

Intel® Open Source HD Graphics

Programmers' Reference Manual (PRM)

Volume 5: Memory Views

For the 2014 -<:;? ĎĭĳĤī ĆĳĮĬĻ ĕıĮĢĤĲĲĮıĲ# ĈĤīĤıĮĭĻ ĕıĮĢĤĲĲĮıĲ Ġĭģ ĕĤĭĳĨĴĬĻ

Processors based on the "Cherry Trail/Braswell " Platform

(Cherryview/Braswell graphics)

October 2015, Revision 1.1

Memory Views

ii Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

¶ Attribution. You must attribute the work in the manner specified by the author or lic ensor (but

not in any way that suggests that they endorse you or your use of the work).

¶ No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS

OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS

ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require lic enses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 iii

Table of Contents

Introduction ... 1

Memory Views Glossary .. 1

GPU Memory Interface .. 1

Global Arbitration ... 2

Graphics Memory Interface Functions .. 2

Graphics Memory Clients .. 3

Graphics Memory Addressing Overview ... 4

Graphics Address Path .. 4

Graphics Memory Paths ... 5

Graphics Memory Address Spaces .. 6

Address Tiling Function Introduction .. 6

Linear vs Tiled Storage ... 7

Tile Formats ..10

Tile-X Legacy Format ...10

Tile-Y Legacy Format ..11

Tiling Algorithm ..12

Tiled Channel Select Decision ...14

Tiling Support ..14

Tiled (Fenced) Regions ..15

Tiled Surface Parameters ..16

Tiled Surface Restrictions ...17

Per-Stream Tile Format Support ..20

Main Memory ..21

Optimizing Main Memory Allocation ..21

Application of the Theory (Page Coloring)..22

3D Color and Depth Buffers ...22

Media/Video ...22

Physical Graphics Address Types ...22

Graphics Translation Tables .. 23

Virtual Memory ...24

GFX Page Tables ..24

Memory Views

iv Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Page Table Modes ..24

Per Process GTT ...25

PPGTT for 32b Virtual Address ..25

Walk with 64KB Page ...26

Walk with 2MB Page ..27

Walk with 1GB Page ...28

PPGTT for Standard Context (64b VA) ...29

Walk with 64KB Page ...30

Walk with 2MB Page ..30

Walk with 1GB Page ...31

Global GTT ...32

Page Table Entry ...32

Page Walk ..33

GTT Cache ..34

GFX Page Walker (GAM) ...34

Context Definition for GFX Page Walker ...34

Context Definition Delivery ...36

Element Descriptor Register ..37

PDP0/PML4/PASID Descriptor Register ..39

PDP1 Descriptor Register ...39

PDP2 Descriptor Register ...40

PDP3 Descriptor Register ...40

List of Registers and Command Streamers ..41

Updating Page Table Pointers (aka PD Load) ..43

Page Walker (GAM) Reset ..44

Legacy Context ..44

Full Walk ...45

TLB Caching and Management ..46

TLB Caches ...47

Context Cache - CC ...47

PASID Cache - PC ..47

Intermediate Page Walk Caches (PML4, PDP, PD) ð PWC ...48

TLB ð Final Page Entry ..48

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 v

TLB Entry Content ...49

TLB Accessed and Dirty Flags ...51

Updating A/D Bits ..51

PAT (IA32e) ...56

PAT in Context Table Entry ..56

Memory Types and Applicability to GFX ...56

MTRR Ranges ..59

Memory Type Selection and Priority ..59

Design-Specific Memory Types ...59

Memory Object Control State (Surface) ...60

Architectural Memory Types ...61

Page Walker Access and Memory Types ...64

Page Walker Memory Types ..64

Error Cases ..65

Replacement ...65

Invalidations of TLB ..65

Optional Invalidations ..66

Faulting ... 67

Page Faults ..67

Memory Types and Cache Interface .. 68

Memory Object Control State (MOCS) ..68

MOCS Registers ...69

Page Walker Access and Memory Types ..69

Page Walker Memory Types ...69

Gen8 Memory Typing for Paging ...70

Error Cases ...71

Common Surface Formats ... 72

Non-Video Surface Formats ..72

Surface Format Naming ..72

Intensity Formats ...72

Luminance Formats ..72

R1_UNORM (same as R1_UINT) and MONO8..73

Palette Formats ..74

Memory Views

vi Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

P4A4_UNORM ..74

A4P4_UNORM ..74

P8A8_UNORM ..75

A8P8_UNORM ..75

P8_UNORM ..76

P2_UNORM ..76

Compressed Surface Formats ...77

ETC1_RGB8 ...77

ETC2_RGB8 and ETC2_SRGB8 ...80

T mode ..81

H mode ...83

Planar mode ..85

EAC_R11 and EAC_SIGNED_R11 ..87

ETC2_RGB8_PTA and ETC2_SRGB8_PTA ...89

Differential Mode ..89

T and H Modes ..89

Planar Mode ..89

ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8 ...90

EAC_RG11 and EAC_SIGNED_RG11 ..91

FXT Texture Formats ...93

Overview of FXT1 Formats ..93

FXT1 CC_HI Format...93

CC_HI Block Encoding ..94

CC_HI Block Decoding ..94

FXT1 CC_CHROMA Format ...95

CC_CHROMA Block Encoding ...96

CC_CHROMA Block Decoding ...96

FXT1 CC_MIXED Format ...98

CC_MIXED Block Encoding ...98

CC_MIXED Block Decoding ..98

FXT1 CC_ALPHA Format .. 102

CC_ALPHA Block Encoding .. 102

CC_ALPHA Block Decoding ... 103

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 vii

DXT/BC1-3 Texture Formats .. 106

Opaque and One-bit Alpha Textures (DXT1/BC1) .. 107

Opaque Textures (DXT1_RGB) .. 109

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3) .. 109

BC4 ... 112

BC5 ... 113

BC6H .. 116

Field Definition .. 116

Endpoint Computation .. 132

Palette Color Computation .. 132

Texel Selection .. 133

ONE Mode ... 133

TWO Mode... 133

BC7 ... 135

Field Definition .. 135

Endpoint Computation .. 143

Palette Color Computation .. 144

Texel Selection .. 144

ONE Mode ... 144

TWO Mode... 145

THREE Mode .. 147

Adaptive Scalable Texture Compression (ASTC) .. 149

ASTC Fundamentals .. 149

Background .. 149

New Surface Formats for ASTC Texture ... 151

ASTC File Format and Memory Layout .. 154

ASTC Header Data Structure and Amendment ... 154

Data Layout in ASTC Compression File .. 155

Total ASTC Data Block Layout in All Mipmap Levels .. 156

Data Layout in Memory for All Mipmap Levels ... 156

ASTC Data Structure ... 159

Layout and Description of Block Data .. 160

Partitioning .. 160

Memory Views

viii Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Index Mode .. 161

Index Planes .. 165

Index Infill Procedure .. 166

Color Endpoint Mode .. 166

Color Endpoint Data Size Determination .. 168

Void-Extent Blocks .. 169

Decoding Process .. 170

Overview Decoding Flow ... 170

Integer Sequence Encoding .. 173

Endpoint Unquantization ... 174

LDR Endpoint Decoding ... 175

HDR Endpoint Decoding .. 178

HDR Endpoint Mode 2 (HDR Luminance, Large Range) ... 178

HDR Endpoint Mode 3 (HDR Luminance, Small Range) ... 179

HDR Endpoint Mode 7 (HDR RGB, Base+Scale) ... 180

HDR Endpoint Mode 11 (HDR RGB, Direct) ... 182

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha) .. 185

HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha) ... 186

Restrictions on Number of Partitions Per Block ... 187

Index Decoding .. 187

Index Unquantization .. 187

Infill Process .. 189

Index Application .. 191

Dual-Plane Decoding .. 191

Partition Pattern Generation ... 192

Data Size Determination .. 194

3D Void-Extent Blocks ... 195

Illegal Encodings .. 195

Profile Support .. 196

Video Pixel/Texel Formats ... 197

Packed Memory Organization ... 197

Planar Memory Organization... 197

Raw Format .. 200

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 ix

Surface Memory Organizations ... 200

Display, Overlay, Cursor Surfaces ... 200

2D Render Surfaces .. 200

2D Monochrome Source .. 200

2D Color Pattern .. 201

3D Color Buffer (Destination) Surfaces ... 201

3D Depth Buffer Surfaces ... 202

3D Separate Stencil Buffer Surfaces... 202

Surface Layout .. 203

Buffers ... 203

Structured Buffers .. 203

1D Surfaces ... 204

2D Surfaces ... 204

Computing MIP Level Sizes ... 205

Base Address for LOD Calculation .. 205

Minimum Pitch for MIPLAYOUT_RIGHT and Other Maps ... 207

Cartesian to Linear Address Conversion ... 207

Compressed Mipmap Layout .. 207

Surface Arrays.. 208

For All Surfaces ... 208

Multisampled Surfaces .. 208

Compressed Multisampled Surfaces ... 209

Physical MSS Surface... 210

Uncompressed Multisampled Surfaces .. 210

Cube Surfaces .. 210

DirectX API Definition .. 210

Hardware Cube Map Layout .. 211

Restrictions ... 211

Cube Arrays .. 212

3D Surfaces ... 213

Minimum Pitch .. 215

Surface Padding Requirements ... 216

Alignment Unit Size ... 216

Memory Views

x Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Sampling Engine Surfaces ... 217

Render Target and Media Surfaces ... 218

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 1

Introduction

The hardware supports three engines:

¶ The Render command streamer interfaces to 3D/IE and display streams.

¶ The Media command streamer interfaces to the fixed function media.

¶ The Blitter command streamer interfaces to the blit commands.

Software interfaces of all three engines are very similar and should only differ on engine-specific

functionality.

Memory Views Glossary

Term Definition

CHV, BSW CherryView CPU/GFX platform. 8th generation processor graphics (Gen8).

IOMMU I/O Memory Mapping unit

SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and

processor graphics.

Page Walker

(GAM)

GFX page walker which handles page level translations between GFX virtual memory to physical

memory domain.

GPU Memory Interface

GPU memory interface functions are divided into 4 different major sections:

¶ Global Arbitration

¶ Memory Interface Functions

¶ Page Translations (GFX Page Walker)

¶ Ring Interface Functions (GTI)

GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The

following documentation is meant for GFX arbitration paths in accessing to memory/cache inte rfaces

and page translations and page walker functions.

Memory Views

2 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Global Arbitration

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses

from different stages of the pipeline are consolidated to a single interface to wards GTõs connection to

CPUõs ring interface.

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels.

Programming Note

Context: Global Memory Arbitration

Arbitration allows 4 levels of arbitration where each pipeli ne level can be put into these 4 levels. Each

consolidation stage simply follows the 4 -level arbitration with grace periods to allow ahead of the pipeline to get

a higher share of the memory bandwidth.

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases

major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace

period where its accesses are counted against a global pool. If a particular engine (or pipeline stage)

exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based

prioritization. Once all counts are expired, the grace period completes and resets.

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring

the pipeline order.

Graphics Memory Interface Functions

The major role of an integrated graphics deviceõs Memory Interface (MI) function is to provide various

client functions access to ògraphicsó memory used to store commands, surfaces, and other information

used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics

memory is accessed.

Information not presented in this chapter includes:

¶ Microarchitectural and implementation -dependent features (e.g., internal buffering, caching, and

arbitration policies).

¶ MI functions and paths specific to the operation of external (discrete) devices attached via

external connections.

¶ MI functions essentially unrelated to the operation of the internal graphi cs devices, .e.g.,

traditional òchipset functionsó

¶ GFX Page Walker and GT interface functions are covered in different chapters.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 3

Graphics Memory Clients

The MI function provides memory access functionality to a number of external and internal graphics

memory clients, as described in the table below.

Graphics Memory Clients

MI Client Access Modes

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed

using Device 2 Graphics Memory Range Addresses

External PEG Graphics

Device

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture.

(This client is not described in this chapter).

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed

using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DMI

access to Graphics registers is not supported.

Coherent Read/Write

(internal)

Internally-generated snooped reads/writes.

Command Stream

(internal)

DMA Read of graphics commands and related graphics data.

Vertex Stream

(internal)

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed

Function.

Instruction/State

Cache (internal)

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions

executed by the EUs.

Render Cache

(internal)

Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D,

MPEG, etc.) Read of render surface state.

Sampler Cache

(internal)

Read of texture (and other sampled surface) data stored in graphics memory.

Display/Overlay

Engines (internal)

Read of display, overlay, cursor and VGA data.

Media Engines Read and write of media content and media processing.

uController Read/Write (DMA) functions for u-controller and scheduler.

Memory Views

4 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory

addresses of various types, performs a number of optional operations along address paths, and

eventually performs reads and writes of graphics memory data using the resultant addresses. The

remainder of this subsection will provide an overview of the graphics memory clients and address

operations.

Graphics Address Path

Graphics Address Path shows the internal graphics memory address path, connection points, and

optional operations performed on addresses. Externally-supplied addresses are normalized to zero-

based Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled

address (based on inclusion in a fenced region or via explicit surface parameters), address tiling is

performed. At this point the address is considered a Logical Memory address, and is translated into a

Physical Memory address via the GTT and associated TLBs. The physical memory location is then

accessed.

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped

cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory

aperture.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 5

Graphics Memory Paths

The remainder of this chapter describes the basic features of the graphics memory address pipeline,

namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation

considerations.

Memory Views

6 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Graphics Memory Address Spaces

The Graphics Memory Address Spaces table lists the five supported Graphics Memory Address Spaces.

Note that the Graphics Memory Range Removal function is automatically performed to transform

system addresses to internal, zero-based Graphics Addresses.

Due to a workaround, first 4KB of DSM has to be reserved for GFX hardware use during render engine

execution.

Address Tiling Function Introduction

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,

certain functions within the grap hics device support the storage/access of the operands using

alternative (tiled) memory formats to increase performance. This section describes these memory

storage formats, why and when they should be used, and the behavioral mechanisms within the device

to support them.

Legacy Tiling Modes:

¶ TileY: Used for most tiled surfaces when TR_MODE=TR_NONE.

¶ TileX : Used primarily for display surfaces.

¶ TileW: Used for Stencil surfaces.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 7

Linear vs Tiled Storage

Regardless of the memory storage format, òrectangularó memory operands have a specific width and

height, and are considered as residing within an enclosing rectangular region whose width is considered

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly

with the surface). Rectangular Memory Operand Parameters shows these parameters.

Rectangular Memory Operand Parameters

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the

operand is stored in sequentially increasing memory locations. If the surface width is less than the

enclosing regionõs pitch, there will be additional memory storage between rows to accommodate the

regionõs pitch. The pitch of the enclosing region determines the distance (in the memory address space)

between vertically-adjacent operand elements (e.g., pixels, texels).

Memory Views

8 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Linear Surface Layout

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface

where each scanline is read sequentially). Here the fact that one object element may reside in a different

memory page than its vertically-adjacent neighbors is not significant; all that matters is that

horizontally-adjacent elements are stored contiguously. However, when a device function needs to

access a 2D subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a

read of a 2x2 texel block for bilinear filtering), having vertically-adjacent elements fall within different

memory pages is to be avoided, as the page crossings required to complete the access typically incur

increased memory latencies (and therefore lower performance).

One solution to this problem is to divide the enclosing region into an array of smaller rectangular

regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same

physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile

and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows

high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the

dimensions of tiles are irrespective of the data contained within ð e.g., a tile can hold twice as many 16-

bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels).

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 9

Memory Tile Dimensions

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled

region are stored sequentially in memory in row -major order.

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a

pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles ð

the surface is not necessarily aligned or dimensioned to tile boundaries.

Tiled Surface Layout

Memory Views

10 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Tile Formats

Multiple tile formats are supported by the Gen Core. The following sections define and describe these

formats.

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the

RENDER_SURFACE_STATE.

Tile-X Legacy Format

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following

figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords . The

selection of tile direction only impacts the internal organization of tile data, and does n ot affect how

surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a

linear fashion.

Tile-X format is selected for a surface by programming the Tiled_Mode field in

RENDER_SURFACE_STATE to XMAJOR.

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the

organization of texels in memory.

Tile X-Tile (X-Major) Layout

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 11

Tile-Y Legacy Format

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as

shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The

selection of tile direction only impacts the internal organization of tile data, and does not affect how

surfaces map onto tiles.

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to

YMAJOR.

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout

of pixels.

Y-Major Tile Layout

Memory Views

12 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Tiling Algorithm

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics

memory to an address in logical space.

 Inputs:

 LinearAddress (offset into regular or LT aperture in terms of bytes)

 Pitch (in terms of tiles)

 WalkY (1 for Y and 0 for X)

 WalkW (1 for W and 0 for the rest)

 Static Parameters:

 TileH (Height of tile, 8 for X, 32 for Y, and 64 for W),

 TileW (Width of Tile in bytes, 512 for X, 128 for Y, and 64 for W)

 TileSize = TileH * TileW;

 RowSize = Pitch * TileSize;

 If (Fenced) {

 LinearAddress = LinearAddress ï FenceBaseAddress;

 LinearAddrInTileW = LinearAddress div TileW;

 Xoffset_inTile = LinearAddress mod TileW;

 Y = LinearAddrInTileW div Pitch;

 X = LinearAddrInTileW mod Pitch + Xoffset_inTile;

 }

 // Internal graphics clients that access tiled memory already have the X, Y coordinates and

can start here.

 YOff_Within_Tile = Y mod TileH;

 XOff_Within_Tile = X mod TileW;

 TileNumber_InY = Y div TileH;

 TileNumber_InX = X div TileW;

 TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX +

 TileH * 16 * (XOff_Within_Tile div 16) + YOff_Within_Tile * 16 + (XOff_Within_Tile

mod 16);

 TiledOffsetW = RowSize * TileNumber_InY + TileSize * TileNumber_InX +

 TileH * 8 * (XOff_Within_Tile div 8) +

 64 * (YOff_Within_Tile div 8) +

 32 * ((YOff_Within_Tile div 4) mod 2) +

 16 * ((XOff_Within_Tile div 4) mod 2) +

 8 * ((YOff_Within_Tile div 2) mod 2) +

 4 * ((XOff_Within_Tile div 2) mod 2) +

 2 * (YOff_Within_Tile mod 2) +

 (XOff_Within_Tile mod 2);

 TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileW *

YOff_Within_Tile + XOff_Within_Tile;

 TiledOffset = WalkW ? TiledOffsetW : (WalkY ? TiledOffsetY : TiledOffsetX);

 TiledAddress = Tiled ? (BaseAddress + TiledOffset) : (BaseAddress + Y*LinearPitch + X);

 TiledAddress = (Tiled &&

 (Address Swizzling for Tiled - Surfaces == 01)) ?

 (WalkW || WalkY) ?

 (TiledAddress div 128) * 128 +

 (((TiledAddress div 64) mod 2) ^

 ((TiledAddress div 512) mod 2)) +

 (TiledAddress mod 32)

 :

 (TiledAddress div 128) * 128 +

 (((TiledAddress div 64) mod 2) ^

 ((TiledAddress div 512) mod 2)

 ((TiledAddress Div 1024) mod2) +

 (TiledAddress mod 32)

 :

 TiledAddress;

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 13

Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more

effective address swizzling algorithm.

For Address Swizzling for Tiled-Surfaces see ARB_MODE ð Arbiter Mode Control register, ARB_CTLñ

Display Arbitration Control 1, and TILECTL - Tile Control register.

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the

same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This

spatial locality can be exploited to increase performance when reading 2x2 texel squares for bilinear

texture filterin g, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally -adjacent elements

are stored in sequential memory addresses. This spatial locality is advantageous when the surface is

scanned in row-major order for operations like display refresh. For this reason, the Display and Overlay

memory streams only support linear or X-Major tiled surfaces. (Y-Major tiling is not supported by these

functions.) This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major

tiled formats if they are to be displayed. Non -displayed surfaces, e.g., òrendered texturesó, can also be

stored in Y-Major order.

Memory Views

14 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Tiled Channel Select Decision

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling

modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13].

For Gen8 and subsequent generations, the swizzle fields are all reserved, and the CPU's memory

controller performs all address swizzling modifications.

Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled

formats). This requires either the modification of an elementõs linear memory address or an alternate

formula to convert an elementõs X,Y coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be used to determine

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the

tile region pitch is, and whether the tiled region uses X-Major or Y-Major forma t. There are two

mechanisms by which this detection takes place: (a) an implicit method by detecting that the pre-tiled

(linear) address falls within a òfencedó tiled region, or (b) by an explicit specification of tiling parameters

for surface operands (i.e., parameters included in surface-defining instructions).

The following table identifies the tiling -detection mechanisms that are supported by the various

memory streams.

Access Path Tiling -Detection Mechanisms Supported

Processor access through the Graphics Memory Aperture Fenced Regions

3D Render (Color/Depth Buffer access) Explicit Surface Parameters

Sampled Surfaces Explicit Surface Parameters

Blt operands Explicit Surface Parameters

Display and Overlay Surfaces Explicit Surface Parameters

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 15

Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics

client is to place them within òfencedó tiled regions within Graphics Memory. A fenced region is a block

of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface

Registers for details). Surfaces contained within a fenced region are considered tiled from an external

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space

since external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces

accessed by an internal graphics client) fall within a region covered by an enabled fence register, that

enable will be effectively masked during the internal graphics client access. Only the explicit surface

parameters described in the next section can be used to tile surfaces being accessed by the internal

graphics clients.

Restriction: Each FENCE register (if its Fence Valid bit is set) defines a Graphics Memory region ranging from 4KB

to the aperture size. The region is considered rectangular, with a pitch in tile widths from 1 tile width (128B or

512B) to 512 tile X widths (512 * 512B = 256KB) and 2048 tile Y widths (2048 * 128B = 256KB). Note that fenced

regions must not overlap, or operation is UNDEFINED.

Context: Tiled (Fenced) Regions

Restriction: Also included in the FENCE register is a Tile Walk field that specifies which tile format applies to the

fenced region.

Context: Tiled (Fenced) Regions

Memory Views

16 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information

passed in commands and state. This capability is provided to limit the reliance on the fixed number of

fence regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces

(Color Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface

Parameter Description

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear

format.

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-

Major or X-Major tile format.

Base Address Additional restrictions apply to the base add ress of a Tiled Surface vs. that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile

width.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 17

Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition,

restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The

most restricted surfaces are those that will be accessed both by the host (via fence) and by internal

device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then

sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device

functions always specify tiling in terms of a surface. The surface must have a base address, and this base

address is not subject to the tiling algorithm . Only offsets from the base address (as calculated by X, Y

addressing within the surface) are transformed through tiling. The base address of the surface must

therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB

device pages once the tiling algorithm has been applied to the offset. The width of a surface must be

less than or equal to the surface pitch. There are additional considerations for surfaces that are also

accessed by the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are

translated in their entirety b y the tiling algorithm. It is as if the surface being tiled by the fence region

has a base address in graphics memory equal to the fence base address, and all accesses of the surfaces

are (possibly quite large) offsets from the fence base address. Fence regions have a virtual òleft edgeó

aligned with the fence base address, and a òright edgeó that results from adding the fence pitch to the

òleft edgeó. Surfaces in the fence region must not straddle these boundaries.

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host

have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the

surface base address (as set in SURFACE_STATE) must be a òTile Row Start Addressó (TRSA). The first

address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base

address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base

address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.)

Memory Views

18 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Tiled Surface Placement

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to

access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different

GTT mapping must be used to eliminate the òextraó tiles (4KB memory pages) that exist in the excess

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually

by SW between the time the host writes the surface and the device reads it, or it can be accomplished

by arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory

Mapping below).

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 19

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch

and the fence pitch in any scenario where a surface will be accessed by both the host and an internal

graphics client. Changing the GTT mapping will not help if this restriction is violated.

Surface Access Base Address Pitch Width Tile òWalkó

Host only No restriction Integral multiple of tile size

<= 256KB

Must be <= Fence

Pitch

No restriction

Client only 4KB-aligned Integral multiple of tile size

<= 256KB

Must be <=

Surface Pitch

Restrictions imposed by

the client (see Per Stream

Tile Format Support)

Host and Client,

No GTT

Remapping

Must be TRSA Fence Pitch = Surface Pitch

= integral multiple of tile

size <= 256KB

Width <= Pitch Surface Walk must meet

client restriction, Fence

Walk = Surface Walk

Host and Client,

GTT Remapping

4KB-aligned for

client (will be tile -

aligned for host)

Both must be Integral

multiple of tile size

<=128KB, but not

necessarily the same

Width <=

Min(Surface Pitch,

Fence Pitch)

Surface Walk must meet

client restriction, Fence

Walk = Surface Walk

Memory Views

20 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Per-Stream Tile Format Support

MI Client Tile Formats Supported

CPU Read/Write All

Display/Overlay
Y-Major not supported.

X-Major required for Async Flips

Blt
Linear and X-Major only

No Y-Major support

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the

slowest.

3D Color,Depth Rendering Mode

 Color -vs-Depth bpp Buffer Tiling Su pported

Classical

Same Bpp

Both Linear

 Both TileX

 Both TileY

 Linear & TileX

 Linear & TileY

 TileX & TileY

Classical

Mixed Bpp

Both Linear

 Both TileX

 Both TileY

 Linear & TileX

 Linear & TileY

 TileX & TileY

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 21

Main Memory

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for

graphics functions. Some of this main memory can be òstolenó from the top of system memory during

initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to

satisfy application demands. To this end the graphics driver will frequently need to allocate locked-

down (i.e., non-swappable) physical system memory pages ð typically from a cacheable non-paged

pool. The locked pages required to back large surfaces are typically non-contiguous. Therefore a means

to support òlogically-contiguousó surfaces backed by discontiguous physical pages is required. The

Graphics Translation Table (GTT) that was described in previous sections provides the means.

Opti mizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory

(SM) for optimal performance in certain configurations. The general idea is that these memories are

divided into some number of pa ge types, and careful arrangement of page types both within and

between surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and

therefore yield somewhat higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is

somewhat complicated by (1) permutations of memory device technologies (which determine page

sizes and therefore the number of pages per device row), (2) memory device row population options,

and (3) limitations on the allocation of physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching

between open pages is optimal (again, the pages do not need to be sequential), (b) switching between

memory device rows does not in itself incur a penalty, and (c) switching between pages within a

particular bank of a row incurs a page miss and should therefore be avoided.

Memory Views

22 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Application of the Theory (Page Coloring)

This section provides some scenarios of how Main Memory page allocation can be optimized.

3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within

a Color or Depth Buffer should be mapped to different page types (where a pageõs òtypeó or òcoloró

refers to the row and bank itõs in).

Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The

U and V surfaces would split the same 4 page types as used in the Y surface.

Physical Graphics Address Types

The Physical Memory Address Types table lists the various physical address types supported by the

integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory

mappings or are directly specified by graphics device functions. These physical addresses are not subject

to tiling or GTT re-mappings.

Physical Memory Address Types

Address

Type Description Range

MM_Address Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1]

SM_Address System Memory Address. Accesses are snooped in processor cache, allowing

shared graphics/ processor access to (locked) cacheable memory data.

[0,512GB]

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 23

Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)

and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an

array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to

physical memory addresses, and sometimes snooped system memory òPCIó addresses.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and

PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The

GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes

respectively) and is physically contiguous. The global GTT should only be programmed via the range

defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT)

size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be

64KB in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of

the PTE entries.

Memory Views

24 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Virtual Memory

This section describes the different paging models, their behaviors, and the page table formats.

GFX Page Tables

 GPU supports three page table mechanisms

¶ PPGTT ð per process GTT (private GFX)

¶ GGTT- global GTT

All page tables have the same PTE format, the difference was how to reach the final physical page and

which fields with PTE are used.

Page Table Modes

The GFX Aperture and Display accesses are always mapped thru Global GTT. This is done to keep the

walk simple (i.e. 1-level), however GT accesses to memory can be mapped via Global GTT and/or ppGTT

with various addressing modes.

The walk modes are listed as following:

1. Global GTT with 32b virtual addressing : Global GTT usage is similar to pre-CHV, BSW behavior

with extended capability to increase the VA to 4GB (from 2GB) and use a similar 64b PTE as

ppGTT. The breakdown of the PTE for global GTT is given in later sections but fundamentally

allows 1-level pagewalk where the 20b index is used to select the 64b PTE from stolen memory.

2. Legacy 32b VA with ppGTT : This is a mode where ppGTT page tables are managed via GFX s/w

(driver) and context is tagged as Legacy 32b VA. Given each page walk is managed via 9b of the

virtual address, 20b index is broken into 3 parts. However to optimize the walks and make it look

like pre-CHV, BSW, s/w provides 4 pointers to page tables (called 4 PDP entries) ð GPA. GFX h/w

uses the four pointers and fetches the 4x4KB into h/w (for render and media) before the context

execution starts. The optimization limits the dynamic (on demand) page walks to 1-level only.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 25

Per Process GTT

Per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks on

hardware. The listed mechanisms here are selectable per-context and descriptors are delivered to

hardware as part of context descriptor.

PPGTT for 32b Virtual Address

This page walk mechanism will be used for traditional 3D, Media type context. There is going to be a

descriptor in the context header which will define the per process GTT walk that is required. For the

standard context with 32bit virtual addressing, there is a possibility to take short cuts to reduce the

overhead of the walk.

Memory Views

26 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

With 32-bit addressing the only entries that are needed for page directory pointers are 4x64bit

locations (PDPE). For any standard context scheduling, it is required for s/w to provide 4 PDPEs as part

of the context which would prevent h/w to do additional walks.

Hardware will do the remaining walks for PD and PTE similar to legacy behavior. In order to reduce the

overhead of walks, hardware implements large caches for PDs.

Hardware does the remaining walks for PD and PTE similar to legacy behavior. To reduce the overhead

of walks, hardware implements large caches for PDs:

¶ 4x4KB for 3D context

¶ 2x4x4KB for Media Context

¶ 4KB for VEBOX

¶ 4KB for Blitter

For Media and 3D context, the 16KB caches are preloaded for the entire page directory set up which

limits the walk to 1 -level before the final access. For remaining clients the PD cache is loaded on

demand and can contain up to 512 entries.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB

page. In page table every 16th entry (PTE#0, PTE#16, PTE#32ê.PTE#496) should be used to index. This is

calculated using address[21:16]& ò0000ó. Note that hardware should not make any assumptions for any

other PTEs.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 27

Walk with 2MB Page

There is an option in the page walk to work with bigger page sizes, one of those sizes is 2MB pages. If

allocated the page directory entry will indicate the page size and walk can be shortened as follows:

In this case there is no need to walk the page table after directory. And page directory has a pointer to

2MB range is physical memory.

Programming Note

Context: Walk with 2MB Page.

PPGTT32 is not going to support 2MB pages.

Memory Views

28 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Walk with 1GB Page

The same page walk is possible with 1GB page support as well.

Programming Note

Context: Walk with 1BG Page.

PPGTT32 is not going to support 1GB pages

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 29

PPGTT for Standard Context (64b VA)

For advanced virtual addressing with legacy context, the full page walk mechanism needs to be

exercised based on 48-bit canonical addressing.

64-bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer

to highest level page table (PML4 pointer or CR3). The rest of the walk is normal page walk thru various

levels.

To repurpose the caches the following mechanism will be used:

¶ 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

¶ Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

¶ VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

Memory Views

30 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Programming Note

Context: PPGTT for Standard Context (64b VA)

Design can section the 512 entries within 4KB to separate areas for PML4, PDP, and PD.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB

page. In page table every 16th entry (PTE#0, PTE#16, PTE#32ê.PTE#496) should be used to index. This is

calculated using address[21:16]& ò0000ó. Note that hardware should not make any assumptions for any

other PTEs.

Walk with 2MB Page

Similar to the 32b VA walk, there is a support for larger pages where one of the sizes supported is 2MB.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 31

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

Programming Note

Context: Walk with 1 GB Page

PPGTT32 is not going to support 1GB pages.

Memory Views

32 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Global GTT

The Global GTT mechanism in CHV, BSW looks very similar to pre-CHV, BSW with the distinction of

page table entry. Aperture and display will still use the global GTT even if GT core is mapped via per-

process GTT.

The PTE format for CHV, BSW is updated to match per process GTT definitions and GSM is now

expanded in size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry

corresponding to a 4KB page with 2^20 entries in GSM (each with 8B content)

For òMI_update_GTTó, the page address provided 31:12 need to be shifted down to 22:3 for the correct

QW position within the GGTT.

Page Table Entry

The following page table entry will be used for Global GTT:

¶ Present (Valid): The pointed PTE is valid

¶ Ignored - R/W (Read/Write): Are writes allowed to the region defined by this 4KB page. For GFX,

in order 4KB memory to be usable it has to be both present and should also be write-able.

¶ Ignored - U/S (User/Supervisor access rights) : iGFX does not use these fields

¶ PWT/PCD/PAT bits are used as indexes into a PAT register which defines the cache attributes for

the entire context.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 33

PAT field is used to do the look up in private PAT for memory typing.

¶ Ignored - A (Accessed): It needs to be managed as the page table being accessed. Hardware

needs to write this bit for the first access to the 4KB region defined with this PT entry.

¶ Ignored - D (Dirty): Hardware needs to set the dirty bit in page table if accessing this particular

4KB region in memory with the intention to modify it.

¶ Ignored - Global: this is not used by iGFX hardware, the field is used to identify global context

where invalidation may not be required.

¶ Physical address of 4KB page

For the treatment of the page bit0 AND bit1 defines the validity of the page, the rest of the information

is not relevant for Aperture and Display usage.

GGTT table entries are always read as uncacheable.

Page Walk

The global GTT page walk is identical to what it was before CHV, BSW. The only difference would be

that each entry is 8B (instead of 4B) hence the entry selection needs to be updated once the

corresponding Page Table miss read is returned.

Memory Views

34 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

GTT Cache

Processor graphics page walker implements a GTT cache which holds the remaining entries that are

read as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf

walks and not including the 2MB/1GB page sizes. When s/w enables the use of 2MB/1GB page sizes, it

will have to disable the GTT cache in CHV, BSW.

GFX Page Walker (GAM)

GPU supports various engines behind the same page walker. These streams/contexts are identified

Client level IDs which are carried via the arbitration pipeline. Page walker using look-up tables does the

correct selection for the page tables in case of concurrent context are running at the same time.

There are two different types of page table types:

Global graphics translation table (GGTT) is a single common translation table used for all processes.

There can be many Per-process graphics translation table (PPGTT). This requires an additional lookup

for translation. The actual location is not accessible directly via software since they're both located in

graphics stolen memory (see graphics memory interface chapter for more detail).

Virtual Memory Structure Memory Location

Global (GGTT) GSM Only

Per-Process (PPGTT) ð private 2 to4-level, Page Tables anywhere

Per-Process (IA32e) ð shared 4 levels, Page Tables anywhere

 IA32e compatible PPGTT is added to CHV, BSW to enable SVM (shared virtual memory) functions.

Context Definition for GFX Page Walker

Page Walker blocks need details about the context to decide on what type of page tables will be used,

what would be the error handling cases would be and many other details to operate. The information

will be passed to Page Walker (GAM) by the respective command streamer/DMA.

GAM supports the following engines:

¶ Render

¶ Media (VDBox) x2

¶ Blit

¶ VEBOX x2

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 35

The following fields will be sent to GAM:

¶ Context type (4 bits)

o Legacy vs Advanced Context : Defines the context type and qualifies the rest of the

fields. Same field may mean something else between the Legacy vs Advanced context.

There is no restriction for what type of context can run in either combin ation.

Á Requests without address-space-identifier (Legacy Context): These are the normal

memory requests from endpoint devices. These requests typically specify the type

of access (read/write/atomics), targeted DMA address/size, and identity of the

device originating the request.

Á Requests with address-space-identifier (Advanced Context): These are memory

requests with additional information identifying the targeted process address

space from endpoint devices supporting virtual memory capabilities. Beyond

attributes in normal requests, these requests specify the targeted process address

space identifier (PASID), and extended attributes such as Execute-Requested (ER)

flag (to indicate reads that are instruction fetches), and Privileged-mode-

Requested (PR) flag (to distinguish user versus supervisor access). For details,

refer to the Process Address Space ID (PASID) Capability in the PCI-Express

specifications.

Note CHV, BSW LP only supports Legacy PPGTT with 32b virtual addressing.

o A/D Support Enable : Access and Dirty bits are used when OS managing the page tables

and has been added to IA32e compatible page walk. Context will define whether A/D

bits need to be managed via GPU. (only applicable in Advanced Context)

o Privileged Context Support : Enables GPU to be able to run a privileged context which

will translate into page table accesses regardless of user vs supervisor privileges. (only

applicable in Advanced Context).

o 32b vs 48b VA Support : Enables 48b VA in page tables for the page walks. The rest of

the h/w is seamless to 32b vs 48b VA address walks, however GAM will do the check and

properly align the page walk to address bits.

Á Note: Only applicable in Legacy Context, Advanced context is always 48b.

Á Note: CHV, BSW LP only supports 32b VA

¶ Function Number : 3 bit field that defines the function number of the device. GFX device is

always on BUS=0 and DEVICE=2. If we are not virtualized, our FUNCTION#=0 however if

virtualized function number can be any 8 possible values (i.e. 0-7). The BUS/DEVICE/FUNCTION

numbers are used to the initial walk for ROOT and CONTEXT tables.

Memory Views

36 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

¶ PASID ð Process Address Space IDentifier: Use to identify the context that is submitted to h/w.

We use the PASID in many places where during the page walk (i.e. PASID table look up) or while

communicating with s/w on page faults. Each engine could be running an independent context

with different PASID. The page walker should have a mechanism to be able to cache at least

some number of PASID table entries (matching to the engine count) for faster walk.

¶ Context ID (Queue ID, Bell ID) ð Context ID is used to further qualify the running context

beyond the PASID. PASID is given per process, and same process may allocate multiple queues

to communicate with h/w. The only way to further identify the process is to use an additional ID.

For GFX h/w Context ID could be same as the bell number assigned to it. GAM h/w will use the

context ID to populate the queue ID field while communicating page faults to s/w.

¶ Page Table Pointers ð The field could be up to 256 bi ts (i.e. 4x64bits) to identify the page table

pointers associated with the context. For legacy 32b context, the entire 256b is valid

representing the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant

pointing to base of PML4. In case of advanced context, PASID is given in the context definition.

Context Definition Delivery

Context Definition is supposed to be delivered from the corresponding command streamer to GAM and

GAM has independent storage for each engine present. Context Definition will be given by *CS to GAM

via a new message:

Message: òContext Availableó

GAM prepares for new context, cleans up internal state and does the proper fencing. Most of these

steps should have been performed when context switch request was done for the previous context, but

added here for completeness.

Message: òContext Receive Readyó

GAM is ready for the context. *CS writes all new context values into the descriptor registers. To push all

context descriptors CS sends the following message to GAM also indicating new context descriptor is

downloaded.

Message: òContext Launchedó

GAM does the context requirements and sends the following message to CS to resume its command

parser.

Message: Context Confirmed

GAM should send context confirmed message only after PD restore is done. CS waiting for context

confirmed message will be treated as PD restore busy. Since all clients memory interface are blocked

during PD restore it doesnõt make any difference if the context confirmed message is send by GAM

immediately or after PD restore.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 37

Element Descriptor Register

General

Description

Element Information: The register is populated by command streamer and consumed by

GAM

Register Offset See per engine list below

Bits Access Default Field

63:32 RO Xh
Context ID:

Context identification number assigned to separate this context from others. Context IDs

needs to be recycled in such a way that there could not be two active context with the

same ID.

This is a unique identification number by which a context is identified and referenced

31:12 RO Xh
LRCA:

Command Streamer Only

11:9 RO Xh
Function Number:

GFX device is considered to be on Bus0 with device number of 2. Function number is

normally assigned as ò0ó however for gfx virtualization; there would be different function

numbers which needs to be attached to context.

Not used in CHV, BSW.

8 RO Xh
Privileged Context / GGTT vs PPGTT mode: Differs in legacy vs advanced context

modes:

In Legacy Context : Defines the page tables to be used. This is how page walker come to

know PPGTT vs GGTT selection for the entire context.

ò0ó: Use Global GTT

ò1ó: Use Per-Process GTT

In Advanced Context : Defines the privilege level for the context

ò0ó: user mode context

ò1ó: supervisor mode context.

7:6 RO Xh
Fault Model:

ò00ó: Fault & Hang (chicken bit to survive). Same mode as gen7.5

Memory Views

38 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Bits Access Default Field

ò01ó: Fault & Halt/Wait. Same mode as gen7.5

ò10ó: Fault & Stream & Switch

ò11ó: Fault & Continue: does not generate a page request to IOMMU.

5 RO Xh
Deeper IA coherency Support:

In Advanced Context : Defines the level of IA coherency

ò0ó: IA coherency is provided at LLC level for all streams of GPU (i.e. gen7.5 like mode)

ò1ó: IA coherency is provided at L3 level for EU data accesses of GPU

4 RO Xh
A&D Support / 32&64b Address Support: Differs in legacy vs advanced context modes:

In Legacy Context : Defines 32b vs 64b (48b canonical) addressing format

ò0ó: 32b addressing format

ò1ó: 64b (48b canonical) addressing format

In Advanced Context : Defines A&D bit support

ò0ó: A&D bit management in page tables is NOT supported

ò1ó: A&D bit management in page tables is supported.

3 RO Xh
Context Type: Legacy vs Advanced

Defines the context type.

ò0ó: Advanced Context: Defines the rest of the advanced capabilities (i.e. OS page table

support, fault modelsê). Note that advanced context is not bounded to GPGPU.

ò1ó: Legacy Context: Defines the context as legacy mode which is similar to prior

generations of CHV, BSW.

Note that: Bits [8:4] differs in functions when legacy vs advanced context modes are

selected.

2 RO Xh FR: Command streamer specific

1 RO Xh
Scheduling Mode:

ò1ó: Indicates execlist mode of scheduling.

ó0ó: Indicates Ring Buffer mode of scheduling.

0 RO Xh Valid: Indicates that element descriptor is valid. If GAM is programmed with an invalid

descriptor, it will continue but flag an error.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 39

PDP0/PML4/PASID Descriptor Register

General

Description

PDP0/PML4/PASID: The register is populated by command streamer and consumed by GAM. It

contains one of the 3 values which is determined by looking at th e element descriptor.

Register Offset See per engine list below

Bits Access Default Field

63:0 RO Xh
PDP0/PML4/PASID:

This register can contain three values which depend on the element descriptor definition.

PASID[19:0] : Populated in the first 20bits of the register and selected when Advanced

Context flag is set.

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is

set and 64b address support is selected

PDP0[38:12]: Pointer to one of the four page directory pointer (lo west) and defines the

first 0-1GB of memory mapping

Note: This is a guest physical address

(unused bits need to be populated as 0õs)

PDP1 Descriptor Register

General

Description

PDP1: The register is populated by command streamer and consumed by GAM. It contains

one of the pointers to PD.

Register Offset See per engine list below

Bits Access Default Field

63:12 RO Xh
PDP1:

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1 -2GB of

memory mapping

Note: This is a guest physical address

(unused bits need to be populated as 0õs)

Memory Views

40 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

PDP2 Descriptor Register

General

Description

PDP2: The register is populated by command streamer and consumed by GAM. It contains

one of the pointers to PD.

Register Offset See per engine list below

Bits Access Default Field

63:12 RO Xh
PDP2:

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2 -3GB of

memory mapping

Note: This is a guest physical address

(unused bits need to be populated as 0õs)

PDP3 Descriptor Register

General

Description

PDP3: The register is populated by command streamer and consumed by GAM. It contains

one of the pointers to PD.

Register Offset See per engine list below

Bits Access Default Field

63:12 RO Xh
PDP3:

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3 -4GB of

memory mapping

Note: This is a guest physical address

(unused bits need to be populated as 0õs)

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 41

List of Registers and Command Streamers

The following registers are message registers and not written directly by software.

Engine Offset Description

Render x4400h Element Descriptor Register

x4408h PDP0/PML4/PASID Descriptor Register

x4410h PDP1 Descriptor Register

x4418h PDP2 Descriptor Register

x4420h PDP3 Descriptor Register

Media0

(VDBOX0)

x4440h Element Descriptor Register

x4448h PDP0/PML4/PASID Descriptor Register

x4450h PDP1 Descriptor Register

x4458h PDP2 Descriptor Register

x4460h PDP3 Descriptor Register

Media1

(VDBOX1)

x4480h Element Descriptor Register

x4488h PDP0/PML4/PASID Descriptor Register

x4490h PDP1 Descriptor Register

x4498h PDP2 Descriptor Register

x44A0h PDP3 Descriptor Register

VEBOX x44C0h Element Descriptor Register

x44C8h PDP0/PML4/PASID Descriptor Register

x44D0h PDP1 Descriptor Register

x44D8h PDP2 Descriptor Register

x44E0h PDP3 Descriptor Register

Blitter x4500h Element Descriptor Register

x4508h PDP0/PML4/PASID Descriptor Register

x4510h PDP1 Descriptor Register

x4518h PDP2 Descriptor Register

x4520h PDP3 Descriptor Register

Memory Views

42 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Messages

Message

Name Source Destination Category

Address

 (Hex) Bit

Mask

 Bit Value Description

Context

Available

CS (GT) GAM (GT) self-clear 4004 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

CS(GT) self-clear 3438 0 16 1 Signal ack from GAM to CS in

response to Context Available

message from CS to GAM.

Context

Launched

CS (GT) GAM (GT) self-clear 4004 1 17 1 Signal indicator to GAM that context

descriptor is pushed.

Context

Confirmed

GAM

(GT)

CS(GT) self-clear 3438 1 17 1 Signal ack from GAM to CS in

response to Context Launched

message from CS to GAM.

Context

Available

BCS

(GT)

GAM (GT) self-clear 4014 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

BCS(GT) self-clear 23438 0 16 1 Signal ack from GAM to BCS in

response to Context Available

message from BCS to GAM.

Context

Launched

BCS

(GT)

GAM (GT) self-clear 4014 1 17 1 Signal indicator to GAM that context

descriptor is pushed.

Context

Confirmed

GAM

(GT)

BCS(GT) self-clear 23438 1 17 1 Signal ack from GAM to BCS in

response to Context Launched

message from BCS to GAM.

Context

Available

VECS

(GT)

GAM (GT) self-clear 4010 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

VECS(GT) self-clear 1B438 0 16 1 Signal ack from GAM to VECS in

response to Context Available

message from VECS to GAM.

Context

Launched

VECS

(GT)

GAM (GT) self-clear 4010 1 17 1 Signal indicator to GAM that context

descriptor is pushed.

Context

Confirmed

GAM

(GT)

VECS(GT) self-clear 1B438 1 17 1 Signal ack from GAM to VECS in

response to Context Launched

message from VECS to GAM.

Context

Available

VCS0

(GT)

GAM (GT) self-clear 4008 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 43

Message

Name Source Destination Category

Address

 (Hex) Bit

Mask

 Bit Value Description

Context

Receive

Ready

GAM

(GT)

VCS0(GT) self-clear 13438 0 16 1 Signal ack from GAM to VCS in

response to Context Available

message from VCS to GAM.

Context

Launched

VCS0

(GT)

GAM (GT) self-clear 4008 1 17 1 Signal indicator to GAM that context

descriptor is pushed.

Context

Confirmed

GAM

(GT)

VCS0(GT) self-clear 13438 1 17 1 Signal ack from GAM to VCS in

response to Context Launched

message from VCS to GAM.

Context

Available

VCS1

(GT)

GAM (GT) self-clear 400C 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

VCS1(GT) self-clear 1D438 0 16 1 Signal ack from GAM to VCS in

response to Context Available

message from VCS to GAM.

Context

Launched

VCS1

(GT)

GAM (GT) self-clear 400C 1 17 1 Signal indicator to GAM that context

descriptor is pushed.

Context

Confirmed

GAM

(GT)

VCS1(GT) self-clear 1D438 1 17 1 Signal ack from GAM to VCS in

response to Context Launched

message from VCS to GAM.

Updating Page Table Pointers (aka PD Load)

In case of legacy context, driver is allowed to add/remove pages as long as it is ensured that h/w is not

using these entries. Pre-CHV, BSW flow allowed a mid -context PD load to update the PD entries and

directed h/w to reload updated entries. CHV, BSW legacy context will require a similar mechanism.

Instead of a PD load, the new mechanism will let the driver update the page table pointers via sending a

reload command. Mechanism will be overlapped to same sort messaging between CS and GAM to

deliver the context header. CS will send the following message to GAM:

Message: Context Reload

GAM will respond immediately to CS with the following message

Message: Context Confirmed

Meanwhile GAM will block the related interfaces and updates the PDs or PML4.

Memory Views

44 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Page Walker (GAM) Reset

GAM gets all the engine specific resets as well as device and bus resets to manage its internal logic

domains. It is the expectation of SW when a particular GPU engine (i.e. Render, Media, ...) gets reset, all

its related HW is cleared and comes out fresh for reprogramming. That is true for most of the logic with

the exception of some shared HW blocks. The following blocks require additional steps (post-reset)

from SW to further clean-up the HW:

¶ Hardware TLBs: The caching structures for the page walks are often considered shared

resources. The expectation is for GFX driver to clear the TLBs via òTLB Invalidateó prior to reusing

the engine post reset. This is the same process that was followed on previous GPU generations.

¶ Page Requests: At the time of the reset HW may have outstanding page requests to SW for page

faulted accesses. These requests could be at any level hence it is required for SW to clear these

paging requests pre/post-engine reset. Engine reset ensures no new page requests would be sent

from HW. Page requests could be at the òpage request queueó in memory where they could be

mapped to a dummy page post engine reset completion. Or they could be at th e MMIO registers

which will block the completion of the reset; it is up to SW to service paging request interrupts

without waiting for the completion of reset request.

Device reset (FLR) covers most of the page walker, however there are exceptions where IOMMU

structures and all messaging towards rest of the system (system agent) should not be impacted by it.

All external interactions and IOMMU related blocks are kept under bus (system) reset. GAM will keep

the following blocks outside the device reset:

¶ IOMMU registers and content.

¶ All system agent messaging structures (including translation enable flows, root pointer structures,

DMA fault reporting pieces.).

An engine being reset also means the particular context that engine is running, is complete or taken

out. That will require GAM to decrement the PASID_State Counter if the engine was running a PASID

based (advanced) context. For FLR (device reset), a similar requirement holds. In case of device reset,

GAM would need to decrement all the PASID state counters that are active on the GPU before

completing the sequence.

Legacy Context

Legacy context could use either Global GTT or Per Process GTT which is given to page walker as part of

the context descriptor. Even under PPGTT, there could be accesses from Command Streamers that

would require to use Global GTT which requires to treat the walk requirement per transaction.

For Legacy context indicator command streamer is going to pass the òcontext typeó information along

with other parameters that defines how certain behavior for paging needs to be.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 45

Full Walk

In the full walk case (i.e. advanced context), the root of the 1st and 2nd level page tables share a common

source. Both the root table and context table is walked with the assumption of GFX device is always on

Bus#0 and it is always Device#2.

Function number however is part of the context and it can be non -Zero only for virtualized modes.

GAM will receive the function number (for Context table look -up) as part of the context. Both Root

entry and Context Entry should be fetched along with PASID Table entry prior to running the context

accesses.

Memory Views

46 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

TLB Caching and Management

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At

every stage of the page different bit s need to be taken into account and proper treatment is required.

Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear address are

translated using a hierarchy of in-memory paging structures located using the contents of CR3. IA-32e

paging translates 48-bit linear addresses to 52-bit physical addresses. Although 52 bits corresponds to

4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be

accessed at any given time. IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages,

or 1-GByte pages.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 47

The following rules apply:

1. M is an abbreviation for MAXPHYSICAL ADDRESS.

2. Reserved fields must be ò0ó.

3. Ignored field must be ignored. (There could be private information.)

All ignore options are part of the context entry and come from the IOMMU definition.

TLB Caches

For CHV, BSW the caching structures are separated as following with the architectural view, this is also

applicable to s/w view of these caches when it comes to invalidations.

Context Cache - CC

This is the storage for context table entry which is achieved as part of root/context table walk.

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the

content of the context cache along with all low level caches.

PASID Cache - PC

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for

every HW engine that could be running an independent context (per GAM):

¶ Render/GPGPU

¶ MFX (VDBOX) ð 1

¶ MFX (VDBOX) ð 2

¶ Video Enhancement (VEBOX) ð 1

¶ Video Enhancement (VEBOX) ð 2

¶ Blitter

The cache content is updated if the corresponding engine is running an advanced context where its

page table pointers are accessible via PASID table. In case of legacy context running engine,

corresponding PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per

engine which is filled/invalidated during the context switch time.

PASID Cache can also be invalidated with the directed invalidations along with low level caches and

needs to be re-filled prior to context resuming.

Memory Views

48 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Intermediate Page Walk Caches (PML4, PDP, PD) ð PWC

These are the stages where intermediate page walk entries are cached to speed-up/shorten the page

walk when final TLB is missed. Each level can be cached separately or along with different levels, the

cacheability structures will have programmability to move the boundary of different levels to

accommodate more/less on each page walk level. However as a concept, for legacy 32b addressing

mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and

media. The others will use cache concept.

TLB ð Final Page Entry

The size of the TLBs has been increased over the previous generation and should be targeting the

below table:

¶ L3 TLB: 768 TLB entries ð This is where all HDC, I$, Constant, State, and Sampler streams are

stored.

¶ MFX: 512 TLB entries ð All Media streams (split 256/256 between two media engines).

¶ BLT: 32 entries.

¶ Z: 512 TLB entries ð All depth accesses.

¶ C: 256 (256 TLB entries) ð All color accesses.

¶ FF: 128 (128 TLB entries) ð All FF accesses to memory.

¶ VLF: 32 (32 TLB entries) ð Media surface.

¶ GAV: 192 (192 TLB entries) ð Video enhancement. Increased compared to other Gen8 projects.

¶ WiDi: 64 (64 TLB entries) ð Wireless Display.

All TLB entries are increased to 48b to contain larger address as well as the page attributes attached to

it.

The max size of a single TLB is 256 entries, larger quantities have to be handled as set-associative

storages. Set associativity is managed by low order page bits (i.e. address#12, address#13, ...).

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 49

TLB Entry Content

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as

well along with the physical address bits. The treatment on these bits would be considered when a HIT

vs MISS decision needs to be made during a look up.

The purpose of caching is to accelerate the paging process by caching individual translations in

translation look -aside buffers (TLBs). Each entry in a TLB is an individual translation. Each translation

is referenced by a page number. It contains the following information from the paging -structure entries

used to translate linear addresses with the page number:

Á The physical address corresponding to the page number (the page frame).

Á The access rights from the paging-structure entries used to translate linear addresses with

the page number:

o The logical-AND of the R/W flags.

o The logical-AND of the U/S flags.

o The logical-OR of the XD flags.

Á Attrib utes from a paging-structure entry that identifies the final page frame for the page

number (either a PTE or a paging-structure entry in which the PS flag is 1):

o The dirty flag.

o The memory type.

PRESENT: This is the same VALID bit description we had in previous page table designs. The lack of

present bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For

some fault models, even NOT PRESENT entries are cached to filter further page faults (see fault models

on caching page faulting entries). If such entry is cached, there are couple ways that it can be removed

from the page tables:

1. LRA selection where the entry becomes a victim for replacement

2. Global or Selective invalidation

3. Page fault response stating the faulting page is now fixed.

R/W Privilege : Certain pages can be allocated as read-only and write operations are not allowed. To

make this check work, TLB has to keep the R/W bit. This bit has no affect on read operations; however

for write operation privilege n eeds to be checked. If there is mis-match, the result of the TLB look-up

should be a MISS. This does not mean a page fault immediately; the walk has to be re-done as for any

TLB MISS result. There are cases OS may change page table privileges without invalidating pages in TLB

(note: all downgrades result in invalidation of the TLB, however upgrades can be done silently hence re-

walk is required). In case where the TLB Miss is due to privilege mis-match, the existing entry from TLB

has to be invalidated and page walk will bring in the most up -to-date copy from memory .

The R/W privilege on final frame is generated as a logical-AND process of all upper page walks pointing

to this location.

Memory Views

50 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

User vs Supervisor Privilege : The GPU typically operates in user mode when it comes to page tables.

So the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and

the context is marked as user mode. The faulted entry can be cached back into TLB with òPó bit off

indicating a faulted entry. However the page fault report should carry the correct reason why h/w

detected the fault in the first place which was the user vs supervisor privilege. There is an option in

context header to define the context as supervisor, than it legal to access supervisor pages.

¶ This is not stored in TLB

The U/S privilege on final frame is generated as a logical-AND process of all upper page walks pointing

to this location.

Accessed Bit: This where a stage of the page walk cannot be used if the accessed bit is not set for that

level in the page walk. This is true for both storage into TLB as well as to make progress on the page

walk. In order to achieve the process of Accessed bit, every stage of the ppGTT read is done via a new

semantics between the GAM and GTI such that GTI can atomically process A-bit w/o running into

access violations. The details of the semantics are defined as part of the following sections. The òAó bit

does not need to be stored as part of the TLB, just the fact that a valid page table entry is present in the

TLB does mean that h/w took care off the òAó bit at the time the page was brought up to TLB. Note that

TLB prefetching is disabled when A-bit management is enabled.

IA32e mode page tables cannot co-exist with TLB pre-fetching due to lack of A -bit management for all

entries of the line.

¶ This is not stored in TLB

Dirty Bit : Similar to accessed bit, dirty bit needs to be managed. It is only applicable for òwriteó

accesses. Given there are cases where a TLB entry was acquired as part of a read operation, the

presence of D-bit should be maintained with the TLB. This gives us the capability to declare a TLB miss

for a write access when the D-bit is not set even though TLB has a valid translation. In such case, The

TLB entry needs to invalidated and the final stage of the walk needs to be re-done to ensure most up-

to-date copy of GTT entry is brought into h/w. The operation of Dirty bit update is also atomic similar to

A-bit management.

Execute (XD) Bit : XD bit is also present on every stage of the walk and applicable to executable code

that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the

corresponding page does not have the execute credentials set properly. Similar treatment of the TLB

entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for

instruction space will have to check the XD bit which is also stored in TLB. If mis-match, the end result is

a TLB miss and walk has to be re-done replacing the differ ent stages of the walk.

The XD privilege on final frame is generated as a logical-OR process of all upper page walks pointing to

this location.

Faulted Bit : There are usage models where the faulted entries are cached in TLB. This is to filter further

faults to the same page as opportunistic way to prevent fault storms. When faulted bit is set the address

is included in the TLB look up but final treatment is fault filtering. The rest of the bits are used to define

what would be the reason for the fault. If t he look-up conflicts with the original faulted reason, a re-

walk is required. As a basic case, take a read access bringing up a PTE with W-flag cleared. A

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 51

subsequent write access has a conflict on privilege, and it will perform a re-walk. If the result of the re-

walk is W-flag set, than TLB is upgraded and write makes progress. However if the result is still W-flag

cleared, the write access will fault and TLB entry will be tagged as a faulted entry with only read-

allowed. Subsequent write accesses will be filtered as fault but read accesses should cause a re-walk of

the page and if successful, the TLB can be updated with PTE as valid with read-only attribute.

TLB Accessed and Dirty Flags

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.

For paging-structure entries that map a page (as opposed to referencing another paging structure), bit

6 is the dirty flag. These flags are provided for use by memory-management software to manage the

transfer of pages and paging structures into and out of physical memory.

Whenever the processor and/or GPU uses a paging-structure entry as part of linear-address translation,

it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor and/or GPU sets the dirty flag (if it is not

already set) in the paging-structure entry that identifies the final physical address for the linear address

(either a PTE or a paging-structure entry in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging structure is initially

loaded into physical memory. These flags are òsticky,ó meaning that, once set, the processor and/or GPU

does not clear them; only software can clear them.

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging-

structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty

flag from 1 to 0, the GPU might not set the correspondi ng bit in memory on a subsequent access using

an affected linear address

Accessed bit is applicable to every stage of the page walk, however the dirty bit is only applicable to

final stage of the walk.

The rule states that a particular access cannot be committed until the Accessed and/or Dirty bits are not

visible to page management s/w. In order for GPU to follow the rule, GTT accesses (when A/D bits are

supported) are going to be done via a special cycle definition between GAM and GTI.

Updating A/D Bits

New atomic operations are added to GAM to GPU interface (GTI) to handle paging entries. GAM has to

set the correct atomic opcodes based on the access type and context entry controls as well as level of

access.

Requires setting for opcodes are given in the table below. The steps of operations in the atomic ALUs

are given later in the document.

Memory Views

52 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

The Following Atomics are only applicable in GTI and used for Page Walks

R/W => Bit[0]

Extended Access required => Bit[1]

Write Protect Enable => Bit[2]

Intermediat e Entry => Bit[3]

Atomic

Operation Opcode Description

New Destination

Value Applicable

Return Value

(optional)

Atomic_Page_update_0000 1100_0000
Read Access

Extended Access bit

is disabled

Write Protection is

disabled

Final PTE

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0001 1100_0001
Write Access

Extended Access bit

is disabled

Write Protection is

disabled

Final PTE

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0000 1100_0010
Read Access

Extended Access bit

is enabled

Write Protection is

disabled

Final PTE

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0001 1100_0011
Write Access

Extended Access bit

is enabled

Write Protection is

disabled

Final PTE

Set bit[5,6,10] if

not set

 new_dst

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 53

Atomic_Page_update_0100 1100_0100
Read Access

Extended Access bit

is disabled

Write Protection is

enabled

Final PTE

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0101 1100_0101
Write Access

Extended Access bit

is disabled

Write Protection is

enabled

Final PTE

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0100 1100_0110
Read Access

Extended Access bit

is enabled

Write Protection is

enabled

Final PTE

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0101 1100_0111
Write Access

Extended Access bit

is enabled

Write Protection is

enabled

Final PTE

Set bit[5,6,10] if

not set

 new_dst

Atomic_Page_update_0000 1100_1000
Read Access

Extended Access bit

is disabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5] if not

set

 new_dst

Memory Views

54 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Atomic_Page_update_0001 1100_1001
Write Access

Extended Access bit

is disabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0000 1100_1010
Read Access

Extended Access bit

is enabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0001 1100_1011
Write Access

Extended Access bit

is enabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,6,10] if

not set

 new_dst

Atomic_Page_update_0100 1100_1100
Read Access

Extended Access bit

is disabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0101 1100_1101
Write Access

Extended Access bit

is disabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,6] if not

set

 new_dst

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 55

Atomic_Page_update_0100 1100_1110
Read Access

Extended Access bit

is enabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0101 1100_1111
Write Access

Extended Access bit

is enabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,6,10] if

not set

 new_dst

Atomic updates are only possible for cacheable memory types. There could be cases where the PTE

could be in WT/WC/UC space where atomic update is not possible via WB space. Those are the cases

where IA cores use bus lock to update the A/D bits in PTE.

GT core is not capable of supporting bus locks and has the following options. These options will be

enabled/disabled via register space.

Option#1 : Ignore the PAT/MTRR setting of the PTE and update the space as WB with atomic ops. This

is the place GAM will decide to go forward with atomic updates assuming WB space works

Option#2 : Once the memory type is determined and the end result of the page is WC/UC/WT space,

we can not guarantee an atomic update. GAM will report an application error (catastrophic) to the

scheduler and handle the case as error.

Bit Access

Default

Value Description

1 R/W 0b A/D Bit Update on non -WB Space: A/D bit updates are only possible via atomic

operations which are required to be on WB space to work properly. On non-WB spaces,

the A/D bit updates are done via bus locks which are not supported for GT.

ò1ó: Ignore the page level cacheability and do atomic updates for A/D bit management

ò0ó: Detect the page level cacheability as part of the atomic operation and throw a

catastrophic error when non-WB space is seen for A/D bit updates.

Memory Views

56 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

PAT (IA32e)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the

memory-type range registers (MTRRs) as specified.

The PAT is a 64-bit data structure defined in context entry when advanced context is chosen and for

legacy context and internal 64b register is defined to keep the page table based cacheability. It is

compromising eight (8) 8-bit entries (entry i comprises bits 8i+7:8i of the register).

For any access to a physical address, the table combines the memory type specified for that physical

address by the MTRRs with a memory type selected from the PAT. Specifically, it comes from entry i of

the PAT, where i is defined as follows:

Á For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table

with IA-32e paging):

i = 2*PCD+PWT, where the PCD and PWT values come from CR3.

Á For an access to a paging-structure entry X whose address is in another paging structure

entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.

Á For an access to the physical address that is the translation of a linear address, i =

4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant PTE (if the

translation uses a 4-KByte page), the relevant PDE (if the translation uses a 2-MByte page or

a 4-MByte page), or the relevant PDPTE (if the translation uses a 1-GByte page).

PAT in Context Table Entry

PAT definition is embedded inside the context entry and already defined as part of the context entry

definition (see related section). It allows 8 different settings which can be indexed using the following

encodings listed as part of memory types. PAT in context entry is used for advanced context usage.

Memory Types and Applicability to GFX

The Memory Types defined for IA are listed below as:

Memory Type Encoding in MTRR/PAT

Uncacheable (UC) 00h

Write Combining (WC) 01h

Write Through (WT) 04h

Write Protected (WP) 05h

WriteBack (WB) 06h

Uncached (UC-) 07h

Reserved* 02, 03, 08h-FFh

Note: * use of any reserved encodings will result in a FAULT and reported into fault registers.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 57

¶ Uncacheable (UC): IA semantics for a UC cycle is slightly different than traditional UC concept

that was adapted by GFX as part of integration into CPU. When UC type is selected from the

MTRR table, GAM will enforce the request to be uncacheable in LLC/eLCC (turn-off the

cacheability flags) and also force the fence semantics in GTI.

Note: This behavior is not followed with a fence in case of GPUs.

¶ Uncached (UC-): Same concept as UC from behavior perspective however the precedence can be

overridden by WC unlike UC.

¶ Write Combining (WC): Write combining follows a streaming model in IA terms which is not

cached in uncore. Semantically the existing GT use of UC concept overlaps with WC memory type

defined by IA. GFX will treat the WC memory type as a streaming uncacheable memory type in

GFX pipelines.

¶ Write Through (WT): Write through concept is already introduced as part of the gen7.5 design,

the IA version of the WT overlaps with the same concept.

¶ Write Protected (WP): GFX has no concept of write protected; however this is simply a

combination of two modes distributed over different access types:

¶ Reads: Acts as WB.

¶ Writes : Acts as WC.

¶ Write Back (WB): WB memory type is traditional memory type used where accesses are cached

in uncore as per the directives provided. This is the main cacheable mode that will be used.

Memory Views

58 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Basically, GPU will support all memory-types that CPU supports (as below), with the same meaning with

respect to òCacheableó, òWriteback Cacheable ó, and òSerialization ó. Because the GPU has its own

device-specific notion of what òspeculative processor orderingó means, those are not specified/attached

to memory -types.

Memory Type

and Mnemonic Cacheable

Writeback

Cacheable

Allows

Speculative

Reads Memory Ordering Model

Strong

Uncacheable (UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be selected

through the PAT. Can be overridden by

WC in MTRRs.

Write Combining

(WC)

No No Yes Weak Ordering. Available by

programming MTRRs or by selecting it

through the PAT.

Write Through

(WT)

Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected

(WP)

Yes for reads;

no for writes

No Yes Speculative Processor Ordering.

Available by programming MTRRs.

The key similarities with CPU memory types are:

¶ GPUõs cache (L3 cache) will be made coherent (works similar to MLC on CPUs).

¶ All GPU accesses (regardless of memory type) will snoop LLC.

¶ All GPU accesses will self-snoop.

¶ Outside of virtualization, GPU computes effective memory-type same as CPU (MTRR, PAT, PCD,

PWT, etc.), and caches follow normal versus non-allocating mode per CD bit (similar to CPUs).

¶ UC, UC- and WC accesses do not allocate to caches. Will invalidate if line already exists in caches.

¶ UC- works same ways as CPU (i.e., unlike UC, UC- allows override by WC).

¶ WB accesses will allocate to cache without updating memory.

¶ WT behaves same as WB, except writes, updates memory along with allocate to cache.

¶ WP behaves same as WT, except writes always propagate to memory (invalidating any cache-line

that hits).

The key difference with CPU memory types are:

¶ Speculative processor ordering not specified

¶ For GPU, only difference between UC/UC- and WC is that, UC has stronger ordering.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 59

MTRR Ranges

Memory Type Range Registers are defined to cover the entire physical memory. The following table

shows how each region is defined and how they map over the physical memory.

Memory Type Selection and Priority

Memory typing determination is split up to two categories:

¶ Architectural Options : This is the traditional memory typing defined via external specifications

and controls the cacheability of various surfaces.

¶ Design Specific Options : To target product specific caches and cache optimizations

Design-Specific Memory Types

The following are the design specific memory types for CHV, BSW.

LRU Age: Both LLC and eDRAM uses LRU-like replacement algorithm with Age based determination

Memory Views

60 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

00: Age is 0

01: Age is 1

10: Age is 2

11: Age is 3

Target Cache: CHV, BSW has two large caches in Uncore where they could be separately targeted.

00: reserved

01: eLLC only

10: LLC only

11: eLLC/LLC

Both LRU and target cache selections can only be managed via non-architectural solutions.

Legacy Context: Selection is based on whether target cache field programmed in surface state is ò00ó

or non-ò00ó. If non-ò00ó, than both the Age and Target cache parameters are picked from surface state

and page table controls are ignored. If target cache parameter in surface state is ò00ó than, only page

table controls are used via private PAT programming (see PAT calculation) and indexed into òPAT in

MMIO Register Spaceó.

Advanced Context : Decision is based on surface state only. Advanced context uses architectural

definition of PAT via IA32e page tables which do not carry design specific information. The only

mechanism to control cache LRU and targets is to program the surfaces state accordingly.

Memory Object Control State (Surface)

Bit Description

6:5
Memory Type: LLC/eLLC Cacheability Control (LeLLCCC)

This is the field used in GT interface block to determine what type of access need to be generated to uncore.

For the cases where the LeLLCCC is set, cacheable transaction are generated to enable LLC usage for

particular stream.

00: Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01/10: non-snooped

11: snooped

For CHV, BSW, GFX driver should use snooped type for only surfaces that are prepared by the driver in

IA WB space. All other surfaces should be tagged as nonsnooped

4:3
Target Cache (TC)

This field allows the choice of LLC vs eLLC for caching

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 61

00: eLLC Only ð not snooped in GT

01: LLC Only

10: LLC/eLLC Allowed

11: L3, LLC, eLLC Allowed

2
Reserved

1:0
Age for QUADLRU (AGE)

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a particular allocation is

done at youngest age (ò3ó) it tends to stay longer in the cache as compared to older age allocations (ò2ó, ò1ó,

or ò0ó). This option is given to driver to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

11: Good chance of generating hits.

10: Next good chance of generating hits

01: Decent chance of generating hits

00: Poor chance of generating hits

Architectural Memory Types

Memory typing is decided via several levels of checks and comparing different priority levels. The

following table shows a visual mapping between these selections.

Memory Views

62 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 63

Memory Views

64 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Page Walker Access and Memory Types

Most of these notes are further explained in the document; however summarized as part of the page

table behavior:

Page Walker Memory Types

1. Legacy Contexts

a. GT access to root/extended-root table and context/extended -context table

b. GTT access to private paging (PPGTT) entries

c. GT access to GPA-to-HPA paging entries

d. GT access to the translated page

2. Advanced context (without nesting)

a. GT access to extended-root table and extended -context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

3. Advanced context (with nesting)

a. GT access to extended-root table and extended -context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries

g. GT access to GPA-to-HPA paging entries to translate address of page

For gen8, the following behavior is defined:

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 65

Error Cases

¶ A/D bit update attempt for paging entry in n on-WB memory, cause page-walk to be aborted;

Error reported to device in Translation Response, gets reported to driver as GPGPU context in

error ð catastrophic error case.

¶ Locked/Atomic operations to pages in non -WB memory aborted; gets reported to driver as

GPGPU context in error (catastrophic error)

¶ CD=1 treated same as non-WB memory, for above lock behavior

Replacement

TLB replacements during runtime are based on LRA algorithm; in addition, invalidations and page

responses will have to invalidate the TLB entries.

Invalidations of TLB

There are various ways to invalidate TLBs:

1. Traditional invalidation from command streamer : Could be part of any fence accesses

including newly added atomics.

2. SVM based invalidations : Listed as part of the new SVM related invalidations, various stages of

TLBs including intermediate stages can be invalidated selectively and/or as a whole.

3. Context Switch : A context switch has to invalidate caches to make sure we have no residual

value of the TLBs across multiple PASIDs. GAM will treat the context reload message from CS as a

form of TLB invalidation.

4. A page response : should invalidate faulted recordings. It should be done via address matching

to kick the faulted entries within the matching PASID.

Invalidation response òInvalidation Wait Descriptoró should also be a fence for both READs and WRITEs

that used the previous TLB entries. Gam can only respond to òinvalidation wait descriptoró after getting

a GTI EMPTY indication.

Memory Views

66 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Optional Invalidations

The following cases are listed as page table updates which software may choose not to invalidate the

TLBs.

¶ If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, s/w may choose

not to invalidate TLBs. This affects only the case where GPU keeps the faulted page in its TLB to

filter out future faults. Regardless of s/w does invalidation or not, for the cases where h/w cares,

there will be a page response from s/w which will be used to shootdown the faulted record from

the TLB.

GAM will only put faulted entries t o its TLBs if there has been page request for it. This

would mean only faultable surfaces can be stored in GAM TLBs as a faulted entry.

¶ If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is

necessary (assuming that an invalidation was performed the last time the accessed flag was

changed from 1 to 0). This is because no TLB entry or paging-structure cache entry is created

with information from a paging structure entry in which the accessed flag is 0.

¶ If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure

to perform an invalidation may result in a òspuriousó page-fault exception (e.g., in response to

an attempted write access) but no other adverse behavior. Such an exception will occur at most

once for each affected linear address

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 67

Faulting

Page Faults

CHV, BSW does not support page faulting

Memory Views

68 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Memory Types and Cache Interface

This section has additional information on the types of memory which are accessible via the various GT

mechanisms. It includes discussion on how the various paging models are used and accessed. See the

Graphics Translation Tables for more detailed discussions on paging models.

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3

and the different behaviors which can be enabled.

Memory Object Control State (MOCS)

The memory object control state defines the behavior of memory accesses beyond the graphics core,

including encryption, graphics data types that al low selective flushing of data from outer caches, and

controlling cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by

page in the GTT entries. Memory objects that are defined by state per surface generally have additional

memory object control state in the state structure that defines the other surface attributes. Memory

objects without state defining them have memory object state control defined per class in the

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some

memory objects only have the GTT entry mechanism for defining this control. The table below

enumerates the memory objects and the location of the control state for each:

Memo ry Object Location of Control State

surfaces defined by SURFACE_STATE: sampling engine surfaces,

render targets, media surfaces, pull constant buffers, streamed vertex

buffers

SURFACE_STATE

depth, stencil, and hierarchical depth buffers corresponding state command that

defined the buffer attributes

stateless buffers accessed by data port STATE_BASE_ADDRESS

indirect state objects STATE_BASE_ADDRESS

kernel instructions STATE_BASE_ADDRESS

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS)

index buffers 3DSTATE_INDEX_BUFFER

vertex buffers 3DSTATE_VERTEX_BUFFERS

indirect media object STATE_BASE_ADDRESS

generic state prefetch GTT control only

ring/batch buffers GTT control only

context save buffers GTT control only

store DWord GTT control only

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 69

MOCS Registers

These registers provide the detailed format of the MOCS table entries that need to be programmed to

define each surface state.

MEMORY_OBJECT_CONTROL_STATE

MEMORY_OBJECT_CONTROL_STATE

Page Walker Access and Memory Types

Most of these notes are further explained in the document however summarized as part of the page

table behavior:

Page Walker Memory Types

1. Legacy Contexts

a. GT access to root/extended-root table and context/extended -context table

b. GTT access to private paging (PPGTT) entries

c. GT access to GPA-to-HPA paging entries

d. GT access to the translated page

2. Advanced context (without nesting)

a. GT access to extended-root table and extended -context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

3. Advanced context (with nesting)

a. GT access to extended-root table and extended -context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries

g. GT access to GPA-to-HPA paging entries to translate address of page

Memory Views

70 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Gen8 Memory Typing for Paging

The following information is duplicated in the Page Walker Memory Types topic:

1. Legacy Contexts

a. GT access to root/extended-root table and context/extended -context table

b. GTT access to private paging (PPGTT) entries

c. GT access to GPA-to-HPA paging entries

d. GT access to the translated page

2. Advanced context (without nesting)

a. GT access to extended-root table and extended -context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

3. Advanced context (with nesting)

a. GT access to extended-root table and extended -context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries

g. GT access to GPA-to-HPA paging entries to translate address of page

This information is new in this topic and references the cases and subcases enumerated above:

For case [1]:

¶ [1.a] is always covered as a non-cacheable access

¶ [1.b] & [1.c] is covered with MMIO register where PPGTT entries can be forced to be cached in

LLC (default option is cached).

¶ [1.d] is defined via private PAT (MMIO based) and surface state.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 71

For case [2]:

¶ [2.a] is always covered as a non-cacheable access

¶ [2.b] is always cached & PASID state table entry is always accessed òatomicallyó

¶ [2.c] is accessed as cached

¶ [2.d] use memory-type as evaluated through MTRR, CD, and PCD/PWT/PAT bits in leaf IA-32e

paging entry

For case [3]:

¶ [3.a] is always covered as a non-cacheable access

¶ [3.b] is always cached & PASID state table entry is always accessed òatomicallyó

¶ [3.c] is accessed as cached

¶ [3.d] use memory-type as follows (this section is further described in detail in memory typing

section)

o If CD=1, memory-type is UC

o If CD=0:

Á If EMTE=0 in extended-context-entry, it is handled same as [2.d]

Á If EMTE=1 in extended-context-entry:

¶ If IGMT=1 in leaf GPA-to-HPA entry, memory type used is the EMT field in

this GPA-to-HPA entry.

¶ If IGMT=0 in leaf GPA-to-HPA entry, memory type from [2.d] is combined

with EMT field in this GPA-to-HPA entry.

¶ [3.e] is always cached & PASID state table entry is always accessed òatomicallyó

¶ [3.f] &[3.g] is accessed as cached

Error Cases

¶ A/D bit update attempt for paging entry in non -WB memory, causes page-walk to be aborted;

Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU

context in error ð catastrophic error case.

¶ Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver

as GPGPU context in error (catastrophic error).

¶ CD=1 treated same as non-WB memory, for above lock behavior.

Memory Views

72 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Common Surface Formats

This section documents surfaces and how they are stored in memory, including 3D and video surfaces,

including the details of compressed texture formats. Also covered are the surface layouts based on

tiling mode and surface type.

Non -Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete òpixeló oriented

data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats,

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memo ry

object types.

Surface Format Naming

Unless indicated otherwise, all pixels are stored in òlittle endian ó byte order. i.e., pixel bits 7:0 are

stored in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color

components in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order

(LSB channel on the left, MSB channel on the right), with the channel format specified following the

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of

red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

Intensity Formats

All surface formats containing òIó include an intensity value. When used as a source surface for the

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered.

Intensity surfaces are not supported as destinations.

Luminance For mats

All surface formats containing òLó include a luminance value. When used as a source surface for the

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being

filtered. The alpha channel is provided either from another field or receives a default value. Luminance

surfaces are not supported as destinations.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 73

R1_UNORM (same as R1_UINT) and MONO8

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds

to Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine.

7 6 5 4 3 2 1 0

T7 T6 T5 T4 T3 T2 T1 T0

Bit Description

T0
Texel 0

On texture reads, this

(unsigned) 1-bit value is

replicated to all color channels.

Format: U1

... ...

T7
Texel 7

On texture reads, this

(unsigned) 1-bit value is

replicated to all color channels.

Format: U1

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only

supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter.

Memory Views

74 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Palette Formats

Palette formats are supported by the sampling engine. These formats include an index into the palette

(Px) that selects the actual channel values from the palette, which is loaded via the

3DSTATE_SAMPLER_PALETTE_LOAD0 command.

P4A4_UNORM

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in

the low nibble).

7 4 3 0

Alpha Palette Index

Bit Description

7:4
Alpha

Alpha value which will be replicated to both the high and low nibble of an 8 -bit value, and then divided by

255 to yield a [0.0,1.0] Alpha value.

Format: U4

3:0
Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via

3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U4

A4P4_UNORM

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the

high nibble).

7 4 3 0

Palette Index Alpha

Bit Description

7:4
Palette Index

A 4-bit color index which is used to lookup a 24 -bit RGB value in the texture palette.

Format: U4

3:0
Alpha

Alpha value which will be replicated to both the high and low nibble of an 8 -bit value, and then divided by

255 to yield a [0.0,1.0] alpha value.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 75

Bit Description

Format: U4

P8A8_UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in

the low byte).

15 8 7 0

Alpha Palette Index

Bit Description

15:8
Alph a

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U8

7:0
Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette

(loaded via 3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U8

A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the

high byte).

15 8 7 0

Palette Index Alpha

Bit Description

15:8
Palette Index

An 8-bit color index which is used to lookup a 24 -bit RGB value in the texture

palette.

Format: U8

7:0
Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.

Format: U8

Memory Views

76 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit Description

7:0
Palette Index

An 8-bit color ind ex which is used to lookup a 32-bit ARGB value in the texture

palette.

Format: U8

P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit Description

1:0
Palette Index

A 2-bit color index which is used to lookup a 32 -bit ARGB value in the texture

palette.

Format: U2

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 77

Compressed Surface Formats

This section contains information on the internal organization of compressed surface formats.

ETC1_RGB8

CHV, BSW: This format compresses UNORM RGB data using an 8-byte compression block representing

a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and column range

from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

High 24 bits if òdiffó is zero (individual mode):

Bits Description

7:4 R0[3:0]

3:0 R1[3:0]

15:12 G0[3:0]

11:8 G1[3:0]

23:20 B0[3:0]

19:16 B1[3:0]

High 24 bits if òdiffó is one (differential mode):

Bits Description

7:3 R0[4:0]

2:0 dR1[2:0]

15:11 G0[4:0]

10:8 dG1[2:0]

23:19 B0[4:0]

18:16 dB1[2:0]

Low 40 bits:

Bits Description

31:29 lum table index for sub-block 0

28:26 lum table index for sub-block 1

25 diff

24 flip

39 texel[3][3] index MSB

38 texel[2][3] index MSB

37 texel[1][3] index MSB

36 texel[0][3] index MSB

35 texel[3][2] index MSB

Memory Views

78 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Bits Description

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

40 texel[0][0] index MSB

55 texel[3][3] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

48 texel[0][2] index LSB

63 texel[3][1] index LSB

62 texel[2][1] index LSB

61 texel[1][1] index LSB

60 texel[0][1] index LSB

59 texel[3][0] index LSB

58 texel[2][0] index LSB

57 texel[1][0] index LSB

56 texel[0][0] index LSB

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks

controlled by the òflipó bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the

right. If flip=1, sub -block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom.

The òdiffó bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444

value per sub-block (òindividualó mode with diff = 0), or a single 555 value for the first sub-block

(R0/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block (òdifferentialó mode with diff

= 1). The delta values are 3-bit twoõs-complement values that hold values in the range [-4,3]. These

values are added to the 5-bit values for sub-block 0 to obtain the 5 -bit values for sub-block 1 (if the

value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 79

per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base

color for each sub-block.

For each sub-block one of 8 different l uminance columns is selected based on the 3-bit lum table index.

Then each texel selects one of the 4 rows of the selected column with a 2-bit per -texel index. The

chosen value in the table is added to the 8-bit base color for the sub-block (obtained in th e previous

step) to obtain the texelõs color. Values in the table are given in decimal, representing an 8-bit UNORM

as an 8-bit signed integer.

Luminance Table

0 1 2 3 4 5 6 7

0
2 5 9 13 18 24 33 47

1
8 17 29 42 60 80 106 183

2
-2 -5 -9 -13 -18 -24 -33 -47

3
-8 -17 -29 -42 -60 -80 -106 -183

Memory Views

80 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

ETC2_RGB8 and ETC2_SRGB8

The ETC2_RGB8 format builds on top of ETC1_RGB8, using a set of invalid bit sequences to enable three

new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be

documented in this section as they are covered in the ETC1_RGB8 section.

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1

differential mode. The mode is determined as follows (x indicates donõt care):

diff Rt Gt Bt mode

0 x x x individual

1 0 x x T

1 1 0 x H

1 1 1 0 planar

1 1 1 1 differential

The inputs in the above table are defined as follows:

 Rt = (R0 + dR1) in [0,31]

 Gt = (G0 + dG1) in [0,31]

 Bt = (G0 + dB1) in [0,31]

8-byte compression block for mode determination

Bits Description

7:3 R0[4:0]

2:0 dR1[2:0]

15:11 G0[4:0]

10:8 dG1[2:0]

23:19 B0[4:0]

18:16 dB1[2:0]

31:26 ignored

25 diff

24 ignored

63:32 ignored

The fields in the table above are used only for mode determination. Some of the bits in this table are

overloaded with other values within each mode. The algorithm is defined such that there is no

ambiguity in modes when this is done.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 81

T mode

The òTó mode has the following bit definition:

8-byte compression block for òTó mode

Bits Description

7:5 ignored

4:3 R0[3:2]

2 ignored

1:0 R0[1:0]

15:12 G0[3:0]

11:8 B0[3:0]

23:20 R1[3:0]

19:16 G1[3:0]

31:28 B1[3:0]

27:26 di[2:1]

25 diff = 1

24 di[0]

39 texel[3][3] index MSB

38 texel[2][3] index MSB

37 texel[1][3] index MSB

36 texel[0][3] index MSB

35 texel[3][2] index MSB

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

40 texel[0][0] index MSB

55 texel[0][0] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

Memory Views

82 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Bits Description

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

48 texel[0][2] index LSB

63 texel[3][1] index LSB

62 texel[2][1] index LSB

61 texel[1][1] index LSB

60 texel[0][1] index LSB

59 texel[3][0] index LSB

58 texel[2][0] index LSB

57 texel[1][0] index LSB

56 texel[0][0] index LSB

The òTó mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the

individual mode, however the bit positions for these are different. For each channel, the 4 bits are

extended to 8 bits by bit replication.

A 3-bit distance index òdió is also defined in the compression block. This value is used to look up the

distance in the following table:

distance index

òdió distance òdó

0 3

1 6

2 11

3 16

4 23

5 32

6 41

7 64

Four colors are possible on each texel. These colors are defined as the following:

 P0 = (R0, G0, B0)

 P1 = (R1, G1, B1) + (d, d, d)

 P2 = (R1, G1, B1)

 P3 = (R1, G1, B1) ï (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each

texel in the block based on the 2-bit texel index.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 83

H mode

The òHó mode has the following bit definition:

8-byte compression block for òHó mode

Bits Description

7 ignored

6:3 R0[3:0]

2:0 G0[3:1]

15:13 ignored

12 G0[0]

11 B0[3]

10 ignored

9:8 B0[2:1]

23 B0[0]

22:19 R1[3:0]

18:16 G1[3:1]

31 G1[0]

30:27 B1[3:0]

26 di[2]

25 diff = 1

24 di[1]

39 texel[3][3] index MSB

38 texel[2][3] index MSB

37 texel[1][3] index MSB

36 texel[0][3] index MSB

35 texel[3][2] index MSB

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

Memory Views

84 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Bits Description

40 texel[0][0] index MSB

55 texel[3][3] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

48 texel[0][2] index LSB

63 texel[3][1] index LSB

62 texel[2][1] index LSB

61 texel[1][1] index LSB

60 texel[0][1] index LSB

59 texel[3][0] index LSB

58 texel[2][0] index LSB

57 texel[1][0] index LSB

56 texel[0][0] index LSB

The òHó mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the

individual and T modes, however the bit positions for these are different. For each channel, the 4 bits

are extended to 8 bits by bit replication.

A 3-bit distance index òdió is defined by 2 MSBs in the compression block and the LSB computed by the

following equation, where R/G/B values are the 8-bit values from the first step:

 di[0] = ((R0 « 16) | (G0 « 8) | B0) >= ((R1 « 16) | (G1 « 8) | B1)

The distance òdó is then looked up in the same table used for T mode. The four colors for H mode are

computed as follows:

 P0 = (R0, G0, B 0) + (d, d, d)

 P1 = (R0, G0, B0) - (d, d, d)

 P2 = (R1, G1, B1) + (d, d, d)

 P3 = (R1, G1, B1) ï (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each

texel in the block based on the 2-bit t exel index as in T mode.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 85

Planar mode

The òplanaró mode has the following bit definition:

8-byte compression block for òplanaró mode

Bits Description

7 ignored

6:1 R0[5:0]

0 G0[6]

15 ignored

14:9 G0[5:0]

8 B[5]

23:21 ignored

20:19 B[4:3]

18 ignored

17:16 B0[2:1]

31 B0[0]

30:26 RH[5:1]

25 diff = 1

24 RH[0]

39:33 GH[6:0]

32 BH[5]

47:43 BH[4:0]

42:40 RV[5:3]

55:53 RV[2:0]

52:48 GV[6:2]

63:62 GV[1:0]

61:56 BV[5:0]

Memory Views

86 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

The òplanaró mode has three base colors stored as RGB 676, with red & blue having 6 bits and green

having 7 bits. These three base colors are each extended to RGB 888 with bit replication.

The color of each texel is then computed using the following equations, with x and y representing the

texel position within the compression block:

 texel[y][x].R = x(RH - R0)/4 + y(RV - R0)/4 + R0

 texel[y][x].G = x(GH - G0)/4 + y(GV - G0)/4 + G0

 texel[y][x].B = x(BH - B0)/4 + y(BV - B0)/4 + B0

All resulting channels are clamped to the range [0,255].

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGB8, then a conversion from the resulting

RGB values to SRGB space is performed.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 87

EAC_R11 and EAC_SIGNED_R11

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and

column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

EAC_R11 compression block layout

Bits Description

7:0 R0[7:0]

15:12 m[3:0]

11:8 ti[3:0]

23:21 texel[0][0] index

20:18 texel[1][0] index

17:16,31 texel[2][0] index

30:28 texel[3][0] index

27:25 texel[0][1] index

24,39:38 texel[1][1] index

37:35 texel[2][1] index

34:32 texel[3][1] index

47:45 texel[0][2] index

44:42 texel[1][2] index

41:40,55 texel[2][2] index

54:52 texel[3][2] index

51:49 texel[0][3] index

48,63:62 texel[1][3] index

61:59 texel[2][3] index

58:56 texel[3][3] index

Memory Views

88 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

The òtió (table index) value from the compression block is used to select one of the columns in the table

below.

Intensity modifier (im) table

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
-3 -3 -2 -2 -3 -3 -4 -3 -2 -2 -2 -2 -3 -1 -4 -3

1
-6 -7 -5 -4 -6 -7 -7 -5 -6 -5 -4 -5 -4 -2 -6 -5

2
-9 -10 -8 -6 -8 -9 -8 -8 -8 -8 -8 -7 -7 -3 -8 -7

3
-15 -13 -13 -13 -12 -11 -11 -11 -10 -10 -10 -10 -10 -10 -9 -9

4
2 2 1 1 2 2 3 2 1 1 1 1 2 0 3 2

5
5 6 4 3 5 6 6 4 5 4 3 4 3 1 5 4

6
8 9 7 5 7 8 7 7 7 7 7 6 6 2 7 6

7
14 12 12 12 11 10 10 10 9 9 9 9 9 9 8 8

The eight possible color values Ri are then computed from th e 8 values in the column labeled imi, where

i ranges from 0 to 7:

For EAC_R11:

if (m == 0) Ri = R0*8 + 4 + im i else Ri = R0*8 + 4 + (im i * m * 8)

Each value is clamped to the range [0,2047].

For EAC_SIGNED_R11:

if (m == 0) Ri = R0*8 + im i else Ri = R0*8 + (im i * m * 8)

Each value is clamped to the range [-1023,1023].

Note that in the signed case, the R0 value is a signed, 2õs complement value in the range [-127, 127].

Before being used in the above equations, an R0 value of -128 must be clamped to -127.

Finally, each texel red value is selected from the 8 possible values Ri using the 3-bit index for that texel.

The green, blue, and alpha values are set to their default values.

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 89

ETC2_RGB8_PTA and ETC2_SRGB8_PTA

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the òindividualó mode in favor of

allowing a punch-through alpha. The òdiffó bit from ETC2_RGB8 is renamed to òopaqueó in this format,

and the mode selection behaves as if the òdiffó bit is always 1, making the òindividualó mode

inaccessible for these formats.

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is

determined to be zero, the three other channels are also forced to zero, regardless of what value the

normal decompression algorithm would have produced.

Differential Mode

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGB8 is used. If the opaque

bit is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out,

otherwise the table is the same):

Luminance Table for opaque bit not set

 0 1 2 3 4 5 6 7

0
0 0 0 0 0 0 0 0

1
8 17 29 42 60 80 106 183

2
0 0 0 0 0 0 0 0

3
-8 -17 -29 -42 -60 -80 -106 -183

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value

is set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255

and RGB is the result of the normal decompression calculations.

T and H Modes

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set

to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255.

Planar Mode

In planar mode, the opaque bit is ignored and alpha is set to 255.

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the

resulting RGB values to SRGB space is performed, with alpha remaining unchanged.

Memory Views

90 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8

The ETC2_EAC_RGBA8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression

block represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the

EAC_R8 algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm.

The EAC_R8 format differs from EAC_R11 as described below.

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBA8, then a conversion from

the resulting RGB values to SRGB space is performed, with alpha remaining unchanged.

EAC_R8 Format:

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier

section, except the procedure for computing the eight possible color values Ri is performed as follows:

Ri = R0 + (imi * m)

Each value is clamped to the range [0,255].

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 91

EAC_RG11 and EAC_SIGNED_RG11

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and

column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows.

EAC_RG11 compression block layout

Bits Description

63:56 G0[7:0]

55:52 Gm[3:0]

51:48 Gti[3:0]

47:45 texel[0][0] G index

44:42 texel[1][0] G index

41:39 texel[2][0] G index

38:36 texel[3][0] G index

35:33 texel[0][1] G index

32:30 texel[1][1] G index

29:27 texel[2][1] G index

26:24 texel[3][1] G index

23:21 texel[0][2] G index

20:18 texel[1][2] G index

17:15 texel[2][2] G index

14:12 texel[3][2] G index

11:9 texel[0][3] G index

8:6 texel[1][3] G index

5:3 texel[2][3] G index

66:64 texel[3][3] G index

63:56 R0[7:0]

55:52 Rm[3:0]

51:48 Rti[3:0]

47:45 texel[0][0] R index

44:42 texel[1][0] R index

41:39 texel[2][0] R index

38:36 texel[3][0] R index

35:33 texel[0][1] R index

32:30 texel[1][1] R index

29:27 texel[2][1] R index

Memory Views

92 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15

Bits Description

26:24 texel[3][1] R index

23:21 texel[0][2] R index

20:18 texel[1][2] R index

17:15 texel[2][2] R index

14:12 texel[3][2] R index

11:9 texel[0][3] R index

8:6 texel[1][3] R index

5:3 texel[2][3] R index

2:0 texel[3][3] R index

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that

they supply two channels of output data, both re d and green, from two independent 8 -byte portions of

the compression block. The low half of the compression block contains the red information, and the

high half contains the green information. Blue and alpha channels are set to their default values.

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels

are generated using the data in the compression block.

 Memory Views

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 93

FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel

blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged

according to the following diagram:

FXT1 Encoded Blocks

Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on

which encoding scheme results in best overall visual quality. The following table lists the four different

modes and their encodings:

FXT1 Format Summary

Bit

127

Bit

126

Bit

125

Block

Compression

Mode Summary Descript ion

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and

transparent black

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3 discrete

colors + transparent black and 2 LUTs using interpolated values of Color 0,1 (t0-

15) and Color 1,2 (t16-31).

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and Color2,3

LUT used for t16-31. Alpha bit selects between LUTs with 4 interpolated colors

or 3 interpolated colors + transparent black.

FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the

encoded block. These base colors are then expanded (using high-order bit replication) to 24 -bit RGB

colors, and used to define an 8-entry lookup table of interpolated color values (the 8 th entry is

transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a

color from the table.

