated

compaction tables, then uses the table outputs along with other fields in the compact instruction to

reconstruct the 128-bit native-sized instruction.

Description

All flow control instructions use the new offset format, a signed 32-bit offset in units of

bytes.

The native 128-bit instruction format provides access to all instruction options. Only some instruction

options and combinations of instruction options can be represented in the compact instruction formats.

Which native instructions can be represented as compact instructions and the details of the compact

instruction formats and the compaction tables used may change with each processor generation.

In the following instruction format tables the Mapping Bits and Mapping Description columns describe

the mappings into native instruction fields.

EU Compact Instruction Format

The following table describes the EU compact instruction format for CHV. CHV adds support for

compacting instructions with three source operands.

CHV, BSW supports instruction compaction for 3-source instructions as well as for 1 or 2-source

instructions. The next two tables provide the CHV compact instruction formats for 1 or 2-source

instructions first and then for 3-source instructions.

The CHV compact instruction format for 1 or 2-source instructions is essentially identical to the

compact instruction format for earlier generations, but the compact fields expand to somewhat

different fields in the native instruction format, as the native instruction format changed for CHV.

GEN Compact Instruction Format CHV 1 or 2 Source Operands

Bits Size

Mapping

Bits

Compact

Name Mapping Description

63:56 8 108:101

 (Not

Imm.)

 or 103:96

 (Imm.)

Src1.RegNum
Src1.RegNum if not immediate. Imm32[7:0] if immediate.

55:48 8 76:69 Src0.RegNum Src0.RegNum.

47:40 8 60:53 Dst.RegNum Dst.RegNum.

39:35 5 120:109

 (Not

Imm.)

 or 127:104

Src1Index
If not an immediate operand, lookup one of 32 12-bit

values that maps to bits 120:109. That value is used (from

MSB to LSB) for the Src1.VertStride, various Src1 bit fields

3D Media GPGPU

952 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Bits Size

Mapping

Bits

Compact

Name Mapping Description

 (Imm.) based on AccessMode (Src1.ChanSel[7:4], Src1.Width,

Src1.HorzStride), Src1.AddrMode, and Src1.SrcMod bit

fields.

If an immediate operand, there is no lookup. Determines

bits 127:104 (Imm32[31:8]) as follows: map bits 39:35

directly to bits 108:104. Sign extend to fill bits 127:109.

Compact format bit 39 is thus copied to all of bits 127:108

for an immediate operand.

34:30 5 88:77 Src0Index Lookup one of 32 12-bit values. That value is used (from

MSB to LSB) for the Src0.VertStride, various Src0 bit fields

based on AccessMode (Src0.ChanSel[7:4], Src0.Width,

Src0.HorzStride), Src0.AddrMode, and Src0.SrcMod bit

fields. Note that this field spans a DWord boundary within

the QWord compacted instruction.

29 1 29 CmptCtrl
Compaction Control. The same in both the compact and

native formats:

0: Regular instruction, not compacted.

1: Compacted instruction.

28 1 Not

mapped.

Reserved Not mapped.

27:24 4 27:24 CondModifier CondModifier. The same in both the compact and native

formats.

23 1 28 AccWrCtrl AccWrCtrl.

22:18 5 100:96,

68:64,

52:48

SubRegIndex Lookup one of 32 15-bit values. That value is used (from

MSB to LSB) for various fields for Src1, Src0, and Dst,

including ChanEn/ChanSel, SubRegNum, and AddrImm[4]

or AddrImm[4:0], depending on AddrMode and

AccessMode.

17:13 5 63:61,

94:89,

46:35

DataTypeIndex Lookup one of 32 21-bit values. That value is used (from

MSB to LSB) for the Dst.AddrMode, Dst.HorzStride,

Src1.SrcType, Src1.RegFile, Src0.SrcType, Src0.RegFile,

Dst.DstType, and Dst.RegFile bit fields.

12:8 5 33:32, 31,

23:12, 10:9,

34, 8

ControlIndex Lookup one of 32 19-bit values. That value is used (from

MSB to LSB) for the FlagRegNum/FlagSubRegNum,

Saturate, ExecSize, PredInv, PredCtrl, ThreadCtrl, QtrCtrl,

DepCtrl, MaskCtrl, and AccessMode bit fields.

6:0 7 6:0 Opcode Opcode. The same in both the compact and native formats.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 953

GEN Compact Instruction Format 3 Source Operands

Bits Size

Mapping

Bits Compact Name Mapping Description

63:57 7 124:118 Src2.RegNum[6:0] Src2.RegNum[6:0]. The

SourceIndex field in the compact

instruction determines

Src2.RegNum[7].

56:50 7 103:97 Src1.RegNum[6:0] Src1.RegNum[6:0]. The

SourceIndex field in the compact

instruction determines

Src1.RegNum[7].

49:43 7 82:76 Src0.RegNum[6:0] Src0.RegNum[6:0]. The

SourceIndex field in the compact

instruction determines

Src0.RegNum[7].

42:40 3 117:115 Src2.SubRegNum Src2.SubRegNum.

39:37 3 96:94 Src1.SubRegNum Src1.SubRegNum.

36:34 3 75:73 Src0.SubRegNum Src0.SubRegNum.

33 1 106 Src2.RepCtrl Src2.RepCtrl.

32 1 85 Src1.RepCtrl Src1.RepCtrl.

31 1 31 Saturate Saturate.

29 1 29 CmptCtrl
Compaction Control. The same in

both the compact and native

formats:

0: Regular instruction, not

compacted.

1: Compacted instruction.

28 1 64 Src0.RepCtrl Src0.RepCtrl.

27:19 9 Not

mapped

Reserved Not mapped.

18:12 7 63:56 Dst.RegNum[6:0] Dst.RegNum[7:0] with MSB of zero

and [6:0] from the compact

instruction.

11:10 2 125, 104,

83,

114:107,

93:86,

72:65,

55:49,

48:43,

SourceIndex Lookup one of four 46-bit values.

That value is used (from MSB to

LSB) for the Src2.RegNum[7],

Src1.RegNum[7], Src0.RegNum[7],

Src2.ChanSel, Src1.ChanSel,

Src0.ChanSel, Dst.SubRegNum,

Dst.ChanEnable, Dst.DstType,

3D Media GPGPU

954 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

42:37 SrcType, Src2.Modifier,

Src1.Modifier, and Src0.Modifier bit

fields.

9:8 2 34, 33:32,

28:8

ControlIndex Lookup one of four 24-bit values.

That value is used (from MSB to

LSB) for the MaskCtrl,

FlagRegNum/FlagSubRegNum,

AccWrCtrl, CondModifier, ExecSize,

PredInv, PredCtrl, ThreadCtrl,

QtrCtrl, NibCtrl, DepCtrl, and

AccessMode bit fields.

7 1 Not

mapped

Reserved Not mapped.

6:0 7 6:0 Opcode Opcode. The same in both the

compact and native formats.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 955

GEN Compact Instruction Format 3 Source Operands

Bits Size Mapping Bits Compact Name Mapping Description

63:57 7 124:118 Src2.RegNum[6:0] Src2.RegNum[6:0]. The SourceIndex field in the compact

instruction determines Src2.RegNum[7].

56:50 7 103:97 Src1.RegNum[6:0] Src1.RegNum[6:0]. The SourceIndex field in the compact

instruction determines Src1.RegNum[7].

49:43 7 82:76 Src0.RegNum[6:0] Src0.RegNum[6:0]. The SourceIndex field in the compact

instruction determines Src0.RegNum[7].

42:40 3 117:115 Src2.SubRegNum Src2.SubRegNum.

39:37 3 96:94 Src1.SubRegNum Src1.SubRegNum.

36:34 3 75:73 Src0.SubRegNum Src0.SubRegNum.

33 1 106 Src2.RepCtrl Src2.RepCtrl.

32 1 85 Src1.RepCtrl Src1.RepCtrl.

31 1 31 Saturate Saturate.

29 1 29 CmptCtrl
Compaction Control. The same in both the compact and native

formats:

0: Regular instruction, not compacted.

1: Compacted instruction.

28 1 64 Src0.RepCtrl Src0.RepCtrl.

27:19 9 Not mapped Reserved Not mapped.

18:12 7 63:56 Dst.RegNum[6:0] Dst.RegNum[7:0] with MSB of zero and [6:0] from the compact

instruction.

11:10 2 126, 125, 105,

104, 84, 83,

114:107, 93:86,

72:65, 55:49,

48:43, 42:37

SourceIndex Lookup one of four 49-bit values. That value is used (from MSB

to LSB) for the Src2.SubRegNum, Src2.RegNum[7],

Src1.RegNum, Src1.RegNum[7], Src0.SubRegNum,

Src0.RegNum[7], Src2.ChanSel, Src1.ChanSel, Src0.ChanSel,

Dst.SubRegNum, Dst.ChanEnable, Dst.DstType, SrcType,

Src2.Modifier, Src1.Modifier, and Src0.Modifier bit fields.

9:8 2 36:35, 34,

33:32, 28:8

ControlIndex Lookup one of four 26-bit values. That value is used (from MSB

to LSB) for the Src1.Type, Src2.Type MaskCtrl,

FlagRegNum/FlagSubRegNum, AccWrCtrl, CondModifier,

ExecSize, PredInv, PredCtrl, ThreadCtrl, QtrCtrl, NibCtrl, DepCtrl,

and AccessMode bit fields.

7 1 Not mapped Reserved Not mapped.

6:0 7 6:0 Opcode Opcode. The same in both the compact and native formats.

3D Media GPGPU

956 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following diagrams are an alternate presentation of the CHV compact instruction formats.

GEN Compact Instruction Format [CHV, BSW] 1 or 2 Source Operands

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 957

GEN Compact Instruction Format 3 Source Operands

EU Instruction Compaction Tables

The following four tables describe the mappings for the ControlIndex, DataTypeIndex, SubRegIndex,

Src0Index, and Src1Index fields in the 1 or 2 source operand compact instruction format.

ControlIndex Compact Instruction Field Mappings 1 or 2 Source Operands

ControlIndex 19-Bit Mapping Mapped Meaning

0 0000000000000000010 Align1 | We | (1) | f0.0

1 0000100000000000000 Align1 | (4) | f0.0

2 0000100000000000001 Align16 | (4) | f0.0

3 0000100000000000010 Align1 | We | (4) | f0.0

4 0000100000000000011 Align16 | We | (4) | f0.0

5 0000100000000000100 Align1 | NoDDClr | (4) | f0.0

6 0000100000000000101 Align16 | NoDDClr | (4) | f0.0

3D Media GPGPU

958 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

ControlIndex 19-Bit Mapping Mapped Meaning

7 0000100000000000111 Align16 | We | NoDDClr | (4) | f0.0

9 0000100000000001001

10 0000100000000001101 Align16 | NoDDClr | (4) | f0.0

11 0000110000000000000 Align1 | Q1 | (8) | f0.0

12 0000110000000000001 Align16 | Q1 | (8) | f0.0

13 0000110000000000010 Align1 | We | Q1 | (8) | f0.0

14 0000110000000000011 Align16 | We | Q1 | (8) | f0.0

15 0000110000000000100 Align1 | NoDDClr | Q1 | (8) | f0.0

16 0000110000000000101 Align16 | NoDDClr | Q1 | (8) | f0.0

17 0000110000000000111 Align16 | We | NoDDClr | Q1 | (8) | f0.0

18 0000110000000001001 Resreved

19 0000110000000001101 Align16 | NoDDClr | Q1 | (8) | f0.0

20 0000110000000010000 Align1 | Q2 | (8) | f0.0

21 0000110000100000000 Align1 | Q1 | +f.xyzw | (8) | f0.0

22 0001000000000000000 Align1 | H1 | (16) | f0.0

23 0001000000000000010 Align1 | We | H1 | (16) | f0.0

24 0001000000000000100 Align1 | NoDDClr | H1 | (16) | f0.0

25 0001000000100000000 Align1 | H1 | +f.xyzw | (16) | f0.0

26 0010110000000000000 Align1 | Q1 | (8) | .sat | f0.0

27 0010110000000010000 Align1 | Q2 | (8) | .sat | f0.0

28 0011000000000000000 Align1 | H1 | (16) | .sat | f0.0

29 0011000000100000000 Align1 | H1 | +f.xyzw | (16) | .sat | f0.0

30 0101000000000000000 Align1 | H1 | (16) | f0.1

31 0101000000100000000 Align1 | H1 | +f.xyzw | (16) | f0.1

DataTypeIndex Compact Instruction Field Mappings 1 or 2 Source Operands

DataTypeIndex 21-Bit Mapping Mapped Meaning

0 001000000000000000001 r:ud | a:ud | a:ud | <1> | dir |

1 001000000000001000000 a:ud | r:ud | a:ud | <1> | dir |

2 001000000000001000001 r:ud | r:ud | a:ud | <1> | dir |

3 001000000000011000001 r:ud | i:ud | a:ud | <1> | dir |

4 001000000000101011101 r:f | r:d | a:ud | <1> | dir |

5 001000000010111011101 r:f | i:vf | a:ud | <1> | dir |

6 001000000011101000001 r:ud | r:f | a:ud | <1> | dir |

7 001000000011101000101 r:d | r:f | a:ud | <1> | dir |

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 959

DataTypeIndex 21-Bit Mapping Mapped Meaning

8 001000000011101011101 r:f | r:f | a:ud | <1> | dir |

9 001000001000001000001 r:ud | r:ud | r:ud | <1> | dir |

10 001000011000001000000 a:ud | r:ud | i:ud | <1> | dir |

11 001000011000001000001 r:ud | r:ud | i:ud | <1> | dir |

12 001000101000101000101 r:d | r:d | r:d | <1> | dir |

13 001000111000101000100 a:d | r:d | i:d | <1> | dir |

14 001000111000101000101 r:d | r:d | i:d | <1> | dir |

15 001011100011101011101 r:f | r:f | a:f | <1> | dir |

16 001011101011100011101 r:f | a:f | r:f | <1> | dir |

17 001011101011101011100 a:f | r:f | r:f | <1> | dir |

18 001011101011101011101 r:f | r:f | r:f | <1> | dir |

19 001011111011101011100 a:f | r:f | i:f | <1> | dir |

20 000000000010000001100 a:w | a:ub | a:ud | <0> | dir |

21 001000000000001011101 r:f | r:ud | a:ud | <1> | dir |

22 001000000000101000101 r:d | r:d | a:ud | <1> | dir |

23 001000001000001000000 a:ud | r:ud | r:ud | <1> | dir |

24 001000101000101000100 a:d | r:d | r:d | <1> | dir |

25 001000111000100000100 a:d | a:d | i:d | <1> | dir |

26 001001001001000001001 r:uw | a:uw | r:uw | <1> | dir |

27 001010111011101011101 r:f | r:f | i:vf | <1> | dir |

28 001011111011101011101 r:f | r:f | i:f | <1> | dir |

29 001001111001101001100 a:w | r:w | i:w | <1> | dir |

30 001001001001001001000 a:uw | r:uw | r:uw | <1> | dir |

31 001001011001001001000 a:uw | r:uw | i:uw | <1> | dir |

3D Media GPGPU

960 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SubRegIndex Compact Instruction Field Mappings 1 or 2 Source Operands

SubRegIndex 15-Bit Mapping Mapped Meaning

0 000000000000000 0 | 0 | 0 |

1 000000000000001 0.x | 0.xx | 0.xx

2 000000000001000 8 | 0 | 0 |

3 000000000001111 0.xyzw | 0.xx | 0.xx

4 000000000010000 16 | 0 | 0 |

5 000000010000000 0 | 4 | 0 |

6 000000100000000 0 | 8 | 0 |

7 000000110000000 0 | 12 | 0 |

8 000001000000000 0 | 16 | 0 |

9 000001000010000 16 | 16 | 0 |

10 000001010000000 0 | 20 | 0 |

11 001000000000000 0 | 0 | 4 |

12 001000000000001 0.x | 0.xx | 0.xy

13 001000010000001 0.x | 0.xy | 0.xy

14 001000010000010 0.y | 0.xy | 0.xy

15 001000010000011 0.xy | 0.xy | 0.xy

16 001000010000100 0.z | 0.xy | 0.xy

17 001000010000111 0.xyz | 0.xy | 0.xy

18 001000010001000 0.w | 0.xy | 0.xy

19 001000010001110 0.yzw | 0.xy | 0.xy

20 001000010001111 0.xyzw | 0.xy | 0.xy

21 001000110000000 0 | 12 | 4 |

22 001000111101000 0.w | 0.ww | 0.xy

23 010000000000000 0 | 0 | 8 |

24 010000110000000 0 | 12 | 8 |

25 011000000000000 0 | 0 | 12 |

26 011110010000111 0.xyz | 0.xy | 0.ww

27 100000000000000 0 | 0 | 16 |

28 101000000000000 0 | 0 | 20 |

29 110000000000000 0 | 0 | 24 |

30 111000000000000 0 | 0 | 28 |

31 111000000011100 28 | 0 | 28 |

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 961

Src0Index or Src1Index Compact Instruction Field Mappings 1 or 2 Source Operands

Src0Index or

 Src1Index 12-Bit Mapping Mapped Meaning

0 000000000000 dir | <0;1,0>

1 000000000010 (-) | dir | <0;1,0>

2 000000010000 dir | <0;>.zx

3 000000010010 (-) | dir | <0;>.zx

4 000000011000 dir | <0;>.wx

5 000000100000 dir | <0;>.xy

6 000000101000 dir | <0;>.yy

7 000001001000 dir | <0;4,1>

8 000001010000 dir | <0;>.zz

9 000001110000 dir | <0;>.zw

10 000001111000 dir | <0;8,4> / dir | <0;>.ww

11 001100000000 dir | <4;>.xx

12 001100000010 (-) | dir | <4;>.xx

13 001100001000 dir | <4;>.yx

14 001100010000 dir | <4;>.zx

15 001100010010 (-) | dir | <4;>.zx

16 001100100000 dir | <4;>.xy

17 001100101000 dir | <4;>.yy

18 001100111000 dir | <4;>.wy

19 001101000000 dir | <4;4,0>

20 001101000010 (-) | dir | <4;4,0>

21 001101001000 dir | <4;>.yz

22 001101010000 dir | <4;>.zz

23 001101100000 dir | <4;>.xw

24 001101101000 dir | <4;>.yw

25 001101110000 dir | <4;>.zw

26 001101110001 (abs) | dir | <4;>.zw

27 001101111000 dir | <4;>.ww

28 010001101000 dir | <8;8,1>

29 010001101001 (abs) | dir | <8;8,1>

30 010001101010 (-) | dir | <8;8,1>

31 010110001000 dir | <16;16,1>

3D Media GPGPU

962 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The following tables describe the mappings for the ControlIndex and SourceIndex fields in the 3 source

operand compact instruction format.

ControlIndex Compact Instruction Field Mappings 3 Source Operands

ControlIndex 24-Bit Mapping Mapped Meaning

0 100000000110000000000001 (8) Q1 NoMask Align16

1 000000000110000000000001 (8) Q1 Align16

2 000000001000000000000001 (16) H1 Align16

3 000000001000000000100001 (16) H2 Align16

ControlIndex Compact Instruction Field Mappings 3 Source Operands

ControlIndex 26-Bit Mapping Mapped Meaning

0 00100000000110000000000001 (8) Q1 NoMask Align16

1 00000000000110000000000001 (8) Q1 Align16

2 00000000001000000000000001 (16) H1 Align16

3 00000000001000000000100001 (16) H2 Align16

SourceIndex Compact Instruction Field Mappings 3 Source Operands

SourceIndex 46-Bit Mapping Mapped Meaning

0 0001110010011100100111001000001111000000000000 No Negation

1 0001110010011100100111001000001111000000000010 Negate Src0

2 0001110010011100100111001000001111000000001000 Negate Src1

3 0001110010011100100111001000001111000000100000 Negate Src2

SourceIndex Compact Instruction Field Mappings 3 Source Operands

SourceIndex 49-Bit Mapping Mapped Meaning

0 0000001110010011100100111001000001111000000000000 No Negation

1 0000001110010011100100111001000001111000000000010 Negate Src0

2 0000001110010011100100111001000001111000000001000 Negate Src1

3 0000001110010011100100111001000001111000000100000 Negate Src2

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 963

Opcode Encoding

Byte 0 of the 128-bit instruction word contains the opcode. The opcode uses 7 bits. Bit location 7 in

byte 0 is reserved for future opcode extension.

The opcodes are encoded and organized into five groups based on the type of operations: Special

instructions, move/logic instructions (opcode=00xxxxxb), flow control instructions (opcode=010xxxxb),

miscellaneous instructions (opcode=011xxxxb), parallel arithmetic instructions (opcode=100xxxxb), and

vector arithmetic instructions (opcode=101xxxxb). Opcodes 110xxxb are reserved.

Note: Opcodes appear in the overall Instruction Set Summary Table as well. The following subsections

still serve the purpose of describing various instruction groups.

Move and Logic Instructions

This instruction group has an opcode format of 00xxxxxb.

 The opcodes for move instructions (mov, sel and movi) share the common 5 MSBs in the form of

00000xxb.

 The opcodes for logic instructions (not, and, or, and xor) share the common 5 MSBs in the form of

00001xxb.

 The opcodes for shift instructions (shr, shl, and asr) share the common 4 MSBs in the form of

0001xxxb. Bit 2 indicates arithmetic or logic shift (0 = logic, 1 = arithmic). Bit 1 is always 0 (which

is reserved for future extension to support rotation shift as 0 = shift, 1 = rotate). Bit 0 indicates

the shift direction (0 = right, 1 = left).

 The opcodes for compare instructions (cmp and cmpn) share the common 6 MSBs in the form of

001000xb. Bit 0 indicates whether it is a normal compare, cmp, or a special compare-NaN, cmpn.

Move and Logic Instructions

Opcode

Instruction Description #src #dst dec hex

1 0x01 mov Component-wise move 1 1

2 0x02 sel Component-wise selective move based on

predication

2 1

3 0x03 movi Fast component-wise indexed move 1 1

4 0x04 not Component-wise one's complement (bitwise not) 1 1

5 0x05 and Component-wise logical AND (bitwise and) 2 1

6 0x06 or Component-wise logical OR (bitwise or) 2 1

7 0x07 xor Component-wise logical XOR (bitwise xor) 2 1

8 0x08 shr Component-wise logical shift right 2 1

9 0x09 shl Component-wise logical shift left 2 1

10 0x0A smov Scattered Move 1 1

11 0x0B Reserved

../../../../Content/3D_Media_GPGPU/Execution_Units/EU%20Instructions%20Table.htm#_TocInstSetSummary

3D Media GPGPU

964 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Opcode

Instruction Description #src #dst dec hex

12 0x0C asr Component-wise arithmetic shift right 2 1

13 0x0D Reserved

14 0x0E Reserved

15 0x0F Reserved

16 0x10 cmp Component-wise compare, store condition code in

destination

2 1

17 0x11 cmpn Component-wise compare-NaN, store condition

code in destination

2 1

18 0x12 csel Component-wise selective move based on result of

compare

3 1

19 0x13 Reserved

20 0x14 Reserved

21 0x15 Reserved

22 0x16 Reserved

23 0x17 bfrev Reverse bits 1 1

24 0x18 bfe Bitfield extract 3 1

25 0x19 bfi1 Bitfield insert macro instruction 1, generate mask 2 1

26 0x1A bfi2 Bitfield insert macro instruction 2, insert based on

mask

3 1

27-

31

0x1B-

0x1F

Reserved

Flow Control Instructions

This instruction group has an opcode format of 010xxxxb.

Flow Control Instructions

Opcode

Instruction Description #src #dst dec hex

32 0x20 jmpi Jump indexed 1 0

33 0x21 brd Branch - Diverging 1 0

34 0x22 if If 0/2 0

35 0x23 brc Branch - Converging 1 -

36 0x24 else Else 1 0

37 0x25 endif End if 0 0

38 0x26 Reserved

39 0x27 Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 965

Opcode

Instruction Description #src #dst dec hex

40 0x28 break Break 1 0

41 0x29 cont Continue 1 0

42 0x2A halt Halt 1 0

43 0x2B calla Subroutine call absolute 1 1

44 0x2C call Subroutine call 1 1

45 0x2D return Subroutine return 1 1

46 0x2E goto Goto 2 0

47 0x2F join Join 2 0

Miscellaneous Instructions

This instruction group has an opcode format of 011xxxxb.

Miscellaneous Instructions

Opcode

Instruction Description #src #dst dec hex

48 0x30 wait Wait for (external) notification 1 0

49 0x31 send Send 1 1

50 0x32 sendc Conditional Send (based on TDR) 1 1

51 0x33 Reserved

52 0x34 Reserved

53-55 0x35-0x37 Reserved

56 0x38 math Math functions for extended math pipeline 1/2 1/2

57-63 0x39-0x3F Reserved

Parallel Arithmetic Instructions

This instruction group has an opcode format of 100xxxxb.

Parallel Arithmetic Instructions

Opcode

Instruction Description #src #dst dec hex

64 0x40 add Component-wise addition 2 1

65 0x41 mul Component-wise multiply 2 1

66 0x42 avg Component-wise average of the two source operands 2 1

67 0x43 frc Component-wise floating point truncate-to-minus-

infinity fraction

1 1

3D Media GPGPU

966 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Opcode

Instruction Description #src #dst dec hex

68 0x44 rndu Component-wise floating point rounding up (ceiling) 1 1

69 0x45 rndd Component-wise floating point rounding down (floor) 1 1

70 0x46 rnde Component-wise floating point rounding toward

nearest even

1 1

71 0x47 rndz Component-wise floating point rounding toward zero 1 1

72 0x48 mac Component-wise multiply accumulate 2 1

73 0x49 mach multiply accumulate high 2 1

74 0x4A lzd leading zero detection 1 1

75 0x4B fbh Find first 1 for UD from msb side, or first 1/0 for D. 1 1

76 0x4C fbl First first 1 for UD from lsb side 1 1

77 0x4D cbit Count bits set 1 1

78 0x4E addc Integer add with carry 2 1 +

acc.

79 0x4F subb integer subtract with borrow 2 1 +

acc.

Vector Arithmetic Instructions

This instruction group has an opcode format of 101xxxxb.

Vector Arithmetic Instructions

Opcode

Instruction Description #src #dst dec hex

80 0x50 sad2 2-wide sum of absolute difference 2 1

81 0x51 sada2 2-wide sad accumulate 2 1

82-

83

0x52-

0x53

Reserved

84 0x54 dp4 4-wide dot product for 4-vector 2 1

85 0x55 dph 4-wide homogenous dot product for 4-vector 2 1

86 0x56 dp3 3-wide dot product for 4-vector 2 1

87 0x57 dp2 2-wide dot product for 4-vector 2 1

88 0x58 Reserved

89 0x59 line Component-wise line equation computation (a

multiply-add)

2 1

90 0x5A pln Component-wise floating point plane equation

computation (a multiply-multiply-add)

2 1

91 0x5B fma(mad) Component-wise floating point mad computation

(a multiple-add)

3 1

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 967

Opcode

Instruction Description #src #dst dec hex

92 0x5C lrp Component-wise floating point lrp computation

(blend)

3 1

93 0x5D fmam(madm) Component-wise floating point fused multiply and

add for macro operations.

3 1

94-

95

0x5E-

0x5F

Reserved

3D Media GPGPU

968 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Special Instructions

There are two special instructions, namely, nop (opcode = 0x7E) and illegal (opcode = 0x00).

 Nop instruction may be used for instruction padding in memory between two normal instructions

to force alignment or to introduce instruction execution delay. Currently, there is no need for

between-instruction padding.

 Illegal instruction may be used for instruction padding in memory outside the normal instruction

sequence such as before or after the kernel program as well as between subroutines.

 Nop and illegal instructions do not have source operands or destination operand. Therefore, they

do not implicitly update the accumulator register. They cannot be compressed.

Special Instructions

Opcode

Instruction Description #src #dst dec hex

0 0x00 illegal Illegal instruction 0 0

96-125 0x60-0x7D Reserved

126 0x7E nop No-op 0 0

127 0x7F Reserved

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 969

Native Instruction BNF

The Backus-Naur Form (BNF) grammar identifies the assembly language syntax, which is native to the

hardware. It does not include intelligent defaults, assembler pragmas, etc.

Instruction Groups

<Instruction>::=<UnaryInstruction>

<UnaryInstruction>::= <Predicate> <UnaryInst> <ExecSize> dst <SrcAccImm> <InstOptions>

<UnaryInst>::= <UnaryOp> <ConditionalModifier> <Saturate>

<UnaryOp>::= “mov” | “frc” | “rndu” | “rndd” | “rnde” | “rndz” | “not” | “lzd”

<BinaryInstruction>::= <Predicate> <BinaryInst> <ExecSize> dst <Src> <SrcImm> <InstOptions>

<BinaryInst>::= <BinaryOp> <ConditionalModifier> <Saturate>

<BinaryOp>::= “mul” | “mac” | “mach” | “line”” | “pln”

|“sad2” | “sada2” | “dp4” | “dph” | “dp3” | “dp2”” | “Irp”” | “bfi1”” | “addc”” | “subb”

<BinaryAccInstruction>::= <Predicate> <BinaryAccInst> <ExecSize> dst <SrcAcc> <SrcImm>

<InstrOptions>

<BinaryAccInst>::= <BinaryAccOp> <ConditionalModifier> <Saturate>

<BinaryAccOp>::= “avg” | “add” | “sel”

|“and” | “or” | “xor”

|“shr” | “shl” | “asr”

|“cmp” | “cmpn”

<TriInstruction>::= <Predicate> <TriInst> <ExecSize> <PostDst> <CurrDst> <TriSrc> <MsgDesc>

<InstOptions>

<TriInst>::= <TriOp> <ConditionalModifier> <Saturate>

<TriOp>::= “send”

<TriInstruction2> ::= <Predicate> <TriInst2> <ExecSize> dst <Src> <Src> <Src><InstOptions>

<TriInst2> ::= <TriOp> <ConditionalModifier><Saturate>

,<TriOp> ::= “bfe”| “bfi2”|”mad”

<BranchConvInstruction> ::= <Predicate> <BranchConvOp> <ExecSize>< RelativeLocation2>

<BranchConvOp> ::= “brc”

<BrancConvInstruction> ::= <Predicate> <BranchDivOp> <ExecSize>< RelativeLocation3>

<BranchDivOp> ::= “brd”

3D Media GPGPU

970 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

<CallInstruction> ::= <Predicate> <CallOp> <ExecSize>dst< RelativeLocation2>

<CallOp> ::= “call” |”CALLA”

<MathInstruction> ::= <Predicate> <MathInst> <ExecSize>< Dst>< Src>< Src><FC>

<MathInst> ::= <MathOp><Saturate>

<MathOp> ::= “math”

<FC> ::= “INV” | “LOG” | “EXP” | “SQRT” |”RSQ” | “POW” | “SIN” | “COS” | “INT DIV”

<JumpInstruction> ::=<JumpOp> <RelativeLocation2>

<JumpOp>::= “jmpi”

<BranchLoopInstruction>::= <Predicate> <BranchLoopOp> < RelativeLocation>

<BranchLoopOp>::=“if” | “iff” | “while”

<ElseInstruction>::= <ElseOp> < RelativeLocation>

<ElseOp>::=“else”

<BreakInstruction>::= <Predicate> <BreakOp> <LocationStackCtrl>

<BreakOp>::=“break” | “cont” | “halt”

<SyncInstruction>::= <Predicate> <SyncOp> <NotifyReg>

<SyncOp>::=“wait”

<SpecialInstruction>::=“do” | “endif” |“nop” | “illegal”

Destination Register

dst::=<DstOperand>

<DstOperandEx>

<DstOperand>::=<DstReg> <DstRegion> <WriteMask> <DstType>

<DstOperandEx>::=<AccReg> <DstRegion> <DstType>

|<FlagReg> <DstRegion> <DstType>

|<AddrReg> <DstRegion> <DstType>

|<MaskReg> <DstRegion> <DstType>

|<MaskStackReg>

|<ControlReg>

|<IPReg>

|<NullReg>

| <ChannelEnableReg>

|<ThreadControlReg>

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 971

|<PerformanceReg>

<DstReg>::=<DirectGenReg> | <IndirectGenReg>

|<DirectMsgReg> | <IndirectMsgReg>

<PostDst>::=<PostDstReg> <DstRegion> <WriteMask> <DstType>

|<NullReg>

<PostDstReg>::= <DirectGenReg> | <IndirectGenReg>

<CurrDst>::=<DirectAlignedMsgReg>

Source Register

Source with Accumulator Access and with Immediate

<SrcAccImm>::=<SrcAcc>

<Imm32> <SrcImmType>

<SrcAcc>::=<DirectSrcAccOperand>

<IndirectSrcOperand>

<DirectSrcAccOperand>::=<DirectSrcOperand>

|<SrcArcOperandEx>

|<AccReg> <SrcType>

<SrcArcOperandEx>::=<FlagReg> <Region> <SrcType>

|<AddrReg> <Region> <SrcType>

|<ControlReg>

|<StateReg>

|<NotifyReg>

|<IPReg>

|<NullReg>

| <ChannelEnableReg>

|<ThreadControlReg>

|<PerformanceReg>

<IndirectSrcOperand>::=<SrcModifier> <IndirectGenReg> <IndirectRegion> <Swizzle > <SrcType>

Source without Accumulator Access

<Src>::=<DirectSrcOperand>

<IndirectSrcOperand>

< DirectSrcOperand>::=<SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

3D Media GPGPU

972 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

|<SrcArcOperandEx>

<TriSrc>::=<SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

<NullReg>

<MsgDesc>::=<ImmDesc>

<Reg32>

<Reg32>::=<DirectGenReg> <Region> <SrcType>

Source without Accumulator Access or IP Access

<SrcImm>::=<DirectSrcOperand>

<Imm32> <SrcImmType>

Address Registers

<AddrParam>::=<AddrReg> <ImmAddrOffset>

<ImmAddrOffset>::= “”

| “,” <ImmAddrNum>

Register Files and Register Numbers

Note: The recommended instruction syntax uses subregister numbers within the GRF in units of actual

data element size, corresponding to the data type used. For example for the F (Float) type, the

assembler syntax uses subregister numbers 0 to 7, corresponding to subregister byte addresses of 0 to

28 in steps of 4, the element size.

<DirectGenReg>::=<GenRegFile> <GenRegNum> <GenSubRegNum>

<IndirectGenReg>::=<GenRegFile> “[“ <AddrParam> “]”

<GenRegFile>::=“r”

<GenRegNum>:: =“0”…“127”

<GenSubRegNum>:: = “”

| “.0”…”.3” //incase of DF

| “.0”...“.7”

| “.0”...“.15”

| “.0”...“.31”

<DirectMsgReg>::=<DirectAlignedMsgReg> <MsgSubRegNum>

<DirectAlignedMsgReg>::=<MsgRegFile> <MsgRegNum>

<IndirectMsgReg>::=<MsgRegFile> “[“ <AddrParam> “]”

<MsgRegFile>::=“m”

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 973

<MsgRegNum>:: =“0”…“15”

<MsgSubRegNum>:: = <GenSubRegNum>

<AddrReg>::=<AddrRegFile> <AddrSubRegNum>

<AddrRegFile>::=“a0”

<AddrSubRegNum>:: = “”

| “.0” … “.7”

<AccReg>::=“acc” <AccRegNum><AccSubRegNum>

<AccRegNum>:: =“0” | “1”

<AccSubRegNum>:: = <GenSubRegNum>

<FlagReg> ::= “f” <FlagRegNum> <FlagSubRegNum>

<FlagRegNum> :: = “0” | “1”

<FlagReg>::=“f0” <FlagSubRegNum>

<FlagSubRegNum>:: =“”

| “.0”...“.1”

<NotifyReg>::=“n” <NotifyRegNum>

<NotifyRegNum>:: =“0”...“2”

<StateReg>::=“sr0” <StateSubRegNum>

<StateSubRegNum>:: =“.0”... “.1”

<ControlReg>::=“cr0” <ControlSubRegNum>

<ControlSubRegNum>:: =“.0” ...“.2”

<IPReg>::=“ip”

<NullReg>::=“null”

<ThreadControlReg> ::= “tdr0”<ThreadCntrlSubRegNum>

<ThreadCntrlSubRegNum> ::= “.0”…“.7”

<PerformanceReg> ::= “tm0”

<ChannelEnableReg> ::= “ce0.0”

Relative Location and Stack Control

<RelativeLocation>::= <imm16>

<RelativeLocation2>::= <imm32> | <reg32>

<RelativeLocation3> ::= <imm16> | <reg32>

<LocationStackCtrl>::=<imm32>

3D Media GPGPU

974 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Regions

<DstRegion>::=“<”<HorzStride> “>”

<IndirectRegion>::=<Region> | <RegionWH> | <RegionV>

<Region>::=“<”<VertStride> “;” <Width> “,” <HorzStride> “>”

<RegionWH>::=“<” <Width> “,” <HorzStride> “>”

<RegionV>::=“<”<VertStride> “>”

<VertStride>::= “0” | “1” | “2” | “4” | “8” | “16” | “32”

<Width>::=“1” | “2” | “4” | “8” | “16”

<HorzStride>::=“0” | “1” | “2” | “4”

Types

SrcType

<SrcType> ::= “:df” | “:f” | “:ud” | “:d” | “:uw” | “:w” | “:ub” | “:b” | “:uq” | “:q” | “:hf”

<SrcImmType> ::= <SrcType> | “:v” | “:vf” | “:uv”

<DstType> ::= <SrcType>

Write Mask

<WriteMask>::= “”

| “.” “x” | “.” “y” | “.” “z” | “.” “w”

| “.” “xy” | “.” “xz” | “.” “xw” | “.” “yz” | “.” “yw” | “.” “zw”

| “.” “xyz” | “.” “xyw” | “.” “xzw” | “.” “yzw”

| “.” “xyzw”

Swizzle Control

<Swizzle>::=“”

| “.” <ChanSel>

| “.” <ChanSel> <ChanSel> <ChanSel> <ChanSel>

<ChanSel>::= “x” | “y” | “z” | “w”

Immediate Values

<ImmAddrNum>::=“-512”… “511”

<Imm64> ::= “0.0”… “±1.0*2-1024…1023” | “0”…”264-1” | “-263”…”263-1”

<Imm32>::=“0.0”… “±1.0*2-128…127” | “0”…”232-1” | “-231”…”231-1”

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 975

<Imm16>::=“0”…”216-1” | “-215”…”215-1”

<ImmDesc>::=“0”…”232-1”

Predication and Modifiers

Instruction Predication

<Predicate>::=“”

|“(” <PredState> <FlagReg> <PredCntrl> “)”

<PredState>::=“”

|“+”

|“-“

<PredCntrl>::=“”

|“.x” | “.y” | “.z” | “.w”

|“.any2h” | “.all2h”

|“.any4h” | “.all4h”

|“.any8h” | “.all8h”

|“.any16h” | “.all16h”

|“.anyv” | “.allv”

| “.any32h”| “.all32h”

Source Modification

<SrcModifier>::=“”

|“-”

|“(abs)”

|“-” “(abs)”

Instruction Modification

<ConditionalModifier>::=“”

|<CondMod> “. ” <FlagReg>

<CondMod>::=“.z” | “.e”|“.nz” | “.ne”|“.g”|“.ge”|“.l”|“.le”|“.o” |“.r” |“.u”

<Saturate>::=“”

|“.sat”

Execution Size

<ExecSize>::=“(“ <NumChannels> “)”

3D Media GPGPU

976 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

<NumChannels>::=“1” | “2” | “4” | “8” | “16” | “32”

Instruction Options

<InstOptions> ::= “”

| “{” <InstOption> “}”

| “{” <InstOption> <InstOptionEx> “}”

<InstOptionEx> ::= “”

| “,” <InstOption> <InstOptionEx>

<InstOption> ::= <AccessMode>

| <AccWrCtrl>

| <ComprCtrl>

| <DependencyCtrl>

| <MaskCtrl>

| <SendCtrl>

| <ThreadCtrl>

<AccessMode> ::= “Align1” | “Align16”

<AccWrCtrl> ::= “AccWrEn”

<ComprCtrl> ::= “SecHalf” | “Compr”

<DependencyCtrl> ::= “NoDDClr”

<MaskCtrl> ::= “NoMask”

<SendCtrl> ::= “EOT”

<ThreadCtrl> ::= “Switch”

| “Atomic”

Note for Assembler: Compression control “Compr” has a direct map to the binary instruction word. It

may be omitted if the Assembler can determine whether an instruction is compressable.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 977

Instruction Set Summary Tables

The columns in the following tables specify instruction mnemonics, hex opcodes, full names, instruction

groups, processor generation (where blank means available), the number of source operands, whether

the instruction supports predication, any support for source modifiers, an indication of supported data

types, whether the instruction supports saturation, and any support for conditional modifiers.

See the separate Accumulator Restrictions table for information about how instructions are allowed to

use accumulators.

If the Project column is blank, an instruction is supported for CHV, BSW, all generations implemented or

designed so far.

N and Y indicate No (no support for a feature) and Yes (full support for a feature) respectively.

A SrcMod (source modifier) value of Y indicates that a numeric source modifier is allowed, optionally

specifying abolute value, negation, or a forced negative value. The value N indicates no source modifier

support.

SrcMod Information

A SrcMod value of ** indicates a logical source modifier is allowed, optionally inverting all source bits (a NOT

operation).

In the Src Types and Dst Type columns, Int means any integer type and * means such an extensive list of

types that you must refer to the detailed instruction description.

Byte (B, UB) and QWord (Q, UQ) integer types cannot be mixed in the same instruction.

Instruction Set Summary Table A to B (Listed by Instruction Mnemonic)

Mnem.

Hex

 Opcode Name Group Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

add 40 Addition Parallel Arithmetic 2 Y Y * * Y Y

addc 4E Integer Addition with Carry Parallel Arithmetic 2 Y N UD UD N Y

and 05 Logic And Move and Logic 2 Y ** Int Int N Equality only

asr 0C Arithmetic Shift Right Move and Logic 2 Y Y Int Int Y Y

avg 42 Average Parallel Arithmetic 2 Y Y B, UB

 W, UW

 D, UD

B, UB

 W, UW

 D, UD

Y Y

bfe 18 Bit Field Extract Move and Logic 3 Y N UD, D UD, D N N

bfi1 19 Bit Field Insert 1 Move and Logic 2 Y N UD, D UD, D N N

bfi2 1A Bit Field Insert 2 Move and Logic 3 Y N UD, D UD, D N N

bfrev 17 Bit Field Reverse Move and Logic 1 Y N UD UD N N

brc 23 Branch Converging Flow Control 0 or 1 Y N D N N

brd 21 Branch Diverging Flow Control 0 or 1 Y N D N N

break 28 Break Flow Control 0 Y N N N

3D Media GPGPU

978 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Instruction Set Summary Table C to E (Listed by Instruction Mnemonic)

Mnem.

Hex

 Opcode Name Group Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

call 2C Call Flow Control 0 Y N D, UD N N

calla 2B Call Absolute Flow Control 0 Y N D, UD N N

cbit 4D Count Bits Set Move and Logic 1 Y N UB, UW, UD UD N N

cmp 10 Compare Move and Logic 2 Y Y * * N Y

cmpn 11 Compare NaN Move and Logic 2 Y Y * * N Y

cont 29 Continue Flow Control 0 Y N N N

csel 12 Conditional Select Move and Logic 3 N Y F F Y Y

dp2 57 Dot Product 2 Vector Arithmetic 2 Y Y F F Y Y

dp3 56 Dot Product 3 Vector Arithmetic 2 Y Y F F Y Y

dp4 54 Dot Product 4 Vector Arithmetic 2 Y Y F F Y Y

dph 55 Dot Product Homogeneous Vector Arithmetic 2 Y Y F F Y Y

else 24 Else Flow Control 0 N N N N

endif 25 End If Flow Control 0 N N N N

Instruction Set Summary Table F to L (Listed by Instruction Mnemonic)

Mnem.

Hex

 Opcode Name Group Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

fbh 4B Find First Bit from MSB Side Move and Logic 1 Y N D, UD UD N N

fbl 4C Find First Bit from LSB Side Move and Logic 1 Y N UD UD N N

frc 43 Fraction Parallel Arithmetic 1 Y Y F F N Y

goto 2E Goto Flow Control 0 Y N N N

halt 2A Halt Flow Control 0 Y N N N

if 22 If Flow Control 0 Y N N N

illegal 00 Illegal Special 0 N N N N

jmpi 20 Jump Indexed Flow Control 1 Y N D N N

join 2F Join Flow Control 0 Y N N N

line 59 Line Vector Arithmetic 2 Y Y F F Y Y

lrp 5C Linear Interpolation Vector Arithmetic 3 Y Y F F N Y

lzd 4A Leading Zero Detection Move and Logic 1 Y Y D, UD UD Y Y

Instruction Set Summary Table M to P (Listed by Instruction Mnemonic)

Mnem.

Hex

 Opcode Name Group Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

mac 48 Multiply Accumulate Parallel Arithmetic 2 Y Y * * Y Y

mach 49 Multiply Accumulate High Parallel Arithmetic 2 Y Y * * Y Y

mad 5B Multiply Add Vector Arithmetic 3 Y Y * * Y Y

madm 5D Multiply Add for Macro Vector Arithmetic 3 Y Y * * Y Y

math 38 Extended Math Function Miscellaneous 2 Y N * * Y N

mov 01 Move Move and Logic 1 Y Y * * Y Y

movi 03 Move Indexed Move and Logic 1 Y Y * * Y N

mul 41 Multiply Parallel Arithmetic 2 Y Y * * Y Y

nop 7E No Operation Special 0 N N N N

not 04 Logic Not Move and Logic 1 Y ** Int Int N Equality only

or 06 Logic Or Move and Logic 2 Y ** Int Int N Equality only

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 979

Mnem.

Hex

 Opcode Name Group Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

pln 5A Plane Vector Arithmetic 2 Y Y F F Y Y

Instruction Set Summary Table R to X (Listed by Instruction Mnemonic)

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

ret 2D Return Flow Control 1 Y N D, UD N N

rndd 45 Round Down Parallel

Arithmetic

1 Y Y F F Y Y

rnde 46 Round to Nearest or Even Parallel

Arithmetic

1 Y Y F F Y Y

rndu 44 Round Up Parallel

Arithmetic

1 Y Y F F Y Y

rndz 47 Round to Zero Parallel

Arithmetic

1 Y Y F F Y Y

sad2 50 Sum of Absolute Difference 2 Vector Arithmetic 2 Y Y B, UB W, UW Y Y

sada2 51 Sum of Absolute Difference

Accumulate 2

Vector Arithmetic 2 Y Y B, UB W, UW Y Y

sel 02 Select Move and Logic 2 Y Y * * Y Y

send 31 Send Message Miscellaneous 1 Y N * * N N

sendc 32 Conditional Send Message Miscellaneous 1 Y N * * N N

shl 09 Shift Left Move and Logic 2 Y Y Int Int Y Y

shr 08 Shift Right Move and Logic 2 Y Y Int Int Y Y

smov 0A Scattered Move Move and Logic 1 Y N * * N N

subb 4F Integer Subtraction with Borrow Parallel

Arithmetic

2 Y N UD UD N Y

wait 30 Wait Miscellaneous 1 N N UD UD N N

while 27 While Flow Control 0 Y N N N

xor 07 Logic Xor Move and Logic 2 Y ** Int Int N Equality

only

 >

3D Media GPGPU

980 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Accumulator Restrictions

This section describes restrictions on accumulator access: general restrictions, restrictions for specific

instructions, and how those specific restrictions vary for processor generations. See Accumulator

Registers for a description of the accumulator registers.

Accumulator registers can be accessed as explicit source or destination operands, as an implicit source

value when specified for a particular instruction (sada2 for example), and as an implicit destination

when the AccWrEn instruction option is used.

These general rules apply to accumulator access:

1. Flow control, send, sendc, and wait instructions cannot use accumulators.

2. Instructions with three source operands cannot use explicit accumulator operands. AccWrEn may

be allowed for implicitly updating the accumulator.

3. Instructions that use the accumulator as an implicit source value cannot specify an explicit

accumulator source operand.

4. Instructions that specify an implicit accumulator destination (with AccWrEn) cannot specify an

explicit accumulator destination operand.

5. An instruction with both an explicit accumulator source operand and an explicit accumulator

destination operand must specify the same accumulator register as the source and the

destination.

These descriptions are frequently used in this table:

 No restrictions.

 No accumulator access, implicit or explicit.

 Source operands cannot be accumulators.

 Source modifier is not allowed if source is an accumulator.

 Accumulator is an implicit source and thus cannot be an explicit source operand.

 Accumulator cannot be destination, implicit or explicit.

 AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit

destination operand.

These minor cases occur occasionally in the table:

 Integer source operands cannot be accumulators.

 No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for

implicitly updating the accumulator.

 An accumulator can be a source or destination operand but not both.

A few instructions use more than one of the listed restrictions.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 981

Accumulator Restrictions

Instructions Accumulator Restrictions

add No restrictions.

addc AccWrEn is required. The accumulator is an implicit destination and thus cannot

be an explicit destination operand.

and Source modifier is not allowed if source is an accumulator.

asr

avg

No restrictions.

bfe

bfi1

bfi2

bfrev

cbit

No accumulator access, implicit or explicit.

cmp No restrictions.

cmpn No restrictions.

csel No restrictions.

dp2

dp3

dp4

dph

Source operands cannot be accumulators.

fbh

fbl

No accumulator access, implicit or explicit.

frc No restrictions.

line Source operands cannot be accumulators.

lrp No explicit accumulator access because this is a three-source instruction. AccWrEn

is allowed for implicitly updating the accumulator.

lzd No restrictions.

mac Accumulator is an implicit source and thus cannot be an explicit source operand.

mach
Accumulator is an implicit source and thus cannot be an explicit source operand.

AccWrEn is required. The accumulator is an implicit destination and thus cannot

be an explicit destination operand.

madm No explicit accumulator access because this is a three-source instruction. AccWrEn

is allowed for implicitly updating the accumulator.

3D Media GPGPU

982 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Instructions Accumulator Restrictions

math No accumulator access, implicit or explicit.

mov An accumulator can be a source or destination operand but not both.

movi Source operands cannot be accumulators.

mul Integer source operands cannot be accumulators.

not

or

Source modifier is not allowed if source is an accumulator.

pln Source operands cannot be accumulators.

rndd

rnde

rndu

rndz

No restrictions.

sad2

sada2

Source operands cannot be accumulators.

sel No restrictions.

shl Accumulator cannot be destination, implicit or explicit.

shr No restrictions.

smov No restrictions.

subb AccWrEn is required. The accumulator is an implicit destination and thus cannot

be an explicit destination operand.

xor Source modifier is not allowed if source is an accumulator.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 983

Instruction Set Reference

This chapter describes the functions of 3D Media GPGPU Execution Units, listed in alphabetical order

according to assembly language mnemonic.

EUISA Instructions List

Conventions

This section describes conventions used in instruction reference pages.

For each instruction that has source or destination types, a table lists the allowed type combinations

and may also indicate the processor generations that support certain combinations. A notation like *W

indicates that UW and W are both allowed. Multiple types listed together mean that any combination

(Cartesian product) of the listed types is allowed.

If a source operand is floating-point, all source operands must have the same floating-point data type.

The Q and UQ types cannot be mixed with the B or UB types, neither as different source types nor as source type

and destination type.

Accumulator restrictions are described in the Accumulator Restrictions section and also appear in

instruction descriptions.

Pseudo Code Format

Instructions are explained in the following pseudo-code format that resembles the GEN assembly

instruction format.

 [(pred)] opcode (exec_size) dst src0 [src1]

Square brackets “[]” indicate that a field is optional. Saturation modifiers and instruction options are

omitted for simplicity.

General Macros and Definitions

INST_MIN_SIZE is defined as a constant of 8 bytes.

 #define INST_MIN_SIZE 8 // Instruction minimum size in bytes (for the compact instruction

format)

The floor function converts a floating point value to an integral floating point value. For a given floating

point value, from its closest two integral float values, floor returns the one that is closer to negative

infinity. For example, floor(1.3f) = 1.0f and floor(-1.3f) = -2.0f.

 float floor(float g)

 {

 return maximum(any integral float f: f <= g)

 }

3D Media GPGPU

984 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

The Condition function takes the conditional signals {SN, ZR, OF, IN, NC} of result, generates a Boolean

value according to a conditional evaluation controlled by the conditional modifier cmod, and returns

the Boolean.

 Bool Condition(result, cmod)

The ConditionNaN function takes the conditional signals {SN, ZR, OF, IN, NC, NS} of result, generates a

Boolean value according to a conditional evaluation controlled by the conditional modifier cmod, and

returns the Boolean. The only difference between Condition and ConditionNaN is that ConditionNaN

uses the NS (NaN of the second source) signal.

 Bool ConditionNaN(result, cmod)

The Jump function jumps the instruction sequence from the current instruction location by InstCount 8-

byte units, where each 16-byte native instruction is two units and each 8-byte compact instruction is

one unit. If InstCount is positive and greater than zero, is an unconditional jump forward. If InstCount is

negative, is an unconditional jump backward. If InstCount is zero, IP stays on the current instruction in

an infinite loop.

 void Jump(int InstCount)

 {

 IP = IP + (InstCount * INST_MIN_SIZE)

 }

Evaluate Write Enable

The WrEn should be evaluated as below.

Note: MaskCtrl = NoMask (1) skips the check for PcIP[n] == ExIP before enabling a channel.

 if (MaskCtrl == 1) {

 for (n = 0; n < exec_size; n++) {

 WrEn[n] = 1;

 }

 }

 else {

 for (n = 0; n < exec_size; n++) {

 if (PcIP[n] == ExIP) {

 WrEn[n] = 1;

 }

 else {

 WrEn[n] = 0;

 }

 }

 }

 if (PredCtrl != 0000b) {

 for (n = 0; n < exec_size; n++) {

 WrEn[n] = WrEn[n] & PMask[n];

 }

 }

 for (n = exec_size; n < 32; n++) {

 WrEn[n] = 0;

 }

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 985

EUISA Instructions

Symbol
Name Source

add Addition EUISA

addc Addition with Carry EUISA

asr Arithmetic Shift Right EUISA

avg Average EUISA

bfe Bit Field Extract EUISA

bfi1 Bit Field Insert 1 EUISA

bfi2 Bit Field Insert 2 EUISA

bfrev Bit Field Reverse EUISA

brc Branch Converging EUISA

brd Branch Diverging EUISA

break Break EUISA

call Call EUISA

calla Call Absolute EUISA

cmp Compare EUISA

cmpn Compare NaN EUISA

csel Conditional Select EUISA

sendc Conditional Send Message EUISA

cont Continue EUISA

cbit Count Bits Set EUISA

dp2 Dot Product 2 EUISA

dp3 Dot Product 3 EUISA

dp4 Dot Product 4 EUISA

dph Dot Product Homogeneous EUISA

else Else EUISA

endif End If EUISA

math Extended Math Function

 INV - Inverse

 LOG – Logarithm

 EXP - Exponent

 SQRT - Square Root

 RSQ - Reciprocal Square Root

 POW - Power Function

 SIN - SINE

 COS - COSINE

EUISA

3D Media GPGPU

986 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 INT DIV - Integer Divide

 INVM/RSQRTM [CHV, BSW]

fbl Find First Bit from LSB Side EUISA

fbh Find First Bit from MSB Side EUISA

frc Fraction EUISA

goto Goto EUISA

halt Halt EUISA

if If EUISA

illebal Illegal EUISA

subb Integer Subtraction with Borrow EUISA

join Join EUISA

jmpi Jump Indexed EUISA

lzd Leading Zero Detection EUISA

line Line EUISA

lrp Linear Interpolation EUISA

and Logic And EUISA

not Logic Not EUISA

or Logic Or EUISA

xor Logic Xor EUISA

mov Move EUISA

movi Move Indexed EUISA

mul Multiply EUISA

mac Multiply Accumulate EUISA

mach Multiply Accumulate High EUISA

mad Multiply Add EUISA

madm Multiply Add for Macro EUISA

nop No Operation EUISA

pln Plane EUISA

ret Return EUISA

rndd

rnde

rndu

rndz

Round Instructions

 Round Down

 Round to Nearest or Even

 Round Up

 Round to Zero

EUISA

smov Scattered Move EUISA

sel Select EUISA

send Send Message EUISA

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 987

shl Shift Left EUISA

shr Shift Right EUISA

sad Sum of Absolute Difference 2 EUISA

sada2 Sum of Absolute Difference Accumulate 2 EUISA

wait Wait Notification EUISA

while While EUISA

Round Instructions

rndd - Round Down

rndu - Round Up

rnde - Round to Nearest or Even

rndz - Round to Zero

3D Media GPGPU

988 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

rndd – Round Down

Description:

The rndd instruction takes component-wise floating point downward rounding (to the integral float

number closer to negative infinity) of src0 and storing the rounded integral float results in dst. This is

commonly referred to as the floor() function.

Each result follows the rules in the following tables based on the floating-point mode.

Floating-Point Round Down in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf -finite ^ –0 +0 +0 ** +inf NaN

Notes:

^ Note

{-1, -0} depending on the Single Precision Denorm

Mode.

** Result may be {+finite, +0}.

Floating-Point Round Down in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax -finite –0 –0 +0 +0 ** +fmax

Notes:

** Result may be {+finite, +0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 989

rnde – Round to Nearest or Even

Description:

The rnde instruction takes component-wise floating point round-to-even operation of src0 with results

in two pieces – a downward rounded integral float results stored in dst and the round-to-even

increments stored in the rounding increment bits. The round-to-even increment must be added to the

results in dst to create the final round-to-even values to emulate the round-to-even operation,

commonly known as the round() function. The final results are the one of the two integral float values

that is nearer to the input values. If the neither possibility is nearer, the even alternative is chosen.

Each result follows the rules in the following tables based on the floating-point mode.

Floating-Point Round to Nearest or Even in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf * –0 –0 +0 +0 ** +inf NaN

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

Floating-Point Round to Nearest or Even in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax * –0 –0 +0 +0 ** +fmax

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

3D Media GPGPU

990 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

rndu – Round Up

Description:

The rndu instruction takes component-wise floating point upward rounding (to the integral float

number closer to positive infinity) of src0, commonly known as the ceiling() function.

Each result follows the rules in the following tables based on the floating-point mode.

Floating-Point Round Up in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf * –0 –0 +0 ^ +finite +inf NaN

Notes:

* Result may be {–finite, –0}.

^ Note

{+1, +0} depending on the Single Precision Denorm

Mode.

Floating-Point Round Up in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax * –0 –0 +0 +0 +finite +fmax

Notes:

* Result may be {–finite, –0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 991

rndz – Round to Zero

Description:

The rndz instruction takes component-wise floating point round-to-zero operation of src0 with results

in two pieces – a downward rounded integral float results stored in dst and the round-to-zero

increments stored in the rounding increment bits. The round-to-zero increment must be added to the

results in dst to create the final round-to-zero values to emulate the round-to-zero operation,

commonly known as the truncate() function. The final results are the one of the two closest integral

float values to the input values that is nearer to zero.

Floating-Point Round to Zero in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf * –0 –0 +0 +0 ** +inf NaN

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

Floating-Point Round to Zero in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax * –0 –0 +0 +0 ** +fmax

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

Send Message

send - Send Message

The following information describes the send message.

3D Media GPGPU

992 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Send Message [CHV, BSW]

Opcode Instruction Description

49

(0x31)

send <dest> <src>

<ex_desc> <desc>

Send a message stored in GRF starting at <src> to a shared

function identified by <ex_desc> along with control from <desc>

with a GRF writeback location at <dest>.

Pred Sat Cond Mod Src Mod Src Types Dst Type

Y [FLT] [INT]

Format:

 [(pred)] send (exec_size) <dest> <src> <ex_desc> <desc>

Syntax:

Syntax

 [(pred)] send (exec_size) reg greg imm6 reg32a

 [(pred)] send (exec_size) reg greg imm6 imm32

Pseudocode:

 Evaluate(WrEn);

 <MsgChEnable> = WrEn;

 <SourceReg> = <src>.RegNum;

 MessageEnqueue(<MsgChEnable>, <ResponseReg>, <SourceReg>, <ex_dest>, <desc>);

Description:

The send instruction performs data communication between a thread and external function units, including shared

functions (Sampler, Data Port Read, Data Port Write, URB, and Message Gateway) and some fixed functions (e.g.

Thread Spawner, who also have an unique Shared Function ID). The send instruction adds an entry to the EU’s

message request queue. The request message is stored in a block of contiguous GRF registers. The response

message, if present, will be returned to a block of contiguous GRF registers. The return GRF writes may be in any

order depending on the external function units. <src> is the lead GRF register for request. <dest> is the lead GRF

register for response. The message descriptor field <desc> contains the Message Length (the number of

consecutive GRF registers) and the Response Length (the number of consecutive GRF registers). It also contains

the header present bit, and the function control signals. The extend mesage descriptor field <ex_desc> contains

the target function ID. WrEn is forwarded to the target function in the message sideband.

The send instruction is the only way to terminate a thread. When the EOT (End of Thread) bit of <ex_desc> is set, it

indicates the end of thread to the EU, the Thread Dispatcher and, in most cases, the parent fixed function.

Message descriptor field <desc> can be a 32-bit immediate, imm32, or a 32-bit scalar register, <reg32a>. GEN

restricts that the 32-bit scalar register <reg32a> must be the leading dword of the address register. It should be in

the form of a0.0<0;1,0>:ud. When <desc> is a register operand, only the lower 29 bits of <reg32a> are used.

Syntax

<ex_desc> is a 6-bit immediate, imm6. The lower 4bits of the <ex_desc> specifies the SFID for the message. The

MSb of the message descriptor, the EOT field, always comes from bit 127 of the instruction word, which is the

MSb of imm6. A thread must terminate with a send instruction with EOT turned on.

<src> is a 256-bit aligned GRF register. It serves as the leading GRF register of the request.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 993

<dest> serves for two purposes: to provide the leading GRF register location for the response message if present,

and to provide parameters to form the channel enable sideband signals.

<dest> signals whether there is a response to the message request. It can be either a null register, a direct-

addressed GRF register or a register-indirect GRF register. Otherwise, hardware behavior is undefined.

If <dest> is null, there is no response to the request. Meanwhile, the Response Length field in <desc> must be 0.

Certain types of message requests, such as memory write (store) through the Data Port, do not want response

data from the function unit. If so, the posted destination operand can be null.

If <dest> is a GRF register, the register number is forwarded to the shared function. In this case, the target

function unit must send one or more response message phases back to the requesting thread. The number of

response message phases must match the Response Length field in <desc>, which of course cannot be zero. For

some cases, it could be an empty return message. An empty return message is defined as a single phase message

with all channel enables turned off.

The subregister number, horizontal stride, destination mask and type fields of <dest> are always valid and are

used in part to generate on the WrEn. This is true even if <dest> is a null register (this is an exception for null as

for most cases these fields are ignored by hardware).

The 16-bit channel enables of the message sideband are formed based on the WrEn. Interpretation of the channel

enable sideband signals is subject to the target external function. In general for a ‘send’ instruction with return

messages, they are used as the destination dword write mask for the GRF registers starting at <dest>. For a

message that has multiple return phases, the same set of channel enable signals applies to all the return phases.

Thread managed memory coherency: A special usage of using non-null <dest> is to support write-commit

signaling for memory write service by the Data Port Write unit. If <post_dest> is not null for a memory write

request, the Data Port along with the Data Cache or Render Cache will wait until all the posted writes for the

request have reached the coherent domain before sending back to the requesting thread an empty message to

<dest> register. A memory write reaching the coherent domain, also referred to as reaching the global observable

state, means that subsequent read to the same memory location, no matter which thread issues the read, must

return the data of the write.

NoDDClr must not be used for send instruction.

[CHV, BSW] r127 must not be used for return address when there is a src and dest overlap in send instruction.

Message Descriptor Definition [CHV, BSW]

Bit Description

31 Reserved : MBZ

30 Data Format. This field specifies the width of data read from sampler or written to render target. Format

= U1 0 – Single Precision (32b) 1 – Half Precision (16b)

30 Reserved : MBZ

29 Reserved : MBZ

28:25
Message Length. This field specifies the number of 256-bit GRF registers starting from <src> to be sent

out on the request message payload. Valid value ranges from 1 to 15. A value of 0 is considered

erroneous.

Format = U4

Range = [1,15]

3D Media GPGPU

994 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

24:20
Response Length. This field indicates the number of 256-bit registers expected in the message response.

The valid value ranges from 0 to 16. A value 0 indicates that the request message does not expect any

response. The largest response supported is 16 GRF registers.

Format = U5

Range = [0,16]

19
Header Present. If set, indicates that the message includes a header. Depending on the target shared

function, this field may be restricted to either enabled or disabled. Refer to the specific shared function

section for details.

Format = Enable

18:0
Function Control

This field is intended to control the target function unit. Refer to the section on the specific target

function unit for details on the contents of this field.

Extended Message Descriptor Definition

Bit Description

31:16 Reserved

5
End Of Thread

This field, if set, indicates that this is the final message of the thread and the thread’s resources can be

reclaimed.

4 reserved

3:0
Target Function ID

This field indicates the function unit for which the message is intended.

Refer to “GPU Overview” document for the mapping of Shared Function IDs

Restrictions:

Software must obey the following rules in signaling the end of thread using the send instruction:

 The posted destination operand must be null.

 No acknowledgement is allowed for the send instruction that signifies the end of thread. This is to avoid

deadlock as the EU is expecting to free up the terminated thread’s resource.

 A thread must terminate with a send instruction with message to a shared function on the output message

bus; therefore, it cannot terminate with a send instruction with message to the following shared functions:

Sampler unit, NULL function. For example, a thread may terminate with a URB write message or a render

cache write message.

 A root thread originated from the media (generic) pipeline must terminate with a send instruction with

message to the Thread Spawner unit. A child thread should also terminate with a send to TS. Please refer to

the Media Chapter for more detailed description.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 995

 The send instruction can not update accumulator registers.

 Saturate is not supported for send instruction.

 ThreadCtrl are not supported for send instruction.

 The send with EOT should use register space R112-R127 for <src>. This is to enable loading of a new thread

into the same slot while the message with EOT for current thread is pending dispatch.



SEND should not use 64-bit datatype for src or dest register.



When context save and restore of a thread is required, the registers r0-r4 must not be used as dest or src

registers. This is required to provide a grf register space to save sr1.0 by the system interrupt routine in

the event of a mid thread pre-emption.

Extended Message Descriptor Definition

Bits Description

5 End Of ThreadThis field, if set, indicates that this is the final message of the thread and the

thread’s resources can be reclaimed.

4 reserved

3:0 Target Function ID This field indicates the function unit for which the message is intended.

Refer to volume GPU Overview for GPE Function IDs.

EUISA Structures

Name Source

AddrSubRegNum EuIsa

DstRegNum EuIsa

DstSubRegNum EuIsa

EU_INSTRUCTION_BASIC_ONE_SRC EuIsa

EU_INSTRUCTION_BASIC_THREE_SRC EuIsa

EU_INSTRUCTION_BASIC_TWO_SRC EuIsa

EU_INSTRUCTION_BRANCH_CONDITIONAL EuIsa

EU_INSTRUCTION_BRANCH_ONE_SRC EuIsa

EU_INSTRUCTION_BRANCH_TWO_SRC EuIsa

EU_INSTRUCTION_COMPACT_THREE_SRC EuIsa

EU_INSTRUCTION_COMPACT_TWO_SRC EuIsa

EU_INSTRUCTION_CONTROLS EuIsa

EU_INSTRUCTION_CONTROLS_A EuIsa

3D Media GPGPU

996 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Name Source

EU_INSTRUCTION_CONTROLS_B EuIsa

EU_INSTRUCTION_HEADER EuIsa

EU_INSTRUCTION_ILLEGAL EuIsa

EU_INSTRUCTION_MATH EuIsa

EU_INSTRUCTION_NOP EuIsa

EU_INSTRUCTION_OPERAND_CONTROLS EuIsa

EU_INSTRUCTION_OPERAND_DST_ALIGN1 EuIsa

EU_INSTRUCTION_OPERAND_DST_ALIGN16 EuIsa

EU_INSTRUCTION_OPERAND_SEND_MSG EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1 EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16 EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC EuIsa

EU_INSTRUCTION_SEND EuIsa

EU_INSTRUCTION_SOURCES_IMM32 EuIsa

EU_INSTRUCTION_SOURCES_REG EuIsa

EU_INSTRUCTION_SOURCES_REG_IMM EuIsa

EU_INSTRUCTION_SOURCES_REG_REG EuIsa

ExtMsgDescpt EuIsa

FunctionControl EuIsa

MsgDescpt31 EuIsa

SrcRegNum EuIsa

SrcSubRegNum EuIsa

EUISA Enumerations

Name Source

AddrMode EuIsa

ChanEn EuIsa

ChanSel EuIsa

CondModifier EuIsa

DepCtrl EuIsa

DstType EuIsa

EU_OPCODE EuIsa

ExecSize EuIsa

FC EuIsa

HorzStride EuIsa

PredCtrl EuIsa

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 997

Name Source

QtrCtrl EuIsa

RegFile EuIsa

RepCtrl EuIsa

SFID EuIsa

SrcImmType EuIsa

SrcIndex EuIsa

SrcMod EuIsa

SrcType EuIsa

ThreadCtrl EuIsa

VertStride EuIsa

Width EuIsa

3D Media GPGPU

998 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

EU Programming Guide

This topic is currently under development.

Assembler Pragmas

This topic is currently under development.

Declarations

A register or a register region can be declared as a symbol using the following form

.declare <symbol>Base=RegFile RegBase {.SubRegBase} ElementSize=ElementSize

{SrcRegion=DefaultSrcRegion} {DstRegion=DefaultDstRegion} {Type=DefaultType}

The register file, the base of the register origin and the element size (in unit of bytes) are the mandatory

parameters for a declared register region. Optionally, the base of the sub-register address, the default

source region, the default destination region and the default type can be provided in the declaration for

the symbol.

For immediate register addressing mode, the declared symbol can be used in the following Cartesian

form

<symbol>(RegOff, SubRegOff)<=RegNum = RegBase+ RegOff; SubRegNum = SubRegBase+

SubRegOff

or in the following simplified row-aligned form

<symbol>(RegOff)<=RegNum = RegBase+ RegOff; SubRegNum = SubRegBase

For register-indirect-register-addressing mode, the declared symbol can be used to provide immediate

address term in the following Cartesian form

<symbol>[IdxReg, RegOff, SubRegOff]<= RegNum (byte-aligned) = [IdxReg]+(RegBase+

RegOff)*32 + (SubRegBase + SubRegOff)*ElementSize

or in the following simplified row-aligned form

<symbol>[IdxReg, RegOff]<= RegNum (byte-aligned) = [IdxReg]+(RegBase+ RegOff)*32

or in the form without the immediate address term

<symbol>[IdxReg]<= RegNum (byte-aligned) = [IdxReg]+ RegBase

Defaults and Defines

The default execution size is set according to the destination register type as the following

Destination Register Type Default Execution Size

UB | B (16)

UW | W (16)

F | UD | D (8)

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 999

The default execution size can be overwritten globally for all instructions using

.default_execution_size(Execution_Size)

or be set according the destination register type using

.default_execution_size_Type(Execution_Size)

The default register type can be set for all register files using

.default_register_typeType

or be set per register file using

.default_register_type_RegFileType

The default source register region for all symbols can be set using

.default_source_register_region<VirtStride; Width, HorzStride>

or be set per register type using

.default_source_register_region_type<VirtStride; Width, HorzStride>

The default destination register region for all symbols can be set using

.default_destination_register_region< HorzStride>

or be set per register type using

.default_destination_register_region_type< HorzStride>

Finally, the precompiler supports the string replacement statement of .define in the following form

.define<symbol>Expression

Programming Note

Context: Defaults and Defines

 .declare does not support nesting. In other words, each symbol in .declare must be self defined. This would

allow the pre-processor to expand all symbols in one pass.

 .define does support nesting. Only string substitution is supported (currently).

 White space within square, angle and round brackets are allowed for easy source code alignment.

Example Pragma Usages

Example: Declaration for 8x4=32-Byte Regions:

The following symbol Block can be used to address any 8x4 byte region within the Cartisian system of a

16x8 byte GRF register area starting from r0.

Declaration

// 32x4 Byte Array.declare BlockBase=r0 ElementSize=1 Region=<32;8,1>Type=b

Fully-Expressed Instr

3D Media GPGPU

1000 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

mov(32)?:br0.16<32;8,1>:b// r0 xxxxxxxxxxxxxxxxooooooooxxxxxxxx// r1

xxxxxxxxxxxxxxxxooooooooxxxxxxxx// r2 xxxxxxxxxxxxxxxxooooooooxxxxxxxx// r3

xxxxxxxxxxxxxxxxooooooooxxxxxxxx

Short-handed Instr

Mov?:bBlock(0,16)// (0,16): RegNum=0, SubRegNum=16

Example: Declaration for 8x1 Float Regions:

The following symbol Trans can be used to address any 8x1 float region within the Cartisian

system of a 8x4 float GRF register area starting from r5.

Declaration

// 8x4 float Array starting at r5.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f

Fully-Expressed Instr

mov(8)?:fr6.0<0;8,1>:f// 2nd 16x1 Row of Trans. Matrix // r5 FFFFFFFF// r6 OOOOOOOO// r7

FFFFFFFF// r8 FFFFFFFF

Short-handed Instr

mov?:fTrans(1) // RegNum = 5+1 = 6

Example: Declaration for 8x1 Float Regions with 1x1 Indirect Addressing:

Trans region defined (same as in the previous example) is used in conjunction with the

address register.

Declaration

//8x4 float data array and 16x1 word address array.declare TransBase=r5 ElementSize=4

Region=<0;8,1> Type=f

Fully-Expressed Instr

mov(8)?:fr[a0.0,224]<0;8,1>:f

Short-handed Instr

mov?:fTrans[a0.0,2] // [a0.0 + 5*32 + 2*32]

Example: Declaration with VxH Indirect Addressing:

The VxH register-indirect-register-addressing for Trans can be provided in the following

short-hand form

Declaration

//8x4 float data array and word indices.declare TransBase=r5 ElementSize=4 Region=<0;8,1>

Type=f

Fully-Expressed Instr

mov(8)?:fr[a0.0,224]<1,0>:f

Short-handed Instr

mov?:fTrans[a0.0,2]<1,0> // [a0.0+224] [a0.1+224] … [a0.7+224]

Example: Declaration with Vx1 Indirect Addressing:

As width (4) is smaller than the execution region size (8), multiple indexed registers are

used.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1001

Declaration

//8x4 float data array and word address array.declare TransBase=r5 ElementSize=4

Region=<0;8,1> Type=f

Fully-Expressed Instr

mov(8)?:fr[a0.0,244]<4,1>:f

Short-handed Instr

mov?:fTrans[a0.0,2]<4,1>// [a0.0+224] [a0.1+224]

Assembly Programming Guideline

The following program skeleton illustrates the basic structure of a typical assembly program.

 // single line comment

 /* block comment

 */

 <preproc_directive> // macros, include, etc. Are global – handled by the pre-

processor

 <preproc_directive> // applies to all code that follows in sequence

 // ------------ some kernel

 .kernel <kernel_name_string> // [REQUIRED]

 // ------- Register requirements --------

 .reg_count_total <uint> // [REQUIRED] a more direct way to specify the parameters

required

 .reg_count_payload <uint> // [REQUIRED] rather than indirectly adding the

 // the payload and temps together to get the total (as is the case

now)

 // Note: no more “reg-count-temp”

 // -------------- Defaults ---------------

 <default…> // these should be specified per-kernel and have only kernel-scope

 <default…> // Same defaults as those already defined in the ISA doc, but just

 <default…> // moved within the kernel to make each kernel completely self-

sufficient

 // and not impacted defaults of earlier kernels

 // --------- Memory Requirements ---------

 // [optional] memory block info

 <MBDa> // memory block descriptor a

 <MBDb> // memory block descriptor b

 <MBDc> // memory block descriptor c

 <MBDd> // memory block descriptor d

 // ---------------- Code ----------------

 .code // [REQUIRED]

 <instruction>

 <instruction>

 <instruction>

 <LabelLine> // labels are code-block scope

 <instruction>

 <instruction>

 .end_code // [REQUIRED]

3D Media GPGPU

1002 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

 .end_kernel // [REQUIRED]

 // --------- next kernel -------------

 // --------- next kernel -------------

 // ...

Usage Examples

This topic is currently under development.

Vector Immediate

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. An

immediate vector is denoted by type v as imm32:v, where the 32-bit immediate field is partitioned into

8 4-bit subfields. Each 4-bit subfield contains a signed integer value. Therefore each 4-bit subfield has a

range of [-8, +7]. This is depicted in the following figure.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

V7 V6 V5 V4 V3 V2 V1 V0

Supporting DirectX 10 Pixel Shader Indexing

When a DirectX 10 Pixel Shader program is converted to run on GEN in channel-serial mode at 16 pixels

in parallel, the per-pixel index must be translated into 16 indices with per channel offset. The creation of

the per-channel offset can be achieved using the vector immediate.

Consider a generic DirectX 10 Pixel Shader instruction in the form of

opr4r[ind]r2

and assume that r0-r1 contain the 16 indices packed every other words, and r2-r3 contains source 1 and

r4-r5 contain the destination. This instruction can be converted into the following GEN instructions. The

corresponding operations are illustrated in Supporting DirectX 10 Pixel Shader Indexing.

mov (16) r11.0<1>:w 0x01234567:v// assigning a ramp vector, repeated once

mul (16)acc0:wr11.0<0;16,1>:w4:w// expand ramp range to 4 bytes per step

mac (16)r10.0<1>:wr0.0<16;8,2>:w32:w// r10 = index*32 + 0|4|…|28|0|4…|28

mov (8)a0.0<1>:wr10.0<0;8,1>:w

op (8)r4.0<1>:fr[a0.0]<1,0>:fr2.0<0;8,1>:w// Operate on the first half

mov (8)a0.0<1>:wr10.8<0;8,1>:w// Index values are off by a reg (32b)

op (8)r5.0<1>:fr[a0.0+32]<1,0>:fr3.0<0;8,1>:w// Operate on the second half.

Pixel Shader example using vector immediate.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1003

Without vector immediate support, such translation has to either use a long sequence of scalar

instructions which is very inefficient or use a constant load which requires additional constant to be

managed in memory.

Supporting OpenGL Vertex Shader Instruction SWZ

When an OpenGL Vertex Shader program is converted to run on GEN in Vertex Pair, i.e. two 4-wide

vectors in parallel, the special OpenGL Shader instruction SWZ (Swizzle) needs to be emulated. OpenGL

SWZ instruction uses an extended swizzle control field that, in addition to the 4-wide full swizzle

control, also includes constant 0 and 1 replacement as well as per channel sign reversal. The later two

are not supported by the GEN native instruction. The vector immediate can significantly reduce the

overhead of emulating such OpenGL instruction.

Consider an OpenGL Shader instruction in the form of

SWZr1r0.0-zx-1// Expected results: r1.x = 0; r1.y = -r0.z; r1.z = r0.x; r1.w = -1

It can be emulated by the following three GEN instructions.

mul(8)r1.0<1>:fr0.xzxz0x1F111F11:v// Constant vector of (1 -1 1 1 1 -1 1 1)

mov (1)f0.08b’10011001// Set flag & masked out channels y and z

(f0.0)mov(8) r1.0<1>:f 0x000F000F:v// Constant vector of (0 0 0 -1 0 0 0 -1)

In case that only 0, 1, -1 channel replacement is used and there is no signed swizzle, it may be emulated

in two GEN instructions. This is illustrated by the following example:

OpenGL:

SWZr1r0.0zx-1// Expected results: r1.x = 0; r1.y = r0.z; r1.z = r0.x; r1.w = -1

GEN:

mov (1)f0.08b’01100110// Set flag and masked out channels x and w

(f0.0)sel (8) r1.0<1>:f r0.yzxy0x000F000F:v// Constant vector of (0 0 0 -1 0 0 0 -1)

3D Media GPGPU

1004 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Destination Mask for DP4 and Destination Dependency Control

The following example demonstrates the use of destination mask mode of floating point dot-product

instruction as well as the use of destination dependency control to improve performance (i.e., avoiding

unnecessary thread switch due to possible false dependencies).

Consider a generic DirectX 10 Vertex Shader macro of matrix-vector product that is implemented on

GEN in the pair of 4-component vector mode. The DirectX 10 equivalent Shader instructions are as the

following.

dp4 r5.x r0 r4

dp4 r5.y r1 r4

dp4 r5.z r2 r4

dp4 r5.w r3 r4

With destination dependency control, the GEN instructions are as the following. The first instruction in

the sequence checks for the destination dependency, but does not clear the dependency bit. The

subsequent two instructions would do neither of them. The last instruction avoids checking the

destination dependency, but at completion, it clears the destination scoreboard. It ensures that the

content of the destination register is coherent, if any of the following instructions uses the same register

as source.

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr}

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr }

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr }

Just as a comparison, IF GEN DP4 implies reduction at the destination; additional shifted moves are

required to achieve the same results. The corresponding codes are as the following. The lower

performance due to the additional three move instruction as well as added back-to-back dependencies

shows that why we choose to implement the destination channel replication for floating point DP4.

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.1<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.2<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.w:f r3.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.3<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f

Null Register as the Destination

Null register can be used as the destination for most of the instructions. Here are some example usages.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1005

 Null as destination for regular ALU instructions: As all ALU instructions can be configured to

update the flag registers using the conditional modifiers, it is not necessary to have a destination

register if the programmer only cares about the conditionals of the operation. In that case, a null

in the destination operand field saves register space as well as one less dependency checking.

 Null as the destination for SEND/STOR instructions: for the send instruction that only send

messages out to an external unit and does not require any return data or feedback, a null in the

destination register field signifies the case.

o One extension of such case is that even though the operation does not have any return

values, a return phase with no payload but simply updating the scoreboard flag for a

non-null register can provide a signaling mechanism between the thread and the target

external unit. One application of this usage is to allow software to manage the coherency

of shared memory resources such like the many caches in the system (particularly,

valuable for read/write caches).

Use of LINE Instruction

LINE instruction is specifically designed to speed up floating point vector/matrix computation when a

program operates in channel serial.

The following example demonstrates how to use LINE instruction to compute Line Equations for DirectX

10 Pixel Shader. In this example, 2 sets of (Cx#, Cy#, Don’t Care, C0#) 4-tuple coefficient vectors are

stored in registers R1.

R1: Cx0 Cy0 DC Co0 Cx1 Cy1 DC Co1

8 sets of coordinate 2-D vectors (X, Y) are stored in R2 and R3 in the channel serial mode as

R2: X0 X1 … X7

R3: Y0 Y1 … Y7

The objective is to compute the following two line equations for each set of 2D coordinate and store

the results in R4 and R5 as

R4: (X0*Cx0 + Y0*Cy0+Co0) ... (X7*Cx0 + Y7*Cy0+Co0)

R5: (X0*Cx1 + Y0*Cy1+Co1) ... (X7*Cx1 + Y7*Cy1+Co1)

Example LINE Equations

//-------------

// Example compute LINE equation in channel serial scenario

//-------------

line (8) acc:f r1<0;1,0>:f r2<0;8,1>:f// does acc = X# * Cx0 + Co0

mac (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f// does r4.# = Y# * Cy0 + acc.#

line (8) acc:f r1<0;1,0>:f r2<0;8,1>:f// does acc = X# * Cx0 + Co0

3D Media GPGPU

1006 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

mac (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f// does r4.# = Y# * Cy0 + acc.#

The next example is to compute homogeneous dot product for OpenGL pixel shader running in

Channel Serial. In this example, an original OpenGL PS instruction is like

dph R2.x R0 R1

With register remapping, we can store the input coefficient vector R0 in original format in r0, but 8 sets

of input coordinate vectors in channel serial format in r2, r3, r4 and r5, and the destination R2.x

component in r6.

r0: Cx0 Cy0 Cz0 Co0 DC DC DC DC

r2: X0 X1 … X7

r3: Y0 Y1 … Y7

r4: Z0 Z1 … Z7

r5: W0 W1 … W7

The objective is to compute the following DPH equations and store the results in r6 as

R6: (X0*Cx0+Y0*Cy0+Z0*Cz0+Co0) ... (X7*Cx0+Y7*Cy0+Z7*Cz0+Co0)

Example Homogeneous Dot Product in Channel Serial

//-------------

// Example compute homogeneous dot product in channel serial scenario

//-------------

line (8) acc:f r0<0;1,0>:f r2<0;8,1>:f// does acc = X# * Cx0 + Co0

mac (8) acc:f r0.1<0;1,0>:f r3<0;8,1>:f// does acc.# = Y# * Cy0 + acc.#

mac (8) r6<1>:f r0.2<0;1,0>:f r4<0;8,1>:f// does r6.# = Z# * Cz0 + acc.#

Mask for SEND Instruction

Execution mask (upto 16 bits) for the SEND instruction is transferred to the Shared Function. This

provides optimized implementation of DirectX Shader instructions.

Channel Enables for Extended Math Unit

The following example demonstrates how to use the SEND instruction to get service from the Extended

Math unit.

Let’s consider COS instruction in DirectX 10 in the following form

[([!]p0.{select|any|all})] cos[_sat] dest[.mask], [-]src0[_abs][.swizzle]

For a SIMD4x2 VS implementation with the following register mappings

p0 =>f0.0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1007

src0 =>r0

dest =>r1

The equivalent GEN instruction is as the following

[([!]f0.0.{select|any4h|all4h})] SEND (8) r1[.mask]:f m0 [-][(abs)]r0[.swizzle]:f MATHBOX|COS[|SAT]

If the source swizzle is replication, the message description field can be modified to

MATHBOX|COS|SCALAR to take advantage of the fast mode (scalar mode) supported by the Extended

Math. The implied move of the SEND instruction is equivalent to the following instruction:

MOV (8) m0[.mask]:f [-][(abs)]r0.0[.swizzle]:f {NoMask}

For a SIMD16 PS implementation, the register mappings are as the followings

p0 =>f0…f3 // in order of R, G, B, A

src0 =>r0,r1; r2,r3; r4,r5; r6,r7

dest =>r8,r9; r10,r11; r12,r13; r14,r15

There are several ways to translate the DirectX instruction, depending on the operand/instruction

modifiers present in the DirectX instruction. If predicate is not present and the source swizzle is

replication, say, src0.y, which is r2-r3, the translation could be as the following instructions

send (8) r8:f m0 -(abs)r2:f MATHBOX|COS

send (8) r9:f m1 -(abs)r3:f MATHBOX|COS {SecHalf}// use the second half of 8 flag bits

mov (16) r10:fr8:f // All destination color chan’s are same

mov (16) r12:fr8:f // MOV is faster than most MathBox func’s

mov (16) r14:fr8:f // These MOV’s are compressed instructions

Notice that instead of issuing Extended Math messages with the same input data, destination color

channel replication is performed by the MOV instructions. This is faster for the thread for most cases as

many Extended Math functions consume multiple cycles. This also conserves message bus bandwidth as

well as the usage of the shared resource – Extended Math. The destination mask in the DirectX 10

instruction indicates which of the r8 to r15 registers are updated. If the source swizzle is not replication,

there will be 8 SEND instructions.

With predication on, if the predication modifier is p0.select, translation is to take the selected flag

register f#. The other predication modifiers ‘.any’ and ‘.all’ are translated into ‘.any4v’ and ‘.all4v’,

respectively. Notice that with predication on, it is not required to run all 4 pixels in a subspan in the

same way, so no need to enforce .any4h/.any4v. The following example shows the instruction with

predication (but without .select modifier).

(f0[.any4v|.all4v]) send (8) r8:f m0 -(abs)r2:f MATHBOX|COS

(f0[.any4v|.all4v]) send (8) r9:f m1 -(abs)r3:f MATHBOX|COS {SecHalf}

(f1[.any4v|.all4v]) mov (16) r10:fr8:f // All destination color chan’s are same

(f2[.any4v|.all4v]) mov (16) r12:fr8:f // MOV is faster than most MathBox func’s

3D Media GPGPU

1008 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(f3[.any4v|.all4v]) mov (16) r14:fr8:f // These MOV’s are compressed instructions

The same instructions works also for predication with select component modifier. We simply replase f0

to f3 above by the selected flag register, say, f1. The modifier of any4h/all4v would also work.

Channel Enables for Scratch Memory

The following example demonstrates how to use the SEND instruction to get service from the Data Port

for scratch memory access.

Let’s consider general instruction in DirectX 10 that uses scratch memory as a source operand

[([!]p0.{select|any|all})] add dest[.mask], [-]src0[_abs][.swizzle], [-]src1[_abs][.swizzle]

For a SIMD4x2 VS implementation with the following register mappings

p0 =>f0

src0 =>r0

src1 =>s2 / r10

dest =>r1

In this example, the scratch memory offset is provided by an immediate and a GRF register r10 is used

as the intermediate GRF location for spill/fill of scratch buffer accesses. This arithmetic instruction is

converted into a Data Port read followed by an arithmetic instruction.

mov (8) r3:d r0:d {NoMask}// move scratch base address to be assembled with offset values

mov (1) r3.0:d 2*32 {NoMask}// s2 for vertex 0

mov (1) r3.1:d 2*32+16 {NoMask}// s2 for vertex 1

send (8) r10 m0 r3 DATAPORT|RC|READ_SIMD2

[([!]f0.{sel|any4h|all4h})] add (8) r1[.mask]:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r10[.swizzle]:f

So if scratch register is the source, there is no need to use the channel enable side band. This is also

true for channel-serial PS cases.

Now, let’s consider the case when a scratch register is the destination of an instruction.

p0 =>f0

src0 =>r0

src1 =>r1

dest =>s2 / r10

We have

add (8) m1:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r1[.swizzle]:f

mov (8) r3:d r0:d {NoMask}// move scratch base address to be assembled with offset values

mov (1) r3.0:d 2*32 {NoMask}// s2 for vertex 0

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1009

mov (1) r3.1:d 2*32+16 {NoMask}// s2 for vertex 1

[([!]f0.{sel|any4h|all4h})] send (8) null[.mask] m0 r3 DATAPORT|RC|WRITE_SIMD2

Notice that with a null as the posted destination register, we are able to transfer the [.mask] over the

message channel enables. In many cases for scratch memory assess, a write-with-commit is required,

therefore, the posted destination register could be r10.

Now, let’s consider the PS case when a scratch register is the destination of an instruction.

p0 =>f0-f4

src0 =>r0-r7

src1 =>r8-r15

dest =>s16-s23 / r16-r23

When predication is not on (or predication with swizzle control on), we have

add (16) m4:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m6:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m8:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m10:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

mov (8) r3:d 0x76543210:v {NoMask}// ramp function

mul (16) acc0:d r3:d 16 {NoMask}// ramp function

add (8) acc0:d acc0:d 64 {NoMask,SecHalf}// ramp function

add (16) m2:d acc0:d 2*256 {NoMask}// ramp function

send (16) null m1 r3 DATAPORT|RC|WRITE_SIMD16

As there is no bit left from the unit specified descriptor field, the 4 bit mask must be put into the header

field in m1, which requires at least two more instructions.

Alternatively, or for the case that predication without modifier is on, we can do a read-modify-write.

mov (8) r3:d 0x76543210:v {NoMask}// ramp function

mul (16) acc0:d r3:d 16 {NoMask}// ramp function

add (8) acc0:d acc0:d 64 {NoMask,SecHalf}// ramp function

add (16) m2:d acc0:d 2*256 {NoMask}// ramp function

send (16) r16 m1 r3 DATAPORT|RC|READ_SIMD16 // read from scratch

// some of the following four instructions may be omitted based on [.mask] field

[([!]f0.{sel|any4v|all4v})] add (16) r16:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]

r8/10/12/14_BasedOnSwizzle:f

3D Media GPGPU

1010 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

[([!]f0.{sel|any4v|all4v})] add (16) r18:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]

r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r20:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]

r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r22:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]

r8/10/12/14_BasedOnSwizzle:f

mov (16) m4:f r16:f {NoMask}

mov (16) m6:f r18:f {NoMask}

mov (16) m8:f r20:f {NoMask}

mov (16) m10:f r22:f {NoMask}

send (16) null m1 null DATAPORT|RC|WRITE_SIMD16 {NoMask}// write back to scratch

Flow Control Instructions

Unconditional branches are performed through direct manipulation of the 32-bit IP architectural

register. For example:

mov (1) IP <memory_address>// jump absoluteadd (1) IP IP <byte_count>// jump relative

Note that jump distances are specified in terms of bytes, as opposed to instruction counts in the case of

break, halt, etc. To minimize confusion, an assembler-only instruction ‘jmp <inst_count>’, where

<inst_count> is an immediate term, may be defined which takes an instruction count for a distance. The

jmp pseudo-opcode can be mapped to an “add (1) ip ip <inst_count> * 16” instruction.

IP is aligned to an 8-byte boundary, thus the 3 LSBs are not maintained in the IP architectural register

and should not be relied upon by software.

IP, when used as a source operand, reflects the memory address of the instruction in which it is used.

The following are examples illustrating the use of IP:

add (1) IP4*16// jumps to HERE_1

add (1) IP0x35// jumps to HERE_1 (4 lsb’s don’t-care) <instruction>

 <instruction>

HERE_1:<instruction>HERE_2:<instruction>

 <instruction>

 add (1) IP -2*16// jumps to HERE_2 ...

 add (1) IP 0// infinite loopadd (1) IP 0xF// infinite loop ...

Note for Assembler: The if/iff/else/while/break instructions identify relative addresses as the targets of

an implicit jump associated with the instruction. These are optional in the assembly syntax as the jitter

can determine the location of the matching instruction (e.g. matching endif instruction for a given if

instruction).

Execution Masking

This topic is currently under development.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1011

Branching

Example. If / Else / EndIf

//-------------

// Example if/else/endif scenario

// “if (r5==r4) ...else ... end-if”

//-------------

...

cmp.e.f0 (8) null r5 r4// does r5 == r4?

(f0) if (8) HERE_1// “if” part - save then update IMASK;

// or goto the ‘else’ if all false

...

...

HERE_1:// now do the ‘else’ part

else (8) HERE_2// “else” part - invert IMASK

// or goto the ‘endif’ if all false

...

...

HERE_2:

endif// “end-if” part – restore IMASK

....// and continue...

If it is known that the code has no nested conditionals, a predicate can be used for a lower overhead,

more efficient if/else/endif. (One must consider the probability of all channels taking the same branch,

and the number of instructions under the if/else blocks as to which conditional method, predicate or

mask, is most efficient).

Fast-If

Below is an example of a fast-if instruction. For the ‘iff’ instruction, only and iff-endif construct is

allowed, as opposed to a if-else-endif. Note that the target address for branching if all enabled

channels fail is one instruction beyond the endif, as the ‘iff’ does not push and update the IMask unless

the branch is taken for at least one execution channel.

Example Fast If

//-------------

// Example – Fast If

3D Media GPGPU

1012 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

//One instruction overhead conditional

//-------------

...

cmp.e.f0 (8) null r5 r4// any flag update

...

(f0)iff (8) HERE_1// “fast-if” – only pushes IMask;

// if execution falls through,

// else go to HERE_1

...

...

endif// “end-if” part – restores IMask

HERE_1:

...// and continue...

Cascade Branching

As there is no ‘elseif’ instruction, a C-like cascade branching such as if / elseif / else / endif, can be

realized using the basic building blocks of if / else / endif as shown in the following example. Notice

that two ‘endif’s’ are required in order to pop the IStack correctly.

Example. If / Elseif / Else / EndIf

//-------------

// Example if/elseif/else/endif scenario

// “if (r5==r4) ...elseif (r6>r7) else ... end-if”

//-------------

...

cmp.e.f0 (8) null r5 r4// does r5 == r4?

(f0)if (8) HERE_1// “if” part - save then update IMask;

// or go to the ‘else’ part if all false

...

...

HERE_1:// now do the ‘else’ part

else (8) HERE_2// “else if” part - invert IMask

// or go to the ‘else’ part if all false

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1013

cmp.g.f0 (8) null r6 r7// is r6 > r7?

(f0)if (8) HERE_3// “if” part - save then update IMask;

// or go to the ‘else’ part if all false

...

...

HERE_3:// now do the ‘else’ part

else (8) HERE_4// “else” part - invert IMask

// or go to the ‘end-if’ part if all false

...

...

HERE_4:

endif// “end-if” part – restore IMask for elseif

HERE_2:

endif// “end-if” part – restore IMask for if

....

Compound Branches

Compound branches are supported through the ability logically combine flag registers for each

intermediate result.

Example Compound Branch

//-------------

// Example: “if (r0 > r1) OR (r2 <= r3)”

//-------------

...

cmp.g.f0 (8) null r0:d r1:d// r0 > r1?

cmp.le.f1 (8) null r2:d r3:d// r2 <= r3?

or (1) f0:w f0:w f1:w// combine f0 and f1

(f0) if (8) HERE_1// Can now do normal if/else

...

...

HERE_1:endif

...

3D Media GPGPU

1014 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Example Compound Branch Using 'Any' or 'All'

//-------------

// Example: assuming we’re doing a channel-serial vector in r0-r3

// We want to know if all components of the vector are > 0x80

//-------------

...

cmp.g.f0 (16) null r0 0x80// r0 > 0x80?

cmp.g.f1 (16) null r1 0x80// r1 > 0x80?

cmp.g.f2 (16) null r2 0x80// r0 > 0x80?

cmp.g.f3 (16) null r3 0x80// r1 > 0x80?

(f0.all4v) if (16) HERE_1

...

...// code executed only for those channels

...// where per-channel r0,r1,r2,r3 all > 0x80

...

HERE_1:endif

...// and continue...

Looping

Due to GEN’s SIMD-16 architecture, it must support the case of up to 16 loops running in parallel.

These must be handled as independent loops, each with its own loop-exit condition which could occur

after a different number of loop iterations. To account for each channel’s progress, a 16b loop-mask

‘LMask’ is defined with 1b associated to each execution channel. This mask keeps track of which

channels remain active inside a loop block.

Basic Do-While Loop

Looping illustrates the most basic loop. Two operations must be accomplished before loop entry. (1)

Prior to loop entry, there is some subset of enabled channels as dictated by the code sequence prior. In

general, the active status of each channel is indicated in the virtual EMask any point in time. These

active channels will become the channels over which the loop is run, and LMask must be initialized with

the EMask value. (2) Since a given loop may be nested within another loop, the previous LMask &

CMask must be saved to the LStack for later restoration upon loop completion. The ‘msave’ instruction

performs both the save and update in a single instruction, and thus all loop-blocks should be fronted

with a “msave LStack LMask” and “msave LStack CMask” operation.

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1015

Note that the LMask and CMask share the same mask-stack. Thus, CMask must always be a 1’s-subset

of the LMask for proper stack operation. This is the case if CMask is updated to LMask each pass

through the loop (see Looping) and through the ‘break’ instruction updating both masks.

Each pass through the loop, a loop terminating operation must be evaluated and stored in a flag

register. This condition must be evaluated on a channel-by-channel basis as exemplified:

cmp.z.f0(8) null r2 d3// any operation that updates a flag

The result of this operation sets a bit per channel in the specified flag register, which is then used in the

‘while’ instruction. As loops are performed, channels may become disabled as their termination

condition is met.

‘While’ termination is determined on a channel-by-channel basis by the logical AND of corresponding

bit positions of AMask, CMask and the specified flag. If the result is ‘1’ the channel remains enabled for

the next pass of the loop; if ‘0’ the channel is disabled until loop fall-through. The ‘while’ instruction

causes the LMask to be updated with the latest result of enabled channels. If any channel remains

enabled (LMask != ...000b), an additional pass through the loop is made. Once a channel is terminated

for the loop operation, it remains terminated until the loop is complete for all channels.

Upon fall through, the ‘while’ instruction causes the previously saved LMask & CMask to be popped

from the LStack, enabling execution on the same subset of channels enabled prior to loop entry (unless

a channel had been otherwise terminate inside the loop via ‘halt’).

Example Basic Loop Construct

//-----------------------

//Example: Basic do-while loop structure

//-----------------------

...

do// save L/CMask & update

BEGIN_LOOP:

mov (1) CMask LMask{NoMask}// update CMask for this pass

...

...

<some flag update>

()while (8) BEGIN_LOOP// cond. branch

// + restores LMask on fall-through

...

3D Media GPGPU

1016 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Do-While Loop with Break

A loop may also be terminated for any channel via the ‘break’ instruction. The ‘break’ instruction causes

the corresponding bit positions of enabled channels to be cleared in the LMask. If the updated LMask =

...000b, a branch is made to the specified instruction location. An example is shown below in which the

‘break’ is at the same conditional-nesting level as the terminating ‘while’. Its primary value may simply

be to support a “do...break.. while (true)” –type structure for a more direct 1:1 translation from higher-

level source code.

Example Loop Construct With Non-Nested ‘Break’

//-------

//Example: While-true loop

//-------

#define BrkCode(i,d)(i « 16) + d

do// save L/CMask & update

BEGIN_LOOP:

mov (1) CMask LMask{NoMask} // update CMask for this pass

...

<some flag update>

()break (8) BrkCode(0,HERE_1)// Restores LMask when all

// channels complete loop.

...

...

while (8) BEGIN_LOOP// while true

HERE_1:

...

A break condition may occur from various levels of nested-ifs. This gives rise to the possibility that a the

loop may terminate from within nested ‘if’s, and due to the jump inherent in the ‘break’ instruction, the

associated ‘endif’s are not encountered to clean-up the IStack as nesting levels are exited.

Example Loop Construct With ‘Break’ From Within Nested If’s

//-------

//Example: General Loop Structure w/ break inside if’s

//-------

#define BrkCode(i,d)(i « 16) + d

do// save L/CMask & update

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1017

BEGIN_LOOP:

mov (1) CMask LMask{NoMask} // update CMask for this pass

...

if ...

if ...

if ...

...

()break (8) BrkCode(3,HERE_1)// we’re 3 levels deep, so

...

endif

endif

endif

...

()break (8) BrkCode(0,HERE_1)

...

while (8) <flag_spec> BEGIN_LOOP// cond. branch

// + restores C/LMask on fall-through

HERE_1:

3D Media GPGPU

1018 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

Do-While Loop with Continue

A continue instruction ‘cont’ is provided skip to the next iteration of the loop. Because not all channels

participating in the loop may be enabled at the time this instruction is executed, some channels may

require continuation of the loop. A special mask ‘CMask’ is defined which accounts for channels

temporarily disabled for the current loop pass.

Since loops may nested, the CMask must be saved and restored around a loop similar to LMask. Since

the CMask value within a properly constructed loop is always a subset of the LMask, it can share the

LStack for storage, so long as it is pushed after LMask as shown in Looping. This save/restore operations

are not required if the loop being entered does not have any occurrence of a continue instruction.

Example Do-While with Continue

//-------

//Example: General Loop Structure w/ basic break and cont.

//-------

#define ContCode(i,d)(i « 16) + d

do// save L/CMask & update

BEGIN_LOOP:

mov (1) CMask EMask// re-initialize CMask for this pass

...

...

() cont (8) ContCode(0,HERE_1)

...

HERE_1:

()while (8) BEGIN_LOOP// cond. branch

// + restores C/LMask on fall-through

...

 3D Media GPGPU

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 1019

Indexed Jump

Example Indexed Jump

//-------------

// Code example shows the use of jmpi to perform a case statement

// of any number of options in 3 jumps

//-------------

.default_execution_size 8

...

jmpi r0<0,1,0>// jump relative, based on r0.a.x

// ----- Jump Table ------

jmp HERE_0// redirect for case 0

jmp HERE_1// redirect for case 1

jmp HERE_2// redirect for case 2

jmp HERE_3// redirect for case 3

...

HERE_0:// ... case 0 ...

...

jmp DONE

HERE_1:// ... case 1 ...

...

jmp DONE

HERE_2:// ... case 2 ...

...

jmp DONE

HERE_3:// ... case 3 ...

...

DONE:

...// and continue...

