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Introduction

The hardware supports three engines:

1 The Render command streamer interfaces to 3D/IE and display streams.
I The Media command streamer interfaces to the fixed function media.
i The Blitter command streamer interfaces to the blit commands.

Software interfaces of all three engines are very similar and should only differ on engine-specific
functionality.

Memory Views Glossary

Term Definition

CHV, BSW CherryView CPU/GFX platform. 8th generation processor graphics (Gen8).

IOMMU I/O Memory Mapping unit

SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and
processor graphics.

Page Walker |GFX page walker which handles page level translations between GFX virtual memory to physical
(GAM) memory domain.

GPU Memory Interface
GPU memory interface functions are divided into 4 different major sections:

9 Global Arbitration
1 Memory Interface Functions
9 PageTranslations (GFX Page Walker)
1 Ring Interface Functions (GTI)
GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The

following documentation is meant for GFX arbitration paths in accessing to memory/cache inte rfaces
and page translations and page walker functions.
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Global Arbitration

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses
from different stages of the pipeline are consolidated to a single interfacetowar ds GT&6s connec
CPUGs ring interface.

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels.

Programming Note

Context: Global Memory Arbitration

Arbitration allows 4 levels of arbitration where each pipeli ne level can be put into these 4 levels. Each
consolidation stage simply follows the 4 -level arbitration with grace periods to allow ahead of the pipeline to get
a higher share of the memory bandwidth.

The final arbitration takes places in GAM between pallel compute engines. Each engine (in some cases
major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace
period where its accesses are counted against a global pool. If a particular engine (or pipeline sage)
exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based

prioritization. Once all counts are expired, the grace period completes and resets.

The count values are programmable via MMIO (i.e. * MAX_REQ_COUNT) registewith defaults favoring
the pipeline order.

Graphics Memory Interface Functions

The major role of an integrated graphics deviceds N
client functions access to 0gr ap hfacessafd other mformagtionu s ed t
used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics

memory is accessed.

Information not presented in this chapter includes:
1 Microarchitectural and implementation -dependent features (e.g., internal buffering, caching, and
arbitration policies).

1 Ml functions and paths specific to the operation of external (discrete) devices attached via
external connections.

1 Ml functions essentially unrelated to the operation of the internal graphi cs devices, .e.g.,
traditional oO0chipset functionso

1 GFX Page Walker and GT interface functions are covered in different chapters.
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Graphics Memory Clients

The MI function provides memory access functionality to a number of external and internal graphics
memory clients, as described in the table below.

Graphics Memory Clients

MI Client

Access Modes

Host Processor

Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses

External PEG @phics

Device

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture.
(This client is not described in this chapter).

Peer PCI Device

Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses (i.e., mapped by G TNote that DMI
access to Graphics registers is not supported.

Coherent Read/Write

(internal)

Internally-generated snooped reads/writes.

Command Stream
(internal)

DMA Read of graphics commands andrelated graphics data.

Vertex Stream
(internal)

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed
Function.

Instruction/State
Cache (internal)

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions
executed by the EUs.

Render Cache

Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D,

(internal) MPEG, etc.) Read of render surface state.

Sampler Cache Read of texture (and other sampled surface) cata stored in graphics memory.
(internal)

Display/Overlay Read of display, overlay, cursor and VGA data.

Engines (internal)

Media Engines

Read and write of media content and media processing.

uController

Read/Write (DMA) functions for u-controller and scheduler.
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Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory
addresses of various types, performs a number of optional operations along address paths and
eventually performs reads and writes of graphics memory data using the resultant addresses. The
remainder of this subsection will provide an overview of the graphics memory clients and address
operations.

Graphics Address Path

Graphics Address Patlshows the internal graphics memory address path, connection points, and
optional operations performed on addresses. Externally-supplied addresses are normalized to zero
based Graphics Memory(GM) addressegGM_Address). If the GM address is determined to be a tiled
address (based on inclugon in a fenced region or via explicit surface parameters),address tilingis
performed. At this point the address is considered a Logical Memory addressand is translated into a
Physical Memory addreswia the GTT and associated TLBs. The physical memolgcation is then
accessed.

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped
cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory
aperture.
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The remainder of this chapter describes the basic features of the graphics memory address pipeline,
namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation
considerations.
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Graphics Memory Address Spaces

The Graphics Memory Addess Spacesable lists the five supported Graphics Memory Address Spaces.
Note that the Graphics Memory Range Removal function is automatically performed to transform
system addresses to internal, zerebased Graphics Addresses.

Due to a workaround, first 4KB of DSM has to be reserved for GFX hardware use during render engine
execution.

Address Tiling Function Introduction

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,
certain functions within the grap hics device support the storage/access of the operands using
alternative (tiled) memory formats to increase performance. This section describes these memory
storage formats, why and when they should be used, and the behavioral mechanisms within the device
to support them.

Legacy Tiling Modes:
9 TileY: Used for most tiled surfaces whenTR_MODE-TR_NONE.

9 TileX : Used primarily for display surfaces.
9 TileW: Used for Stencil surfaces.
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Linear vs Tiled Storage

Regardless of the memory sdmory@egandsthave aspecificwidtraacc t an g u |
height, and are considered as residing within an enclosing rectangular region whose width is considered

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly

with the surface). Rectangular Memory Operand Parametershows these parameters.

Rectangular Memory Operand Parameters

Fegion Start

Address 4 Pitch »
p >
Enclosing Region
/ " A
Surface Start
Address =
Surface o
=0
m
Width

¥

LS

BEE20-01

The simplest storage format is the linear format (see Linear Surface Layout where each row of the

operand is stored in sequentially increasing memory locations. If the surface width is less than the
enclosing regionds pitch, there wild]l be additional
regionds pitch. The pitch of the enclosing region d
between vertically-adjacent operand elements (e.g., pixels, texels).
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The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface
where each scanline is read sequentially). Here the fact that one object element may reside in a different
memory page than its vertically-adjacent neighbors is not significant; all that matters is that
horizontally-adjacent elements are stored contiguously. However, when a device function needs to
access a 2D subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a
read of a 2x2 texel block for bilinear filtering), having vertically-adjacent elements fall within different
memory pages is to be avoided, as the page crossings required to complete the access typically incur
increased memory latencies (and therefore lower performance).

One solution to this problem is to divide the enclosing region into an array of smaller rectangular
regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same
physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses wvthin a tile
and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows
high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensiong. Note that the
dimensions of tiles are irrespective of the data contained within d e.g., a tile can hold twice as many 16
bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32 bit pixels (128 pixels/row x 8 rows = 1K pixels).
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The pitch of a tiled enclosing region must be an integral number of tile widths.The 4KB tiles within a tiled
region are stored sequentially in memory in row-major order.

The Tiled Surface Layoufigure shows an example of a tiled surface located within a tiled region with a
pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing regionthat is divided into tiles d
the surface is not necessarily aligned or dimensioned to tile boundaries.

Tiled Surface Layout

Tiled Region
- Fitch = 8 files = 8* 512B = 4 KB }i

S| Tile 0 Tile 1 Tile 2 Tile 3 Tile ¢ Tile 5 Tile & Tile 7

Tile & Tilee | Tiledd | Tile11l | Tile 12 | Tile 13 Tile|14 Tile 15

Tile 16 | Tile 17 | Tile 15 [ Tile 129 | Tile 20 | Tile 21 | Tile 22 | Tile 23

Tile 24 | Tile 25 | Tile 26 | Tile 27 | Tile 28 | Tile 29 | Tile™30 | Tile 31

Tile 32 | Tile 33 Y Tile 34 | Tile 35 | Tile 36 | Tile 37 | Til=Bg | Tile 39

Tile40 | Tile 41l | Tile 42 | Tile 43 | Tile 44 | Tile 45 | Tilepa | Tile 47

Tile 48 | Tile 49 | Tile 50 | Tile 51 | Tile 52 | Tile 53 T”EFS Tile 55

Tile 56 | Tile 5 Tile 58 | Tile 59 | Tile 60 | Tile 61 | Tile 62 | Tile 63

Tiled Surface —

BEes93-01
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Tile Formats
Multiple tile formats are supported by the Gen Core. The following sections define and describe these
formats.

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the
RENDER_SURFACE_STATE.

Tile-X Legacy Format

The legacy format Tile-X is aX-Major (row-major) storage of tile data units, as shown in the following
figure. It is a 4KB tile which is subdivided into an 8 high by 32-wide array of 16-byte OWords . The
selection of tile direction only impacts the internal organization of tile data, and does n ot affect how
surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a
linear fashion.

Tile-X format is selected for a surface by programming the Tiled_Mode field in
RENDER_SURFACE_STATE to XMAJOR.

For 3D sampling operation, a surface using Tile X layout is generally lower performance the
organization of texels in memory.

Tile X-Tile (X-Major) Layout

¥X-Major Tile

32 16B OwWord Columns

Yy
_¥

oW | oW | oW oW | Ow | Ow
0 1 2 20 30 21
oW | oW | oW e oW | ow | ow
2 23 24 61 62 63
un]
el
% [ | [ |
| | [ |
[ | [ |
oW | oW | oW i aa oW | Ow | ow
oo4 | s | 226 o53 | 954 | 255
BEEI4-01
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Tile-Y Legacy Format

The device supports Tile' Y legacy format which is Y-Major (column major) storage of tile data units, as
shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The
selection of tile direction only impacts the internal organization of tile data, and does not affect how
surfaces map onto tiles.

Tile-Y suface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to
YMAJOR.

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout
of pixels.

Y-Major Tile Layout

Y-Major Tile

|<7EI 16B C\word Culumn5—>|

$ iy iy sl iy

a 32 192 224
HE N

i iy Iy D1y
1 3 193 295

N ]

]

o u [ ]

(m ] u [ ]
iy iy ann DIy DIy

v a1 63 223 255
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Tiling Algorithm

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics
memory to an address in logical space.

Inputs:
LinearAddress (offset into regular or LT aperture in terms of bytes)
Pitch (in terms of tiles)
WakY (1 for Y and 0 for X)
WalkW (1 for W and 0 for the rest)
Static Parameters:
TileH (Height of tile, 8 for X, 32 for Y, and 64 for W),
TileW (Width of Tile in bytes, 512 for X, 128 for Y, and 64 for W)

TileSize = TileH * TileW;
RowsSize = Pitch * TileSize;
If (Fenced ) {
LinearAddress = LinearAddress I FenceBaseAddress;
LinearAddrInTileW = LinearAddress div TileW;
Xoffset_inTile = LinearAddress mod TileW;
Y = LinearAddrInTileW div Pitch;
X = LinearAddrinTileW mod Pitch + Xoffset_inTile;

}

/I Internal graphics clients that access tiled memory already have the X, Y coordinates and
can start here.
YOff_Within_Tile = Y mod TileH;
XOff_Within_Tile = X mod TileW;
TileNumber_InY =Y div TileH;
TileNumber_InX = X div TileW;
TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX +
TileH * 16 * (XOff_Within_Tile div 16) + YOff_Within_Tile * 16 + (XOff_Within_Tile
mod 16);
TiledOffsetW = RowSize * TileNumber_InY + TileSize * TileNumber_InX +
TileH * 8 * (XOff_Within_Tile div 8) +
64 * (YOff_Within_Tile div 8) +
32 * ((YOff_Within_Tile div 4) mod 2) +
16 * ((XOff_Within_Tile div 4) mod 2) +
8 * ((YOff_Within_Tile div 2) mod 2) +
4 * ((XOff_Within_Tile div 2) mod 2) +
2 * (YOff_Within_Tile mod 2) +
(XOff_Within_Tile mod 2);
TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileW *
YOff_Within_Tile + XOff_Within_Tile;
TiledOffset = WalkwW ? TiledOffsetW : (WalkY ? TiledOffsetY : TiledOffsetX);
TiledAddress = Tiled ? (BaseAddress + TiledOffset) : (BaseAddress + Y*LinearPitch + X);
TiledAddress = (Tiled &&
(Address Swizzling for Tiled - Surfaces == 01)) ?
(Walkw || Walky) ?
(TiledAddress div 128) * 128 +
(((TiledAddress div 64) mod 2) ~
((TiledAddress div 512) mod 2)) +
(TiledAddress mod 32)

(TiledAddress div 128) * 128 +
(((TiledAddress div 64) mod 2) ~
((TiledAddress div 512) mod 2)
((TiledAddress Div 1024) mod2) +
(TiledAddress mod 32)

.TiledAddress;
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Address Swizzling for Tiled Surfaces is no longer used because the main memory controller has a more
effective address swizzling algorithm.

For Address Swizzling for Tiled Surfaces see ARB_MOD& Arbiter Mode Control register, ARB_CTA
Display Arbitration Control 1, and TILECTL: Tile Control register.

The Y-Major tile formats have the characteristic that a surface ement in an even row is located in the
same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This
spatial locality can be exploited to increase performance when reading 2x2 texel squares for bilinear
texture filterin g, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally -adjacent elements
are stored in sequential memory addresses. This spatial locality is advantgeous when the surface is
scanned in row-major order for operations like display refresh. For this reason, the Display and Overlay
memory streams only support linear or X-Major tiled surfaces. (Y-Major tiling is not supported by these
functions.) This hasthe side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major
tiled formats if they are to be displayed. Non-di spl ayed surfaces, e. g.
stored in Y-Major order.
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Tiled Channel Select Decision

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling
modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13].

For Gen8 and subsequent generations, the swizzle fieldsare all reserved, and the CPU's memory
controller performs all address swizzling modifications.

Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled
formats). This requires either the modification of
formula to convert an elementds X,Y coordinates int

However, before tiled-address generation can take place, some mechanism must be used to determine

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the

tile region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two

mechanisms by which this detection takes place: (a) an implicit method by detecting that the pre-tiled
(l'inear) address falls within a o06fencedo6 tiled regi
for surface operands (ie., parameters included in surfacedefining instructions).

The following table identifies the tiling -detection mechanisms that are supported by the various
memory streams.

Access Path Tiling -Detection Mechanisms Supported

Processor access through the Grajpics Memory Aperture | Fenced Regions

3D Render (Color/Depth Buffer access) Explicit Surface Parameters
Sampled Surfaces Explicit Surface Parameters
Blt operands Explicit Surface Parameters
Display and Overlay Surfaces Explicit Surface Parameters
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Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics

client is to place them within o0fencedd tiled regio
of Graphics Memory specified usng one of the sixteen FENCE device registers. (Seklemory Interface

Registersfor details). Surfaces contained within a fenced region are considered tiled from an external

access point of view. Note that fences cannot be used to untile surfaces in the PGM Address space

since external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces

accessed by an internal graphics client) fall within a region covered by an enabled fence register, that

enable will be effectively masked during the internal graphics client access. Only the explicit surface

parameters described in the next section can be used to tile surfaces being accessed by the internal

graphics clients.

Restriction: Each FENCE register (if its Fence Valid bit is set) defines Graphics Memory region ranging from 4KB
to the aperture size. The region is considered rectangular, with a pitch in tile widths from 1 tile width (128B or
512B) to 512 tile X widths (512 * 512B = 256KB) and 2048 tile Y widths (2048 * 128B = 256KB). Notthat fenced
regions must not overlap, or operation is UNDEFINED.

Context: Tiled (Fenced) Regions

Restriction: Also included in the FENCE register is a Tile Walk field that specifies which tile format applies to the
fenced region.

Context: Tiled (Fenced)Regions
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Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information
passed in commands and state. This capability is provided to limit the reliance on the fixed number of

fence regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces
(Color Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface
Parameter

Description

Tiled Surface

If ENABLED, the surface is stored in a tiled fomat. If DISABLED, the surface is stored in a linear
format.

Tile Walk

If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored inY
Major or X-Major tile format.

Base Address

Additional restrictions apply to the base add ress of a Tiled Surface vs. that of a linear surface.

Pitch

Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile
width.

16
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Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition,
restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The
most restricted surfaces are those that will be accessed both by the host (via fence) and by internal
device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then
sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device
functions always specily tiling in terms of a surface. The surface must have a base address, and this base
addressis not subject to the tiling algorithm . Only offsetsfrom the base address (as calculated by X, Y
addressing within the surface) are transformed through tiling. The base address of the surface must
therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB

device pages once the tiling algorithm has been applied to the offset. The width of a surface must be

less than or equalto the surface pitch. There are additional considerations for surfaces that are also
accessed by the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are

translated in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region

has a base address in graphics memory equal to the fence base address, and all accesses of the surfaces

are (possibly quite large) offsets from the fence base address. Fencergi ons have a virtual
aligned with the fence base address, and a oright e
0l eft edgedé6. Surfaces in the fence region must not

Base addresses of surfaces that are to beaccessed both by an internal graphics client and by the host

have the tightest restrictions. In order for the surface to be accessed without GTT remapping, the

surface base address (as set in SURFACE_STASE) must
address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base
address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base

address. The row size is simply the fencepitch in tiles multiplied by 4KB (the size of a tile.)
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Tiled Surface Placement
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The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to
access the surface if the same GTT mapping will be used for each acas. If the pitches differ, a different

GTT mapping must be used to eliminate the O0Oextrabd
rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually

by SW between the time the host writes the surface and the device reads it, or it can be accomplished

by arranging for the client to use a different GTT than the host (the PPGTT-- seeLogical Memory

Mapping below).
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and the fence pitch in any scenario where a surface will be accessed by both the host and an internal
graphics client. Changing the GTT mapping will not help if this restriction is violated.

Surface Access

Base Address

Pitch

Width

Ti |l e oWal

Host only No restriction Integral multiple of tile size | Must be <= Fence | No restriction
<= 256KB Pitch
Client only 4KB-aligned Integral multiple of tile size | Must be <= Restrictions imposed by

<= 256KB

Surface Pitch

the client (see Per Stream
Tile Format Support)

Host and Client, |Must be TRSA Fence Pitch = Surface Pitch| Width <= Pitch Surface Walk must meet
No GTT = integral multiple of tile client restriction, Fence
Remapping size <= 256KB Walk = Surface Walk

Host and Client, |4KB-aligned for Both must be Integral Width <= Surface Walk must meet

GTT Remapping

client (will be tile -
aligned for host)

multiple of tile size
<=128KB, but not
necessarly the same

Min(Surface Pitch,
Fence Pitch)

client restriction, Fence
Walk = Surface Walk
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Per-Stream Tile Format Support

Memory Views

MI Client Tile Formats Supported
CPU Read/Write| All
Display/Overlay Y-Major not supported.
X-Major required for Async Flips
BIt . .
Linear and XMajor only
No Y-Major support
3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the
slowest.
3D Color,Depth Rendering Mode
Color-vs-Depth bpp Buffer Tiling Su pported
. Both Linear
Classical .
Both TileX
Same Bpp Both TileY
Linear & TileX
Linear & TileY
TileX & TileY
. Both Linear
Classical .
Both TileX
Mixed Bpp Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

20
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Main Memory

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for
graphics functions. Some of this main memory can be
initialization (e.g., for a VGA buffer). However, most graphics operands are dynamicly allocated to

satisfy application demands. To this end the graphics driver will frequently need to allocate locked-

down (i.e., non-swappable) physical system memory pagesd typically from a cacheable non-paged

pool. The locked pages required to back large surfaces are typically non-contiguous. Therefore a means

to supporicomltogiumallsléy surf aces backed by disconti guc
Graphics Translation Table (GTT) that was described in previous sections provides the means.

Opti mizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory
(SM) for optimal performance in certain configurations. The general idea is that these memories are
divided into some number of pa ge types, and careful arrangement of page types both within and
between surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and
therefore yield somewhat higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is
somewhat complicated by (1) permutations of memory device technologies (which determine page
sizes and therefore the number of pages per device row), (2) memory device row population options,
and (3) limitations on the allocation of physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching
between open pages is optimal (again, the pages do not need to be sequential), (b) switching between
memory device rows does not in itself incur a penalty, and (c) switching between pages within a
particular bank of a row incurs a page miss and should therefore be avoided.
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Application of the Theory (Page Coloring)

This section provides some senarios of how Main Memory page allocation can be optimized.

3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within

a Color or Depth Buffer should be mapped to differe
referstotherowand bank i tds in).

Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The
U and V surfaces would split the same 4 page types as used in the Y surface.

Physical Graphics Address Types

The Physcal Memory Address Types table lists the variousphysical address types supported by the
integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory
mappings or are directly specified by graphics device functions. These fysical addresses are not subject
to tiling or GTT re-mappings.

Physical Memory Address Types

Address
Type Description Range
MM_Address | Main Memory Address. Offset into physical, unsnoopedMain Memory. [0,TopOfMemory-1]

SM_Address | System Memory Address.Accesses are snooped in processor cache, allowing [0,512GB]
shared graphics/ processor access to (locked) cacheable memory data.
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Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global
and PPGTT (PeProcess Graphics Translation Table) are memoryesident page tables containing an
array of DWord Page Translation Entries (PTES) used in mapping logical Graphics Memory addresses to
physical memory addresses, and sometimes snooped systerme mory OPCI 6 addresses.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and
PGTBL_CTL2 Ml registers, respectively. The translation table base addresses must be 4KB aligned. The
GTT size can be either 128KB, 256KB, &12KB (mapping to 128MB, 256MB, and 512MB aperture sizes
respectively) and is physically contiguous. The global GTT should only be programmed via the range
defined by GTTMMADR. The PPGTT is programmed directly in memory. The peprocess GTT (PPGTT)
size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be
64KB in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of
the PTE entries.
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Virtual Memory
This section describesthe different paging models, their behaviors, and the page table formats.
GFX Page Tables

GPU supports three page table mechanisms

1 PPGTTO per process GTT (private GFX)
1 GGTT global GTT

All page tables have the same PTE format, the difference was howo reach the final physical page and
which fields with PTE are used.

Page Table Modes

The GFX Aperture and Display accesses are always mapped thru Global GTT. This is done to keep the
walk simple (i.e. Xlevel), however GT accesses to memory can be mappevia Global GTT and/or ppGTT
with various addressing modes.

The walk modes are listed as following:

1. Global GTT with 32b virtual addressing : Global GTT usage is similar to preCHV, BSWbehavior
with extended capability to increase the VA to 4GB (from 2GB)and use a similar 64b PTE as
ppGTT. The breakdown of the PTE for global GTT is given in later sections but fundamentally
allows 1-level pagewalk where the 20b index is used to select the 64b PTE from stolen memory.

2. Legacy 32b VA with ppGTT : This is a modewhere ppGTT page tables are managed via GFX s/w
(driver) and context is tagged as Legacy 32b VA. Given each page walk is managed via 9b of the
virtual address, 20b index is broken into 3 parts. However to optimize the walks and make it look
like pre-CHV, BBW, s/w provides 4 pointers to page tables (called 4 PDP entries)d GPA. GFX h/w
uses the four pointers and fetches the 4x4KB into h/w (for render and media) before the context
execution starts. The optimization limits the dynamic (on demand) page walks to 1-level only.
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Per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks on

hardware. The listed mechanisms here are selectable peicontext and descriptors are delivered to

hardware as part of context descriptor.

PPGTT for 32b Virtual Address

This page walk mechanism will be used for traditional 3D, Media type context. There is going to be a
descriptor in the context header which will define the per process GTT walk that is required. For the
standard context with 32bit virtual addressing, there is a possibility to take short cuts to reduce the
overhead of the walk.

332
1.0 9

IPDP| Page Directory Index |

FPage Table Index

Offset into Page

Memary

Physical M.

FPage
Table
Page
Directory
FDE

PDP
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With 32-bit addressing the only entries that are needed for page directory pointers are 4x64bit
locations (PDPE). For any standard contexscheduling, it is required for s/w to provide 4 PDPEs as part
of the context which would prevent h/w to do additional walks.

Hardware will do the remaining walks for PD and PTE similar to legacy behavior. In order to reduce the
overhead of walks, hardwareimplements large caches for PDs.

Hardware does the remaining walks for PD and PTE similar to legacy behavior. To reduce the overhead
of walks, hardware implements large caches for PDs:

1 4x4KB for 3D context
1 2x4x4KB for Media Context
1 4KB for VEBOX
1 4KB for Bltter
For Media and 3D context, the 16KB caches are preloaded for the entire page directory set up which

limits the walk to 1 -level before the final access. For remaining clients the PD cache is loaded on
demand and can contain up to 512 entries.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB

page. In page table every16rent ry ( PTE#O0, PTE#16, PTE#32é. PTE#496)
cal cul ated wusi ng ad dteteasharfiware shbuid]n& makeahya®samptioNs for any

other PTEs.
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Walk with 2MB Page

There is an option in the page walk to work with bigger page sizes, one of those sizes is 2MB pages. If
allocated the page directory entry will indicate the page size and walk can be shortened as follows:

3132 22 11 0
109 10 2 1 0
[PDP|_Page Directory Index | Offset info 2MB page |
Memory
.'leinam_
Page
Daeclory
el PDE
s PDP |

In this case there is no need to walk the page table after directory. And page directory has a pointer to
2MB range is physical memory.

Programming Note

Context: Walk with 2MB Page.

PPGTT32 is not going to suppot 2MB pages.
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Walk with 1GB Page

The same page walk is possible with 1GB page support as well.

332 0
109 1]
IPoe| Offset inlo 1GB Page |
Memory
hPhy‘si:iill_
- PDP |

Programming Note
Context: Walk with 1BG Page.
PPGTT32 is not going to support 1GB pages
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PPGTT for Standard Context (64b VA)

For advanced virtual addressing with legacy context, the full page walk mechanism needs to be
exercised based on 48bit canonical addressing.

4 313 32 22 11 ]
7 98 09 10 21 (]
[__PMidindex  Page Daect Pomder ind] Page Dieclory index | Page Table Index | Offset inko Page |
Memory
> Physiical M
Page
Table
_-,. PTE ——
Page
Duectory
Table
ﬁ HE
Page
Duectory
Pointer
Table
———— s
PALA
Table
st PMLAE

PageTEPuim((m]

64-bit (48b canonical) address requires 4levels of page table format where the context carries a pointer
to highest level page table (PML4 pointer or CR3). The rest of the walk is normal page walk thru various
levels.

To repurpose the caches the following mechanism will be used:
1 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

1 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
1 VEBBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.
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Programming Note

Context: | PPGTT for Standard Context (64b VA)

Design can section the 512 entries within 4KB to separate areas for PML4, PDP, and P

Walk with 64KB Page

64KB Page size has a ghtly different usage for how PTEs are selected for the corresponding 64KB

page. In page table every18rent ry ( PTE#O0, PTE#16, PTE#32é. PTE#496)
calcul ated using address[21:16] & 00 Ghwal8sdimptioNsofdrany t h at
other PTEs.

Walk with 2MB Page

Similar to the 32b VA walk, there is a support for larger pages where one of the sizes supported is 2MB.

4 33 32 22 11 0
7 98 09 10 21 (1]
[_PMid index  Page Dwect. Pomder ind] Page Directory index | Ofiset into 2MB page |
Memaory
bFIl_\rsi:ﬂll.
Page
Daectory
Table
= PDE
Page
Dectory
Pomler
Table
q HI:E
PMLA
Table
il PMLAE
-]

Page Table Pomter (CR3)
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Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

4 33 32 22 11
7 98 09 10 21 (1]
[__PMid index  Page Diect. Pomder ind) Ofiset nlo 1GB page |
Memaory
bFII_\rSil:ﬂll.
Page
Dectory
Pomler
Table
q HH:E
PMLA
Table
el PMLAE
-]

Page Table Pomter (CR3)

Programming Note

Context: |Wa|k with 1 GB Page

PPGTT32 is not going to support 1GB pages
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The Global GTT mechanism irCHV, BSWooks very similar to pre-CHV, BSWwith the distinction of
page table entry. Aperture and display will still use the global GTT even if GT core is mapped via per
process GTT.

The PTE format forCHV, BSWs updated to match per process GTT definitions and GSM is now

expanded in size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry
corresponding to a 4KB page with 2720 entries in GSM (each with 8B content)

FoMI 0 upda ttee pdgd address provided 31:12 need to be shifted down to 22:3 for the correct
QW position within the GGTT.

Page Table Entry

The following page table entry will be used for Global GTT:

GGIT PFIE
666 H5 44 33 1 000000 D0
321 &5 87 98 1 987654321

1 1] 1]

2 4 1]

Ll | | | | ANARARARRARN
ey P Present fyalid)
ety fgicved (RW)
— ignored (LV/S)
—— Ignored (PWT)

® ignored (PCD)

& lgnored (A- accessed)
¥ lgnored [D - dirly)

» ignored (PAT)

& Ignored (global)

= lgnared

= Physical address of 4KB page
¥ lgnored

¥ Reserved

= Reserved

# Reserved

¥ ignored (Execute)

1 Present (Valid): The pointed PTE is valid

1 Ignored- R/W (Read/Write): Are writes allowed to the region defined by this 4KB page. For GFX,
in order 4KB memory to be usable it has to be both present and should also be write-able.

9 Ignored - U/S (User/Supervisor access rights) : iGFX does not use these fields

1 PWT/PCD/PAT bits are used as indexes into a PAT register which defines the cache attributes for
the entire context.
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PAT field is used to do the look up in private PAT for memory typing.

9 Ignored- A (Accessed): It needs to be managed as the page table being accessed. Hardware
needs to write this bit for the first access to the 4KB region defined with this PT entry.

1 Ignored- D (Dirty): Hardware needs to set the dirty bit in page table if accessing this particular
4KB region in memory with the intention to modify it.

1 Ignored- Global: this is not used by iGFX hardware, the field is used to identify global context
where invalidation may not be required.

91 Physical address of 4KB page

For the treatment of the page bit0 AND bitl defines the validity of the page, the rest of the information
is not relevant for Aperture and Display usage.

GGTT table entries are always read as uncacheable.

Page Walk

The global GTT page walk is identical to wha it was before CHV, BSWThe only difference would be
that each entry is 8B (instead of 4B) hence the entry selection needs to be updated once the
corresponding Page Table miss read is returned.

3 1
1 2
| Index | Offset imjo Page |

Global
GIT
PTE

Giobal GTT Pointer (GSM)
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GTT Cache

Processor graphics page walker implements a GTTache which holds the remaining entries that are
read as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf
walks and not including the 2MB/1GB page sizes. When s/w enables the use of 2MB/1GB page sizes, it
will have to disable the GTT cache inCHV, BSW

GFX Page Walker (GAM)

GPU supports various engines behind the same page walker. These streams/contexts are identified
Client level IDs which are carried via the arbitration pipeline. Page walker using lookup tables does the
correct selection for the page tables in case of concurrent context are running at the same time.

There are two different types of page table types:

Global graphics translation table (GGTT) is a single common translation table used for all pr@esses.
There can be many Perprocess graphics translation table (PPGTT). This requires an additional lookup
for translation. The actual location is not accessible directly via software since they're both located in
graphics stolen memory (see graphics menory interface chapter for more detail).

Virtual Memory Structure | Memory Location

Global (GGTT) GSM Only

Per-Process (PPGTTJ private | 2 to4-level, Page Tables anywherg

Per-Process (IA32e) shared |4 levels, Page Tables anywhere

IA32e compatible PPGT is added to CHV, BSWo enable SVM (shared virtual memory) functions.

Context Definition for GFX Page Walker

Page Walker blocks need details about the context to decide on what type of page tables will be used,
what would be the error handling cases would be and many other details to operate. The information
will be passed to Page Walker (GAM) by the respective command streamer/DMA.

GAM supports the following engines:
1 Render
1 Media (VDBox) x2
1 Blit
1 VEBOX x2
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The following fields will be sent to GAM:
9 Context type (4 bits)

0 Legacy vs Advanced Context : Defines the context type and qualifies the rest of the
fields. Same field may mean something else between theLegacyvs Advancedcontext.
There is no restriction for what type of context can run in either combin ation.

A Requests without addressspaceidentifier (Legacy Context) These are the normal
memory requests from endpoint devices. These requests typically specify the type
of access (read/write/atomics), targeted DMA address/size, and identity of the
device originating the request.

A Requests with addresspaceidentifier (Advanced Context) These are memory
requests with additional information identifying the targeted process address
space from endpoint devices supporting virtual memory capabilities. Beyond
attributes in normal requests, these requests specify the targeted process address
space identifier (PASID), and extended attributes such as Execut&kequested (ER)
flag (to indicate reads that are instruction fetches), and Privileged-mode-
Requested (PR) flag(to distinguish user versus supervisor access). For details,
refer to the Process Address Space ID (PASID) Capability in the P@&xpress
specifications.

Note CHV, BSWLP only supports Legacy PPGTT with 32b virtual addressing

0 A/D Support Enable : Access andDirty bits are used when OS managing the page tables
and has been added to IA32e compatible page walk. Context will define whether A/D
bits need to be managed via GPU. (only applicable in Advanced Context)

0 Privileged Context Support : Enables GPU to be al# to run a privileged context which
will translate into page table accesses regardless of user vs supervisor privileges. (only
applicable in Advanced Context).

0 32bvs 48b VA Support : Enables 48b VA in page tables for the page walks. The rest of
the h/w is seamless to 32b vs 48b VA address walks, however GAM will do the check and
properly align the page walk to address bits.

A Note: Only applicable in Legacy Context, Advanced context is always 48b
A Note: CHV, BSWLP only supports 32b VA

1 Function Number : 3 bit field that defines the function number of the device. GFX device is
always on BUS=0 and DEVICE=2. If we are not virtualized, our FUNCTION#=0 however if
virtualized function number can be any 8 possible values (i.e. 7). The BUS/DEVICE/FUNCTION
numbers are used to the initial walk for ROOT and CONTEXT tables.
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9 PASID 6 Process Address Space IDentifier: Use to identify the context that is submitted to h/w.
We use the PASID in many places where during the page walk (i.e. PASID table look up) or while
communicating with s/w on page faults. Each engine could be running an independent context
with different PASID. The page walker should have a mechanism to be able to cache at least
some number of PASID table entries (matching to the engine count) for faster walk.

9 Context ID (Queue ID, Bell ID)d Context ID is used to further qualify the running context
beyond the PASID. PASID is given per process, and same process may allocate multiple queues
to communicate with h/w. The only way to further identify the process is to use an additional ID.
For GFX h/w Context ID could be same as the bell number assigned to it. GAM h/w will use the
context ID to populate the queue ID field while communicating page faults to s/w.

1 Page Table Pointers & The field could be up to 256 bits (i.e. 4x64bits) to identify the page table
pointers associated with the context. For legacy 32b context, the entire 256b is valid
representing the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant
pointing to base of PMLA4. In case of advanced context, PASID is given in the context definition.

Context Definition Delivery

Context Definition is supposed to be delivered from the corresponding command streamer to GAM and
GAM has independent storage for each engine present. ContextDefinition will be given by *CS to GAM
via a new message:

Message: O0Context Availabl eo

GAM prepares for new context, cleans up internal state and does the proper fencing. Most of these
steps should have been performed when context switch request was donefor the previous context, but
added here for completeness.

Message: oO0Context Receive Readybd

GAM is ready for the context. *CS writes all new context values into the descriptor registers. To push all
context descriptors CS sends the following message to GAMalso indicating new context descriptor is
downloaded.

Message: O0Context Launched®d

GAM does the context requirements and sends the following message to CS to resume its command
parser.

Message: Context Confirmed

GAM should send context confirmed message only after PD restore is done. CS waiting for context

confirmed message will be treated as PD restore busy. Since all clients memory interface are blocked
during PD restore it doesndt make any difference if
immediately or after PD restore.
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Element Descriptor Register

General Element Information: The register is populated by command streamer and consumed by
Description GAM

Register Offset See per engine list below

Bits | Access|Default Field

6332 RO Xh Context ID:

Context identification number assigned to separate this context from others. Context IDs
needs to be recycled in such a way that there could not be two active context with the
same ID.

This is a unique identification number by which a context is identified and referenced

31:12) RO Xh LRCA:

Command Streamer Only

11:9| RO Xh | Eunction Number:

GFX device is considered to be on Bus0 with device number of 2. Function number is
normally assigned as 006 however f atrfunagidnx
numbers which needs to be attached to context.

Not used in CHV, BSW

Privileged Context / GGTT vs PPGTT mode: Differs in legacy vs advanced context
modes:

In Legacy Context : Defines the page tables to be used. This is how page walker ome to
know PPGTT vs GGTT selection for the entire context.

006: Use Gl obal GTT
016: UsoeesFCE T

In Advanced Context : Defines the privilege level for the context

006 : user mode context
0106: supervisor mode context.
6 RO Xh Fault Model:

0 0 0 &lt & Halg (chicken bit to survive). Same mode as gen7.5
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Bits | Access| Default Field
0016: Fault & Halt/Wait. Same mode as ge
0106: Fault & Stream & Switch
0116: Fault & Continue: does not generat
5 RO Xh Deeper IA coherency Support:
In Advanced Context : Defines the level of IA coherency
006: | A coherency is provided at LLC 1| ev
016: | A coherency is provided at L3 leve
4 RO Xh A&D Support / 32&64b Address Support:  Differs in legacy vs advanced context modes:
In Legacy Context : Defines 32b vs 64b (48b canonical) addressing format
0006: 32b addressing format
016: 64b (48b canonical) addressing form
In Advanced Context : Defines A&D bit support
006: A&D bit managsdasmM©ndupported page tabl e
016: A&D bit management in page tables i
3 RO Xh Context Type: Legacy vs Advanced
Defines the context type.
006: Advanced Context: Defines the rest
support, f au ltethatadvdnedd soatgxt is nbtdounded to GPGPU.
016: Legacy Context: Defines the context
generations of CHV, BSW
Note that: Bits [8:4] differs in functions when legacy vs advanced context modes are
selected.
2 RO Xh FR:Command streamer specific
1 RO Xh Scheduling Mode:
016: I ndicates execlist mode of scheduli
600: I ndicates Ring Buffer mode of sched
0 RO Xh |Valid: Indicates that element descriptor is valid. If GAM is programmed with an invalid

descriptor, it will continue but flag an error.

38
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PDPO/PML4/PASID Descriptor Register

Gene

ral

Description

PDPO/PML4/PASID: The register is populated by command streamer and consumed by GAM. It
contains one of the 3 values which is determined by looking at th e element descriptor.

Register Offset

See per engine list below

Bits

Access| Default

Field

63:0

RO

Xh

PDPO/PML4/PASID:
This register can contain three values which depend on the element descriptor definition.

PASID[19:0] : Populated in the first 20bits of the register and selected when Advanced
Context flag is set.

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is
set and 64b address support is selected

PDPO0[38:12]: Pointer to one of the four page directory pointer (lo west) and defines the
first 0-1GB of memory mapping

Note: This is a guest physical address

(unused bits need to be populated as 008s)

PDP1 Descriptor Register

Gene

ral

Description

PDP1: The register is populated by command streamer and consumed by GAM.tlcontains
one of the pointers to PD.

Register Offset

See per engine list below

Bits

Access

Default

Field

63:12

RO

Xh

PDP1:

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1 -2GB of
memory mapping

Note: This is a guesphysical address

(unused bits need to be popul ated as O008s
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PDP2 Descriptor Register

General

Description

PDP2: The register is populated by command streamer and consumed by GAM. It contains
one of the pointers to PD.

Register Offset

See per engine lst below

Bits | Access

Default

Field

63:12) RO

Xh

PDP2:

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2 -3GB of
memory mapping

Note: This is a guest physical address

(unused bits need to be populated as 00s

PDP3 Descriptor Register

General

Description

PDP3: The register is populated by command streamer and consumed by GAM. It contains
one of the pointers to PD.

Register Offset

See per engine list below

Bits | Access

Default

Field

63:12

RO

Xh

PDP3:

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3 -4GB of
memory mapping

Note: This is a guest physical address

(unused bits need to be popul ated as 008s

40
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List of Registers and Command Streamers

The following registers are message regsters and not written directly by software.

Engine | Offset Description

Render | x4400h | Element Descriptor Register

x4408h | PDPO/PML4/PASID Descriptor Register
x4410h | PDP1 Descriptor Register

x4418h | PDP2 Descriptor Register

x4420h | PDP3 Descriptor Regster

x4440h | Element Descriptor Register

x4448h | PDPO/PML4/PASID Descriptor Register
x4450h | PDP1 Descriptor Register

x4458h | PDP2 Descriptor Register

x4460h | PDP3 Descriptor Register

Media0
(vDBOXO0

x4480h | Element Descriptor Regiger

x4488h | PDPO/PML4/PASID Descriptor Register
x4490h | PDP1 Descriptor Register

x4498h | PDP2 Descriptor Register

x44A0h | PDP3 Descriptor Register

Medial

(VDBOX1

VEBOX | x44C0h| Element Descriptor Register

x44C8h| PDPO/PML4/PASID Descriptor Register
x44D0h| PDP1 Descriptor Register

x44D8h| PDP2 Descriptor Register

x44E0h| PDP3 Descriptor Register

Blitter | x4500h | Element Descriptor Register

x4508h | PDPO/PML4/PASID Descriptor Register
x4510h | PDP1 Descriptor Register

x4518h | PDP2 Descriptor Register

x4520h | PDP3 Descriptor Register

Doc Ref # IHDOS CHV-BSWVol 5-10.15 41



experience

what'’s inside

Memory Views

Messages
Message Address Mask
Name Source | Destination |[Category | (Hex) |Bit| Bit [Value Description
Context |CS (GT) GAM (GT) | self-clear| 4004 | O | 16 1 |Signal request from CS to GAM as
Available new context is about to be
submitted.
Context GAM CS(GT) |self-clear| 3438 | 0| 16 1 |Signal ack from GAM to CS in
Receive (GT) response to Context Available
Ready message from CS to GAM.
Context |CS (GT) GAM (GT) | self-clear| 4004 | 1 | 17 1 |Signal indicator to GAM that context
Launched descriptor is pushed.
Context GAM CS(GT) |self-clear| 3438 | 1| 17 1 |Signal ack from GAMto CS in
Confirmed (GT) response to Context Launched

message from CS to GAM.

Context BCS | GAM (GT) | self-clear| 4014 | 0| 16 1 |Signal request from CS to GAM as

Available (GT) new context is about to be
submitted.

Context GAM BCS(GT) | self-clear| 23438 | 0 | 16 1 |Signal ack from GAM to BCS in

Receive (GT) response to Context Available

Ready message from BCS to GAM.

Context BCS | GAM (GT) | self-clear| 4014 | 1| 17 1 |Signal indicator to GAM that context
Launched (GT) descriptor is pushed.

Context GAM BCS(GT) |self-clear| 23438 | 1 | 17 1 |Signal ack from GAM to BCS in
Confirmed (GT) response to Context Launched

message from BCS to GAM.

Context
Available

VCS0
(GT)

GAM (GT)

self-clear

4008

Context VECS | GAM (GT) | self-clear| 4010 | 0 | 16 1 |Signal request from CS to GAM as

Available (GT) new context is about to be
submitted.

Context GAM VECS(GT) | self-clear| 1B438 | 0 | 16 1 |Signal ack from GAM to VECS in

Receive (GT) response to Context Available

Ready message from VECS to GAM.

Context VECS | GAM (GT) | self-clear| 4010 1| 17 1 |Signal indicator to GAM that context
Launched (GT) descriptor is pushed.

Context GAM VECS(GT) | self-clear| 1B438 | 1 | 17 1 |Signal ack from GAM to VECS in
Confirmed (GT) response to Context Launched

message from VECS to GAM.

Signal request from CS to GAM as
new context is about to be
submitted.
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Message Address Mask
Name Source | Destination |Category | (Hex) |Bit| Bit [Value Description
Context GAM VCSO(GT) | self-clear| 13438 | O | 16 1 |Signal ack from GAM to VCS in
Receive (GT) response to Context Available
Ready message from VCS to GAM.
Context VCSO0 | GAM (GT) | self-clear| 4008 | 1 | 17 1 |Signal indicator to GAM that context
Launched (GT) descriptor is pushed.
Context GAM VCSO(GT) | self-clear| 13438 | 1 | 17 1 |Signal ack from GAM to VCS in
Confirmed (GT) response to Context Launched

message from VCS to GAM.

Context VCS1 | GAM (GT) | self-clear| 400C | 0 | 16 1 |Signal request from CS to GAM as

Available (GT) new context is about to be
submitted.
Context GAM VCS1(GT) | self-clear| 1D438 | 0 | 16 1 |Signal ack from GAM to VCS in
Receive (GT) response to Context Available
Ready message from VCS to GAM.
Context VCS1 | GAM (GT) | self-clear| 400C | 1| 17 1 |Signal indicator to GAM that context
Launched (GT) descriptor is pushed.
Context GAM VCS1(GT) | self-clear| 1D438 | 1 | 17 1 |Signal ack from GAM to VCS in
Confirmed (GT) response to Context Launched

message from VCS to GAM.

Updating Page Table Pointers (aka PD Load)

In case of legacy context, driver is allowed to add/remove pages as long as it is ensured that h/w is not
using these entries. PreCHV, BSWflow allowed a mid-context PD load to update the PD entries and
directed h/w to reload updated entries. CHV, BSWegacy context will require a similar mechanism.

Instead of a PD load, the new mechanism will let the driver update the page table pointers via sending a
reload command. Mechanism will be overlapped to same sort messaging between CS and GAM to
deliver the context header. CS will send the following message to GAM:

Message: Context Reload
GAM will respond immediately to CS with the following message
Message: Context Confirmed

Meanwhile GAM will block the related interfaces and updates the PDs or PMLA4.
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Page Walker (GAM) Reset

GAM gets all the engine specific resets as well as device and bus resets to manage its internal logic
domains. It is the expectation of SW when a particular GPU engine (i.e. Render, Media, ...) gets reset, all
its related HW is cleared and comes out fresh for reprogramming. That is true for most of the logic with
the exception of some shared HW blocks. The following blocks require additional steps (post-reset)

from SW to further clean-up the HW:

1 Hardware TLBs: The caching structures for the page walks are often considered shared
resources. The expectation is for GFX driver
the engine post reset. This is thesame process that was followed on previous GPU generations.

1 Page Requests: At the time of the reset HW may have outstanding page requests to SW for page
faulted accesses. These requests could be at any level hence it is required for SW to clear these
paging requests pre/post-engine reset. Engine reset ensures no new page requests would be sent
from HW. Page requests could be at the oOpage
mapped to a dummy page post engine reset completion. Or they could be at th e MMIO registers
which will block the completion of the reset; it is up to SW to service paging request interrupts
without waiting for the completion of reset request.

Device reset (FLR) covers most of the page walker, however there are exceptions where @MU
structures and all messaging towards rest of the system (system agent) should not be impacted by it.
All external interactions and IOMMU related blocks are kept under bus (system) reset. GAM will keep
the following blocks outside the device reset:

1 IOMMU registers and content.

1 All system agent messaging structures (including translation enable flows, root pointer structures,
DMA fault reporting pieces.).

An engine being reset also means the particular context that engine is running, is complete or taken
out. That will require GAM to decrement the PASID_State Counter if the engine was running a PASID
based (advanced) context. For FLR (device reset), a similar requirement holds. In case of device reset,
GAM would need to decrement all the PASID state counters that are active on the GPU before
completing the sequence.

Legacy Context

Legacy context could use either Global GTT or Per Process GTT which is given to page walker as part of
the context descriptor. Even under PPGTT, there could be accesses from Comand Streamers that
would require to use Global GTT which requires to treat the walk requirement per transaction.

For Legacy context indicator command streamer |
with other parameters that defines how certain behavior for paging needs to be.
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Table
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In the full walk case (i.e. advanced context), the root of the It and 2 level page tables share a common
source. Both the root table and context table is walked with the assumption of GFX device is alwgs on
Bus#0 and it is always Device#2.

Function number however is part of the context and it can be non -Zero only for virtualized modes.
GAM will receive the function number (for Context table look -up) as part of the context. Both Root
entry and Context Entry should be fetched along with PASID Table entry prior to running the context
accesses.
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Memory Views

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At
every stage of the page different bits need to be taken into account and proper treatment is required.
Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear address are
translated using a hierarchy of in-memory paging structures located using the contents of CR3. 1A-32e
paging translates 48-bit linear addresses to 52-bit physical addresses. Although 52 bits corresponds to
4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of lineaaddress space may be
accessed at any given time. IA32e paging may map linear addresses to 4 KByte pages, 2MByte pages,

or 1-GByte pages.
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The following rules apply:

1. Mis an abbreviation for MAXPHYSICAL ADDRESS.
2. Reserved fields must be 0060.
3. Ignored field must be ignored. (There could be private information.)

All ignore options are part of the context entry and come from the IOMMU definition.

TLB Caches

For CHV, BSWhe caching structures are separated as following with the architectural view, this is also
applicable to s/w view of these caches when it comes to invalidations.

Context Cache - CC

This is the storage for context table entry which is achieved as part of root/context table walk.

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the
content of the context cache along with all low level caches.

PASID Cache- PC

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for
every HW engine that could be running an independent context (per GAM):

Render/GPGPU

MFX (VDBOX) 1

MFX (VDBOX}P 2

Video Enhancement (VEBOX$ 1

Video Enhancement (VEBOX® 2

9 Blitter

=A =4 =4 4 4

The cache content is updated if the corresponding engine is running an advanced context where its
page table pointers are accessible via PASID table. In case of legacy conkt running engine,
corresponding PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per
engine which is filled/invalidated during the context switch time.

PASID Cache can also be invalidated with the directed invalidations alongwith low level caches and
needs to be re-filled prior to context resuming.
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Intermediate Page Walk Caches (PML4, PDP, PD) 6 PWC

These are the stages where intermediate page walk entries are cached to speedup/shorten the page
walk when final TLB is missd. Each level can be cached separately or along with different levels, the
cacheability structures will have programmability to move the boundary of different levels to
accommodate more/less on each page walk level. However as a concept, for legacy 32b addessing
mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and
media. The others will use cache concept.

TLB & Final Page Entry

The size of the TLBs has been increased over the previous generation and shoulthe targeting the
below table:

1 L3 TLB: 768 TLB entried This is where all HDC, I$, Constant, State, and Sampler streams are
stored.

MFX: 512 TLB entrie All Media streams (split 256/256 between two media engines).

BLT: 32 entries.

Z: 512 TLB entried All depth accesses.

C: 256 (256 TLB entriesp All color accesses.

FF: 128 (128 TLB entries) All FF accesses to memory.

VLF: 32 (32 TLB entries) Media surface.

GAV: 192 (192 TLB entriesd Video enhancement. Increased compared to other Gen8 projects.
1 WiDi: 64 (64 TLB entriesp Wireless Display.

=A =4 =4 =4 -4 4

All TLB entries are increased to 48b to contain larger address as well as the page attributes attached to
it.

The max size of a single TLB is 256 entries, larger quantities have to be handled as setssociative
storages. Set associativity is managed by low order page bits (i.e. address#12, address#13, ...).
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TLB Entry Content

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as
well along with the physical address bits. The treatment on these bits would be considered when a HIT
vs MISS decision needs to be made during a look up.

The purpose of caching is to accelerate the paging process by caching individual translations in
translation look -aside buffers (TLBs). Eat entry in a TLB is an individual translation. Each translation
is referenced by a page number. It contains the following information from the paging -structure entries
used to translate linear addresses with the page number:

A The physical address correspondng to the page number (the page frame).

A The access rights from the paging structure entries used to translate linear addresses with
the page number:

0 The logical-AND of the R/W flags.
o0 The logical-AND of the U/S flags.
0 The logical-OR of the XD flags.

A Attrib utes from a paging-structure entry that identifies the final page frame for the page
number (either a PTE or a pagingstructure entry in which the PS flag is 1):

o The dirty flag.
o0 The memory type.

PRESENT This is the same VALID bit description we had in previous page table designs. The lack of
present bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For
some fault models, even NOT PRESENT entries are cached to filter further page faultsée fault models
on caching page faulting entries). If such entry is cached, there are couple ways that it can be removed
from the page tables:

1. LRA selection where the entry becomes a victim for replacement
2. Global or Selective invalidation
3. Page fault response stating the faulting page is now fixed.

R/W Privilege : Certain pages can be allocated as readonly and write operations are not allowed. To
make this check work, TLB has to keep the R/W bit. This bit has no affect on read operations; however
for write operation privilege n eeds to be checked. If there is mismatch, the result of the TLB look-up
should be a MISS. This does not mean a page fault immediately; the walk has to be redone as for any
TLB MISS result. There are cases OS may change page table privileges without invdédting pages in TLB
(note: all downgrades result in invalidation of the TLB, however upgrades can be done silently hence re
walk is required). In case where the TLB Miss is due to privilege mismatch, the existing entry from TLB
has to be invalidated and page walk will bring in the most up -to-date copy from memory .

The R/W privilege on final frame is generated as a logicat AND process of all upper page walks pointing
to this location.
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User vs Supervisor Privilege : The GPU typically operates in user mode wien it comes to page tables.

So the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and

the context is marked as user mode. The faulted ent
indicating a faulted entry. However the page fault report should carry the correct reason why h/w

detected the fault in the first place which was the user vs supervisor privilege. There is an option in

context header to define the context as supervisor, than it legal to access supervsor pages.

9 This is not stored in TLB

The U/S privilege on final frame is generated as a logicat AND process of all upper page walks pointing
to this location.

Accessed Bit: This where a stage of the page walk cannot be used if the accessed bit is not setdr that

level in the page walk. This is true for both storage into TLB as well as to make progress on the page

walk. In order to achieve the process of Accessed bit, every stage of the ppGTT read is done via a new

semantics between the GAM and GTI such tha GTI can atomically process Abit w/o running into

access violations. The details of the semantics are
does not need to be stored as part of the TLB, just the fact that a valid page table entry is present in the

TLB does mean that h/w took care off the O0AO6 bit at
TLB prefetching is disabled when Abit management is enabled.

IA32e mode page tables camot co-exist with TLB prefetching due to lack of A-bit management for all
entries of the line.

9 This is not stored in TLB

DirtyBit: Similar to accessed bit, dirty bit needs to b
accesses. Given there are cases where a TLB entry was acquired as part of a read opgoa, the

presence of D-bit should be maintained with the TLB. This gives us the capability to declare a TLB miss

for a write access when the D bit is not set even though TLB has a valid translation. In such case, The

TLB entry needs to invalidated and thefinal stage of the walk needs to be re-done to ensure most up-

to-date copy of GTT entry is brought into h/w. The operation of Dirty bit update is also atomic similar to

A-bit management.

Execute (XD) Bit : XD bit is also present on every stage of the walkand applicable to executable code
that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the
corresponding page does not have the execute credentials set properly. Similar treatment of the TLB
entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for
instruction space will have to check the XD bit which is also stored in TLB. If mismatch, the end result is
a TLB miss and walk has to be redone replacing the differ ent stages of the walk.

The XD privilege on final frame is generated as a logicalOR process of all upper page walks pointing to
this location.

Faulted Bit : There are usage models where the faulted entries are cached in TLB. This is to filter further
faults to the same page as opportunistic way to prevent fault storms. When faulted bit is set the address
is included in the TLB look up but final treatment is fault filtering. The rest of the bits are used to define
what would be the reason for the fault. If t he look-up conflicts with the original faulted reason, a re-
walk is required. As a basic case, take a read access bringing up a PTE with-flag cleared. A
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subsequent write access has a conflict on privilege, and it will perform a re-walk. If the result of the re-
walk is W-flag set, than TLB is upgraded and write makes progress. However if the result is still Wflag
cleared, the write access will fault and TLB entry will be tagged as a faulted entry with only read
allowed. Subsequent write accesses will beiftered as fault but read accesses should cause a rewalk of
the page and if successful, the TLB can be updated with PTE as valid with readnly attribute.

TLB Accessed and Dirty Flags

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessedflag.
For paging-structure entries that map a page (as opposed to referencing another paging structure), bit
6 is the dirty flag. These flags are provided for use by memory management software to manage the
transfer of pages and paging structures into and out of physical memory.

Whenever the processor and/or GPU uses a pagingstructure entry as part of linear-address translation,
it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to alinear address, the processor and/or GPU sets the dirty flag (if it is not
already set) in the paging-structure entry that identifies the final physical address for the linear address
(either a PTE or a pagingstructure entry in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging structure is initially
|l oaded into physical memory. These flags are o0stick
does not clear them; only software can clear them.

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging
structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty
flag from 1 to 0, the GPU might not set the correspondi ng bit in memory on a subsequent access using
an affected linear address

Accessed bit is applicable to every stage of the page walk, however the dirty bit is only applicable to
final stage of the walk.

The rule states that a particular access cannot be conmitted until the Accessed and/or Dirty bits are not
visible to page management s/w. In order for GPU to follow the rule, GTT accesses (when A/D bits are
supported) are going to be done via a special cycle definition between GAM and GTI.

Updating A/D Bits

New atomic operations are added to GAM to GPU interface (GTI) to handle paging entries. GAM has to
set the correct atomic opcodes based on the access type and context entry controls as well as level of
access.

Requires setting for opcodes are given in the table below. The steps of operations in the atomic ALUs
are given later in the document.
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The Following Atomics are only applicable in GTIl and used for Page Walks

RIW => Bit[0]

Extended Access required =

> Bit[1]

Write Protect Enable => Bit[2]

Intermediat e Entry => Bit[3]

Atomic

Operation

Opcode

Description

New Destination

Value

Applicable

Return Value
(optional)

Atomic_Page_update_000(

1100_0000,

Read Access

Extended Access bit
is disabled

Write Protection is
disabled

Final PTE

Set bit[5] if not
set

new_dst

Atomic_Page_update_ 0001

1100_0001

Write Access

Extended Access bit
is disabled

Write Protection is
disabled

Final PTE

Set bit[5,6] if not
set

new_dst

Atomic_Page_update_000(

1100_0010

Read Access

Extended Access bit
is enabled

Write Protection is
disabled

Final PTE

Set bit[5,10] if not
set

new_dst

Atomic_Page_update_000]

1100_0011]

Write Access

Extended Access bit
is enabled

Write Protection is
disabled

Final PTE

Set bit[5,6,10] if
not set

new_dst
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Atomic_Page_update_010(

1100_0100,

Read Access

Extended Access bit
is disabled

Write Protection is
enabled

Final PTE

Set bit[5] if not
set

new_dst

Atomic_Page update_010]

1100_0101]

Write Access

Extended Access bit
is disabled

Write Protection is
enabled

Final PTE

Set hit[5,6] if not
set

new_dst

Atomic_Page_update_010(

1100_0110

Read Access

Extended Access bit
is enabled

Write Protection is
enabled

Final PTE

Set bit[5,10] if not
set

new_dst

Atomic_Page_update_010]

1100_0111]

Write Access

Extended Access bit
is enabled

Write Protection is
enabled

Final PTE

Set bit[5,6,10] if
not set

new_dst

Atomic_Page_update_000(

1100_1000,

Read Access

Extended Access bit
is disabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5] if not
set

new_dst

Doc Ref # IHDOS CHV-BSWVol 5-10.15

53




(lntel) |
experience
what'’s inside

Memory Views

Atomic_Page_update 0001

1100_1001

Write Access

Extended Access bit
is disabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5,6] if not
set

new_dst

Atomic_Page_update_000(

1100_1010

Read Access

Extended Access bit
is enabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bhit[5,10] if not
set

new_dst

Atomic_Page_update_ 0001

1100_1011

Write Access

Extended Access bit
is enabled

Write Protection is
disabled

Intermediate Paging
Entry

Set bit[5,6,10] if
not set

new_dst

Atomic_Page_update_010(

11001100

Read Access

Extended Access bit
is disabled

Write Protection is
enabled

Intermediate Paging
Entry

Set bit[5] if not
set

new_dst

Atomic_Page_update 0101

1100_1101

Write Access

Extended Access bit
is disabled

Write Protection is
enabled

Intermediate Paging
Entry

Set bit[5,6] if not
set

new_dst
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Atomic_Page_update 0100 1100 1110, Set bit[5,10] if not new_dst
Read Access cet
Extended Access bit
is enabled
Write Protection is
enabled
Intermediate Paging
Entry
Atomic_Page update 01011100 1111 Write Access :;att :‘;tt[5,6,10] if new_dst

Extended Access bit
is enabled

Write Protection is
enabled

Intermediate Paging
Entry

Atomic updates are only possible for cacheable memory types. There could be cases where the PTE
could be in WT/WC/UC space where atomic update is not possible via WB space. Those are the cases
where IA cores use bus lock to update the A/D bits in PTE.

GT core is not capable of supporting bus locks and has the following options. These options will be
enabled/disabled via register space.

Option#1 : Ignore the PAT/MTRR setting of the PTE and update the space as WB with atomic ops. This
is the place GAM will decide to go forward with atomic updates assuming WB space works

Option#2 : Once the memory type is determined and the end result of the page is WC/UC/WT space,
we can not guarantee an atomic update. GAM will report an application error (catastrophic) to the
scheduler and handle the case as error.

Default
Bit [Access| Value

Description

1| RW Ob

A/D Bit Update on non -WB Space: A/D bit updates are only possible via atomic
operations which are required to be on WB space to work properly. On non-WB spaces,
the A/D bit updates are done via bus locks which are not supported for GT.

0 1 dgnore the page level cacheability and do atomic updates for A/D bit management

0 0 @etect the page level cacheability as part of the atomic operation and throw a
catastrophic error when non-WB space is seen for A/D bit updates.

Doc Ref # IHDOS CHV-BSWVol 5-10.15 55




( ||'|te|) | Memory Views
experience

what'’s inside

PAT (IA32e)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the
memory-type range registers (MTRRS) as specified.

The PAT is a 64bit data structure defined in context entry when advanced context is chosen and for
legacy context and internal 64b register is defined to keep the page table based cacheability. It is
compromising eight (8) 8-bit entries (entry i comprises bits 8i+7:8i of the register).

For any access to a physical address, the table combines the memory type specified for that physical
address by the MTRRs with a memory ype selected from the PAT. Specifically, it comes from entryi of
the PAT, wherei is defined as follows:

A For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table
with IA-32e paging):

i = 2*PCD+PWT, where the PCD and PW values come from CR3.
A For an access to a pagingstructure entry X whose address is in another paging structure
entry Y,i = 2*PCD+PWT, where the PCD and PWT values come from Y.

A For an access to the physical address that is the translation of a linear addess,i =
A*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant PTE (if the
translation uses a 4 KByte page), the relevant PDE (if the translation uses a-2MByte page or
a 4-MByte page), or the relevant PDPTE (if the translation uses d4-GByte page).

PAT in Context Table Entry

PAT definition is embedded inside the context entry and already defined as part of the context entry
definition (see related section). It allows 8 different settings which can be indexed using the following
encodings listed as part of memory types. PAT in context entry is used for advanced context usage.

Memory Types and Applicability to GFX

The Memory Types defined for IA are listed below as:

Memory Type Encoding in MTRR/PAT

Uncacheable (UC) 00h

Write Combining (WC)[01h

Write Through (WT)  [04h

Write Protected (WP) |05h

WriteBack (WB) 06h
Uncached (UG) 07h
Reserved* 02, 03, 08hFFh

Note: * use of any reserved encodings will result in a FAULT and reported into fault registers.
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1 Uncacheable (UC): IA semanticsfor a UC cycle is slightly different than traditional UC concept
that was adapted by GFX as part of integration into CPU. When UC type is selected from the
MTRR table, GAM will enforce the request to be uncacheable in LLC/eLCC (turoff the
cacheability flags) and also force the fence semantics in GTI.

Note: This behavior is not followed with a fence in case of GPUs.
1 Uncached (UC-): Same concept as UC from behavior perspective however the precedence can be

overridden by WC unlike UC.

1 Write Combining (WC): Write combining follows a streaming model in IA terms which is not
cached in uncore. Semantically the existing GT use of UC concept overlaps with WC memory type
defined by IA. GFX will treat the WC memory type as a streaming uncacheable memory type in
GFX ppelines.

9 Write Through (WT): Write through concept is already introduced as part of the gen7.5 design,
the IA version of the WT overlaps with the same concept.

1 Write Protected (WP): GFX has no concept of write protected; however this is simply a
combination of two modes distributed over different access types:

1 Reads: Acts as WB.
1 Writes : Acts as WC.

1 Write Back (WB): WB memory type is traditional memory type used where accesses are cached
in uncore as per the directives provided. This is the main cacheable node that will be used.
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Basically, GPU will support all memorytypes that CPU supports (as below), with the same meaning with

r e s p e €dacheabted Writeback Cacheable 6 Seridlizaton 0 . Because the GPU ha
devicees peci f i ¢ n ogpecubative rdcessohoedéring means, those are not s
to memory -types.

Allows
Memory Type Writeback Speculative
and Mnemonic Cacheable Cacheable Reads Memory Ordering Model
Strong No No No Strong Ordering
Uncacheable (UC)
Uncacheable (UG) |No No No Strong Ordering. Can only be selected
through the PAT. Can be overridden by
WC in MTRRs.
Write Combining No No Yes Weak Ordering. Available by
(WC) programming MTRRs or by selecting it
through the PAT.
Write Through Yes No Yes Speculative Processor Ordering.
(WT)
Write Back (WB) |Yes Yes Yes Speculative Processor Ordering.
Write Protected Yes for reads; |[No Yes Speculative Processor Ordering.
(WP) no for writes Available by programming MTRRs.
The key similarities with CPU memory types are:
T GPlbs cache (L3 cache) wildl be made coherent (wor
91 All GPU accesses (regardless of memory type) will snoop LLC.
1 All GPU accesses will selnoop.
9 Outside of virtualization, GPU computes effective memory-type same as CPU (MTRR, PATOD,
PWT, etc.), and caches follow normal versus norallocating mode per CD bit (similar to CPUS).
1 UC, UG and WC accesses do not allocate to caches. Will invalidate if line already exists in caches.
1 UG works same ways as CPU (i.e., unlike UC, U@llows override by WC).
1 WB accesses will allocate to cache without updating memory.
1 WT behaves same as WB, except writes, updates memory along with allocate to cache.
1 WP behaves same as WT, except writes always propagate to memory (invalidating any cachéne

that hits).
The key difference with CPU memory types are:

1 Speculative processor ordering not specified
1 For GPU, only difference between UC/UEC and WC is that, UC has stronger ordering.
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Memory Type Range Registers are defined to cover the entire ptysical memory. The following table
shows how each region is defined and how they map over the physical memory.

R

Physical Memory

Address ranges not
mapped by an MTRR ——»
are set to a default type

P4

Variable ranges /
(from 4 KBytes to

maximum size of \\L
physical memory)
1
.\\
'\_\ ‘
\
\
A
\
\
|

64 fixed ranges
(4 KBytes each) »

16 fixed ranges
(16 KBytes each)

8 fixed ranges

(64-KBytes each) >

256 KBytes

256 KBytes

512 KBytes

FFFFFFFFH

100000H
FFFFFH

COO00H
BFFFFH

80000H
7FFFFH

Memory Type Selection and Priority

Memory typing determination is split up to two categories:

9 Architectural Options : This is the traditional memory typing defined via external specifications
and controls the cacheability of various surfaces.

9 Design Specific Options : To target product specific caches and cache optimizations

Design-Specific Memory Types

The following are the design specific memory types for CHV, BSW

LRU Age: Both LLC and eDRAM uses LRUke replacement algorithm with Age based determination
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00: Ageis O
01: Ageis 1
10: Ageis 2
11: Ageis 3
Target Cache: CHV, BSWhas two large caches in Uncore where they could be separately targted.
00: reserved
01: eLLC only
10: LLC only
11: eLLC/LLC

Both LRU and target cache selections can only be managed via noparchitectural solutions.

Legacy Context: Sel ection i s based on whether target <cache
ornon-0 00 6. -0l0f0bnon han both the Age and Target cache p
and page table controls are ignored. | f target <cach
table controls are used via private PAT programming (see PAT cal cul ation) and i nd

MMI O Regi ster Spacebo.

Advanced Context : Decision is based on surface state only. Advanced context uses architectural
definition of PAT via I1A32e page tables which do not carry design specific information. The only
mechanism to control cache LRU and targets is to program the surfaces state accordingly.

Memory Object Control State (Surface)

Bit Description

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC)

This is the field used in GT interface block to determine what type of access need to be generated to uncore.
For the cases where the LeLLCCC is set, cacheable transaction are generated to enable LLC usage for
particular stream.

00: Use Cacheability Controls from page table / UC with Fence (if coherent cyat)
01/10: non-snooped

11: snooped

For CHV, BSW, GFX driver should use snooped type for only surfaces that are prepared by the driver in
IA WB space. All other surfaces should be tagged as nonsnooped

43 Target Cache (TC)

This field allows the choice of LLC vs eLLC for caching
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00: eLLC Onlyd not snooped in GT
01: LLC Only

10: LLC/eLLC Allowed

11: L3, LLC, eLLC Allowed

Reserved

1:0

Age for QUADLRU (AGE)

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a partitar allocation is
done at youngest age (036) it tends to stay |l onge
or 0006). This option is given to driver to be abl
hence need to be replaced least often in caches.

11: Good chance of generating hits.
10: Next good chance of generating hits
01: Decent chance of generating hits

00: Poor chance of generating hits

Architectural Memory Types

Memory typing is decided via several levelsof checks and comparing different priority levels. The
following table shows a visual mapping between these selections.
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EMTE (IGPT

CD

2nd Level
Translation

EaE TR T T T HE T T T T TR T T T S T ]

0

1 (enabled)

0

1 (enabled)

Context Type

Memory Views

"
L

Advanced Contex

"
L

Advanced Contex
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0

1 (enabled)

Advanced Context
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2nd Level Surface | Privat IA32 Effectiv
Context Type | - = |CD|EMTE |[IGPT| o | T IMTRR| - -C|EMT e
] Translation State | PAT PAT Memory Type
Advanced Context X 1 X X X X X X X uc

Page Walker Access and Memory Types

Most of these notes are further explained in the document; however summarized as part of the page

table behavior:

Page Walker Memory Types

1. Legacy Contexts

oo T

GT access to root/extendedroot table and context/extended -context table
GTT access to private paging (PPGTT) entries

GT access to GPAo-HPA paging entries

GT access to the translated pa@

2. Advanced context (without nesting)

a.
b.
c.
d.

GT access to extendedroot table and extended -context table
GT access to PASIEentry & PASID-state entry

GT access to IA32e paging entries

GT access to the translated page

3. Advanced context (with nesting)

® 2 0 T o

GT access to etended-root table and extended -context table

GT access to PASIEentry & PASID-state entry

GT access to IA32e paging entries

GT access to the translated page

GT access to GPAo-HPA paging entries to translate address of PASIDentry and PASID

state entry
GT access to GPAo-HPA paging entries to translate address of 1A 32e paging entries

GT access to GPAo-HPA paging entries to translate address of page

For gen8, the following behavior is defined:

64
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Error Cases

1

A/D bit update attempt for paging entry in n on-WB memory, cause pagewalk to be aborted,;
Error reported to device in Translation Response gets reported to driver as GPGPU context in
error d catastrophic error case.

Locked/Atomic operations to pages in hon -WB memory aborted; gets reported to driver as
GPGPU context in error (catastrophic error)

CD=1 treated same as nonWB memory, for above lock behavior

Replacement

TLB replacements during runtime are based on LRA algorithm; in addition, invalidations and page
responses will have to invalidate the TLB entries.

Invalidations of TLB

There are various ways to invalidate TLBs:

1. Traditional invalidation from command streamer : Could be part of any fence accesses
including newly added atomics.
2. SVM based invalidations : Listed as part of the new SVM related nvalidations, various stages of
TLBs including intermediate stages can be invalidated selectively and/or as a whole.
3. Context Switch : A context switch has to invalidate caches to make sure we have no residual
value of the TLBs across multiple PASIDs. GAM iltreat the context reload message from CS as a
form of TLB invalidation.
4. A page response : should invalidate faulted recordings. It should be done via address matching
to kick the faulted entries within the matching PASID.
I nval i dati on rtesoponnMae to IDnevsaclriidpaa or 6 shoul d al so be
that used the previous TLB entries. Gam can only

a GTlI EMPTY indication.
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Optional Invalidations

The following cases are listedas page table updates which software may choose not to invalidate the

TLBs.

66

1

If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, s/w may choose
not to invalidate TLBs. This affects only the case where GPU keeps the faulted pagm its TLB to
filter out future faults. Regardless of s/w does invalidation or not, for the cases where h/w cares,
there will be a page response from s/w which will be used to shootdown the faulted record from
the TLB.

GAM will only put faulted entriest o its TLBs if there has been page request for it. This
would mean only faultable surfaces can be stored in GAM TLBs as a faulted entry.

If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is
necessary (assuming hat an invalidation was performed the last time the accessed flag was
changed from 1 to 0). This is because no TLB entry or pagingstructure cache entry is created
with information from a paging structure entry in which the accessed flag is 0.

If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure
to perform an invalidat i onfaulhaxgeptiore(s.q, intresponse ta
an attempted write access) but no other adverse behavior. Such an exceptia will occur at most
once for each affected linear address
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Faulting

Page Faults

CHYV, BSWdoes not support page faulting
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Memory Types and Cache Interface

This section has additional information on the types of memory which are accessible via the various G
mechanisms. It includes discussion on how the various paging models are used and accessed. See the
Graphics Translation Tables for more detailed discussions on paging models.

This section also includes descriptions of how different surface types (MOCS) an be cached in the L3
and the different behaviors which can be enabled.

Memory Object Control State (MOCS)

The memory object control state defines the behavior of memory accesses beyond the graphics core,
including encryption, graphics data types that allow selective flushing of data from outer caches, and
controlling cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by
page in the GTT entries. Memory objects that are definedby state per surface generally have additional
memory object control state in the state structure that defines the other surface attributes. Memory
objects without state defining them have memory object state control defined per class in the
STATE_BASE_ABRESS command, with class divisions the same as the base addresses. Finally, some
memory objects only have the GTT entry mechanism for defining this control. The table below
enumerates the memory objects and the location of the control state for each:

Memo ry Object Location of Control State
surfaces defined by SURFACE_STATE: sampling engine surfaces, SURFACE_STATE
render targets, media surfaces, pull constant buffers, streamed vertex
buffers
depth, stencil, and hierarchical depth buffers corresponding state command that

defined the buffer attributes

stateless buffers accessed by data port STATE_BASE_ADDRESS
indirect state objects STATE_BASE_ADDRESS
kernel instructions STATE_BASE_ADDRESS
push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS)
index buffers 3DSTATE_INDEX_BUFFER
vertex buffers 3DSTATE_VERTEX_BUFFERS
indirect media object STATE_BASE_ADDRESS
generic state prefetch GTT control only
ring/batch buffers GTT control only
context save buffers GTT control only
store DWord GTT control only
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MOCS Registers

These registers provide the detailed format of the MOCS table entries that need to be programmed to
define each surface state.

MEMORY_OBJECT_CONTROL_STATE
MEMORY_OBJECT_CONTROL_STATE

Page Walker Access and Memory Types

Most of these notes are further explained in the document however summarized as part of the page

table behavior:

Page Walker Memory Types

1. Legacy Contexts

20T

GT access to root/extendedroot table and context/extended -context table
GTT access to private paging (PPGTT) entries

GT access to GPAto-HPA paging entries

GT access to the translated page

2. Advanced context (without nesting)

20T o

GT access to extendedroot table and extended -context table
GT access to PASIEentry & PASID-state entry

GT access to IA32e paging entries

GT access to thetranslated page

3. Advanced context (with nesting)

® 20 T o

-

GT access to extendedroot table and extended -context table
GT access to PASIEentry & PASID-state entry
GT access to IA32e paging entries

GT access to the translated page

GT access to GPAo-HPA paging entries to translate address of PASIDentry and PASID
state entry

GT access to GPAo-HPA paging entries to translate address of 1A 32e paging entries

GT access to GPAo0-HPA paging entries to translate address of page
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Gen8 Memory Typing for Paging
The following information is duplicated in the Page Walker Memory Types topic:

1. Legacy Contexts

a. GT access to root/extended-root table and context/extended -context table
b. GTT access to private paging (PPGTT) entries

c. GT access to GPAo0-HPA paging entries

d. GT access tahe translated page

2. Advanced context (without nesting)

a. GT access to extendedroot table and extended -context table
b. GT access to PASIEentry & PASID-state entry

c. GT access to IA32e paging entries

d. GT access to the translated page

3. Advanced context (with nesting)

GT access to extendedroot table and extended -context table

GT access to PASIEentry & PASID-state entry

GT access to IA32e paging entries

GT access to the translated page

GT access to GPAo-HPA paging entries to translate address of PASIDentry and PASID
state entry

f. GT access to GPA0-HPA paging entries to translate address of 1A 32e paging entries
g. GT access to GPAo-HPA paging entries to translate address of page

® 20 T o

This information is new in this topic and references the cases and subcases enumeratd above:
For case [1]:

1 [1.a] is always covered as a noncacheable access

1 [1.b] & [1.c]is covered with MMIO register where PPGTT entries can be forced to be cached in
LLC (default option is cached).

1 [1.d]is defined via private PAT (MMIO based) and surfae state.
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For case [2]:

1 [2.a] is always covered as a noncacheable access
T [2.b] is always cached & PASI D state table entr\
1 [2.c]is accessed as cached
1 [2.d] use memory-type as evaluated through MTRR, CD, and PCD/PWT/PAT bits leaf |1A-32e
paging entry
For case [3]:

1 [3.a] is always covered as a nonrcacheable access

T [3.b] is always cached & PASI D state table entr\
1 [3.c]is accessed as cached
1 [3.d] use memory-type as follows (this section is further described in detail in memory typing
section)
o If CD=1, memory-type is UC
o If CD=0:
A If EMTE=0 in extended context-entry, it is handled same as [2.d]
A If EMTE=1 in extended context-entry:
1 IfIGMT=1 in leaf GPAto-HPA entry, memory type used is the EMT fietl in
this GPAto-HPA entry.
1 IfIGMT=0 in leaf GPAto-HPA entry, memory type from [2.d] is combined
with EMT field in this GPAto-HPA entry.
T [3.e] is always cached & PASI D state table entr\

1 [3.f] &3.g] is accessed as cached

Error Cases

1 A/D bit update attempt for paging entry in non -WB memory, causes pagewalk to be aborted;
Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU
context in error & catastrophic error case.

1 Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver
as GPGPU context in error (catastrophic error).

I CD=1 treated same as honWB memory, for above lock behavior.
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Common Surface Formats

This section documents surfaces and how they arestored in memory, including 3D and video surfaces,
including the details of compressed texture formats. Also covered are the surface layouts based on
tiling mode and surface type.

Non -Video Surface Formats

This section describes the lowestlevel organizati on of a surfaces containing o
data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats,

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory

object types.

Surface Format Naming

Unless indicated otherwise, all pixels arestored i nlittldendian 6 byt e order. i .e., pi x
stored in byte n, pixel bits 15:8 are stored in byten+1, and so on. The format labels include color
components in little endian order (e.g., R8BG8B8AS format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order
(LSB channel on the left, MSB channel on the right), with the chanml format specified following the
channels with that format. For example, R5G5 SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of
red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

Intensity Formats

All surfaceformat s containing 0l 6 include an intensity val u:t
sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered.
Intensity surfaces are not supported as destinations.

Luminance For mats

All surface formats containing o0L6 include a | umina
sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being

filtered. The alpha channel is provided either from another field or receives a default value. Luminance

surfaces are not supported as destinations.
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R1_UNORM (same as R1_UINT) and MONOS8

When used as a texel format, the R1_UNORM format contains 8 1bit Intensity () values that are
replicated to all color channels. Note that TO of byte 0 of a R1_UNORMformatted texture corresponds
to Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine.

7/6|15(4(3|2|1]0

T7({T6|T5|T4|T3|T2|T1|TO

Bit Description

T0 Texel O

On texture reads, this
(unsigned) 1-bit value is
replicated to all color channels.

Format: Ul

L Texel 7

On texture reads, this
(unsigned) 1-bit value is
replicated to all color channels.

Format: Ul

MONOS format is identical to R1_UNORM but has different semantics for filtering. MONOS is the only
supported format for the MAPFILTER_MONO filter. See théSampling Enginechapter.
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Palette Formats

Palette formats are supported by the sampling engine. These formats include an index into the palette
(Px) that selectsthe actual channel values from the palette, which is loaded via the
3DSTATE_SAMPLER_PALETTE_LOADO command.

P4A4 _UNORM

This surface format contains a 4 bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in
the low nibble).

dlOEI RN

Alpha | Palette Index

Bit Description

4 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8 -bit value, and then divided by
255 to yield a [0.0,1.0] Alpha value.

Format: U4

3.0 Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADX)

Format: U4

A4P4_UNORM

This surface format contains a 4bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the
high nibble).

7| ] afslllo

Palette Index| Alpha

Bit Description

74 Palette Index

A 4-bit color index which is used to lookup a 24 -bit RGB value in the texture palette.

Format: U4

3:0 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8 -bit value, and then divided by
255 to yield a [0.0,1.0] alpha value.
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Bit Description

Format: U4

PSAS_UNORM

This surface format contains an 8bit Alpha value (in the high byte) and an 8-bit Palette Index value (in
the low byte).

s|[fs| 7] | ] o

Alpha |Palette Index

Bit Description

1538 | Aioha

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U8

70 Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette
(loaded via 3BDSTATE_SAMPLER_PALETTE_LOADX)

Format: U8

A8SPS_UNORM

This surface format contains an 8bit Alpha value (in the low byte) and an 8-bit Color Index value (in the
high byte).

15 | | | 8l7]]lo

Palette Index| Alpha

Bit Description

15:8 Palette Index

An 8-bit color index which is used to lookup a 24 -bit RGB value h the texture
palette.

Format: U8

0 Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.
Format: U8
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P8 UNORM
This surface format contains only an 8 bit Color Index value.
Bit Description
0 Palette Index
An 8-bit color ind ex which is used to lookup a 32-bit ARGB value in the texture
palette.
Format: U8
P2 _UNORM

This surface format contains only a 2 bit Color Index value.

Bit

Description

1:0

Palette Index

A 2-bit color index which is used to lookup a 32 -bit ARGB value in he texture
palette.

Format: U2

76
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CHYV, BSW This format compresses UNORM RGB data using an-®yte compression block representing
a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and column range
from O to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

t

al

Hi gh 24 bits if o0diffoé is zero (individual
Bits Description
7:4 RO[3:0]
3:0 R1[3:0]
15:12 G0[3:0]
11:8 G1[3:0]
23:20 BO[3:0]
19:16 B1[3:0]
High 24 bits i f o6diffédé is one (differen
Bits Description
7:3 RO[4:0]
2:0 dR1[2:0]
15:11 GO[4:0]
10:8 dG1[2:0]
23:19 BO[4:0]
18:16 dB1[20]
Low 40 bits:
Bits Description
31:29 lum table index for sub-block O
28:26 lum table index for sub-block 1
25 diff
24 flip
39 texel[3][3] index MSB
38 texel[2][3] index MSB
37 texel[1][3] index MSB
36 texel[0][3] index MSB
35 texel[3][2] index MSB
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Bits Description

34 texel[2][2] index MSB
33 texel[1][2] index MSB
32 texel[0][2] index MSB
47 texel[3][1] index MSB
46 texel[2][1] index MSB
45 texel[1][1] index MSB
44 texel[0][1] index MSB
43 texel[3][0] index MSB
42 texel[2][0] index MSB
41 texel[1][0] index MSB
40 texel[0][0] index MSB
55 texel[3][3] index LSB
54 texel[2][3] index LSB
53 texel[1][3] index LSB
52 texel[0][3] index LSB
51 texel[3][2] index LSB
50 texel[2][2] index LSB
49 texel[1][2] index LSB
48 texel[0][2] index LSB
63 texel[3][1] index LSB
62 texel[2][1] index LSB
61 texel[1][1] index LSB
60 texel[0][1] index LSB
59 texel[3][0] index LSB
58 texel[2][0] index LSB
57 texel[1][0] index LSB
56 texel[0][0] index LSB

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks
control
right. If flip=1, sub -block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom.

The

value persub-b | oc k

=1). The delta values are 3b i t

| ed

by

t h e -lokck Oiisphé 2x# dnthe lefl ahd sdibtbiogk £ i8 the 2g4wb the

0 d i Mmtrbldwhéthertthe ced/green/blue values (RO/G0/B0O/R1/G1/B1) are stored as one 444
(0individual 6 mode
(RO/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second subblock ( 0 di f f er enti al o

wi t h

di f f-bloek 0) ,

-compléirent values that hold values in the range [-4,3]. These

values are added to the 5-bit values for sub-block 0 to obtain the 5 -bit values for sub-block 1 (if the
value is outside of the range [0,31], the result of the decompression is undefined). From the 4 or 5-bit
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per channel values, an 8bit value for each channel is extended by replication and provides the 888 base
color for each sub-block.

For each subblock one of 8 different | uminance columns is selected based on the 3bit lum table index.

Then each texel selects one of the 4 rows of the selected column with a 2bit per-texel index. The

chosen value in the table is added to the 8-bit base color for the sub-block (obtained in th e previous

step) to obtain the texelds color. Val ue-BtUNORMt he t a
as an 8 bit signed integer.

Luminance Table

8| 17| 29| 42| 60| 80| 106| 183

-2| -5| -9|-13|-18(-24| -33| -47

-8(-17(-29|-42|-60(-80|-106(-183
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ETC2_RGBS8 and ETC2_SRGBS8

The ETC2_RGB8 format builds on top of ETC1_RGBS, using a set of invalid bit sequences to enable three
new modes. The two modes of ETC1_RGBS are also supported with ETC2_RGB8, and will bet
documented in this section as they are covered in the ETC1_RGBS8 section.

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1

di fferenti al mode. The mode is determined as f ol
diff Rt Gt Bt mode
0 X X X individual
1 0 X X T
1 1 0 X H
1 1 1 0 planar
1 1 1 1 differential

The inputs in the above table are defined as follows:

Rt = (RO + dR1) in [0,31]
Gt = (GO + dG1) in [0,31]
Bt = (GO + dB1) in [0,31]

8-byte compression block for mode determination

Bits Description
7:3 RO[4:0]
2:0 dR1[2:0]
15:11 GO0[4:0]
10:8 dG1[2:0]
23:19 BO[4:0]
18:16 dB1[2:0]
31:26 ignored
25 diff
24 ignored
63:32 ignored

The fields in the table above are usedonly for mode determination. Some of the bits in this table are
overloaded with other values within each mode. The algorithm is defined such that there is no
ambiguity in modes when this is done.
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T mode

The 0T6 mode has the following bit definition:

8byte compressiondbl ock for o0Td6é6 mo

Bits Description

75 ignored

4:3 RO[3:2]
2 ignored
1:0 RO[1:0]

15:12 G0[3:0]

11:8 BO[3:0]

23:20 R1[3:0]

19:16 G1[3:0]

31:28 B1[3:0]

27:26 di[2:1]
25 diff =1
24 di[0]
39 texel[3][3] index MSB
38 texel[2][3] index MSB
37 texel[1][3] index MSB
36 texel[0][3] index MSB
35 texel[3][2] index MSB
34 texel[2][2] index MSB
33 texel[1][2] index MSB
32 texel[0][2] index MSB
47 texel[3][1] index MSB
46 texel[2][1] index MSB
45 texel[1][1] index MSB
44 texel[O][1] index MSB
43 texel[3][0] index MSB
42 texel[2][0] index MSB
41 texel[1][0] index MSB
40 texel[0][0] index MSB
55 texel[0][0] index LSB
54 texel[2][3] index LSB
53 texel[1][3] index LSB
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Bits Description

52 texel[0][3] index LSB
51 texel[3][2] index LSB
50 texel[2][2] index LSB
49 texel[1][2] index LSB
48 texel[0][2] index LSB
63 texel[3][1] index LSB
62 texel[2][1] index LSB
61 texel[1][1] index LSB
60 texel[0][1] index LSB
59 texel[3][0] index LSB
58 texel[2][0] index LSB
57 texel[1][0] index LSB
56 texel[0][0] index LSB

T h e ®dedas o base colors stored as 4 bits per channel, RO/G0/B0 and R1/G1/B1, as in the
individual mode, however the bit positions for these are different. For each channel, the 4 bits are
extended to 8 bits by bit replication.

A3-bit di st an salsodefinbcinthecampréssion block. This value is used to look up the
distance in the following table:

distance index
odi 6 di stance od

0

1

2 11
3 16
4 23
5 32
6 41
7 64

Four colors are possible on each texel. These colors are defined athe following:

PO = (RO, GO, BO)

P1=(R1, G1, B1)+(d, d, d)

P2 = (R1, G1, B1)

P3 = (R1, G1, B1) i (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each
texel in the block based on the 2-bit texel index.
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H mode

The O0HO6 mode has the following bit definition:

8byte compression block for O0OHO6 mode

Bits Description
7 ignored

6:3 RO[3:0]

2:0 GO[3:1]

15:13 ignored
12 GO[0]
11 BO[3]
10 ignored

9:8 BO[2:1]
23 BO[O]

22:19 R1[3:0]

18:16 G1[3:1]
31 G1[0]

30:27 B1[3:0]
26 di[2]
25 diff =1
24 di[1]
39 texel[3][3] index MSB
38 texel[2][3] index MSB
37 texel[1][3] index MSB
36 texel[0][3] index MSB
35 texel[3][2] index MSB
34 texel[2][2] index MSB
33 texel[1][2] index MSB
32 texel[0][2] index MSB
47 texel[3][1] index MSB
46 texel[2][1] index MSB
45 texel[1][1] index MSB
44 texel[0][1] index MSB
43 texel[3][0] index MSB
42 texel[2][0] index MSB
41 texel[1][0] index MSB
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Bits Description

40 texel[0][0] index MSB
55 texel[3][3] index LSB
54 texel[2][3] index LSB
53 texel[1][3] index LSB
52 texel[0][3] index LSB
51 texel[3][2] index LSB
50 texel[2][2] index LSB
49 texel[1][2] index LSB
48 texel[0][2] index LSB
63 texel[3][1] index LSB
62 texel[2][1] index LSB
61 texel[1][1] index LSB
60 texel[O][1] index LSB
59 texel[3][0] index LSB
58 texel[2][0] index LSB
57 texel[1][0] index LSB
56 texel[0][0] index LSB

The O0HO6 mode has two base colors stored as 4 bits p
individual and T modes, however the bit positions for these are different. For each channel, the 4 bits
are extended to 8 bits by bit replication.

A3bit distance index o0dié is defined by 2 MSBs in t
following equation, where R/G/B values are the 8-bit values from the first step:

di[0] = (RO « 16) | (GO « 8) | BO) >= ((R1 « 16) | (G1 « 8) | B1)

The distance 0d6 is then | ooked up in the same tabl
computed as follows:

PO=(RO,G0,B  0)+(d,d, d)

P1 = (RO, GO, BO) - (d, d,d)
P2 = (R1, G1, B1) + (d, d, d)
P3 = (R1, G1, B1) i (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each
texel in the block based on the 2-bit texel index as in T mode.
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Planar mode

The oplanardé mode has the following bit definition:

8byte compression block for oOplanar o6 mode

Bits Description
7 ignored
6:1 RO[5:0]
0 GO[6]
15 ignored
14:9 GO[5:0]
8 B[5]
23:21 ignored
20:19 B[4:3]
18 ignored
17:16 BO[2:1]
31 BO[O]
30:26 RH[5:1]
25 diff=1
24 RH[O]
39:33 GHI6:0]
32 BHI[5]
AT7:43 BH[4:0]
42:40 RV[5:3]
55:53 RV[2:0]
52:48 GVI[6:2]
63:62 GVI[1:0]
61:56 BV[5:0]
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The oplanard mode has three base emalingblitsandgoeered as
having 7 bits. These three base colors are each extended to RGB 888 with bit replication.

The color of each texel is then computed using the following equations, with x and y representing the
texel position within the compression block:

texelly][x].R = x(RH -R0)/4 +y(RV - R0)/4 + RO
texel[y][x].G = x(GH -G0)/4 +y(GV -G0)/4 + GO
texelly][x].B = x(BH -B0)/4 +y(BV  -B0)/4 +BO

All resulting channels are clamped to the range [0,255].

The ETC2_SRGBS8 format is decompressed as if itBSTC2_RGB8, then a conversion from the resulting
RGB values to SRGB space is performed.
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EAC_R11 and EAC_SIGNED_R11

These formats compress UNORM/SNORM singlechannel data using an 8-byte compression block
representing a 4x4 block of texels. The texels aredbeled as texel[row][column] where both row and
column range from O to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

EAC_R11 compression block layout

Bits Description
7:0 RO[7:0]
15:12 m[3:0]
11:8 ti[3:0]
23:21 texel[0][0] index
20:18 texel[1][0] index
17:16,31 texel[2][0] index
30:28 texel[3][0] index
27:25 texel[0][1] index
24,39:38 texel[1][1] index
37:35 texel[2][1] index
34:32 texel[3][1] index
47:45 texel[0][2] index
44:42 texel[1][2] index
41:40,55 texel[2][2] index
54:52 texel[3][2] index
51:49 texel[0][3] index
48,63:62 texel[1][3] index
61:59 texel[2][3] index
58:56 texel[3][3] index
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The o0ti o6 (table index) value from the compredablsi on

below.

Intensity modifier (im) table

0 |1 |2 |3 |4 |5 |6 |7 [8 |9 |10 |11 |12 |13 [14|15
ol -3| -3| -2| -2| -3| -3| -4| -3| 2| -2| -2| -2| -3| -1|-4|-3
.| 8| -7| -5| -4| -6| -7| -7| -5| -6| -5| -4| -5| -4| -2|-6|-5
,| -9|-10| -8 -6| -8| -9| -8| -8| -8 -8| -8/ -7| -7| -3|-8|-7
5|-15|-13|-13|-13|-12|-11|-11|-11|-10|-10|-10(-10|-10|-10| -9 -9
A 2] 2| 1 1| 2| 2| 3] 2| 1| 1| 1| 1| 2| o 3|2
5| 5| 6| 4| 3| 5| 6| 6 4| 5| 4| 3| 4| 3| 1| 5|4
sl 8 o 7| 5| 7| 8 7| 7| 7| 7| 7| 6| 6| 2| 7|6
o| 14| 12| 12| 12| 11| 10| 10| 10| 9| 9| 9| 9| 9| 9| 8| 8

The eight possible color values Rare then computed from th e 8 values in the column labeled im;,, where

i ranges from 0 to 7:

For EAC_R11:

if (m == 0) R =R0*8+4+im ,else R =R0*8+4+(m  *m*8)
Each value is clamped to the range [0,2047].

For EAC_SIGNED_R11:

if (m ==0) R =R0*8+im ielse R =R0*8+ (im: *m*8)

Each value is clamped to the range [1023,1023].

Note that in the signed case, the RO val-128& 137]s
Before being used in the above equations, an RO value of-128 must be clamped to -127.

Finally, each texel red value is selected from the 8 possible values Rusing the 3-bit index for that texel.

The green, blue, and alpha values are set to their default values.

The final value represents an 11bit UNORM or SNORM as an unsigned/signed integer.
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ETC2_RGB8_PTA and ETC2_SRGB8_PTA

The ETC2_ RGB8_PTA format is similar to ETC2_ RGBS8 bu
allowingapunch-t hr ough al pha. The odiffdé bit from ETC2_ RGB
and the mode selectionbehaves as i f the o0diffo bit is always 1
inaccessible for these formats.

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is
determined to be zero, the three other channels are also forced to zero, regardless of what value the
normal decompression algorithm would have produced.

Differential Mode

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGBS8 is used. If the opaque
bit is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out,
otherwise the table is the same):

Luminance Table for opaque bit not set

0112|3456 |7

of o o0 o O] Oof O] O

8| 17| 29| 42| 60| 80| 106| 183

-8|-17|-29|-42|-60(-80|-106(-183

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value
is set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255
and RGB is the result of the normaldecompression calculations.

T and H Modes

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set
to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255.

Planar Mode

In planar mode, the opaque bit is ignored and alpha is set to 255.

The ETC2_SRGB8_PTA format is decompressed as if itis ETC2_RGB8_PTA, then a conversion from the
resulting RGB values to SRGB space is performed, with alpha remaining unchanged.
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ETC2_EAC_RGBAS and B-2_EAC_SRGB8_AS8

The ETC2_EAC_RGBAS format is a combination of ETC2_RGBS8 and EAC_RS8:yte6compression
block represents each 4x4. The loworder 8 bytes are used to compute alpha (instead of red) using the
EAC_RS algorithm. The highorder 8 bytes are used to compute RGB using the ETC2_RGBS8 algorithm.
The EAC_R8 format differs from EAC_R11 as described below.

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBAS, then a conversion from
the resulting RGB values to SRGB space is performedvith alpha remaining unchanged.

EAC_RS8 Format:

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier
section, except the procedure for computing the eight possible color values Ri is performed as follows:

Ri= RO + (imi * m)

Each value is clamped to the range [0,255].
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EAC_RG11 and EAC_SIGNED_RG11

These formats compress UNORM/SNORM doublechannel data using a 16-byte compression block
representing a 4x4 block of texels. The texels are labeled as texel[row][calmn] where both row and
column range from O to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows.

EAC_RG11 compression block layout

Bits Description
63:56 GO[7:0]
55:52 Gm[3:0]
51:48 Gti[3:0]
47:45 texel[0][0] G index
44:42 texel[1][0] G index
41:39 texel[2][0] G index
38:36 texel[3][0] G index
35:33 texel[0][1] G index
32:30 texel[1][1] G index
29:27 texel[2][1] G index
26:24 texel[3][1] G index
23:21 texel[0][2] G index
20:18 texel[1][2] G index
17:15 texel[2][2] G index
14:12 texel[3][2] G index
11:9 texel[0][3] G index

8.6 texel[1][3] G index

5:3 texel[2][3] G index
66:64 texel[3][3] G index
63:56 RO[7:0]
55:52 Rm[3:0]
51:48 Rti[3:0]
47:45 texel[0][0] R index
44:42 texel[1][0] R index
41:39 texel[2][0] R index
38:36 texel[3][0] R index
35:33 texel[0][1] R index
32:30 texel[1][1] R index
29:27 texel[2][1] R index
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Bits Description
26:24 texel[3][1] R index
23:21 texel[0][2] R index
20:18 texel[1][2] R index
17:15 texel[2][2] R index
14:12 texel[3][2] R index
11:9 texel[0][3] R index
8:6 texel[1][3] R index
5:3 texel[2][3] R index
2:0 texel[3][3] R index

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that
they supply two channels of output data, both re d and green, from two independent 8 -byte portions of
the compression block. The low half of the compression block contains the red information, and the
high half contains the green information. Blue and alpha channels are set to their default values.

Referto the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels
are generated using the data in the compression block.
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FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compresswo 4x4 texel
blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged
according to the following diagram:

FXT1 Encoded Blocks

to | t1 | t2 | t3 tle | t17 | t15 [ t19
t4 | t5 | t6 | t7 t20 | t21 | t22 |t23
tg | t9 |t10 [t11 24 | t25 | t26 | 127
t12 |13 | t1d | t15 t2G | t29 | t30 | t31

Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on
which encoding scheme results in best overall visual quality. The following table lists the four different
modes and their encodings:

FXT1 Format Summary

Block
Bit | Bit | Bit | Compression
127 | 126 | 125 Mode Summary Descript ion
0 0 X |CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and

transparent black

1 0 |CC_CHROMA |4 R5G5BS5 colors used directly as 4entry LUT.

1 1 |CC_ALPHA 3 A5R5G5BS5 colors supplied. LERP bit selects between 1 LUT with 3satirete
colors + transparent black and 2 LUTs using interpolated values of Color 0,1 (tG
15) and Color 1,2 (t16-31).

1 X X |CC_MIXED 4 R5G5BS5 colors supplied, where Color0,1 LUT is used for @15, and Color2,3
LUT used for t16-31. Alpha bit selects betweenLUTs with 4 interpolated colors
or 3 interpolated colors + transparent black.

FXT1 CC_HI Format

In the CC_HI encoding format, two base 15bit R5G5B5 colors (Color 0, Color 1) are included in the
encoded block. These base colors are then expanded (using flgh-order bit replication) to 24 -bit RGB
colors, and used to define an 8-entry lookup table of interpolated color values (the 8 ™ entry is
transparent black). The encoded block contains a 3bit index value per texel that is used to lookup a
color from the table.

Doc Ref # IHDOS CHV-BSWVol 5-10.15 93



























































































































































































































































































































































































