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Introduction 

The hardware supports three engines: 

 The Render command streamer interfaces to 3D/IE and display streams. 

 The Media command streamer interfaces to the fixed function media. 

 The Blitter command streamer interfaces to the blit commands. 

Software interfaces of all three engines are very similar and should only differ on engine-specific 

functionality. 

Memory Views Glossary 

Term Definition 

CHV, BSW CherryView CPU/GFX platform. 8th generation processor graphics (Gen8). 

IOMMU I/O Memory Mapping unit 

SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and 

processor graphics. 

Page Walker 

(GAM) 

GFX page walker which handles page level translations between GFX virtual memory to physical 

memory domain. 

GPU Memory Interface  

GPU memory interface functions are divided into 4 different major sections: 

 Global Arbitration 

 Memory Interface Functions 

 Page Translations (GFX Page Walker) 

 Ring Interface Functions (GTI) 

GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The 

following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces 

and page translations and page walker functions. 
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Global Arbitration  

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses 

from different stages of the pipeline are consolidated to a single interface towards GT’s connection to 

CPU’s ring interface. 

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels. 

Programming Note 

Context: Global Memory Arbitration 

Arbitration allows 4 levels of arbitration where each pipeline level can be put into these 4 levels. Each 

consolidation stage simply follows the 4-level arbitration with grace periods to allow ahead of the pipeline to get 

a higher share of the memory bandwidth. 

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases 

major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace 

period where its accesses are counted against a global pool. If a particular engine (or pipeline stage) 

exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based 

prioritization. Once all counts are expired, the grace period completes and resets. 

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring 

the pipeline order. 

Graphics Memory Interface Functions 

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various 

client functions access to “graphics” memory used to store commands, surfaces, and other information 

used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics 

memory is accessed. 

Information not presented in this chapter includes: 

 Microarchitectural and implementation-dependent features (e.g., internal buffering, caching, and 

arbitration policies). 

 MI functions and paths specific to the operation of external (discrete) devices attached via 

external connections. 

 MI functions essentially unrelated to the operation of the internal graphics devices, .e.g., 

traditional “chipset functions”  

 GFX Page Walker and GT interface functions are covered in different chapters. 
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Graphics Memory Clients  

The MI function provides memory access functionality to a number of external and internal graphics 

memory clients, as described in the table below. 

Graphics Memory Clients 

MI Client Access Modes 

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed 

using Device 2 Graphics Memory Range Addresses 

External PEG Graphics 

Device 

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture. 

(This client is not described in this chapter). 

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed 

using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DMI 

access to Graphics registers is not supported. 

Coherent Read/Write 

(internal) 

Internally-generated snooped reads/writes. 

Command Stream 

(internal) 

DMA Read of graphics commands and related graphics data. 

Vertex Stream 

(internal) 

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed 

Function. 

Instruction/State 

Cache (internal) 

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions 

executed by the EUs. 

Render Cache 

(internal) 

Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D, 

MPEG, etc.) Read of render surface state. 

Sampler Cache 

(internal) 

Read of texture (and other sampled surface) data stored in graphics memory. 

Display/Overlay 

Engines (internal) 

Read of display, overlay, cursor and VGA data. 

Media Engines Read and write of media content and media processing. 

uController Read/Write (DMA) functions for u-controller and scheduler. 
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Graphics Memory Addressing Overview  

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory 

addresses of various types, performs a number of optional operations along address paths, and 

eventually performs reads and writes of graphics memory data using the resultant addresses. The 

remainder of this subsection will provide an overview of the graphics memory clients and address 

operations. 

Graphics Address Path  

Graphics Address Path shows the internal graphics memory address path, connection points, and 

optional operations performed on addresses. Externally-supplied addresses are normalized to zero-

based Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled 

address (based on inclusion in a fenced region or via explicit surface parameters), address tiling is 

performed. At this point the address is considered a Logical Memory address, and is translated into a 

Physical Memory address via the GTT and associated TLBs. The physical memory location is then 

accessed. 

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped 

cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory 

aperture. 
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Graphics Memory Paths  

 

The remainder of this chapter describes the basic features of the graphics memory address pipeline, 

namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation 

considerations. 
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Graphics Memory Address Spaces  

The Graphics Memory Address Spaces table lists the five supported Graphics Memory Address Spaces. 

Note that the Graphics Memory Range Removal function is automatically performed to transform 

system addresses to internal, zero-based Graphics Addresses. 

Due to a workaround, first 4KB of DSM has to be reserved for GFX hardware use during render engine 

execution. 

Address Tiling Function Introduction 

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature, 

certain functions within the graphics device support the storage/access of the operands using 

alternative (tiled) memory formats to increase performance. This section describes these memory 

storage formats, why and when they should be used, and the behavioral mechanisms within the device 

to support them. 

Legacy Tiling Modes: 

 TileY: Used for most tiled surfaces when TR_MODE=TR_NONE. 

 TileX : Used primarily for display surfaces. 

 TileW: Used for Stencil surfaces. 
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Linear vs Tiled Storage  

Regardless of the memory storage format, “rectangular” memory operands have a specific width and 

height, and are considered as residing within an enclosing rectangular region whose width is considered 

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must 

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly 

with the surface). Rectangular Memory Operand Parameters shows these parameters. 

Rectangular Memory Operand Parameters 

 

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the 

operand is stored in sequentially increasing memory locations. If the surface width is less than the 

enclosing region’s pitch, there will be additional memory storage between rows to accommodate the 

region’s pitch. The pitch of the enclosing region determines the distance (in the memory address space) 

between vertically-adjacent operand elements (e.g., pixels, texels). 
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Linear Surface Layout 

 

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface 

where each scanline is read sequentially). Here the fact that one object element may reside in a different 

memory page than its vertically-adjacent neighbors is not significant; all that matters is that 

horizontally-adjacent elements are stored contiguously. However, when a device function needs to 

access a 2D subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a 

read of a 2x2 texel block for bilinear filtering), having vertically-adjacent elements fall within different 

memory pages is to be avoided, as the page crossings required to complete the access typically incur 

increased memory latencies (and therefore lower performance). 

One solution to this problem is to divide the enclosing region into an array of smaller rectangular 

regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same 

physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile 

and thereby increasing performance. 

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows 

high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the 

dimensions of tiles are irrespective of the data contained within – e.g., a tile can hold twice as many 16-

bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels). 
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Memory Tile Dimensions 

 

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled 

region are stored sequentially in memory in row-major order. 

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a 

pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles – 

the surface is not necessarily aligned or dimensioned to tile boundaries. 

Tiled Surface Layout 
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Tile Formats  

Multiple tile formats are supported by the Gen Core. The following sections define and describe these 

formats. 

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the 

RENDER_SURFACE_STATE. 

Tile-X Legacy Format 

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following 

figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords . The 

selection of tile direction only impacts the internal organization of tile data, and does not affect how 

surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a 

linear fashion. 

Tile-X format is selected for a surface by programming the Tiled_Mode field in 

RENDER_SURFACE_STATE to XMAJOR. 

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the 

organization of texels in memory. 

Tile X-Tile (X-Major) Layout 
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Tile-Y Legacy Format 

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as 

shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The 

selection of tile direction only impacts the internal organization of tile data, and does not affect how 

surfaces map onto tiles. 

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to 

YMAJOR. 

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout 

of pixels. 

Y-Major Tile Layout 
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Tiling Algorithm  

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics 

memory to an address in logical space. 

 Inputs: 

     LinearAddress (offset into regular or LT aperture in terms of bytes) 

     Pitch (in terms of tiles)  

     WalkY (1 for Y and 0 for X) 

     WalkW (1 for W and 0 for the rest) 

 Static Parameters: 

     TileH (Height of tile, 8 for X, 32 for Y, and 64 for W), 

     TileW (Width of Tile in bytes, 512 for X, 128 for Y, and 64 for W) 

   

 TileSize = TileH * TileW; 

 RowSize = Pitch * TileSize; 

 If ( Fenced ) { 

     LinearAddress = LinearAddress – FenceBaseAddress; 

     LinearAddrInTileW = LinearAddress div TileW; 

     Xoffset_inTile = LinearAddress mod TileW; 

     Y = LinearAddrInTileW div Pitch; 

     X = LinearAddrInTileW mod Pitch + Xoffset_inTile; 

 } 

  

 // Internal graphics clients that access tiled memory already have the X, Y coordinates and 

can start here. 

 YOff_Within_Tile = Y mod TileH; 

 XOff_Within_Tile = X mod TileW; 

 TileNumber_InY = Y div TileH; 

 TileNumber_InX = X div TileW; 

 TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX + 

         TileH * 16 * (XOff_Within_Tile div 16) + YOff_Within_Tile * 16 + (XOff_Within_Tile 

mod 16); 

 TiledOffsetW = RowSize * TileNumber_InY + TileSize * TileNumber_InX +  

         TileH * 8 * (XOff_Within_Tile div 8) +  

         64 * (YOff_Within_Tile div 8) +  

         32 * ((YOff_Within_Tile div 4) mod 2) +  

         16 * ((XOff_Within_Tile div 4) mod 2) +  

          8 * ((YOff_Within_Tile div 2) mod 2) +  

          4 * ((XOff_Within_Tile div 2) mod 2) + 

          2 * (YOff_Within_Tile mod 2) +  

              (XOff_Within_Tile mod 2); 

 TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileW * 

YOff_Within_Tile + XOff_Within_Tile; 

 TiledOffset = WalkW ? TiledOffsetW : (WalkY ? TiledOffsetY : TiledOffsetX); 

 TiledAddress = Tiled ? (BaseAddress + TiledOffset) : (BaseAddress + Y*LinearPitch + X); 

 TiledAddress = (Tiled && 

         (Address Swizzling for Tiled-Surfaces == 01)) ? 

         (WalkW || WalkY) ? 

         (TiledAddress div 128) * 128 + 

         (((TiledAddress div 64) mod 2) ^ 

         ((TiledAddress div 512) mod 2)) + 

         (TiledAddress mod 32) 

         : 

         (TiledAddress div 128) * 128 + 

         (((TiledAddress div 64) mod 2) ^ 

         ((TiledAddress div 512) mod 2) 

         ((TiledAddress Div 1024) mod2) + 

         (TiledAddress mod 32) 

         : 

         TiledAddress; 
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Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more 

effective address swizzling algorithm. 

For Address Swizzling for Tiled-Surfaces see ARB_MODE – Arbiter Mode Control register, ARB_CTL—

Display Arbitration Control 1, and TILECTL - Tile Control register. 

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the 

same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This 

spatial locality can be exploited to increase performance when reading 2x2 texel squares for bilinear 

texture filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline. 

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements 

are stored in sequential memory addresses. This spatial locality is advantageous when the surface is 

scanned in row-major order for operations like display refresh. For this reason, the Display and Overlay 

memory streams only support linear or X-Major tiled surfaces. (Y-Major tiling is not supported by these 

functions.) This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major 

tiled formats if they are to be displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be 

stored in Y-Major order. 
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Tiled Channel Select Decision  

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling 

modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13]. 

For Gen8 and subsequent generations, the swizzle fields are all reserved, and the CPU's memory 

controller performs all address swizzling modifications. 

Tiling Support  

The rearrangement of the surface elements in memory must be accounted for in device functions 

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled 

formats). This requires either the modification of an element’s linear memory address or an alternate 

formula to convert an element’s X,Y coordinates into a tiled memory address. 

However, before tiled-address generation can take place, some mechanism must be used to determine 

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the 

tile region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two 

mechanisms by which this detection takes place: (a) an implicit method by detecting that the pre-tiled 

(linear) address falls within a “fenced” tiled region, or (b) by an explicit specification of tiling parameters 

for surface operands (i.e., parameters included in surface-defining instructions). 

The following table identifies the tiling-detection mechanisms that are supported by the various 

memory streams. 

Access Path Tiling-Detection Mechanisms Supported 

Processor access through the Graphics Memory Aperture Fenced Regions 

3D Render (Color/Depth Buffer access) Explicit Surface Parameters 

Sampled Surfaces Explicit Surface Parameters 

Blt operands Explicit Surface Parameters 

Display and Overlay Surfaces Explicit Surface Parameters 
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Tiled (Fenced) Regions  

The only mechanism to support the access of surfaces in tiled format by the host or external graphics 

client is to place them within “fenced” tiled regions within Graphics Memory. A fenced region is a block 

of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface 

Registers for details). Surfaces contained within a fenced region are considered tiled from an external 

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space 

since external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces 

accessed by an internal graphics client) fall within a region covered by an enabled fence register, that 

enable will be effectively masked during the internal graphics client access. Only the explicit surface 

parameters described in the next section can be used to tile surfaces being accessed by the internal 

graphics clients. 

Restriction: Each FENCE register (if its Fence Valid bit is set) defines a Graphics Memory region ranging from 4KB 

to the aperture size. The region is considered rectangular, with a pitch in tile widths from 1 tile width (128B or 

512B) to 512 tile X widths (512 * 512B = 256KB) and 2048 tile Y widths (2048 * 128B = 256KB). Note that fenced 

regions must not overlap, or operation is UNDEFINED. 

Context: Tiled (Fenced) Regions 

 

Restriction: Also included in the FENCE register is a Tile Walk field that specifies which tile format applies to the 

fenced region. 

Context: Tiled (Fenced) Regions 
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Tiled Surface Parameters  

Internal device functions require explicit specification of surface tiling parameters via information 

passed in commands and state. This capability is provided to limit the reliance on the fixed number of 

fence regions. 

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces 

(Color Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE. 

Surface 

Parameter Description 

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear 

format. 

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-

Major or X-Major tile format. 

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface. 

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile 

width. 
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Tiled Surface Restrictions  

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition, 

restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The 

most restricted surfaces are those that will be accessed both by the host (via fence) and by internal 

device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then 

sampled by the device. 

The tiling algorithm for internal device functions is different from that of fence regions. Internal device 

functions always specify tiling in terms of a surface. The surface must have a base address, and this base 

address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y 

addressing within the surface) are transformed through tiling. The base address of the surface must 

therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB 

device pages once the tiling algorithm has been applied to the offset. The width of a surface must be 

less than or equal to the surface pitch. There are additional considerations for surfaces that are also 

accessed by the host (via a fence region). 

Fence regions have no base address per se. Host linear addresses that fall in a fence region are 

translated in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region 

has a base address in graphics memory equal to the fence base address, and all accesses of the surfaces 

are (possibly quite large) offsets from the fence base address. Fence regions have a virtual “left edge” 

aligned with the fence base address, and a “right edge” that results from adding the fence pitch to the 

“left edge”. Surfaces in the fence region must not straddle these boundaries. 

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host 

have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the 

surface base address (as set in SURFACE_STATE) must be a “Tile Row Start Address” (TRSA). The first 

address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base 

address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base 

address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.) 
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Tiled Surface Placement 

 

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to 

access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different 

GTT mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess 

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in 

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually 

by SW between the time the host writes the surface and the device reads it, or it can be accomplished 

by arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory 

Mapping below). 
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The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch 

and the fence pitch in any scenario where a surface will be accessed by both the host and an internal 

graphics client. Changing the GTT mapping will not help if this restriction is violated. 

Surface Access Base Address Pitch Width Tile “Walk” 

Host only No restriction Integral multiple of tile size 

<= 256KB 

Must be <= Fence 

Pitch 

No restriction 

Client only 4KB-aligned Integral multiple of tile size 

<= 256KB 

Must be <= 

Surface Pitch 

Restrictions imposed by 

the client (see Per Stream 

Tile Format Support) 

Host and Client, 

No GTT 

Remapping 

Must be TRSA Fence Pitch = Surface Pitch 

= integral multiple of tile 

size <= 256KB 

Width <= Pitch Surface Walk must meet 

client restriction,  Fence 

Walk = Surface Walk 

Host and Client, 

GTT Remapping 

4KB-aligned for 

client (will be tile-

aligned for host) 

Both must be Integral 

multiple of tile size 

<=128KB, but not 

necessarily the same 

Width <= 

Min(Surface Pitch, 

Fence Pitch) 

Surface Walk must meet 

client restriction, Fence 

Walk = Surface Walk 
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Per-Stream Tile Format Support  

MI Client Tile Formats Supported 

CPU Read/Write All 

Display/Overlay 
Y-Major not supported. 

X-Major required for Async Flips 

Blt 
Linear and X-Major only 

No Y-Major support 

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the 

slowest. 

3D Color,Depth Rendering Mode 

 Color-vs-Depth bpp Buffer Tiling Supported 

Classical 

Same Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 

Classical 

Mixed Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 
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Main Memory  

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for 

graphics functions. Some of this main memory can be “stolen” from the top of system memory during 

initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to 

satisfy application demands. To this end the graphics driver will frequently need to allocate locked-

down (i.e., non-swappable) physical system memory pages – typically from a cacheable non-paged 

pool. The locked pages required to back large surfaces are typically non-contiguous. Therefore a means 

to support “logically-contiguous” surfaces backed by discontiguous physical pages is required. The 

Graphics Translation Table (GTT) that was described in previous sections provides the means. 

Optimizing Main Memory Allocation  

This section includes information for software developers on how to allocate SDRAM Main Memory 

(SM) for optimal performance in certain configurations. The general idea is that these memories are 

divided into some number of page types, and careful arrangement of page types both within and 

between surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and 

therefore yield somewhat higher performance. 

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is 

somewhat complicated by (1) permutations of memory device technologies (which determine page 

sizes and therefore the number of pages per device row), (2) memory device row population options, 

and (3) limitations on the allocation of physical memory (as imposed by the OS). 

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching 

between open pages is optimal (again, the pages do not need to be sequential), (b) switching between 

memory device rows does not in itself incur a penalty, and (c) switching between pages within a 

particular bank of a row incurs a page miss and should therefore be avoided. 
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Application of the Theory (Page Coloring)  

This section provides some scenarios of how Main Memory page allocation can be optimized. 

3D Color and Depth Buffers  

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in 

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or 

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within 

a Color or Depth Buffer should be mapped to different page types (where a page’s “type” or “color” 

refers to the row and bank it’s in). 

Media/Video  

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The 

U and V surfaces would split the same 4 page types as used in the Y surface. 

  

Physical Graphics Address Types  

The Physical Memory Address Types table lists the various physical address types supported by the 

integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory 

mappings or are directly specified by graphics device functions. These physical addresses are not subject 

to tiling or GTT re-mappings. 

Physical Memory Address Types 

Address 

Type Description Range 

MM_Address Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1] 

SM_Address System Memory Address. Accesses are snooped in processor cache, allowing 

shared graphics/ processor access to (locked) cacheable memory data. 

[0,512GB] 
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Graphics Translation Tables 

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT) 

and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an 

array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to 

physical memory addresses, and sometimes snooped system memory “PCI” addresses. 

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and 

PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The 

GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes 

respectively) and is physically contiguous. The global GTT should only be programmed via the range 

defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT) 

size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 

64KB in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of 

the PTE entries. 
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Virtual Memory  

This section describes the different paging models, their behaviors, and the page table formats. 

GFX Page Tables  

  GPU supports three page table mechanisms 

  PPGTT – per process GTT (private GFX) 

  GGTT- global GTT 

All page tables have the same PTE format, the difference was how to reach the final physical page and 

which fields with PTE are used. 

Page Table Modes  

The GFX Aperture and Display accesses are always mapped thru Global GTT. This is done to keep the 

walk simple (i.e. 1-level), however GT accesses to memory can be mapped via Global GTT and/or ppGTT 

with various addressing modes. 

The walk modes are listed as following: 

1. Global GTT with 32b virtual addressing: Global GTT usage is similar to pre-CHV, BSW behavior 

with extended capability to increase the VA to 4GB (from 2GB) and use a similar 64b PTE as 

ppGTT. The breakdown of the PTE for global GTT is given in later sections but fundamentally 

allows 1-level pagewalk where the 20b index is used to select the 64b PTE from stolen memory. 

2. Legacy 32b VA with ppGTT: This is a mode where ppGTT page tables are managed via GFX s/w 

(driver) and context is tagged as Legacy 32b VA. Given each page walk is managed via 9b of the 

virtual address, 20b index is broken into 3 parts. However to optimize the walks and make it look 

like pre-CHV, BSW, s/w provides 4 pointers to page tables (called 4 PDP entries) – GPA. GFX h/w 

uses the four pointers and fetches the 4x4KB into h/w (for render and media) before the context 

execution starts. The optimization limits the dynamic (on demand) page walks to 1-level only. 
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Per Process GTT  

Per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks on 

hardware. The listed mechanisms here are selectable per-context and descriptors are delivered to 

hardware as part of context descriptor. 

PPGTT for 32b Virtual Address  

This page walk mechanism will be used for traditional 3D, Media type context. There is going to be a 

descriptor in the context header which will define the per process GTT walk that is required. For the 

standard context with 32bit virtual addressing, there is a possibility to take short cuts to reduce the 

overhead of the walk. 
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With 32-bit addressing the only entries that are needed for page directory pointers are 4x64bit 

locations (PDPE). For any standard context scheduling, it is required for s/w to provide 4 PDPEs as part 

of the context which would prevent h/w to do additional walks. 

Hardware will do the remaining walks for PD and PTE similar to legacy behavior. In order to reduce the 

overhead of walks, hardware implements large caches for PDs. 

Hardware does the remaining walks for PD and PTE similar to legacy behavior. To reduce the overhead 

of walks, hardware implements large caches for PDs: 

 4x4KB for 3D context 

 2x4x4KB for Media Context 

 4KB for VEBOX 

 4KB for Blitter 

For Media and 3D context, the 16KB caches are preloaded for the entire page directory set up which 

limits the walk to 1-level before the final access. For remaining clients the PD cache is loaded on 

demand and can contain up to 512 entries. 

Walk with 64KB Page  

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB 

page. In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is 

calculated using address[21:16]& “0000”. Note that hardware should not make any assumptions for any 

other PTEs. 
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Walk with 2MB Page  

There is an option in the page walk to work with bigger page sizes, one of those sizes is 2MB pages. If 

allocated the page directory entry will indicate the page size and walk can be shortened as follows: 

 

In this case there is no need to walk the page table after directory. And page directory has a pointer to 

2MB range is physical memory. 

Programming Note 

Context: Walk with 2MB Page. 

PPGTT32 is not going to support 2MB pages. 
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Walk with 1GB Page  

The same page walk is possible with 1GB page support as well. 

 

Programming Note 

Context: Walk with 1BG Page. 

PPGTT32 is not going to support 1GB pages 
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PPGTT for Standard Context (64b VA)  

For advanced virtual addressing with legacy context, the full page walk mechanism needs to be 

exercised based on 48-bit canonical addressing. 

 

64-bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer 

to highest level page table (PML4 pointer or CR3). The rest of the walk is normal page walk thru various 

levels. 

To repurpose the caches the following mechanism will be used: 

 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache. 
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Programming Note 

Context: PPGTT for Standard Context (64b VA) 

Design can section the 512 entries within 4KB to separate areas for PML4, PDP, and PD. 

Walk with 64KB Page  

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB 

page. In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is 

calculated using address[21:16]& “0000”. Note that hardware should not make any assumptions for any 

other PTEs. 

Walk with 2MB Page  

Similar to the 32b VA walk, there is a support for larger pages where one of the sizes supported is 2MB. 
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Walk with 1GB Page  

For the support for 1GB page size, the following mechanism is needed. 

 

Programming Note 

Context: Walk with 1 GB Page 

PPGTT32 is not going to support 1GB pages. 
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Global GTT  

The Global GTT mechanism in CHV, BSW looks very similar to pre-CHV, BSW with the distinction of 

page table entry. Aperture and display will still use the global GTT even if GT core is mapped via per-

process GTT. 

The PTE format for CHV, BSW is updated to match per process GTT definitions and GSM is now 

expanded in size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry 

corresponding to a 4KB page with 2^20 entries in GSM (each with 8B content) 

For “MI_update_GTT”, the page address provided 31:12 need to be shifted down to 22:3 for the correct 

QW position within the GGTT. 

Page Table Entry  

The following page table entry will be used for Global GTT: 

 

 Present (Valid): The pointed PTE is valid 

 Ignored - R/W (Read/Write): Are writes allowed to the region defined by this 4KB page. For GFX, 

in order 4KB memory to be usable it has to be both present and should also be write-able. 

 Ignored - U/S (User/Supervisor access rights) : iGFX does not use these fields 

 PWT/PCD/PAT bits are used as indexes into a PAT register which defines the cache attributes for 

the entire context. 
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PAT field is used to do the look up in private PAT for memory typing. 

 Ignored - A (Accessed): It needs to be managed as the page table being accessed. Hardware 

needs to write this bit for the first access to the 4KB region defined with this PT entry. 

 Ignored - D (Dirty): Hardware needs to set the dirty bit in page table if accessing this particular 

4KB region in memory with the intention to modify it. 

 Ignored - Global: this is not used by iGFX hardware, the field is used to identify global context 

where invalidation may not be required. 

 Physical address of 4KB page 

For the treatment of the page bit0 AND bit1 defines the validity of the page, the rest of the information 

is not relevant for Aperture and Display usage. 

GGTT table entries are always read as uncacheable. 

Page Walk  

The global GTT page walk is identical to what it was before CHV, BSW. The only difference would be 

that each entry is 8B (instead of 4B) hence the entry selection needs to be updated once the 

corresponding Page Table miss read is returned. 
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GTT Cache  

Processor graphics page walker implements a GTT cache which holds the remaining entries that are 

read as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf 

walks and not including the 2MB/1GB page sizes. When s/w enables the use of 2MB/1GB page sizes, it 

will have to disable the GTT cache in CHV, BSW. 

GFX Page Walker (GAM)  

GPU supports various engines behind the same page walker. These streams/contexts are identified 

Client level IDs which are carried via the arbitration pipeline. Page walker using look-up tables does the 

correct selection for the page tables in case of concurrent context are running at the same time. 

There are two different types of page table types: 

Global graphics translation table (GGTT) is a single common translation table used for all processes. 

There can be many Per-process graphics translation table (PPGTT). This requires an additional lookup 

for translation. The actual location is not accessible directly via software since they're both located in 

graphics stolen memory (see graphics memory interface chapter for more detail). 

Virtual Memory Structure Memory Location 

Global (GGTT) GSM Only 

Per-Process (PPGTT) – private 2 to4-level, Page Tables anywhere 

Per-Process (IA32e) – shared 4 levels, Page Tables anywhere 

  

  IA32e compatible PPGTT is added to CHV, BSW to enable SVM (shared virtual memory) functions. 

Context Definition for GFX Page Walker  

Page Walker blocks need details about the context to decide on what type of page tables will be used, 

what would be the error handling cases would be and many other details to operate. The information 

will be passed to Page Walker (GAM) by the respective command streamer/DMA. 

GAM supports the following engines: 

 Render 

 Media (VDBox) x2 

 Blit 

 VEBOX x2 
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The following fields will be sent to GAM: 

 Context type (4 bits) 

o Legacy vs Advanced Context: Defines the context type and qualifies the rest of the 

fields. Same field may mean something else between the Legacy vs Advanced context. 

There is no restriction for what type of context can run in either combination. 

 Requests without address-space-identifier (Legacy Context): These are the normal 

memory requests from endpoint devices. These requests typically specify the type 

of access (read/write/atomics), targeted DMA address/size, and identity of the 

device originating the request. 

 Requests with address-space-identifier (Advanced Context): These are memory 

requests with additional information identifying the targeted process address 

space from endpoint devices supporting virtual memory capabilities. Beyond 

attributes in normal requests, these requests specify the targeted process address 

space identifier (PASID), and extended attributes such as Execute-Requested (ER) 

flag (to indicate reads that are instruction fetches), and Privileged-mode-

Requested (PR) flag (to distinguish user versus supervisor access). For details, 

refer to the Process Address Space ID (PASID) Capability in the PCI-Express 

specifications. 

Note CHV, BSW LP only supports Legacy PPGTT with 32b virtual addressing. 

o A/D Support Enable: Access and Dirty bits are used when OS managing the page tables 

and has been added to IA32e compatible page walk. Context will define whether A/D 

bits need to be managed via GPU. (only applicable in Advanced Context) 

o Privileged Context Support: Enables GPU to be able to run a privileged context which 

will translate into page table accesses regardless of user vs supervisor privileges. (only 

applicable in Advanced Context). 

o 32b vs 48b VA Support: Enables 48b VA in page tables for the page walks. The rest of 

the h/w is seamless to 32b vs 48b VA address walks, however GAM will do the check and 

properly align the page walk to address bits. 

 Note: Only applicable in Legacy Context, Advanced context is always 48b. 

 Note: CHV, BSW LP only supports 32b VA  

 Function Number: 3 bit field that defines the function number of the device. GFX device is 

always on BUS=0 and DEVICE=2. If we are not virtualized, our FUNCTION#=0 however if 

virtualized function number can be any 8 possible values (i.e. 0-7). The BUS/DEVICE/FUNCTION 

numbers are used to the initial walk for ROOT and CONTEXT tables. 
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 PASID – Process Address Space IDentifier: Use to identify the context that is submitted to h/w. 

We use the PASID in many places where during the page walk (i.e. PASID table look up) or while 

communicating with s/w on page faults. Each engine could be running an independent context 

with different PASID. The page walker should have a mechanism to be able to cache at least 

some number of PASID table entries (matching to the engine count) for faster walk. 

 Context ID (Queue ID, Bell ID) – Context ID is used to further qualify the running context 

beyond the PASID. PASID is given per process, and same process may allocate multiple queues 

to communicate with h/w. The only way to further identify the process is to use an additional ID. 

For GFX h/w Context ID could be same as the bell number assigned to it. GAM h/w will use the 

context ID to populate the queue ID field while communicating page faults to s/w. 

 Page Table Pointers – The field could be up to 256 bits (i.e. 4x64bits) to identify the page table 

pointers associated with the context. For legacy 32b context, the entire 256b is valid 

representing the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant 

pointing to base of PML4. In case of advanced context, PASID is given in the context definition.  

Context Definition Delivery  

Context Definition is supposed to be delivered from the corresponding command streamer to GAM and 

GAM has independent storage for each engine present. Context Definition will be given by *CS to GAM 

via a new message: 

Message: “Context Available” 

GAM prepares for new context, cleans up internal state and does the proper fencing. Most of these 

steps should have been performed when context switch request was done for the previous context, but 

added here for completeness. 

Message: “Context Receive Ready” 

GAM is ready for the context. *CS writes all new context values into the descriptor registers. To push all 

context descriptors CS sends the following message to GAM also indicating new context descriptor is 

downloaded. 

Message: “Context Launched” 

GAM does the context requirements and sends the following message to CS to resume its command 

parser. 

Message: Context Confirmed 

GAM should send context confirmed message only after PD restore is done. CS waiting for context 

confirmed message will be treated as PD restore busy. Since all clients memory interface are blocked 

during PD restore it doesn’t make any difference if the context confirmed message is send by GAM 

immediately or after PD restore. 
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Element Descriptor Register  

  

General 

Description 

Element Information: The register is populated by command streamer and consumed by 

GAM 

Register Offset See per engine list below 

  

Bits Access Default Field 

63:32 RO Xh 
Context ID: 

Context identification number assigned to separate this context from others. Context IDs 

needs to be recycled in such a way that there could not be two active context with the 

same ID. 

This is a unique identification number by which a context is identified and referenced 

31:12 RO Xh 
LRCA:  

Command Streamer Only 

11:9 RO Xh 
Function Number: 

GFX device is considered to be on Bus0 with device number of 2. Function number is 

normally assigned as “0” however for gfx virtualization; there would be different function 

numbers which needs to be attached to context. 

Not used in CHV, BSW. 

8 RO Xh 
Privileged Context / GGTT vs PPGTT mode: Differs in legacy vs advanced context 

modes: 

In Legacy Context: Defines the page tables to be used. This is how page walker come to 

know PPGTT vs GGTT selection for the entire context. 

“0”: Use Global GTT 

“1”: Use Per-Process GTT 

In Advanced Context: Defines the privilege level for the context 

“0”: user mode context 

“1”: supervisor mode context. 

7:6 RO Xh 
Fault Model:  

“00”: Fault & Hang (chicken bit to survive). Same mode as gen7.5 
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Bits Access Default Field 

“01”: Fault & Halt/Wait. Same mode as gen7.5 

“10”: Fault & Stream & Switch 

“11”: Fault & Continue: does not generate a page request to IOMMU. 

5 RO Xh 
Deeper IA coherency Support: 

In Advanced Context: Defines the level of IA coherency 

“0”: IA coherency is provided at LLC level for all streams of GPU (i.e. gen7.5 like mode) 

“1”: IA coherency is provided at L3 level for EU data accesses of GPU 

4 RO Xh 
A&D Support / 32&64b Address Support: Differs in legacy vs advanced context modes: 

In Legacy Context: Defines 32b vs 64b (48b canonical) addressing format 

“0”: 32b addressing format 

“1”: 64b (48b canonical) addressing format 

In Advanced Context: Defines A&D bit support 

“0”: A&D bit management in page tables is NOT supported 

“1”: A&D bit management in page tables is supported. 

3 RO Xh 
Context Type: Legacy vs Advanced 

Defines the context type. 

“0”: Advanced Context: Defines the rest of the advanced capabilities (i.e. OS page table 

support, fault models…). Note that advanced context is not bounded to GPGPU. 

“1”: Legacy Context: Defines the context as legacy mode which is similar to prior 

generations of CHV, BSW. 

Note that: Bits [8:4] differs in functions when legacy vs advanced context modes are 

selected.  

2 RO Xh FR: Command streamer specific 

1 RO Xh 
Scheduling Mode: 

“1”: Indicates execlist mode of scheduling. 

”0”: Indicates Ring Buffer mode of scheduling. 

0 RO Xh Valid: Indicates that element descriptor is valid. If GAM is programmed with an invalid 

descriptor, it will continue but flag an error. 
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PDP0/PML4/PASID Descriptor Register  

  

General 

Description 

PDP0/PML4/PASID: The register is populated by command streamer and consumed by GAM. It 

contains one of the 3 values which is determined by looking at the element descriptor. 

Register Offset See per engine list below 

  

Bits Access Default Field 

63:0 RO Xh 
PDP0/PML4/PASID: 

This register can contain three values which depend on the element descriptor definition. 

PASID[19:0]: Populated in the first 20bits of the register and selected when Advanced 

Context flag is set. 

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is 

set and 64b address support is selected 

PDP0[38:12]: Pointer to one of the four page directory pointer (lowest) and defines the 

first 0-1GB of memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 

PDP1 Descriptor Register  

  

General 

Description 

PDP1: The register is populated by command streamer and consumed by GAM. It contains 

one of the pointers to PD. 

Register Offset See per engine list below 

  

Bits Access Default Field 

63:12 RO Xh 
PDP1: 

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1-2GB of 

memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 
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PDP2 Descriptor Register  

  

General 

Description 

PDP2: The register is populated by command streamer and consumed by GAM. It contains 

one of the pointers to PD. 

Register Offset See per engine list below 

  

Bits Access Default Field 

63:12 RO Xh 
PDP2: 

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2-3GB of 

memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 

PDP3 Descriptor Register  

  

General 

Description 

PDP3: The register is populated by command streamer and consumed by GAM. It contains 

one of the pointers to PD. 

Register Offset See per engine list below 

  

Bits Access Default Field 

63:12 RO Xh 
PDP3: 

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3-4GB of 

memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 
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List of Registers and Command Streamers  

The following registers are message registers and not written directly by software. 

Engine Offset Description 

Render x4400h Element Descriptor Register 

x4408h PDP0/PML4/PASID Descriptor Register 

x4410h PDP1 Descriptor Register 

x4418h PDP2 Descriptor Register 

x4420h PDP3 Descriptor Register 

 

Media0 

(VDBOX0) 

x4440h Element Descriptor Register 

x4448h PDP0/PML4/PASID Descriptor Register 

x4450h PDP1 Descriptor Register 

x4458h PDP2 Descriptor Register 

x4460h PDP3 Descriptor Register 

 

Media1 

(VDBOX1) 

x4480h Element Descriptor Register 

x4488h PDP0/PML4/PASID Descriptor Register 

x4490h PDP1 Descriptor Register 

x4498h PDP2 Descriptor Register 

x44A0h PDP3 Descriptor Register 

 

VEBOX x44C0h Element Descriptor Register 

x44C8h PDP0/PML4/PASID Descriptor Register 

x44D0h PDP1 Descriptor Register 

x44D8h PDP2 Descriptor Register 

x44E0h PDP3 Descriptor Register 

 

Blitter x4500h Element Descriptor Register 

x4508h PDP0/PML4/PASID Descriptor Register 

x4510h PDP1 Descriptor Register 

x4518h PDP2 Descriptor Register 

x4520h PDP3 Descriptor Register 
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Messages 

Message 

Name Source Destination Category 

Address 

 (Hex) Bit 

Mask 

 Bit Value Description 

Context 

Available 

CS (GT) GAM (GT) self-clear 4004 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

CS(GT) self-clear 3438 0 16 1 Signal ack from GAM to CS in 

response to Context Available 

message from CS to GAM. 

Context 

Launched 

CS (GT) GAM (GT) self-clear 4004 1 17 1 Signal indicator to GAM that context 

descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

CS(GT) self-clear 3438 1 17 1 Signal ack from GAM to CS in 

response to Context Launched  

message from CS to GAM. 

 

Context 

Available 

BCS 

(GT) 

GAM (GT) self-clear 4014 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

BCS(GT) self-clear 23438 0 16 1 Signal ack from GAM to BCS in 

response to Context Available 

message from BCS to GAM. 

Context 

Launched 

BCS 

(GT) 

GAM (GT) self-clear 4014 1 17 1 Signal indicator to GAM that context 

descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

BCS(GT) self-clear 23438 1 17 1 Signal ack from GAM to BCS in 

response to Context Launched  

message from BCS to GAM. 

 

Context 

Available 

VECS 

(GT) 

GAM (GT) self-clear 4010 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

VECS(GT) self-clear 1B438 0 16 1 Signal ack from GAM to VECS in 

response to Context Available 

message from VECS to GAM. 

Context 

Launched 

VECS 

(GT) 

GAM (GT) self-clear 4010 1 17 1 Signal indicator to GAM that context 

descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

VECS(GT) self-clear 1B438 1 17 1 Signal ack from GAM to VECS in 

response to Context Launched  

message from VECS to GAM. 

 

Context 

Available 

VCS0 

(GT) 

GAM (GT) self-clear 4008 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 
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Message 

Name Source Destination Category 

Address 

 (Hex) Bit 

Mask 

 Bit Value Description 

Context 

Receive 

Ready 

GAM 

(GT) 

VCS0(GT) self-clear 13438 0 16 1 Signal ack from GAM to VCS in 

response to Context Available 

message from VCS to GAM. 

Context 

Launched 

VCS0 

(GT) 

GAM (GT) self-clear 4008 1 17 1 Signal indicator to GAM that context 

descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

VCS0(GT) self-clear 13438 1 17 1 Signal ack from GAM to VCS in 

response to Context Launched 

message from VCS to GAM. 

 

Context 

Available 

VCS1 

(GT) 

GAM (GT) self-clear 400C 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

VCS1(GT) self-clear 1D438 0 16 1 Signal ack from GAM to VCS in 

response to Context Available 

message from VCS to GAM. 

Context 

Launched 

VCS1 

(GT) 

GAM (GT) self-clear 400C 1 17 1 Signal indicator to GAM that context 

descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

VCS1(GT) self-clear 1D438 1 17 1 Signal ack from GAM to VCS in 

response to Context Launched 

message from VCS to GAM. 

 

Updating Page Table Pointers (aka PD Load)  

In case of legacy context, driver is allowed to add/remove pages as long as it is ensured that h/w is not 

using these entries. Pre-CHV, BSW flow allowed a mid-context PD load to update the PD entries and 

directed h/w to reload updated entries. CHV, BSW legacy context will require a similar mechanism. 

Instead of a PD load, the new mechanism will let the driver update the page table pointers via sending a 

reload command. Mechanism will be overlapped to same sort messaging between CS and GAM to 

deliver the context header. CS will send the following message to GAM: 

Message: Context Reload  

GAM will respond immediately to CS with the following message 

Message: Context Confirmed  

Meanwhile GAM will block the related interfaces and updates the PDs or PML4. 



 

  

Memory Views  

 

  

  

44 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 

Page Walker (GAM) Reset  

GAM gets all the engine specific resets as well as device and bus resets to manage its internal logic 

domains. It is the expectation of SW when a particular GPU engine (i.e. Render, Media, ...) gets reset, all 

its related HW is cleared and comes out fresh for reprogramming. That is true for most of the logic with 

the exception of some shared HW blocks. The following blocks require additional steps (post-reset) 

from SW to further clean-up the HW: 

 Hardware TLBs: The caching structures for the page walks are often considered shared 

resources. The expectation is for GFX driver to clear the TLBs via “TLB Invalidate” prior to reusing 

the engine post reset. This is the same process that was followed on previous GPU generations. 

 Page Requests: At the time of the reset HW may have outstanding page requests to SW for page 

faulted accesses. These requests could be at any level hence it is required for SW to clear these 

paging requests pre/post-engine reset. Engine reset ensures no new page requests would be sent 

from HW. Page requests could be at the “page request queue” in memory where they could be 

mapped to a dummy page post engine reset completion. Or they could be at the MMIO registers 

which will block the completion of the reset; it is up to SW to service paging request interrupts 

without waiting for the completion of reset request. 

Device reset (FLR) covers most of the page walker, however there are exceptions where IOMMU 

structures  and all messaging towards rest of the system (system agent) should not be impacted by it. 

All external interactions and IOMMU related blocks are kept under bus (system) reset. GAM will keep 

the following blocks outside the device reset: 

 IOMMU registers and content. 

 All system agent messaging structures (including translation enable flows, root pointer structures, 

DMA fault reporting pieces.). 

An engine being reset also means the particular context that engine is running, is complete or taken 

out. That will require GAM to decrement the PASID_State Counter if the engine was running a PASID 

based (advanced) context. For FLR (device reset), a similar requirement holds. In case of device reset, 

GAM would need to decrement all the PASID state counters that are active on the GPU before 

completing the sequence. 

Legacy Context  

Legacy context could use either Global GTT or Per Process GTT which is given to page walker as part of 

the context descriptor. Even under PPGTT, there could be accesses from Command Streamers that 

would require to use Global GTT which requires to treat the walk requirement per transaction. 

For Legacy context indicator command streamer is going to pass the “context type” information along 

with other parameters that defines how certain behavior for paging needs to be. 
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Full Walk  

 

In the full walk case (i.e. advanced context), the root of the 1st and 2nd level page tables share a common 

source. Both the root table and context table is walked with the assumption of GFX device is always on 

Bus#0 and it is always Device#2. 

Function number however is part of the context and it can be non-Zero only for virtualized modes. 

GAM will receive the function number (for Context table look-up) as part of the context. Both Root 

entry and Context Entry should be fetched along with PASID Table entry prior to running the context 

accesses. 
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TLB Caching and Management  

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At 

every stage of the page different bits need to be taken into account and proper treatment is required. 

Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear address are 

translated using a hierarchy of in-memory paging structures located using the contents of CR3. IA-32e 

paging translates 48-bit linear addresses to 52-bit physical addresses. Although 52 bits corresponds to 

4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be 

accessed at any given time. IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, 

or 1-GByte pages. 
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The following rules apply: 

1. M is an abbreviation for MAXPHYSICAL ADDRESS. 

2. Reserved fields must be “0”. 

3. Ignored field must be ignored. (There could be private information.) 

All ignore options are part of the context entry and come from the IOMMU definition. 

TLB Caches  

For CHV, BSW the caching structures are separated as following with the architectural view, this is also 

applicable to s/w view of these caches when it comes to invalidations. 

Context Cache - CC  

This is the storage for context table entry which is achieved as part of root/context table walk. 

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the 

content of the context cache along with all low level caches. 

PASID Cache - PC  

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for 

every HW engine that could be running an independent context (per GAM): 

 Render/GPGPU 

 MFX (VDBOX) – 1 

 MFX (VDBOX) – 2 

 Video Enhancement (VEBOX) – 1 

 Video Enhancement (VEBOX) – 2 

 Blitter 

The cache content is updated if the corresponding engine is running an advanced context where its 

page table pointers are accessible via PASID table. In case of legacy context running engine, 

corresponding PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per 

engine which is filled/invalidated during the context switch time. 

PASID Cache can also be invalidated with the directed invalidations along with low level caches and 

needs to be re-filled prior to context resuming. 
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Intermediate Page Walk Caches (PML4, PDP, PD) – PWC  

These are the stages where intermediate page walk entries are cached to speed-up/shorten the page 

walk when final TLB is missed. Each level can be cached separately or along with different levels, the 

cacheability structures will have programmability to move the boundary of different levels to 

accommodate more/less on each page walk level. However as a concept, for legacy 32b addressing 

mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and 

media. The others will use cache concept. 

TLB – Final Page Entry  

The size of the TLBs has been increased over the previous generation and should be targeting the 

below table: 

 L3 TLB: 768 TLB entries – This is where all HDC, I$, Constant, State, and Sampler streams are 

stored. 

 MFX: 512 TLB entries – All Media streams (split 256/256 between two media engines). 

 BLT: 32 entries. 

 Z: 512 TLB entries – All depth accesses. 

 C: 256 (256 TLB entries) – All color accesses. 

 FF: 128 (128 TLB entries) – All FF accesses to memory. 

 VLF: 32 (32 TLB entries) – Media surface. 

 GAV: 192 (192 TLB entries) – Video enhancement. Increased compared to other Gen8 projects. 

 WiDi: 64 (64 TLB entries) – Wireless Display. 

All TLB entries are increased to 48b to contain larger address as well as the page attributes attached to 

it. 

The max size of a single TLB is 256 entries, larger quantities have to be handled as set-associative 

storages. Set associativity is managed by low order page bits (i.e. address#12, address#13, ...). 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 49 

TLB Entry Content  

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as 

well along with the physical address bits. The treatment on these bits would be considered when a HIT 

vs MISS decision needs to be made during a look up. 

The purpose of caching is to accelerate the paging process by caching individual translations in 

translation look-aside buffers (TLBs). Each entry in a TLB is an individual translation. Each translation 

is referenced by a page number. It contains the following information from the paging-structure entries 

used to translate linear addresses with the page number: 

 The physical address corresponding to the page number (the page frame). 

 The access rights from the paging-structure entries used to translate linear addresses with 

the page number: 

o The logical-AND of the R/W flags. 

o The logical-AND of the U/S flags. 

o The logical-OR of the XD flags. 

 Attributes from a paging-structure entry that identifies the final page frame for the page 

number (either a PTE or a paging-structure entry in which the PS flag is 1): 

o The dirty flag. 

o The memory type. 

PRESENT: This is the same VALID bit description we had in previous page table designs. The lack of 

present bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For 

some fault models, even NOT PRESENT entries are cached to filter further page faults (see fault models 

on caching page faulting entries). If such entry is cached, there are couple ways that it can be removed 

from the page tables: 

1. LRA selection where the entry becomes a victim for replacement 

2. Global or Selective invalidation 

3. Page fault response stating the faulting page is now fixed.  

R/W Privilege: Certain pages can be allocated as read-only and write operations are not allowed. To 

make this check work, TLB has to keep the R/W bit. This bit has no affect on read operations; however 

for write operation privilege needs to be checked. If there is mis-match, the result of the TLB look-up 

should be a MISS. This does not mean a page fault immediately; the walk has to be re-done as for any 

TLB MISS result. There are cases OS may change page table privileges without invalidating pages in TLB 

(note: all downgrades result in invalidation of the TLB, however upgrades can be done silently hence re-

walk is required). In case where the TLB Miss is due to privilege mis-match, the existing entry from TLB 

has to be invalidated and page walk will bring in the most up-to-date copy from memory. 

The R/W privilege on final frame is generated as a logical-AND process of all upper page walks pointing 

to this location. 
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User vs Supervisor Privilege: The GPU typically operates in user mode when it comes to page tables. 

So the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and 

the context is marked as user mode. The faulted entry can be cached back into TLB with “P” bit off 

indicating a faulted entry. However the page fault report should carry the correct reason why h/w 

detected the fault in the first place which was the user vs supervisor privilege. There is an option in 

context header to define the context as supervisor, than it legal to access supervisor pages. 

 This is not stored in TLB 

The U/S privilege on final frame is generated as a logical-AND process of all upper page walks pointing 

to this location. 

Accessed Bit: This where a stage of the page walk cannot be used if the accessed bit is not set for that 

level in the page walk. This is true for both storage into TLB as well as to make progress on the page 

walk. In order to achieve the process of Accessed bit, every stage of the ppGTT read is done via a new 

semantics between the GAM and GTI such that GTI can atomically process A-bit w/o running into 

access violations. The details of the semantics are defined as part of the following sections. The “A” bit 

does not need to be stored as part of the TLB, just the fact that a valid page table entry is present in the 

TLB does mean that h/w took care off the “A” bit at the time the page was brought up to TLB. Note that 

TLB prefetching is disabled when A-bit management is enabled. 

IA32e mode page tables cannot co-exist with TLB pre-fetching due to lack of A-bit management for all 

entries of the line. 

 This is not stored in TLB 

Dirty Bit: Similar to accessed bit, dirty bit needs to be managed. It is only applicable for “write” 

accesses. Given there are cases where a TLB entry was acquired as part of a read operation, the 

presence of D-bit should be maintained with the TLB. This gives us the capability to declare a TLB miss 

for a write access when the D-bit is not set even though TLB has a valid translation. In such case, The 

TLB entry needs to invalidated and the final stage of the walk needs to be re-done to ensure most up-

to-date copy of GTT entry is brought into h/w. The operation of Dirty bit update is also atomic similar to 

A-bit management. 

Execute (XD) Bit: XD bit is also present on every stage of the walk and applicable to executable code 

that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the 

corresponding page does not have the execute credentials set properly. Similar treatment of the TLB 

entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for 

instruction space will have to check the XD bit which is also stored in TLB. If mis-match, the end result is 

a TLB miss and walk has to be re-done replacing the different stages of the walk. 

The XD privilege on final frame is generated as a logical-OR process of all upper page walks pointing to 

this location. 

Faulted Bit: There are usage models where the faulted entries are cached in TLB. This is to filter further 

faults to the same page as opportunistic way to prevent fault storms. When faulted bit is set the address 

is included in the TLB look up but final treatment is fault filtering. The rest of the bits are used to define 

what would be the reason for the fault. If the look-up conflicts with the original faulted reason, a re-

walk is required. As a basic case, take a read access bringing up a PTE with W-flag cleared. A 
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subsequent write access has a conflict on privilege, and it will perform a re-walk. If the result of the re-

walk is W-flag set, than TLB is upgraded and write makes progress. However if the result is still W-flag 

cleared, the write access will fault and TLB entry will be tagged as a faulted entry with only read-

allowed. Subsequent write accesses will be filtered as fault but read accesses should cause a re-walk of 

the page and if successful, the TLB can be updated with PTE as valid with read-only attribute. 

TLB Accessed and Dirty Flags  

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag. 

For paging-structure entries that map a page (as opposed to referencing another paging structure), bit 

6 is the dirty flag. These flags are provided for use by memory-management software to manage the 

transfer of pages and paging structures into and out of physical memory. 

Whenever the processor and/or GPU uses a paging-structure entry as part of linear-address translation, 

it sets the accessed flag in that entry (if it is not already set). 

Whenever there is a write to a linear address, the processor and/or GPU sets the dirty flag (if it is not 

already set) in the paging-structure entry that identifies the final physical address for the linear address 

(either a PTE or a paging-structure entry in which the PS flag is 1). 

Memory-management software may clear these flags when a page or a paging structure is initially 

loaded into physical memory. These flags are “sticky,” meaning that, once set, the processor and/or GPU 

does not clear them; only software can clear them. 

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging-

structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty 

flag from 1 to 0, the GPU might not set the corresponding bit in memory on a subsequent access using 

an affected linear address 

Accessed bit is applicable to every stage of the page walk, however the dirty bit is only applicable to 

final stage of the walk. 

The rule states that a particular access cannot be committed until the Accessed and/or Dirty bits are not 

visible to page management s/w. In order for GPU to follow the rule, GTT accesses (when A/D bits are 

supported) are going to be done via a special cycle definition between GAM and GTI. 

Updating A/D Bits  

New atomic operations are added to GAM to GPU interface (GTI) to handle paging entries. GAM has to 

set the correct atomic opcodes based on the access type and context entry controls as well as level of 

access. 

Requires setting for opcodes are given in the table below. The steps of operations in the atomic ALUs 

are given later in the document. 
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The Following Atomics are only applicable in GTI and used for Page Walks 

R/W => Bit[0] 

Extended Access required => Bit[1] 

Write Protect Enable => Bit[2] 

Intermediate Entry => Bit[3]  

Atomic 

Operation Opcode Description 

New Destination 

Value Applicable 

Return Value 

(optional) 

Atomic_Page_update_0000 1100_0000 
Read Access 

Extended  Access bit 

is disabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5] if not 

set 

  new_dst 

Atomic_Page_update_0001 1100_0001 
Write Access 

Extended  Access bit 

is disabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0000 1100_0010 
Read Access 

Extended  Access bit 

is enabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0001 1100_0011 
Write Access 

Extended  Access bit 

is enabled 

Write Protection is 

disabled 

Final PTE 

 

Set bit[5,6,10] if 

not set 

  new_dst 
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Atomic_Page_update_0100 1100_0100 
Read Access 

Extended  Access bit 

is disabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_0101 
Write Access 

Extended  Access bit 

is disabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0100 1100_0110 
Read Access 

Extended  Access bit 

is enabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_0111 
Write Access 

Extended  Access bit 

is enabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,6,10] if 

not set 

  new_dst 

Atomic_Page_update_0000 1100_1000 
Read Access 

Extended  Access bit 

is disabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

 

 

Set bit[5] if not 

set 

  new_dst 
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Atomic_Page_update_0001 1100_1001 
Write Access 

Extended  Access bit 

is disabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0000 1100_1010 
Read Access 

Extended  Access bit 

is enabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0001 1100_1011 
Write Access 

Extended  Access bit 

is enabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,6,10] if 

not set 

  new_dst 

Atomic_Page_update_0100 1100_1100 
Read Access 

Extended  Access bit 

is disabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_1101 
Write Access 

Extended  Access bit 

is disabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,6] if not 

set 

  new_dst 
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Atomic_Page_update_0100 1100_1110 
Read Access 

Extended  Access bit 

is enabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_1111 
Write Access 

Extended  Access bit 

is enabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,6,10] if 

not set 

  new_dst 

  

Atomic updates are only possible for cacheable memory types. There could be cases where the PTE 

could be in WT/WC/UC space where atomic update is not possible via WB space. Those are the cases 

where IA cores use bus lock to update the A/D bits in PTE. 

GT core is not capable of supporting bus locks and has the following options. These options will be 

enabled/disabled via register space. 

Option#1: Ignore the PAT/MTRR setting of the PTE and update the space as WB with atomic ops. This 

is the place GAM will decide to go forward with atomic updates assuming WB space works 

Option#2: Once the memory type is determined and the end result of the page is WC/UC/WT space, 

we can not guarantee an atomic update. GAM will report an application error (catastrophic) to the 

scheduler and handle the case as error. 

  

Bit Access 

Default 

Value Description 

1 R/W 0b A/D Bit Update on non-WB Space: A/D bit updates are only possible via atomic 

operations which are required to be on WB space to work properly. On non-WB spaces, 

the A/D bit updates are done via bus locks which are not supported for GT. 

“1”: Ignore the page level cacheability and do atomic updates for A/D bit management 

“0”: Detect the page level cacheability as part of the atomic operation and throw a 

catastrophic error when non-WB space is seen for A/D bit updates. 
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PAT (IA32e)  

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the 

memory-type range registers (MTRRs) as specified. 

The PAT is a 64-bit data structure defined in context entry when advanced context is chosen and for 

legacy context and internal 64b register is defined to keep the page table based cacheability. It is 

compromising eight (8) 8-bit entries (entry i comprises bits 8i+7:8i of the register). 

For any access to a physical address, the table combines the memory type specified for that physical 

address by the MTRRs with a memory type selected from the PAT. Specifically, it comes from entry i of 

the PAT, where i is defined as follows: 

 For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table 

with IA-32e paging): 

i = 2*PCD+PWT, where the PCD and PWT values come from CR3. 

 For an access to a paging-structure entry X whose address is in another paging structure 

entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y. 

 For an access to the physical address that is the translation of a linear address, i = 

4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant PTE (if the 

translation uses a 4-KByte page), the relevant PDE (if the translation uses a 2-MByte page or 

a 4-MByte page), or the relevant PDPTE (if the translation uses a 1-GByte page). 

PAT in Context Table Entry  

PAT definition is embedded inside the context entry and already defined as part of the context entry 

definition (see related section). It allows 8 different settings which can be indexed using the following 

encodings listed as part of memory types. PAT in context entry is used for advanced context usage. 

Memory Types and Applicability to GFX  

The Memory Types defined for IA are listed below as: 

Memory Type Encoding in MTRR/PAT 

Uncacheable (UC) 00h 

Write Combining (WC) 01h 

Write Through (WT) 04h 

Write Protected (WP) 05h 

WriteBack (WB) 06h 

Uncached (UC-) 07h 

Reserved* 02, 03, 08h-FFh 

Note: * use of any reserved encodings will result in a FAULT and reported into fault registers. 
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 Uncacheable (UC): IA semantics for a UC cycle is slightly different than traditional UC concept 

that was adapted by GFX as part of integration into CPU. When UC type is selected from the 

MTRR table, GAM will enforce the request to be uncacheable in LLC/eLCC (turn-off the 

cacheability flags) and also force the fence semantics in GTI. 

Note: This behavior is not followed with a fence in case of GPUs. 

 Uncached (UC-): Same concept as UC from behavior perspective however the precedence can be 

overridden by WC unlike UC. 

 Write Combining (WC): Write combining follows a streaming model in IA terms which is not 

cached in uncore. Semantically the existing GT use of UC concept overlaps with WC memory type 

defined by IA. GFX will treat the WC memory type as a streaming uncacheable memory type in 

GFX pipelines. 

 Write Through (WT): Write through concept is already introduced as part of the gen7.5 design, 

the IA version of the WT overlaps with the same concept. 

 Write Protected (WP): GFX has no concept of write protected; however this is simply a 

combination of two modes distributed over different access types: 

 Reads: Acts as WB. 

 Writes: Acts as WC. 

 Write Back (WB): WB memory type is traditional memory type used where accesses are cached 

in uncore as per the directives provided. This is the main cacheable mode that will be used. 
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Basically, GPU will support all memory-types that CPU supports (as below), with the same meaning with 

respect to “Cacheable”, “Writeback Cacheable”, and “Serialization”. Because the GPU has its own 

device-specific notion of what “speculative processor ordering” means, those are not specified/attached 

to memory-types. 

Memory Type 

and Mnemonic Cacheable 

Writeback 

Cacheable 

Allows 

Speculative 

Reads Memory Ordering Model 

Strong 

Uncacheable (UC) 

No No No Strong Ordering 

Uncacheable (UC-) No No No Strong Ordering. Can only be selected 

through the PAT. Can be overridden by 

WC in MTRRs. 

Write Combining 

(WC) 

No No Yes Weak Ordering. Available by 

programming MTRRs or by selecting it 

through the PAT. 

Write Through 

(WT) 

Yes No Yes Speculative Processor Ordering. 

Write Back (WB) Yes Yes Yes Speculative Processor Ordering. 

Write Protected 

(WP) 

Yes for reads; 

no for writes 

No Yes Speculative Processor Ordering. 

Available by programming MTRRs. 

The key similarities with CPU memory types are: 

 GPU’s cache (L3 cache) will be made coherent (works similar to MLC on CPUs). 

 All GPU accesses (regardless of memory type) will snoop LLC. 

 All GPU accesses will self-snoop. 

 Outside of virtualization, GPU computes effective memory-type same as CPU (MTRR, PAT, PCD, 

PWT, etc.), and caches follow normal versus non-allocating mode per CD bit (similar to CPUs). 

 UC, UC- and WC accesses do not allocate to caches. Will invalidate if line already exists in caches. 

 UC- works same ways as CPU (i.e., unlike UC, UC- allows override by WC). 

 WB accesses will allocate to cache without updating memory. 

 WT behaves same as WB, except writes, updates memory along with allocate to cache. 

 WP behaves same as WT, except writes always propagate to memory (invalidating any cache-line 

that hits). 

The key difference with CPU memory types are: 

 Speculative processor ordering not specified 

 For GPU, only difference between UC/UC- and WC is that, UC has stronger ordering. 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 59 

MTRR Ranges  

Memory Type Range Registers are defined to cover the entire physical memory. The following table 

shows how each region is defined and how they map over the physical memory. 

 

Memory Type Selection and Priority  

Memory typing determination is split up to two categories: 

 Architectural Options: This is the traditional memory typing defined via external specifications 

and controls the cacheability of various surfaces. 

 Design Specific Options: To target product specific caches and cache optimizations 

Design-Specific Memory Types  

The following are the design specific memory types for CHV, BSW. 

LRU Age: Both LLC and eDRAM uses LRU-like replacement algorithm with Age based determination 
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00: Age is 0 

01: Age is 1 

10: Age is 2 

11: Age is 3 

Target Cache: CHV, BSW has two large caches in Uncore where they could be separately targeted. 

00: reserved 

01: eLLC only 

10: LLC only 

11: eLLC/LLC  

Both LRU and target cache selections can only be managed via non-architectural solutions. 

Legacy Context: Selection is based on whether target cache field programmed in surface state is “00” 

or non-“00”. If non-“00”, than both the Age and Target cache parameters are picked from surface state 

and page table controls are ignored. If target cache parameter in surface state is “00” than, only page 

table controls are used via private PAT programming (see PAT calculation) and indexed into “PAT in 

MMIO Register Space”. 

Advanced Context: Decision is based on surface state only. Advanced context uses architectural 

definition of PAT via IA32e page tables which do not carry design specific information. The only 

mechanism to control cache LRU and targets is to program the surfaces state accordingly. 

Memory Object Control State (Surface)  

Bit Description 

6:5 
Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) 

This is the field used in GT interface block to determine what type of access need to be generated to uncore. 

For the cases where the LeLLCCC is set, cacheable transaction are generated to enable LLC usage for 

particular stream. 

00: Use Cacheability Controls from page table / UC with Fence (if coherent cycle) 

01/10: non-snooped 

11: snooped 

  

For CHV, BSW, GFX driver should use snooped type for only surfaces that are prepared by the driver in 

IA WB space. All other surfaces should be tagged as nonsnooped 

4:3 
Target Cache (TC) 

This field allows the choice of LLC vs eLLC for caching 
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00: eLLC Only – not snooped in GT 

01: LLC Only 

10: LLC/eLLC Allowed 

11: L3, LLC, eLLC Allowed 

2 
Reserved 

 

1:0 
Age for QUADLRU (AGE) 

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a particular allocation is 

done at youngest age (“3”) it tends to stay longer in the cache as compared to older age allocations (“2”, “1”, 

or “0”). This option is given to driver to be able to decide which surfaces are more likely to generate HITs, 

hence need to be replaced least often in caches. 

11: Good chance of generating hits. 

10: Next good chance of generating hits 

01: Decent chance of generating hits 

00: Poor chance of generating hits 

  

Architectural Memory Types  

Memory typing is decided via several levels of checks and comparing different priority levels. The 

following table shows a visual mapping between these selections. 

  



 

  

Memory Views  

 

  

  

62 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 

 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 63 

 



 

  

Memory Views  

 

  

  

64 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 

  

 

Page Walker Access and Memory Types  

Most of these notes are further explained in the document; however summarized as part of the page 

table behavior: 

Page Walker Memory Types  

1. Legacy Contexts 

a. GT access to root/extended-root table and context/extended-context table 

b. GTT access to private paging (PPGTT) entries 

c. GT access to GPA-to-HPA paging entries 

d. GT access to the translated page 

2. Advanced context (without nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

3. Advanced context (with nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry 

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries 

g. GT access to GPA-to-HPA paging entries to translate address of page 

For gen8, the following behavior is defined: 
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Error Cases  

 A/D bit update attempt for paging entry in non-WB memory, cause page-walk to be aborted; 

Error reported to device in Translation Response, gets reported to driver as GPGPU context in 

error – catastrophic error case.  

 Locked/Atomic operations to pages in non-WB memory aborted; gets reported to driver as 

GPGPU context in error (catastrophic error) 

 CD=1 treated same as non-WB memory, for above lock behavior 

Replacement  

TLB replacements during runtime are based on LRA algorithm; in addition, invalidations and page 

responses will have to invalidate the TLB entries. 

Invalidations of TLB  

There are various ways to invalidate TLBs: 

1. Traditional invalidation from command streamer: Could be part of any fence accesses 

including newly added atomics. 

2. SVM based invalidations: Listed as part of the new SVM related invalidations, various stages of 

TLBs including intermediate stages can be invalidated selectively and/or as a whole.  

3. Context Switch: A context switch has to invalidate caches to make sure we have no residual 

value of the TLBs across multiple PASIDs. GAM will treat the context reload message from CS as a 

form of TLB invalidation. 

4. A page response: should invalidate faulted recordings. It should be done via address matching 

to kick the faulted entries within the matching PASID. 

Invalidation response “Invalidation Wait Descriptor” should also be a fence for both READs and WRITEs 

that used the previous TLB entries. Gam can only respond to “invalidation wait descriptor” after getting 

a GTI EMPTY indication. 
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Optional Invalidations  

The following cases are listed as page table updates which software may choose not to invalidate the 

TLBs. 

 If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, s/w may choose 

not to invalidate TLBs. This affects only the case where GPU keeps the faulted page in its TLB to 

filter out future faults. Regardless of s/w does invalidation or not, for the cases where h/w cares, 

there will be a page response from s/w which will be used to shootdown the faulted record from 

the TLB.  

GAM will only put faulted entries to its TLBs if there has been page request for it. This 

would mean only faultable surfaces can be stored in GAM TLBs as a faulted entry. 

 If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is 

necessary (assuming that an invalidation was performed the last time the accessed flag was 

changed from 1 to 0). This is because no TLB entry or paging-structure cache entry is created 

with information from a paging structure entry in which the accessed flag is 0. 

 If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure 

to perform an invalidation may result in a “spurious” page-fault exception (e.g., in response to 

an attempted write access) but no other adverse behavior. Such an exception will occur at most 

once for each affected linear address 
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Faulting  

Page Faults  

CHV, BSW does not support page faulting 
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Memory Types and Cache Interface 

This section has additional information on the types of memory which are accessible via the various GT 

mechanisms. It includes discussion on how the various paging models are used and accessed. See the 

Graphics Translation Tables for more detailed discussions on paging models. 

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3 

and the different behaviors which can be enabled. 

Memory Object Control State (MOCS)  

The memory object control state defines the behavior of memory accesses beyond the graphics core, 

including encryption, graphics data types that allow selective flushing of data from outer caches, and 

controlling cacheability in the outer caches. 

This control uses several mechanisms. Control state for all memory accesses can be defined page by 

page in the GTT entries. Memory objects that are defined by state per surface generally have additional 

memory object control state in the state structure that defines the other surface attributes. Memory 

objects without state defining them have memory object state control defined per class in the 

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some 

memory objects only have the GTT entry mechanism for defining this control. The table below 

enumerates the memory objects and the location of the control state for each:  

Memory Object Location of Control State 

surfaces defined by SURFACE_STATE: sampling engine surfaces, 

render targets, media surfaces, pull constant buffers, streamed vertex 

buffers 

SURFACE_STATE 

depth, stencil, and hierarchical depth buffers corresponding state command that 

defined the buffer attributes 

stateless buffers accessed by data port STATE_BASE_ADDRESS 

indirect state objects STATE_BASE_ADDRESS 

kernel instructions STATE_BASE_ADDRESS 

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS) 

index buffers 3DSTATE_INDEX_BUFFER 

vertex buffers 3DSTATE_VERTEX_BUFFERS 

indirect media object STATE_BASE_ADDRESS 

generic state prefetch GTT control only 

ring/batch buffers GTT control only 

context save buffers GTT control only 

store DWord GTT control only 
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MOCS Registers 

These registers provide the detailed format of the MOCS table entries that need to be programmed to 

define each surface state. 

MEMORY_OBJECT_CONTROL_STATE 

MEMORY_OBJECT_CONTROL_STATE 

Page Walker Access and Memory Types  

Most of these notes are further explained in the document however summarized as part of the page 

table behavior: 

Page Walker Memory Types  

1. Legacy Contexts 

a. GT access to root/extended-root table and context/extended-context table 

b. GTT access to private paging (PPGTT) entries 

c. GT access to GPA-to-HPA paging entries 

d. GT access to the translated page 

2. Advanced context (without nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

3. Advanced context (with nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry 

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries 

g. GT access to GPA-to-HPA paging entries to translate address of page 
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Gen8 Memory Typing for Paging  

The following information is duplicated in the Page Walker Memory Types topic: 

1. Legacy Contexts 

a. GT access to root/extended-root table and context/extended-context table 

b. GTT access to private paging (PPGTT) entries 

c. GT access to GPA-to-HPA paging entries 

d. GT access to the translated page 

2. Advanced context (without nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

3. Advanced context (with nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry 

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries 

g. GT access to GPA-to-HPA paging entries to translate address of page 

This information is new in this topic and references the cases and subcases enumerated above: 

For case [1]: 

 [1.a] is always covered as a non-cacheable access 

 [1.b] & [1.c] is covered with MMIO register where PPGTT entries can be forced to be cached in 

LLC (default option is cached). 

 [1.d] is defined via private PAT (MMIO based) and surface state. 
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For case [2]: 

 [2.a] is always covered as a non-cacheable access 

 [2.b] is always cached & PASID state table entry is always accessed “atomically” 

 [2.c] is accessed as cached 

 [2.d] use memory-type as evaluated through MTRR, CD, and PCD/PWT/PAT bits in leaf IA-32e 

paging entry 

For case [3]: 

 [3.a] is always covered as a non-cacheable access 

 [3.b] is always cached & PASID state table entry is always accessed “atomically” 

 [3.c] is accessed as cached 

 [3.d] use memory-type as follows (this section is further described in detail in memory typing 

section) 

o If CD=1, memory-type is UC 

o If CD=0: 

 If EMTE=0 in extended-context-entry, it is handled same as [2.d] 

 If EMTE=1 in extended-context-entry: 

 If IGMT=1 in leaf GPA-to-HPA entry, memory type used is the EMT field in 

this GPA-to-HPA entry. 

 If IGMT=0 in leaf GPA-to-HPA entry, memory type from [2.d] is combined 

with EMT field in this GPA-to-HPA entry. 

 [3.e] is always cached & PASID state table entry is always accessed “atomically” 

 [3.f] &[3.g] is accessed as cached 

Error Cases  

 A/D bit update attempt for paging entry in non-WB memory, causes page-walk to be aborted; 

Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU 

context in error – catastrophic error case. 

 Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver 

as GPGPU context in error (catastrophic error). 

 CD=1 treated same as non-WB memory, for above lock behavior. 
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Common Surface Formats 

This section documents surfaces and how they are stored in memory, including 3D and video surfaces, 

including the details of compressed texture formats. Also covered are the surface layouts based on 

tiling mode and surface type. 

Non-Video Surface Formats 

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented 

data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, 

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory 

object types. 

Surface Format Naming 

Unless indicated otherwise, all pixels are stored in “little endian” byte order. i.e., pixel bits 7:0 are 

stored in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color 

components in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A). 

The name of most of the surface formats specifies its format. Channels are listed in little endian order 

(LSB channel on the left, MSB channel on the right), with the channel format specified following the 

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of 

red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format. 

Intensity Formats 

All surface formats containing “I” include an intensity value. When used as a source surface for the 

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered. 

Intensity surfaces are not supported as destinations. 

Luminance Formats 

All surface formats containing “L” include a luminance value. When used as a source surface for the 

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being 

filtered. The alpha channel is provided either from another field or receives a default value. Luminance 

surfaces are not supported as destinations. 
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R1_UNORM (same as R1_UINT) and MONO8 

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are 

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds 

to Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine. 

7 6 5 4 3 2 1 0 

T7 T6 T5 T4 T3 T2 T1 T0 

 

Bit Description 

T0 
Texel 0 

On texture reads, this 

(unsigned) 1-bit value is 

replicated to all color channels. 

Format: U1 

... ... 

T7 
Texel 7 

On texture reads, this 

(unsigned) 1-bit value is 

replicated to all color channels. 

Format: U1 

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only 

supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter. 
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Palette Formats 

Palette formats are supported by the sampling engine. These formats include an index into the palette 

(Px) that selects the actual channel values from the palette, which is loaded via the 

3DSTATE_SAMPLER_PALETTE_LOAD0 command. 

P4A4_UNORM 

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in 

the low nibble). 

7   4 3   0 

Alpha Palette Index 

 

Bit Description 

7:4 
Alpha 

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 

255 to yield a [0.0,1.0] Alpha value. 

Format: U4 

3:0 
Palette Index 

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 

3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U4 

A4P4_UNORM 

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the 

high nibble). 

7   4 3   0 

Palette Index Alpha 

 

Bit Description 

7:4 
Palette Index 

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U4 

3:0 
Alpha 

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 

255 to yield a [0.0,1.0] alpha value. 
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Bit Description 

Format: U4 

P8A8_UNORM 

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in 

the low byte). 

15   8 7   0 

Alpha Palette Index 

 

Bit Description 

15:8 
Alpha 

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value. 

Format: U8 

7:0 
Palette Index 

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette 

(loaded via 3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U8 

A8P8_UNORM 

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the 

high byte). 

15   8 7   0 

Palette Index Alpha 

 

Bit Description 

15:8 
Palette Index 

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture 

palette. 

Format: U8 

7:0 
Alpha 

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value. 

Format: U8 
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P8_UNORM 

This surface format contains only an 8-bit Color Index value. 

Bit Description 

7:0 
Palette Index 

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture 

palette. 

Format: U8 

P2_UNORM 

This surface format contains only a 2-bit Color Index value. 

Bit Description 

1:0 
Palette Index 

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture 

palette. 

Format: U2 
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Compressed Surface Formats 

This section contains information on the internal organization of compressed surface formats. 

ETC1_RGB8  

CHV, BSW: This format compresses UNORM RGB data using an 8-byte compression block representing 

a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and column range 

from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

High 24 bits if “diff” is zero (individual mode): 

Bits Description 

7:4 R0[3:0] 

3:0 R1[3:0] 

15:12 G0[3:0] 

11:8 G1[3:0] 

23:20 B0[3:0] 

19:16 B1[3:0] 

High 24 bits if “diff” is one (differential mode): 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

Low 40 bits: 

Bits Description 

31:29 lum table index for sub-block 0 

28:26 lum table index for sub-block 1 

25 diff 

24 flip 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 
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Bits Description 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks 

controlled by the “flip” bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the 

right. If flip=1, sub-block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom. 

The “diff” bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444 

value per sub-block (“individual” mode with diff = 0), or a single 555 value for the first sub-block 

(R0/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block (“differential” mode with diff 

= 1). The delta values are 3-bit two’s-complement values that hold values in the range [-4,3]. These 

values are added to the 5-bit values for sub-block 0 to obtain the 5-bit values for sub-block 1 (if the 

value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit 
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per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base 

color for each sub-block. 

For each sub-block one of 8 different luminance columns is selected based on the 3-bit lum table index. 

Then each texel selects one of the 4 rows of the selected column with a 2-bit per-texel index. The 

chosen value in the table is added to the 8-bit base color for the sub-block (obtained in the previous 

step) to obtain the texel’s color. Values in the table are given in decimal, representing an 8-bit UNORM 

as an 8-bit signed integer. 

Luminance Table 

 
0 1 2 3 4 5 6 7 

0 
2 5 9 13 18 24 33 47 

1 
8 17 29 42 60 80 106 183 

2 
-2 -5 -9 -13 -18 -24 -33 -47 

3 
-8 -17 -29 -42 -60 -80 -106 -183 
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ETC2_RGB8 and ETC2_SRGB8  

The ETC2_RGB8 format builds on top of ETC1_RGB8, using a set of invalid bit sequences to enable three 

new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be 

documented in this section as they are covered in the ETC1_RGB8 section. 

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1 

differential mode. The mode is determined as follows (x indicates don’t care): 

diff Rt Gt Bt mode 

0 x x x individual 

1 0 x x T 

1 1 0 x H 

1 1 1 0 planar 

1 1 1 1 differential 

The inputs in the above table are defined as follows: 

 Rt = (R0 + dR1) in [0,31] 

 Gt = (G0 + dG1) in [0,31] 

 Bt = (G0 + dB1) in [0,31] 

    

8-byte compression block for mode determination 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

31:26 ignored 

25 diff 

24 ignored 

63:32 ignored 

The fields in the table above are used only for mode determination. Some of the bits in this table are 

overloaded with other values within each mode. The algorithm is defined such that there is no 

ambiguity in modes when this is done. 
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T mode 

The “T” mode has the following bit definition: 

8-byte compression block for “T” mode 

Bits Description 

7:5 ignored 

4:3 R0[3:2] 

2 ignored 

1:0 R0[1:0] 

15:12 G0[3:0] 

11:8 B0[3:0] 

23:20 R1[3:0] 

19:16 G1[3:0] 

31:28 B1[3:0] 

27:26 di[2:1] 

25 diff = 1 

24 di[0] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[0][0] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 
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Bits Description 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The “T” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual mode, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index “di” is also defined in the compression block. This value is used to look up the 

distance in the following table: 

distance index 

“di” distance “d” 

0 3 

1 6 

2 11 

3 16 

4 23 

5 32 

6 41 

7 64 

Four colors are possible on each texel. These colors are defined as the following: 

 P0 = (R0, G0, B0) 

 P1 = (R1, G1, B1) + (d, d, d) 

 P2 = (R1, G1, B1) 

 P3 = (R1, G1, B1) – (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index. 
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H mode 

The “H” mode has the following bit definition: 

8-byte compression block for “H” mode 

Bits Description 

7 ignored 

6:3 R0[3:0] 

2:0 G0[3:1] 

15:13 ignored 

12 G0[0] 

11 B0[3] 

10 ignored 

9:8 B0[2:1] 

23 B0[0] 

22:19 R1[3:0] 

18:16 G1[3:1] 

31 G1[0] 

30:27 B1[3:0] 

26 di[2] 

25 diff = 1 

24 di[1] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 
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Bits Description 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The “H” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual and T modes, however the bit positions for these are different. For each channel, the 4 bits 

are extended to 8 bits by bit replication. 

A 3-bit distance index “di” is defined by 2 MSBs in the compression block and the LSB computed by the 

following equation, where R/G/B values are the 8-bit values from the first step: 

 di[0] = ((R0 « 16) | (G0 « 8) | B0) >= ((R1 « 16) | (G1 « 8) | B1) 

    

The distance “d” is then looked up in the same table used for T mode. The four colors for H mode are 

computed as follows: 

 P0 = (R0, G0, B0) + (d, d, d) 

 P1 = (R0, G0, B0) - (d, d, d) 

 P2 = (R1, G1, B1) + (d, d, d) 

 P3 = (R1, G1, B1) – (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index as in T mode. 
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Planar mode 

The “planar” mode has the following bit definition: 

8-byte compression block for “planar” mode 

Bits Description 

7 ignored 

6:1 R0[5:0] 

0 G0[6] 

15 ignored 

14:9 G0[5:0] 

8 B[5] 

23:21 ignored 

20:19 B[4:3] 

18 ignored 

17:16 B0[2:1] 

31 B0[0] 

30:26 RH[5:1] 

25 diff = 1 

24 RH[0] 

39:33 GH[6:0] 

32 BH[5] 

47:43 BH[4:0] 

42:40 RV[5:3] 

55:53 RV[2:0] 

52:48 GV[6:2] 

63:62 GV[1:0] 

61:56 BV[5:0] 
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The “planar” mode has three base colors stored as RGB 676, with red & blue having 6 bits and green 

having 7 bits. These three base colors are each extended to RGB 888 with bit replication. 

The color of each texel is then computed using the following equations, with x and y representing the 

texel position within the compression block: 

 texel[y][x].R = x(RH-R0)/4 + y(RV-R0)/4 + R0 

 texel[y][x].G = x(GH-G0)/4 + y(GV-G0)/4 + G0 

 texel[y][x].B = x(BH-B0)/4 + y(BV-B0)/4 + B0 

    

All resulting channels are clamped to the range [0,255]. 

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGB8, then a conversion from the resulting 

RGB values to SRGB space is performed. 
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EAC_R11 and EAC_SIGNED_R11  

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

EAC_R11 compression block layout 

Bits Description 

7:0 R0[7:0] 

15:12 m[3:0] 

11:8 ti[3:0] 

23:21 texel[0][0] index 

20:18 texel[1][0] index 

17:16,31 texel[2][0] index 

30:28 texel[3][0] index 

27:25 texel[0][1] index 

24,39:38 texel[1][1] index 

37:35 texel[2][1] index 

34:32 texel[3][1] index 

47:45 texel[0][2] index 

44:42 texel[1][2] index 

41:40,55 texel[2][2] index 

54:52 texel[3][2] index 

51:49 texel[0][3] index 

48,63:62 texel[1][3] index 

61:59 texel[2][3] index 

58:56 texel[3][3] index 
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The “ti” (table index) value from the compression block is used to select one of the columns in the table 

below. 

Intensity modifier (im) table 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
-3 -3 -2 -2 -3 -3 -4 -3 -2 -2 -2 -2 -3 -1 -4 -3 

1 
-6 -7 -5 -4 -6 -7 -7 -5 -6 -5 -4 -5 -4 -2 -6 -5 

2 
-9 -10 -8 -6 -8 -9 -8 -8 -8 -8 -8 -7 -7 -3 -8 -7 

3 
-15 -13 -13 -13 -12 -11 -11 -11 -10 -10 -10 -10 -10 -10 -9 -9 

4 
2 2 1 1 2 2 3 2 1 1 1 1 2 0 3 2 

5 
5 6 4 3 5 6 6 4 5 4 3 4 3 1 5 4 

6 
8 9 7 5 7 8 7 7 7 7 7 6 6 2 7 6 

7 
14 12 12 12 11 10 10 10 9 9 9 9 9 9 8 8 

The eight possible color values Ri are then computed from the 8 values in the column labeled imi, where 

i ranges from 0 to 7: 

For EAC_R11: 

if (m == 0) Ri = R0*8 + 4 + imi else Ri = R0*8 + 4 + (imi * m * 8) 

Each value is clamped to the range [0,2047]. 

For EAC_SIGNED_R11: 

if (m == 0) Ri = R0*8 + imi else Ri = R0*8 + (imi * m * 8) 

Each value is clamped to the range [-1023,1023]. 

Note that in the signed case, the R0 value is a signed, 2’s complement value in the range [-127, 127]. 

Before being used in the above equations, an R0 value of -128 must be clamped to -127. 

Finally, each texel red value is selected from the 8 possible values Ri using the 3-bit index for that texel. 

The green, blue, and alpha values are set to their default values. 

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer. 
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ETC2_RGB8_PTA and ETC2_SRGB8_PTA  

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the “individual” mode in favor of 

allowing a punch-through alpha. The “diff” bit from ETC2_RGB8 is renamed to “opaque” in this format, 

and the mode selection behaves as if the “diff” bit is always 1, making the “individual” mode 

inaccessible for these formats. 

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is 

determined to be zero, the three other channels are also forced to zero, regardless of what value the 

normal decompression algorithm would have produced. 

Differential Mode 

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGB8 is used. If the opaque 

bit is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out, 

otherwise the table is the same): 

Luminance Table for opaque bit not set 

 0 1 2 3 4 5 6 7 

0 
0 0 0 0 0 0 0 0 

1 
8 17 29 42 60 80 106 183 

2 
0 0 0 0 0 0 0 0 

3 
-8 -17 -29 -42 -60 -80 -106 -183 

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value 

is set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255 

and RGB is the result of the normal decompression calculations. 

T and H Modes 

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set 

to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255. 

Planar Mode 

In planar mode, the opaque bit is ignored and alpha is set to 255. 

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the 

resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 
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ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8  

The ETC2_EAC_RGBA8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression 

block represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the 

EAC_R8 algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm. 

The EAC_R8 format differs from EAC_R11 as described below. 

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBA8, then a conversion from 

the resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 

EAC_R8 Format: 

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier 

section, except the procedure for computing the eight possible color values Ri is performed as follows: 

Ri = R0 + (imi * m) 

Each value is clamped to the range [0,255]. 
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EAC_RG11 and EAC_SIGNED_RG11  

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows. 

EAC_RG11 compression block layout 

Bits Description 

63:56 G0[7:0] 

55:52 Gm[3:0] 

51:48 Gti[3:0] 

47:45 texel[0][0] G index 

44:42 texel[1][0] G index 

41:39 texel[2][0] G index 

38:36 texel[3][0] G index 

35:33 texel[0][1] G index 

32:30 texel[1][1] G index 

29:27 texel[2][1] G index 

26:24 texel[3][1] G index 

23:21 texel[0][2] G index 

20:18 texel[1][2] G index 

17:15 texel[2][2] G index 

14:12 texel[3][2] G index 

11:9 texel[0][3] G index 

8:6 texel[1][3] G index 

5:3 texel[2][3] G index 

66:64 texel[3][3] G index 

63:56 R0[7:0] 

55:52 Rm[3:0] 

51:48 Rti[3:0] 

47:45 texel[0][0] R index 

44:42 texel[1][0] R index 

41:39 texel[2][0] R index 

38:36 texel[3][0] R index 

35:33 texel[0][1] R index 

32:30 texel[1][1] R index 

29:27 texel[2][1] R index 
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Bits Description 

26:24 texel[3][1] R index 

23:21 texel[0][2] R index 

20:18 texel[1][2] R index 

17:15 texel[2][2] R index 

14:12 texel[3][2] R index 

11:9 texel[0][3] R index 

8:6 texel[1][3] R index 

5:3 texel[2][3] R index 

2:0 texel[3][3] R index 

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that 

they supply two channels of output data, both red and green, from two independent 8-byte portions of 

the compression block. The low half of the compression block contains the red information, and the 

high half contains the green information. Blue and alpha channels are set to their default values. 

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels 

are generated using the data in the compression block. 
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FXT Texture Formats 

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel 

blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged 

according to the following diagram: 

FXT1 Encoded Blocks 

 

Overview of FXT1 Formats 

During the compression phase, the encoder selects one of the four formats for each block based on 

which encoding scheme results in best overall visual quality. The following table lists the four different 

modes and their encodings: 

FXT1 Format Summary 

Bit 

127 

Bit 

126 

Bit 

125 

Block 

Compression 

Mode Summary Description 

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and 

transparent black 

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT. 

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3 discrete 

colors + transparent black and 2 LUTs using interpolated values of Color 0,1 (t0-

15) and Color 1,2 (t16-31). 

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and Color2,3 

LUT used for t16-31. Alpha bit selects between LUTs with 4 interpolated colors 

or 3 interpolated colors + transparent black. 

FXT1 CC_HI Format 

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the 

encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB 

colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is 

transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a 

color from the table. 
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CC_HI Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format: 

FXT CC_HI Block Encoding 

Bit Description 

127:126 Mode = ‘00’b (CC_HI) 

125:121 Color 1 Red 

120:116 Color 1 Green 

115:111 Color 1 Blue 

110:106 Color 0 Red 

105:101 Color 0 Green 

100:96 Color 0 Blue 

95:93 Texel 31 Select 

... ... 

50:48 Texel 16 Select 

47:45 Texel 15 Select 

... ... 

2:0 Texel 0 Select 

CC_HI Block Decoding 

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3 

MSBs into the 3 LSBs, as shown in the following table: 
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FXT CC_HI Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 1 [23:19] Color 1 Red [7:3] [125:121] 

Color 1 [18:16] Color 1 Red [2:0] [125:123] 

Color 1 [15:11] Color 1 Green [7:3] [120:116] 

Color 1 [10:08] Color 1 Green [2:0] [120:118] 

Color 1 [07:03] Color 1 Blue [7:3] [115:111] 

Color 1 [02:00] Color 1 Blue [2:0] [115:113] 

Color 0 [23:19] Color 0 Red [7:3] [110:106] 

Color 0 [18:16] Color 0 Red [2:0] [110:108] 

Color 0 [15:11] Color 0 Green [7:3] [105:101] 

Color 0 [10:08] Color 0 Green [2:0] [105:103] 

Color 0 [07:03] Color 0 Blue [7:3] [100:96] 

Color 0 [02:00] Color 0 Blue [2:0] [100:98] 

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors 

(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table: 

FXT CC_HI Interpolated Color Table 

Interpolated 

Color Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh 

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh 

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh 

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh 

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh 

6 Color1.RGB 0FFh 

7 RGB = 0,0,0 0 

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded 

CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the 

CC_HI block. 

FXT1 CC_CHROMA Format 

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block. 

These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB 

colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB 

color from the table. The Alpha component defaults to fully opaque (0FFh). 
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CC_CHROMA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format: 

FXT CC_CHROMA Block Encoding 

Bit Description 

127:125 Mode = ‘010’b (CC_CHROMA) 

124 Unused 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

...  

33:32 Texel 16 Select 

31:30 Texel 15 Select 

...  

1:0 Texel 0 Select 

CC_CHROMA Block Decoding 

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 

LSBs, as shown in the following tables: 
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FXT CC_CHROMA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10:08] Color 3 Green [2:0] [118:116] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded 

CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 

0FFh) completing the decode of the CC_CHROMA block. 

FXT CC_CHROMA Interpolated Color Table 

Texel Select Color ARGB 

0 Color0.ARGB 

1 Color1.ARGB 

2 Color2.ARGB 

3 Color3.ARGB 
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FXT1 CC_MIXED Format 

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 

0 and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31. 

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit 

RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit 

RGB color from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_MIXED Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format: 

FXT CC_MIXED Block Encoding 

Bit Description 

127 Mode = ‘1’b (CC_MIXED) 

126 Color 3 Green [0] 

125 Color 1 Green [0] 

124 Alpha [0] 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_MIXED Block Decoding 

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block. 
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Alpha[0] = 0 Decoding 

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as 

per the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125] 

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into 

the 3 LSBs, as shown in the following table: 

FXT CC_MIXED Decoded Colors (Alpha[0] = 0) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10] Color 2 Green [2] [33] XOR [126]] 

Color 2 [09:08] Color 2 Green [1:0] [103:100] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10] Color 0 Green [2] [1] XOR [125] 

Color 0 [09:08] Color 0 Green [1:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four 

interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15 

indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures: 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh 

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh 

3 Color1.RGB 0FFh 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh 

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh 

3 Color3.RGB 0FFh 

Alpha[0] = 1 Decoding 

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are 

encoded as RGB565 colors, with the Green LSB obtained as shown in the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following 

diagram. 
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FXT CC_MIXED Decoded Colors (Alpha[0] = 1) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:19] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:87] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:19] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors. 

The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 

16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 

3 is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures: 
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FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (Color0.RGB + Color1.RGB) /2 0FFh 

2 Color1.RGB 0FFh 

3 Black (0,0,0) 0 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (Color2.RGB + Color3.RGB) /2 0FFh 

2 Color3.RGB 0FFh 

3 Black (0,0,0) 0 

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the 

encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table, 

completing the decode of the CC_CMIXED block. 

FXT1 CC_ALPHA Format 

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control 

bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects. 

CC_ALPHA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format: 
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FXT CC_ALPHA Block Encoding 

Bit Description 

127:125 Mode = ‘011’b (CC_ALPHA) 

124 LERP 

123:119 Color 2 Alpha 

118:114 Color 1 Alpha 

113:109 Color 0 Alpha 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_ALPHA Block Decoding 

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3 

MSBs into the 3 LSBs, as shown in the following tables: 

FXT CC_ALPHA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [31:27] Color 2 Alpha [7:3] [123:119] 

Color 2 [26:24] Color 2 Alpha [2:0] [123:121] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [31:27] Color 1 Alpha [7:3] [118:114] 

Color 1 [26:24] Color 1 Alpha [2:0] [118:116] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [31:27] Color 0 Alpha [7:3] [113:109] 

Color 0 [26:24] Color 0 Alpha [2:0] [113:111] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

LERP = 0 Decoding  

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th 

entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded 

CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode 

of the CC_ALPHA block. 

FXT CC_ALPHA Interpolated Color Table (LERP=0) 

Texel Select Color Alpha 

0 Color0.RGB Color0.Alpha 

1 Color1.RGB Color1.Alpha 

2 Color2.RGB Color2.Alpha 

3 Black (RGB=0,0,0) 0 

LERP = 1 Decoding 

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The 

Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-

31 indices, as shown in the following figures: 
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FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15) 

Texel 0-15 Select Color ARGB 

0 Color0.ARGB 

1 (2*Color0.ARGB + Color1.ARGB + 1) /3 

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 

Texel 16-31 Select Color ARGB 

0 Color2.ARGB 

1 (2*Color2.ARGB + Color1.ARGB + 1) /3 

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 
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DXT/BC1-3 Texture Formats 

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next 

multiple of four texels – here the pad texels are not referenced by the device. 

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is 

opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding 

can be used to support source textures that require more than one-bit alpha: here the 1st QWord is 

used to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values. 

These three types of format are discussed in the following sections: 

 Opaque and One-bit Alpha Textures (DXT1) 

 Opaque Textures (DXT1_RGB) 

 Textures with Alpha Channels (DXT2-5) 

DXT2 and DXT3 are equivalent compression formats from the perspective of the hardware. The only 

difference between the two is the use of pre-multiplied alpha encoding, which does not affect 

hardware. 

Likewise, DXT4 and DXT5 are the same compression formats with the only difference being the use of 

pre-multiplied alpha encoding. 

Note that the surface formats DXT1-5 are referred to in the DirectX Specification as BC1-3. The mapping 

between formats is shown below: 

 DXT1 ⇒ BC1 

 DXT2/DXT3 ⇒ BC2 

 DXT4/DXT5 ⇒ BC3 

Programming Note 

Context: DXT Texture Formats 

 Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit 

blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-bit alpha 

formats on a per-block basis within the same texture. In other words, the comparison of the unsigned 

integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels. 

 When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or 

DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once 

interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used 

on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a 

block-by-block basis. 
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Opaque and One-bit Alpha Textures (DXT1/BC1) 

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque 

or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This 

totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel. 

In the block bitmap, there are two bits per texel to select between the four colors, two of which are 

stored in the encoded data. The other two colors are derived from these stored colors by linear 

interpolation. 

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color 

values stored in the block. They are treated as unsigned integers. If the first color is greater than the 

second, it implies that only opaque texels are defined. This means four colors will be used to represent 

the texels. In four-color encoding, there are two derived colors and all four colors are equally 

distributed in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha 

transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that 

the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the 

alpha block . 

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a 

transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used 

for encoding the alpha mask. 

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color 

encoding is selected: 

 if (color_0 > color_1) 

 { 

   // Four-color block: derive the other two colors.  

   // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3 

   // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block.  color_2 = (2 * color_0 + color_1) / 3; 

    color_3 = (color 0 + 2 * color_1) / 3; 

 }   

 else 

 { 

   // Three-color block: derive the other color.  // 00 = color_0, 01 = color_1, 10 = 

color_2, 

   // 11 = transparent.  // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block.  color_2 = (color_0 + color_1) / 2;   

    color_3 = transparent;   

 } 

    

The following tables show the memory layout for the 8-byte block. It is assumed that the first index 

corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example, 

Texel[1][2] refers to the texture map pixel at (x,y) = (2,1). 
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Here is the memory layout for the 8-byte (64-bit) block: 

Word Address 16-bit Word 

0 Color_0 

1 Color_1 

2 Bitmap Word_0 

3 Bitmap Word_1 

Color_0 and Color_1 (colors at the two extremes) are laid out as follows: 

Bits Color 

15:11 Red color component 

10:5 Green color component 

4:0 Blue color component 

 

Bits Texel 

1:0 (LSB) Texel[0][0] 

3:2 Texel[0][1] 

5:4 Texel[0][2] 

7:6 Texel[0][3] 

9:8 Texel[1][0] 

11:10 Texel[1][1] 

13:12 Texel[1][2] 

15:14 Texel[1][3] 

Bitmap Word_1 is laid out as follows: 

Bits Texel 

1:0 (LSB) Texel[2][0] 

3:2 Texel[2][1] 

5:4 Texel[2][2] 

7:6 Texel[2][3] 

9:8 Texel[3][0] 

11:10 Texel[3][1] 

13:12 Texel[3][2] 

15:14 (MSB) Texel[3][3] 
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Example of Opaque Color Encoding 

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. 

We will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly 

distributed gradient between them. To determine the values for the 4x4 bitmap, the following 

calculations are used: 

 00 ? color_0 

 01 ? color_1 

 10 ? 2/3 color_0 + 1/3 color_1 

 11 ? 1/3 color_0 + 2/3 color_1 

    

Example of One-bit Alpha Encoding 

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit 

integer, color_1. An example of where this format could be used is leaves on a tree to be shown against 

a blue sky. Some texels could be marked as transparent while three shades of green are still available 

for the leaves. Two of these colors fix the extremes, and the third color is an interpolated color. 

The bitmap encoding for the colors and the transparency is determined using the following calculations: 

 00 ? color_0 

 01 ? color_1 

 10 ? 1/2 color_0 + 1/2 color_1 

 11 ? Transparent 

    

Opaque Textures (DXT1_RGB) 

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is 

removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the 

Opaque Color Encoding. The alpha channel defaults to 1.0. 

Programming Note 

Context: Opaque Textures (DXT1_RGB) 

The behavior of this format is not compliant with the OGL spec. 

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3) 

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a 

block that describes the transparency precedes the 64-bit block already described for DXT1. The 

transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with 

fewer bits and linear interpolation analogous to what is used for color encoding. 

The transparency block and the color block are laid out as follows: 

Word Address 64-bit Block 

3:0 Transparency block 

7:4 Previously described 64-bit block 
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Explicit Texture Encoding 

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that 

describe transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved 

through a variety of means such as dithering or by simply using the 4 most significant bits of the alpha 

data. However they are produced, they are used just as they are, without any form of interpolation. 

Note: DirectDraw’s compression method uses the 4 most significant bits. 

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word. 

This is the layout for Word 0: 

Bits Alpha 

3:0 (LSB) [0][0] 

7:4 [0][1] 

11:8 [0][2] 

15:12 (MSB) [0][3] 

This is the layout for Word 1: 

Bits Alpha 

3:0 (LSB) [1][0] 

7:4 [1][1] 

11:8 [1][2] 

15:12 (MSB) [1][3] 

This is the layout for Word 2: 

Bits Alpha 

3:0 (LSB) [2][0] 

7:4 [2][1] 

11:8 [2][2] 

15:12 (MSB) [2][3] 

This is the layout for Word 3: 

Bits Alpha 

3:0 (LSB) [3][0] 

7:4 [3][1] 

11:8 [3][2] 

15:12 (MSB) [3][3] 
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Three-Bit Linear Alpha Interpolation 

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear 

encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in 

the first eight bytes of the block. The representative alpha values are used to interpolate intermediate 

alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is 

greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, 

four intermediate alpha values are interpolated between the specified alpha extremes. The two 

additional implicit alpha values are 0 (fully transparent) and 255 (fully opaque). 

The following pseudo-code illustrates this algorithm: 

 // 8-alpha or 6-alpha block? 

 if (alpha_0 > alpha_1) { 

    // 8-alpha block: derive the other 6 alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (6 * alpha_0 + alpha_1) / 7;     // Bit code 010 

   alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011 

   alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100 

   alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101 

   alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110 

   alpha_7 = (alpha_0 + 6 * alpha_1) / 7;     // Bit code 111 

  } 

 else {  

    // 6-alpha block: derive the other alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (4 * alpha_0 + alpha_1) / 5;     // Bit code 010 

   alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011 

   alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100 

   alpha_5 = (alpha_0 + 4 * alpha_1) / 5;     // Bit code 101 

   alpha_6 = 0;                               // Bit code 110 

   alpha_7 = 255;                             // Bit code 111 

 } 

          

The memory layout of the alpha block is as follows: 

Byte Alpha 

0 Alpha_0 

1 Alpha_1 

2 [0][2] (2 LSBs), [0][1], [0][0] 

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB) 

4 [1][3], [1][2], [1][1] (2 MSBs) 

5 [2][2] (2 LSBs), [2][1], [2][0] 

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB) 

7 [3][3], [3][2], [3][1] (2 MSBs) 
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BC4 

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM 

data. An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] bit code 

21:19 texel[0][1] bit code 

24:22 texel[0][2] bit code 

27:25 texel[0][3] bit code 

30:28 texel[1][0] bit code 

33:31 texel[1][1] bit code 

36:34 texel[1][2] bit code 

39:37 texel[1][3] bit code 

42:40 texel[2][0] bit code 

45:43 texel[2][1] bit code 

48:46 texel[2][2] bit code 

51:49 texel[2][3] bit code 

54:52 texel[3][0] bit code 

57:55 texel[3][1] bit code 

60:58 texel[3][2] bit code 

63:61 texel[3][3] bit code 
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There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 

 red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

    

BC5 

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. 

A 16-byte compression block represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] red bit code 

21:19 texel[0][1] red bit code 

24:22 texel[0][2] red bit code 

27:25 texel[0][3] red bit code 

30:28 texel[1][0] red bit code 

33:31 texel[1][1] red bit code 

36:34 texel[1][2] red bit code 

39:37 texel[1][3] red bit code 

42:40 texel[2][0] red bit code 

45:43 texel[2][1] red bit code 

48:46 texel[2][2] red bit code 

51:49 texel[2][3] red bit code 
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Bit Description 

54:52 texel[3][0] red bit code 

57:55 texel[3][1] red bit code 

60:58 texel[3][2] red bit code 

63:61 texel[3][3] red bit code 

71:64 green_0 

79:72 green_1 

82:80 texel[0][0] green bit code 

85:83 texel[0][1] green bit code 

88:86 texel[0][2] green bit code 

91:89 texel[0][3] green bit code 

94:92 texel[1][0] green bit code 

97:95 texel[1][1] green bit code 

100:98 texel[1][2] green bit code 

103:101 texel[1][3] green bit code 

106:104 texel[2][0] green bit code 

109:107 texel[2][1] green bit code 

112:110 texel[2][2] green bit code 

115:113 texel[2][3] green bit code 

118:116 texel[3][0] green bit code 

121:119 texel[3][1] green bit code 

124:122 texel[3][2] green bit code 

127:125 texel[3][3] green bit code 
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There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 

 red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

    

The same calculations are done for green, using the corresponding reference colors and bit codes. 
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BC6H  

For CHV, BSW, these formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high 

dynamic range (> 8 bits per channel). BC6H supports floating point denorms but there is no support for 

INF and NaN, other than with BC6H_SF16 –INF is supported. The alpha channel is not included, thus 

alpha is returned at its default value. 

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits 

(either 2 or 5 bits). 

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices 

indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32 

partition sets is indicated which selects which of the two lines each texel is assigned to. 

Field Definition 

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. 

The mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines 

(“TWO”), and the last 4 use one line (“ONE”). The difference between the various two-line and one-line 

modes is with the precision of the first endpoint and the number of bits used to store delta values for 

the remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than 

using the deltas (these are indicated as having no delta values). 

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is “r”, 

“g”, or “b” indicating the color channel. The second letter is “w”, “x”, “y”, or “z” indicating which of the 

four endpoints. The first line has endpoints “w” and “x”, with “w” being the endpoint that is fully 

specified (i.e. not as a delta). The second line has endpoints “y” and “z”. Modes using ONE mode do not 

have endpoints “y” and “z” as they have only one line. 

In addition to the mode and endpoint data, TWO blocks contain a 5-bit “partition” which selects one of 

the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are 

described in more detail below. 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 117 

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas 

Bit Description 

1:0 mode = 00 

2 gy[4] 

3 by[4] 

4 bz[4] 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas 

Bit Description 

1:0 mode = 01 

2 gy[5] 

3 gz[4] 

4 gz[5] 

11:5 rw[6:0] 

12 bz[0] 

13 bz[1] 

14 by[4] 

21:15 gw[6:0] 

22 by[5] 

23 bz[2] 

24 gy[4] 

31:25 bw[6:0] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas 

Green, Blue: 11-bit endpoint, 4-bit deltas 

Bit Description 

4:0 mode = 00010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 rw[10] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas 

Green: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 00110 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 gw[10] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[0] 

70 bz[2] 

74:71 rz[3:0] 

75 gy[4] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas 

Blue: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 by[4] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bw[10] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[1] 

70 bz[2] 

74:71 rz[3:0] 

75 bz[4] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01110 

13:5 rw[8:0] 

14 by[4] 

23:15 gw[8:0] 

24 gy[4] 

33:25 bw[8:0] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[3:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas 

Green, Blue: 8-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 10010 

12:5 rw[7:0] 

13 gz[4] 

14 by[4] 

22:15 gw[7:0] 

23 bz[2] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[3] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 gz[1] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas 

Green: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 10110 

12:5 rw[7:0] 

13 bz[0] 

14 by[4] 

22:15 gw[7:0] 

23 gy[5] 

24 gy[4] 

32:25 bw[7:0] 

33 gz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas 

Blue: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 11010 

12:5 rw[7:0] 

13 bz[1] 

14 by[4] 

22:15 gw[7:0] 

23 by[5] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas 

Bit Description 

4:0 mode = 11110 

10:5 rw[5:0] 

11 gz[4] 

12 bz[0] 

13 bz[1] 

14 by[4] 

20:15 gw[5:0] 

21 gy[5] 

22 by[5] 

23 bz[2] 

24 gy[4] 

30:25 bw[5:0] 

31 gz[5] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas 

Bit Description 

4:0 mode = 00011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

44:35 rx[9:0] 

54:45 gx[9:0] 

64:55 bx[9:0] 

127:65 indices 

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas 

Bit Description 

4:0 mode = 00111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

43:35 rx[8:0] 

44 rw[10] 

53:45 gx[8:0] 

54 gw[10] 

63:55 bx[8:0] 

64 bw[10] 

127:65 indices 
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Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas 

Bit Description 

4:0 mode = 01011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

42:35 rx[7:0] 

43 rw[11] 

44 rw[10] 

52:45 gx[7:0] 

53 gw[11] 

54 gw[10] 

62:55 bx[7:0] 

63 bw[11] 

64 bw[10] 

127:65 indices 
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Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas 

Bit Description 

4:0 mode = 01111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[15] 

40 rw[14] 

41 rw[13] 

42 rw[12] 

43 rw[11] 

44 rw[10] 

48:45 gx[3:0] 

49 gw[15] 

50 gw[14] 

51 gw[13] 

52 gw[12] 

53 gw[11] 

54 gw[10] 

58:55 bx[3:0] 

59 bw[15] 

60 bw[14] 

61 bw[13] 

62 bw[12] 

63 bw[11] 

64 bw[10] 

127:65 indices 

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels. 

The “indices” fields are defined as follows: 
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TWO mode indices field with fix-up index [1] at texel[3][3] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

107:105 texel[2][0] index 

110:108 texel[2][1] index 

113:111 texel[2][2] index 

116:114 texel[2][3] index 

119:117 texel[3][0] index 

122:120 texel[3][1] index 

125:123 texel[3][2] index 

127:126 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[0][2] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

88:87 texel[0][2] index 

91:89 texel[0][3] index 

94:92 texel[1][0] index 

97:95 texel[1][1] index 

100:98 texel[1][2] index 

103:101 texel[1][3] index 

106:104 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 
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TWO mode indices field with fix-up index [1] at texel[2][0] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

106:105 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

ONE mode indices field 

Bit Description 

67:65 texel[0][0] index 

71:68 texel[0][1] index 

75:72 texel[0][2] index 

79:76 texel[0][3] index 

83:80 texel[1][0] index 

87:84 texel[1][1] index 

91:88 texel[1][2] index 

95:92 texel[1][3] index 

99:96 texel[2][0] index 

103:100 texel[2][1] index 

107:104 texel[2][2] index 

111:108 texel[2][3] index 

115:112 texel[3][0] index 

119:116 texel[3][1] index 

123:120 texel[3][2] index 
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Bit Description 

127:124 texel[3][3] index 

Endpoint Computation 

The endpoints can be defined in many different ways, as shown above. This section describes how the 

endpoints are computed from the bits in the compression block. The method used depends on whether 

the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16). 

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and 

independently, however in some modes different channels have different incoming precision which 

must be accounted for. The following rules are employed: 

 If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits 

 For all other cases, the value is zero-extended to 16 bits 

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that 

are delta values, the next step involves computing the absolute endpoint. The “w” endpoint is always 

absolute and acts as a base value for the other three endpoints. Each channel is handled identically and 

independently. 

 x = w + x 

 y = w + y 

 z = w + z 

    

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any 

resulting high bits are dropped). 

Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 

14 (ONE mode) interpolated colors. Again each channel is processed independently. 

First the endpoints are unquantized, with each channel of each endpoint being processed 

independently. The number of bits in the original base w value represents the precision of the 

endpoints. The input endpoint is called e, and the resulting endpoints are represented as 17-bit signed 

integers and called e' below. 

For the BC6H_UF16 format: 

 if the precision is already 16 bits, e' = e 

 if e = 0, e' = 0 

 if e is the maximum representible in the precision, e' = 0xFFFF 

 otherwise, e' = ((e « 16) + 0x8000) » precision 
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For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e' and e 

refer only to the magnitude portion: 

 if the precision is already 16 bits, e' = e 

 if e = 0, e' = 0 

 if e is the maximum representible in the precision, e' = 0x7FFF 

 otherwise, e' = ((e « 15) + 0x4000) » (precision - 1) 

Next, the palette values are generated using predefined weights, using the tables below: 

palette[i] = (w' * (64 - weight[i]) + x' * weight[i] + 32) » 6 

TWO mode weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

ONE mode weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation w' and x' represent the endpoints e' computed in the previous step corresponding to w 

and x, respectively. For the second line in TWO mode, w and x are replaced with y and z. 

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the 

values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign 

magnitude. These final 16-bit results are ultimately treated as 16-bit floats. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit 

per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter. 

This procedure differs depending on whether the mode is TWO or ONE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, but the “indices” field is 63 bits. This field consists 

of a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 

3 bits, the missing high bit being set to zero. 

TWO Mode 

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1 
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(endpoints y and z). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the 

“fix-up index”. These texels have one less bit in the index. 

  
0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

The 46-bit “indices” field consists of a 3-bit palette index for each of the 16 texels, with the exception of 

the bracketed texels that have only two bits each. The high bit of these texels is set to zero. 
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BC7  

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point 

images. 

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

BC7 has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 

bits depending on mode). 

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or 

three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If 

a two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the 

two lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the 

color-only modes, alpha is always returned at its default value of 1.0. 

Some modes contain the following fields: 

 P-bits. These represent shared LSB for all components of the endpoint, which increases the 

endpoint precision by one bit. In some cases both endpoints of a line share a P-bit. 

 Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which 

of the four components has its own indexes (scalar) vs. the other three components (vector). 

 Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit 

index vs. the 2-bit index. 

Field Definition 

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The 

mode is selected by the unique mode bits specified in each table. Each mode has particular 

characteristics described at the top of the table. 

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16 

partitions 

Bit Description 

0 mode = 0 

4:1 partition 

8:5 R0 

12:9 R1 

16:13 R2 

20:17 R3 

24:21 R4 

28:25 R5 

32:29 G0 



 

  

Memory Views  

 

  

  

136 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 

Bit Description 

36:33 G1 

40:37 G2 

44:41 G3 

48:45 G4 

52:49 G5 

56:53 B0 

60:57 B1 

64:61 B2 

68:65 B3 

72:69 B4 

76:73 B5 

77 P0 

78 P1 

79 P2 

80 P3 

81 P4 

82 P5 

127:83 indices 
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Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64 

partitions 

Bit Description 

1:0 mode = 10 

7:2 partition 

13:8 R0 

19:14 R1 

25:20 R2 

31:26 R3 

37:32 G0 

43:38 G1 

49:44 G2 

55:50 G3 

61:56 B0 

67:62 B1 

73:68 B2 

79:74 B3 

80 P0 

81 P1 

127:82 indices 
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Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions 

Bit Description 

2:0 mode = 100 

8:3 partition 

13:9 R0 

18:14 R1 

23:19 R2 

28:24 R3 

33:29 R4 

38:34 R5 

43:39 G0 

48:44 G1 

53:49 G2 

58:54 G3 

63:59 G4 

68:64 G5 

73:69 B0 

78:74 B1 

83:79 B2 

88:84 B3 

93:89 B4 

98:94 B5 

127:99 indices 
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Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64 

partitions 

Bit Description 

3:0 mode = 1000 

9:4 partition 

16:10 R0 

23:17 R1 

30:24 R2 

37:31 R3 

44:38 G0 

51:45 G1 

58:52 G2 

65:59 G3 

72:66 B0 

79:73 B1 

86:80 B2 

93:87 B3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16 

3-bit indices, 2-bit component rotation, 1-bit index selector 

Bit Description 

4:0 mode = 10000 

6:5 rotation 

7 index selector 

12:8 R0 

17:13 R1 

22:18 G0 

27:23 G1 

32:28 B0 

37:33 B1 

43:38 A0 

49:44 A1 
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Bit Description 

80:50 2-bit indices 

127:81 3-bit indices 
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Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices, 

2-bit alpha indices, 2-bit component rotation 

Bit Description 

5:0 mode = 100000 

7:6 rotation 

14:8 R0 

21:15 R1 

28:22 G0 

35:29 G1 

42:36 B0 

49:43 B1 

57:50 A0 

65:58 A1 

96:66 color indices 

127:97 alpha indices 

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit 

indices 

Bit Description 

6:0 mode = 1000000 

13:7 R0 

20:14 R1 

27:21 G0 

34:28 G1 

41:35 B0 

48:42 B1 

55:49 A0 

62:56 A1 

63 P0 

64 P1 

127:65 indices 
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Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit 

indices, 64 partitions 

Bit Description 

7:0 mode = 10000000 

13:8 partition 

18:14 R0 

23:19 R1 

28:24 R2 

33:29 R3 

38:34 G0 

43:39 G1 

48:44 G2 

53:49 G3 

58:54 B0 

63:59 B1 

68:64 B2 

73:69 B3 

78:74 A0 

83:79 A1 

88:84 A2 

93:89 A3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels. 
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The indices fields are variable in length and due to the different locations of the fix-up indices 

depending on partition set there are a very large number of possible configurations. Each mode above 

indicates how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, 

and three in THREE mode) each have one less bit than indicated. However, the indices are always 

packed into the index fields according to the table below, with the specific bit assignments of each texel 

following the rules just given. 

Bit Description 

LSBs texel[0][0] index 

  texel[0][1] index 

  texel[0][2] index 

  texel[0][3] index 

  texel[1][0] index 

  texel[1][1] index 

  texel[1][2] index 

  texel[1][3] index 

  texel[2][0] index 

  texel[2][1] index 

  texel[2][2] index 

  texel[2][3] index 

  texel[3][0] index 

  texel[3][1] index 

  texel[3][2] index 

MSBs texel[3][3] index 

Endpoint Computation 

The endpoints can be defined with different precision depending on mode, as shown above. This 

section describes how the endpoints are computed from the bits in the compression block. Each 

component of each endpoint follows the same steps. 

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint 

value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range 

from 0x00 to 0xFF. 
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Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14 

interpolated colors, depending on the number of bits in the indices. Again each channel is processed 

independently. 

The equation to compute each palette color with index i, given two endpoints is as follows, using the 

tables below to determine the weight for each palette index: 

palette[i] = (E0 * (64 - weight[i]) + E1 * weight[i] + 32) » 6 

2-bit index weights: 

palette index 0 1 2 3 

weight 0 21 43 64 

3-bit index weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

4-bit index weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation E0 and E1 represent the even-numbered and odd-numbered endpoints computed in 

the previous step for the component and line currently being computed. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit 

per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In 

BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure 

differs depending on whether the mode is ONE, TWO, or THREE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, thus there is only a single “partition set” defined, 

with all texels selecting line 0 and texel [0][0] being the “fix-up index” with one less bit in the index. 
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TWO Mode 

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 

(endpoints 2 and 3). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the 

“fix-up index”. These texels have one less bit in the index. 

  
0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 
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1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

20 
[0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1 

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1 

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0 

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0 

24 
[0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1 

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1] 

28 
[0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1 

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1 

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 

2C 
[0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0 

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0 

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0 

30 
[0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0 

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

34 
[0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1 

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0 

38 
[0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1 

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1] 

3C 
[0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0 

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1] 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 147 

THREE Mode 

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block 

of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). 

Each texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 

(endpoints 2 and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of “[0]”, “[1]”, and “[2]”, 

the index that this is at is termed the “fix-up index”. These texels have one less bit in the index. 

  
0 1 2 3 

00 
[0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2] 

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2 

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1 

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1 

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1 

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1 

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1] 

08 
[0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2 

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2 

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2 

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2] 

0C 
[0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1] 

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1 

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0 

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0 

10 
[0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2] 

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2 

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2 

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1] 

14 
[0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0 

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0 

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0 

18 
[0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0 

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1 

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1 

1C 
[0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0 
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1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0 

[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1 

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1] 

20 
[0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0 

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0 

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0 

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0 

24 
[0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1 

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0 

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2 

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1] 

28 
[0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2 

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2 

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2 

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2] 

2C 
[0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0 

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1 

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1 

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1] 

30 
[0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0 

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2 

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2 

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2] 

34 
[0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0 

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2 

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2] 

38 
[0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0 

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0 

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0 

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2] 

3C 
[0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1] 

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1 

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1 

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0 
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Adaptive Scalable Texture Compression (ASTC)  

This section describes the data structure of the Adaptive Scalable Texture Compression (ASTC) format, 

as well as the decoding flow of ASTC. Also described are the header format and mipmap layout in the 

compressed texture file of *.astc. This is based on the reference encoder and decoder from the Khronos 

committee, with an extension to support multiple miplevel texture. 

ASTC is a new compressed texture format with following characteristics: 

1. ASTC compression format is currently only used for static texture, due to the large amount of 

computation and high latency required to find the optimal configuration in compression. It 

cannot be used to compress dynamic textures such as a shadow map. 

2. ASTC is a lossy compression technique that cannot be used to compress dynamic textures which 

do not tolerate quality degradation. 

3. ASTC has a huge range of compression ratio and block size, but these choices are fixed for each 

texture for all blocks at all mipmap levels. 

4. ASTC has options to support compression from 1 to 4 channels for texture data. 

5. ASTC can support both high and low dynamic textures. 

6. ASTC can support both 2D and 3D textures. 

Project Supported Formats 

CHV, BSW 2D LDR profile. 

ASTC Fundamentals  

This section describes some background details and new surface formats for ASTC. 

Background   

ASTC is a more advanced texture compression technique than the existing BC and ETC, and can reduce 

footprint & BW of static texture further in Graphics application by providing a texture compression 

solution at higher compression ratios. To best find the balance point of visual quality and compression, 

it provides a wide range of bit rate selection from 8bpp to 0.89 bpp in 2D, and 4.6bpp to 0.6 bpp in 3D 

at various block size of footprints. It also has flexibility to specify 1-4 components, selection of dual 

plane mode among the specified color components. 

It extends the existing linear model on color distribution of each block in multiple partitions (up to 4), 

with flexible compact supporting on index/weight for color interpolation. ASTC also has a support of 

high dynamic range (HDR) image and 3D textures. The mixture of HDR and LDR data is within each 

block level allows a great flexibility to represent high dynamics variation at fine granularity. The support 

of 3D texture explores the data coherency in all 3 dimensions, without the need to mimic 3D map with 

2D slices. On top of everything, void-extent regions are introduced for both 2D and 3D maps as further 

optimization on large constant region. 
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Due to the computational complexity and processing delay of the encoding process, ASTC compression 

encoding is always offline, and can only be used for static texture. It does not support auto mipmap 

generation and cannot be considered as a format for render target. 

The ASTC provides a wide spectrum of bit per pixel for both 2D and 3D texture for both LDR and HDR 

images, hence a wide range of compression to any 2D and 3D texture. 

LDR Compression Ratios: 

2D Block Footprint Bit Rate (bpp) Compression ratio (LDR 32bpp) 

4x4 8.00 4.0 

5x4 6.40 5.0 

5x5 5.12 6.3 

6x5 4.27 7.5 

6x6 3.56 9.0 

8x5 3.20 10.0 

8x6 2.67 12.0 

10x5 2.56 12.5 

10x6 2.13 15.0 

8x8 2.00 16.0 

10x8 1.60 20.0 

10x10 1.28 25.0 

12x10 1.07 29.9 

12x12 0.89 36.0 
 

HDR Compression Ratios: 

Compared against fixed compression ratios of 4x or 8x on BC* formats, ASTC provides compression 

ratios from 4x to 36x for 2D LDR, 8x to 72x in 2D HDR maps, 7x to 54x on 3D LDR (32bpp) maps, and 

14x to 108x in 3D HDR (64bpp). This can reduce bandwidth and footprint of a static 2D HDR or 3D 

textures to a small fractional of the existing BC formats, and greatly improve the performance on the 

graphic applications using these textures intensively. 

Another benefit of ASTC is that, with the large range of selection of footprints and bpp, it can provide a 

good trade-off between quality degradation of the compressed texture and performance, due to the 

bandwidth and footprints reduction. This could not be achieved by any previously existing texture 

compression technologies. 

Although ASTC has a huge benefit of bandwidth reduction, the expected performance gain in real 3D 

application from this technique depends on how much texture bandwidth bottleneck is relative to the 

throughput of computing in EU, Sampler, and other fixed function components. 
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New Surface Formats for ASTC Texture   

The ASTC data format natively supports 14 2D block size, 10 3D block size, and each decoded format 

should support either UN8 (with sRGB con version) or Float16 at each color component. Following is the 

full list of all different surface formats as the full combination of different block shapes and UN8 or 

Float16 options. 

Value 

[26] LDR/Full [25] 

2D/3D 

[24] U8srgb /FLT16 

Width 

2D 

[23:21] 

3D 

[23:22] 

Height 

2D 

[20:18] 

3D 

[21:20] 

Depth 

2D: n/a 

3D: 

[19:18] 

Binary 

form Name (BPE) 

000h 000 0 0  000 000 

000 

ASTC_LDR_2D_4x4_U8sRGB 8.00 

008h 000 1 0  000 001 

000 

ASTC_LDR_2D_5x4_U8sRGB 6.40 

009h 000 1 1  000 001 

001 

ASTC_LDR_2D_5x5_U8sRGB 5.12 

011h 000 2 1  000 010 

001 

ASTC_LDR_2D_6x5_U8sRGB 4.27 

012h 000 2 2  000 010 

010 

ASTC_LDR_2D_6x6_U8sRGB 3.56 

021h 000 4 1  000 100 

001 

ASTC_LDR_2D_8x5_U8sRGB 3.20 

022h 000 4 2  000 100 

010 

ASTC_LDR_2D_8x6_U8sRGB 2.67 

031h 000 6 1  000 110 

001 

ASTC_LDR_2D_10x5_U8sRGB 2.56 

032h 000 6 2  000 110 

010 

ASTC_LDR_2D_10x6_U8sRGB 2.13 

024h 000 4 4  000 100 

100 

ASTC_LDR_2D_8x8_U8sRGB 2.00 

034h 000 6 4  000 110 

100 

ASTC_LDR_2D_10x8_U8sRGB 1.60 

036h 000 6 6  000 110 

110 

ASTC_LDR_2D_10x10_U8sRGB 1.28 

03eh 000 7 6  000 111 

110 

ASTC_LDR_2D_12x10_U8sRGB 1.07 

03fh 000 7 7  000 111 

111 

ASTC_LDR_2D_12x12_U8sRGB 0.89 

040h 001 0 0  001 000 

000 

ASTC_LDR_2D_4x4_FLT16 8.00 

048h 001 1 0  001 001 ASTC_LDR_2D_5x4_FLT16 6.40 
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Value 

[26] LDR/Full [25] 

2D/3D 

[24] U8srgb /FLT16 

Width 

2D 

[23:21] 

3D 

[23:22] 

Height 

2D 

[20:18] 

3D 

[21:20] 

Depth 

2D: n/a 

3D: 

[19:18] 

Binary 

form Name (BPE) 

000 

049h 001 1 1  001 001 

001 

ASTC_LDR_2D_5x5_FLT16 5.12 

051h 001 2 1  001 010 

001 

ASTC_LDR_2D_6x5_FLT16 4.27 

052h 001 2 2  001 010 

010 

ASTC_LDR_2D_6x6_FLT16 3.56 

061h 001 4 1  001 100 

001 

ASTC_LDR_2D_8x5_FLT16 3.20 

062h 001 4 2  001 100 

010 

ASTC_LDR_2D_8x6_FLT16 2.67 

071h 001 6 1  001 110 

001 

ASTC_LDR_2D_10x5_FLT16 2.56 

072h 001 6 2  001 110 

010 

ASTC_LDR_2D_10x6_FLT16 2.13 

064h 001 4 4  001 100 

100 

ASTC_LDR_2D_8x8_FLT16 2.00 

074h 001 6 4  001 110 

100 

ASTC_LDR_2D_10x8_FLT16 1.60 

076h 001 6 6  001 110 

110 

ASTC_LDR_2D_10x10_FLT16 1.28 

07eh 001 7 6  001 111 

110 

ASTC_LDR_2D_12x10_FLT16 1.07 

07fh 001 7 7  001 111 

111 

ASTC_LDR_2D_12x12_FLT16 0.89 

080h 010 0 0 0 010 000 

000 

ASTC_LDR_3D_3x3x3_U8sRGB 4.74 

090h 010 1 0 0 010 010 

000 

ASTC_LDR_3D_4x3x3_U8sRGB 3.56 

094h 010 1 1 0 010 010 

100 

ASTC_LDR_3D_4x4x3_U8sRGB 2.67 

095h 010 1 1 1 010 010 

101 

ASTC_LDR_3D_4x4x4_U8sRGB 2.00 

0a5h 010 2 1 1 010 100 

101 

ASTC_LDR_3D_5x4x4_U8sRGB 1.60 

0a9h 010 2 2 1 010 101 

001 

ASTC_LDR_3D_5x5x4_U8sRGB 1.28 
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Value 

[26] LDR/Full [25] 

2D/3D 

[24] U8srgb /FLT16 

Width 

2D 

[23:21] 

3D 

[23:22] 

Height 

2D 

[20:18] 

3D 

[21:20] 

Depth 

2D: n/a 

3D: 

[19:18] 

Binary 

form Name (BPE) 

0aah 010 2 2 2 010 101 

010 

ASTC_LDR_3D_5x5x5_U8sRGB 1.02 

0bah 010 3 2 2 010 111 

010 

ASTC_LDR_3D_6x5x5_U8sRGB 0.85 

0beh 010 3 3 2 010 111 

110 

ASTC_LDR_3D_6x6x5_U8sRGB 0.71 

0bfh 010 3 3 3 010 111 

111 

ASTC_LDR_3D_6x6x6_U8sRGB 0.59 

140h 101 0 0 n/a 101 000 

000 

ASTC_FULL_2D_4x4_FLT16 8.00 

148h 101 1 0 n/a 101 001 

000 

ASTC_FULL_2D_5x4_FLT16 6.40 

149h 101 1 1 n/a 101 001 

001 

ASTC_FULL_2D_5x5_FLT16 5.12 

151h 101 2 1 n/a 101 010 

001 

ASTC_FULL_2D_6x5_FLT16 4.27 

152h 101 2 2 n/a 101 010 

010 

ASTC_FULL_2D_6x6_FLT16 3.56 

161h 101 4 1 n/a 101 100 

001 

ASTC_FULL_2D_8x5_FLT16 3.20 

162h 101 4 2 n/a 101 100 

010 

ASTC_FULL_2D_8x6_FLT16 2.67 

171h 101 6 1 n/a 101 110 

001 

ASTC_FULL_2D_10x5_FLT16 2.56 

172h 101 6 2 n/a 101 110 

010 

ASTC_FULL_2D_10x6_FLT16 2.13 

164h 101 4 4 n/a 101 100 

100 

ASTC_FULL_2D_8x8_FLT16 2.00 

174h 101 6 4 n/a 101 110 

100 

ASTC_FULL_2D_10x8_FLT16 1.60 

176h 101 6 6 n/a 101 110 

110 

ASTC_FULL_2D_10x10_FLT16 1.28 

17eh 101 7 6 n/a 101 111 

110 

ASTC_FULL_2D_12x10_FLT16 1.07 

17fh 101 7 7 n/a 101 111 

111 

ASTC_FULL_2D_12x12_FLT16 0.89 
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Value 

[26] LDR/Full [25] 

2D/3D 

[24] U8srgb /FLT16 

Width 

2D 

[23:21] 

3D 

[23:22] 

Height 

2D 

[20:18] 

3D 

[21:20] 

Depth 

2D: n/a 

3D: 

[19:18] 

Binary 

form Name (BPE) 

1c0h 111 0 0 0 111 000 

000 

ASTC_FULL_3D_3x3x3_FLT16 4.74 

1d0h 111 1 0 0 111 010 

000 

ASTC_FULL_3D_4x3x3_FLT16 3.56 

1d4h 111 1 1 0 111 010 

100 

ASTC_FULL_3D_4x4x3_FLT16 2.67 

1d5h 111 1 1 1 111 010 

101 

ASTC_FULL_3D_4x4x4_FLT16 2.00 

1e5h 111 2 1 1 111 100 

101 

ASTC_FULL_3D_5x4x4_FLT16 1.60 

1e9h 111 2 2 1 111 101 

001 

ASTC_FULL_3D_5x5x4_FLT16 1.28 

1eah 111 2 2 2 111 101 

010 

ASTC_FULL_3D_5x5x5_FLT16 1.02 

1fah 111 3 2 2 111 111 

010 

ASTC_FULL_3D_6x5x5_FLT16 0.85 

1feh 111 3 3 2 111 111 

110 

ASTC_FULL_3D_6x6x5_FLT16 0.71 

1ffh 111 3 3 3 111 111 

111 

ASTC_FULL_3D_6x6x6_FLT16 0.59 

ASTC File Format and Memory Layout   

Content for this topic is currently under development. 

ASTC Header Data Structure and Amendment   

The 1st block of an ASTC compression texture is a header file. Its byte layout in the original header 

structure in *.astc file is: 

 struct astc_header 

 { 

     uint8_t magic[4]; 

     uint8_t blockdim_x; 

     uint8_t blockdim_y; 

     uint8_t blockdim_z; 

     uint8_t xsize[3]; // x-size = xsize[0] + xsize[1] + xsize[2] 

     uint8_t ysize[3]; // x-size, y-size and z-size are given in texels; 

     uint8_t zsize[3]; // block count is inferred 

 }; 
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Since there are limited ranges for block dimensions in x, y and z directions as described in following, we 

could store additional information in the unused upper bits of these byte fields 

Block Dimension 2D 3D 

blockdim_x 4, 5, 6, 8, 10, 12 3, 4, 5, 6 

blockdim_y 4, 5, 6, 8, 10, 12 3, 4, 5, 6 

blockdim_z 1 3, 4, 5, 6 

Since blockdim_z is in the range of [1,6], only lower 3 bits of blockdim_z is used. We proposed the Intel 

astc extension format with numLODs stored in the upper 5 bits of the byte field used for blockdim_z. 

This new byte field can be defined as: 

numLODs_blockdim_z = (numLODs-1) « 3 | ( blockdim_z & 0x7) ; 

New header: 

 struct astc_header 

 { 

     uint8_t magic[4]; 

     uint8_t blockdim_x; 

     uint8_t blockdim_y; 

 uint8_t numLODs_blockdim_z; 

 uint8_t xsize[3]; // width = xsize[0] + (xsize[1]«8) + (xsize[2]«16) 

 uint8_t ysize[3]; // height= ysize[0] + (ysize[1]«8) + (ysize[2]«16) 

 uint8_t zsize[3]; // depth = zsize[0] + (zsize[1]«8) + (zsize[2]«16) 

 // x_size, y_size and z_size are given in texels; 

          

 // block count is inferred 

 }; 

The driver or the software responsible for managing the memory resource will get numLODs and 

blockdim_z in: 

numLODs = ((numLODs_blockdim_z » 3) & 0x1F) + 1; 

blockdim_z = numLODs_blockdim_z & 0x7; 

Data Layout in ASTC Compression File   

A number of parameters are useful to determine where given pixels are located on the 2D & 3D surface. 

First, the width and height for each LOD level “L” is computed as: 

 

 

 

The numbers of blocks in width, height and depth slab in each LOD are: 

Nw(L) = Ceil(WL /Bw ); 
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Nh (L) =  Ceil(HL /Bh ); 

Ns (L) =  Ceil(DL /Bd ) 

Where Bw, Bh and Bd is the block width, height and depth respectively. 

Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in 

each LOD level of the mipmap is described by  nBL  = Nw(L) * Nh (L) * Ns (L), The total number of 

blocks in the entire texture map is a summation of nBL‘s from all mipmap levels and all slabs, which are 

all pre-compressed via ASTC encoder. All the blocks in each LOD are in raster sequenced in width, 

height and then depth slab order. 

Total ASTC Data Block Layout in All Mipmap Levels   

The entire layout of the compression texture file looks like: 

Address Data Description 

Addr0 (Base Address) Header structure 

Addr0+16 1st Data Block in LOD0 

Addr0+32 2nd Data Block in LOD0 

… … 

Addr1 = Addr0+16*nB0 Last Data Block in LOD0 

Addr1 +16 1st Data Block in LOD1 

Addr1+32 2nd Data Block in LOD1 

… … 

Addr2 = Addr1+16*nB1 Last Data Block in LOD1 

Addr2+16 1st Data Block in LOD2 

Addr2+32 2nd Data Block in LOD2 

… … 

Addr3 = Addr2+16*nB2 Last Data Block in LOD2 

… … 

Data Layout in Memory for All Mipmap Levels   

The following equations for give the base address (U_offset, V_offset) in Cartesian coordinates for the 

starting point of each mip map at LOD L and depth slab q: 

LOD=0:  

U_offset (0, q) = 0;  

V_offset (0, q)  = q * h0; 

LOD=1:  

U_offset (1, q) = (q%2)*w1;  

V_offset (1, q)  = D0*h0 + (q»1)*h1; 
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LOD=2:  

U_offset (2, q) = (q%4)*w2;    

V_offset (2, q)  = D0*h0 + ceil(D1/2) * h1 + (q»2)*h2; 

LOD=3:  

U_offset (3, q) = (q%8)*w3;  

V_offset (3, q)  = D0*h0 + ceil(D1/2) * h1 + ceil(D2/2) * h2 + (q»3)*h3; 

…… 
Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in 

each LOD level of the mipmap is described by  nBL  = Nw(L) * Nh (L) * Ns (L). The memory layout for 

TileY format are considered with 512bit (16Bx4) in 1 cacheline granularity, the total number of blocks is: 

  4*( (Ceil(HL /Bh )+3)/4  * Ceil(WL /Bw ) * Ceil(DL /Bd ): 

Here is the full list describing the total number of rows and columns of data in each mipmap for texture 

in ASTC format: 

Table for block dimension in 2D 

Block Size 

ASTC Block Height 

(in line) 

ASTC Block Width 

(in Byte) 

4 ((Ceil(HL /4 ) +3)/4) *4 Ceil(WL /4 ) * 16 

5 ((Ceil(HL /5 ) +3)/4) *4 Ceil(WL /5 ) * 16 

6 ((Ceil(HL /6 ) +3)/4) *4 Ceil(WL /6 ) * 16 

8 ((Ceil(HL /8 ) +3)/4) *4 Ceil(WL /8 ) * 16 

10 ((Ceil(HL /10) +3)/4) *4 Ceil(WL /10) * 16 

12 ((Ceil(HL /12) +3)/4) *4 Ceil(WL /12) * 16 

   

Table for block dimension in 3D 

Block Size 

ASTC Block Height 

(in line) 

ASTC Block Width 

(in Byte) 

ASTC Block Depth/slab 

(in slice) 

3 ((Ceil(HL /3) +3)/4) *4 Ceil(WL /3) * 16 Ceil(DL /3 ) 

4 ((Ceil(HL /4 ) +3)/4) *4 Ceil(WL /4 ) * 16 Ceil(DL /4 )  

5 ((Ceil(HL /5 ) +3)/4) *4 Ceil(WL /5 ) * 16 Ceil(DL /5 ) 

6 ((Ceil(HL /6 ) +3)/4) *4 Ceil(WL /6 ) * 16 Ceil(DL /6 ) 
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For example, an image of 64x64 with 5x5 block coding in LOD0 will have: 

Block Height: (13+3)/4*4=16 (lines) 

Block Width: 13 *16 = 208 (Bytes) 

The following diagram illustrate the memory layout for 2D and 3D map respectively. 
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ASTC Data Structure   

Content for this topic is currently under development. 
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Layout and Description of Block Data   

The block data structure is described in the following table in the categories of the block being partition 

enabled (2-4 partitions) or disabled (only 1 partition), as well as 1 plane or dual-plane mode. Where 

CEM refers to Color Endpoint Mode, and CCS stands for Color Channel Selection: 

Layout of Partitioning Disabled (1 partition) and Enabled (multi-partition) blocks 

 

The 11 bit “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this 

field is listed in next two tables, one for the 2D and one for the 3D. 

The “Part” field specifies the number of partitions minus one. If dual plane mode is enabled, the number 

of partitions must be 3 or fewer. In case 4 partitions in such situation are specified, the error value is 

returned for all texels in the block. The size and layout of the extra configuration data depends on the 

number of partition, and the number of planes in the image. 

Partitioning   

For any non-void extend region, each block is subdivided into 1, 2, 3 or 4 partitions, with a separate 

color endpoint pair for each partition. The number of partitions is specified by the partition count-1 in 

bits [12:11] of block data. If 2 or more partitions are selected, partitioning is enabled, the 10 bit partition 

index is then used to select one from 1024 partitioning patterns, where the total set of patterns 

supported in ASTC depends on the partition count and block size. The partitioning patterns are 

produced generatively, which supports a very large set of partitioning patterns for different block sizes 

with a modest number of hardware gates implementation. 
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Index Mode   

The “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this field is 

listed in next two tables, one for the 2D and one for the 3D. 

The Index Mode field specifies the width (N), height (M) and depth (Q) of the grid of indices, what range 

of values they use, and whether dual index planes are present. The index ranges are encoded using a 3 

bit value R, which is interpreted together with a precision bit H, as follows: 
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Each index value is encoded using the specified number of Trits, Quints and Bits. The details of this 

encoding can be found in Section - Integer Sequence Encoding. Due to the encoding of the R field, bits 

r2 and r1 cannot both be zero 

The number of indices provided for a block is not tied to the block size in any way, instead, the indices 

form an N*M*Q ordered grid. N, M and Q are specified on a per-block basis rather then being a global 

texture property. For 2D blocks, N and M can be set to any value from 2 to 12 while Q is fixed at 1; for 

3D blocks, N, M and Q can be set to any value from 2 to 5. The range used for each index can be set 

separately for each block. The Index Bit Mode field species the values of N, M, Q and the range; it also 

specifies whether Dual Index Planes are present or not as well. 

The D bit in following tables is set to indicate dual-plane mode. In this mode, the maximum allowed 

number of partitions is 3. The size of the grid in each dimension must be less than or equal to the 

corresponding dimension of the block footprint. If the grid size is greater than the footprint dimension 

in any axis, then this is an illegal block encoding and all texels will decode to the error color. 

For 2D blocks, the index mode field is laid out as follows: 
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The bit encoding of the index mode field for 2D Blocks 

Bits Width Height Notes 

10 9 8 7 6 5 4 3:2 1:0 N M  

D H B A r0 0 0 r2 r1 B+4 A+2  

D H B A r0 0 1 r2 r1 B+8 A+2  

D H B A r0 1 0 r2 r1 A+2 B+8  

D H 0 B A r0 1 1 r2 r1 A+2 B+6  

D H 1 B A r0 1 1 r2 r1 B+2 A+2  

D H 0 0 A r0 r2 r1 0 0 12 A+2  

D H 0 1 A r0 r2 r1 0 0 A+2 12  

D H 1 1 0 0 r0 r2 r1 0 0 6 10  

D H 1 1 0 1 r0 r2 r1 0 0 10 6  

B 1 0 A r0 r2 r1 0 0 A+6 B+6 D=0, H=0 

x x 1 1 1 1 1 1 1 0 0 - - Void-Extent 

x x 1 1 1 x x x x 0 0 - - Reserve 

x x x x x x x 0 0 0 0 - - Reserve 

Note that, due to the encoding of the R field (r0, r1, r2), bits r2 and r1 cannot both be zero, which 

disambiguates the first five rows from the rest of the table. The penultimate row of the table is reserved 

only if bits [5:2] are not all 1, in which case it encodes a void-extent block (as shown in the previous row) 

For 3D blocks, the index mode field is laid out as follows: 
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3D Index Mode Layout 

Bits Notes 

10 9 8 7 6 5 4 3 2 1 0 N M Q (D, H) 

D H B A r0 C r2 r1 A+2 B+2 C+2  

B 0 0 A r0 r2 r1 0 0 6 B+2 A+2 (0, 0) 

B 0 1 A r0 r2 r1 0 0 A+2 6 B+2 (0, 0) 

B 1 0 A r0 r2 r1 0 0 A+2 B+2 6 (0, 0) 

D H 1 1 0 0 r0 r2 r1 0 0 6 2 2  

D H 1 1 0 1 r0 r2 r1 0 0 2 6 2  

D H 1 1 1 0 r0 r2 r1 0 0 2 2 6  

x x 1 1 1 1 1 1 1 0 0 - - - Void-Extent 

x x 1 1 1 1 x x x 0 0 - - - Reserve 

x x x x x x x 0 0 0 0 - - - Reserve 

The D bit is set to indicate dual-plane mode: 

1: dual index planes are used  

0: single index plane is used 

In this mode, the maximum allowed number of partitions is 3. The size of the grid in each dimension 

must be less than or equal to the corresponding dimension of the block footprint. If the grid size is 

greater than the footprint dimension in any axis, then this is an illegal block encoding and all texels will 

decode to the error color. The penultimate row of the table is reserved only if bits [4:2] are not all 1, in 

which case it encodes a void-extent block (as shown in the previous row). 

H: Index Range Bit: 

1: the High-Precision group is selected. 

0: The Low-Precision group is selected. 

Here is the detail description: 

 The encoding of xx111111100 is for the void-extent block. 

 The pattern xxxxxxx0000 (the bottom 4 bits being 0000b) is reserved for future extension, and 

should result a NaN-vector when such a pattern is decoded. 

 Any encodings not listed in the table are considered invalid and result in undened behavior if 

encountered by decoders. 
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Given the limitation of the fix length of 128 bits per block, there are restrictions that will not allow every 

possible encoding: 

 The total number of indexes (N*M*Q for single index plane, 2*N*M*Q for dual index planes) must 

not exceed 64. 

 The length of the Index Integer Sequence must not exceed 96 bits. 

 The length of the Index Integer Sequence must be at least 24 bits. 

 The above restriction, combined with the other field widths of the format, implicitly restricts the 

Color Integer Sequence to a maximum of 75 bits. 

 Blocks that violate these restrictions are not legally produced by the encoder, result a vector of 

NaNs if encountered by decoders. 

Here is how the indices in each block are encoded and stored: 

 They are encoded using the Integer Sequence Encoding method described in Appendix. 

 The resulting bit-sequence is then bit-reversed, and stored from the top of the block downwards. 

The ordering of the indices in the Integer Sequence is a simple scan line-like ordering. 

The indices are used in two steps to interpolate between two endpoint colors for each texel. 

 First, they are scaled from whatever interval they were to the range [0,64]; 

 The resulting value is then used as a weight to interpolate between the two endpoints. 

Index Planes 

Depending on the Index Bits mode selected, an ASTC compressed block may offer 1 or 2 index planes. 

In the case of 2 index planes, two indices rather than just one are supplied for each texel that receives 

indices. Of these two indices, the first one is used for a weighted sum of three of the color components; 

the second is used for a weighted sum of the fourth color component. If only 1 index plane is present, it 

applies to all four color components. 

If two index planes are used, then a 2-bit bit field is needed to indicate which of the color components 

the second index plane applies to. These two bits are stored just below the index bits, except in the case 

where leftover color endpoint type bits are present; in that case, these two bits are stored just below the 

leftover color endpoint type bits. This two-bit bit-field has the following layout: 

Channel Red Green Blue Alpha 

Value 0 1 2 3 

If index infill is present while two index planes are being used, then index infill is performed on each 

index plane separately. If two index planes are used, the indexes are stored interleaved: the first index 

belongs to the first index plane, the second index belongs to the second index plane, the third index 

belongs to the first index plane, and so on. 
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Index Infill Procedure 

In ASTC, each block has an N*M*Q ordered grid of indices. N, M and Q may or may not match the 

dimensions of the actual block (e.g. it is possible to encode a 5x3 grid for an 8x8 block); if they don't 

match, then the grid is scaled so that its corner indexes align with the corner texels of the block, a 

bilinear index infill procedure is defined to interpolate an index for each texel. This procedure picks 1 to 

4 indexes, and assigns each of them a weight; these weights are always a multiple of 1/16. The exact 

details of this interpolation procedure are specified below. 

Color Endpoint Mode   

In single-partition mode, the Color Endpoint Mode (CEM) field stores one of 16 possible values. Each of 

these specifies how many raw data values are encoded, and how to convert these raw values into two 

RGBA color endpoints. They can be summarized as follows: 

List of Color Endpoint Modes 

CEM Description Class # of integers to represent each pair of color end points 

0 LDR Luminance or Alpha, direct 0 2 

1 LDR Luminance, base+offset 0 2 

2 HDR Luminance, large range 0 2 

3 HDR Luminance, small range 0 2 

4 LDR Luminance+Alpha, direct 1 4 

5 LDR Luminance+Alpha, base+offset 1 4 

6 LDR RGB, base+scale 1 4 

7 HDR RGB, base+scale 1 4 

8 LDR RGB, direct 2 6 

9 LDR RGB, base+offset 2 6 

10 LDR RGB, base+scale plus two A 2 6 

11 HDR RGB, direct 2 6 

12 LDR RGBA, direct 3 8: D=0; 6: D=1 

13 LDR RGBA, base+offset 3 8: D=0; 6: D=1 

14 HDR RGB, direct + LDR Alpha 3 8: D=0; 6: D=1 

15 HDR RGB, direct + HDR Alpha 3 8: D=0; 6: D=1 

 

Project Description 

CHV, BSW LDR modes are supported in ASTC LDR profile, which is enabled since CHV, BSW. 

In 2-4 partition modes, the encoding of Color Endpoint Modes are listed in following tables, where the 

endpoint mode representation may take from 6 to 14 bits, of which the first 6 bits are stored just after 

the partition indices, and the remaining bits are stored just below the index bits at variable position in 

the remaining space. 
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Partition / 

Class Types 

High bits [1:0] 

Same Class 6b [5:0] 
[5:2] 

Color Endpoint Mode 

0 0 

Different 

Classes 

2-Partions 

8b [7:0] 

[7:6] 

Mode in P1 

[5:4] 

Mode in P0 

[3:3] 

Class Select 

for P1 

[2:2] 

Class Select 

for P0 

0 1 

(Class 0 & 1) 

3-Partions 

11b [10:0] 

  
[10:9] 

Mode in P2 

[8:7] 

Mode in P1 

1 0 

(Class 1 & 2) 

[6:5] 

Mode in P0 

[4:4] 

Class  Select 

for P2 

[3:3] 

Class Select 

for P1 

[2:2] 

Class Select 

for P0 

4-Partions 

14b [13:0] 

[13:12] 

Mode in P2 

[11:10] 

Mode in P1 

[9:8] 

Mode in P2 

[7:6] 

Mode in P1 

1 1 

(Class 2 & 3) 

[5:5] 

Class Select 

for P3 

[4:4] 

Class Select 

for P2 

[3:3] 

Class Select 

for P1 

[2:2] 

Class Select 

for P0 

More specifically, if the CEM selector value in bits [24:23] is not 00, then data layout is as follows: 
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List of Color Endpoint Class Types encoding under multi-partitions 

Partitions       … 28 27 26 25 24 23 

2 … Index M1    … 
M0 

C1 C0 CEM 

3 … Index M2 M1 M0  … M0 C2 C1 C0 CEM 

4 … Index M3 M2 M1 M0 … C3 C2 C1 C0 CEM 

In this view, each partition i has two fields. Ci is the class selector bit, choosing between the two 

possible CEM classes (0 indicates the lower of the two classes), and Mi is a two-bit field specifying the 

low bits of the color endpoint mode within that class. The additional bits appear at a variable bit 

position, immediately below the texel index data. The ranges used for the data values are not explicitly 

specified. Instead, they are derived from the number of available bits remaining after the configuration 

data and index data have been specified. Details of the decoding procedure for Color Endpoints can be 

found later. 

Color Endpoint Data Size Determination 

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is 

determined from the index mode and number of partitions as follows: 

    config_bits = 17; 

    if (num_partitions>1) 

    if (single_CEM) 

    config_bits = 29; 

    else 

    config_bits = 24 + 3*num_partitions; 

   

    num_indices = M * N * Q; // size of index grid 

   

    if (dual_plane) 

    config_bits += 2; 

    num_indices *= 2; 

   

    index_bits = floor(num_indices*8*trits_in_index_range/5) + 

    floor(num_indices*7*quints_in_index_range/3) + 

    num_indices*bits_in_index_range; 

   

    remaining_bits = 128 – config_bits – index_bits; 

    num_CEM_pairs = base_CEM_class+1 + count_bits(extra_CEM_bits); 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 169 

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. 

This table is initialized such that the range is as large as possible, consistent with the constraint that the 

number of bits required to encode num_CEM_pairs pairs of values is not more than the number of 

remaining bits. An equivalent iterative algorithm would be: 

    num_CEM_values = num_CEM_pairs*2; 

    for(range = each possible CEM range in descending order of size) 

    { 

       CEM_bits = floor(num_CEM_values*8*trits_in_CEM_range/5) + 

          floor(num_CEM_values*7*quints_in_CEM_range/3) + 

          num_CEM_values*bits_in_CEM_range; 

    if (CEM_bits <= remaining_bits) 

       break; 

    } 

    return range; 

In cases where this procedure results in unallocated bits, these bits are not read by the decoding 

process and can have any value. 

Void-Extent Blocks   

As noted in the index mode, a specifically type of encoding is the void-extended type (2D), an efficient 

way to encode a constant color for large blocks of regions in texture. The data structure of a void extent 

is listed in following 2 tables as 2D and 3D blocks respectively. 

Layout of 2D Void-Extend Block, being supported in LDR since CHV, BSW. 

127:112 111:96 95:80 79:64 63:51 50:38 37:25 24:12 11:10 9 8:0 

A B G R T_high T_low S_high S_low Res:11 H 111111100 

Bit 9 H is the Dynamic Range flag, which indicates the format in which colors are stored. A 0 value 

indicates LDR, in which case the color components are stored as UNORM16 values. A 1 indicates HDR, 

in which case the color components are stored as FP16 values. If a void-extent block with HDR values is 

decoded in LDR mode, then the result will be the error color, opaque magenta, for all texels within the 

block. The low and height coordinate values are treated as unsigned integers and then normalized into 

the range 0..1 (by dividing by 213-1 for 2D or 29-1, for 3D respectively). The high values for each 

dimension must be greater than the corresponding low values, unless they are all all-1s. If all the 

coordinates are all-1s, then the void extent is ignored, and the block is simply a constant color 

block.The existence of single-color blocks with void extents must not produce results different from 

those obtained if these single-color blocks are defined without void-extents. Any situation in which the 

results would differ is invalid. Results from invalid void extents are undefined. If a void-extent appears in 

a MIPmap level other than the most detailed one, then the extent will apply to all of the more detailed 

levels too. This allows decoders to avoid sampling more detailed MIPmaps. If the more detailed 

MIPmap level is not a constant color in this region, then the block may be marked as constant color, but 

without a void extent, as detailed above. If a void-extent extends to the edge of a texture, then filtered 

texture colors may not be the same color as that specified in the block, due to texture border colors, 
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wrapping, or cube face wrapping. Care must be taken when updating or extracting partial image data 

that void-extents in the image do not become invalid. 

Decoding Process   

Overview Decoding Flow   

The goal for this feature is to reconstruct a cacheline (512b) of a target texture data at 4x4 region in 

UNORM8 A8R8G8B8 or 4x2 in FLT16 A16R16G16B16 with certain performance target, given the input 

texture coordinate (s,t,r). The scope of the u-architecture includes 

 The additional surface format of the post decoding block, and the footprint (equivalent bpp). 

These are both global to each texture surface, and can be passed to the Sampler in the surface 

state via sampler messages. 

 With post-scaled texture coordinate (u, v, p), the additional address calculation in FT to find the 

particular block location relative to the native block size specified in the surface state, as well as 

the relative texel position within that block. Assuming the block size for the block is Bu, Bv, Bp, 

the dimensions of a 2D surface as measured in block size tsize is: 

           bw = MAX ( 2, (w+ tsize -1)/ tsize ) 

           bh  = MAX (2, (h+ tsize -1)/ tsize) 

Here the division is an integer division. The relationship between non-negative image coordinates 

[row,col] =[u, v] and block coordinates is 

           bu  = u / tsize  ;  buu = u % tsize; 

           bv  = v / tsize  ;  bvv =  v % tsize; 

           bp  = p / tsize  ;  bpp = p % tsize; 

 With the selected sets of block size from 4x4 to 12x12 in 2D and 3x3x3 to 6x6x6 in 3D maps,1~4 

blocks of source texture needs to be fetched,  depending on whether the destination tile size (4x2 

in FLT16 or 4x4 in UNORM8888) is inclusive or come across a few source blocks, as shown in Fig. 
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Destination tile is inclusive within one tile or across up to 4 tiles in source texture region 

 

 Decode 1 to 4 128-bit ASTC compressed blocks fetched from DRAM in Sampler from ASTC 

compression format to either UNORM8 (LDR) or FLT16(HDR), reconstruct the texels needed in the 

texture filtering stage. The total decoding processing include: 

Front End Decoding Processing: 

1. Detect if an ASTC block is a void-extent type, illegal type, or a normal non-void-extent type. 

2. Decode the partition state – number of partitions in the current block. 

3. Decode the index mode for the block include the partition seed and (N,M,Q) dimension of the 

compact sampling domain. 

4. Decode the color endpoints modes in each partition. 

5. Calculate the bit position and total # of bits used for Index. 

6. Calculate the bit position and total # of bits and # of integers used in the Color endpoints in all 

partitions within the block. 

7. With Integer Sequence Decoding, get all the indices in the compact domain defined by NxMxQ 

grid. 

8. With Integer Sequence Decoding, get all the color end points from 16 modes in FLT16 for all 

partitions. 
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Back End Decoding Processing: 

1. Reconstruct the indices at the selected sampling locations with infill scaling. 

2. Find the partition from the partition seed at each sampling location. 

3. Reconstruct the texture color value with the index and the pair of color end points at each 

sampling location. 

4. If Block type is void extent, get the constant color from the high 64 bits and assign to the 

sampling location. 

5. Convert the data to UNORM8 if LDR data is needed for the subsequent FL filtering process. Under 

void-extent block type 

Following is the flow diagram of the decoding process: 
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Integer Sequence Encoding   

Both the index data and the endpoint color data are variable width, and are specified using a sequence 

of integer values. The range of each value in a sequence (e.g. a color index) is constrained. Since it is 

often the case that the most efficient range for these values is not a power of two, each value sequence 

is encoded using a technique known as “integer sequence encoding”. This allows efficient, hardware-

friendly packing and unpacking of values with non-power-of-two ranges. In a sequence, each value has 

an identical range. The range is specified in one of the following forms: 

Value range MSB encoding LSB encoding Value Block Packed block size 

0 .. 2n-1 - n bit value m (n <= 8) m 1 n 

0 .. (3 * 2 n)-1 Base-3 “trit” value t  n bit value m (n <= 6) t * 2 n + m 5 8 + 5*n 

0 .. (5 * 2 n)-1 Base-5 “quint” value q n bit value m (n <= 5) q * 2 n + m 3 7 + 3*n 

Since 35 is 243, it is possible to pack five trits into 8 bits (which has 256 possible values), so a trit can 

effectively be encoded as 1.6 bits. Similarly, since 53 is 125, it is possible to pack three quints into 7 bits 

(which has 128 possible values), so a quint can be encoded as 2.33 bits. 

The encoding scheme packs the trits or quints, and then interleaves the n additional bits in positions 

that satisfy the requirements of an arbitrary length stream. This makes it possible to correctly specify 

lists of values whose length is not an integer multiple of 3 or 5 values. It also makes it possible to easily 

select a value at random within the stream. If there are insufficient bits in the stream to fill the final 

block, then unused (higher order) bits are assumed to be 0 when decoding. 

To decode the bits for value number i in a sequence of bits b, both indexed from 0, perform the 

following: 

If the range is encoded as n bits per value, then the value is bits b[i*n+n-1:i*n] – a simple multiplexing 

operation. 

If the range is encoded using a trit, then each block contains 5 values (v0 to v4), each of which contains 

a trit (t0 to t4) and a corresponding LSB value (m0 to m4). The first bit of the packed block is bit 

floor(i/5)*(8+5*n). The bits in the block are packed as follows (in this example, n is 4): 

Trit-based Packing 

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  

T7 m4 T6 T5 m3 T4 m2 T3 T2 m1 T1 T0 m0 

The five trits t0 to t4 are obtained by bit manipulations of the 8 bits T[7:0] as follows: 

    if T[4:2] = 111  

       C = { T[7:5], T[1:0] }; t4 = t3 = 2  

    else  

       C = T[4:0]  

       if T[6:5] = 11  

          t4 = 2; t3 = T[7]  

       else  

          t4 = T[7]; t3 = T[6:5]  
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    if C[1:0] = 11  

       t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] }  

    else if C[3:2] = 11  

       t2 = 2; t1 = 2; t0 = C[1:0]  

    else  

       t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] } 

Endpoint Unquantization   

Each color endpoint is specified as a sequence of integers in a given range. These values are packed 

using integer sequence encoding, as a stream of bits stored from just above the configuration data, and 

growing upwards. Once unpacked, the values must be unquantized from their storage range, returning 

them to a standard range of 0..255. For bit-only representations, this is simple bit replication from the 

most significant bit of the value. For trit or quint-based representations, this involves a set of bit 

manipulations and adjustments to avoid the expense of full-width multipliers. This procedure ensures 

correct scaling, but scrambles the order of the decoded values relative to the encoded values. This must 

be compensated for using a table in the encoder. 

The initial inputs to the procedure are denoted A, B, C and D and are decoded using the range as 

follows: 

Range Trits Quints Bits Bit value A (9 bits) B (9 bits) C (9 bits) D (3 bits) 

0..5 1  1 a aaaaaaaaa 000000000 204 Trit value 

0..9  1 1 a aaaaaaaaa 000000000 113 Quint value 

0..11 1  2 ba aaaaaaaaa b000b0bb0 93 Trit value 

0..19  1 2 ba aaaaaaaaa b0000bb00 54 Quint value 

0..23 1  3 cba aaaaaaaaa cb000cbcb 44 Trit value 

0..39  1 3 cba aaaaaaaaa cb0000cbc 26 Quint value 

0..47 1  4 dcba aaaaaaaaa dcb000dcb 22 Trit value 

0..79  1 4 dcba aaaaaaaaa dcb0000dc 13 Quint value 

0..95 1  5 edcba aaaaaaaaa edcb000ed 11 Trit value 

0..159  1 5 edcba aaaaaaaaa edcb0000e 6 Quint value 

0..191 1  6 fedcba aaaaaaaaa fedcb000f 5 Trit value 

These are then processed as follows: 

T= D * C + B; 

T = T ^ A; 

T = (A & 0x80) | (T » 2); 

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4. 
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LDR Endpoint Decoding   

The decoding method used depends on the Color Endpoint Mode (CEM) field, which specifies how 

many values are used to represent the endpoint. The CEM field also specifies how to take the n 

unquantized color endpoint values v0 to vn-1 and convert them into two RGBA color endpoints e0 and 

e1. The HDR Modes are more complex and do not fit neatly into the table. They are documented in 

following section. The LDR methods can be summarized as follows. 

Color Endpoint Modes 

CEM Range Description 

# of end 

points Endpoints Reconstruction 

0 LDR Luminance, direct 2 e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF); 

1 LDR 
Luminance 

base+offset 

2 
L0 = (v0»2)|(v1&0xC0); L1=L0+(v1&0x3F); 

if (L1>0xFF) { L1=0xFF; } 

e0=(L0,L0,L0,0xFF); e1=(L1,L1,L1,0xFF); 

2 HDR Luminance, large range 2 See next Section 

3 HDR Luminance, small range 2 See next Section 

4 LDR 
Luminance+Alpha 

Direct 

4 
e0=(v0,v0,v0,v2); 

e1=(v1,v1,v1,v3); 

5 LDR Luminance+Alpha, 

base+offset 

4 
bit_transfer_signed(v1,v0); 

bit_transfer_signed(v3,v2); 

e0=(v0,v0,v0,v2); e1=(v0+v1,v0+v1,v0+v1,v2+v3); 

clamp_unorm8(e0); clamp_unorm8(e1); 

6 LDR 
RGB 

base+scale 

4 
e0=(v0*v3»8,v1*v3»8,v2*v3»8, 0xFF); 

e1=(v0,v1,v2,0xFF); 

7 HDR RGB, base+scale 4 See next Section 

8 LDR 
RGB 

Direct 

6 
s0= v0+v2+v4; s1= v1+v3+v5; 

if (s1>=s0){e0=(v0,v2,v4,0xFF); e1=(v1,v3,v5,0xFF); } 

else { e0=blue_contract(v1,v3,v5,0xFF); 

e1=blue_contract(v0,v2,v4,0xFF); } 

9 LDR 
RGB 

base+offset 

6 
bit_transfer_signed(v1,v0); 

bit_transfer_signed(v3,v2); 

bit_transfer_signed(v5,v4); 
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CEM Range Description 

# of end 

points Endpoints Reconstruction 

if(v1+v3+v5 >= 0) 

{ e0=(v0,v2,v4,0xFF); e1=(v0+v1,v2+v3,v4+v5,0xFF); 

} 

else 

{ e0=blue_contract(v0+v1,v2+v3,v4+v5,0xFF); 

e1=blue_contract(v0,v2,v4,0xFF); } 

clamp_unorm8(e0); clamp_unorm8(e1); 

10 LDR 
RGB 

base+scale plus two A 

6 
e0=(v0*v3»8,v1*v3»8,v2*v3»8, v4); 

e1=(v0,v1,v2, v5); 

11 HDR RGB 6 See next Section 

12 LDR 
RGBA 

direct 

8 
s0= v0+v2+v4; s1= v1+v3+v5; 

if (s1>=s0){e0=(v0,v2,v4,v6); e1=(v1,v3,v5,v7); } 

else { e0=blue_contract(v1,v3,v5,v7); 

e1=blue_contract(v0,v2,v4,v6); } 

13 LDR 
RGBA 

base+offset 

8 
bit_transfer_signed(v1,v0); 

bit_transfer_signed(v3,v2); 

bit_transfer_signed(v5,v4); 

bit_transfer_signed(v7,v6); 

if(v1+v3+v5>=0) { e0=(v0,v2,v4,v6); 

e1=(v0+v1,v2+v3,v4+v5,v6+v7); } 

else { e0=blue_contract(v0+v1,v2+v3,v4+v5,v6+v7); 

e1=blue_contract(v0,v2,v4,v6); } 

clamp_unorm8(e0); clamp_unorm8(e1); 

14 HDR RGB + LDR Alpha 8 See next Section 

15 HDR RGB + HDR Alpha 8 See next Section 
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Mode 14 is special in that the alpha values are interpolated linearly, but the color components are 

interpolated logarithmically. This is the only endpoint format with mixed-mode operation, and will 

return the error value if encountered in LDR mode. The bit_transfer_signed procedure transfers a bit 

from one signed byte value (a) to another (b). The result is an 8-bit signed integer value and a 6-bit 

integer value sign extended to 8 bits. Note that, as is often the case, this is easier to express in hardware 

than in C: 

bit_transfer_signed(uint16_t& a, uint16_t& b) 

{ 

b »= 1; 

b |= a & 0x80; 

a »= 1; 

a &= 0x3F; 

if( (a&0x20)!=0 ) a-=0x40; 

} 

For the purposes of this pseudocode, the signed bytes are passed in as unsigned 16-bit integers 

because the semantics of a right shift on a signed value in C are undefined. 

The blue_contract procedure is used to give additional precision to RGB colors near grey: 

color blue_contract( int r, int g, int b, int a ) 

{ 

color c; 

c.r = (r+b) » 1; 

c.g = (g+b) » 1; 

c.b = b; 

c.a = a; 

return c; 

} 

The clamp_unorm8 procedure is used to clamp a color into the UNORM8 range: 

void clamp_unorm8(color c) 

{ 

if(c.r < 0) {c.r=0;} else if(c.r > 255) {c.r=255;} 

if(c.g < 0) {c.g=0;} else if(c.g > 255) {c.g=255;} 

if(c.b < 0) {c.b=0;} else if(c.b > 255) {c.b=255;} 
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if(c.a < 0) {c.a=0;} else if(c.a > 255) {c.a=255;} 

} 

HDR Endpoint Decoding   

The 6 HDR CEM modes on color endpoints reconstruction and surface formats are only used in full-

profile ASTC texture in float 16 bit. 

 HDR Endpoint Mode 2: HDR Luminance, large range 

 HDR Endpoint Mode 3: HDR Luminance, small range 

 HDR Endpoint Mode 7: HDR RGB, base + scale 

 HDR Endpoint Mode 11: HDR RGB, direct 

 HDR Endpoint Mode 14: HDR RGB, direct + LDR Alpha 

 HDR Endpoint Mode 15: HDR RGB, direct + HDR Alpha 

HDR Endpoint Mode 2 (HDR Luminance, Large Range)   

Mode 2 represents luminance-only data with a large range. It encodes using two values (v0, v1). The 

complete decoding procedure is as follows: 

    If (v1 >= v0)  

    {  

       y0 = (v0 « 4);  

       y1 = (v1 « 4);  

    }  

    else {   

       y0 = (v1 « 4) + 8;  

       y1 = (v0 « 4) - 8;  

    }  

    // Construct RGBA result (0x780 is 1.0f)  

  

    e0 = (y0, y0, y0, 0x780);  

    e1 = (y1, y1, y1, 0x780); 
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HDR Endpoint Mode 3 (HDR Luminance, Small Range)   

Mode 3 represents luminance-only data with a small range. It packs the bits for a base luminance value, 

together with an offset, into two values (v0, v1): 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V0 M L[6:0] 

V1 X[3:0] D[3:0] 

The bit field marked as X allocates different bits to L or d depending on the value of the mode bit M. 

The complete decoding procedure is as follows: 

// Check mode bit and extract. 

If ((v0&0x80) !=0)  

{ 

y0 = ((v1 & 0xE0) « 4) | ((v0 & 0x7F) « 2); 

d = (v1 & 0x1F) « 2; 

} 

else { 

y0 = ((v1 & 0xF0) « 4) | ((v0 & 0x7F) « 1); 

d = (v1 & 0x0F) « 1; 

} 

// Add delta and clamp 

y1 = y0 + d; 

if(y1 > 0xFFF) { y1 = 0xFFF; } 

// Construct RGBA result (0x780 is 1.0f) 

e0 = (y0, y0, y0, 0x780); 

e1 = (y1, y1, y1, 0x780); 
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HDR Endpoint Mode 7 (HDR RGB, Base+Scale)   

Mode 7 packs the bits for a base RGB value, a scale factor, and some mode bits into the four values (v0, 

v1, v2, v3). 

HDR Mode 7 Value Layout 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V0 M[3] M[2] R[5:0] 

V1 M[1] X0 X1 G[4:0] 

V2 M[0] X2 X3 B[4:0] 

V3 X4 X5 X6 S[4:0] 

The mode bits M[0:3] are a packed representation of an endpoint bit mode, together with the major 

component index. For modes 0 to 4, the component (red, green, or blue) with the largest magnitude is 

identified, and the values are swizzled to ensure that it is decoded from the red channel. The endpoint 

bit mode is used to determine the number of bits assigned to each component of the endpoint, and the 

destination of each of the extra bits X0 to X6, as follows: 

Endpoint Bit Mode 

Mode 

Number of bits  Description of Extra Bits 

R G B Scale  X0 X1 X2 X3 X4 X5 X6 

0 11 5 5 7  R[9] R[8] R[7] R[10] R[6] S[6] S[5] 

1 11 6 6 5  R[8] G[5] R[7] B[5] R[6] R[10] R[9] 

2 10 5 5 8  R[9] R[8] R[7] R[6] S[7] S[6] S[5] 

3 9 6 6 7  R[8] G[5] R[7] B[5] R[6] S[6] S[5] 

4 8 7 7 6  G[6] G[5] B[6] B[5] R[6] R[7] S[5] 

5 7 7 7 7  G[6] G[5] B[6] B[5] R[6] S[6] S[5] 

The complete decoding procedure is as follows: 

// Extract mode bits and unpack to major component and mode. 

int modeval = ((v0 & 0xC0) » 6) | ((v1 & 0x80) » 5) | ((v2 & 0x80) » 4); 

int majcomp; 

int mode; 

if( (modeval & 0xC ) != 0xC ) { majcomp = modeval » 2; mode = modeval & 3; } 

else if( modeval != 0xF ) { majcomp = modeval & 3; mode = 4; } 

else { majcomp = 0; mode = 5; } 

// Extract low-order bits of r, g, b, and s. 

int red = v0 & 0x3f; 
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int green = v1 & 0x1f; 

int blue = v2 & 0x1f; 

int scale = v3 & 0x1f; 

// Extract high-order bits, which may be assigned depending on mode 

int x0 = (v1 » 6) & 1; int x1 = (v1 » 5) & 1; 

int x2 = (v2 » 6) & 1; int x3 = (v2 » 5) & 1; 

int x4 = (v3 » 7) & 1; int x5 = (v3 » 6) & 1; int x6 = (v3 » 5) & 1; 

// Now move the high-order xs into the right place. 

int ohm = 1 « mode; 

if( ohm & 0x30 ) green |= x0 « 6; 

if( ohm & 0x3A ) green |= x1 « 5; 

if( ohm & 0x30 ) blue |= x2 « 6; 

if( ohm & 0x3A ) blue |= x3 « 5; 

if( ohm & 0x3D ) scale |= x6 « 5; 

if( ohm & 0x2D ) scale |= x5 « 6; 

if( ohm & 0x04 ) scale |= x4 « 7; 

if( ohm & 0x3B ) red |= x4 « 6; 

if( ohm & 0x04 ) red |= x3 « 6; 

if( ohm & 0x10 ) red |= x5 « 7; 

if( ohm & 0x0F ) red |= x2 « 7; 

if( ohm & 0x05 ) red |= x1 « 8; 

if( ohm & 0x0A ) red |= x0 « 8; 

if( ohm & 0x05 ) red |= x0 « 9; 

if( ohm & 0x02 ) red |= x6 « 9; 

if( ohm & 0x01 ) red |= x3 « 10; 

if( ohm & 0x02 ) red |= x5 « 10; 

// Shift the bits to the top of the 12-bit result. 

static const int shamts[6] = { 1,1,2,3,4,5 }; 

int shamt = shamts[mode]; 

red «= shamt; green «= shamt; blue «= shamt; scale «= shamt; 

// Minor components are stored as differences 
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if( mode != 5 ) { green = red - green; blue = red - blue; } 

// Swizzle major component into place 

if( majcomp == 1 ) swap( red, green ); 

if( majcomp == 2 ) swap( red, blue ); 

// Clamp output values, set alpha to 1.0 

e1.r = clamp( red, 0, 0xFFF ); 

e1.g = clamp( green, 0, 0xFFF ); 

e1.b = clamp( blue, 0, 0xFFF ); 

e1.alpha = 0x780; 

e0.r = clamp( red - scale, 0, 0xFFF ); 

e0.g = clamp( green - scale, 0, 0xFFF ); 

e0.b = clamp( blue - scale, 0, 0xFFF ); 

e0.alpha = 0x780; 

HDR Endpoint Mode 11 (HDR RGB, Direct)   

Mode 11 specifies two RGB values, which it calculates from a number of bitfields (a, b0, b1, c, d0 and 

d1) which are packed together with some mode bits into the six values (v0, v1, v2, v3, v4, v5): 

HDR Mode 11 Value Layout 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V0 a[7:0] 

V1 m[0] a[8] c[5:0] 

V2 m[1] X0 b0[5:0] 

V3 m[2] X1 b1[5:0] 

V4 mj[0] X2 X4 d0[4:0] 

V5 mj[1] X3 X5 d1[4:0] 

If the major component bits mj[1:0 ] = b11, then the RGB values are specified directly as 
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HDR Mode 11 Value Layout 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V0 R0[11:4] 

V1 R1[11:4] 

V2 G0 [11:4] 

V3 G1[11:4] 

V4 1 B0[11:5] 

V5 1 B1[11:5] 

The mode bits m[2:0] specify the bit allocation for the different values, and the destinations of the extra 

bits X0 to X5: 

Endpoint Bit Mode 

Mode Number of bits 
 

Description of Extra Bits 

a b c d  X0 X1 X2 X3 X4 X5 

0 9 7 6 7  b0[6] b1[6] d0[6] d1[6] d0[5] d1[5] 

1 9 8 6 6  b0[6] b1[6] b0[7] b1[7] d0[5] d1[5] 

2 10 6 7 7  a[9] c[6] d0[6] d1[6] d0[5] d1[5] 

3 10 7 7 6  b0[6] b1[6] a[9] c[6] d0[5] d1[5] 

4 11 8 6 5  b0[6] b1[6] b0[7] b1[7] a[9] a[10] 

5 11 6 7 6  a[9] a[10] c[7] c[6] d0[5] d1[5] 

6 12 7 7 5  b0[6] b1[6] a[11] c[6] a[9] a[10] 

7 12 6 7 6  a[9] a[10] a[11] c[6] d0[5] d1[5] 

The complete decoding procedure is as follows: 

// Find major component 

int majcomp = ((v4 & 0x80) » 7) | ((v5 & 0x80) » 6); 

// Deal with simple case first 

if( majcomp == 3 ) 

{ 

e0 = (v0 « 4, v2 « 4, (v4 & 0x7f) « 5, 0x780); 

e1 = (v1 « 4, v3 « 4, (v5 & 0x7f) « 5, 0x780); 

return; 

} 

// Decode mode, parameters. 
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int mode = ((v1 & 0x80) » 7) | ((v2 & 0x80) » 6) | ((v3 & 0x80) » 5); 

int va = v0 | ((v1 & 0x40) « 2); 

int vb0 = v2 & 0x3f; 

int vb1 = v3 & 0x3f; 

int vc = v1 & 0x3f; 

int vd0 = v4 & 0x7f; 

int vd1 = v5 & 0x7f; 

// Assign top bits of vd0, vd1. 

static const int dbitstab[8] = {7,6,7,6,5,6,5,6}; 

vd0 = signextend( vd0, dbitstab[mode] ); 

vd1 = signextend( vd1, dbitstab[mode] ); 

// Extract and place extra bits 

int x0 = (v2 » 6) & 1; 

int x1 = (v3 » 6) & 1; 

int x2 = (v4 » 6) & 1; 

int x3 = (v5 » 6) & 1; 

int x4 = (v4 » 5) & 1; 

int x5 = (v5 » 5) & 1; 

int ohm = 1 « mode; 

if( ohm & 0xA4 ) va |= x0 « 9; 

if( ohm & 0x08 ) va |= x2 « 9; 

if( ohm & 0x50 ) va |= x4 « 9; 

if( ohm & 0x50 ) va |= x5 « 10; 

if( ohm & 0xA0 ) va |= x1 « 10; 

if( ohm & 0xC0 ) va |= x2 « 11; 

if( ohm & 0x04 ) vc |= x1 « 6; 

if( ohm & 0xE8 ) vc |= x3 « 6; 

if( ohm & 0x20 ) vc |= x2 « 7; 

if( ohm & 0x5B ) vb0 |= x0 « 6; 

if( ohm & 0x5B ) vb1 |= x1 « 6; 

if( ohm & 0x12 ) vb0 |= x2 « 7; 
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if( ohm & 0x12 ) vb1 |= x3 « 7; 

// Now shift up so that major component is at top of 12-bit value 

int shamt = (modeval » 1) ^ 3; 

va «= shamt; vb0 «= shamt; vb1 «= shamt; 

vc «= shamt; vd0 «= shamt; vd1 «= shamt; 

e1.r = clamp( va, 0, 0xFFF ); 

e1.g = clamp( va - vb0, 0, 0xFFF ); 

e1.b = clamp( va - vb1, 0, 0xFFF ); 

e1.alpha = 0x780; 

e0.r = clamp( va - vc, 0, 0xFFF ); 

e0.g = clamp( va - vb0 - vc - vd0, 0, 0xFFF ); 

e0.b = clamp( va - vb1 - vc - vd1, 0, 0xFFF ); 

e0.alpha = 0x780; 

if( majcomp == 1 ) 

{ 

swap( e0.r, e0.g ); swap( e1.r, e1.g ); 

} 

else if( majcomp == 2 ) 

{ 

swap( e0.r, e0.b ); swap( e1.r, e1.b ); 

} 

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha)   

Mode 14 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, v7). First, the RGB 

values are decoded from (v0..v5) using the method from Mode 11. Then the alpha values are filled in 

from v6 and v7: 

// Decode RGB as for mode 11 

(e0,e1) = decode_mode_11(v0,v1,v2,v3,v4,v5) 

// Now fill in the alphas 

e0.alpha = v6; 

e1.alpha = v7; 
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HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha)   

Mode 15 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, v7). First, the RGB 

values are decoded from (v0..v5) using the method from Mode 11. The alpha values are stored in values 

v6 and v7 as a mode and two values which are interpreted according to the mode: 

HDR Mode 15 Alpha Value Layout 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V6 M0 A[6:0] 

V7 M1 B[6:0] 

The alpha values are decoded from v6 and v7 as follows: 

// Decode RGB as for mode 11 

(e0,e1) = decode_mode_11(v0,v1,v2,v3,v4,v5) 

// Extract mode bits 

mode = ((v6 » 7) & 1) | ((v7 » 6) & 2); 

v6 &= 0x7F; 

v7 &= 0x7F; 

if(mode==3) 

{ 

// Directly specify alphas 

e0.alpha = v6 « 5; 

e1.alpha = v7 « 5; 

} 

else 

{ 

// Transfer bits from v7 to v6 and sign extend v7. 

v6 |= (v7 « (mode+1))) & 0x780; 

v7 &= (0x3F » mode); 

v7 ^= 0x20 » mode; 

v7 -= 0x20 » mode; 

v6 «= (4-mode); 

v7 «= (4-mode); 

// Add delta and clamp 
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v7 += v6; 

v7 = clamp(v7, 0, 0xFFF); 

e0.alpha = v6; 

e1.alpha = v7; 

} 

Restrictions on Number of Partitions Per Block   

Following table gives total number of partitions for each CEM mode given the restriction of total up to 

16 integer values being decoded from the Integer Sequence Coding sequence. 

Groups Max Number of Partition CEM Modes 

(v0,v1) 4 0,1,2,3 

(v0,v1,v2,v3) 4 4,5,6,7 

(v0,v1,v2,v3,v4,v5) 3 8,9,10,11 

(v0,v1,v2,v3,v4,v5,v6,v7) 2 12,13,14,15 

Index Decoding   

The index information is stored as a stream of bits, growing downwards from the most significant bit in 

the block. Bit n in the stream is thus bit 127-n in the block. 

For each location in the index grid, a value (in the specified range) is packed into the stream. These are 

ordered in a raster pattern starting from location (0,0,0), with the X dimension increasing fastest, and 

the Z dimension increasing slowest. If dual-plane mode is selected, both indices are emitted together 

for each location, plane 0 first, then plane 1. 

Index Unquantization   

Each index plane is specified as a sequence of integers in a given range. These values are packed using 

integer sequence encoding. 

Once unpacked, the values must be unquantized from their storage range, returning them to a standard 

range of 0..64. The procedure for doing so is similar to the color endpoint unquantization. 

First, we unquantize the actual stored index values to the range 0..63. 

For bit-only representations, this is simple bit replication from the most significant bit of the value. 

For trit or quint-based representations, this involves a set of bit manipulations and adjustments to avoid 

the expense of full-width multipliers. 

For representations with no additional bits, the results are as follows: 
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Index Unquantization Values 

Range 0 1 2 3 4 

0..2 0 32 63 - - 

0..4 0 16 32 47 63 

For other values, we calculate the initial inputs to a bit manipulation procedure. These are denoted A, B, 

C and D and are decoded using the range as follows: 

Index Unquantization Parameters 

Range Trits Quints Bits Bit value A (7 bits) B (7 bits) C (7 bits) D (3 bits) 

0..5 1  1 a aaaaaaa 0000000 50 Trit 

0..9  1 1 a aaaaaaa 0000000 28 Quint 

0..11 1  2 ba aaaaaaa b000b0b 23 Trit 

0..19  1 2 ba aaaaaaa b0000b0 13 Quint 

0..23 1  3 cba aaaaaaa cb000cb 11 Trit 

These are then processed as follows: 

T = D * C + B; 

T = T ^ A; 

T = (A & 0x20) | (T » 2); 

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4. As a final step, 

for all types of value, the range is expanded from 0..63 up to 0..64 as follows: 

if (T > 32) { T += 1; } 

This allows the implementation to use 64 as a divisor during interpolation, which is much easier than 

using 63. 
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Infill Process   

After unquantization, the indexes are subject to index selection and infill. The infill method is used to 

calculate the index for a texel position, based on the indices in the stored index grid array (which may 

be a different size). The procedure below must be followed exactly, to ensure bit exact results. The block 

size is specified as three dimensions along the s, t and r axes (Bs, Bt, Br). Texel coordinates within the 

block (s,t,r) can have values from 0 to one less than the block dimension in that axis. 

For each block dimension, we compute scale factors (Ds, Dt, Dr) 

Ds = floor( (1024 + floor(Bs/2)) / (Bs-1) ); 

Dt = floor( (1024 + floor(Bt/2)) / (Bt-1) ); 

Dr = floor( (1024 + floor(Br/2)) / (Br-1) ); 

Since the block dimensions are constrained, these are easily looked up in a table. These scale factors are 

then used to scale the (s,t,r) coordinates to a homogeneous coordinate (cs, ct, cr): 

cs = Ds * s; 

ct = Dt * t; 

cr = Dr * r; 

This homogeneous coordinate (cs, ct, cr) is then scaled again to give a coordinate (gs, gt, gr) in the 

index-grid space . The index-grid is of size (N, M, Q), as specified in the index mode field: 

gs = (cs*(N-1)+32) » 6; 

gt = (ct*(M-1)+32) » 6; 

gr = (cr*(Q-1)+32) » 6; 

The resulting coordinates may be in the range 0..176. These are interpreted as 4:4 unsigned fixed point 

numbers in the range 0.0 .. 11.0. If we label the integral parts of these (js, jt, jr) and the fractional parts 

(fs, ft, fr), then: 

js = gs » 4; fs = gs & 0x0F; 

jt = gt » 4; ft = gt & 0x0F; 

jr = gr » 4; fr = gr & 0x0F; 

These values are then used to interpolate between the stored indices. This process differs for 2D and 

3D. 

For 2D, bilinear interpolation is used: 

v0 = js + jt*N; 

p00 = decode_index(v0); 

p01 = decode_index(v0 + 1); 

p10 = decode_index(v0 + N); 
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p11 = decode_index(v0 + N + 1); 

The function decode_index(n) decodes the nth index in the stored index stream. The values p00 to p11 

are the indices at the corner of the square in which the texel position resides. These are then weighted 

using the fractional position to produce the effective index i as follows: 

w11 = (fs*ft+8) » 4; 

w10 = ft – w11; 

w01 = fs – w11; 

w00 = 16 – fs – ft + w11; 

i = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) » 4; 

For 3D, simplex interpolation is used as it is cheaper than a naïve trilinear interpolation. First, we pick 

some parameters for the interpolation based on comparisons of the fractional parts of the texel 

position: 

fs>ft ft>fr fs>fr s1 s2 w0 w1 w2 w3 

True True True 1 N 16-fs fs-ft ft-fr fr 

False True True N 1 16-ft ft-fs fs-fr fr 

True False True 1 N*M 16-fs fs-fr fr-ft ft 

True False False N*M 1 16-fr fr-fs fs-ft ft 

False True False N N*M 16-ft ft-fr fr-fs fs 

False False False N*M N 16-fr fr-ft ft-fs fs 

The effective index i is then calculated as: 

v0 = js + jt*N + jr*N*M; 

p0 = decode_index(v0); 

p1 = decode_index(v0 + s1); 

p2 = decode_index(v0 + s1 + s2); 

p3 = decode_index(v0 + N*M + N + 1); 

i = (p0*w0 + p1*w1 + p2*w2 + p3*w3 + 8) » 4; 
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Index Application   

Once the effective index i for the texel has been calculated, the color endpoints are interpolated and 

expanded. For LDR endpoint modes, each color component C is calculated from the corresponding 8-

bit endpoint components C0 and C1 as follows: 

If sRGB conversion is not enabled, C0 and C1 are first expanded to 16 bits by bit replication: 

C0 = (C0 « 8) | C0; C1 = (C1 « 8) | C1; 

If sRGB conversion is enabled, C0 and C1 are expanded to 16 bits differently, as follows: 

C0 = (C0 « 8) | 0x80; C1 = (C1 « 8) | 0x80; 

C0 and C1 are then interpolated to produce a UNORM16 result C: 

C = floor( (C0*(64-i) + C1*i + 32)/64 ) 

If sRGB conversion is enabled, the top 8 bits of the interpolation result are passed to the external sRGB 

conversion block. Otherwise, if C = 65535, then the final result is 1.0 (0x3C00) otherwise C is divided by 

216 and the infinite-precision result of the division is converted to FP16 with round-to-zero semantics. 

For HDR endpoint modes, color values are represented in a 12-bit logarithmic representation, and 

interpolation occurs in a piecewise-approximate logarithmic manner as follows: 

In LDR mode, the error result is returned. 

In HDR mode, the color components from each endpoint, C0 and C1, are initially shifted left 4 bits to 

become 16-bit integer values and these are interpolated in the same way as LDR. The 16-bit value C is 

then decomposed into the top five bits, E, and the bottom 11 bits M, which are then processed and 

recombined with E to form the final value Cf: 

C = floor( (C0*(64-i) + C1*i + 32)/64 ) 

E = (C&0xF800) » 11; M = C&0x7FF; 

if (M < 512) { Mt = 3*M; } 

else if (M >= 1536) { Mt = 5*M – 2048; } 

else { Mt = 4*M – 512; } 

Cf = (E«10) + (Mt»3) 

This final value Cf is interpreted as an IEEE FP16 value. If the result is +Inf or NaN, it is converted to the 

bit pattern 0x7BFF, which is the largest representable finite value. 

Dual-Plane Decoding   

If dual-plane mode is disabled, all of the endpoint components are interpolated using the same index 

value. If dual-plane mode is enabled, two indices are stored with each texel. One component is then 

selected to use the second index for interpolation, instead of the first index. The first index is then used 

for all other components. 
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The component to treat specially is indicated using the 2-bit Color Component Selector (CCS) field as 

follows: 

Dual Plane Color Component Selector Values 

Value Index 0 Index 1 

0 GBA R 

1 RBA G 

2 RGA B 

3 RGB A 

The CCS bits are stored at a variable position directly below the index bits and any additional CEM bits. 

Partition Pattern Generation   

When multiple partitions are active, each texel position is assigned a partition index. This partition index 

is calculated using a seed (the partition pattern index), the texel’s x,y,z position within the block, and the 

number of partitions. An additional argument, small_block, is set to 1 if the number of texels in the 

block is less than 31, otherwise it is set to 0. The full partition selection algorithm is as follows: 

int select_partition(int seed, int x, int y, int z 

int partitioncount, int small_block) 

{ 

if( small_block ){ x «= 1; y «= 1; z «= 1; } 

seed += (partitioncount-1) * 1024; 

uint32_t rnum = hash52(seed); 

uint8_t seed1 = rnum & 0xF; 

uint8_t seed2 = (rnum » 4) & 0xF; 

uint8_t seed3 = (rnum » 8) & 0xF; 

uint8_t seed4 = (rnum » 12) & 0xF; 

uint8_t seed5 = (rnum » 16) & 0xF; 

uint8_t seed6 = (rnum » 20) & 0xF; 

uint8_t seed7 = (rnum » 24) & 0xF; 

uint8_t seed8 = (rnum » 28) & 0xF; 

uint8_t seed9 = (rnum » 18) & 0xF; 

uint8_t seed10 = (rnum » 22) & 0xF; 

uint8_t seed11 = (rnum » 26) & 0xF; 

uint8_t seed12 = ((rnum » 30) | (rnum « 2)) & 0xF; 
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seed1 *= seed1; seed2 *= seed2; seed3 *= seed3; seed4 *= seed4; 

seed5 *= seed5; seed6 *= seed6; seed7 *= seed7; seed8 *= seed8; 

seed9 *= seed9; seed10 *= seed10; seed11 *= seed11; seed12 *= seed12; 

int sh1, sh2, sh3; 

if( seed & 1 ) 

{ sh1 = (seed & 2 ? 4 : 5); sh2 = (partitioncount == 3 ? 6 : 5); } 

else 

{ sh1 = (partitioncount == 3 ? 6 : 5); sh2 = (seed & 2 ? 4 : 5); } 

sh3 = (seed & 0x10) ? sh1 : sh2: 

seed1 »= sh1; seed2 »= sh2; seed3 »= sh1; seed4 »= sh2; 

seed5 »= sh1; seed6 »= sh2; seed7 »= sh1; seed8 »= sh2; 

seed9 »= sh3; seed10 »= sh3; seed11 »= sh3; seed12 »= sh3; 

int a = seed1*x + seed2*y + seed11*z + (rnum » 14); 

int b = seed3*x + seed4*y + seed12*z + (rnum » 10); 

int c = seed5*x + seed6*y + seed9 *z + (rnum » 6); 

int d = seed7*x + seed8*y + seed10*z + (rnum » 2); 

a &= 0x3F; b &= 0x3F; c &= 0x3F; d &= 0x3F; 

if( partitioncount < 4 ) d = 0; 

if( partitioncount < 3 ) c = 0; 

if( a >= b && a >= c && a >= d ) return 0; 

else if( b >= c && b >= d ) return 1; 

else if( c >= d ) return 2; 

else return 3; 

} 

As has been observed before, the bit selections are much easier to express in hardware than in C. 

The seed is expanded using a hash function hash52, which is defined as follows: 

uint32_t hash52( uint32_t p ) 

{ 

p ^= p » 15; p -= p « 17; p += p « 7; p += p « 4; p ^= p » 5; 

p += p « 16; p ^= p » 7; p ^= p » 3; p ^= p « 6; p ^= p » 17; 

return p; 
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} 

This assumes that all operations act on 32-bit values 

Data Size Determination   

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is 

determined from the index mode and number of partitions as follows: 

config_bits = 17; 

if(num_partitions>1) 

if(single_CEM) 

config_bits = 29; 

else 

config_bits = 24 + 3*num_partitions; 

num_indices = M * N * Q; // size of index grid 

if(dual_plane) 

config_bits += 2; 

num_indices *= 2; 

index_bits = ceil(num_indices*8*trits_in_index_range/5) + 

ceil(num_indices*7*quints_in_index_range/3) + 

num_indices*bits_in_index_range; 

remaining_bits = 128 – config_bits – index_bits; 

num_CEM_pairs = base_CEM_class+1 + count_bits(extra_CEM_bits); 

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. 

This table is initialized such that the range is as large as possible, consistent with the constraint that the 

number of bits required to encode num_CEM_pairs pairs of values is not more than the number of 

remaining bits. 

An equivalent iterative algorithm would be: 

num_CEM_values = num_CEM_pairs*2; 

for(range = each possible CEM range in descending order of size) 

{ 

CEM_bits = ceil(num_CEM_values*8*trits_in_CEM_range/5) + 

ceil(num_CEM_values*7*quints_in_CEM_range/3) + 

num_CEM_values*bits_in_CEM_range; 

if(CEM_bits <= remaining_bits) 
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break; 

} 

return range; 

In cases where this procedure results in unallocated bits, these bits are not read by the decoding 

process and can have any value. 

3D Void-Extent Blocks   

The layout of a 3D Void-Extent block is as follows: 

127:112 111:96 95:80 79:64 63:55 54:46 45:37 36:28 27:19 18:10 9:9 8:0 

A B G R P_high P_low T_high T_low S_high S_low D 111111100 

Bit 9 is the Dynamic Range flag, which indicates the format in which colors are stored. Value 0 indicates 

LDR, in which case the color components are stored as UNORM16 values, while value 1 indicates HDR, 

in which case the color components are stored as FP16 values. 

The reason for the storage of UNORM16 values in the LDR case is due to the possibility that the value 

will need to be passed on to sRGB conversion. By storing the color value in the format which comes out 

of the interpolator, before the conversion to FP16, we avoid having to have separate versions for sRGB 

and linear modes. 

If a void-extent block with HDR values is decoded in LDR mode, then the result will be the error color, 

opaque magenta, for all texels within the block. 

The minimum and maximum coordinate values are treated as unsigned integers and then normalized 

into the range 0..1 (by dividing by 213-1 or 29-1, for 2D and 3D respectively). The maximum values for 

each dimension must be greater than the corresponding minimum values, unless they are all all-1s. If all 

the coordinates are all-1s, then the void extent is ignored, and the block is simply a constant-color 

block. 

Illegal Encodings   

In ASTC, there is a variety of ways to encode an illegal block. Decoders are required to recognize all 

illegal blocks and emit the standard Error Block color value upon encountering an illegal block. The 

standard Error Block color value is opaque magenta (R, G, B, A) = (0xFF, 0x00, 0xFF, 0xFF) in the LDR 

operation mode, and a vector of NaNs (R, G, B, A)=(NaN, NaN, NaN, NaN) in the HDR operation mode. 

It is recommended that the NaN be encoded as the bit-pattern 0xFFFF. 

Here is a comprehensive list of situations that represent illegal block encodings: 

 The index bit mode specified is one of the modes explicitly listed as Reserved. 

 An index bit mode has been specified that would require more than 64 indexes total. 

 An index bit mode has been specified that would require more than 96 bits for the Index Integer 

Sequence Encoding. 
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 An index bit mode has been specified that would require fewer than 24 bits for the Index Integer 

Sequence Encoding. 

 The size of the index grid exceeds the size of the block footprint in any dimension. 

 Color endpoint modes have been specified such that the Color Integer Sequence Encoding would 

require more than 18 integers. 

 The number of bits available for color endpoint encoding after all the other fields have been 

counted is less than ceil(13C/5) where C is the number of color endpoint integers (this would 

restrict color integers to a range smaller than 0..5, which is not supported). 

 Dual Index Mode is enabled for a block with 4 partitions. 

 Void-Extent blocks where the low coordinate for some texture axis is greater than or equal to the 

high coordinate. 

 Under 3D mode, the depth (Q) is not 1 

In LDR mode, a block which has both HDR and LDR endpoint modes assigned to different partitions is 

not an error block. Only those texels which belong to the HDR partition will result in the error color. 

Texels belonging to a LDR partition will be decoded as normal. 

Profile Support   

In order to ease verification and accelerate adoption, an LDR-only subset of the full ASTC specification 

has been made available. 

Implementations of this LDR Profile must satisfy the following requirements: 

 All textures with valid encodings for LDR Profile must decode identically using either a LDR Profile 

or Full Profile decoder. 

 All features included only in the Full Profile must be treated as reserved in the LDR Profile, and 

return the error color on decoding. 

 Any sequence of API calls valid for the LDR Profile must also be valid for the Full Profile and 

return identical results when given a texture encoded for the LDR Profile. 

The feature subset for the LDR profile is: 

 2D textures only. 

 Only those block sizes listed in Table 5 are supported. 

 LDR operation mode only. 

 Only LDR endpoint formats must be supported namely formats 0, 1, 4, 5, 6, 8, 9, 10, 12, 13. 

 Decoding from a HDR endpoint results in the error color. 

 Interpolation returns UNORM8 results when used in conjunction with sRGB. 

 LDR void extent blocks must be supported, but void extents may not be checked. 



 Memory Views 
  

 

     

Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 197 

Video Pixel/Texel Formats 

This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay 

chapter for a description of how the Y, U, V components are sampled. 

Packed Memory Organization 

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain 

two pixels and only the byte order affects the memory organization. 

The following four YUV 4:2:2 surface formats are supported, listed with alternate names: 

 YCRCB_NORMAL (YUYV/YUY2) 

 YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM) 

 YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM) 

 YCRCB_SWAPY (UYVY) 

The channels are mapped as follows: 

Cr (V) Red 

Y Green 

Cb (U) Blue 

Memory layout of packed YUV 4:2:2 formats 

 

Planar Memory Organization 

Planar formats use what could be thought of as separate buffers for the three color components. 

Because there is a separate stride for the Y and U/V data buffers, several memory footprints can be 

supported. 

Note: There is no direct support for use of planar video surfaces as textures. The sampling engine can be used to 

operate on each of the 8bpp buffers separately (via a single-channel 8-bit format such as I8_UNORM). The U and 

V buffers can be written concurrently by using multiple render targets from the pixel shader. The Y buffer must be 
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written in a separate pass due to its different size. 

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data: 

1. The memory organization of the common YV12 data, where all three planes are contiguous and 

the strides of U and V components are half of that of the Y component. 

2. An alternative memory structure that the addresses of the three planes are independent but 

satisfy certain alignment restrictions. 

YUV 4:2:0 Format Memory Organization 

 

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are 

contiguous. 

Note: The chroma planes (U and V), when separate (case b above) are treated as half-pitch with respect 

to the Y plane. In general, YV12 is supported only in linear format because separate planes cannot be 

supported correctly with a tiled format. 

YUV 4:1:0 Format Memory Organization 
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The table below shows how position within a Planar YUV surface chroma plane is calculated for various 

cases ot U and V pitch and position. It also shows restrictions on the alignment of the planes in memory 

when Y Height is a multiple of 4 or when Interleaved Chroma (e.g. NV21) is used. 

Case 

Interleave 

Chroma Pitch Vertical U/V Offset Restrictions 

YUV with Half Pitch 

Chroma 

No Half 
When U is below Y 

Y_Uoffset = Y_Height * 2 

Y_Voffset = Y_Height * 2 + 

V_Height 

When V is below Y 

Y_Uoffset = Y_Height * 2 + 

V_Height 

Y_Voffset = Y_Height * 2 

(Y Height)%4 = 0 

(U Height)%2 = 0 

(V Height)%2 = 0 

Vertical for Y surface must 

be 0 

YUV with Full Pitch 

Chroma 

Yes Full 
When U is below Y 

Y_Uoffset = Y_Height 

Y_Voffset = Y_Height  + 

V_Height 

When V is below Y 

Y_Uoffset = Y_Height  + 

V_Height 

Y_Voffset = Y_Height 

(Y Height)%2 = 0 

(U Height)%2 = 0 

(V Height)%2 = 0 

YUV  for Media 

Sampling 

Yes Always 

Full 

Same as 3D full pitch Same as 3D full pitch 
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Raw Format  

A format called "RAW" is available that is only supported with the untyped surface read/write, block, 

scattered, and atomic operation data port messages. It means that the surface has no inherent format. 

Surfaces of type RAW are addressed with byte-based offsets. The RAW surface format can be applied 

only to surface types of BUFFER and STRBUF. 

Surface Memory Organizations 

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats. 

Display, Overlay, Cursor Surfaces 

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode. 

See the Display chapter for specifics on how these surfaces are defined/used. 

2D Render Surfaces 

These surfaces are used as general source and/or destination operands in 2D BLT operations. 

Note that there is no coherency between 2D render surfaces and the texture cache. Software must 

explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine. 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

2D Monochrome Source 

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where the 

BLT engine expands the 1 BPP source to the required color depth. 

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency 

between 2D render surfaces and texture-cached monochrome sources. Software must explicitly 

invalidate the texture cache before using a memory-based monochrome source that has been modified 

via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source 

surfaces as read-only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, coherency rules, etc. 
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2D Color Pattern 

Color pattern surfaces are used as special pattern operands in 2D BLT operations. 

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency 

between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly 

invalidate the texture cache before using a memory-based color pattern that has been modified via the 

BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-

only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

3D Color Buffer (Destination) Surfaces 

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always 

requires a Color Buffer to be defined. 

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel 

formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details. 

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 

3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM or SM (snooped or unsnooped), 

and can be linear or tiled. When both the Depth and Color Buffers are tiled, the respective Tile Walk 

directions must match. 

When a linear Color Buffer and a linear Depth Buffer are used together: 

 The buffers may have different pitches, though both pitches must be a multiple of 32 bytes. 

 The buffers must be co-aligned with a 32-byte region. 
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3D Depth Buffer Surfaces 

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline. 

The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to 

perform non-trivial Depth Test and Stencil Test operations. 

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that 

instruction in Windower for restrictions. 

See Depth Buffer Formats below for a summary of the possible depth buffer formats. See the Depth 

Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort 

chapters for details on the usage of the Depth Buffer. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent 

BPP (Bits Per 

Pixel) Description 

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit 

stencil in lower byte of second DWord 

D32_FLOAT 32 32-bit floating point Z depth value 

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil 

value in upper byte 

D16_UNORM 16 16-bit fixed point Z depth value 

3D Separate Stencil Buffer Surfaces  

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D 

Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform 

non-trivial Stencil Test operations. 

UNRESOLVED CROSS REFERENCE, Depth Buffer Formats summarizes Stencil Buffer formats. Refer to the 

Stencil Buffer Formats section in this chapter for details on the pixel formats. Refer to the Windower 

chapters for Stencil Buffer usage details. 

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction 

description in Windower for restrictions. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent BPP (bits per pixel) Description 

R8_ UNIT 8 8-bit stencil value in a byte 
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Surface Layout  

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a 

maximum size in bytes. This maximum is 2 GB for all products and all surface types. 

Buffers  

A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each element is 

a single surface format using one of the supported surface formats depending on how the surface is 

being accessed. The surface pitch state for the surface specifies the size of each structure in bytes. 

The buffer is stored in memory contiguously with each element in the structure packed together, and 

the first element in the next structure immediately following the last element of the previous structure. 

Buffers are supported only in linear memory. 

 

Structured Buffers  

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought 

of as an array of structures, where each structure is a predefined number of DWords in size. The first 

coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure 

which must be a multiple of 4 (DWord-aligned). A structured buffer must be defined with Surface 

Format RAW. 

The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the 

array size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch. 
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1D Surfaces  

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces are also 

supported. Please refer to the 2D Surfaces section for details on how these surfaces are stored. 

2D Surfaces  

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced by a 

single base address. The base map and associated mipmaps are located within a single rectangular area 

of memory identified by the base address of the upper left corner and a pitch. The base address 

references the upper left corner of the base map. The pitch must be specified at least as large as the 

widest mip-map. In some cases it must be wider; see the section on Minimum Pitch below. 

These surfaces may be overlapped in memory and must adhere to the following memory organization 

rules: 

 For non-compressed texture formats, each mipmap must start on an even row within the 

monolithic rectangular area. For 1-texel-high mipmaps, this may require a row of padding below 

the previous mipmap. This restriction does not apply to any compressed texture formats; each 

subsequent (lower-res) compressed mipmap is positioned directly below the previous mipmap. 

 Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte 

(DQWord) for tiled. (Note that tiled mipmaps are not required to start at the left edge of a tile 

row.) 
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Computing MIP Level Sizes  

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level (i+1) 

sizes are determined by dividing the width and height of the current (i) LOD level by 2 and truncating to 

an integer (floor). This is equivalent to shifting the width/height by 1 bit to the right and discarding the 

bit shifted off. The map height and width are clamped on the low side at 1. 

In equations, the width and height of an LOD “L” can be expressed as: 

WL = ((width » L) > 0? width » L:1) 

HL = ((height » L) > 0? height » L:1) 

  

If the surface is multisampled and it is a depth or stencil surface or Multisampled Surface StorageFormat in 

SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before proceeding: 

Number of Multisamples WL = HL = 

2 
ceiling(WL / 2) * 4 HL [no adjustment] 

4 
ceiling(WL / 2) * 4 ceiling(HL / 2) * 4 

8 
ceiling(WL / 2) * 8 ceiling(HL / 2) * 4d 

16 
ceiling(WL / 2) * 8 ceiling(HL / 2) * 8 

 

Base Address for LOD Calculation  

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y 

are in units of texels, with the upper left corner of the base map at (0, 0). The final step is to convert 

from Cartesian coordinates to linear addresses as documented at the bottom of this section. 

It is useful to think of the concept of “stepping” when considering where the next MIP level will be 

stored. We either step down or step right when moving to the next higher LOD. 

 for MIPLAYOUT_RIGHT maps: 

o step right when moving from LOD 0 to LOD 1 

o step down for all of the other MIPs 

 for MIPLAYOUT_BELOW maps: 

o step down when moving from LOD 0 to LOD 1 

o step right when moving from LOD 1 to LOD 2 

o step down for all of the other MIPs 



 

  

Memory Views  

 

  

  

206 Doc Ref # IHD-OS-CHV-BSW-Vol 5-10.15 

To account for the cache line alignment required, we define i and j as the width and height, respectively, 

of an alignment unit. This alignment unit is defined below. We then define lower-case wL and hL as the 

padded width and height of LOD “L” as follows: 

 

For separate stencil buffer, the width must be mutiplied by 2 and height divided by 2 as follows: 

 

Equations to compute the upper left corner of each MIP level are then as follows: 

for MIPLAYOUT_RIGHT  maps:  

LOD0 = (0,0) 

LOD1 = (w0,0 ) 

LOD2 = (w0,h1) 

LOD3 = (w0,h1 + h2) 

LOD4 = (w0,h1 + h2 + h3) 

... 

 

for MIPLAYOUT_BELOW maps: 

LOD0 = (0,0) 

LOD1 = (0,h0) 

LOD2 = (w1,h0) 

LOD3 = (w1,h0 + h2) 

LOD4 = (w1,h0 + h2 + h3) 

... 
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Minimum Pitch for MIPLAYOUT_RIGHT and Other Maps  

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place 

the map within. This is approximately equal to 1.5x the pitch required by the base map, with possible 

adjustments made for cache line alignment. For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, 

the minimum pitch required is equal to that required by the base (LOD 0) map. 

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for 

MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available, and since it is restricted to 

MIPLAYOUT_RIGHT maps, not much memory is wasted. It is up to the driver (hardware independent) 

whether to use this simple determination of pitch or a more complex one. 

Cartesian to Linear Address Conversion  

A set of variables are defined in addition to the i and j defined above. 

 b = bytes per texel of the native map format (0.5 for DXT1, FXT1, and 4-bit surface format, 2.0 for 

YUV 4:2:2, others aligned to surface format) 

 t = texel rows / memory row (4 for DXT1-5 and FXT1, 1 for all other formats) 

 p = pitch in bytes (equal to pitch in dwords * 4) 

 B = base address in bytes (address of texel 0,0 of the base map) 

 x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is 

always a multiple of i and y is a multiple of j) 

 A = linear address in bytes 

 

This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line 

alignment requirements). 

Compressed Mipmap Layout  

Mipmaps of textures using compressed (DXTn, FXT) texel formats are also stored in a monolithic format. 

The compressed mipmaps are stored in a similar fashion to uncompressed mipmaps, with each block of 

source (uncompressed) texels represented by a 1 or 2 QWord compressed block. The compressed 

blocks occupy the same logical positions as the texels they represent, where each row of compressed 

blocks represent a 4-high row of uncompressed texels. The format of the blocks is preserved, i.e., there 

is no “intermediate” format as required on some other devices. 

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps: 
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 Mipmaps are not required to start on even rows, therefore each successive mip level is located on 

the texel row immediately below the last row of the previous mip level. Pad rows are neither 

required nor allowed. 

 The dimensions of the mip maps are first determined by applying the sizing algorithm presented 

in Non-Power-of-Two Mipmaps above. Then, if necessary, they are padded out to compression 

block boundaries. 

Surface Arrays  

Arrays of 1D and 2D surfaces can be treated as a single surface. This section covers the layout of these 

composite surfaces. 

For All Surfaces  

Both 1D and 2D surfaces can be specified as an array. An array surface is indicated by enabling the 

Surface Array field in SURFACE_STATE. 2D multisampled surfaces with Multisampled Surface Storage 

Format set to MSFMT_MSS also are stored like an array in memory. 

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This 

QPitch is multiplied by the array index to and added to the vertical component of the address to 

determine the vertical component of the address for that slice. Within the slice, the map is stored 

identically to a 2D surface. 

Since cube surfaces are stored identically to 2D arrays, QPitch is used to determine the spacing between 

faces of the cube. 

For CMS/UMS multisampled surfaces, QPitch is used to determine the spacing between sample slices. 

For IMS multisampled surfaces, QPitch must account for the additional slice size due to sample storage. 

For surfaces defined with SURFACE_STATE, The QPitch field in this state defines the value of QPitch. 

Software must ensure that QPitch is sufficiently large to avoid overlap between array slices in the 

memory layout. If an auxiliary surface is defined, a separate QPitch must be set for that surface. 

For depth and stencil surfaces, QPitch is set in the corresponding state command. 

Multisampled Surfaces  

Multisampled render targets and sampling engine surfaces are supported. There are three types of 

multisampled surface layouts designated as follows: 

 IMS Interleaved Multisampled Surface 

 CMS Compressed Mulitsampled Surface 

 UMS Uncompressed Multisampled Surface 

These surface layouts are described in the following sections. 
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Compressed Multisampled Surfaces  

Multisampled render targets can be compressed. If MCS Enable is enabled in SURFACE_STATE, 

hardware handles the compression using a software-invisible algorithm. However, performance 

optimizations in the multisample resolve kernel using the sampling engine are possible if the internal 

format of these surfaces is understood by software. This section documents the formats of the 

Multisample Control Surface (MCS) and Multisample Surface (MSS). 

The MCS surface consists of one element per pixel, with the element size being an 8-bit unsigned 

integer value for 4x multisampled surfaces and a 32-bit unsigned integer value for 8x multisampled 

surfaces. Each field within the element indicates which sample slice (SS) the sample resides on. 

For CHV, BSW, the 2x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

2x MCS [CHV, BSW] 

7:2 1 0 

reserved sample 1 SS sample 0 SS 

Each 1-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 

0x00 indicates that both samples are stored in sample slice 0 (thus have the same color). This is the fully 

compressed case. An MCS value of 0x03 indicates that all samples in the pixel are in the clear state and 

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. 

For CHV, BSW, the 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

4x MCS [CHV, BSW] 

7:6 5:4 3:2 1:0 

sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 

0x00 indicates that all four samples are stored in sample slice 0 (thus all have the same color). This is the 

fully compressed case. An MCS value of 0xff indicates that all samples in the pixel are in the clear state, 

and none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. 

For CHV, BSW, extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 

samples, or 24 bits per pixel. The 24-bit MCS value per pixel is placed in a 32-bit footprint, with the 

upper 8 bits unused as shown below. 

8x MCS [CHV, BSW] 

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0 

reserved sample 7 

SS 

sample 6 

SS 

sample 5 

SS 

sample 4 

SS 

sample 3 

SS 

sample 2 

SS 

sample 1 

SS 

sample 0 

SS 

Other than this, the 8x algorithm is the same as the 4x algorithm. The MCS value indicating clear state is 

0x00ffffff. 
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Physical MSS Surface 

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching 

the pixel dimensions of the logical multisampled surface. The number of array slices in the physical 

surface is 2, 4, 8, or 16 times that of the logical surface (depending on the number of multisamples). 

Sample slices belonging to the same logical surface array slice are stored in adjacent physical slices. The 

sampling engine ld2dss message gives direct access to a specific sample slice. 

Uncompressed Multisampled Surfaces  

UMS surfaces similar to CMS, except that the MCS is disabled, and there is no MCS surface. UMS 

contains only an MSS surface, where each sample is stored on its sample slice (SS) of the same index. 

Cube Surfaces  

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the 

origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel 

(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is 

supplied as a 3D “vector” texture coordinate. These cube maps can also be mipmapped. 

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are 

identified by their relationship to the 3D texture coordinate system. The subsections below describe the 

cube maps as described at the API as well as the memory layout dictated by the hardware. 

DirectX API Definition  

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the 

axes on the faces as they would be seen from the inside (at the origin). 

The origin of the U,V texel grid is at the top left corner of each face. 

This will be looking directly at face 4, the +z -face. Y is up by default. 
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DirectX Cube Map Definition 

 

Hardware Cube Map Layout  

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 2D 

Surfacesfor details). For cube surfaces, the depth (array instances) is equal to 6. The array index “q” 

corresponds to the face according to the following table: 

“q” coordinate face 

0 +x 

1 -x 

2 +y 

3 -y 

4 +z 

5 -z 

Restrictions  

 The cube map memory layout is the same whether or not the cube map is mip-mapped, and 

whether or not all six faces are “enabled”, though the memory backing disabled faces or non-

supplied levels can be used by software for other purposes. 

 The cube map faces all share the same Surface Format 
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Cube Arrays  

Cube arrays are stored identically to 2D surface arrays. A group of 6 consecutive array elements makes 

up a single cube map. A cube array with N array elements is stored identically to a 2D array with 6N 

array elements. 
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3D Surfaces  

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure 

known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture 

maps. See Sampler for a description of how volume textures are used. 

Volume Texture Map 

 

The number of planes defined at each successive mip level is halved. Volumetric texture maps are 

stored as follows. All of the LOD=0 q-planes are stacked vertically, then below that, the LOD=1 q-planes 

are stacked two-wide, then the LOD=2 q-planes are stacked four-wide below that, and so on. 

The width, height, and depth of LOD “L” are as follows: 

WL = ((width » L) > 0 ? width » L:1) 

HL = ((height » L) > 0 ? height » L:1) 

This is the same as for a regular texture. For volume textures we add: 

DL = ((depth » L) > 0 ? depth » L:1) 

Cache-line aligned width and height are as follows, with i and j being a function of the map format as 

shown in Alignment Unit Size. 
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It is not necessary to cache-line align in the “depth” dimension (i.e. lowercase “d”). 

The following equations for LODL,q give the base address Cartesian coordinates for the map at LOD L 

and depth q. 

 

These values are then used as “base addresses” and the 2D MIP Map equations are used to compute 

the location within each LOD/q map. 

Minimum Pitch  

The minimum pitch required to store the 3D map may in some cases be greater than the minimum 

pitch required by the LOD=0 map. This is due to cache line alignment requirements that may impact 

some of the MIP levels requiring additional spacing in the horizontal direction. 
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Surface Padding Requirements 

This section covers the requirements for padding around surfaces stored in memory, as there are cases 

where the device will overfetch beyond the bounds of the surface due to implementation of caches and 

other hardware structures. 

Alignment Unit Size  

This section documents the alignment parameters i and j that are used depending on the surface. 

Alignment Parameters, CHV, BSW 

Surface Defined By 

Surface 

Format Alignment Unit Width “i” Alignment Unit Height “j” 

3DSTATE_DEPTH_BUFFER D16_UNORM 8 4 

not 

D16_UNORM 

4 4 

3DSTATE_STENCIL_BUFFER N/A 8 8 

SURFACE_STATE BC*, ETC*, 

EAC* 

4 4 

FXT1 8 4 

ASTC Value of ASTC_2DBlockWidth (4, 

5, 6, 8, 10, or 12) 

Value of ASTC_2DBlockHeight (4, 

5, 6, 8, 10, or 12) 

all others set by Surface Horizontal 

Alignment 

set by Surface Vertical 

Alignment 
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Sampling Engine Surfaces 

The sampling engine accesses texels outside of the surface if they are contained in the same cache line 

as texels that are within the surface. These texels will not participate in any calculation performed by the 

sampling engine and will not affect the result of any sampling engine operation, however if these texels 

lie outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order 

to avoid these GTT errors, “padding” at the bottom and right side of a sampling engine surface is 

sometimes necessary. 

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. 

All pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid 

errors. To determine the necessary padding on the bottom and right side of the surface, refer to the 

table in  Alignment Unit Size section for the i and j parameters for the surface format in use. The surface 

must then be extended to the next multiple of the alignment unit size in each dimension, and all texels 

contained in this extended surface must have valid GTT entries. 

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 

and j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in 

texels, and must be converted to bytes based on the surface format being used to determine whether 

additional pages need to be defined. 

Buffer Padding Requirements 

 

 For compressed textures (BC*, FXT1, ETC*, EAC*, and ASTC* surface formats), padding at the bottom of 

the surface is to an even compressed row. This is equivalent to a multiple of 2q, where q is the 

compression block height in texels. Thus, for padding purposes, these surfaces behave as if j = 2q only 

for surface padding purposes. The value of j is still equal to q for mip level alignment and QPitch 

calculation. For cube surfaces, an additional two rows of padding are required at the bottom of the 

surface. This must be ensured regardless of whether the surface is stored tiled or linear. This is due to 

the potential rotation of cache line orientation from memory to cache. 

For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required. These 

surfaces require an extra row plus 16 bytes of padding at the bottom in addition to the general padding 

requirements. 
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For linear surfaces, additional padding of 64 bytes is required at the bottom of the surface. This is in 

addition to the padding required above. 

Programming Note 

Context: Sampling Engine Surfaces. 

For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array, non-MSAA, non-mip-mapped surfaces in 

linear memory, the only padding requirement is to the next aligned 64-byte boundary beyond the end of the 

surface. The rest of the padding requirements documented above do not apply to these surfaces. 

 

 

 

Programming Note 

Context: Sampling Engine Surfaces. 

For SURFTYPE_2D and SURFTYPE_3D with linear mode and height % 4 != 0, the surface must be padded with 4-

(height % 4)*Surface Pitch # of bytes. 

 

Programming Note 

Context: Sampling Engine Surfaces 

For SURFTYPE_1D with linear mode, the surface must be padded to 4 times the Surface Pitch # of bytes 

Render Target and Media Surfaces 

The data port accesses data (pixels) outside of the surface if they are contained in the same cache 

request as pixels that are within the surface. These pixels will not be returned by the requesting 

message, however if these pixels lie outside of defined pages in the GTT, a GTT error will result when 

the cache request is processed. In order to avoid these GTT errors, “padding” at the bottom of the 

surface is sometimes necessary. 

  


