(lntel) _
experience
what's inside”

Intel® Open Source HD Graphics
Programmers' Reference Manual (PRM)

Volume 7: 3D Media GPGPU

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™
Processors based on the "Cherry Trail/Braswell" Platform
(Cherryview/Braswell graphics)

October 2015, Revision 1.1

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”
Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following
conditions:

e Attribution. You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

¢ No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

ii Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Table of Contents

Registers in Render Engine 1
PrEAICATION oottt e e e e sk 2
Predicate RENAEr REGISTEIS. ... ettt sttt ss s ss s ss st st sests 2
IMI_SET_PREDICATE ..o eereeeeeeeieeneeeeesseeessseeseseeessssesssssesssssss e sssssssss s sssss st s sssssess st st sssnsssssnnes 3
MI_PREDICATEotteieteiecetinecienessisessiseestssesssssessssse sttt sssss s siss st s ssssesssssss st sssnessssnsessnnes 3
Predicated Rendering SUPPOIt iN HW ...ttt ssssssssssssssss s s ssssssnses 4
REGIStErs iN RENAEI ENGINE ...ttt sttt ssss st ssesssss s sssse st sttt ssssssnns 5
CONTEXE SAVE REGISTETSceuieeeecercercecir ettt se ettt et 5
VF INStANCE COUNE REGISTEISoueeucereeereeeeieeeetee e esseeeseessseeasss st e s e ss e sssesssesssssssseees 5
Mode and MiISC CEIT REGISTEFS ... sssssssss sttt st ssss s ssssssssesssssssssssssnsssnns 6
Pipelines Statistics COUNtEr REGISTEIS. ...t sess s st seessenos 7
AUTO_DRAW REGISTETS ...ouveveererineeeineeeisecsiee s essssessssses st sssssssssssssssssssssssessssssssssssssissssssmesssssssssnssssens 9
MMIO Registers for GPGPU INdirect DiSPatCh......cooccurreereeneeeisneeeeseeeeseeeesssseessesesss s ssssseses 9
CS ALU Programming and DESIGNcoworereerineiseisesessnns 10
CS ALU Programming and DESIGNcovviereernreensiensiensssnesses 10
GENENIC PUIPOSE REGISTEIS ..ottt ettt st seesen 10

ALU BLOCK DIBGIAM ...cuiiirierieriereiereeeseeeeeeeeeestseessessssssesssesssssssesssssssssssssssssssesssssssesssesssssssssssesssessssses 11
INSTFUCHION SEL ..ottt ettt e ettt 12
INSTFUCTION FOMMIAT ..cocvoniicricriecicicie it ssseeseeesssesssse sttt sines 12

LOAD OPEIALION «.coreereeerrieeiestesie st stssessssssssssstss st sssssss st st st st st st st ssssssssssssssssssssssssssnsssnssens 12
Arithmetic/LOgiCal OPEIratioNS ... eeseeeseee e e s s ess st st ssses e 13
STORE OPEIATION....cuieriereeeieseisseisse et s s s 13
SUMMANY FOF ALU ..ottt ettt 13
Summary of INStrUCtioNS SUPPOILEA ...t sss s ssssssssssssssssssssness 14

Table for ALU OPCODE ENCOQINGS ...vuruerreereeeimeeeseeesseeeseeesesssse s sssssssssssssssssssssssssssssssssssnns 14

Table for Register ENCOTINGS ... ssnsses 16

CS_GPR - Command Streamer General PUrpose RegiSters.........cornrenreenreenseenerenereseeeneees 16
Memory Interface Commands for Rendering ENGiNe..........coovveenreennreenneeenneinnseseeeseeessseesseseseeens 16
SEALE COMMEANGS ..ottt i e bt 17
STATE_BASE_ADDRESScoereeeereeiseeetsssissesssssss st sssssssssssssssssssss st ssssssssssssssssssssssssssssssssssssssassssssssssanes 17
Synchronization Of the 3D PIPEIINE ...ttt st s sssssssssses 18

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

t

experience
what'’s inside”

(lntel) |
experience
what'’s inside”

3D Media GPGPU

TOP-0f-Pipe SYNCNIONIZATION c.cu.ooreeiee sttt ss st sss st ses 18
End-of-Pipe SYNCAIONIZAtION ..ottt sssnssnens 18
SYNCAIONIZAtION ACLIONS ...ttt ss sttt st ss s ssnsean 19
WIiting @ Value tO IMEMOIY ...ttt stssese sttt st st ss sttt st sssnnes 19
PS_DEPTH_COUNT «.ooreireeeceieceriee st ssiseesisseessssesssssssssssesssssesssssesssssssssssesssssessssnssssnssssnessens 20
GeNErating an INTEITUPL ...ttt sttt sb bbb bbb st sssssnsenes 20
INValidating Of CACRES ...ttt st sttt 20
PIPE_CONTROL COMMENG....ouritrritreriemneeeeeeesesseeeessesessesssssssesssses e ssssssssssssssssssssssssssssesssssssssssessssns 20
PIPE_CONTRO.....oooereeereeesiiessiessssssssssssssss sttt sssessss s sss st st sssssssss s ssss st sss s sssessssessenns 21
Programming Restrictions for PIPE_CONTROLcooocomrurrrennrenerereeiseeeseeeseeesesesssssssssessenns 22
POST-SYNC OPEIALION ...couieereeneeeeee ettt ettt sttt 23
FIUSI TYPES .ottt sttt ss sttt 24
SHAIL st ket 24
Render LOgical CONTEXE Data. ...t ssesssnsses 25
OVETAll CONTEXE LAYOUL ...oureerreenceeecere ettt et et sttt 25
CONTEXE LAYOUL ..ottt sttt sttt e 25
REGISTET STAtE CONTEXE ... ettt ettt ettt sttt 26
REGISTEr STAt@ CONTEXL ...ooveereereeeeeece ittt ettt st 27
RING BUFFEI oottt sttt 38
RING CONTOXE .ottt ettt ek e et 38
The Per-Process Hardware STatus PAge ... eiseiseisesssesesssssssssssssssssssnnes 39
Render ENGIiNE POWET CONTEXL ...t st sese st sess st ssnes 40
ComMmMaNd OrderiNG RUIES ...ttt se et s et 42
PIPELINE _SELECT cooriinetieeetieeceise it ssssesssseessse st ssssss sttt st sss st ssssesessssssens 43
PIPE_CONTROLoouveereeeuesieseeeesesses st ssssesesssssesss s ssssss s ssss st sttt sss s 43
Common Pipeline State-Setting COMMAaNGS.........corieneinrniseeeiss e 43
3D Pipeline-Specific State-Setting CoOmMMANSoovuueueeeerereereeeeeeetsee et sseeens 44
Media Pipeline-Specific State-Setting CoOMMANAS ..o seeees 44
BDPRIMITIVE .o eieeeeeeeeieeeeineceesseesisseesessesesssssesssseesssssesess s ssss s ssss st sttt sssssesssaes 44
IMEDIA_OBJECToorieerereeeesiesesesssee st sssssssssssssssssss st st ssssesssss s st sss s st ssssessssssasssssssssssasssssasssssnsssns 44
Resource Streamer 45
Resource Streamer SYNC COMMEANGSuvereereerneeeeeeeeeesee s eesesessssseesssesssesssssssssssessssessssssssssssssesens 45
INEFOTUCTION coov ittt i b e st e s 46
iv Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

GlOSSAIY w.voriereeeieeieeiseeiss s s 46
COMMON ADDBIEVIATIONSooveieeiiceieceieictc et si et ssess st eris 46
THEOIY Of OPEIALION ... ettt se sttt st ss s ss s st 47
RESOUICE Stre@mMEr FUNCHIONS ...ttt sies s ssssessssssses 47
Detailed Resource Streamer OPEIatioNscrenreenereseesssesssssssssssesssssssssssssssssssssssssssssssssens 49
INEFOTUCTION ottt b e bbb 49
Resource Streamer Operation DESCIIPLIONSc.crreeceeeeeieneiereeiseeeseessesssesssessseesesssessesssesssesssenes 49
BAtCh PrOCESSING .ccveieerieeirierisie sttt s s 49
CONTEXE SAVE ...ttt ettt sae ittt 49

HW Binding Table IMAge ...ttt ssssssssesssssssssss st ssssssssssnns 50
Gather PUSh CONStaNTS IMAGE........oiiuieeecneeieiee ettt sssesens 50

PUSN CONSTANT IMAGE ...ttt sttt ss s s sss s ss sttt st st 51

HW Binding Table GeNeration ...t sesee s s s sssesssssssssssssnees 52
GAther PUSH CONSTANTS ...ttt ssesesssse st st esis st sssesssiaes 53
Constant Buffer Generation (NOt DX9) ...ttt ee et esssesnan 54
Commands ACtiONS N the RS...... ettt ss s seeeeon 55
Resource Streamer Programming GUIAEIINES ... sssssssssssssssssssssssssssssssssssnsens 61
RS Interactions with the 3D CommMaNnd Stre@mEr ... seesseseeees 61
RS Interactions With MemOry REQUESTS ...t sesssssss s ssssssssssssssssssssnnss 61
Fundamental Programming and Operational ASSUMPLIONSoocrereeeeneeeneeereeeeeeseeeseeeeees 61
NON-OPEIratioNal ACHIVITIES.....cuieereereieeieiieeee s s e bbb 62
Hardware BiNAING TabIES ... s 62
3DSTATE_BINDING_TABLE_POOL_ALLOC [CHV, BSW].....oririreeerrirreneereireieeise s isesssesssnsens 63
GAthEr CONSTANTS......ceerciircicecriecrie it sese bbbt 64
Dx9 Constant BUffer GENEIratioN ... e ss st ss e s s sssessseens 65
Vertex Shader CONSTANT ...t sisecsiseesesesssse st i i i sissessssssssssssesisens 66
PiXEl SHAA@r CONSTANT ... ettt ettt 67
Shared Functions 68
3D SAMIPLET ettt skttt et 68
SAMPIING ENGINE oottt sttt ettt 69
Texture CoOrdiNate PrOCESSING ... rireeeeeeeiseiseiseississesssssssesssessnes 71
Texture Coordinate NOIrmMaliZatiON ...t sess sttt ss e 71
Texture Coordinate COMPULATION ...t ssss s ssss s 71

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 v

Vi

(l n te,l l\experience

what'’s inside”

TeXEl ADAreSS GENEIATION ...ucuuueeriircrirceieeiee it ssse sttt it esssstsees 73
Level of Detail Computation (Mipmapping)ccc..ceweeemmreereeeeneeesnessssssssessssssssssssssssssssssssness 73
Base LeVel Of DEtail (LOD) ...t sss s s sssssssssssssssssssssssssssssssssssnssas 74
LOD BiaS .euureeuueeemmreesseeessesesseesesseecssseeesssseesessessass e ess et ek 74
LOD Pre-ClamPingcooeeereeeeeeeeesseesesesesesessssesssssssssssssssssssssssssssssssssssssessssessssesssssssssssssssssssssssssssnns 75
MiN/Mag DeterMinNation ...t ssss st st ssss s s s s s ssssssssssssens 75
LOD Computation PSEUAOCOE. ... sesssssssssssessssesssssssssssssssssssssssssnns 76
INtra-LeVel FIltErING SETUP ..ottt bbb s 77
MAPFILTER _INEAREST ... eeeeceeseeeemeeeeseeeassss st ssessssessesses st st sssssssssesssssssssssssssssssssssessssssssssns 78
MAPFILTER _LINEAR ..ottt ssse e sise s es s e eb et e 78
Bilinear Filter SAMPIING ...ttt ettt ettt st 79
MAPFILTER_ANISOTROPIC ..ottt ssesise e ssessse e ssessse e sasssss e sasessssesasesns 79
MAPFILTER_MONO.....cotieteieieeetsis ettt st s es s sass s st sttt 80
INtEr-LEVEl FIltErING SELUD .ttt sttt sttt ss s sssssssssssssssnens 82
TEXTUIE AdArESS CONTION ..ottt ettt 82
TEXCOORDMODE_MIRROR MOE.......coririrrirrieriesiesissesssssssisssnsses 84
TEXCOORDMODE_MIRROR_ONCE MOGE......coumirimmcrireeimeeieecrieesimesessssessssesisessssnesessnseees 85
TEXCOORDMODE_WRAP IMOGE......eiireerierireeiesississsissnsses 86
TEXCOORDMODE_CLAMP MOAEoorrierriieriensiiesinssisssessssss s ssnns 87
TEXCOORDMODE_CLAMPBORDER MOovtrerreeeireieeiesississtsssesssesssessssssssssssssssssssssssnees 88
TEXCOORDMODE_CUBE MOE ... eieeessessssessssssssssss s ssssssssssssssssssssssssssssssnsees 88
TEXEI FOICH oottt e i it et 89
TeXEl ChromM@ KEYING ...ttt ettt sttt 89
CHroma KEY TESTING ...ccuureereeeeerieeeeeeieeie ittt sttt bbb bsssssss sttt sssssssssssnnes 89
Chroma KEY EffECES ...ttt ettt st sesenn 90
ShadOW Prefilter COMPAIE ...ttt st sss s sssssss st st ss st ss s ss s ssnnsen 90
TEXEI FIIEEITNG corveereeeee ettt sttt e et st 91
Texel Color GAamMmMa LINEAZATION ...ttt sssse s ssse s sssssssnees 91
Multisampled SUface BENAVION ...ttt sssssssssssssssssssenss 92
Multisample CONTrol SUMACE ...ttt sss st 92
AL e e e e e e e e e 93
SUMACE SEAE FEECN ..ooreee ettt ettt 93
SAMPIEEN STALE FELCN coeveee ettt ettt sttt 93

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

3D Media GPGPU

SEALE CACNING ettt sttt sttt sttt b st s st 94
SURFACE_STATE ..ttt et see s st ss st ss et ss s e et sie e ssenes 94
Sampler Output ChanNel MapPing ... sssss s sssssssssssssssesssssssaness 96
SURFACE_STATE for Deinterlace sample_8x8 and VMEcccoooorimrrronrrionnrnnnseressiressisensenn. 102
SAMPLER _STATE ...ttt ssse bbbttt sssssssssessanes 103
Border Color Programming for Integer Surface FOrmatsccoocoovveerieenrienrvrnssnnsrnnssennnnns 104
IMIESS@QES ...ooeuvieecireeneineise e eeseesse e e es s sae e e e e e e e e e e e 106
Message Descriptor and EXECULION MasKovrrerrinrinerennrinnsississississsisssssssssssssssssssennns 106
EXECULION IMASK w.coreiiriiiecee ettt ettt s 106
MESSAGE DESCIIPLON..cereeeeeieeeereee ettt s e s e e s 106
MESSAGE HEAUEomeereeceee ettt ettt ettt s 107
PArAMIETET TYPES ..ottt bbb bbbttt ees 111
SIMD PAYIOAAS ..ottt ettt e ettt 112
WIItEDACK IMESSAGE ..ottt sttt sttt sttt 114
SIMD T Bttt ees s ees e ettt s8R R R 114
REtUMN FOrMat = 32-Diti .ttt sttt seseeos 114
REtUIN FOrMat = TB-Dituceuceeecieeceieceiecieceieceiieeceie et sssesssssesssssse st st ssssessssnsens 115
SIMDB/SIMDBD ...ttt et st 116
RetUIN FOrMat = 32-Dituccceeceeceieciieceiceiieeesisseesisec st sssesssssssssssss s s ssssessssneens 116
REIUIN FOrMAat = 16Dttt bbb sss s s sens 117
SIMDUX2 ...ttt ettt et et e e s ettt 118
Shared FUNCLIONS — DAt POIt.......ccicriecrnecriecieeiieeisse i siseesisessiseessseessnsessnsssssssssesisens 119
Data CACNE ...ttt sttt AR e e b 120
SAMPIEE CACNE ... s s e e e e 121
SUITACES ..ot ss s sss s s bbb e e s eSS e e e bbb e 121
SUIACE STAE IMOTEL..... oottt sss sttt 121
STALEIESS MOTE ..ottt sttt bbb e e 121
Shared Local MEMOIY (SLIM) ...ttt st sttt ssssssnos 122
WWIIEE COMIMIT.criiiriiiiriiiriieciiecise it sie sttt bbbttt 123
REAAWITEE OFAEIING c.oveeeeerreeteie ettt ettt ettt st 123
ACCESSING BUTFEIS.....o.eoeieet ettt sb st sttt bbbt 124
ACCESSING MEAIA SUMACES ...ttt ettt ettt st ssnnens 125
BOUNAIY BERAVION ...ttt sttt s st nsssnes 125

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

vii

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

AL e e e e e e e 126
BINDING_TABLE_STATE ..ottt esisessissecssssesssssessssssessssesssssesssssssssssessssessssmessssnsssennes 126
SURFACE_STATE .ottt stsesesisessissessssesssssessssssssssssesssses st st ssssessssssssssssesstsnessssnssssssessens 126
COLOR_PROCESSING_STATE.......ooeeeeeeeeeeeeseesseeeeesssssessssesssans 126

IMIESSEQES ...coeueemncireeseineeise it eise e e s sa i b e e e e e e e e e 127
GlODAI DEFINITIONS w..ceor ettt e ess st e bbb st 127
Data POMt IMESSAGES ...t ei it bbbt eb s ssetsees 127

MESSAGE DESCIIPLON ... eerierierieriesiesies st bbb bbb 130
MESSAGE DESCIIPLON couveerrverierieeeeeeiesie ettt sss sttt ss sttt sttt sssassnssnses 130
MESSAGE HEAUET ...ttt ss ettt 133
Write Commit WHEEDACK MESSAGEcveureeeiieeiieeiiecee et essssssseees 134
OWOrd BIOCK REAAWIILE ..ottt esisessise i s esssssssssss st st ssssesssssesssens 134
MESSAGE DESCIIPTON....oorieereereeere ettt sttt et e 136
MeESSAGE PayI0ad (WIILE)....ovvvereeereeerieeeeiesisesesestsssess e ssssssssssssssssssssssss st st ssssssssssssssssssnssns 136
Writeback MeSSage (REAA) ...ttt sssssssseees 137
Unaligned OWord BIOCK REAM ...ttt sesee s s sesesssssssseeens 137
MESSAGE DESCIIPLON ... ettt s 138
Writeback MeSSage (REAA) ...ttt ssssssssnees 138
OWord Dual BIOCK REAAWIILEovveumereeeceieceieceiieeeeiseseisee i ssssessssesesesesssssessssessssssssssssssens 139
MESSAGE DESCIIPION ..ottt sttt 140
MESSAGE PAYIO@U........ i s e 141
Additional Message Payload (WIite) ... sss s ssse s sssssssssnns 141
Writeback MesSSage (REAA) ...ttt ssssssssnees 142
Media BIOCK REAAWIITEvuueiericriecrieeiieeinecieriesiecsisecsieesineessnessssesssssissesisssisessisessesecssnscses 142
MESSAGE DESCIIPTON ..ottt ettt s st et 144
MESSAGE HEATEN ...t s s e s 146
MESSAGE PAYI0a (WIILE)....cu ettt ssee st essssess st ss st sssesos 149
Writeback MeSSage (REAA) ...ttt st se s ssssssssnees 150
DWord Scattered REAAWIITEoccucuciecireeiecieciseeicsiecsieesieeiseeisesisse st i i sissssssesssnessos 150
MESSAGE DESCIIPLON ...cureeieeeeeeeiieese et s s e s e e e 151
MESSAGE PAYIOAU......... it e 151
Additional Message Payload (WiIte)coururerreereeeene et sesse s esseessssessesesssssssessanees 152
Writeback MeSSage (REAM) ...ttt ssse s ssss s sssssssssans 152

vili Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel)
what's inside”

MESSAGE DESCIIPEON .. eeierierierieeieeiees st 153
MESSAGE PAYIOAM. ...ttt sttt sttt 154
SOUICE PAYIOAU...... ..ottt ss s ss sttt et 155
WIEEDACK IMESSAGE .c.evveeereeiteetie ettt sttt ss st st s 155
Byte Scattered REAAWIILEttt sttt sttt ss s ssnsens 156
MESSAGE DESCIIPLON c..eeierierieriereieeies st sss s bbb bbb 157
MESSAGE PAYIOAM. ...ttt sttt sttt st 158
Additional Message Payload (WIIte)ciinrinrineineesseesssisssssssssssssssssssssssssssssssssssssens 158
Writeback MeSSage (REAM) ...ttt ssssssss s sss s sssssssssssssssssasssans 159
TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation...........ccoo.c..... 160
Typed Surface ReadWrite Message DeSCrPLONovweceeeeneeereeeirecieseeesseeesseeesseeeseeeeens 166
Typed Surface Read/Write Message DESCIPLONovrveneeernererneiesnsiissssssssssssssssssssssssness 167
Untyped Surface ReadWrite Message DeSCriPLOr......oocceeeeneeeneeerneeireeeereeeeseeseseeisseeens 168
Typed Atomic Operation Message DESCIIPLONcvvreeneeernrsernsiesnssisssssssssssssssssssssssssness 169
Typed Atomic Operation SIMD4x2 Message DesCriptor........o . eeneeenecenecenseeennens 170
Untyped Atomic Operation Message DeSCriPtOrooccceeeeeeeneeeeeereeeeseeeeseeseseeeseeens 171
Untyped Atomic Operation SIMD4x2 Message Descriptor..... . ennriernerennsesnneens 172
Atomic Counter Operation Message DESCPLONvweeeeeneeerneeireceineeesseeesseeesseeeseeeeees 173
Atomic Counter Operation SIMD4x2 Message DesCriptor......oveneeneeneeneesneeneenne 174
MESSAGE HEAUET ...ttt ettt 175
MESSAGE PAYIO@U........ i s e 175
SIMDT6 Address PaylOad ... sssssassssssans 176
SIMD16 Source Payload (Atomic Operation Message Only)cccoovcnrenneennecenneeennees 177
SIMD16 Source Payload (AOP_CMPWREB ONIY) ... 178
SIMD16 Write Data Payload (Write Message OnlY)........ccceneenneeneeenneeenseeenneeennees 179
SIMDB8 AdAress PaylOad.........c.weeereenrinsiieeiseese s ssss s ssss s sssssssssasssssssans 180
SIMD8 Source Payload (Atomic Operation Message Only)........cocccovomenneeenneeerneeennees 181
SIMD8 Write Data Payload (Write Message ONly) ... 182
SIMD8 Write Data Payload (Tile W Write Message Only)cocoveeneineenrensinsinnenn. 183
SIMDA4X2 AdAress PaylOad ...t sssesssssssssessssssssssssanees 184
SIMD4x2 Source Payload (Atomic Operation Message Only)cccoooveeereeeneinrennenn. 184
SIMD4x2 Source Payload (AOP_CMPWRB8B ONIY)oovumrermreereeereeeseeesseeeneeeseeeseeesnees 185
SIMD4x2 Write Data Payload (Write Message Only)......cnnreneinsensinsinsiseenns 185

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 iX

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

WIHEEDACK IMESSAGE ...oeveeeeiieee ettt sttt st st bbb 185
SIMDE8 DWORD REA.......oruumerirrrimecrimecasmnesesinessisessisnesssesessssessssssssssnssssnssssssssssssessssnessssneses 186
SIMD8 QWORD REAMcoumriumirirciimeceieceiaesesiessisssssssnessssssesssssssssssssssssssssnssssssesssssessssnessssnssses 186
SIMDTE REAM....couieemeieeeeieieeeeseeeeeseesesesessssesss et s sss st sttt sss s 187
SIMDB REAM ..covverrrimnceiircerireteieesieesises s ssisesssssessssssssssssssses st st ssssssssesss st sssnssssssees 188
SIMDBE8 REAA (THlE W) oot eesse et sesesssssss st st sssssssssssess st sssessssssnees 189
SIMDAX2 REAM.....coueeeeeeiiesiies e ssss s st ssssesssss st sss s st ss st s s ssssssesssssssssesssness 190
SIMDT6 AtOMIC OPEIALION.......oieieeeeereeeire sttt ssssssss s s s s s s sass s sasssens 191
SIMD16 Atomic Operation (AOP_CMPWRS8B ONlY)c.covurrrnrrnrrnrinrineineissiansiesssssesons 192
SIMD8 AtOMIC OPEIALION c.uceuiercereereeieieeeere et sesessse s s s ssse s e 193
SIMD8 Atomic Operation (AOP_CMPWREB ONIY)oovuruneeereeereeeeeeneeiseeeseeeseeennens 194
SIMDA4X2 ATOMIC OPEIatiON ..ottt esse s s sans 195
SIMD4x2 Atomic Operation (AOP_CMPWREB ONlY)ouvumeumeereeeneeeneeeneeeseeeneeenens 195
AB4 Scattered REAA OF WIITE. ...t ssisesssee st ssssssssssss st st ssssesssens 196
MESSAGE DESCIIPION ..ottt st e 197
Message AdAress PaylOad ...t ssess s sssss s ssssens 198
Additional Message Payload (QWOrd WILE)ccc.rvrrrenerernerernsiernssisnssesssssssssssssessssesssnens 199
Additional Message Payload (DWOrd WIite)ccccueeeeeeeeenerenneeeseceeneeesseeesseeesseesssesenees 201
Additional Message Payload (8 Byte WILE)covvurrreerenrreneeerneiesnssesnssesssssssssssssssessssesssnens 202
Additional Message Payload (1 or 2 or 4 Byte WIite)......ccoueemrenmreeneeeneeereeenecesecesseeenees 203
Writeback Message (QWOrd REAA) ... ssss s s sssssssssssssssssssssans 203
Writeback Message (DWOrd REAd) ... sssssssssnns 204
Writeback Message (8 Byte REAA) ...ttt ssesessessssesssnees 206
Writeback Message (1 or 2 or 4 Byte REad) ... 206
AB64 Untyped AtOMIC OPEIratioNccreeeeeeeeeeeeieeeeseeesseeesseeeseesseessssssssesssessssessssssssssssesssssssssees 207
A64 Untyped Atomic Operation Message DesCriptor ... nnreneeneeneeneissseneenns 209
MESSAGE PAYIOG. ... oottt ettt 211
SIMDB8 AdAress PaylOad........cc.oecueeeeereeeeieeeseeisseeseesse e s ssssessssessssssssssssessssssssssssssees 212
SIMDA4X2 AdAress PaylOad ... ssss s ssss s sssssssssssssssssens 213
SIMD8 Source Payload (QWORD Atomic Operation Message Only) ..o 214
SIMD8 Source Payload (DWORD Atomic Operation Message Only)ccccoevun. 215
SIMD8 Source Payload (AOP_CMPWRT 6B ONlY)ovuureerreerereereeereeeeeesseeeseeeseeeseeenees 216
SIMD8 Source Payload (AOP_CMPWRE8B ONIY)...cvcureeeeeeemeeeemseeeeseeeeseeeeseeessesens 216

X Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

SIMD4x2 Source Payload (QWORD Atomic Operation Message Only)coc...... 217
SIMD4x2 Source Payload (DWORD Atomic Operation Message Only).........ccoo.c..... 218
SIMD4x2 Source Payload (AOP_CMPWRT6B ONlY)ovurreerrreernrerereeeereeeneeessesesesenens 218
SIMD4x2 Source Payload (AOP_CMPWRS8B ONIY)couvvuereeeeeriereeiseeeeseeeeseeeesseeessneens 219
WHItEDACK IMEBSSAQE ..ottt sss sttt st st s st 219
SIMD8 Atomic Operation (QWOId) ... sssssssssssssssssssssens 219
SIMD8 Atomic Operation (DWOrd)coocereenneeennreenreesnsesnnessssssssessssessssssssssssessssesssness 220
SIMD8 Atomic Operation (AOP_CMPWRTEB ONlY)c.orerrrrrirrinninrineineiesssesiessssnesons 221
SIMD8 Atomic Operation (AOP_CMPWRB8B ONIY) ..o 222
SIMD4x2 Atomic Operation (QWOId)......cc.comemreernreenriereseeneeessseessssssessssssssssssssssssssness 223
SIMD4x2 Atomic Operation (DWOrd)......c..ceineeenninsinsenssensssssssssssssssssssssssssssssssssssssens 223
SIMD4x2 Atomic Operation (AOP_CMPWRT6EB ONly) ..o 224
SIMD4x2 Atomic Operation (AOP_CMPWREB ONlY)ouvumeumeereeeneeeneeeneeeseeeneeenens 224
A64 Untyped Atomic Float Add OPerationensinneennsisnsssssssssssssssssssnnss 225
Untyped Atomic Float Add Operation Message Descriptoroeneeenecenecenecens 225
MESSAGE PAYIOGM. ... oottt ettt s 226
SIMDB8 AdAress PaylOad............couvuieerenrrieeiseinsesssnesssssssssssness 226
SIMD8 Source Payload (QWORD Atomic Operation Message Only)cccccoueeeee 227
SIMD8 Source Payload (DWORD Atomic Operation Message Only) ... 228
WHItEDACK IMESSAGE ..ottt sttt st 228
A64 Untyped Surface Read or Write OPerationineinnsiennssnnssenssssssssssssssssssness 228
Untyped Surface Read or Write Message DeSCriPOrrreenrrernerennseesnssessssessssnsens 230
MESSAGE PAYIOG. ... oottt et e 230
SIMDB8 AdAress PaylOad.........c.oeueereeineiineiireers s ssssesse s ssss s s sssssssssasssssssans 231
SIMDA4X2 AdAress PaylOad ...t ssssesssesssseessssssssssssnees 232
SIMD8 DWORD Write Data Payload (Write Message Only).......cccocvveeneerneeneeneenn. 233
SIMD4x2 DWORD Write Data Payload (Write Message Only)ccccoueoeennecnneeennees 234
WHItEDACK IMESSAGE ..ottt sttt st 234
SIMDB8 DWORD REAM.......cuieeirieriieeieiensiesssesssess st sessssss s ssssssss s sssssssssssssssssssssssssssssasssasesans 235
SIMDAX2 DWORD REAG ...t sesssss s ssnssssssens 236
AB64 Block Read Or WIite OPEIatioNcccereienieneineineiseissississ s ssssssssssssssssssssans 236
MESSAGE DESCIIPLON ...euriereeeieeeereieeiee st s e e s e e e 237
MESSAGE HEAUEN ... s e s e 238

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 Xi

Xii

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Message Payload (OWOrd WIILE) ... sssssssssssssssssssssssssans 239
Writeback Message (OWOrd REA) ...t sssesssssssssssssssssssssssssessaness 239
Writeback Message (Unaligned OWord REad)........cooveeeemeeenmeeennreenerisnesesseessssessessssessnens 239
Message Payload (Dual OWord WILE) ... sssssssssssssssssssssssssnns 240
Writeback Message (Dual OWord REAA)ovuverreeerenereeeeneeenesesssssessssesssssssssssssssssssesssness 240
Message Payload (HWOrd WIILE) ...t sssssssssssssssssasssssssans 241
Writeback Message (HWord Rad)cooriiennreenereneeieceseeesesessssssssssssssssssssssssssessaness 241
Untyped Atomic Float Add OPerationinsinsinseinssenssesssesssesssssssssssssssssssssssssssssses 241
Untyped Atomic Float Add Operation Message DesCriptoronrinrineeneenesensenn. 243
MESSAGE HEAUET ...ttt ss ettt 244
MESSAGE PAYIOGM. ...ttt et e 245
SIMD16 AdAress PaylOadcc.cirnienerinseinseinsssssssss s ssssssssssssssssssssnssssssssssssssness 245
SIMDB8 AdAress Payload........ccoecueeeeureeecieeiseeiseeiseetse e ssssessssesssssssssssssssssssssssssssees 246
SIMD16/SIMD8 DWORD Source Payload.......mrinneenneinneisnseissessssssessssesssenens 246
SIMD16/SIMD8 QWORD Source Payload..........oeeneeneeeeneeeneeeeeisseeiseeesseeeseeenees 247
WHItEDACK IMESSAE ..v oottt ettt sttt 248
SIMD16 SIMD8 DWORD Atomic FIoat Addc.oeemeceieceineecineeinseceisesessesssiseens 248
SIMD16/SIMD8 QWORD Atomic Float Add.........coerinrenrinsiseissnsise e sesssessons 248
REAA SUIMACE INTO..oriiiriiie ittt bttt 249
MESSAGE DESCIIPION ..ottt sttt 249
AArESS PAYIOAU ..ottt 249
WIHEEDACK IMESSAGE .c.evvereree ettt ettt e 249
TrANSPOSE REAU ..ot bbb e e bbb e bbb 251
MESSAGE DESCIIPEON ... eereerieeieeieeieise sttt s s 252
MESSAGE HEAUET ...ttt ettt e 252
WIHEEDACK IMESSAGE ...ovverere ettt e e 254
Scratch BlOCK REAA OF WIITE ...ttt ettt st ssse 254
MESSAGE DESCIIPION ..ottt sttt 255
MESSAGE HEATEN ...t s s s s 256
MeESSAGE PaYI0@d (WIILE) ... reeureerreeeeeeeeeieeeseeee et es e ssse st sssseessse st st ss s ss s sssssssnsens 256
Message Payload (REAM) ...t sasssans 256
Writeback MesSSage (REAA) ...ttt st st sssse s sssssssanees 256
MEMIOTY FENCE .ottt e e et 257

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

MESSAGE DESCIIPEON .. eeierierierieeieeiees st 258
MESSAGE HEAUET ...ttt ss ettt 259
WHItEDACK IMESSAGE ..ottt sttt st sttt s s ss st nees 259
PIXEI DALA POIt c.ouieeeecereieieiiieciie ettt eise ettt e st e 260
CACKNE AGENTS ..ottt sttt s s8Rt 260
ACCESSING RENAET TAIGELS ...ttt 260
Message SEqUENCING SUMMIATY ... ssse e sssesasesans 261
SINGIE SOUICE ..ottt bbb bbb bbb s s s s ssnes 262
DUI SOUICE ettt s et e 263
REPIICALE DAA... oot sssse sttt st st ss st 263
Multiple Render Targets (IMRT)....oeeeeeeeseeeneeesessssessssesssessssessssssssssssesssssssssssssssssnsseos 263
Render Target Read and WHIte ...t ssssssssssssss st s sssssssssssssssnssns 263
SubspanPixel tO SIOt MaPPING ... sssesssseessss s esssees 267
MESSAGE DESCIIPLON c.uveuieeieniriireeeei ettt et es st ettt sttt se st se s ssesen 270
MESSAGE HEAUET ..ottt sttt 270
MESSAGE HEAUEomeereeeee ettt ettt ettt et 271
Writeback MesSage (REAA) ... ssssssssessssssss st st sssssssssssssssssssssssssness 272
Header for SIMD8_IMAGE_WRITE..........covrreireeeneeississsisssessessssssssssssssssssssssssssssssssssnses 273
SOUICe 0 AIPNa PaylOadoevirieerieeeeiiseisssissssssssss s s sssssssssssssssssssssssssssssssssssness 277
OMASK PAYIOAM ..ottt 278

Color Payload SIMDT6 SiNGIE SOUICE ...t sasssans 279

COlOT PAYIOAA........o ittt sttt se et sttt st nnen 279
Color Payload SIMD8 SiNGIE SOUICE ... eeseeeseeese e e sssss s ssssesssesens 281

Color Payload SIMD16 Replicated Datacccovurenreneeneeneineieieeiseise s ssssssenns 283

Color Payload SIMDS8 DU SOUICE ... esse e sese s s sssessssessssens 284
Render Target REad and WILE ... s 286
MESSAGE HEAUET ...ttt sttt st 289
Shared FUNCtiONS PiXel INTEIPOIALEN ...ttt ss st ssnnes 290
IMIESSAGIES ..ottt e e e e e et 290
INIHATING MESSAGE ..ottt sttt bbbttt 290
MESSAGE DESCIIPEON ... ettt 290
“Per Message Offset” Message DeSCPLOr. ... rernrereeeereeeseeesseeesseeessesessesssssenees 292
“Sample Position Offset” Message DESCIPLOr........rinnrvnneinneinssissssssssssssssssssesnens 292

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

t

experience
what'’s inside”

Xiii

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

“Centroid Position” and “Per Slot Offset” Message Descriptor........conrirnrrennns 292
Message Payload for MOSt MESSAGES........oireennreernriinneiisesissssissessss st sssssssssssssssnsens 293
SIMDS8 Per Slot Offset Message Payloadceenneeenneeennseennseinnssssssssssssssssssssssneens 293
SIMD16 Per Slot Offset Message Payload..........c..iinreinneieseesiessessssessssessssssssneses 294

WHILEDACK IMESSAGE ...ttt sttt estens 295
SIMDB ..ottt eas e es e ek 8RR 295
SIMDITB oottt s esise st sssses bt ses e e bbb 296

Shared Functions - Unified Return BUffer (URB) ...ttt 298
URB SIZE ..ot eeeee et eeese e ees s ess s esss st et e 48888 8RR 298
URB ACCESS.....oorreurimnrimeriserisesiessisessasessasessssesasse s sasessssessasessssessssessssesesessasecsasessasssanessssssssessssessssesasssenes 298
AL e e e e e e e e e 299

FF_SYNGC MESSAQES.....o ittt seeise e sssesse sttt et et e sasnies 299
FF_SYNC M@ESSAQE HEAUET ...ttt ssess st st seseson 299
FF_SYNC Write€hack MESSAQE ...ttt sss st sssssssnssns 300

URB MESSAQESouuvmirimirineinrireeineciresiesisesie i s s s s s s ssse i e e e e e e 301

EXE@CULION IMASK ..oviiereeneecire ettt et e sttt et 302

MESSAGE DESCIIPTON ..ottt bbbt es et nesees 302

URB_WRITE @Nd URB_READ ..ot stsssissstsssnnses 304
MESSAGE HEAUET ...ttt sttt st 304
URB_WRITE_HWORD Write Data Payload..........crneeneeeeeeseeeseeesseeesseesseeisseeesseeens 306

URB_NOSWIZZLE ...ttt sasesse ettt sassines 306

URB_INTERLEAVED ...ttt sssesans 307
URB_READ_HWORD Writeback MESSAQEovvvureerieeeieeeeireeiseeisecise e ssseeeseeens 308

URB_NOSWIZZLE ...ttt et ettt saesins 308

URB_INTERLEAVED ...ttt st easeas s 309
URB_WRITE_OWORD Write Data Payload..........cocomrnneinneenneineinsissiseissiseisss e sssenne 310

URB_NOSWIZZLE ...ttt ettt st s ss st s ssss s ssansans 310

URB_INTERLEAVED ...ttt sttt eassas s 311
URB_READ_OWORD Writeback MESSage.......cc.ouvuiurimeenrineineinsissississiseisssissssss s sssssnns 312

URB_NOSWIZZLE ...ttt sssssssss s sssssssssssssssssssssssssssssssssssanssssssssassssssssanssnns 312

URB_INTERLEAVED ...ttt bsssssas s st sssssssssssssssssssesssssssssssssesssssssnsans 313

URB_ATOMIC ...ttt st ssss s s sss s s st st sas s sanssnes 314
MESSAGE HEAUEN ... s e s e 314

Xiv Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

WIHEEDACK IMESSAGE ...oeveeeee ettt sttt sttt st e 315
URB_SIMD8_Write and URB_SIMDB8_REAMcouucuurrueerecriecriecsiieeesiseesissesisessssnesesinseees 316
MESSAGE DESCIIPLON...ceveeieeeeeeeieie e e e e e e e e 316
MESSAGE HEAUEN ...ttt bbb 317

Per Slot Offset MESSage PRasSE ...t sttt st sssssssnssns 318
Channel Mask MeSSage Phase. ...t sesessssssssssssssssssssssssssssssssnses 319
Wit Data PaylOad..... .ottt sttt sssssssssssessssssssness 320
WIHEEDACK IMESSAGE .c.eeveeeeei ittt sttt sttt bbb 321
MESSAGE GATEWAY ...ttt et e e e e st s 322
IMIESSEQES ...ooeunirnrineeneineise it eese e e s eas e s e e e e e e e e e e e 323
MESSAGE DESCIIPLON .ottt ettt e sttt et 323
OPENGALEWAY MESSAGE ...ttt ettt et e e 324
MESSAGE PAYIOGM. ...ttt ettt 325
Writeback Message to Requester TRreadcinerenneeenneennssissssessssssessssssssssssssssssness 326
ClOSEGALEWAY MESSAGEconeeureerriereieeeieeeise ittt seee e ettt 326
MESSAGE PAYIOGM. ... oottt ettt s 327
Writeback Message to Requester TRreadcioneeenneeennnsissssissssesssssssssssssssssssssssssness 328
FOrWardMSQ IMESSAGEuvuueerreereiineeeeeese s e ettt s s ss sttt e 328
MESSAGE PAYIOA. ...ttt sttt st sttt st 329
Writeback Message to Requester Thread ... eesseesssesenees 331
Writeback Message to Recipient Thread ... 331
GEtTIMESTAMP MESSAGE ...ttt se st ss e e 331
MESSAGE PAYIOG. ... oottt et e 332
Writeback Message to Requester THread ... 333
BarrierMSQ IMESSAGE ..o eueceencereee ettt st sttt e 334
MESSAGE PAYIO@U........ i s e 335
Writeback Message to Requester Thread ... eecennecenneeeneeeeseeeseeesseeesseeesesessesenees 336
Broadcast Writehack MESSAgE ...t es s seneees 336
MMIOREAAWIIEE IMESSAGE ...ttt ssseses s sttt st ss st st ssssssssssssssnnes 336
MESSAGE PAYIOA....... oottt sttt 337
Writeback Message to Requester Thread (MMIO Read Only)cocoeveveenreneeneinseneenn. 337
MEAIA SAMPIEE ..ottt s ettt 338
Shared Functions — Video Motion EStiMation..........cccnceceeeeesisesisecsiecsinee 338

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 Y

(l n te,l l\experience

XVi

what'’s inside”

3D Media GPGPU

THEOTY Of OPEIALION ..ottt sttt ss bbb nes 338
SNAPE DECISION ..ottt sttt s bt 338
Minor Shape Decision Prior 10 FIMEcccciceinceisseesisessissesisessssessseneessenseees 339
Major Shape DeciSion Prior t0 FIMEieesssiseisesesesisssesesssssss s ssssssssssssssnses 342
Shape Update after FIME ...ttt sssssssssssssssssssssssssssaness 342
Final Code DeciSion after BME ...t eessssesssssssssesessssssssessssssssssssees 342
BT DECISIONSoooreerceerceae et ese s sssssss sttt sttt 343
SUITACES ettt ettt ettt sk kR8s 344
STATE et e e e e e 345
BINDING_TABLE_STATE ...oiiiieeeeieceiecsiseessmneeessssessissesssssee st ssssesssssssssssssssssmesssssessssnessssnsecss 345
SURFACE_STATE ..ottt etseeeess st st sss s ess st st bbbt 345
VIME_STATE .ottt sttt sss e b s et b b b 345
VME_SEARCH_PATH_LUT_STATE ..ooeeeerereereeeeieeeetseeessseesessesessssssssssesssse s ssssessssssesssnnas 345
Software Interface — BSpec Highlights........cirirnrirnrierses et sssesesenns 350
MESSAGE STrUCLUIE OVEIVIEW ..ot et sssee s isssess st st se s sssesnn 350
IME and IDM MeSSage DESCIIPTONuucuumeeeeereeireeeeeeeseseseesseessssessssesssesssss s ssssssssssssessnsssns 351
INPUL GRS ...ttt ettt e s st e 352
INput Message Phases DY TYPE ...t eses st sesss s sssesos 353
OULPUL GRES ..ttt et et e e 353
Output Message Phases DY TYPE. ... ssessse st es s sssessens 354
BiNAING Tabl@ POINTELS ... s 355
ProgreSsSivVe CONTENT ...ttt es et sese st et ss st ettt et st ss e se st ses 355
INEErIACEA CONTENT w..ooree ettt sttt et 358
RDE PaCKEt MAPPING .ot s sssssssssasssasssssssnns 360
GlOSSAIY Of IMESSAGESov ettt ettt e ettt 361
Universal INput MeSSage PRaSEs ... sasssnns 361
SIC INPUL MESSAGE PRASES ..ottt ettt s seneees 384
IME INPUL MESSGE PRASES ...ttt ssse st essssessse st s s sssesns 389
FBR INPUEL MESSAGE PRASES ...t e 394
IDM INPUL MESSAGE PRASES ...ttt ssse st ssssssssssssss sttt ssneens 396
Return Data MeSSage PRaSES ... sasssans 397
IME SErEAMOIUL ...ttt e s e s e e e 408
IDM SEFEAM=OUL ...ttt e e sane 408

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

IDM16x16 Streamout Message FOrmat ... ceseesesenans 409
IDM8x8 Streamout Message FOrMat ... eeseeesesssesssesesesssesssenes 410
SAMPIE_BXE SEALE ...ttt ettt s bbbttt 412
SURFACE_STATE for Deinterlace, sample_8x8, and VMEccccoooorromrremrrrnnrrnsrernssernsnenn. 412
SAMPLER_STATE for Sample_8X8 MESSAQEcow.rruermreermreernreereseseeesseessessssssssessssssssssssssssssssnns 412
Media Object Dispatch PSEUAOCOE ... sasssans 413
Calculate Residual Blocks PSEUAOCOE..........oucuceeerrierrineceieceiieseriseesisecsisecsseesessnsessens 413
Dispatch Media Object PSEUAOCOE ... sssssans 414
SIMD32/64 PAYIOAU...... ..o eesseess st e st ss s sssssssssssssssssssesssssssessssnsness 414
SIMD32 PaYIOaQ ...t ssss s s ssssesssss st st st sssss s ssssssssssessssessasessaness 414
SIMDGB4 PAYIO@Q ...ttt st s s esss s sseees 415
Vertical Block NUMDbEr RESTHCTIONScvuumceeeeeeieeeieciieceeiesceieeseiseessec st ssssesesssesssnnes 421
Payload Parameter DEfiNitiON ... eisseees et ssses e ssseens 422
SIMD32_64 MeSSaGE DESCIIPLON «.cuueuerreriereireieeieeisetseeesisetseisetsessesssssssssssssssssssssssssssanes 424
SIMD32_64 MESSAagE HEAGET ...ttt sees s ssseens 424
MESSAGE HEAUET ..ottt ettt e 425
SIMD32_64 Payload Parameter Definitioncornrinnseinnsinnseisssessssesssssssssssssnsens 427
SIMD32_64 MESSAGE TYPES...ouiueimeireireieeieeireesesiesisesissisesissssessessesssessesssessessessesssesssesssens 427
WHIEDACK IMESSAGE ...ttt bbb s ss sttt ss s ss s sss st ess 427
SIMDB2 oot eei st as s ss s e85 8RR 8RR 428
SAMIPIE_UNOIMT ..ottt e s 428
CACNE_TIUSI oottt sttt 432
Sample_8X8 Writeback MESSAGES ...ttt esss s eenees 433
“16 bit Full” Output Format Control MOde ... 434
Sampler_8x8 — Writeback Message for Convolve and 1 Pixel Convolution and 1D Vertical Convolve
............................... 439
Sampler_8x8 — Writeback Message for MinMaXFilter ... 440
"16 Bit Full" Output Format Control MOdeerneerneseessessessssesesssesssesssesseenes 440
“8 Bit Full” Output Format Control MOde: ... 442
Sampler_8x8 — Writeback Message for MiNMaXcoc.ouneenmeeneeeneeeneeeneeeseeesseeennees 443
Sampler_8x8 — Writeback Message for Dilate or Erodecocoovvveerionrronnrernnrirnniennnns 444
Sampler_8x8 — Writeback Message for Centroidc..coeeereeeneeeneeeneceneeeseeesneeennees 444
Sampler_8x8 — Writeback Message for BoolCentroid/BoolSum...........ccoccemrvrnrres 445
Sampler_8x8 — Writeback Message for AVS ... enenssssssssssssssssssenens 445

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 Xvii

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

“16 bit Full” Output Format Control MOde ... 445

“16 Bit Chrominance Downsampled” Output Format Control Mode......ccccouvuenn... 447

“8 Bit Full” Output Format Control MOdEc.rermreernrenererneeseeeeeesseseseeessesesssenees 449

“8 Bit Chrominance Downsampled” Output Format Control Mode...........ccccouvuune.cn. 450

SIMD32 SUIMACE STALE ..ouveierceeiecrieceieceicstiee s esise st ssesesesssessiset bt sses s esese sttt enisesens 452
SIMD32 SAMPIEE STALE......vierieririerieriesiesiee st ssss bbb 452
3D Pipeline Stages 452
3D PiPEIINE-LEVEI StAt ...ttt sttt sttt ss st ss s ss s ss st sttt st sennen 453
Statistics 455
SEALISTICS GAtNEIING oottt sttt sttt sttt 455
3D PIPEIINE GEOMELIY ..ottt ettt et 457
BIOCK DIAGIAM....ouieeieeriirieereiesiee st sttt st st ssssssss s sttt et et st s 457
3D PrimMiItiVES OVEIVIEW ...coueeuiereiereieeeeeeciseeesseeasse ettt ssses s s ssss s sssss sttt sesesssnes 458
VErteX Data OVEIVIEWcoeericeieceiecrinecriesiseeisesise i sisesiseesssecsasesssnsssssessssestsssssssssisessinecssnsessnssses 466
VEITEX POSITIONS .ottt ettt sttt e et et 466
ClIP SPACE POSITION ..ottt sttt sssss st s sttt st s sttt nssnnen 467

NDC SPACE POSITION ..ottt 467
SCrEEN-SPACE POSITION ...ttt sss bbb bbb s st ssssss st snssnes 467
VErteX FELCN (VF) STAGE .ottt st sttt ssss sttt st st ssnssns 468
AT ettt s A AR R bRt 468
CONTION STALE ...ttt ettt it 468
INAEX BUTFEE (IB) STATE ...ttt sttt 468
VErteX BUTFEIS (VB) STATE ...ttt ees s eeseeenaeen 469
VERTEXDATA Buffers — SEQUENTIAL ACCESS........omrvrinmrinerinesinesisssssssssssssssssssssssssssssness 469
VERTEXDATA Buffers — RANDOM ACCESS.......covuirrnrienninneinseenssissssnsssssssssssssssssssssssssssssens 470
INSTANCEDATA BUFFEIS .ottt ssssssssssssssssssssssssssss st st st sssssssssnnsses 471
VeErteX DEfiNItION STAtE........ieieriecieeeriesieres st ssss s s 472
INPUL VErtEX DEFINIION ...t 472

3D Primitive COMMANG ...ttt stse st sssss sttt ss s sssssss st st ssssssssssssssnses 473
FUNCIIONS ...ttt ettt e ane bbbt e bannts 473
INPUL ASSEMIDIY ..ot s b s 473
VEIMEX ASSEIMDIY ..ottt ettt sttt 473

VEIEX CACNE ..ottt i i sttt 474

xviii Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

Input Data: Push Model vs. PUIl MOAEL ... 475
GENEIATEA IDS ..ottt esis sttt st bbb bt 475
3D Primitive PrOCESSING ..ccvuureeeeeeeeinneenseieeiseisetsetsessessesssssssssssssssesssssesssssessssssssssssssssssesssnes 476
INAEX BUFFEI ACCESS ..ovvveerreeereeeeneceieeeeseesiseeeesss sttt st sss st st et sss s 476
Vertex Element Data Path ...t ssenessssesssennes 477
FOIMAtCONVEISION ..ottt sssee s sass sttt e s eisees 479
DestinatioNFOrMAatSEIECHION ...t esies st sseessseseees 482
Dangling VerteX REMOVAL ...t bbb ssss s sasssans 482
VErtiCES GENEIATEU. ...ttt sttt et 483
ODbjJECES GENEIALEAooveereeeee ettt sss sttt st 483
Vertex SNAdEr (VS) STAGE. .. ettt ettt sttt eneion 484
STALE e e e e e e e e e 484
FUNCLIONS oottt sttt e bk et 484
VErteX Shader CACNE (VSS$) e eeeeeese s veseesevsessesesessesesessesese s sesessessessessssess s 484
SIMD4x2 VS Thread Request GENETAtioNovererreerineeesieeiesississssssssssssssssssssssnns 486
SIMDA4X2 VS Thread EXECULION ...ttt ettt sees s ssses s ssseens 486
VS Thread DiSPatCh MASKS ... ssss st st sssssssssssssssssssssnsssssssssness 487
VEITEX OULPUL oottt st 487
THread TeIrMINATION ...ttt ettt ss st sss s ss st sess 487
PHIMILIVE OULPUL oottt bbb ssss s s s s ssss e e e sans 487
SEAtISTICS GATNEIING ...ttt sttt sttt 488
PAYIOAAS......oeee sttt 488
SIMDAX2 PAYIOAU ...ooveerrieieeeeiee ettt sttt e s 488
SIMDB8 PAYIO@Q ..ottt essss bt sss st ssssss bbb st sssssssssssssssssssanes 490
HUIT SHAdEI (HS) STAGE ..ottt sttt sttt 493
STATE et e e e e e e e 493
FUNCRIONS oottt s s bbb bbb bbb bbb bbb aes 494
PatCh ODJECt StAGING c.ouveeieeeeee ettt 494
HS Thread EXECULION ...ttt siseesisssssssssss st sisessisssssnsesos 494
HS Thread DiSPatch Mask ... ssse st ssse s sssessssessssesssnees 494
Patch URB Entry (Patch ReCOrd) QULPUL ... 494
PlEase Provide Title ...ttt sttt sttt sss st sssssssnsssnses 494
DOMAIN_POINT STIUCTUI ...ttt ssseissessse s sssesss s ssesans 497

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 XiX

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SEAtISICS GALNEIING ...ttt sttt sttt s st sb st sss st 498
HS INVOCATIONS .ccoeciiicriecie e seseesssessesessssesssse e s s e sesesssnessssesssnesssens 498
PAYIOAUS. ... ettt sttt s s Rt 498
SINGLE_PATCH PaylOad ... eeeseeeesseesssssesssssesss s s ssssssesssssssssesssssessssnsness 498
Tessellation ENGIiNe (TE) STAQEttt sssesens 503
STALE ettt e e e e 503
FUNCLIONS ..ottt sase s sssse s i sttt e e et seen 503
PALCN CUIIING oottt e e 503
TeSSellation FACTOr LIMILS ..ottt it ssses s sssssssssssessnees 504
PAITITIONING oo s e e e e 504
Domain Types and OUtpUt TOPOIOGIEScuvereereereeeireciireeiseeisseees e e e e ssssesseeens 504
QUAD DOMaIN TESSEIALION ..ouueeereeerceiireeiieceieceeieeeiseesieesisessssesessssessssessssesssssesesssssssens 505

TRI DOM@IN TESSEIAION....co ettt sttt 507
ISOLINE DOM@IN TE@SSEIALION.....couuceercriicerieciieceieeeiseeessseeesisseesssesssssesesessssesesssessssseees 508
DomMain Shader (DS) STAgE ..ottt st 509
STATE e b e e e e 509
FUNCLIONS ..ot sisecsesessssessse e ittt it i et sancnes 509
SIMDA4X2 Thread EXECULION ...t eesse sttt ssseeos 509
SEAtISEICS GAtNEIING oottt st ss e 510
PAYIOAUAS. ...ttt ettt ke 510
SIMDAX2 PAYIOA ..ottt sss bbb b s st sss sttt ssssssanes 510
SIMDB8 PAYIO@Q ..ot eis et st ss s ses st bbb st sssssssssssssssssssanes 513
Geometry Shader (GS) StAGE ... ettt st st ss st 516
GS StAGE OVEIVIEW ..ottt sess et st ssss s ss s e ss s e 516
AT ettt R AR bRt 516
FUNCLIONS ..ottt sisecsisesssse sttt sttt it et 516
ODJECE STAGING .eorvrevreeeeeere ettt as ettt sttt 516
Thread ReqQUEST GENEIALION ...ttt ssss s sss s s s s ssssssssans 517
ODbjJECt VEItEX OrAEING ..ottt sasssans 517
TRIEAA EXECULION ..ottt sttt sttt sttt s s bbb 522
TRrEAA EXECUTION «.couieerieircieiccrieciieieise sttt ssss st 522

GS URB ENTIY ettt e s e s e e s s s e 522

GS URB Entry - Output Vertex COUNT ...t sesssessesesasees 523

XX Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

GS OULPUL TOPOIOGIES ..ottt sans 525

GS OULPUL STrEAMID ...t s s 525
PrMITIVE OULPUL oot s e s e e 526
SEAtISICS GALNEIING ... iieiierei ettt b st s st sntanes 526
PAYIOAUS. ... eeereerreerceieeee ettt sss st R R 526
Thread Payload High-LeVel LayOUt ... ssssssssssssans 526
SIMD 4x2 Thread PaylOad...........coovreriernreernrieeseieeisseesessnssens 527
SIMDB8 Thread PaylOad..........c.evierenrineinsinsiseiesississsanes 534
Thread ReQUEST GENEIALION ...ttt sttt sttt sttt sss st ss s sssssnsen 541
Thread Control INfOrMEatION ...t ssees st esesesssens 542
Thread Payload GENEIatioN ... eeiereeiieeiseeisseeisseess e essesssssssssse s ssss s ssssssssesssssesssees 543
FiXed PaylOad HEAUET ...ttt sttt ss s ssssssss st st ss st s ssssssnssns 543
Extended Payload HEATEN ...t eass st ssseeos 546
PaYlOad URB Datacoocrrveriereiereiesiisesssnnssss 546
Stream OUtPUL LOGIC (SOL) STAGE ...ttt as s s st st se s ssnes 548
STATE e b e e e e 548
FUNCLIONS ..ot sisecsesessssessse e ittt it i et sancnes 550
INPUL BUFFEING ettt ettt e 550
Stream OULPUL FUNCHION ...ttt sttt sttt sttt st sssssssaees 553
SErEAM OULPUL BUFFEIS ...ttt sss sttt ssss st st nssanes 554
RENAEING DISADIE ... s e 554
SEATISTICS vttt ittt ettt 555

3D PipeliNg RASTEIZATION ..ottt s st ss st st st ss st st sssnssnnen 555
ComMmON RASEEMZATION STALE c....cuuueercrirceiceiciecriecrieiieiie it siseeseseessseessnssssse s sisens 555
3D Pipeling — CLIP Stag@ OVEIVIEW ...ttt esseeasseeessssasssesssssssss st sssssssssssssssssnes 556
Clip Stage — 3D ClIPPING ..cveueereeeeeeiieieeeieiesseee e ssssssssssssssss s ssssssssssss s sssssssssssesssesssssssssssssssesaesans 556
FiX€A FUNCLION ClIPPEL oottt ssssssss bbb s s ssssssssssssssssssssssssssnsssnsssnes 556
CONCEPES ettt es ettt s sttt 557
CLIP StAg@ INPUL .ottt et e s s st ettt 557
AL bbbt 557
VUE REAADACK .oveeiriiciiciiieciie ittt essse st sise it ssessssstsees 558
VerteXClIPTESt FUNCHION ..ottt eessessse sttt s s st seseees 559
ODJECE STAGING ettt ettt ss s e e b 562

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 XXi

experience
what'’s inside”

3D Media GPGPU

Partial Object REMOVAL........eerriseie s 562
ClipDetermination FUNCLIONttt ssssssesssssssssssssse st sssssssssssnns 562
ClIPIMOAE SEALE.... oottt sttt sttt ss sttt 564
NORMAL CHPIMOTE ..ot eessseasssessssse et esssss st ssssss e ssssssssssssssssssees 565
CLIP_ALL ClIPMOAE ..ot stsssssssssssssssssesssssssssessssssssss st st sssssssssssssssssnesens 565
CLIP_NON_REJECT ClIPMOGE....coreeureeeeeeeeeeesesessesesssssessssesssssssssssesssssssssssssssssssssesssssssssens 565
REJECT _ALL ClIPMOE.....ooieereeeceeeeseieseetsseesssssesssssssssssssssssessse st st sssssssssssssessssessaessaness 565
ACCEPT_ALL ClIPMOGE c..oeerreeieceeeeeeeeiesee e essssessssessssss s ssssssssssssesssssessssssssssesssssssssssnes 565
ODJECt PaSS-TRIOUQGN ...ttt sttt st sss bbb e 566
PHMITIVE OUTPUL c.ooveeeee ittt ettt bbbttt sees 567
Other FUNCHIONAITY ..ottt ettt sttt 567
SEAtISTICS GAtNEIING oottt ss sttt nnsen 568
CL_INVOCATION_COUNT .ottt esseeseisessstss st ssessss s essssssssssss s sasesssssssssssssnssnees 568

3D Pipeline - Strips and FaNSs (SF) StAgE ... ssssssssssss s ssssssssssssssnns 569
INPULS TTOM CLIP ...ttt bbb bbb bbb bbb s sees 569
Attribute Setup/INterpolation PrOCESS. ...t sass s sens 570
Attribute Setup/INterpolation PrOCESS ... sesssssssssssssssssssssssssssssness 570
OULPULS TO WM ..ttt ettt 570
PriMITIVE ASSEMDIY ..ottt sttt ss st sttt 571
POiNt List DECOMPOSITION c.c.vurieerieierieesieeies st ssss s s ssss s ssssssss s ssss s ssssans 575
Line List DECOMPOSITION ..ot sans 576
Line Strip DECOMPOSITION ...t 576
Triangle List DECOMPOSIION ...ttt ss s sssse s ssssssssssssssssnees 578
Triangle Strip DECOMPOSITION. ...ttt sssssans 579
Triangle Fan DeCOMPOSIION ...t ee et ssse s sssssssanees 580
POlYygON DECOMPOSITION ..ot 581
Rectangle List DECOMPOSITION ...t ssee st essse st s ssss s sssessseens 581
ODJECE SEEUP - vev ettt ettt e et 583
Invalid Position Culling (Pre/Post-Transform)cnrernseennssenssisssesnssssssssssssssees 583
VieWPOrt TranSTOrMAtIONot eeseee ettt ss s ss e sssse st ssseees 583
DeStiNAtioN OFigiN BiaS ..o siseeseississssssssssssssssssssssssssessssssssssssssssssssssssssssssnsssnes 583
Point Rasterization Rule AdJUSTMENT ...ttt ss s sssesseeens 584
Drawing Rectangle Offset APPlICAtION ... sisssssssssssisssssss s ssssssssnssses 585

XXii

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

POINt Width APPICAtION ...ttt ses s st s st st nsssens 587
ReCtangle COMPIETION ...ttt ettt ssss sttt ss s ssnsens 587
Vertex XY Clamping and QUaNtiZation.........o...covireneeneeenseesnseesseessssesssssssssssssssssssesssssssanees 588
Degenerate ObJeCt CUlING ... sissississsssss ettt sttt ssssssssssssssssnns 589
Triangle Orientation (FACE) CUIING ...t sssss s ssssssssssssssssaness 589
SCiSSOr RECtangle ClIPPING ...t sesssss s ssssssss s s s s s s sssssssssssssasesans 590
VIEWPOIT EXEENTS TOST ... eeieeieeeeeeeeietsetse et e e s s e 591
LINE RASTEIIZATION ...ouveeriencirecereie ettt ettt ettt sttt 591
Zero-Width (Cosmetic) Lin@ RASLEIZAtION ..o 591
GIQ (Diamond) Sampling Rules — Legacy MOde..........crronnrennrenneeenesenneeessesesssssssssens 592
GIQ (Diamond) Sampling Rules = DXT0 MOde.........coummrneeeneeineeiseeiseceseeessesesseneseesenns 593
Non-Antialiased Wide Line RaSterizationccocecemeeeneeeieecsinseesiseesssesesseeesiseens 595
Anti-Aliased Lin€ RASTEMNZAtION ...ttt ssssesseees 596

SF PIpeling Stat@ SUMMAIY ... sisssess e sssss st s sssnns 597
3DSTATE_RASTER [CHV, BSW] ...ttt ssse s st sass s sasens 597

B ST ATE_SF ettt ettt s 598
Atribute INtErpolation SELUP ...ttt sttt sttt ss st ssnnses 603
ALEFIDULE SWIZZIING oottt sttt 603
INEIPOIAtION IMOMES ...ttt sttt ss st st ss s 604
POINT SPIILES oottt bbb bbb e s bbb e e 604
Barycentric Attribute INterpOlation ... 606
DEPLN OFfSEL .ouieereierese ettt st ss bbbttt 606
OthEr SF FUNCHIONS ...ttt ssssssss bbb bbb s bbb bbb bbb nsssnsssnes 606
STAISTICS GATNEIING oeeeeee ettt et e 606
WiINAOWET (WM) SEAGE ..ottt ettt sttt sttt 607
OVEIVIBW ..ottt eese e eessesse e e se s es s e e e e e e e e 607
INPULS TrOM SF 10 WMottt ssssssss bbb bbb bbb ssssssssssnsssnes 608
WiINAOWET PIPEIINEA St ...ttt s 608
BDSTATE WM ettt e e s ittt 608
3DSTATE_SAMPLE_IMASK ...ttt tsssssesssssssssssss s ssssssssssssssssssssssssssssssssssssssnsssssssasssns 613
RASEEIIZATION oottt sttt et 619
Drawing Rectangle CHPPING ..ot eese s ssssesssssssssssssesssss st sssssssesssssssssesens 620
LiNg RASTEIIZATION ...couuvenireenciriirecieieciiciiecise ettt sisee bbbt e siseson 620

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 Xxili

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Coverage Values for Anti-Aliased LINES..........cowrvivnreinnrinneinssisessesssisssssssssssssssssssses 620
3DSTATE_AA_LINE_PARAMS [CHV, BSW] ... sssesans 620

LINE SHI PP ettt sttt 621
Polygon (Triangle and Rectangle) Rasterization ... sesenns 621
POIYGON STIPPIE .ottt s sttt ss e 622
MURISEMPIING oottt b bbb bbb bbb bbb s s senes 623
MUItISAMPIE MOAESSEALE ..ottt sttt ss st saneens 623
Other WM FUNCLIONS ..ottt sssse ittt sisessenes 629
SEAtISICS GALNEIING ... iieiieeiei ettt bbbt s bbb snsanes 629
PIXEL..ooo ettt ettt SRRt 629
Early Depth/StenCil PrOCESSING ...ttt sesee e sssssessss st ss s senes 630
DEPLN OFFSEL ...ooriereeciee ettt sttt ss sttt st s bbbt s s 630
Early Depth Test/StenCil TESt/WIIte ...ttt st ssssssesens 631
Software-Provided PS KerNel INTOececineeciineceineceieeesisesesisseesisessssessssnseens 632
Hierarchical DePth BUTTEN ...ttt sttt sttt sssssssssssssanes 632
DEPLN BUFFEE CLEAN ...ttt s 634
DEPLh BUFFEr RESOIVE ...ttt sttt st ssnnses 635
Hierarchical Depth BUffer RESOIVE ... 636
Optimized Depth Buffer Clear and/or Stencil Buffer Clear........cooonercnnrinnrrnnreennnnenn. 637
Optimized Depth BUFfer RESOIVE.........iieeeeece ettt sesssssssss s ssssssssssssssnses 638
Optimized Hierarchical Depth Buffer RESOIVE ... 638
SePArate STENCH BUFFEI ...ttt ssse st sttt 638
DEPthSLENCIl BUTFEE STALE ..ottt s st s bbb sssnsanes 639
Pixel Shader Thread GENEratioN ... ccrcinecieeeeiesisesiecsisecsiseessessssssssessssesisecsisecsines 639
BDSTATE_PS ettt ettt s 640
Pixel Grouping (Dispatch Size) CONIOl.......cececiececrieciecieciseeisesiecsiecsisecseecssneeees 642
Multisampling Effects on Pixel Shader DispatCh ... 644
MSDISPMODE_PERPIXEL Thread DiSPatChi........rnrinrinsiesissiesiesississsssssssssssss s sesssens 644
MSDISPMODE_PERSAMPLE Thread DiSpatCh ..o 644

PS Thread Payload for Normal DiSpatCh ...t sssseessseeseeens 647
PS Thread Payload for Normal DiSpatCh........ccc..cerimrinnrinniinsiinseinssisssisssessssessssssssnseses 647
PIXEI BACKENT ..ottt sttt sttt 661
Color Calculator (OULPUL IMEIGET) ...t sissssss s ssss s ssss s sasssssssasssans 661

XXiv Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

OVEIVIBW ..ottt cise ettt s i bttt 661
AlPNA COVEIAGE. ..ottt st ss st ss s ss s sttt s s sb st rees 662
AUPNA TSttt sttt s s 662
Depth Coordinate OffSElL......ieieisreieissies st ss st ss st ss s ssneses 663
SEENCHT TEST oottt st bbb bbbt 664
DIEPEN TESL oottt bbb 665
Pre-Blend Color ClamPingrrieeeeeneeensasssens 665
Pre-Blend Color Clamping When Blending is Disabledcccooonnnrrnninnrnninnnns 666
Pre-Blend Color Clamping When Blending is Enabled..........cccoornnnnnnnicnninnennnns 666
COlOr BUFFEI BIENAING «.cooreeeeereeereeeriie ettt st st sssssssss s sssse st st s ss st 667
POst-Blend Color ClamPing ... ceeeeeeeeeeseeese e sssessssessssessssessssessss st sssssssssssssssssnsesns 669
DIENEIING ottt s st s st 669
LOGIC OIS iiiirriireiireeiieeeseeese e i et e e e e 670
BUTFEI UPATE ettt sttt sttt 671
SEENCIl BUFFEI UPALES ..ottt ssss bbb sss s sasssens 671
DEPth BUFfEr UPAtES ...ttt sttt ssssssssssssssssssss st sssssssssssssssnses 672
COlOr GAMMA COMELLION....ccoumeeercerireeeieesiecetee s esisee sttt esesssssi st essesesens 672
COlOr BUFfEr UPAALES.......oooveeeveereseisstsis s sessssessssssssss s s ss s s ssnssen 672
Pixel Pipeling State SUMMAIYo.cooirieireieieesenssisssesssssssssssssssssssssssssssss s sssssssssssssssssnsses 672
COLOR _CALC_STATE .ottt ees st ssssesssssss st sesss st sssssssssssssss s st ssssessssssssssas 672
3DSTATE_BLEND_STATE_POINTERSotriieeeieeeemeeeiiseeeieeetseessseeessssessssessssessssnessssnssees 673
3DSTATE_DEPTH_STENCIL_STATE_POINTERSosstvuereieerieerimeeemiseesisecsiseesssesessnseens 673
COLOR _CALC_STATE ...ttt esees st st ssssss st sessss st sssssssssssssss s st s sssssssssns 673
DEPTH_STENCIL_STATE ... oreeeeceeeeeteeeiseeessseeesisseessseessssesssssesesssssssssssssssse s ssssessssnsssssssces 673
BLEND_STATE ...t eeseseeseeesssses st sessessssssssss st st s sss s ss st ss st sssesssssnees 673
CC_VIEWPORT c.ooretectimeceimeesissee st ssssesssssssessses st ssssss st st sttt ssssesssssss st ssssesssssssssns 673
Other Pixel PIPEliNg FUNCLIONS ...ttt sttt sessssssssssss st sssssssssssnnes 674
SEAtISEICS GAtNEIING oottt st 674
MCS BUffer for RENAEr TArget(S)....coouommrvrrrvrririinsiesesssnssssessnssses 674
ReNEr Target FASt ClEAT. ... ettt sttt ettt st ss s ssnsenn 677
RENAET Target RESOIVE ...ttt s bbbt snssnes 677
Media GPGPU Pipeline 679
MEAIE GPGPU PIPEIINE ...ttt sttt s bbb bbbt sss s s s s s ssessssees 679

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 XXV

(l n te,l l\experience

what'’s inside”

3D Media GPGPU

Programming the GPGPU PiPeliNe ... ssss s sssssens 679
GPGPU THrEad LIMILS ..ottt sssss st sssssssssssssssssssssssesssssssssessssssssssssens 680
GPGPU COMMANTS ...crtrririircrrirereimeceisecaiseessinessisessssesssssesssssssssssssssssesssssesssenesssssssssssssssnessssnssssnessens 680
GPGPU Command WOrKaroUNGSccueeucrineeineeisecimeeissesisseesssesissesisssssssssssssssssssssssssssssssses 680
GPGPU Indirect Thread DISPatCh ... sssssssssssssssssssssssssssssssssssssssessanens 681
GPGPU CONETEXE SWITCN .ottt sasse sttt ssse e esssessees 682
GPGPU CONEXE SWITCN cooviiirreieeeieceieceieciecetiee s ssie st ssesesssisessise sttt ssssesssins 683
GPGPU Context SWitCh WOrKaroUNdsceeeneerineeineeineciseeisseesssesisssessssssssesssessessssenes 686
Media GPGPU Payload LimMitations.........ccenrineieneinnieissssssisssess s sssssssssssssssssssssssssssssessssans 686
Synchronization of the Media/GPGPU PipeliNg ... sessssesssesessenns 687
MOAE OF OPEIALIONSooveeeeeeeeetes sttt bbbt 688
GPGPU Thread RO HEAAEN ...t eeesessises it ssssssssssssssssssssssesssssesssssssssens 688
GPGPU MOttt e e sttt 690
Automatic Thread GENEIatION ...t ssees s ssisesssses s esssesessnaes 690
TRrEAA PAYIOAQ ..ottt sttt et 691
EXECULION IMASKS ..ottt ettt ettt e 692
URB MaN@QEMENT ...ttt sisei et ss st s s e 693
INAIreCt Payload StOr@gEttt es st seseion 694
MEDIA_OBJECT_GRPID ...ttt et iesssesse s saessse e saessse e sasesns 697
Starting Offset for @ Thread Group ID ... ssseeesseeens 697
THread GroUP TraCKING ...t s e s s s 698
Shared Local MemOry AIOCATION ...t 699
Software Managed Shared LOCal MEMOIY ... ssse s s e ssesesnes 699
Automatic Barrier ManagemMeENt ...t st sese st s st ssssssss s sssesssssssenes 699
DiISPALCN PAYIOAT ...ttt et 700
GENEIIC MEAIA ..ottt sssse st et ettt et et bbb 700
PrOAUCE EVOIULION c.ocvere ettt sttt st 702
Media and General PUrpoSe PIPEIINE ...t ssss s sssssssssens 705
INEFOAUCTION .ottt bbbttt i st 705
T MMINOIOGIES ... eeeereeeeeeeeee ettt st sttt eees 705
Hardware Feature Map in PrOQUCES ...ttt sesssssssssssssssssssennes 706
MeEdia PIPEIING OVEIVIEW ..ottt ettt sttt ssaos 708
GENEIIC MO ..ottt e e s it 709

XXVi

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

Programming Media PIPEIINE ...ttt sss s ssss s 710
COMMANGT SEQUENCE ..ot ssse sttt ss s ss e ss s ss bbb st st ss st 710
COMMANGT SEQUENCE ..ot eesesese sttt sttt s st ssss st st ss st 710
Parameterized Media WalKEr ...t sese st sessssseseos 712
Walker Parameter DESCIIPLION ...t sssse st st st ssssssssssssssssssesssness 713
Basic Parameters for the LOCAl LOOPcocurvervenreeriinssessisssesssesssssssssssssssssssssssssssssnneses 714
MbAff-Like Special Case in LOCAl LOOP......crrrernecrineceineceiieecsieesisecsiessssesssieessinseens 716
GlODAI LOOP oottt sttt ses st st sttt ss s ss sttt st ss st st ssnnen 717
Walker AlgOrithm DeSCrIPION ...ttt ssss s s s s sssssssssans 718
Barriers and Shared LOCal MEMOIY ... ssssessss s s s s sssssssnsens 722
Flexible Dispatch Of LOCAl LOOP ...ttt sssssssssssssssssasssssssans 723
SCOMEDOAIT CONEIOL.couueiriieirceiiceeciie ettt ess sttt 724
AVC-Style Dependency EXAMPIE ... ettt ssseesssssssessssessssesssnees 725
Interface DeSCriptor SEIECHION ...ttt ss st ssneees 727
VC1-Style Dependency EXAMPIE ... ettt si et ssssssssees 729
Multiple Slice CONSIARIALIONS. ...ttt s sttt sssssssssnssanes 729
INEEITUPT LAENCY ettt e e et 729
THrEad SPAWNET UNit.uu. oo ssse s sss s sss s ssse s sas s s s sass 730
Root Threads and Child TArEaAS ...t esiesesssseesssee s ssssesessssssssnseees 731
ROOE TRFAMS ..ottt s s bbb bbb bbb ssees 731
URB HANAIES ...ttt sieesssessssssssssssss et sisessasessisessinesssnssssnsssen 732
Root t0 Child RESPONSIDIIITIES ..ottt sttt sessseees 732
Multiple SIMUANEOUS ROOLS ...ttt issississsssssssssss st ssssssssssssssssssssssssssssnsssnes 732
SyNchronized ROOt TAFQAGS ...ttt 733
DEAAIOCK PIEVENTION ...ttt ssss s bbb s bbbt s ssssssssssnsssnsssnes 733
Child Thread Life CYCIE .ttt ssses s ess st sttt sssssssens 734
Arbitration between Root and Child Threads............ninrenrinsineesiesisssss s sons 735
Persistent ROOT TRIEAM ...ttt sssss s bbb bbb s ss s ssnssanes 735
MEAIA STALE MOTEI ..ottt i 736
Media State and Primitive COMMANGS ... ssssssss e ssssessens 737
Media State and Primitive Command Workaroundscccceecerscrecnnee 737
MEAIA IMESSAGIES ..covverrereeereieeeese st es et ss st ettt 738
Thread Payload MESSAQES ...t sasssans 738

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 XXVi

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Generic Mode ROOE TAFEAd..........ccceceeieeieiecieise e sise i i sisessines 739
Root Thread from MEDIA_OBJECT_PRTvccuueereerieceiecsieesssesesinsessissesssesssssessssnessssnseses 740
Root Thread from MEDIA_OBJECT _WALKER ... eeeeeeeeeeseenesens 742
MEDIA_OBJECT_GRPID and MEDIA_OBJECT_WALKER with Groups Payload.............. 742
Thread SPAWN MESSAGE ...ttt sssssssssssse st sttt ssssss s sssssssessssassanens 744
MESSAGE DESCIIPLON c..eeierierieriereieeies st sss s bbb bbb 745
MESSAGE PAYIOAM. ...ttt sttt sttt st 745

L3 Cache and URB 747
L3 CACh@ @NA URB......cieicietiiecise ettt eisse et et sttt e s 747
VOI Ti L3E/URB....oouiveeseeieessesiss s ssssssssssssessssssssssssss s ssssssssssss s st sssss s sss s sssssssssssssssssssns 748
OVEIVIEW (BN GENEIATION) ...t s et st ess s ess s s 748
L3$ Cache CONfIGUIATION ..ccu..vveeeeeeeevississ e ssss s sss s s ssssss 749
BIOCKS(S) OVEIVIBW ...ttt es s s s eeseseasaseesesesasesasen 749
Size Of L3 fOr 8™ GENEIAION ..ovvoeeeeeeeeviss s seeeesssssssss s sssssssssssss s ssssssssees 750

ECC PrOtECHION. oottt ettt ekt e 750

L3$ THEOIY Of OPEIAtION .covveeeereeee ettt esss st sssss s ssss st sss st 750
AROIMICS c.ooirircrircrinereneesae e i et sesee e bbb s e e sttt 752
L3 CONEIENCY .ottt bt 757
Thread Vel CONEIENCY ...ttt sttt ss s ss s sss s sasassness 757
Thread GroUp CONEIENCY ...t ese et isssessseessse st ss e ss s sssssssssees 757
GPU/IA 1€VE] CONEBIENCY ..ottt ssss s ssss s ssse s e 757
CoherenCy USAge MOAEIS.......eeeieeceeiere et ssss s s ssss s ssss s sssssasssssssasesans 758
Fixed FUNC. ProdUCING (URB)......coiueieeeeeneeee et sssesssseessessssesssse st ssss s ssssssssseens 758
Fixed Func. Producing (PUSh CONSTANTS)c.ovvurunienrineineineissiesise st sesssnns 758

EUS Producing Via HDC ...t sssee s sss s sssss st ssss s ssssssns 758
INValidation @Nd FIUSNES...........ecececccieciecriecrieeiie it sesessisesssnesees 759
NoOde ArchitECtUre IMPACE ...ttt s s bt s s bbb sssenes 759
CoMMANG SErEAMET FIOWS ..ottt sttt sttt 759
NON-TA CONEIENT FIOWS ...ttt sissessssessse it sesecsisesos 760
Top of the Pipe INValidations ...t st ss e 760

End of the Pipe FIush - Pipeling FIUSNcoovurrirriireeeeeesee e 760

End of the Pipe FIUSh - GT3/GTA ...t esseesssessssesssse st s ssss s sssssssseens 760

End of the Pipe FIUSH = GT2/GT T ...oirsreierinesieesiessisssisssnseses 760

XXViil Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

[A-CONEIENT FIOWS ...ttt ssee e siss st sssseson 760
EU/TRIEAA FIOWS «.oorveeeictctictieceicetie e sisses s esisessisses s s s ssss s sssnssssnncs 760
GIODAI INVAITABLION «.oorieiriirceiicieiieeieeeiec i esese it st ssesesseses sttt enesesesins 761
Power Management INValidationeissiesissississssssssssssssssssssssssssssssnns 761

L3 Allocation and Programming.......cco.ceereneeeeeseessesssessssssssessssssssssssssssssssesssssssssssssssssens 762
NON-SLM MOAE AllOCALION ..ottt essse sttt i seesenn 762
SLM MOAE AlIOCALION ...courireirncriircriireirieeeieceiecsises s esissessises st st esisesssesses sttt ssssesssins 763

Shared LOCal MEMOTY (SLM) ...t ssss s sssssssssasssssssasssans 764
Save and ResStore REQUIMEMENTS ...ttt ssss s s sssssssssssssssssssssassens 765

SLM Context Save iN SUPEIQ ... sssesssesssssse s s s sssesssssasssssssans 766

6SLM Context Restore in SUPErQu.... . eieneinniesssesssisssens 766

SLM CONtEXT SAVE IN L3ciieieciecriecieeieniseriserisesisesisecsiseesiseessseessnsessnssssnssssnesssnesssessssens 767

SLM Context RESTOIE iN L3 ...ttt ssssssss s ssssssssnees 767

EU Overview 768
COISSUE/DUAI ISSUE ...t esse sttt ettt 769
THread SCNEAUIING: ..ottt ettt 769
Primary USAQE MOUEIS ...ttt sttt sssssssss s st ss st st st ssnos 770

AOS aNd SOA Data STTUCLUIES ...ttt ssssesssssssse st ss s ssss s seseens 771

SIMD4 MOdE Of OPEIALION ..ottt sttt sssss st ssss s sssss st st ssss st ssssens 773

SIMDAX2 MOAE Of OPEIALION ...t 774

SIMD 16 MOAE Of OPEIAtiON.....cieieeriieieieie sttt st sssss sttt ssss st sessnes 776

SIMD8 MOE Of OPEIALION ..ottt sttt st st sss s ssss st st ss st ssnes 778

IMIESSAGES ..ot ettt 779

Message Payload Containing @ HEAEN ...t 780

WWEIEEDACKS ..ottt ettt st 780

Message Delivery Ordering RUIES ...t sasssans 781

EXeCUtiON Mask @Nd MESSAGES ...t et ssse st sssss st ss s s 781

ENd-Of-Thread (EOT) MESSAGE ... vueereerneeerneeteeisseeesseeesseessseesssesssss st ssss s sssssssssssssssssssssssssssssnns 782

PEITOIMANCE «.coor ettt bbb b bbbt 783

Message DeSCriPtiION SYNTAX ...t sisesse e ssse e ssse s sons 783

MESSAGE EITOIS ..ttt s b et 784

Registers and RegiStEr REGIONS ...t eses s sses s sssesssss sttt st ssssssnos 786
REGISTET FIlES oottt sttt et e e 786

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 XXiX

(lntel) |
experience
what'’s inside”

3D Media GPGPU

GRE REGISEEIS ..ottt sttt seb bbb bbbt se s s bsnes 787
ARF REGISTEIS .ottt ettt se ettt et bbb 788
ARF REGISTEIS OVEIVIEW ...ttt s 788
ACCESS GIANUIBIILY «.veoeerierieriesieeie sttt ssss bbb 789
INUIT REGISTE ..ottt esss s ss sttt sttt 790
AArESS REGISTEN ..ottt s s s 791
ACCUMUIBLOT REGISEEIS ..ottt ssssssse sttt st ss s ss s sss s sssssssaness 795
FIAQ REGISEEL ..ottt b bbb bbb bbb bbb s sses 800
Channel ENADIE REGISTEN ...ttt st ssss s s sas e s 801
MeSSage CONLIOI REGISTELS ...ttt sttt ssss sttt st ss s ss s ssnsens 802
EXAIMPIE oottt sttt sttt sttt sttt 803

SP R EGISTON .ottt ettt e e e 803
SEALE REGISTEN .ottt e e e sttt 805
CONLIOI REGISTET ..ottt sttt st ss bbbttt 811
NOLIfICAION REGISTEIS ..ottt ettt sttt 817
[P REGISTON «.coueereee ettt etttk e ek et 819
TDR REGISTENS ..ottt e s e e s st e 820
PEIfOrMANCE REGISTEISooneeereeee et ees st sss st sst ettt 823
FIOW CONEIOI REGISTEISovveerveerierieesiie sttt sttt sss s sttt s ss st ssnssns 825
INIMEAIATE oottt bbb st 829
REGION PAr@MELETS.....ceeececi ettt st sess sttt s e s 830
REGION AdAreSSING MOMES ...ttt 834
Direct REGIStEr AQAIESSING.. ... ruureereeeeeeeeeseeee ettt s s essse sttt st ss s ss e ssssens 834
Register-Indirect Register Addressing with a 1x1 Index Region.......c.cccecvnecrnecrnecrecens 835
Register-Indirect Register Addressing with a Vx1 Index Regionccccoevnmeeneeenecennecens 836
Register-Indirect Register Addressing with a VxH Index Region........cnecenecnns 837
AACCESS IMOTES ..ottt ettt e 839
EXECULION Data TYPE oottt sttt s bbbttt 840
Register REGION RESEIICHIONS ...ttt 841
Destination Operand DESCIIPLION ...ttt ssse st ssssssssssssse st s ssssssans 850
Destination REGION ParameELErS.........ooierreneeeeieeiseieeiseississsisssssssssssssssssssssssssssssssssssssssnes 850
SIMD EXECULION CONEIOL ..ottt sttt s st nees 851
PrEAICATION ..ottt e s bt 851

XXX

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU intel

experience
what'’s inside”

INO PrediCatiON ..oucceeveecireciciticiie ittt sttt st 853
Predication with Horizontal CombiNationccceciceenneceisecsiecsssesesseseseseens 853
Predication with Vertical COmMDINGTION ...t stecsssessseesssinseens 855
ENG Of TAFEA oottt sttt et bbbt 855
ASSIgNING CONAITIONG] FIAGS...iverrierieeieeie ettt sttt s ss s sssssssss st st ssssses 856
DESTINALION HAZAIM ..ottt e st 859
NON-PIrESENT OPEIANGS.....oieereerreeereeeeeie i sese et st ssss st sttt s ssssssssssse s s st st st st nssseos 860
INSEIUCTION PIEFETCN ..ottt ettt bttt 860
ISA INEFOAUCTION oottt e bbbt 861
Introducing the EXECULION UNIt... .ttt ssss st ssssssssssssssssssssssnsssnns 862
EU TeIrmMS @Nd ACTONYMSoonieeeeeieeeeeiteeiseeese ettt st s s s ssse s st s ssssssssssnssens 865
EXECULION UNIES (EUS) .ottt as s sas s s e sasans 870

EU Changes by Processor GENEIratioN ... eeeeereeeeneeesneeisneeisneeessseessesssesssssssssssssssecens 871

EU NOTQTION ..ttt ssssesssse st s sesessssssssse st et sisessesessessssnsses 874
EXECULION ENVIFONIMENT ..ottt ettt st sttt 875
EU DAt TYPES c.oceueeneeneereineeieeie e sieeisesie st ssse i sbse e e i i e e e e e e 875
FUNAAMENTAl DALA TYPES oottt sttt sssssss st sssss st st st ssnssssnsens 875
NUMETIC DAtA TYPES ..ot eisse ettt sttt st e 876
INteger NUMENIC Data TYPES ..ot sasssans 876
Floating-Point NUMEriC Data TYPES.....c.ovwueeeeeeeerneeereesereeesseeesssessseeesse st ssssssssssssesssseens 878
Packed Signed Half-Byte INtE@GEr VECLON ... sisssississsssssess s ssssssssssses 880
Packed UnSigned Half-Byte INteger VECLON ... rrirnrieerinesineeisinssessssesssessssssssnsses 882
Packed Restricted FIOat VECION ...ttt ssss e ssseeos 883
FIOBTING POINT MOMES ...ttt b bbb sssnes 885
IEEE FIO@ting POINT MO ...ttt ssss st ss s sseeens 885
Partial Listing of HONOred IEEE-754 RUIESoooorvvrrenrrennrirnseinsiisnssessssisssssssssssssssesnens 885
Complete Listing of Deviations or Additional Requirements vs IEEE-754 886

Min Max of Floating Point NUMDENS ... 887
Alternative FIoating POINt MO ... 889
FIO@tING-POINt SUPPOIt ..ottt esseessesssse ettt ss s ssssssanees 891
Floating-Point TyPes @nd ValUES ...ttt sessssssssssssssssssssssnes 891

Not @ NUMBEr (NAN) FOIMMATS ...ttt sss s sssssssssas s ssseas 892
Floating-Point ROUNAING MOAES ...t tsetssessassssssssssssssssssssnnns 893

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 XXXi

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

Floating-Point Operations and PreCiSiONeeennseneississississsssssssssssssssssssssnns 894
Single Precision Floating-Point Rounding to Integral Values........cccovnnrcnnricnnrennneenn. 894
Floating-Point to INteger CONVEISION ... sessesssssssssssssssssssssssssssssssens 894
Integer to Floating-Point CONVEISION ... sisssssissssssssssssssssssssssssssssssssanns 896
Floating-Point Min/MaX OPErationsccocoeermreenmeeensessnsssssesssssssssssssssssssssssssssssssssssssesens 896
IEEE Floating-POINt EXCEPLIONS ...t ssssssss s sssssssssssssasssssssans 897
Signaling Floating-Point EXCEPLIONScccceceirecreceineceieceiieeesiseesiecsssessseessseneens 897
INvalid Operation EXCEPLION ...ttt stssese s ssssss st st sssssssssssnses 898
DiViSiON DY ZEr0 EXCEPLION ..ouveeereeree ettt sttt st st ssssssssssssss s ssssssssssssssnses 899
OVEITIOW EXCEPLION ..ottt sses s sssse sttt st st ss s ssnssns 899
UNErTIOW EXCEPLION ..ottt sttt sttt st ssss st st st st ssss st ssssnses 900
INEXACT EXCEPTION oottt ettt ettt ettt ettt 901
Floating-Point COMPare OPErationseeeneeerneeenseesneeesseeesseeessesssssssssessssssssessssessseens 901
TYPE CONVEISION. ..ottt e e e et e e 906
FIOGE T0 INEEGEN ettt ettt e 906
Integer to Integer with Same or Higher Precision ... 906
Integer to Integer With LOWET PreCiSiON ... siesisssissssssssssssssssssssssssnsens 907
INEEGET O FIOAT..eueee ettt ettt 907
Double Precision Float to Single Precision Float [CHV, BSW] ... 908
Single Precision Float to Double Precision Float [CHV, BSW] ..., 908
EXCOPTIONS ...ttt ettt bttt e e e 909
Exception-Related ArchiteCture REGISLEIS. ...ttt seseesseees 910
SYSTEM ROULINE ...ttt e sttt 911
INVOKING the SYSteM ROULINE.......oiieieeiierie et 911
Returning to the Application Thread ...t sseeens 912
SYSEEM TP (SIP) oottt eese it esssessss st sbs sttt sttt esi s 913
System ROULING REGISTEr SPACE ...ttt sttt ssss e ssseees 913
System Scratch MEMOIY SPACE ...ttt ssseeos 914
Conditional Instructions Within the System RoUtINg.......c..coovvrvrrerrineinrinenseseseiees 914
USE OF NODDUCIF ..o esse sttt ss e ss s ss st st ssnesns 915
EXCEPLION DESCIIPLIONS ..ottt ss bbb bbb st nssanes 916
1€l OPCOAE ..ottt s ss st 916
UNAEFINEA OPCOUES ...ttt ssssssssss st ss st s ssnnsen 916

XXXii Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

SOTIWAIE EXCEPLIONooovvereeiei ittt st sssssss bt sss s ss st ss s ss s ss s nnben 916
Context SAVE @NA RESTOTE......cuieceiceiiecriecsieestes s st sssesesessss st s ssssesssens 916
Events That Do NOt Generate EXCEPLIONS ... seseseseesssssssssss st ssssssssssnesens 918
[llegal INStrUCTION FOIMAT ...ttt 918
MalfOrMEA MESSAGE ...c.veurveereeeeereeeei ittt st st ss st st 918
GRF Register QUL Of BOUNGS ...t sssssssssssssssssssssssssssesssssssssessenns 918
HUNG TRFEAA ..ottt sttt s bbbttt 918
Instruction Fetch Out Of BOUNGSovcueeeereeeeeeieeceeee et eessesessseesssssessssssessessssssssssssees 918
FPU MAEN EFTOTS oottt it e sessson 919
ComputatioNal OVEITIOW ...ttt ssss s sssse sttt st nssts 919
SystemM ROULING EXAMIPIE. ...ttt 920
INSTUCTION SET SUMMAIY ..ottt s s 923
INStrUCtiON S€t ChAraCteriStiCS ...ttt ettt st st ssneeon 923
SIMD Instructions and SIMD Width ... ssssssssssneens 923
Instruction Operands and Register REGIONS..........c.ovureeeeeneeeneeeneeeseeiee e eeseeseseesessesseeens 923
INSErUCION EXECULION oovveeiee ettt e 924
INSTFUCTION FOMMATSooviverieicicicriecriecieeeise sttt siseesisessssessssessse e st i sesessesessansses 924
NatIVe INSEFUCTION LAYOULSeeueeerceecieceieciecee ettt sssee e etssess st sesesos 929
INSEFUCEION FIEIAS «.covvveenceiciteieceie ettt ese it sss sttt sens 933
EU COMPACE INSEIUCLIONS w.oovevieieirisieeistesiss st sttt sssssss s st ssssssssssssssssssssssssssssnsssnes 951
EU Compact INStrUCtion FOrMAtc..ooieierieeierieeicissiee et sssssnns 951
EU Instruction Compaction Tables ... 957
OPCOAE ENCOING .ottt ettt st sttt 963
Move and LOGIC INSTIUCTIONS ...ttt 963
FIOW CONLIOI INSTIUCTIONS «.cooveeoeecececese ettt ettt st 964
MiSCellaN@OUS INSTIUCTIONSouuvemcrircrincriciceieeicricsiecsiecrieerseesseesse i sisecsiseessneeses 965
Parallel Arithmetic INStrUCTIONS ...ttt ssneens 965
Vector Arithmetic INSTIUCHIONS ...ttt sesesseees 966
SPECIAI INSEIUCTIONS ..ottt s bbb bbbt st sssanes 968
Native INSTFUCTION BNF ...ttt bbbttt iees 969
INSTIUCTION GIOUPS oot e 969
DESTINALION REGISTEN ...ttt e e e 970
SOUINCE REGISTEN ..ottt sttt bbb sb s snstaes 971

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

XXXiii

experience
what'’s inside”

3D Media GPGPU

AArESS REGISTEISouveeerririieeeeeieeise it sttt ss sttt st bas s 972
Register Files and Register NUMDEIS ... ssss s s ssesssneens 972
Relative Location and Stack CONLIOL........ceeecenecinecrieceiseeesiseesiseesiseesisesssiesssenseens 973
REGIONS ..ottt bbb e bbb e e 974
TYPES ettt e e e 974
WWIIEE IMASK ..ottt e e e st bt 974
SWIZZIE CONTIOL.ooriteee ettt ettt 974
IMMEAIATE VAIUES......oeecee ittt ettt s 974
Predication and MOGIfIErS. ...t essssess e se et ssssssssseees 975
INSTIUCTION OPTIONS c.oreeieieeiee sttt s s s e s 976
INStruction Set SUMMAIY TabIES ...ttt sseeens 977
ACCUMUIBLOT RESEIICHIONS ..ovveeericeireceinceimcieiie it ssssessssse st st essssse st st essesssins 980
INSErUCION SOt REFEIENCE ...oovieeeeeeee ettt st e sttt ensss e 983
CONVENTIONS w.coirrerrimncimriserisecriecsieesieesane s st et ettt it 983
PSEUAO COAE FOIMAL ..ouiuuuiieeiereeeeiieeereeiie sttt ettt sttt s ssneeon 983
General Macros and DefinitiONS. ...t csse et se st seseseeos 983
EValUGLE W ENADIE ..ottt sss st snses s 984
EUISA INSEIUCTIONS oot eese ettt st s sttt st e 985
ROUNG INSEIUCHIONS....ccverreeimnceienceiieceieceisecsissee st essseesssessssee st ssssssesssssssssss st s sssnesessnsens 987
FNAA = ROUND DOWN ...ttt sttt sssssssssss st st st st st ssssssssssssssssnsssnses 988
rnde — RouNnd t0 Nearest Or EVEN.........cncnnecseeeiecsiecsisecsisecsisesssesisesensens 989
FNAU = ROUNG UP oottt ettt ettt st sttt ss st sen 990
FNAZ = ROUNG 10 ZEIO oottt sttt sttt st ssssssssss s st st sssssssssnsssnses 991
SENA MESSAGE......ceeeieeieeieeiseie ettt sttt sttt et st netanes 991
Send MeSSage [CHV, BSW] ...ttt sssssssssssssssssssssnnens 992
EUISA STTUCTUIES ...ttt saseessesaseessesssesssesssesssesssesssesssesssesssesssesssesssesssens 995
EUISA ENUMETALIONS ..ottt ssnsssnes 996
EU Programming GUIE ...t esse st st sssss s s ssssssssssssssssssssssssnes 998
ASSEMDIET PragMas......cvueiveierineeeieeieeieeississ s ssss s sasssassans 998
DECIATAtIONS ..ottt bbb bbb bbb bbb bbb 998
DEfaUlts @NA DEFINES ...t ess st et sess 998
EXaMPIE Pragma USAQES.........veureereeeeeeeeeseeese ettt st sssssssessssessssssssssssssssssssssssssssssssnesens 999
Assembly Programming GUIAEIINE ... sesssss e s s e ssssesenes 1001

XXXV

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

USQE EXAMPIES ..o s

Vector Immediate

Supporting DirectX 10 Pixel Shader Indexingcccccoevvenmrererennnens
Supporting OpenGL Vertex Shader Instruction SWZ.....................

Destination Mask for DP4 and Destination Dependency Control

Null Register as the Destination

USE OF LINE INSTIUCTION ..ot sesesesnssssssnssan

Mask fOr SEND INSErUCTION ..uveeeieeeeeeeeeeeeeeee e s eseeee

Channel Enables for Extended Math Unit......cccoooeeeeveveveeeeenee.
Channel Enables for Scratch Memory ...

Flow Control INSTIUCTIONS ..ot

Execution Masking

BranChiNg ..ottt

FASE=IT ettt

Cascade Branching

ComMPOUNd BranChEs.......oveeeeeeerieeesesesseisssisssissee s ssssssssssssssssseses

LOOPING ctvirrririimiinerirerimecriecsieessnesssesasse i saseesiseesanesssnesssnesssesssens

Indexed Jump

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

t

RS N, W, Wt W . W, (. W, U —

O O O ©O O O O O o o

S © © © © o o © o o

mmmm#hwmmm(\
A

experience
what'’s inside”

XXXV

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Registers in Render Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. Refer to each registers description and related feature for more
information on each individual bit. Unless noted otherwise within the description of the bit must only
be updated following a flush to ensure the pipeline is idle.

The registers detailed in this chapter are used across the CHV, BSW family of products and are
extentions to previous projects. However, slight changes may be present in some registers (i.e., for
features added or removed), or some registers may be removed entirely. These changes are clearly
marked within this chapter.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel”) 3D Media GPGPU

experience
what'’s inside”

Predication

Predicate Render Registers

MI_PREDICATE_SRCO - Predicate Rendering Temporary RegisterQ
MI_PREDICATE_SRC1 - Predicate Rendering Temporary Register1
MI_PREDICATE_DATA - Predicate Rendering Data Storage
MI_PREDICATE_RESULT - Predicate Rendering Data Result
MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1
MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

2 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what'’s inside”
MI_SET_PREDICATE

MI_SET_PREDICATE is a command that allows the driver to conditionally choose to execute or skip a
command during execution time.

Below is a table of command(s) that are allowed to be programmed when the MI_SET_PREDICATE
PREDICATE ENABLE field allows any type of predication. If a command is not in the table, then it will
have undefined behavior when executed with predication enabled:

MI_SET_PREDICATE

Command

3DSTATE_URB_VS

3DSTATE_URB_HS

3DSTATE_URB_DS

3DSTATE_URB_GS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

MI_LOAD_REGISTER_IMM

3DSTATE_WM_HZ_OP

MEDIA_VFE_STATE

MEDIA_OBJECT

MEDIA_OBJECT_WALKER

MEDIA_INTERFACE_DESCRIPTOR_LOAD

MI_PREDICATE

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to
enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 3

(intel')” 3D Media GPGPU

experience
what'’s inside”

Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based on the
result of a previous predicate test. A new state bit, Predicate, has been added to the command stream. In addition,
a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set, the command is ignored if the
Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the Predicate bit is
generated.

Refer to the diagram below and the command description (linked above) for details.

MI_PREDICATE Function

WM 1O
(" COMPAREQP)
| wutempn{] | I'-.-1Itemp1<j
|
| A-B |
ML
| PredoateData Reg -{]—
|
e B S —
[
10
o |

COMBIMECP AFAND FOR FXOR |

Predicate Bit =7

MI_LOAD_REGISTER_MEM commands can be used to load the MitempO, Mitemp1, and PredicateData registers
prior to MI_PREDICATE. To ensure the memory sources of the MI_LOAD_REGISTER_MEM commands are coherent
with previous 3D_PIPECONTROL store-DWord operations, software can use the new Pipe Control Flush

Enable bit in the PIPE_CONTROL command.

4 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Registers in Render Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. Refer to each registers description and related feature for more
information on each individual bit. The registers detailed in this chapter are used across the CHV, BSW
family of products and are extentions to previous projects. However, slight changes may be present in
some registers (i.e., for features added or removed), or some registers may be removed entirely. These
changes are clearly marked within this chapter.

Context Save Registers

VF Instance Count Registers

VF Instance Count Register Set

Register MMIO_VF
Type:
Address: 08300h - 08384h
Default 0000 0000h
Value:
Access: RO
Size: 1088 bits
Description: | Set of Registers for storing the index count values. In case of preempted drawcalls, these register
store index count/number per element. For the non-preempted drawcalls, the values stored are
ignored upon restore.
These are saved as part of render context.
DWord | Bits Description
0 31:0 | Index Count 0. Index Count value for Element 0.
Format: U32
1 31:0 | Index Count 1. Index Count value for Element 1.
Format: U32
31:0]...
33 31:0 [Index Count 33. Index Count value for Element 33.
Format: U32

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel')k 3D Media GPGPU

experience
what'’s inside”

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes.
MI_MODE - Render Mode Register for Software Interface
FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

SAMPLER_MODE - SAMPLER Mode Register

CACHE_MODE_O - Cache Mode Register 0

CACHE_MODE_1 - Cache Mode Register 1

GAFS_MODE - Mode Register for GAFS
FBC_RT_BASE_ADDR_REGISTER - FBC_RT_BASE_ADDR_REGISTER
FBC_RT_BASE_ADDR_REGISTER_UPPER - FBC_RT_BASE_ADDR_REGISTER_UPPER
L3CNTLREG - L3 Control Register

B/D/F/Type:

Address Offset: 0x7034

Default Value: 60000060h

Access: RW; RO;

Size: 32 bit

Below Register provides GT2 based L3 sizes.

For GT1 — all sizes need to be multiplied by 0.5.

For GT3 - all sizes need to be multiplied by 2.

For GT4 - all sizes need to be multiplied by 3.

All L3 ways have to be included in the programming to ensure that no ways are left out.

L3CNTLREG - L3 Control Register

GLOBAL_CLEAR_VALUE_O - Global Clear Value Register 0
GLOBAL_CLEAR_VALUE_1 - Global Clear Value Register 1
GLOBAL_CLEAR_VALUE_2 - Global Clear Value Register 2
GLOBAL_CLEAR_VALUE_3 - Global Clear Value Register 3

6 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel)

experience
what'’s inside”

Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. Write access to the statistics counter in this section must be done through
MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_REGISTER_REG commands in ring
buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result,
a pipeline flush just prior to reading the registers is necessary to synchronize the counts with the
primitive stream.

IA_VERTICES_COUNT - IA Vertices Count
IA_PRIMITIVES_COUNT - Primitives Generated By VF
VS_INVOCATION_COUNT - VS Invocation Counter
HS_INVOCATION_COUNT - HS Invocation Counter
DS_INVOCATION_COUNT - DS Invocation Counter
GS_INVOCATION_COUNT - GS Invocation Counter
GS_PRIMITIVES_COUNT - GS Primitives Counter
CL_INVOCATION_COUNT - Clipper Invocation Counter
PS_INVOCATION_COUNT - PS Invocation Count
PS_INVOCATION_COUNT_SLICEO - PS Invocation Count for Slice0
PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slicel
PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2
PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICEO - PS Depth Count for Slice0
PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slicel
PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2
PS_DEPTH_COUNT_SLICE3 - PS Depth Count for Slice3
TIMESTAMP - Reported Timestamp Count
SO_NUM_PRIMS_WRITTEN][0:3] - Stream Output Num Primitives Written Counter
SO_PRIM_STORAGE_NEEDED[0:3] - Stream Output Primitive Storage Needed Counters
SO_WRITE_OFFSET[0:3] - Stream Output Write Offsets
WMHWCLRVAL - Window Hardware Generated Clear Value
CS_CTX_TIMESTAMP- CS Context Timestamp Count:

This register provides a mechanism to obtain cumulative run time of a GPU context on HW.
CS_CTX_TIMESTAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP reun time, save/restored during a GPGPU context
switch flow.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 7

experience
what's inside”

(intel’) 3D Media GPGPU

) Context Life Cycle in HW
Time

A\ 4

S_wfe preempt \fo = presmpt_done

'

m-ﬁ\ Workload Execution 5 Context-4 Save
[Save 7 Flus

CTX_TIMESTAMP First TH Launch by TSG EU PREEMPT CTX_TIMESTAMP
Restared TSG - = Saved
CTX_TIMESTAMP

R m}p_\-//’

CTX_TIMESTAMP Run Time for Context-A

Fig: CTX_TIMESTAMP fucntionality during context execution

8 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel")

experience
what'’s inside”

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset
3DPRIM_START_VERTEX - Load Indirect Start Vertex
3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count
3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count
3DPRIM_START_INSTANCE - Load Indirect Start Instance
3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

MMIO Registers for GPGPU Indirect Dispatch

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from
the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z

TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 9

(lntel | 3D Media GPGPU
eXpEnenCe

what's inside”
CS ALU Programming and Design

Command streamer implements a rudimentary ALU which supports basic Arithmetic (Addition and
Subtraction) and logical operations (AND, OR, XOR) on two 64bit operands. ALU has two 64bit registers
at the input SRCA and SRCB to which the operands should be loaded on which operations will be
performed and outputted to a 64 bit Accumulator. Zero Flag and Carry Flag are set based on
accumulator output.

CS ALU Programming and Design

Command streamer implements a rudimentary ALU which supports basic Arithmetic (Addition and
Subtraction) and logical operations (AND, OR, XOR) on two 64bit operands. ALU has two 64bit registers
at the input SRCA and SRCB to which the operands should be loaded on which operations will be
performed and outputted to a 64 bit Accumulator. Zero Flag and Carry Flag are set based on
accumulator output.

Generic Purpose Registers

Command streamer implements sixteen 64 bit General Purpose Registers which are MMIO mapped.
These registers can be accessed similar to any other MMIO mapped registers through LRI, SRM, LRR,
LRM or CPU access path for reads and writes. These registers will be labeled as RO, R1, ... R15
throughout the discussion. Refer table in the B-spec update section mapping these registers to
corresponding MMIO offset. A selected GPR register can be moved to SRCA or SRCB register using
“LOAD" instruction. Outputs of the ALU, Accumulator, ZF and CF can be moved to any of the GPR using
“STORE" instruction.

10 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
experlence

what's inside”

ALU BLOCK Diagram

GEMERIC MMIO INTERFACE For
Register Reads & Writes

e B B T e N e R e
. v v y v
e

| néau | | REG! pesas| m'su G | [PRRESULT D | | PR_RESLLT !
I
LOAD) MUX1 [é\ | MUK /
e s

I
\ \V
[ALwop " AL

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 11

3D Media GPGPU

(l n te,l mexperience

what'’s inside”

Instruction Set

The instructions supported by the ALU can be broadly categorized into three groups:

e To move data from GPR to SRCA/SRCB — LOAD instruction.
e To move data from ACCUMULATOR/CF/ZF to GPR — STORE Instruction.
e To do arithmetic/Logical operations on SRCA and SRCB of ALU - ADD/SUB/AND/XOR/OR.

Instruction Format

Each instruction is one Dword in size and consists of an ALU OPCODE, OPERAND1 and OPERAND? in
the format shown below.

ALU OPCODE | Operand-1|Operand-2

12 bits 10 bits 10 bits

LOAD Operation

The LOAD instruction moves the content of the destination register (Operand?2) into the source register
(Operand1). The destination register can be any of the GPR (RO, R1, .., R15) and the source registers are
SRCA and SRCB of the ALU. This is the only means SRCA and SRCB can be programmed.

LOAD has different flavors, wherein one can load the inverted version of the source register into the
destination register or a hard coded value of all Zeros and All ones.

// Loads any of Reg0 to Regl5 into the SRCA or SRCB registers of ALU.

LOAD <SRCA, SRCB>, <REGO..REG15>

// Loads inverted (bit wise)

of ALU.

value of the mentioned Reg0 to 15 into SRCA or SRCB registers

LOADINV <SRCA, SRCB>, <REGO..REG15>

// Loads "0" into SRCA or SRCB

LOADO <SRCA, SRCB>

// Loads "1" into SRCA or SRCB

LOAD1 <SRCA, SRCB>

31 20119 1019 0

Opcode

Operand1

Operand2

LOAD

SRCA/SRCB

RO,R1..R15

LOADINV

SRCA/SRCB

RO,R1..R15

LOADO

SRCA/SRCB

N/A

LOAD1

SRCA/SRCB

N/A

12

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what's inside”
Arithmetic/Logical Operations

ADD, SUB, AND, OR, and XOR are the Arithmetic and Logical operations supported by Arithmetic Logic
Unit (ALU). When opcode corresponding to a logical operation is performed on SRCA and SRCB, the
result is sent to ACCUMULATOR (ACCU), CF and ZF. Note that ACCU is 64-bit register. A NOOP when
submitted to the ALU doesn’t do anything, it is meant for creating bubble or kill cycles.

31 | 20(19 10(9 0
Opcode | Operand1 | Operand2
ADD N/A N/A
SUB N/A N/A
AND N/A N/A
OR N/A N/A
XOR N/A N/A
NOOP N/A NA

STORE Operation

The STORE instruction moves the content of the destination register (Operand1) into the source register
(Operand?2). The destination register can be accumulator (ACCU), CF or ZF and GPR (RO, R1 ..R15).
STORE has different flavors, wherein one can load the inverted version of the source register into
destination register via STOREINV. When CF or ZF are stored, the same value is replicated on all 64 bits.

// Loads ACCMULATOR or Carry Flag or Zero Flag in to any of the generic registers
// Reg0 to Regl6. In case of CF and ZF same value is replicated on all the 64 bits.

STORE <RO.. R15>, <ACCU, CF, ZF>

// Loads inverted (ACCMULATOR or Carry Flag or Zero Flag) in to any of the
// generic registers Reg0 to Regl5s.

STOREINV <RO.. R15>, <ACCU, CF, ZF>

31 20119 10(9 0

Opcode

Operand1

Operand2

STORE

RO,R1..R15

ACCU/ZF/CF

STOREINV

RO, R1..R15

ACCU/ZF/CF

Summary for ALU

Total Opcodes Supported: 12

Total Addressable Registers as source or destination: 21

e 16 GPR (RO, R1 ...R15)
e 1ACCU

e 1ZF
e 1CF

e SRCA, SRCB

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

13

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

Summary of Instructions Supported

31 | 20l19 | 10]o 0

Opcode | Operand1 | Operand2

LOAD SRCA/SRCB [REGO..REG15

LOADINV | SRCA/SRCB [REGO..REG15

LOADO | SRCA/SRCB N/A
LOAD1 | SRCA/SRCB N?A
ADD N/A N/A
SUB N/A N/A
AND N/A N/A
OR N/A N/A
XOR N/A N/A
NOOP N/A N/A

STORE |REGO..REG15 | ACCU/CF/ZF

STOREINV | REGO..REG15 | ACCU/CF/ZF

Table for ALU OPCODE Encodings

ALU OPCODE | OPCODE ENCODING
NOOP 0x000
LOAD 0x080

LOADINV 0x480
LOADO 0x081
LOAD1 0x481

ADD 0x100
SUB 0x101
AND 0x102
OR 0x103
XOR 0x104
STORE 0x180
STOREINV 0x580

In the above mentioned table, ALU Opcode Encodings look like random numbers. The rationale behind
those encodings is because the ALU Opcode is further broken down into sub-sections for ease-of-
design implementation.

14 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

PREFIX OPCODE SUBOPCODE
11 10]9 716 0
PREFIX VALUE |Description
0 Regular
1 Invert
OPCODE VALUE | Description
0 NOOP
1 LOAD
2 ALU
3 STORE
ALU OPCODE | ENCODING | PREFIX | OPCODE | SUBOPCODE
1019 716 0
NOOP 0x000 0 0 0
LOAD 0x080 0 1 0
LOADINV 0x480 1 1 0
LOADO 0x081 0 1 1
LOAD1 0x481 1 1 1
ADD 0x100 0 2 0
SUB 0x101 0 2 1
AND 0x102 0 2 2
OR 0x103 0 2 3
XOR 0x104 0 2 4
STORE 0x180 0 3 0
STOREINV 0x580 1 3 0

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 15

(intel')“ 3D Media GPGPU

experience
what'’s inside”

Table for Register Encodings

Register | Register Encoding
RO 0x0
R1 0x1
R2 0x2
R3 0x3
R4 0x4
R5 0x5
R6 0x6
R7 0x7
R8 0x8
R9 0x9
R10 Oxa
R11 Oxb
R12 Oxc
R13 Oxd
R14 Oxe
R15 Oxf
SRCA 0x20
SRCB 0x21
ACCU 0x31
ZF 0x32
CF 0x33

CS_GPR - Command Streamer General Purpose Registers

Following are Command Streamer General Purpose Registers:

CS_GPR - CS General Purpose Register
Memory Interface Commands for Rendering Engine

MI_SET_CONTEXT
MI_TOPOLOGY_FILTER
MI_URB_CLEAR
MI_URB_ATOMIC_ALLOC
MI_LOAD_URB_MEM
MI_STORE_URB_MEM

16 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

State Commands

This section covers the following commands:

e STATE_PREFETCH command. The STATE_PREFETCH command is provided strictly as an optional
mechanism to possibly enhance pipeline performance by prefetching data into the GPE's
Instruction and State Cache (I1SC).

e STATE_SIP command

STATE_PREFETCH
STATE_SIP

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and
media indirect object accesses by the GPE. (See Memory Access Indirection for details.)
The following commands must be reissued following any change to the base addresses:

e 3DSTATE_PIPELINE_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS

e MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

STATE_BASE_ADDRESS
PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 17

(lntel" | 3D Media GPGPU
eXpE”enCe

what's inside”
Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top
of the pipe synchronization really enforces the read-only cache invalidation. This synchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not
have outstanding hardware accesses. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through the pipeline
(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is
used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the
beginning of the rendering sequence in a given context. HW may have residual states cached in the
state-caches and read-only surfaces in various caches. With new rendering sequence, read-only surfaces
may go through change in the binding. Hence read-only invalidation is required before such new
rendering sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this
specific pipe-control command, HW invalidates all caches in GT domain that have read-only surfaces
but does not guarantee invalidation beyond GT caches . Further, HW does not guarantee that all prior
accesses to those read-only surfaces have completed. Therefore SW must guarantee that there are no
pending accesses to those read-only surfaces before initializing the top-of-pipe synchronization. PIPE-
CONTROL command described below allows for invalidating individual read-only stream type. It is
recommended that driver invalidates only the required caches on the need basis so that cache warm-up
overhead can be reduced.

End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not
necessarily in memory) so that it can deallocate in-memory rendering state, read-only surfaces,
instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee
that all pending depth tests have completed so that the visible pixel count is complete prior to storing it
to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events
are complete (a “read fence” completion). Read events are still pending if work in the pipeline requires
any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render
cache and/or depth related caches are flushed to memory, where the data will become globally visible.
This type of synchronization is required prior to SW (CPU) actually reading the result data from memory,
or initiating an operation that will use as a read surface (such as a texture surface) a previous render
target and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush
Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are
flushed and doesn’t guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using “Notify Enable” and “Post-
Sync Operation - Write Immediate Data” in the PIPE_CONTROL command. “Notify Enable” and "Post-

18 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Sync Operation - Write Immediate Data” generate a fence cycle on achieving end-of-pipe-
synchronization for the corresponding PIPE_CONTROL command. Fence cycle ensures all the write
cycles in front of it are to global visible point before they themselves get processed.It is guaranteed the
data flushed out by the PIPE_CONTROL is updated in memory by the time SW receives the
corresponding Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back in to the render engine in coherent
manner, then the render engine has to wait for the fence completion before accessing the flushed data.
This can be achieved by following means on various products:

PIPE_CONTROL command with CS Stall and the required write caches flushed with Post-Sync-Operation as Write
Immediate Data.

Example:
e WorkLoad-1 (3D/GPGPU/MEDIA)

e PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush bits set)
e WorkLoad-2 (Can use the data produced or output by Workload-1)

Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of
the synchronization point must be communicated to the driver. This section describes the actions that
may be taken upon completion of a synchronization point which can achieve this communication.

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be written. In lieu of
an immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP
register may be written out to memory. The captured value will be the value at the moment all
primitives parsed prior to the synchronization commands have been completely rendered, and
optionally after all said primitives have been pushed to memory. It is not required that a value be
written to memory by the synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these
counters are free-running and are not to be reset except at initialization. To obtain the delta, two
PIPE_CONTROL commands should be initiated with the command sequence to be measured between
them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 19

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global visible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are
stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible
pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the
visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on
performance and should only be used in order to obtain accurate “visible pixel” counts for a sequence
of primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) “Occlusion Query” function.

Generating an Interrupt

The synchronization command may indicate that a “"Sync Completion” interrupt is to be generated (if
enabled by the Ml Interrupt Control Registers — see Memory Interface Registers) once the rendering of
all prior primitives is complete. Again, the completion of rendering can be considered to be when the
internal render cache has been updated, or when the cache contents are visible in memory, as selected
by the command options.

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to
reuse referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure
rendering is complete. If additional primitives are initiated after new data is laid over the top of old in
memory following a synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used.
(See PIPE_CONTROL Command description).

PIPE_CONTROL Command

The PIPE_CONTROL command is used to effect the synchronization described above. Parsing a
PIPE_CONTROL command stalls the 3D pipe only if the stall enable bit is set. Commands after
PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may include additional
PIPE_CONTROL commands. The implementation does enforce a practical upper limit (8) on the number
of PIPE_CONTROL commands that may be outstanding at once. Parsing a PIPE_CONTROL command
that causes this limit to be reached will stall the parsing of new commands until the first of the
outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue PIPE_CONTROL when
the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the pipe until the Media
FFs finish processing commands parsed before PIPE_CONTROL. Post-synchronization operations,
flushing of caches and interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this
stalling behavior, only one PIPE_CONTROL command can be outstanding at a time on the Media pipe.

20 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

For the invalidate operation of the pipe control, the following pointers are affected. The invalidate
operation affects the restore of these packets. If the pipe control invalidate operation is completed
before the context save, the indirect pointers will not be restored from memory.

e Pipeline State Pointer
e Media State Pointer
e Constant Buffer Packet

It is up to software to program the appropriate read-only cache invalidation such as the sampler and
constant read caches or the instruction and state caches. Once notification is observed, new data may
then be loaded (potentially “on top of” the old data) without fear of stale cache data being referenced
for subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it
to a new location to use as a texture, for example), it must also ensure that the write cache (render
cache) is flushed after the synchronization point is reached so that memory will be updated. This can be
done by setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear
in order for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate
reporting of the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be
invalidated (except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is
done in software, not hardware) Note that the index-based vertex cache is always flushed between
primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.
Therefore only the VF ("address-based”) cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

PIPE_CONTROL

Description

Hardware supports up to 32 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenarios.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 21

(intel')k 3D Media GPGPU

experience
what'’s inside”

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write Non-VF RO Pipeline Top of Pipe
Cache | Notification Cache VF RO Cache | Marker | Marker Completion Invalidate
Flush Enabled Invalidate Invalidate Sent Enable Requested Pulse from CS
0 0 0 0 N/A N/A N/A N/A
0 0 1 Yes No N/A No
0 0 1 0 No N/A N/A Yes
0 0 1 1 Yes No No Yes
X 1 0 X Yes Yes Yes No
X 1 1 X Yes Yes Yes Yes
1 X 0 X Yes Yes Yes No
1 X 1 X Yes Yes Yes Yes

Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

e Post-sync operations
e Flush Types
o Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid.

22 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l W experience

what’s inside”

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command
is completed. The table below shows the restrictions:

Argument Bits Restriction

LRI Post Sync 23 | Post Sync Operation ([15:14] of DW1) must be set to 0xO0.

Operation

LRI Post Sync 23 |Requires stall bit ([20] of DW1) set.

Operation

LRI Post Sync 23 |Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Operation

Global 19 | This bit must not be exercised on any product.

Snapshot Requires stall bit ([20] of DW1) set.

Count Reset

Generic Media 16 |Requires stall bit ([20] of DW1) set.

State Clear

Indirect State 9 |Requires stall bit ([20] of DW1) set.

Pointers

Disable

Store Data 21 |Post-Sync Operation ([15:14] of DW1) must be set to something other than '0".

Index

Sync GFDT 17 | Post-Sync Operation ([15:14] of DW1) must be set to something other than '0' or
0x2520[13] must be set.

TLB inv 18 |Requires stall bit ([20] of DW1) set.

Post Sync Op 15:14 | LRI Post Sync Operation ([23] of DW1) must be set to '0'.

Post Sync Op [15:14|"CS Stall" must always be set in all PIPE_.CONTROL commands having "Post-Sync
Operation” set to "Report PS Depth Count” or "Report Time Stamp" when user wishes to
set "Post-Sync Operation” bit in any of the MI_ATOMIC or MI_SEMAPHORE_SIGNAL
commands programmed.

Post Sync Op 15:14 | Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Notify En 8 |Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

23

(l n te,l l\experience

what'’s inside”

Flush Types

3D Media GPGPU

These are arguments related to the type of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync
operation or the stall bit. The table below shows the restrictions:

Arguments Bit Restrictions
Depth Stall 13 | Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.
Render Target Cache | 12 | Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.
Flush
Depth Cache Flush 0 |Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.
Stall Pixel Scoreboard No Restriction.
DC Flush Enable 5 |Requires stall bit ([20] of DW) set for all GPGPU and Media Workloads.
Inst invalidate 11 | No Restriction.
Tex invalidate 10 [No Restriction.
VF invalidate 4 |"Post Sync Operation” must be enabled to “Write Immediate Data” or "Write PS

Depth Count” or “Write Timestamp”.

Constant invalidate No Restriction.
State Invalidate 2 | No Restriction.

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments | Bit

Restrictions

Stall Bit 20

[All Stepping][All SKUs]:
One of the following must also be set:

Render Target Cache Flush Enable ([12] of DW1)
Depth Cache Flush Enable ([0] of DW1)

Stall at Pixel Scoreboard ([1] of DW1)

Depth Stall ([13] of DW1)

Post-Sync Operation ([13] of DW1)

DC Flush Enable ([5] of DW1)

24

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Render Logical Context Data

Logical Contexts are memory images used to store copies of the device's rendering and ring context.
Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering
contexts are considered device-dependent and software must not access the memory contents directly.
The definition of the logical rendering and power context memory formats is included here primarily for
internal documentation purposes.

Overall Context Layout

Content for this topic is currently under development.

Context Layout

For [CHV, BSW], when Execlists are enabled, the Context Image for the rendering engine consists of 20
4K pages:

Per-Process HW Status Page (4K)

Register State Context

When Execlists are disabled, the context image doesn’t consist the Per-Process HW status page.

Register State context is explained in detail in “Register State Context” Section.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 25

ntel)

(| , 3D Media GPGPU
experience

what'’s inside”

Register State Context

This section describes programming requirements for the Register State Context.

Programming Note

Context: Register State Context.

All the MMIO registers part of the “Register State Context Image” are context specific and gets context
save/restored upon a context switch. MMIO register values belonging to a context can be exercised
through HOST/IA MMIO interface only when the context is active in HW. Exercising context specific MMIO
registers through HOST/IA MMIO is completely asynchronous to the context execution in HW and can't
guarantee a desired sampling point during execution. In execlist mode of scheduling there is no active
context when HW is Idle.

All the write access to MMIO registers listed in the “Register State Context image” subsections below must
be done through Ml commands (MI_LOAD_REGISTER_IMM, MI_LOAD_REG_MEM, MI_LOAD_REGISTER_REG)
in the command sequence.

MMIO reads or writes to any of the registers listed in the "Register State Context image” subsections
through HOST/IA MMIO interface must follow the steps below:

e SW should set the Force Wakeup bit to prevent GT from entering C6.
e Write 0x2050[31:0] = 0x00010001 (disable sequence).

e Disable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010001).

e Poll/Wait for register bits of 0x22AC[6:0] turn to 0x30 value.

e Read/Write to desired MMIO registers.

e Enable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010000).

e Force Wakeup bit should be reset to enable C6 entry.

26

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what's inside”
Register State Context

Context Color Codes Used

EXECLIST CONTEXT
EXECLIST CONTEXT (PPGTT Base)
ENGINE CONTEXT
EXTENDED ENGINE CONTEXT

Register Information

Description MMIO Offset/Command | Unit | # of DW | Address Offset
NOOP CS 1 0

Load_Register_Immediate header 0x1100_1015 CS 1 0001
Context Control 0x2244 CS 2 0002
Ring Head Pointer Register 0x2034 CS 2 0004
Ring Tail Pointer Register 0x2030 CS 2 0006
RING_BUFFER_START 0x2038 CS 2 0008
RING_BUFFER_CONTROL 0x203C CS 2 000A
Batch Buffer Current Head Register (UDW) 0x2168 CS 2 000C
Batch Buffer Current Head Register 0x2140 CS 2 000E
Batch Buffer State Register 0x2110 CS 2 0010
SECOND_BB_ADDR_UDW 0x211C CS 2 0012
SECOND_BB_ADDR 0x2114 CS 2 0014
SECOND_BB_STATE 0x2118 CS 2 0016
NOOP CS 8 0018
NOOP CS 1 0020
Load_Register_Immediate header 0x1100_1011 CS 1 0021
CTX_TIMESTAMP 23A8 CS 2 0022
PDP3_UDW 228C CS 2 0024
PDP3_LDW 2288 CS 2 0026
PDP2_UDW 2284 CS 2 0028
PDP2_LDW 2280 CS 2 002A
PDP1_UDW 227C CS 2 002C
PDP1_LDW 2278 CS 2 002E
PDPO_UDW 2274 CS 2 0030
PDPO_LDW 2270 CS 2 0032
NOOP CS 12 0034

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 27

(I n te,l “ experience

what’s inside

3D Media GPGPU

Description MMIO Offset/Command | Unit | # of DW | Address Offset
NOOP CS 1 0040
Load_Register_Immediate header 0x1100_0001 CS 1 0041
R_PWR_CLK_STATE 20C8 CS 2 0042
GPGPU_CSR_BASE_ADDRESS CS 3 0044
NOOP CS 9 0047
NOOP (&) 5 0050
Load_Register_Immediate header 0x1100_10D5 CS 1 0055
EXCC 0x2028 CS 2 0056
MI_MODE 0x209C CS 2 0058
INSTPM 0x20C0 CS 2 005A
PR_CTR_CTL 0x2178 CS 2 005C
PR_CTR_THRSH 0x217C CS 2 005E
IA_VERTICES_COUNT 0x2310 CS 4 0062
IA_PRIMITIVES_COUNT 0x2318 CS 4 0066
VS_INVOCATION_COUNT 0x2320 CS 4 006A
HS_INVOCATION_COUNT 0x2300 CS 4 006E
DS_INVOCATION_COUNT 0x2308 CS 4 0072
GS_INVOCATION_COUNT 0x2328 CS 4 0076
GS_PRIMITIVES_COUNT 0x2330 CS 4 007A
CL_INVOCATION_COUNT 0x2338 CS 4 007E
CL_PRIMITIVES_COUNT 0x2340 CS 4 0082
PS_INVOCATION_COUNT_0 0x22C8 CS 4 0086
PS_DEPTH_COUNT _0 0x22D8 CS 4 008A
TIMESTAMP Register (LSB) 0x2358 CS 2 008E
CS_INTERNAL 0x2580 CS 2 0090
GPUGPU_DISPATCHDIMX 0x2500 CS 2 0092
GPUGPU_DISPATCHDIMY 0x2504 CS 2 0094
GPUGPU_DISPATCHDIMZ 0x2508 CS 2 0096
MI_PREDICATE_SRCO 0x2400 CS 2 0098
MI_PREDICATE_SRCO 0x2404 CS 2 009A
MI_PREDICATE_SRC1 0x2408 CS 2 009C
MI_PREDICATE_SRC1 0x240C CS 2 009E
MI_PREDICATE_DATA 0x2410 CS 2 00A0
MI_PREDICATE_DATA 0x2414 CS 2 00A2
MI_PRED_RESULT 0x2418 CS 2 00A4
3DPRIM_END_OFFSET 0x2420 CS 2 00A6

28

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(lntel

experience
what’s inside

Description MMIO Offset/Command | Unit | # of DW | Address Offset
3DPRIM_START_VERTEX 0x2430 Cs 2 00A8
3DPRIM_VERTEX_COUNT 0x2434 Cs 2 00AA

3DPRIM_INSTANCE_COUNT 0x2438 CS 2 00AC
3DPRIM_START_INSTANCE 0x243C CS 2 00AE
3DPRIM_BASE_VERTEX 0x2440 CS 2 00BO
GPGPU_THREADS_DISPATCHED 0x2290 CsS 4 00B2
PS_INVOCATION_COUNT_1 0x22F0 CS 4 00B6
PS_DEPTH_COUNT _1 0x22F8 CsS 4 00BA
BB_START_ADDR_UDW 0x2170 Cs 2 00BE
BB_START_ADDR 0x2150 CS 2 00C0
BB_ADD_DIFF 0x2154 CS 2 0oc2

BB_OFFSET 0x2158 CS 2 00C4
RS_PREEMPT_STATUS 0x215C CS 2 00C6
CTX_SEMA_REG 0x24B4 CS 4 00C8
PRODUCE_COUNT_BTP 0x2480 CS 2 00cCcC
PRODUCE_COUNT_DX9_CONSTANTS 0x2484 CS 2 00CE
PRODUCE_COUNT_GATHER_CONSTANTS 0x248C CS 2 00DO0
PARSED_COUNT_BTP 0x2490 CS 2 00D2
PARSED_COUNT_DX9_CONSTANTS 0x2494 CS 2 00D4
MI_PREDICATE_RESULT_1 0x241C CS 2 00D6
CS_GPR (1-16) 0x2600 CS 64 00D8
MI_TAGDATA 0x219C CS 011C
PS_INVOCATION_COUNT_2 0x2348 CsS 0124
PS_DEPTH_COUNT_2 0x2350 CS 0128

NOOP CsS 12 012C
MI_TOPOLOGY_FILTER CS 1 0138
MI_URB_CLEAR CS 2 0139
PIPELINE_SELECT CsS 1 013B
STATE_BASE_ADDRESS CS 16 013C
3DSTATE_PUSH_CONSTANT_ALLOC_VS CS 2 014C
3DSTATE_PUSH_CONSTANT_ALLOC_HS CS 2 014E
3DSTATE_PUSH_CONSTANT_ALLOC_DS CS 2 0150
3DSTATE_PUSH_CONSTANT_ALLOC_GS CS 2 0152
3DSTATE_PUSH_CONSTANT_ALLOC_PS CsS 2 0154
3DSTATE_BINDING_TABLE_POOL_ALLOC CsS 4 0156
3DSTATE_GATHER_POOL_ALLOC Cs 4 015A

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

29

(lntel | 3D Media GPGPU
experience

what’s inside

Description MMIO Offset/Command | Unit | # of DW | Address Offset
3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC CS 4 015E
MI_RS_CONTROL CS 1 0162
MI_URB_ATOMIC_ALLOC CS 1 0163
NOOP CS 12 0164
3DSTATE_VS SVG 9 0170
3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2 0179
3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2 017B
3DSTATE_URB_VS SVG 2 017D
3DSTATE_HS SVG 9 017F
3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2 0188
3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2 018A
3DSTATE_URB_HS SVG 2 018C
3DSTATE_TE SVG 4 018E
3DSTATE_DS SVG 9 0192
3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2 019B
3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2 019D
3DSTATE_URB_DS SVG 2 019F
3DSTATE_GS SVG 10 01A1
3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2 01AB
3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2 01AD
3DSTATE_URB_GS SVG 2 01AF
3DSTATE_STREAMOUT SVG 5 01B1
3DSTATE_CLIP SVG 4 01B6
3DSTATE_SF SVG 4 01BA
3DSTATE_SCISSOR_STATE_POINTERS SVG 2 01BE
3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2 01CO
3DSTATE_RASTER SVG 5 01C2
3DSTATE_WM_HZ_OP SVG 5 01C7
3DSTATE_MULTISAMPLE SVG 2 01CC
3DSTATE_CONSTANT_VS SVG 11 01CE
3DSTATE_CONSTANT_HS SVG 11 01D9
3DSTATE_CONSTANT_DS SVG 11 01E4
3DSTATE_CONSTANT_GS SVG 11 O1EF
3DSTATE_DRAW_RECTANGULAR SVG 4 O1FA
3DSTATE_SW_TE_BASE_ADDRESS SVG 3 O1FE
Load_Register_Immediate header 0x1100_1001 SVG 1 0201

30 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
experience

what’s inside

Description MMIO Offset/Command | Unit | # of DW | Address Offset
FF_PERF_REG Ox6b1c SVG 2 0202
NOOP SVG 12 0204
3DSTATE_WM SVL 2 0210
3DSTATE_VIEWPORT_STATE_POINTER_CC SVL 2 0212
3DSTATE_CC_STATE_POINTERS SVL 2 0214
3DSATE_WM_SAMPLEMASK SVL 2 0216
3DSTATE_DEPTH_STENCIL SVL 3 0218
3DSTATE_WM_CHROMAKEY SVL 2 021B
3DSTATE_DEPTH_BUFF SVL 8 021D
3DSTATE_HIZ_DEPTH_BUFF SVL 5 0225
3DSTATE_STC_DEPTH_BUFF SVL 5 022A
3DSTATE_CLEAR_PARAMS SVL 3 022F
3DSTATE_SBE SVL 4 0232
3DSTATE_SBE_SWIZ SVL 11 0236
3DSTATE_PS SVL 12 0241
3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2 024D
STATE_SAMPLER_STATE_POINTERS_PS SVL 2 024F
3DSTATE_BLEND_STATE_POINTERS SVL 2 0251
3DSTATE_PS_EXTRA SVL 2 0253
3DSTATE_PS_BLEND SVL 2 0255
3DSTATE_CONSTANT_PS SVL 11 0257
STATE_SIP SVL 3 0262
3DSTATE_SAMPLE_PATTERN SVL 9 0265
Load_Register_Immediate header 0x1100_1021 SVL 1 026E
Cache_Mode 0 0x7000 SVL 2 026F
Cache_Mode_1 0x7004 SVL 2 0271
GT_MODE 0x7008 SVL 2 0273
FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2 0279
FBC_RT_BASE_ADDR_REGISTER_UPPER 0x7024 SVL 2 0278
SAMPLER_MODE 0x7028 SVL 2 027D
L3_Config 0x7034 SVL 2 0287
GLOBAL_CLEAR_VALUE_0O 0x7700 SVL 2 0289
GLOBAL_CLEAR_VALUE_1 0x7704 SVL 2 028B
GLOBAL_CLEAR_VALUE_2 0x7708 SVL 2 028D
GLOBAL_CLEAR_VALUE_3 0x770C SVL 2 028F
NOOP SVL 15 0291

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 31

(I n te,l I experience

what’s inside

3D Media GPGPU

Description MMIO Offset/Command | Unit | # of DW | Address Offset
NOOP TDL 1 02A0
Load_Register_Immediate header 0x1100_103B TDL 1 02A1
TD_CTL E400 TDL 2 02A2
TD_CTL2 E404 TDL 2 02A4
TD_VF_VS_EMSK E408 TDL 2 02A6
TD_GS_EMSK E40C TDL 2 02A8
TD_WIZ_EMSK E410 TDL 2 02AA
TD_TS_EMSK E428 TDL 2 02AC
TD_HS_EMSK E4BO TDL 2 02AE
TD_DS_EMSK E4B4 TDL 2 02B0
EU_PERF_CNT_CTLO E458 TDL 2 02CE
EU_PERF_CNT_CTL1 E558 TDL 2 02D0
EU_PERF_CNT_CTL2 E658 TDL 2 02D2
EU_PERF_CNT_CTL3 E758 TDL 2 02D4
EU_PERF_CNT_CTL4 E45C TDL 2 02D6
EU_PERF_CNT_CTL5 E55C TDL 2 02D8
EU_PERF_CNT_CTL6 E65C TDL 2 02DA
NOOP TDL 2 02DE
NOOP WM 1 02E0
Load_Register_Immediate header 0x1100_1005 WM 1 02E1
WMHWCLRVAL 0x5524 WM 2 02E6
3DSTATE_POLY_STIPPLE_PATTERN WM 33 02E8
3DSTATE_AA_LINE_PARAMS WM 3 0309
3DSTATE_POLY_STIPPLE_OFFSET WM 2 030C
3DSTATE_LINE_STIPPLE WM 030E
NOOP WM 15 0311
NOOP SC 1 0320
Load_Register_Immediate header 0x1100_1005 SC 1 0321
3DSTATE_MONOFILTER_SIZE SC 2 0328
3DSTATE_CHROMA_KEY SC 16 032A
NOOP SC 033A
NOOP DM 1 0340
3DSTATE_SAMPLER_PALETTE_LOADO DM 257 0341
NOOP DM 1 0442
3DSTATE_SAMPLER_PALETTE_LOAD1 DM 257 0443
NOOP DM 12 0544

32

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(lntel

experience

de

what’s insi

Description MMIO Offset/Command | Unit | # of DW | Address Offset
NOOP SOL 1 0550
Load_Register_Immediate header 0x1100_1027 SOL 1 0551
SO_NUM_PRIMS_WRITTENO 0x5200 SOL 4 0552
SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4 0556
SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4 055A
SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4 055E
SO_PRIM_STORAGE_NEEDEDO 0x5240 SOL 4 0562
SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4 0566
SO_PRIM_STORAGE_NEEDED?2 0x5250 SOL 4 056A
SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4 056E
SO_WRITE_OFFSETO 0x5280 SOL 2 0572
SO_WRITE_OFFSET1 0x5284 SOL 2 0574
SO_WRITE_OFFSET2 0x5288 SOL 2 0576
SO_WRITE_OFFSET3 0x528C SOL 2 0578
3DSTATE_SO_BUFFER SOL 32 057A
NOOP SOL 1 059A
3DSTATE_SO_DECL_LIST SOL 259 059B
NOOP SOL 2 069E
3DSTATE_INDEX_BUFFER VF 5 06A0
3DSTATE_VERTEX_BUFFERS VF 133 06A5
3DSTATE_VERTEX_ELEMENTS VF 69 072A
3DSTATE_VF_STATISTICS VF 1 076F
3DSTATE_VF VF 2 0770
3DSTATE_SGVS VF 0772
3DSTATE_VF_INSTANCING VF 69 0774
3DSTATE_VF_TOPOLOGY VF 2 07B9
Load_Register_Immediate header 0x1100_1095 VF 1 07BB
INSTANCE CNT 08300 - 08384h VF 68 07BC
INSTANCE INDX 08400 - 08484h VF 68 0800
COMMITTED VERTEX NUMBER 08390h VF 2 0844
COMMITTED INSTANCE ID 08394h VF 2 0846
COMMITTED PRIMITIVE ID 08398h VF 2 0848
STATUS 0839Ch VF 2 084A
COMMON VERTEX 083A0h VF 2 084C
VF_GUARDBAND 083A4h VF 2 0852
NOOP VF 14 0852

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

33

(I n te,l I experience

what’s inside

3D Media GPGPU

Description MMIO Offset/Command | Unit | # of DW | Address Offset
Load_Register_Immediate header 0x1100_105D VFE 1 0860
TDLO DATA VFE 94 0861
NOOP VFE 1 08BF
Load_Register_Immediate header 0x1100_105D VFE 1 08C0
TDL1 DATA VFE 94 08C1
NOOP VFE 1 091F
Load_Register_Immediate header 0x1100_105D VFE 1 0920
TDL2 DATA VFE 94 0921
NOOP VFE 1 097F
Load_Register_Immediate header 0x1100_105D VFE 1 0980
TDL3 DATA VFE 94 0981
NOOP VFE 1 09DF
Load_Register_Immediate header 0x1100_105D VFE 1 09EO
TDL4 DATA VFE 94 09E1
NOOP VFE 1 OA3F
Load_Register_Immediate header 0x1100_105D VFE 1 0A40
TDL5 DATA VFE 94 0A41
NOOP VFE 1 OAS9F
Load_Register_Immediate header 0x1100_105D VFE 1 0AAO
TDL6 DATA VFE 94 0AAT
NOOP VFE 1 OAFF
Load_Register_Immediate header 0x1100_105D VFE 1 0BOO
TDL7 DATA VFE 94 0BO1
NOOP VFE 1 OB5F
Load_Register_Immediate header 0x1100_105D VFE 1 0B60
TDL8 DATA VFE 94 0B61
NOOP VFE 1 OBBF
Load_Register_Immediate header 0x1100_1023 VFE 1 0BCO
GWO DATA VFE 36 0BC1
NOOP VFE 11 OBES
Load_Register_Immediate header 0x1100_1023 VFE 1 OBFO
GW1 DATA VFE 36 OBF1
NOOP VFE 11 0C15
Load_Register_Immediate header 0x1100_1023 VFE 1 0C20
GW2 DATA VFE 36 0C21
NOOP VFE 11 0C45

34

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(lntel

de

experience

what’s insi

Description MMIO Offset/Command | Unit | # of DW | Address Offset
Load_Register_Immediate header 0x1100_1023 VFE 1 0C50
GW3 DATA VFE 36 0C51
NOOP VFE 11 0C75
Load_Register_Immediate header 0x1100_1023 VFE 1 0C80
GW4 DATA VFE 36 0C81
NOOP VFE 11 0CAS5
Load_Register_Immediate header 0x1100_1023 VFE 1 0CBO
GWS5 DATA VFE 36 0CB1
NOOP VFE 11 0CD5
Load_Register_Immediate header 0x1100_1023 VFE 1 0CEOQ
GW6 DATA VFE 36 OCE1
NOOP VFE 11 0DO05
Load_Register_Immediate header 0x1100_1023 VFE 1 0D10
GW7 DATA VFE 36 0D11
NOOP VFE 11 0D35
Load_Register_Immediate header 0x1100_1023 VFE 1 0D40
GWS8 DATA VFE 36 0D41
NOOP VFE 11 0D65
Load_Register_Immediate header 0x1100_1017 VFE 1 0D70
TSGO DATA VFE 24 0D71
NOOP VFE 7 0D89
Load_Register_Immediate header 0x1100_1017 VFE 1 0D90
TSG1 DATA VFE 24 0D91
NOOP VFE 7 0DA9
Load_Register_Immediate header 0x1100_1017 VFE 1 0DBO
TSG2 DATA VFE 24 0DB1
NOOP VFE 7 0DC9
Load_Register_Immediate header 0x1100_1017 VFE 1 0DDO
TSG3 DATA VFE 24 0DD1
NOOP VFE 7 ODE9
Load_Register_Immediate header 0x1100_1017 VFE 1 ODFO
TSG4 DATA VFE 24 ODF1
NOOP VFE 7 OEQ9
Load_Register_Immediate header 0x1100_1017 VFE 1 OE10
TSG5 DATA VFE 24 OE11
NOOP VFE 7 0E29

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

35

(I n te,l I experience

what’s inside

3D Media GPGPU

Description MMIO Offset/Command | Unit | # of DW | Address Offset
Load_Register_Immediate header 0x1100_1017 VFE 1 0E30
TSG6 DATA VFE 24 OE31
NOOP VFE 7 OE49
Load_Register_Immediate header 0x1100_1017 VFE 1 0E50
TSG7 DATA VFE 24 OE51
NOOP VFE 7 OE69
Load_Register_Immediate header 0x1100_1017 VFE 1 OE70
TSG8 DATA VFE 24 OE71
NOOP VFE 7 OE89
Load_Register_Immediate header 0x1100_1009 VFE 1 0E90
VFE Data VFE 10 0E9
NOOP VFE 5 OE9B
MEDIA_VFE_STATE VFE 9 OEAO
MEDIA_CURBE_LOAD VFE 4 OEA9
MEDIA_INTERFACE_DESCRIPTOR_LOAD VFE 4 OEAD
NOOP VFE 15 OEB1
NOOP RS 2 OECO
3DSTATE_BINDING_TABLE_POOL_ALLOC RS 4 OEC2
3DSTATE_BINDING_TABLE_EDIT_VS RS 258 OEC6
NOOP RS 6 OFC8
3DSTATE_BINDING_TABLE_EDIT_GS RS 258 OFCE
NOOP RS 6 10D0
3DSTATE_BINDING_TABLE_EDIT_HS RS 258 10D6
NOOP RS 6 11D8
3DSTATE_BINDING_TABLE_EDIT_DS RS 258 11DE
NOOP RS 6 12E0
3DSTATE_BINDING_TABLE_EDIT_PS RS 258 12E6
3DSTATE_GATHER_POOL_ALLOC RS 4 13E8
MI_BATCH_BUFFER_END/NOQOP *** RS 1 13EC
NOOP RS 5 13ED
3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC RS 4 13F2
3DSTATE_DX9_CONSTANTF_VS(Global) RS 1026 13F6
NOOP RS 6 17F8
3DSTATE_DX9_CONSTANTI_VS(Global) RS 130 17FE
NOOP RS 6 1880
3DSTATE_DX9_CONSTANTB_VS(Global) RS 18 1886

36

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Description MMIO Offset/Command | Unit | # of DW | Address Offset

NOOP RS 6 1898
3DSTATE_DX9_CONSTANTF_VS(local) RS 1026 189E
NOOP RS 6 1CAOQ
3DSTATE_DX9_CONSTANTI_VS(local) RS 130 1CA6
NOOP RS 6 1D28
3DSTATE_DX9_CONSTANTB_VS(local) RS 18 1D2E
NOOP RS 3 1D40
3DSTATE_DX9_LOCAL_VALID_VS RS 11 1D43
3DSTATE_DX9_CONSTANTF_PS(Global) RS 1026 1D4E
NOOP RS 6 2150
3DSTATE_DX9_CONSTANTI_PS(Global) RS 130 2156
NOOP RS 6 21D8
3DSTATE_DX9_CONSTANTB_PS(Global) RS 18 21DE
NOOP RS 6 21F0
3DSTATE_DX9_CONSTANTF_PS(local) RS 1026 21F6
NOOP RS 6 25F8
3DSTATE_DX9_CONSTANTI_PS(local) RS 130 25FE
NOOP RS 6 2680
3DSTATE_DX9_CONSTANTB_PS(local) RS 18 2686
3DSTATE_DX9_LOCAL_VALID_PS RS 11 2698
MI_BATCH_BUFFER_END RS 1 26A3
NOOP RS 12 26A4
26B0
46B0

DW 18096

Kbytes 70.6875

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 37

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Ring Buffer

Ring Buffer can exist anywhere in memory mapped via Global GTT. Ring buffer details are mentioned in
the ring context area of LRCA (Ring Buffer - Start Address, Head Offset, Tail Pointer & Control Register)
in Execution List mode of scheduling. Ring Buffer registers are directly programmed in Ring Buffer
mode of scheduling.

Ring Context

Ring Context starts at 4K offset from LRCA. Ring context contains all the details that are needed to be
initialized by SW for submitting a context to HW for execution (Ring Buffer Details, Page Directory
Information ..etc). Ring context is five cachelines in size. Note that the last cacheline of the ring context
is specific for a given Engine and hence SW needs to populate it accordingly.

Ring Context comprises of the EXECLIST CONTEXT, EXECLIST CONTEXT (PPGTT Base) of the register
state context. In Ring Buffer mode of scheduling EXECLIST CONTEXT contents are save/restored as
NOOPS by HW.

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

38 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlEnCe

what’s inside”

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the table are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

time

—

|

Preempt Request TMS Context Restore Context Save Finished
Complete TMS ™S

Time forwhich the context gat
executed on HYWY for 3 given
submission

Yy Yy
@

Cumulative ime forwhich context
have run on HW across multiple
submission.

Time took by HW to switch ot the
old context and switch to tis context.

This page is designed to be read by SW to glean additional details about a context beyond what it can
get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to
locate this page in any region where snooping is illegal (such as in stolen memory).

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 39

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Render Engine Power Context

Table below captures the data from CS power context save/restored by PM. Address offset in the below
table is relative to the starting location of CS in the overall power context image managed by PM.

Description Offset Unit | # of DW | Address Offset (PWR)
NOOP CS 1 0

Load_Register_Immediate header 0x1100_10A7| CS 1 0001
GFX_MODE 0x229C CS 2 0002
GHWSP 0x2080 CS 2 0004
RING_BUFFER_CONTROL (Ring Always Disabled) 0x203C CS 2 0006
Ring Head Pointer Register 0x2034 CS 2 0008
Ring Tail Pointer Register 0x2030 cS 2 000A
RING_BUFFER_START 0x2038 CS 2 000C
RING_BUFFER_CONTROL (Original status) 0x203C CS 2 000E
Batch Buffer Current Head Register (UDW) 0x2168 CS 2 0010
Batch Buffer Current Head Register 0x2140 cS 2 0012
Batch Buffer State Register 0x2110 cS 2 0014
SECOND_BB_ADDR_UDW 0x211C cS 2 0016
SECOND_BB_ADDR 0x2114 cS 2 0018
SECOND_BB_STATE 0x2118 cS 2 001A
RC_PSMI_CONTROL 0x2050 cS 2 001C
RC_PWRCTX_MAXCNT 0x2054 cS 2 001E
CTX_WA_PTR 0x2058 cS 2 0020
NOPID 0x2094 cS 2 0026
HWSTAM 0x2098 cS 2 0028
FF_THREAD_MODE 0x20A0 cS 2 002A
IMR 0x20A8 cS 2 002C
EIR (Restoring EIR doesn't it clear) 0x20B0 CS 2 002E
EMR 0x20B4 CS 2 0030
CMD_CCTL_0 0x20C4 CS 2 0032
GAFS_Mode 0x212C CS 2 0038
UHPTR 0x2134 CS 2 003A
BB_PREEMPT_ADDR_UDW 0x216C CS 2 003C
BB_PREEMPT_ADDR 0x2148 CS 2 003E
RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS 2 0040
CXT_SIZE 0x21A8 CS 2 0042
CXT_OFFSET 0x21AC CS 2 0044
PREEMPT_DLY 0x2214 CS 2 0046

40 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

Description Offset Unit | # of DW | Address Offset (PWR)
MTCH_CID_RST (should not be required any more) 0x222C CS 2 0048
SYNC_FLIP_STATUS 0x22D0 CS 2 004C
SYNC_FLIP_STATUS_1 0x22D4 CS 2 004E
WAIT_FOR_RC6_EXIT 0x20CC CS 2 0054
RS_OFFSET 0x21B4 CS 2 0056
RCS_CTXID_PREEMPTION_HINT 0x24CC CS 2 0058
RS_PREEMPTION_HINT_UDW 0x24C4 CS 2 005A
RS_PREEMPTION_HINT 0x24C0 CS 2 005C
CS_PREEMPTION_HINT_UDW 0x24C8 CS 2 005E
CS_PREEMPTION_HINT 0x24BC CS 2 0060
CCID Register 0x2180 cS 2 0062
SBB_PREEMPT_ADDRESS_UDW 0x2138 CS 2 0064
SBB_PREEMPT_ADDRESS 0x213C CS 2 0066
URB_CTX_OFFSET 0x21B8 CS 2 0068
MI_PREDICATE_RESULT_2 0x23BC CS 2 006A
CTXT_ST_PTR 0x23A0 CS 2 006C
CTXT_ST_BUF 0x2370 CS 24 006E
SEMA_WAIT_POLL 0x224C CS 2 0086
IDLEDELAY 0x223C CS 2 0088
DISPLAY MESSAGE FORWARD STATUS 0x22E8 CS 2 008A
RCS_FORCE_TO_NONPRIV 0x24D0 CS 24 008C
VF PREMPTION VERTEX HINT 0x83B0 VF 2 00A4
VF PREEMPTION INSTANCE HINT 0x83B4 VF 2 00A6
EXECLIST_STATUS_REGISTER 0x2234 CS 2 00A8
NOOP cS 20 00AA
NOOP cS 1 00BE
MI_BATCH_BUFFER_END CS 1 0O0BF

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 41

(l n te,l “ experience

what's inside”

Command Ordering Rules

3D Media GPGPU

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection
describes these restrictions along with some explanation of why they exist. Refer to the various
command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be used to perform

activity within the GPE.

Mate: Comman ar Pipeline-
specific state-setting

comm ands can be issued
along any paths from this

point down

MI_FLUSH

v

FIFELIME_SELECT

v

CS_URB_STATE

a0

h 4

SOSTATE_PIFELIME_POINMTERS

h 4

LIRE_FEMCE

h 4

COMSTANT_BUFFER.

h 4

SODPRIMITIVE / SDCOMTROL

A

42

Fipeling?

Media

h 4

MEDIA_STATE_FOINMTERS

h 4

LIRB_FEMNCE

h 4

COMNSTAMT_BLFFER.

h 4

MEDIA_COBJECT

A

BE5530-01

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

3D Media GPGPU (intel)

PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before
switching to a different pipeline via use of the PIPELINE_SELECT command. Refer to Fixed and Shared
Function IDs for details on the PIPELINE_SELECT command.

PIPELINE_SELECT
PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor
does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media
pipe. It has special optimizations to support the pipelining capability in the 3D pipe which do not apply
to the Media pipe.

Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This state
is comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function
state.

e STATE_BASE_ADDRESS

e STATE_SIP

e 3DSTATE_SAMPLER_PALETTE_LOAD
e 3DSTATE_CHROMA _KEY

The state variables associated with these commands must be set appropriately prior to initiating activity
within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 43

(lntel' | 3D Media GPGPU
eXpEnence

what's inside”
3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

e 3DSTATE_PIPELINED_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS
e 3DSTATE_VERTEX_BUFFERS

o 3DSTATE_VERTEX_ELEMENTS

o 3DSTATE_INDEX_BUFFERS

o 3DSTATE_VF_STATISTICS

e 3DSTATE_DRAWING_RECTANGLE
e 3DSTATE_CONSTANT_COLOR

e 3DSTATE_DEPTH_BUFFER

e 3DSTATE_POLY_STIPPLE_OFFSET

e 3DSTATE_POLY_STIPPLE_PATTERN
e 3DSTATE_LINE_STIPPLE

e 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing
3DPRIMITIVE.

Media Pipeline-Specific State-Setting Commands
The following command is used to set state specific to the Media pipeline:
o MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing
MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS)
needs to be valid. Thus the commands used to assigned that state must be issued before issuing
3DPRIMITIVE.

MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)
needs to be valid. Therefore the commands used to set this state need to have been issued at some
point prior to the issue of MEDIA_OBJECT.

44 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Resource Streamer

This section contains status registers and controls for the resource streamer.
RS_PREEMPT_STATUS_UDW - RS_PREEMPT_STATUS_UDW
RS_PREEMPT_STATUS - Resource Streamer Preemption Status
MI_RS_CONTEXT

MI_RS_CONTROL

MI_RS_STORE_DATA_IMM

Resource Streamer Sync Commands

Programming Note

Context: | Resource Streamer Sync Commands.

If resource streamer is enabled in a batch buffer, an MI_RS_STORE_DATA_IMM with Resource Streamer Flush set
must be programmed before any Resource Streamer Sync Command.

Below is a table of commands that cause the resource streamer to stop and wait until the render
command streamer restarts the resource streamer. If a command does not end the current batch buffer
or disable the resource streamer, then the command streamer will restart the resource streamer before
the next command that is used by the resource streamer.

Resource Streamer Sync Commands: Commands that RS Stops

MI_WAIT_FOR_EVENT

MI_RS_CONTROL

MI_BATCH_BUFFER_END

MI_SEMAPHORE_WAIT

MI_SET_CONTEXT

MI_RS_CONTEXT

MI_BATCH_BUFFER_START

MI_CONDITIONAL_BATCH_BUFFER_END

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 45

(lntel' | 3D Media GPGPU
eXpEnenCe

what's inside”
Introduction

The resource streamer is added to offload work from the driver without compromising on GPU
optimizations. In order to reduce latency associated with these offloaded operation, H/W adds a
Resource Streamer. The Resource Streamer is almost S/W invisible; S/W sees a single command stream,
but it may be best for the S/W to be aware that the RS is present, as certain operations might be
emphasized. The resource streamer will run ahead of the 3D Command Streamer and process only the
certain commands. The Cmd steamer processes these same commands for purposes of buffer full
synchronization and buffer consumption.

Glossary
No special terms identified at this time.

Common Abbreviations

CS |Command Streamer. Block in charge of streaming commands. The Resource Streamer (RS) is primarily an
accelerator for the CS.

FF | Fixed Function. Any fixed function hardward.

RS | The Resource Streamer. Responsible for reducing command latencies for certain command operations.

URB [Unified Return Buffer. The mechanism for returning information from a command.

46 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Theory of Operation

This section briefly describes the operation of the Resource Streamer. Specifically, it calls out reset state,
initialization requirements, and major operational tasks of the RS.

Resource Streamer Functions

The Resource Streamer (RS) examines the commands in the ring buffer in an attempt to pre-process
certain long latency items for the remainder of the graphics processing. The RS is used for the following
operations:

Batch Processing — The resource streamer reads ahead of command streamer activity to unwind
batch buffers.

Context Save — When the Command Streamer signals that context must be saved, the RS makes
certain all previous cycles are completed, saves all context, and signals completion to the
command streamer.

Gather Push Constants — The RS detects GATHER commands (3DSTATE_GATHER_POOL_ALLOC,
3DSTATE_GATHER_CONSTANT_*), and prefetchs contents needed for further command
processing. The RS gets the base address of the contents by detecting the

3DSTATE_GATHER POOL_ALLOC command, and uses other 3SDSTATE_GATHER_CONSTANT *
commands to generate reads for data, and writes out data to memory.

Constant Buffer Generation — Similar to other constant processes, the RS intercepts the
commands for constants to update state and data.

HW Binding Table Generation/Flush — The RS detects operations in the command stream to
update binding table state and memory with bind table contents.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 47

experience
what's inside”

(intel’) 3D Media GPGPU

Resource Streamer Activity Diagram

Vertex Vertex
Globals Locals
E
-
=
=
L
Piuel Plael
Glokbal L 1
als ocals Vertex Active | = | Vertex Gather
= =
Constant
Register File
Pixel Gather
Buffer
Pixee] Active /
o CB[1]
'u'Er‘tER
Binding
Table
Constant Pool Gather Pool

S EU

Binding
Takle
Constant
Surface

Binding Table

Register File
Host
Pinel
Constant

Gather & CB[O]
Fm—————— , Download
Surface State ' !
| Host Vertex) Vertex NOS
/ 1 NOS |
I |
« J |
Wertex
Bindi
“H:l Surface State

Heap

BTP y

Pixel
Binding
Table Dynamic State
Heap
Binding Table
Pool

48 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Detailed Resource Streamer Operations

Introduction

This chapter describes the operation of the Resource Streamer in deeper detail. Most of the operations
of the Resource Streamer are processed from ring buffer shown in the Ring Buffer Organization Figure
in Resource Streamer Operation Descriptions. The RS examines the command stream from the ring
buffer to pre-process information required by the 3D Command Streamer (CS). For a large number of
the commands, the RS takes no action.

Resource Streamer Operation Descriptions

This section under development.

Batch Processing

When an MI_BATCH_BUFFER_START command is parsed by the render command streamer and the
resource streamer enable bit is set, the command stream flags that the resource streamer is enabled.
Once it parses a non-sync command then it sends the current address for where the RS must start
parsing the batch buffer. The Resource Streamer parses commands until it parses a sync command,
which causes the resource streamer to send a message to the command streamer that it has stopped;
RS then goes idle. The command streamer stalls at a sync command until the resource streamer
specifies it has stopped, and restarts the resource streamer at the next non-sync command. Below is a
link to the topic with sync commands.

BSpec > Command Stream Programming > Resource Streamer > Detailed Resource Streamer
Operations > Resource Streamer Operation Descriptions > Commands Actions in the RS

Context Save

When the CS indicates that there is a context to be saved or restored, the RS saves its context. The CS
provides an address for the RS image and issues a "batch buffer start” (see section Batch Processing).
The RS consumes this image like any other batch buffer, and stops when it reaches the
MI_BATCH_BUFFER_END command.

The context image for the Resource streamer consists of the following components:

1. HW_BINDING_TABLE_IMAGE
2. GATHER_IMAGE

3. CONSTANT_IMAGE

4. MI_BATCH_BUFFER_END

These are discussed in the following subsections.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 49

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

HW Binding Table Image

While it is not always necessary to save binding table information, “split points” context switches must
be saved, so the binding table contents are always saved. These consist of:

¢ Binding Table Generate Enable

e Binding Table Pool Base Address

e Binding Table Pool Size

¢ Binding Table Contents

HW Binding Table Image

Description Dwords Required for Storage
3DSTATE_BINDING_TABLE_POOL_ALLOC 3
3DSTATE_BINDING_TABLE_EDIT_VS 194
3DSTATE_BINDING_TABLE_EDIT_GS 194
3DSTATE_BINDING_TABLE_EDIT_HS 194
3DSTATE_BINDING_TABLE_EDIT_DS 194
3DSTATE_BINDING_TABLE_EDIT_PS 194
3DSTATE_BINDING_TABLE_EDIT_VS 194

Gather Push Constants Image

Since the resource streamer does not support mid-triangle preemption, the resource steamer will have
finished producing all the gather buffers by the end of the batch buffer and the cmd streamer would
have consumed all the gather buffers. The following things need to be saved.

e Gather pool enable
e Gather pool base address
e Gather pool size

Therefore a 3DSTATE_GATHER_POOL_ALLOC command needs to be saved.

Gather Push Constants Image

Description Dwords Required for Storage

3DSTATE_GATHER_POOL_ALLOC 4

50 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Push Constant Image

(l n te,l W experience

what’s inside”

We assume that the end of the batch buffer can come between any set of cmds. Therefore the following

things will be saved:

e Dx9 Constant enable

e Dx9 Constant pool base address

e Dx9 Constant pool size

e Dx9 local registers (F,I,B)
e Dx9 Local Valid

e Dx9 global registers (F,1,B)

Therefore a 3ADSTATE_CONSTANT_BUFFER_POOL_ALLOC command will saved. In addition, since the F
register is 256 entries and only a maximum of 63 entries can be contained in a single
3DSTATE_DX9CONSTANTF_* command, 5 CONSTANTF cmds will be saved for global and 5 for local
registers register per FF (VS,PS). There will be 1 3DSTATE_CONSTANTI_* will be save for global and 1 for
local register per FF. There will be 1 3DSTATE_CONSTANTB_* will be save for global and 1 for local

register per FF.

Gather Push Constants Image

Description Dwords Required for Storage
3DSTATE_CONSTANT_BUFFER_POOL_ALLOC 4
3DSTATE_CONSTANTF_VS 1026
3DSTATE_CONSTANTI_VS 130
3DSTATE_CONSTANTB_VS 18
3DSTATE_CONSTANTF_VS 1026
3DSTATE_CONSTANTI_VS 130
3DSTATE_CONSTANTB_VS 18
3DSTATE_LOCAL_VALID_VS 10
3DSTATE_CONSTANTF_PS 1026
3DSTATE_CONSTANTI_PS 130
3DSTATE_CONSTANTB_PS 18
3DSTATE_CONSTANTF_PS 1026
3DSTATE_CONSTANTI_PS 130
3DSTATE_CONSTANTB_PS 18
3DSTATE_LOCAL_VALID_PS 10

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

51

(lntel | 3D Media GPGPU
experlence

what'’s inside”

HW Binding Table Generation

The RS generates binding tables in hardware to offload this from the driver. There is an on-die set of
binding tables for each fixed-function unit (VS, GS, HS, DS, and PS). There is a set of commands
generated by the driver to update each of these tables (3D_STATE_BINDING_TABLE_POINTER_*). When
the RS encounters any of these commands, it writes the corresponding binding table out to the binding
table pool. When the CS encounters these commands, it sends the binding table points down as
pipelined state.

HW Binding Table Generation

[] - [
3D_STATE_BINDING_TABLE_EDIT * ?—
Q I
- -
e
- BT ||
o) 3D_STATE_BINDING_TABLE_POINTER * ------uucoau- | -
E : | | On-die
5 [lmmmmmm
: - BINDING TABLE
“ DRAW
Y
BINDING TABLE
POOL

The following table describes the different types of usages with binding table generation.

RS Active * | BT Pool Enabled Mode
0 0 SW Generate BT in Surface State Heap
0 1 lllegal (Undefined)
1 0 lllegal **
1 1 HW Generate BT

52 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Gather Push Constants

Applications can provide up to 16 constant buffers. The compiler does some optimizations of constant
usage and determines which constants should be packed in which constant register for optimal shader
performance. While this gathering and packing of constant elements into push constants optimizes the
shaders, it causes the driver additional work at draw call time, since the driver must gather and pack the
constants at draw time.

The RS offloads the gathering process for the driver by interpreting the
3D_STATE_GATHER_CONSTANT_* for each of the fixed functions (VS, GS, DS, HS, PS). The compiler
generates at gather table which instructs which elements of the buffers should be packed into the
gather buffer. The gather table indexes the binding table to get a surface state which in turn points to
the constant buffer. Once the gather buffer has been filled, the CS will execute the
3D_STATE_GATHER_CONSTANT_* to load the push constant into the URB.

Note: The gather push constants can ONLY BE USED if the HW generated binding tables are also used.

Gather Push Constants Generation

f

3D_STATE_BINDING_TABLE_EDIT_*
0 \:tf —
a
g 3D_STATE_GATHER_CONSTANT _*
-
L R P To URB
]
[} Fermpr
§~. - - :
e E— i

PEs S |

|
DRAW s GATHER BUFFER

| —

{
A SURFACE STATE ||

—D
BT —|

GATHER POOL

CONSTANT
BUFFERS

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 53

(lntel | 3D Media GPGPU
experlence

what'’s inside”

Constant Buffer Generation (not DX9)

The constant model used is a set of registers that the application can incrementally update. The
hardware requires a constant buffer which lives until the last shader using that buffer retires. To offload
the driver the 3D_STATE_CONSTANT*_* commands are used. The constant registers can be either
floating, integer, or Boolean (signified by the commands CONSTANTF, CONSTANTI, or CONSTANTSB,
respectively). The option determines the fixed function for the constants (VS, GS, DS, HS, or PS).

When all edits to the constant registers have been completed, the 3D_STATE_GENERATE_ACTIVE_*
command is used to write out a constant buffer to the Constant Buffer Pool. These buffers are fixed at
8Kbytes. Software is required to provide a surface state object that points to the constant buffer
created.

Constant Buffer Generation

CONSTANT
RECISTERS
(on-die)
. B
o 3D STATE_CONSTANT* * ’
a L J— B
L i -
o [T ' i
.g 3D_STATE_GENERATE_ACTIVE * secccccceca-- I N
x)\
=) o — leccceea= _ ”
S [T CONSTANT
’ DRAW BUFFER
_—__d____f___ o [} §
v SURFACE
STATE
CONSTANT
BUFFER POOL

54 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Commands Actions in the RS

int

@

experience
what'’s inside”

The tables below show all 3D commands processed by the RS. In the following tables, “STOP” indicates
that the RS waits for all engines to complete operations AND invalidates all command data currently in
the command FIFO. “BLOCK" indicates that the RS waits for all engines to complete operation, stops

further command parsing, but retains data in the command FIFO.

MI Commands Processing in the RS

Opcode (28:23) Command RS Handing (No Perf) RS Handling (Perf)
03h MI_WAIT_FOR_EVENT STOP BLOCK
05h MI_ARB_CHECK STOP STOP
06h MI_RS_CONTROL STOP STOP
0Ah MI_BATCH_BUFFER_END STOP STOP
16h MI_SEMAPHORE_MBOX STOP BLOCK
18h MI_SET_CONTEXT STOP STOP
1Ah MI_RS_CONTEXT STOP STOP
31h MI_BATCH_BUFFER_START STOP STOP
36h MI_CONDITIONAL_BATCH_BUFFER_END STOP STOP
Other Commands Processed in the RS
Pipeline Sub RS RS
Type | Opcode | Opcode Handling Handling
(28:27) | (26:24) | (23:16) Command (No Perf) (Perf) Notes
Oh 1h 01h |STATE_BASE_ADDRESS RS LATCH RS LATCH |RSunit
updates the
state base
address if
parsed
1h 1h 04h PIPELINE_SELECT STOP STOP Stop only if
3D is not
selected
3h Oh 03h Reserved
3h Oh 04h 3DSTATE_CLEAR_PARAMS Refer to 3D
Pipeline
3h Oh 05h 3DSTATE_DEPTH_BUFFER Refer to 3D
Pipeline
3h Oh 06h Reserved
3h Oh 06h 3DSTATE_STENCIL_BUFFER Refer to 3D
Pipeline
3h Oh 07h Reserved
3h Oh 07h 3DSTATE_HIER_DEPTH_BUFFER Refer to 3D

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

55

(intel"

experience
what'’s inside”

3D Media GPGPU

Pipeline Sub RS RS
Type | Opcode | Opcode Handling Handling
(28:27) | (26:24) | (23:16) Command (No Perf) (Perf) Notes
Pipeline
3h Oh 08h 3DSTATE_VERTEX_BUFFERS Refer to
Vertex Fetch
3h Oh 09h 3DSTATE_VERTEX_ELEMENTS Refer to
Vertex Fetch
3h Oh 0Ah 3DSTATE_INDEX_BUFFER Refer to
Vertex Fetch
3h Oh OBh 3DSTATE_VF_STATISTICS Refer to
Vertex Fetch
3h Oh 0Ch Reserved
3h Oh 0ODh |3DSTATE_VIEWPORT_STATE_POINTERS Refer to 3D
Pipeline
3h Oh 10h 3DSTATE_VS Refer to
Vertex Shader
3h Oh 11h 3DSTATE_GS Refer to
Geometry
Shader
3h Oh 12h 3DSTATE_CLIP Refer to
Clipper
3h Oh 13h |3DSTATE_SF Refer to Strips
and Fans
3h Oh 14h 3DSTATE_WM Refer to
Windower
3h Oh 15h 3DSTATE_CONSTANT_VS Refer to
Vertex Shader
3h Oh 16h 3DSTATE_CONSTANT_GS Refer to
Geometry
Shader
3h Oh 17h 3DSTATE_CONSTANT_PS Refer to
Windower
3h Oh 18h 3DSTATE_SAMPLE_MASK Refer to
Windower
3h Oh 19h 3DSTATE_CONSTANT_HS Refer to Hull
Shader
3h Oh 1Ah 3DSTATE_CONSTANT_DS Refer to
Domain
Shader
3h Oh 1Bh 3DSTATE_HS Refer to Hull
Shader
56 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel

experience
what'’s inside”

Pipeline Sub RS RS
Type | Opcode | Opcode Handling Handling
(28:27) | (26:24) | (23:16) Command (No Perf) (Perf) Notes
3h Oh 1Ch 3DSTATE_TE Refer to
Tesselator
3h Oh 1Dh |3DSTATE_DS Refer to
Domain
Shader
3h Oh 1Eh 3DSTATE_STREAMOUT Refer to HW
Streamout
3h Oh 1Fh 3DSTATE_SBE Refer to
Setup
3h Oh 20h 3DSTATE_PS Refer to Pixel
Shader
3h Oh 21h Reserved
3h Oh 22h 3DSTATE_VIEWPORT_STATE_POINTERS_ Refer to Strips
SF_CLIP & Fans
3h Oh 23h 3DSTATE_VIEWPORT _STATE_POINTERS _ Refer to
CC Windower
3h Oh 24h 3DSTATE_BLEND_STATE_POINTERS Refer to Pixel
Shader
3h Oh 25h 3DSTATE_DEPTH_STENCIL_STATE_POIN Refer to Pixel
TERS Shader
3h Oh 26h 3DSTATE_BINDING_TABLE_POINTERS_V | Generate BT | Generate BT
S if HW BT if HW BT
enabled enabled
3h Oh 27h 3DSTATE_BINDING_TABLE_POINTERS_H | Generate BT | Generate BT
S if HW BT if HW BT
enabled enabled
3h Oh 28h 3DSTATE_BINDING_TABLE_POINTERS_D | Generate BT | Generate BT
S if HW BT if HW BT
enabled enabled
3h Oh 29h 3DSTATE_BINDING_TABLE_POINTERS_G | Generate BT | Generate BT
S if HW BT if HW BT
enabled enabled
3h Oh 2Ah 3DSTATE_BINDING_TABLE_POINTERS_P | Generate BT | Generate BT
S if HW BT if HW BT
enabled enabled
3h Oh 2Fh Reserved
3h Oh 30h 3DSTATE_URB_VS/td> Execute Execute
3h Oh 31h 3DSTATE_URB_HS Execute Execute
3h Oh 32h 3DSTATE_URB_DS Execute Execute
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 57

(intel"

experience
what'’s inside”

3D Media GPGPU

Pipeline Sub RS RS
Type | Opcode | Opcode Handling Handling
(28:27) | (26:24) | (23:16) Command (No Perf) (Perf) Notes

3h Oh 33h |3DSTATE_URB_GS Execute Execute

3h Oh 34h [3DSTATE_GATHER_VS Execute Execute

3h Oh 35h [3DSTATE_GATHER_GS Execute Execute

3h Oh 36h [3DSTATE_GATHER_HS Execute Execute

3h Oh 37h |3DSTATE_GATHER_DS Execute Execute

3h Oh 38h [3DSTATE_GATHER_PS Execute Execute

3h Oh 39h [3DSTATE_CONSTANTF_VS Execute Execute

3h Oh 3Ah | 3DSTATE_CONSTANTF_PS Execute Execute

3h Oh 3Bh | 3DSTATE_CONSTANTI_VS Execute Execute

3h Oh 3Ch | 3DSTATE_CONSTANTI_PS Execute Execute

3h Oh 3Dh |3DSTATE_CONSTANTB_VS Execute Execute

3h Oh 3Eh 3DSTATE_CONSTANTB_PS Execute Execute

3h Oh 3Fh 3DSTATE_LOCAL_VALID_VS Execute Execute

3h Oh 40h | 3DSTATE_LOCAL_VALID_PS Execute Execute

3h Oh 41h | 3DSTATE_GENERATE_ACTIVE_VS Execute Execute

3h Oh 42h | 3DSTATE_GENERATE_ACTIVE_PS Execute Execute

3h Oh 43h | 3DSTATE_BINDING_TABLE_EDIT_VS Refer to
Vertex Shader

3h Oh 44h | 3DSTATE_BINDING_TABLE_EDIT_GS Refer to
Vertex Shader

3h Oh 45h | 3DSTATE_BINDING_TABLE_EDIT_HS Refer to
Vertex Shader

3h Oh 46h | 3DSTATE_BINDING_TABLE_EDIT_DS Refer to
Vertex Shader

3h Oh 47h | 3DSTATE_BINDING_TABLE_EDIT_PS Refer to
Vertex Shader

3h Oh 48h | 3DSTATE_VF_HASHING

3h Oh 49h | 3DSTATE_VF_INSTANCING

3h Oh 4Ah | 3DSTATE_VF_SGVS

3h Oh 4Bh | 3DSTATE_VF_TOPOLOGY

3h Oh 4Ch |3DSTATE_WM_CHROMA_KEY

3h Oh 4Dh | 3DSTATE_PS_BLEND

3h Oh 4Eh | 3DSTATE_WM_DEPTH_STENCIL

3h Oh 4Fh | 3DSTATE_PS_EXTRA

3h Oh 50h |3DSTATE_RASTER

3h Oh 51h |3DSTATE_SBE_SWIZ

58 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel

experience
what'’s inside”

Pipeline Sub RS RS
Type | Opcode | Opcode Handling Handling
(28:27) | (26:24) | (23:16) Command (No Perf) (Perf) Notes
3h Oh 52h |3DSTATE_WM_HZ_OP
3h Oh 53h 3DSTATE_INT (internally generated
state)
3h Oh 57h | 3DSTATE_DX9_CONSTANTF_HS
3h Oh 58h |3DSTATE_DX9_CONSTANTI_HS
3h Oh 59h |3DSTATE_DX9_CONSTANTB_HS
3h Oh S5ah | 3DSTATE_DX9_LOCAL_VALID_HS
3h Oh 5bh [3DSTATE_DX9_GENERATE_ACTIVE_HS
3h Oh S5ch | 3DSTATE_DX9_CONSTANTF_DS
3h Oh 5dh [3DSTATE_DX9_CONSTANTI_DS
3h Oh 5eh | 3DSTATE_DX9_CONSTANTB_DS
3h Oh 5fth 3DSTATE_DX9_LOCAL_VALID_DS
3h Oh 60h [3DSTATE_DX9_GENERATE_ACTIVE_DS
3h Oh 61h [3DSTATE_DX9_CONSTANTF_GS
3h Oh 62h [3DSTATE_DX9_CONSTANTI_GS
3h Oh 63h [3DSTATE_DX9_CONSTANTB_GS
3h Oh 64h [3DSTATE_DX9_LOCAL_VALID_GS
3h Oh 65h |3DSTATE_DX9_GENERATE_ACTIVE_GS
3h Oh 67h-FFh | Reserved
3h Th 00h | 3DSTATE_DRAWING_RECTANGLE
3h Th 02h | 3DSTATE_SAMPLER_PALETTE_LOADO
3h 1h 03h |Reserved
3h Th 04h |3DSTATE_CHROMA_KEY
3h 1h 05h |Reserved
3h Th 06h | 3DSTATE_POLY_STIPPLE_OFFSET
3h Th 07h | 3DSTATE_POLY_STIPPLE_PATTERN
3h Th 08h | 3DSTATE_LINE_STIPPLE
3h Th OAh |3DSTATE_AA_LINE_PARAMS
3h Th 0Bh | 3DSTATE_GS_SVB_INDEX
3h 1h 0Ch |3DSTATE_SAMPLER_PALETTE_LOAD1
3h 1h ODh [3DSTATE_MULTISAMPLE
3h 1h OEh [3DSTATE_STENCIL_BUFFER
3h 1h OFh [3DSTATE_HIER_DEPTH_BUFFER
3h 1h 10h | 3DSTATE_CLEAR_PARAMS
3h 1h 11h | 3DSTATE_MONOFILTER_SIZE
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 59

(intel’"

experience
what'’s inside”

3D Media GPGPU

Pipeline Sub RS RS
Type | Opcode | Opcode Handling Handling
(28:27) | (26:24) | (23:16) Command (No Perf) (Perf) Notes

3h Th 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS

3h Th 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS

3h Th 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS

3h Th 15h 3DSTATE_PUSH_CONSTANT _ALLOC_GS

3h Th 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS

3h Th 17h 3DSTATE_SO_DECL_LIST

3h Th 18h 3DSTATE_SO_BUFFER

3h Th 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC

3h 1h 1Ah | 3DSTATE_GATHER_POOL_ALLOC

3h 1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_PO

OL_ALLOC

3h Th 1Ch 3DSTATE_SAMPLE_PATTERN

3h Th 1Dh-FFh | Reserved

3h Th 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Execute Execute

3h Th 1Ah | 3DSTATE_GATHER_POOL_ALLOC Execute Execute

3h Th 1Bh 3DSTATE_CONSTANT_BUFFER_POOL_AL Execute Execute

LOC

3h 1h 1Ch 3DSTATE_SAMPLE_PATTERN

3h 1h 1Dh-FFh | Reserved

3h 2h 00h PIPE_CONTROL

3h 2h 01h-FFh | Reserved

3h 3h 00h 3DPRIMITIVE Sync Sync 3DPRIMITIVE
command is
unique in that
it tells the
engines to
send fence
cycles, but
does not stop
RSunit (not a
sync point)

60 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what's inside”
Resource Streamer Programming Guidelines
This section describes RS activities and assumptions that are required for programming.
RS Interactions with the 3D Command Streamer

Because the Resource Streamer is processing ahead of the Command Streamer, many of the commands
interpreted by the RS are a signal to stop further processing. In these cases, the RS completes pending
activity, and waits for an indication from the Command Streamer to start again.

The specific cases that the CS commands the RS to continue are:

e Batch Buffer command parsing
e Context save

RS Interactions with Memory Requests

The RS is responsible for the generation of a number of memory requests. These are:

e Make batch buffer read requests (when address is supplied from the CS).

e Make push constant gather read requests from the state base offset.

e Make push constant gather write of packed data to the gather pool.

e Fetch the gather buffer surface base address.

e Write out the binding table pointer (BTP).

e Save BTP, constant buffer, and gather constant context data to an offset into the context image.

e Write out constant data.

As is the case in all memory accesses, read requests from the RS can be freely reordered, and may be
returned in any order by the hardware. The RS consumes the cycles and presents the “software” order
transparently.

When accessing the same address, a write operation followed by the read returns the written data.
Writes to non-overlapping addresses may be freely reordered as well. Fencing is used to make certain
all writes up to the fence have completed.

Fundamental Programming and Operational Assumptions
The following assumptions are made in the RS, and these are useful limitations to the programming:

e The CS can never send a request to a busy RS. The RS will have foreseen the situation, and
stopped its operations before the CS action.

e Surface base address is never changed while in a batch buffer.
e Push constant data is 128-bit aligned.

e The GATHER command should have Constant Buffer valid bits set for any indices used in the
command.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 61

(lntel' | 3D Media GPGPU
eXpEnenCe

what's inside”
Non-Operational Activities
There are no specific events or performance counters for the resource streamer (RS).
Hardware Binding Tables

The driver spends a considerable amount of time managing the binding tables. A new command is
added, 3DSTATE_BINDING_TABLE_EDIT_*, to offload the binding table generation from the driver. There
is an on-die set of binding tables for each FF (VS, GS, HS, DS, PS). The 3DSTATE_BINDING_TABLE_EDIT_*
commands are used by the driver to update these tables. The 3DSTATE_BINDING_TABLE_POINTER_*
commands are added. When the resource streamer encounters a 3DSTATE_BINDING_TABLE_POINTER_*
command, it writes the binding table out to the binding table pool. When the command streamer
encounters a 3DSTATE_BINDING_TABLE_POINTER_* command, it sends the binding table pointer down
as pipelined state.

Hardware Binding Tables are only supported for 3D workloads. The resource streamer must be enabled
only for 3D workloads. The resource streamer must be disabled for Media and GPGPU workloads. A
batch buffer containing both 3D and GPGPU workloads must take care of disabling and enabling the
Resource Streamer appropriately while changing the PIPELINE_SELECT mode from 3D to GPGPU and
vice versa. The resource streamer must be disabled using MI_RS_CONTROL command and Hardware
Binding Tables must be disabled by programming 3DSTATE_BINDING_TABLE_POOL_ALLOC with
“Binding Table Pool Enable” set to disable (i.e value ‘0’). The following example shows disabling and
enabling of the resource streamer in a batch buffer for 3D and GPGPU workloads:

MI BATCH BUFFER START (Resource Streamer Enabled)

PIPELINE SELECT (3D)

3DSTATE BINDING TABLE POOL ALLOC (Binding Table Pool Enabled)
3D WORKLOAD MI RS CONTROL (Disable Resource Streamer)

3DSTATE BINDING TABLE POOL ALLOC (Binding Table Pool Disabled)
PIPELINE_SELECT (GPGPU)

GPGPU Workload

PIPELINE SELECT (3D)

MI RS CONTROL (Enable Resource Streamer)

3DSTATE BINDING TABLE POOL ALLOC (Binding Table Pool Enabled)
3D WORKLOAD

MI BATCH BUFFER END

62 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

3DSTATE_BINDING_TABLE_POOL_ALLOC [CHV, BSW]

Programming Note

The binding table generator feature has a simple all or nothing model. If HW generated binding tables are
enabled, the driver must enable the pool and use 3D_HW_BINDING_TABLE_POINTER_* commands.

When switching between HW and SW binding table generation, SW must issue a state cache invalidate.

A maximum of 16,383 Binding Tables are allowed in any batch buffer.

If the Binding Table Pool Enable is cleared while the Resource Streamer is enabled within a batch buffer, then the
on chip storage for the binding table will not be context save and restored. To save the Binding Table Pool, before
disabling the Pool enable, disable the resource streamer thru the MI_RS_CONTROL command. And then, before
reenabling the Binding Table Pool, reenable the resource streamer thru the MI_RS_CONTROL command.

The variable length commands are 3DSTATE_BINDING_TABLE_EDIT_HS,
3DSTATE_BINDING_TABLE_EDIT_DS, and 3DSTATE_BINDING_TABLE_EDIT_PS.

3DSTATE_BINDING_TABLE_POOL_ALLOC
3DSTATE_BINDING_TABLE_EDIT_VS
3DSTATE_BINDING_TABLE_EDIT_HS
3DSTATE_BINDING_TABLE_EDIT_DS
3DSTATE_BINDING_TABLE_EDIT_GS
3DSTATE_BINDING_TABLE_EDIT_PS

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 63

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”
Gather Constants

Gather commands support fetching from 16 different constant buffers or one constant buffer of 8KB
size. The compiler does some optimizations of constant usage and determines which elements of which
constants should be packed in which push constant register for optimum shader performance. While
this gathering and packing of constant elements into push constant registers optimizes the shader, it
causes the driver added work at draw call time, because the driver must do the gather and packing at
draw time. New commands (3D_STATE_GATHER_CONSTANT_* and 3DSTATE_GATHER_POOL_ALLOC)
were added to offload the gather and packing functions from the driver. The base address for the push
constant buffer and the enabling of the feature is programmed through the
3DSTATE_GATHER_POOL_ALLOC. There are 5 FF which support push constants (VS, GS, DS, HS, PS) and
they all have corresponding gather commands. The compiler generates a gather table that specifies
what elements of what buffers are packed into the gather buffer. The gather table indexes the BT to get
the surface state which points to the constant buffer. The resource streamer gathers constants by
reading the constant buffer, packs the data and then writes the buffer out to a push constant buffer
based on the base address and the offset in the 3DSTATE_GATHER_CONSTANT_* command.

3DSTATE_GATHER_POOL_ALLOC

3DSTATE_GATHER_CONSTANT_VS
3DSTATE_GATHER_CONSTANT_HS
3DSTATE_GATHER_CONSTANT_DS
3DSTATE_GATHER_CONSTANT_GS
3DSTATE_GATHER_CONSTANT_PS

64 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what'’s inside”
Dx9 Constant Buffer Generation

The Dx9 constant model is a set of register that the App can incrementally update. The HW requires a
constant buffer which lives until the last shader using that buffer retires. To offload the driver the
3DSTATE_DX9_CONSTANT*_* cmds are added. These commands allow the on-die constant register to
be maintained. When all the edits to the constant register have been completed, the
3DSTATE _DX9 _GENERATE_ACTIVE_* cmd is used to write out a constant buffer to the Dx9 Constant
buffer pool. The Dx9 constant buffers are fixed 8KB in size, with a large portion of the second 4KB
unused.

Programming Note

Context: Dx9 Constant Buffer generation

For buffers, which have no inherent “height,” padding requirements are different. A buffer must be padded to the
next multiple of 256 array elements, with an additional 16 bytes added beyond that to account for the L1 cache
line.

Programming Note

Context: Dx9 Constant Buffer generation.

e The Dx9 constant buffer feature has a simple all or nothing model.
e A maximum of 16,383 Binding Tables are allowed in any batch buffer.

e The Dx9 constants can only be enabled if the binding table generator is also enabled.

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 65

(l n te,l lkexperience

what'’s inside”

Vertex Shader Constant

3D Media GPGPU

This section contains various commands for the vertex shader constant.
3DSTATE_DX9_CONSTANTEF_VS
3DSTATE_DX9_CONSTANTI_VS
3DSTATE_DX9_CONSTANTB_VS
3DSTATE_DX9_LOCAL_VALID_VS

DX9 Constant Buffer Map [CHV, BSW]

Offset Cache Line
0x0000| 256 4-component Float Constants 0
OxOfff 63
0x1000| 32 4-component integer constants 64
0x107f

0x1080 | 16 1-component boolean constants 72
0x108f

0x1090 unused

Ox1fff

3DSTATE_DX9_GENERATE_ACTIVE_VS

66

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Pixel Shader Constant

This section contains various commands for the pixel shader constant.
3DSTATE_DX9_CONSTANTF_PS

3DSTATE_DX9_CONSTANTI_PS

3DSTATE_DX9_CONSTANTB_PS

3DSTATE_DX9_LOCAL_VALID_PS

DX9 Constant Buffer Map [CHV, BSW]
Offset Cache Line
0x0000| 256 4-component Float Constants 0
OxOfff 63
0x1000| 32 4-component integer constants 64
0x107f
0x1080 | 16 1-component boolean constants 72
0x108f
0x1090 unused
Ox1fff

3DSTATE_DX9_GENERATE_ACTIVE_PS

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 67

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

Shared Functions
3D Sampler

The 3D Sampling Engine provides the capability of advanced sampling and filtering of surfaces in
memory.

The sampling engine function is responsible for providing filtered texture values to the Gen Core in
response to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering
modes, address control modes, and other features of the sampling engine. A pointer to the sampler
state is delivered with each message, and an index selects one of 16 states pointed to by the pointer.
Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE
to define the attributes of the surface being sampled. This includes the location, size, and format of the
surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used for any purpose
once returned to the execution core. The 3D Sampler can be used to assist the media sampler in
specific operations such as video scaling.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the
appropriate subfunctions are complete, the 4-component (reduced to fewer components in some
cases) filtered texture value is provided to the Gen Core to complete the sample instruction.

Subfunction Description
Texture Any required operations are performed on the incoming pixel's interpolated internal texture
Coordinate coordinates. These operations may include cube map intersection.
Processing

Texel Address The Sampling Engine determines the required set of texel samples (specific texel values from
Generation specific texture maps), as defined by the texture map parameters and filtering modes. This
includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample and/or
miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples are read from the texture map. This step may require
decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette [For streams which have “paletted” texture surface formats, this function uses the “index” values
Lookup read from the texture map to look up texel color data from the texture palette.

Shadow Pre- For shadow mapping, the texel samples are first compared to the 3rd (R) component of the
Filter Compare | pixel's texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture
Address Generation function. This “combination” ranges from simply passing through a
“nearest” sample to blending the results of anisotropic filters performed on two mipmap levels.
The output of this function is a single 4-component texel value.

Texel Color Performs optional gamma decorrection on texel RGB (not A) values.
Gamma
Linearization

8x8 Video Scaler [Performs scaling using an 8x8 filter.

68 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Sampling Engine

3D Sampler Theory of Operation

(l n te,l “ experience

what’s inside”

The 3D sampler (sometimes referred to as texture sampler) is a self-contained functional block within
the Graphics Core which receives messages from other agents in the Graphics Core, fetches data from
external memory sources typically referred to as “surfaces”, performs operations on the data and
returns the results in standard formats to the requester (or directly to a Render Target is requested).
One of the most common applications of the 3D sampler is to return a filtered/blended pixel from a

location in a texture map.

RENDER_SURFACE_STATE

SAMPLER_STATE

-

From Requesting
Agent

SIMD
SAMPLER
MESSAGE

Y

Inputs

Y

Texel/Surface Fetch

Y

Texel Filtering/Processing

Y

Outputs/Writeback

SAMPLE RESULT
(32 or 16-bit
IEEE Floating Point)
A J
To Requesting
Agent or
Render Target

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

SURFACE Data

- (System Memory)

69

(lntel' | 3D Media GPGPU
eXpE”enCe

what's inside”
Sampler Inputs Messages

Input requests to the 3D Sampler are in the form of messages (see Messages sub-section for a
description of message types and formats). A pixel shader kernal executing on the Graphics Core is an
example of an agent which is capable of sending sample messages to the 3D Sampler.

In its most basic form, the sampler receives coordinates to a location within a field of data (often a
texture map or depth map) and returns a value which represents the pixel color or depth which may be
filtered/blended as defined by associated surface and sampler state objects. Sampler can also work on
un-typed data structures called buffers.

Messages are sent in SIMD (Single Instruction Multiple Data) format where there are 8, 16, 32 or 64
coordinate tuples to be processed (i.e. SIMD8, SIMD16 etc.) in the same manner. Some message types
are restricted to SIMD8 and SIMD16 varieties and other are restricted to SIMD32 or SIMD64. See the
section on Texture Coordinate Processing more details on texture coordinate requirements.

SIMD8 and SIMD16 messages are further organized into groups of 4 sets of coordinates which
generally form a 2x2 “subspan” of texel locations. The spatial locality of the texel locations within a sub-
span improves the performance of the sampler and allows the processing of the 4 texel locations in
parallel. A SIMD8 message contains two subspans and a SIMD16 contains 4 subspans.

Sampler Data Fetches

The 3D sampler will automatically fetch required data from surfaces in system memory as needed to
perform each sample operation. Fetched data may be stored in an internal cache to reduce latency for
subsequent fetch operations.

The sampler calculates the address into a surface and uses RENDER_SURFACE_STATE state objects to
determine the location within system memory and the format of the surface being fetched. Sampler can
also receive or calculate the LOD (Level of Detail) of a surface if the surface supports multiple Mips and
will fetch from the correct Mip in this case. See Texture Address Calculation sub-section for more detail
on addresses and LOD calculation.

The sampler will also automatically decompress any supported compression format once data has been
fetched. See the subsection Surface State for a list of supported surface formats, including compressed
formats. Likewise, the sampler can linearize (inverse Gamma) sRGB formats prior to filtering.

Sampler Filtering and Processing

The sampler is capable of performing all basic filtering operations (point, bilinear, trilinear, anisotropic,
cube etc.) based on the SAMPLER_STATE state object associated with the sample operation being
requested.

In most cases, data returned is in the form of 32-bit or 16-bit IEEE floating-point per channel to ensure
maximum precision. See Writeback Message section for a description of the format of returned data.
Output Data is only returned to the requesting agent or written to a designated Render Target (RT).
Sample results are never cached within the sampler or written to system memory.

70 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the
texture coordinates that are required before physical addresses of texel samples can be generated.

Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized
coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is
located at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right
edge of the lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the
associated map's height or width. Here the origin is the located at the upper/left edge of the upper left
texel of the base texture map.

Normalized vs. Unnormalized Texture Coordinates

Mormalized Unnomalized
0,0 » L o, 0 »

1,1 15, 11

BE2TT-01

Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from
(interpolated) screen space back into texture coordinate space by dividing the pixel'sSand T
components by the Q component. This operation is done prior to sending sample operations to the 3D
sampler.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map
faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest
absolute value determines the proper (major) axis, and then the sign of that component is used to
select between the two faces associated with that axis. The coordinates along the two minor axes are
then divided by the coordinate of the major axis, and scaled and translated, to obtain the 2D texture
coordinate ([0,1]) within the chosen face. Note that the coordinates delivered to the sampling engine
must already have been divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided
below:

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 71

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Cube Map Coordinate Computation Example

Mote:

Face arigin is here
. -1 face
r--------------
: 1
[|
-1 face = i +1face
' -
- I0
- l—hf w1
[|
: E 10410
= i abs(I0)=abs(10)
[|
1 Seledts +I face
+] face 10,70

BeaTa-01

72 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto
the textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral.
Any given pixel of the object may “cover” multiple texels of the map, or only a fraction of one texel. For
each pixel, the usual goal is to sample and filter the texture image in order to best represent the
covered texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are
provided to allow the user to employ quality/performance/footprint tradeoffs in selecting how the
particular texture is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the
texture maps are to be sampled. Outputs of this function include the number of texel to be fetched,
along with the physical addresses of the samples and the filter weights to be applied to the samples
after they are read. This information is computed given the incoming texture coordinate and gradient
values, and the relevant state variables associated with the sampler and surface. This function also
applies the texture coordinate address controls when converting the sample texture coordinates to map
addresses.

Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent
object warping due to a perspective projection, the texture image may become magnified (where a
texel covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an
object. In the case where an object pixel is found to cover multiple texels (texture minification), merely
choosing one (e.g., the texel sample nearest to the pixel's texture coordinate) will likely result in severe
aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling
these textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps
of decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are
provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object
is located a significant distance from the viewer), the device will sample the mipmap level(s) offering a
texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X
1 texel. Each successive level has ¥ the resolution of the previous level in the U and V directions (to a
minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap
levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the
approximate, log, measure of the ratio of texels per pixel. The highest resolution map is considered LOD
0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the
magnification filter should be applied.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 73

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture
map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear
interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log. of
the texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space
distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-
space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates
being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels).
The g coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant
0 for 2D surfaces.

The ideal LOD computation is included below.

LOD(x,y) =log,[p(x,¥)]

where :
ou) (e (egY |(eu) (ev) (ég)
p(x,y) =max kol T L e 4 Ll — 1 = + % .
ox ox o oy oy oy
LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower
miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap
level will trade off image blurring with possibly increased performance (due to better texture cache
reuse). Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing
artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input
message (which can be non-zero only for sample_b messages). The application of LOD Bias is
unconditional, therefore these variables must both be set to zero in order to prevent any undesired
biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore
can be used to control the min-vs-mag crossover point, its use has the undesired effect of actually
changing the LOD used in texture filtering.

74 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.
Enabling pre-clamping matches OpenGL semantics .

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by
the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag
Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even
when lower resolution maps may be available. Note that this is the only parameter used to specify the
number of valid mip levels that be can be accessed, i.e., there is no explicit “number of levels stored in
memory” parameter associated with a mip-mapped texture. All mip levels from the base mip level map
through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is
UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where
LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution
mip levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level
filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and
MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down)
or magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel state
variable therefore has the effect of selecting the "base” mip level used to compute Min/Mag
Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect
of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-
resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the
computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable
specifies whether one or two mip levels are to be included in the texture filtering, and how that (or
those) levels are to be determined as a function of the computed LOD.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 75

experience
what'’s inside”

(intel')k 3D Media GPGPU

LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the
steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not
shown.

Bias: S54.8
MinLod: U4.8
MaxLod: U4.8
Base: Uu4.1l
MIPCnt: U4

SurfMinLod: U4.
ResMinLod: U4.8

[e0]

PerSampleMinLOD: float32

MinLod = max (MinLod, PerSampleMinLOD)
AdjMaxLod = min (MaxLod, MIPCnt)
AdjMinLod = min (MinLod, MIPCnt)

AdjPR minLOD = ResMinLod - SurfMinLod
AdjMinLod = max (AdjMinLod, AdjPR minLOD)

Out of Bounds = AdjPR minLOD > MIPCnt

if (sample b)

LOD += Bias + bias parameter
else if (sample 1 or 1d)

LOD = Bias + lod parameter
else

LOD += Bias

Pseudocode

PreClamp = LODPreClampMode != PRECLAMP NONE
if (PreClamp)
if (PRECLAMP D3D)
LOD = min (LOD, AdjMaxLod)
LOD = max (LOD, AdjMinLod)
else
LOD = min (LOD, MaxLod)
LOD = max (LOD, MinLod)

MagMode = (LOD - Base <= 0)
Pseudocode
MagClampMipNone = LODClampMagnificationMode == MAG CLAMP MIPNONE
if ((MagMode && MagClampMipNone) or MipFlt == None)
LOD = 0

LOD = min (LOD, ceil (AdjMaxLod))
LOD = max (LOD, floor (AdjMinLod))
else if (MipFlt == Nearest)

Pseudocode

LOD min (LOD, ceil (AdjMaxLod))
LOD = max (LOD, floor (AdjMinLod))

76 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

LOD += 0.5
LOD = floor (LOD)

else
// MipFlt = Linear
LOD = min (LOD, AdjMaxLod)
LOD = max (LOD, AdjMinLod)
TriBeta = frac (LOD)

LODO = floor (LOD)
LOD1 = LODO + 1
if (! lod) // “LOD” message type

Lod += SurfMinLod

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced
with zero in all channels, except for surface formats that don’t contain alpha, for which the alpha
channel is replaced with one. These texels then proceed through the rest of the pipeline.

Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state
variable (respectively) is used to select the sampling filter to be used within a mip level (intra-level, as
opposed to any inter-level filter). Note that for volume maps, this selection also applies to filtering
between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number
and texture map coordinates of the texture samples, and the computation of any required filter
parameters. The filtering of the samples occurs later on in the Sampling Engine function.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 77

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter

value Description
MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q coordinate is
read and output from the filter.
MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE,

or 3D surface, respectively) surrounding the pixel’s U,V,Q coordinate are read and a
linear filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC |[Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture
map is generated and “subpixel” samples are taken along the major axis of the
projection (center axis of the longer dimension). The outermost subpixels are
weighted according to closeness to the edge of the projection, inner subpixels are
weighted equally. Each subpixel samples a bilinear 2x2 of texels and the results are
blended according to weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the monochrome
(MONOS) surface format. The monochrome texel block of the specified size
surrounding the pixel is selected and filtered.

MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel’s texture
coordinate is selected and output as the single texel sample coordinates for the level. This is a form of
"Point Sampling".

Corner Texel Mode

MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.
1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the
pixel’s texture coordinate are sampled and later bilinearly filtered. The filter weights each texel’s
contribution according to its distance from the pixel center. Texels further from the pixel center receive
a smaller weight.

78 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Bilinear Filter Sampling

Mearest
Texel Center

Bl eft 1-Bleft

e i

Bup d
Pixel's Texel ‘fl
iZoords |

L

1-Bup

R

Beava-01

MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of
pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and
later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter
employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the
texture map. LOD is chosen based on the minor axis length in texel space. The anisotropic “ratio” is
equal to the ratio between the major axis length and the minor axis length. The next larger even integer
above the ratio determines the anisotropic number of “ways”, which determines how many subpixels
are chosen. A line along the major axis is determined, and “subpixels” are chosen along this line, spaced
one texel apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and
the pixels are in yellow.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 79

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

@ Pixel Center
@ Subpixel Center
BeBE0-01

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel
is then blended together using equal weights on all interior subpixels (not including the two endpoint
subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the
“ratio” is to the number of "ways". This is done to ensure continuous behavior in animation.

MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel
sample location are read and filtered using the kernel described below. The size of this block is
controlled by Monochrome Filter Height and Width (referred to here as N, and N,, respectively) state.
Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel
samples) is equal to the size of the filter and the pixel center lies at the exact center of this footprint.
The position of the upper left filter kernel sample (uy, v¢) relative to the pixel center at (u, v) is given by
the following:

80 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

3D Media GPGPU (intel)

b, and b, are the fractional parts of us and v;, respectively. The integer parts select the upper left texel
for the kernel filter, given here as To,.

Sampling Using MAPFILTER_MONO

Ll
0 - 1 2 3 4 5 f >
N ® & & & & ¢ »
YO O O O O O
1 ® ® @ & ¢ © o »
O O O O O O
2 ® & & & & & » »
0O QO 00 O Q
3 L L L] L e @ L »
o O ¢ O O O
4 s & @ & & & & »
O O ¢ O 0 0
£ e & @ & » 9 = »
Q pixel center (u,v)
) [L] L L e B [L] ® tovels
k 4 O filter kernel samples

Be221-01

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 81

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each
texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and
alpha channels.

B 1
" N,*N,
NI -1 N, N1 NN, N, N,
F= (l—ﬁu)(l—ﬁv)zn: ZI +ﬁuu—ﬁ,,.)zl Zﬂr +(1-B,)B, ;Zl T, —ﬁuﬁ;zla *S

Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The
following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after
LOD clamping).

MIPFILTER_NEAREST | Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be
rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further
restrict this miplevel selection.

MIPFILTER_LINEAR | Apply a filter on the two closest mip levels and linear blend the results using the distance
between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping
may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip
level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to
generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated
LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for
MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the
(integer bits of) MinLOD and MaxLOD state variables.

Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when
the specific texture coordinate component falls outside of the normalized texture map coordinate range
[0,1).

82 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

The table below provides all the supported Address Control modes for each direction.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER | Use the texture map’s border color for any texel samples falling outside the
map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_HALF_BORDER | Similar to CLAMP_BORDER except texels outside of the map are clamped to a
value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the
same dimension.
TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be

sampled along the edges of faces. This is considered the highest quality
mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

TEXCOORDMODE_MIRROR_ONCE | Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the
TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls
provided for the TCW component as it is only used to scale the other 3 components before addressing
modes are applied.

Programming Note

Context: Texture Address Control

TEXCOORDMODE_CUBE can only be used with SURFTYPE_CUBE

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may
result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision
loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level
(choosing the wrong texels for filtering).

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the
texture coordinates. Software needs to specify TEXCOORDMODE_WRAP mode for the sampler that is
provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 83

®

(lntel | 3D Media GPGPU
experlence

what'’s inside”

TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is
flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed
normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal
again, and so on. The second row of pictures in the figure below indicate a map that is mirrored in one
direction and then both directions. You can see that in the mirror mode every other integer map wrap
the base map is mirrored in either direction.

The example below shows how a simple 2D map with TEXCOORDMODE_MIRROR for both TCX and TCY
is mapped.

X
0.0 1.0

uN
[Yo
vy
o

-1.0

84 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
experlence

what's inside”

TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes.
The absolute value of the texture coordinate component is first taken (thus mirroring about 0), and then
the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then clamped
thereafter. This mode is used to reduce the storage required for symmetric maps.

The example below shows how a simple 2D map with TEXCOORDMODE_MIRROR_ONCE for both TCX
and TCY is mapped.

X
1.0 2.0

o
=]
yw

o

1.0

2.0

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 85

®

(lntel | 3D Media GPGPU
experlence

what'’s inside”

TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,
leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being
continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate

values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through
0.0).

The example below shows how a simple 2D map with TEXCOORDMODE_WRAP for both TCX and TCY is
mapped.

X

86 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
experlence

what's inside”

TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the "edge” texel when the texture coordinate
extends outside the [0,1) range of the base texture map. This is contrasted to
TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.
TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be obtained
from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a
texture mapped object with texture coordinates extending outside of the base map region.

Texture Clamp Mode

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 87

®

(lntel | 3D Media GPGPU
experlence

what'’s inside”

TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the
texture map’s border value BorderColor is to be used for any texel samples that fall outside of the base
map. The border color is specified via a pointer in SAMPLER_STATE.

The example below shows how a simple 2D map with TEXCOORDMODE_CLAMPBORDER for both TCX
and TCY is mapped.

X

0.0

1.0

TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering.
When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-level

filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed. This
will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be present.

88 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the
texture addresses associated with each texel sample. The texture data is read either directly from the
memory-resident texture map, or from internal texture caches. The texture caches can be invalidated by
the Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable
bit of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered
textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will
automatically decompress from the stored format into the appropriate [A]JRGB values. The compressed
texture storage formats and decompression algorithms can be found in the Memory Data Formats
chapter. When the surface format of a texture is defined as being an index into the texture palette
(format names includiong “Px"), the palette lookup of the index determines the appropriate RGB values.

Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of
texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an
RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel
samples against a "key” range, and takes certain actions if any texel samples are found to match the
key.

Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel
values, as defined by ChromaKey/[][High,Low] state variables. If each component of a texel sample is
found to lie within the respective (inclusive) range and ChromaKey is enabled, then an action will be
taken to remove this contribution to the resulting texel stream output. Comparison is done separately
on each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 89

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples from the image.
The ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode
state variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:
KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key.
KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0).

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample
instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not
done and pixels cannot be killed based on it.

Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed
on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the
“ref” component of the input message, using a compare function selected by ShadowFunction, and
described in the table below. Note that only single-channel texel formats are supported for shadow
mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) 70.0: 1.0

PREFILTEROP_EQUAL (texel ==ref) 20.0:1.0

PREFILTEROP_LEQUAL (texel <=ref) 70.0:1.0

PREFILTEROP_GREATER | (texel > ref) 70.0: 1.0

PREFILTEROP_NOTEQUAL | (texel !=ref) 70.0: 1.0

PREFILTEROP_GEQUAL (texel >=ref) 70.0:1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the
texel's value which would normally be used).

Software is responsible for programming the "ref” component of the input message such that it
approximates the same distance metric programmed in the texture map (e.g., distance from a specific
light to the object pixel). In this way, the comparison function can be used to generate "in shadow”
status for each texture sample, and the filtering operation can be used to provide soft shadow edges.

90 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel
values on and possibly between texture map layers and levels. The output of this function is a single
texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The
MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results
of any filtering on these separate levels are combined to produce a final texel color. The MinFilter and
MagfFilter state variables specify how texel samples are filtered within a level.

Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back
into linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer.
This permits higher quality image blending by performing the blending on colors in linear gamma
space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB" in its name. If
enabled, the pre-filtered texel RGB color to be converted to gamma=1.0 space by applying a *(2.4)
exponential function.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 91

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Multisampled Surface Behavior

The Id message has added an additional parameter for sample index (si) to support unfiltered loading
from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo
message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface would sample a
surface with double the height and width as indicated in the surface state. Each pixel position on the
original-sized surface is replaced with 2x2 samples that have the following arrangement:

sample 0 [sample 2

sample 1|sample 3

This behavior is useful when implementing the multisample resolve operation by selecting
MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source
texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four
underlying samples.

Multisample Control Surface

Three new messages have been defined for the sampling engine, d_mcs, [d2dms, and [d2dss. A pixel
shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS
surface using the [d_mcs message. This message behaves like the [d message, except that the surface is
defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is
effectively R8_UINT for 4x surfaces and R32_UINT for 8x surfaces, thus data is returned in unsigned
integer format. Following the ld_mcs, the kernel issues a [d2dms message to sample the surface itself.
The integer value from the MCS surface is delivered in the mcs parameter of this messages.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done
using [d2dms. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS and MCS
Enable set to enabled, an optimization is available to enable higher performance for compressed pixels.
The ld2dss message can be used to sample from a particular sample slice on the surface. By examining
the MCS value, software can determine which sample slices to sample from. A simple optimization with
probable large return in performance is to compare the MCS value to zero (indicating all samples are on
sample slice 0), and sample only from sample slice 0 using (d2dss if MCS is zero. Sample slice 0 is the
pixel color in this case. If MCS is not zero, each sample is then obtained using [d2dms messages and the
results are averaged in the kernel after being returned. Refer to the multisample storage format in the
GPU Overview volume for more details.

92 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

State

BINDING_TABLE_STATE
SW Generated BINDING_TABLE_STATE
HW Generated BINDING_TABLE_STATE

For SAMPLER_STATE for Sample_8X8 see 3D-Media-GPGPU Engine > Shared Functions > Media
Sampler > Sample_8x8 State > SAMPLER_STATE

The 3D sampler uses both surface state objects (RENDER_SURFACE_STATE) as well as sampler state
objects (SAMPLER_STATE). These objects are cached locally in the sampler state cache

for improved performance as it is assumed that many sampler messages will utilize the same surface
and sampler states.

Programming Note

Context: Out of Bounds Handling

If a pointer to sampler or surface state goes beyond the end of the sampler or surface state buffer (as defined by
the associated size field of the STATE_BASE_ADDRESS command) the sampler will force the address offset to
cache-line 0 from the defined Base Address. The result of this state fetch is undefined and depends on how the
state buffer has been populated.

Surface State Fetch

Surface state is fetched from system memory using a Binding Table Pointer (BTP). The BTP is a 16-bit
value provided by the command stream (not directly by the shader) which determines the binding-table
to be used. An 8-bit Binding Table Index (BTI) is then provided by the shader via the message
descriptor, which indicates the offset into the Binding Table. The BTP and BTl are relative to the Surface
State Base Address and the binding table itself resides in system memory. The contents of the Binding
Table is a list of pointers to surface state objects. The pointer from the Binding Table is also relative to
the Sampler State Base Address, and points directly to a 256-bit RENDER_SURFACE_STATE object
which sampler will fetch and store in its internal state cache.

For Positional Shaing (POSH) there is a separate set of base addresses for Bindless and Non-Bindless Surface State
called POSH Surface State Offset and POSH Bindless Surface State Base Address. They work exactly the same, but
allow different base addresses for positional shading.

Sampler State Fetch

SAMPLER_STATE objects are fetched independely of surface state and cached locally in the 3D sampler
independently (there may one or more SAMPLER_STATE objects associates with one or more
RENDER_SURFACE_STATE objects). The sampler state is fetched using the Sampler State Pointer (SSP)
which is provided either in the message header or directly from the command stream (message headers
are not required). The SSP is an offset relative to the Dynamic_State_Base_Address and selects a table
of 16 sampler states. The 4-bit Sampler Index (Sl) in the message descriptor is used to select the
specific SAMPLER_STATE object to be fetched from system memory and cached locally in the 3D
sampler.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 93

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

For Positional Shading (POSH) there is a separate set of base addresses available for fetching sampler state called
POSH Bindless Surface State Base Address and POSH Dynamic State Base Address.

State Caching

As mentioned above, the 3D Sampler allows for automatic caching of RENDER_SURFACE_STATE
objects and SAMPLER_STATE objects to provide higher performance. Coherency with system memory
in the state cache, like the texture cache is handled partially by software. It is expected that the
command stream or shader will issue Cache Flush operation or Cache_Flush sampler message to ensure
that the L1 cache remains coherent with system memory.

Programming Note

Context: State Cache Coherency

Whenever the value of the Dynamic_State_Base_Addr, Surface_State_Base_Addr are altered, the L1 state cache
must be invalidated to ensure the new surface or sampler state is fetched from system memory.

Whenever the RENDER_SURFACE_STATE object in memory pointed to by the Binding Table Pointer (BTP) and
Binding Table Index (BTI) is modified or SAMPLER_STATE object pointed to by the Sampler State Pointer
(SSP) and Sampler Index (Sl) is modified, the L1 state cache must be invalidated to ensure the new surface or
sampler state is fetched from system memory.

SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table or its
own entry in a memory heap in memory. Each surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

e texture maps (1D, 2D, 3D, cube) read by the sampling engine

e buffers read by the sampling engine

e constant buffers read by the data cache via the data port

e render targets read/written by the render cache via the data port

e streamed vertex buffer output written by the render cache via the data port
e media surfaces read from the texture cache or render cache via the data port
e media surfaces written to the render cache via the data port

The surface state definition can be found in the following section:
RENDER_SURFACE_STATE
Surface Formats

The RENDER_SURFACE_STATE contains a 9-bit field called Surface Format, which defines the exact
format of the surface being sampled. The definition of the encodings for each supported format,
including compressed formats can be found in the following section:

SURFACE_FORMAT

94 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l H experience

what’s inside”

For ASTC formats, the ASTC Enable bit in the RENDER_SURFACE_STATE must be set to 1. When set, the definition
of the 9-bit Surface Format changes. This table describes all supported formats for block based ASTC textures.

SURFACE_FORMAT for All ASTC Formats

[8] LDR/Full Width | Height | Depth
[7] 2D/3D 2D [5:3] | 2D [2:0] | 2D: N/A
Value [6] U8srgb /FLT16 | 3D [5:4] 3D [3:2] | 3D: [1:0] e Femr Name (BPE)
000h 000 0 0 000 000 000 | ASTC_LDR 2D_4x4_U8sRGB | 8.00
008h 000 1 0 000 001 000 | ASTC_LDR 2D_5x4_U8sRGB | 6.40
009h 000 1 1 000 001 001 | ASTC_LDR_2D_5x5_U8sRGB | 5.12
011h 000 2 1 000 010 001 | ASTC_LDR_2D_6x5_U8sRGB | 4.27
012h 000 2 2 000010 010 | ASTC_LDR_2D_6x6_U8sRGB | 3.56
021h 000 4 1 000 100 001 | ASTC_LDR_2D_8x5_U8sRGB | 3.20
022h 000 4 2 000 100 010 | ASTC_LDR_2D_8x6_U8sRGB | 2.67
031h 000 6 1 000 110 001 | ASTC_LDR_2D_10x5_U8sRGB | 2.56
032h 000 6 2 000 110 010 | ASTC_LDR_2D_10x6_U8sRGB | 2.13
024h 000 4 4 000 100 100 | ASTC_LDR_2D_8x8_U8sRGB | 2.00
034h 000 6 4 000 110 100 | ASTC_LDR_2D_10x8_U8sRGB | 1.60
036h 000 6 6 000 110 110 |ASTC_LDR_2D_10x10_U8sRGB | 1.28
03eh 000 7 6 000 111 110 | ASTC_LDR_2D_12x10_U8sRGB | 1.07
03fh 000 7 7 000 111 111 [ASTC_LDR_2D_12x12_U8sRGB | 0.89
040h 001 0 0 001000000 | ASTC_LDR 2D_4x4 FLT16 8.00
048h 001 1 0 001001000 | ASTC_LDR 2D_5x4_FLT16 6.40
049h 001 1 1 001 001 001 ASTC_LDR_2D_5x5_FLT16 5.12
051h 001 2 1 001 010 001 ASTC_LDR_2D_6x5_FLT16 4.27
052h 001 2 2 001010010 | ASTC_LDR_2D_6x6_FLT16 3.56
061h 001 4 1 001 100 001 ASTC_LDR_2D_8x5_FLT16 3.20
062h 001 4 2 001100010 | ASTC_LDR_2D_8x6_FLT16 2.67
071h 001 6 1 001110001 | ASTC_LDR_2D_10x5_FLT16 | 2.56
072h 001 6 2 001110010 | ASTC_LDR_2D_10x6_FLT16 | 2.13
064h 001 4 4 001100 100 | ASTC_LDR_2D_8x8_FLT16 2.00
074h 001 6 4 001 110100 | ASTC_LDR_2D_10x8_FLT16 | 1.60
076h 001 6 6 001 110 110 | ASTC_LDR_2D_10x10_FLT16 | 1.28
07eh 001 7 6 001 111110 | ASTC_LDR_2D_12x10_FLT16 | 1.07
07fh 001 7 7 001 111111 | ASTC_LDR_2D_12x12_FLT16 | 0.89
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 95

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Notes and Workarounds

Programming Note

Context: SURFACE_STATE

e ASTC_LDR_3D* surface types are not supported.
e ASTC_FULL_* surface types are not supported.

Programming Note

Context: ASTC with Multiple LODs

If sampling an ASTC surface with block size of 5X5 or 5X4 and 0 < [(max(Suface_Width»1,1)%10] < 6, and
accessing LOD=2 or higher, then the sampled texels will be shifted to the left by 1.

Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from
the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel
to the corresponding output, thus those formats are not shown in this table.

There are further restrictions listed after the table below on the use of specific surfaces.

Some formats are supported only in DX10/OGL Border Color Mode. Those formats have only that
mode indicated. Formats that behave the same way in both Border Color Modes are indicated by that
column being blank. See the programming notes below the following table for more details on how to
support these surfaces.

Shadow | Chroma | Border Color

Surface Format Name Filtering Map Key Mode R G B A
R32G32B32A32_FLOAT R G B A
R32G32B32A32_SINT DX10/0GL R G B A
R32G32B32A32_UINT DX10/0GL R G B A
R32G32B32X32_FLOAT R G B 1.0
R32G32B32_FLOAT R G B 1.0
R32G32B32_SINT DX10/0GL R G B 1.0
R32G32B32_UINT DX10/0GL R G B 1.0
R16G16B16A16_UNORM R G B A
R16G16B16A16_SNORM R G B A
R16G16B16A16_SINT DX10/0GL R G B A
R16G16B16A16_UINT DX10/0GL R G B A
R16G16B16A16_FLOAT R G B A
R32G32_FLOAT DX10/0GL R G 00 (1.0
R32G32_SINT DX10/0GL R G 00 (1.0
R32G32_UINT DX10/0GL R G 00 (1.0

96 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel

experience
what'’s inside”

Shadow | Chroma | Border Color

Surface Format Name Filtering Map Key Mode R G B A
R32_FLOAT_X8X24_TYPELESS Yes DX10/0GL 00 |00 |10
X32_TYPELESS_G8X24_UINT DX10/0GL 00 |G 0.0 |1.0
L32A32_FLOAT DX10/0GL L L A
R16G16B16X16_UNORM G B 1.0
R16G16B16X16_FLOAT G B 1.0
A32X32_FLOAT 00 |00 |00 |A
L32X32_FLOAT L L 1.0
132X32_FLOAT I I I I
B8G8RBA8_UNORM Yes R G B A
B8GBRBA8_UNORM_SRGB R G B A
R10G10B10A2_UNORM R G B A
R10G10B10A2_UNORM_SRGB R G B A
R10G10B10A2_UINT DX10/0GL R G B A
R10G10B10_SNORM_A2_UNOR R G B A
M
R8G8B8A8_UNORM R G B A
R8G8B8A8_UNORM_SRGB R G B A
R8G8B8A8_SNORM R G B A
R8G8B8AS8_SINT DX10/0GL R G B A
R8G8B8A8_UINT DX10/0GL R G B A
R16G16_UNORM DX10/0GL R G 0.0 |1.0
R16G16_SNORM DX10/0GL R G 0.0 |1.0
R16G16_SINT DX10/0GL R G 0.0 |1.0
R16G16_UINT DX10/0GL R G 0.0 |1.0
R16G16_FLOAT DX10/0GL R G 0.0 |1.0
B10G10R10A2_UNORM R G B A
B10G10R10A2_UNORM_SRGB R G B A
R11G11B10_FLOAT R G B 1.0
R32_SINT DX10/0GL R 00 |00 |10
R32_UINT DX10/0GL R 00 |00 |10
R32_FLOAT Yes DX10/0GL R 00 |00 |10
R24_UNORM_X8_TYPELESS Yes DX10/0GL R 00 |00 |10
X24_TYPELESS_G8_UINT DX10/0GL 00 |G 0.0 |1.0
L16A16_UNORM L L L A
[24X8_UNORM Yes I I I I
L24X8_UNORM Yes L L L 1.0
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 97

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Shadow | Chroma | Border Color

Surface Format Name Filtering Map Key Mode R G B A
A24X8_UNORM Yes 00 |00 |00 |A
[32_FLOAT Yes I I I I
L32_FLOAT Yes L L L 1.0
A32_FLOAT Yes 00 |00 |00 |A
B8G8R8X8_UNORM Yes R G B 1.0
B8GBR8X8_UNORM_SRGB R G B 1.0
R8G8B8X8_UNORM R G B 1.0
R8G8B8X8_UNORM_SRGB R G B 1.0
R9GI9BIE5_SHAREDEXP R G B 1.0
B10G10R10X2_UNORM R G B 1.0
L16A16_FLOAT L L L A
B5G6R5_UNORM Yes R G B 1.0
B5G6R5_UNORM_SRGB R G B 1.0
B5G5R5A1_UNORM Yes R G B A
B5G5R5A1_UNORM_SRGB R G B A
B4G4R4A4_UNORM Yes R G B A
B4G4R4A4_UNORM_SRGB R G B A
R8G8_UNORM DX10/0GL R G 00 (1.0
R8G8_SNORM Yes DX10/0GL R G 00 (1.0
R8G8_SINT DX10/0GL R G 00 (1.0
R8G8_UINT DX10/0GL R G 00 (1.0
R16_UNORM Yes DX10/0GL R 00 |00 |10
R16_SNORM DX10/0GL R 00 |00 |10
R16_SINT DX10/0GL R 00 |00 |10
R16_UINT DX10/0GL R 0.0 |00 |1.0
R16_FLOAT DX10/0GL R 0.0 |00 |1.0
A8P8_UNORM_PALETTEO R G B A
A8P8_UNORM_PALETTE1 R G B A
16_UNORM Yes I I I I
L16_UNORM Yes L L L 1.0
A16_UNORM Yes 00 |00 |00 |A
L8A8_UNORM Yes L L L A
[16_FLOAT Yes I I I I
L16_FLOAT Yes L L L 1.0
A16_FLOAT Yes 00 |00 |00 |A
L8A8_UNORM_SRGB L L L A

98 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(lntel

experience
what'’s inside”

Surface Format Name

Filtering

Shadow

Chroma
Key

Border Color
Mode

R5G5_SNORM_B6_UNORM

Yes

P8A8_UNORM_PALETTEO

P8A8_UNORM_PALETTE1

ATB5G5R5_UNORM

CHV, BSW

R EaREoNE0)

O |0 (0|

A4B4G4R4_UNORM

CHV, BSW

>

R8_UNORM

Yes

DX10/0GL

-
o

R8_SNORM

DX10/0GL

0.0

0.0

-
o

R8_SINT

DX10/0GL

0.0

0.0

-
o

R8_UINT

DX10/0GL

0.0

0.0

-
o

A8_UNORM

Yes

O™ [(P™|P™|[P|P™|D™|D™|™|=™

0.0

0.0

>

[8_UNORM

L8_UNORM

Yes

o

P4A4_ UNORM_PALETTEO

A4P4_UNORM_PALETTEO

P8_UNORM_PALETTEO

L8_UNORM_SRGB

P8_UNORM_PALETTET

P4A4_UNORM_PALETTE1

A4P4_UNORM_PALETTE1

DXT1_RGB_SRGB

R1_UNORM

DB PP |RB| T | PR |O |

Slaaa|a|T|ala|ea |

o

O|W|W|W@W|W | [©@|W ||

o

==l =]>]>[>]=
o

o | o

P2_UNORM_PALETTEO

P2_UNORM_PALETTET

BC1_UNORM

Yes

BC2_UNORM

Yes

BC3_UNORM

Yes

BC4_UNORM

DX10/0GL

BC5_UNORM

DX10/0GL

o | O

o | O

BC1_UNORM_SRGB

BC2_UNORM_SRGB

BC3_UNORM_SRGB

DB | BR[| B |RB(B ||

R EIoREaREcH IR IoNEAREAREA

W | w| w|lo|lo|w|w|w|w|w

D P D el Bl P [P [[[

MONOS8

N/A

N/A

N/A

N/A

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

99

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Shadow | Chroma | Border Color

Surface Format Name Filtering Map Key Mode R G B A
DXT1_RGB R G B 1.0
FXT1 R G B A
R8G8B8_UNORM CHV, BSW R G B 1.0
R8G8B8_SNORM CHV, BSW R G B 1.0
BC4_SNORM DX10/0GL R 0.0 |0.0 |1.0
BC5_SNORM DX10/0GL R G 0.0 |1.0
R16G16B16_FLOAT R G B 1.0
R16G16B16_UNORM CHV, BSW R G B 1.0
R16G16B16_SNORM CHV, BSW R G B 1.0
BC6H_SF16 CHV, BSW R G B 1.0*
BC7_UNORM CHV, BSW R G B A
BC7_UNORM_SRGB CHV, BSW R G B A
BC6H_UF16 CHV, BSW R G B 1.0*
PLANAR_420_8 CHV, BSW Cr |Y Cb |1.0
R8G8B8_UNORM_SRGB CHV, BSW R G B 1.0
ETC1_RGB8 CHV, BSW R G B 1.0
ETC2_RGB8 CHV, BSW R G B 1.0
EAC_R11 CHV, BSW R 00 |00 |10
EAC_RG11 CHV, BSW R G 00 (1.0
EAC_SIGNED_R11 CHV, BSW R 00 |00 |10
EAC_SIGNED_RG11 CHV, BSW R G 00 (1.0
ETC2_SRGB8 CHV, BSW R G B 1.0
R16G16B16_UINT DX10/0GL R G B 1.0
R16G16B16_SINT DX10/0GL R G B 1.0
ETC2_RGB8_PTA CHV, BSW R G B A
ETC2_SRGB8_PTA CHV, BSW R G B A
ETC2_EAC_RGBAS CHV, BSW R G B A
ETC2_EAC_SRGB8_A8 CHV, BSW R G B A
R8G8B8_UINT DX10/0GL R G B 1.0
R8G8B8_SINT DX10/0GL R G B 1.0
ASTC CHV, BSW R G B A

100 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel)

experience
what'’s inside”

Programming Note

Context: SURFACE_STATE/Shader channel select

It is recommended, for performance reasons, to never use any format of the type L*A*, I* or A*. Instead use R* or
RG* in combination with Shader Channel Select.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 101

(intel')k 3D Media GPGPU

experience
what'’s inside”

Programming Note

Context: SURFACE_STATE/Shader channel select

The BC2_NORM, BC3_UNORM, BC5_UNORM, BC5_SNORM and BC7_UNORM surface types must only be used
when the Sampler L2 Bypass Mode Disable field in the RENDER_SURFACE_STATE is set.

Programming Note

Context: NULL Surfaces and Shader Channel Select

Is SURFTYPE_NULL is selected, Shader Channel Select Alpha must be programmed to SCS_ZERO

SURFACE_STATE for Deinterlace sample_8x8 and VME

This section contains media surface state definitions.

Cr(V)/Cb(U) Pixel Offset V Direction
The position of Y is brown and the position of Cr(V)/Cb(U) is blue.

Full Frame Top Field Bottom Field
99 9 0 0 0 & 0 9 & & 0 @
@ ® \] L N @ | @ @ |
-—o ——8—— — ST T —&— &
| r ' -
—& 88 T - 2 —8 8 —yr— - | -
a @ a @
o909 =TT 90— 09
8 o8 & & & & @
‘ a a e ‘ @ aQ el
& & & & & & - - | & & & & & &
& & & & @ & & & & T | - -
a @
2 —8 d‘—]’— 1 t - 2 —8
- — e |
V Offset 0.5 V Offset 0.25 V Offset 0.75

MEDIA_SURFACE_STATE

Programming Note

Context: SURFACE_STATE for Deinterlace sample_8x

The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to the same for the multi-
surface Video Analytics functions like “LBP Correlation” and “Correlation Search” for both the surfaces.

102 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

SAMPLER _STATE

SAMPLER_STATE has different formats, depending on the message type used. For CHV, BSW, the
sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as detailed in the
corresponding sections.

Restriction: The Min LOD and Max LOD fields need range increased from [0.0,13.0] to [0.0,14.0] and fractional
bits increased from six to eight. This requires a few fields to be moved as indicated in the text.

SAMPLER_STATE
SAMPLER_BORDER_COLOR_STATE

If border color is used, all formats must be provided. Hardware will choose the appropriate format
based on Surface Format and Texture Border Color Mode. The values represented by each format
should be the same (other than being subject to range-based clamping and precision) to avoid
unexpected behavior.

DWord | Bits Description

0 31:24 | Border Color Alpha
Format = UNORMS8

23:16 | Border Color Blue
Format = UNORMS8

15:8 | Border Color Green
Format = UNORMS8

7:0 |[Border Color Red
Format = UNORMS8

1 31:0 |Border Color Red
Format = IEEE_FP

2 31:0 |Border Color Green
Format = IEEE_FP

3 31:0 |Border Color Blue
Format = IEEE_FP

4 31:0 | Border Color Alpha
Format = IEEE_FP

5 31:16 | Border Color Green
Format = FLOAT16

15:0 | Border Color Red
Format = FLOAT16

6 31:16 | Border Color Alpha
Format = FLOAT16

15:0 | Border Color Blue
Format = FLOAT16

7 31:16 | Border Color Green
Format = UNORM16

15:0 | Border Color Red

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 103

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DWord | Bits Description

Format = UNORM16

(o]

31:16 | Border Color Alpha
Format = UNORM16

15:0 | Border Color Blue
Format = UNORM16

9 31:16 | Border Color Green
Format = SNORM16

15:0 | Border Color Red
Format = SNORM16

10 |31:16 |Border Color Alpha
Format = SNORM16

15:0 | Border Color Blue
Format = SNORM16

11 31:24 | Border Color Alpha
Format = SNORM8

23:16 | Border Color Blue
Format = SNORMS8

15:8 | Border Color Green
Format = SNORMS8

7:0 |[Border Color Red
Format = SNORMS8

Border Color Programming for Integer Surface Formats

For integer formats, there are different possible cases depending on the bits per channel (bpc) and bits
per texel (bpt) of the surface format.

Integer Surface Format — Different Types Surface formats

32 bpc, 128 bpt case (4 types) R32G32B32A32 UINT

R32G32B32_UINT
R32G32B32A32_SINT
R32G32B32_SINT

16 bpc, 64 bpt case (5 types) R16G16B16A16_UINT, R10G10B10A2_UINT

X32_TYPELESS_G8X24_UINT
R16G16B16_UINT
R16G16B16A16_SINT
R16G16B16_SINT

32 bpc, 64 bpt case (2 types) R32G32_UINT

104 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Integer Surface Format - Different Types Surface formats

R32G32_SINT

8 bpc, 32 bpt cases (9 types) R8G8B8AS UINT

R8G8_UINT

R8_UINT
X24_TYPELESS_G8_UINT
R8G8B8_UINT
R8G8BBAB_SINT
R8G8_SINT

R8_SINT

R8G8B8_SINT

16 bpc, 32 bpt cases (4 types) R16G16 UINT

R16_UINT
R16G16_SINT
R16_SINT

32 bpc, 32 bpt case (2 types) R32_UINT

R32_SINT

HW supports only 1 index for a given Sampler Border Color state and Sampler State. So, SW will have to
program the table in SAMPLER_BORDER_COLOR_STATE at DWord offsets 16 to 19, as per the integer
surface format type (depends on the bits per channel and bits per texel of the surface format). If any
color channel is missing from the surface format, the corresponding border color should be
programmed as zero; if the alpha channel is missing, the corresponding Alpha border color should be
programmed as 1. Some of the representative cases are listed below:

Case 2: R32G32B32A32_SINT (32 bpc, 128 bpt, 4 channel, SINT)
Each of the values in the above table would have be to programmed as sint32 value.
Case 3: R32G32B32_UINT (32 bpc, 128 bpt, 3 channel)

R/G/B values would be programmed like in Casel. Alpha channel value at DWORDN+3 would have to
be programmed as Integer 1.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 105

(lntel' | 3D Media GPGPU
eXpEnenCe

what's inside”
Messages

The sampler receives messages from shader clients. These messages contain information to allow the
sampler to perform sample operations and return results. A message consists of four components:

e Execution Mask : Indicates, for a given SIMD, which pixels are valid.

e Message Descriptor: Required information including length of the message, and the lenght of the
response

e Message Header: Optional information which may be required for certain operations (e.g. Direct
Write to Render Target)

e Message Payload: Specific data for each sampler operation including coordinates and other
message parameters.

Programming Notes

A message header is required for GPGPU kernals in order to allow mid-thread pre-emption to allow save/restore
mechanisms to work correctly.

Message Descriptor and Execution Mask

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are
sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the
GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter
mode and at least one pixel in the subspan being valid, the sampling engine assumes that the
parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of
the execution mask, as these are needed for the LOD computation.

SIMD8. The low 8 bits of the execution mask form the valid pixel signals. If LOD needs to be computed
based on MIP filter mode and at least one pixel in the subspan being valid, the sampling engine
assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan are
valid regardless of the execution mask, since these are needed for the LOD computation.

SIMD4x2. The low 8 bits of the execution mask is interpreted in groups of four. If any of the high 4 bits are
asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The Write Channel
Mask rather than the execution mask determines which channels are written back to the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid, and all channels are returned
regardless of the execution mask.

Message Descriptor

Message Descriptor - Sampling Engine

106 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Message Header

The message header for the sampling engine is the same regardless of the message type. The messasge
header is optional. If the header is not present, the behavior is as if the message was sent with all fields
in the header set to zero and the write channel masks are all enabled and offsets are zero. However, if
the header is not included in the message, the Sampler State Pointer will be obtained from the
command stream input for the given thread. When Response length is 0 for sample_8x8 message then
the data from sampler is directly written out to memory using media write message.

DWord | Bits Description

MO0.5 [31:0 [Reserved

MO0.4 [31:0 [Reserved

MO.3 | 31:5 Sampler State Pointer: Specifies the 32-byte aligned

pointer to the sampler state table. This field is ignored for ld
and resinfo message types. This pointer is relative to the
Dynamic State Base Address.

Format = DynamicStateOfffset[31:5]

The Sampler State Pointer does not have to be defined by
the Message Header (many messages do not require a
message header). The Sampler State Pointer may be
delivered from the Command Streamer without the need
for a Message Header.

4:0 |Ignored

MO0.2 spans so many rows, many for various projects, that the DWord value
is repeated in each row.

MO0.2 |31:22|Reserved

MO.2 21 |Reserved

MO.2 20 |[Reserved

MO2 1918 51MD32/64 Output Format Control

Specifies the output format of SIMD32/64 messages
(sample_unorm* and sample_8x8). Ignored for other
message types. Refer to the writeback message formats for
details on how this field affects returned data.

This field is ignored for sample_8x8 messages if the
Function is not AVS and MinMaxFilter. For MinMaxFilter
only 16 bit Full and 8 bit Full modes are supported.

0: 16 bit Full
1: 16 bit Chrominance Downsampled
2: 8 bit Full

3: 8 bit Chrominance Downsampled

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 107

experience
what'’s inside”

(intel)‘ 3D Media GPGPU

DWord | Bits Description

This feature should be programmed to Oh because non-0
values may cause data corruption in returned values.

MO.2 117:16 Gather4 Source Channel Select: Selects the source

channel to be sampled in the gather4* messages. Ignored
for other message types.

0: Red channel
1: Green channel
2: Blue channel
3: Alpha channel

For gatherd4*_c messages, this field must be set to 0 (Red
channel).

M0.2 | 15
Alpha Write Channel Mask: Enables the alpha channel to

be written back to the originating thread.
0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note
Project: CHV, BSW

Context: 3D Sampler Messages

e A message with all four channels masked is not
allowed.

e This field is ignored for the deinterlace message.
e This field must be set to zero for sample_8x8 in
VSA mode.

e Alpha/Blue/Green/Red channels masked must set
to 0 (no mask is supported).

e CHV, BSW: For Sample_8x8 messages,
Alpha/Blue/Red channels should be always
masked (set to 1) and only Green channel is
enabled (set to 0).

e This field must be set to zero for all gather4*
messages.

e CHV, BSW: This field must be set to zero for all
sample_min/sample_max instructions

15
MO0.2 Alpha Write Channel Mask: Enables the alpha channel to

be written back to the originating thread.

108 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord | Bits Description
0: Alpha channel is written back.
1: Alpha channel is not written back.
Programming Note
Context: 3D Sampler Messages
e A message with all four channels masked is not
allowed.
e This field is ignored for the deinterlace message.
e This field must be set to zero for sample_8x8 in
VSA mode.
e CHV, BSW: For Sample_8x8 messages,
Alpha/Blue/Red channels should be always
masked (set to 1) and only Green channel is
enabled (set to 0).
e This field must be set to zero for all gather4*
messages.
e CHV, BSW: This field must be set to zero for all
sample_min/sample_max instructions
MO0.2 14 | Blue Write Channel Mask: See Alpha Write Channel Mask.
MO0.2 13 | Green Write Channel Mask: See Alpha Write Channel
Mask.
MO0.2 12 |Red Write Channel Mask: See Alpha Write Channel Mask.
M0.2 | 11.8

U Offset: The u offset from the _aoffimmi modifier on the
sample or ld instruction in DX10. Must be zero if the
Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is
S3 2's complement.

Programming Note

Context: |3D Sampler Messages

e This field is ignored for the sample_unorm?*,
sample_8x8, and deinterlace messages.

e This field is ignored if the offu parameter is
included in the gather4* messages.

Programming Note

Non-Normalized Floating-Point
Context: |Coordinates

Texel offsets can only be applied to messages with
floating-point normalized coordinates or integer non-
normalized coordinates.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel“

experience
what'’s inside”

109

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

DWord | Bits Description

Mo.2 | 118 U Offset: The u offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the
Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is
S3 2's complement.

MO.2 | 74 V Offset: The v offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the
Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is
S3 2's complement.

Programming Note

Context: |3DSampler Messages

e This field is ignored for the sample_unorm?*,
sample_8x8, and deinterlace messages.

e This field is ignored if the offu parameter is
included in the gatherd* messages.

Programming Note

Non-Normalized Floating-Point
Context: |Coordinates

Texel offsets can only be applied to messages with
floating-point normalized coordinates or integer non-
normalized coordinates.

M0.2 3:0 R Offset: The r offset from the _aoffimmi modifier on the

sample or ld instruction in DX10. Must be zero if the
Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is
S3 2's complement.

Programming Note

Context: |3D Sampler Messages

This field is ignored for the sample_unorm*, sample_8x8,
and deinterlace messages.

Programming Note

Non-Normalized Floating-Point
Context: |Coordinates

Texel offsets can only be applied to messages with
floating-point normalized coordinates or integer non-
normalized coordinates.

MO0.1 | 31:0 |Reserved
MO0.0 | 31:0 [Reserved

110 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l H experience

what's inside”
Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except
the ‘'mcs’, ‘offu’, and 'offv’ parameters. Usage of the u, v, and r parameters is as follows based on
Surface Type. Normalized values range from [0,1] across the surface, with values outside the surface
behaving as specified by the Address Control Mode in that dimension. Unnormalized values range
from [0,n-1] across the surface, where n is the size of the surface in that dimension, with values outside
the surface being clamped to the surface.

Surface Type u v r ai
SURFTYPE1D normalized ‘X’ unnormalized array ignored ignored
coordinate index
SURFTYPE_2D | normalized 'x’ normalized 'y’ unnormalized array ignored
coordinate coordinate index
SURFTYPE_3D | normalized 'x’ normalized 'y’ normalized 'z’ ignored

coordinate coordinate coordinate

1

unnormalized array
index

normalized 'z’
coordinate

normalized 'y
coordinate

normalized 'x’
coordinate

SURFTYPE_CUBE

mcs parameter
The ‘mcs’ parameter delivers the multisample control data. The format of this parameter is always a 32-bit
unsigned integer. Refer to the section titled “Multisampled Surface Behavior” for details on this parameter.

Ld* messages

For the Id message types, all parameters are 32-bit unsigned integers, except the ‘'mcs’ parameter.
Usage of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range
from [0,n-1] across the surface, where n is the size of the surface in that dimension. Input of any value
outside of the range returns zero.

Surface Type u v r

SURFTYPE1D

unnormalized 'x’ coordinate | unnormalized array index |ignored

unnormalized 'x’ coordinate

SURFTYPE_2D

unnormalized 'y’ coordinate

unnormalized array index

SURFTYPE_3D

unnormalized 'x’ coordinate

unnormalized 'y’ coordinate

unnormalized 'z’ coordinate

SURFTYPE_BUFFER

unnormalized 'x’ coordinate

ignored

ignored

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

111

(inte

experience
what'’s inside”

SIMD Payloads

This section contains the SIMD payload definitions.

SIMD16 Payload [CHV, BSW]

3D Media GPGPU

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities
(examples of an entity are vertex and pixel). The number of parameters required to sample the surface
depends on the state that the sampler/surface is in. Each parameter takes two message registers, with 8
entities, each a 32-bit floating point value, being placed in each register. Each parameter always takes a
consistent position in the input payload. The length field can be used to send a shorter message, but
intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map
using “sample_b" needs only u, v, and bias, but must send the r parameter as well.

DWord | Bits Description

M1.7 1310 Subspan 1, Pixel 3 (lower right) Parameter 0
Specifies the value of the pixel's parameter 0. The actual parameter that maps to parameter 0 is
given in the table in the Payload Parameter Definition section.
Format = IEEE Float for all sample* message types, U32 for Id and resinfo message types.

M1.6 [31:0[Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 [31:0 |Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 [31:0 [Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 [31:0 [Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 [31:0 [Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 |31:0|Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 |31:0|Subspan 0, Pixel 0 (upper left) Parameter 0

M2.7 [31:0 [Subspan 3, Pixel 3 (lower right) Parameter 0

M2.6 |31:0|Subspan 3, Pixel 2 (lower left) Parameter 0

M2.5 |[31:0 |Subspan 3, Pixel 1 (upper right) Parameter 0

M2.4 |31:0|Subspan 3, Pixel 0 (upper left) Parameter 0

M2.3 [31:0 [Subspan 2, Pixel 3 (lower right) Parameter 0

M2.2 |31:0|Subspan 2, Pixel 2 (lower left) Parameter 0

M2.1 [31:0 |Subspan 2, Pixel 1 (upper right) Parameter 0

M2.0 [31:0[Subspan 2, Pixel 0 (upper left) Parameter 0

M3 - Repeat packets 1 and 2 to cover all required parameters.

Mn

112 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

../../../../Content/3D_Media_GPGPU/Shared_Functions/3D_Sampler/Payload%20Parameter%20Definition.htm

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

SIMD8 Payload [CHV, BSW]

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each
message contains sample requests for just 8 pixels.

DWord | Bits Description

M17 1310 Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel's parameter 0. The actual parameter that maps to parameter O is
given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for Id and resinfo message types.

M1.6 [31:0 [Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 |[31:0|Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 [31:0 [Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 [31:0 [Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 [31:0 [Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 [31:0 |Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 [31:0[Subspan 0, Pixel 0 (upper left) Parameter 0

M2 - Repeat packet 1 to cover all required parameters.
Mn

SIMD4x2 Payload [CHV, BSW]

DWord | Bits Description

M1.7 (310 Sample 1 Parameter 3

Specifies the value of the pixel's parameter 3. The actual parameter that maps to parameter 3 is
given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for Id and resinfo message types.

M1.6 |[31:.0|Sample 1 Parameter 2

M1.5 [31:0|Sample 1 Parameter 1

M1.4 [31:.0|Sample 1 Parameter 0

M1.3 [31:0|Sample 0 Parameter 3

M1.2 [31:.0|Sample 0 Parameter 2

M1.1 |31:0|Sample 0 Parameter 1

M1.0 |31:0(Sample 0 Parameter 0

M2 Parameters 4-7 if present

M3 Parameters 8-11 if present

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 113

../../../../Content/3D_Media_GPGPU/Shared_Functions/3D_Sampler/Payload%20Parameter%20Definition.htm
../../../../Content/3D_Media_GPGPU/Shared_Functions/3D_Sampler/Payload%20Parameter%20Definition.htm

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message
generates a corresponding writeback message of the same type .

SIMD16
Return Format = 32-bit

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the write channel mask received in the corresponding input message. Each asserted
write channel mask results in both destination registers of the corresponding channel being skipped in
the writeback message, and all channels with higher numbered registers being dropped down to fill in
the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent
to regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination
register is determined by the execution mask on the “send” instruction.

DWord | Bit Description

wo7 1310 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer.

WO0.6 |31:0[Subspan 1, Pixel 2 (lower left) Red

WO0.5 |31:0|Subspan 1, Pixel 1 (upper right) Red

WO0.4 |31:0|Supspan 1, Pixel 0 (upper left) Red

WO0.3 |31:0[Subspan 0, Pixel 3 (lower right) Red

WO0.2 |31:0|Subspan 0, Pixel 2 (lower left) Red

WO0.1 [31:0|Subspan 0, Pixel 1 (upper right) Red

WO0.0 |31:0|Supspan 0, Pixel 0 (upper left) Red

W1.7 |31:0|Subspan 3, Pixel 3 (lower right) Red

W1.6 |31:0[Subspan 3, Pixel 2 (lower left) Red

W1.5 [31:0|Subspan 3, Pixel 1 (upper right) Red

W1.4 |31:0|Supspan 3, Pixel 0 (upper left) Red

W1.3 |31:0|Subspan 2, Pixel 3 (lower right) Red

W1.2 [31:0|Subspan 2, Pixel 2 (lower left) Red

W1.1 |31:0|Subspan 2, Pixel 1 (upper right) Red

W1.0 |31:0|Supspan 2, Pixel 0 (upper left) Red

W2 Subspans 1 and 0 of Green: See WO definition for pixel locations
W3 Subspans 3 and 2 of Green: See W1 definition for pixel locations
W4 Subspans 1 and 0 of Blue: See WO definition for pixel locations
W5 Subspans 3 and 2 of Blue: See W1 definition for pixel locations
W6 Subspans 1 and 0 of Alpha: See WO definition for pixel locations

114 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bit Description
w7 Subspans 3 and 2 of Alpha: See W1 definition for pixel locations
W8.7:1 Reserved (not written): W8 is only delivered when Pixel Fault Mask Enable is enabled.

W8.0 |15:0Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null page
was source for at least one texel.

Return Format = 16-bit

[CHV, BSW]: A SIMD16 writeback message with Return Format of 16-bit consists of up to 4
destination registers. Which registers are returned is determined by the write channel mask received in
the corresponding input message. Each asserted write channel mask results in both destination
registers of the corresponding channel being skipped in the writeback message, and all channels with
higher numbered registers being dropped down to fill in the space occupied by the masked channel.
For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to regid+1. The pixels
written within each destination register is determined by the execution mask on the “send” instruction.

DWord| Bit Description

wo7 13116 Subspan 3, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Half Float, S15 signed 2's comp integer, or U16 unsigned integer.

15:0 |Subspan 3, Pixel 2 (lower left) Red

WO0.6 [31:16 | Subspan 3, Pixel 1 (upper right) Red

15:0 [Supspan 3, Pixel 0 (upper left) Red

WO0.5 |[31:16|Subspan 2, Pixel 3 (lower right) Red

15:0 |Subspan 2, Pixel 2 (lower left) Red

WO0.4 |31:16|Subspan 2, Pixel 1 (upper right) Red

15:0 [Supspan 2, Pixel 0 (upper left) Red

wWo0.3 31:16 | Subspan 1, Pixel 3 (lower right) Red

15:0 |Subspan 1, Pixel 2 (lower left) Red

WO0.2 |31:16|Subspan 1, Pixel 1 (upper right) Red

15:0 [Supspan 1, Pixel 0 (upper left) Red

WO0.1 31:16 | Subspan 0, Pixel 3 (lower right) Red

15:0 | Subspan 0, Pixel 2 (lower left) Red

WO0.0 [31:16|Subspan 0, Pixel 1 (upper right) Red

15:0 [Supspan 0, Pixel 0 (upper left) Red

W1 Green: See WO definition for pixel locations

W2 Blue: See WO definition for pixel locations

W3 Alpha: See WO definition for pixel locations

W4.7:1 Reserved (not written): W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 [31:16|Reserved: always written as Oxffff

W4.0 15:0 | Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 115

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

DWord | Bit Description

page was source for at least one texel.

SIMD8/SIMDS8D
Return Format = 32-bit

[CHV, BSW]: A SIMD8* writeback message consists of up to 4 destination registers (5 in the case of
sample+killpix). Which registers are returned is determined by the write channel mask received in the
corresponding input message. Each asserted write channel mask results in the destination register of
the corresponding channel being skipped in the writeback message, and all channels with higher
numbered registers being dropped down to fill in the space occupied by the masked channel. For
example, if only red and alpha are enabled, red is sent to regid+0, and alpha to regid+1. The pixels
written within each destination register is determined by the execution mask on the send instruction.

For the sample+killpix message types, an additional register (W4) is included after the last channel
register.

DWord | Bits Description

W07\ 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer.

WO0.6 | 31:0 |Subspan 1, Pixel 2 (lower left) Red

WO0.5 | 31:0 |Subspan 1, Pixel 1 (upper right) Red

WO0.4 | 31:0 |Supspan 1, Pixel 0 (upper left) Red

WO0.3 | 31:0 |Subspan 0, Pixel 3 (lower right) Red

WO0.2 | 31:0 [Subspan 0, Pixel 2 (lower left) Red

WO0.1 | 31:0 |Subspan 0, Pixel 1 (upper right) Red

WO0.0 | 31:0 [Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See WO definition for pixel locations
W2 Subspans 1 and 0 of Blue: See WO definition for pixel locations
W3 Subspans 1 and 0 of Alpha: See WO definition for pixel locations
W4.7:1 Reserved (not written) : This W4 is only delivered for the sample+killpix message type

WA4.0 |31:16 | Dispatch Pixel Mask: This field is always Oxffff to allow dword-based ANDing with the RO header
in the pixel shader thread.

W4.0 | 15:0 | Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been
killed as a result of chroma key with kill pixel mode. Since the SIMD8 message applies to only 8
pixels, only the low 8 bits within this field are used. The high 8 bits are always set to 1.

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

WA4.0 |31:24 | Reserved: always written as Oxff

WA4.0 |23:16|Reseved: always written as Oxff

WA4.0 | 15:8 |Reserved: always written as Oxff

116 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

DWord | Bits Description

W4.0 | 7:0 |Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null
page was source for at least one texel.

Return Format = 16-bit

SIMD8* writeback message with Return Format of 16-bit consists of up to 4 destination registers).
Which registers are returned is determined by the write channel mask received in the corresponding
input message. Each asserted write channel mask results in the destination register of the
corresponding channel being skipped in the writeback message, and all channels with higher numbered
registers being dropped down to fill in the space occupied by the masked channel. For example, if only
red and alpha are enabled, red is sent to regid+0, and alpha to regid+1. The pixels written within each
destination register is determined by the execution mask on the send instruction.

DWord | Bits Description
WO0.7:4 Reserved
W0.3 |31:16

Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Half Float, S15 signed 2's comp integer, or U16 unsigned integer.

15:0 [Subspan 1, Pixel 2 (lower left) Red

W0.2 [31:16|Subspan 1, Pixel 1 (upper right) Red

15:0 [Supspan 1, Pixel 0 (upper left) Red

WO.1 31:16 | Subspan 0, Pixel 3 (lower right) Red

15:0 |Subspan 0, Pixel 2 (lower left) Red

WO0.0 [31:16|Subspan 0, Pixel 1 (upper right) Red

15:0 [Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See WO definition for pixel locations

W2 Subspans 1 and 0 of Blue: See WO definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See WO definition for pixel locations

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 [31:24 |Reserved: always written as Oxffff

W4.0 [23:16|Reserved: always written as Oxff

W4.0 15:8 |Reserved: always written as Oxff

W4.0 7:0 | Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null
page was source for at least one texel.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 117

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

SIMD4x2

A SIMDA4x2 writeback message always consists of a single message register containing all four channels
of each of the two "pixels” (called “samples” here, as they are not really pixels) of data. The write
channel mask bits as well as the execution mask on the “send” instruction are used to determine which
of the channels in the destination register are overwritten. If any of the four execution mask bits for a
sample is asserted, that sample is considered to be active. The active channels in the write channel mask
will be written in the destination register for that sample. If the sample is inactive (all four execution
mask bits deasserted), none of the channels for that sample will be written in the destination register.

DWord | Bit Description
Wo0.7 |31:0

Sample 1 Alpha: Specifies the value of the pixel's alpha channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer.

WO0.6 [31:.0|Sample 1 Blue

WO0.5 [31:.0|Sample 1 Green

WO0.4 [31:.0|Sample 1 Red

WO0.3 [31:0|Sample 0 Alpha

WO0.2 |31:0|Sample 0 Blue

WO0.1 |31:0|Sample 0 Green

WO0.0 |31:0|Sample 0 Red

W1.7:1 Reserved (not written) : W1 is only delivered when Pixel Fault Mask Enable is enabled.
W1.0 |31:2|Reserved: always written as Ox3fffffff

1:0 | Pixel Null Mask: This field has the bit for all samples set to 1 except those pixels in which a null
page was source for at least one texel.

118 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

experience
what's inside”

3D Media GPGPU (intel“)

Shared Functions — Data Port

The Data Port provides all memory accesses for the Gen subsystem other than those provided by the
sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes,
and media surface accesses.

CHV, BSW adds the Data Port Data Cache and the Data Cache.

The diagram below shows the four parts of the Data Port (Sampler Cache, Constant Cache, Data Cache, and
Render Cache) and how they connect with the caches and memory subsystem. The execution units and sampling
engine are shown for clarity.

Sampling Endine

= [Data Port Sampler Cache
Execution
nits

——— [Data Port Constant Cache

Sampler Cache

Mermaorny
Canstant Cache Subsystermn

Data Cache

DataPort Data Cache

DataPort Render Cache Render Cache

The kernel programs running in the execution units communicate with the data port via messages, the same as for
the other shared function units. The four data ports are considered to be separate shared functions, each with its
own shared function identifier.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 119

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Data Cache

The data cache is a read/write cache that is coherent across the physical instances of this cache. It is
intended to be used for the following surfaces:

e constant buffers

e destination surfaces for media applications

¢ intermediate working surfaces for media applications

e scratch space buffers

e general read/write access of surfaces

e atomic operations

¢ shared memory for GPGPU thread groups

The data cache can be accessed via the Data Cache Data Port shared function, and via the load and
store EU messages. Ordering from a single thread is maintained when accessing the data cache using
only one of these mechanisms, but is not maintained when using both of these mechanisms from the
same thread. In these instances, software must ensure ordering by using write commits and/or waiting
for read data to be returned.

Data Cache Coherency

Data cache memory is backed by system memory. The read/write data cache is always coherent
between GPU thread accesses, but might not be coherent with CPU memory accesses.

Coherency Type

Two types of coherency are supported for data cache memory: GPU Coherent and IA Coherent. GPU coherent
accesses are kept coherent with GPU threads but not kept coherent with CPU (LLC) accesses. IA Coherent accesses
are kept coherent with both GPU threads and with CPU accesses.

Two GPU accesses made to the same address but with different coherency types have different cache entries and
are not kept coherent with each other. If a buffer will be accessed with different coherency types, software is
responsible for flushing the GPU cache to system memory, using either a Memory Fence message or a pipeline
flush command.

The surface state field Coherency Type specifes the data cache coherency used with that surface. Stateless
accesses specify their coherency with BTI=255 or BTI=253.

120 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what's inside”
Sampler Cache

The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being
used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be
used for source surfaces in media applications via the data port. The same application may use the
sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

Surfaces

The data elements accessed by the data port are called “surfaces”. There are two models used by the
data port to access these surfaces: surface state model and stateless model.

Surface State Model

The data port uses the binding table to bind indices to surface state, using the same mechanism used
by the sampling engine. The surface state model is used when a Binding Table Index (specified in the
message descriptor) of less than 255 is specified. In this model, the Binding Table Index is used to
index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

Stateless Model

The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is
specified.

This model is primarily intended to be used for scratch space buffers.

In this model, the binding table is not accessed, and the parameters that define the surface state are
overloaded as follows:

e Surface Type = SURFTYPE_BUFFER

e Surface Format = R32G32B32A32_FLOAT

e \Vertical Line Stride =0

e Surface Base Address = General State Base Address + Immediate Base Address

e Surface Pitch = 16 bytes

e Utilize Fence = false

o Tiled = false

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 121

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Buffer Size Checking

Buffer Size Checking

Buffer Size = checked only against General State Buffer Size

When General State Buffer Size is zero, any stateless access is out-of-bounds.

Shared Local Memory (SLM)

The shared local memory (SLM) is a high bandwidth memory that is not backed up by system memory.
It is enabled by configuring the L3 cache to use a portion of its space for the SLM. One SLM is present
in each half slice, and its contents are shared between all of the active threads in that half slice. Its
contents are uninitialized after creation, and its contents disappear when deallocated.

The SLM is accessed when a Binding Table Index (specified in the message descriptor) of 254 is
specified. The binding table is not accessed, and the parameters that define the surface state are
overloaded as follows:

e Surface Type = SURFTYPE_BUFFER

e Surface Format = RAW

e Surface Base Address = points to the start of the internal SLM (no memory address is applicable)
e Surface Pitch = 1 byte

Due to the predefined surface state attributes for the SLM, only a subset of the data port messages can
be used. This includes the Byte Scattered Read/Write, Untyped Surface Read/Write, and Untyped
Atomic Operation messages. In addition, only the data cache data port is supported; the other data
ports treat Binding Table Index 254 as a normal surface state access.

Programming Note

Context: Shared Local Memory (SLM)

Accesses to SLM don’t have any bounds checking. Addresses beyond the size (64KB) of the SLM wrap around.

122 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”
Write Commit

For write messages, an optional write commit writeback message can be requested via the Send Write
Commit Message bit in the message descriptor. This bit causes a return message to the thread
indicating when the write has been committed to the in-order cache pipeline and it is safe to issue
another access to the same data with the assurance that it will happen after the first write. A read issued
after the write commit ensures that the read will get the newly written data, and another write issued
after the write commit will be the last to modify the data. "Committed" does not guarantee that the
data has been actually written to the memory subsystem, but only that the write has been scheduled
and cannot be passed by another read or write issued subsequently.

If Send Write Commit Message is used on a Flush Render Cache message, the write commit is sent

only when the render cache has completed its flush to memory. A read issued to another cache after

the write commit is received will be guaranteed to retrieve the "new” data that was written before the
Flush Render Cache message was issued.

The write commit does not modify the destination register, but merely clears the dependency
associated with the destination register. Thus, a simple “mov” instruction using the register as a source
is sufficient to wait for the write commit to occur. The following code sequence indicates this:

send rl2 ml DPWRITE ; Issue write to render cache.
mov ml r3 ; Assemble read message.

mov rl2 rl2 ; Block on write commit.

send rl13 ml DPREAD ; Read same location as write.
ReadWrite Ordering

Reads and writes issued from the same thread are guaranteed to be processed in the same order as
issued. Software mechanisms must still ensure any needed ordering of accesses issued from different
threads.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 123

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant
buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed
vertex buffers. All of these messages support only buffers, and can use the surface state model as well
as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications
OWord Block e constant buffer reads of a single constant or multiple contiguous constants
Read/Write

e scratch space reads/writes where the index for each pixel/vertex is the same

e block constant reads, scratch memory reads/writes for media

OWord Dual Block e SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if
Read/Write there are two indices and they are the same, hardware will optimize the cache accesses
and do only one cache access)

e SIMDA4x2 scratch space reads/writes where the indices are different.

DWord Scatjfered e SIMD8/16 constant buffer reads where the indices of each pixel are different (read one
Read/Write channel per message)

e SIMD8/16 scratch space reads/writes where the indices are different (read/write one
channel per message)

e general purpose DWord scatter/gathering, used by media

Streamed Vertex e geometry shader streaming vertex data out
Buffer Write

These messages generally ignore the surface format field of the state and perform no format
conversion. The exception is the Streamed Vertex Buffer Write, which uses the surface format field to
determine only how many channels are to be written. The data contained in each channel is still not
converted in any way.

124 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Accessing Media Surfaces

(l n te,l W experience

what’s inside”

The Media Block Read/Write message is intended to be used to access 2D media surfaces. The message
specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D surfaces,
the stateless model cannot be used with this message.

Boundary Behavior

The table below summarizes the behavior of the Media Boundary Pixel Mode field (SURFACE_STATE)
in combination with the Vertical Line Stride and Vertical Line Stride Offset fields (both of which are
subject to being overridden by the Data Port message descriptor fields). The Behavior column illustrates
behavior for a surface with four rows numbered 0 to 3. The bold indicators are off-surface behavior and
the non-bold indicators are on-surface behavior. Input row addresses range from -3 to +7 going left to

right.
Media Boundary Pixel Vertical Line Vertical Line Stride
Mode Stride Offset Usage Model Behavior
0 0 normal frame 000001233333
0 1 0 normal field even | 000002222222
0 1 1 normal field odd 111113333333
2 0 X frame / progressive [000001233333
2 1 0 field even / 000002333333
progressive
2 1 1 field odd / 000013333333
progressive
3 0 X frame / interlaced 010101232323
3 1 0 field even / interlaced | 000002222222
3 1 1 field odd / interlaced | 111113333333
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 125

(lntel | 3D Media GPGPU
experlence

what'’s inside”

State

This topic discusses applicable State options for the Data Port.

BINDING_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to State in the Sampling Engine
section for the definition of this state.

SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media surfaces.

COLOR_PROCESSING_STATE

The following state structures contain different states used by the color processing function.
COLOR_PROCESSING_STATE - STD/STE State

COLOR_PROCESSING_STATE - ACE State

COLOR_PROCESSING_STATE - TCC State

COLOR_PROCESSING_STATE - PROCAMP State

COLOR_PROCESSING_STATE - CSC State

126 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what's inside”
Messages

This section of the BSpec discusses messages applicable to the Data Port.

Global Definitions

For data port messages, part of the message descriptor is used to determine the message type. This
field is documented here. The remainder of the message descriptor is defined differently depending on
the message type, and is documented in the section for the corresponding message.

The Data Port is actually separate targets, Data Port,Sampler Cache, Data Port Constant Cache, and
Data Port Render Cache, each with its own target unit ID. Each target has its own set of message type
encodings as shown below.

Programming Note

Context: Messages

Data port messages may not have the End of Thread bit set in the message descriptor other than the following
exceptions:

e The Render Target Write message may have End of Thread set for pixel shader threads dispatched by the
windower in non-contiguous dispatch mode.

e The Render Target UNORM Write message may have End of Thread set for pixel shader threads
dispatched by the windower in contiguous dispatch mode.

e The Media Block Write message may have End of Thread set for pixel shader threads dispatched by the
windower in contiguous dispatch mode.

Data Port Messages

Most of the messages have an existing definition that is not expected to change. There are several new
messages that are documented here.

Data Cache Data Port Message Summary

Shared Local Stateless Address Vector
Message Type Header Required Memory Support Support Modes Width
OWord Block Read yes no yes global 1
OWord Block Write yes no yes global 1
Unaligned OWord Block yes no yes global 1
Read
OWord Dual Block Read no for stated no yes global + 2
offset
yes for stateless
OWord Dual Block Write no for stated no yes global + 2
offset
yes for stateless

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 127

(l n te,l l\experience

what'’s inside”

3D Media GPGPU

Shared Local Stateless Address Vector
Message Type Header Required Memory Support Support Modes Width
A64 QWord Scattered no (forbidden) no yes (only) offset 8
Read
A64 QWord Scattered no (forbidden) no yes (only) offset 8
Write
A64 DWord Scattered no (forbidden) no yes (only) offset 8
Read
A64 DWord Scattered no (forbidden) no yes (only) offset 8
Write
A64 Byte Scattered Read no (forbidden) no yes (only) offset
A64 Byte Scattered Write no (forbidden) no yes (only) offset
A64 Untyped Surface Read no (forbidden) no yes (only) offset 2,8
A64 Untyped Surface no (forbidden) no yes (only) offset 2,8
Write
A64 Untyped Atomic no (forbidden) no yes (only) offset 8
Operation
A64 Untyped Atomic no (forbidden) no yes (only) offset 2
Operation SIMD4x2
A64 Block Read/Write yes no yes (only) offset 1
DWord Scattered Read no for stated no yes global + 8,16
offset
yes for stateless
DWord Scattered Write no for stated no yes global + 8, 16
offset
yes for stateless
Byte Scattered Read no for stated yes yes global + 8,16
offset
yes for stateless
Byte Scattered Write no for stated yes yes global + 8,16
offset
yes for stateless
Untyped Surface Read no for stated yes yes (1D only) 1D or 2D 2,816
yes for stateless
Untyped Surface Write no for stated yes yes (1D only) 1D or 2D 2,8,16
yes for stateless
Untyped Atomic Operation no for stated yes yes (1D only) 1D or 2D 8,16

128

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel“

experience
what'’s inside”

Shared Local Stateless Address Vector
Message Type Header Required Memory Support Support Modes Width
yes for stateless
Untyped SAltl\jrg;cX;)perann no for stated yes yes (1D only) 1D or 2D 2
yes for stateless
Atomic Counter Operation no2 no no implied 8
Required for inc,
dec, predec
Atomic Counter Operation no? no no implied 2
SIMD4x2 Required for inc,
dec, predec
Scratch Block Read yes no yes (only) Imm_Buf +
offset
Scratch Block Write yes no yes (only) Imm_Buf +
offset
Memory Fence yes N/A N/A N/A N/A
Typed Surface Read yes no no 1D, 2D, 3D, 2,8
4D
Typed Surface Write yes no no 1D, 2D, 3D, 2,8
4D
Typed Atomic Operation yes no no 1D, 2D, 3D, 8
4D
Typed Atomic Operation yes no no 1D, 2D, 3D, 2,8
SIMD4x2 4D
Media Block Read yes no no 2D 1
Media Block Write yes no no 2D 1
Transpose Read yes no no 2D 1

Table Notes

|II

“globa

“imm_buf” is the Immediate Buffer Base Address provided in message header register M0.5.

"offset” is in the message payload, and is per-slot.

"handle” is the handle address in the message header.

"URBoffset” is the Global Offset field in the URB message descriptor.

“1D" and "2D" are the address payload.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

is the Global Offset in the message header (if header is not present, Global Offset is zero).

129

experience
what'’s inside”

Render Cache Data Port Message Summary

Message Type

Header Required | Address Modes

Vector Width

Render Target Write no

2D + RTAI

8,16

Message Descriptor

This section describes the Data Port message descriptors for various projects.

Message Descriptor

3D Media GPGPU

SAMPLER CACHE DATA PORT

RENDER CACHE DATA PORT

Bit

Description

Bit

Description

19

Header Present. If set, indicates that the message includes the header.

Note: For the Sampler Cache Data Port, the header must be present for the following message types:

Unaligned OWord Block Read
Media block read
Format = Enable

18 |[lgnored 18 |Ignored
17:14 | Message Type 17:14 |Message Type
0000: Read Surface Info 1100: Render Target Write
0001: Unaligned OWord Block Read 1101: Render Target Read
0100: Media Block Read All other encodings are reserved.
All other encodings are reserved.
13:8 [Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0

Binding Table Index. Specifies the index into the binding table for the specified surface.

Format = U8
Range = [0,255]

CONSTANT CACHE DATA PORT

DATA CACHE DATA PORTO

DATA CACHE DATA
PORT1

Bit

Description

Bit

Description Bit

Description

19

Header Present. If set, indicates that the
message includes the header.
Programming Note: For the Data Cache
Data Port*, the header must be present for
the following message types:

e OWord Block Read/Write

e Unaligned OWord Block Read
e Memory Fence

e Scratch read/write

e Typed read/write/atomics

e Media block read/write

130

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l W experience

what’s inside”

DATA CACHE DATA

CONSTANT CACHE DATA PORT DATA CACHE DATA PORTO PORT1
Bit Description Bit Description Bit Description
e Transpose Read
e A64 Block Read/Write
For the Constant Cache Data Port, the
header must be present for the following
message types:
¢ OWord Block Read/Write
e Unaligned OWord Block Read
e Format = Enable
1 Ignored 18 |[Category 18:14 | Message Type
8 1: Scratch Block 00000: Transpose
Read/Write messages Read
0: Legacy DAP-DC 00001: Untyped
messages Surface Read
17:14 | Message Type 17:14 | Category=0 (legacy 00010: Untyped

0000: OWord Block Read

0001: Unaligned OWord Block Read
0010: OWord Dual Block Read
0011: DWord Scattered Read

All other encodings are reserved.

dataport)

Message Type

0000: OWord Block
Read

0001: Unaligned
OWord Block Read
0010: OWord Dual
Block Read

0011: DWord
Scattered Read
0100: Byte Scattered
Read

0111: Memory Fence
1000: OWord Block
Write

1010: OWord Dual
Block Write

1011: DWord
Scattered Write
1100: Byte Scattered
Write

All other encodings
are reserved.

Category=1 (scratch)
[17]: 0=Read; 1=write
[16]: Type;

Atomic Operation
00011: Untyped
Atomic Operation
SIMD4x2

00100: Media Block
Read

00101: Typed
Surface Read
00110: Typed
Atomic Operation
00111: Typed
Atomic Operation
SIMD4x2

01000: Untyped
Atomic Float Add
01001: Untyped
Surface Write
01010: Media Block
Write

01011: Atomic
Counter Operation
01100: Atomic
Counter Operation
SIMD4x2

01101: Typed
Surface Write
10000: A64

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

131

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DATA CACHE DATA

CONSTANT CACHE DATA PORT DATA CACHE DATA PORTO PORT1
Bit Description Bit Description Bit Description
0=Oword, 1= Scattered Read
Dword 10001: A64 Untyped
. Surface Read
rEaS(j]: Invalidate after 10010: A64 Untyped
[14]t <Reserved, mbz> Atomic Operation
: N 10011: A64 Untyped
[13:12]: Block Size . .
) Atomic Operation
11: 8 registers SIMD4x2
10: 4 registers 10100: A64 Block
. Read
01: 2 registers 10101: A64 Block
00: 1 register Write
[11:0]: Addr offset 11000: A64 Untyped
(Hword based) Atomic Float Add
11001: A64 Untyped
Surface Write
11010: A64
Scattered Write
All other encodings
are reserved.
13:8 | Message Specific Control. Refer to the specific message section for the definition of these bits.
7:0 [Binding Table Index. Specifies the index into the binding table for the specified surface.

For the data cache data port, two binding table indexes are used to select special surfaces:

254: A binding table index of 254 indicates that the shared local memory (SLM) is to be used.
The SLM is only supported with the Byte Scattered Read/Write, Untyped Surface
Read/Write, and Untyped Atomic Operation messages. Refer to the Shared Local Memory
section earlier in this chapter for further details on its behavior.

255: A binding table index of 255 indicates that a stateless model is to be used. Refer to the
Stateless Model section for details.

253: An alias for Stateless [CHV, BSW]

Format = U8
Range = [0,255]

[CHV, BSW] SFID_DP_DC1 is an extension of SFID_DP_DCO to allow for more message types. They act
as a single logical entity

The stateless aliases provide a means of SW controlling the coherency properties of an access. The
property is ensured for that access only. Typically, SW will use the same coherency type for all access to
the same address. Proper fencing is required to ensure that reads and writes are visible. L3UC forces the
addressed cache lines out of L3 and the cycles are directly conducted to LLC. This provides a capability
for ensuring coherency on a particular location without having to fence all the other cycles.

132

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Binding table

index Coherency Explanation
255 IA Coherent | Coherent within Gen and coherent within the entire IA cache memory
hierarchy.
253 Non- Coherent within Gen, same cache type.
Coherent
Programming Note
Context: Message Descriptor

The constant, sampler and render cache are always non-coherent.

Message Header

This header applies to the following data port messages:

Data Port Message

OWord Block Read/Write

Unaligned OWord Block Read

OWord Dual Block Read/Write

DWord Scattered Read/Write

Byte Scattered Read/Write

Scratch Block Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord | Bits Description
MO0.5 |31:10 . e . .
Immediate Buffer Base Address. Specifies the surface base address for messages in which the
Binding Table Index is 255 (stateless model), else this field is ignored. This pointer is relative to the
General State Base Address.
Format = GeneralStateOffset[31:10]
9:8 |Ignored
7:0 |Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.
It is used to free up resources used by the thread upon thread completion.
M0.4 | 31:0 |Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 | 31:4 [Ignored
3:0

Per Thread Scratch Space Specifies the amount of scratch space allowed to be used by this
thread for messages in which the Binding Table Index is 255 (stateless model), else this field is
ignored.

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not altered by
the kernel) to the Data Port in any scratch space access messages. The data port uses this to

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 133

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Description

bounds check scratch space messages. Writes out of bounds are ignored. Reads out of bounds
return 0.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two.

MO0.2

31:0

Global Offset.
Specifies the global element offset into the buffer.

For the Unaligned OWord messages, this offset is in units of Bytes but must be DWord-aligned
(bits 1:0 MBZ).

For the other OWord messages, this offset is in units of OWords.
For the DWord messages, this offset is in units of DWords.

For the Byte messages, this offset is in units of Bytes.

Format = U32

Range = [0,FFFFFFFCh] for Unaliged OWord messages.

Range = [0,0FFFFFFFh] for other OWord messages.

Range = [0,3FFFFFFFh] for DWord messages.

Range = [0,FFFFFFFFh] for Byte messages.

MO.1

31:0

Ignored

MO0.0

31:0

Ignored

Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message
bit in the message descriptor is set. The destination register is not modified. Write messages without
the Send Write Commit Message bit set will not return anything to the thread (response length is 0
and destination register is null).

DWord

Bit | Description

WO0.7:0

Reserved

OWord Block ReadWrite

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords
starting at that offset.

134

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be OWord-aligned.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this
message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write
mode when using this message with the render cache in the stateless model.

Applications:

e Constant buffer reads of a single constant or multiple contiguous constants.
e Scratch space reads/writes where the index for each pixel/vertex is the same.
e Block constant reads, scratch memory reads/writes for media.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth registers (W1, W3 or M2, M4). For reads, any
mask bit set within a group of four causes the entire OWord to be read and returned to the destination
GRF register. For writes, each mask bit is considered for its corresponding DWord written to the
destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or
the high 4 bits, depending on the position of the OWord to be read or written, are used as the single
group of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two
channels (red and green) of a single scratch register across 16 pixels. A second message would access
the other two channels (blue and alpha). The execution mask is used to ensure that data associated with
inactive pixels are not overwritten.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and do not modify memory.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 135

(l n te,l l\experience

what'’s inside”

Message Descriptor

3D Media GPGPU

Bits

Description

13

Reserved: MBZ

12

Ignored

11

Ignored

10:8

Block Size. Specifies the number of contiguous OWords to be read or written

000: 1 OWord, read into or written from the low 128 bits of the destination register.
001: 1 OWord, read into or written from the high 128 bits of the destination register.
010: 2 OWords

011: 4 OWords

100: 8 OWords

All other encodings are reserved.

Programming Note

Context: | Message Descriptor
The 6 OWord block size is valid only with Data Port Constant Cache.

Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the

header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord | Bits Description

M1.7:4 [127:0| OWord[Offset + 1]. If the block size is 1, OWord to be written from the high 128 bits of the

destination, OWord[Offset] will appear in this location.

M1.3:0 | 127:0 | OWord[Offset]

M2.7:4 | 127:0 | OWord[Offset+3]

M2.3:0 | 127:0 | OWord[Offset+2]

M3.7:4 | 127:0 | OWord[Offset+5]

M3.3:0 | 127:0 | OWord[Offset+4]

M4.7:4 | 127:0 | OWord[Offset+7]

M4.3:0 | 127:0 | OWord[Offset+6]

136

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending
on the Block Size specified in the message. For the one-constant case, data is placed in either the high
or low half of the returned register depending on the half selected in Block Size. In this case, the other
half of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord | Bits Description

WO0.7:4 | 127:0 | OWord[Offset + 1]. If the block size is 1, OWord to be loaded into the high 128 bits of the
destination, OWord[Offset] will appear in this location.

WO0.3:0 | 127:0 | OWord[Offset]

W1.7:4 | 127:0 | OWord[Offset+3]

W1.3:0 | 127:0 | OWord[Offset+2]

W2.7:4 | 127:0 | OWord[Offset+5]

W2.3:0 | 127:0 | OWord[Offset+4]

W3.7:4 [127:0 | OWord[Offset+7]

W3.3:0 [127:0 | OWord[Offset+6]

Unaligned OWord Block Read

This message takes one DWord aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous
OWords starting at that offset. This message is identical to the OWord Block Read message except for
the offset alignment. For read/write cache, only the read path supports this unaligned OWord Block
access.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be OWord-aligned.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this
message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write
mode when using this message with the render cache in the stateless model.

Applications: Reads with an offset that is not aligned with data size, such as row store usage in media.
Execution Mask. The execution mask is ignored by this message.

Out-of-Bounds Accesses. Reads to areas outside of the surface return O.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 137

(intel"

3D Media GPGPU

experience
what'’s inside”

Message Descriptor

Bits

Description

13 |lgnored

12:11|Ignored

10:8

Block Size. Specifies the number of contiguous OWords to be read.

000: 1 OWord, read into the low 128 bits of the destination register.

001: 1 OWord, read into the high 128 bits of the destination register.
010: 2 OWords.

011: 4 OWords.

100: 8 OWords.

All other encodings are reserved.

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in
units of OWord starts at Global Offset.

DWord

Bit

Description

WO0.7:4

127:0

OWord1 = *(&OWordO0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits of
the destination, OWordO will appear in this location

WO0.3:0

127:0

OWord0 = Buffer[Global Offset]

W1.7:4

127:0

OWord3 = *(&0OWord2 + 1)

W1.3:0

127:0

OWord2 = *(&0OWord1 + 1)

W2.7:4

127:0

OWord5= *(&0OWord4 + 1)

W2.3:0

127:0

OWord4 = *(&0OWord3 + 1)

W3.7:4

127:0

OWord7 = *(&0OWord6 + 1)

W3.3:0

127:0

OWord6 = *(&0OWord5 + 1)

138

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

OWord Dual Block ReadWrite

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset.
The Global Offset is added to each of the specific offsets.

The message header is no longer required for the OWord Dual Block Read/Write messages if sent to the data
cache data port. If header is not sent, the Global Offset field is assumed to be zero. The header is required,
however, if the binding table index is 255 (stateless model), as the Immediate Buffer Base Address field is
required.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 139

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Programming Restriction: Writes to overlapping addresses have undefined write ordering.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be OWord-aligned.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this
message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write
mode when using this message with the render cache in the stateless model.

Applications:

e SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are
two indices and they are the same, hardware will optimize the cache accesses and do only one
cache access).

e SIMD4x2 scratch space reads/writes where the indices are different.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF
registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a
group of four will cause the entire OWord to be read and returned to the destination GRF register. For
writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and do not modify memory contents.

Message Descriptor

Bits Description

13 |Reserved: MBZ

12:10 | Ignored

98 Block Size. Specifies the number of OWords in each block to be read or written:

00: 1 OWord
10: 4 OWords

All other encodings are reserved.

140 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Message Payload

DWord | Bits Description

M1.7 |31:0|Ignored

M1.6 |31:0(Ignored

M1.5 |31:0(Ignored

M1.4 1310 Block Offset 1. Specifies the OWord offset of OWord Block 1 into the surface.

Format = U32
Range = [0,0FFFFFFFh]

M1.3 |31:0|Ignored

M1.2 |31:0|Ignored

M1.1 |31:0(Ignored

M1.0 [31:0(Block Offset 0

Additional Message Payload (Write)
For the write operation, the message payload consists of one or four registers (not including the header
or the first part of the payload) depending on the Block Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0
and is in units of OWords. The OWord array index is also in units of OWords.

DWord | Bit Description

M2.7:4 |127:0| OWord[Offset1]

M2.3:0 |127:0| OWord[Offset0]

M3.7:4 |127:0 | OWord[Offset1+1]

M3.3:0 |127:0 | OWord[Offset0+1]

M4.7:4 |127:0 | OWord[Offset1+2]

M4.3:0 |127:0 | OWord[Offset0+2]

M4.7:4 |127:0 | OWord[Offset1+3]

M4.3:0 |127:0 | OWord[Offset0+3]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 141

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0
and is in units of OWords. The OWord array index is also in units of OWords.

DWord | Bits Description

WO0.7:4 | 127:0 | OWord[Offset1]

WO0.3:0 | 127:0 | OWord[Offset0]

W1.7:4 | 127:0 | OWord[Offset1+1]

W1.3:0 | 127:0 | OWord[Offset0+1]

W2.7:4 [127:0 | OWord[Offset1+2]

W2.3:0 [127:0 | OWord[Offset0+2]

W3.7:4 [127:0 | OWord[Offset1+3]

W3.3:0 [127:0 | OWord[Offset0+3]

Media Block ReadWrite

The read form of this message enables a rectangular block of data samples to be read from the source
surface and written into the GRF. The write form enables data from the GRF to be written to a
rectangular block.

Restrictions

Restriction

The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the stateless
surface model is not supported with this message.

Accesses are allowed to SURFTYPE_NULL, reads return 0 and writes are ignored.

The surface format is used to determine the pixel structure for boundary clamp; the raw data from the surface is
returned to the thread without any format conversion nor filtering operation.

The target cache cannot be the data cache.

The surface base address must be 32-byte aligned.

When a surface is XMajor tiled, (tilewalk field in the surface state is set to TILEWALK_XMAJOR), a memory area
mapped through the Render Cache cannot be read and/or written in mixed frame and field modes. For example, if
a memory location is first written with a zero Vertical Line Stride (frame mode), and later on (without render cache
flush) read back using Vertical Line Stride of one (field mode), the read data stored in the GRF are uncertain.

The block width and offset should be aligned to the size of pixels stored in the surface. For a surface with 8bpp
pixels for example, the block width and offset can be byte-aligned. For a surface with 16bpp pixels, it is word-
aligned.

For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. DWord-aligned).

The write form of this message has the additional restriction that both X Offset and Block Width must be

142 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Restriction

DWord-aligned.

Pitch must be a multiple of 64 bytes when the surface is linear.

Media block writes to linear or tileX surfaces must have a height of 16 or less.

Applications: Block reads/writes for media.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the
nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface
are dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be
found in the Surface Formats Section of the Sampling Engine Chapter.

For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary DWord
BOB1B2B3, to replicate the left boundary byte pixel, the out of bound DWords have the format
BOBOBOBO, and the format for the right boundary is B3B3B3B3.

This rule applies to all surface formats with BPE of 8. As the data port does not perform format
conversion, the most likely used surface formats are R8_UINT and R8_SINT.

For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a
boundary dword BOB1B2B3, to replicate the left boundary word pixel, the out of bound DWords have
the format BOB1BOB1, and the format for the right boundary is B2B3B2B3.

This rule applies to all surface formats with BPE of 16. As the data port does not perform format
conversion, only the formats with integer data types may be useful in practice.

For a boundary DWord YOUOY1VO, to replicate the left boundary, we get YOUOYOVO, and to replicate
the right boundary, we get Y1UQOY1VO0.

For a boundary DWord UOYOVOY1, to replicate the left boundary, we get UOYOVOYO, and to replicate
the right boundary, we get UOY1VOY1.

For a surface with 32bpp pixels, the boundary DWord pixel is replicated.

This rule applies to all surface formats with BPE of 32. As the data port does not perform format
conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

NV12 surface state: The width of the surface should be always multiples of 4 pixels. For 16bpp input
message (422 8-bit) the width will always need to be in multiples of 8 bytes and for 32bpp input
message (422 16-bit or 444 8-bit) the width should be in multiples of 16 bytes. Height should be in
multiples of 2 pixels high. (Presently the MFX restriction is that width should be in multiples of 2 pixels.)

The y-offset of the media block write from the EU should always be even.

The x-offset of the media block write from the EU should be in multiples of 4 pixels.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 143

(l n te,l l\experience

what'’s inside”

3D Media GPGPU

The media block DWord write can have only the following combinations (when NV12 output format is
used):

e 8 pixels wide for 422 8-bit mode
e 4 pixels wide for 422 8-bit mode
e 4 pixels wide for 422 16-bit

e 4 pixels wide for 444 8-bit

e 444 16-bit input format cannot be supported when the output format is NV12 (SW should not
use this combination).

e It has to be in multiples of 2 pixels high for all above modes.

If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped
and in case of 422-format the top UV values are used and the bottom UV valuesare dropped if the
output format is NV12 format.

Message Descriptor

Bit

Description

13

Reserved: MBZ

12

Reserved: MBZ

11

Reserved: MBZ

10

Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface state should
be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine chapter) is
modified according the following rules:

Vertical Line

Derived 1-based Surface Height

Stride Override Vertical Line (As a function of the 0-based Height in Surface
(in surface state) Stride State)
0 0 Height + 1
(Normal)
0 ! (Height +1) / 2
Restriction: (Height + 1) must be an even number.
1 0 (Height + 1) * 2

Height + 1

(Normal)

144

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Bit

Description

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface state is 0, i.e. a
frame, Height (of the frame) should be 479. When accessing the bottom field of this frame video buffer, if
both Override Vertical Line Stride and Override Vertical Line Stride Offset are set to 1, then the derived surface
height (of the field) is 240 ((Height + 1) / 2). In contrast, if Vertical Line Stride in surface state is 1 and Vertical
Line Stride Offset in surface state is O, the surface state represents the top field of the video buffer. In this
case, Height (of the top field) should be programmed as 239. Accessing the bottom video field uses the same
surface height of 240. Accessing the video frame (with Override Vertical Line Stride and Override Vertical Line
Stride Offset of 0) results in a derived surface height of 480 ((Height + 1) * 2).

0: Use parameters in the surface state and ignore bits 9:8.

1: Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset.

Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines — provides support of interleaved
(field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines.

Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override VerticalLine
Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1).

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 145

(intel’"

3D Media GPGPU

experience
what'’s inside”

Message Header

DWord

Bits

Description

MO0.5

31:8

Ignored

70

FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is
used to free up resources used by the thread upon thread completion.

MO0.4

31:0

Ignored (reserved for hardware delivery of binding table pointer)

MO0.3

31:0

Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to be written.
This field is ignored by the read message, all pixels are always returned. This field is used only if
the Message Mode field is set to PIXEL_MASK. The bits in this mask correspond to the pixels
(DWords) as follows:

0|14 |5(16]17]|20]21
6|7)18|19(22|23
9 |12(13(24(25|28]|29
10111|14(15(26|27|30]| 31

Byte Mask One bit per byte indicating which bytes are to be written. This field is ignored by the
read message; all bytes are always returned. This field is used only if the Message Mode is
BYTE_MASK. The Byte Mask is a horizontal mask applied to each row of output.

O|1(2(3]4|5]|6]|7
819 (10(11(12]13]|14]15
16|17(18[19(20|21]|22|23
24125(26|27(28]|29(30]31

MO0.2

31:30

Message Mode. This field selects the mode of this message as follows:

00: NORMAL. The Block Height and Block Width fields are set in M0.2. The Pixel Mask is not
explicitly set but behaves as if it is set to all ones.

01: PIXEL_MASK: The Pixel Mask field is set in M0.3. The Block Height and Block Width are not
explicitly set but behave as if they are set to 4 rows and 32 bytes, respectively.

10: BYTE_MASK: The Block Height and Block Width fields are set in M0.2. The Byte Mask in M0.3
is used to qualify which bytes are written.

11: Reserved.

For the Sampler Cache Data Port, this field is also ignored, behaving as if always set to NORMAL.

29

Ignored

28:24

Sub-Register Offset. This field provides the sub-register offset in unit of byte of a media block
read message. This field is ignored (reserved) for a media block write message.

Programming Notes:

Sub-Register Offset must be aligned to BasePitch (therefore will be a multiple of DWords as

146

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Description
well).
When Register Pitch Control = 0, Sub-Register Offset must align to BasePitch*Block Height
and the output fits in a single GRF register.
In general (and specifically when Sub-Register Offset is greater than 0), when the resulting data
cross a GRF register boundary, the data must be placed symmetrically between GRF registers.
Sub-Register Offset and Register Pitch Control allow software to assemble multiple media
block reads directly into a shared GRF register set. For example, if both are set to zero, the read
data are written to GRF registers, aligning to the least significant bits of the first register, and the
register pitch is equal to the next power-of-2 that is greater than or equal to the Block Width. If
Register Pitch Control is non-zero, multiple media block read messages sharing the same
Register Pitch Control but with different Sub-Register Offset can fill in the same set of GRF
registers with media block data line interleaved.
This field must be zero for Render Cache Data Port.
Format = U5
Range = [0, 28] (Only a multiple of BasePitch, including 0, is valid.)
21:16 . N .
Block Height. Height in rows of block being accessed.
Programming Note: The Block Height is restricted to the following maximum values depending
on the Block Width:
Block Width (bytes) [Maximum Block Height (rows)
1-4 64
5-8 32
9-16 16
17-32 8
33-64 4
Programming Note: Block width > 32 bytes is allowed only for media block write messages and
only for linear and Tile X surfaces.
Format = U6
Range = [0,63] representing 1 to 64 rows
15:10 | Ignored
98 Register Pitch Control. This field controls the register pitch for a media block read message.
Register Pitch Control is only allowed to be non-zero if Block Width is a multiple of DWords.
The effective register pitch must be less than or equal to 32 bytes (to fit in a single GRF register).
Defining BasePitch as the next power-of-2 that is greater than or equal to the Block Width,
Register Pitch Control set the register pitch in terms of BasePitch as the following.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 147

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord | Bits Description
Range = [0,3] representing 1 to 4 BasePitch
Programming Notes:
This field must be zero for Render Cache Data Port.
This field is reserved (must be zero)) for a media block write message.
Programming Restriction: This field must be zero.
7:6 |lgnored
>0 Block Width. Width in bytes of the block being accessed.
Programming Note: Must be DWord-aligned for the write form of the message.
Format = U6
Range = [0,63] representing 1 to 64 bytes
MO.T | 31:0 Y offset. The Y offset of the upper left corner of the block into the surface.
Format = S31
Programming Note: If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4.
MO0 | 310 X offset. The X offset of the upper left corner of the block into the surface.
Must be DWord-aligned (Bits 1:0 MBZ) for the write form of the message.
The X offset field defines the offset in the input message block. This may differ from the offset in
the surface if Color Processing is enabled due to format conversion.
Format = S31
Programming Note: If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32.
148 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel

experience
what'’s inside”

The legal combinations of block width, pitch control, sub-register offset, and block height are given

below:

Block Height for given block width, pitch control, subreg offsets

sub-register offsets
block width | pitch control| 0 1 2 3 4 5 6 7
1-4 00 1-64 1 1 1 1 1 1
01 1-64 | 1-64 |illegal|illegal| 1-2 | 1-2 [illegal|illegal
10 illegal [illegal |illegal |illegal |illegal |illegal | illegal |illegal
11 1-64 | 1-64 | 1-64 | 1-64 |illegal |illegal |illegal |illegal
5-8 00 1-32 |illegal| 1 |illegal| 1 [|illegal{ 1 [illegal
01 1-32 |illegal | 1-32 |illegal|illegal |illegal |illegal |illegal
10 illegal |illegal | illegal | illegal | illegal | illegal | illegal | illegal
11 1-32 |illegal| 1-32 |illegal| 1-32 |illegal | 1-32 [illegal
9-16 00 1-16 |illegal|illegal |illegal| 1 |illegal|illegal |illegal
01 1-16 |illegal|illegal |illegal | 1-16 |illegal |illegal [illegal
10 illegal |illegal | illegal | illegal | illegal | illegal | illegal | illegal
11 1-16 |illegal |illegal |illegal | 1-16 |illegal |illegal |illegal
17-32 00 1-8 |illegal |illegal |illegal |illegal |illegal | illegal |illegal
01 1-8 |illegal |illegal |illegal |illegal |illegal | illegal |illegal
10 illegal |illegal | illegal | illegal | illegal | illegal | illegal | illegal
11 1-8 |illegal |illegal |illegal |illegal |illegal | illegal |illegal
Message Payload (Write)
DWord | Bit Description
M1:n Write Data. The format of the write data depends on the Block Height and Block Width. The data

is aligned to the least significant bits of the first register, and the register pitch is equal to the next
power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message
Format field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position
includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0
YUV 4:2:2, 8 bits per channel |Cr (V) right pixel lum (Y1) | Cb (U) left pixel lum (YO)
YUV 4:4:4, 8 bits per channel |alpha (A) [luminance (Y) Cb (U) Cr (V)

63:48 47:32 31:16 15:0
YUV 4:2:2, 16 bits per channel | Cr (V) right pixel lum (Y1) | Cb (U) left pixel lum (YO)
YUV 4:4:4, 16 bits per channel | alpha (A) [Cr (V) luminance (Y) | Cb (U)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

149

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Writeback Message (Read)

DWord | Bits Description

WO:n [31:0| Read Data. The format of the read data depends on the Block Height, Block Width, Register
Pitch Control, and Sub-Register Offset. The data is aligned to the Sub-Register Offset of the first
register, and the register pitch is set to one or more BasePatch.

DWord Scattered ReadWrite

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset.
The Global Offset is added to each of the specific offsets.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the constant buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be DWord-aligned.

Writes to overlapping addresses have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped to the nearest
edge of the surface. For write messages with X/Y offsets that are outside the bounds of the surface, the behavior is
undefined.

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this
message with the render cache in the surface state model.

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write
mode when using this message with the render cache in the stateless model.

Hardware does check for and optimize for cases where offsets are equal or contiguous, however for optimal
performance in some of these cases a different message may provide higher performance.

The message header is no longer required for the OWord DWord Scattered Read/Write messages if sent to the data
cache data port. If header is not sent, the Global Offset field is assumed to be zero. The header is required, however,
if the binding table index is 255 (stateless model), as the Immediate Buffer Base Address field is required.

Applications:

e SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel
per message)

e SIMDB8/16 scratch space reads/writes where the indices are different (read/write one channel per
message)

e General purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which DWords are read into the destination GRF register (for read), or which
DWords are written to the surface (for write).

150 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor

Bits Description

13 |Reserved: MBZ

12 |Ignored

11:10 | Ignored

8 Block Size. Specifies the number of DWords read or written:

10: 8 DWords
11: 16 DWords

All other encodings are reserved.

Message Payload

DWord | Bits Description

M1.7 1310 Offset 7. Specifies the DWord offset of DWord 7 into the surface.

Format = U32
Range = [0,3FFFFFFFh]

M1.6 |31:0|Offset 6

M1.5 |31:0|Offset 5

M1.4 |[31:0|Offset 4

M1.3 |31:0|Offset 3

M1.2 [31:0|Offset 2

M1.1 [31:0|Offset 1

M1.0 |31:0|Offset 0

M2.7 |31:0|Offset 15. This message register is included only if the block size is 16 DWords.

M2.6 |31:0|Offset 14

M2.5 [31:0|Offset 13

M2.4 |[31:0|Offset 12

M2.3 |31:0 | Offset 11

M2.2 |31:0[Offset 10

M2.1 [31:0|Offset 9

M2.0 [31:0|Offset 8

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 151

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of DWords. The DWord array index is also in units of DWords.

DWord | Bit Description

M3.7 31:0 | DWord[Offset7]

M3.6 31:0 | DWord[Offset6]

M3.5 31:0 | DWord[Offset5]

M3.4 31:0 | DWord[Offset4]

M3.3 31:0 | DWord[Offset3]

M3.2 31:0 | DWord[Offset2]

M3.1 31:0 | DWord[Offset1]

M3.0 31:0 | DWord[Offset0]

M4.7 |31:.0 | DWord[Offset15]. This message register is included only if the block size is 16 DWords

M4.6 31:0 | DWord[Offset14]

M4.5 31:0 | DWord[Offset13]

M4.4 |31:0 | DWord[Offset12]

M4.3 31:0 | DWord[Offset11]

M4.2 31:0 | DWord[Offset10]

M4.1 31:0 | DWord[Offset9]

M4.0 31:0 | DWord[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The DWord array index is also in units of DWords.

DWord | Bits Description

WO0.7 |31:0| DWord[Offset7]

WO0.6 |31:0| DWord[Offset6]

WO0.5 |31:0| DWord[Offset5]

WO0.4 |31:0| DWord[Offset4]

WO0.3 |31:0| DWord[Offset3]

WO0.2 |31:0| DWord[Offset2]

WO0.1 |31:0| DWord[Offset1]

WO0.0 |31:0| DWord[Offset0]

152 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Description

W1.7 |31:0 | DWord[Offset15]. This writeback message register is included only if the block size is 16 DWords.

W1.6 |31:0| DWord[Offset14]

W1.5 |31:0| DWord[Offset13]

W1.4 |31:0| DWord[Offset12]

W1.3 |31:0| DWord[Offset11]

W1.2 |31:0| DWord[Offset10]

W1.1 |31:0| DWord[Offset9]

W1.0 |31:0| DWord[Offset8]

Message Descriptor

Bit Description

12 Two-Source Message. When this bit is set, there are two data-phases for two sources. Two-source message

is used only for opcode "0111" and for all other opcodes this bit must be 0.

When this bit is 0, M3 is not sent to the data-port.

18 Atomic Operation Code: (Please refer to the table below)

Unsupported opcodes:

1101, 1110, 1111

Opcode Operation Return Value
0000 ADD: new = old + src0 Old value
0001 SUB: new = old — src0 Old value
0010 INC : new = old+1 Old value
0011 DEC: new = old-1 Old value
0100 MIN: new = min(old, src0) Old value
0101 MAX: new = max(old, src0) Old value
0110 XCHG: new = src0 Old value
0111 CMPXCHG : new = (old==src1) ? src0 : old | Old value
1000 AND: new = old & srcO Old value
1001 OR: new = old | src0 Old value
1010 XOR: new = old " srcO Old value
1011 MIN_SINT: new = min(old, src0) Old value(signed)
1100 MAX_SINT: new = max(old, src0) Old value(signed)
1101-1111 Old value

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 153

(intel“

experience
what'’s inside”

Message Payload

DWord | Bit Description
M1.7 |31.0 Offset 7.
Specifies the DWord offset of DWord 7 into the surface.
Format = U32
Range = [0,3FFFFFFFh]
M1.6 [31:0|Offset 6
M1.5 [31:0|Offset 5
M14 [31:0|Offset 4
M1.3 |31:.0(Offset 3
M1.2 |31:0|Offset 2
M1.1 |31:0|Offset 1
M1.0 |31:0|Offset 0

154

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Source Payload

Either one or two additional registers (depending on Two-Source Message) of source payload contain
the data to be used as source.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of DWords. The DWord array index is also in units of DWords.

DWord | Bit Description

M2.7 |31:0| DWord[Offset7] SrcO

M2.6 |31:0| DWord[Offset6] SrcO

M2.5 |31:0| DWord[Offset5] SrcO

M2.4 |31:0| DWord[Offset4] SrcO

M2.3 |[31:0 | DWord[Offset3] SrcO

M2.2 |[31:0| DWord[Offset2] SrcO

M2.1 [31:0 | DWord[Offset1] SrcO

M2.0 |31:0| DWord[Offset0] SrcO

M3.7 |31:0| DWord[Offset7] Src1

M3.6 |31:0| DWord[Offset6] Src1

M3.5 |31:0| DWord[Offset5] Src1

M3.4 |31:0| DWord[Offset4] Src1

M3.3 |31:0| DWord[Offset3] Src1

M3.2 |31:0| DWord[Offset2] Src1

M3.1 |31:0| DWord[Offset1] Src1

M3.0 |31:0| DWord[Offset0] Src1

Writeback Message

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of DWords. The DWord array index is also in units of DWords.

DWord | Bit | Description

WO0.7 [31:0| DWord[Offset7]

WO0.6 |31:0| DWord[Offset6]

WO0.5 |31:0| DWord[Offset5]

WO0.4 |31:0| DWord[Offset4]

WO0.3 |31:0| DWord[Offset3]

WO0.2 |31:0| DWord[Offset2]

WO0.1 |31:0| DWord[Offset1]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 155

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DWord | Bit | Description

WO0.0 |31:0| DWord[Offset0]

Byte Scattered ReadWrite

These messages are supported on CHV, BSW only.

These messages take a set of offsets, and read or write 8 or 16 scattered and possibly misaligned bytes,
words, or DWords starting at each offset. The Global Offset from the message header is added to each
of the specific offsets.

Restrictions

Restriction

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored; data is returned from the buffer to the GRF without format conversion.

The surface cannot be tiled.

The surface base address must be DWord-aligned.

Writes to overlapping addresses have undefined write ordering.

The surface is treated as a 1-dimensional surface. The element size (pitch) times the number of elements is used to
determine the size of the buffer for out-of-bounds checking if using the surface state model. Out of bounds
checking is done at DWord granularity; if any part of the DWord is out-of-bounds then the whole DWord is
considered out-of-bounds.

The stateless model is supported. Bounds checking for a stateless message is 4GB overflow and < General State
upper bound.

Applications: Byte aligned buffer accesses in GPGPU programs.

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which slots are read into the destination GRF register (for read), or which slots
are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

156 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Message Descriptor

Bit

Description

13:12

Ignored

11:10

Data Size. Specifies the data size for each slot.

0: 1 byte
1: 2 bytes
2: 4 bytes

3: Reserved

Ignored

SIMD Mode. Specifies the SIMD mode of the message (number of slots processed).

0: SIMD8
1: SIMD16

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel"

experience
what'’s inside”

157

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Message Payload

DWord | Bits Description

M1.7 [310 Offset 7.

Specifies the byte offset of DWord 7 into the surface.
Format = U32
Range = [0,FFFFFFFFh]

M1.6 31:0| Offset 6

M1.5 31:0| Offset 5

M1.4 31:0 | Offset 4

M1.3 31:0| Offset 3

M1.2 31:0| Offset 2

M1.1 31:0| Offset 1

M1.0 31:0| Offset O

M2.7 |31:0| Offset 15. This message register is included only if the SIMD Mode is SIMD16.

M2.6 |31:0|Offset 14

M2.5 |31:0|Offset 13

M2.4 |31:0|Offset 12

M2.3 |31:0|Offset 11

M2.2 |31:0|Offset 10

M2.1 31:0| Offset 9

M2.0 31:0 | Offset 8

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit
field. The upper bits are ignored for 1 byte and 2 byte Data Size.

DWord | Bit Description

M3.7 31:0 | Data[Offset7]

M3.6 31:0 | Data[Offset6]

M3.5 31:0 | Data[Offset5]

M3.4 31:0 | Data[Offset4]

M3.3 31:0 | Data[Offset3]

M3.2 31:0 | Data[Offset2]

158 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

DWord | Bit Description

M3.1 31:0 | Data[Offset1]

M3.0 31:0 | Data[Offset0]

M4.7 |31:0 | Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

M4.6 31:0 | Data[Offset14]

M4.5 31:0 | Data[Offset13]

M4 .4 31:0 | Data[Offset12]

M4.3 31:0 | Data[Offset11]

M4.2 31:0 | Data[Offset10]

M4.1 31:0 | Data[Offset9]

M4.0 31:0 | Data[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit
field and only the requeted bytes are written to the GRF.

DWord | Bit Description

WO0.7 31:0 | Data[Offset7

WO0.6 31:0 | Data[Offset6

W0.4 31:0 | Data[Offset4

]
]
WO0.5 31:0 | Data[Offset5]
]
]

WO0.3 31:0 | Data[Offset3

W0.2 31:0 | Data[Offset2]

WO.1 31:0 | Data[Offset1]

WO0.0 31:0 | Data[Offset0]

W1.7 |31:0| Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

W1.6 31:0 | Data[Offset14]

W1.5 31:0 | Data[Offset13]

W14 31:0 | Data[Offset12]

w13 31:0 | Data[Offset11]

wW1.2 31:0 | Data[Offset10]

W1.1 31:0 | Data[Offset9]

W1.0 31:0 | Data[Offset8]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 159

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

Six data port messages (Typed Surface Read, Typed Surface Write, Typed Atomic Operation, Untyped
Surface Read, Untyped Surface Write, and Untyped Atomic Operation) allow direct read/write accesses
to surfaces. These messages support three major categories of surfaces:

Typed surfaces. These surfaces are of type SURFTYPE_1D, 2D, 3D, or BUFFER and have a supported
surface format other than RAW.

A typed surface uses U, V, R, and LOD address parameters (the number of parameters used depends on
the surface type), and performs conversion of type to/from the selected surface format as follows:

e Surface formats with UINT require the message data in U32 format.
e Surface formats with SINT require the message data in S32 format.
¢ All other surface formats require the message data in FLOAT32 format.

The untyped surface categories, both of which use the RAW surface format, perform no type
conversion. A raw buffer uses just the U address parameter, which specifies the byte offset into the
surface, which must be a multiple of 4. A structured buffer uses the U address parameter as an array
index and the V address parameter as a byte offset into the array element (which also must be a
multiple of 4).

For both raw and structured buffers, up to 4 DWords are accessed beginning at the byte address
determined. These 4 dwords correspond to the red, green, blue, and alpha channels in that order with
red mapping to the lowest order DWord. The atomic operation messages only access the first DWord
(corresponding to the red channel for typed messages).

The atomic operation messages cause atomic read-modify-write operations on the “destination”
location addressed. In the table below, the new value of the destination (new_dst) is computed as
indicated based on the old value of the destination (old_dst) and up to two sources included in the
message (src0 and src1). Optionally, a value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that
no read or write to the same memory location from this thread or any other thread can occur between
the read and the write.

The following atomic operations are available, along with the specific operation performed for each and
the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst
AOP_OR old_dst | src0 old_dst
AOP_XOR old_dst ~ srcO old_dst
AOP_MOV src0 old_dst
AOP_INC old_dst + 1 old_dst
AOP_DEC old_dst -1 old_dst
AOP_ADD old_dst + srcO old_dst

160 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Atomic Operation new_dst ret
AOP_SUB old_dst — srcO old_dst
AOP_REVSUB srcO — old_dst old_dst
AOP_IMAX imax(old_dst, src0) old_dst
AOP_IMIN imin(old_dst, src0) old_dst
AOP_UMAX umax(old_dst, src0) old_dst
AOP_UMIN umin(old_dst, src0) old_dst
AOP_CMPWR (srcO == old_dst) ? src1 : old_dst old_dst
AOP_PREDEC old_dst -1 new_dst
AOP_CMPWRS8B | (src08B == old_dst8B) ? src18B : old_dst8B | old_dst8B

Programming Note

Context: | TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

src08B is 8 bytes, src18B is 8 bytes, and old_dst8B is 8 bytes in length.

Programming Note

Context: | TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

AOP_CMPWRSB is not supported for SLM.

Programming Note

Context: | TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

AOP_CMPWRS8B addresses must be QWord-aligned.

Programming Note

Context: |TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

imax/imin assume operands are signed integers, umax/umin assume operands are unsigned integers. All other
operations treat all values as 32-bit unsigned integers. Add and subtract operations wrap without any special
indication.

Programming Note

Context: |TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

For untyped messages, the Tile Mode must be LINEAR.

For untyped messages, the Surface Format must be RAW and the Surface Type must be SURFTYPE_BUFFER or
SURFTYPE_STRBUF.

For typed messages, the Surface Type must be SURFTYPE_1D, 2D, 3D, or BUFFER.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 161

(l n te,l mexperience

what'’s inside”

Surface Format for Typed Surface Reads

Surface Format Name

R16G16B16A16_UINT

R8G8B8AS_UINT

R16G16_UINT

R32_SINT

R32_UINT

R32_FLOAT

R8G8_UINT

R16_UINT

R8_UINT

Surface Format for Typed Surface Writes

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R16G16B16A16_UNORM

R16G16B16A16_SNORM

R16G16B16A16_SINT

R16G16B16A16_UINT

R16G16B16A16_FLOAT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

B8GBR8A8_UNORM

R10G10B10A2_UNORM

R10G10B10A2_UINT

R8G8B8A8_UNORM

R8G8B8A8_SNORM

R8G8B8AS_SINT

R8G8B8AS_UINT

R16G16_UNORM

R16G16_SNORM

R16G16_SINT

R16G16_UINT

R16G16_FLOAT

162

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Surface Format Name

B10G10R10A2_UNORM

R11G11B10_FLOAT

R32_SINT

R32_UINT

R32_FLOAT

B5G6R5_UNORM

B5G5R5A1_UNORM

B4G4R4A4_UNORM

R8G8_UNORM

R8G8_SNORM

R8G8_SINT

R8G8_UINT

R16_UNORM

R16_SNORM

R16_SINT

R16_UINT

R16_FLOAT

B5G5R5X1_UNORM

R8_UNORM

R8_SNORM

R8_SINT

R8_UINT

A8_UNORM

General Restrictions

For typed surface writes where the Surface Format has components that are not byte-aligned, each
shader channel select in the surface state must be set to a unique surface channel (SCS_RED,
SCS_GREEN, SCS_BLUE, SCS_ALPHA) and the value of (SCS_ZERO, SCS_ONE) cannot be selected. Also all
channels must be enabled for writing.

The Surface Format for typed atomic operations must be R32_UINT or R32_SINT.

For atomic operations, each shader channel select in the surface state must be set to the same surface
channel (R = SCS_RED, G = SCS_GREEN, B = SCS_BLUE, A = SCS_ALPHA).

For untyped messages accessing SURFTYPE_STRBUF, the V address (byte offset) must be DWord-
aligned (low 2 bits must be zero).

For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord-
aligned (low 2 bits must be zero).

Typed messages only support SIMDS8.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 163

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Project-Specific Restrictions

Programming Note

Context: TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

The stateless model support is limited to untyped messages. Furthermore, they are treated as SURFTYPE_BUFFER
and Surface Format of RAW. The bounds checking for the stateless message is 4GB overflow and < General State
upper bound.

Programming Note

Context: |TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

Tile W surfaces must be of format R8_UINT and only support SIMD8. Furthermore, only the RED channel can be
enabled.

Execution Mask

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from
the message header and the resulting mask is used to determine which slots are read into the
destination GRF register (for read), or which slots are written to the surface (for write). If the header is
not present, only the execution mask is used.

SIMD8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from
the message header. For the typed messages, the Slot Group in the message descriptor selects either
the low or high 8 bits. For the untyped messages, the low 8 bits are always selected. The resulting mask
is used to determine which slots are read into the destination GRF register (for read), or which slots are
written to the surface (for write). If the header is not present, only the low 8 bits of the execution mask
are used.

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create
two bits that are used to determine which slots are read into the destination GRF register.

Out-of-Bounds Accesses: Reads to areas outside of the surface return 0, except for the Typed Surface
Read message that returns 1 in the alpha channel and 0 in the other channels. Writes to areas outside of
the surface are dropped and will not modify memory contents.

Programming Note

Context: | TypedUntyped Surface ReadWrite and TypedUntyped Atomic Operation

Writes to overlapping addresses have undefined write ordering.

SIMD Mode, Surface Category, and Message Type Combinations Supported

SIMD Mode | Surface Category | Message Type
SIMD16 Untyped Read
SIMD16 Untyped Write
SIMD16 Untyped Atomic
SIMD8 Untyped Read
SIMD8 Untyped Write

164 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

SIMD Mode | Surface Category | Message Type
SIMD8 Untyped Atomic
SIMD8 Typed Read
SIMD8 Typed Write
SIMD8 Typed Atomic

SIMD4x2 Untyped Read
SIMD4x2 Untyped Write
SIMD4x2 Untyped Atomic
SIMD4x2 Typed Read
SIMD4x2 Typed Write
SIMD4x2 Typed Atomic

(lntel“

experience
what'’s inside”

The following table indicates the hardware interpretation of each input parameter based on surface
type. Parameters with blank entries are ignored by hardware if delivered.

“Surface Array” Field
Surface Type in SURFACE_STATE U Address V Address R Address |[LOD
SURFTYPE_1D disabled X pixel address LOD
enabled X pixel address | array index LOD
SURFTYPE_2D disabled X pixel address | Y pixel address LOD
enabled X pixel address | Y pixel address | array index LOD
SURFTYPE_3D disabled X pixel address | Y pixel address | Z pixel address | LOD
SURFTYPE_BUFFER | disabled buffer index
SURFTYPE_STRBUF | disabled buffer index | byte offset

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

165

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Typed Surface ReadWrite Message Descriptor

Bit

Description

13

Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution
mask to determine which slots are accessed. This field is ignored if the header is not present.

Format = U1
0: Use low 8 slots

1: Use high 8 slots

12 |Ignored
R Alpha Channel Mask
For the read message, indicates that alpha will be included in the writeback message. For the write message,
indicates that alpha is included in the message payload, and that alpha will be written to the surface.
0: Alpha channel included
1: Alpha channel not included
Programming Notes:
At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).
10 | Blue Channel Mask
Green Channel Mask
8 |[Red Channel Mask
166 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Typed Surface Read/Write Message Descriptor

Bit

Description

13:12

Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution
mask to determine which slots are accessed. This field is ignored if the header is not present.

Format = U2

00: SIMD4x2

01: Use low 8 slots
10: Use high 8 slots

11: Reserved

11

Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write
message, indicates that alpha is included in the message payload, and that alpha will be written to the
surface.

0: Alpha channel included
1: Alpha channel not included
Programming Notes:

At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).

Blue Channel Mask

Green Channel Mask

Red Channel Mask

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 167

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Untyped Surface ReadWrite Message Descriptor

Bits

Description

13:12

SIMD Mode

Format = U2

0: SIMD4x2 (valid for reads & writes)
1: SIMD16

2: SIMD8

3: Reserved

11

Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write
message, indicates that alpha is included in the message payload, and that alpha will be written to the
surface.

0: Alpha channel included
1: Alpha channel not included
Programming Notes:

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower mask bits
are also zero. This means that the only 4-bit channel mask values allowed are 0000b, 1000b, 1100b, and
1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the 4-bit channel
mask cannot be 1111b).

Blue Channel Mask

Green Channel Mask

Red Channel Mask

168

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Typed Atomic Operation Message Descriptor

(intel“

experience
what'’s inside”

Bit Description

13 |Return Data Control
Specifies whether return data is sent back to the thread.

Format = Enable

12 |Slot Group

mask to determine which slots are accessed.
Format = U1
0: Use low 8 slots

1: Use high 8 slots

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution

11:8 | Atomic Operation Type
Specifies the atomic operation to be performed.
0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB
1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX
1101: AOP_UMIN

1110: AOP_CMPWR
1111: AOP_PREDEC

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

169

Typed Atomic Operation SIMD4x2 Message Descriptor

experience
what'’s inside”

Bit

Description

13

Return Data Control
Specifies whether return data is sent back to the thread.

Format = Enable

12

Reserved

11:8

Atomic Operation Type
Specifies the atomic operation to be performed.
0000: reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB
1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX
1101: AOP_UMIN

1110: AOP_CMPWR
1111: AOP_PREDEC

170

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Untyped Atomic Operation Message Descriptor

Bit

Description

13

Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12

SIMD Mode
Format = U1
0: SIMD16
1: SIMD8

11:8

Atomic Operation Type
Specifies the atomic operation to be performed.
0000: 0000: AOP_CMPWR8B
0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel"

experience
what'’s inside”

171

(l n te,l lkexperience

what'’s inside”

3D Media GPGPU

Untyped Atomic Operation SIMD4x2 Message Descriptor

Bit

Description

13

Return Data Control
Specifies whether return data is sent back to the thread.

Format = Enable

12

Reserved

11:8

Atomic Operation Type
Specifies the atomic operation to be performed.
0000: AOP_CMPWRS8B
0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB
1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX
1101: AOP_UMIN

1110: AOP_CMPWR
1111: AOP_PREDEC

172

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Atomic Counter Operation Message Descriptor

Bits

Description

13

Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12

SIMD Mode
Format; U1
0: Reserved

1: SIMD8 (low 8 slots)

11:8

Atomic Operation Type

Specifies the atomic operation to perform:

0000: Reserved
0001: AOP_AND
0010: AOP_OR
0011: AOP_XOR
0100: AOP_MOV
0101: AOP_INC
0110: AOP_DEC
0111: AOP_ADD
1000: AOP_SUB
1001: AOP_REVSUB
1010: AOP_IMAX
1011: AOP_IMIN
1100: AOP_UMAX
1101: AOP_UMIN
1110: Reserved
1111: AOP_PREDEC

(intel“

experience
what'’s inside”

For Append Counter Operations there is no address payload as the address is provided by the append
counter field in the surface state. The write data payloads are the same as untyped atomic. The write
backs are the same as untyped atomic. When accessing a surface with the Append Counter Operation, if
the Append Counter enable field of the surface state is not 1, the access is treated as out of bounds,
with writes ignored and reads returning 0.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

173

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

Atomic Counter Operation SIMD4x2 Message Descriptor

Bits Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 |Reserved

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.
0000: Reserved
0001: AOP_AND
0010: AOP_OR
0011: AOP_XOR
0100: AOP_MOV
0101: AOP_INC
0110: AOP_DEC
0111: AOP_ADD
1000: AOP_SUB
1001: AOP_REVSUB
1010: AOP_IMAX
1011: AOP_IMIN
1100: AOP_UMAX
1101: AOP_UMIN
1110: Reserved
1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append
counter field in the surface state. The write data payloads are the same as untyped atomic 4x2. The
write backs are the same as untyped atomic 4x2.

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of
the surface state is not 1, the access is treated as out of bounds, with writes ignored and reads returning
0.

174 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,
where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)
calculations, but the corresponding slot on the surface must not be accessed. Typed messages (which
go to the render cache data port) must include the header.

DWord | Bits Description
MO0.7 [31:16Ignored
15:0

Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for SIMD16 and
SIMD8 messages. All 16 bits are used for SIMD16 messages. For typed SIMD8 messages, Slot
Group selects which 8 bits of this field are used. For untyped SIMD8 messages, the low 8 bits of
this field are used.

If the header is not delivered, this field defaults to all ones. The field is ignored for SIMD4x2
messages.

MO0.6 | 31:0 |Ignored

MO.5 | 310 Immediate Buffer Base Address. Specifies the surface base address for messages in which the

Binding Table Index is 255 (stateless model), else this field is ignored. This pointer is relative to the
General State Base Address.

Format = GeneralStateOffset[31:10]

MO0.4 | 31:0 |Ignored (reserved for hardware delivery of binding table pointer)

MO0.3 | 31:0 |Ignored

MO0.2 | 31:0 |Ignored

MO0.1 | 31:0 |Ignored

MO0.0 | 31:0 |Ignored

Message Payload

The message payload consists of the following:

e For the read messages, only an address payload is delivered.
e For the write messages, an address payload is followed by the write data payload.
e For the atomic operation messages, an address payload is followed by the source payload.

e For SIMD16 and SIMD8 messages, the message length is used to determine how many address
parameters are included in the message. The number of message registers in the write data
payload is determined by the number of channel mask bits that are enabled, and the number of
message registers in the source payload is determined by the atomic operation operation. Thus,
one or neither of these two values (depending on the message type), plus one for the header, can
be subtracted from the message length to determine the number of message registers in the
address payload, from which the number of address parameters can be determined.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 175

(intel"

experience
what'’s inside”

SIMD16 Address Payload

3D Media GPGPU

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible
address parameters are U and V (since SIMD16 is only supported with untyped messages). The number
of parameters required depends on the surface type being accessed. Each parameter takes two
message registers. Each parameter always takes a consistent position in the input payload. The length
field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this.

Programming Note

Context:

SIMD16 Address Payload

For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent. If V is
sent, it is ignored.

DWord | Bit Description

M1.7 [31:0|Slot 7 U Address
Specifies the U Address for slot 7.
Format = U32

M1.6 |[31:0|Slot 6 U Address
M1.5 [31:0|Slot 5 U Address
M1.4 |[31:0|Slot 4 U Address
M1.3 [31:0|Slot 3 U Address
M1.2 [31:0|Slot 2 U Address
M1.1 [31:0|Slot 1 U Address
M1.0 [31:0|Slot 0 U Address
M2.7 [31:0|Slot 15 U Address
M2.6 |[31:0|Slot 14 U Address
M2.5 [31:0|Slot 13 U Address
M2.4 [31:0|Slot 12 U Address
M2.3 [31:0|Slot 11 U Address
M2.2 [31:0|Slot 10 U Address
M2.1 [31:0|Slot 9 U Address
M2.0 [31:0|Slot 8 U Address
M3 Slots 7:0 V Address
M4 Slots 15:8 V Address

176

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what's inside”
SIMD16 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description

M5.7 |31:0(Slot 7 Source0
Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 [31:0(Slot 6 Source0

M5.5 [31:0(Slot 5 Source0

M5.4 [31:0(Slot 4 Source0

M5.3 31:0|Slot 3 Source0

M5.2 [31:0(Slot 2 Source0

M5.1 [31:0(Slot 1 Source0

M5.0 [31:0(Slot 0 Source0

M6.7 [31:0(Slot 15 Source0

M6.6 [31:0|Slot 14 Source0

M6.5 [31:0(Slot 13 Source0

M6.4 [31:0|Slot 12 Source0

M6.3 [31:0(Slot 11 Source0

M6.2 [31:0(Slot 10 Source0

M6.1 [31:0(Slot 9 Source0

M6.0 [31:0(Slot 8 Source0

M7 Slots 7:0 Source1

M8 Slots 15:8 Source1

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 177

(intel’“

SIMD16 Source Payload (AOP_CMPWRS8B Only)

experience
what'’s inside”

DWord

Bit

Description

M5.7

31:0

Slot 7 Source0[31:0]
Specifies Source0[31:0] for slot 7.
Format = U32

M5.6

31:0

Slot 6 Source0[31:0]

M5.5

31:0

Slot 5 Source0[31:0]

M5.4

31:0

Slot 4 Source0[31:0]

M5.3

31:0

Slot 3 Source0[31:0]

M5.2

31:0

Slot 2 Source0[31:0]

M5.1

31:0

Slot 1 Source0[31:0]

M5.0

31:0

Slot 0 Source0[31:0]

M6.7

31:0

Slot 15 Source0[31:0]

M6.6

31:0

Slot 14 Source0[31:0]

M6.5

31:0

Slot 13 Source0[31:0]

M6.4

31:0

Slot 12 Source0[31:0]

M6.3

31:0

Slot 11 Source0[31:0]

M6.2

31:0

Slot 10 Source0[31:0]

M®6.1

31:0

Slot 9 Source0[31:0]

M6.0

31:0

Slot 8 Source0[31:0]

M7

Slots 7:0 Source0[63:32]

M8

Slots 15:8 Source0[63:32]

M9

Slots 7:0 Source1[31:0]

M10

Slots 15:8 Source1[31:0]

M11

Slots 7:0 Source1[63:32]

M12

Slots 15:8 Source1[63:32]

178

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMD16 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord | Bit Description

M5.7 [31:0(Slot 7 Red
Specifies the value of the red channel to be written for slot 7.

Format = 32 bits raw data.

M5.6 |31:0(Slot 6 Red

M5.5 [31:0Slot 5 Red

M5.4 [31:0(Slot 4 Red

M5.3 |31:0Slot 3 Red

M5.2 |31:0Slot 2 Red

M5.1 |31:0(Slot 1 Red

M5.0 |31:0(Slot 0 Red

M6.7 |31:0|Slot 15 Red

M6.6 |31:0(Slot 14 Red

M6.5 |31:0(Slot 13 Red

Mé6.4 |31:0(Slot 12 Red

M6.3 |31:0|Slot 11 Red

M6.2 |31:0|Slot 10 Red

M6.1 |31:0|Slot 9 Red

M6.0 |31:0|Slot 8 Red

M7 Slots 7:0 Green
M8 Slots 15:8 Green
M9 Slots 7:0 Blue
M10 Slots 15:8 Blue
M11 Slots 7:0 Alpha
M12 Slots 15:8 Alpha

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 179

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMDS8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameters are U, V, R, and LOD. The number of parameters required depends on the surface type
being accessed. Each parameter takes one message register. Each parameter always takes a consistent
position in the input payload. The length field can be used to send a shorter message, but intermediate
parameters cannot be skipped as there is no way to signal this.

Programming Note

Context: SIMD8 Address Payload.htm

e For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent.
If Vis sent it is ignored

e For untyped messages of surface type SURFTYPE_STRBUF, both U and V must be sent.

DWord | Bits Description

M1.7 1310 Slot 7 U Address

Specifies the U Address for slot 7.
Format = U32

M1.6 |31:0|Slot 6 U Address

M1.5 |31:0|Slot 5 U Address

M1.4 |[31:0(Slot 4 U Address

M1.3 [31:0(Slot 3 U Address

M1.2 [31:0(Slot 2 U Address

M1.1 [31:0[Slot 1 U Address

M1.0 [31:0(Slot 0 U Address

M2 Slots 7:0 V Address

M3 Slots 7:0 R Address

Programming Notes:

This register can only be delivered for the Typed message types.

M4 Slots 7:0 LOD

Programming Notes:

This register can only be delivered for the Typed message types.

180 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what's inside”
SIMD8 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description

M5.7 |31:0(Slot 7 Source0
Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 [31:0(Slot 6 Source0

M5.5 [31:0(Slot 5 Source0

M5.4 [31:0(Slot 4 Source0

M5.3 [31:0(Slot 3 Source0

M5.2 [31:0(Slot 2 Source0

M5.1 [31:0(Slot 1 Source0

M5.0 [31:0(Slot 0 Source0

M6 Slots 7:0 Source1

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 181

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMD8 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord | Bit Description

M5.7 |31:0(Slot 7 Red

Specifies the value of the red channel to be written for slot 7.
For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.
SINT formats use S31, UINT formats use U32, and all other formats use Float.

M5.6 |31:0(Slot 6 Red

M5.5 |31:0(Slot 5 Red

M5.4 |31:0(Slot 4 Red

M5.3 |31:0(Slot 3 Red

M5.2 |31:0Slot 2 Red

M5.1 |31:0(Slot 1 Red

M5.0 |31:0(Slot 0 Red

M6 Slots 7:0 Green
M7 Slots 7:0 Blue
M8 Slots 7:0 Alpha

182 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD8 Write Data Payload (Tile W Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included.

DWord | Bit Description
M5.7 |[31:8]|Ignored
7:0 |Slot 7 Red
Specifies the value of the red channel to be written for slot 7.
For Typed messages: Format = U8
M5.6 |[31:8]|Ignored
7:0 |Slot 6 Red
M5.5 |31:8(Ignored
7:0 |Slot 5 Red
M5.4 |31:8|Ignored
7:0 |Slot 4 Red
M5.3 |31:8|Ignored
7:0 |Slot 3 Red
M5.2 |31:8|Ignored
7:0 |Slot 2 Red
M5.1 |31:8|Ignored
7:0 |Slot 1 Red
M5.0 (31:8|Ignored
7:0 |Slot 0 Red

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 183

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots.

DWord | Bits Description

M1.7 |31:0(Slot 1 LOD

Programming Note: This register can only be delivered for the Typed message types.

M1.6 [31:0[Slot 1 R Address

Programming Note: This register can only be delivered for the Typed message types.

M1.5 [31:0(Slot 1V Address

Format = U32
M1.4 |31:0|Slot 1 U Address
Format = U32

M1.3 |31:0(Slot 0 LOD

M1.2 [31:0[Slot 0 R Address

M1.1 [31:0(Slot 0 V Address

M1.0 [31:0[Slot 0 U Address

SIMD4x2 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR. All of the remaining
atomic operations require Source0 only.

DWord | Bit Description

M2.7 |31:0(Ignored

M2.6 |31:0(Ignored

M2.5 |[31:0|Slot 1 Source1
Specifies Source1 for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M2.4 |[31:0(Slot 1 Source0

M2.3 |31:0(Ignored

M2.2 |31:0(Ignored

M2.1 [31:0(Slot 0 Source1

M2.0 [31:0(Slot 0 Source0

184 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD4x2 Source Payload (AOP_CMPWRS8B Only)

DWord | Bit Description

M2.7 |31:0|Slot 1 Sourcel [63:32]

M2.6 |31:0|Slot 1 Sourcel [31:0]

M2.5 |31:0|Slot 1 Source0 [63:32]

M2.4 |31:0|Slot 1 Source0 [31:0]

M2.3 |31:0|Slot 0 Sourcel [63:32]

M2.2 |[31:0(Slot 0 Source1 [31:0]

M2.1 [31:0(Slot 0 Source0 [63:32]

M2.0 [31:0(Slot 0 Source0 [31:0]

SIMD4x2 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages.

DWord | Bit Description

M2.7 |31:0(Slot 1 Alpha

Specifies the value of the red channel to be written for slot 7.
For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.
SINT formats use S31, UINT formats use U32, and all other formats use Float.

M2.6 [31:0|Slot 1 Blue

M2.5 [31:0(Slot 1 Green

M2.4 |[31:0(Slot 1 Red

M2.3 [31:0]|Slot 0 Alpha

M2.2 |[31:0]Slot 0 Blue

M2.1 [31:0(Slot 0 Green

M2.0 |31:0|Slot O Red

Writeback Message

This topic is currently under development.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 185

(intel“

experience
what'’s inside”

SIMD8 DWORD Read

DWord | Bit | Description
WO0.7 31:0 | DWord[Offset7]
WO0.6 31:0 | DWord[Offset6]
WO0.5 |[31:0| DWord[Offset5]
wWo0.4 31:0 | DWord[Offset4]
Wwo.3 31:0 | DWord[Offset3]
Wo0.2 31:0 | DWord[Offset2]
WO0.1 31:0 | DWord[Offset1]
WO0.0 31:0 | DWord[Offset0]

SIMD8 QWORD Read

DWord | Bit Description
W0.7 63:0 | QWord[Offset3]
WO0.6

W05 63:0 | QWord[Offset2]
WO0.4

W03 63:0 | QWord[Offset1]
WO0.2

W01 63:0 | QWord[Offset0]
WO0.0

W17 63:0 | QWord[Offset7]
W1.6

W15 63:0 | QWord[Offset6]
W14

W13 63:0 | QWord[Offset5]
W1.2

W11 63:0 | QWord[Offset4]
W1.0

186

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

SIMD16 Read

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1,
and alpha to regid+2 and regid+3. The slots written within each destination register is determined by
the execution mask on the “send” instruction.

DWord | Bit Description

WO0.7 |31:0(Slot 7 Red: Specifies the value of the red channel for slot 7.
Format = 32 bits raw data.

WO0.6 |31:0|Slot 6 Red

WO0.5 [31:0Slot 5 Red

WO0.4 [31:0|Slot 4 Red

WO0.3 |31:0|Slot 3 Red

WO0.2 |31:0|Slot 2 Red

WO0.1 |31:0(Slot 1 Red

WO0.0 |31:0|Slot 0 Red

W1.7 |31:0|Slot 15 Red

W1.6 |31:0(Slot 14 Red

W1.5 |31:0(Slot 13 Red

W14 |[31:0|Slot 12 Red

W1.3 |31:0(Slot 11 Red

W1.2 [31:0|Slot 10 Red

W1.1 [31:0|Slot 9 Red

W1.0 |31:0|Slot 8 Red

w2 Slots 7:0 Green
W3 Slots 15:8 Green
w4 Slots 7:0 Blue
W5 Slots 15:8 Blue
W6 Slots 7:0 Alpha
W7 Slots 15:8 Alpha

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 187

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMDS8 Read

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to
regid+1. The slots written within each destination register is determined by the execution mask on the
“send” instruction.

DWord | Bit Description

WO0.7 |31:0(Slot 7 Red: Specifies the value of the red channel for slot 7.
For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.
SINT formats use S31, UINT formats use U32, and all other formats use Float.

WO0.6 |31:0|Slot 6 Red

WO0.5 [31:0Slot 5 Red

WO0.4 [31:0|Slot 4 Red

WO0.3 |31:0|Slot 3 Red

WO0.2 |31:0(Slot 2 Red

WO0.1 |31:0(Slot 1 Red

WO0.0 |31:0|Slot O Red

W1 Slots 7:0 Green
W2 Slots 7:0 Blue
W3 Slots 7:0 Alpha

188 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMDS8 Read (Tile W)

The slots written within each destination register is determined by the execution mask on the “send”
instruction.

DWord | Bit Description
M5.7 [31:8|Reserved (0)
7:0 |Slot 7 Red
Specifies the value of the red channel to be written for slot 7.
For Typed messages: Format = U8
M5.6 [31:8|Reserved (0)
7:0 |Slot 6 Red
M5.5 [31:8|Reserved (0)
7:0 |Slot 5 Red
M5.4 |[31:8|Reserved (0)
7:0 |Slot 4 Red
M5.3 |31:8 |Reserved (0)
7:0 |Slot 3 Red
M5.2 |31:8 [Reserved (0)
7:0 |Slot 2 Red
M5.1 |31:8 |Reserved (0)
7:0 |Slot 1 Red
M5.0 [31:8|Reserved (0)
7:0 |Slot 0 Red

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 189

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMD4x2 Read

A SIMD4x2 writeback message always consists of a single message register containing all four color
channels of each of the two slots. The channel mask bits as well as the execution mask on the “send”
instruction are used to determine which of the channels in the destination register are overwritten. If
any of the four execution mask bits for a slot is asserted, that slot is considered to be active. The active
channels in the channel mask will be written in the destination register for that slot. If the slot is inactive
(all four execution mask bits deasserted), none of the channels for that slot will be written in the
destination register.

DWord | Bit Description

WO0.7 |31:0(Slot 1 Alpha: Specifies the value of the pixel’s alpha channel.
Format = 32 bits raw data.

WO0.6 |31:0|Slot 1 Blue

WO0.5 |31:0(Slot 1 Green

WO0.4 |31:0(Slot 1 Red

WO0.3 |31:0(Slot 0 Alpha

WO0.2 |31:0|Slot 0 Blue

WO0.1 |31:0(Slot 0 Green

WO0.0 |31:0(Slot 0 Red

190 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMD16 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 |31:0(Slot 7 Return Data: Specifies the value of the return data for slot 7.
Format = U32

WO0.6 |31:0|Slot 6 Return Data

WO0.5 |31:0|Slot 5 Return Data

WO0.4 |[31:0(Slot 4 Return Data

WO0.3 |31:0|Slot 3 Return Data

WO0.2 [31:0(Slot 2 Return Data

WO0.1 [31:0(Slot 1 Return Data

WO0.0 [31:0(Slot 0 Return Data

W1.7 [31:0]|Slot 15 Return Data

W1.6 [31:0]|Slot 14 Return Data

W1.5 [31:0]|Slot 13 Return Data

W1.4 |[31:0]|Slot 12 Return Data

W1.3 [31:0|Slot 11 Return Data

W1.2 [31:0]|Slot 10 Return Data

W1.1 [31:0(Slot 9 Return Data

W1.0 [31:0(Slot 8 Return Data

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 191

(intel"

SIMD16 Atomic Operation (AOP_CMPWRS8B Only)

experience
what'’s inside”

3D Media GPGPU

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction
indicates which channels in the destination registers are overwritten.

DWord

Bit

Description

WO0.7

31:0

Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

WO0.6

31:0

Slot 6 Return Data[31:0]

WO0.5

31:0

Slot 5 Return Data[31:0]

Wo0.4

31:0

Slot 4 Return Data[31:0]

WO0.3

31:0

Slot 3 Return Data[31:0]

WO0.2

31:0

Slot 2 Return Data[31:0]

WO.1

31:0

Slot 1 Return Data[31:0]

WO0.0

31:0

Slot 0 Return Data[31:0]

W1.7

31:0

Slot 15 Return Data[31:0

W1.6

31:0

Slot 14 Return Data[31:0

W1.5

31:0

W14

31:0

Slot 12 Return Data[31:0

W1.3

31:0

[

[
Slot 13 Return Data[31:0

[

[

Slot 11 Return Data[31:0

W1.2

31:0

]
]
]
]
]
]

Slot 10 Return Data[31:0

Wi1.1

31:0

Slot 9 Return Data[31:0]

W1.0

31:0

Slot 8 Return Data[31:0]

W2

Slot 7:0 Return Data[63:32]

W3

Slot 15:8 Return Data[63:32]

192

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD8 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 |31:0(Slot 7 Return Data: Specifies the value of the return data for slot 7.
Format = U32

WO0.6 |31:0|Slot 6 Return Data

WO0.5 |31:0|Slot 5 Return Data

WO0.4 |[31:0(Slot 4 Return Data

WO0.3 |31:0|Slot 3 Return Data

WO0.2 [31:0(Slot 2 Return Data

WO0.1 [31:0(Slot 1 Return Data

WO0.0 [31:0(Slot 0 Return Data

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 193

(intel"

SIMD8 Atomic Operation (AOP_CMPWRS8B Only)

experience
what'’s inside”

3D Media GPGPU

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction
indicates which channels in the destination registers are overwritten.

DWord | Bit Description

Wo.7 31:0 Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.
Format = U32

WO0.6 [31:0|Slot 6 Return Data[31:0]

WO0.5 |[31:0|Slot 5 Return Data[31:0]

wWo0.4 31:0 | Slot 4 Return Data[31:0]

WO0.3 31:0 | Slot 3 Return Data[31:0]

WO0.2 31:0 | Slot 2 Return Data[31:0]

WO0.1 31:0|Slot 1 Return Data[31:0]

WO0.0 31:0|Slot 0 Return Data[31:0]

W1.7 31:0|Slot 7 Return Data[63:32]

W1.6 31:0 | Slot 6 Return Data[63:32]

W1.5 31:0|Slot 5 Return Data[63:32]

W14 31:0| Slot 4 Return Data[63:32]

W1.3 31:0|Slot 3 Return Data[63:32]

W1.2 31:0|Slot 2 Return Data[63:32]

W1.1 31:0|Slot 1 Return Data[63:32]

W1.0 31:0 | Slot 0 Return Data[63:32]

194

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMD4x2 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 |[31:0|reserved — not written to GRF

WO0.6 |[31:0|reserved — not written to GRF

WO0.5 |[31:0|reserved — not written to GRF

WO0.4 |31:0(Slot 1 Return Data: Specifies the value of the return data for slot 1.
Format = U32

WO0.3 |[31:0|reserved — not written to GRF

WO0.2 |[31:0|reserved — not written to GRF

WO0.1 [31:0|reserved — not written to GRF

WO0.0 [31:0(Slot 0 Return Data

SIMD4x2 Atomic Operation (AOP_CMPWRS8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction
indicates which channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 |[31:0|reserved — not written to GRF

WO0.6 |[31:0|reserved — not written to GRF

WO0.5 [31:0]|Slot 1 Return Data: [63:32]

WO0.4 |[31:0(Slot 1 Return Data: [31:0]

WO0.3 [31:0]|reserved — not written to GRF

WO0.2 |[31:0|reserved — not written to GRF

WO0.1 [31:0]|Slot 0 Return Data: [63:32]

WO0.0 [31:0{Slot 0 Return Data[31:0]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 195

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

A64 Scattered Read or Write

This message takes a set of offsets, and reads or writes SIMD8 scattered Qwords/Dwords/Bytes starting
at each offset. The Qword form of this message requires aligned Qword and the Dword form requires
aligned Dwords.The byte form of this message takes a set of offsets, and reads or writes simd8
scattered and possibly misaligned bytes, words, dwords or qwords starting at each offset.

Programming Note

Context: A64 Scattered Read or Write

Writes to overlapping addresses will have undefined write ordering. Hardware does check for and optimize for
cases where offsets are equal or contiguous, however for optimal performance in some these cases a different
message may provide higher performance.

Programming Note

Context: A64 Scattered Read or Write

Only stateless message can be used. The message header is forbidden these A64 messages, and the offsets are
from a base of absolute 0

Applications:

SIMDS8 reads where the indices are different (read one channel per message)
SIMDB8 writes where the indices are different (write one channel per message)
general purpose QWord/Dword/Bytes scatter/gathering, used by media

Execution Mask. The low 8 bits execution mask are used to determine which Qwords/Dwords/Bytes
are read into the destination GRF register (for read), or which Qwords/Dwords/Bytes are written to the
surface (for write).

Canonical address check, if post address computation, bits [63:48] don’t match bit [47] then a general
protect fault will occurs. If current mode is an non-faulting mode, this error will be treated as out of
bounds.

196 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Message Descriptor

Bits Description
13 |Reserved: MBZ
12 |Ignored
19 bata size. Specifies the data size for each slot:
0: 1 block
1: 2 blocks
2: 4 blocks

3: 8 blocks (not valid for QWords)

98 Block Size. Specifies the size of blocks to be read or written:

10: QWords
01: DWords
00: Bytes

All other encodings are reserved.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 197

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Message Address Payload

DWord | Bit Description
M17 930 Offset 3.
M1.6 Specifies the Byte offset of QWord 3
Specifies the Byte offset of DWord 3
Specifies the Byte offset of Byte3
Format = U64
Qword Range = [0,00007FFFFFFFFFF8h] or [FFFF800000000000,FFFFFFFFFFFFFFF8N]
Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]
Byte Range = [0,00007FFFFFFFFFFFh] or [FFFF800000000000,FFFFFFFFFFFFFFFFh]
M15 63:0 | Offset 2
M1.4
M13 63:0 | Offset 1
M1.2
M1.1 63:0 | Offset 0
M1.0
M2.7 63:0 | Offset 7
M2.6
M2.5 63:0 | Offset 6
M2.4
M2.3 63:0 | Offset 5
M2.2
M2.1 63:0 | Offset 4
M2.0

198 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Additional Message Payload (QWord Write)

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Offset n in the address payload converted to units of QWords. The
QWord array index is also in units of QWords.

DWord | Bit Description
M3.7 63:0 | QWord[Offset3[0]
M3.6

M3.5 63:0 | QWord[Offset2[0]
M3.4

M3.3 63:0 | QWord[Offset1][0]
M3.2

M3.1 63:0 | QWord[Offset0][0]
M3.0

M4.7 63:0 | QWord[Offset7][0]
M4.6

MA4.5 63:0 | QWord[Offset6][0]
M4.4

M43 63:0 | QWord[Offset5][0]
M4.2

M4.1 63:0 | QWord[Offset4][0]
M4.0

M9.7 63:0 | QWord[Offset3][3]
M9.6

M9.5 63:0 | QWord[Offset2][3]
M9.4

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 199

(lntel' | 3D Media GPGPU
experlence

what'’s inside”

DWord | Bit Description

M9.3 63:0 | QWord[Offset1][3]

M9.2

MO9.1 63:0 | QWord[Offset0][3]

M9.0

M10.7 63:0 | QWord[Offset7][3]

M10.6

M10.5 63:0 | QWord[Offset6][3]

M10.4

M10.3 63:0 | QWord[Offset5][3]

M10.2

M10.1 63:0 | QWord[Offset4][3]

M10.0

200 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Additional Message Payload (DWord Write)

For the write operation, either one to four additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Offset nin the address payload converted to units of DWords. The
DWord array index is also in units of DWords.

DWord | Bit Description

M3.7 |31:0| DWord[Offset7][0]

M3.6 |31:0| DWord[Offset6][0]

M3.5 |31:0| DWord[Offset5][0]

M3.4 |31:0| DWord[Offset4][0]

M3.3 31:0 | DWord[Offset3][0]

M3.2 |31:0 [DWord[Offset2][0]

M3.1 31:0 | DWord[Offset1][0]

M3.0 |31:0| DWord[Offset0][0]

M4.7 |31:0 | DWord[Offset7][1]

M4.6 |31:0| DWord[Offset6][1]

M4.5 |31:0| DWord[Offset5][1]

M4.4 |31:0 | DWord[Offset4][1]

M4.3 |31:0 | DWord[Offset3][1]

M4.2 |31:0| DWord[Offset2][1]

M4.1 31:0 | DWord[Offset1][1]

M4.0 |31:0| DWord[Offset0][1]

M9.7 |31:0| DWord[Offset7][6]

M9.6 31:0 | DWord[Offset6][6]

M9.5 31:0 | DWord[Offset5][6]

M9.4 31:0| DWord

M9.3 31:0 | DWord[Offset3

[
[
[
[

M9.2 31:0 | DWord[Offset2][6]

M9.1 31:0 | DWord[Offset1][6]

M9.0 31:0 | DWord[Offset0][6]

M10.7 |31:0 | DWord[Offset7][7]

M10.6 |31:0 | DWord[Offset6][7]

M10.5 |31:0 | DWord[Offset5][7]

M10.4 |31:0 | DWord[Offset4][7]

M10.3 |31:0 | DWord[Offset3][7]

M10.2 |31:0 | DWord[Offset2][7]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 201

(intel’“

experience
what'’s inside”

DWord

Bit

Description

M10.1

31:0

DWord[Offset1][7]

M10.0

31:0

DWord[Offset0][7]

Additional Message Payload (8 Byte Write)

3D Media GPGPU

For the write operation, two additional registers of payload contain the data to be written.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes.

DWord | Bits| Description
M3.7 [31:0 | Byte[Offset3][7:4]
M3.6 [31:0 | Byte[Offset3][3:0]
M3.5 31:0| Byte[Offset2][7:4]
M3.4 31:0| Byte[Offset2][3:0]
M3.3 31:0| Byte[Offset1][7:4]
M3.2 31:0| Byte[Offset1][3:0]
M3.1 31:0| Byte[Offset0][7:4]
M3.0 31:0| Byte[Offset0][3:0]
M4.7 31:0| Byte[Offset7][7:4]
M4.6 31:0| Byte[Offset7][3:0]
M4.5 31:0 | Byte[Offset6][7:4]
M4 .4 31:0 | Byte[Offset6][3:0]
M4.3 31:0 | Byte[Offset5][7:4]
M4.2 31:0 | Byte[Offset5][3:0]
M4.1 31:0 | Byte[Offset4][7:4]
M4.0 31:0 | Byte[Offset4][3:0]
202

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Additional Message Payload (1 or 2 or 4 Byte Write)

For the write operation, two additional registers of payload contain the data to be written.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes. The length of
Data written depends on the Data Size and is right-justified within the 32-bit field. The upper bits are
ignored for 1 byte and 2 byte Data Size.

DWord | Bits| Description

M3.7 |31:0|Byte[Offset7][3:0]

M3.6 |31:0|Byte[Offset6][3:0]

M3.5 |31:0|Byte[Offset5][3:0]

M3.4 |31:0|Byte[Offset4][3:0]

M3.3 31:0| Byte[Offset3][3:0]

M3.2 31:0| Byte[Offset2][3:0]

M3.1 31:0| Byte[Offset1][3:0]

M3.0 [31:0 | Byte[Offset0][3:0]

Writeback Message (QWord Read)

For the read operation, the writeback message consists of either two to eight registers depending on
the Data size.

The Offsetn referred to below is the Offset n in the address payload converted to units of QWords. The
QWord array index is also in units of QWords.

DWord | Bits Description
W07 63:0 | QWord[Offset3][0]
WO0.6

W05 63:0 | QWord[Offset2][0]
WO0.4

W03 63:0 | QWord[Offset1][0]
Wo0.2

W01 63:0 | QWord[Offset0][0]
WO0.0

W17 63:0 | QWord[Offset7][0]
W1.6

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 203

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

DWord | Bits Description
W15 63:0 | QWord[Offset6][0]
W14

W13 63:0 | QWord[Offset5][0]
W1.2

W11 63:0 | QWord[Offset4][0]
W1.0

W6.7 63:0 | QWord[Offset3]([3]
W6.6

W6.S 63:0 | QWord[Offset2][3]
W6.4

W63 63:0 | QWord[Offset1][3]
W6.2

W61 63:0 | QWord[Offset0][3]
W6.0

W77 63:0 | QWord[Offset7][3]
W7.6

W75 63:0 | QWord[Offset6][3]
W74

W73 63:0 | QWord[Offset5]([3]
W7.2

W71 63:0 | QWord[Offset4][3]
W7.0

Writeback Message (DWord Read)

For the read operation, the writeback message consists of either two to eight registers depending on
the block size.

204 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

The Offsetn referred to below is the Offset n in the address payload converted to units of DWords. The
DWord array index is also in units of DWords.

DWord | Bits Description

WO0.7 |31:0| DWord[Offset7][0]

WO0.6 [31:0| DWord[Offset6][0]

WO0.5 [31:0| DWord[Offset5][0]

w04 31:0 | DWord[Offset4][0]

WO0.3 [31:0| DWord[Offset3][0]

Wo0.2 31:0 | DWord[Offset2][0]

WO0.1 31:0 | DWord[Offset1][0]

WO0.0 [31:0| DWord[Offset0][0]

W1.7 [31:0| DWord[Offset7][1]

W1.6 [31:0| DWord[Offset6][1]

W15 [31:0| DWord[Offset5][1]

W14 [31:0| DWord[Offset4][1]

W1.3 [31:0| DWord[Offset3][1]

W1.2 [31:0| DWord[Offset2][1]

[[
W1.1 31:0 | DWord[Offset1][1]
W1.0 [31:0| DWord[Offset0][1]

We.7 31:0 | DWord[Offset7][6]

W6.6 31:0 | DWord[Offset6][6]

W6.4 31:0 | DWord[Offset4][6]

[Il

[Il
W6.5 31:0 | DWord[Offset5][6]

[Il

[Il

W6.3 31:0 | DWord[Offset3][6]

W6.2 31:0 | DWord[Offset2][6]

W6.1 31:0 | DWord[Offset1](6]

W6.0 [31:0| DWord[Offset0][6]

W7.7 [31:0| DWord[Offset7][7]

W7.6 [31:0| DWord[Offset6][7]

W7.5 [31:0| DWord[Offset5][7]

W7.4 [31:0| DWord[Offset4][7]

W7.3 [31:0| DWord[Offset3][7]

W7.2 [31:0| DWord[Offset2][7]

W7.1 31:0 | DWord[Offset1][7]

W7.0 [31:0| DWord[Offset0][7]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 205

(intel’“

experience
what'’s inside”

Writeback Message (8 Byte Read)

3D Media GPGPU

For the read operation, the writeback message consists of two register.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes.

DWord | Bits| Description

WO0.7 |31:0|Byte[Offset3][7:4]
WO0.6 |31:0|Byte[Offset3][3:0]
WO0.5 31:0 | Byte[Offset2][7:4]
w04 31:0 | Byte[Offset2][3:0]
Wwo0.3 31:0 | Byte[Offset1][7:4]
Wo0.2 31:0 | Byte[Offset1][3:0]
WO0.1 31:0 | Byte[Offset0][7:4]
WO0.0 [31:0|Byte[Offset0][3:0]
W1.7 31:0 | Byte[Offset7][7:4]
W1.6 31:0 | Byte[Offset7][3:0]
W1.5 31:0 | Byte[Offset6][7:4]
W14 31:0 | Byte[Offset6][3:0]
w13 31:0| Byte[Offset5][7:4]
W1.2 31:0| Byte[Offset5][3:0]
W1.1 31:0| Byte[Offset4][7:4]
W1.0 31:0| Byte[Offset4][3:0]

Writeback Message (1 or 2 or 4 Byte Read)

For the read operation, the writeback message consists of one register.

The Offsetn referred to below is Offset n in the address payload and is in units of bytes. The length of
Data written depends on the Data Size and is right-justified within the 32-bit field and only the

requested bytes are written to the GRF.

DWord | Bits| Description
WO0.7 31:0 | Byte[Offset7][3:0]
WO0.6 |31:0|Byte[Offset6][3:0]
WO0.5 [31:0|Byte[Offset5](3:0]
WO0.4 [31:0|Byte[Offset4][3:0]
WO0.3 |31:0|Byte[Offset3][3:0]
WO0.2 [31:0|Byte[Offset2][3:0]
WO0.1 [31:0|Byte[Offset1][3:0]
WO0.0 |31:0|Byte[Offset0][3:0]
206

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

A64 Untyped Atomic Operation

A64 Untyped Atomic Operation allows direct read/write stateless accesses.
This message supports 2 data sizes: DWORD and QWORD.

These messages use the RAW format, perform no type conversion. It uses just the U address parameter,
which specifies the byte offset, which must be a multiple of 8 for QWORD and a multiple of 4 for
DWORD. The atomic operation messages only access the first QWord.

The atomic operation messages cause atomic read-modify-write operations on the “destination”
location addressed. In the table below, the new value of the destination (new_dst) is computed as
indicated based on the old value of the destination (old_dst) and up to two sources included in the
message (srcO and src1). Optionally, a value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that
no read or write to the same memory location from this thread or any other thread can occur between
the read and the write.

The following atomic operations are available for QWORD data size, along with the specific operation
performed for each and the return value:

Atomic Operation new_dst ret
AOP_AND old_dst & src0 old_dst
AOP_OR old_dst | srcO old_dst
AOP_XOR old_dst ~ srcO old_dst
AOP_MOV srcO old_dst
AOP_INC old_dst + 1 old_dst
AOP_DEC old_dst -1 old_dst
AOP_ADD old_dst + srcO old_dst
AOP_SUB old_dst — src0 old_dst
AOP_REVSUB srcO — old_dst old_dst
AOP_IMAX imax(old_dst, src0) old_dst
AOP_IMIN imin(old_dst, src0) old_dst
AOP_UMAX umax(old_dst, src0) old_dst
AOP_UMIN umin(old_dst, src0) old_dst
AOP_CMPWR (srcO == old_dst) ? src1: old_dst old_dst
AOP_PREDEC old_dst -1 new_dst
AOP_CMPWR16B [(src016B == old_dst16B) ? src116B : old_dst16B | old_dst16B

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 207

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Programming Note

Context: A64 Untyped Atomic Operation

e src016B is 16 bytes, src116B is 16 Bytes, and old_dst16B is 16 bytes in length.
e AOP_CMPWR16B is not supported for SLM.
e AOP_CMPWR16B addresses must be OWORD-aligned.

Programming Note

Context: [A64 Untyped Atomic Operation

AOP_CMPWR16B is not supported.

Programming Note

Context: A64 Untyped Atomic Operation

imax/imin assume operands are signed 64-bit integers; umax/umin assume operands are unsigned integers. All
other operations treat all values as 64-bit unsigned integers. Add and subtract operations wrap without any
special indication.

The following atomic operations are available for DWORD data size, along with the specific operation
performed for each and the return value:

Atomic Operation new_dst ret
AOP_AND old_dst & src0 old_dst
AOP_OR old_dst | srcO old_dst
AOP_XOR old_dst ” src0 old_dst
AOP_MOV src0 old_dst
AOP_INC old_dst + 1 old_dst
AOP_DEC old_dst -1 old_dst
AOP_ADD old_dst + srcO old_dst
AOP_SUB old_dst — src0 old_dst
AOP_REVSUB srcO — old_dst old_dst
AOP_IMAX imax(old_dst, src0) old_dst
AOP_IMIN imin(old_dst, src0) old_dst
AOP_UMAX umax(old_dst, src0) old_dst
AOP_UMIN umin(old_dst, src0) old_dst
AOP_CMPWR (srcO == old_dst) ? src1 : old_dst old_dst
AOP_PREDEC old_dst -1 new_dst
AOP_CMPWR8B (src08B == old_dst8B) ? src18B : old_dst8B | old_dst8B

208

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Programming Note

Context: A64 Untyped Atomic Operation

e src08B is 8 bytes, src18B is 8 Bytes, and old_dst8B is 8 bytes in length.
e AOP_CMPWRSB is not supported for SLM.
e AOP_CMPWRS8B addresses must be QWORD-aligned.

Programming Note

Context: A64 Untyped Atomic Operation

AOP_CMPWRSB is not supported for A64 SIMD4x2. Use a SIMD8 message for AOP_CMPRW8B.

Programming Note

Context: A64 Untyped Atomic Operation

imax/imin assume operands are signed 32-bit integers; umax/umin assume operands are unsigned integers. All
other operations treat all values as 32-bit unsigned integers. Add and subtract operations wrap without any
special indication.

Programming Note

Context: A64 Untyped Atomic Operation

e Only stateless messages can be used.

e The stateless model support is limited to untyped messages. Furthermore, they are treated as
SURFTYPE_BUFFER and Surface Format of RAW.

e The message header is forbidden in these A64 messages, and the offsets are from a base of absolute 0.

Execution Mask: The low 8 bits of the execution mask determine which QWords/DWords/Bytes are
read into the destination GRF register (for read), or which QWords/DWords/Bytes are written to the
surface (for write).

Canonical address check: If post address computation, bits [63:48] don't match bit [47] then a general
protect fault occurs. If the current mode is a non-faulting mode, this error is treated as out of bounds.

Programming Note

Context: |A64 Untyped Atomic Operation

Writes to overlapping addresses have undefined write ordering.

A64 Untyped Atomic Operation Message Descriptor

Bits Description
13

Return Data Control

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 209

(l n te,l mexperience

what'’s inside”

Bits

Description

Specifies whether return data is sent back to the thread.

Format = Enable

Data Size

This field controls the data size of the operation
Format = U1

0: DWORD size

1: QWORD

11:8

Atomic Operation Type

Specifies the atomic operation to be performed.
0000: 0000: AOP_CMPWR16B / AOP_CMPWRS8B
0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

210

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Message Payload

The message payload consists of the following:

For the read messages, only an address payload is delivered.

For the write messages, an address payload is followed by the write data payload.

For the atomic operation messages, an address payload is followed by the source payload.

The number of message registers in the write data payload is determined by the number of channel
mask bits that are enabled, and the number of message registers in the source payload is determined
by the atomic operation.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 211

(intel"

experience
what'’s inside”

SIMD8 Address Payload

3D Media GPGPU

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameter is U. Each parameter takes one message register. Each parameter always takes a consistent
position in the input payload.

DWord | Bit Description
M1.7 63:0 Slot 3 U address.
M1.6 Specifies the Byte offset of QWord 3
Specifies the Byte offset of DWord 3
Format = U64
Qword Range = [0,00007FFFFFFFFFF8h] or [FFFF800000000000,FFFFFFFFFFFFFFF8N]
Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]
M15 63:0|Slot 2 U Address
M1.4
M1.3 63:0|Slot 1 U Address
M1.2
M1.1 63:0|Slot 0 U Address
M1.0
M2.7 63:0|Slot 7 U Address
M2.6
M2.5 63:0|Slot 6 U Address
M2.4
M2.3 63:0|Slot 5 U Address
M2.2
M2.1 63:0|Slot 4 U Address
M2.0
212

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots. The possible
address parameter is U. Each parameter always takes a consistent position in the input payload.

DWord | Bit Description
M1.7 63:0 |ignored
M1.6
M1.5 63:0 Slot 1 U Address
M1.4 Specifies the U Address for slot 1.
Format = U64

Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.3 63:0 | ignored

M1.2

M1.1 63:0|Slot 0 U Address
M1.0

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 213

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMD8 Source Payload (QWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description
M37 %30 siot 3 Sourcen
M3.6 Specifies Source0 for slot 3.
Format = S63 for AOP_IMAX and AOP_IMIN, U64 for all other operations
M3.5 63:0 | Slot 2 Source0
M3.4
M3.3 63:0|Slot 1 Source0
M3.2
M3.1 63:0 | Slot 0 Source0
M3.0
M4.7 63:0 | Slot 7 Source0
M4.6
M4.5 63:0 | Slot 6 Source0
M4 .4
M43 63:0 | Slot 5 Source0
M4.2
MA4.1 63:0 | Slot 4 Source0
M4.0
M5 Slot3:0 Source1
M6 Slot7:4 Source1

214 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD8 Source Payload (DWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description

M3.7 31:0 Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M3.6 31:0| Slot 6 Source0

M3.5 31:0|Slot 5 Source0

M3.4 31:0|Slot 4 Source0

M3.3 31:0|Slot 3 Source0

M3.2 31:0|Slot 2 Source0

M3.1 31:0|Slot 1 Source0

M3.0 31:0|Slot 0 Source0

M4 Slots 7:0 Source1

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 215

(intel“

SIMDS8 Source Payload (AOP_CMPWR16B Only)

experience
what'’s inside”

DWord | Bit Description
M6.7 31:0 Slot 1 Source0[128:0]

- Specifies Source0[127:0] for slot 1.
M6.4 Format = U128

M6.3 31:0|Slot 0 Source0[127:0]
M6.0

M7 Slot 3:2 Source0

M8 Slot 5:4 Source0

M9 Slot 7:6 Source0

M10 Slot 1:0 Source1

M11 Slot 3:2 Source1

M12 Slot 5:4 Source1

M13 Slot 7:6 Source1

SIMD8 Source Payload (AOP_CMPWRSB Only)

DWord | Bit Description

M6.7 Slot 3 Source0[63:0]

M6.6 Specifies Source0[63:0] for slot 3.
Format = U64

M6.5 Slot 2 Source0[63:0]

M6.4

M6.3 Slot 1 Source0

M6.2

M6.1 Slot 0 Source0

M6.0

M7 Slot 7:4 Source0

M8 Slot 3:0 Source1

M9 Slot 7:4 Source1

216

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD4x2 Source Payload (QWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description
M3.7 63:0 | ignored

M3.6

M35 %39 siot 1 Sourceo

M3.4 Specifies Source0 for slot 1.

Format = S63 for AOP_IMAX and AOP_IMIN, U64 for all other operations

M3.3 63:0|ignored

M3.2

M3.1 63:0 | Slot 0 Source0
M3.0

M4 Slot1:0 Source1

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 217

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

SIMD4x2 Source Payload (DWORD Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description

M3.7 [31:0|ignored

M3.6 [31:0|ignored

M3.5 31:0|Slot 1 Source1

M3.4 31:0 Slot 1 Source0

Specifies Source0 for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M3.3 [31:0|ignored

M3.2 [31:0|ignored

M3.1 31:0| Slot 0 Source1

M3.0 31:0| Slot0 Source0

SIMD4x2 Source Payload (AOP_CMPWR16B Only)

DWord | Bit Description

M6.7 31:0 Slot 1 Source0[128:0]

- Specifies Source0[127:0] for slot 1.

M6.4 Format = U128

M6.3 31:0|Slot 0 Source0[127:0]
M6.0

M7 Slot 1:0 Source1

218 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

SIMD4x2 Source Payload (AOP_CMPWRS8B Only)

DWord | Bit Description

M6.7 ignored

M6.6

M6.5 Slot 1 Source0[63:0]

M6.4 Specifies Source0[63:0] for slot 1.
Format = U64

M6.3 ignored

M6.2

M6.1 Slot 0 Source0

M6.0

M7 Slot 1:0 Source1

Writeback Message

(intel"

experience
what'’s inside”

The following subsections describe the writeback messages for A64 Untyped Atomic operations.

SIMD8 Atomic Operation (QWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 630 Slot 3 Return Data: Specifies the value of the return data for slot 3.
WO0.6 Format = U64

WO0.5 63:0 | Slot 2 Return Data

wWo0.4

W0.3 63:0|Slot 1 Return Data

w0.2

WO.1 63:0 | Slot 0 Return Data

WO0.0

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

219

experience

what'’s inside”

3D Media GPGPU

DWord | Bit Description
W17 63:0 | Slot 7 Return Data

W1.6

W15 63:0 | Slot 6 Return Data

W14

W13 63:0 | Slot 5 Return Data

W1.2

W11 63:0 | Slot 4 Return Data

W1.0

SIMD8 Atomic Operation (DWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord | Bit Description

wo7 1310 Slot 7 Return Data: Specifies the value of the return data for slot 7.
Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

WO0.6 31:0|Slot 6 Return Data

WO0.5 31:0|Slot 5 Return Data

W0.4 31:0|Slot 4 Return Data

WO0.3 31:0|Slot 3 Return Data

W0.2 31:0|Slot 2 Return Data

WO0.1 31:0|Slot 1 Return Data

WO0.0 31:0|Slot 0 Return Data

220

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD8 Atomic Operation (AOP_CMPWR16B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR16B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction
indicates which channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 Slot 1 Return Data[127:0]: Specifies the value of the return data for slot 1.
- Format = U128

WO0.4

W03 Slot 0 Return Data[127:0]

WO0.0

W1 Slot 3:2 Return Data

w2 Slot 5:4 Return Data

w3 Slot 7:6 Return Data

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 221

(intel’“

SIMD8 Atomic Operation (AOP_CMPWRS8B Only)

experience
what'’s inside”

3D Media GPGPU

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

DWord | Bit Description
WO0.7 63:0 Slot 3 Return Data: Specifies the value of the return data for slot 3.
WO0.6 Format = U64

WO0.5 63:0 | Slot 2 Return Data

WO0.4

W0.3 63:0 | Slot 1 Return Data

w0.2

WO.1 63:0 | Slot 0 Return Data

WO0.0

W17 63:0 | Slot 7 Return Data

W1.6

W15 63:0 | Slot 6 Return Data

W14

W13 63:0|Slot 5 Return Data

wW1.2

W11 63:0 | Slot 4 Return Data

W1.0

222

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMD4x2 Atomic Operation (QWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

W0.7 63:0 | reserved

WO0.6

WO0.5 63:0 Slot 1 Return Data: Specifies the value of the return data for slot 1.
WO0.4 Format = U64

W03 63:0 | reserved

w0.2

WO.1 63:0 | Slot 0 Return Data

WO0.0

SIMD4x2 Atomic Operation (DWord)

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the “send” instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

W3.7 [31:0|reserved

W3.6 [31:0(reserved

W3.5 [31:0(reserved

w34 310 Slot 1 Return Data: Specifies the value of the return data for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

W3.3 [31:0(reserved

W3.2 [31:0(reserved

W3.1 [31:0(reserved

W3.0 31:0|Slot 0 Return Data

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 223

(intel’“

SIMD4x2 Atomic Operation (AOP_CMPWR16B Only)

experience
what'’s inside”

3D Media GPGPU

A writeback message is only returned for an Atomic Operation AOP_CMPWR16B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction
indicates which channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 Slot 1 Return Data[127:0]: Specifies the value of the return data for slot 1.
- Format = U128

WO0.4

W03 Slot 0 Return Data[127:0]

WO0.0

SIMD4x2 Atomic Operation (AOP_CMPWRS8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

DWord | Bit Description

W07 63:0 | reserved

WO0.6

WO0.5 630 Slot 1 Return Data: Specifies the value of the return data for slot 1.
WO0.4 Format = U64

W03 63:0 | reserved

w0.2

WO.1 63:0 | Slot 0 Return Data

WO0.0

224

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

A64 Untyped Atomic Float Add Operation

A64 Untyped Atomic Float Add Operation allows direct read/write stateless accesses.
This message supports 2 data sizes: DWORD and QWORD.

These messages use the RAW format, perform no type conversion. It uses just the U address parameter,
which specifies the byte offset, which must be a multiple of 8 for QWORD and a multiple of 4 for
DWORD. The atomic operation messages will only access the first QWORD.

The atomic operation messages cause atomic read-modify-write operations on the “destination”
location addressed. In the table below, the new value of the destination (new_dst) is computed as
indicated based on the old value of the destination (old_dst) and up to two sources included in the
message (src0 and src1). Optionally, a value can be returned by the message (ret).

Programming Note

Context: A64 Untyped Atomic Float Add Operation

e Only stateless message can be used.
e The message header is forbidden these A64 messages, and the offsets are from a base of absolute 0.

Canonical address check: If post address computation, bits [63:48] don't match bit [47] then a General
Protect fault occurs. If the current mode is a non-faulting mode, this error is treated as out of bounds.

Untyped Atomic Float Add Operation Message Descriptor

Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 |Reserved

R Data Size

This field controls the data size of the operation
Format = U1

0: DWORD size

1: QWORD

10:8 | Reserved

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 225

(intel"

experience
what'’s inside”

Message Payload

SIMD8 Address Payload

3D Media GPGPU

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameter is U. The number of parameters required depends on the surface type being accessed. Each
parameter takes one message register. Each parameter always takes a consistent position in the input
payload. The length field can be used to send a shorter message, but intermediate parameters cannot
be skipped as there is no way to signal this.

DWord | Bit Description
M1.7 63:0 Slot 3 U address.
M1.6 Specifies the Byte offset of QWord 3
Specifies the Byte offset of DWord 3
Format = U64
Qword Range = [0,00007FFFFFFFFFF8h] or [FFFF800000000000,FFFFFFFFFFFFFFF8h]
Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]
M15 63:0|Slot 2 U Address
M1.4
M13 63:0|Slot 1 U Address
M1.2
M1.1 63:0|Slot 0 U Address
M1.0
M2.7 63:0|Slot 7 U Address
M2.6
M2.5 63:0|Slot 6 U Address
M2.4
M2.3 63:0|Slot 5 U Address
M2.2
M2.1 63:0|Slot 4 U Address
M2.0
226

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel)

experience
what'’s inside”

SIMD8 Source Payload (QWORD Atomic Operation Message Only)

For the write operation two additional registers (depending on the block size) of payload contain the
data to be written.

The QWord array index is also in units of QWords.

DWord | Bit | Description
M3.7 63:0|Slot 3 SrcO
M3.6

M3.5 63:0|Slot 2 SrcO
M3.4

M3.3 63:0|Slot 1 SrcO
M3.2

M3.1 63:0|Slot 0 SrcO
M3.0

M4.7 63:0|Slot 7 SrcO
M4.6

MA4.5 63:0|Slot 6 SrcO
M4.4

M43 63:0|Slot 5 SrcO
M4.2

MA4.1 63:0|Slot 4 SrcO
M4.0

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 227

(lntel | 3D Media GPGPU
experlence

what'’s inside”

SIMDS8 Source Payload (DWORD Atomic Operation Message Only)

For the write operation two additional registers (depending on the block size) of payload contain the
data to be written.

The DWord array index is also in units of DWords.

DWord | Bit | Description

M3.7 31:0|Slot 7 SrcO

M3.6 31:0|Slot 6 SrcO

M3.5 31:0|Slot 5 SrcO

M3.4 31:0|Slot 4 SrcO

M3.3 31:0|Slot 3 SrcO

M3.2 31:0|Slot 2 SrcO

M3.1 31:0|Slot 1 SrcO

M3.0 31:0|Slot 0 SrcO

Writeback Message

A64 Untyped Surface Read or Write Operation

The A64 untyped surface message, both of which suse the RAW surface format, perform no type
conversions. A raw buffer uses just the U address parameter, which specifies the byte offset, which must
be a multiple of 4.

228 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

For both raw messages up to 4 DWords are accessed beginning at the byte address determined. These

4 DWords correspond to the red, green, blue, and alpha channels in that order with red mapping to the
lowest order DWord.

Programming Note

Context: A64 Untyped Surface Read or Write Operation

Only stateless message can be used. Furthermore, they are treated as SURFTYPE_BUFFER and Surface
Format of RAW.

e For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord-aligned
(low 2 bits must be zero).

The message header is forbidden in these A64 messages, and the offsets are from a base of absolute 0.

Execution Mask:

SIMDS8: The low 8 bits of the execution mask are used to determine which slots are read into the
destination GRF register (for read), or which slots are written to the surface (for write).

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create
two bits used to determine which slots are read into the destination GRF register.

Canonical address check: if post address computation, bits [63:48] don't match bit [47] then a general
protect fault occurs. If the current mode is a non-faulting mode, this error is treated as out of bounds.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 229

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Untyped Surface Read or Write Message Descriptor

Bits

Description

13:12

SIMD Mode
Format = U2
0: SIMD4x2
1: Reserved
2: SIMD8

3: Reserved

11

Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write
message, indicates that alpha is included in the message payload, and that alpha will be written to the
surface.

0: Alpha channel included.
1: Alpha channel not included.
Programming Notes:

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower mask bits
are also zero. This means that the only 4-bit channel mask values allowed are 0000b, 1000b, 1100b, and
1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the 4-bit channel
mask cannot be 1111b).

Blue Channel Mask

Green Channel Mask

Red Channel Mask

Message Payload

The following subsections describe the message payloads for A64 Untyped Surface Read or Write
Operations.

Read or write messages use the SIMD8 Address Payload or the SIMD4x2 Address Payload.

Only write messages use the SIMD8 DWORD Write Data Payload or the SIMD4x2 DWORD Write Data
Payload.

230

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameter is U. Each parameter always takes a consistent position in the input payload. The length field
can be used to send a shorter message, but intermediate parameters cannot be skipped as there is no
way to signal this.

DWord | Bits Description

M1.7 63:0 Slot 3 U Address

M1.6 Specifies the U Address for slot 3.
Format = U64
Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M1.5 63:0|Slot 2 U Address

M1.4

M13 63:0|Slot 1 U Address

M1.2

M1 63:0|Slot 0 U Address

M1.0

M2.7 63:0|Slot 7 U Address

M2.6

M2.5 63:0|Slot 6 U Address

M2.4

M2.3 63:0|Slot 5 U Address

M2.2

M2.1 63:0|Slot 4 U Address

M2.0

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 231

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots. The possible
address parameter is U. Each parameter always takes a consistent position in the input payload. The
length field can be used to send a shorter message, but intermediate parameters cannot be skipped as
there is no way to signal this.

DWord | Bits Description
63:0 | Ignored

M1.7
M1.6

M1.5 63:0 Slot 1 U Address

M1.4 Specifies the U Address for slot 1.
Format = U64
Dword Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]

M13 63:0 | Ignored

M1.2

M1.1 63:0|Slot 0 U Address

M1.0

232 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

SIMD8 DWORD Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord | Bits Description

M3.7 1310 610t 7 Red

Specifies the value of the red channel to be written for slot 7.
For Untyped messages:

Format = 32 bits raw data.

M3.6 |31:0(Slot 6 Red

M3.5 |31:0(Slot 5 Red

M3.4 |31:0(Slot 4 Red

M3.3 |31:0(Slot 3 Red

M3.2 |31:0(Slot 2 Red

M3.1 |31:0(Slot 1 Red

M3.0 |31:0(Slot 0 Red

M4 Slots 7:0 Green
M5 Slots 7:0 Blue
M6 Slots 7:0 Alpha

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 233

(lntel' | 3D Media GPGPU
experlence

what'’s inside”

SIMD4x2 DWORD Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages.

DWord | Bits Description

M2.7 1310 Slot 1 Alpha

Specifies the alpha channel value to write for slot 1.
For Untyped messages:

Format = 32 bits raw data.

M2.6 [31:0|Slot 1 Blue

M2.5 [31:0(Slot 1 Green

M2.4 [31:0(Slot 1 Red

M2.3 |31:0(Slot 0 Alpha

M2.2 |[31:0|Slot O Blue

M2.1 [31:0(Slot 0 Green

M2.0 |31:0(Slot 0 Red

Writeback Message

For A64 Untyped Surface Read or Write operations the writeback messages are SIMD8 DWORD Read
and SIMD4x2 DWORD Read.

234 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

SIMD8 DWORD Read

A SIMD8 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1,
and alpha to regid+2 and regid+3. The slots written within each destination register are determined by
the execution mask on the “send” instruction.

DWord | Bits Description

WO.7 13101 §10t 7 Red: Specifies the value of the red channel for slot 7.

For Untyped messages:

Format = 32 bits raw data.

WO0.6 |31:0|Slot 6 Red

WO0.5 |31:0(Slot 5 Red

WO0.4 |31:0(Slot 4 Red

WO0.3 |31:0(Slot 3 Red

WO0.2 |31:0(Slot 2 Red

WO0.1 |31:0(Slot 1 Red

WO0.0 |31:0(Slot 0 Red

W1 Slots 7:0 Green
W2 Slots 7:0 Blue
W3 Slots 7:0 Alpha

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 235

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMD4x2 DWORD Read

DWord | Bits Description

W07 1310 Slot 1 Alpha

Specifies the alpha channel value to write for slot 1.
For Untyped messages:

Format = 32 bits raw data.

WO0.6 [31:0{Slot 1 Blue

WO0.5 [31:0Slot 1 Green

WO0.4 [31:0|Slot 1 Red

WO0.3 |31:0(Slot 0 Alpha

WO0.2 |31:0|Slot 0 Blue

WO0.1 |31:0(Slot 0 Green

WO0.0 |31:0|Slot 0 Red

A64 Block Read or Write Operation

Programming Note

Context: |A64 Block Read or Write Operation

e OWord & Dual Oword offsets must be aligned on OWord boundaries.
e Unaligned OWord offsets must be aligned on DWord boundaries.
e HWord offsets must be aligned on HWord boundaries.

Execution Mask (OWord read/write). The low 8 bits of the execution mask are used to enable the 8
channels in the first and third GRF registers returned (WO, W2) for read, or the first and third write
registers sent (M1, M3). The high 8 bits are used similarly for the second and fourth (W1, W3 or M2,
M4). For reads, any mask bit asserted within a group of four will cause the entire OWord to be read and
returned to the destination GRF register. For writes, each mask bit is considered for its corresponding
DWord written to the destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or
the high 4 bits, depending on the position of the OWord to be read or written, is used as the single
group of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two
channels (red and green) of a single scratch register across 16 pixels. A second message would access
the other two channels (blue and alpha). The execution mask is used to ensure that data associated with
inactive pixels are not overwritten.

Execution Mask (Dual Oword read/write). The low 8 bits of the execution mask are used to enable
the 8 channels in the GRF registers returned for read, or each of the write registers sent. For reads, any
mask bit asserted within a group of four causes the entire OWord to be read and returned to the

236 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

destination GRF register. For writes, each mask bit is considered for its corresponding DWord written to
the destination surface.

Execution Mask (Unaligned OWord read/write). The execution mask is ignored by this message sub
type.

Execution Mask (HWord read/write). The low 8 bits of the execution mask are used to enable the 8
channels in the first and third GRF registers returned (W0, W2) for read, or the first and third write
registers sent (M1, M3). The high 8 bits are used similarly for the second and fourth (W1, W3 or M2,
M4). For reads either any mask bit asserted within a group of four will cause the entire OWord to be
read and returned to the destination GRF register or the mask bit control corresponding DWORD based
on the HWord Read/Write Channel Mode. For writes, either any mask bit asserted within a group of
four will cause the entire OWord to be written or each mask bit is considered for its corresponding
DWord written to the destination surface HWord Read/Write Channel Mode.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or
the high 4 bits, depending on the position of the OWord to be read or written, is used as the single
group of four with behavior following that in the preceding paragraph.

Canonical address check: if post address computation, bits [63:48] don't match bit [47] then a general
protect fault occurs. If current mode is a non-faulting mode, this error is treated as out of bounds.

Message Descriptor

Bits Description

13 |Reserved: MBZ

12:11 Message sub-type:

00: OWord Block Read/Write

01: Unaligned OWord Block Read
10: OWord Dual Block Read/Write
11: HWord Block Read/Write

10:8 | Block Size. Specifies the number of elements transferred. See table below.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 237

(intel"

3D Media GPGPU

experience
what's inside”
r r r F
00 01 10 n
Block Size Oword UnAlgned Oword Oword Dual Hword
F
1 OWord, read nto or 1 OWord, read mlo or
written from the low 123 bits written from the low 128 bats
000 of the destination register of the desiination register reserved reserved
r 1 OWord, read nto or 1 OWord, read mlo or
wriiten fiom the high 128 waitten from the: high 1.28
bats of the destmnation bits of the destmnabion
001 regster Tegster 1 Oword 1 HWord
010 2 OWvords 2 OhVords reserved 2 HWord
"o 4 OWords 4 OWords 4 OWords 4 HwWord
" 100 8 OWords 8 OWords reserved 8 HWord
F
101 reserved reserved reserved reserved
F
110 reserved reserved reserved reserved
T m reserved reserved reserved reserved
Message Header
DWord | Bits Description
MO5 | 31 HWord Read/Write Channel Mode. This field is only used for HWord read/write messages.
0: OWord - Channel enables in effect at the time of ‘send’ are interpreted such that if one or more
are enabled, the read or write operation occurs on all four DWords.
1: DWord — Channel enables in effect at the time of the ‘send’ are used as DWord enables, causing
the read or write operation to occur only on the DWords where the corresponding channel enable
is set.
30:0 | Ignored
MO0.4 |31:0|Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 Block Offset 1. Specifies the Byte offset of OWord Block 1 for OWord Dual reads.
MO0.2 Format = U64
Dual OWord Range = [0,00007FFFFFFFFFFON] or [FFFF800000000000,FFFFFFFFFFFFFFFOR]
MO.1 Block Offset 0. Specifies the Byte offset of Block 0.
MO0.0 Format = U64
Unaliged OWord Range = [0,00007FFFFFFFFFFCh] or [FFFF800000000000,FFFFFFFFFFFFFFFCh]
Dual OWord Range = [0,00007FFFFFFFFFFOh] or [FFFF800000000000,FFFFFFFFFFFFFFFOR]
OWord Range = [0,00007FFFFFFFFFFON] or [FFFFB00000000000,FFFFFFFFFFFFFFFOR]
HWord Range = [0,00007FFFFFFFFFEON] or [FFFF800000000000,FFFFFFFFFFFFFFEOR]
238 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Message Payload (OWord Write)

For the write operation, the message payload consists of one, two, or four registers (not including the
header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

DWord | Bits Description

M1.7:4 [127:0| OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of the
destination, OWord[Offset] appears in this location.

M1.3:0 | 127:0 | OWord[Offset]

M2.7:4 | 127:0 | OWord[Offset+3]

M2.3:0 | 127:0 | OWord[Offset+2]

M3.7:4 | 127:0 | OWord[Offset+5]

M3.3:0 | 127:0 | OWord[Offset+4]

M4.7:4 | 127:0 | OWord[Offset+7]

M4.3:0 | 127:0 | OWord[Offset+6]

Writeback Message (OWord Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending
on the Block Size specified in the message. For the one-constant case, data is placed in either the high
or low half of the returned register depending on the half selected in Block Size. In this case, the other
half of the register is not changed.

DWord | Bits Description

WO0.7:4 | 127:0 | OWord[Offset+1]. If the block size is T OWord to be loaded into the high 128 bits of the
destination, OWord[Offset] appears in this location.

WO0.3:0 | 127:0 | OWord[Offset]

W1.7:4 [127:0 | OWord[Offset+3

W1.3:0 [127:0 | OWord[Offset+2

W2.7:4 [127:0 | OWord[Offset+5

]
]
]
|

W3.7:4 [127:0 | OWord[Offset+7]

[
[
W2.3:0 [127:0 | OWord[Offset+4
[
[

W3.3:0 [127:0 | OWord[Offset+6]

Writeback Message (Unaligned OWord Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 239

(intel’“

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Description

WO0.7:4

127:0

OWord1 = *(&0OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits of
the destination, OWord0 appears in this location.

W0.3:0

127:0

OWord0 = *Offset

W1.7:4

127:0

OWord3 = *(&0OWord2 + 1)

W1.3:0

127:0

OWord2 = *(&0OWord1 + 1)

W2.7:4

127:0

OWord5 = *(&0OWord4 + 1)

W2.3:0

127:0

OWord4 = *(&0OWord3 + 1)

W3.7:4

127:0

OWord7 = *(&0OWord6 + 1)

W3.3:0

127:0

OWord6 = *(&0OWord5 + 1)

Message Payload (Dual OWord Write)

For the write operation, the message payload consists of one or four registers (not including the header
or the first part of the payload) depending on the Block Size specified in the message.

DWord

Bits

Description

M2.7:4

127:0

OWord[Offset1]

M2.3:0

127:0

OWord[Offset0]

M3.7:4

127:0

OWord[Offset1+1]

M3.3:0

127:0

OWord[Offset0+1]

M4.7:4

127:0

OWord[Offset1+2]

M4.3:0

127:0

OWord[Offset0+2]

M4.7:4

127:0

OWord[Offset1+3]

M4.3:0

127:0

OWord[Offset0+3]

Writeback Message (Dual Oword Read)

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

DWord

Bits

Description

WO0.7:4

127:0

OWord[Offset1]

WO0.3:0

127:0

OWord[Offset0]

W1.7:4

127:0

OWord[Offset1+1]

W1.3:0

127:0

OWord[Offset0+1]

W2.7:4

127:0

OWord[Offset1+2]

W2.3:0

127:0

OWord[Offset0+2]

W3.7:4

127:0

OWord[Offset1+3]

W3.3:0

127:0

OWord[Offset0+3]

240

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Message Payload (HWord Write)

The table below illustrates the write payload for a message of block size = 4.

DWord | Bits Description

M1.7:0 | 255:0 | HWord[Offset]

M2.7:0 | 255:0 | HWord[Offset+1]

M3.7:0 | 255:0 | HWord[Offset+2]

M3.7:0 | 255:0 | HWord[Offset+3]

Writeback Message (HWord Read)

The table below illustrates an example where 4 HWords are read through a scratch block read.

DWord | Bits Description

WO0.7:0 [255:0 | HWord[Offset]

W1.7:0 [255:0 | HWord[Offset+1]

[

[
W2.7:0 [255:0 | HWord[Offset+2]
W3.7:0 [255:0 | HWord[Offset+3]

Untyped Atomic Float Add Operation

Untyped Atomic Operation allows direct read/write accesses to surfaces. The categories of surface:

Raw buffer (untyped). These surfaces are of type SURFTYPE_BUFFER and have a surface format of
RAW and a surface pitch of 1 byte. Supported via the data cache data port.

Structured buffer (untyped). These surfaces are of type SURFTYPE_STRBUF and have a surface format
of RAW. Supported via the data cache data port.

This message supports 2 data sizes: Single Precision (DWORD) and Double Precision (QWORD).

The untyped surface categories, both of which use the RAW surface format, perform no type
conversion. A raw buffer uses just the U address parameter, which specifies the byte offset into the
surface, which must be a multiple of 8 for QWORD and a multiple of 4 for DWORD. For structured
buffers, the U parameter is the index into an array of structures and the V parameter is the actual byte
offset into the structure instance at index U, which must be DWord/QWord aligned as the case may be.
The atomic operation messages only access the first QWord or DWord.

The atomic operation messages cause atomic read-modify-write operations on the destination location
addressed. The new value of the destination (new_dest) is computed based on the old value of the
destination (old_dest) by adding to it the source value (src0) included in the message. Optionally, the
old value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that
no read or write to the same memory location from this thread or any other thread can occur between
the read and the write.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 241

(lntel" | 3D Media GPGPU
eXpE”enCe

what's inside”
Execution Mask:

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from
the message header and the resulting mask is used to determine which slots are read into the
destination GRF register (for read), or which slots are written to the surface (for write). If the header is
not present, only the execution mask is used.

SIMDS8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from
the message header. The resulting mask is used to determine which slots are read into the destination
GREF register (for read), or which slots are written to the surface (for write). If the header is not present,
only the low 8 bits of the execution mask are used.

Out-of-Bounds Accesses: Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Programming Note

Context: Untyped Atomic Float Add Operation

e Writes to overlapping addresses will have undefined write ordering.

e The stateless model support is restricted to SURFTYPE_BUFFER and Surface Format of RAW. The bounds
checking for the stateless message is 4GB overflow and < General State upper bound.

242 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Untyped Atomic Float Add Operation Message Descriptor

Bit

Description

13

Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12

SIMD Mode
Format = U1
0: SIMD16
1: SIMD8

11

Data Size

This field controls the data size of the operation
Format = U1

0: DWORD size

1. QWORD

10:8

Reserved

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

243

(intel"

3D Media GPGPU

experience
what'’s inside”

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,
where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)
calculations, but the corresponding slot on the surface must not be accessed.

DWord | Bit Description
MO0.7 [31:16|Ignored
15:0 | Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for SIMD16 and
SIMD8 messages. All 16 bits are used for SIMD16 messages. For untyped SIMD8 messages, the
low 8 bits of this field are used.
If the header is not delivered, this field defaults to all ones. The field is ignored for SIMD4x2
messages.
MO0.6 | 31:0 |Ignored
MO0.5 | 31:0 |Immediate Buffer Base Address. [CHV, BSW] Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This pointer
is relative to the General State Base Address.
Format = GeneralStateOffset[31:10]
MO0.4 | 31:0 |Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 | 31:0 |Ignored
M0.2 | 31:0 |Ignored
MO0.1 | 31:0 |Ignored
MO0.0 | 31:0 |Ignored
244 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Message Payload

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible
address parameters are U and V (since SIMD16 is only supported with untyped messages). The number
of parameters required depends on the surface type being accessed. Each parameter takes two
message registers. Each parameter always takes a consistent position in the input payload. The length
field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this.

Programming Note

Context: SIMD16 Address Payload

For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent. If V is
sent, it is ignored.

DWord | Bit Description

M1.7 |31:0|Slot 7 U Address
Specifies the U Address for slot 7.
Format = U32

M1.6 |31:0|Slot 6 U Address

M1.5 |31:0|Slot 5 U Address

M1.4 |[31:0(Slot 4 U Address

M1.3 [31:0(Slot 3 U Address

M1.2 |31:0|Slot 2 U Address

M1.1 |31:0|Slot 1 U Address

M1.0 [31:0[Slot 0 U Address

M2.7 |31:0|Slot 15 U Address

M2.6 [31:0(Slot 14 U Address

M2.5 [31:0(Slot 13 U Address

M2.4 |31:0|Slot 12 U Address

M2.3 [31:0Slot 11 U Address

M2.2 [31:0Slot 10 U Address

M2.1 [31:0[Slot 9 U Address

M2.0 [31:0(Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 245

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

SIMDS8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameters are U, V. The number of parameters required depends on the surface type being accessed.
Each parameter takes one message register. Each parameter always takes a consistent position in the
input payload. The length field can be used to send a shorter message, but intermediate parameters
cannot be skipped as there is no way to signal this.

Programming Note

Context: SIMD8 Address Payload

e For untyped messages of surface type SURFTYPE_BUFFER, either U only can be sent or U and V can be sent.
If Vis sent it is ignored.

e For untyped messages of surface type SURFTYPE_STRBUF, both U and V must be sent.

DWord | Bit Description

M1.7 |31:0|Slot 7 U Address
Specifies the U Address for slot 7.
Format = U32

M1.6 [31:0[Slot 6 U Address

M1.5 [31:0[Slot 5 U Address

M1.4 |[31:0(Slot 4 U Address

M1.3 [31:0(Slot 3 U Address

M1.2 [31:0(Slot 2 U Address

M1.1 [31:0[Slot 1 U Address

M1.0 [31:0(Slot 0 U Address

M2 Slots 7:0 V Address

SIMD16/SIMD8 DWORD Source Payload

Either one or two additional registers (depending on the SIMD mode) of payload contain the sources to
be used.

DWord | Bit Description

M3.7 [31:0DWord[slot7]

M3.6 |31:0| DWord[slot6]

M3.5 |31:0| DWord[slot5]

M3.4 |31:0| DWord[slot4]

M3.3 |31:0| DWord[slot3]

M3.2 |31:0| DWord[slot2]

M3.1 [31:0| DWord[slot1]

246 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

DWord | Bit Description

M3.0 |31:0| DWord[slot0]

M4.7 |31:0 | DWord[slot15]. This message register is included only for SIMD16.

M4.6 |31:0| DWord[slot14]

M4.5 |31:0| DWord[slot13]

M4.4 |31:0| DWord[slot12]

M4.3 |31:0| DWord[slot11]

M4.2 |31:0| DWord[slot10]

M4.1 |31:0| DWord[slot9]

M4.0 |31:0| DWord[slot8]

SIMD16/SIMD8 QWORD Source Payload

Either two or four additional registers (depending on the SIMD mode) of payload contain the sources to
use.

DWord | Bits Description

M3.7 [63:0 | QWord][slot3]
M3.6

M3.5 [63:0|QWord]slot2]
M3.4

M3.3 [63:0|QWord][slot1]
M3.2

M3.1 [63:0 | QWord[slot0]
M3.0

M4.7 [63:0 | QWord][slot7]
M4.6

M4.5 [63:0 | QWord[slot6]
M4 .4

M4.3 [63:0 | QWord][slot5]
M4.2

M4.1 |63:0| QWord][slot4]
M4.0

M5 Qword[slot11:slot8]. This register is only included for SIMD16.

M6 Qword[slot15:slot12]. This register is only included for SIMD16.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 247

(intel’“

experience
what'’s inside”

Writeback Message

SIMD16 SIMD8 DWORD Atomic Float Add

3D Media GPGPU

DWord

Bit

Description

WO0.7

31:0

DWord[slot7]

WO0.6

31:0

DWord[slot6]

WO0.5

31:0

DWord[slot5]

wo.4

31:0

DWord[slot4]

WO0.3

31:0

DWord[slot3]

WO0.2

31:0

DWord[slot2]

WO.1

31:0

DWord[slot1]

WO0.0

31:0

DWord[slot0]

W1.7

31:0

DWord[slot15]. This message register is included only for SIMD16.

W1.6

31:0

DWord[slot14]

W1.5

31:0

DWord[slot13]

W14

31:0

DWord[slot12]

W1.3

31:0

W1.2

31:0

DWord[slot10]

Wi1.1

31:0

DWord[slot9]

W1.0

31:0

[
[

[
DWord[slot11]
[

[

[

DWord[slot8]

SIMD16/SIMD8 QWORD Atomic Float Add

DWord | Bit Description
WO0.7 63:0 | QWord[slot3]
WO0.6

WO0.5 63:0 | QWord]slot2]
W0.4

WO0.3 63:0 | QWord]slot1]
WO0.2

WO0.1 63:0 | QWord[slot0]
WO0.0

W1.7 63:0 | QWord[slot7]
W1.6

W1.5 63:0 | QWord[slot6]
W1.4

w13 63:0 | QWord[slot5]
W1.2

W1.1 63:0 | QWord[slot4]
248

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord | Bit Description

W1.0

W2 Qword[slot11:0ffset8]. This register is only included for SIMD16.
W3 Qword[slot15:0ffset12]. This register is only included for SIMD16.

Read Surface Info

This message is used to determine information about a surface.

Message Descriptor

Bits

Description

13:8

Reserved

Address Payload

DWord | Bits | Description
M1.7 [31:0| Reserved
M1.6 [31:.0| Reserved
M1.5 [31:0| Reserved
M14 [31:.0| Reserved
M1.3 [31:0|LOD Address
M1.2 [31:0| R Address
M1.1 [31:0| V Address
M1.0 [31:0] U Address

Writeback Message

(intel“

experience
what'’s inside”

DWo | Bit
rd | s Description
WO0.7 [31:|Instruction |Instruction Instruction Base | Instruction Instruction Instruction Instruction
0 [Base Base Address | Address Base Address | Base Address | Base Address | Base
Address [63:32] [63:32] [63:32] [63:32] [63:32] Address
[63:32] [63:32]
WO0.6 [31:|Instruction |Instruction Instruction Base | Instruction Instruction Instruction Instruction
0 [Base Base Address | Address Base Address | Base Address | Base Address | Base
Address [31:0] [31:0] [31:0] [31:0] [31:0] Address
[31:0] [31:0]
WO0.5 | 31:
0
W0.4 | 31:
0
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 249

(lntel"'

experience
what'’s inside”

3D Media GPGPU

DWo | Bit
rd s Description
WO0.3 |31:
0
WO0.2 |31:
0
WO0.1 |31:
0
WO0.0 | 31:
0
W1.7 [31:
0
W1.6 |31:
0
W1.5|31: 0 Surface Surface Format |Surface Surface Surface Surface
0 Format Format Format Format Format
W1.4 |31:|SURFTYPE_ |SURFTYPE_ST | SURFTYPE_BUFF [SURFTYPE_C [SURFTYPE_3 |SURFTYPE_2 |SURFTYPE_1
0 [NULL (7h) |RBUF (5h) ER(4h) UBE (3h) D (2h) D (1h) D (Oh)
W1.3 [31: 0 0 0 MIPCount MIPCount MIPCount MIPCount
0
W1.2 |31 0 0 0 Surface Array (Depth+1)> Surface Array 0
0 X >LOD X
Depth+1:0 Depth+1:0
W1.1 [31: 0 (Height+1)> 0 (Height+1)> |[(Height+1)> |(Height+1)> Surface
0 >LOD >LOD >LOD >LOD
Array ?
Depth+1:0
W1.0 |31: 0 (Width+1)>> [(Width+1)>>LO | (Width+1)>> | (Width+1)>> | (Width+1)>> | (Width+1)>
0 LOD D LOD LOD LOD >LOD

The 64-bit Instruction Base Address is specified as a 48-bit state base address and is extended to 64 bits
in HW. It is reflected here so SW can read it for conversion of 64-bit instruction pointers.

LOD Information

The LOD is in-bounds if LOD < MIPCount and if MinLOD + LOD < 15. If LOD is not in-bounds then 0 is returned

for the width, height, and depth values.

250

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Transpose Read

This message enables a rectangular block of DWords to be read from the source surface and written
into the GRF.

Programming Note

Context: Transpose Read

Accesses are allowed to SURFTYPE_NULL, reads return 0 and writes are ignored.
e The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the stateless
surface model is not supported with this message.

e The raw data from the surface is returned to the thread without any format conversion nor filtering
operation.

e The target cache must be the data cache.

e The surface base address must be 32-byte aligned.

e The surface width must a multiple of DWORDs.

e The only tiling modes supported are: Tile Y and Linear.

e The only tiling modes supported are: Tile Y and Linear.

e The block width must be 1, 2, 4, or 8 DWORDs.

e The X Offset must be a multiple of the block width in bytes.
e The surface format must be 32 bpp (DWORD).

o Vertical stride, offset and boundary clamping modes from surface state are supported.
e The block height must be 1, 2, 4, or 8 rows.

e The Y Offset must be a multiple of the block height.

e Pitch must be a multiple of 64 bytes when the surface is linear.

Applications:
Block reads/writes for media.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is read is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the
nearest edge of the surface and the pixel in the position being returned.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 251

(l n te,' l\experience

3D Media GPGPU

what'’s inside”

Message Descriptor

Bits | Description

13:8 | Reserved

Message Header

DWord | Bits Description
MO0.5 | 31:8 |Ignored
7:0 [FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is
used to free up resources used by the thread upon thread completion.
MO0.4 | 31:0 |Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 | 31:0 |Ignored
MO0.2 |31:22]|Ignored
21:20 . N .
Block Height. Height in rows of block being accessed.
Value Block Height (Rows)
0 1
1 2
2 4
3 8
Format = U2
Range = [0,3] representing 1 to 8 rows
19:2 |Ignored
10| Block Width. Width in DWORDs of block being accessed.
Value Block Width (DWORDs)
0 1
1 2
2 4
3 8
Format = U2
Range = [0,3] representing 1 to 8 DWORDs
MO0.1 | 31:0 . ;
Y offset. The Y offset (in rows) of the upper left corner of the block into the surface.
252 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel“

experience
what'’s inside”

DWord | Bits Description
Format = S31
Programming Note:
This field must be a multiple of the block height.
M0.0 | 31:0

X offset. The X offset (in bytes) of the upper left corner of the block into the surface.

Format = S31

Programming Notes:

This field must be a multiple of Block Width.

Must be DWord aligned.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

253

(intel"

experience
what'’s inside”

Writeback Message

DWord

Bits

Description

WO0.7

31:0

DWord[XOffset+0,YOffset+7]

WO0.6

31:0

DWord[XOffset+0,YOffset+6]

WO0.5

31:0

DWord[XOffset+0,YOffset+5]

Wo0.4

31:0

DWord[XOffset+0,YOffset+4]

WO0.3

31:0

DWord[XOffset+0,YOffset+3]

WO0.2

31:0

DWord[XOffset+0,YOffset+2]

WO.1

31:0

DWord[XOffset+0,YOffset+1]

WO0.0

31:0

DWord[XOffset+0,YOffset+0]

W1.7

31:0

DWord[XOffset+1,YOffset+7]

W1.6

31:0

DWord[XOffset+1,YOffset+6]

W1.5

31:0

DWord[XOffset+1,YOffset+5]

wW1.4

31:0

DWord[XOffset+1,YOffset+4]

W1.3

31:0

DWord[XOffset+1,YOffset+3]

W1.2

31:0

DWord[XOffset+1,YOffset+2]

Wi1.1

31:0

DWord[XOffset+1,YOffset+1]

W1.0

31:0

DWord[XOffset+1,YOffset+0]

W7.7

31:0

DWord[XOffset+7,YOffset+7]

W7.6

31:0

DWord[XOffset+7,YOffset+6]

W7.5

31:0

DWord[XOffset+7,YOffset+5]

W7.4

31:0

DWord[XOffset+7,YOffset+4]

W7.3

31:0

DWord[XOffset+7,YOffset+3]

W7.2

31:0

DWord[XOffset+7,YOffset+2]

W7.1

31:0

DWord[XOffset+7,YOffset+1]

W7.0

31:0

—_, == === | |

DWord[XOffset+7,YOffset+0]

Scratch Block Read or Write

3D Media GPGPU

This message performs a read or write operation of between 1 and 4 SIMD8 registers to an HWord
aligned offset to scratch memory. The HWord offset into the scratch memory is provided in the
message descriptor, allowing a single instruction read|write block operation in a single source
instruction. 12 bits are provided for the HWord offset, allowing addressing of 4K Hword locations

(128KB).

Two modes of channel-enable interpretation are provided: DWord, which support a SIMD8 or SIMD16
DWord channel-serial view of a register, and OWord, which supports a SIMD4x2 view of a register. For

254

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

operations using SIMD32 processing, two messages should be used, with one of them indicating 'H2' to
select the upper 16b of the execution mask.

This message type can only be used with stateless model memory access. Thus binding table entry OxFF
is hard-coded into the execution of this message.

Applications: Scratch space reads/writes for register spill/fill operations.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth registers (W1, W3 or M2, M4).

For DWord mode, the execution mask delivered with the message dictates DWord-based control of
read or write operations. For OWord mode, any one or more asserted bits within the OWord's
corresponding execution mask nibble causes read or write operations to occur across all four DWords
of the OWord regardless of the setting of any particular DWord'’s bit.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and do not modify memory contents.

Programming Note

Context: | Scratch Block Read or Write

Out-of-Bounds check is disabled.

Message Descriptor

Bits Description

17 |Operation Type: 0 = Read, 1 = Write

16 Channel Mode:

0: OWord - Channel enables in effect at the time of ‘'send’ are interpreted such that, if one or more are
enabled, the read or write operation occurs on all four DWords.

1: DWord - Channel enables in effect at the time of the ‘send’ are used as DWord enables, causing the
read or write operation to occur only on the DWords whose corresponding channel enable is set.

15 |Reserved: MBZ.

14 |Reserved: MBZ

13:12 Block Size. Indicates the number of SIMD8 registers to be read or written:

00: 1 register
01: 2 registers
10: 4 registers

11: 8 registers

11:0 [Offset. A 12-bit HWord offset into the memory Immediate Memory buffer as specified by binding table
OxFF.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 255

(intel"

experience
what'’s inside”

Message Header

3D Media GPGPU

DWord | Bits Description
MO0.7 |31:16|Ignored
15:0 |Ignored

MO0.6 | 31:0 |Ignored

MO.> | 31:0 Immediate Buffer Base Address. Specifies the surface base address for messages in which the
Binding Table Index is 255 (stateless model); otherwise this field is ignored. This pointer is relative
to the General State Base Address.
Format = GeneralStateOffset[31:10]

MO0.4 | 31:0 |Ignored

MO0.3 | 31:0 |Ignored

MO0.2 | 31:0 |Ignored

MO0.1 | 31:0 |Ignored

MO0.0 | 31:0 |Ignored

Message Payload (Write)

The table below illustrates the write payload for a message of block size = 4.

DWord

Bits

Description

M1.7:0

255:0

HWord[Offset]

M2.7:0

255:0

HWord[Offset+1]

M3.7:0

255:0

HWord[Offset+2]

M3.7:0

255:0

HWord[Offset+3]

Message Payload (Read)

Read only requires a message header and has no message address payload.

Writeback Message (Read)

The table below illustrates an example where 4 HWords are read through a scratch block read.

DWord

Bits

Description

WO0.7:0

255:0

HWord[Offset]

W1.7:0

255:0

HWord[Offset+1]

W2.7:0

255:0

HWord[Offset+2]

W3.7:0

255:0

HWord[Offset+3]

256

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”
Memory Fence

A memory fence message issued by a thread causes further messages issued by the thread to be
blocked until all previous messages issued by the thread to that data port (data cache or render cache)
have been globally observed from the point of view of other threads in the system. This includes both
read and write messages.

Data is called globally observable by other threads in the system when the data values written to the
memory or data cache will now be returned by other threads' read messages when using that same
data port. To read globally observable data that was written to a different data port, the thread issuing
the data port read message needs to flush its cache (using a memory fence or pipe control) after the
program knows that the writing thread issued the memory fence that ensured the global observability.

The memory fence message has an optional commit writeback message. The commit is sent only after
all previous messages by this thread to that data port have been globally observed. This writeback can
be used by threads to ensure that a fence is honored across both data ports, as each data port's
memory fence only honors the corresponding data port messages.

Notes

CHV, BSW supports page faulting on some data cache operations. In the event of a page fault condition, the
global observability of other data port operations may impacted. For a thread to ensure that typed or untyped
UAV accesses are visible to other threads, the memory fence message is used with the Commit Enable control to
ensure that all page fault conditions in this thread have been handled. When the writeback message is returned to
the thread, then any page fault conditions have been handled and the memory is globally observable to other
threads. The normal usage is to issue a memory fence, source the writeback register, and then issue a gateway
barrier message to release other threads to use the memory data. By using the writeback register from the fence
message before issuing the next memory operation, the program guarantees that the fence has completed before
the next data port message is issued.

Programming Note

Context: Memory Fence

The writeback message returned with Commit Enable does not properly ensure that all page fault conditions in
this thread have been handled. The workaround is to replace the memory fence message commit enable with the
following two messages in this sequence:

e Memory Fence message without Commit Enable

e Read Surface Info message (which returns data in a writeback message)

After the Read Surface Info writeback message is received by the thread, then all page fault conditions in this
thread have been handled.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 257

experience
what'’s inside”

(intel)‘ 3D Media GPGPU

Message Descriptor

Bits Description

13 Commit Enable

Specifies whether the commit is returned to the thread after the fence has been honored.

Format = Enable

12 L3_Flush_RW Data

If enabled causes the L3 to flush any RW data.
If disabled RW data is not flushed.

1 L3_Flush_Constant_Data
If enabled causes the L3 to flush any Constant data.
If disabled Constant data is not flushed.

10 L3_Flush_Texture_Data
If enabled causes the L3 to flush any Texture data.
If disabled Texture data is not flushed.

9

L3_Flush_Instructions
If enabled causes the L3 to flush any Instructions.

If disabled Instructions are not flushed.

8 |Reserved: MBZ

Programming Note

Context: I Message Descriptor

Only one of the Flush controls (bits 12:9) may be specified per message.

Programming Note

Context: | Message Descriptor

The Flush controls (bits 12:9) are ignored.

Programming Note

Context: Message Descriptor

The L3 has a few different partitioning schemes. In some cases RW data, Constant data and/or texture data can be
mixed in the same partition. If a flush is needed for any data type in the partition then the entire partition is
flushed.

258 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Programming Note

Context: | Message Descriptor

The flushing of L3 is normally not needed. It is provided primarily to support workarounds, if needed.

Programming Note

Context: | Message Descriptor

SFID_DP_DCO & SFID_DP_DC1 (unless forced non-coherent) are normally IA-coherent. Therefore no additional
actions are needed by SW to ensure coherence. However, SW must use the memory fence (descriptor bits [12:8]
can be all 0) to ensure that all memory cycles are visible throughout the memory hierarchy.

Message Header

The fence messages consist of a single phase, and is completely ignored. The message length is always
one.

DWord | Bits | Description

MO0.7:0 |31:0[Ignored

Writeback Message

The writeback message is only sent if Commit Enable in the message descriptor is set. The destination
register is not modified. Memory fence messages without Commit Enable set do not return anything to
the thread (response length is 0 and destination register is null).

DWord | Bits | Description

WO0.7:0 Reserved

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 259

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Pixel Data Port

Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given
application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other
purposes.

The cache to use is selected by the shared function accessed.

Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets
support a large set of surface formats (refer to surface formats table in Sampling Engine for details) with
hardware conversion from the format delivered by the thread. The render target message also causes
numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which
normally causes a read of the render target), and other functions. These functions are covered in the
Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned
by the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-
effects that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of
reads and writes to the same pixel does not occur.

Half Precision Render Target Messages

In addition to 32b components (or channels A, R, G and B), 16b components are supported via Message Specific
Descriptor. These messages are referred to as Half Precision Render Target messages. Pyloads for half precision
render target messages are described in the respective sections.

Programming Note

Context: Accessing Render Targets

Half Precision Render Target Write messages do not support UNIT formats.

260 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Message Sequencing Summary

@

This section summarizes the sequencing that occurs for each legal render target write message. All
messages have the MO and M1 header registers if the header is present. If the header is not present, all
registers below are renumbered starting with MO where M2 appears. All cases not shown in this table

are illegal.

Key:

s0, s1 = source 0, source 1

1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

experience
what'’s inside”

oM = oMask
Sourc
e (Sourc
oMas | Dept | e0
Messa k h |Alpha
ge | Prese | Prese | Prese M1 | M1 | M1 | M1
Type nt nt nt M2 (M3 (M4 | M5 | M6 | M7 | M8 | M9 | M10 | 1 2 3 4
000 0 |1/0R [3/2R [1/0G [3/2G |1/0B [3/2B [1/0A |3/2A
000 1 1/0s |3/2s |1/0R [3/2R |1/0G |3/2G [1/0B [3/2B |1/0A |3/2
0A 0A A
000 0 1 0 |1/0R |3/2R |1/0G |3/2G |1/0B |3/2B [1/0A |3/2A |1/0s |[3/2s
z z
000 0 1 1 1/0s |3/2s |1/0R [3/2R |1/0G |3/2G [1/0B [3/2B |1/0A [3/2 |1/0s|3/2s
0A |[O0A A |Z z
000 1 0 |oM |1/0R |3/2R |1/0G |3/2G |1/0B [3/2B |1/0A |3/2A
000 1 1 1/0s |3/2s |oM [1/0R |3/2R |1/0G |3/2G |1/0B |3/2B [1/0 [3/2
oA |[0A A A
000 1 1 0 |oM [1/0R [3/2R [1/0G |3/2G [1/0B |3/2B |1/0A |3/2A |1/0s|3/2s
z z
000 1 1 1 1/0s [3/2s |oM [1/0R |3/2R |1/0G |3/2G |1/0B |3/2B |[1/0 [3/2 |1/0s|3/2s
0A |OA A |A |Z z
001 0 0 0 |RGB
A
001 1 0 0 |oM [RGB
A
010 0 0 0 |1/0s [1/0s [1/0s [1/0s |1/0s [1/0s |1/0s |1/0s
OR |0G (0B 0A [1R 1G 1B 1A
010 0 1 0 |1/0s [1/0s [1/0s [1/0s |1/0s [1/0s |1/0s |1/0s |1/0s
OR |0G (OB 0A |1R 1G 1B 1A |Z
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 261

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Sourc
e Sourc

oMas | Dept | eO0

Messa k h [Alpha

ge Prese | Prese | Prese M1 | M1 | M1 | M1
Type nt nt nt M2 (M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10| 1 2 3 4
010 1 0 0 oM |1/0s |1/0s |1/0s [1/0s |1/0s [1/0s |1/0s |1/0s

OR 0G 0B 0A 1R 1G 1B 1A
010 1 1 0 |oM |1/0s |1/0s |1/0s [1/0s |1/0s |1/0s |1/0s |1/0s |1/0s

OR |0G (OB 0OA |1R 1G 1B 1A |Z

011 0 0 0 3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s
OR 0G 0B 0A 1R 1G 1B 1A

011 0 1 0 |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s [3/2s
OR |0G |[0B [OA [1R [1G |1B 1A |Z

011 1 0 0 |oM |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s [3/2s
OR |0G (OB |[OA |1R 1G |1B 1A

011 1 1 0 |oM |3/2s |3/2s |3/2s |3/2s |3/2s |[3/2s |3/2s |3/2s [3/2s
OR |0G (0B |[OA |1R 1G |1B 1A |Z

100 0 0 0 |R G B A

100 0 0 1 |[sOA |R G B A

100 0 1 0 |R G B A sZ

100 0 1 1 sOA |R G B A sZ

100 1 0 0 oM |R G B A

100 1 0 1 sOA |oM (R G B A

100 1 1 0 oM |R G B A sZ

100 1 1 1 sOA |oM (R G B A sZ

Single Source

The "normal” render target messages are single source. There are two forms, SIMD16 and SIMDS,
intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each
of the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information
can also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of
SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

The single source message does not cause a write to the render target if Dual Source Blend Enable in
3DSTATE_WM is enabled. However, if Last Render Target Select is set, the message still causes pixel
scoreboard clear and depth/stencil buffer updates if enabled.

262 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Dual Source

The dual source render target messages only have SIMD8 forms due to maximum message length
limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each
message contains two colors (4 channels each) for each pixel in the message payload. In addition to the
first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in
the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and antialias
alpha information can also be delivered with these messages.

Each dual source message delivered clears the corresponding pixel scoreboard bits if the Last Render
Target Select bit in the message descriptor is set.

The dual source message reverts to a single source message using source 0 if Dual Source Blend
Enable in 3DSTATE_WM is disabled.

Replicate Data

The replicate data render target message is used for “fast clear” functionality in cases where the color
data for each pixel is identical. This message performs better than the other messages due to its smaller
message length. This message does not support depth, stencil, or antialias alpha data being sent with it.
This message must target only tiled memory. Access of linear memory using this message type is
UNDEFINED. The depth buffer can be cleared through the “early depth” function in conjunction with a
pixel shader using this message. Refer to the Windower chapter for more details on the early depth
function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last
Render Target Select bit is set in the message descriptor.

Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data messages. Each render
target is accessed with a separate Render Target Write message, each with a different surface indicated
(different binding table index). The depth buffer is written only by the message(s) to the last render
target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

Render Target Read and Write

Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters
contained in the message and state, it may also perform a depth and stencil buffer write and/or a
render target read for a color blend operation. Additional operations enabled in the Color Calculator
state are also initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This
message is intended only for use by pixel shader kernels for writing results to render targets.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 263

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Programming Note

Context: Render Target Read and Write

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the surface.
The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input
message to provide an additional coordinate. The Render Target Array Index must be zero for
SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is enabled,
the surface format is further restricted to the set supported as alpha blend render target.

The last message sent to the render target by a thread must have the End Of Thread bit set in the message
descriptor and the dispatch mask set correctly in the message header to enable correct clearing of the pixel
scoreboard.

The stateless model cannot be used with this message (Binding Table Index cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader
kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined
behavior.

The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to
anything other than RTROTATE_ODEG.

This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each
SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same Slot
Group Select setting.

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the
surface. The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input
message to provide an additional coordinate. The Render Target Array Index must be zero for
SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is
enabled, the surface format is further restricted to the set supported as alpha blend render target.

The last message sent to the render target by a thread must have the End Of Thread bit set in the
message descriptor and the dispatch mask set correctly in the message header to enable correct
clearing of the pixel scoreboard.

The stateless model cannot be used with this message (Binding Table Index cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader
kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined
behavior.

264

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to
anything other than RTROTATE_ODEG.

This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each
SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same
Slot Group Select setting.

Project-Specific Restrictions

Programming Note

Context: Render Target Read and Write

Execution Mask. For messages without header, the execution mask for render target messages (sent as part of
the channel enables on the obus sideband) is used to kill pixels.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and do not modify
memory. However, if the Render Target Array Index is out of bounds, it is set to zero and the surface
write is not surpressed.

The following table indicates the surface formats supported by this message with project restrictions
and whether each format supports Alpha Blend.

Surface Format Name Alpha Blend?
R32G32B32A32_FLOAT Yes
R32G32B32A32_SINT No
R32G32B32A32_UINT No
R16G16B16A16_UNORM Yes
R16G16B16A16_SNORM Yes
R16G16B16AT6_SINT No
R16G16B16A16_UINT No
R16G16B16A16_FLOAT Yes
R32G32_FLOAT Yes
R32G32_SINT No
R32G32_UINT No
R16G16B16X16_FLOAT Yes
B8G8RBA8_UNORM Yes
B8G8R8A8_UNORM_SRGB Yes
R10G10B10A2_UNORM Yes
R10G10B10A2_UINT No
R8G8B8A8_UNORM Yes
R8G8B8A8_UNORM_SRGB Yes
R8G8BBA8_SNORM Yes

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 265

(intel')" 3D Media GPGPU

experience
what'’s inside”

Surface Format Name Alpha Blend?
R8G8BBA8_SINT No
R8G8B8AS_UINT No
R16G16_UNORM Yes
R16G16_SNORM Yes
R16G16_SINT No
R16G16_UINT No
R16G16_FLOAT Yes
B10G10R10A2_UNORM Yes
B10G10R10A2_UNORM_SRGB | Yes
R11G11B10_FLOAT Yes
R32_SINT No
R32_UINT No
R32_FLOAT Yes
B8GBR8X8_UNORM Yes
B8GBR8X8_UNORM_SRGB Yes
B5G6R5_UNORM Yes
B5G6R5_UNORM_SRGB Yes
B5G5R5A1_UNORM Yes
B5G5R5A1_UNORM_SRGB Yes
B4G4R4A4_UNORM Yes
B4G4R4A4_UNORM_SRGB Yes
R8G8_UNORM Yes
R8G8_SNORM Yes
R8G8_SINT No
R8G8_UINT No
R16_UNORM Yes
R16_SNORM Yes
R16_SINT No
R16_UINT No
R16_FLOAT Yes
B5G5R5X1_UNORM Yes
B5G5R5X1_UNORM_SRGB Yes
A1B5G5R5_UNORM Yes
A4B4G4R4_UNORM Yes
R8_UNORM Yes
R8_SNORM Yes

266 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Surface Format Name Alpha Blend?
R8_SINT No
R8_UINT No
A8_UNORM Yes
A1B5G5R5_UNORM No
A4B4G4R4_UNORM No
R16G16B16X16_FLOAT No
R32G32B32X32_FLOAT No

SubspanPixel to Slot Mapping

(l n te,l “ experience

what’s inside”

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader
dispatch depending on the number of samples and message size. This table applies to all devices.

NumSamples Support

NumSamples Support

NumSamples = 1X, 2X, or 4X is supported for all projects.

NumSamples = 8X is supported.

Pixels are numbered as follows within a subspan:

0 = upper left
1 = upper right
2 = lower left
3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Slot Mapping
Dispatch Num (SSPI = Starting Sample Pair
Size Samples Index)
SIMD32 1X Slot[3:0] =

Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =
Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] =
Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] =
Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] =
Subspan[4].Pixel[3:0].Sample[0]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

267

(intel’“

experience
what'’s inside”

Slot Mapping
Dispatch Num (SSPI = Starting Sample Pair
Size Samples Index)
Slot[23:20] =
Subspan[5].Pixel[3:0].Sample[0]
Slot[27:24] =
Subspan[6].Pixel[3:0].Sample[0]
Slot[31:28] =
Subspan[7].Pixel[3:0].Sample[0]
2X Slot[3:0] =
Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] =
Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] =
Subspan[1].Pixel[3:0].Sample[0]
Slot[15:12] =
Subspan[1].Pixel[3:0].Sample[1]
Slot[19:16] =
Subspan[2].Pixel[3:0].Sample[0]
Slot[23:20] =
Subspan[2].Pixel[3:0].Sample[1]
Slot[27:24] =
Subspan[3].Pixel[3:0].Sample[0]
Slot[31:28] =
Subspan[3].Pixel[3:0].Sample[1]
ax Slot[3:0] =
Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] =
Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] =
Subspan[0].Pixel[3:0].Sample[2]
Slot[15:12] =
Subspan[0].Pixel[3:0].Sample[3]
Slot[19:16] =
Subspan[1].Pixel[3:0].Sample[0]
Slot[23:20] =
Subspan[1].Pixel[3:0].Sample[1]
Slot[27:24] =
268

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Dispatch
Size

Num
Samples

Slot Mapping
(SSPI = Starting Sample Pair
Index)

Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] =
Subspan[1].Pixel[3:0].Sample[3]

SIMD16

8X

Slot[3:0] =
Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =
Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] =
Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] =
Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] =
Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] =
Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] =
Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] =
Subspan[0].Pixel[3:0].Sample[7]

1X

Slot[3:0] =
Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =
Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] =
Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] =
Subspan[3].Pixel[3:0].Sample[0]

2X

Slot[3:0] =
Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] =
Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] =
Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] =

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel“

experience
what'’s inside”

269

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

Slot Mapping
Dispatch Num (SSPI = Starting Sample Pair
Size Samples Index)

Subspan[1].Pixel[3:0].Sample[1]

Programming Note

Context: SubspanPixel to Slot Mapping

e When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16 messages,
the following must hold:

e All the slots (as described above) must have a corresponding render target write irrespective of the slot's
validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS thread
must send two SIMD8 render target writes to cover all the slots.

e PS thread must send SIMD render target write messages with increasing slot numbers. For example,
SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the first SIMD8 render target
write must send Slot[7:0] and the next one must send Slot[15:8].

Message Descriptor

This section contains descriptors for the render target read and write functions.

Message Descriptor - Render Target Write

Message Header

The render target write message has a two-register message header.

270 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Message Header

DWord | Bits Description
MO0.5 |31:8|Ignored
7:0 | Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.
It is used to free up resources used by the thread on thread completion.
MO0.4 |31:0|Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 [31:0|Ignored
M0.2 |31:.0| . . o . Do o .
Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill instruction
activity in the pixel shader. This mask is used to control actual writes to the color buffer. This field is
ignored by the read message, all pixels are always returned.
The bits in this mask correspond to the pixels as follows:
0|1[4|5]|16]|17]|20]21
21316|7]18|19|22(23
9 (12(13|24|25]|28|29
10111|14|15(26(27|30]31
MO0.1 |31:0 . .
Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row aligned
(Bits 1:0 MB2Z).
Format = S31
M0.0 |31:0

X offset. The X offset of the upper left corner of the block into the surface. This is a pixel offset
assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 271

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Writeback Message (Read)

A SIMD16 writeback message consists of up to 8 destination registers. If a channel/component is not
present in the RT format, the corresponding GRF is filled with zeroes or 1.0 in float/int depending on
whether RGB or Alpha are disabled.

DWord | Bits Description

WO0.7131:0 Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

WO0.6 |31:0|Slot 6 Red

WO0.5 |31:0(Slot 5 Red

WO0.4 |[31:0|Slot 4 Red

WO0.3 |31:0|Slot 3 Red

WO0.2 |31:0|Slot 2 Red

WO0.1 |31:0(Slot 1 Red

WO0.0 |31:0|Slot 0 Red

W1.7 |31:0|Slot 15 Red

W1.6 |31:0(Slot 14 Red

W1.5 |31:0(Slot 13 Red

W14 |31:0(Slot 12 Red

W1.3 |31:0(Slot 11 Red

W1.2 [31:0|Slot 10 Red

W1.1 [31:0|Slot 9 Red

W1.0 |31:0|Slot 8 Red

w2 Slots 7:0 Green
W3 Slots 15:8 Green
w4 Slots 7:0 Blue
W5 Slots 15:8 Blue
W6 Slots 7:0 Alpha
w7 Slots 15:8 Alpha

272 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being filled with zeroes or 1.0 in float/int depending
on whether RGB or Alpha are disabled.

DWord | Bits Description
W07 1310 Slot 7 Red. Specifies the value of the red channel for slot 7.
Format = 32 bits raw data.
WO0.6 |31:0|Slot 6 Red
WO0.5 |31:0|Slot 5 Red
WO0.4 |31:0|Slot 4 Red
WO0.3 |31:0|Slot 3 Red
WO0.2 |31:0(Slot 2 Red
WO0.1 |31:0(Slot 1 Red
WO0.0 |31:0(Slot 0 Red
W1 Slots 7:0 Green
w2 Slots 7:0 Blue
W3 Slots 7:0 Alpha

Header for SIMD8_IMAGE_WRITE

DWord | Bits Description
MO0.5 (31:10(Ignored

98 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng events.
Format: Reserved for HW Implementation Use.

7:0 [FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

MO0.4 | 31:0 |Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 | 31:0 |Ignored
MO0.2 | 31:3 |Ignored

20 Render Target Index. Specifies the render target index that will be used to select blend state
from BLEND_STATE.
Format = U3

MO0.1 | 31:6

ColorCalculatorState Pointer. Specifies the 64-byte aligned pointer to the color calculator state.
This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 273

3D Media GPGPU

experience

what'’s inside”

DWord | Bits Description
For SIMD8_IMAGE_WR message under normal GPGPU usage model, we recommend that SW
program a dummy color-calc state such that all operations controlled by this state are disabled.
5.0 |[Ignored
MO0.0 31 |Ignored
30:27 Viewport Index. Specifies the index of the viewport currently being used.
Format = U4
Range = [0,15]
SIMD8_IMAGE_WR message type this field is ignored by hardware.
26:16 Render Target Array Index. Specifies the array index to be used for the following surface types:
SURFTYPE_1D: specifies the array index. Range = [0,511]
SURFTYPE_2D: specifies the array index. Range = [0,511]
SURFTYPE_3D: specifies the “z" or “r" coordinate. Range = [0,2047]
SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]
SURFTYPE_BUFFER: must be zero.
face | Render Target Array Index
+X 0
-X 1
+y 2
-y 3
+Z 4
-Z 5
Format = U11
The Render Target Array Index used by hardware for access to the Render Target is overridden
with the Minimum Array Element defined in SURFACE_STATE if it is out of the range between
Minimum Array Element and Depth. For cube surfaces, a depth value of 5 is used for this
determination.
For SMD8_IMAGE_WRITE:
For SURFTYPE_2D, this field must be 0.
For SURFTYPE_3D, this field may not be 0 for "Write-3D-Image" operation.
15:8 |Ignored
70 Pixel Masks for SIMD8 messages.
1: Pixel is enabled.
274 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel“

experience
what'’s inside”

DWord

Bits

Description

0: Pixel is disabled. In this case the corresponding (x,y) should be ignored by hardware.

31:16

Y7: y-coordinate for pixel 7
Format = U16

15:0

X7: x-coordinate for pixel 7

Format = U16

M1.6

31:16

Y6: y-coordinate for pixel 6
Format = U16

15:0

X6: x-coordinate for pixel 6

Format = U16

M1.5

31:16

Y5: y-coordinate for pixel 5

Format = U16

15:0

X5: x-coordinate for pixel 5

Format = U16

31:16

Y4: y-coordinate for pixel 4
Format = U16

15:0

X4: x-coordinate for pixel 4

Format = U16

31:16

Y3: y-coordinate for pixel 3
Format = U16

15:0

X3: x-coordinate for pixel 3

Format = U16

31:16

Y2: y-coordinate for pixel 2
Format = U16

15:0

X2: x-coordinate for pixel 2

Format = U16

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

275

(intel’“

what

experience
's inside”

3D Media GPGPU

DWord

Bits

Description

M1.1

31:16

Y1: y-coordinate for pixel 1

Format = U16

15:0

X1: x-coordinate for pixel 1

Format = U16

M1.0

31:16

YO0: y-coordinate for pixel 0
Format = U16

15:0

XO0: x-coordinate for pixel 0

Format = U16

276

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Source 0 Alpha Payload

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if
present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are not
supported for dual source messages.

DWord | Bit Description

M2.7 310 Source 0 Alpha for Slot 7

Format = IEEE_Float

This and the next register is only included if Source 0 Alpha Present bit is set.

M2.6 [31:0[Source 0 Alpha for Slot 6

M2.5 [31:0Source 0 Alpha for Slot 5

M2.4 [31:0[Source 0 Alpha for Slot 4

M2.3 [31:0|Source 0 Alpha for Slot 3

M2.2 [31:0Source 0 Alpha for Slot 2

M2.1 31:0 | Source 0 Alpha for Slot 1

M2.0 [31:0Source 0 Alpha for Slot 0

M3.7 [31:0|Source 0 Alpha for Slot 15

M3.6 [31:0|Source 0 Alpha for Slot 14

M3.5 [31:0|Source 0 Alpha for Slot 13

M3.4 [31:0|Source 0 Alpha for Slot 12

M3.3 [31:0|Source 0 Alpha for Slot 11

M3.2 [31:0|Source 0 Alpha for Slot 10

M3.1 31:0| Source 0 Alpha for Slot 9

M3.0 [31:0|Source 0 Alpha for Slot 8

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 277

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

oMask Payload

The oMask payload, if present, follows source 0 alpha. The value of ‘p’ depends on whether the header
and source 0 alpha are present.

Sample "n" for that pixel will be killed (not written to the render target or depth buffer) if bit “n” of the
oMask is zero. Bits numbers where “n” is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the Message Type
encoding.

DWord | Bit Description

Mp.7 31:16 oMask for Slot 15

Format = 16-bit mask

This register is only included if oMask Present bit is set.

15:0 |oMask for Slot 14

Mp.6 |31:16 |oMask for Slot 13

15:0 |oMask for Slot 12

Mp.5 |31:16 |oMask for Slot 11

15:0 |oMask for Slot 10

Mp.4 |31:16 | oMask for Slot 9

15:0 |oMask for Slot 8

Mp.3 |31:16|oMask for Slot 7

15:0 |oMask for Slot 6

Mp.2 [31:16 |oMask for Slot 5

15:0 |oMask for Slot 4

Mp.1 31:16 | oMask for Slot 3

15:0 |oMask for Slot 2

Mp.0 [31:16 [oMask for Slot 1

15:0 |oMask for Slot 0

278 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Color Payload SIMD16 Single Source

Color Payload

This payload is included if the Message Type is SIMD16 single source. The value of ‘'m’ depends on
whether the header, source 0 alpha, and oMask are present.

DWord

Bits

Description

Mm.7

31:0

Slot 7 Red. Specifies the value of the slot's red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6

31:0

Slot 6 Red

Mm.5

31:0

Slot 5 Red

Mm.4

31:0

Slot 4 Red

Mm.3

31:0

Slot 3 Red

Mm.2

31:0

Slot 2 Red

Mm.1

31:0

Slot 1 Red

Mm.O

31:0

Slot 0 Red

M(m+1).7

31:0

Slot 15 Red

M(m+1).6

31:0

Slot 14 Red

M(m+1).5

31:0

Slot 13 Red

M(m+1).4

31:0

Slot 12 Red

M(m+1).3

31:0

Slot 11 Red

M(m+1).2

31:0

Slot 10 Red

M(m+1).1

31:0

Slot 9 Red

M(m+1).0

31:0

Slot 8 Red

M(m+2)

Slot[7:0] Green. See Mm definition for slot locations.

M(m+3)

Slot[15:8] Green. See M(m+1) definition for slot locations.

M(m+4)

Slot[7:0] Blue. See Mm definition for slot locations.

M(m+5)

Slot[15:8] Blue. See M(m+1) definition for slot locations.

M(m+6)

Slot[7:0] Alpha. See Mm definition for slot locations.

M(m+7)

Slot[15:8] Alpha. See M(m+1) definition for slot locations.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 279

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Color Payload: CHV, BSW
DWord | Bits Description
Mm.71 310 1516t 15 Red
Slot 14 Red
Mm6 | 310 Slot 13 Red
Slot 12 Red
Mm.5 1 310 1516t 11 Red
Slot 10 Red
Mm.4 | 31:0 Slot 9 Red
Slot 8 Red
Mm.3 | 31:0 Slot 7 Red
Slot 6 Red
Mm.2 | 31:0 Slot 5 Red
Slot 4 Red
Mm.1T | 31:0 Slot 3 Red
Slot 2 Red
MmO 131.16|slot 1 Red
15:0 [Slot 0 Red
M(m+1) Slot[15:0] Green. See Mm definition for slot locations.
M(m+2) Slot[15:0] Blue. See Mm definition for slot locations.
M(m+3) Slot[15:0] Alpha. See M(m+1) definition for slot locations.

280 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Color Payload SIMDS8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. The value of
'm’ depends on whether the header, source 0 alpha, and oMask are present.

DWord | Bits Description
Mm.7 310 Slot 7 Red. Specifies the value of the slot’s red component.
Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.
SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.6 |31:0(Slot 6 Red
Mm.5 |31:0(Slot 5 Red
Mm.4 |31:0(Slot 4 Red
Mm.3 |31:0(Slot 3 Red
Mm.2 |31:0(Slot 2 Red
Mm.1 |31:0(Slot 1 Red
Mm.0 [31:0(Slot O Red
M(m+1) Slot[7:0] Green. See Mm definition for slot locations.
M(m+2) Slot[7:0] Blue. See Mm definition for slot locations.
M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 281

(intel’“

experience
what'’s inside”

Color Payload: SIMD8 Single Source: CHV, BSW

3D Media GPGPU

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. The value of ‘m’

depends on whether the header, source 0 alpha, and oMask are present.

DWord | Bits Description

MmM-3131.16 | Slot 7 Red

15:0 |Slot 6 Red

MM-2 1 3116 Slot 5 Red

15:0 [Slot 4 Red

MmM.T 1 31.16 | Slot 3 Red

15:0 |Slot 2 Red

MmO 131.16 | Slot 1 Red

15:0 [Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations.
M(m+2) Slot[7:0] Blue. See Mm definition for slot locations.
M(m+3) Slot[7:0] Alpha. See M(m+1) definition for slot locations.

282

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Color Payload SIMD16 Replicated Data

This payload is included if the Message Type specifies a single source message with replicated data.
One set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data; oMask is also legal with this message. The registers for depth,
stencil, and antialias alpha data cannot be included with this message, and the corresponding bits in the
message header must indicate that these registers are not present.

The value of ‘'m’ depends on whether the header and oMask are present.

Note: This message is allowed only on tiled surfaces.

DWord | Bits Description

Mm.7:4 [31:0 [Reserved

Mm.3 1310 Alpha. Specifies the value of the alpha channel for all slots.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.
SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.2 [31:0(Blue

Mm.1 |31:0|Green

Mm.0 [31:0|Red

Color Payload: SIMD16 Replicated Data: CHV, BSW

This payload is included if the Message Type specifies single source message with replicated data. One set of
R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data only; oMask is also legal with this message. The registers for depth, stencil,
and antialias alpha data cannot be included with this message, and the corresponding bits in the message header
must indicate that these registers are not present.

The value of ‘'m’ depends on whether the header and oMask are present.

Note: This message is allowed only on tiled surfaces.

DWord | Bits | Description
Mm.7:2 | 31:0 [Reserved
Mm-T131.16| Alpha
15:0 [Blue
Mm.0 31:16 | Green
15:0 [Red

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 283

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Color Payload SIMD8 Dual Source

This payload is included if the Message Type specifies dual source message. The value of ‘m’ depends
on whether the header, source 0 alpha, and oMask are present.

Programming Note

Context: Color Payload SIMD8 Dual Source

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord | Bits Description

Mm.7131:0 Slot 7 Source 0 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed.
SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 |31:0|Slot 6 Source 0 Red

Mm.5 |31:0|Slot 5 Source 0 Red

Mm.4 |31:0|Slot 4 Source 0 Red

Mm.3 |31:0|Slot 3 Source 0 Red

Mm.2 |31:0|Slot 2 Source 0 Red

Mm.1 |31:0|Slot 1 Source 0 Red

Mm.0 [31:0(Slot 0 Source 0 Red

M(m+1) Slot[7:0] Source 0 Green. See Mm definition for slot locations.
M(m+2) Slot[7:0] Source 0 Blue. See Mm definition for slot locations.
M(m+3) Slot[7:0] Source 0 Alpha. See Mm definition for slot locations.
M(m+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations.
M(m+5) Slot[7:0] Source 1 Green. See Mm definition for slot locations.
M(m+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations.
M(m+7) Slot[7:0] Source 1 Alpha. See Mm definition for slot locations.

284 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel“

experience
what'’s inside”

Color Payload: SIMD8 Dual Source: CHV, BSW

This payload is included if the Message Type specifies dual source message. The value of ‘'m’ depends on whether
the header, source 0 alpha, and oMask are present.

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord | Bits Description
Mm.7 31:16 | Slot 7 Source 1 Red
15:0 [Slot 6 Source 1 Red
Mm.6 1 31.16| Slot 5 Source 1 Red
15:0 [Slot 4 Source 1 Red
Mm.> 31:16 | Slot 3 Source 1 Red
15:0 | Slot 2 Source 1 Red
Mm.4 31:16 | Slot 1 Source 1 Red
15:0 [Slot 0 Source 1 Red
Mm.3 1 31.16| Slot 7 Source 0 Red
15:0 | Slot 6 Source 0 Red
Mm.2 1 31.16| Slot 5 Source 0 Red
15:0 [Slot 4 Source 0 Red
Ml 31:16|Slot 3 Source 0 Red
15:0 [Slot 2 Source 0 Red
Mm.0 1 31.16| Slot 1 Source 0 Red
15:0 [Slot 0 Source 0 Red
M(m+1) Slot[7:0] Green. See Mm definition for slot locations.
M(m+2) Slot[7:0] Blue. See Mm definition for slot locations.
M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

285

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Render Target Read and Write

Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters
contained in the message and state, it may also perform a depth and stencil buffer write and/or a
render target read for a color blend operation. Additional operations enabled in the Color Calculator
state are also initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This
message is intended only for use by pixel shader kernels for writing results to render targets.

Programming Note

Context: Render Target Read and Write

o All surface types, except SURFTYPE_STRBUF, are allowed.

e For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the surface.
The Y coordinate must be zero.

e For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input
message to provide an additional coordinate. The Render Target Array Index must be zero for
SURFTYPE_BUFFER.

e The surface format is restricted to the set supported as render target. If source/dest color blend is enabled,
the surface format is further restricted to the set supported as alpha blend render target.

e The last message sent to the render target by a thread must have the End Of Thread bit set in the message
descriptor and the dispatch mask set correctly in the message header to enable correct clearing of the pixel
scoreboard.

e The stateless model cannot be used with this message (Binding Table Index cannot be 255).

e This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader
kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined
behavior.

e The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to
anything other than RTROTATE_ODEG.

e This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

e If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each
SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same Slot
Group Select setting.

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the
surface. The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input
message to provide an additional coordinate. The Render Target Array Index must be zero for
SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is
enabled, the surface format is further restricted to the set supported as alpha blend render target.

286 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

The last message sent to the render target by a thread must have the End Of Thread bit set in the
message descriptor and the dispatch mask set correctly in the message header to enable correct
clearing of the pixel scoreboard.

The stateless model cannot be used with this message (Binding Table Index cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader
kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined
behavior.

The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to
anything other than RTROTATE_ODEG.

This message cannot be used on a surface in field mode (Vertical Line Stride = 1).

If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each
SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with the same
Slot Group Select setting.

Project-Specific Restrictions

Programming Note

Context: Render Target Read and Write

Execution Mask. For messages without header, the execution mask for render target messages (sent as part of
the channel enables on the obus sideband) is used to kill pixels.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and do not modify
memory. However, if the Render Target Array Index is out of bounds, it is set to zero and the surface
write is not surpressed.

The following table indicates the surface formats supported by this message with project restrictions
and whether each format supports Alpha Blend.

Surface Format Name Alpha Blend?
R32G32B32A32_FLOAT Yes
R32G32B32A32_SINT No
R32G32B32A32_UINT No
R16G16B16A16_UNORM Yes
R16G16B16A16_SNORM Yes
R16G16B16A16_SINT No
R16G16B16A16_UINT No
R16G16B16A16_FLOAT Yes
R32G32_FLOAT Yes
R32G32_SINT No
R32G32_UINT No
R16G16B16X16_FLOAT Yes
B8G8R8A8_UNORM Yes

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 287

(l n te,l “Iexperience

what'’s inside”

Surface Format Name Alpha Blend?
B8GBRBA8_UNORM_SRGB Yes
R10G10B10A2_UNORM Yes
R10G10B10A2_UINT No
R8G8B8A8_UNORM Yes
R8G8B8A8_UNORM_SRGB Yes
R8G8B8A8_SNORM Yes
R8G8B8A8_SINT No
R8G8B8A8_UINT No
R16G16_UNORM Yes
R16G16_SNORM Yes
R16G16_SINT No
R16G16_UINT No
R16G16_FLOAT Yes
B10G10R10A2_UNORM Yes
B10G10R10A2_UNORM_SRGB | Yes
R11G11B10_FLOAT Yes
R32_SINT No
R32_UINT No
R32_FLOAT Yes
B8G8R8X8_UNORM Yes
B8G8R8X8_UNORM_SRGB Yes
B5G6R5_UNORM Yes
B5G6R5_UNORM_SRGB Yes
B5G5R5A1_UNORM Yes
B5G5R5A1_UNORM_SRGB Yes
B4G4R4A4_UNORM Yes
B4G4R4A4_UNORM_SRGB Yes
R8G8_UNORM Yes
R8G8_SNORM Yes
R8G8_SINT No
R8G8_UINT No
R16_UNORM Yes
R16_SNORM Yes
R16_SINT No
R16_UINT No
R16_FLOAT Yes
288

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Surface Format Name Alpha Blend?
B5G5R5X1_UNORM Yes
B5G5R5X1_UNORM_SRGB Yes
A1B5G5R5_UNORM Yes
A4B4G4R4_UNORM Yes
R8_UNORM Yes
R8_SNORM Yes
R8_SINT No
R8_UINT No
A8_UNORM Yes
A1B5G5R5_UNORM No
A4B4G4R4_UNORM No
R16G16B16X16_FLOAT No
R32G32B32X32_FLOAT No

Message Header

DWord

Bits

Description

MO0.5

31:8

Ignored

70

Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.
It is used to free up resources used by the thread on thread completion.

MO0.4

31:0

Ignored (reserved for hardware delivery of binding table pointer)

MO0.3

31:0

Ignored

MO0.2

31:0

Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill instruction
activity in the pixel shader. This mask is used to control actual writes to the color buffer. This field is
ignored by the read message, all pixels are always returned.

The bits in this mask correspond to the pixels as follows:

0|11]14|5|(16[17]20]21
6|7(18|19]|22|23
9 |12]|13|24(25(28|29
10111 14|15(26(27|30]31

MO.1

31.0

Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row aligned
(Bits 1:0 MBZ).

Format = S31

MO0.0

31.0

X offset. The X offset of the upper left corner of the block into the surface. This is a pixel offset
assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 289

(lntel' | 3D Media GPGPU
eXpEnenCe

what's inside”
Shared Functions Pixel Interpolater

The Pixel Interpolator provides barycentric parameters at various offsets relative to the pixel location.
These barycentric parameters are in the same format and layout as those received in the pixel shader
dispatch. Please refer to the "Windower” chapter in the “3D Pipeline” volume for more details on
barycentric parameters.

Barycentric parameters delivered in the pixel shader payload are at pre-defined positions based on
Barycentric Interpolation Mode bits selected in 3DSTATE_WM. The pixel interpolator allows
barycentric parameters to be computed at additional locations.

Messages

The following is the message definition for the Pixel Interpolator shared function.

Programming Note

Context: Messages

Pixel Interpolator messages can only be delivered by pixel shader kernels.

Execution Mask. Each bit in the execution mask enables the corresponding slot’s barycentric parameter
return to the destination registers.

Initiating Message

This topic is currently under development.

Message Descriptor

Bits Description

19 Header Present: Specifies whether the message includes a header phase. Must be zero for all Pixel

Interpolator messages.

Format = Enable

18:17 | Ignored

16 SIMD Mode. Specifies the SIMD mode of the message being sent.
Format = U1
0: SIMD8 mode
1: SIMD16 mode

15 |[Ignored

14

Interpolation Mode. Specifies which interpolation mode is used.
Format = U1

0: Perspective Interpolation

290 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Bits

Description

1: Linear Interpolation

Programming Note

Context: Message Descriptor

This field cannot be set to “Linear Interpolation” unless Non-Perspective Barycentric Enable in

3DSTATE_CLIP is enabled.

13:12

Message Type. Specifies the type of message being sent when pixel-rate evaluation requested.
Format = U2

0: Per Message Offset (eval_snapped with immediate offset)

1: Sample Position Offset (eval_sindex)

2: Centroid Position Offset (eval_centroid)

3: Per Slot Offset (eval_snapped with register offset)

Programming Note

Context: Message Descriptor

When Message Type is Sample Position, requesting an attribute at sample index beyond the range

defined by the Forced Sample Count (aka NUM_RASTSAMPLES) is illegal.

11

Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the X/Y addresses and centroid position. For 8- and 16-pixel dispatches,
SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set correctly
for each message based on which slots are currently being processed.

0: SLOTGRP_LO: Choose bypassed data for slots 15:0.
1: SLOTGRP_HI: Choose bypassed data for slots 31:16.

Programming Note

Context: Message Descriptor

This field must be set to SLOTGRP_LO for SIMD8 messages. SIMD8 messages always use bypassed data
for slots 7:0.

10:8

Ignored

70

Message Specific Control. Refer to the sections below for the definition of these bits based on Message
Type.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 291

(intel')k 3D Media GPGPU

experience
what'’s inside”

“Per Message Offset” Message Descriptor

Bit Description

74 Per Message Y Pixel Offset

Specifies the Y Pixel Offset that applies to all slots.
Format = S4 2's complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

30 Per Message X Pixel Offset

Specifies the X Pixel Offset that applies to all slots.
Format = S4 2's complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

“Sample Position Offset” Message Descriptor

Bits Description

4 Sample Index

Specifies the sample index that applies to all slots.

[CHV, BSW]: Sample Index must not exceed the value of NUM_RASTSAMPLES when NUM_RASTSAMPLES >
1. From API, perspective, Forced Sample Count Defines the maximum allowable index in this message.

Format = U4

Range
[0, 15]

3:0 [Ignored

“Centroid Position” and “Per Slot Offset” Message Descriptor

Bit | Description

7:0|Ignored

292 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Message Payload for Most Messages
This message payload applies to the following message types:

e Per Message Offset
e Sample Position Offset
¢ Centroid Position Offset

DWord | Bit | Description

MO0.7:0 Ignored

SIMDS8 Per Slot Offset Message Payload

This message payload applies only to the SIMD8 Per Slot Offset message type. The message length is 2.

DWord | Bit Description

MO0.7 31:0 Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.
Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

MO0.6 [31:0[Slot 6 X Pixel Offset

MO0.5 [31:0[Slot 5 X Pixel Offset

MO0.4 |[31:0|Slot 4 X Pixel Offset

MO0.3 |31:0Slot 3 X Pixel Offset

M0.2 [31:0[Slot 2 X Pixel Offset

MO0.1 [31:0[Slot 1 X Pixel Offset

MO0.0 |31:0Slot 0 X Pixel Offset

MT-7131:0] s10t 7 ¥ Pixel Offset

Specifies the Y pixel offset for slot 7.
Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M1.6 [31:0[Slot 6 Y Pixel Offset

M1.5 [31:0[Slot 5 Y Pixel Offset

M1.4 |[31:0[Slot 4 Y Pixel Offset

M1.3 [31:0[Slot 3 Y Pixel Offset

M1.2 |31:0(Slot 2 Y Pixel Offset

M1.1 |31:0(Slot 1Y Pixel Offset

M1.0 [31:0[Slot 0 Y Pixel Offset

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 293

(intel"

3D Media GPGPU

experience
what'’s inside”

SIMD16 Per Slot Offset Message Payload

This message payload applies only to the SIMD16 Per Slot Offset message type. The message length is

4.

DWord

Bit

Description

MO.7

31:0

Slot 7 X Pixel Offset
Specifies the X pixel offset for slot 7.
Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

MO0.6

31:0

Slot 6 X Pixel Offset

MO0.5

31:0

Slot 5 X Pixel Offset

MO0.4

31:0

Slot 4 X Pixel Offset

MO0.3

31:0

Slot 3 X Pixel Offset

MO0.2

31:0

Slot 2 X Pixel Offset

MO.1

31:0

Slot 1 X Pixel Offset

MO0.0

31:0

Slot 0 X Pixel Offset

M1.7

31:0

Slot 15 X Pixel Offset

M1.6

31:0

Slot 14 X Pixel Offset

M1.5

31:0

Slot 13 X Pixel Offset

M1.4

31:0

Slot 12 X Pixel Offset

M1.3

31:0

Slot 11 X Pixel Offset

M1.2

31:0

Slot 10 X Pixel Offset

M1.1

31:0

Slot 9 X Pixel Offset

M1.0

31:0

Slot 8 X Pixel Offset

M2.7

31:0

Slot 7 Y Pixel Offset
Specifies the Y pixel offset for slot 7.
Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M2.6

31.0

Slot 6 Y Pixel Offset

M2.5

31.0

Slot 5 Y Pixel Offset

M2.4

31.0

Slot 4 Y Pixel Offset

M2.3

31.0

Slot 3 Y Pixel Offset

M2.2

31.0

Slot 2 Y Pixel Offset

M2.1

31.0

Slot 1 Y Pixel Offset

M2.0

31:0

Slot 0 Y Pixel Offset

M3.7

31:0

Slot 15 Y Pixel Offset

294

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel

experience
what'’s inside”

DWord

Bit

Description

M3.6

31:0

Slot 14 Y Pixel Offset

M3.5

31:0

Slot 13 Y Pixel Offset

M3.4

31:0

Slot 12 Y Pixel Offset

M3.3

31:0

Slot 11 Y Pixel Offset

M3.2

31:0

Slot 10 Y Pixel Offset

M3.1

31:0

Slot 9 Y Pixel Offset

M3.0

31:0

Slot 8 Y Pixel Offset

Writeback Message

This topic is currently under development.

SIMDS8

The response length for all SIMD8 messages is 2. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord

Bit

Description

WO0.7

31:0

Barycentric[1] for Slot 7
Format = IEEE_Float

WO0.6

31:0

Barycentric[1] for Slot 6

WO0.5

31:0

Barycentric[1] for Slot 5

Wo0.4

31:0

Barycentric[1] for Slot 4

WO0.3

31:0

Barycentric[1] for Slot 3

WO0.2

31:0

Barycentric[1] for Slot 2

WO0.1

31:0

Barycentric[1] for Slot 1

WO0.0

31:0

Barycentric[1] for Slot 0

W1.7

31:0

Barycentric[2] for Slot 7
Format = IEEE_Float

W1.6

31.0

Barycentric[2] for Slot 6

W1.5

31:0

Barycentric[2] for Slot 5

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

295

(intel’"

experience
what'’s inside”

DWord

Bit

Description

wW1.4

31:0

Barycentric[2] for Slot 4

W1.3

31:0

Barycentric[2] for Slot 3

W1.2

31:0

Barycentric[2] for Slot 2

W1.1

31:0

Barycentric[2] for Slot 1

W1.0

31:0

Barycentric[2] for Slot 0

SIMD16

3D Media GPGPU

The response length for all SIMD16 messages is 4. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord

Bit

Description

WO0.7

31:0

Barycentric[1] for Slot 7
Format = IEEE_Float

WO0.6

31:0

Barycentric[1] for Slot 6

WO0.5

31:0

Barycentric[1] for Slot 5

WO0.4

31.0

Barycentric[1] for Slot 4

WO0.3

31.0

Barycentric[1] for Slot 3

WO0.2

31.0

Barycentric[1] for Slot 2

WO0.1

31.0

Barycentric[1] for Slot 1

WO0.0

31.0

Barycentric[1] for Slot 0

W1.7

31.0

Barycentric[2] for Slot 7
Format = IEEE_Float

W1.6

31:0

Barycentric[2] for Slot 6

W1.5

31:0

Barycentric[2] for Slot 5

W1.4

31:0

Barycentric[2] for Slot 4

296

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord

Bit

Description

W1.3

31:0

Barycentric[2] for Slot 3

W1.2

31:0

Barycentric[2] for Slot 2

W1.1

31:0

Barycentric[2] for Slot 1

W1.0

31:0

Barycentric[2] for Slot 0
Format = IEEE_Float

wWa.7

31:0

Barycentric[1] for Slot 15

W2.6

31:0

Barycentric[1] for Slot 14

W2.5

31:0

Barycentric[1] for Slot 13

W24

31:0

Barycentric[1] for Slot 12

W23

31:0

Barycentric[1] for Slot 11

W2.2

31:0

Barycentric[1] for Slot 10

W21

31:0

Barycentric[1] for Slot 9

W2.0

31:0

Barycentric[1] for Slot 8

W3.7

31.0

Barycentric[2] for Slot 15

W3.6

31.0

Barycentric[2] for Slot 14

W35

31.0

Barycentric[2] for Slot 13

W34

31.0

Barycentric[2] for Slot 12

W3.3

31.0

Barycentric[2] for Slot 11

W3.2

31.0

Barycentric[2] for Slot 10

W31

31.0

Barycentric[2] for Slot 9

W3.0

31.0

Barycentric[2] for Slot 8

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel

experience
what'’s inside”

297

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”
Shared Functions - Unified Return Buffer (URB)

The Unified Return Buffer (URB) is a general-purpose buffer used for sending data between different
threads, and, in some cases, between threads and fixed-function units (or vice-versa). A thread accesses
the URB by sending messages.

URB Size

An URB entry is a logical entity within the URB, referenced by an entry handle and comprised of some
number of consecutive rows. A row corresponds in size to a 256-bit EU GRF register. Read/write access
to the URB is generally supported on a row-granular basis.

URB Size | URB Rows | URB Rows when SLM Enabled

See the Configurations volume.

URB Access

The URB can be written by the following agents:

e Command Stream (CS) can write constant data into Constant URB Entries (CURBEs) as a result of
processing CONSTANT_BUFFER commands.

e The Video Front End (VFE) fixed-function unit of the Media pipeline can write thread payload data
in to its URB entries.

e The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data into its URB
entries.

e GEN4 threads can write data into URB entries via URB_WRITE messages sent to the URB shared
function.

The URB can be read by the following agents:

e The Thread Dispatcher (TD) is the main source of URB reads. As a part of spawning a thread,
pipeline fixed-functions provide the TD with a number of URB handles, read offsets, and lengths.
The TD reads the specified data from the URB and provide that data in the thread payload pre-
loaded into GRF registers.

e The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D pipeline can read
selected parts of URB entries to extract vertex data required by the pipeline.

e The Windower (WM) FF unit reads back depth coefficients from URB entries written by the
Strip/Fan unit.

Programming Note

Context: URB Access

The CPU cannot read the URB directly.

298 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

State

what’s inside”

The URB function is stateless, with all information required to perform a function being passed in the
write message.

See URB Allocation (Graphics Processing Engine) for a discussion of how the URB is divided amongst
the various fixed functions.

FF_SYNC Messages

FF_SYNC messages pass critical information between GS/Clip threads and the GS/Clip FF units, as well
as providing GS/Clip thread synchronization (ordering). GS threads report various counts resulting from
running the GS and/or SO functions, prior to performing any output (to SOB buffers or to URB handles).
Clip threads report only the number of handles required. A message response (writeback) length of 1
GRF is indicated on the ‘send’ instruction if the thread requires response data and/or synchronization.
Refer to the GS/Clip stage chapter for details.

FF_SYNC Message Header

DWord | Bits Description
MO0.5 | 31:8 |Ignored
7:0 |FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread on thread completion.
MO0.4 | 31:0 |Ignored
MO0.3 | 31:0 |Ignored
MO0.2 | 31:7 [Ignored
MO0.1 [31:16 |Ignored
150 (GS-only) NumGSPrimsGenerated. The number of objects (e.g., triangles) generated by the GS
function performed by the thread. If the GS function is not enabled, this field MBZ.
Format: U16
Range: [0,1024]
M0.0 |31:16

(GS-only) NumSOVertsToWrite. The number of (expanded-to-list) vertices generated by the SO
function performed by the thread. This represents the number of vertices the thread attempts to
write to the SOBs in memory, once it obtains the SVBIs in the FF_SYNC writeback. Note that
overflow may occur either (a) prior to the SVBIs being returned in the writeback or (b) in the
process of this thread outputting to the SOBs. In either case, the thread needs to check for
overflow once it receives the writeback, based on the returned SVBIs and the number of vertices it
must attempt to output.

If the SO function is not enabled, this field MBZ.

This field is ignored if the SVBI Post Increment field is set in the GS_3DSTATE, described in the 3D
pipeline volumes.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 299

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

DWord | Bits Description

Format: U16
Range: [0,3066] (1024-vertex tristrip = 1022 triangles = 3066 trilist vertices)

150 (GS-only) NumSOPrimsNeeded. The number of objects (e.g., triangles within a trilist) generated

by the SO function performed by the thread (exclusive of any SOB overflow). If the SO function is
not enabled, this field MBZ.

This field is ignored if the SVBI Post Increment field is set in the GS_3DSTATE, described in the 3D
pipeline volumes.

Format: U16
Range: [0,1024]

FF_SYNC Writeback Message

(Both GS & Clip): DWord WO0.0 of the writeback data contains initial handle information. If Handle Valid
is clear, the FF unit did not have a handle available to be allocated as the initial handle — the thread
must use the URB_WRITE message to obtain the initial handle. Otherwise the Handle ID and URB Return
Handle fields are valid and can be used to write the first VUE.

(GS-only): The writeback data contains the SVBI values used as starting write indices by the GS thread. It
is the responsibility of the GS thread to perform SOB overflow processing. If the GS thread is not
performing StreamOutput and was simply using the writeback to provide GS vertex output
synchronization, the return data is to be ignored.

(Clip-only): Dwords W0.1-7 of the writeback data are ignored.

DWord | Bits Description

WO0.7:5 | 31:0 | Reserved

W04 | 31:0 (GS-only): Streamed Vertex Buffer Index 3

This field represents the value of SVBI[3] that is the starting index for the GS thread. If the thread is
not performing StreamOutput, this field is ignored.

Format = U32
Range = [0,2?7-1]

WO0.3 | 31:0 | (GS-only) Streamed Vertex Buffer Index 2

WO0.2 | 31:0 | (GS-only) Streamed Vertex Buffer Index 1

WO0.1 | 31:0 | (GS-only) Streamed Vertex Buffer Index 0

WO0.0 [31:24 |Reserved

2316 Handle ID. This ID is assigned by the FF unit and links the thread to a specific entry within the FF

unit.

Format: Reserved for Implementation Use

300 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

DWord | Bits Description

15:12 | Reserved

110 URB Return Handle. This is the initial destination URB handle passed to the thread. If the thread

does output URB entries, this identifies the first destination URB entry.
Format: U12 256-bit URB Handle Address

URB Messages

This section documents the global aspects of the URB messages. The actual data stored in URB entries
differs for each fixed function — refer to 3D Pipeline and the fixed-function chapters or details on 3D
URB data formats and Media for media-specific URB data formats.

URB Handles: Unlike prior products where the URB handle contents was not specified for software use,
URB handles are now specified as offsets into the URB partition in the L3 cache, in 512-bit units. Thus,
kernels can now perform math operations on URB handles.

The End of Thread bit in the message descriptor may be set on URB messages only in threads
dispatched by the vertex shader (VS), hull shader (HS), domain shader (DS), and geometry shader (GS).
The End of Thread bit cannot be set on URB_READ* or URB_ATOMIC* messages.

Execution Mask. The low 8 bits of the execution mask on the send instruction determines which
DWords from each write data phase are written or which DWords from each read phase are written to
the destination GRF register. The execution mask is ignored on URB_ATOMIC* messages, because this is
a scalar operation that is always enabled.

Out-of-Bounds Accesses. Reads to addresses outside of the URB region allocated in the L3 cache
return 0. Writes to addresses outside of the URB region are dropped and do not modify any URB data.

Header Shared Local Memory Stateless Vector

Message Type Required Support Support Address Modes Width
URB Read yes N/A N/A handle + URBoffset 12
HWORD

or

handle + URBoffset +

offset
URB Write yes N/A N/A handle + URBoffset 12
HWORD

or

handle + URBoffset +

offset
URB Read yes N/A N/A handle + URBoffset 1.2
OWORD

or

handle + URBoffset +

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 301

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Header Shared Local Memory Stateless Vector
Message Type Required Support Support Address Modes Width
offset
URB Write yes N/A N/A 1,2
OWORD handle + URBoffset
or
handle + URBoffset +
offset
URB Atomic yes N/A N/A handle + URBoffset 1
MOV
URB Atomic INC yes N/A N/A handle + URBoffset 1
URB Atomic yes N/A N/A handle + URBoffset 1
ADD

"offset” is in the message payload, and is per-slot.
“handle” is the handle address in the message header.
"URBoffset” is the Global Offset field in the URB message descriptor.

Execution Mask

The Execution Mask specified in the ‘send’ instruction determines which DWords within each message
register are read/written to the URB.

Message Descriptor

Bit

Description

19

Header Present

This bit must be 1 for all URB messages.

18

Ignored.

17

Per Slot offset: If clear, the slot offset fields in the header are ignored.
If set the slot offset fields are added to the global offset to obtain the overall offset.
Programming Notes:

e This bit must be 0 for URB_ATOMIC_* messages.

16

Ignored.

15

Swizzle Control. This field specifies which "swizzle” operation is performed on the write data. It indirectly
specifies whether one or two handles are valid.

0: URB_NOSWIZZLE

302

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Bit

Description

The message accesses a single URB entry (using URB Handle 0).
1: URB_INTERLEAVED

The message accesses two URB entries. The data is interleaved such that the upper DWords (7:4) of each
256-bit unit contain data associated with URB Handle 1, and the lower DWords (3:0) contain data associated
with URB Handle 0.

Programming Notes:

e This bit must be 0 for URB_ATOMIC_* messages.

14:4

Global Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB entry(s), as
referenced by URB Handle n, at which the data (if any) is written to or read from.

When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB entries.

If the Per Slot Offset bit is set, this offset is added to the per-slot offsets in the header to obtain the overall
offset.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.
For the URB_ATOMIC* messages, this offset is in 32-bit units instead of 256-bit units.
Format = U11

Range = [0, 1023] for URB_*_HWORD messages.

Range = [0, 2047] for URB_*_OWORD messages.

Range = [0, 2047] for URB_ATOMIC* messages.

3.0

URB Opcode

0: URB_WRITE_HWORD

1: URB_WRITE_OWORD

: URB_READ_HWORD

: URB_READ_OWORD

: URB_ATOMIC_MOV

: URB_ATOMIC_INC

: URB_ATOMIC_ADD

: URB_SIMD8_WRITE (see URB_SIMDS8_* for descriptor details)
: URB_SIMD8_READ (see URB_SIMD8_* for descriptor details)

© o0 N oo 1~ W

-15: Reserved

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 303

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

URB_WRITE and URB_READ

The URB_WRITE* and URB_READ* messages share the same header definition. URB_WRITE has
additional payload containing the write data, but has no writeback message. URB_READ has no payload
beyond the header (message length is always one), but always has a writeback message.
URB_WRITE_SIMD4x2 has a single-phase payload with the per-slot offsets followed by the write data,
and has no writeback message. URB_READ_SIMD4x2 has a single phase payload containing the per-slot
offsets.

Message Header

MO0.5[7:0] bits in message header are used for enabling DWs in cull test, at HDC unit by HS kernel, while
writing TF data using URB write messages. Cull test is performed on outside TF and HS kernel set the
appropriate DW enable, which carry the TF for different domain types. When DW is enabled and if cull
test is positive, HS stage will be informed by HDC unit, to cull the HS handle early at HS stage itself.

DWord | Bits Description

MO0.7 | 31:0 |Reserved

MO0.6 | 31:0 |Reserved

MO0.5 |31:17|Ignored
16

High OWORD Enable

For URB_READ_OWORD and URB_WRITE_OWORD with NOSWIZZLE indicates whether the 128
bits of the GRF register is used.

0: 1 OWord, read into or written from the low 128 bits of the GRF register.
1: 1 OWord, read into or written from the high 128 bits of the GRF register.

15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask

When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1 DATA[3].
When Swizzle Control = URB_NOSWIZZLE this bit controls Vertex 0 DATA[7].

This bit is ANDed with the corresponding channel enable to determine the final channel
enable. For the URB_READ_OWORD & URB_READ_HWORD messages, when final channel
enable is 1 it indicates that Vertex 1 DATA [3] will be included in the writeback message. For
the URB_WRITE_OWORD & URB_WRITE_HWORD messages, when final channel enable is 1 it
indicates that Vertex 1 DATA [3] will be written to the surface.

0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included.
1: Vertex DATA [3] / Vertex 0 DATA[7] channel included.

14 |Vertex 1 DATA [2] Channel Mask
13 |Vertex 1 DATA [1] Channel Mask
12 |Vertex 1 DATA [0] Channel Mask
11 |Vertex 0 DATA [3] Channel Mask

304 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Description

10 [Vertex 0 DATA [2] Channel Mask
9 |[Vertex 0 DATA [1] Channel Mask
8 |[Vertex 0 DATA [0] Channel Mask
7:0 [Reserved

MO4 | 31:0 Slot 1 Offset. This field, after adding to the Global Offset field in the message descriptor,

specifies the offset (in 256-bit units) from the start of the URB entry, as referenced by URB
Handle 1, at which the data will be accessed. This field is ignored unless Swizzle Control is set
to URB_INTERLEAVED.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.
Format = U32

Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must fall
within the range [0, 1023] or behavior is undefined.

Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must fall
within the range [0, 2047] or behavior is undefined.

MO.3 | 310 Slot 0 Offset. This field, after adding to the Global Offset field in the message descriptor,

specifies the offset (in 256-bit units) from the start of the URB entry, as referenced by URB
Handle 0, at which the data will be accessed.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.
Format = U32

Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must fall
within the range [0, 1023] or behavior is undefined.

Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must fall
within the range [0, 2047] or behavior is undefined.

31:0 |Reserved.

MO0.1 |31:16|Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel 1 to a
specific entry within the fixed function unit. This field is ignored unless Swizzle Control
indicates Interleave mode.

15:14 [Reserved.

13:0 |URB Handle 1. This is the URB handle where channel 1's results are to be written or read. This
field is ignored unless Swizzle Control indicates interleave mode.

MO0.0 |31:16|Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0 to a
specific entry within the fixed function unit. This field is ignored unless Swizzle Control
indicates Interleave mode.

15:14 | Reserved.
13:0 |URB Handle 0. This is the URB handle where channel O’s results are to be written or read.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 305

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

URB_WRITE_HWORD Write Data Payload

Programming Restriction: The write data payload can be between 1 and 8 message phases long.

For the URB_WRITE_HWORD messages, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

Payload Usage

URB_NOSWIZZLE |The message payload contains data to be written to a single URB entry (e.g., one Vertex URB
entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle'.

URB_INTERLEAVED | The message payload contains data to be written to two separate URB entries. The payload
data is provided in a high/low interleaved fashion. The Swizzle Control field of the message
descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data swizzling
applied).

Programming Note

Context: URB_NOSWIZZLE

The URB function will use (not ignore) the Channel Enables associated with this message.

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing n pairs of 4-DWord vertex
elements (where for the example, n is >2).

DWord | Bit Description

M1.7 |31:0|Vertex Data [7]

M1.6 |[31:0|Vertex Data [6]

M1.5 [31:0|Vertex Data [5]

M1.4 |31:.0|Vertex Data [4]

M1.3 |[31:0|Vertex Data [3]

M1.2 [31.0|Vertex Data [2]

M1.1 [31.0|Vertex Data [1]

M1.0 [31:0|Vertex Data [0]

M2.7 |31:.0|Vertex Data [15]

M2.6 [31.0|Vertex Data [14]

M2.5 |31:0|Vertex Data [13]

M2.4 |[31.0|Vertex Data [12]

M2.3 [31.0|Vertex Data [11]

M2.2 |[31:0|Vertex Data [10]

M2.1 [31:0|Vertex Data [9]

M2.0 [31:0|Vertex Data [8]

306 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord

Bit

Description

Mn.7

31:0

Vertex Data [8(n-1)+7]

Mn.6

31:0

Vertex Data [8(n-1)+6]

Mn.5

31:0

Vertex Data [8(n-1)+5]

Mn.4

31:0

Vertex Data [8(n-1)+4]

Mn.3

31:0

Vertex Data [8(n-1)+3]

Mn.2

31:0

Vertex Data [8(n-1)+2]

Mn.1

31:0

Vertex Data [8(n-1)+1]

Mn.0

31:0

Vertex Data [8(n-1)+0]

URB_INTERLEAVED

(intel

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing n 4-DWord vertex elements (n>1).

Programming Note

Context:

URB_INTERLEAVED

e The URB function will use (not ignore) the Channel Enables associated with this message.
e Writes to overlapping addresses of vertex0 and vertex1 will have undefined write ordering.

DWord

Bit

Description

M1.7

31.0

Vertex 1 Data [3]

M1.6

31.0

Vertex 1 Data [2]

M1.5

31.0

Vertex 1 Data [1]

M1.4

31.0

Vertex 1 Data [0]

M1.3

31.0

Vertex 0 Data [3]

M1.2

31.0

Vertex 0 Data [2]

M1.1

31.0

Vertex 0 Data [1]

M1.0

31:0

Vertex 0 Data [0]

M2.7

31:0

Vertex 1 Data [7]

M2.6

31:0

Vertex 1 Data [6]

M2.5

31:0

Vertex 1 Data [5]

M2.4

31:0

Vertex 1 Data [4]

M2.3

31:0

Vertex 0 Data [7]

M2.2

31:0

Vertex 0 Data [6]

M2.1

31:0

Vertex 0 Data [5]

M2.0

31:0

Vertex 0 Data [4]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

307

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DWord | Bit Description

Mn.7 [31:0|Vertex 1 Data [4(n-1)+3]

Mn.6 [31:0|Vertex 1 Data [4(n-1)+2]

Mn.5 [31:0|Vertex 1 Data [4(n-1)+1]

Mn.4 |[31:0|Vertex 1 Data [4(n-1)+0]

Mn.3 |[31:0|Vertex 0 Data [4(n-1)+3]

Mn.2 |31:.0|Vertex 0 Data [4(n-1)+2]

Mn.1 [31:0|Vertex O Data [4(n-1)+1]

Mn.0 [31:0|Vertex O Data [4(n-1)+0]

URB_READ_HWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message
header are read and returned in the writeback message. The amount of read data returned is
determined by the Response Length field.

Programming Restriction: The writeback message can be between 1 and 8 message phases long.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The
description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB
Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE |The writeback message contains data read from a single URB entry (e.g., one Vertex URB
entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle'.

URB_INTERLEAVED | The writeback message contains data read from two separate URB entries. The data is
provided in a high/low interleaved fashion. The Swizzle Control field of the message
descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving
applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing n pairs of 4-
DWord vertex elements (where for the example, n is >2).

DWord | Bit Description

WO0.7 [31:.0|Vertex Data [7]

WO0.6 [31:0|Vertex Data [6]

WO0.5 [31:0|Vertex Data [5]

WO0.4 |[31:0|Vertex Data [4]

308 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord

Bit

Description

WO0.3

31:0

Vertex Data [3]

WO0.2

31:0

Vertex Data [2]

WO.1

31:0

Vertex Data [1]

WO0.0

31:0

Vertex Data [0]

W1.7

31:0

Vertex Data [15]

W1.6

31:0

Vertex Data [14]

W1.5

31:0

Vertex Data [13]

wW1.4

31:0

Vertex Data [12]

W1.3

31:0

Vertex Data [11]

W1.2

31:0

Vertex Data [10]

W1.1

31:0

Vertex Data [9]

W1.0

31:0

Vertex Data [8]

Wn.7

31:0

Vertex Data [8n+7]

Wn.6

31:0

Vertex Data [8n+6]

Wn.5

31:0

Vertex Data [8n+5]

Wn.4

31:0

Vertex Data [8n+4]

Wn.3

31:0

Vertex Data [8n+3]

Wn.2

31:0

Vertex Data [8n+2]

Wn.1

31:0

Vertex Data [8n+1]

Wn.0

31:0

Vertex Data [8n+0]

URB_INTERLEAVED

(intel

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing n 4-DWord vertex elements (n>1).

DWord

Bit

Description

WO0.7

31.0

Vertex 1 Data [3]

WO0.6

31:0

Vertex 1 Data [2]

WO0.5

31:0

Vertex 1 Data [1]

Wo0.4

31:0

Vertex 1 Data [0]

WO0.3

31:0

Vertex 0 Data [3]

WO0.2

31:0

Vertex 0 Data [2]

WO.1

31:0

Vertex 0 Data [1]

WO0.0

31:0

Vertex 0 Data [0]

W1.7

31:0

Vertex 1 Data [7]

W1.6

31:0

Vertex 1 Data [6]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

309

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DWord | Bit Description

W1.5 [31:0|Vertex 1 Data [5]

W1.4 |[31:0|Vertex 1 Data [4]

W1.3 |31:.0|Vertex 0 Data [7]

W1.2 [31:0|Vertex 0 Data [6]

W1.1 [31:0|Vertex 0 Data [5]

W1.0 [31:0|Vertex 0 Data [4]

Wn.7 [31:0|Vertex 1 Data [4n+3]

Wn.6 |31:.0|Vertex 1 Data [4n+2]

Wn.5 |31:.0|Vertex 1 Data [4n+1]

Wn.4 |[31:0|Vertex 1 Data [4n+0]

Wn.3 [31:0|Vertex 0 Data [4n+3]

Wn.2 [31:0|Vertex 0 Data [4n+2]

Wn.1 |[31:0|Vertex 0 Data [4n+1]

Wn.0 [31:0|Vertex 0 Data [4n+0]

URB_WRITE_OWORD Write Data Payload

For the URB_WRITE_OWORD messages, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

Payload Usage

URB_NOSWIZZLE |The message payload contains data to be written to a single URB entry (e.g., one Vertex URB
entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle'.

URB_INTERLEAVED | The message payload contains data to be written to two separate URB entries. The payload
data is provided in a high/low interleaved fashion. The Swizzle Control field of the message
descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into a single 128-bit URB location (no data swizzling
applied).

Programming Note

Context: URB_NOSWIZZLE

The URB function will use (not ignore) the Channel Enables associated with this message.

310 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements
and HIGH OWORD ENABLE is 0.

DWord | Bit Description

M1.7 |31:0|Ignored

M1.6 |[31:0|Ignored

M1.5 |31:0(Ignored

M1.4 |31:0|Ignored

M1.3 [31:0|Vertex 0 Data [3]

M1.2 |31:.0|Vertex 0 Data [2]

M1.1 |31:.0|Vertex 0 Data [1]

M1.0 [31:.0|Vertex 0 Data [0]

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements
and HIGH OWORD ENABLE is 1.

DWord | Bit Description

M1.7 |31.0|Vertex 0 Data [3]

M1.6 [31.0|Vertex 0 Data [2]

M1.5 |31:0|Vertex 0 Data [1]

M1.4 |31.0|Vertex 0 Data [0]

M1.3 |31:0|Ignored

M1.2 |31:0|Ignored

M1.1 |31:0|Ignored

M1.0 |31:0(Ignored

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing 4-DWord vertex elements.

Programming Note

Context: URB_INTERLEAVED

e The URB function will use (not ignore) the Channel Enables associated with this message.

e Writes to overlapping addresses of vertex0 and vertex1 will have undefined write ordering.

DWord | Bit Description

M1.7 |31:.0|Vertex 1 Data [3]

M1.6 [31:0|Vertex 1 Data [2]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 311

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DWord | Bit Description

M1.5 |31:.0|Vertex 1 Data [1]

M1.4 |[31:0|Vertex 1 Data [0]

M1.3 [31:0|Vertex 0 Data [3]

M1.2 |31:.0|Vertex 0 Data [2]

M1.1 |31:.0|Vertex 0 Data [1]

M1.0 [31:0|Vertex 0 Data [0]

URB_READ_OWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message
header are read and returned in the writeback message. The amount of read data returned is
determined by the Response Length field.

Programming Note

Context: [URB_READ_OWORD Writeback Message

Response Length must be set to 1.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The
description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB
Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE |The writeback message contains data read from a single URB entry (e.g., one Vertex URB
entry). The Swizzle Control field of the message descriptor must be set to ‘NoSwizzle'.

URB_INTERLEAVED | The writeback message contains data read from two separate URB entries. The data is
provided in a high/low interleaved fashion. The Swizzle Control field of the message
descriptor must be set to ‘Interleave’.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving
applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord
vertex elements and HIGH OWORD ENABLE is 0.

DWord | Bit Description

WO0.7 |31:0|Reserved (not written to GRF)

WO0.6 |31:0|Reserved (not written to GRF)

WO0.5 |31:0Reserved (not written to GRF)

WO0.4 |31:0|Reserved (not written to GRF)

WO0.3 [31:0|Vertex Data [3]

312 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord

Bit

Description

WO0.2

31:0

Vertex Data [2]

WO.1

31:0

Vertex Data [1]

WO0.0

31:0

Vertex Data [0]

(l n te,l W experience

what’s inside”

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord

vertex elements and HIGH OWORD ENABLE is 1.

DWord

Bit

Description

WO0.7

31:0

Vertex Data [3]

WO0.6

31:0

Vertex Data [2]

WO0.5

31:0

Vertex Data [1]

WO0.4

31:0

Vertex Data [0]

WO0.3

31:0

Reserved (not written to GRF)

WO0.2

31:0

Reserved (not written to GRF)

WO.1

31:0

Reserved (not written to GRF)

WO0.0

31:0

Reserved (not written to GRF)

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing 4-DWord vertex elements.

DWord

Bit

Description

WO0.7

31.0

Vertex 1 Data [3]

WO0.6

31.0

Vertex 1 Data [2]

WO0.5

31.0

Vertex 1 Data [1]

WO0.4

31.0

Vertex 1 Data [0]

WO0.3

31.0

Vertex 0 Data [3]

WO0.2

31.0

Vertex 0 Data [2]

WO0.1

31.0

Vertex 0 Data [1]

WO0.0

31.0

Vertex 0 Data [0]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

313

(intel"

3D Media GPGPU

experience
what'’s inside”

URB_ATOMIC

The URB_ATOMIC messages implement atomic operations on a single DWord in the URB. The location
of the DWord within the URB is specified by the single URB handle and the Global Offset field in the
message descriptor, which for these messages is a DWord offset from the URB handle. The DWord
selected is operated on according to the following table:

URB Opcode new_dst ret

URB_ATOMIC_MOV 0 none

URB_ATOMIC_INC | old_dst + 1 |old_dst

URB_ATOMIC_ADD |old_dst + srcO | old_dst

The previous contents of the DWord are returned in the destination register for operations that update
the DWord value, such as URB_ATOMIC_INC. The URB_ATOMIC_MOQV opcode does not return data
(response length must be zero).

The URB_ATOMIC* messages consist only of the header. A single URB handle is specified.

Message Header

DWord | Bits Description
MO0.7 | 31:0 | Reserved
MO0.6 | 31:0 |Reserved
MO0.5 | 31:0 |Ignored
MO0.4 | 31:0 |Ignored
MO0.3 | 31:0 [Ignored
MO.2 | 31:0 Source0 Data
Specifies the source 0 data for the atomic operation. This field is ignored for the URB_ATOMIC_INC
message.
Format = U32
MO0.1 | 31:0 |Ignored
MO0.0 |31:16|Ignored
15:0 | URB Handle. The URB handle to access.

314

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Writeback Message

A writeback message is only returned for URB atomic operations that update the DWord value, such as
URB_ATOMIC_INC. Only the low 32 bits of the destination GRF register are overwritten with the return
data.

DWord | Bits Description
WO0.7:1 Reserved (not written to GRF)
WO0.0 |31:0

Return Data
Specifies the value of the return data for the atomic operation.

Format = U32

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 315

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

URB_SIMD8_Write and URB_SIMD8_Read

Programming Note

Context: |URB_SIMD8 Write and URB_SIMD8_Read

The constant, sampler, and render caches are always non-coherent.

Message Descriptor

Bit Description

1 Header Present

This bit must be set to one for all URB messages.

18 |Ignored

17 Per Slot offset Present: If clear, then slot offset message phase is absent.

If set then slot offset message phase is present and the per slot offsets are added to the global offset to
obtain the overall offset.

16 Ignored

15 | Channel Mask Present: If clear then the channel Mask Message phase is not present.

If set then the channel mask message phase is present and will be used to mask data elements read or
written.

14:4 | Global Offset. This field specifies a destination offset (in 128-bit units) from the start of the URB entry(s), as
referenced by URB Handle n, at which the data (if any) will be written to or read from.

If the Per Slot Offset bit is set, this offset is added to the per-slot offsets in the header to obtain the overall
offset.

Format = U11
Range = [0, 2047]

3:0 |URB Opcode

0: URB_WRITE_HWORD

1: URB_WRITE_OWORD
: URB_READ_HWORD
: URB_READ_OWORD

: URB_ATOMIC_INC

2
3
4: URB_ATOMIC_MOV
5
6: URB_ATOMIC_ADD

316 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

Bit

Description

7: URB_SIMD8_WRITE
8: URB_SIMD8_READ
9-15: Reserved

Message Header

DWord | Bits Description
MO0.7 |31:16|Handle ID 7. This ID is assigned by the fixed function unit and links the work in channel 7 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 | URB Handle 7. This is the URB handle where channel 7's results are written or read.
M0.6 |31:16|Handle ID 6. This ID is assigned by the fixed function unit and links the work in channel 6 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 | URB Handle 6. This is the URB handle where channel 6's results are written or read.
MO0.5 |31:16|Handle ID 5. This ID is assigned by the fixed function unit and links the work in channel 5 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 | URB Handle 5. This is the URB handle where channel 5's results are written or read.
MO0.4 |31:16|Handle ID 4. This ID is assigned by the fixed function unit and links the work in channel 4 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 |URB Handle 4. This is the URB handle where channel 4's results are written or read.
MO0.3 |31:16|Handle ID 3. This ID is assigned by the fixed function unit and links the work in channel 3 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 [URB Handle 3. This is the URB handle where channel 3's results are written or read.
MO0.2 |31:16|Handle ID 2. This ID is assigned by the fixed function unit and links the work in channel 2 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 [URB Handle 2. This is the URB handle where channel 2's results are written or read.
MO0.1 |31:16|Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel 1 to a
specific entry within the fixed function unit.
15:14 | Reserved
13:0 [URB Handle 1. This is the URB handle where channel 1's results are written or read.
MO0.0 |31:16|Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0 to a
specific entry within the fixed function unit.
15:14 | Reserved

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

317

(intel’"

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Description

13:0

URB Handle 0. This is the URB handle where channel 0’s results are written or read.

Per Slot Offset Message Phase

When the Per Slot offset Present bit in the descriptor is set then the Per slot offset message phase is
sent by the EUs. The per slot message phase occurs immediately after the header.

DWord | Bit Description

M1.7 |31:.0 I . S . o
Slot 7 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 7, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

M1.6 |31.0 - . o . o
Slot 6 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 6, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

M1.5 |31:0 - . S . o
Slot 5 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 5, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

M1.4 |31:.0 - . S . o
Slot 4 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 4, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

M1.3 |31.0 - . o . o
Slot 3 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 3, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

M1.2 |31.0 - . o . -
Slot 2 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 2, at

318 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

DWord | Bit Description
which the data will be accessed.
Format = U32
Range = [0, 2047]

M1.1 [31:0 I . S . e
Slot 1 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 1, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

M1.0 [31:0 - . —_ . o
Slot 0 Offset. This field, after adding to the Global Offset field in the message descriptor, specifies
the offset (in 128-bit units) from the start of the URB entry, as referenced by URB Handle 0, at
which the data will be accessed.

Format = U32
Range = [0, 2047]

Channel Mask Message Phase

When the Channel Mask Present bit in the descriptor is set then the channel mask message phase is
sent by the EUs. The channel mask message phase occurs after the per slot message phase if the per
slot message phase exists else it occurs after the header.

DWord

Bit

Description

M2.7

31:24

Reserved.

23

Vertex 7 DATA [7] Channel Mask

This bit is ANDed with the corresponding channel enable to determine the final channel enable.
For the URB_SIMD8_READ messages, when final channel enable is 1 it indicates that Vertex 7
DATA [7] will be included in the writeback message. For the URB_SIMD8_WRITE messages, when
final channel enable is 1 it indicates that Vertex 7 DATA [7] will be written to the surface.

0: Vertex 7 DATA [7] channel not included
1: Vertex 7 DATA [7] channel included

22 |Vertex 7 DATA [6] Channel Mask
21 |[Vertex 7 DATA [5] Channel Mask
20 |[Vertex 7 DATA [4] Channel Mask
19 |Vertex 7 DATA [3] Channel Mask
18 |Vertex 7 DATA [2] Channel Mask
17 |Vertex 7 DATA [1] Channel Mask
16 |Vertex 7 DATA [0] Channel Mask

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 319

(intel"

what

experience

's inside”

3D Media GPGPU

DWord

Bit

Description

15:0

Reserved.

M2.6

31:24

Reserved.

23:16

Vertex 6 DATA [7:0] Channel Mask

15:0

Reserved.

M2.5

31:24

Reserved.

23:16

Vertex 5 DATA [7:0] Channel Mask

15:0

Reserved.

M2.4

31:24

Reserved.

23:16

Vertex 4 DATA [7:0] Channel Mask

15:0

Reserved.

M2.3

31:24

Reserved.

23:16

Vertex 3 DATA [7:0] Channel Mask

15:0

Reserved.

M2.2

31:24

Reserved.

23:16

Vertex 2 DATA [7:0] Channel Mask

15:0

Reserved.

M2.1

31:24

Reserved.

23:16

Vertex 1 DATA [7:0] Channel Mask

15:0

Reserved.

M2.0

31:24

Reserved.

23:16

Vertex 0 DATA [7:0] Channel Mask

15:0

Reserved.

Write Data Payload

The write data payload can be between 1 and 8 message phases long.

DWord

Bit

Description

M3.7

31:0

Vertex 7 DATA [0]

M3.6

31:0

Vertex 6 DATA [0]

M3.5

31:0

Vertex 5 DATA [0]

M3.4

31:0

Vertex 4 DATA [0]

M3.3

31:0

Vertex 3 DATA [0]

M3.2

31:0

Vertex 2 DATA [0]

M3.1

31:0

Vertex 1 DATA [0]

M3.0

31:0

Vertex 0 DATA [0]

M10.7

31:0

Vertex 7 DATA [7]

320

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

DWord

Bit

Description

M10.6

31:0

Vertex 6 DATA [7]

M10.5

31:0

Vertex 5 DATA [7]

M10.4

31:0

Vertex 4 DATA [7]

M10.3

31:0

Vertex 3 DATA [7]

M10.2

31:0

Vertex 2 DATA [7]

M10.1

31:0

Vertex 1 DATA [7]

M10.0

31:0

Vertex 0 DATA [7]

Writeback Message

The writeback message can be between 1 and 8 message phases long.

DWord

Bit

Description

MO.7

31:0

Vertex 7 DATA [0]

MO0.6

31:0

Vertex 6 DATA [0]

MO0.5

31:0

Vertex 5 DATA [0]

MO0.4

31:0

Vertex 4 DATA [0]

MO0.3

31:0

Vertex 3 DATA [0]

MO0.2

31:0

Vertex 2 DATA [0]

MO.1

31:0

Vertex 1 DATA [0]

MO0.0

31:0

Vertex 0 DATA [0]

M7.7

31.0

Vertex 7 DATA [7]

M7.6

31.0

Vertex 6 DATA [7]

M7.5

31.0

Vertex 5 DATA [7]

M7.4

31.0

Vertex 4 DATA [7]

M7.3

31.0

Vertex 3 DATA [7]

M7.2

31.0

Vertex 2 DATA [7]

M7.1

31:0

Vertex 1 DATA [7]

M7.0

31:0

Vertex 0 DATA [7]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

(intel“

experience
what'’s inside”

321

(intel)‘ 3D Media GPGPU

experience
what'’s inside”

Message Gateway

The Message Gateway shared function provides a mechanism for active thread-to-thread communication. Such
thread-to-thread communication is based on direct register access. One thread, a requester thread, is capable of
writing into the GRF register space of another thread, a recipient thread. Such direct register access between two
threads in a multi-processor environment some time is referred to as remote register access. Remote register
access may include read or write. The architecture supports remote register write, but not remote register read
(natively). Message Gateway facilitates such remote register write via message passing. The requester thread sends
a message to Message Gateway requesting a write to the recipient thread's GRF register space. Message Gateway
sends a writeback message to the recipient thread to complete the register write on behalf of the requester. The
requester thread and the recipient thread may be on the same EU or on different EUs.

Please see Thread Spawn Message Section of Media Chapter for child thread termination using Message Gateway
messages with EOT bit set.

When Bypass Gateway Control is set to 1, the commands OpenGateway and CloseGateway are no longer used, the
gateway parameters are taking the default values as the following:

e RegBase =0
e Gateway Size check and Key check are bypassed.

e Gateway Open (an internal signal that is used to be set by OpenGateway message) check is bypassed

A separate Gateway exists per half-slice in the architecture. For ForwardMsg this is handled transparently, but
barriers can only be accessed by threads in the local half-slice. This means that all threads that access a shared
barrier need to use the half-slice select in GPGPU_OBJECT and MEDIA_OBIJECT to stay on a single half-slice.
GPGPU_WALKER handles this automatically.

322 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

Messages

Message Gateway supports such thread-to-thread communication with the following messages:

OpenGateway: Opens a gateway for a requester thread. Once a thread successfully opens its
gateway, it can be a recipient thread to receive remote register write.

CloseGateway: Closes the gateway for a requester thread. Once a thread successfully closes its
gateway, Message Gateway blocks any future remote register writes to this thread.

ForwardMsg: Forwards a formatted message (remote register write) from a requester thread to a
recipient thread.
GetTimeStamp: Reads absolute and relative timestamps for a requester thread.

BarrierMsg: A set of threads sends this message to the Gateway. When all threads in a group
have sent the message, a reply (both a register write and an NO notification) is sent to each
member of the group.

UpdateGatewayState: Updates the internal state of the Message Gateway.
One example usage is to allow a control thread to change Barrier Byte to convey dynamic state

information. This may be used to support interrupt when persistent compute/worker threads are
synchronized using Barrier.

MMIO Read/Write: allows a message to read or write an MMIO register. The MEDIA_VFE_STATE command has a
field which limits the accesses for security.

Message Descriptor

The following message descriptor applies to all messages supported by Message Gateway.

Bits Description
19 [Header Present. This bit must be 0 for all Message Gateway messages.
18:17 | Ignored.
16:15 Notify. Send Notification Signal. This is a two-bit field indicating which notify event is sent.
00b: No notify.
01b: Increment recipient thread’s NO notification counter.
10b: Increment recepient thread’s N2 notification counter.
11b: Reserved.
This field is only valid for a ForwardMsg message. It is ignored for other messages. The BarrierMsg
message always increments the NO notification counter.
14 AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return message is required.
Message Gateway sends a writeback message containing the error code to the requester thread using the
post destination register address. When this bit is 0, no writeback message is sent to the requesting

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 323

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

thread by Message Gateway, even if an error occurs.

This field is valid for OpenGateway, CloseGateway, ForwardMsg, and BarrierMsg messages.
When this bit is 1, post destination register must be valid and the response length must be 1.
When this bit is 0, post destination register must be null and the response length must be 0.
This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined.

0: No Acknowledgement is required.

1: Acknowledgement is required.

13:3 | Reserved: MBZ

20 SubFuncID. Identify the supported sub-functions by Message Gateway. Encodings are:

000b: OpenGateway. Open the gateway for the requester thread.
001b: CloseGateway. Close the gateway for the requester thread.

010b: ForwardMsg. Forward the formatted message to the recipient thread with the given offset from
the recipient’s register base.

011b: GetTimeStamp. Read absolute and relative timestamps.
100b: BarrierMsg. Record an additional thread reaching the barrier.
101b: UpdateGatewayState. Update the barrier byte for a barrier.

Value Description
110b | Reserved.
110b | MMIO Read/Write.

111b: Reserved.

OpenGateway Message

The OpenGateway message opens a communication channel between the requesting thread and other
threads. It specifies a key for other threads to access its gateway, as well as the GRF register range
allowed to be written. The message consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting
thread after completion of the OpenGateway function. Only the least significant DWord in the post
destination register is overwritten.

If the EOT is set for this message, Message Gateway ignores this message; instead, it closes the gateway
for the requesting thread regardless of the previous state of the gateway.

It is software’s policy to determine how to generate the key.

The BarrierMsg command does not use an OpenGateway message.

324 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Message Payload

DWord

Bits

Description

MO0.5

31:29

Reserved: MBZ

28:21

RegBase: The register base address to be stored in the Message Gateway. It is used to compute
the destination GRF register address from the offset field in ForwardMsg. RegBase contains 256-
bit GRF aligned register address.

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for
ForwardMsg.

Note 2: The most significant bit of this field must be zero.
Format = U8
Range = [0,127]

20:11

Reserved: MBZ

10:8

Gateway Size: The range limit for messages through the Message Gateway.
000b: 1 GRF Register

001b: 2 GRF Registers

010b: 4 GRF Registers

011b: 8 GRF Registers

100b: 16 GRF Registers

101b: 32 GRF Registers

110b: 64 GRF Registers

111b: 128 GRF Registers

7:0

Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the thread.
It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function (therefore, not a child
thread) and EOT bit is set for the message.

MO0.4

31:16

Reserved: MBZ

15:0

Reserved: MBZ.

MO0.3:0

310

Ignored

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 325

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord | Bits Description

WO0.7:1 | 31:0 | Reserved (not overwritten)

WO0.0 |31:20|Reserved
19:16 | Shared Function ID. The message gateway's shared function ID.
15:3 |Reserved

2:0

Error Code
000b: Successful. No Error (Normal).
101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

Other codes: Reserved.

CloseGateway Message

The CloseGateway message closes a communication channel for the requesting thread that was
previously opened with OpenGateway. Each thread is allowed to have only one open gateway at a time,
thus no additional information in the message payload is required to close the gateway. The message
consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting
thread after completing the CloseGateway function. Only the least significant DWord in the post
destination register is overwritten.

Programming Note

Context: CloseGateway Message

The BarrierMsg command does not use a CloseGateway message.

326 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
experience
what’s inside”

Message Payload

DWord | Bit Description
MO0.7:6 Ignored
MO.5 31:8|Ignored
70 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.
This field is ignored by Message Gateway
This field is only required for a thread that is created by a fixed function (therefore, not a child
thread) and EOT bit is set for the message.

M0.4:0 Ignored

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

327

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord | Bit Description

WO0.7:1 Reserved (not overwritten)

WO0.0 [31:20 [Reserved
19:16 | Shared Function ID: Contains the message gateway's shared function ID.
15:3 | Reserved

2:0

Error Code
000: Successful. No Error (Normal)
101: Opcode Error. Attempt to send a message which is not either open/close/forward

other codes: Reserved

ForwardMsg Message

The ForwardMsg message gives the ability for a requester thread to write a data segment in the form
of a byte, a dword, 2 dwords, or 4 dwords to a GRF register in a recipient thread. The message consists
of a single 256-bit message payload, which contains the specially formatted data segment.

The ForwardMsg message utilizes a communication channel previously opened by the recipient thread.
The recipient thread has communicated its EUID, TID, and key to the requester thread previously via

some other mechanism. Generally, this is done through the thread spawn message from parent to child
thread, allowing each child (requester) to then communicate with its parent through a gateway opened
by the parent (recipient). The child could then use ForwardMsg message to communicate its own EUID,
TID, and key back to the parent to enable bi-directional communication after opening its own gateway.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requester thread
after completion of the ForwardMsg function. Only the least significant DWord in the post destination
register is overwritten.

If the Notify bit in the message descriptor is set, a 'notification’ is sent to the recipient thread in order to
increment the recipient thread'’s notification counter. This allows multiple messages to be sent to the
recipient without waking up the recipient thread. The last message, having this bit set, will then wake up
the recipient thread.

328 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

Message Payload

(l n te,l H experience

what’s inside”

DWord

Bits

Description

MO0.5

31:29

Reserved: MBZ

28:16

Offset: It provides the destination register position in the recipient thread GRF
register space as the offset from the RegBase stored in the recipient thread’s
gateway entry. The offset is in unit of byte, such that bits [28:21] is the 256-bit
aligned register offset and bits [4:0] is the sub-register offset. The sub-register
offset must be aligned to the Length field in bits [10:8]. The subfields of Offset are
further illustrated as the following.

Offset[28:21]: Register offset from the gateway base (Range [0, 127]: bit 12 MBZ)
Offset[20:18]: DW offset
Offset[17:16]: Byte offset (must be 00b for all DW length cases)

Programming Restriction: RO cannot be used as destination GRF register for
ForwardMsg. NULL register is also not allowed as destination.

15:11

Reserved: MBZ

10:8

Length: The length of the data segment.
000: 1 byte

001: 1 word

010: 1 DWord

011: 2 DWords

100: 4 DWords

101-111: Reserved

7:0

Dispatch ID: This ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon
thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function
(therefore, not a child thread) and EOT bit is set for the message.

MO0.4

31:30

Ignored

31:30

SlicelD: The SlicelD identifies the slice of the message destination EU. The
behavior of sending a message to a non-existent or disabled slice is undefined.

29:28

SubSlicelD: The sub-slice ID identifies the sub-slice containing the message
destination EU. The behavior of sending a message to a non-existent or disabled
slice is undefined.

27:24

EUID: The Execution Unit ID as part of the Recipient field is used to identify the
recipient thread to which the message is forwarded.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 329

(l n te,l “ experience

what'’s inside”

3D Media GPGPU

DWord Bits Description

23:19 [Ignored

18:16 |TID: The Thread ID as part of the Recipient field is used to identify the recipient
thread to which the message is forwarded.

1>:0 Key: The key to match with the one stored in the recipient thread's entry in
Message Gateway.
CHV, BSW: Ignored.

28:26 [SlicelD: The Slice ID as part of the Recipient field is used to identify the slice
containing the EU to which the message is forwarded.

25:24 | SubSlicelD: The sub-slice ID identifies the sub-slice containing the message
destination EU. The behavior of sending a message to a non-existent or disabled
slice is undefined.

23:20 |EUID: The Execution Unit ID as part of the Recipient field is used to identify the
recipient thread to which the message is forwarded.

19 Ignored
18:16 |TID: The Thread ID as part of the Recipient field is used to identify the recipient
thread to which the message is forwarded.
15:0 Ignored
MO0.3 31:0 |Data Segment DWord 3: Valid only for the 4-DWord data segment length.
MO0.2 31:0 |Data Segment DWord 2: Valid only for the 4-DWord data segment length.
MO.1 31:0 |Data Segment Dword 1: Valid only for the 2- and 4-DWord data segment
lengths.
MO0 31:24 Data Segment Byte 0: The same byte must be copied to all four positions within
this DWord. Valid only for the 1-Byte data segment length.
Data Segment Dword 0: Valid only for the 1-, 2-, and 4-DWord data segment
lengths.
23:16 |Data Segment Byte 0
15:8 |Data Segment Byte O
7.0 |Data Segment Byte 0

330

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord | Bits Description

WO0.7:1 | 31:0 | Reserved (not overwritten)

WO0.0 |31:20|Reserved
19:16 | Shared Function ID. The message gateway's shared function ID.
15:3 |Reserved

2:0

Error Code

000b: Successful. No Error (Normal).

001b: Reserved.

010b: Gateway Closed. Attempt to send a message through a closed gateway.

011b: Reserved.

100b: Reserved.

101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

110b: Invalid Message Size. Attempt to forward a message with length greater than 4 DWords.
111b: Reserved.

Writeback Message to Recipient Thread

This message contains the byte or dwords data segment indicated in the message written to the GRF
register offset indicated. Only the byte/dword(s) will be enabled, all other data in the GRF register is
untouched.

GetTimeStamp Message

The GetTimeStamp message gives the ability for a requester thread to read the timestamps back from
the message gateway. The message consists of a single 256-bit message payload.

AbsoluteTimelap is based on an absolute wall clock in unit of nSec/uSec that is independent of context
switch or GPU frequency adjustment. Message Gateway shares the same GPU timestamp. Details can be
found in the TIMESTAMP register section in volTc Memory Interface and Command Stream.

RelativeTimelap is based on a relative time count that is counting the GPU clocks for the context. The
relative time count is saved/restored during context switch.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 331

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

Message Payload

DWord | Bits Description

MO5> | 31 Return to High GRF:

0: The return 128-bit data goes to the first half of the destination GRF register.

1: The return 128-bit data goes to the second half of the destination GRF register.

30:8 | Reserved: MBZ

70 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the thread.

It is used to free up resources used by the thread upon thread completion.
This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function (therefore, not a child
thread) and EOT bit is set for the message.

MO0.4 |31:0(Ignored

MO0.3 |31:0(Ignored

MO0.2 |31:0(Ignored

MO0.1 |31:0(Ignored

MO0.0 |31:0(Ignored

332 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Writeback Message to Requester Thread

As the writeback message is only sent if the AckReq bit in the message descriptor is set, AckReq bit
must be set for this message.

Only half of the destination GRF register is updated (via write-enables). The other half of the register is
not changed. This is determined by the Return to High GRF control field.

Writeback Message if Return to High GRF is set to O:

DWord

Bit

Description

WO0.7:4

Reserved (not overwritten)

WO0.3

31:0

RelativeTimeLapHigh: This field returns the MSBs of time lap for the relative clock since the
previous reset. This field represents 1.024 uSec increment of the time stamp. Hardware handles
the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

WO0.2

31:20

RelativeTimeLapLow: This field returns the LSBs of time lap for the relative clock since the
previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware handles the
wraparound (over 64 bit boundary) of the timestamp.

Format; U12

19:0

Reserved : MBZ

WO.1

31:0

AbsoluteTimeLapHigh: This field returns the MSBs of time lap for the absolute clock since the
previous reset. This field represents 1.024 uSec increment of the time stamp. Hardware handles
the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

WO0.0

31:20

AbsoluteTimeLapLow: This field returns the LSBs of time lap for the absolute clock since the
previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware handles the
wraparound (over 64 bit boundary) of the timestamp.

Format: U12

19:0

Reserved : MBZ

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 333

(lntel" | 3D Media GPGPU
eXpE”enCe

what'’s inside”

Writeback Message if Return to High GRF is set to 1:

DWord [Bit Description

WO0.7 | 31:0 |RelativeTimeLapHigh

31:20 [RelativeTimeLapLow
19:0 [Reserved : MBZ

WO0.6

WO0.5 | 31:0 |AbsoluteTimelLapHigh

31:20 | AbsoluteTimeLapLow
19:0 |Reserved : MBZ

Wo0.4

WO0.3:0 Reserved : MBZ

BarrierMsg Message

The BarrierMsg message gives the ability for multiple threads to synchronize their progress. This is
useful when there are data shared between threads. The message consists of a single 256-bit message
payload.

Upon receiving one such message, Message Gateway increments the Barrier counter and marks the
Barrier requester thread. There is no immediate response from the Message Gateway when the
incremented counter is not equal to the terminating thread count. When the incremented counter value
does equal the Barrier Thread Count, Message Gateway sends a response back to all the Barrier
requester threads and resets the Barrier count to zero.

Programming Note

Context: BarrierMsg Message

The Message Gateway assumes that the barrier ID sent in barrier message payload is valid and was allocated by
TSG. In the event of a programming error specifying an invalid barrier ID, the results are undefined, and may cause
the Message Gateway to stop responding to barrier messages for any thread that it services.

334 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

Message Payload

DWord | Bits Description
MO0.5 | 31:0 [Ignored
M0.4 | 31:0 [Ignored
MO0.3 | 31:0 [Ignored
MO0.2 | 31 |Ignored
30 |Ignored
29:28 | Ignored
27:24 . e e . . .
BarrierlID. This field indicates which one from the 16 Barrier States is updated.
Format: U4
Note: This field location matches with that of RO header.
23:16 | Ignored
15 Barrier Count Enable. Allows the message to reprogram the terminating barrier count. If set, the
stored value of the terminating barrier count is set to the value of Barrier Count field (below), and
used for this barrier operation. If clear, the stored value of the terminating barrier count is not
modified and the stored value is used for this barrier operation.
Programming Note: This control is intended only for Hull Shader threads. Do not use this control
if the barrier is linked with other barriers in other subslices
Format: Enable
14:9 |Barrier Count. If Barrier Count Enable is set, this field specifies the terminating barrier count.
Otherwise this field is ignored. All threads that belong to a single barrier must deliver the same
value for this field for a particular barrier iteration.
8:0 |(Ignored
MO0.1 | 31:0 |Ignored
MO0.0 | 31:4 |Ignored

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 335

(lntel' | 3D Media GPGPU
eXpEnence

what'’s inside”

Writeback Message to Requester Thread

The writeback message is sent only if the AckReq bit in the message descriptor is set.

DWord | Bits Description

WO0.7:1 Reserved (not overwritten)

WO0.0 |31:20|Reserved
19:16 | Shared Function ID. Contains the message gateway's shared function ID.
15:3 |Reserved

2:0

Error Code
000: Successful. No Error (Normal).
001: Error (Barrier is inactive) [CHV, BSW]

Other encodings are reserved.

Broadcast Writeback Message

Description

When the count for a Barrier reaches Barrier.Count, the Message Gateway sends the notification bit NO to each
EU/Thread that reached the barrier. A Barrier Return Byte is not sent.

DWord | Bits Description
WO0.7:1 Reserved (not overwritten)
WO0.0 31:16 | Reserved (not overwritten)

15:8 | Reserved (not overwritten)

7:0 [Reserved (not overwritten)

MMIOReadWrite Message

MMIO read/write is not allowed to registers that are associated with a particular slice.

336 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
EXpErlenCe

what’s inside”

Message Payload

DWord | Bits Description
MO0.5 | 31:0 |Ignored
MO0.4 | 31:0 |Ignored
MO0.3 | 31:1 |Ignored
O |Mmio R/W:

0 — MMIO Read - A response is sent to the EU with read data.

1 — MMIO Write — No response is sent to EU (unless acknowledge is requested in sideband).
MO0.2 |31:28]|Ignored

220 MMIO Address:

The MMIO Byte address to be accessed.

The bottom 2 bits must be zero.
MO0.1 | 31:0 |Ignored
MO0.0 | 31:0 | MMIO Write Data (Only if MMIO R/W = 1, otherwise ignored).

Writeback Message to Requester Thread (MMIO Read Only)

DWord Bit Description
RO.7 31:0 |lgnored
RO.6 31:0 |lgnored
RO.5 31:0 |Ignored
R0.4 31:0 |Ignored
RO.3 31:0 |Ignored
RO.2 31:0 |Ignored
RO.1 31:0 |Ignored
RO.0 31:0 |MMIO Read Data

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

337

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”
Media Sampler

This section describes the functionality of the Media Sampler.

Shared Functions — Video Motion Estimation

The Video Motion Estimation (VME) engine is a shared function that provides motion estimation
services. It includes motion estimation for various block sizes and also standard specific operations such
as

e Motion estimation and mode decision for AVC
¢ Intra prediction and mode decision for AVC

¢ Motion estimation and mode decision for MPEG2
e Motion estimation and mode decision for VC1

The motion estimation engine may also be used for other coding standards or other video processing
applications.

Theory of Operation

VME performs a sequence of operations to find the best mode for a given macroblock. Each operation
step can be enabled/disabled through the control of the income message. Early termination, skipping of
subsequent operation steps, is also supported when certain search criteria are met.

VME contains the following operation steps:
Skip check
IME: Integer motion estimation

FME: Fractional motion estimation
BME: Bidirectional motion estimation

vk =

IPE: Intra prediction estimation (AVC only)

Shape Decision

As a terminology, we call sub-block shapes: 8x4, 4x8, and 4x4 minor shapes (corresponding to sub-
partitions of 8x8 sub-macroblock), and 16x16, 16x8, 8x16, and 8x8 major shapes (corresponding to sub-
macroblocks of a 16x16 macroblock).

If the maximal allowed number of motion vectors MaxNumMVs (MaxNumMVs =
MaxNumMVsMinusOne + 1) is less than 4, we will set minor MV flag off: MinorMVsFlag = 0, i.e. no
minor motion vectors will be generated.

The reason of having this parameter MaxNumMVs is due to high level AVC conformance restrictions
for certain profiles: the total number of motion vectors of any two consecutive macroblocks not exceeding
16 (or 32). The mechanism here allows a reasonable degree of user control. In disable cases,
MaxNumMVs should be set to 32.

338 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

In the coding process of VME, the shape decision is done in multiple locations:

1. After IME and before FME, intermediate shape decision is performed to reduce the FME searching
candidates

2. After FME and before BME, existing shape decision is revised among the remaining candidates
and to see if there is further reduction.

3. Final shape decision is done after BME.

Partition decision before BME uses unidirectional motion vector count to meet MaxNumMVs
requirement. Adding BME for the partition candidates may exceed MaxNumMVs. As BME is performed
on a block by block basis using the block order for a given partition, BME step for a given block is
skipped and the best unidirectional motion vectors are used for the block if the overall motion vector
count exceeds MaxNumMVs when that particular block is switched to bidirectional. The process
continues to the last block of the partition.

Note: This is a sub-optimal solution to simplify the hardware implementation. For some cases,
bidirectional modes with larger sub-partitions might be better than unidirectional modes with finer sub-
partitions.

The VME implementation has the following restriction: Multiple partition candidates are only enabled if
PartCandidateEn is set. And this only applies to source block of size 16x16.

If PartCandidateEn is not set, only the best partition is kept in state 1 (after IME) above and carried
through FME and BME. In other words, FME if enabled only operates on one partition candidate, and
BME if enabled only operates on one partition candidate. Bidirectional mode check only applies to the
partition candidates that meet the bidirectional restriction provided by BiSubMbPartMask. For
example, if a minor partition determined based on best unidirectional cost function is not 8x8 but one
of 4x8, 8x4 or 4x4, VME skips the bidirectional mode check.

If PartCandidateEn is set, up to two sets of candidates are maintained by VME hardware, if the second
best partition candidate is within PartToleranceThrhd from the best one. The second best partition is
selected only from the two major partition candidates based on the unidirectional motion vector count,
subject to that the major partition is enabled:

e 1MV: The 16x16 partition
e 4MV: The 4x(8x8) partition with no minor shape

The following partitions are not supported as alternative partition.

e 2MV: The best of 2x(16x8) and 2x(8x16) partitions

e More than 4MV: The best of all 4x(8x8) partitions with at least one 8x8 having minor shape of 8x4,
4x8 or 4x4

Minor Shape Decision Prior to FME

If any minor shapes are selected, we decide the best minor first.

For each 8x8 sub-block, before performing bidirectional, we reduce code candidates to no more than
three based on the best unidirectional motion search results (best of the forward and backward):

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 339

experience
what'’s inside”

(intel)‘ 3D Media GPGPU

0)One MV, i.e. the best in shape of 8x8.
1)Up to two MVs, i.e. the best in shapes 8x8, 8x4, or 4x8. And
2)Up to four MVs, i.e. the best for the sub-block 8x8.

Now for the first and the second sub-blocks, we can merge them into up to six candidates of 2, 3, 4, 5,
6, and 8 possible motion vectors.

Do the same to the third and the fourth sub-blocks; we have similarly up to six candidates.

Now we further combine these two groups, and find the best solution under the constraint of not
exceeding the number of motion vectors more than MaxNumMJVs (see pseudo-code below for detail).

Consequently, we have the best combined 8x8 solutions with N motion vectors for some N less or
equal to MaxNumMVs.

Assume distA[k] [s] is the cost-adjusted distortion of the best forward or backward motion vector
mix of the k-th 8x8 sub-block of the sub-shape s, where s=0, 1, 2, and 3 represent shape partitioning
8x8, 8x4, 4x8, and 4x4 respectively. Assume dista[k] [s] is the bidirectional one of the corresponding
bus-block and sub-shape. And assume some large number, say 128x16=2048 is assigned to the
variable, if there were no valid corresponding codes. Hence, the following pseudo-code explains the
code selection algorithm.

Let's first explain the case where MaxNumMVs is disabled, i.e. MaxNumMVs>=16:

volid SelectBestCombinedMinors (
short *distA,
short *MinorShape,
short *MinorDisto)

short s[4], d[4]:;

s = Shapelist;

d = DistoList;

for (int k=0; k<4; k++) {

s[k] = 0;

d[k] = distA[k][0];
if (distA[k][1])<d[k]) { d[k] = distA[k][1]; s[k] = 1; }
if (distA[k][2])<d[k]) { dl[k] = distA[k][3]; sl[k] = 2; }
if (distA[k][3])<d[k]) { d[k] = distA[k][3]; slk] = 3; }

}
* MinorDisto
* MinorShape

d[0] + d[11 + d[21 + di[31;
s[0] | (s[11«2) | (s[2]«4) | ({s[3]«6};

Now for the case of using MaxNumMVs control:

void SelectBestCombinedMinors (
short *distA,
int MaxNumMVs,
short *MinorShape,
short *MinorDisto)

int k, n;
short dist, best0 = 0, bestl = 0;
if (MaxNumMVs < 4) { // We reset other parameters.
switch (MaxNumMvs) {
case 0:

DoIntralnter &= (~DO_INTER); // Not do Inter

340 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

mvs

experience

what’s inside”

break;
case 1:
ShapeMask |= (NO _16X8 | NO 8X16);
BidirMask |= NO_16X16;
break;
case 2:
case 3:
ShapeMask |= (NO_8X8 | NO 8X4 | NO 4x8 | NO_4X4);
BidirMask |= (NO 16X8 | NO_8X16) ;
break;
}
}
if (MaxNumMVs >= 16) { // It should use unrestricted code selection.

SelectBestCombinedMinors (DistA,MinorShape,MinorDisto) ;
return;

}
short *s, Shapelist[18];
short *d, DistoList[18];

s = Shapelist;
d = DistoList;
for (k=0; k<4; k++){
s[0] = 0; // 1 mv
d[0] = distA[k][0];
s[4] = (distA[k][2] < distA[k][1]) + 1; // 2 mvs
df4] = distA[k][s[1]];
s[8] = 3; // 4 mvs
d[8] = distA[k][3];
s ++, d ++;
}
// Merge two:
s = Shapelist;
d = Distolist;
for (k=0; k<2; k++) {
s[16] = 0x33; // 8 mvs
d[le] = d[8] + d[1l0];
s[12] = (d[4] + d[10] < d[6] + d[8]) ? (s[4] | 0x30) (0x03 | (s[6] « 4));
d(12] = (d[4] + d[10] < d[e6] + d[8]) 2 (d[4] + d[10]) < (d[e] + d[8]);
s[10] = (d[0] + d[10] < d[8] + d[2]) ? 0x30 : 0x03; // 5 mvs
d[10] = (d[0] + d[10] < d[8] + d[2]) 2 (d[0] + d[10]) < (d[8] + d[2]);
s[8] = s[4] | (s[6] « 4); // 4 mvs
d[8] = d[4] + d[6];
s[6] = (d[4] + d[2] < d[0] + d[6]) 2 s[4] (sl6]l « 4); // 3 mvs
d[6] = (d[4] + d[2] < d[0] + dI[6]) 2 (d[4] + d[2]) < (d[0] + d[6]);
s[4] = 0; // 2 mvs
df4] = d[0] + d[2];
if (d[6] > d[4]) d[6] = d[4];
if (d[8] > d[6]) d[8] = d[6];
if (d[10] > d[8]) d[10] = d[8];
if (d[12] > d[10]) d[12] = d[10];
d[14] = d[12];
if (d[16] > d[12]) d[le] = d[12];
s ++; d ++;

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

// 6

341

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

= Shapelist;

= DistoList;
MinorDisto = 2048;
for (k=0; k<8; k++) {
n = MaxNumMVs - k;

* O 0 -

if ((n>=2 && n<=8) <2) {
dist = d[(k « 1) + 1] + d[n « 17;
if (dist < *MinorDisto) {
*MinorDisto = dist;
best0 = (n « 1);
bestl = (k « 1) + 1;
}
}
}
while (best0 > 1 && d[best0] == d[best0-2]) best0 -= 2;
while (bestl > 1 && d[bestl] == d[bestl-2]) bestl -= 2;
*MinorShape = s[best0] | (s[bestl] « 2);

Major Shape Decision Prior to FME

Now considering the best of each 8x8 is done, and we have the total cost-adjusted-distortion for this
sub-block level partition. Now among the four choices: the resulting 8x8 sub-partitioning, one 16x16,
two 16x8, and two 8x16, the one gives the best cost-adjusted-distortion, will determine the final
decision of partitioning shape. Any among these four, if its cost-adjusted-distortion is within the
intermediate tolerance (which is a predefined system state) from the best distortion will be marked as
candidate shapes.

Notice that, when the intermediate tolerance is set to 0, only the best shape will be selected as the
candidate. When the intermediate tolerance is large, all four shapes will become candidates.

Assume we have all the distortions for majors enumerated in DistoMajor[k], where k = 0, 1, 2, 3, 4, and
5, for 16x16, 16x8, 8x16, the combined minors, 16x8 field, and 8x8 field respectively. Assume BestDisto
is equal to the minimal of the six values DistoMajor[k], for k = O, ...5. Assume the intermediate tolerance
is IntTol, the major shape k is a candidate shape if and only if DistoMajor[k]<=BestDisto+IntTol.

Shape Update after FME

Among all the candidate shapes, we recheck the distortion, if any of them is no longer with in the
intermediate tolerance DistortionTolerance from the best choice; we drop it for reduced calculation.

Final Code Decision after BME

For any given candidate shape, for each motion vector, if we do have improved distortion by switch
from the single direction to bi-direction, then we do it, unless the increased number of motion vectors
hits above MaxNumMVs; in this case, we take as many as possible first the ones generate the most
improvement.

Then, we choose the best among the improved candidate shapes.

342 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Early Decisions

There are 5 programmable early decision states are available for fine control of the VME process. All
stored in one byte of U4U4 format to representing a value of (B«S), (where B, called base, is the 4-LSB
of the byte and S, called shift, is the 4-MSB of the byte), they are the following:

ESS: EarlySkipSuccess = Early successful return after Skip is checked
EIS: EarlylmeStop = Early IME stop when a good match is found inside of IME process.
ITG: ImeTooGood = Early successful return after IME is done when a good enough match is
found.

4. ITB: ImeTooBad = Early termination do skip fractional and bidirectional refinement after IME is
done with a hopelessly bad match as the best result.

5. EFS: EarlyFmeSuccess = Early Success after Fractional ME to skip bidirectional search.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 343

(intel')k 3D Media GPGPU

experience
what'’s inside”

VME }——| Skip Checker

\H""‘-u..,___,_,-o-""'f L
f
Mo
|
IME
Mo
—] D<EIS - B
h Finalize
o r - INTRA Output |
R Partitioning
,_/—// Ves
D<ITG || D=ITB :
Mo
l
‘ FWE es
D<EFS
Mo
l '
‘ BME (END

For any reason, if all possible code types are not chosen, VME will return Intra16x16 type with all modes
set to 0, and the MinDist is set to Ox3FFF.

Surfaces

The data elements accessed by VME are called "surfaces”. Surfaces are accessed using the surface state
model.

344 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

VME uses the binding table to bind indices to surface state, using the same mechanism used by the
sampling engine. A Binding Table Index (specified in the message descriptor) of less than 255 is used
to index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

State

This topic is currently under development.

BINDING_TABLE_STATE

VME uses the binding table to retrieve surface state. Refer to Sampling Engine for the definition of this
state.

SURFACE_STATE

VME uses the surface state for current and reference surfaces. Refer to Sampling Engine for the
definition of this state.

VME_STATE

This state structure contains the state used by the VME engine for data processing. VME state contains
the motion search path location tables and rate-distortion weight look-up-tables. As the two sets of
tables are fairly large, they are accessed as two separate states via state indexing mechanism so that
applications can inter-mix the use of the search path tables and RDLUT tables.

Even though VME engine has its unique shared function ID (see Target Function ID field in the SEND
instruction), the VME state is delivered through the Sampler State Pointer. When the General Purpose
Pipe is used, the Sampler State Pointer is programmed in the MEDIA_INTERFACE_DESCRIPTOR_LOAD
command and delivered directly to Sampler/VME by hardware. This posts one usage limitation. As the
VME state is overloaded on top of the Sampler State Pointer, VME messages cannot be intermixed with
other Sampler messages.

Each VME state may contain up to 8 VME_SEARCH_PATH_LUT_STATE. When multiple
VME_SEARCH_PATH_LUT_STATE are used, they need to be stored in memory contiguously. Each
VME_SEARCH_PATH_LUT_STATE contains 32 dwords in comparison of 4 dwords of a Sampler State.
When enabling sampler state pre-fetch (programming the Sampler Count field in the
MEDIA_INTERFACE_DESCRIPTOR_LOAD command), one VME_SEARCH_PATH_LUT_STATE is equivalent
to 8 Samplers. Hardware may support up to two VME_SEARCH_PATH_LUT_STATE to be pre-fetched (See
See 3D_Media_GPGPU chapter, Media_GPGPU_Pipeline for more details).

VME_SEARCH_PATH_LUT_STATE

Up to eight VME_SEARCH_PATH_LUT_STATE allowed for a message to select. Each state contains one
set of search path locations, and four sets of rate distortion cost function LUT for various modes and
rate distortion cost function LUT for motion vectors (relative to ‘cost center’). Motion vector cost

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 345

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

function is provided as a piece-wise-linear curve with only the values of the power-of-2 positions
provided.

DWord | Bit Description

0:13 Search Path

0 31:24 | Search Path Location [3] (X, Y) — Relative distance from location [2]

23:16 | Search Path Location [2] (X, Y) — Relative distance from location [1]

15:8 | Search Path Location [1] (X, Y) — Relative distance from location [0]

7:4 |Search Path location [0] (Y) — specifies relative Y distance of the next walk from the starting
position in unit of Search Unit (SU) in U4

Format = U4, (e.g. 0x3 + OxE = Ox1)

3:0 |Search Path Distance [0] (X) — specifies relative X distance of the next walk from the starting
position in unit of SU.

Format = U4
1:13 Search Path Location [4 — 55] (X, Y)
1431 RD LUT SET 0-4
14131241 T MbMode [9] for Set 1
Format = U4U4 (encoded value must fit in 12-bits)
231811 yT MbMode [8] for Set 1
Format = U4U4 (encoded value must fit in 12-bits)
158 1 4T MbMode [9] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)
70
LUT_MbMode [8] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)
151312411 T MbMode [9] for Set 3
Format = U4U4 (encoded value must fit in 12-bits)
23:16

LUT_MbMode [8] for Set 3

Format = U4U4 (encoded value must fit in 12-bits)

346 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel“

experience
what'’s inside”

DWord

Bit

Description

15:8

LUT_MbMode [9] for Set 2
Format = U4U4 (encoded value must fit in 12-bits)

70

LUT_MbMode [8] for Set 2
Format = U4U4 (encoded value must fit in 12-bits)

16

31:24

LUT_MbMode [3] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

23:16

LUT_MbMode [2] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

15:8

LUT_MbMode [1] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

70

LUT_MbMode [0] for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

17

31:24

LUT_MbMode [7] for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

23:16

LUT_MbMode [6] for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

15:8

LUT_MbMode [5] for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

70

LUT_MbMode [4] for Set 0

Format = U4U4 (encoded value must fit in 12-bits)

18

31:24

LUT_MV [3] = For MV = 4 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

23:16

LUT_MV [2] — For MV = 2 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

15:8

LUT_MV [1] = For MV = 1 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

347

(l n te,l l\experience

what'’s inside”

3D Media GPGPU

DWord| Bit

Description

7:0

LUT_MV [0] — For MV = 0 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

19 |31:24

LUT_MV [7] = For MV = 64 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

23:16

LUT_MV [6] — For MV = 32 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

15:8

LUT_MV [5] - For MV = 16 for Set 0

Format = U4U4 (encoded value must fit in 10-bits)

70

LUT_MV [4] - For MV = 8 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

Finish RD LUT SET 1

20-23
24-27 Finish RD LUT SET 2
28-31 Finish RD LUT SET 3

The assignment of LUT_MbMode entries is according to the MbTypeEx definition:

Index to
LUT_MbMode MbTypeEx Description AVC|VC1|MPEG2
0 MODE_INTRA_NONPRED |For INTRA8x8 and INTRA4x4 only. Added per | Yes | n/a| n/a
8x8 for INTRA8x8, and per 4x4 for INTRA4x4
1 MODE_INTRA Added per 16x16 macroblock Yes | Yes | VYes
MODE_INTRA_16x16
2 MODE_INTRA_8x8 Added per 16x16 macroblock Yes | n/a n/a
3 MODE_INTRA_4x4 Added per 16x16 macroblock Yes | nfa| n/a
8 MODE INTER Added per 16x16 macroblock Yes | Yes | Yes
MODE_INTER_16x16
9 MODE_INTER BWD Added for Refldx (per partition for major type Yes | Yes | Yes
or 8x8 for minor types)
348 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

Index to
LUT_MbMode MbTypeEx Description AVC|VC1 | MPEG2
4 MODE INTER_16x8 Added per 16x16 macroblock Yes | nfa| n/a
MODE_INTER_8x16
5 MODE_INTER_8x8q Added per 8x8 subblock Yes | Yes n/a
6 MODE_INTER_8x4q Added per 8x8 subblock Yes | n/a n/a
6 MODE_INTER_4x8q Added per 8x8 subblock Yes | nfa| n/a
7 MODE_INTER_4x4q Added per 8x8 subblock Yes | n/a| n/a
6 MODE_INTER_FIELD_16x8 | Added per 16x16 macroblock n/a| ? Yes
7 MODE_INTER_FIELD_8x8q | Added per 16x16 macroblock nfa|n/a| n/a

The value of each byte of the LUTs will be viewed as a pair of 4-bit units: (shift, base), and constructed
as

base « shift.

For example, an entry Ox4A represents the value (0xA«0x4) = 10*16 = 160. Encoded value must fit in 12-
bits (unsigned number); otherwise, the hardware behavior is undefined.

The only exception is for Index of 9, MODE_INTER_BWD, which is used as a bias for the two search
directions. It is a signed number instead, in the form of (SU3U4) = (sign, shift, base). The sign bit
indicates whether the bias is added to the forward (if sign = 1) or the backward (if sign = 0). The bias
has a magnitude of (base « shift), which has 11-bits precision. It should be noted that the number is
always added, there is no subtraction.

Intra Modes only apply to AVC standard. The mode penalty doesn't apply to Skip Mode Checking. Note
that while other mode penalty applies to a fixed macroblock partition, MODE_INTRA_NONPRED applies
to all three intra modes. It is a constant cost adder for intra-mode coding regardless of the block size.

For source block that is less than 16x16 (like a 16x8 source block), the proper mode penalty that is
stated as "added per 16x16 macroblock” is added once to the source block (like MODE_INTER_16x8 is
added once to a 16x8 source block). It will not be divided by the source block size.

The LUT_MV is added to all motion vector coordinate deltas in quarter-pel unit except for the SKIP
mode, which no costing penalty applies. Given motion vector coordinate, e.g. mvx, which is in quarter-
pel precision (S5.2), the mv delta is defined to be its difference from the given costing center, e.g. ccx,
and the costing penalty is applied to dx = |mvx-ccx|. The cost penalty is a piecewise linear interpolation
from the LUT_MV table whereas the values on power-of-2 integer samples are provided. The piecewise
linear interpolation is performed using quarter-pel precision, while the LUT_MV are only provided for
the given power-of-2 integer positions. The maximum distance provided in the table is 64 pixels. A
linear ramp with gradient of 1 on integer distance is applied for bigger distances with maximum penalty
capped to 0x3FF (10 bits). Thus

Costing_penalty_x = LUT_MV[int(dx)], if dx < 3 and dx = int(dXx);
Costing_penalty_x = LUT_MV[p+1], else if dx = 2¢, for any p£6;.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 349

(in el) 3D Media GPGPU
eXpEnenCe

what'’s inside”

Costing_penalty_x = LUT_MV[p+1] + ((LUT_MV[p+2] — LUT_MV[p+1])*k)»p,
else if dx = 2r+k, for any p<6 and k<.2», and

Costing_penalty_x = min (LUT_MV[7] + int(dx)— 64, 255), else if dx > 64.

The total costing penalty for a motion vector is

Costing_penalty = Costing_penalty_x + Costing_penalty_y

As a convention, a (0,0) relative search path distance (meaning a repeat search path location) is treated
as the ending of the search path. Or the search path may also end when Max Predetermined Search
Path Length is reached, or one of the Early Success conditions is reached.

Software must program the search path to terminate with at least one (0,0).

Software Interface — Bspec Highlights

This topic is currently under development.

Message Structure Overview

350

The contents of each message are different, but they have structural similarities to reduce coding
complexity.

The first 3 input phases (‘Message Phase’ == 1 GRF of the message payload) are structurally the
same, given the mnemonic "Universal". Individual fields within the Universal phase are ignored
based on message type.

Additional input phases are appended to each message type to fulfill the required inputs only
exclusive to that message type.

Specifically, 4 message phases are appended to SIC (SICO-SIC3), either 2, 4 or 6 message phases
(based on streamin\streamout) are appended to IME (IMEO-IME5), and 4 message phases are
appended to FBR (FBRO-FBR3).

The programmer is required to pack the necessary GRFs together to generate the correct
message phase sequence before calling VME (i.e. 7 phases for SIC; 5, 7, or 9 phases for IME; and 7
phases for FBR).

The return data is structurally common for all 3 message types, given in 7 phases. The only
exception is IME return data when streamout data is present, then 2 or 4 additional phases are
returned.

Additionally, the placement of individual fields within the message phases is generally identical to
that of previous generations.

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

IME and IDM Message Descriptor

Bits

Description

19

Header Present. If set, indicates that the message includes the header. This bit must be 1 for all VME
messages.

Format = Enable

18

Reserved: MBZ

17

Stream-Out Enable 2nd-Best. If set, additional message phases of record stream-out are present with the
output of IME message containing the 2nd best candidates for each shape partition: 4 additional phases
only when search control (M0.3 10:8) is 111b (dual reference & dual record) and 2 additional phases
otherwise.

Format = Enable

16

Stream-In Enable. If set, additional message phases of record stream-in are present with the input of IME
message: 4 additional phases only when search control (M0.3 10:8) is 111b (dual reference & dual record)
and 2 additional phases otherwise.

Format = Enable

15

Stream-Out Enable. If set, additional message phases of record stream-out are present with the output of
IME message: 4 additional phases only when search control (M0.3 10:8) is 111b (dual reference & dual
record) and 2 additional phases otherwise.

Format = Enable

14:13

Message Type

00: IDM [CHV, BSW]
01: Reserved

10: IME

11: Reserved

12:8

Reserved: MBZ

70

Binding Table Index. Specifies the index into the binding table for the source surface.
Format = U8
Range = [0,254]

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 351

experience

what'’s inside”

Input GRFs
GR
F | Name | Msgs | New Major Contents
. ALL No |Universal control data
0 Uni0
. ALL No |Universal control data
1 Uni1
. ALL No |Costs, FT Matrix, FBR Modes
2 Uni2
5 Uni3 ALL Yes 8 CostCenter MVs
SICO SIC No |8 Skip MVs
4
SIC No [Luma intra pix, modes, masks
5 SIC1
] SIC2 SIC No |Luma intra pix, modes, masks
, SIC3 SIC No |Chroma intra pix & masks
IMEO IME No [Search Path
8
IMET IME No [Search Path
9
IME2 IME No [Streamin\Streamout
10
. IME3 IME No [Streamin\Streamout
IME4 IME No [Streamin\Streamout
12
IMES IME No [Streamin\Streamout
13
FBRO FBR No |8 Inter 4x4 MVs
14
FBR1 FBR No |8 Inter 4x4 MVs
15
FBR? FBR No |8 Inter 4x4 MVs
16
FBR3 FBR No (8 Inter 4x4 MVs
17
IDMO IDM Yes Source Pixel Mask
18
352

3D Media GPGPU

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Input Message Phases by Type

VME message types require only a subset of the total GRFs of control data.

Phase| SIC | IME | FBR | IDM
0 UniO [UniO [UniO | UniO
1 Uni1 [Uni1 [Uni1 | Uni1
2 Uni2 [Uni2 [Uni2 | Uni2
3 Uni3 [Uni3 [Uni3 | Uni3
4 SICO | IMEO | FBRO [IDMO
5 SIC1 |IME1 | FBR1
6 SIC2 | IME2 | FBR2
7 SIC3 | IME3 | FBR3
8 IME4
9 IMES
Output GRFs
GRF | Name | Msgs | New Major Contents
. Ret0 ALL | No |Best MB Control Data
; Ret1 ALL | No |8 Inter 4x4 MVs
, Ret? ALL | No |8 Inter 4x4 MVs
5 Ret3 ALL | No |8 Inter 4x4 MVs
Retd ALL | No |8 Inter 4x4 MVs
4
; RetS ALL | No [Inter Block Distortions
] Ret6 ALL | No |Block Ref Indices & FTQ Data
. IME2 IME | No |Streamin/Streamout
. IME3 IME | No |Streamin/Streamout
. IME4 IME | No |Streamin/Streamout
IMES IME | No |Streamin/Streamout
10
» IDMO IDM Yes 16 Search Point Dists

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 353

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

IDM1 IDM Yes 16 Search Point Dists
12

IDM2 IDM Yes 16 Search Point Dists
13

IDM3 IDM Yes 16 Search Point Dists
14

IDM4 IDM Yes 16 Search Point Dists
15

IDM5 IDM Yes 16 Search Point Dists
16

IDM6 IDM Yes 16 Search Point Dists
17

IDM7 IDM Yes 16 Search Point Dists
18

IDM8 IDM Yes 16 Search Point Dists
19

IDMO IDM Yes 16 Search Point Dists
20

IDM10 IDM Yes 16 Search Point Dists
21

IDM11 IDM Yes 16 Search Point Dists
22

IDM12 IDM Yes 16 Search Point Dists
23

IDM13 IDM Ves 16 Search Point Dists
24

IDM14 IDM Ves 16 Search Point Dists
25
2 IDM15 IDM Ves 16 Search Point Dists

Output Message Phases by Type

All message types return 7 phases except IDM. IME returns 2 or 4 additional phases of streamout if it is
enabled (2 for uni, 4 for bi). Note the IME streamout message phases are structurally identical to the
IME streamin phases. The IDM message will return only the 16 phases of distortion mesh output.

Phase| SIC | IME | FBR | IDM

0 |RetO| RetO |RetO | IDMO

Ret1 | Ret1 |Ret1 | IDM1

Ret2 | Ret2 [Ret2 | IDM2

Ret4 | Ret4 |Ret4 | IDM4

1
2
3 |Ret3|Ret3 [Ret3| IDM3
4
5

Ret5 | Ret5 [Ret5 | IDM5

354 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

6 |[Ret6| Ret6 |Ret6 | IDM6
7 IME2 IDM7
8 IME3 IDM8
9 IME4 IDM9
10 IME5 IDM10
11 IDM11
12 IDM12
13 IDM13
14 IDM14
15 IDM15

Binding Table Pointers

(l n te,l H experience

what’s inside”

The following gives the driver and HW perspective of how the RefID will map to the binding table
pointers indices (and hence surface state). The fixed mapping simplifies the HW definition.

Progressive Content

Driver View Universal Input M1.6 ReflDs (4b Value per Block) Conversion
FWD | BWD | FWD | BWD | FWD | BWD | FWD | BWD

BTI | Direction | Number | Field 0 0 1 1 2 2 3 3 BTI Equation
0 | Source N/A N/A = From input
1 FWD 0 0 0 0 0 _ReflD* 2 +
1

2 BWD 0 0 0 0 0 — ReflD * 2 +
2

3 FWD 1 1 1 1 1 _ReflD* 2 +
1

4 BWD 1 1 1 1 1 _ ReflD * 2 +
2

5 FWD 2 2 2 2 2 _ReflD* 2 +
1

6 BWD 2 2 2 2 2 _ RefiD * 2 +
2

7 FWD 3 3 3 3 3 _ReflD* 2 +
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 355

experience
what's inside

3D Media GPGPU

Driver View Universal Input M1.6 ReflDs (4b Value per Block) Conversion
FWD | BWD | FWD | BWD | FWD | BWD | FWD | BWD

BTI | Direction | Number | Field 0 0 1 1 2 2 3 3 BTI Equation
1

8 BWD 3 3 3 3 3 _ ReflD * 2 +

2

9 FWD 4 4 4 4 4 _ ReflD * 2 +

1

10| BWD 4 4 4 4 4 | -RefiD*2+
2

11 FWD 5 5 5 5 5 — ReflD * 2 +
1

12 BWD 5 5 5 5 5 _ ReflD * 2 +
2

13 FWD 6 6 6 6 6 — ReflD * 2 +
1

14| BWD 6 6 6 6 6 _ ReflD * 2 +
2

15 FWD 7 7 7 7 7 — ReflD * 2 +
1

16 BWD 7 7 7 7 7 _ ReflD * 2 +
2

17 FWD 8 8 8 8 8 — ReflD * 2 +
1

18 BWD 8 8 8 8 8 _ ReflD * 2 +
2

19 FWD 9 9 9 9 9 — ReflD * 2 +
1

20 BWD 9 9 9 9 9 _ ReflD * 2 +
2

356 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l H experience

what's inside”

Driver View Universal Input M1.6 ReflDs (4b Value per Block) Conversion
FWD | BWD | FWD | BWD | FWD | BWD | FWD | BWD
BTI | Direction | Number | Field 0 0 1 1 2 2 3 3 BTI Equation
21 FWD 10 10 10 10 10 _ ReflD * 2 +
1
22 BWD 10 10 10 10 10 _ ReflD * 2 +
2
23 FWD 11 11 11 11 11 _ ReflD * 2 +
1
24 [BWD 11 11 11 11 11 — ReflD * 2 +
2
25 FWD 12 12 12 12 12 _ ReflD * 2 +
1
26 | BWD 12 12 12 12 12 — ReflD * 2 +
2
27 FWD 13 13 13 13 13 _ ReflD * 2 +
1
28 BWD 13 13 13 13 13 — ReflD * 2 +
2
29 FWD 14 14 14 14 14 = ReflD * 2 +
1
30| BWD 14 14 14 14 14| —RefiD*2 +
2
31 FWD 15 15 15 15 15 _ ReflD * 2 +
1
32 BWD 15 15 15 15 15 — ReflD * 2 +
2
Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 357

experience
what'’s inside”

Interlaced Content

3D Media GPGPU

Driver View

Universal Input M1.6 ReflDs (4b Value per Block)

Conversion

FWD | BWD | FWD | BWD | FWD | BWD | FWD | BWD

BTI | Direction | Number | Field 0 0 1 1 2 2 3 3 BTI Equation

0 | Source N/A N/A = From input

1 FWD 0 Top 0 0 0 0 = ReflD * 2 +
1

2 BWD 0 Top 0 0 0 0 = ReflD * 2 +
2

3 FWD 0 Bot 1 1 1 1 = ReflD * 2 +
1

4 BWD 0 Bot 1 1 1 1 = ReflD * 2 +
2

5 FWD 1 Top 2 2 2 2 = ReflD * 2 +
1

6 BWD 1 Top 2 2 2 2 = ReflD * 2 +
2

7 FWD 1 Bot 3 3 3 3 = ReflD * 2 +
1

8 BWD 1 Bot 3 3 3 3 = ReflD * 2 +
2

9 FWD 2 Top 4 4 4 4 = ReflD * 2 +
1

10 BWD 2 Top 4 4 4 4 = ReflD * 2 +
2

11 FWD 2 Bot 5 5 5 5 = ReflD * 2 +
1

12 BWD 2 Bot 5 5 5 5 = ReflD * 2 +
2

13 FWD 3 Top 6 6 6 6 = RefID * 2 +
1

14 BWD 3 Top 6 6 6 6 = ReflD * 2 +
2

15 FWD 3 Bot 7 7 7 7 = ReflD * 2 +
1

16 BWD 3 Bot 7 7 7 7 = ReflD * 2 +
2

17 FWD 4 Top 8 8 8 8 = ReflD * 2 +
1

358 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l H experience

what's inside”

Driver View Universal Input M1.6 ReflDs (4b Value per Block) Conversion
FWD | BWD | FWD | BWD | FWD | BWD | FWD | BWD

BTl | Direction | Number |Field| O 0 1 1 2 2 3 3 BTI Equation

18| BWD 4 Top 8 8 8 8 = ReflD * 2 +
2

19 FWD 4 Bot 9 9 9 9 = ReflD * 2 +
1

20 | BWD 4 Bot 9 9 9 9 = ReflD * 2 +
2

21 FWD 5 Top | 10 10 10 10 = ReflD * 2 +
1

22 BWD 5 Top 10 10 10 10 = ReflD * 2 +
2

23 FWD 5 Bot 11 11 11 11 = ReflD * 2 +
1

24 | BWD 5 Bot 11 11 11 11 = ReflD * 2 +
2

25 FWD 6 Top | 12 12 12 12 = ReflD * 2 +
1

26 | BWD 6 Top 12 12 12 12 = ReflD * 2 +
2

27 FWD 6 Bot 13 13 13 13 = ReflD * 2 +
1

28 | BWD 6 Bot 13 13 13 13 = ReflD * 2 +
2

29 FWD 7 Top | 14 14 14 14 = ReflD * 2 +
1

30| BWD 7 Top 14 14 14 14 = ReflD * 2 +
2

31 FWD 7 Bot 15 15 15 15 = RefID * 2 +
1

32 BWD 7 Bot 15 15 15 15 = ReflD * 2 +
2

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 359

experience
what'’s inside”

(intel)' 3D Media GPGPU

RDE Packet Mapping

Input Packets Output Packets
RDE- RDE-

Intra Inter

RDE-B RDE-A
Phase

=]

[T~ T S TOR N
BB s~ W W b

360 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

Glossary of Messages

This section describes the glossary of messages in regard to Media Sampler.

Universal Input Message Phases

Major changes from the previous generation:

e Many fields are only required for one or two of the message types.

e MV cost and mode cost are moved into the message payload.

e RefID per block are new inputs.

e Enables for forward transform skip check, chroma searching.

e Thresholds and control data for forward transform skip check.

e Many of the performance thresholds have been removed (IME success, skip success, etc).

ValidMsgType = “..." identifies the given field is required for each message type. Hardware ignores these
fields under messages where that field is invalid. Hardware output for non valid fields is undefined.
DWord | Bits Description
MO0.5 |31:24 . . C L o . o
Reference Region Height (RefHeight): This field specifies the reference region height in pixels.
When bidirectional search is enabled, this applies to both search regions. Minus 16 provides the
number of search point in vertical direction.
The value must be a multiple of 4.
ValidMsgType = IME
Format = U8
Range = [8, 64]

2316 Reference Region Width (RefWidth): This field specifies the search region width in pixels. When
bidirectional search is enabled, this applies to both search regions. Minus 16 provides the number
of search point in horizontal direction.

The value must be a multiple of 4.

ValidMsgType = IME

Format = U8

Range = [20, 128]

Note: Please make sure the reference windows are not completely outside of the video frame. In
that case, VME behavior is undefined.

Note: Reference Window size must be <= Surface Size, otherwise VME behavior is undefined.

15:8 |Ignored

7:0

Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread.
It is used to free up resources used by the thread upon thread completion.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 361

(intel’"

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Description

ValidMsgType = SIC, IME, FBR

MO0.4

31:0

Ignored (reserved for hardware delivery of binding table pointer)

MO0.3

31

Reserved: MBZ

30:24

Sub-Macroblock Sub-Partition Mask (SubMbPartMask): This field defines the bit-mask for
disabling sub-partition and sub-macroblock modes.

The lower 4 bits are for the major partitions (sub-macroblock) and the higher 3 bits for minor
partitions (with sub-partition for 4x(8x8) sub-macroblocks.

xxxxxx1 : 16x16 sub-macroblock disabled

xxxxx1x : 2x(16x8) sub-macroblock within 16x16 disabled
XXXX1xx : 2x(8x16) sub-macroblock within 16x16 disabled
xxx1xxx : 1x(8x8) sub-partition for 4x(8x8) within 16x16 disabled
XX Txxxx : 2x(8x4) sub-partition for 4x(8x8) within 16x16 disabled
XTxxxxx : 2x(4x8) sub-partition for 4x(8x8) within 16x16 disabled
Txxxxxx : 4x(4x4) sub-partition for 4x(8x8) within 16x16 disabled
1111111 Invalid

Note: Invalid to have all partions disabled in the IME call.
ValidMsgType = IME

Usage Note: One example usage of only enabling 4x(4x4) sub-partition while all other partitions
are disabled is for video processing, where parallel motion searches are performed for 16 4x4
blocks. For that no further block combination (into larger sub-partitions/sub-macroblocks) is
needed.

23:22

Intra SAD Measure Adjustment (IntraSAD): This field specifies distortion measure adjustments used
for the motion search SAD comparison. This field applies to both luma and chroma intra
measurement.

00b: None

01b: Reserved

10b: Haar transform adjusted
11b: Reserved

ValidMsgType = SIC

21:20

Inter SAD Measure Adjustment (InterSAD):This field specifies distortion measure adjustments used
for the motion search SAD comparison. This field applies to both luma and chroma intra
measurement.

00b: None

362

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Description
01b: Reserved
10b: Haar transform adjusted
11b: Reserved
ValidMsgType = SIC, IME, FBR, IDM
Note: IDM msgs cannot have InterSAD set to 10b (Haar transform adjusted) if IdmSrcPixelMask is
used.
InterSAD must be set to 00b (None) if either IDMShapeMode5x5 or IDMShapeMode7x7 is
enabled.
19

Block-Based Skip Enabled: When this field is set on the skip thresholding passing criterion will be
based on the maximal distortion of individual blocks (8x8's or 4x4's) instead of their sum (i.e. the
distortion of 16x16). The block size is 8x8 if and only if the Transform 8x8 Flag is set to ON and the
source size is 16x16.

ValidMsgType = SIC

18

BME disable for FBR Message (BMEDisableFBR): FBR messages that do not want bidirectional
motion estimation performed will set this bit and VME will only perform fractional refinement on
the shapes identified by subpredmode. Note: only the LSB of the subpredmode for each shape will
be considred in FBR (a shape is either FWD or BWD as input of FBR, output however could change
to Bl if BME is enabled).

0 = BME enabled
1 = BME disabled
ValidMsgType = FBR

17

Forward Transform Skip Check Enable (FTEnable): This field enables the forward transform
calculation for skip check. It does not override the other skip calculations but it does decrease the
performance marginially so don't enable it unless the transform is necessary.

0 = FT disabled
1 = FT enabled
ValidMsgType = SIC

16

Process Inter Chroma Pixels Mode (InterChroaZmaMode): This bit switches the inter operations
from luma mode to chroma mode.

All shapes sizes are referred to as UV pairs. For instance, the 4x4 shape is a 8x4 of pixel
components (16 U and 16 V, interleaved vertically) and the 8x8 shape is a 16x8 of pixel
components.

MBMode is always 8x8.
MBSubShape is either 8x8 or 4x4 indicated by LSB[1:0]. Bits[7:2] are MBZ.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 363

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord | Bits Description
For MBSubShape of 4x4, SubPredMode is mapped to each 4x4 shape.
Only 8x8 and 4x4 ModeCost are valid.
Source block size is ignored.
Streamin/streamout distortions are overloaded on 16x16 (Chroma8x8) and 8x8 (Chroma4x4).
BilinearEnable is ignored (Chroma can only perform bilinear filtering)
Restrictions when set: Intra operations are disabled (SIC), valid ref window sizes are 32x20, 24x24
(max Xsus), 16x32 (max Xsus), and 10x20 (max Xsus) (IME), adaptive is disabled (IME), no backward
penalty cost (ALL), and only 4x4 and 8x8 shapes are valid (ALL).
ValidMsgType = SIC, IME, FBR
15 Disable Field Cache Allocation: This field, when set to 1, disables the optimized field cache line
method in the Sampler Cache for reference block data when RefAccess is 1 (field based). It is
ignored by hardware if RefAccess is 0.
0 — Frame or field cache lines according to RefAccess
1 — Always frame cache lines
ValidMsgType = IME, IDM
14 Skip Mode Type
For B_DIRECT_16x16, both motion vectors of the skip center pair 0 are used.
For B_DIRECT_8x8s, all four skip center pairs are fully used (VME never tries to combine them with
non-skip shapes from IME, FME, or BME).
0 : SKIP_TMVP — one MV pair for 16x16
1: SKIP_4MVP — Four MV pairs for 8x8s (in this case and only this case, SkipCenter Delta 1-3 is
used)
Note: SkipModeType should be programmed to TMVP for non-16x16 Source size.
ValidMsgType = SIC
13:12

Sub-Pel Mode (SubPelMode)

This field defines the half/quarter pel modes. The mode is inclusive, ie., higher precision mode
samples lower precision locations.

00b: Integer mode searching
01b: Half-pel mode searching
10b: Reserved

11b: Quarter-pel mode searching

ValidMsgType = FBR

364

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord

Bits

Description

11

Dual Search Path Option

Used only for dual record cases, this field flags whether two searching records uses the same or
the different paths.

0: Use the same path as specified by the Search Path Location array

1: Use the different paths, the first one uses the even entries of the Search Path Location array and
the second one uses the odd entries of the Search Path Location array.

ValidMsgType = IME

10:8

Search Control (SearchCtrl)
This field specifies how the motion search is performed.
ValidMsgType = IME

The following table shows the valid encodings. Other encodings are reserved.

Code Mode

000b Single reference, single record and single start.

Search is performed only on reference 0; only cost center 0 and start O are used. There is
only one record. Adaptive search is also allowed. However, when AdaptiveEn is on, LenSU
must be at least 2 as the adaptive search in VME is one-step delayed.

This is the common single directional motion search mode.

001b Single reference, single record and dual start.

Search is performed only on reference 0; only cost center 0 is used. There is only one
record. Search performs first on start 0 and then on start 1. Then if LenSP is not reached,
the predetermined search path will start on start 1 with increment added to start 1
location. It then is followed by adaptive search.

This is used for single direction adaptive search.

011b Single reference, dual record (and implied dual start).

Search is performed only on reference 0; both cost center 0 and 1 and start 0 and 1 are
used. Two records are used for both paths during IME.

When integer search is complete, the two records are combined to find the best search.
Sub-pel refinement is only performed from the best one.

This may be used for search for multiple motion search candidates/predicators.

111b Dual reference, dual record (and implied dual start).

Search is performed on references 0/1 with both cost centers 0/1 and starts 0/1. Two
records are used for both paths during IME.

When integer search is complete, and then sub-pel refinement is also performed

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 365

3D Media GPGPU

experience

what'’s inside”

DWord | Bits Description
separately, the two records are combined to find the best search on a subblock basis.
This may be used for bidirectional motion search, or multi-reference P search. Whether
bidirectional is enabled or not depends on the bidirection sub-macroblock mask.
If BiSubMbPartMask is set to 1111'b, bidirectional search is disabled. VME outputs only
the best unidirectional search results. Otherwise, BME is performed.
Note that bidirectional search and sub-pel refinement are orthogonal features that can be
enabled independently.
/ Reference Access (RefAccess)
This field defines how the reference blocks are accessed from the reference frames. It indicates if
the source picture is a frame picture or a field picture.
Programming Note: For all known video coding standards, reference pictures always have the
same picture type as the source picture. Therefore, this field should be programmed to be the
same as SrcAccess.
0: Frame based
1: Field based
ValidMsgType = SIC, IME, FBR, IDM
6

Source Access (SrcAccess)

This field defines how the source block is accessed from the source frame. It indicates if the source
picture is a frame picture or a field picture. It is similar to the Picture Type used in video standards.

0: Frame based

1: Field based

ValidMsgType = SIC, IME, FBR, IDM

54

Inter MbType Remap (MbTypeRemap): This field controls the mapping of the output MbType
when the VME output is an Inter (IntraMbFlag = INTER). The intended usage, for example, is for
two forward (or backward) references or for two search regions from the same reference picture in
one VME call. Hardware ignores this field if the VME output is an intra type (IntraMbFlag = INTRA).

00b: No remapping

01b: Remapping MbType to forward only (1-3 mapped to 1, even numbers in [4-14h] mapped to
4, odd numbers in [5-15h] mapped to 5, and 16h is unchanged)

10b: Remapping MbType to backward only (1-3 mapped to 2, even numbers in [4-14h] mapped to
6, odd numbers in [5-15h] mapped to 7, and 16h is unchanged)

11b: Reserved
ValidMsgType = IME, FBR

Reserved: MBZ

366

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Description
2 Reserved: MBZ
1.0 . .
Source Block Size (SrcSize)
This field defines how the 16x16 source block is formed. When Source Block Size is less than
16x16, SU larger than 4x4 is used.
00b: 16x16
01b: 16x8
10b: Reserved (for 8x16)
11b: 8x8
ValidMsgType = SIC, IME, FBR, IDM
Note: For IDM message, the source block size should be always programmed to 16x16.
MO.2 131:16 Source Y (SrcY)
This field defines the vertical position (of the block’s upper-left pixel) in units of pixels for the
source block in the source frame.
Restriction
The Y address restriction is removed. Exception: for SIC messages where Intra Compute Type is
set to 00 (Luma + Chroma enabled), SrcY must be a multiple of 2.
ValidMsgType = SIC, IME, FBR, IDM
Format = U16
150 Source X (SrcX)
This field defines the horizontal position (of the block’s upper-left pixel) in units of pixels for the
source block in the source picture.
The source block must be within the source picture starting at any integer grid.
For SIC messages where Intra Compute Type is set to 00 (Luma + Chroma enabled), SrcX must be
a multiple of 2.
ValidMsgType = SIC, IME, FBR, IDM
Format = U16
MO0.1 |31:16

Reference 1 Y Delta (Ref1Y)

This field defines the vertical position (of the upper-left corner of the reference region) in units of
pixels for the Reference 1 region relative to the surface origin.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 367

experience

3D Media GPGPU

what'’s inside”

DWord

Bits

Description

Project Restriction
CHV, BSW

The Y address restriction is removed.
ValidMsgType = IME

Format = S15

Hardware Range: [-2048 to 2047]

Format = U16

15:0

Reference 1 X Delta (Ref1X)

This field defines the horizontal position (of the upper-left corner of the reference region) in units
of pixels for the Reference 1 region relative to the surface origin.

The resulting reference region is allowed to be outside the picture. Pixel replication is applied to
generate out of bound reference pixels.

This field is only valid when dual reference mode is selected.
Note: For search control=3, this must equal RefOX.
ValidMsgType = IME

Format = S15

Hardware Range: [-2048 to 2047]

MO0.0

31:16

Reference 0 Y Delta (Ref0Y)

This field defines the vertical position (of the upper-left corner of the reference region) in units of
pixels for the Reference 0 region relative to the surface origin.

Project Restriction
CHV, BSW

The Y address restriction is removed.
ValidMsgType = IME, IDM

Format = S15

Hardware Range: [-2048 to 2047]

Format = U16

15:0

Reference 0 X Delta (Ref0X)

This field defines the horizontal position (of the upper-left corner of the reference region) in units
of pixels for Reference 0 region relative to the surface origin.

The resulting reference region is allowed to be outside the picture. Pixel replication is applied to

368

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

DWord | Bits Description
generate out of bound reference pixels.
ValidMsgType = IME, IDM
Format = S15
Hardware Range: [-2048 to 2047]
M1.7 |31:24

Skip Center Enable Mask (SkipCenterMask):

[bits 31...24]

xxxx xxx1: RefQ Skip Center 0 is enabled [corresponds to M2.0]
xxxx xx1x: Ref1 Skip Center 0 is enabled [corresponds to M2.1]
xxxx x1xx: RefO Skip Center 1 is enabled [corresponds to M2.2]
xxxx Txxx: Ref1 Skip Center 1 is enabled [corresponds to M2.3]
xxx1 xxxx: RefO Skip Center 2 is enabled [corresponds to M2.4]
xx1x xxxx: Ref1 Skip Center 2 is enabled [corresponds to M2.5]
x1xx xxxx: Ref0 Skip Center 3 is enabled [corresponds to M2.6]
Txxx xxxx: Ref1 Skip Center 3 is enabled [corresponds to M2.7]
lllegal cases:

Disable both Ref0 and Ref1 Skip Center 0 in case of Skip_1MVP.
Disable both Ref0 and Ref1 for any Skip Center pair in case of Skip_4MVP.
ValidMsgType = SIC ValidMsgType = SIC

23

IDM Shape Mode Select (IDMShapeMode): [Also see M1.1 bits 30 and 31]
This bit selects what shape size the IDM is searching for.

0: 16x16

1: 8x8

ValidMsgType = IDM

Note: Only ref window size of 32x32 (shape16x16), 24x24(shape8x8), 128x16 (shape16x16), and
32x16 (shape16x16) are supported. Search control[2:0] defaults to single ref and single start. Luma
only.

22

ReflD Cost Mode Select (RefIDCostMode)
Selects the ReflD costing mode.

0 = Mode0 (AVC)

1 = Mode1 (linear)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 369

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Description

ValidMsgType = SIC, IME, FBR, IDM

21

Enable AC-Only HAAR (AConlyHAAR)

This bit zeros out the DC component in the HAAR SATD block.
0 = AC+DC HAAR

1 = ACHAAR

ValidMsgType = SIC, IME, FBR

20

Enable Weighted-SAD\HAAR (WeightedSADHAAR)

Project Restriction

CHY,
BSW

This bit enables weighted SAD\HAAR.
0: No weighted-SAD
1: Enable weighted-SAD

Note: if this bit is 1, ShapeMask is ignored and only 16x16 shapes are accumulated
(no partitioning).

Restrictions: Only supported for source-type luma 16x16. Only support unidirectional
search (on Ref0).

See M1.3 for individual sub-block weight control.
ValidMsgType = IME, IDM

19

Source Field Polarity Select (SrcFieldPolarity)

If SrcAccess = 1 (M0.3-6), meaning field based, than the hardware requires this value to derive the
correct location on the source surface in memory to fetch pixels. This is because the source is
stored as a frame picture with both fields interleaved in memory and the SrcY value (M0.2-31:16) is
the location on the field picture (in other words, it does not convey the field polarity).

Hence, the starting y-pixel coordinate fetched from memory is:
SrcY* 2 + SrcFieldPolarity

Else, this field is ignored by the hardware.

ValidMsgType = SIC, IME, FBR, IDM

Format = U1

18

Bilinear Filter Enable (BilinearEnable)

If set, the fractional filter implements a simple bilinear interpolation filter instead of the 4-tap filter.
Note: This is supported for both hpel and gpel interpolation.

370

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

DWord | Bits Description

ValidMsgType = SIC, FBR
Format = Enable

17:16 .
MV Cost Scaling Factor (MVCostScaleFactor)
This term allows the user to redefine the precision of the lookup into the LUT_MV based on the
MV cost difference from the cost center. The piecewise linear cost function is defined from 0 to 64
in powers of 2 intervals, and the precision of the difference is set by this field. There are 4 precision
choices:
00b: Qpel [Qpel difference between MV and cost center: eff cost range 0-15pel]
01b: Hpel [Hpel difference between MV and cost center: eff cost range 0-31pel]
10b: Pel [Pel difference between MV and cost center: eff cost range 0-63pel]
11b: 2pel [2Pel difference between MV and cost center: eff cost range 0-127pel]
ValidMsgType = SIC, IME, FBR, IDM
Format = U2

15:8

Macroblock Intra Structure (MblntraStruct): This is a bitmask that specifies neighbor macroblock
availability. This allows software to constrain intra prediction mode search.

Note: The user must set Bit6=Bit5.

The bit positions in the following table are relative positions within the field. For example, bit 7 in
the table is bit 15 in the containing DWord.

Bit MotionVerticalFieldSelect Index
7 |Reserved: MBZ (for IntraPredAvailFlagF — F (pixel[-1,7] available for MbAff)
6 |Reserved: MBZ (for IntraPredAvailFlagA/E — A (left neighbor top half for MbAff)
5 |IntraPredAvailFlagE/A — A (Left neighbor or Left bottom half)
4 |IntraPredAvailFlagB — B (Upper neighbor)
3 |IntraPredAvailFlagC — C (Upper left neighbor)
2 |IntraPredAvailFlagD — D (Upper right neighbor)
1:0 | Reserved: MBZ (ChromalntraPredMode)

ValidMsgType = SIC

Luma Intra Source Corner Swap (IntraCornerSwap): This field specifies the format of the intra luma
neighbor pixel format in the message.

0: Top neighbors are in sequential order.

1: Left-top corner is swapped with the last left-edge neighbor.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 371

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord | Bits Description
ValidMsgType = SIC
6 Non Skip MB Mode Cost Added (NonSkipModeAdded)
This field indicates that the distortion of the survived motion vectors becomes non-skip, and the
MB mode cost is added to its distortion.
ValidMsgType = SIC
> |Non Skip Zero MV Cost Added (NonSkipZMvAdded)
This field indicates that the distortion of the survived motion vectors becomes non-skip, and the
zero MV component costs are added to its distortion.
ValidMsgType = SIC
40 Luma Intra Partition Mask (IntraPartMask)
This field specifies which Luma Intra partition is enabled/disabled for intra mode decision.
xxxx1: luma_intra_16x16 disabled
xxx1x: luma_intra_8x8 disabled
xxTxx: luma_intra_4x4 disabled
Note: For SIC message with IntraComputeType == 00 or 01, at least 1 partition must be enabled.
Bits [4:3] MBZ
ValidMsgType = SIC
M1.6 |31:28 | Bwd Block 3 ReflD
27:24 | Fwd Block 3 ReflD
23:20 | Bwd Block 2 ReflD
19:16 | Fwd Block 2 ReflD
15:12 | Bwd Block 1 RefID
11:8 | Fwd Block 1 ReflD
7:4 |Bwd Block 0 RefID
30" | Fwd Block 0 RefiD
M1.6 contains 8 input ReflDs, 1 per block. The RefID is used to penalize selection of shapes away
from the optimal RefID similar to how MVCost penalizes shapes with motion vectors far from the
cost center.
Project Restriction
CHV, BSW Note: All 4 Bwd RefID are ignored by HW for IDM message type.
Format = U4
ValidMsgType = SIC, IME, FBR, IDM
372 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord

Bits

Description

31:16

Reserved: MBZ

15:0

Reserved: MBZ

31:16

Reserved: MBZ

15:0

Reserved: MBZ

M1.3

31:30

Weighted SAD Control Sub-block 15 (F)

29:28

Weighted SAD Control Sub-block 14 (E)

27:26

Weighted SAD Control Sub-block 13 (D)

25:24

Weighted SAD Control Sub-block 12 (C)

23:22

Weighted SAD Control Sub-block 11 (B)

21:20

Weighted SAD Control Sub-block 10 (A)

19:18

Weighted SAD Control Sub-block 9

17:16

Weighted SAD Control Sub-block 8

15:14

Weighted SAD Control Sub-block 7

13:12

Weighted SAD Control Sub-block 6

11:10

Weighted SAD Control Sub-block 5

9:8

Weighted SAD Control Sub-block 4

7:6

Weighted SAD Control Sub-block 3

5:4

Weighted SAD Control Sub-block 2

32

Weighted SAD Control Sub-block 1

1:0

Weighted SAD Control Sub-block 0

When the Weighted SAD control is enabled (M1.7 bit 20) these values are used to decrease the
magnitude of each sub-block by dividing the 4x4 SAD\HAAR output mapped to that 4x4 of the
source MB. The control value divides the 4x4 SAD\HAAR output by 2~ control value.

0: »0 (div by 1)
1: »1 (div by 2)
2:»2 (div by 4)
3:»3 (div by 8)

The output produces 4 16x16 macroblock results each with different weighted-SAD control. The
values from M1.3 31:0 are mapped onto the sub-blocks of the source MB in the traditional Z-order
for the first 16x16 weighted-SAD result:

16x16_0 Weighted-SAD Control Mapping:

0145
2367
89CD
ABEF

The HW will horizontally, vertically, and diagonallay map these weights from M1.3 31:0 to produce

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 373

experience

3D Media GPGPU

what'’s inside”

DWord | Bits Description
the weights for the other 3 16x16 macroblock results.
16x16_1 Weighted-SAD Control Mapping (Horizontal reflection):
5410
7632
DCY8
FEBA
16x16_2 Weighted-SAD Control Mapping (Vertical reflection):
ABEF
89CD
2367
0145
16x16_3 Weighted-SAD Control Mapping (Diagonal reflection:
FEBA
DCY8
7632
5410
ValidMsgType = IME, IDM
M1.2 131:28 Start Center 1Y (Start1Y)

This field defines the Y position of Search Path 1 relative to the reference Y location. It is in units of
Su.
ValidMsgType = IME
Format = U4

27:24 Start Center 1 (Start1X)
This field defines the X position of Search Path 1 relative to the reference X location. It is in units of
Su.
The corresponding reference block must be fully within the reference region.
ValidMsgType = IME
Format = U4

23:20 Start Center 0 Y (Start0Y)
This field defines the Y position of Search Path 1 relative to the reference Y location. It is in units of
Su.
ValidMsgType = IME
Format = U4

19:16

Start Center 0 X (Start0X)

374

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Description

This field defines the X position of Search Path 1 relative to the reference X location. It is in units of
Su.
The corresponding reference block must be fully within the reference region.
ValidMsgType = IME
Format = U4

15:8 .
Maximum Search Path Length (MaxNumSU)
This field defines the maximum number of SUs per reference including the predetermined SUs and
the adaptively generated SUs.
Note: Every SU in fixed path is counted (including the out-bound ones and repeated ones), and in
addition for adaptive SUs only the ones actually searched are added.
ValidMsgType = IME
Format = U8, with valid range of [1,63]

70 .
Max Fixed Search Path Length (LenSP)
This field defines the maximum number of SUs per reference which are evaluated by the
predetermined SUs. When adaptive walk is enabled, adaptive walk starts when this number is
reached.
Note: Every SU in fixed path is counted (including the out-bound ones and repeated ones).
ValidMsgType = IME
Format = U8, with valid range of [1,63]

M1.1 31 |Reserved: MBZ

30 |Reserved: MBZ

29 Ref pixel bias enable
If set perform following to reference pixel:
»1+64
ValidMsg type - IME, SIC, FBR, IDM

28 Unidirectional Mix Disable (UniMixDisable): If it is on, all unidirectional resulting motion vectors
must share the same direction, i.e. either all are forward, or all are backward. If this field is off, each
partition, down to 8x8 subblock, may have a different mix of forward and backward motion
vectors. (Within each 8x8 subblock, only one common choice is allowed.)
Programming Note: For the case when BMEdisableFBR is set, only the input subpredmode
direction is refined. If BMEdisableFBR is not set, both directions undergo fractional refinement
before bidirectional refinement, but the subpredmode output never inverts directions if the
refinement yields a better result (subpredmode could change to bidirectional in this case though).
This field is MBZ except for cases of Search Control = 111'b (e.g. 7, dual reference).

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 375

(intel’"

3D Media GPGPU

experience
what'’s inside”

DWord | Bits Description
ValidMsgType = IME
27:24 | Reserved: MBZ
23:22 Reserved: MBZ
[Fixed7x7Weights -- GxMask, GyMask]
21116 Bidirectional Weight (BiWeight)
This field defines the weighting for the backward and forward terms to generate the bidirectional
term. This field is only valid for bidirectional search (SearchCtrl = 111).
ValidMsgType = SIC, FBR
Format = U6
Valid Values: [16, 21, 32, 43, 48]
158 Refld Polarity Bits
Bit15->bwd block3
Bit14->bwd block2
Bit13->bwd block1
Bit12->bwd block0
Bit11->fwd block3
Bit10->fwd block2
Bit9->fwd block1
Bit8->fwd block0
ValidMsg type - IME, SIC, FBR, IDM
7 |Reserved: MBZ
6 Extended MV Cost Range
This bit specifies if the increased 12-bit mvcost range is used vs. the legacy 10-bit range.
0 = Disable
1 = Enable
ValidMsgType = SIC,IME, FBR
>0 Maximum Number of Motion Vectors (MaxNumMVs)
This field specifies the maximum number of motion vectors allowed for the current macroblock.
This field affects the macroblock partition decision. VME returns the best partition with
MvQuantity not exceeding MaxNumMVs. MaxNumMVs = 0 only allows skip as a valid Inter mode.
Note: This value is used ONLY for 16x16 source MB mode.
376 Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
eXpE”enCe

what’s inside”

DWord

Bits

Description

Usage Example: Certain profiles/levels for AVC standard have restrictions for the maximum
number of motion vectors allowed for two consecutive macroblocks (MaxMvsPer2Mb may be 16
or 32).

ValidMsgType = IME
Format = U6

M1.0

31:24

Early IME Successful Stop Threshold (EarlylmeStop)

This field specifies the threshold value for the IME distortion computes of single 16x16 mode
below which no more search is performed within the IME unit.

This field only takes effect if EarlylmeSuccessEn is set.

Note: Early IME exit only looks at ref0, and uses 8x8 for source 8x8 and 2 16x8 0 for source 16x8.
ValidMsgType = IME

Format = U4U4 (encoded value should fit in 14 bits)

23:16

Reserved: MBZ

15:8

Reserved: MBZ

Transform 8x8 Flag For Inter Enable (T8x8FlagForinterEn)

This field specifies whether Transform8x8Flag is updated for inter mode according to the resulting
inter-mode sub-partition size.

0: Disable
1: Enable
ValidMsgType = SIC, IME, FBR

6 |[Xonly search
This field enables searching in only the x dimension.
ValidMsg type - IME, IDM

5

Early IME Success Enable (EarlylmeSuccessEn)

This field specifies whether the Early Success may terminate on full-pel precision. When this field is
not set, if early out does occur on full-pel location, hardware continues to local sub-pel refinement
search and so on. When this field is set, however, the local sub-pel refinement step is skipped and
intra search is also skipped.

This field only takes effect if EarlySuccessEn is set.

Usage Example: This may be used for cases with large static area where (0,0) motion vector
delivers very good results that no FME refinement is needed and also intra check is also skipped.
This may also be used in place of Skip Mode Checking when the skip center(s) happens to be an
integer location inside the SU of the Start Center(s).

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 377

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Description

0: Disable
1: Enable
ValidMsgType = IME

4:3

Reserved: MBZ

Bidirectional Mix Disable (BiMixDis): If it is on, all resulting motion vectors must share the same
direction, i.e. either all are unidirectional (i.e. forward or backward), or all bidirectional. If this field
is off, each partition may have different search direction (forward, backward, or bidirectional).

Usage Example: MPEG2 bidirectional decision is at whole macroblock level, while AVC decision is
at subblock level.

0: Bidirectional decision on subblock level that bidirectional mode is enabled.

1: Bidirectional decision on whole macroblock.

Note: This must be disabled for SubMbShape with any minors (8x4/4x8/4x4) in the MB.
ValidMsgType = FBR

Adaptive Search Enable (AdaptiveEn): This field defines whether adaptive searching is enabled for
IME. When Adaptive Search is enabled, there must be at least two search steps preceded. It is
either from a single start with step of >=2 or from a dual-start.

0: Disable
1: Enable
ValidMsgType = IME

Skip Mode Enable (SkipModeEn): This field specifies whether the skip mode checking is performed
before the motion search. If this field is set, Skip Center, which may have a sub-pel precision, is
first tested before IME.

0: Disable
1: Enable

M2.7

31:24

SIC Forward Transform Coeff Threshold Matrix[6] - Highest Freq

23:16

SIC Forward Transform Coeff Threshold Matrix[5]

15:8

SIC Forward Transform Coeff Threshold Matrix[4]

70

SIC Forward Transform Coeff Threshold Matrix[3]

M2.6

31:24

SIC Forward Transform Coeff Threshold Matrix[2]

23:16

SIC Forward Transform Coeff Threshold Matrix[1]

15:0

SIC Forward Transform Coeff Threshold Matrix[0]
Values of the threshold matrix[0..6] are provided here.

Matrix[0] contains the DC threashold for the Forward Transform Skip check. It has increased
precision vs. the other thresholds due to the larger size of DC coeffieicients. Matrix[1] through

378

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

DWord

Bits

Description

Matrix[6] have lower precision.

Threshold Matrix for 4x4 transform is as follows:
0123

1234

2345

3456

Matrix[0] Format = U16

Matrix[1..6] Format = U8

ValidMsgType = SIC

M2.5

31:24

Reserved: MBZ

23:16

FBR SubPredMode Input

VME uses this to select the appropriate shapes from the input message to perform FME on.
Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

00: Forward

01: Backward

10: Bidirectional

11: Illegal

Note: Only the LSB of the subpredmode for each shape is considered in FBR (a shape is either
FWD or BWD as input of FBR).

ValidMsgType = FBR

15:8

FBR SubMBShape Input

This field is used to specify the subshape per block for fractional and bidirectional refinement.
Bits [1:0]: SubMbShape[0]

Bits [3:2]: SubMbShape[1]

Bits [5:4]: SubMbShape[2]

Bits [7:6]: SubMbShapel[3]

00: 8x8

01: 8x4

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

379

experience

3D Media GPGPU

what'’s inside”

DWord

Bits

Description

10: 4x8
11: 4x4
ValidMsgType = FBR

72

Reserved: MBZ

1:0

FBR MbMode Input

This field is used to specify the inter macroblock type in the same format as VME output.
00: 16x16

01: 16x8

10: 8x16

11: 8x8

ValidMsgType = FBR

M2.4

31:24

MV 7 Cost

23:16

MYV 6 Cost

15:8

MV 5 Cost

70

MV 4 Cost

M2.3

31:24

MV 3 Cost

23:16

MV 2 Cost

15:8

MV 1 Cost

7:0

MV 0 Cost

Motion vector costings. See 6.3.3.1 for details. In short, the cost is linearly interpolated between
control points.

Format = U4U4 (encoded value must fit in 10 bits)

Project Note
CHV, BSW | ValidMsgType = SIC, IME, FBR, IDM

M2.2

31:24

Chroma Intra Mode Cost

Penalty for chroma intra modes.

DC = 0x

Horz = 1x

Vert = 1x

Plane = 2x

Format = U4U4 (encoded value must fit in 12-bits)
ValidMsgType = SIC, IME, FBR

380

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(l n te,l W experience

what’s inside”

DWord | Bits Description
2316/ RefID Cost
ReflD costing base penalty. Under AVC or Linear mode, different scaling are applied on top of this.
Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR, IDM
158 Mode 9 Cost
MODE_INTER_BWD
Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR
70 Mode 8 Cost
MODE_INTER_16x16
Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR, IDM
M2.1 3124 Mode 7 Cost
MODE_INTER_4x4q
MODE_INTER_FIELD_8x8q
Format = U4U4 (encoded value must fit in 10 bits)
ValidMsgType = SIC, IME, FBR
2316 Mode 6 Cost
MODE_INTER_8x4q
MODE_INTER_4x8q
MODE_INTER_FIELD_16x8
Format = U4U4 (encoded value must fit in 10 bits)
ValidMsgType = SIC, IME, FBR
158 Mode 5 Cost
MODE_INTER_8x8q
Format = U4U4 (encoded value must fit in 10 bits)
ValidMsgType = SIC, IME, FBR, IDM
7:0

Mode 4 Cost
MODE_INTER_16x8

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

381

experience

what'’s inside”

3D Media GPGPU

DWord

Bits

Description

MODE_INTER_8x16
Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR

M2.0

31:24

Mode 3 Cost

MODE_INTRA_4x4

Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR

23:16

Mode 2 Cost

MODE_INTRA_8x8

Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR

15:8

Mode 1 Cost

MODE_INTRA_16x16

Format = U4U4 (encoded value must fit in 12 bits)
ValidMsgType = SIC, IME, FBR

70

Mode 0 Cost

MODE_INTRA_NONPRED

Format = U4U4 (encoded value must fit in 10 bits)
ValidMsgType = SIC, IME, FBR

M3.7

31.0

BWD Cost Center 3

M3.6

31.0

FWD Cost Center 3

M3.5

31.0

BWD Cost Center 2

M3.4

31.0

FWD Cost Center 2

M3.3

31.0

BWD Cost Center 1

M3.2

31.0

FWD Cost Center 1

M3.1

31:16

BWD Cost Center 0 Delta Y (BWDCostCenter0Y)

This field defines the Y value for the first cost center relative to the picture source MB Y value for

the BWD direction.

ValidMsgType = SIC, IME, FBR

All 4 Bwd Cost Center Deltas are ignored by HW for IDM message type.

382

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
Experlence

what’s inside”

DWord

Bits

Description

Format = S13.2 (2's comp)
Hardware Range: [-512.00 to 511.75]

15:0

BWD Cost Center 0 Delta X (BWDCostCenter0X)

This field defines the X value for the first cost center relative to the picture source MB X value for
the BWD direction.

Major shape mapping to each cost center:
CCO: 16x16_0, 16x8_0, 8x16_0, 8x8_0

CC1: 8x16_1, 8x8_1

CC2: 16x8_1, 8x8_2

CC3:8x8_3

All 4 Bwd Cost Center Deltas are ignored by HW for IDM message type.
ValidMsgType = SIC, IME, FBR

Format = S13.2 (2's comp)
Hardware Range: [-2048.00 to 2047.75]

M3.0

31:16

FWDCostCenter 0 Delta Y (FWDCostCenterQY): This field defines the Y value for the first cost
center relative to the picture source MB Y value for the FWD direction.

ValidMsgType = SIC, IME, FBR, IDM

Format = S13.2 (2's comp)
Hardware Range: [-512.00 to 511.75]

15:0

FWDCostCenter 0 Delta X (FWDCostCenter0X): This field defines the X value for the first cost
center relative to the picture source MB X value for the FWD direction.

Major shape mapping to each cost center:
CCO0: 16x16_0, 16x8_0, 8x16_0, 8x8_0

CC1: 8x16_1, 8x8_1

CC2: 16x8_1, 8x8_2

CC3: 8x8_3

ValidMsgType = SIC, IME, FBR, IDM

Format = S13.2 (2's comp)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 383

(lntel' | 3D Media GPGPU
eXpEnenCe

what'’s inside”

DWord | Bits Description

Hardware Range: [-2048.00 to 2047.75]

SIC Input Message Phases
Major changes

e Addition of chroma pixel pairs (CbCr as 16b value) for the left 8, top 8, and top-left 1 corner.
e Addition of chroma mode masks (only 4 modes possible, so 4b mask).
e Addition of intra compute type (Y+CbCr, Y only, disabled).

"o

ValidMsgType = “.." identifies the given field is required for each message type. Hardware will ignore
these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X"in "WX+.." below is:

Project |Value Any Description
CHV, 4 | CHV, BSW added 1 additional universal message
BSW phase.
DWord | Bits Name
WX+0.7| 31:0

Ref1 SkipCenter 3 Delta XY
Ref1 Skip Center 3 Delta Y:

This field defines the Y value for the forward skip center relative to the 8x8 block offset from the
source MB Y location in quarter-pel precision associated with Ref1.

To match the relative 8x8 block location, the HW will add fixed offsets to the 4 skip centers in each
direction to generate the correct pixel location to fetch the data.

For SkipCenter 0: VME will add 0 to the user-input Y value.
For SkipCenter 1: VME will add 0 to the user-input Y value.
For SkipCenter 2: VME will add 32 to the user-input Y value.
For SkipCenter 3: VME will add 32 to the user-input Y value.

ValidMsgType = SIC
Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]
For chroma skip:

Format = S12.3 (2's comp)

Hardware Range: [-256.000 to 255.875]
Ref1SkipCenter3 Delta X:

This field defines the X value for the forward skip center relative to the 8x8 block offset from the

384 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord

Bits

Name

source MB X location in quarter-pel precision associated with Ref1.

To match the relative 8x8 block location, the HW will add fixed offsets to the 4 skip centers in each
direction to generate the correct pixel location to fetch the data.

For SkipCenter 0: VME will add 0 to the user-input X value.
For SkipCenter 1: VME will add 32 to the user-input X value.
For SkipCenter 2: VME will add 0 to the user-input X value.
For SkipCenter 3: VME will add 32 to the user-input X value.

Format = S13.2 (2's comp)
Hardware Range: [-2048.00 to 2047.75]

For chroma skip:
Format = S12.3 (2's comp)
Hardware Range: [-1024.000 to 1023.875]

WX+0.6

31:0

Ref0 SkipCenter 3 Delta XY(for definition see M3.7)

WX+0.5

31:0

Ref1 SkipCenter 2 Delta XY (for definition see M3.7)

WX+0.4

31:0

Ref0 SkipCenter 2 Delta XY (for definition see M3.7)

WX+0.3

31:0

Ref1 SkipCenter 1 Delta XY (for definition see M3.7)

WX+0.2

31:0

Ref0 SkipCenter 1 Delta XY (for definition see M3.7)

WX+0.1

31:0

Ref1 SkipCenter 0 Delta XY (for definition see M3.7)

WX+0.0

31:0

Ref0 SkipCenter 0 Delta XY (for definition see M3.7)

WX+1.7

31:0

Neighbor pixel Luma value [23, -1] to [20, -1]. Upper-right pixels from neighbor macroblock C

WX+1.6

31:0

Neighbor pixel Luma value [19, -1] to [16, -1]. Upper-right edge pixels from neighbor
macroblock C

WX+1.5

31:0

Neighbor pixel Luma value [15, -1] to [12, -1]. Top edge pixels from neighbor macroblock B

WX+1.4

31:0

Neighbor pixel Luma value [11, -1] to [8, -1]. Top edge pixels from neighbor macroblock B

WX+1.3

31:0

Neighbor pixel Luma value [7, -1] to [4, -1]. Top edge pixels from neighbor macroblock B

WX+1.2

31:24

Neighbor pixel Luma value [3, -1]. Fourth top edge pixel from neighbor macroblock B

23:16

Neighbor pixel Luma value [2, -1]. Third top edge pixel from neighbor macroblock B

15:8

Neighbor pixel Luma value [1, -1]. Second top edge pixel from neighbor macroblock B

7:0

Neighbor pixel Luma value [0, -1]. First top edge pixel from neighbor macroblock B

WX+1.1

31:24

Corner Neighbor pixel 0. Its content depends on IntraCornerSwap field. It swaps with Corner
Neighbor pixel 1.

23:10

Reserved: MBZ

9:8

Intra Compute Type (IntraComputeType)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 385

experience

3D Media GPGPU

what'’s inside”

DWord

Bits

Name

This field specifies the pixel components measured for intra prediction.
00: Luma + Chroma enabled
01: Luma only

1X: Intra disabled

74

AVC Intra Chroma Mode Mask (IntraChromaModeMask)

The following mask disables the chroma intra modes from the output.
xxx1: VERT

xx1x: HORZ

x1xx: DC

Txxx: PLANAR

3:0

AVC Intra 16x16 Mode Mask (Intra16x16ModeMask):
Disables given intra mode as follows.

xxx1:

xx1x:

X1XX:
Txxx:

WX+1.0

31:25

Reserved: MBZ

24:16

AVC Intra 8x8 Mode Mask (Intra16x16ModeMask):
Disables given intra mode as follows.

X XXXX XXX 1:

X XXXX XX 1x:

X XXXX XTXX:

X XXXX Txxx:

X XXXT XXXX:

X XX TX XXxX:

X XTXX XXXX:

X TXXX XXXX:
T XXXX XXXX:

15:9

Reserved: MBZ

8:0

AVC Intra 4x4 Mode Mask (Intra16x16ModeMask):

386

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Name
Disables given intra mode as follows.
X XXXX XXX 1:
X XXXX XX 1X:
X XXXX X TXX:
X XXXX TXXX:
X XXX T XXXX:
X XXTX XXXX:
X XTXX XXXX:
X TXXX XXXX:
T XXXX XXXX:
WX+2.7|31:24 | Reserved: MBZ
23:16 -
Penalty for Intra4x4 non-DC prediction mode
Format: U8
15:8 "
Penalty for Intra8x8 non-DC prediction mode
Format: U8
7:0 -
Penalty for Intra16x16 non-DC prediction mode
Format: U8
WX+2.6| 31:0 |Reserved: MBZ
WX425 31:16 | Reserved: MBZ
150 Neighbor pixel Chroma value CbCr pair [-1, -1]
Corner neighbor pixel pair (CbCr pair, each U8).
WX42.4 31:28 | Intra Predictor Mode for Neighbor B15 (IntraMxMPredModeB15): This field carries the intra
' prediction mode of the fourth bottom 4x4 block (Block 15 in Numbers of Block4x4 in a 16x16
region) of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1
and 8.3.2 of the AVC specification.
27:24 |Intra Predictor Mode for Neighbor B14 (IntraMxMPredModeB14): This field carries the intra
prediction mode of the third bottom 4x4 block (Block 14 in Numbers of Block4x4 in a 16x16
region) of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1
and 8.3.2 of the AVC specification.
23:20 | Intra Predictor Mode for Neighbor B11 (IntraMxMPredModeB11): This field carries the intra
prediction mode of the second bottom 4x4 block (Block 11 in Numbers of Block4x4 in a 16x16
region) of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1
and 8.3.2 of the AVC specification.
19:16 | Intra Predictor Mode for Neighbor B10 (IntraMxMPredModeB10): This field carries the intra

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 387

(intel"

3D Media GPGPU

experience
what'’s inside”

DWord

Bits

Name

prediction mode of the first bottom 4x4 block (Block 10 in Numbers of Block4x4 in a 16x16
region)of the top neighbor macroblock B. Definition of the term is according to Sections 8.3.1 and
8.3.2 of the AVC specification.

15:12

Intra Predictor Mode for Neighbor A15 (IntraMxMPredModeA15): This field carries the intra
prediction mode of the fourth rightmost 4x4 block (Block 15 in Numbers of Block4x4 in a 16x16
region) of the left neighbor A. Definition of the term is according to Sections 8.3.1 and 8.3.2 of the
AVC specification.

11:8

Intra Predictor Mode for Neighbor A13 (IntraMxMPredModeA13): This field carries the intra
prediction mode of the third rightmost 4x4 block (Block 13 in Numbers of Block4x4 in a 16x16
region) of the left neighbor A. Definition of the term is according to Sections 8.3.1 and 8.3.2 of the
AVC specification.

74

Intra Predictor Mode for Neighbor A7 (IntraMxMPredModeA7): This field carries the intra
prediction mode of the second rightmost 4x4 block (Block 7 in Numbers of Block4x4 in a 16x16
region) of the left neighbor A.

3:0

Intra Predictor Mode for Neighbor A5 (IntraMxMPredModeAS5): This field carries the intra
prediction mode of the first rightmost 4x4 block (Block 5 in Numbers of Block4x4 in a 16x16
region) of the left neighbor A. Definition of the term is according to Sections 8.3.1 and 8.3.2 of the
AVC specification.

Intra Predictor Modes for Neighbor A and B are only used if MODE_INTRA_NOPRED is not zero.

For intra mode selection, bias is applied to the predicted mode if a predictor is present for a
partition. This is achieved by applying a penalty term MODE_INTRA_NONPRED defined in the VME
state to the cost functions for non-predicted modes.

The predictor for a given partition is from its left neighbor and top neighbor. The intra decision for
a partition serves as the predictor for the next partition in the partition order as defined in
Numbers of Block4x4 in a 16x16 region and Numbers of Block4x4 in an 8x8 region or numbers of
Block8x8 in a 16x16 region.

This set of intra predictor mode for neighbor macroblocks are only used for INTRA8x8 and
INTRA4x4 modes.

Format : U4 (The value of this field is defined in Definition of Intra4x4PredMode which is the same
as that in Definition of Intra8x8PredMode.)

WX+2.3

31:24

Corner Neighbor pixel 1. Its content depends on IntraCornerSwap field. It swaps with Corner
Neighbor pixel 0.

Neighbor pixel Luma value [-1, -1]. The one upper-left edge pixel from neighbor macroblock D,
which is the right most edge pixel of D, if IntraCornerSwap field is 1. Or

Neighbor pixel Luma value [-1, 15]. The last left edge pixel from neighbor macroblock A, which
is the left most edge pixel of D, if IntraCornerSwap field is 0.

23:0

Neighbor pixel Luma value [-1, 14] to [-1, 12]. Left edge pixels from neighbor macroblock A

WX+2.2

31:0

Neighbor pixel Luma value [-1, 11] to [-1, 8]. Left edge pixels from neighbor macroblock A

WX+2.1

31:0

Neighbor pixel Luma value [-1, 7] to [-1, 4]. Left edge pixels from neighbor macroblock A

388

Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (lntel |
expE”enCe

what’s inside”

DWord | Bits Name

WX+2.0 31:24 | Neighbor pixel Luma value [-1, 3]. Fourth left edge pixel from neighbor macroblock A

23:16 | Neighbor pixel Luma value [-1, 2]. Third left edge pixel from neighbor macroblock A

15:8 [Neighbor pixel Luma value [-1, 1]. Second left edge pixel from neighbor macroblock A

7:0 |Neighbor pixel Luma value [-1, 0]. First left edge pixel from neighbor macroblock A

WX+3.7| 31:0 | Neighbor pixel Chroma value CbCr pair [7, -1] to [6, -1]

WX+3.6| 31:0 | Neighbor pixel Chroma value CbCr pair [5, -1] to [4, -1]

WX+3.5| 31:0 | Neighbor pixel Chroma value CbCr pair [3, -1] to [2, -1]

WX+3.4| 31:0 | Neighbor pixel Chroma value CbCr pair [1, -1] to [0, -1]

WX+3.3| 31:0 | Neighbor pixel Chroma value CbCr pair [-1, 7] to [-1, 6]

WX+3.2| 31:0 | Neighbor pixel Chroma value CbCr pair [-1, 5] to [-1, 4]

WX+3.1| 31:0 | Neighbor pixel Chroma value CbCr pair [-1, 3] to [-1, 2]

WX+3.0| 31:0 | Neighbor pixel Chroma value CbCr pair [-1, 1] to [-1, 0]

IME Input Message Phases

Major changes:

e Addition of the search path, no longer accessed via LUT, will come in message payload.
e Streamin\streamout now contains the 9 major shape reference indices per direction.
e Distortion precisions increased to 16b.

u

ValidMsgType = “...” identifies the given field is required for each message type. Hardware will ignore
these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X"in "WX+.." below is:

Project |Value Any Description
CHYV, 4 |CHV, BSW added 1 additional universal message
BSW phase.

DWord | Bits Name

WX+0.7| 31:0 |IME Search Path Delta 28-31

WX+0.6| 31:0 |IME Search Path Delta 24-27

WX+0.5| 31:0 |IME Search Path Delta 20-23

WX+0.4| 31:0 |IME Search Path Delta 16-19

WX+0.3| 31:0 |IME Search Path Delta 12-15

WX+0.2| 31:0 |IME Search Path Delta 8-11

WX+0.1| 31:0 |IME Search Path Delta 4-7

WX+0.01 310 | \ME Search Path Delta 0-3

[7:4] (Y) — specifies relative Y distance to the next SU from previous SU in units of SU.

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15 389

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

DWord | Bits Name

[3:0] (X) — specifies relative X distance to the next SU from previous SU in units of SU.

Format = U8

WX+1.7 310 Reserved MBZ

WX+1.6 310 Reserved MBZ

WX+1.5| 31:0 |IME Search Path Delta 52-55

WX+1.4| 31:0 |IME Search Path Delta 48-51

WX+1.3| 31:0 |IME Search Path Delta 44-47

WX+1.2| 31:0 |IME Search Path Delta 40-43

WX+1.1| 31:0 |IME Search Path Delta 36-39

WX+1.0| 31:0 |IME Search Path Delta 32-35

WX+2.7 310 Reserved MBZ

31:28 | RecO Shape 8x8_3 ReflD
27:24 | RecO Shape 8x8_2 ReflD
23:20| RecO Shape 8x8_1 ReflD
19:16 | RecO Shape 8x8_0 ReflD
15:12 | RecO Shape 8x16_1 RefID
11:8 [RecO Shape 8x16_0 RefID
7:4 |RecO Shape 16x8_1 RefID
3:0

WX+2.6

RecO Shape 16x8_0 ReflD
Format = U4

31:16 | RecO Shape 16x16 Y (relative to source MB)
15:0 | RecO Shape 16x16 X (relative to source MB)

WX+2.5

Wx+2.4|31:20 | Reserved MBZ

19:16 Rec0 Shape 16x16 ReflD

Format = U4

150 | Reco Shape 16x16 Distortion

Format = U16

WX+2.3 31116 RecO Shape 8x8_3 Distortion

Format = U16

Hardware only uses 14 bits. Upper bits ignored (True for all 8x8_X Distortions).

390 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU

(intel

DWord

Bits

Name

15:0

RecO Shape 8x8_2 Distortion
Format = U16

WX+2.2

31:16

Rec0 Shape 8x8_1 Distortion
Format = U16

15:0

Rec0 Shape 8x8_0 Distortion
Format = U16

WX+2.1

31:16

RecO Shape 8x16_1 Distortion
Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 8x16_X Distortions).

15:0

RecO Shape 8x16_0 Distortion
Format = U16

WX+2.0

31:16

Rec0 Shape 16x8_1 Distortion
Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 16x8_X Distortions).

15:0

Rec0 Shape 16x8_0 Distortion
Format = U16

WX+3.7

31:16

Rec0 Shape 8x8_3 Y (relative to source MB)

15:0

Rec0 Shape 8x8_3 X (relative to source MB)

WX+3.6

31:16

Rec0 Shape 8x8_2 Y (relative to source MB)

15:0

Rec0 Shape 8x8_2 X (relative to source MB)

WX+3.5

31:16

Rec0 Shape 8x8_1 Y (relative to source MB)

15:0

Rec0 Shape 8x8_1 X (relative to source MB)

WX+3.4

31:16

Rec0 Shape 8x8_0 Y (relative to source MB)

15:0

Rec0 Shape 8x8_0 X (relative to source MB)

WX+3.3

31:16

Rec0 Shape 8x16_1Y (relative to source MB)

15:0

RecO Shape 8x16_1 X (relative to source MB)

WX+3.2

31:16

RecO Shape 8x16_0 Y (relative to source MB)

15:0

RecO Shape 8x16_0 X (relative to source MB)

WX+3.1

31:16

RecO Shape 16x8_1Y (relative to source MB)

15:0

RecO Shape 16x8_1 X (relative to source MB)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

391

(lntel' | 3D Media GPGPU
eXpE”enCe

what'’s inside”

DWord | Bits Name

31:16 | Rec0O Shape 16x8_0Y (relative to source MB)
15:0 [RecO Shape 16x8_0 X (relative to source MB)

WX+3.0

WX+4.7 310 Reserved MBZ

31:28 | Rec1 Shape 8x8_3 RefID
27:24 |Rec1 Shape 8x8_2 ReflD
23:20 | Rec1 Shape 8x8_1 ReflD
19:16 | Rec1 Shape 8x8_0 ReflD
15:12 | Rec1 Shape 8x16_1 ReflD
11:8 [Rec1 Shape 8x16_0 RefID
7:4 |Rec1 Shape 16x8_1 ReflD
3:0

WX+4.6

Rec1 Shape 16x8_0 ReflD
Format = U4

31:16 | Rec1 Shape 16x16 Y (relative to source MB)
15:0 [Rec1 Shape 16x16 X (relative to source MB)

WX+4.5

WX+4.4 |31:20 | Reserved MBZ

1976 | pect Shape 16x16 RefID

Format = U4

1>:0 Rec1 Shape 16x16 Distortion

Format = U16

WX+4.3 3116 Rec1 Shape 8x8_3 Distortion

Format = U16

Hardware only uses 14 bits. Upper bits ignored (True for all 8x8_X Distortions).

10 Rec1 Shape 8x8_2 Distortion

Format = U16

WX+4.2 3116 Rec1 Shape 8x8_1 Distortion

Format = U16

150 Rec1 Shape 8x8_0 Distortion

Format = U16

392 Doc Ref # IHD-0OS-CHV-BSW-Vol 7-10.15

3D Media GPGPU (intel

DWord

Bits

Name

WX+4.1

31:16

Rec1 Shape 8x16_1 Distortion
Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 8x16_X Distortions).

15:0

Rec1 Shape 8x16_0 Distortion
Format = U16

WX+4.0

31:16

Rec1 Shape 16x8_1 Distortion
Format = U16

Hardware only uses 15 bits. Upper bits ignored (True for all 16x8_X Distortions).

15:0

Rec1 Shape 16x8_0 Distortion
Format = U16

WX+5.7

31:16

Rec1 Shape 8x8_3 Y (relative to source MB)

15:0

Rec1 Shape 8x8_3 X (relative to source MB)

WX+5.6

31:16

Rec1 Shape 8x8_2 Y (relative to source MB)

15:0

Rec1 Shape 8x8_2 X (relative to source MB)

WX+5.5

31:16

Rec1 Shape 8x8_1 Y (relative to source MB)

15:0

Rec1 Shape 8x8_1 X (relative to source MB)

WX+5.4

31:16

Rec1 Shape 8x8_0 Y (relative to source MB)

15:0

Rec1 Shape 8x8_0 X (relative to source MB)

WX+5.3

31:16

Rec1 Shape 8x16_1Y (relative to source MB)

15:0

Rec1 Shape 8x16_1 X (relative to source MB)

WX+5.2

31:16

Rec1 Shape 8x16_0Y (relative to source MB)

15:0

Rec1 Shape 8x16_0 X (relative to source MB)

WX+5.1

31:16

Rec1 Shape 16x8_1Y (relative to source MB)

15:0

Rec1 Shape 16x8_1 X (relative to source MB)

WX+5.0

31:16

Rec1 Shape 16x8_0Y (relative to source MB)

15:0

Rec1 Shape 16x8_0 X (relative to source MB)

Doc Ref # IHD-OS-CHV-BSW-Vol 7-10.15

experience
what'’s inside”

393

(intel’"

experience
what'’s inside”

FBR Input Message Phases

Major changes:

3D Media GPGPU

e Consists of the 32 sub-block motion vectors following the same 32MV format as the rest of VME.

"o

ValidMsgType = “.." identifies the given field is required for each message type. Hardware will ignore
these fields under messages where that field is invalid. Hardware output for non valid fields is undefined.

“X"in "WX+..." below is:

Project |Value Any Description
CHYV, 4 |CHV, BSW added 1 additional universal message
BSW phase.

DWord | Bits Name

WX+0.7 31:0 |Ref1 Sub-block XY 3

WX+0.6 31:0 |Ref0 Sub-block XY 3

WX+0.5 31:0 [Ref1 Sub-block XY 2

WX+0.4 31:0 | Ref0 Sub-block XY 2

WX+0.3 31:0 | Ref1 Sub-block XY 1

WX+0.2 31:0 | Ref0 Sub-block XY 1

WX+0.1 31:0 | Ref1 Sub-block XY 0

wx+0.0|311® | Refo Sub-block Y 0
The y-coordinate of Motion Vector 0 for Reference 0, relative to source MB lo