(|@ Look Inside”

Intel” Open Source HD Graphics
Programmers' Reference Manual (PRM)

Volume 7: 3D - Media - GPGPU

For the 2014 Intel Atom™ Processors, Celeron™ Processors, and Pentium™ Processors
based on the "BayTrail" Platform (ValleyView graphics)

© April 2014, Intel Corporation

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU (il'ltEl' Look Inside”

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved"” or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

2 Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

Table of Contents

3D - Media - GPGPU

State Commands

Shared Functions

3D Sampler

Texel Fetch

State

Render Engine Command Memory Interface 17
Registers in Render Engine 17
Mode and Misc Ctrl Registers 17
Pipelines Statistics Counter Registers 18
Predicate Render Registers 18
AUTO_DRAW Registers 18
MMIO Registers for GPGPU Indirect Dispatch 19
Memory Interface Registers 19
Memory Interface Commands for Rendering Engine 21
22
Synchronization of the 3D Pipeline 23
Top-of-Pipe Synchronization 23
End-of-Pipe Synchronization 23
Synchronization Actions 24
PIPE_CONTROL Command 25
Render Logical Context Data 28
Context Layout 28
Register/State Context 29
34
34
Texture Coordinate Processing 35
Texture Coordinate Normalization 35
Texture Coordinate Computation 36
Texel Address Generation 37
Level of Detail Computation (Mipmapping) 37
Intra-Level Filtering Setup 42
Texture Address Control 45
48
Texel Chroma Keying 48
Shadow Prefilter Compare 49
Texel Filtering 50
Texel Color Gamma Linearization 50
Multisampled Surface Behavior 50
Multisample Control Surface 51
51
SURFACE_STATE 51
Doc Ref # IHD-OS-VLV-Vol7-04.14 3

3D - Media - GPGPU

(I@ Look Inside’

SAMPLER_STATE 57
Writeback Message 76
Shared Functions - Data Port 79
Data Cache 80
Sampler Cache 81
Surfaces 81
Surface State Model 81
Stateless Model 81
Shared Local Memory (SLM) 81
Write Commit 82
Read/Write Ordering 83
Accessing Buffers 83
Accessing Media Surfaces 83
Boundary Behavior 84
State 84
BINDING_TABLE_STATE 84
SURFACE_STATE 84
COLOR_PROCESSING_STATE 84
Messages 85
Global Definitions 85
Data Port Messages 85
OWord Block Read/Write 91
Unaligned OWord Block Read 93
OWord Dual Block Read/Write 95
Media Block Read/Write 97
DWord Scattered Read/Write 104
Byte Scattered Read/Write 107
Typed/Untyped Surface Read/Write and Typed/Untyped Atomic Operation 110
Memory Fence 147
Pixel Data Port 148
DataPort Render Cache Agents 148
Accessing Render Targets 148
Single Source 150
Dual Source 150
Replicate Data 150
Multiple Render Targets (MRT) 151
Total Color Control (TCC) 162
ProcAmp 163
4 Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

3D - Media - GPGPU

Shared Functions Pixel Interpolater 166
Messages 167
Initiating Message 167
Writeback Message 171
Shared Functions - Unified Return Buffer (URB) 174
URB Size 174
URB Access 174
URB State 175
URB Messages 175
Execution Mask 176
Message Descriptor 176
URB_WRITE and URB_READ 178
URB_ATOMIC 187
Shared Functions - Message Gateway 188
Messages 189
Message Descriptor 189
OpenGateway Message 190
CloseGateway Message 192
ForwardMsg Message 193
GetTimeStamp Message 195
BarrierMsg Message 197
MMIOReadWrite Message 199
Shared Functions - Media Sampler 200
Video Motion Estimation 200
Theory of Operation 201
Shape Decision 201
Early Decisions 205
Changes 206
Surfaces 207
State 207
BINDING_TABLE_STATE 207
SURFACE_STATE 207
VME_STATE 207
Change Details 211
Record Stream-Out and Stream-In 211

MV Definitions and Precision 212
Expanded MV Costs 213
Remove Skip MV Restriction 214

Doc Ref # IHD-OS-VLV-Vol7-04.14 5

3D - Media - GPGPU

Messages

(I@ Look Inside’

Introduction

Sample_8x8 State

SIMD32/64 Messages

Initiating Message

Writeback Message

SIMD32 Surface State

SIMD32 Sampler State

Statistics

3D Pipeline Geometry

Block Diagram

214

VME Motion Search Request 215
Message Descriptor 215
Input Message 216
Writeback Message 240
Stream-In\Stream-Out Message 252
Adaptive Video Scaler 254
Filtering Operations 255
Denoise/Deinterlacer 257
257

Denoise Algorithm 258
Block Noise Estimate (part of Global Noise Estimate) 258
Deinterlacer Algorithm 259

Field Motion Detector 262
Implementation Overview 262

264

265

265

SIMD32_64 Message Descriptor 269
SIMD32_64 Message Header 269
SIMD32_64 Payload Parameter Definition 271
SIMD32_64 Message Types 271
271

280

280

3D Pipeline Stages 280

3D Pipeline Stages 281

3D Pipeline-Level State 282
284

Statistics Gathering 284

286

286

3D Primitives Overview 287
Vertex Data Overview 292
Vertex URB Entry (VUE) Formats 293
Vertex Positions 295

3D Pipeline - Vertex Fetch (VF) Stage 297
Vertex Fetch (VF) Stage Overview 297

Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

3D - Media - GPGPU

State 297

3D Primitive Command 301
Functions 302
Vertex Shader (VS) Stage 315
VS Stage Overview 315
State 315
URB_FENCE 315
Functions 315
Vertex Shader Cache (VS$) 315
SIMD4x2 VS Thread Request Generation 317
SIMD4x2 VS Thread Execution 317
Vertex Output 318
Thread Termination 318
Primitive Output 318
Statistics Gathering 318
Payloads 318
SIMD4x2 Payload 318

3D Pipeline - Hull Shader (HS) Stage 321
State 321
Functions 322
Patch Object Staging 322

HS Thread Execution 322
Patch URB Entry (Patch Record) Output 322
Statistics Gathering 326

ICP Dereferencing 326
Payloads 326
SINGLE_PATCH Payload 326

HW Tessellation 331
State 331
Functions 331
Patch Culling 331
Tessellation Factor Limits 332
Partitioning 332
Domain Types and Output Topologies 332
Domain Shader (DS) Stage 336
State 336
Functions 337
SIMD4x2 Thread Execution 337
Doc Ref # IHD-OS-VLV-Vol7-04.14 7

3D - Media - GPGPU

(I@ Look Inside’

Statistics Gathering 337
Payloads 337
SIMD4x2 Payload 337

3D Pipeline - Geometry Shader (GS) Stage 340
GS Stage Overview 340
State 340
Functions 341
Payloads 348
Thread Request Generation 356

3D Pipeline - Stream Output Logic (SOL) Stage 362
State 362
Functions 362
Input Buffering 362
Stream Output Function 365
Stream Output Buffers 366
Rendering Disable 366
Statistics 367

3D Pipeline Rasterization 367
Common Rasterization State 367
3D Pipeline — CLIP Stage Overview 367
Clip Stage — General-Purpose Processing 367

Clip Stage — 3D Clipping 367
Fixed Function Clipper 368
Concepts 368
The Clip Volume 368
User-Specified Clipping 370
Guard Band 370
Vertex-Based Clip Testing Considerations 373

3D Clipping 375
CLIP Stage Input 375
State 375

VUE Readback 375
VertexClipTest Function 376
Object Staging 381
Partial Object Removal 381
ClipDetermination Function 381
ClipMode 384
Object Pass-Through 386

Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

Primitive Output

3D - Media - GPGPU

Other Functionality

Inputs from CLIP

Outputs to WM

Primitive Assembly

Object Setup

Line Rasterization

3DSTATE_SF

Depth Offset
Other SF Functions

Other SF Functions

Windower (WM) Stage

Overview

387

387

Statistics Gathering 387
3D Pipeline - Strips and Fans (SF) Stage 387
387

Attribute Setup/Interpolation Process 388
389

389

Point List Decomposition 392
Line List Decomposition 393
Line Strip Decomposition 394
Triangle List Decomposition 396
Triangle Strip Decomposition 397
Triangle Fan Decomposition 398
Polygon Decomposition 400
Rectangle List Decomposition 400
401

Invalid Position Culling (Pre/Post-Transform) 401
Viewport Transformation 401
Destination Origin Bias 401
Point Rasterization Rule Adjustment 402
Drawing Rectangle Offset Application 403
Point Width Application 404
Rectangle Completion 405
Vertex X,Y Clamping and Quantization 406
Degenerate Object Culling 407
Triangle Orientation (Face) Culling 407
Scissor Rectangle Clipping 408
409

415

Attribute Interpolation Setup 415
417

417

Statistics Gathering 417
418

Statistics Gathering 418
418

418

9

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

(I@ Look Inside’

Inputs from SF to WM 419
Rasterization 420
Drawing Rectangle Clipping 420
Line Rasterization 421
Polygon (Triangle and Rectangle) Rasterization 422
Multisampling 423
Multisample Modes/State 423
Other WM Functions 424
Statistics Gathering 424
Other WM Functions 424
Statistics Gathering 424
Pixel 424
Early Depth/Stencil Processing 425
Depth Offset 425
Early Depth Test/Stencil Test/Write 426
Hierarchical Depth Buffer 427
Separate Stencil Buffer 430
Depth/Stencil Buffer State 430
Pixel Shader Thread Generation 431
Pixel Grouping (Dispatch Size) Control 431
Multisampling Effects on Pixel Shader Dispatch 434
PS Thread Payload for Normal Dispatch 438
Pixel Backend 451
Color Calculator (Output Merger) 451
Overview 451
Alpha Coverage 452
Alpha Test 453
Depth Coordinate Offset 453
Stencil Test 454
Depth Test 455
Pre-Blend Color Clamping 455
Color Buffer Blending 456
Post-Blend Color Clamping 458
Dithering 459
Logic Ops 460
Buffer Update 460
Pixel Pipeline State Summary. 462
COLOR_CALC_STATE 462

10

Doc Ref # IHD-OS-VLV-Vol7-04.14

(I@ Look Inside’

3D - Media - GPGPU

L3 Cache and URB

Atomics

Atomics Block

Atomics in L3

Atomics in SLM

Atomics in URB

L3 Coherency

L3 Interfaces

Client Rules

3DSTATE_CC_STATE_POINTERS 462
3DSTATE_BLEND_STATE_POINTERS 462
3DSTATE_DEPTH_STENCIL_STATE_POINTERS 462
DEPTH_STENCIL_STATE 462
BLEND_STATE 462
CC_VIEWPORT 463
Other Pixel Pipeline Functions 463
Statistics Gathering 463
MCS Buffer for Render Target(s) 463
Render Target Fast Clear 466
Render Target Resolve 466
467

L3 URB Overview 467
L3 Cache Configuration 468
Blocks(s) Overview 468
L3 Cache Theory of Operation 469
470

472

473

474

474

474

L3 Arbiter Coherency 474
Super Q Coherency 475
L3 Allocation and Programming 475
Non-SLM Mode Allocation 476
SLM Mode Allocation 476
476

476

Shared Local Memory (SLM) 478
L3 Register Space (Bspec) 479
config space for L3 479
SARERRST - SARB Error Status 481
L3CDERRST1 - L3CD Error Status Register 1 483
L3CDERRST2 - L3CD Error Status register 2 484
L3SQCREGL - L3 SQC registers 1 485
L3SQCREG2 - L3 SQC registers 2 491
L3SQCREGS3 - L3 SQC registers 3 494
Doc Ref # IHD-OS-VLV-Vol7-04.14 11

3D - Media - GPGPU (il'ltEl' Look Inside”

L3CNTLREGL - L3 Control Registerl 498
L3CNTLREG?2 - L3 Control Register2 500
L3CNTLREGS3 - L3 Control Register3 502
L3SLMREG - L3 SLM Register 503
GARBCNTLREG - Arbiter Control Register 504
L3SQCREG4 - L3 SQC register 4 506
SCRATCHL1 - SCRATCH1 508
L3BOREGO - L3 bankO reg0 log error 508
L3BOREGL1 - L3 bankO regl log error 509
L3BOREG2 - L3 bankO reg2 log error 510
L3BOREGS3 - L3 bankO reg3 log error 511
L3BOREG4 - L3 bankO reg4 log error 512
L3BOREGS5 - L3 bankO reg5 log error 513
L3BOREGS - L3 bankO reg6 log error 514
L3BOREG7 - L3 bankO reg7 log error 516
SARBCSR - SARB config save msg 517
Media GPGPU Pipeline 517
GPGPU Overview 517
Programming the GPGPU Pipeline 517
GPGPU Commands 518
GPGPU Indirect Thread Dispatch 518
GPGPU Context Switch 519
Media GPGPU Payload Limitations 521
Synchronization of the Media/GPGPU Pipeline 521
Mode of Operations 521
Generic Media 530
Media and General Purpose Pipeline 534
Introduction 534
Terminologies 535
Hardware Feature Map in Products 536
Media Pipeline Overview 537
Generic Mode 538
GPGPU Media Pipe Differences 539
Programming Media Pipeline 539
Command Sequence 539
Parameterized Media Walker 542
Scoreboard Control 551
Interrupt Latency 555

12 Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

3D - Media - GPGPU

Thread Spawner Unit 555
Root Threads and Child Threads 556
Root Threads 556
URB Handles 556
Root to Child Responsibilities 557
Multiple Simultaneous Roots 557
Synchronized Root Threads 558
Deadlock Prevention 558
Child Thread Life Cycle 559
Arbitration between Root and Child Threads 560
Persistent Root Thread (PRT) 560
Media State Model 560
Media State and Primitive Commands 560
Media Messages 561
Thread Payload Messages 562
Thread Spawn Message 567
EU Overview 570
EU Overview 571
Primary Usage Models 573
AOS and SOA Data Structures 573
SIMD4 Mode of Operation 574
SIMD4x2 Mode of Operation 575
SIMD16 Mode of Operation 576
SIMD8 Mode of Operation 578
Message Payload Containing a Header 578
Writebacks 578
Message Delivery Ordering Rules 579
Execution Mask and Messages 579
End-Of-Thread (EOT) Message 579
Performance 580
Message Description Syntax 580
Message Errors 581
Registers and Register Regions 582
Register Files 582
GRF Registers 583
ARF Registers 583
Immediate 605
Region Parameters 606
Doc Ref # IHD-OS-VLV-Vol7-04.14 13

3D - Media - GPGPU

SIMD Execution Control

End of Thread
Assigning Conditional Flags
Destination Hazard
Non-present Operands
Instruction Prefetch
ISA Introduction
Execution Units (EUs)
EU Data Types
Fundamental Data Types

Numeric Data Types

Floating Point Modes

Type Conversion

14

Region Addressing Modes

(I@ Look Inside’

610

Access Modes

614

Execution Data Type

615

615

Register Region Restrictions

Destination Operand Description

619
619

Predication

619

No Predication

621

Predication with Horizontal Combination

621

Predication with Vertical Combination

622
623

623

626

627

627

628

636

640

640

641

Integer Numeric Data Types

641

Floating-Point Numeric Data Types

642

Packed Signed Half-Byte Integer Vector

644

644

Packed UnSigned Half-Byte Integer Vector

Packed Restricted Float Vector

645

647

IEEE Floating Point Mode

648

Alternative Floating Point Mode

652

653

Float to Integer

653

Integer to Integer with Same or Higher Precision

Integer to Integer with Lower Precision

654

654

Integer to Float

654

654

Double Precision Float to Single Precision Float

Single Precision Float to Double Precision Float

655

Invoking the System Routine

658

Returning to the Application Thread

659

System IP (SIP)

660

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

System Routine Register Space 660
System Scratch Memory Space 660
Conditional Instructions Within the System Routine 661
Use of NoDDClr 661
Illegal Opcode 663
Undefined Opcodes 663
Software Exception 663
Context Save and Restore 663
lllegal Instruction Format 665
Malformed Message 665
GRF Register Out of Bounds 665
Hung Thread 665
Instruction Fetch Out of Bounds 665
FPU Math Errors 666
Computational Overflow 666
SIMD Instructions and SIMD Width 670
Instruction Operands and Register Regions 670
Instruction Execution 671
Instruction Machine Formats 671
EU Instruction Formats 673
Common Instruction Fields 678
Instruction Operation Doubleword (DWO) 685
Instruction Destination Doubleword (DW1) 691
Instruction Source 0 Doubleword 2 (DW2) 697
Instruction Source 1 Doubleword 3 (DW3) 702
EU Compact Instructions 706
EU Compact Instruction Format 707
Opcode Encoding 712
Move and Logic Instructions 712
Flow Control Instructions 714
Miscellaneous Instructions 715
Parallel Arithmetic Instructions 716
Vector Arithmetic Instructions 717
Special Instructions 717
Native Instruction BNF 718
Instruction Groups 718
Destination Register 719
Source Register 720

Doc Ref # IHD-OS-VLV-Vol7-04.14 15

3D - Media - GPGPU (il'ltEl' Look Inside”

Address Registers 721
Register Files and Register Numbers 721
Relative Location and Stack Control 723
Regions 723
Types 723
Write Mask 723
Swizzle Control 723
Immediate Values 724
Predication and Modifiers 724
Instruction Options 725
Instruction Set Summary Tables 725
Instruction Set Reference 731
EUISA Instructions 733
EUISA Structures 735
EUISA Enumerations 736
EU Programming Guide 736
Assembler Pragmas 736
Declarations 736
Defaults and Defines 737
Example Pragma Usages 738
Assembly Programming Guideline 740
Usage Examples 741
Vector Immediate 741
Destination Mask for DP4 and Destination Dependency Control 743
Null Register as the Destination 743
Use of LINE Instruction 744
Mask for SEND Instruction 745
Flow Control Instructions 748
Execution Masking 749

16 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel' Look Inside” 3D - Media - GPGPU

Render Engine Command Memory Interface

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. The functions performed by some of these registers are discussed in
more detail in the Memory Interface Functions, Memory Interface Instructions, and Programming
Environment chapters.

The registers detailed in this chapter are used across the DevSNB family of products and are extensions
to previous projects. However, slight changes may be present in some registers (i.e., for features added
or removed), or some registers may be removed entirely. These changes are clearly marked within this
chapter.

Registers in Render Engine

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes.

GT4 Mode Control Register
B/D/F/Type: MBCunit
Address Offset: 9038-903Bh
Default Value: Oh

Access: RW; RO;

Size: 32 bits
Bit | Access | Default Value | RST/PWR Description
1.0| R/W 00b Core

GT4 Usage mode:

00: Non-GT4

01: GT4 is used in Alternate Frame rendering Mode (AFR)
10: Basic Split Frame rendering Mode (SFR)

11: Complex Split Frame rendering Mode (SFR w/ CBR)

Basic Split Frame Rendering is like CBR for all units except Windower. Windower should not be doing
any checker boarding in basic SFR. The split programming should be done scissor range programming.

MI_MODE - Render Mode Register for Software Interface
FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

CACHE_MODE_0 - Cache Mode Register 0
CACHE_MODE_1 - Cache Mode Register 1

Doc Ref # IHD-OS-VLV-Vol7-04.14 17

3D - Media - GPGPU
GAFS_MODE - Mode Register for GAFS

Pipelines Statistics Counter Registers

(I@ Look Inside’

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. Write access to the statistics counter in this section must be done through
MI_LOAD_REGISTER_IMM or MI_LOAD_REGISTER_MEM or MI_LOAD_REGISETR_ERG commands in ring
buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result,
a pipeline flush just prior to reading the registers is necessary in order to synchronize the counts with

the primitive stream.

IA_VERTICES_COUNT - IA Vertices Count
IA_PRIMITIVES_COUNT - Primitives Generated By VF
VS_INVOCATION_COUNT - VS Invocation Counter
HS INVOCATION_COUNT - HS Invocation Counter
DS INVOCATION_COUNT - DS Invocation Counter
GS_INVOCATION_COUNT - GS Invocation Counter
GS_PRIMITIVES_COUNT - GS Primitives Counter
CL_INVOCATION_COUNT - Clipper Invocation Counter
CL_PRIMITIVES_COUNT - Clipper Primitives Counter
PS_INVOCATION_COUNT - PS Invocation Count
TIMESTAMP - Reported Timestamp Count

SO_NUM_PRIMS_WRITTEN[O:3] - Stream Output Num Primitives Written Counter
SO_PRIM_STORAGE_NEEDED([0:3] - Stream Output Primitive Storage Needed Counters

SO_WRITE_OFFSET][0:3] - Stream Output Write Offsets

Predicate Render Registers

MI_PREDICATE_SRCO - Predicate Rendering Temporary RegisterO
MI_PREDICATE_SRC1 - Predicate Rendering Temporary Registerl
MI_PREDICATE_DATA - Predicate Rendering Data Storage
MI_PREDICATE_RESULT - Predicate Rendering Data Result

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset
3DPRIM_START VERTEX - Load Indirect Start Vertex
3DPRIM_VERTEX_ COUNT - Load Indirect Vertex Count
3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

18

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

3DPRIM_START_INSTANCE - Load Indirect Start Instance
3DPRIM_BASE VERTEX - Load Indirect Base Vertex

MMIO Registers for GPGPU Indirect Dispatch

This register is normally written with the MI_LOAD_REGISTER_MEMORY command rather than from the
CPU.

These registers should not be written with 0 for these projects. To avoid this, the
MI_LOAD_REGISTER_MEMORY command which writes them from an address in memory which was
written by a previous GPGPU_WALKER command will need to be checked with the following command
sequence. The commands in red are the additional commands to implement the workaround:

MI_LOAD_REGISTER_MEMORY Xaddress, GPGPU_DISPATCHDIMX
MI_CONDITIONAL_BATCH_BUFFER_END Xaddress, 0 // Compare X dimension to 0, end batch buffer if 0
MI_LOAD_REGISTER_MEMORY GPGPU_DISPATCHDIMY

MI_CONDITIONAL_BATCH_BUFFER_END Yaddress, 0 // Compare Y dimension to 0, end batch buffer if 0
MI_LOAD_REGISTER_MEMORY GPGPU_DISPATCHDIMZ

MI_CONDITIONAL_BATCH_BUFFER_END Zaddress, 0 // Compare Z dimension to 0, end batch buffer if O
GPGPU_WALKER // Walker with indirect dispatch

This way, if any dimension is 0 we would not execute the GPGPU_WALKER. This has the limitation that
the indirect GPGPU_WALKER has to be the last WALKER of the batch buffer.

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from
the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X
GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y
GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z
TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Memory Interface Registers

This section contains registers for the memory interface.
PWRCTX _REST _DONE - Power Context Restore Done
WR_WATERMARK - Write Watermark

GFX_PRIO_CTRL - GFX Arbiter Client Priority Control
GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0
GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1
L3 LRA O-L3LRAO

L3 LRA 1-L3LRA1

Doc Ref # IHD-OS-VLV-Vol7-04.14 19

3D - Media - GPGPU (il'ltEl Look Inside”

CVS_TLB LRA_O-CVSTLBLRAO

CVS_TLB LRA_1-CVSTLBLRA1

CVS_TLB LRA 2-CVSTLBLRA2

ZTLB LRA 0 - ZTLB LRA O

ZTLB LRA 1 -ZTLBLRA 1

RCC_LRA_O0-RCCLRAO

RCC_LRA_1-RCCLRAI

CASC_LRA 0 - CASCLRA O

CASC LRA_1 - CASCLRA1

CASC_LRA_2 - CASCLRA 2

CASC_LRA_3 - CASCLRA 3

MEDIA_MAX_REQ_COUNT - MAX Requests Allowed - CASC
GFX_MAX_REQ_COUNT - MAX Requests Allowed - GAM
GAM_HWSP_REG - GAM Hardware Status Page Address Register
GFX_ENG_FR - Graphics Engine Fault Register

ERROR - Main Graphic Arbiter Error Report

DONE_REG - GAM Fub Done Lookup Register
GAC_HWSP_REG - GAC Hardware Status Page Address Register
MEDIA_ENG_FR - Media Engine Fault Register
GAB_HWSP_REG - GAB Hardware Status Page Address Register
BLT_ENG_FR - Blitter Engine Fault Register

TLB_RD_ADDR - TLB_RD_ADDRESS Register

TLB_RD_DATA - TLB_RD_DATA Register

VLFTLB_VLD 0 - Valid Bit Vector O for VLF

CVSTLB_VLD 0 - Valid Bit Vector 0 for CVS

RCCTLB_VLD 0 - Valid Bit Vector 0 for RCC

RCCTLB VLD 1 - Valid Bit Vector 1 for RCC

ZTLB VLD 0 - Valid Bit Vector O for Z

ZTLB VLD 1 - Valid Bit Vector 1 for Z

ZTLB VLD 2 - Valid Bit Vector 2 for Z

ZTLB VLD 3 - Valid Bit Vector 3 for Z

L3TLB_VLD 0 - Valid Bit Vector O for L3

L3TLB VLD 1 - Valid Bit Vector 1 for L3

20 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel' Look Inside” 3D - Media - GPGPU

L3TLB VLD 2 - Valid Bit Vector 2 for L3
L3TLB VLD 3 - Valid Bit Vector 3 for L3
L3TLB VLD 4 - Valid Bit Vector 4 for L3
L3TLB VLD 5 - Valid Bit Vector 5 for L3
L3TLB VLD 6 - Valid Bit Vector 6 for L3
L3TLB VLD 7 - Valid Bit Vector 7 for L3
CASCTLB_VLD 0 - Valid Bit Vector 0 for CASC
CASCTLB_VLD_1 - Valid Bit Vector 1 for CASC
CASCTLB_VLD_2 - Valid Bit Vector 2 for CASC
CASCTLB_VLD_3 - Valid Bit Vector 3 for CASC
CASCTLB_VLD_4 - Valid Bit Vector 4 for CASC

Memory Interface Commands for Rendering Engine

MI_SET_CONTEXT
MI_TOPOLOGY _FILTER

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to
enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based
on the result of a previous predicate test. A new state bit, Predicate, has been added to the command
stream. In addition, a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set,
the command is ignored if the Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the
Predicate bit is generated.

Refer to the diagram below and the command description for details.

MI_PREDICATE Function

Doc Ref # IHD-OS-VLV-Vol7-04.14 21

3D - Media - GPGPU (il'ltEl' Look Inside”

huhd |20
COMPAREOP

| Mltempﬂ{l | mnemm{]

IR

MU |

| PredoateData Reg -{]—

COMBIMECE AFAND FOR FHOR |

1Y

LoD op

Predicate Bit =7

MI_LOAD_REGISTER_MEM commands can be used to load the MItempO0, MItemp1 and PredicateData
registers prior to MI_PREDIATE. In order to ensure the memory sources of the MI_LOAD_REGISTER_MEM
commands are coherent with previous 3D_PIPECONTROL store-dword operations, software can use the
new Pipe Control Flush Enable bit in the PIPE_CONTROL command.

MI_URB_CLEAR

State Commands
This section covers the following commands:
e STATE_SIP command

STATE_SIP
STATE_BASE_ADDRESS
PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

22 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top
of the pipe synchronization really enforces the read-only cache invalidation. This synchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not
have outstanding hardware accesses. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through the pipeline
(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is
used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the
beginning of the rendering sequence in a given context. HW may have residual states cached in the
state-caches and read-only surfaces in various caches. With new rendering sequence, read-only surfaces
may go through change in the binding. Hence read-only invalidation is required before such new
rendering sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this
specific pipe-control command, HW invalidates all caches in GT domain that have read-only surfaces
but does not guarantee invalidation beyond GT caches . Further, HW does not guarantee that all prior
accesses to those read-only surfaces have completed. Therefore SW must guarantee that there are no
pending accesses to those read-only surfaces before initializing the top-of-pipe synchronization. PIPE-
CONTROL command described below allows for invalidating individual read-only stream type. It is
recommended that driver invalidates only the required caches on the need basis so that cache warm-up
overhead can be reduced.

End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not
necessarily in memory) so that it can de-allocate in-memory rendering state, read-only surfaces,
instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee
that all pending depth tests have completed so that the visible pixel count is complete prior to storing it
to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events
are complete (a read fence completion). Read events are still pending if work in the pipeline requires
any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render
cache and/or depth related caches are flushed to memory, where the data will become globally visible.
This type of synchronization is required prior to SW (CPU) actually reading the result data from memory,
or initiating an operation that will use as a read surface (such as a texture surface) a previous render
target and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush
Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are
flushed and doesn't guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using Notify Enable and Post-Sync
Operation - Write Immediate Data in the PIPE_CONTROL command. Notify Enable and Post-Sync
Operation - Write Immediate Data generate a fence cycle on achieving end-of-pipe-synchronization for
the corresponding PIPE_CONTROL command. Fence cycle ensures all the write cycles in front of it are to

Doc Ref # IHD-OS-VLV-Vol7-04.14 23

3D - Media - GPGPU (il'ltEl' Look Inside”

global visible point before they themselves get processed.It is guaranteed the data flushed out by the
PIPE_CONTROL is updated in memory by the time SW receives the corresponding Pipe Control Notify
interrupt.

In case of the data flushed out by the render engine is to be read back in to the render engine in
coherent manner, then the render engine has to wait for the fence completion before accessing the
flushed data. This can be achieved by following means on various products:

Optionl:

PIPE_CONTROL command with the CS Stall and the required write caches flushed with Post-Sync-
Operation as Write Immediate Data followed by eight dummy MI_STORE_DATA_IMM (write to scratch
spce) commands.

Example:

e Worklaod-1

e PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush
bits set)

e MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
e WorkLoad-2 (Can use the data produce or outputted by Worklaod-1)

Option-2: This option has overhead of TLBs getting invalidated.

PIPE_CONTROL command with the TLB Invalidate, CS Stall and the required write caches flushed with
Post-Sync-Operation as Write Immediate Data.

Example:

e WorklLoad-1 (3D/GPGPU/MEDIA)

e PIPE_CONTROL (TLB Invalidate, CS Stall, Post-Sync-Operation Write Immediate Data, Required
Write Cache Flush bits set)

e WorkLoad-2 (Can use the data produce or outputted by Worklaod-1)

Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of
the synchronization point must be communicated to the driver. This section describes the actions that
may be taken upon completion of a synchronization point which can achieve this communication.

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be written. In lieu of
an immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP
register may be written out to memory. The captured value will be the value at the moment all
primitives parsed prior to the synchronization commands have been completely rendered, and
optionally after all said primitives have been pushed to memory. It is not required that a value be
written to memory by the synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these
counters are free-running and are not to be reset except at initialization. To obtain the delta, two

24 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

PIPE_CONTROL commands should be initiated with the command sequence to be measured between
them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global visible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are
stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible
pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the
visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on
performance and should only be used in order to obtain accurate visible pixel counts for a sequence of
primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) Occlusion Query function.

Generating an Interrupt

The synchronization command may indicate that a Sync Completion interrupt is to be generated (if
enabled by the MI Interrupt Control Registers — see Memory Interface Registers) once the rendering of
all prior primitives is complete. Again, the completion of rendering can be considered to be when the
internal render cache has been updated, or when the cache contents are visible in memory, as selected
by the command options.

Invalidating Caches

If software wishes to use the notification that a synchronization point has been reached in order to
reuse referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure
rendering is complete. If additional primitives are initiated after new data is laid over the top of old in
memory following a synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used.
(See PIPE_CONTROL Command description, which follows).

PIPE_CONTROL Command

The PIPE_CONTROL command is used to effect the synchronization described above. Parsing of a
PIPE_CONTROL command stalls 3D pipe only if the stall enable bit is set. Commands after
PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may include additional
PIPE_CONTROL commands. The implementation does enforce a practical upper limit (8) on the number
of PIPE_CONTROL commands that may be outstanding at once. Parsing of a PIPE_CONTROL command
that causes this limit to be reached will stall the parsing of new commands until the first of the
outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Note that although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue
PIPE_CONTROL when the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the
pipe until the Media FFs finish processing commands parsed before PIPE_CONTROL. Post-
synchronization operations, flushing of caches and interrupts will then occur if enabled via

Doc Ref # IHD-OS-VLV-Vol7-04.14 25

3D - Media - GPGPU (il'ltEl' Look Inside”

PIPE_CONTROL parameters. Due to this stalling behavior, only one PIPE_CONTROL command can be
outstanding at a time on the Media pipe.

For the indirect state pointers disable operation of the pipe control, the following pointers are affected.
The the indirect state pointers disable operation affects the restore of these packets. If the pipe control
the indirect state pointers disable operation is completed before the context save, the indirect pointers
will not be restored from memory.

» Constant Buffer Packet

It is up to software to program the appropriate read-only cache invalidation such as the sampler and
constant read caches or the instruction and state caches. Once notification is observed, new data may
then be loaded (potentially on top of the old data) without fear of stale cache data being referenced for
subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it
to a new location to use as a texture, for example), it must also ensure that the write cache (render
cache) is flushed after the synchronization point is reached so that memory will be updated. This can be
done by setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear
in order for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate
reporting of the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be
invalidated (except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is
done in software, not hardware) Note that the index-based vertex cache is always flushed between
primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.
Therefore only the VF (address-based) cache is uniquely affected by PIPE_CONTROL.
PIPE_CONTROL

Hardware can support up to 8 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenerios.

Table: Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write Non-VF RO Pipeline Top of Pipe
Cache | Notification Cache VF RO Cache | Marker | Marker Completion Invalidate
Flush Enabled Invalidate Invalidate Sent Enable Requested Pulse from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

PIPE_CONTROL

26 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Programming Restrictions for PIPE_CONTROL
PIPE_CONTROL arguments can be split up into three categories:
e Post-sync operations

e Flush Types
e Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid.

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command
is completed. The table below shows the restrictions:

Arguments Bit Restrictions
LRI Post ti 2 .
ost Sync Operation 3 Post Sync Operation ([15:14] of DW1) must be set to 0x0.

Global Snapshot Count 19 |Requires stall bit ([20] of DW1) set.

Reset

Generic Media State 16 |Requires stall bit ([20] of DW1) set.

Clear

Indirect State Pointers 9 |Requires stall bit ([20] of DW1) set.

Disable

Store Data Index 21 [Post-Sync Operation ([15:14] of DW1) must be set to something other than 0.

Sync GFDT 17 |Post-Sync Operation ([15:14] of DW1) must be set to something other than 0 or
0x2520[13] must be set.

TLB inv 18 . .
Post-Sync Operation ([15:14] of DW1) must be set to something other
than 0.
Requires stall bit ([20] of DW1) set.

Post Sync Op 15:14 No Restriction.
LRI Post Sync Operation ([23] of DW1) must be set to 0.

Notify En 8 | No Restriction.

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync
operation or the stall bit. The table below shows the restrictions:

Arguments Bit Restrictions

Depth Stall 1 inq bi
epth Sta 3 Following bits must be clear

e Render Target Cache Flush Enable ([12]

Doc Ref # IHD-OS-VLV-Vol7-04.14 27

3D - Media - GPGPU (il'ltEl' Look Inside”

Arguments Bit Restrictions
of DW1)
e Depth Cache Flush Enable ([0] of DW1)
12
Render Target Cache Flush Depth Stall must be clear ([13] of DW1)
Depth Cache Flush 0
epth Lache Flus Depth Stall must be clear ([13] of DW1)
Stall Pixel Scoreboard 1 [No Restriction
Inst invalidate. 11 |[No Restriction
Tex invalidate. 10 [No Restriction
VF invalidate 4 | No Restriction
Constant invalidate 3 [No Restriction
State Invalidate 2 | No Restriction

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments | Bit Restrictions

Stall Bit 20 One of the following must also be set

e Render Target Cache Flush Enable ([12] of DW1)
e Depth Cache Flush Enable ([0] of DW1)

e Stall at Pixel Scoreboard ([1] of DW1)

e Depth Stall ([13] of DW1)

e Post-Sync Operation ([13] of DW1)

Render Logical Context Data

Logical Contexts are memory images used to store copies of the device's rendering and ring context.
Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering
contexts are considered device-dependent and software must not access the memory contents directly.
The definition of the logical rendering and power context memory formats is included here primarily for
internal documentation purposes.

Context Layout

The entire context image consists of the Register/State Context, including the pipelined state section.

28 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel L ook Inside”

Register/State Context

Register/State Context

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description # of DW
NOOP CS 1
Load_Register_Immediate header 0x1100_105D |CS 1
RING_BUFFER_START 0x2038 CS 2
RING_BUFFER_CONTROL 0x203C CS 2
RVSYNC 0x2040 CS 2
RBSYNC 0x2044 CS 2
RC_PSMI_CONTROL 0x2050 CS 2
RC_PWRCTX_MAXCNT 0x2054 CS 2
CTX_WA_PTR 0x2058 CS 2
NOPID 0x2094 CS 2
HWSTAM 0x2098 CS 2
FF_THREAD_MODE 0x20A0 CS 2
IMR 0x20A8 CS 2
EIR 0x20B0 CS 2
EMR 0x20B4 CS 2
CMD_CCTL_O 0x20C4 CS 2
GAFS_Mode 0x212C CS 2
UHPTR 0x2134 CS 2
BB_PREEMPT_ADDR 0x2148 CS 2
RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS 2
CXT_SIZE 0x21A8 CS 2
CXT_OFFSET 0x21AC CS 2
CXT_PIPESTATEBASE 0x21B0 CS 2
PREEMPT_DLY 0x2214 CS 2
GFX_MODE 0x229C CS 2
MTCH_CID_RST 0x222C CS 2
RLCONTENTOOL 0x2250 CS 2
RLCONTENTOOH 0x2254 CS 2
RLCONTENTO1L 0x2258 CS 2
RLCONTENTO1H 0x225C CS 2
RLCONTENTO2L 0x2260 CS 2

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

29

3D - Media - GPGPU (il'ItEl Look Inside”

Description # of DW
RLCONTENTO2H 0x2264 CS 2
RLCONTENTO3L 0x2268 CS 2
RLCONTENTO3H 0x226C CS 2
RLCONTENT10L 0x2270 CS 2
RLCONTENT10H 0x2274 CS 2
RLCONTENT11L 0x2278 CS 2
RLCONTENT11H 0x227C CS 2
RLCONTENT12L 0x2280 CS 2
RLCONTENT12H 0x2284 CS 2
RLCONTENT13L 0x2288 CS 2
RLCONTENT13H 0x228C CS 2
SYNC_FLIP_STATUS 0x22D0 CS 2
SYNC_FLIP_STATUS_1 0x22D4 CS 2
NOOP CS 12
NOOP GPM 16
NOOP CsS 1
Load_Register_Immediate header 0x1100_105F |CS 1
EXCC 0x2028 CS 2
MI_MODE 0x209C CS 2
INSTPM 0x20C0 CS 2
PR_CTR_CTL 0x2178 CS 2
PR_CTR_THRSH 0x217C CS 2
IA_VERTICES_COUNT 0x2310 CS 4
IA_PRIMITIVES_COUNT 0x2318 CS 4
VS_INVOCATION_COUNT 0x2320 CS 4
HS_INVOCATION_COUNT 0x2300 CS 4
DS_INVOCATION_COUNT 0x2308 CS 4
GS_INVOCATION_COUNT 0x2328 CS 4
GS_PRIMITIVES_COUNT 0x2330 CS 4
CL_INVOCATION_COUNT 0x2338 CS 4
CL_PRIMITIVES_COUNT 0x2340 CS 4
PS_INVOCATION_COUNT 0x2348 CS 4
PS_DEPTH_COUNT 0x2350 CS 4
VFSKPD 0x2470 CS 2
TIMESTAMP Register (LSB) 0x2358 CS 2
GPUGPU_DISPATCHDIMX 0x2500 CS 2
GPUGPU_DISPATCHDIMY 0x2504 CS 2
GPUGPU_DISPATCHDIMZ 0x2508 CS 2
MI_PREDICATE_SRCO 0x2400 CS 2

30 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

Description # of DW
MIL_PREDICATE_SRCO 0x2404 CS 2
MIL_PREDICATE_SRC1 0x2408 CS 2
MIL_PREDICATE_SRC1 0x240C CS 2
MIL_PREDICATE_DATA 0x2410 CS 2
MIL_PREDICATE_DATA 0x2414 CS 2
MI_PRED_RESULT 0x2418 CS 2
3DPRIM_END_OFFSET 0x2420 CS 2
3DPRIM_START_VERTEX 0x2430 CS 2
3DPRIM_VERTEX_COUNT 0x2434 CS 2
3DPRIM_INSTANCE_COUNT 0x2438 CS 2
3DPRIM_START_INSTANCE 0x243C CS 2
3DPRIM_BASE_VERTEX 0x2440 CS 2
GPGPU_THREADS_DISPATCHED 0x2290 CS 4
ML_TOPOLOGY_FILTER CS 1
MIL_URB_CLEAR CS 2
PIPELINE_SELECT CS 1
STATE_BASE_ADDRESS CS 10
3DSTATE_PUSH_CONSTANT_ALLOC_VS CS 2
3DSTATE_PUSH_CONSTANT_ALLOC_HS CS 2
3DSTATE_PUSH_CONSTANT_ALLOC_DS CS 2
3DSTATE_PUSH_CONSTANT_ALLOC_GS CS 2
3DSTATE_PUSH_CONSTANT_ALLOC_PS CS 2
NOOP CS 5
NOOP SARB 1
Load_Register_Immediate header 0x1100_101D |SARB 1
SARB Error Status 0xB004 SARB 2
L3CD Error Status register 1 0xB00C SARB 2
L3CD Error Status register 2 0xB00OC SARB 2
L3 SQC registers 1 0xB010 SARB 2
L3 SQC registers 2 0xB014 SARB 2
L3 SQC registers 3 0xB018 SARB 2
L3 Control Registerl 0xB01C SARB 2
L3 Control Register2 0xB020 SARB 2
L3 Control Register3 0xB024 SARB 2
L3 SLM Register 0xB028 SARB 2
Arbiter Control Register 0xB02C SARB 2
L3 SQC register 4 0xB034 SARB 2
Scratch Pad Register 0xB038 SARB 2

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

31

3D - Media - GPGPU

(intEI Look Inside”

Description # of DW
NOOP SARB 64
3DSTATE_VS SVG 6
3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2
3DSTATE_CONSTANT_VS SVG 7
3DSTATE_URB_VS SVG 2
3DSTATE_HS SVG 7
3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2
3DSTATE_CONSTANT_HS SVG 7
3DSTATE_URB_HS SVG 2
3DSTATE_TE SVG 4
3DSTATE_DS SVG 6
3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2
3DSTATE_CONSTANT_DS SVG 7
3DSTATE_URB_DS SVG 2
3DSTATE_GS SVG 7
3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2
3DSTATE_CONSTANT_GS SVG 7
3DSTATE_URB_GS SVG 2
3DSTATE_STREAMOUT SVG 3
3DSTATE_CLIP SVG 4
3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2
3DSTATE_SF SVG 7
3DSTATE_SCISSOR_STATE_POINTERS SVG 2
3DSTATE_MULTISAMPLE SVG 4
3DSTATE_DRAWING_RECTANGLE SVG 4
SWTESS_BASE_ADDRESS SVG 2
NOOP SVG 2
3DSTATE_ WM SVL 3
3DSTATE_VIEWPORT_STATE_POINTERS_CC SVL 2
3DSTATE_CC_STATE_POINTERS SVL 2
3DSTATE_DEPTHSTENCIL_STATE_POINTERS SVL 2
3DSTATE_SAMPLE_MASK SVL 2
3DSTATE_SBE SVL 14
3DSTATE_CONSTANT_PS SVL 7
3DSTATE_PS SVL
32 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intE[Look Inside”

Description # of DW
3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2
3DSTATE_SAMPLER_STATE_POINTERS_PS SVL 2
3DSTATE_BLEND_STATE_POINTERS SVL 2
Load_Register_Immediate header 0x1100_100B |[SVL 1
Cache_Mode 0 0x7000 SVL 2
Cache_Mode_1 0x7004 SVL 2
GT_MODE 0x7008 SVL 2
FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2
STATE_SIP SVL 2
3DSTATE_DEPTH_BUFFER SVL 7
3DSTATE_STENCIL_BUFFER SVL 3
3DSTATE_HIER_DEPTH_BUFFER SVL 3
3DSTATE_CLEAR_PARAMS SVL 3
NOOP SVL 3
NOOP TDLO 1
Load_Register_Immediate header 0x1100_1011 |TDLO 1
TD_CTL2 OxE404 TDLO 2
TD_VF_VS_EMSK OxE408 TDLO 2
TD_GS_EMSK OxE40C TDLO 2
TD_WIZ_EMSK OxE410 TDLO 2
TD_TS_EMSK OxE428 TDLO 2
TD_HS_EMSK OxE4BO TDLO 2
TD_DS_EMSK OxE4B4 TDLO 2
NOOP TDLO 12
NOOP WM 1
Load_Register_Immediate header 0x1100_1003 (WM 1
SuperSpan Count 0x5520 WM 2
3DSTATE_POLY_STIPPLE_PATTERN WM 33
3DSTATE_AA_LINE_PARAMS WM 3
3DSTATE_POLY_STIPPLE_OFFSET WM 2
3DSTATE_LINE_STIPPLE WM 3
NOOP WM 1
NOOP SCOo 1
Load_Register_Immediate header 0x1100_1003 |SCO 1
NOOP SCOo 10
3DSTATE_MONOFILTER_SIZE SCO 2
3DSTATE_CHROMA _KEY SCO 16
NOOP SCO 6

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

33

3D - Media - GPGPU

(intel

Description # of DW
MEDIA_VFE_STATE VFE 8
MEDIA_CURBE_LOAD VFE 4
MEDIA_INTERFACE_DESCRIPTOR_LOAD VFE 4
MEDIA_OBJECT_PRT/GPGPU_WALKER VFE 16
MEDIA_STATE_FLUSH VFE 2
NOOP VFE 6
3DSTATE_SAMPLER_PALETTE_LOADO DMO 257
3DSTATE_SAMPLER_PALETTE_LOAD1 DMO 257
NOOP DMO 14
NOOP SOL 1
Load_Register_Immediate header 0x1100_1027 |[SOL 1
SO_NUM_PRIMS_WRITTENO 0x5200 SOL 4
SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4
SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4
SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4
SO_PRIM_STORAGE_NEEDEDO 0x5240 SOL 4
SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4
SO_PRIM_STORAGE_NEEDED2 0x5250 SOL 4
SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4
SO_WRITE_OFFSETO 0x5280 SOL 2
SO_WRITE_OFFSET1 0x5284 SOL 2
SO_WRITE_OFFSET2 0x5288 SOL 2
SO_WRITE_OFFSET3 0x528C SOL 2
3DSTATE_SO_BUFFER SOL 16
NOOP SOL 3
3DSTATE_SO_DECL_LIST SOL 259
3DSTATE_INDEX_BUFFER VF 3
3DSTATE_VERTEX_BUFFERS VF 133
3DSTATE_VERTEX_ELEMENTS VF 69
3DSTATE_VF_STATISTICS VF 1
NOOP VF 2
Shared Functions
3D Sampler

Look Inside”

The 3D Sampling Engine provides the capability of advanced sampling and filtering of surfaces in

memory.

The sampling engine function is responsible for providing filtered texture values to the Gen Core in
response to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering
modes, address control modes, and other features of the sampling engine. A pointer to the sampler

34

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

state is delivered with each message, and an index selects one of 16 states pointed to by the pointer.
Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE
to define the attributes of the surface being sampled. This includes the location, size, and format of the
surface as well as other attributes.

Although data is commonly used for texturing of 3D surfaces, the data can be used for any purpose
once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the
appropriate subfunctions are complete, the 4-component (reduced to fewer components in some
cases) filtered texture value is provided to the Gen Core in order to complete the sample instruction.

Subfunction Description
Texture Any required operations are performed on the incoming pixel's interpolated internal texture
Coordinate coordinates. These operations may include: cube map intersection.
Processing
Texel Address The Sampling Engine will determine the required set of texel samples (specific texel values from
Generation specific texture maps), as defined by the texture map parameters and filtering modes. This

includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample and/or
miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples will be read from the texture map. This step may require
decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette | For streams which have paletted texture surface formats, this function uses the index values
Lookup read from the texture map to look up texel color data from the texture palette.

Shadow Pre-

. . .
Filter Compare For shadow mapping, the texel samples are first compared to the 3™ (R) component of

the pixel's texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture
Address Generation function. This combination ranges from simply passing through a nearest
sample to blending the results of anisotropic filters performed on two mipmap levels. The
output of this function is a single 4-component texel value.

Texel Color Performs optional gamma decorrection on texel RGB (not A) values.
Gamma
Linearization

Denoise/ Performs denoise and deinterlacing functions for video content
Deinterlacer

8x8 Video Scaler |Performs scaling using an 8x8 filter

Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the
texture coordinates that are required before physical addresses of texel samples can be generated.

Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized
coordinates are normalized.

Doc Ref # IHD-OS-VLV-Vol7-04.14 35

3D - Media - GPGPU (il'ltEl Look Inside”

Normalized coordinates are specified in units relative to the map dimensions, where the origin is
located at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right
edge of the lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the
associated map's height or width. Here the origin is the located at the upper/left edge of the upper left
texel of the base texture map.

Normalized vs. Unnormalized Texture Coordinates

Mormalized Unnormalized
o, 0 » 1 a, 0 » L

1,1 15,11

BEaTT-01

Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from
(interpolated) screen space back into texture coordinate space by dividing the pixel'sSand T
components by the Q component. This operation is done as part of the pixel shader kernel in the Gen4
Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map
faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest
absolute value determines the proper (major) axis, and then the sign of that component is used to
select between the two faces associated with that axis. The coordinates along the two minor axes are
then divided by the coordinate of the major axis, and scaled and translated, to obtain the 2D texture
coordinate ([0,1]) within the chosen face. Note that the coordinates delivered to the sampling engine
must already have been divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided
below:

36 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Cube Map Coordinate Computation Example

MNote: o
Face origin is here

-1 face

prEmmmm——_———

-
:

i
]
1]
i 13 0
| ™
H Pp-:u:ufm
i -;\ abs(10)=ahs(I0)
1
[

Seleds +1 face
‘....... P B B BN _-'l.
1

BEeaTE-01

Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto
the textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral.
Any given pixel of the object may cover multiple texels of the map, or only a fraction of one texel. For
each pixel, the usual goal is to sample and filter the texture image in order to best represent the
covered texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are
provided to allow the user to employ quality/performance/footprint tradeoffs in selecting how the
particular texture is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the
texture maps are to be sampled. Outputs of this function include the number of texel samples to be
taken, along with the physical addresses of the samples and the filter weights to be applied to the
samples after they are read. This information is computed given the incoming texture coordinate and
gradient values, and the relevant state variables associated with the sampler and surface. This function
also applies the texture coordinate address controls when converting the sample texture coordinates to
map addresses.

Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent
object warping due to a perspective projection, the texture image may become magnified (where a
texel covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an
object. In the case where an object pixel is found to cover multiple texels (texture minification), merely
choosing one (e.g., the texel sample nearest to the pixel's texture coordinate) will likely result in severe
aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling
these textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps
of decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are
provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object

Doc Ref # IHD-OS-VLV-Vol7-04.14 37

3D - Media - GPGPU (il'ltEl Look Inside”

is located a significant distance from the viewer), the device will sample the mipmap level(s) offering a
texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels toa 1 X
1 texel. Each successive level has ¥z the resolution of the previous level in the U and V directions (to a
minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap
levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the
approximate, log, measure of the ratio of texels per pixel. The highest resolution map is considered
LOD 0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the
magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture
map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear
interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log, of
the texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space
distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-
space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates
being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels).
The q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant
0 for 2D surfaces.

The ideal LOD computation is included below.

LOD(x, y) =log .| p{x.¥)]

B C R RO D!

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower
miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap
level will trade off image blurring with possibly increased performance (due to better texture cache
reuse). Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing
artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input
message (which can be non-zero only for sample_b messages). The application of LOD Bias is
unconditional, therefore these variables must both be set to zero in order to prevent any undesired
biasing.

38 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore
can be used to control the min-vs-mag crossover point, its use has the undesired effect of actually
changing the LOD used in texture filtering.

LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.
Enabling pre-clamping matches OpenGL semantics .

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by
the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag
Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even
when lower resolution maps may be available. Note that this is the only parameter used to specify the
number of valid mip levels that be can be accessed, i.e., there is no explicit number of levels stored in
memory parameter associated with a mip-mapped texture. All mip levels from the base mip level map
through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is
UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where
LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution
mip levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level
filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and
MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down)
or magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel state
variable therefore has the effect of selecting the base mip level used to compute Min/Map
Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect
of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-
resolution) miplevel will be sampled and filtered using the MagfFilter state variable. At this point the
computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable
specifies whether one or two mip levels are to be included in the texture filtering, and how that (or
those) levels are to be determined as a function of the computed LOD.

LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the
steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not
shown.

Doc Ref # IHD-OS-VLV-Vol7-04.14 39

€

ntel/ Look Inside’

3D - Media - GPGPU

Bias:54.8

MinLod:U4.8

MaxLod:U4.8

Base:U4.1

MIPCnt:U4

SurfMinLod: U4.8
ResMinLod: U4.8
PerSampleMinLOD: float32

MinLod = max(MinLod, PerSampleMinLOD)
AdjMaxLod = min(MaxLod, MIPCnt)
AdjMinLod = min(MinLod, MIPCnt)
AdjPR_minLOD = ResMinLod — SurfMinLod
AdjMinLod = max(AdjMinLod, AdjPR_minLOD)
Out_of_Bounds = AdjPR_minLOD > MIPCnt

if (sample_b)

LOD += Bias + bias_parameter
else if (sample_| or Id)

LOD = Bias + lod_parameter
else

LOD += Bias
PreClamp = LODPreClampEnable
If (PreClamp)

LOD = min(LOD, MaxLod)

LOD = max(LOD, MinLod)
MagMode = (LOD - Base <= 0)
MagClampMipNone =1
If (MagMode && MagClampMipNone) or MipFlt = None)

LOD =0

LOD = min(LOD, ceil(AdjMaxLod))

LOD = max(LOD, floor(AdjMinLod))
else if (MipFlt = Nearest)

40 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

LOD = min(LOD, AdjMaxLod)
LOD = max(LOD, AdjMinLod)
LOD = min(LOD, AdjMaxLod)
LOD = max(LOD, AdjMinLod)
LOD +=0.5
LOD = floor(LOD)

else// MipFlt = Linear
LOD = min(LOD, AdjMaxLod)
LOD = max(LOD, AdjMinLod)
TriBeta = frac(LOD)
LOD, = floor(LOD)
LOD; = LOD, + 1

if (lod)// LOD message type
Lod += SurfMinLod

If Out_of Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced
with zero in all channels, except for surface formats that don't contain alpha, for which the alpha
channel is replaced with one. These texels then proceed through the rest of the pipeline.

Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The
following table describes the various mip filter modes:

MipfFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after
LOD clamping).

MIPFILTER_NEAREST | Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be
rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further
restrict this miplevel selection.

MIPFILTER_LINEAR | Apply a filter on the two closest mip levels and linear blend the results using the distance
between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping
may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip
level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to
generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated
LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for
MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the
(integer bits of) MinLOD and MaxLOD state variables.

Doc Ref # IHD-OS-VLV-Vol7-04.14 41

3D - Media - GPGPU (il'ltEl' Look Inside”

Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state
variable (respectively) is used to select the sampling filter to be used within a mip level (intra-level, as
opposed to any inter-level filter). Note that for volume maps, this selection also applies to filtering
between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number
and texture map coordinates of the texture samples, and the computation of any required filter
parameters. The filtering of the samples occurs later on in the Sampling Engine function.

42 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter

value Description
MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel's U,V,Q coordinate is
read and output from the filter.
MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE,

or 3D surface, respectively) surrounding the pixel's U,V,Q coordinate are read and a
linear filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC |[Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture
map is generated and subpixel samples are taken along the major axis of the
projection (center axis of the longer dimension). The outermost subpixels are
weighted according to closeness to the edge of the projection, inner subpixels are
weighted equally. Each subpixel samples a bilinear 2x2 of texels and the results are
blended according to weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the monochrome
(MONOQS) surface format. The monochrome texel block of the specified size
surrounding the pixel is selected and filtered.

MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel's texture
coordinate is selected and output as the single texel sample coordinates for the level.

MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.
1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the
pixel's texture coordinate are sampled and later bilinearly filtered.

Bilinear Filter Sampling

MNearest
Texel Center

KBIE& 1-Bleft
s o it

Bup
Pixel's Texel ﬁr
Coords i

]
n
n
|
:
1-Bup !
!

mEC

BeaTI-01

Doc Ref # IHD-OS-VLV-Vol7-04.14 43

3D - Media - GPGPU (il'ltEl Look Inside”

The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each
texel's contribution according to its distance from the pixel center. Texels further from the pixel center
receive a smaller weight.

MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of
pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and
later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter
employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the
texture map. LOD is chosen based on the minor axis length in texel space. The anisotropic ratio is equal
to the ratio between the major axis length and the minor axis length. The next larger even integer
above the ratio determines the anisotropic number of ways, which determines how many subpixels are
chosen. A line along the major axis is determined, and subpixels are chosen along this line, spaced one
texel apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the
pixels are in yellow.

1]
b 5\-'#1
aS
ah
ot
oL

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel
is then blended together using equal weights on all interior subpixels (not including the two endpoint
subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the
ratio is to the number of ways. This is done to ensure continuous behavior in animation.

D Pixel Center
@ Subpinel Certer
B&eER0-01

MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel
sample location are read and filtered using the kernel described below. The size of this block is
controlled by Monochrome Filter Height and Width (referred to here as N, and N,, respectively) state.
Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel
samples) is equal to the size of the filter and the pixel center lies at the exact center of this footprint.
The position of the upper left filter kernel sample (uy, v¢) relative to the pixel center at (u, v) is given by
the following:

44 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

u

2
NV
2

B, and B, are the fractional parts of us and vy, respectively. The integer parts select the upper left texel for
the kernel filter, given here as To,.

Sampling Using MAPFILTER_MONO

2 >

&

* & & B 8 B B|"

B,

W]

> o 0

..l:.
" @ |

[R

[R

o O O

o o o o 0
»
]

[& I & R
* & ® 2 2 B B ™
o o o o o
* & & 80 B 8 |-

o o O

»

]
2 # & B & & ¥ |-
* * & B 8 2 8

ey
* * ¢ » ¢+ @

@ pizel center (Ul
B texels
v < filter kernel zamples

BezE1-01

L

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each
texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and
alpha channels.

1
N *N,

[(1 A)- ﬁ,)%“ff +A,0- ﬁJE',ET H1- ﬁ.)ﬁ.EiT +MZZT]

5=

Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when
the specific texture coordinate component falls outside of the normalized texture map coordinate range
[0,1).

Doc Ref # IHD-OS-VLV-Vol7-04.14 45

3D - Media - GPGPU (il'ltEl Look Inside”

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the
texture coordinates. Software needs to specify TEXCOORDMODE_WRAP mode for the sampler that is
provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER | Use the texture map's border color for any texel samples falling outside the
map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_HALF_BORDER | Similar to CLAMP_BORDER except texels outside of the map are clamped to a
value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the
same dimension.
TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be

sampled along the edges of faces. This is considered the highest quality
mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

TEXCOORDMODE_MIRROR_ONCE | Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the
TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls
provided for the TCW component as it is only used to scale the other 3 components before addressing
modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may
result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision
loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level
(choosing the wrong texels for filtering).

TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is
flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed
normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal
again, and so on. The second row of pictures in the figure below indicate a map that is mirrored in one
direction and then both directions. You can see that in the mirror mode every other integer map wrap
the base map is mirrored in either direction.

46 Doc Ref # IHD-OS-VLV-Vol7-04.14

(iI'ItE'I Look Inside” 3D - Media - GPGPU

Texture Wrap vs. Mirror Addressing Mode

. Yrap Mode
*x®*x
LI LI L

Tk || Pala®® | | PalaC T
. . . . : . = Mirror Mode
o™ F ol ™

*

Be2Ez-01

TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,
leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being
continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate
values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through
0.0).

TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes.
The absolute value of the texture coordinate component is first taken (thus mirroring about 0), and then
the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then clamped
thereafter. This mode is used to reduce the storage required for symmetric maps.

TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the edge texel when the texture coordinate
extends outside the [0,1) range of the base texture map. This is contrasted to
TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.
TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be obtained
from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a
texture mapped object with texture coordinates extending outside of the base map region.

Texture Clamp Mode

Doc Ref # IHD-OS-VLV-Vol7-04.14 47

3D - Media - GPGPU (il'ltEl' Look Inside”

oo -l-1

11

Texture

&z
Textured Object
[(Clamp &,¥ Mode)

B&E33-01

TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the
texture map's border value BorderColor is to be used for any texel samples that fall outside of the base
map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering.
When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-level

filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed. This
will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be present.

Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the
texture addresses associated with each texel sample. The texture data is read either directly from the
memory-resident texture map, or from internal texture caches. The texture caches can be invalidated by
the Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable
bit of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered
textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will
automatically decompress from the stored format into the appropriate [A]JRGB values. The compressed
texture storage formats and decompression algorithms can be found in the Memory Data Formats
chapter. When the surface format of a texture is defined as being an index into the texture palette
(format names includiong Px), the palette lookup of the index determines the appropriate RGB values.

Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of
texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an
RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel
samples against a key range, and takes certain actions if any texel samples are found to match the key.

48 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel
values, as defined by ChromaKey/[][High,Low] state variables. If each component of a texel sample is
found to lie within the respective (inclusive) range and ChromaKey is enabled, then an action will be
taken to remove this contribution to the resulting texel stream output. Comparison is done separately
on each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

Chroma Key Effects

There are two operations that can be performed to remove matching texel samples from the image. The
ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode state
variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:
KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key.
KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0).

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample
instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not
done and pixels cannot be killed based on it.

Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed
on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the
ref component of the input message, using a compare function selected by ShadowFunction, and
described in the table below. Note that only single-channel texel formats are supported for shadow
mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) 70.0: 1.0

PREFILTEROP_EQUAL (texel == ref) 7 0.0: 1.0

PREFILTEROP_LEQUAL (texel <=ref) 70.0: 1.0

PREFILTEROP_GREATER | (texel > ref) ? 0.0: 1.0

PREFILTEROP_NOTEQUAL | (texel != ref) ? 0.0: 1.0

PREFILTEROP_GEQUAL (texel >=ref) 70.0: 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the
texel's value which would normally be used).

Software is responsible for programming the ref component of the input message such that it
approximates the same distance metric programmed in the texture map (e.g., distance from a specific

Doc Ref # IHD-OS-VLV-Vol7-04.14 49

3D - Media - GPGPU (il'ltEl' Look Inside”

light to the object pixel). In this way, the comparison function can be used to generate in shadow status
for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Programming Note: Refer to the Surface Formats table in section RENDER_SURFACE_STATE for the
specific surface formats that are supported with shadow mapping.

Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel
values on and possibly between texture map layers and levels. The output of this function is a single
texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The
MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results
of any filtering on these separate levels are combined to produce a final texel color. The MinfFilter and
MagfFilter state variables specify how texel samples are filtered within a level.

Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back
into linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer.
This permits higher quality image blending by performing the blending on colors in linear gamma
space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB" in its name. If
enabled, the pre-filtered texel RGB color to be converted to gamma=1.0 space by applying a *(2.4)
exponential function.

Multisampled Surface Behavior

The Id message has added an additional parameter for sample index (si) to support unfiltered loading
from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo
message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface would sample a
surface with double the height and width as indicated in the surface state. Each pixel position on the
original-sized surface is replaced with 2x2 samples that have the following arrangement:

sample 0 |sample 2

sample 1 |sample 3

This behavior is useful when implementing the multisample resolve operation by selecting
MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source
texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four
underlying samples.

50 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Multisample Control Surface

Three new messages have been defined for the sampling engine, ld_mcs, [d2dms, and [d2dss. A pixel
shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS
surface using the [d_mcs message. This message behaves like the ld message, except that the surface is
defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is
effectively R8_UINT for 4x surfaces and R32_UINT for 8x surfaces, thus data is returned in unsigned
integer format. Following the ld_mcs, the kernel issues a [d2dms message to sample the surface itself.
The integer value from the MCS surface is delivered in the mcs parameter of this messages.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done
using ld2dms. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS and MCS
Enable set to enabled, an optimization is available to enable higher performance for compressed pixels.
The ld2dss message can be used to sample from a particular sample slice on the surface. By examining
the MCS value, software can determine which sample slices to sample from. A simple optimization with
probable large return in performance is to compare the MCS value to zero (indicating all samples are on
sample slice 0), and sample only from sample slice 0 using (d2dss if MCS is zero. Sample slice 0 is the
pixel color in this case. If MCS is not zero, each sample is then obtained using [d2dms messages and the
results are averaged in the kernel after being returned. Refer to the multisample storage format in the
GPU Overview volume for more details.

State

BINDING_TABLE_STATE

SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table. Each
surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

e texture maps (1D, 2D, 3D, cube) read by the sampling engine

e buffers read by the sampling engine

e constant buffers read by the data cache via the data port

e render targets read/written by the render cache via the data port

e streamed vertex buffer output written by the render cache via the data port
e media surfaces read from the texture cache or render cache via the data port
e media surfaces written to the render cache via the data port

RENDER_SURFACE_STATE

Surface Formats

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that
some of these formats are used not only by the Sampling Engine, but also by the Data Port and the
Vertex Fetch unit.

SURFACE_FORMAT

Doc Ref # IHD-OS-VLV-Vol7-04.14 51

3D - Media - GPGPU

Note: RAW is supported only with buffers and structured buffers accessed via the untyped surface
read/write and untyped atomic operation messages, which do not have a column in the table.

Sampler Output Channel Mapping

(I@ Look Inside’

The following table indicates the mapping of the channels from the surface to the channels output from
the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel
to the corresponding output, thus those formats are not shown in this table.

Some formats are supported only in DX10/OGL Border Color Mode. Those formats have only that
mode indicated. Formats that behave the same way in both Border Color Modes are indicated by that
column being blank.

Bord
er
Colo
Shad | Chro | Border r
Proje Filteri | ow ma | Color Mod Securi
ct Surface Format Name ng Map | Key | Mode [R|(G| B | A e ty
R32G32B32A32_FLOAT G A
R32G32B32A32_SINT DX10/0 |R |G A
GL
R32G32B32A32_UINT DX10/0 (R |G [B |A
GL
R32G32B32X32_FLOAT G 1.0
R32G32B32_FLOAT G 1.0
R32G32B32_SINT DX10/0 |R |G |B |1.0
GL
R32G32B32_UINT DX10/0 |R |G |B |10
GL
R16G16B16A16_UNORM G |B |A
R16G16B16A16_SNORM G |B |A
R16G16B16A16_SINT DX10/0 |R |G |B |A
GL
R16G16B16A16_UINT DX10/0 (R |G [B |A
GL
R16G16B16A16_FLOAT G A
R32G32_FLOAT DX10/0 |R |G [0.0|1.0 [DX9
GL
R32G32_SINT DX10/0 |R |G |0.0|1.0
GL
R32G32_UINT DX10/0 |R |G |0.0|1.0
GL
R32_FLOAT_X8X24_TYPEL DX10/0 |R |0.0{0.0|1.0
ESS GL
X32_TYPELESS_G8X24_UI DX10/0 |0.0|G |0.0]1.0
NT GL

52

Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

3D - Media - GPGPU

Bord
er
Colo
Shad | Chro | Border r
Proje Filteri | ow ma Color Mod Securi
ct Surface Format Name ng Map | Key | Mode [R|(G| B | A e (RIG(B|A]| ty
L32A32_FLOAT DX10/0|L |L |L |A
GL
R16G16B16X16_UNORM G |B |10
R16G16B16X16_FLOAT G 1.0
A32X32_FLOAT 0.0(0.0|0.0 A
L32X32_FLOAT L (L |L (1.0
[32X32_FLOAT I I I |I
B8GBR8A8_UNORM R [G |B [A
B8G8R8A8_UNORM_SRGB R |G [B |A
R10G10B10A2_UNORM R |G [B |A
R10G10B10A2_UNORM_S R |G [B |A
RGB
R10G10B10A2_UINT DX10/0 |R |G |B |A
GL
R10G10B10_SNORM_A2_ R |G [B |A
UNORM
R8G8B8A8_UNORM R |G [B |A
R8G8B8A8_UNORM_SRGB R [G |B [A
R8G8B8A8_SNORM R [G |B [A
R8G8B8AS8_SINT DX10/0 |R |G |B |A
GL
R8G8BBA8_UINT DX10/0 |R |G |B |A
GL
R16G16_UNORM DX10/0 |R |G |0.0|1.0|DX9 |R|G [1. (1.
GL 010
R16G16_SNORM DX10/0 |R |G [0.0]|1.0|DX9 |R|(G |1.|L
GL 010
R16G16_SINT DX10/0 |R |G |0.0|1.0
GL
R16G16_UINT DX10/0 |R |G |0.0|1.0
GL
R16G16_FLOAT DX10/0 |R |G [0.0]|1.0|DX9 |R|(G |1. (L
GL 010
B10G10R10A2_UNORM G |B |A
B10G10R10A2_UNORM_S G |B |A
RGB
R11G11B10_FLOAT R |G |B |10
Doc Ref # IHD-OS-VLV-Vol7-04.14 53

3D - Media - GPGPU

(I@ Look Inside’

Bord
er
Colo
Shad | Chro | Border r
Proje Filteri | ow ma Color Mod Securi
ct Surface Format Name ng Map | Key | Mode | R e B|A| ty
R32_SINT DX10/0 |R |0.0{0.0|1.0
GL
R32_UINT DX10/0 |R |0.0{0.0|1.0
GL
R32_FLOAT DX10/0 |[R |0.0|0.0|1.0|DX9 1. (L
GL 0 (O
R24_UNORM_X8_TYPELES DX10/0 |R |0.0{0.0|1.0
S GL
X24_TYPELESS_G8_UINT DX10/0 |{0.0|G |0.0|1.0
GL
L16A16_UNORM L |L (L |A
[24X8_UNORM I (T I |I
L24X8_UNORM L |L (L |10
A24X8 UNORM 0.0(0.0]|0.0 A
I32_FLOAT I (T I |I
L32_FLOAT L |L (L |10
A32_FLOAT 0.0(0.0|0.0 A
B8G8R8X8_UNORM R |G [B |10
B8G8R8X8_UNORM_SRGB R |G [B |10
R8G8B8X8_UNORM R |G [B |10
R8G8B8X8_UNORM_SRGB R |G |B |10
R9G9BIE5_SHAREDEXP R |G |B |10
B10G10R10X2_UNORM R |G |B |10
L16A16_FLOAT L |L (L |A
B5G6R5_UNORM R |G |B |10
B5G6R5_UNORM_SRGB R |G |B |10
B5G5R5A1_UNORM R |G [B |A
B5G5R5A1_UNORM_SRGB R |G [B |A
B4G4R4A4_UNORM R |G [B |A
B4G4R4A4_UNORM_SRGB R |G [B |A
R8G8_UNORM DX10/0 |R |G |0.0|1.0|DX9 1. (L
GL 0 (O
R8G8_SNORM DX10/0 |R |G |0.0|1.0|DX9 1. (1L
GL 0 (O
R8G8_SINT DX10/0 |R |G |0.0|1.0
GL

54

Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:ED Look Inside’

3D - Media - GPGPU

Bord
er
Colo
Shad | Chro | Border r
Proje Filteri | ow ma Color Mod Securi
ct Surface Format Name ng Map | Key | Mode [R|(G| B | A e ty
R8G8_UINT DX10/0 |R |G |0.0|1.0
GL
R16_UNORM DX10/0 |{R |0.0{0.0|1.0
GL
R16_SNORM DX10/0 |R |0.0{0.0|1.0
GL
R16_SINT DX10/0 |R |0.0{0.0|1.0
GL
R16_UINT DX10/0 |R |0.0{0.0|1.0
GL
R16_FLOAT DX10/0 |{R |0.0|0.0|1.0|DX9
GL
A8P8_UNORM_PALETTEO R [G |B [A
A8P8_UNORM_PALETTE1 R [G |B [A
[16_UNORM I |1 I |I
L16_UNORM L (L |L (1.0
Al6_UNORM 0.0/0.0({0.0|A
L8A8_UNORM L (L |L [A
[16_FLOAT I |1 I |I
L16_FLOAT L (L |L (1.0
Al6_FLOAT 0.0/0.0({0.0|A
L8A8_UNORM_SRGB L (L |L [A
R5G5_SNORM_B6_UNOR R |G |B |10
M
P8A8_UNORM_PALETTEO G |B [A
P8AS_UNORM_PALETTEL G |B [A
A1B5G5R5_UNORM G |B [A
[VLV] -
R8_UNORM DX10/0 |R |0.0{0.0|1.0
GL
R8_SNORM DX10/0 |R |0.0{0.0|1.0
GL
R8_SINT DX10/0 |R |0.0{0.0|1.0
GL
R8_UINT DX10/0 |R |0.0{0.0|1.0
GL
Doc Ref # IHD-OS-VLV-Vol7-04.14 55

3D - Media - GPGPU

(I@ Look Inside’

Bord
er
Colo
Shad | Chro | Border r
Proje Filteri | ow ma Color Mod Securi
ct Surface Format Name ng Map | Key | Mode (R |G| B | A e ty
A8_UNORM 0.0(0.0|0.0 A
I8_UNORM I (T I |I
L8_UNORM L |L |L |10
P4AA4_UNORM_PALETTEO R |G [B |A
A4P4_UNORM_PALETTEO R |G [B |A
P8_UNORM_PALETTEO R |G [B |A
L8_UNORM_SRGB L |L |L |10
P8_UNORM_PALETTEL R |G [B |A
PAA4_UNORM_PALETTE1 R |G [B |A
A4P4_UNORM_PALETTEL R |G [B |A
DXT1_RGB_SRGB R |G [B |10
R1_UNORM R |0.0({0.0]|1.0
YCRCB_NORMAL Cr |[Y |Cb |10
YCRCB_SWAPUVY Cr |[Y |Cb |10
P2_UNORM_PALETTEO R |G [B |A
P2_UNORM_PALETTEL R |G [B |A
BC1_UNORM R |G [B |A
BC2_UNORM R |G [B |A
BC3_UNORM R |G [B |A
BC4_UNORM DX10/0 |R |0.0{0.0|1.0
GL
BC5_UNORM DX10/0 |R |G |0.0|1.0
GL
BC1_UNORM_SRGB G |B |A
BC2_UNORM_SRGB G |B |A
BC3_UNORM_SRGB G |B |A
MONOS8 N/ [N/ [N/ [N/
A [A |A |A
YCRCB_SWAPUV Cr |[Y |Cb |10
YCRCB_SWAPY Cr |[Y |Cb |10
DXT1_RGB G (B |10
FXT1 G A
BC4_SNORM DX10/0 |R |0.0{0.0|1.0
GL
BC5_SNORM DX10/0 |R |G |0.0|1.0
GL

56

Doc Ref # IHD-OS-VLV-Vol7-04.14

(I@ Look Inside”

3D - Media - GPGPU

Bord

er

Colo

Shad | Chro | Border r
Proje Filteri | ow ma Color Mod Securi
ct Surface Format Name ng Map | Key | Mode [R|(G| B | A e (RIG(B|A]| ty

R16G16B16_FLOAT R |G |B |10
BC6H_SF16 R |G |B |10
BC7_UNORM R |G [B |A
BC7_UNORM_SRGB R |G [B |A
BC6H_UF16 R |G |B |10
ETC1_RGBS8 R |G |B |10
ETC2_RGBS8 R |G |B |10
EAC_R11 R 10.0]0.0]|10
EAC_RG11 R |G |00]10
EAC_SIGNED_R11 R 10.0]0.0]|10
EAC_SIGNED_RG11 R |G |00]10
ETC2_SRGBS R |G |B |10
ETC2_RGB8_PTA R [G |B [A
ETC2_SRGB8_PTA R [G |B [A
ETC2_EAC_RGBAS R |G [B |A
ETC2_EAC_SRGBS8_A8 R |G [B |A

SURFACE_STATE for Deinterlace, sample_8x8, and VME

This section contains media surface state definitions.

MEDIA_SURFACE_STATE

Restrictions: The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to
the same for the multi-surface Video Analytics functions like LBP Correlation and Correlation Search for
both the surfaces.

SA

MPLER_STATE

SAMPLER_STATE has different formats, depending on the message type used:

For, the sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as
detailed in the corresponding sections.

For The Min LOD and Max LOD fields need range increased from [0.0,13.0] to [0.0,14.0] and

fractional bits increased from 6 to 8. This requires a few fields to be moved as indicated in the

text.

SAMPLER STATE
SAMPLER_STATE for Sample_8x8 Message

Doc Ref # IHD-OS-VLV-Vol7-04.14

57

3D - Media - GPGPU (il'ltEl' Look Inside”

DEINTERLACE_SAMPLER_STATE

This state definition is used only by the deinterlace message. This state is stored as an array of up to 8
elements, each of which contains the dwords described here. The start of each element is spaced 8
dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7
that selects which element is being used is multiplied by 2 to determine the Sampler Index in the
message descriptor.

Restrictions

1. VDIWalker can be enabled only when frame is aligned to block size of 16x4 if DI is enabled
(interlaced) and 16x8 if DN only (Progressive).

2. When VDIWalker Frame Sharing is enabled driver should dispatch same number of Media Objects
to both half slice by explicitly programming half slice destination select as 01 and 10 alternately
(Note: Dispatch of threads should be in ping pong fashion to have load balance between both
Halfslice and better L3 utilization).

3. For VDIWalker disabled mode (when frame size is not aligned to 16x4 or 16x8) it is recommended
to have a simplified SW walker. Using Half Slice Destination Select 00 will affect performance
significantly.

Dispatch of Media Object Commands for VDIWalker Enabled

1. Frame Sharing is Disabled:
a. Program all MO commands to have Half Slice destination select as either 01 or 10
b. Y_stride programmed in Sampler State will be ignored

2. Frame Sharing Enabled:

a. if Frame_height (in blocks) % 2 = 0 (where block height = 4 when DI enabled, 8 when DN
only) dispatch MO in ping pong fashion

b. Y_Stride of 0,1,2,3 is valid and VDIwalker will divide frame into multiple slices based on
stride value

c. if Frame_height (in blocks) % 2 > 0, then dispatch MO in ping pong fashion and all threads
for blocks from residual row to be sent to Half Slice0

Psuedo Code for Media Object Dispatch

// Variables:

Frame Height in pixels => frame_height

Frame Width in pixels => frame_width

Frame Height in Blocks => fh

Frame Width in Blocks => fw

Block Height in Pixels => block_height = Interlaced ? 4: 8

// Code:
fw = frame_width 7/ 16;
th frame_height /7 block_height;

Calculate Residual Blocks

If (fh $ (2**stride)) # 0 {
Y_Blocks_Remainder = (fh % (2**stride))

58 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

IT (Y_Blocks Remainder >

Y_BI
Y_BI

}

Else {
Y_BI
Y_BI

}

Else {

Y_Blocks_Remainder_ HS1
Y_Blocks_Remainder_HS2

}

ocks_Remainder_HS1
ocks_Remainder_ HS2

ocks_Remainder_HS1
ocks_ Remainder_ HS2

Dispatch Media Object
total_media_obj cnt = fw * fh;
reminder_media_obj_cnt_HS1 = fw * Y_Blocks_Remainder_HS1;
reminder_media_obj_cnt_HS2 = fw * Y_Blocks_Remainder_HS2;

(2**stride) /7 2) {

(2**stride) / 2
Y_Blocks_Remainder - (2**stride) / 2

Y_Blocks_Remainder
0

3D - Media - GPGPU

ping_pong_media_obj _cnt = total_media_obj_cnt — (reminder_media_obj_cnt_HS1 +

reminder_medi

for (i = 0;

a_obj_cnt_HS1);

i < ping_pong_media_obj_cnt;

iFf(Ci%2=0)¢{
dispatch_media_object _hs1;

i++) {

dispatch_media_object_hs2;

¥
else {
}

}

for (i =0;
d

}

for (i =0;
di

}

SAMPLER_8x8_

i i < reminder_media_obj cnt_HS1;
ispatch_media_object hsil;

i i < reminder_media_obj _cnt_HS2;
spatch_media_object _hs2;

STATE

SAMPLER_BORDER_COLOR_STATE

i++) {

i++) {

For , if border color is used, all formats must be provided. Hardware will choose the appropriate format
based on Surface Format and Texture Border Color Mode. The values represented by each format
should be the same (other than being subject to range-based clamping and precision) to avoid
unexpected behavior.

DWord | Bits

Description

0 31:24

Border Color Alpha
Format = UNORMS8

23:16

Border Color Blue
Format = UNORMS8

15:8

Border Color Green
Format = UNORMS8

7:0

Border Color Red
Format = UNORMS8

1 31:0

Border Color Red
Format = IEEE_FP

Doc Ref # IHD-OS-VLV-Vol7-04.14

59

3D - Media - GPGPU

DWord | Bits Description

2 31:0 |Border Color Green
Format = IEEE_FP

3 31:0 |Border Color Blue
Format = IEEE_FP

4 31:0 |Border Color Alpha
Format = IEEE_FP

5 31:16 | Border Color Green
Format = FLOAT16

15:0 | Border Color Red
Format = FLOAT16

6 31:16 | Border Color Alpha
Format = FLOAT16

15:0 | Border Color Blue
Format = FLOAT16

7 31:16 | Border Color Green
Format = UNORM16

15:0 | Border Color Red
Format = UNORM16

8 31:16 | Border Color Alpha
Format = UNORM16

15:0 | Border Color Blue
Format = UNORM16

9 31:16 | Border Color Green
Format = SNORM16

15:0 | Border Color Red
Format = SNORM16

10 [31:16 |Border Color Alpha
Format = SNORM16

15:0 | Border Color Blue
Format = SNORM16

11 |31:24|Border Color Alpha
Format = SNORMS8

23:16 | Border Color Blue
Format = SNORMS8

15:8 | Border Color Green
Format = SNORMS8

7:0 |Border Color Red
Format = SNORMS8

Border Color Programming for Interger Surface Formats

(I@ Look Inside’

For integer formats, there are different possible cases depending on the bits per channel and bits per

texel of the surface format.

Integer Surface Format - Different Types

Surface formats

60

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Integer Surface Format - Different Types Surface formats

32bpc, 128 bpt case(4 types) R32G32B32A32_UINT
R32G32B32_UINT
R32G32B32A32_SINT
R32G32B32_SINT

16bpc, 64bpt case(5 types) R16G16B16A16_UINT, R10G10B10A2_UINT
X32_TYPELESS_G8X24_UINT
R16G16B16_UINT

R16G16B16A16_SINT

R16G16B16_SINT

32bpc, 64bpt case (2 types) R32G32_UINT
R32G32_SINT

8bpc, 32 bpt cases (9 types) R8GSBSAS UINT

R8G8_UINT

R8_UINT
X24_TYPELESS_G8_UINT
R8G8B8_UINT
R8G8B8A8_SINT
R8G8_SINT

R8_SINT

R8G8B8_SINT

16bpc, 32 bpt cases (4 types) R16G16_UINT
R16_UINT
R16G16_SINT
R16_SINT

32bpc, 32 bpt case (2 types) R32_UINT
R32_SINT

HW supports only 1 index for a given Sampler Border Color state and Sampler State. So, SW will have to
program the table in SAMPLER_BORDER_COLOR_STATE at offsets DWORD16 to 19, as per the integer
surface format type (depends on the bits per channel and bits per texel of the surface format). If any
color channel is missing from the surface format, corresponding border color should be programmed as
zero and if alpha channel is missing, corresponding Alpha border color should be programmed as 1.
Some of the representative cases are listed below:

Casel: R32G32B32A32_UINT (32bpc, 128 bpt 4 channels)

Case2: R32G32B32A32_SINT (32bpc, 128 bpt, 4 channel, SINT)

Each of the values in the above table would have be to programmed as sint32 value.
Case3: R32G32B32_UINT (32bpc, 128 bpt, 3 channel)

R/G/B values would be programmed like in Casel. Alpha channel value at DWORDN+3 would have to
be programmed as Integer 1.

Doc Ref # IHD-OS-VLV-Vol7-04.14 61

3D - Media - GPGPU (il'ltEl Look Inside”

Case4: R32_UINT (32bpc, 32 bpt case with 1 channel)

Case5: R16G16B16A16_UINT (16bpc, 64 bpt, 4 channel, UINT)
Case6: R8G8B8AS8_SINT (8bpc, 32 bpt, 4 channels, SINT)
Case7: R32G32_UINT (32bpc, 64bpt, 2 channel case))

Case8: R8_UINT (8bpc, 32 bpt, 1 channel case)

Case9: R16G16_UINT (16bpc, 32 bpt case)
3DSTATE_CHROMA_KEY

3DSTATE_SAMPLER _PALETTE_LOADO
3DSTATE_MONOFILTER_SIZE

Messages

Restrictions:

e Use of any message to the Sampling Engine function with the End of Thread bit set in the
message descriptor is not allowed.

Initiating Message
Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are
sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the
GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter
mode and at least one pixel in the subspan being valid, the sampling engine assumes that the
parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of
the execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD needs to be
computed based on MIP filter mode and at least one pixel in the subspan being valid, the sampling
engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan
are valid regardless of the execution mask, since these are needed for the LOD computation.

SIMDA4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If any of the high 4
bits are asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The
Write Channel Mask rather than the execution mask determines which channels are written back to
the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid and all channels are returned
regardless of the execution mask.

Message Descriptor

Bit Description

19 Header Present: Specifies whether the message includes a header phase. If the header is not

present (this field is zero), all of the fields normally contained in the header are assumed to be 0.

62 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Bit

Description

Format = Enable

18:17

SIMD Mode: Specifies the SIMD mode of the message being sent.
Format = U2

0 = SIMD4x2

1 = SIMD8

2 = SIMD16

3 = SIMD32/64

16:12

Message Type: Specifies the type of message being sent.
Format = U5

Refer to the table in section Payload Parameter Definition for encoding details.

118 Sampler Index: Specifies the index into the sampler state table. Ignored for ld, resinfo, sampleinfo
and cache_flushtype messages.
Format = U4
Range = [0,15]
Programming Notes:
e for the deinterlace message, this field must be a multiple of 2 (even)
e for the sample_8x8 message, this field must be a multiple of 4
7:0 |Binding Table Index: Specifies the index into the binding table. Ignored for cache_flush type

messages.
Format = U8
Range = [0,255]

Message Header

The message header for the sampling engine is the same regardless of the message type. If the header
is not present, behavior is as if the message was sent with all fields in the header set to zero (write
channel masks are all enabled and offsets are zero). When Response length is 0 for sample_8x8
message then the data from sampler is directly written out to memory using media write message.

DWord | Bits Description
MO0.7 | 31.0
MO0.6 | 31.0
MO0.5 | 31:0 [Ignored
4:0 [Reserved
M0.4 | 31:0 [Reserved

Doc Ref # IHD-OS-VLV-Vol7-04.14

63

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bits Description
MO. 1:
03 1315 Ignored
4.0 (Ignored
MO0.2 [31:22(Ignored
MO0.2 [31:24 (Ignored
23 |Reserved
19:18
SIMD32/64 Output Format Control
The contents of this field are ignored. The 16 bit Full mode is always selected.
17
17:16 .
Gather4 Source Channel Select: Selects the source channel to be sampled in the
gatherd* messages. Ignored for other message types.
0: Red channel
1: Green channel
2: Blue channel
3: Alpha channel
Programming Note:
e For gatherd*_c messages, this field must be set to 0 (Red channel).
16 |(Ignored
15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the
originating thread.
0: Alpha channel will be written back
1: Alpha channel will not be written back
Programming Notes:
e amessage with all four channels masked is not allowed.
e this field is ignored for the deinterlace message.
e this field must be set to zero for sample_8x8 in VSA mode.
e This field must be set to zero for all gather4* messages.
14 Blue Write Channel Mask: See Alpha Write Channel Mask
13 Green Write Channel Mask: See Alpha Write Channel Mask
12 Red Write Channel Mask: See Alpha Write Channel Mask
11:8 . . e . L
U Offset: the u offset from the _aoffimmi modifier on the sample or ld instruction in
64 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE' Look Inside” 3D - Media - GPGPU

DWord | Bits Description

DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must
be set to zero if _aoffimmi is not specified. Format is S3 2's complement.

Programming Note:

e this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages
e this field is ignored if the offu parameter is included in the gather4* messages

e Issues: offu/offv are calculated in normalized space and hence subject to small truncation
error.

74 V Offset: the v offset from the _aoffimmi modifier on the sample or ld instruction in

DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must
be set to zero if _aoffimmi is not specified. Format is S3 2's complement.

Programming Note:
e this field is ignored for the sample_unorm*, sample_8x8, and deinterlace
messages
e this field is ignored if the offu parameter is included in the gather4* messages

e Issues: offu/offv are calculated in normalized space and hence subject to
small truncation error.

30 R Offset: the r offset from the _aoffimmi modifier on the sample or ld instruction in

DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must
be set to zero if _aoffimmi is not specified. Format is S3 2's complement.

Programming Note:

e this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

MO0.1 | 31:0 |Ignored

MO0.0 | 31:0 |Ignored

Payload Parameter Definition

The following sections show all of the messages supported by the sampling engine. The message type
field in the message descriptor in combination with the message length determines which message is
being sent. The table defines all of the parameters sent for each message type. The position of the
parameters in the payload is given in the section following corresponding to the SIMD mode given in
the table. The instruction column indicates the DX10 shader instructions expected to be translated to
each message type.

All parameters are of type IEEE_Float, except those in the Id and resinfo instruction message types,
which are of type S31. Any parameter indicated with a blank entry in the table is unused. A message
register containing only unused parameters not included as part of the message. The response lengths
given below assume all channels are unmasked. SIMD16 messages with masked channels will have
reduced response length.

Doc Ref # IHD-OS-VLV-Vol7-04.14 65

3D - Media - GPGPU (il'ltEl' Look Inside”

Payload Parameter Definition

The table below shows all of the message types supported by the sampling engine. The Message Type
field in the message descriptor determines which message is being sent. The SIMD Mode field
determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback
messages. The Header Present field determines whether a header is delivered as the first phase of the
message or the default header from RO of the thread's dispatch is used. The Message Length field is
used to vary the number of parameters sent with each message. Higher-numbered parameters are
optional, and default to a value of 0 if not sent but needed for the surface being sampled. Parameter 0
is required except for the sampleinfo message for [Pre-DevSKL], which has no parameter 0.

The message lengths are computed as follows, where N is the number of parameters (N is rounded up
to the next multiple of 4 for SIMD4x2), and H is 1 if the header is present, 0 otherwise. The maximum
message length allowed to the sampler is 11.

SIMD Mode | Message Length | Project
SIMD4x2 H + (N/4)
SIMD8 H+ N
SIMD8D
SIMD16 H + (2*N)

The response lengths are computed as follows:

Response Length Response Length
SIMD Mode Return Format = 32-bit | Return Format = 16-bit ***
SIMD4x2 1 not allowed
SIMDS sample+killpix 5 not allowed
all other message types 4 2 **
SIMD16 8* 4*

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which
case they are not supported. This includes some forms of sample_b_c, sample_|_c, and gather4_po_c
message types. Note that even for these messages, if 5 or fewer parameters are included in the
message, the SIMD16 form of the message is allowed. SIMD16 forms of sample_d and sample_d_c are
not allowed, regardless of the number of parameters sent.

Message Types

The behavior of each message type is as follows:

Message
Type Description

sample The surface is sampled using the indicated sampler state. LOD is computed using gradients

between adjacent pixels. One, two, or three parameters may be specified depending on
how many coordinate dimensions the indicated surface type uses. Extra parameters

66 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltEl Look Inside” 3D - Media - GPGPU

Message
Type

Description

specified are ignored. Missing parameters are defaulted to 0.
Programming Notes:
e The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
e The Surface Format of the associated surface cannot be MONOS.

o If the Surface Format of the associated surface is UINT or SINT, the Surface
Type cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode
cannot be CLAMP_BORDER or HALF BORDER.

e sample is not supported in SIMD4x2 mode.

e Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT _1.

sample+killp
[

The surface is sampled as in the sample message type. An additional register is returned
after the sample results which contains the kill pixel mask. This message type is required to
allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH
mode to affect the final pixel mask.

Programming Notes:
e The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
e The Surface Format of the associated surface cannot be MONOS.

o If the Surface Format of the associated surface is UINT or SINT, the Surface
Type cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode
cannot be CLAMP_BORDER or HALF BORDER.

¢ sample+killpix is supported only in SIMD8 mode.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT _1.

sample_b

The surface is sampled using the indicated sampler state. LOD is computed using gradients
between adjacent pixels, then the value in the parameter is added to the LOD for each
pixel. The LOD bias delivered in the bias parameter is restricted to a range of [-16.0, +16.0).
Values outside this range produce undefined results.

Programming Notes:
e The Surface Type of the associated surface must be SURFTYPELD, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.
¢ The Surface Format of the associated surface cannot be MONQOS8

e If the Surface Format of the associated surface is UINT or SINT, the Surface Type
cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

Doc Ref # IHD-OS-VLV-Vol7-04.14 67

3D - Media - GPGPU (il'ltEl Look Inside”

Message
Type

Description

e sample_b is not supported in SIMD4x2 mode.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_|
sample_|z

The surface is sampled using the indicated sampler state. LOD is not computed, but
instead is taken from the lod parameter.

Programming Notes:
e The Surface Type of the associated surface must be SURFTYPELD, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

o If the Surface Format of the associated surface is UINT or SINT, the Surface Type
cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_c
sample_c_|z

The surface is sampled using the indicated sampler state. All four coordinates must be
specified, however v and r may not be used depending on the indicated surface type. The
ai parameter indicates the array index for a cube surface.The ref parameter specifies the
reference value that is compared against the red channel of the sampled surface, and the
texel is replaced with either white or black depending on the result of the comparison.

The WGF sample_c_lz instruction is implemented by issuing the sample_c message with
Force LOD to Zero enabled in the message header or by issuing the sample_|_c message
with the LOD parameter set to zero.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D, or
SURFTYPE_CUBE.

e The Surface Format of the associated surface must be indicated as supporting
shadow mapping as indicated in the surface format table.

e With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR, MAPFILTER_ANISOTROPIC
are allowed even for surface formats that are listed as not supporting filtering in the
surface formats table.

e Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the
message header is not allowed, as it is not possible for the hardware to compute
LOD for SIMD4x2 messages. Sample_c is not supported in SIMD4x2 mode.

e Use of sample_c with DX9 Texture Border Color Mode and either of the following is
undefined:

e any applicable Address Control Mode (depending on Surface Type) is set to
TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

e Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

68

Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItEl Look Inside” 3D - Media - GPGPU

Message
Type

Description

e Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following
surface formats: 124X8 UNORM, L24X8 UNORM, A24X8 UNORM, I32_FLOAT,
L32_FLOAT, A32_FLOAT.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_b_c

This is a combination of sample_b and sample_c. Both the LOD bias and reference values
are delivered. All restrictions applying to both sample_b and sample_c must be honored.

sample_|_c

This is a combination of sample_| and sample_c. Both the LOD and reference values are delivered.
All restrictions applying to both sample_| and sample_c must be honored. However, unlike sample_c,
sample_|_c is allowed as a SIMD4x2 message.

sample_g
sample_d

The surface is sampled using the indicated sampler state. LOD is computed using the
gradients present in the message. The r coordinate and its gradients are required only for
surface types that use the third coordinate. Usage of this message type on cube surfaces
assumes that the u, v, and gradients have already been transformed onto the appropriate
face, but still in [-1,+1] range. The r coordinate contains the faceid, and the r gradients are
ignored by hardware.

Programming Notes:
¢ The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE 3D, or SURFTYPE_CUBE.
e The Surface Format of the associated surface cannot be MONOS.

e If the Surface Format of the associated surface is UINT or SINT, the Surface
Type cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode
cannot be CLAMP_BORDER or HALF BORDER.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT _1.

sample_g_c
sample_d_c

This is a combination of sample_g and sample_c. Both the gradients for calculating LOD and
reference values are delivered. All restrictions applying to both sample_g and sample_c must be
honored. However, unlike sample_c, sample_g_c is allowed as a SIMD4x2 message.

resinfo

The surface indicated in the surface state is not sampled. Instead, the width, height, depth,
and MIP count of the surface are returned as indicated in the table below. The format of
the returned data is UINT32. The width, height, and depth may be shifted right, per pixel,
by the LOD value provided in the lod parameter to give the dimensions of the specified
mip level. The lod parameter is an unsigned 32-bit integer in this mode (note that sending
a signed 32-bit integer always has the same effect, as negative values are out-of-range
when interpreted as unsigned integers). The Sampler State Pointer and Sampler Index are
ignored.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, if the delivered LOD is outside of the range
[0..MipCount-1], the returned values in red, green, and blue channels are 0.

Doc Ref # IHD-OS-VLV-Vol7-04.14 69

3D - Media - GPGPU (il'ltEl' Look Inside”

Message
Type

Description

surface type red green blue alpha

SURFTYPELD (Width+1)>>LOD Surface Array? 0 MIPCount

Depth+1: 0

SURFTYPE 2D (Width+1)>>LOD Surface Array? MIPCount

(Height+1)>>LOD Depth+1: 0

SURFTYPE_3D (Width+1)>>LOD (Height+1)>>LOD [(Depth+1)>>LOD [MIPCount

SURFTYPE_CUBE (Width+1)>>LOD (Height+1)>>LOD Depth==0 7 0: MIPCount
Depth+1
Surface Array ?

Depth+1:0

SURFTYPE BUFEFER undefined undefined undefined

SURFTYPE_STRBUF | Buffer size (from
combined
Depth/Height/Width)

If buffer size is exactly
2732, zero is
returned in this field.

SURFTYPE_NULL 0 0 0 0

Id

[d2dms
Id2dms_w

Id_mcs
Id2dss
Id_Iz

The surface is sampled using a default sampler state, indicated below. The lod parameter
contains the LOD of the mip map to be sampled. If the message doesn't include an lod
parameter, the message samples from LOD 0. The parameter si contains the sample index,
which is clamped to the number of samples on the surface (supported by some messages).
The v and r channel may be ignored depending on the indicated surface type. All incoming
values are unsigned 32-bit integers in this mode. The u, v, and r parameters contain integer
texel addresses on the LOD indicated in the parameter. The Sampler State Pointer and
Sampler Index are ignored.

For these message types, the sampler state is defaulted as follows:

e min, mag, and mip filter modes are "nearest"

¢ all address control modes are zero (a special mode in which any texel off the map or
outside the MIP range of the surface has a value of zero in all channels, except for
surface formats without an alpha channel, which will return a value of one in the
alpha channel)

Issues:Address offset needs to be zero for Id2dms/Id2dss messages

70

Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItEl Look Inside” 3D - Media - GPGPU

Message
Type

Description

The mcs parameter in the [d2dms message defines the multisample control data and is
used only to sample from a multisampled surface.

The Id_mcs message uses the MCS Base Address and MCS Surface Pitch fields in
SURFACE_STATE to determine the base address and pitch of the surface. Surface Format is
overridden to R8_UINT if Number of Multisamples is 4, or R32_UINT if Number of
Multisamples is 8. This message cannot be used on a non-multisampled surface.
Otherwise, Id_mcs behaves like the |d message. If Id_mcs is issued on a surface with MCS
disabled, this message returns zeros in all channels.

The ssi parameter in the Id2dss message defines the sample slice that will be sampled
from. Refer to the multisample storage format in the GPU Overview volume for more
details.

Programming Notes:

¢ The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_BUFFER for the Id message.

e The Surface Type of the associated surface must be SURFTYPE_2D for the
Id_mcs, Id2dms, and Id2dss messages.

¢ The Surface Format of the associated surface cannot be MONOS.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT 1 for the Id message type.

e Issues: Surface formats R32G32B32X32_FLOAT, X32_TYPELESS_G8X24_UINT,
R16G16B16X16 UNORM, R16G16B16X16 FLOAT, X24 TYPELESS G8 UINT,
L24X8 UNORM, L32_FLOAT, B8G8R8X8_UNORM, B8GS8R8X8_UNORM_SRGB,
R8G8B8X8_UNORM, R8G8B8X8_UNORM_SRGB, B10G10R10X2_UNORM,
B5G6R5_UNORM, B5G6R5 UNORM_SRGB, L16_ UNORM,

R5G5 SNORM B6 UNORM, L8 UNORM, L8 UNORM SRGB, R1 UNORM,
BC4_UNORM (DXT4/5) will return zero in the alpha channel, for out of bound
case.

sampleinfo

The surface indicated in the surface state is not sampled. Instead, the number of samples
(UINT32) and the sample position palette index (UINT32) for the surface are returned in the
red and alpha channels respectively as UINT32 values. The sample position palette index
returned in alpha is incremented by one from its value in the surface state. The Sampler
State Pointer and Sampler Index are ignored.

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_2D or SURFTYPE_NULL

LOD

The surface indicated in the surface state is not sampled. Instead, LOD is computed as if
the surface will be sampled, using the indicated sampler state, and the clamped and
unclamped LOD values are returned in the red and green channels, respectively, in

FLOAT32 format. The blue and alpha channels are undefined, and can be masked to avoid

Doc Ref # IHD-OS-VLV-Vol7-04.14 71

3D - Media - GPGPU (il'ltEl Look Inside”

Message
Type

Description

returning them. LOD is computed using gradients between adjacent pixels. Three
parameters are always specified, with extra parameters not needed for the surface being
ignored.

Programming Notes:
e The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
e The Surface Format of the associated surface cannot be MONOS

o The Surface Format of the associated surface cannot be any UINT or SINT
format.

e LOD is not supported in SIMD4x2 mode.

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT _1.

gather4
gather4_po
(load4)

The surface is sampled using bilinear filtering, regardless of the filtering mode specified in
the sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples
are not filtered, but instead the four samples are returned directly in the sample's
corresponding four channels as follows:

upper left sample = alpha channel | upper right sample = blue channel

lower left sample = red channel | lower right sample = green channel

Two or three parameters may be specified depending on how many coordinate
dimensions the indicated surface type uses. Extra parameters specified are ignored.
Missing parameters default to 0.

The gather4_po message has offu and offv parameters, which contain texel-space offsets
that override the U/V Offset fields in the message header. Unlike the message header
fields however, these offsets have a wider range [-32,+31], and can differ per pixel or
sample. The format of the data is 32-bit 2's complement signed integer, but hardware only
interprets the least significant 6 bits of each value, treating it as a 6-bit 2's complement
signed integer.

Programming Notes:
e The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po, only SURFTYPE_2D is allowed.
e The Surface Format of the associated surface cannot be MONO8
e The Surface Format of the associated surface cannot be any UINT or SINT format.

e Issues: selecting green on R32G32_float will have some erratic behavior according to
the table below:

72

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE' Look Inside” 3D - Media - GPGPU

Message
Type

Description

DirectX OpenGL

gather4 only on this resource Erratic Will return erroneous value if alpha
output selected

gather4 + other sample operations on Erratic output
this resource

The channel selected is determined by the Gather4 Source Channel Select field in the
message header.

Mip Mode Filter must be set to MIPFILTER_NONE

For the case of gather4 when the fetch component color is not part of the map,
Sampler will need to return 1 on all channel if the return component is alpha (and
doesn't exist) and 0 if the return component is red, green, blue that doesn't exist.

Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

Use of gather4 or gather4_po with DX9 Border Color Mode and either of the
following is underfined:

0 any applicable Address Control Mode (depending on Surface Type) is set to
TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

o Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

Issues: offu/offv are calculated in normalized space and hence subject to small
truncation error.

gather4 _c
gather4_po_
C

The surface is sampled using bilinear filtering, regardless of the filtering mode specified in
the sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples
are not filtered, but instead the four samples are returned, after being compared with the
ref paramater as in the sample_c message. Each texel is replaced with either white or block
depending on the result of the comparison. The four samples are returned in the sample's
corresponding four channels in the same mapping as the gather4 message. The offu and
offv parameters in the gather4_po_c message cause offset override behavior as described
in the gather4 message.

Programming Notes:

The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po_c, only SURFTYPE_2D is allowed.

The Surface Format of the associated surface must be one of the following:
R32_FLOAT_X8X24_TYPELESS, R32_FLOAT, R24_UNORM_X8_TYPELESS, R16_UNORM.

The channel selected is determined by the Gather4 Source Channel Select field in the
message header.

Mip Mode Filter must be set to MIPFILTER_NONE

Use of gather4_c or gather4_po_c with DX9 Border Color Mode and either of the
following is underfined:

Doc Ref # IHD-OS-VLV-Vol7-04.14 73

3D - Media - GPGPU (intel/ Look Insider
Message
Type Description
o Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

o any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

¢ Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

e Issues: offu/offv are calculated in normalized space and hence subject to small
truncation error.

sample_unor
m

The surface is sampled using the indicated sampler state. 32 contiguous pixels in a 8-wide
by 4-high arrangement are sampled. The U and V addresses for the upper left pixel is
delivered in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y)
relative to the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel
are computed as follows:

U(x,y) = U(0,0) + DeltaU * x
V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

e The Surface Type of the associated surface must be SURFTYPE_2D
e The Surface Format of the associated surface must be UNORM with <= 8 bits per channel

e The MIP Count, Depth, Surface Min LOD, Resource Min LOD, and Min Array Element of the
associated surface must be 0

e The Min and Mag Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR
e The Mip Mode Filter must be MIPFILTER_NONE

e The TCX and TCY Address Control Mode cannot be

TEXCOORDMODE_CLAMP_BORDERTEXCOORDMODE_HALF_BORDERTEXCOORDMODE_MIRRORTEXCOORD
MODE_MIRROR_ONCETEXCOORDMODE_WRAP

e DeltaU * Width of the associated surface must be less than or equal to 3.0
e DeltaV * Height of the associated surface must be less than or equal to 3.0

e Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_unor
m_RG

sample_unor
m_RG
+killpix

sample_unor
m

This message is identical to the sample_unorm message except it returns a kill pixel mask
in addition to the selected channels in the writeback message. This message type is

+killpix
P required to allow the result of a chroma key enabled sampler in
KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of the
74 Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

(I@ Look Inside’

Message
Type Description
sample_unorm message apply to this message also.
deinterlace The surface is deinterlaced and/or denoised, using state defined in SAMPLER_STATE. The U
and V addresses for the upper left pixel are delivered in this message.

Programming Notes:

o For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters
that have already been divided by the absolute value of the parameter (u, v, or r) with the
largest absolute value.

Parameter Types
sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except
the mcs, offu, and offv parameters. Usage of the u, v, and r parameters is as follows based on Surface
Type. Normalized values range from [0,1] across the surface, with values outside the surface behaving
as specified by the Address Control Mode in that dimension. Unnormalized values range from [0,n-1]
across the surface, where n is the size of the surface in that dimension, with values outside the surface
being clamped to the surface.

Surface Type u v r ai
SURFTYPE1D normalized x unnormalized array ignored ignored
coordinate index
SURFTYPE_2D |normalized x normalized y unnormalized array ignored
coordinate coordinate index
SURFTYPE_3D |normalized x normalized y normalized z ignored
coordinate coordinate coordinate
SURFTYPE_CUBE | normalized x normalized y normalized z unnormalized array
coordinate coordinate coordinate index

mcs parameter

The mcs parameter delivers the multisample control data. The format of this parameter is always a 32-
bit unsigned integer. Refer to the section titled Multisampled Surface Behavior for details on this

parameter.

Ld* messages

For the Id message types, all parameters are 32-bit unsigned integers, except the mcs parameter. Usage
of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range from [0,n-
1] across the surface, where n is the size of the surface in that dimension. Input of any value outside of
the range returns zero.

Surface Type u v r

SURFTYPE1D unnormalized x coordinate [unnormalized array index |ignored

SURFTYPE_2D unnormalized x coordinate [unnormalized y coordinate |unnormalized array index

Doc Ref # IHD-OS-VLV-Vol7-04.14 75

3D - Media - GPGPU (il'ltEl Look Inside”
r

Surface Type u v
SURFTYPE_3D unnormalized x coordinate | unnormalized y coordinate | unnormalized z coordinate
SURFTYPE_BUFFER | unnormalized x coordinate | ignored ignored

Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message
generates a corresponding writeback message of the same type (SIMD16, SIMD8, SIMD4x2, or
SIMD32/64).

SIMD16
Return Format = 32-bit

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the write channel mask received in the corresponding input message. Each asserted
write channel mask results in both destination registers of the corresponding channel being skipped in
the writeback message, and all channels with higher numbered registers being dropped down to fill in
the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent
to regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination
register is determined by the execution mask on the send instruction.

DWord| Bit Description

W7 | 310 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

WO0.6 | 31:0 |Subspan 1, Pixel 2 (lower left) Red

WO0.5 | 31:0 [Subspan 1, Pixel 1 (upper right) Red

WO0.4 | 31:0 |Supspan 1, Pixel 0 (upper left) Red

WO0.3 | 31:0 |Subspan 0, Pixel 3 (lower right) Red

WO0.2 | 31:0 |Subspan 0, Pixel 2 (lower left) Red

WO0.1 | 31:0 |Subspan 0, Pixel 1 (upper right) Red

WO0.0 | 31:0 |Supspan 0, Pixel 0 (upper left) Red

W1.7 | 31:0 |Subspan 3, Pixel 3 (lower right) Red

W1.6 | 31:0 |Subspan 3, Pixel 2 (lower left) Red

WL1.5 | 31:0 |Subspan 3, Pixel 1 (upper right) Red

W14 | 31:0 |Supspan 3, Pixel 0 (upper left) Red

W1.3 | 31:0 |Subspan 2, Pixel 3 (lower right) Red

W1.2 | 31:0 |Subspan 2, Pixel 2 (lower left) Red

W1.1 | 31:0 [Subspan 2, Pixel 1 (upper right) Red

W1.0 | 31:0 |Supspan 2, Pixel 0 (upper left) Red

76 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltEl Look Inside” 3D - Media - GPGPU

DWord| Bit Description
w2 Subspans 1 and 0 of Green: See WO definition for pixel locations
W3 - . .
Subspans 3 and 2 of Green: See W1 definition for pixel locations
w4 N . .
Subspans 1 and 0 of Blue: See WO definition for pixel locations
W5 N . .
Subspans 3 and 2 of Blue: See W1 definition for pixel locations
W6 - . .
Subspans 1 and 0 of Alpha: See WO definition for pixel locations
W7 o . .
Subspans 3 and 2 of Alpha: See W1 definition for pixel locations
wWs8.7:1 Reserved (not written): W8 is only delivered when Pixel Fault Mask Enable is enabled.
W8.0 |31:16|Reserved: always written as Oxffff
15:0 |Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null
page was source for at least one texel.

SIMDS8/SIMDS8D
Return Format = 32-bit

This writeback message consists of four registers, or five in the case of sample+killpix. As opposed to
the SIMD16 writeback message, channels that are masked in the write channel mask are not skipped, all
four channels are always returned. The masked channels, however, are not overwritten in the
destination register.

For the sample+killpix message types, an additional register (W4) is included after the last channel
register.

DWord | Bits Description

Wo.7 | 310 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

WO0.6 | 31:0 |Subspan 1, Pixel 2 (lower left) Red

WO0.5 | 31:0 |Subspan 1, Pixel 1 (upper right) Red

WO0.4 | 31:0 |Supspan 1, Pixel 0 (upper left) Red

WO0.3 | 31:0 |Subspan 0, Pixel 3 (lower right) Red

WO0.2 | 31:0 |Subspan 0, Pixel 2 (lower left) Red

WO0.1 | 31:0 |Subspan 0, Pixel 1 (upper right) Red

WO0.0 | 31:0 |Supspan 0, Pixel 0 (upper left) Red

wi Subspans 1 and 0 of Green: See WO definition for pixel locations

Doc Ref # IHD-OS-VLV-Vol7-04.14 77

3D - Media - GPGPU (il'ltEl Look Inside”

DWord | Bits Description
w2 Subspans 1 and 0 of Blue: See WO definition for pixel locations
W3 N . .
Subspans 1 and 0 of Alpha: See WO definition for pixel locations
w4.7:1 _
Reserved (not written): This W4 is only delivered for the sample+killpix message type
W4.0 |31:16] . . - . . .
Dispatch Pixel Mask: This field is always Oxffff to allow dword-based ANDing with the RO
header in the pixel shader thread.

150 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that
have been killed as a result of chroma key with kill pixel mode. Since the SIMD8 message
applies to only 8 pixels, only the low 8 bits within this field are used. The high 8 bits are
always set to 1.

wW4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.
WA4.0 | 31:8 |Reserved: always written as Oxffffff

7:0 |Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null

page was source for at least one texel.
SIMD4x2

A SIMDA4x2 writeback message always consists of a single message register containing all four channels
of each of the two pixels (called samples here, as they are not really pixels) of data. The write channel
mask bits as well as the execution mask on the send instruction are used to determine which of the
channels in the destination register are overwritten. If any of the four execution mask bits for a sample
is asserted, that sample is considered to be active. The active channels in the write channel mask will be
written in the destination register for that sample. If the sample is inactive (all four execution mask bits
deasserted), none of the channels for that sample will be written in the destination register.

DWord | Bit Description
WO0.7 1: L .
07 |310 Sample 1 Alpha: Specifies the value of the pixel's alpha channel.
Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.
WO0.6 |31:0|Sample 1 Blue
WO0.5 |31:0|Sample 1 Green
WO0.4 [31:.0|Sample 1 Red
WO0.3 |31:0|Sample 0 Alpha
WO0.2 |31:0|Sample 0 Blue
WO0.1 |31:0|Sample 0 Green
WO0.0 |31:0|Sample 0 Red
wW1.7:1 Reserved (not written): W4 is only delivered when Pixel Fault Mask Enable is enabled.
78 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel' Look Inside” 3D - Media - GPGPU

DWord | Bit Description

W1.0 |31:2|Reserved: always written as Ox3fffffff

1:0 |Pixel Null Mask: This field has the bit for all samples set to 1 except those pixels in which a null
page was source for at least one texel.

Shared Functions — Data Port

The Data Port provides all memory accesses for the Gen subsystem other than those provided by the
sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes,
and media surface accesses.

The diagram below shows the three parts of the Data Port (Sampler Cache, Constant Cache, and
Render Cache) and how they connect with the caches and memory subsystem. The execution units and
sampling engine are shown for clarity.

Sampling Engine

! [ata Port Sampler Cache
E xecution
Units
M etmnory
e [Data Pot Constant Cache Constant Cache Subzyztem

Data Port Render Cache Render Cache

Sampler Cache

¥

The kernel programs running in the execution units communicate with the data port via messages, the
same as for the other shared function units. The three data ports are considered to be separate shared
functions, each with its own shared function identifier.

The diagram below shows the four parts of the Data Port (Sampler Cache, Constant Cache, Data Cache
and Render Cache) and how they connect with the caches and memory subsystem. The execution units
and sampling engine are shown for clarity.

Doc Ref # IHD-OS-VLV-Vol7-04.14 79

3D - Media - GPGPU (intel' Look Inside”

Sampling Engine

— = [Data PortSampler Cache Sampler Cache

Memary
| Data Port Constant Cache Constant Cache Subsystem

Data Port Data Cache Diata Cache

Data Port Render Cache Render Cache

Tl

The kernel programs running in the execution units communicate with the data port via messages, the
same as for the other shared function units. The four data ports are considered to be separate shared
functions, each with its own shared function identifier.

Data Cache

The data cache is a read/write cache that is coherent across the physical instances of this cache. It is
intended to be used for the following surfaces:

e constant buffers

e destination surfaces for media applications

e intermediate working surfaces for media applications
e scratch space buffers

e general read/write access of surfaces

e atomic operations

¢ shared memory for GPGPU thread groups

The data cache can be accessed via the Data Cache Data Port shared function, and via the load and
store EU messages. Ordering from a single thread is maintained when accessing the data cache using
only one of these mechanisms, but is not maintained when using both of these mechanisms from the
same thread. In these instances, software must ensure ordering by utilizing write commits and/or
waiting for read data to be returned.

80 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Sampler Cache

The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being
used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be
used for source surfaces in media applications via the data port. The same application may use the
sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

Surfaces

The data elements accessed by the data port are called surfaces. There are two models used by the data
port to access these surfaces: surface state model and stateless model.

Surface State Model

The data port uses the binding table to bind indices to surface state, using the same mechanism used
by the sampling engine. The surface state model is used when a Binding Table Index (specified in the
message descriptor) of less than 255 is specified. In this model, the Binding Table Index is used to
index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

Stateless Model

The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is
specified. In this model, the binding table is not accessed, and the parameters that define the surface
state are overloaded as follows:

e Surface Type = SURFTYPE_BUFFER

e Surface Format = R32G32B32A32 FLOAT

e Vertical Line Stride =0

e Surface Base Address = General State Base Address + Immediate Base Address
e Buffer Size = checked only against General State Access Upper Bound

e Surface Pitch = 16 bytes

e Utilize Fence = false

e Tiled = false

This model is primarily intended to be used for scratch space buffers.

When General State Access Upper Bound is zero, no bounds checking is performed.

Shared Local Memory (SLM)

The shared local memory (SLM) is a high bandwidth memory that is not backed up by system memory.
It is enabled by configuring the L3 cache to use a portion of its space for the SLM. One SLM is present
in each half slice, and its contents are shared between all of the active threads in that half slice. Its
contents are uninitialized after creation, and its contents disappear when deallocated.

Doc Ref # IHD-OS-VLV-Vol7-04.14 81

3D - Media - GPGPU (il'ltEl Look Inside”

The SLM is accessed when a Binding Table Index (specified in the message descriptor) of 254 is
specified. The binding table is not accessed, and the parameters that define the surface state are
overloaded as follows:

e Surface Type = SURFTYPE_BUFFER

e Surface Format = RAW

e Surface Base Address = points to the start of the internal SLM (no memory address is applicable)
e Surface Pitch = 1 byte

Due to the predefined surface state attributes for the SLM, only a subset of the data port messages can
be used. This includes the Byte Scattered Read/Write, Untyped Surface Read/Write, and Untyped
Atomic Operation messages. In addition, only the data cache data port is supported; the other data
ports treat Binding Table Index 254 as a normal surface state access.

Programming Note: Accesses to SLM don't have any bounds checking. Addresses beyond the size
(64KB) of the SLM will wrap around.

Write Commit

For write messages, an optional write commit writeback message can be requested via the Send Write
Commit Message bit in the message descriptor. This bit causes a return message to the thread
indicating when the write has been committed to the in-order cache pipeline and it is safe to issue
another access to the same data with the assurance that it will happen after the first write. A read issued
after the write commit ensures that the read will get the newly written data, and another write issued
after the write commit will be the last to modify the data. "Committed" does not guarantee that the
data has been actually written to the memory subsystem, but only that the write has been scheduled
and cannot be passed by another read or write issued subsequently.

If Send Write Commit Message is used on a Flush Render Cache message, the write commit is sent
only when the render cache has completed its flush to memory. A read issued to another cache after
the write commit is received will be guaranteed to retrieve the new data that was written before the
Flush Render Cache message was issued.

The write commit does not modify the destination register, but merely clears the dependency
associated with the destination register. Thus, a simple mov instruction using the register as a source is
sufficient to wait for the write commit to occur. The following code sequence indicates this:

send r12 m1 DPWRITE; issue write to render cache
mov m1 r3; assemble read message
mov r12 r12; block on write commit
send r13 m1 DPREAD; read same location as write

Prior to End of Thread with a URB_WRITE, the kernel must ensure all writes are complete by sending
the final write as a committed write for all non-pixel shaders.

82 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Read/Write Ordering

Reads and writes issued from the same thread are guaranteed to be processed in the same order as
issued. Software mechanisms must still ensure any needed ordering of accesses issued from different
threads.

Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant
buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed
vertex buffers. All of these messages support only buffers, and can use the surface state model as well
as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications
OWord Block e constant buffer reads of a single constant or multiple contiguous constants
Read/Write

e scratch space reads/writes where the index for each pixel/vertex is the same

e block constant reads, scratch memory reads/writes for media

OWord Dual Block e SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if
Read/Write there are two indices and they are the same, hardware will optimize the cache accesses
and do only one cache access)

e SIMDA4x2 scratch space reads/writes where the indices are different.

DWord Scatjcered e SIMD8/16 constant buffer reads where the indices of each pixel are different (read one
Read/Write channel per message)

e SIMD8/16 scratch space reads/writes where the indices are different (read/write one
channel per message)

e general purpose DWord scatter/gathering, used by media

Streamed Vertex
Buffer Write

geometry shader streaming vertex data out

These messages generally ignore the surface format field of the state and perform no format
conversion. The exception is the Streamed Vertex Buffer Write, which uses the surface format field to
determine only how many channels are to be written. The data contained in each channel is still not
converted in any way.

Accessing Media Surfaces
The Media Block Read/Write message is intended to be used to access 2D media surfaces. The message

specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D surfaces,
the stateless model cannot be used with this message.

Doc Ref # IHD-OS-VLV-Vol7-04.14 83

3D - Media - GPGPU

Boundary Behavior

(I@ Look Inside’

The table below summarizes the behavior of the Media Boundary Pixel Mode field (SURFACE_STATE)
in combination with the Vertical Line Stride and Vertical Line Stride Offset fields (both of which are
subject to being overridden by the Data Port message descriptor fields). The Behavior column illustrates
behavior for a surface with four rows numbered 0 to 3. The bold indicators are off-surface behavior and
the non-bold indicators are on-surface behavior. Input row addresses range from -3 to +7 going left to

right.
Media Boundary Pixel Vertical Line Vertical Line Stride
Mode Stride Offset Usage Model Behavior

0 0 X normal frame 000001233333

0 1 0 normal field even |000002222222

0 1 1 normal field odd 111113333333

2 0 X frame / progressive {000001233333

2 1 0 field even / 000002333333
progressive

2 1 1 field odd / 000013333333
progressive

3 0 X frame / interlaced 010101232323

3 1 0 field even / interlaced | 000002222222

3 1 1 field odd / interlaced |{111113333333

State

BINDING_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to State in the Sampling Engine
section for the definition of this state.

SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media surfaces.

COLOR_PROCESSING_STATE

The following state structures contain different states used by the color processing function.

COLOR_PROCESSING_STATE - STD/STE State

COLOR_PROCESSING_STATE - ACE State
COLOR_PROCESSING_STATE - TCC State

COLOR_PROCESSING_STATE - PROCAMP State

COLOR_PROCESSING_STATE - CSC State
COLOR_PROCESSING_STATE - CGC State

84

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

(IFIT:;D Look Inside’

Messages

Global Definitions

For data port messages, part of the message descriptor is used to determine the message type. This
field is documented here. The remainder of the message descriptor is defined differently depending on
the message type, and is documented in the section for the corresponding message.

The Data Port is actually separate targets, Data Port,Sampler Cache, Data Port Constant Cache, and
Data Port Render Cache, each with its own target unit ID. Each target has its own set of message type

encodings as shown below.

Note: Data port messages may not have the End of Thread bit set in the message descriptor other
than the following exeptions:

e The Render Target Write message may have End of Thread set for pixel shader threads
dispatched by the windower in non-contiguous dispatch mode.

e The Render Target UNORM Write message may have End of Thread set for pixel shader threads
dispatched by the windower in contiguous dispatch mode.

e The Media Block Write message may have End of Thread set for pixel shader threads dispatched
by the windower in contiguous dispatch mode.

Data Port Messages

Most of the messages have an existing definition that is not expected to change. There are several new

messages that are documented here.

Table: Data Cache Data Port Message Summary

Header Shared Local Memory Stateless Address Vector
Message Type Required Support Support Modes Width

OWord Block Read yes no yes global 1
OWord Block Write yes no yes global 1
Unaligned OWord yes no yes global 1
Block Read
OWord Dual Block no for stated | no yes global + 2
Read yes for offset

stateless
OWord Dual Block no for stated | no yes global + 2
Write yes for offset

stateless
DWord Scattered Read |no for stated no yes global + 8, 16

yes for offset

stateless
DWord Scattered Write |no for stated no yes global + 8, 16

yes for offset

stateless
Byte Scattered Read no for stated |yes global + 8, 16
Doc Ref # IHD-OS-VLV-Vol7-04.14 85

3D - Media - GPGPU

(intel/ Look Inside”

Header Shared Local Memory Stateless Address Vector
Message Type Required Support Support Modes Width
yes for offset
stateless
Byte Scattered Write no for stated yes global + 8,16
yes for offset
stateless
Untyped Surface Read | no for stated yes 1D or 2D 2,8, 16
yes for
stateless
Untyped Surface Write |no for stated yes 1D or 2D 2,8, 16
yes for
stateless
Untyped Atomic no for stated yes 1D or 2D 8,16
Operation yes for
stateless
Scratch Block Read yes no yes (only) Imm_Buf +
offset
Scratch Block Write yes no yes (only) Imm_Buf +
offset
Memory Fence yes N/A N/A N/A N/A

global is the Global Offset in the message header (if header is not present, Global Offset is zero).
imm_buf is the Immediate Buffer Base Address provided in message header register MO0.5.

offset is in the message payload, and is per-slot.
handle is the handle address in the message header.
URBoffset is the Global Offset field in the URB message descriptor.
1D and 2D are the address payload.

[Pre-DevHSW] Render Cache Data Port Message Summary

Message Type Header Required | Address Modes | Vector Width

Media Block Read yes 2D 1

Media Block Write yes 2D 1

Render Target Write No! 2D + RTAI 8,16

Typed Surface Read yes 1D, 2D, 3D, 4D

Typed Surface Write yes 1D, 2D, 3D, 4D

Typed Atomic Operation |yes 1D, 2D, 3D, 4D |8

Memory Fence yes N/A N/A

4D address refers to U/V/R/LOD for mip-mapped surfaces
2D + RTAI address refers to a basic 2D address with render target array index for the third dimension

86

Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

Message Descriptor

Message Descriptor

3D - Media - GPGPU

SAMPLER CACHE DATA PORT

RENDER CACHE DATA PORT

Bit Description

Bit

Description

19

Programming Notes:

Typed Surface Read/Write
Typed Surface Atomic Operation

Memory Fence

Unaligned OWord Block Read
Media Block Read.

Format = Enable

Header Present. If set, indicates that the message includes the header.

For the Render Cache Data Port, the header must be present for the following message types:

For the Sampler Cache Data Port, the header must be present for the following message types:

18 Ignored

18

Ignored

17:14 Message Type

0100: Media Block Read

All other encodings are reserved.

0001: Unaligned OWord Block Read

17:14

Message Type

0100: Media Block Read

0101: Typed Surface Read
0110: Typed Atomic Operation
0111: Memory Fence

1010: Media Block Write

1100: Render Target Write
1101: Typed Surface Write

All other encodings are reserved.

13:8

Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0

Format = U8
Range = [0,255]

Binding Table Index. Specifies the index into the binding table for the specified surface.

CONSTANT CACHE DATA PORT

DATA CACHE DATA PORT

Bit Description

Bit

Description

Doc Ref # IHD-OS-VLV-Vol7-04.14

87

3D - Media - GPGPU (il'ltEl' Look Inside”

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT
Bit Description Bit Description
19 Header Present. If set, indicates that the message includes the header. Some messages require
or forbid a message header depending on their usage. See "Data Port Messages" overview for the
list.
Programming Notes:
For the Data Cache Data Port, the header must be present for the following message types:
OWord Block Read/Write
Unaligned OWord Block Read
Memory Fence
Scratch read/write
For the Constant Cache Data Port, the header must be present for the following message types:
OWord Block Read
Unaligned OWord Block Read.
Format = Enable
18 Ignored 18 Category
0: Legacy DAP-DC messages
1: Scratch Block Read/Write messages
17:14 Message Type 17:14 Category=0 (legacy dataport)
0000: OWord Block Read Message Type
0001: Unaligned OWord Block Read 0000: OWord Block Read
0010: OWord Dual Block Read 0001: Unaligned OWord Block Read
0011: DWord Scattered Read 0010: OWord Dual Block Read
All other encodings are reserved. 0011: DWord Scattered Read
0100: Byte Scattered Read
0101: Untyped Surface Read
0110: Untyped Atomic Operation
0111: Memory Fence
1000: OWord Block Write
1010: OWord Dual Block Write
1011: DWord Scattered Write
1100: Byte Scattered Write

88 Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItE'I Look Inside” 3D - Media - GPGPU

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit

Description Bit Description

1101: Untyped Surface Write
All other encodings are reserved.
Category=1 (scratch)
[17]: 0=Read; 1=write
[16]:Type;

0=Oword, 1= Dword
[15]:Invalidate after read;
[14]:<Reserved, mbz>
[13:12]: Block Size

11: 4 registers

10: <reserved>

01: 2 registers

00: 1 register
[11:0]: Addr offset (Hword based)

13:8

Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0

Binding Table Index. Specifies the index into the binding table for the specified surface.
For the data cache data port, two binding table indexes are used to select special surfaces:

254: A binding table index of 254 indicates that the shared local memory (SLM) is to be used. The
SLM is only supported with the Byte Scattered Read/Write, Untyped Surface Read/Write, and
Untyped Atomic Operation messages. Refer to the Shared Local Memory section earlier in this
chapter for further details on its behavior.

255: A binding table index of 255 indicates that a stateless model is to be used. Stateless model is
only supported with the OWord Block Read/Write, Unaligned OWord Block Read, Dual OWord
Block Read/Write and DWord Scattered Read/Write messages. Refer to section Stateless Model
section for details on the stateless model.

Format = U8
Range = [0,255]

Message Header

This header applies to the following data port messages:

OWord Block Read/Write
Unaligned OWord Block Read

Doc Ref # IHD-OS-VLV-Vol7-04.14 89

3D - Media - GPGPU (il'ltEl' Look Inside”

e OWord Dual Block Read/Write
e DWord Scattered Read/Write
e Byte Scattered Read/Write

e Scratch Block Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord| Bit Description
MO.7 31.0
MO0.6 31.0
MO.5 3110 Immediate Buffer Base Address. Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This
pointer is relative to the General State Base Address.
Format = GeneralStateOffset[31:10]
9:8 |Ignored
70 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.
MO0.4 [31:.0 |Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 [31:4 (Ignored
MO.2 310 Global Offset.
Specifies the global element offset into the buffer.
For the Unaligned OWord messages, this offset is in units of Bytes but must be DWord
aligned (bits 1:0 MBZ)
For the other OWord messages, this offset is in units of OWords
For the DWord messages, this offset is in units of DWords
For the Byte messages, this offset is in units of Bytes
Format = U32
Range = [0,FFFFFFFCh] for Unaliged OWord messages
Range = [0,0FFFFFFFh] for other OWord messages
Range = [0,3FFFFFFFh] for DWord messages
Range = [0,FFFFFFFFh] for Byte messages
MO0.1 [31:.0 |Ignored
MO0.0 [31:.0 |Ignored

Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message
bit in the message descriptor is set. The destination register is not modified. Write messages without

90

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

the Send Write Commit Message bit set will not return anything to the thread (response length is 0
and destination register is null).

DWord | Bit | Description

WO0.7:0 Reserved

OWord Block Read/Write

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords
starting at that offset.

Restrictions:

e the only surface type allowed is SURFTYPE_BUFFER.

e The surface format is ignored; data is returned from the constant buffer to the GRF without
format conversion.

e , The surface pitch is ignored. The surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

e The surface cannot be tiled

e The surface base address must be OWord-aligned.

e the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model.

e the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model.

Applications:

e Constant buffer reads of a single constant or multiple contiguous constants.
e Scratch space reads/writes where the index for each pixel/vertex is the same.
e Block constant reads, scratch memory reads/writes for media.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth registers (W1, W3 or M2, M4). For reads, any
mask bit set within a group of four causes the entire OWord to be read and returned to the destination
GREF register. For writes, each mask bit is considered for its corresponding DWord written to the
destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or
the high 4 bits, depending on the position of the OWord to be read or written, are used as the single
group of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two
channels (red and green) of a single scratch register across 16 pixels. A second message would access
the other two channels (blue and alpha). The execution mask is used to ensure that data associated with
inactive pixels are not overwritten.

Doc Ref # IHD-OS-VLV-Vol7-04.14 91

3D - Media - GPGPU (il'ltEl' Look Inside”

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and do not modify memory.

Message Descriptor

Bit Description

13 Invalidate After Read Enable
only
This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a
performance hint indicating that the data will no longer be used to avoid writing back data to
memory. This field is ignored for write messages.
Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.
Format = Enable

12 |Ignored

11 |Ignored

10:8

Block Size. Specifies the number of contiguous OWords to be read or written

000: 1 OWord, read into or written from the low 128 bits of the destination register
001: 1 OWord, read into or written from the high 128 bits of the destination register
010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Programming Notes:

The 6 OWord block size is valid only with Data Port Constant Cache.

Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the
header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord | Bits Description

M1.7:4 [127:0 | OWord[Offset + 1]. If the block size is 1, OWord to be written from the high 128 bits of the

destination, OWord[Offset] will appear in this location.

M1.3:0 |127:0 | OWord[Offset]

92

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bits Description

M2.7:4 |127:0 | OWord[Offset+3]

M2.3:0 [127:0 | OWord[Offset+2]

M3.7:4 |127:0 | OWord[Offset+5]

M3.3:0 [127:0 | OWord[Offset+4]

M4.7:4 |127:0 | OWord[Offset+7]

M4.3:0 [127:0 | OWord[Offset+6]

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending
on the Block Size specified in the message. For the one-constant case, data is placed in either the high
or low half of the returned register depending on the half selected in Block Size. In this case, the other
half of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord | Bits Description

WO0.7:4 | 127:0 | OWord[Offset + 1]. If the block size is 1, OWord to be loaded into the high 128 bits of the
destination, OWord[Offset] will appear in this location.

WO0.3:0 |127:0 | OWord[Offset]

W1.7:4 | 127:0 | OWord[Offset+3]

W1.3:0 |127:0 | OWord[Offset+2]

W2.7:4 |127:0 | OWord[Offset+5]

W2.3:0 |127:0 | OWord[Offset+4]

W3.7:4 |127:0 | OWord[Offset+7]

W3.3:0 |127:0 | OWord[Offset+6]

Unaligned OWord Block Read

This message takes one DWord aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous
OWords starting at that offset. This message is identical to the OWord Block Read message except the
offset alignment. For read/write cache, only the read path supports this unaligned OWord Block access.

Restrictions:

1. The only surface type allowed is SURFTYPE_BUFFER.

2. The surface format is ignored, data is returned from the constant buffer to the GRF without
format conversion.

3. The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

4. The surface cannot be tiled
5. The surface base address must be OWord aligned

Doc Ref # IHD-OS-VLV-Vol7-04.14 93

3D - Media - GPGPU (il'ltEl' Look Inside”

6. The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

7. The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model

Applications:

e Reads with offset that is not aligned with data size, such as row store usage in media

e Execution Mask. The execution mask is ignored by this message.

e Out-of-Bounds Accesses. Reads to areas outside of the surface return O.

Message Descriptor

Bit

Description

13

Ignored

12:11 |Ignored

10:8

Block Size. Specifies the number of contiguous OWords to be read

000: 1 OWord, read into the low 128 bits of the destination register

001: 1 OWord, read into the high 128 bits of the destination register
010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in
units of OWord starts at Global Offset.

DWord| Bit Description

WO.7:4 1270 OWordl = *(&OWordO0 + 1). If the block size is 1 OWord to be loaded into the high 128
bits of the destination, OWord0 will appear in this location

WO0.3:0 |127:0| OWord0 = Buffer[Global Offset]

W1.7:4 |127:0| OWord3 = *(&0OWord2 + 1)

W1.3:0 |127:0| OWord2 = *(&0OWord1 + 1)

W2.7:4 |127:0| OWord5= *(&0OWord4 + 1)

W2.3:0 |127:0|OWord4 = *(&0OWord3 + 1)

94 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord| Bit Description

W3.7:4 [127:0 OWord7 = *(&0OWord6 + 1)

W3.3:0 [127:0 OWord6 = *(&0OWord5 + 1)

OWord Dual Block Read/Write

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset.
The Global Offset is added to each of the specific offsets.

The message header is no longer required for the OWord Dual Block Read/Write messages if sent to
the data cache data port. If header is not sent, the Global Offset field is assumed to be zero. The
header is required, however, if the binding table index is 255 (stateless model), as the Immediate
Buffer Base Address field is required.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Restrictions:

1. The only surface type allowed is SURFTYPE_BUFFER.

2. The surface format is ignored, data is returned from the constant buffer to the GRF without
format conversion.

3. The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

4. The surface cannot be tiled
5. The surface base address must be OWord aligned

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

7. the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model

Applications:

SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are two
indices and they are the same, hardware will optimize the cache accesses and do only one cache access)

SIMD4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF
registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a
group of four will cause the entire OWord to be read and returned to the destination GRF register. For
writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor

| Bit | Description

Doc Ref # IHD-OS-VLV-Vol7-04.14 95

3D - Media - GPGPU (II'ItEl Look Inside”
Bit Description
13

Invalidate After Read Enable
only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a

performance hint indicating that the data will no longer be used to avoid writing back data to

memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12

Ignored

11:10

Ignored

9:8

Block Size: Specifies the number of OWords in each block to be read or written

00: 1 OWord
10: 4 OWords

all other encodings are reserved.

Message Payload

DWord | Bits Description

M1.7

31:0|Ignored

M1.6 |31:0|Ignored

M1.5 |31:0(|Ignored

M14 1310 Block Offset 1. Specifies the OWord offset of OWord Block 1 into the surface.
Format = U32
Range = [0,0FFFFFFFh]

M1.3 |31:0|Ignored

M1.2

31:0|Ignored

M1.1

31:0|Ignored

M1.0

31:0 | Block Offset 0

Additional Message Payload (Write)

For th

e write operation, the message payload consists of one or four registers (not including the header

or the first part of the payload) depending on the Block Size specified in the message.

The Offsetl1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0

and is

in units of OWords. The OWord array index is also in units of OWords.

DWord| Bit Description

96

Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

DWord

Bit

Description

M2.7:4

127:0

OWord[Offsetl]

M2.3:0

127:0

OWord[Offset0]

M3.7:4

127:0

OWord[Offsetl+1]

M3.3:0

127:0

OWord[Offset0+1]

M4.7:4

127:0

OWord[Offsetl+2]

M4.3:0

127:0

OWord[Offset0+2]

M4.7:4

127:0

OWord[Offsetl+3]

M4.3:0

127:0

OWord[Offset0+3]

Writeback Message (Read)

3D - Media - GPGPU

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0

and is in units of OWords. The OWord array index is also in units of OWords.

DWord

Bits

Description

WO0.7:4

127:0

OWord[Offsetl]

W0.3:0

127:0

OWord[Offset0]

W1.7:4

127:0

OWord[Offsetl+1]

W1.3:0

127:0

OWord[Offset0+1]

W2.7:4

127:0

OWord[Offsetl+2]

W2.3:0

127:0

OWord[Offset0+2]

W3.7:4

127:0

OWord[Offsetl+3]

W3.3:0

127:0

OWord[Offset0+3]

Media Block Read/Write

The read form of this message enables a rectangular block of data samples to be read from the source
surface and written into the GRF. The write form enables data from the GRF to be written to a
rectangular block.

Restrictions:

1. The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the

stateless surface model is not supported with this message.

2. The surface format is used to determine the pixel structure for boundary clamp, the raw data
from the surface is returned to the thread without any format conversion nor filtering operation

3. The target cache cannot be the data cache
4. The surface base address must be 32-byte aligned

5. When a surface is XMajor tiled, (tilewalk field in the surface state is set to TILEWALK_XMAJOR), a
memory area mapped through the Render Cache cannot be read and/or wrote in mixed frame
and field modes. For example, if a memory location is first written with a zero Vertical Line Stride

Doc Ref # IHD-OS-VLV-Vol7-04.14

97

3D - Media - GPGPU (il'ltEl Look Inside”

(frame mode), and later on (without render cache flush) read back using Vertical Line Stride of
one (field mode), the read data stored in GRF are uncertain.

6. The block width and offset should be aligned to the size of pixels stored in the surface. For a
surface with 8bpp pixels for example, the block width and offset can be byte aligned. For a
surface with 16bpp pixels, it is word aligned.

For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. dword aligned).

The write form of message has the additional restriction that both X Offset and Block Width
must be DWord aligned.

9. When Color Processing is enabled for media write message, the render target must be TileY or
TileX.

10. Pitch must be a multiple of 64 bytes when the surface is linear.

Applications:
Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the
nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface
are dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be
found in the Surface Formats Section of the Sampling Engine Chapter.

For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary dword
BOB1B2B3, to replicate the left boundary byte pixel, the out of bound dwords have the format of
BOBOBOBO, and that for right boundary is B3B3B3B3.

This rule applies to all surface formats with BPE of 8. As the data port does not perform format
conversion, the most likely used surface formats are R8_UINT and R8_SINT.

For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a
boundary dword BOB1B2B3, to replicate the left boundary word pixel, the out of bound dwords have
the format of BOB1BOB1, and that for right boundary is B2B3B2B3.

This rule applies to all surface formats with BPE of 16. As the data port does not perform format
conversion, only the formats with integer data types may be useful in practice.

For special surfaces with 16bpp pixels YUV422 packed format, there are two basic cases depending on
the Y location: YUYV (surface format YCRCB_NORMAL) and UYVY (surface format YCRCB_SWAPY).
Boundary handling for YVYU (surface format YCRCB_SWAPUYV) is the same as that for YUYV. Similarly,
boundary handling for VYUY (surface format YCRCB_SWAPUVY) is the same as that for UYVY. Note that
these four surface formats have 16bpp pixels, even though the BPE fields are set to zero according to
the table in the Surface Formats Section.

For a boundary dword YOUQOY1VO0, to replicate the left boundary, we get YOUOYOVO, and to replicate the
right boundary, we get YIUOY1VO.

For a boundary dword UOYOVOY1, to replicate the left boundary, we get UOYOVOYO, and to replicate the
right boundary, we get UOY1VOY1.

98 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE' Look Inside” 3D - Media - GPGPU

For a surface with 32bpp pixels, the boundary dword pixel is replicated.

This rule applies to all surface formats with BPE of 32. As the data port does not perform format
conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

When Color Processing Enable is set to 1 and the IECP output surface to be written is NV12 format
(R16_UNORM surface format 0x10A, should be used if the output surface is NV12 format).

NV12 surface state: The width of the surface should be always multiples of 4pixels. For 16bpp input
message (422 8-bit) the width will always need to be in multiples of 8bytes and for 32bpp input
message (422 16-bit or 444 8-bit) the width should be in multiples of 16bytes. Height should be in
multiples of 2pixel high. (presently the MFX restriction is that width should be in multiples of 2pixels).

y-offset of the media block write from the EU should be always even
x-offset of the media block write from the EU should be in multiples of 4 pixel.

The media block dword write can have only the following combinations (for IECP when NV12 output
format is used):

o 8pixel wide for 422 8-bit mode
e 4pixel wide for 422 8-bit mode
e 4pixel wide for 422 16-bit
e 4pixel wide for 444 8-bit.

e 444 16-bit input format cannot be supported when the output format is NV12 (s/w should not
use this combination).

e It has to be in multiples of 2pixel high for all above modes.

If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped
and in case of 422-format the top UV values are used and the bottom UV values is dropped if the
output format is NV12 format.

Assuming IECP messages will always have vertical stride = 0. (since this is only for pre-processing before
the encoder).

Message Descriptor

Bit Description

13 Reserved: MBZ.

12 | Reserved: MBZ.

11 | Reserved: MBZ.

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface state
should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

Doc Ref # IHD-OS-VLV-Vol7-04.14 99

- Media - GPGPU (il'ltEl' Look Inside”

3D
Bit Description
Vertical Line Derived 1-based Surface Height
Stride Override Vertical Line (As a function of the 0-based Height in Surface
(in surface state) Stride State)

0 0 Height + 1
(Normal)

0 1 (Height +1) /2
Restriction: (Height + 1) must be an even number.

1 0 (Height + 1) * 2

1 Height + 1
(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface state is
0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of this frame
video buffer, if both Override Vertical Line Stride and Override Vertical Line Stride Offset are set to
1, then the derived surface height (of the field) is 240 ((Height + 1) / 2). In contrast, if Vertical Line
Stride in surface state is 1 and Vertical Line Stride Offset in surface state is 0, the surface state
represents the top field of the video buffer. In this case, Height (of the top field) should be
programmed as 239. Accessing the bottom video field uses the same surface height of 240.
Accessing the video frame (with Override Vertical Line Stride and Override Vertical Line Stride Offset
of 0) results in a derived surface height of 480 ((Height + 1) * 2).

0: Use parameters in the surface state and ignore bits 9:8.

1: Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset.

Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines — provides support of
interleaved (field) surfaces as textures.

Format = Ul in lines to skip between logically adjacent lines.

Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
VerticalLine Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1).

Message Header

DWord| Bit Description
M0.7 |31.0
100 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord| Bit Description

MO.6 31.0

MO0.5 [31:8 ([Ignored

70 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

MO0.4 [31:0 |Ignored (reserved for hardware delivery of binding table pointer)

MO3 1315 Color Processing State Pointer. Defines the pointer to COLOR_PROCESSING_STATE.
Ignored on read messages and when Color Processing Enable is not set. This pointer is
relative to the General State Base Address.

Programming Notes:
This pointer is not delivered via state variables like most other pointers are delivered. It
must be delivered via another software-defined mechanism such as CURBE.
Format = GeneralStateOffset[31:5]

4
Message Mode
This field selects the mode of this message as follows:
0: NORMAL. The Block Height and Block Width fields are set in M0.2. The Pixel Mask is
not explicitly set but behaves as if it is set to all ones.
1: PIXEL_MASK: The Pixel Mask field is set in M0.2. The Block Height and Block Width
are not explicitly set but behave as if they are set to 4 rows and 32 bytes, respectively.
Programming Note: Only NORMAL mode is allowed for Block width > 32 Byte.
For the Sampler Cache Data Port, this field is also ignored, behaving as if always set to
NORMAL.

3:2 Message Format . Defines the format of the message if Color Processing Enable is set.
0: YUV 4:2:2, 8 bits per channel
1: YUV 4:4:4, 8 bits per channel
2: YUV 4:2:2, 16 bits per channel
3: YUV 4:4:4, 16 bits per channel

1 Area of Interest . This field controls whether the statistic for the luma pixels is collected
at VSC for ACE histogram. This field is effective only when the state variable
Full_image_histogram is disabled.

0 Color Processing Enable . This field controls whether color processing is enabled on a
media block write message.
Format = Enable

Doc Ref # IHD-OS-VLV-Vol7-04.14 101

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord| Bit Description
This bit must be set to zero on a Media Block Read to the Render Cache.
The following M0.2 definition applies only if the Message Mode field is set to NORMAL:
MO0.2 [31:29]|Ignored
21:16
Block Height. Height in rows of block being accessed.
Programming Notes:
The Block Height is restricted to the following maximum values depending on the Block
Width:
Block Width Maximum Block Height
(bytes) (rows)
1-4 64
5-8 32
9-16 16
17-32 8
33-64
Format = U6
Range = [0,63] representing 1 to 64 rows
Programming Note: Block width > 32 Byte is allowed only for linear and Tile X surfaces.
15:10|Ignored
7:6 |Ignored
5:0

Block Width. Width in bytes of the block being accessed.
Programming Notes:
Must be DWord aligned for the write form of the message.

Range = [0,63] representing 1 to 64 Bytes

The following M0.2 definition applies only if the Message Mode field is set to PIXEL_MASK:

MO.2

310

Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to
be written. This field is ignored by the read message, all pixels are always returned..

The bits in this mask correspond to the pixels (DWords) as follows:

0|1 |4 |5 |16f17|20|21
7 [18]19(22|23
9 |12|13|24|25(28(29
10(11{14(15|26|27|30|31

MO0.1

31:0

Y offset. The Y offset of the upper left corner of the block into the surface.

102

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord| Bit Description

Format = S31
Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4

MO.O 310 X offset. The X offset of the upper left corner of the block into the surface.

Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from the
offset in the surface if Color Processing is enabled due to format conversion.

Format = S31
Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32

Programming Note: The legal combinations of block width, pitch control, sub-register offset and block
height are given below:

Block Height for given block width, pitch control, subreg offsets
sub-register offsets

block width | pitch control |0 1 2 3 4 5 6 7

1-4 00 1-64 |1 1 1 1 1 1 1
01 1-64 |1-64 |[illegal|illegal|1-2 |1-2 [illegal|illegal
10 illegal [illegal | illegal | illegal | illegal | illegal | illegal | illegal
11 1-64 |1-64 [1-64 |1-64 |illegal]illegal|illegal|illegal

5-8 00 1-32 [illegal |1 illegal | 1 illegal | 1 illegal
01 1-32 |illegal [1-32 |illegal|illegal|illegal |illegal |illegal
10 illegal [illegal | illegal | illegal | illegal | illegal | illegal | illegal
11 1-32 |illegal|1-32 |illegal|1-32 |illegal|1-32 [illegal

9-16 00 1-16 |illegal|illegal|illegal | 1 illegal |illegal |illegal
01 1-16 |illegal|illegal|illegal |1-16 |illegal|illegal |illegal
10 illegal [illegal | illegal | illegal | illegal | illegal |illegal | illegal
11 1-16 |illegal|illegal|illegal |1-16 |illegal|illegal |illegal

7-32 00 1-8 |illegal|illegal|illegal|illegal |illegal | illegal |illegal
01 1-8 |illegal|illegal|illegal|illegal |illegal | illegal |illegal
10 illegal [illegal |illegal | illegal | illegal | illegal |illegal | illegal
11 1-8 |illegal|illegal|illegal|illegal |illegal | illegal |illegal

Message Payload (Write)

DWord | Bit Description

M1:n

Write Data. The format of the write data depends on the Block Height and Block Width.

Doc Ref # IHD-OS-VLV-Vol7-04.14 103

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message
Format field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position
includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0
YUV 4:2:2, 8 bits per channel |Cr (V) right pixel lum (Y1) | Cb (V) left pixel lum (YO)
YUV 4:4:4, 8 bits per channel |alpha (A) [luminance (Y) Cb (V) Cr (V)

63:48 47:32 31:16 15:0
YUV 4:2:2, 16 bits per channel | Cr (V) right pixel lum (Y1) | Cb (V) left pixel lum (YO)
YUV 4:4:4, 16 bits per channel | alpha (A) [Cr (V) luminance (Y) | Cb (U)

Writeback Message (Read)

DWord | Bit Description

Wo:n Read Data. The format of the read data depends on the Block Height and Block Width.

The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

DWord Scattered Read/Write

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset.
The Global Offset is added to each of the specific offsets.

The message header is no longer required for the OWord DWord Scattered Read/Write messages if sent
to the data cache data port. If header is not sent, the Global Offset field is assumed to be zero. The
header is required, however, if the binding table index is 255 (stateless model), as the Immediate
Buffer Base Address field is required.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped
to the nearest edge of the surface. For write messages with X/Y offsets that are outside the bounds of
the surface, the behavior is undefined.

Hardware does check for and optimize for cases where offsets are equal or contiguous, however for
optimal performance in some these cases a different message may provide higher performance.

Restrictions:
The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

104 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltEl Look Inside” 3D - Media - GPGPU

The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of
16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface
state model.

the surface cannot be tiled
the surface base address must be DWord aligned

the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when
using this message with the render cache in the surface state model

the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to
read/write mode when using this message with the render cache in the stateless model

Applications:

SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per
message)

SIMD&8/16 scratch space reads/writes where the indices are different (read/write one channel per
message)

general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which DWords are read into the destination GRF register (for read), or which
DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor

Bit Description

13 Invalidate After Read Enable

only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a

performance hint indicating that the data will no longer be used to avoid writing back data to

memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12 |Ignored
11:10|Ignored
9:8

Block Size. Specifies the number of DWords to be read or written
10: 8 DWords

Doc Ref # IHD-OS-VLV-Vol7-04.14 105

3D - Media - GPGPU

(I@ Look Inside’

Bit

Description

11: 16 DWords

All other encodings are reserved.

Message Payload

DWord

Bits

Description

M1.7

310

Offset 7. Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6

31:0

Offset 6

M1.5

31:0

Offset 5

M1.4

31:0

Offset 4

M1.3

31:0

Offset 3

M1.2

310

Offset 2

M1.1

310

Offset 1

M1.0

310

Offset 0

M2.7

310

Offset 15. This message register is included only if the block size is 16 DWords.

M2.6

310

Offset 14

M2.5

310

Offset 13

M2.4

310

Offset 12

M2.3

310

Offset 11

M2.2

310

Offset 10

M2.1

310

Offset 9

M2.0

310

Offset 8

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units

of DWords. The DWord array index is also in units of DWords.

DWord | Bit Description
M3.7 31:0 | DWord[Offset7]

M3.6 31:0 | DWord[Offset6]

M3.5 31:0 | DWord[Offset5]

M3.4 31:0 | DWord[Offset4]

M3.3 31:0 | DWord[Offset3]

M3.2 31:0 | DWord[Offset2]

M3.1 31:0 | DWord[Offsetl]

106

Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord | Bit Description

M3.0 31:0 | DWord[Offset0]

M4.7 |31.0 | DWord[Offsetl5]. This message register is included only if the block size is 16 DWords
M4.6 |31:0| DWord[Offset14]

M4.5 |31:0| DWord[Offset13]

M4.4 |31:0| DWord[Offset12]

M4.3 |31:0| DWord[Offset11]

M4.2 |31:0| DWord[Offset10]

M4.1 31:0 | DWord[Offset9]

M4.0 31:0 | DWord[Offset8]

Writeback Message (Read)

3D - Media - GPGPU

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The DWord array index is also in units of DWords.

DWord

Bits

Description

WO0.7

310

DWord[Offset7]

WO0.6

310

DWord[Offset6]

WO0.5

310

DWord[Offset5]

Wo0.4

310

DWord[Offset4]

WO0.3

310

DWord[Offset3]

WO0.2

310

DWord[Offset2]

WO0.1

310

DWord[Offsetl]

WO0.0

310

DWord[Offset0]

W1.7

31:0

DWord[Offset15]. This writeback message register is included only if the block size is 16 DWords.

W1.6

31:0

DWord[Offset14]

WL.5

31:0

DWord[Offset13]

W14

31:0

DWord[Offset12]

WL1.3

31:0

DWord[Offset11]

W1.2

31:0

DWord[Offset10]

w11l

31:0

DWord[Offset9]

W1.0

31:0

DWord[Offset8]

Byte Scattered Read/Write

These messages are supported on only.

These messages take a set of offsets, and read or write 8 or 16 scattered and possibly misaligned bytes,
words, or dwords starting at each offset. The Global Offset from the message header is added to each
of the specific offsets.

Restrictions:

Doc Ref # IHD-OS-VLV-Vol7-04.14

107

3D - Media - GPGPU (il'ltEl' Look Inside”

the only surface type allowed is SURFTYPE_BUFFER.
the surface format is ignored, data is returned from the buffer to the GRF without format conversion.

the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of
4 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state
model.

the surface cannot be tiled
the surface base address must be DWord aligned

the stateless model is not supported.

The bounds checking for the stateless message is 4GB overflow and < General State upper bound.
Applications:
Byte aligned buffer accesses in GPGPU programs.

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which slots are read into the destination GRF register (for read), or which slots
are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Message Descriptor

Bit Description

13:12|Ignored

1110 Data Size. Specifies the data size for each slot.

0: 1 byte
1: 2 bytes
2: 4 bytes

3: Reserved

Ignored

SIMD Mode. Specifies the SIMD mode of the message (number of slots processed).
0: SIMD8
1: SIMD16

Message Payload

DWord | Bits Description

ML7 1310 ofteet 7.

108 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord | Bits Description
Specifies the byte offset of DWord 7 into the surface.
Format = U32
Range = [0,FFFFFFFFh]

M16 [31:.0|Offset6

ML15 [31.0|Offset 5

M14 31:0| Offset 4

ML1.3 31:.0| Offset 3

M1.2 31:0 | Offset 2

M1.1 31:0| Offset 1

M1.0 [31:.0]|OffsetO

M2.7 310 Offset 15. This message register is included only if the SIMD Mode is SIMD16.

M2.6 31:0| Offset 14

M2.5 [31.0|Offset 13

M2.4 31:0 | Offset 12

M2.3 31:0| Offset 11

M2.2 31:0| Offset 10

M2.1 [31:.0|Offset 9

M2.0 [31:.0|Offset 8

Additional Message Payload (Write)

3D - Media - GPGPU

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit
field. The upper bits are ignored for 1 byte and 2 byte Data Size.

DWord | Bit Description
M3.7 31:0 | Data[Offset7]

M3.6 31:0 | Data[Offset6]

M3.5 31:0 | Data[Offset5]

M3.4 31:0 | Data[Offset4]

M3.3 31:0 | Data[Offset3]

M3.2 31:0 | Data[Offset2]

M3.1 31:0 | Data[Offset1]

M3.0 31:0 | Data[Offset0]

Ma.7 310 Data[Offsetl5]. This message register is included only if the SIMD Mode is SIMD16.
M4.6 31:0 | Data[Offset14]

Doc Ref # IHD-OS-VLV-Vol7-04.14

109

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

M4.5 31:0 | Data[Offset13]

M4 .4 31:0 | Data[Offset12]

M4.3 31:0 | Data[Offsetl1]

M4.2 31:0 | Data[Offset10]

M4.1 31:0 | Data[Offset9]

M4.0 31:0 | Data[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit
field and only the requeted bytes are written to the GRF.

DWord | Bit Description

WO0.7 31:0 | Data[Offset7]

WO0.6 31:0 | Data[Offset6]

WO0.5 31:0 | Data[Offset5]

wWo0.4 31:0 | Data[Offset4]

wo0.3 31:0 | Data[Offset3]

Wo0.2 31:0 | Data[Offset2]

WO0.1 31:0 | Data[Offset1]

WO0.0 31:0 | Data[Offset0]

Wi7 310 Data[Offsetl5]. This message register is included only if the SIMD Mode is SIMD16.

W1.6 31:0 | Data[Offset14]

W1.5 31:0 | Data[Offset13]

W14 |31:0|Data[Offsetl?2]

W13 31:0 | Data[Offsetl1]

W1.2 31:0 | Data[Offset10]

W11 31:0 | Data[Offset9]

W1.0 31:0 | Data[Offset8]

Typed/Untyped Surface Read/Write and Typed/Untyped Atomic Operation

Six data port messages (Typed Surface Read, Typed Surface Write, Typed Atomic Operation, Untyped
Surface Read, Untyped Surface Write, and Untyped Atomic Operation) allow direct read/write accesses
to surfaces. These messages support three major categories of surfaces:

Typed surfaces. These surfaces are of type SURFTYPE_1D, 2D, 3D, or BUFFER and have a supported
surface format other than RAW. Supported via the render cache data port..

110 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Programming Restriction: Vertical stride & Vertical Offset fields of the surface state object is only
supported for 2D non-array surfaces.

Raw buffer (untyped). These surfaces are of type SURFTYPE_BUFFER and have a surface format of
RAW and a surface pitch of 1 byte. Supported via the data cache data port. All SLM accesses are in this
category.

Structured buffer (untyped). These surfaces are of type SURFTYPE_STRBUF and have a surface format
of RAW. Supported via the data cache data port.

A typed surface uses U, V, R, and LOD address parameters (number of parameters utilized depends on
surface type), and performs conversion of type to/from the selected surface format as follows:

Surface formats with UINT require the message data in U32 format
Surface formats with SINT require the message data in S32 format
All other surface formats require the message data in FLOAT32 format

The untyped surface categories, both of which use the RAW surface format, perform no type
conversion. A raw buffer uses just the U address parameter, which specifies the byte offset into the
surface, which must be a multiple of 4. A structured buffer uses the U address parameter as an array
index and the V address parameter as a byte offset into the array element (which also must be a
multiple of 4).

For both raw and structured buffers, up to 4 dwords are accessed beginning at the byte address
determined. These 4 dwords correspond to the red, green, blue, and alpha channels in that order with
red mapping to the lowest order dword. The atomic operation messages will only access the first dword
(corresponding to the red channel for typed messages).

The atomic operation messages causes atomic read-modify-write operations on the destination location
addressed. In the table below, the new value of the destination (new_dst) is computed as indicated
based on the old value of the destination (old_dst) and up to two sources included in the message (srcO
and srcl). Optionally, a value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that
no read or write to the same memory location from this thread or any other thread can occur between
the read and the write.

The following atomic operations are available, along with the specific operation performed for each and
the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst
AOP_OR old_dst | src0 old_dst
AOP_XOR old_dst A srcO old_dst
AOP_MOV srcO old_dst
AOP_INC old_dst + 1 old_dst
AOP_DEC old_dst-1 old_dst
AOP_ADD old_dst + srcO old_dst
AOP_SUB old_dst — srcO old_dst

Doc Ref # IHD-OS-VLV-Vol7-04.14 111

3D - Media - GPGPU (il'ltEl' Look Inside”

Atomic Operation new_dst ret
AOP_REVSUB srcO — old_dst old_dst
AOP_IMAX imax(old_dst, src0) old_dst
AOP_IMIN imin(old_dst, src0) old_dst
AOP_UMAX umax(old_dst, src0) old_dst
AOP_UMIN umin(old_dst, src0) old_dst
AOP_CMPWR (srcO == old_dst) ? srcl: old_dst old_dst
AOP_PREDEC old_dst-1 new_dst
AOP_CMPWRS8B (srcO8B == old_dst8B) ? src18B: old_dst8B | old_dst8B

Programming Note: srcO8B is 8 bytes, src18B is 8 Bytes and old_dst8B is 8 bytes in length.
Programming Note: AOP_CMPWRSB is not supported for SLM.
Programming Note: AOP_CMPWRS8B addresses must be QWORD aligned.

Note: imax/imin assume operands are signed integers, umax/umin assume operands are unsigned
integers. All other operations treat all values as 32-bit unsigned integers. Add and subtract operations
will wrap without any special indication.

These messages are supported on only.
Restrictions:
For untyped messages, the Tile Mode must be LINEAR.

For untyped messages, the Surface Format must be RAW and the Surface Type must be
SURFTYPE_BUFFER or SURFTYPE_STRBUF.

For typed messages, the Surface Type must be SURFTYPE_1D, 2D, 3D, or BUFFER.

The Surface Format for typed surface reads must be:

Project | Surface Format Name | Security

R32_SINT

R32_UINT

R32_FLOAT

The Surface Format for typed surface writes must be

Project| Surface Format Name |Security

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R16G16B16A16_UNORM

R16G16B16A16_SNORM

R16G16B16A16_SINT

R16G16B16A16_UINT

R16G16B16A16_FLOAT

R32G32_FLOAT

112 Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

Project

Surface Format Name

Security

R32G32_SINT

R32G32_UINT

B8G8RBA8_UNORM

R10G10B10A2_UNORM

R10G10B10A2_UINT

R8G8B8A8_UNORM

R8G8B8A8_SNORM

R8G8B8AS_SINT

R8G8BBA8_UINT

R16G16_UNORM

R16G16_SNORM

R16G16_SINT

R16G16_UINT

R16G16_FLOAT

B10G10R10A2_UNORM

R11G11B10_FLOAT

R32_SINT

R32_UINT

R32_FLOAT

B5G6R5_UNORM

B5G5R5A1_UNORM

B4G4R4A4_UNORM

R8G8_UNORM

R8G8_SNORM

R8G8_SINT

R8G8_UINT

R16_UNORM

R16_SNORM

R16_SINT

R16_UINT

R16_FLOAT

B5G5R5X1_UNORM

R8_UNORM

R8_SNORM

R8_SINT

R8_UINT

A8_UNORM

The Surface Format for typed atomic operations must be R32_UINT or R32_SINT.

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

113

3D - Media - GPGPU (il'ltEl Look Inside”

For untyped messages accessing SURFTYPE_STRBUF, the V address (byte offset) must be DWord aligned
(low 2 bits must be zero).

For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord aligned
(low 2 bits must be zero).

Typed messages only support SIMDS.

The stateless model support is limited to untyped messages.

Issues [IVB Astep]: Use SIMD8 messages only for untyped surface reads.
Execution Mask:

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from
the message header and the resulting mask is used to determine which slots are read into the
destination GRF register (for read), or which slots are written to the surface (for write). If the header is
not present, only the execution mask is used.

SIMDS8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from
the message header. For the typed messages, the Slot Group in the message descriptor selects either
the low or high 8 bits. For the untyped messages, the low 8 bits are always selected. The resulting mask
is used to determine which slots are read into the destination GRF register (for read), or which slots are
written to the surface (for write). If the header is not present, only the low 8 bits of the execution mask
are used.

Issues If resulting mask is 0, the slot is still read into the destination GRF register.

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create
two bits which are used to determine which slots are read into the destination GRF register.

Out-of-Bounds Accesses: Reads to areas outside of the surface return 0, except for the Typed Surface
Read message which returns 1 in the alpha channel and 0 in the other channels. Writes to areas outside
of the surface are dropped and will not modify memory contents.

Issues: The Typed Surface Read returns 0 in all channels for out-of-bounds accesses.
Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

The following table summarizes the SIMD Mode support for each message type:

Untyped Typed
Read | Write | Atomic | Read | Write | Atomic

SIMD16 | x X X

SIMD8 |x X X X X X

The following table indicates the hardware interpretation of each input parameter based on surface
type. Parameters with blank entries are ignored by hardware if delivered.

Surface Type |Surface Array field in U Address \Y R LOD
SURFACE_STATE Address |Address
SURFTYPE_1 |disabled X pixel address LOD
D
enabled X pixel address |array LOD
index

114 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

SURFTYPE_2 |disabled X pixel address |Y pixel LOD
D address

enabled X pixel address |Y pixel array LOD

address [index

SURFTYPE_3 |disabled X pixel address |Y pixel Z pixel LOD
D address |address
SURFTYPE_B |disabled buffer index
UFFER
SURFTYPE_S |disabled buffer index byte
TRBUF offset

Typed Surface Read/Write Message Descriptor

Bit Description

13 Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the
execution mask to determine which slots are accessed. This field is ignored if the header is not
present.

Format = Ul
0: Use low 8 slots

1: Use high 8 slots

12 |Ignored

1 Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write
message, indicates that alpha is included in the message payload, and that alpha will be written to
the surface.

0: Alpha channel included
1: Alpha channel not included
Programming Notes:

At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).

10 | Blue Channel Mask

Green Channel Mask

Red Channel Mask

Untyped Surface Read/Write Message Descriptor

Bit Description

13121 S1MD Mode

Format = U2

Doc Ref # IHD-OS-VLV-Vol7-04.14 115

3D

- Media - GPGPU (il'ltEl' Look Inside”

Bit

Description

0: SIMD4x2 (valid for read message only) (valid for read message only),
1: SIMD16
2: SIMDS8

3: Reserved

11

Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the
write message, indicates that alpha is included in the message payload, and that alpha will be
written to the surface.

0: Alpha channel included
1: Alpha channel not included
Programming Notes:

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower
mask bits are also zero. This means that the only 4-bit channel mask values allowed are 0000b,
1000b, 1100b, and 1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the 4-bit
channel mask cannot be 1111b).

10

Blue Channel Mask

Green Channel Mask

Red Channel Mask

Typed Atomic Operation Message Descriptor

Bit Description
13 Return Data Control
Specifies whether return data is sent back to the thread.
Format = Enable
12 Slot Group
This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the
execution mask to determine which slots are accessed.
Format = Ul
0: Use low 8 slots
1: Use high 8 slots
118 Atomic Operation Type
Specifies the atomic operation to be performed.
116 Doc Ref # IHD-OS-VLV-Vol7-04.14

(iI'ItE'I Look Inside” 3D - Media - GPGPU

Bit Description

0000: Reserved
0001: AOP_AND
0010: AOP_OR
0011: AOP_XOR
0100: AOP_MOV
0101: AOP_INC
0110: AOP_DEC
0111: AOP_ADD
1000: AOP_SUB
1001: AOP_REVSUB
1010: AOP_IMAX
1011: AOP_IMIN
1100: AOP_UMAX
1101: AOP_UMIN
1110: AOP_CMPWR
1111: AOP_PREDEC

Typed Atomic Operation SIMD4x2 Message Descriptor

Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 |Reserved

118 Atomic Operation Type

Specifies the atomic operation to be performed.
0000: reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

Doc Ref # IHD-OS-VLV-Vol7-04.14 117

3D - Media - GPGPU

Bit

Description

0110: AOP_DEC
0111: AOP_ADD
1000: AOP_SUB
1001: AOP_REVSUB
1010: AOP_IMAX
1011: AOP_IMIN
1100: AOP_UMAX
1101: AOP_UMIN
1110: AOP_CMPWR
1111: AOP_PREDEC

Untyped Atomic Operation Message Descriptor

Bit

Description

13

Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12

SIMD Mode
Format = Ul
0: SIMD16
1: SIMD8

11:8

Atomic Operation Type

Specifies the atomic operation to be performed.

0000: 0000: AOP_CMPWRS8B
0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOQV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

118

(I@ Look Inside’

Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel' Look Inside” 3D - Media - GPGPU

Bit Description

1001: AOP_REVSUB
1010: AOP_IMAX
1011: AOP_IMIN
1100: AOP_UMAX
1101: AOP_UMIN
1110: AOP_CMPWR
1111: AOP_PREDEC

Untyped Atomic Operation SIMD4x2 Message Descriptor

Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 |Reserved

118 Atomic Operation Type

Specifies the atomic operation to be performed.
0000: AOP_CMPWRS8B
0001: AOP_AND
0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV
0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB
1010: AOP_IMAX
1011: AOP_IMIN
1100: AOP_UMAX
1101: AOP_UMIN
1110: AOP_CMPWR

Doc Ref # IHD-OS-VLV-Vol7-04.14 119

3D

- Media - GPGPU

Bit

Description

1111: AOP_PREDEC

Ato

mic Counter Operation Message Descriptor

Bit

Description

13

Return Data Control

Format = Enable

Specifies whether return data is sent back to the thread.

12

SIMD Mode
Format: Ul
0: Reserved

1: SIM8 (low 8 slots)

11:8

Atomic Operation Type
Specifies the atomic operation to be performed.
0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB
1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX
1101: AOP_UMIN

1110: Reserved

1111: AOP_PREDEC

120

(I@ Look Inside’

Doc Ref # IHD-OS-VLV-Vol7-04.14

(I@ Look Inside”

3D - Media - GPGPU

For Append Counter Operations there is no address payload as the address is provided by the append

counter field in the surface state. The write data payloads are the same as untyped atomic. The write

back are the same as untyped atomic.

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of
the surface state is not 1, it the access will be treated as out of bounds, w/ the writes being ignored and
the reads returning 0.

Atomic Counter Operation SIMD4x2 Message Descriptor

Bit Description

13 Return Data Control
Specifies whether return data is sent back to the thread.
Format = Enable

12 |Reserved

11:8

Atomic Operation Type
Specifies the atomic operation to be performed.
0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB
1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX
1101: AOP_UMIN

1110: Reserved

1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append

counter field in the surface state. The write data payloads are the same as untyped atomic 4x2. The

write back are the same as untyped atomic 4x2.

Doc Ref # IHD-OS-VLV-Vol7-04.14

121

3D - Media - GPGPU (il'ltEl' Look Inside”

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of
the surface state is not 1, it the access will be treated as out of bounds, w/ the writes being ignored and
the reads returning 0.

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,
where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)
calculations, but the corresponding slot on the surface must not be accessed. Typed messages (which
go to render cache data port) must include the header.

DWord| Bit Description
MO0.7 [31:16|Ignored
150 Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for

SIMD16 and SIMD8 messages. All 16 bits are used for SIMD16 messages. For typed
SIMD8 messages, Slot Group selects with 8 bits of this field are used. For untyped SIMDS8
messages, the low 8 bits of this field are used.
If the header is not delivered, this field defaults to all ones. The field is ignored for
SIMD4x2 messages.

MO0.6 [31:0 |Ignored

MO5 1310 Format = GeneralStateOffset[31:10]

M0.4 |31:0 [Ignored (reserved for hardware delivery of binding table pointer)

MO0.3 [31:.0 |Ignored

MO0.2 [31.0 (Ignored

MO0.1 [31.0 (Ignored

M0.0 [31.0 (Ignored

Message Payload

The message payload consists of the following:

e For the read messages, only an address payload is delivered.

e For the write messages, an address payload is followed by the write data payload.

e For the atomic operation messages, an address payload is followed by the source payload.

e For SIMD16 and SIMD8 messages, the message length is used to determine how many address
parameters are included in the message. The number of message registers in the write data
payload is determined by the number of channel mask bits that are enabled, and the number of
message registers in the source payload is determined by the atomic operation operation. Thus,
one or neither of these two values (depending on the message type), plus one for the header, can
be subtracted from the message length to determine the number of message registers in the
address payload, from which the number of address parameters can be determined.

122

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible
address parameters are U and V (since SIMD16 is only supported with untyped messages). The number
of parameters required depends on the surface type being accessed. Each parameter takes two
message registers. Each parameter always takes a consistent position in the input payload. The length
field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this.

DWord | Bit Description

ML7 310 Slot 7 U Address

Specifies the U Address for slot 7.
Format = U32

M1.6 31:0|Slot 6 U Address

M1.5 31:0|Slot 5 U Address

M1.4 31:0|Slot 4 U Address

M1.3 31:0|Slot 3 U Address

M1.2 31:0|Slot 2 U Address

M1.1 31:0|Slot 1 U Address

M1.0 31:0|Slot 0 U Address

M2.7 31:0|Slot 15 U Address

M2.6 31:0|Slot 14 U Address

M2.5 31:0|Slot 13 U Address

M2.4 31:0|Slot 12 U Address

M2.3 31:0|Slot 11 U Address

M2.2 31:0|Slot 10 U Address

M2.1 31:0|Slot 9 U Address

M2.0 31:0|Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

SIMD16 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Sourcel: AOP_CMPWR

Doc Ref # IHD-OS-VLV-Vol7-04.14 123

3D - Media - GPGPU

All of the remaining atomic operations require Source0 only.

(I@ Look Inside’

DWord | Bit Description

MS.7 1310 Slot 7 Source0
Specifies SourceO0 for slot 7.
Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 [31:0]Slot 6 Source0

M5.5 31:0|Slot 5 Source0

M54 [31:0]Slot 4 Source0

M5.3 31:0|Slot 3 Source0

M5.2 31:0|Slot 2 Source0

M5.1 31:0|Slot 1 Source0

M5.0 [31:0]Slot O Source0

M6.7 31:0|Slot 15 Source0

M6.6 [31:0|Slot 14 Source0

M6.5 [31:0]Slot 13 Source0

M6.4 [31:0|Slot 12 Source0

M6.3 [31:0]Slot 11 Source0

M6.2 [31:0]Slot 10 Source0

M6.1 [31:0]Slot 9 Source0

M6.0 [31:0]Slot 8 Source0

M7 Slots 7:0 Sourcel

M8 Slots 15:8 Sourcel

SIMD16 Source Payload (AOP_CMPWRS8B Only)

DWord | Bit Description
M5.7 31.0

Slot 7 Source0[31:0]

Specifies Source0[31:0] for slot 7.

Format = U32
M5.6 31:0|Slot 6 Source0[31:0]
M5.5 31:0|Slot 5 Source0[31:0]
M5.4 31:0|Slot 4 Source0[31:0]
M5.3 31:0|Slot 3 Source0[31:0]
M5.2 31:0|Slot 2 Source0[31:0]
M5.1 31:0|Slot 1 Source0[31:0]
M5.0 31:0|Slot 0 Source0[31:0]
M6.7 31:0|Slot 15 Source0[31:0]
M6.6 31:0|Slot 14 Source0[31:0]
124

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

M®6.5 31:0|Slot 13 Source0[31:0]

M6.4 31:0|Slot 12 Source0[31:0]

M6.3 31:0|Slot 11 Source0[31:0]

M6.2 31:0|Slot 10 Source0[31:0]

M6.1 31:0|Slot 9 Source0[31:0]

M6.0 31:0| Slot 8 Source0[31:0]

M7 Slots 7:0 Source0[63:32]
M8 Slots 15:8 Source0[63:32]
M9 Slots 7:0 Sourcel[31:0]
M10 Slots 15:8 Sourcel[31:0]
M1l Slots 7:0 Sourcel[63:32]
M12 Slots 15:8 Sourcel[63:32]

SIMD16 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord | Bit Description

M5.7 [310 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

Format = 32 bits raw data.

M5.6 |31:0(Slot 6 Red

M5.5 |31:0(Slot 5 Red

M54 |31:0(Slot 4 Red

M5.3 |31:0(Slot 3 Red

M5.2 |31:0(Slot 2 Red

M5.1 |31:0(Slot 1 Red

M5.0 |31:0(Slot 0 Red

M6.7 |31:0|Slot 15 Red

M6.6 31:0|Slot 14 Red

M6.5 31:0|Slot 13 Red

M6.4 |31:0|Slot 12 Red

M6.3 31:0|Slot 11 Red

M6.2 |31:0|Slot 10 Red

Mé6.1 31:0(Slot 9 Red

M6.0 31:0(Slot 8 Red

Doc Ref # IHD-OS-VLV-Vol7-04.14 125

€

ntel/ Look Inside’

3D - Media - GPGPU

DWord | Bit Description
M7 Slots 7:0 Green

M8 Slots 15:8 Green

M9 Slots 7:0 Blue

M10 Slots 15:8 Blue

M11 Slots 7:0 Alpha

M12 Slots 15:8 Alpha

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameters are U, V, R, and LOD. The number of parameters required depends on the surface type
being accessed. Each parameter takes one message register. Each parameter always takes a consistent
position in the input payload. The length field can be used to send a shorter message, but intermediate
parameters cannot be skipped as there is no way to signal this.

DWord | Bit Description

ML7 310 Slot 7 U Address

Specifies the U Address for slot 7.
Format = U32

M1.6 31:0|Slot 6 U Address

M1.5 31:0|Slot 5 U Address

M1.4 31:0|Slot 4 U Address

M1.3 31:0|Slot 3 U Address

M1.2 31:0|Slot 2 U Address

M1.1 31:0|Slot 1 U Address

M1.0 31:0|Slot 0 U Address

M2 Slots 7:0 V Address

M3 Slots 7:0 R Address

Programming Notes:

This register can only be delivered for the Typed message types.

M4 Slots 7:0 LOD

Programming Notes:

This register can only be delivered for the Typed message types.

126 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

SIMDS8 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Sourcel: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description

M57 310 Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0|Slot 6 Source0

M5.5 31:0|Slot 5 Source0

M5.4 31:0|Slot 4 Source0

M5.3 31:0|Slot 3 Source0

M5.2 31:0|Slot 2 Source0

M5.1 31:0|Slot 1 Source0

M5.0 31:0|Slot 0 Source0

M6 Slots 7:0 Sourcel

SIMD8 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord | Bit Description

M5.7 [310 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.
For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

M5.6 |31:0(Slot 6 Red

Doc Ref # IHD-OS-VLV-Vol7-04.14 127

3D - Media - GPGPU

(I@ Look Inside’

DWord | Bit Description
M5.5 [31:0(Slot 5 Red

M54 [31:.0|Slot 4 Red

M5.3 [31:0(Slot 3 Red

M5.2 [31:0|Slot 2 Red

M5.1 [31:.0|Slot 1 Red

M5.0 [31:0(Slot O Red

M6 Slots 7:0 Green

M7 Slots 7:0 Blue

M8 Slots 7:0 Alpha

SIMD8 Write Data Payload (Tile W Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included.

DWord | Bit Description
M5.7 |31:8|Ignored
70 1slot 7 Red
Specifies the value of the red channel to be written for slot 7.
For Typed messages:
Format = U8
M5.6 [31:8|Ignored
7:0 |[Slot 6 Red
M5.5 [31:8|Ignored
7:0 [Slot5 Red
M54 [31:8|Ignored
7:0 |[Slot4 Red
M5.3 [31:8|Ignored
7:0 |[Slot 3 Red
M5.2 [31:8|Ignored
7:0 [Slot 2 Red
M51 [31:8|Ignored
7:0 [Slot1 Red
M5.0 |[31:8|Ignored
7:0 [Slot 0 Red

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots.

DWord

Bit

Description

128

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

M1.7 [310

Programming Notes:

This register can only be delivered for the Typed message types.

M1l.6 |[310

Programming Notes:

This register can only be delivered for the Typed message types.

M1.5 31:0|Slot 1 V Address

Format = U32
M1.4 31:0|Slot 1 U Address
Format = U32
M1.3 31:0
M1.2 31:.0

M1.1 31:0|Slot 0 V Address

M1.0 31:0|Slot 0 U Address

SIMD4x2 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Sourcel: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord | Bit Description

M2.7 |31:.0|Ignored

M2.6 |[31:0|Ignored

M25> 310 Slot 1 Sourcel

Specifies Sourcel for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M2.4 31:0|Slot 1 Source0

M2.3 [31:0(Ignored

M2.2 [31:0|Ignored

Doc Ref # IHD-OS-VLV-Vol7-04.14 129

3D - Media - GPGPU (il'ltEll Look Inside”

DWord | Bit Description
M2.1 31:0|Slot 0 Sourcel
M2.0 31:0|Slot 0 Source0

SIMD4x2 Source Payload (AOP_CMPWRS8B Only)

DWord | Bit Description
M2.7 31:0(Slot 1 Sourcel [63:32]
M2.6 31:0|Slot 1 Sourcel [31:0]
M2.5 31:0(Slot 1 Source0 [63:32]
M2.4 31:0|Slot 1 Source0 [31:0]
M2.3 31:0|Slot 0 Sourcel [63:32]
M2.2 31:0|Slot 0 Sourcel [31:0]
M2.1 31:0|Slot 0 Source0 [63:32]
M2.0 [31:0]Slot 0 Source0 [31:0]

SIMD4x2 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages.

DWord | Bit Description
M2.7 13101 10t 1 Alpha
Specifies the value of the red channel to be written for slot 7.
For Untyped messages:
Format = 32 bits raw data.
For Typed messages:
Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
M2.6 31:.0|Slot 1 Blue
M2.5 31:0|Slot 1 Green
M2.4 31:0|Slot 1 Red
M2.3 [31:.0|Slot 0 Alpha
M2.2 31:0|Slot 0 Blue
M2.1 31:0|Slot 0 Green
M2.0 31:0|Slot 0 Red

Writeback Message

SIMD8 DWORD Read

DWord | Bit | Description
WO0.7 31:0 | DWord[Offset7]
130 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord | Bit | Description
WO0.6 31:0 | DWord[Offset6]
WO0.5 31:0 | DWord[Offset5]
W0.4 |31:0| DWord[Offset4]
wo0.3 31:0 | DWord[Offset3]
wo0.2 31:0 | DWord[Offset2]
Wwo0.1 31:0 | DWord[Offsetl]
WO0.0 31:0 | DWord[Offset0]
SIMD8 QWORD Read
DWord | Bit | Description
WO0.7 63:0 | QWord[Offset3]
WO0.6

WO0.5 |63:0 [QWord[Offset2]
wo0.4

wo0.3 63:0 | QWord[Offset1]
WO0.2

Wo0.1 63:0 | QWord[Offset0]
WO0.0

W1.7 |63:0| QWord[Offset7]
W1.6

W1.5 63:0 | QWord[Offset6]
W14

w13 63:0 | QWord[Offset5]
W1.2

Wwi1l.1 63:0 | QWord[Offset4]
W1.0

SIMD16 Read

3D - Media - GPGPU

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1,
and alpha to regid+2 and regid+3. The slots written within each destination register is determined by
the execution mask on the send instruction.

DWord | Bit Description

W7 310 Slot 7 Red: Specifies the value of the red channel for slot 7.
Format = 32 bits raw data.

WO0.6 31:0|Slot 6 Red

WO0.5 31:0|Slot 5 Red

Doc Ref # IHD-OS-VLV-Vol7-04.14

131

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

W0.4 [31:0]|Slot 4 Red

WO0.3 31:0(Slot 3 Red

WO0.2 [31:0]|Slot 2 Red

WO0.1 [31:0]|Slot 1 Red

WO0.0 31:0(Slot 0 Red

W1.7 [31:0]|Slot 15 Red

W1.6 31:0|Slot 14 Red

W1.5 31:0|Slot 13 Red

W14 31:0|Slot 12 Red

W1.3 |[31:0]|Slot 11 Red

W1.2 [31:0]|Slot 10 Red

W11 |[31:0]|Slot 9 Red

W1.0 |[31:0]|Slot 8 Red

W2 Slots 7:0 Green
W3 Slots 15:8 Green
W4 Slots 7:0 Blue
W5 Slots 15:8 Blue
W6 Slots 7:0 Alpha
w7 Slots 15:8 Alpha
SIMD8 Read

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to
regid+1. The slots written within each destination register is determined by the execution mask on the
send instruction.

DWord | Bit Description

WO7 13101 16t 7 Red: Specifies the value of the red channel for slot 7.

For Untyped messages:
Format = 32 bits raw data.
For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

WO0.6 31:0(Slot 6 Red

WO0.5 31:0(Slot 5 Red

W0.4 [31:0|Slot 4 Red

132 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

WO0.3 [31:0]|Slot 3 Red

WO0.2 [31:0|Slot 2 Red

W0.1 [31:0]|Slot 1 Red

W0.0 [31:0|Slot 0 Red

w1 Slots 7:0 Green
W2 Slots 7:0 Blue
W3 Slots 7:0 Alpha

SIMD8 Read (Tile W)

The slots written within each destination register is determined by the execution mask on the send
instruction.

DWord | Bit Description
M5.7 [31:8 |Reserved (0)
70 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.
For Typed messages:

Format = U8

M5.6 31:8 | Reserved (0)

7:0 |Slot 6 Red
M5.5 31:8 | Reserved (0)
7:0 |Slot5 Red
M5.4 31:8 | Reserved (0)
7:0 |Slot4 Red
M5.3 31:8 | Reserved (0)
7:0 |Slot 3 Red
M5.2 31:8 | Reserved (0)
7:0 |Slot 2 Red
M5.1 [31:8|Reserved (0)
7:0 |Slot 1 Red
M5.0 [31:8|Reserved (0)
7:0 |Slot 0 Red

SIMD4x2 Read

A SIMD4x2 writeback message always consists of a single message register containing all four color
channels of each of the two slots. The channel mask bits as well as the execution mask on the send
instruction are used to determine which of the channels in the destination register are overwritten. If
any of the four execution mask bits for a slot is asserted, that slot is considered to be active. The active
channels in the channel mask will be written in the destination register for that slot. If the slot is inactive

Doc Ref # IHD-OS-VLV-Vol7-04.14 133

3D - Media - GPGPU

(I@ Look Inside’

(all four execution mask bits deasserted), none of the channels for that slot will be written in the
destination register.

DWord | Bit Description

wWO0.7 31.0 L .
Slot 1 Alpha: Specifies the value of the pixel's alpha channel.
Format = 32 bits raw data.

WO0.6 31:0|Slot 1 Blue

WO0.5 |31:0(Slot 1 Green

W04 |31:.0(Slot 1 Red

WO0.3 |31:0(Slot 0 Alpha

WO0.2 31:0|Slot 0 Blue

WO0.1 |31:0(Slot O Green

wWO0.0 31:0|Slot O Red

SIMD16 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the send instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

wo.7 310 Slot 7 Return Data: Specifies the value of the return data for slot 7.
Format = U32

WO0.6 |31:0(Slot 6 Return Data

WO0.5 |31:0(Slot 5 Return Data

WO0.4 |31:0(Slot 4 Return Data

WO0.3 |31:0(Slot 3 Return Data

WO0.2 |31:0(Slot 2 Return Data

WO0.1 |31:0(Slot 1 Return Data

WO0.0 |31:0(Slot O Return Data

W1.7 |31:0(Slot 15 Return Data

W1.6 |31:0(Slot 14 Return Data

WL1.5 |31:0(Slot 13 Return Data

W14 |31:0(Slot 12 Return Data

W13 |31:0(Slot 11 Return Data

W1.2 |31:0(Slot 10 Return Data

W1.1 |31:0(Slot 9 Return Data

W1.0 |31:0(Slot 8 Return Data

134

Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel' Look Inside” 3D - Media - GPGPU

SIMD16 Atomic Operation (AOP_CMPWRS8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the send instruction
indicates which channels in the destination registers are overwritten.

DWord | Bit Description

wo.7 310 Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

WO0.6 31:0|Slot 6 Return Data[31:0]

WO0.5 31:0|Slot 5 Return Data[31:0]

wWo0.4 31:0|Slot 4 Return Data[31:0]

WO0.3 31:0|Slot 3 Return Data[31:0]

WO0.2 31:0|Slot 2 Return Data[31:0]

WO0.1 31:0|Slot 1 Return Data[31:0]

WO0.0 31:0|Slot 0 Return Data[31:0]

W1.7 31:0|Slot 15 Return Data[31:0]

W1.6 31:0|Slot 14 Return Data[31:0]

W1.5 31:0|Slot 13 Return Data[31:0]

W14 31:0|Slot 12 Return Data[31:0]

W1.3 31:0(Slot 11 Return Data[31:0]

W1.2 31:0|Slot 10 Return Data[31:0]

Wi1.1 31:0|Slot 9 Return Data[31:0]

W1.0 31:0|Slot 8 Return Data[31:0]

W2 Slot 7:0 Return Data[63:32]

W3 Slot 15:8 Return Data[63:32]

SIMD8 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the send instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

wo.7 310 Slot 7 Return Data: Specifies the value of the return data for slot 7.

Format = U32

WO0.6 31:0|Slot 6 Return Data

WO0.5 31:0|Slot 5 Return Data

Wo0.4 31:0|Slot 4 Return Data

WO0.3 31:0|Slot 3 Return Data

WO0.2 31:0|Slot 2 Return Data

Doc Ref # IHD-OS-VLV-Vol7-04.14 135

3D - Media - GPGPU

(I@ Look Inside’

DWord | Bit Description
WO0.1 31:0|Slot 1 Return Data
WO0.0 31:0|Slot 0 Return Data

SIMD8 Atomic Operation (AOP_CMPWRS8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the send instruction

indicates which channels in the destination registers are overwritten.

DWord | Bit Description

Wo.7 310 Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.
Format = U32

WO0.6 31:0|Slot 6 Return Data[31:0]

WO0.5 31:0|Slot 5 Return Data[31:0]

WO0.4 31:0|Slot 4 Return Data[31:0]

WO0.3 31:0|Slot 3 Return Data[31:0]

WO0.2 31:0|Slot 2 Return Data[31:0]

WO0.1 31:0|Slot 1 Return Data[31:0]

WO0.0 31:0|Slot 0 Return Data[31:0]

W1.7 31:0|Slot 7 Return Data[63:32]

W1.6 31:0|Slot 6 Return Data[63:32]

W1.5 31:0|Slot 5 Return Data[63:32]

W14 31:0|Slot 4 Return Data[63:32]

W1.3 31:0|Slot 3 Return Data[63:32]

W1.2 31:0|Slot 2 Return Data[63:32]

W1.1 31:0|Slot 1 Return Data[63:32]

W1.0 31:0|Slot 0 Return Data[63:32]

SIMD4x2 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the send instruction indicates which
channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 31:0 | reserved — not written to GRF

WO0.6 31:0 | reserved — not written to GRF

WO0.5 31:0 | reserved — not written to GRF

wo0.4 |31:.0 g
Slot 1 Return Data: Specifies the value of the return data for slot 1.
Format = U32

WO0.3 31:0| reserved — not written to GRF

136

Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description
WO0.2 |31:0(reserved — not written to GRF

WO0.1 |31:0(reserved — not written to GRF

WO0.0 |31:0(Slot O Return Data

SIMD4x2 Atomic Operation (AOP_CMPWRS8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the send instruction
indicates which channels in the destination registers are overwritten.

DWord | Bit Description

WO0.7 |31:0(reserved — not written to GRF
WO0.6 |31:0(reserved — not written to GRF
WO0.5 31:0|Slot 1 Return Data: [63:32]
WO0.4 31:0|Slot 1 Return Data: [31:0]
WO0.3 |31:0(reserved — not written to GRF
WO0.2 31:0 | reserved — not written to GRF
WO0.1 31:0|Slot 0 Return Data: [63:32]
WO0.0 31:0|Slot 0 Return Data[31:0]

Message Descriptor

Bit

Description

13

Invalidate After Read Enable
only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a

performance hint indicating that the data will no longer be used to avoid writing back data to

memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12:11

Message sub-type:

00: OWord Block Read/Write
01: Unaligned OWord Block Read
10: OWord Dual Block Read/Write
11: HWord Block Read/Write

10:8

Block Size. Specifies the number of elements transferred see table below

Doc Ref # IHD-OS-VLV-Vol7-04.14 137

3D - Media - GPGPU (il'ltEl Look Inside”
i 1

r r r
1

00 01 10
Block Sze Oword Unadigned Oword Oword Dual Hword

1OWord, read o or | 1 OWord, read info or
writien from the low 128 bits|wrikten from the low 128 bils
000 of the destinalion register | of the destination register reserved reserved

{ 10Word, read o or | 1 OWord, read mio or
wrillen from the high 128 | written from the high 128
bits of the destination | bits of the destination

001 Tegster regster 1 Oword 1 HWord
" o010 2 GWords 2 OW¥ords reserved 7 Hword
"o 4 OWords 4 OWords 4 OWords 4 HWord
" 100 8 OWords 8 OWords reserved 8 HWord
i 101 reserved reserved resanved reserved
f 110 reserved reserved reserved reserved
T om reserved reserved reserved reserved

Message Header

DWord | Bit Description
MO0.7 [310

M0.6 |31.0

MO0.5 |31

HWord Read/Write Channel Mode:This field is only used for HWord read/write
messages.

0: Oword - Channel enables in effect at the time of send are interpreted such if one or
more are enabled, the read or write operation occurs on all four dwords.

1: Dword - Channel enables in effect at the time of the send are used as dword enables,
causing the read or write operation to occur only on the dwords whose corresponding
channel enable is set..

MO0.5 [30:0|Ignored

MO0.4 [31:0|Ignored (reserved for hardware delivery of binding table pointer)

MO0.3
MO.2 Block Offset 1.
Specifies the Byte offset of OWord Block 1 for OWord Dual reads
Format = U64
Dual OWord Range = [0,00007FFFFFFFFFFOR] or [FFFF800000000000,FFFFFFFFFFFFFFFOR]
MO0.1
MO.0 Block Offset 0.

Specifies the Byte offset of Block 0.
Format = U64

138 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

Unaliged OWord Range = [0,00007FFFFFFFFFFCh] or
[FFFF800000000000,FFFFFFFFFFFFFFFCh]

Dual OWord Range = [0,00007FFFFFFFFFFOR] or [FFFF800000000000,FFFFFFFFFFFFFFFOR]
OWord Range = [0,00007FFFFFFFFFFOh] or [FFFF800000000000,FFFFFFFFFFFFFFFOR]
HWord Range = [0,00007FFFFFFFFFEON] or [FFFF800000000000,FFFFFFFFFFFFFFEOh]

Message Payload (OWord Write)

For the write operation, the message payload consists of one, two, or four registers (not including the
header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

DWord| Bit Description

ML17:4 11270 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of

the destination, OWord[Offset] will appear in this location

M1.3:0 |127:0 | OWord[Offset]

M2.7:4 |127:0 | OWord[Offset+3]

M2.3:0 |127:0| OWord[Offset+2]

M3.7:4 |127:0 | OWord[Offset+5]

M3.3:0 |127:0| OWord[Offset+4]

M4.7:4 |127:0| OWord[Offset+7]

M4.3:0 |127:0 | OWord[Offset+6]

Writeback Message (OWord Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending
on the Block Size specified in the message. For the one-constant case, data is placed in either the high
or low half of the returned register depending on the half selected in Block Size. In this case, the other
half of the register is not changed.

DWord| Bit Description

WO.7:4 1127:0| aword[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of

the destination, OWord[Offset] will appear in this location

WO0.3:0 |127:0| OWord[Offset]

W1.7:4 |127:0| OWord[Offset+3]

W1.3:0 |127:0| OWord[Offset+2]

W2.7:4 |127:0| OWord[Offset+5]

W2.3:0 |127:0| OWord[Offset+4]

W3.7:4 |127:0| OWord[Offset+7]

W3.3:0 |127:0| OWord[Offset+6]

Doc Ref # IHD-OS-VLV-Vol7-04.14 139

3D - Media - GPGPU (il'ltEl' Look Inside”

Writeback Message (Unaligned OWord Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

DWord| Bit Description

WO.7:4 1270 OWordl = *(&OWordO0 + 1). If the block size is 1 OWord to be loaded into the high 128

bits of the destination, OWord0 will appear in this location

WO0.3:0 [127:0 | OWord0 = *Offset

W1.7:4 |127:0| OWord3 = *(&0OWord2 + 1)

W1.3:0 |127:0| OWord2 = *(&0OWord1 + 1)

W2.7:4 |127:0| OWord5= *(&0OWord4 + 1)

W2.3:0 [127:0 OWord4 = *(&0OWord3 + 1)

W3.7:4 |127:0| OWord7 = *(&0OWord6 + 1)

W3.3:0 [127:0 | OWord6 = *(&0OWord5 + 1)

Message Payload (Dual OWord Write)

For the write operation, the message payload consists of one or four registers (not including the header
or the first part of the payload) depending on the Block Size specified in the message.

DWord| Bit Description

M2.7:4 |127:0 | OWord[Offsetl]

M2.3:0 |127:0 | OWord[Offset0]

M3.7:4 |127:0| OWord[Offsetl+1]

M3.3:0 |127:0 | OWord[OffsetO+1]

M4.7:4 |127:0| OWord[Offsetl+2]

M4.3:0 |127:0| OWord[Offset0+2]

M4.7:4 |127:0 | OWord[Offsetl+3]

M4.3:0 |127:0 | OWord[Offset0+3]

Writeback Message (Dual Oword Read)

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

DWord| Bit Description

WO0.7:4 |127:0| OWord[Offsetl]

WO0.3:0 |127:0| OWord[Offset0]

W1.7:4 |127:0| OWord[Offsetl+1]

W1.3:0 |127:0| OWord[Offset0+1]

W2.7:4 |127:0 | OWord[Offsetl+2]

W2.3:0 |127:0| OWord[Offset0+2]

140 Doc Ref # IHD-OS-VLV-Vol7-04.14

(I@ Look Inside’

DWord

Bit

Description

W3.7:4

127:0

OWord[Offsetl+3]

W3.3:0

127:0

OWord[Offset0+3]

Message Payload (HWord Write)

The listing below illustrates the write payload for a message of block size = 4;

DWord

Bit

Description

M1.7:0

255:0

HWord[Offset]

M2.7:0

255:0

HWord[Offset+1]

M3.7:0

255:0

HWord[Offset+2]

M3.7:0

255:0

HWord[Offset+3]

Writeback Message (HWord Read)

3D - Media - GPGPU

The table below illustrates an example where 4 Hwords are read through a scratch block read.

DWord

Bit

Description

WO0.7:0

255:0

HWord[Offset]

W1.7:0

255:0

HWord[Offset+1]

W2.7:0

255:0

HWord[Offset+2]

W3.7:0

255:0

HWord[Offset+3]

Untyped Atomic Float Add Operation Message Descriptor

Bit

Description

13

Return Data Control
Specifies whether return data is sent back to the thread.

Format = Enable

12

SIMD Mode
Format = Ul
0: SIMD16
1: SIMD8

11

Data Size
This field controls the data size of the operation
Format = Ul
0: DWORD size
1: QWORD

10:8 | Reserved

Doc Ref # IHD-OS-VLV-Vol7-04.14

141

3D - Media - GPGPU (il'ltEl' Look Inside”

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,
where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)
calculations, but the corresponding slot on the surface must not be accessed.

DWord| Bit Description
MO0.7 [31:16 |Ignored
15:0

Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for
SIMD16 and SIMD8 messages. All 16 bits are used for SIMD16 messages. For untyped
SIMD8 messages, the low 8 bits of this field are used.

If the header is not delivered, this field defaults to all ones. The field is ignored for
SIMD4x2 messages.

M0.6 [31.0 (Ignored

MO0.4 [31:0 |Ignored (reserved for hardware delivery of binding table pointer)

M0.3 |31:.0 [Ignored

M0.2 |31:0 [Ignored

MO0.1 |31:0 [Ignored

MO0.0 |31:0 [Ignored

Message Payload

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible
address parameters are U and V (since SIMD16 is only supported with untyped messages). The number
of parameters required depends on the surface type being accessed. Each parameter takes two
message registers. Each parameter always takes a consistent position in the input payload. The length
field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this.

DWord | Bit Description

ML7 310 Slot 7 U Address

Specifies the U Address for slot 7.
Format = U32

M1.6 31:0|Slot 6 U Address

M1.5 31:0|Slot 5 U Address

M1.4 31:0|Slot 4 U Address

M1.3 31:0|Slot 3 U Address

M1.2 31:0|Slot 2 U Address

M1.1 31:0|Slot 1 U Address

142 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

M1.0 31:0|Slot 0 U Address

M2.7 31:0|Slot 15 U Address

M2.6 31:0|Slot 14 U Address

M2.5 31:0|Slot 13 U Address

M2.4 31:0|Slot 12 U Address

M2.3 31:0|Slot 11 U Address

M2.2 31:0|Slot 10 U Address

M2.1 31:0|Slot 9 U Address

M2.0 31:0|Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

SIMDS8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameters are U, V. The number of parameters required depends on the surface type being accessed.
Each parameter takes one message register. Each parameter always takes a consistent position in the
input payload. The length field can be used to send a shorter message, but intermediate parameters
cannot be skipped as there is no way to signal this.

DWord | Bit Description

ML7 310 Slot 7 U Address

Specifies the U Address for slot 7.
Format = U32

M1.6 31:0|Slot 6 U Address

M1.5 31:0|Slot 5 U Address

M1.4 31:0|Slot 4 U Address

M1.3 31:0|Slot 3 U Address

M1.2 31:0|Slot 2 U Address

M1.1 31:0|Slot 1 U Address

M1.0 31:0|Slot 0 U Address

M2 Slots 7:0 V Address

SIMD16/SIMD8 DWORD Source Payload (Write message only)

Either one or two additional registers (depending on the SIMD mode) of payload contain the sources to
be used.

DWord | Bit Description

M3.7 31:0 | DWord[slot7]

Doc Ref # IHD-OS-VLV-Vol7-04.14 143

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

M3.6 31:0 | DWord[slot6]

M3.5 31:0 | DWord[slot5]

M3.4 31:0 | DWord[slot4]

M3.3 31:0 | DWord[slot3]

M3.2 31:0 | DWord[slot2]

M3.1 31:0 | DWord[slot1]

M3.0 31:0 | DWord[slot0]

M4.7 310 DWord[slot15]. This message register is included only for SIMD16

M4.6 31:0| DWord[slot14]

M4.5 31:0 | DWord[slot13]

M4 .4 31:0| DWord[slot12]

M4.3 31:0| DWord[slot11]

M4.2 31:0 | DWord[slot10]

M4.1 31:0 | DWord[slot9]

M4.0 31:0 | DWord[slot8]

SIMD16/SIMD8 QWORD Source Payload (Write message only)

Either two or four additional registers (depending on the SIMD mode) of payload contain the sources to
use.

DWord | Bits Description

M3.7 63:0 | QWord[slot3]

M3.6

M3.5 63:0 | QWord[slot2]

M3.4

M3.3 [63:0 | QWord[slotl]

M3.2

M3.1 63:0 | QWord[slot0]

M3.0

M4.7 163:0| QWord][slot7]

M4.6

M4.5 63:0 | QWord[slot6]

M4.4

M4.3 63:0 | QWord[slot5]

M4.2

M4.1 63:0 | QWord[slot4]

M4.0

M5 Qword[slot11:slot8]. This register is only included for SIMD16.
Mé Qword[slotl15:slot12]. This register is only included for SIMD16.

144 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

Scratch Block Read/Write

This message performs a read or write operation of between 1 and 4 simd-8 registers to a Hword
aligned offset to scratch memory. The Hword offset into the scratch memory is provided in the message
descriptor, allowing a single instruction read|write block operation in a single source instruction. 12b are
provided for the Hword offset, allowing addressing of 4K Hword locations (128KB).

Two modes of channel-enable interpretation are provided: Dword, which support a simd-8 or simd-16
dword channel-serial view of a register, and Oword, which supports a simd-4x2 view of a register. For
operations under conditions of simd-32 processing, two messages should be used, with one of them
indicating H2 to select the upper 16b of execution mask.

This message type can only be used with stateless model memory access. Thus binding table entry OxFF
is hard-coded into the execution of this message.

Applications:
scratch space reads/writes for register spill/fill operations.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth (W1, W3 or M2, M4).

For Dword mode, the execution mask delivered with the message dictates dword-based control of read
or write operations. For Oword mode, any one or more asserted bits within the Oword's corresponding
execution mask nibble causes read or write operations to occur across all four dwords of the Oword
regardless of the setting of any particular dword's bit.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor

Bits Description

17 |[Operation Type: 0 = Read, 1 = write

16
Channel Mode:
0: Oword — Channel enables in effect at the time of send are interpreted such if one or more are
enabled, the read or write operation occurs on all four dwords.
1: Dword — Channel enables in effect at the time of the send are used as dword enables, causing
the read or write operation to occur only on the dwords whose corresponding channel enable is
set..

15

Invalidate after read — Indicates the cache line should invalidated after the read.
1: Invalidate cache line

0: no Invalidate

14 |Reserved - MBZ

13:12 Block Size - indicates the number of SIMD-8 registers to be read|written.

Doc Ref # IHD-OS-VLV-Vol7-04.14 145

3D - Media - GPGPU (il'ltEl' Look Inside”

Bits Description

11: 4 registers
10: <reserved>
01: 2 registers
00: 1 register

110 Offset — A 12b Hword offset into the memory Immediate Memory buffer as specified by binding

table OxFF.

Message Header

DWord| Bit Description

MO0.7 [31:16|Ignored

15:0 |[Ignored

MO0.6 [31:.0 |Ignored

MO.5 310 Immediate Buffer Base Address. Specifies the surface base address for messages in

which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This
pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

M0.4 [31.0 (Ignored

MO0.3 [31.0 (Ignored

MO0.2 [31:.0 |Ignored

MO0.1 [31:.0 |Ignored

MO0.0 [31:.0 |Ignored

Message Payload (Write)

The listing below illustrates the write payload for a message of block size = 4;

DWord| Bit Description
M1.7:0 |255:0 | HWord[Offset]
M2.7:0 [255:0|HWord[Offset+1]
M3.7:0 [255:0| HWord[Offset+2]
M3.7:0 [255:0|HWord[Offset+3]

Message Payload (Read)

Only required a message header.

Writeback Message (Read)

The table below illustrates an example where 4 Hwords are read through a scratch block read.

|DWord| Bit| Description |

146 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord| Bit Description

WO0.7:0 |255:0| HWord[Offset]

W1.7:0 |255:0| HWord[Offset+1]

W2.7:0 |255:0| HWord[Offset+2]

W3.7:0 |255:0| HWord[Offset+3]

Memory Fence

A memory fence message issued by a thread causes further messages issued by the thread to be
blocked until all previous messages issued by the thread to that data port (data cache or render cache)
have been globally observed from the point of view of other threads in the system. This includes both
read and write messages.

Data is called globally observable by other threads in the system when the data values written to the
memory or data cache will now be returned by other threads' read messages when using that same
data port. To read globally observable data that was written to a different data port, the thread issuing
the data port read message needs to be flush its cache (using a memory fence or pipe control) after the
program knows that the writing thread issued the memory fence that ensured the global observability.

The memory fence message has an optional commit writeback message. The commit will be sent only
after all previous messages by this thread to that data port have been globally observed. This writeback
can be used by threads to ensure that a fence is honored across both data ports, as each data port's
memory fence only honors the corresponding data port messages.

The untyped UAV support is provided by the data cache, while typed UAV support is provided by the
render cache. In order for a thread to ensure both untyped and typed UAV are visible, the thread would
issue a memory fence message to both data ports with Commit Enable enabled on both. It would then
insert an instruction that sources the destination registers from both memory fences before any further
data port messages are sent.

Programming Note:

The memory fence operation is not required to guarantee SLM memory access ordering between
multiple threads in a thread group for the sequence of a write message, a barrier message, and then a
read message. (This optimization is due to implementation details of the organization of threads in a
thread group, SLM memory, data port messages and gateway barrier messages.) Beware that the
memory fence is still required for non-SLM memory ordering and observability.

Message Header

The fence messages consist of a single phase, and is completely ignored. The message length is always
one.

DWord | Bit | Description

MO0.7:0 |31:0(|Ignored

Doc Ref # IHD-OS-VLV-Vol7-04.14 147

3D - Media - GPGPU (il'ltEl' Look Inside”

Writeback Message

The writeback message is only sent if Commit Enable in the message descriptor is set. The destination
register is not modified. Memory fence messages without the Commit Enable set will not return
anything to the thread (response length is 0 and destination register is null).

DWord | Bit | Description

W0.7:0 Reserved

Pixel Data Port

DataPort Render Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given
application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other
purposes.

The cache to use is selected by the shared function accessed.

Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets
support a large set of surface formats (refer to surface formats table in Sampling Engine for details) with
hardware conversion from the format delivered by the thread. The render target message also causes
numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which
normally causes a read of the render target), and other functions. These functions are covered in the
Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned
by the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-
effects that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of
reads and writes to the same pixel does not occur.

Message Sequencing Summary

This section summarizes the sequencing that occurs for each legal render target write message. All
messages have the MO and M1 header registers if the header is present. If the header is not present, all
registers below are renumbered starting with MO where M2 appears. All cases not shown in this table
are illegal.

Key:

s0O, s1 = source 0, source 1
1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

oM = oMask

148 Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

3D - Media - GPGPU

Sourc
e Sourc
oMas | Dept | eO0
Messa k h |Alpha
ge | Prese | Prese | Prese M1l | M1l |M1| M1
Type nt nt nt M2 M3 M4 M5 M6 M7 M8 M9 (M10| 1 2 3 4
000 0 1/0R |3/2R |1/0G |3/2G |1/0B |3/2B [1/0A [3/2A
000 1/0s |3/2s |1/0R [3/2R |1/0G |3/2G (1/0B |3/2B |1/0A |3/2
0A 0A A
000 0 1 0 1/0R |3/2R [1/0G |3/2G [1/0B |3/2B [1/0A |3/2A |1/0s |[3/2s
Z Z
000 0 1 1 1/0s |3/2s |1/0R |3/2R |1/0G |3/2G [1/0B {3/2B |1/0A [3/2 |1/0s|3/2s
0A 0A A Z 4
000 1 0 oM |1/0R |3/2R |1/0G |3/2G |1/0B |3/2B |1/0A |3/2A
000 1 1/0s |3/2s |oM |[1/0R [3/2R |1/0G |3/2G |[1/0B |3/2B [1/0 |3/2
oA 0A A A
000 1 1 0 oM [1/0R |3/2R |1/0G |3/2G |1/0B |3/2B |1/0A |3/2A |1/0s|3/2s
Z Z
000 1 1 1 1/0s |3/2s |oM [1/0R |3/2R [1/0G [3/2G [1/0B |3/2B [1/0 |3/2 |1/0s|3/2s
0A 0A A A Z Z
001 0 0 0 RGB
A
001 1 0 0 oM [RGB
A
010 0 0 0 1/0s |1/0s |1/0s [1/0s |1/0s |1/0s [1/0s |[1/0s
OR 0G 0B 0A 1R 1G 1B 1A
010 0 1 0 1/0s (1/0s |1/0s |1/0s |1/0s [1/0s |1/0s [1/0s |1/0s
OR 0G 0B 0A 1R 1G 1B 1A Z
010 1 0 0 oM |1/0s |1/0s |1/0s |1/0s |1/0s |1/0s |1/0s |1/0s
OR 0G 0B 0A 1R 1G 1B 1A
010 1 1 0 oM [1/0s |1/0s |1/0s |1/0s |1/0s |1/0s |1/0s [1/0s |1/0s
OR 0G 0B 0A 1R 1G 1B 1A Z
011 0 0 0 3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s
OR 0G 0B 0A 1R 1G 1B 1A
011 0 1 0 3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s
OR 0G 0B 0A 1R 1G 1B 1A Z
011 1 0 0 oM |3/2s |3/2s |3/2s |3/2s [3/2s |3/2s |3/2s |3/2s
OR 0G 0B 0A 1R 1G 1B 1A
011 1 1 0 oM [3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s |3/2s
OR 0G 0B 0A 1R 1G 1B 1A Z
100 0 0 0 R G B A
100 0 0 1 sOA (R G B A
100 0 1 0 R G B A sZ
100 0 1 1 sOA (R G B A sZ
Doc Ref # IHD-0S-VLV-Vol7-04.14 149

3D - Media - GPGPU (il'ltEl' Look Inside”

Sourc
e |Sourc

oMas | Dept | eO0

Messa k h |Alpha

ge [Prese |Prese | Prese M1l | M1 |M1| M1
Type nt nt nt M2 (M3 (M4 | M5 | M6 (M7 | M8 | M9 |[M10| 1 2 3 4
100 1 0 0 oM |R G B A

100 1 0 1 sOA |oM (R G B A

100 1 1 0 oM |R G B A sZ

100 1 1 1 sOA |oM (R G B A sZ

Single Source

The normal render target messages are single source. There are two forms, SIMD16 and SIMDS,
intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each
of the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information
can also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of
SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

The single source message will not cause a write to the render target if Dual Source Blend Enable in
3DSTATE_WM is enabled. However, if Last Render Target Select is set, the message will still cause pixel
scoreboard clear and depth/stencil buffer updates if enabled.

Dual Source

The dual source render target messages only have SIMD8 forms due to maximum message length
limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each
message contains two colors (4 channels each) for each pixel in the message payload. In addition to the
first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in
the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and antialias
alpha information can also be delivered with these messages.

Each dual source message delivered clears the corresponding pixel scoreboard bits if the Last Render
Target Select bit in the message descriptor is set.

The dual source message reverts to a single source message using source 0 if Dual Source Blend
Enable in 3DSTATE_WM is disabled.

Replicate Data

The replicate data render target message is used for fast clear functionality in cases where the color
data for each pixel is identical. This message performs better than the other messages due to its smaller
message length. This message does not support depth, stencil, or antialias alpha data being sent with it.
This message must target only tiled memory. Access of linear memory using this message type is
UNDEFINED. The depth buffer can be cleared through the early depth function in conjunction with a
pixel shader using this message. Refer to the Windower chapter for more details on the early depth
function.

150 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last
Render Target Select bit is set in the message descriptor.

Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data messages. Each render
target is accessed with a separate Render Target Write message, each with a different surface indicated
(different binding table index). The depth buffer is written only by the message(s) to the last render
target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

MRT is not supported when one or more RTs have this surface formats: YCRCB_SWAPUVY,
YCRCB_SWAPUV, YCRCB_SWAPY, YCRCB_NORMAL
Subspan/Pixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader
dispatch depending on the number of samples and message size. This table applies to all devices.
However NumSamples = 4X is supported only on . NumSamples = 8X is supported.

Pixels are numbered as follows within a subspan:
0 = upper left

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Slot Mapping
Dispatch Size | Num Samples (SSPI = Starting Sample Pair Index)

smp32 | Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]
Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]
Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]
Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]
Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Doc Ref # IHD-OS-VLV-Vol7-04.14 151

3D - Media - GPGPU (il'ltEl' Look Inside”

Slot Mapping
Dispatch Size | Num Samples (SSPI = Starting Sample Pair Index)

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]
Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]
Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]
Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

ax Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]
Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]
Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]
Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]
Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

SIMD16 8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]
Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]
Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]
Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]
Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]
Slot[11:8] = Subspan([2].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] = Subspan[1].Pixel[3:0].Sample[O]
Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Restriction:

152 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16
messages, the following must hold:

All the slots (as described above) must have a corresponding render target write irrespective of the
slot's validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS
thread must send two SIMDS8 render target writes to cover all the slots.

PS thread must send SIMD render target write messages with increasing slot numbers. For example,
SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the first SIMD8 render
target write must send Slot[7:0] and the next one must send Slot[15:8].

Message Descriptor

This section contains descriptors for the render target read and write functions.

Message Descriptor - Render Target Write

Message Descriptor - Render Target Read

Bit Description

13 | Reserved.

12 | Reserved.

1 Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the antialias alpha, multisample coverage mask, and if the header is not
present also includes the X/Y addresses and pixel enables. For 8- and 16-pixel dispatches,
SLOTGRP_LO must be selected on every message.

0: SLOTGRP_LO:choose bypassed data for slots 15:0.
1: SLOTGRP_HIL:choose bypassed data for slots 31:16.

10 | Reserved.

9 [Reserved.

Message Type. This field specifies the type of render target message.
0: SIMD16:SIMD16 message.
1: SIMDS8_LO use slots 7:0.

Note: the above slots indicated are within the 16 slots selected by Slot Group Select. If
SLOTGRP_HI is selected, the SIMD8 message types above reference slots 23:16 or 31:24 instead of
7:0 or 15:8, respectively.

Message Header

The render target write message has a two-register message header.

Message Header

DWord | Bit Description

Doc Ref # IHD-OS-VLV-Vol7-04.14 153

3D - Media - GPGPU (il'ltEl Look Inside”

DWord | Bit Description
MO0.7 31.0
MO0.6 31.0
MO0.5 [31:8|Ignored
0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.
MO0.4 [31:0|Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 [31:0|Ignored
MO0.2 31.0] . . T
Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by Kkill
instruction activity in the pixel shader. This mask is used to control actual writes to the
color buffer. This field is ignored by the read message, all pixels are always returned.
The bits in this mask correspond to the pixels as follows:
0|1 (4 |5 (16]|17|20|21
7 |18]|19]22]23
9 |12(13|24(25|28(29
10({11|14(15|26(27|30(31
MO0.1 31.0 .
Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row
aligned (Bits 1:0 MBZ).
Format = S31
MO0.0 31.0

X offset. The X offset of the upper left corner of the block into the surface. This is a pixel
offset assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

Writeback Message (Read)

A SIMD16 writeback message consists of up to 8 destination registers. If a channel/component is not
present in the RT format, the corresponding GRF is filled with zeroes or 1.0 in float/int depending on
whether RGB or Alpha are disabled.

DWord

Bits

Description

Wo0.7

31:0

Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

WO0.6

310

Slot 6 Red

WO0.5

310

Slot 5 Red

Wo0.4

310

Slot 4 Red

WO0.3

31:0

Slot 3 Red

154

Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord

Bits

Description

WO0.2

310

Slot 2 Red

WO0.1

310

Slot 1 Red

WO0.0

310

Slot 0 Red

WL1.7

310

Slot 15 Red

W1.6

310

Slot 14 Red

WL.5

310

Slot 13 Red

W14

310

Slot 12 Red

W1.3

310

Slot 11 Red

W1.2

31:0

Slot 10 Red

w11l

31:0

Slot 9 Red

W1.0

31:0

Slot 8 Red

W2

Slots 7:0 Green

W3

Slots 15:8 Green

w4

Slots 7:0 Blue

W5

Slots 15:8 Blue

W6

Slots 7:0 Alpha

W7

Slots 15:8 Alpha

3D - Media - GPGPU

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being filled with zeroes or 1.0 in float/int depending
on whether RGB or Alpha are disabled.

DWord

Bits

Description

Wo0.7

31:0

Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

WO0.6

31:0

Slot 6 Red

WO0.5

31:0

Slot 5 Red

Wo0.4

31:0

Slot 4 Red

WO0.3

31:0

Slot 3 Red

WO0.2

31:0

Slot 2 Red

WO0.1

31:0

Slot 1 Red

WO0.0

31:0

Slot 0 Red

w1l

Slots 7:0 Green

W2

Slots 7:0 Blue

W3

Slots 7:0 Alpha

Heade

r for SIMD8_IMAGE_WRITE

DWord

Bit

Description

Doc Ref # IHD-OS-VLV-Vol7-04.14

155

3D - Media - GPGPU (il'ltEl Look Inside”

DWord| Bit Description
MO0.7 | 31:0
MO0.6 | 310
MO0.5 |31:10|Ignored
98 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng
events.
Format: Reserved for HW Implementation Use.

70 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

MO0.4 | 31:0 |Ignored (reserved for hardware delivery of binding table pointer)
MO0.3 | 31:0 |Ignored
MO0.2 | 31:3 |Ignored

20 Render Target Index. Specifies the render target index that will be used to select blend

state from BLEND_STATE.
Format = U3

M0.1 | 31:6 . - . .
ColorCalculatorState Pointer. Specifies the 64-byte aligned pointer to the color
calculator state. This pointer is relative to the General State Base Address.
Format = GeneralStateOffset[31:6]
For SIMD8_IMAGE_WR message under normal GPGPU usage model, SW is recommended
to program a dummy color-calc state such that all operations controlled by this state are
disabled.

5:0 |Ignored

MO0.0 |31 |Ignored
30:27|,. L . . .
Viewport Index. Specifies the index of the viewport currently being used.
Format = U4
Range = [0,15]
SIMD8_IMAGE_WR message type this field is ignored by hardware.

26:16 - . .
Render Target Array Index. Specifies the array index to be used for the following
surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]
SURFTYPE_2D: specifies the array index. Range = [0,511]
SURFTYPE_3D: specifies the z or r coordinate. Range = [0,2047]
SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]
156 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord| Bit Description

SURFTYPE_BUFFER: must be zero.

face | Render Target Array Index

+X

-X

0
1
+y |2
3
4
5

Yy

+Z

-Z

Format = Ull

The Render Target Array Index used by hardware for access to the Render Target is
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of
the range between Minimum Array Element and Depth. For cube surfaces, a depth
value of 5 is used for this determination.

For SMD8_IMAGE_WRITE :
For SURFTYPE_2D, this field must be 0.
For SURFTYPE_3D, this field may not be 0 for "Write-3D-Image" operation.

15:8 |Ignored

70 Pixel Maks for SIMD8 messages.

1: Pixel is enabled

0: Pixel is disabled , in this case the corresponding (x,y) should be ignored by hardware.

M1.7 |31:16|Y7: y-coordinate for pixel 7
Format = Ul6

15:0 | X7: x-coordinate for pixel 7
Format = U16

M1.6 |31:16|Y6: y-coordinate for pixel 6
Format = Ul6

15:0 | X6: x-coordinate for pixel 6
Format = U16

M1.5 |31:16]|Y5: y-coordinate for pixel 5
Format = Ul6

15:0 | X5: x-coordinate for pixel 5
Format = U16

M1.4 |31:16|Y4: y-coordinate for pixel 4
Format = Ul6

15:0 | X4: x-coordinate for pixel 4
Format = U16

M1.3 |31:16]|Y3: y-coordinate for pixel 3

Doc Ref # IHD-OS-VLV-Vol7-04.14 157

3D - Media - GPGPU

(I@ Look Inside’

DWord

Bit

Description

Format = Ul6

15:0

X3: x-coordinate for pixel 3
Format = U16

M1.2

31:16

Y2: y-coordinate for pixel 2
Format = U16

15:0

X2: x-coordinate for pixel 2
Format = Ul6

M1.1

31:16

Y1: y-coordinate for pixel 1
Format = U16

15:0

X1: x-coordinate for pixel 1
Format = U16

M1.0

31:16

YO: y-coordinate for pixel O
Format = Ul6

15:0

X0: x-coordinate for pixel 0
Format = U16

Source 0 Alpha Payload

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if
present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are not
supported for dual source messages.

DWord | Bit Description
M2.7 1310 Source 0 Alpha for Slot 7
Format = IEEE_Float
This and the next register is only included if Source 0 Alpha Present bit is set.
M2.6 [31:0(Source 0 Alpha for Slot 6
M2.5 [31:0Source 0 Alpha for Slot 5
M2.4 [31:0(Source 0 Alpha for Slot 4
M2.3 [31:0(Source 0 Alpha for Slot 3
M2.2 [31:0(Source 0 Alpha for Slot 2
M2.1 [31:0(Source 0 Alpha for Slot 1
M2.0 [31:0(Source 0 Alpha for Slot 0
M3.7 [31:0Source 0 Alpha for Slot 15
M3.6 [31:0(Source 0 Alpha for Slot 14
M3.5 [31:0(Source 0 Alpha for Slot 13
M3.4 [31:0(Source 0 Alpha for Slot 12
M3.3 [31:0(Source 0 Alpha for Slot 11
M3.2 [31:0(Source 0 Alpha for Slot 10
M3.1 [31:0(Source 0 Alpha for Slot 9
158

Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

M3.0 [31:0(Source 0 Alpha for Slot 8

oMask Payload

The oMask payload, if present, follows source 0 alpha. The value of p depends on whether the header
and source 0 alpha are present.

Sample n for that pixel will be killed (not written to the render target or depth buffer) if bit n of the
oMask is zero. Bits numbers where n is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the Message Type
encoding.

DWord| Bit Description

Mp.7 3116 oMask for Slot 15

Format = 16-bit mask

This register is only included if oMask Present bit is set.

15:0 |[oMask for Slot 14

Mp.6 [31:16|oMask for Slot 13

15:0 |oMask for Slot 12

Mp.5 [31:16|oMask for Slot 11

15:0 [oMask for Slot 10

Mp.4 |31:16|oMask for Slot 9

15:0 |[oMask for Slot 8

Mp.3 [31:16|oMask for Slot 7

15:0 |oMask for Slot 6

Mp.2 |31:16|oMask for Slot 5

15:0 |oMask for Slot 4

Mp.1l |31:16|oMask for Slot 3

15:0 |oMask for Slot 2

Mp.0 |31:16|oMask for Slot 1

15:0 |oMask for Slot 0

Color Payload: SIMD16 Single Source

Color Payload

This payload is included if the Message Type is SIMD16 single source. The value of m depends on
whether the header, source 0 alpha, and oMask are present.

DWord | Bit Description

Mm.7 310 Slot 7 Red. Specifies the value of the slot's red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being

Doc Ref # IHD-OS-VLV-Vol7-04.14 159

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.6 31:0(Slot 6 Red
Mm.5 31:0(Slot 5 Red
Mm.4 31:0(Slot 4 Red
Mm.3 31:0(Slot 3 Red
Mm.2 31:0(Slot 2 Red
Mm.1 31:0(Slot 1 Red
Mm.O 31:0(Slot O Red
M(m+1).7(31:0|Slot 15 Red
M(m+1).6|31:0|Slot 14 Red
M(m+1).5(31:0(Slot 13 Red
M(m+1).4|31:0(Slot 12 Red
M(m+1).3|31:0|Slot 11 Red
M(m+1).2(31:0|Slot 10 Red
M(m+1).1{31:0Slot 9 Red
M(m+1).0[31:0Slot 8 Red
M(m+2) .. .
Slot[7:0] Green. See Mm definition for slot locations
M(m+3) . .
Slot[15:8] Green. See M(m+1) definition for slot locations
M(m-+4) Slot[7:0] Blue. See Mm definition for slot locations
M e .
(m-+3) Slot[15:8] Blue. See M(m+1) definition for slot locations
M(m-+6) Slot[7:0] Alpha. See Mm definition for slot locations
M 7 e .
(m+7) Slot[15:8] Alpha. See M(m+1) definition for slot locations

Color Payload: SIMDS8 Single Source

This payload is included if the Message Type is SIMDS8 single source or SIMD8 Image Write. The value of
m depends on whether the header, source 0 alpha, and oMask are present.

DWord | Bit Description
Mm.7 310 Slot 7 Red. Specifies the value of the slot's red component.
Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.6 |31:0|Slot 6 Red
Mm.5 |31:0|Slot 5 Red
160 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

Mm.4 31:0(Slot 4 Red

Mm.3 31:0(Slot 3 Red

Mm.2 31:0(Slot 2 Red

Mm.1 31:0(Slot 1 Red

Mm.0 31:0(Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations
M(m+2) Slot[7:0] Blue. See Mm definition for slot locations
M(m+3)

Slot[7:0] Alpha. See Mm definition for slot locations

Color Payload: SIMD16 Replicated Data

This payload is included if the Message Type specifies a single source message with replicated data.
One set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data; oMask is also legal with this message. The registers for depth,
stencil, and antialias alpha data cannot be included with this message, and the corresponding bits in the
message header must indicate that these registers are not present.

The value of m depends on whether the header and oMask are present.

Note: This message is allowed only on tiled surfaces.

DWord | Bits Description

Mm.7:4 [31:0 [Reserved

Mm.3 310 Alpha. Specifies the value of the alpha channel for all slots.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.2 [31:0(Blue

Mm.1 |31:0|Green

Mm.0 [31:0(Red

Color Payload: SIMD8 Dual Source

This payload is included if the Message Type specifies dual source message. The value of m depends
on whether the header, source 0 alpha, and oMask are present.

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord | Bit Description

Mm7 1310|510t 7 Source 0 Red. Specifies the value of the slot's red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Doc Ref # IHD-OS-VLV-Vol7-04.14 161

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

Mm.6 |31:0(Slot 6 Source 0 Red

Mm.5 31:0|Slot 5 Source 0 Red

Mm.4 |31:0(Slot 4 Source 0 Red

Mm.3 31:0|Slot 3 Source 0 Red

Mm.2 31:0 | Slot 2 Source 0 Red

Mm.1 31:0|Slot 1 Source 0 Red

Mm.0 |31:0(Slot 0 Source 0 Red

M(m+1) Slot[7:0] Source 0 Green. See Mm definition for slot locations
M(m-+2) Slot[7:0] Source 0 Blue. See Mm definition for slot locations
M(m+3) Slot[7:0] Source 0 Alpha. See Mm definition for slot locations
M(m-+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations
M(m+3) Slot[7:0] Source 1 Green. See Mm definition for slot locations
M(m-+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations
M(m+7)

Slot[7:0] Source 1 Alpha. See Mm definition for slot locations

Total Color Control (TCC)

TCC adjusts the color saturation level of the input image based on six anchor colors (Red, Green, Blue,
Magenta, Yellow, and Cyan). The TCC algorithm operates on the UV-color components in the YUV color
space on a per-pixel basis.

Input and output pixels are in the YUV444 12bpc format. The input to the TCC block is:

e U and V color components (10 bit)
e Skin-tone detection value (5 bit)
e External control parameters

The output of the TCC block is:
e Updated U and V values (10 bit)

The TCC block includes three sub-blocks: Angle_Calculator, Saturation_Factor_Calculator,
UV_Modification.

Angle_Calculator

This sub-block computes the color hue angle, 6, in radians (10 bit approximation with maximal error of
0.005 rad).

Saturation_Factor _Calculator

162 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE' Look Inside” 3D - Media - GPGPU

This sub-block uses the angle 6 to find the corresponding anchor colors and calculates the
multiplicative saturation factor in 8-bit per pixel.

This block requires several external input parameters such as:

= BaseColorl, ..., BaseColor6 — Six basic user-defined colors (anchor colors)
= SatFactorl, ..., SatFactor6 — Six user-defined saturation factors for anchor colors

» ColorTransitSlopel2, ..., ColorTransit61 — Six calculation results of 1/(BaseColorX — BaseColorY) for
anchor colors

= ColorBiasl,..., ColorBias6 — Six color biases for anchor colors
= STDscore — Skin-Tone Detection score (from the STD/E block)

There are four intermediate saturation factors, SFs1, SFs2, SFs3, and SFs4. The final saturation factor
SFfinal is equal to SFs4.

The first saturation factor SFsl is computed from the external input parameters (SatFactori, BaseColori,
ColorTransitSlopel, ColorBiasi) and the color hue angle 6.

Computation of the saturation factor SFs2 involves (UVMaxColor, Inv_UVMaxColor) where UVMaxColor
is the maximum (and legal) absolute UV values, which in the case of YUV color space equals 448 in 10-
bit representation. Inv_UVMaxColor is the inverse calculation of UVMaxColor , that is, 1/UVMaxColor.

The third saturation factor SFs3 involves CLF which is Color Limiting Factor and ranges from 0 to 1. CLF
is computed using a threshold value UV_Threshold.

The last and forth saturation factor SFs4 considers the skin-tone pixels and a threshold value
STE Threshold.

UV Modification
The input UV pixels are multiplied by the saturation factor SFfinal in this sub-block.

The calculation of the modified output Unew, and V.., values are:

Unew = U * SFFinal
View V * SFfinal

where (U, V) are the input color components.

ProcAmp

The PROCAMP block modifies the brightness, contrast, hue and saturation of the input image in YUV
color space.

Input and output pixels are in the YCbCr 444 12bpc (bits per channel) format. Precision=12.

Doc Ref # IHD-OS-VLV-Vol7-04.14 163

3D - Media - GPGPU (il'ltEl' Look Inside”

BitPrag
=T alcula
-l c te

Offsets
) ‘ FF ¥ Calculation —
Subtract ™ >
ubtrac .
Offsets - Add Oifsets Clipping
- ! - . - -
L— UV Calculation —— out. Vot Jout

Y Processing:

An offset of 256 (that is, 16 in 8bpc) is subtracted from the 12-bit Y values to position the black level at
zero. This removes the DC offset so that adjusting the contrast does not vary the black level. Since Y
values may be less than 256, negative Y values should be supported at this point. Contrast is adjusted
by multiplying the YUV pixel values by a constant. If U and V are adjusted, a color shift will result
whenever the contrast is changed. The brightness property value is added (or subtracted) from the
contrast adjusted Y values; this is done to avoid introducing a DC offset due to adjusting the contrast.
Finally the offset 256 is added back to reposition the black level at 256.

The equation for processing of Y values is:
Yout®™ = ((Yin-256) x C) + B + 256,

where C is the Contrast adjustment value and B is the Brightness adjustment value.
UV Processing:

An offset of 2048 (that is, 128 in 8bpc) is subtracted from the 12-bit U and V values. The hue adjustment
is implemented by combining the U and V input values together as in:

Uout®™ = (Uin-2048) x Cos(H) + (Vin-2048) x Sin(H)
Vout® = (Vin-2048) x Cos(H) — (Uin-2048) x Sin(H)

where H represents the desired Hue angle; Saturation is adjusted by multiplying the U and V input
values by a constant S.

Finally, the offset value 2048 is added back to both U and V.

The combined processing of Hue, Saturation and Contrast on the UV data is:

Uout®™ = (((Uin-2048) x Cos(H) + (Vin-2048) x Sin(H)) x C x S) + 2048
Vout® = (((Vin-2048) x Cos(H) - (Uin-2048) x Sin(H)) x C x S) + 2048

where C is the contrast, H is Hue angle and S is the Saturation.

The multiplication factors Cos(H)x*Cx*S and Sin(H)x*Cx*S are programmed by the parameters Cos_c_s
and Sin_c_s.

Color Space Conversion

The CSC block enables linear conversion between different color spaces such as YCbCr and RGB using
vector shifts and matrix multiplication.

164 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

The CSC algorithm is a linear coordinate transformation, comprising of the following steps:

1. Shift the input color coordinate
2. Multiply by 3x3 matrix
3. Shift the output color coordinate

The formula representation of the 3 steps is:

vour 1Y (a1l 212 413 (win 1490 1) {u0 1
vout 2| =| 221 422 223 [*{ vin 24+v0 2 |+| w0 2
vour 3] |31 432 233) |vin 3490 3] |u0 3

where

» aij are the 3x3 matrix elements [CO, C1, C2, C3, C4, C5, C6, C7, C8] in S2.10

» vin_i are the color components of the input pixel in U12

= vout_i are the color components of the output pixel in U12

= v0_i are the input offset vector elements [Offset_in_1, Offset_in_2, Offset_in_3] in S10

» u0_1_i are the output offset vector elements [Offset_out_1, Offset_out 2, Offset_out_3] in S10

The output pixel values are clipped to ensure that each color component is within the valid range.
Color Gamut Compression

Background of Color Gamut Compression

While most photography today complies with the sRGB standard color space, which covers around 72%
of the color perceived by humans, this 72% content looks incorrect/unnatural on wide gamut displays,
which can extend more than 100%. Therefore, a gamut mapping (GM) algorithm is required to adjust
when the input gamut range is different from the output gamut range such as an input sRGB color
space displayed on a wide gamut display, or to adjust wide gamut content to display on traditional
lower gamut displays.

The easiest compression method applied to displaying wider gamut content on lower gamut displays is
to clip the out of range primary values to the valid range (i.e., 0-1). Although this simple clipping
procedure leads to acceptable visual appearance in most cases, loss of color depth can be observed in
the video containing out-of-range pixels. The reason behind this effect should be the uniform
quantization process applied to out-of-range values (e.g., two distinct out-of-range red colors are
mapped to the same boundary red color). Moreover, the simple clipping method treats each color
channel independently. This may lead to unexpected perceptual loss since the composite ratios of three
primaries have been changed. An approach which takes these two factors into account while scaling
down the out of range values can possibly maintain the detail information of the image.

Input and output pixel is 444 format and 12bits per channel.

Usage Models
There are two usage models depending on the set up of the FullRangeMappingEnable bit:

Doc Ref # IHD-OS-VLV-Vol7-04.14 165

3D - Media - GPGPU (il'ltEl' Look Inside”

e Basic mode: fixed-hue color gamut clipping mode
¢ Advanced mode: fixed-hue full range mapping mode

The application of basic mode of the fixed-hue color gamut clipping is preferred when the content
having the smaller percentage of out-of-range pixels in the scene. The advanced mode of fixed-hue full
range mapping mode may also change the in-range pixels and is thus preferred when the percentage
of out-of-range pixel is large. The outcome of the in/out range pixel percentage is derived from the
out-of range color gamut detection module to provide an indicator to operate among basic mode and
advanced mode.

Gamut Compression Module Overview

The main goal of color gamut compression module algorithm is to compress out-of-range pixel values
while keeping their hue values same as it is before compression. A block diagram to color gamut
compress the xv Color video into sRGB format is shown below.

Theta
i

| e Cunit

Out of Range
oo Spce Ditection and
YUVILCH Calq:ia‘.lngthe .
Scaling Factor =
Lot
" . |
00 ™,
Y tecodh —
o ™ Fixed-Hue Gamut
p 1 » Compression g
M B (N

g/ Ch Y
I iy i

y C i

v T Cunit

Famut Comgression ok Disgram

At the pipeline level, the input into Gamut compression unit is from STDE unit and the output from the
Gamut compression goes to the TCC unit. The Gamut compression comprises of the following stages:

e xvYCC decoding

e YUV2LCH color space conversion

e Out of range Gamut pixel detection

e Scaling factor calculation

¢ Find out the Euclidean distance for the out of range pixel for advance mode

e Fixed-hue Gamut compression

e Bring the out of range pixel to the boundary for basic mode

e Bring the out of range pixel depending on the distance and apply uniform quantization process in
advance mode

e xvYCC encoding

Shared Functions Pixel Interpolater

166 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

The Pixel Interpolator provides barycentric parameters at various offsets relative to the pixel location.
These barycentric parameters are in the same format and layout as those received in the pixel shader
dispatch. Please refer to the Windower chapter in the 3D Pipeline volume for more details on
barycentric parameters.

Barycentric parameters delivered in the pixel shader payload are at pre-defined positions based on
Barycentric Interpolation Mode bits selected in 3DSTATE_WM. The pixel interpolator allows
barycentric parameters to be computed at additional locations.

Messages

The following is the message definition for the Pixel Interpolator shared function.
Restrictions:

o Pixel Interpolator messages can only be delivered by pixel shader kernels.

e Hang possible if linear PI message when Barycentric Interpolation mode has any perspective bits
set, or Pixel Shader Uses Source W is set.

e Hang possible if perspective PI message when Barycentric Interpolation mode has any non-
perspective bits set.

Execution Mask. Each bit in the execution mask enables the corresponding slot's barycentric parameter
return to the destination registers.

Initiating Message

Message Descriptor

Bit Description

19 Header Present: Specifies whether the message includes a header phase. Must be zero for all

Pixel Interpolator messages.

Format = Enable

18:17 |Ignored

16 SIMD Mode. Specifies the SIMD mode of the message being sent.
Format = Ul
0: SIMD8 mode
1: SIMD16 mode
15 Ignored
14

Interpolation Mode. Specifies which interpolation mode is to be used.
Format = Ul

0: Perspective Interpolation

Doc Ref # IHD-OS-VLV-Vol7-04.14 167

3D

- Media - GPGPU (il'ltEl' Look Inside”

Bit

Description

1: Linear Interpolation
Programming Notes:

e This field cannot be set to Linear Interpolation unless Non-Perspective Barycentric Enable in
3DSTATE_CLIP is enabled.

13:12

Message Type. Specifies the type of message being sent when pixel-rate evaluation requested.
Format = U2

0: Per Message Offset (eval_snapped with immediate offset)

1: Sample Position Offset (eval_sindex)

2: Centroid Position Offset (eval_centroid)

3: Per Slot Offset (eval_snapped with register offset)

11

Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the X/Y addresses and centroid position. For 8- and 16-pixel dispatches,
SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set
correctly for each message based on which slots are currently being processed.

0: SLOTGRP_LO:choose bypassed data for slots 15:0
1: SLOTGRP_HI:choose bypassed data for slots 31:16
Programming Notes:

This field must be set to SLOTGRP_LO for SIMD8 messages. SIMD8 messages always use
bypassed data for slots 7:0.

10:8 |Ignored

11:
8 Ignored
Project: [REMOVEDBY(GEN10:HAS:144479)]
70 Message Specific Control. Refer to the sections below for the definition of these bits based on

Message Type.

Per Message Offset Message Descriptor

Bit Description

74

Per Message Y Pixel Offset
Specifies the Y Pixel Offset that applies to all slots.
Format = S4 2's complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

168

Doc Ref # IHD-OS-VLV-Vol7-04.14

(iI'ItE'I Look Inside” 3D - Media - GPGPU

Bit Description

30 Per Message X Pixel Offset

Specifies the X Pixel Offset that applies to all slots.
Format = S4 2's complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

Sample Position Offset Message Descriptor

Bit Description

74 Sample Index

Specifies the sample index that applies to all slots.

Format = U4
Range = [0,7
3:0|Ignored

Centroid Position and Per Slot Offset Message Descriptor

Bit | Description

7:0 [Ignored

Message Payload for Most Messages
This message payload applies to the following message types:
e Per Message Offset

e Sample Position Offset
e Centroid Position Offset

DWord | Bit | Description

MO0.7:0 Ignored

SIMDS8 Per Slot Offset Message Payload
This message payload applies only to the SIMD8 Per Slot Offset message type. The message length is 2.

DWord | Bit Description

MO.7 310 Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are
ignored.

Range = [-8/16, +7/16]

MO0.6 [31:0Slot 6 X Pixel Offset

Doc Ref # IHD-OS-VLV-Vol7-04.14 169

3D - Media - GPGPU

(intel/ Look Inside”

DWord

Bit

Description

MO0.5

31:0

Slot 5 X Pixel Offset

MO0.4

31:0

Slot 4 X Pixel Offset

MO0.3

31:0

Slot 3 X Pixel Offset

MO0.2

31:0

Slot 2 X Pixel Offset

MO0.1

31:0

Slot 1 X Pixel Offset

MO0.0

31:0

Slot 0 X Pixel Offset

M1.7

31:0

Slot 7 Y Pixel Offset
Specifies the Y pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are

ignored.

Range = [-8/16, +7/16]

Ml.6

310

Slot 6 Y Pixel Offset

M1.5

310

Slot 5 Y Pixel Offset

M1.4

310

Slot 4 Y Pixel Offset

M1.3

310

Slot 3 Y Pixel Offset

M1.2

31:0

Slot 2 Y Pixel Offset

M1.1

31:0

Slot 1 Y Pixel Offset

M1.0

31:0

Slot 0 Y Pixel Offset

SIMD16 Per Slot Offset Message Payload

This message payload applies only to the SIMD16 Per Slot Offset message type. The message length is

4.

DWord

Bit

Description

MO0.7

310

Slot 7 X Pixel Offset
Specifies the X pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are

ignored.

Range = [-8/16, +7/16]

MO0.6

31:0

Slot 6 X Pixel Offset

MO0.5

31:0

Slot 5 X Pixel Offset

MO0.4

31:0

Slot 4 X Pixel Offset

MO0.3

31:0

Slot 3 X Pixel Offset

MO0.2

31:0

Slot 2 X Pixel Offset

MO0.1

31:0

Slot 1 X Pixel Offset

MO0.0

31:0

Slot 0 X Pixel Offset

M1.7

31:0

Slot 15 X Pixel Offset

170

Doc Ref # IHD-OS-VLV-Vol7-04.14

(IFIT:;D Look Inside’

3D - Media - GPGPU

DWord

Bit

Description

Ml.6

310

Slot 14 X Pixel Offset

M1.5

310

Slot 13 X Pixel Offset

M1.4

310

Slot 12 X Pixel Offset

M1.3

310

Slot 11 X Pixel Offset

M1.2

310

Slot 10 X Pixel Offset

M1.1

310

Slot 9 X Pixel Offset

M1.0

310

Slot 8 X Pixel Offset

M2.7

310

Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are

ignored.

Range = [-8/16, +7/16]

M2.6

31:0

Slot 6 Y Pixel Offset

M2.5

31:0

Slot 5 Y Pixel Offset

M2.4

310

Slot 4 Y Pixel Offset

M2.3

310

Slot 3 Y Pixel Offset

M2.2

310

Slot 2 Y Pixel Offset

M2.1

310

Slot 1 Y Pixel Offset

M2.0

310

Slot 0 Y Pixel Offset

M3.7

310

Slot 15 Y Pixel Offset

M3.6

310

Slot 14 Y Pixel Offset

M3.5

310

Slot 13 Y Pixel Offset

M3.4

310

Slot 12 Y Pixel Offset

M3.3

310

Slot 11 Y Pixel Offset

M3.2

310

Slot 10 Y Pixel Offset

M3.1

31:0

Slot 9 Y Pixel Offset

M3.0

31:0

Slot 8 Y Pixel Offset

Writeback Message

SIMDS8

The response length for all SIMD8 messages is 2. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord

Bit

Description

WO0.7

31:0

Barycentric[1] for Slot 7

Format = IEEE_Float

WO0.6

310

Barycentric[1] for Slot 6

Doc Ref # IHD-OS-VLV-Vol7-04.14

171

3D - Media - GPGPU

DWord

Bit

Description

WO0.5

31:0

Barycentric[1] for Slot 5

Wo0.4

310

Barycentric[1] for Slot 4

WO0.3

31:0

Barycentric[1] for Slot 3

WO0.2

310

Barycentric[1] for Slot 2

WO0.1

31:0

Barycentric[1] for Slot 1

WO0.0

31:0

Barycentric[1] for Slot 0

W1.7

310

Barycentric[2] for Slot 7
Format = IEEE_Float

W1.6

31:0

Barycentric[2] for Slot 6

WL.5

310

Barycentric[2] for Slot 5

W14

31:0

Barycentric[2] for Slot 4

W1.3

310

Barycentric[2] for Slot 3

W1.2

310

Barycentric[2] for Slot 2

W11

31:0

Barycentric[2] for Slot 1

WI1.0

310

Barycentric[2] for Slot 0

SIMD16

(I@ Look Inside’

The response length for all SIMD16 messages is 4. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord

Bit

Description

WO0.7

310

Barycentric[1] for Slot 7
Format = IEEE_Float

WO0.6

31:0

Barycentric[1] for Slot 6

WO0.5

31:0

Barycentric[1] for Slot 5

Wo0.4

310

Barycentric[1] for Slot 4

172

Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord

Bit

Description

WO0.3

310

Barycentric[1] for Slot 3

WO0.2

31:0

Barycentric[1] for Slot 2

WO0.1

310

Barycentric[1] for Slot 1

WO0.0

31:0

Barycentric[1] for Slot 0

W1.7

31:0

Barycentric[2] for Slot 7
Format = IEEE_Float

W1.6

310

Barycentric[2] for Slot 6

WL.5

31:0

Barycentric[2] for Slot 5

W14

310

Barycentric[2] for Slot 4

W13

31:0

Barycentric[2] for Slot 3

W1.2

310

Barycentric[2] for Slot 2

W11

310

Barycentric[2] for Slot 1

W1.0

31:0

Barycentric[2] for Slot 0
Format = IEEE_Float

W2.7

310

Barycentric[1] for Slot 15

W2.6

31:0

Barycentric[1] for Slot 14

W2.5

310

Barycentric[1] for Slot 13

W24

31:0

Barycentric[1] for Slot 12

W2.3

310

Barycentric[1] for Slot 11

W2.2

310

Barycentric[1] for Slot 10

W21

31:0

Barycentric[1] for Slot 9

W2.0

310

Barycentric[1] for Slot 8

Doc Ref # IHD-OS-VLV-Vol7-04.14

3D - Media - GPGPU

173

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

W3.7 310 Barycentric[2] for Slot 15

W3.6 310 Barycentric[2] for Slot 14

W3.5 310 Barycentric[2] for Slot 13

W34 310 Barycentric[2] for Slot 12

w33 >0 Barycentric[2] for Slot 11

W3.2 310 Barycentric[2] for Slot 10

w3.1 310 Barycentric[2] for Slot 9

W3.0 310 Barycentric[2] for Slot 8

Shared Functions - Unified Return Buffer (URB)

The Unified Return Buffer (URB) is a general-purpose buffer used for sending data between different
threads, and, in some cases, between threads and fixed-function units (or vice-versa). A thread accesses
the URB by sending messages.

URB Size

A URB entry is a logical entity within the URB, referenced by an entry handle and comprised of some
number of consecutive rows. A row corresponds in size to a 256-bit EU GRF register. Read/write access
to the URB is generally supported on a row-granular basis.

Product | URB Size | URB Rows | URB Rows when SLM Enabled

VLV 96k 3072 1024

URB Access

The URB can be written by the following agents:

e Command Stream (CS) can write constant data into Constant URB Entries (CURBESs) as a result of
processing CONSTANT_BUFFER commands.

e The Video Front End (VFE) fixed-function unit of the Media pipeline can write thread payload data
in to its URB entries.

e The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data into its URB
entries

e Threads can write data into URB entries via URB_WRITE messages sent to the URB shared
function.

The URB can be read by the following agents:

174 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

e The Thread Dispatcher (TD) is the main source of URB reads. As a part of spawning a thread,
pipeline fixed-functions provide the TD with a number of URB handles, read offsets, and lengths.
The TD reads the specified data from the URB and provide that data in the thread payload pre-
loaded into GRF registers.

e The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D pipeline can read
selected parts of URB entries to extract vertex data required by the pipeline.

e The Windower (WM) FF unit reads back depth coefficients from URB entries written by the
Strip/Fan unit.

Note that the CPU cannot read the URB directly.

URB State

The URB function is stateless, with all information required to perform a function being passed in the
write message.

See URB Allocation (Graphics Processing Engine) for a discussion of how the URB is divided amongst
the various fixed functions.

URB Messages

This section documents the global aspects of the URB messages. The actual data stored in URB entries
differs for each fixed function — refer to 3D Pipeline and the fixed-function chapters or details on 3D
URB data formats and Media for media-specific URB data formats.

URB Handles: Unlike prior products where the URB handle contents was not specified for software use,
URB handles are now specified as offsets into the URB partition in the L3 cache, in 512-bit units. Thus,
kernels are now allowed to perform math operations on URB handles.

e The End of Thread bit in the message descriptor may be set on URB messages only in threads
dispatched by the vertex shader (VS), hull shader (HS), domain shader (DS), and geometry shader
(GS). The End of Thread bit cannot be set on URB_READ* or URB_ATOMIC* messages.

Execution Mask. The low 8 bits of the execution mask on the send instruction determines which
DWords from each write data phase are written or which DWords from each read phase are written to
the destination GRF register. The execution mask is ignored on URB_ATOMIC* messages, since this is a
scalar operation that is always enabled.

Out-of-Bounds Accesses. Reads to addresses outside of the URB region allocated in the L3 cache
return 0. Writes to addresses outside of the URB region are dropped and will not modify any URB data.

Header Shared Local Memory Stateless Vector
Message Type Required Support Support Address Modes Width
URB Read yes N/A N/A 1,2
HWORD handle + URBoffset
or
handle + URBoffset +
offset

Doc Ref # IHD-OS-VLV-Vol7-04.14 175

3D - Media - GPGPU (il'ltEl' Look Inside”

Header Shared Local Memory Stateless Vector

Message Type Required Support Support Address Modes Width
URB Write yes N/A N/A 1,2
HWORD handle + URBoffset

or

handle + URBoffset +

offset
URB Read yes N/A N/A 1,2
OWORD handle + URBoffset

or

handle + URBoffset +

offset
URB Write yes N/A N/A 1,2
OWORD handle + URBoffset

or

handle + URBoffset +

offset
URB Atomic yes N/A N/A handle + URBoffset 1
MOV
URB Atomic yes N/A N/A handle + URBoffset 1
INC

offset is in the message payload, and is per-slot.

handle is the handle address in the message header.

URBoffset is the Global Offset field in the URB message descriptor.

Execution Mask

The Execution Mask specified in the send instruction determines which DWords within each message

register are read/written to the URB.

Message Descriptor

Bit Description

19 |Header Present

This bit must be set to one for all URB messages.

18:17 |Ignored

16 Per Slot offset: If clear, the slot offset fields in the header are ignored.

If set the slot offset fields are added to the global offset to obtain the overall offset.
Programming Notes:

e This bit must be 0 for URB_ATOMIC_* messages.

176 Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItEl Look Inside” 3D - Media - GPGPU

Bit

Description

Complete
For URB_WRITE*, URB_SIMD8_WRITE and URB_ATOMIC*: This bit is ignored.

For URB_READ* and URB_SIMD8_READ: If set, this signals that the thread is finished reading
from the URB entry(s) referenced by the handles(s), causing the entry(s) to be deallocated.

This bit is strictly control information passed to snooping FF units. The URB shared function itself
does not use this bit for any purpose.

14 Swizzle Control. This field is used to specify which swizzle operation is to be performed on the
write data. It indirectly specifies whether one or two handles are valid.
0: URB_NOSWIZZLE
The message accesses a single URB entry (using URB Handle 0).
1: URB_INTERLEAVED
The message accesses two URB entries. The data is interleaved such that the upper DWords (7:4)
of each 256-bit unit contain data associated with URB Handle 1, and the lower DWords (3:0)
contain data associated with URB Handle 0.

13:3 Global Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB
entry(s), as referenced by URB Handle n, at which the data (if any) will be written to or read from.
When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB
entries.

If the Per Slot Offset bit is set, this offset is added to the per-slot offsets in the header to obtain
the overall offset.
For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.
For the URB_ATOMIC* messages, this offset is in 32-bit units instead of 256-bit units.
Format = U1l
Range = [0, 1023] for URB_*_HWORD messages.
Range = [0, 2047] for URB_*_OWORD messages.
Range = [0, 2047] for URB_ATOMIC* messages.
2:0

URB Opcode

0: URB_WRITE_HWORD
1: URB_WRITE_OWORD
2: URB_READ_HWORD

3: URB_READ_OWORD

4: URB_ATOMIC_MOV

Doc Ref # IHD-OS-VLV-Vol7-04.14 177

3D - Media - GPGPU (il'ltEl' Look Inside”

Bit Description

5: URB_ATOMIC_INC
6-7: Reserved

URB_WRITE and URB_READ

The URB_WRITE and URB_READ messages share the same header definition. URB_WRITE has additional
payload containing the write data, but has no writeback message. URB_READ has no payload beyond
the header (message length is always one), but always has a writeback message. URB_WRITE_SIMD4x2
has a single-phase payload with the per-slot offsets followed by the write data, and has no writeback
message. URB_READ_SIMD4x2 has a single phase payload containing the per-slot offsets.

Message Header

MO0.5[7:0] bits in message header are used for enabling DWs in cull test, at HDC unit by HS kernel, while
writing TF data using URB write messages. Cull test is performed on outside TF and HS kernel set the
appropriate DW enable, which carry the TF for different domain types. When DW is enabled and if cull
test is positive, HS stage will be informed by HDC unit, to cull the HS handle early at HS stage itself.

DWord | Bits Description
MO0.7 | 31:0
MO0.6 | 31:0
MO0.5 |31:17|Ignored
16

High OWORD Enable

For URB_READ_OWORD and URB_WRITE_OWORD with NOSWIZZLE indicates whether
the 128 bits of the GRF register is used.

0: 1 OWord, read into or written from the low 128 bits of the GRF register.
1: 1 OWord, read into or written from the high 128 bits of the GRF register.

15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask

When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1 DATA[3].
When Swizzle Control = URB_NOSWIZZLE this bit controls Vertex 0 DATA[7].

This bit is ANDed with the corresponding channel enable to determine the final channel
enable. For the URB_READ_OWORD & URB_READ_HWORD messages, when final channel
enable is 1 it indicates that Vertex 1 DATA [3] will be included in the writeback message.
For the URB_WRITE_OWORD & URB_WRITE_HWORD messages, when final channel
enable is 1 it indicates that Vertex 1 DATA [3] will be written to the surface.

0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included.
1: Vertex DATA [3] / Vertex 0 DATA[7] channel included.

14 |Vertex 1 DATA [2] Channel Mask

13 |Vertex 1 DATA [1] Channel Mask

178 Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItE'I Look Inside” 3D - Media - GPGPU

DWord | Bits Description
12 |Vertex 1 DATA [0] Channel Mask
11 |Vertex 0 DATA [3] Channel Mask
10 |Vertex 0 DATA [2] Channel Mask
9 |[Vertex 0 DATA [1] Channel Mask
8 |[Vertex 0 DATA [0] Channel Mask
7:0 |Reserved
M0.4 | 31:0 _— . . .
Slot 1 Offset. This field, after adding to the Global Offset field in the message
descriptor, specifies the offset (in 256-bit units) from the start of the URB entry, as
referenced by URB Handle 1, at which the data will be accessed. This field is ignored
unless Swizzle Control is set to URB_INTERLEAVED.
For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.
Format = U32
Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must
fall within the range [0, 1023] or behavior is undefined.
Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must
fall within the range [0, 2047] or behavior is undefined.
MO0.3 | 31:0 I . . .
Slot 0 Offset. This field, after adding to the Global Offset field in the message
descriptor, specifies the offset (in 256-bit units) from the start of the URB entry, as
referenced by URB Handle 0, at which the data will be accessed.
For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.
Format = U32
Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must
fall within the range [0, 1023] or behavior is undefined.
Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must
fall within the range [0, 2047] or behavior is undefined.
MO0.2 |31:16 . . .
GS Number of Output Vertices for Slot 1. Indicates the number of vertices output for
geometry shader slot 1 primitive. This field is only defined if end-of-thread is set on the
message. It is ignored for all messages from non-GS threads.
Format = U16
150 GS Number of Output Vertices for Slot 0. Indicates the number of vertices output for
geometry shader slot O primitive. This field is only defined if end-of-thread is set on the
message. It is ignored for all messages from non-GS threads.
Format = U16
M0.1 |31:16

[Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel
1 to a specific entry within the fixed function unit. This field is ignored unless Swizzle

Doc Ref # IHD-OS-VLV-Vol7-04.14 179

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bits Description

Control indicates Interleave mode.

15:0 |URB Handle 1. This is the URB handle where channel 1's results are to be written or read. This
field is ignored unless Swizzle Control indicates interleave mode.

MO0 | 31:16 Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0

to a specific entry within the fixed function unit.

15:0 |URB Handle 0. This is the URB handle where channel 0's results are to be written or read.

URB_WRITE_HWORD Write Data Payload

For the URB_WRITE_HWORD messages, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

Payload Usage

RB_NOSWIZZLE . . .
URBNOS The message payload contains data to be written to a single URB entry (e.g., one

Vertex URB entry). The Swizzle Control field of the message descriptor must be set
to NoSwizzle.

URB_INTERLEAVED . . .
- The message payload contains data to be written to two separate URB entries. The

payload data is provided in a high/low interleaved fashion. The Swizzle Control field
of the message descriptor must be set to Interleave.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data swizzling
applied).

Programming Notes:
e The URB function will use (not ignore) the Channel Enables associated with this message.

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing n pairs of 4-DWord vertex
elements (where for the example, n is >2).

DWord | Bit Description

M1.7 |31:0|Vertex Data [7]

M1.6 |31:0|Vertex Data [6]

M1.5 [31:0|Vertex Data [5]

M1.4 |[31:0|Vertex Data [4]

M1.3 [31:0|Vertex Data [3]

M1.2 |31.0|Vertex Data [2]

M1.1 |31.0|Vertex Data [1]

M1.0 [31:0|Vertex Data [0]

M2.7 [31:0|Vertex Data [15]

180 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord

Bit

Description

M2.6

310

Vertex Data [14]

M2.5

310

Vertex Data [13]

M2.4

310

Vertex Data [12]

M2.3

310

Vertex Data [11]

M2.2

310

Vertex Data [10]

M2.1

310

Vertex Data [9]

M2.0

310

Vertex Data [8]

Mn.7

31:0

Vertex Data [8(n-1)+7]

Mn.6

31:0

Vertex Data [8(n-1)+6]

Mn.5

31:0

Vertex Data [8(n-1)+5]

Mn.4

31:0

Vertex Data [8(n-1)+4]

Mn.3

31:0

Vertex Data [8(n-1)+3]

Mn.2

31:0

Vertex Data [8(n-1)+2]

Mn.1

31:0

Vertex Data [8(n-1)+1]

Mn.0

31:0

Vertex Data [8(n-1)+0]

URB_INTERLEAVED

3D - Media - GPGPU

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing n 4-DWord vertex elements (n>1).

Programming Restrictions:

e The URB function will use (not ignore) the Channel Enables associated with this message.

e Writes to overlapping addresses of vertex0O and vertex1 will have undefined write ordering.

DWord

Bit

Description

M1.7

310

Vertex 1 Data [3]

Ml.6

310

Vertex 1 Data [2]

M1.5

310

Vertex 1 Data [1]

M1.4

310

Vertex 1 Data [0]

M1.3

310

Vertex 0 Data [3]

M1.2

310

Vertex 0 Data [2]

M1.1

310

Vertex 0 Data [1]

M1.0

310

Vertex 0 Data [0]

M2.7

310

Vertex 1 Data [7]

M2.6

310

Vertex 1 Data [6]

M2.5

310

Vertex 1 Data [5]

M2.4

310

Vertex 1 Data [4]

M2.3

31:0

Vertex 0 Data [7]

M2.2

31:0

Vertex 0 Data [6]

Doc Ref # IHD-OS-VLV-Vol7-04.14

181

€

ntel/ Look Inside’

3D - Media - GPGPU

DWord | Bit Description

M2.1 [31:0|Vertex O Data [5]

M2.0 [31:0|Vertex O Data [4]

Mn.7 [31:0(Vertex 1 Data [4(n-1)+3]

Mn.6 |31:.0|Vertex 1 Data [4(n-1)+2]

Mn.5 |31:.0|Vertex 1 Data [4(n-1)+1]

Mn.4 |[31:0(Vertex 1 Data [4(n-1)+0]

Mn.3 |[31:0(Vertex 0 Data [4(n-1)+3]

Mn.2 |31:.0|Vertex 0 Data [4(n-1)+2]

Mn.1 |31:0|Vertex 0 Data [4(n-1)+1]

Mn.0 |31:0|Vertex 0 Data [4(n-1)+0]

URB_READ_HWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message
header are read and returned in the writeback message. The amount of read data returned is
determined by the Response Length field.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The
description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB
Entry Formats section of the 3D Overview chapter.

Payload Usage

RB_NOSWIZZLE . . .
URBNOS The writeback message contains data read from a single URB entry (e.g., one Vertex

URB entry). The Swizzle Control field of the message descriptor must be set to
NoSwizzle.

URB_INTERLEAVED The writeback message contains data read from two separate URB entries. The data

is provided in a high/low interleaved fashion. The Swizzle Control field of the
message descriptor must be set to Interleave.

URB_NOSWIZZLE
URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving
applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing n pairs of 4-
DWord vertex elements (where for the example, n is >2).

DWord | Bit Description

WO0.7 |31.0|Vertex Data [7]

WO0.6 [31:0|Vertex Data [6]

WO0.5 [31:0|Vertex Data [5]

W0.4 |[31:0|Vertex Data [4]

182 Doc Ref # IHD-OS-VLV-Vol7-04.14

(intel/ Look Inside”

DWord

Bit

Description

WO0.3

310

Vertex Data [3]

WO0.2

310

Vertex Data [2]

WO0.1

310

Vertex Data [1]

WO0.0

310

Vertex Data [0]

WL1.7

310

Vertex Data [15]

W1.6

310

Vertex Data [14]

WL.5

310

Vertex Data [13]

W14

310

Vertex Data [12]

W1.3

31:0

Vertex Data [11]

W1.2

31:0

Vertex Data [10]

w11l

31:0

Vertex Data [9]

W1.0

31:0

Vertex Data [8]

Wn.7

31:0

Vertex Data [8n+7]

Wn.6

31:0

Vertex Data [8n+6]

Wn.5

31:0

Vertex Data [8n+5]

Wn.4

31:0

Vertex Data [8n+4]

Wn.3

31:0

Vertex Data [8n+3]

Wn.2

31:0

Vertex Data [8n+2]

Wn.1

310

Vertex Data [8n+1]

Wn.0

310

Vertex Data [8n+0]

URB_INTERLEAVED

3D - Media - GPGPU

The following table shows an example layout of a URB_INTERLEAVED payload containing two

interleaved vertices, each containing n 4-DWord vertex elements (n>1).

DWord

Bit

Description

WO0.7

310

Vertex 1 Data [3]

WO0.6

310

Vertex 1 Data [2]

WO0.5

310

Vertex 1 Data [1]

Wo0.4

310

Vertex 1 Data [0]

WO0.3

310

Vertex 0 Data [3]

WO0.2

310

Vertex 0 Data [2]

WO0.1

310

Vertex 0 Data [1]

WO0.0

310

Vertex 0 Data [0]

W1.7

31:0

Vertex 1 Data [7]

W1.6

31:0

Vertex 1 Data [6]

WL.5

31:0

Vertex 1 Data [5]

W14

31:0

Vertex 1 Data [4]

Doc Ref # IHD-OS-VLV-Vol7-04.14

183

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bit Description

W1.3 |31.0|Vertex 0 Data [7]

W1.2 [31:0|Vertex 0 Data [6]

W1.1 [31:0|Vertex 0 Data [5]

W1.0 [31:0|Vertex O Data [4]

Wn.7 [31:0|Vertex 1 Data [4n+3]

Wn.6 |31.0|Vertex 1 Data [4n+2]

Wn.5 |31.0(Vertex 1 Data [4n+1]

Wn.4 |[31:0|Vertex 1 Data [4n+0]

Wn.3 |[31:0|Vertex 0 Data [4n+3]

Wn.2 |31:0|Vertex 0 Data [4n+2]

Wn.1 [31:0|Vertex 0 Data [4n+1]

Wn.0 [31:0|Vertex 0 Data [4n+0]

URB_WRITE_OWORD Write Data Payload

For the URB_WRITE_OWORD messages, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

Payload Usage

RB_NOSWIZZLE . . .
URBNOS The message payload contains data to be written to a single URB entry (e.g., one

Vertex URB entry). The Swizzle Control field of the message descriptor must be set
to NoSwizzle.

URB_INTERLEAVED . . .
- The message payload contains data to be written to two separate URB entries. The

payload data is provided in a high/low interleaved fashion. The Swizzle Control field
of the message descriptor must be set to Interleave.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into a single 128-bit URB location (no data swizzling
applied).

Programming Notes:

e The URB function will use (not ignore) the Channel Enables associated with this message.

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements
and HIGH OWORD ENABLE is 0.

DWord | Bit Description

M1.7 |31:0|Ignored

M1.6 |31:0|Ignored

M1.5 |31:0|Ignored

184 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

DWord | Bit Description

M1.4 |31:0|Ignored

M1.3 |31:0|Vertex 0 Data [3]

M1.2 |31:0|Vertex 0 Data [2]

M1.1 |31:0|Vertex O Data [1]

M1.0 |31:0|Vertex 0 Data [0]

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements
and HIGH OWORD ENABLE is 1.

DWord | Bit Description

M1.7 |31:0|Vertex 0 Data [3]

M1.6 [31:0|Vertex O Data [2]

M1.5 [31:0|Vertex O Data [1]

M1.4 |[31:0|Vertex 0 Data [0]

M1.3 |31:0|Ignored

M1.2 |31:0|Ignored

M1.1 |31:0(|Ignored

M1.0 |31:0(|Ignored

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing 4-DWord vertex elements.

Programming Restrictions:

e The URB function will use (not ignore) the Channel Enables associated with this message.

e Writes to overlapping addresses of vertex0O and vertex1 will have undefined write ordering.

DWord | Bit Description

M1.7 [31:0|Vertex 1 Data [3]

M1.6 |31.0|Vertex 1 Data [2]

M1.5 |31:0|Vertex 1 Data [1]

M1.4 |31:0|Vertex 1 Data [0]

M1.3 |31:0|Vertex 0 Data [3]

M1.2 |31:0|Vertex 0 Data [2]

M1.1 |31:0|Vertex 0 Data [1]

M1.0 |31:0|Vertex 0 Data [0]

URB_READ_OWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message
header are read and returned in the writeback message. The amount of read data returned is
determined by the Response Length field.

Doc Ref # IHD-OS-VLV-Vol7-04.14 185

3D - Media - GPGPU (il'ltEl' Look Inside”

Programming Restrictions:
¢ Response Length must be set to 1.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The
description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB
Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE |The writeback message contains data read from a single URB entry (e.g., one Vertex URB
entry). The Swizzle Control field of the message descriptor must be set to NoSwizzle.

URB_INTERLEAVED | The writeback message contains data read from two separate URB entries. The data is
provided in a high/low interleaved fashion. The Swizzle Control field of the message
descriptor must be set to Interleave.

URB_NOSWIZZLE
URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving
applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord
vertex elements and HIGH OWORD ENABLE is 0.

DWord | Bit Description

WO0.7 |[31:0|Reserved (not written to GRF)

WO0.6 |[31:0|Reserved (not written to GRF)

WO0.5 [31:0|Reserved (not written to GRF)

WO0.4 |31:0|Reserved (not written to GRF)

WO0.3 [31:0|Vertex Data [3]

WO0.2 |31.0|Vertex Data [2]

WO0.1 |31:.0|Vertex Data [1]

WO0.0 [31:0|Vertex Data [0]

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord
vertex elements and HIGH OWORD ENABLE is 1.

DWord | Bit Description

WO0.7 [31:0|Vertex Data [3]

WO0.6 |31:.0|Vertex Data [2]

WO0.5 |31:0|Vertex Data [1]

W0.4 (31:0|Vertex Data [0]

WO0.3 |31:0|Reserved (not written to GRF)

WO0.2 |[31:0|Reserved (not written to GRF)

WO0.1 [31:0|Reserved (not written to GRF)

WO0.0 [31:0|Reserved (not written to GRF)

186 Doc Ref # IHD-OS-VLV-Vol7-04.14

(il'ltE'I Look Inside” 3D - Media - GPGPU

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing 4-DWord vertex elements.

DWord | Bit Description

WO0.7 |[31:0|Vertex 1 Data [3]

WO0.6 [31:0|Vertex 1 Data [2]

WO0.5 [31:0|Vertex 1 Data [1]

WO0.4 |[31:0|Vertex 1 Data [0]

WO0.3 [31:0|Vertex 0 Data [3]

WO0.2 [31:0|Vertex 0 Data [2]

WO0.1 [31:0|Vertex 0 Data [1]

WO0.0 [31:0|Vertex 0 Data [0]

URB_ATOMIC

The URB_ATOMIC messages implement atomic operations on a single DWord in the URB. The location
of the DWord within the URB is specified by the single URB handle and the Global Offset field in the
message descriptor, which for these messages is a DWord offset from the URB handle. The DWord
selected will be operated on according to the following table:

URB Opcode new_dst ret

URB_ATOMIC_MOV none

srcO

URB_ATOMIC_INC |old_dst + 1|old dst

The previous contents of the DWord are returned in the destination register for the URB_ATOMIC_INC.
The URB_ATOMIC_MOQV opcode does not return data (response length must be zero).

The URB_ATOMIC* messages consist only of the header. A single URB handle is specified.

Message Header

DWord| Bit Description
MO0.7 | 310
MO0.6 | 310

MO0.5 | 31:0 |Ignored

MO0.4 | 31:0 |Ignored

MO0.3 | 31:0 |Ignored

MO2 | 310 Source0 Data

Specifies the source 0 data for the atomic operation. This field is ignored for the
URB_ATOMIC_INC message.

Format = U32

MO0.1 | 31:0 |Ignored

Doc Ref # IHD-OS-VLV-Vol7-04.14 187

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord| Bit Description
M0.0 |31:16|Ignored
150 URB Handle. This specifies the URB handle to be accessed.

Writeback Message

A writeback message is only returned for the URB_ATOMIC_INC message. Only the low 32 bits of the
destination GRF register are overwritten with the return data.

DWord | Bit Description
W0.7:1 Reserved (not written to GRF)
WO0.0 |31.0

Return Data
Specifies the value of the return data for the atomic operation.

Format = U32

Shared Functions - Message Gateway

The Message Gateway shared function provides a mechanism for active thread-to-thread
communication. Such thread-to-thread communication is based on direct register access. One thread, a
requester thread, is capable of writing into the GRF register space of another thread, a recipient thread.
Such direct register access between two threads in a multi-processor environment some time is referred
to as remote register access. Remote register access may include read or write. The architecture supports
remote register write, but not remote register read (natively). Message Gateway facilitates such remote
register write via message passing. The requester thread sends a message to Message Gateway
requesting a write to the recipient thread's GRF register space. Message Gateway sends a writeback
message to the recipient thread to complete the register write on behave of the requester. The
requester thread and the recipient thread may be on the same EU or on different EUs.

When Bypass Gateway Control is set to 1, the commands OpenGateway and CloseGateway are no
longer used, the gateway parameters are taking the default values as the following:

e RegBase =0
e Gateway Size check and Key check are bypassed.

e Gateway Open (an internal signal that is used to be set by OpenGateway message) check is
bypassed

A separate Gateway exists per half-slice in the architecture. For ForwardMsg this is handled
transparently, but barriers can only be accessed by threads in the local half-slice. This means that all
threads that access a shared barrier need to use the half-slice select in GPGPU_OBJECT and
MEDIA_OBIJECT to stay on a single half-slice. GPGPU_WALKER handles this automatically.

188 Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItE' Look Inside” 3D - Media - GPGPU

Messages

Message Gateway supports such thread-to-thread communication with the following three messages:

OpenGateway: opens a gateway for a requester thread. Once a thread successfully opens its
gateway, it can be a recipient thread to receive remote register write.

CloseGateway: closes the gateway for a requester thread. Once a thread successfully closes its
gateway, Message Gateway will block any future remote register writes to this thread.

ForwardMsg: forwards a formatted message (remote register write) from a requester thread to a
recipient thread.

GetTimeStamp reads absolute and relative timestamps for a requester thread.

BarrierMsg : A set of threads sends this message to the Gateway. When all threads in a group
have sent the message, a reply (both a register write and an NO notification) is sent to each
member of the group.

UpdateGatewayState updates the internal state of the Message Gateway.
One example usage is to allow a control thread to change Barrier Byte to convey dynamic state

information. This may be used to support interrupt when persistent compute/worker threads are
synchronized using Barrier.

MMIO Read/Write: allows a message to read or write an MMIO register. The MEDIA_VFE_STATE
command has a field which limits the accesses for security.

Message Descriptor

The following message descriptor applies to all messages supported by Message Gateway.

Bits Description
19 |Header Present. This bit must be 0O for all Message Gateway messages.
18:17 | Ignored.
16:15 Notify. Send Notification Signal. This is a two-bit field indicating which notify event is sent.
00b: No notify.
01b: Increment recipient thread's NO notification counter.
10b: Increment recepient thread's N2 notification counter.
11b: Reserved.
This field is only valid for a ForwardMsg message. It is ignored for other messages. The
BarrierMsg message always increments the NO notification counter.
14

AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return message is
required. Message Gateway sends a writeback message containing the error code to the
requester thread using the post destination register address. When this bit is 0, no writeback
message is sent to the requesting thread by Message Gateway, even if an error occurs.

This field is valid for OpenGateway, CloseGateway, ForwardMsg, and BarrierMsg messages.

Doc Ref # IHD-OS-VLV-Vol7-04.14 189

3D - Media - GPGPU (il'ltEl Look Inside”

Bits Description

When this bit is 1, post destination register must be valid and the response length must be 1.
When this bit is 0, post destination register must be null and the response length must be 0.
This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined.

0: No Acknowledgement is required.

1: Acknowledgement is required.

13:3 | Reserved: MBZ

20 SubFuncID. Identify the supported sub-functions by Message Gateway. Encodings are:

000b: OpenGateway. Open the gateway for the requester thread.
001b: CloseGateway. Close the gateway for the requester thread.

010b: ForwardMsg. Forward the formatted message to the recipient thread with the given offset
from the recipient's register base.

011b: GetTimeStamp. Read absolute and relative timestamps.
100b: BarrierMsg. Record an additional thread reaching the barrier.
101b: UpdateGatewayState. Update the barrier byte for a barrier.
110b: MMIO Read/Write.

111b: Reserved.

OpenGateway Message

The OpenGateway message opens a communication channel between the requesting thread and other
threads. It specifies a key for other threads to access its gateway, as well as the GRF register range
allowed to be written. The message consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting
thread after completion of the OpenGateway function. Only the least significant DWord in the post
destination register is overwritten.

If the EOT is set for this message, Message Gateway will ignore this message; instead, it will close the
gateway for the requesting thread regardless of the previous state of the gateway.

It is software's policy to determine how to generate the key.

The BarrierMsg command does not use an OpenGateway message.

Message Payload

DWord | Bits Description
MO0.7 | 31:0
M0.6 | 310
MO0.5 |[31:29 |Reserved: MBZ
28:21 . . .
8 RegBase: The register base address to be stored in the Message Gateway. It is used to

190 Doc Ref # IHD-OS-VLV-Vol7-04.14

(II'ItE'I Look Inside” 3D - Media - GPGPU

DWord

Bits

Description

compute the destination GRF register address from the offset field in ForwardMsg.
RegBase contains 256-bit GRF aligned register address.

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for
ForwardMsg.

Note 2: the most significant bit of this field must be zero.
Format = U8
Range = [0,127]

20:11

Reserved: MBZ

10:8

Gateway Size: The range limit for messages through the Message Gateway.
000b: 1 GRF Register

001b: 2 GRF Registers

010b: 4 GRF Registers

011b: 8 GRF Registers

100b: 16 GRF Registers

101b: 32 GRF Registers

110b: 64 GRF Registers

111b: 128 GRF Registers

7:0

Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

MO0.4

31:16

Reserved: MBZ

15:0

Reserved: MBZ.

MO0.3:0

310

Ignored

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord | Bits Description
WO0.7:1 | 31:0 | Reserved (not overwritten)
WO0.0 [31:20 |Reserved
19:16 | Shared Function ID. The message gateway's shared function ID.
15:3 [Reserved

Doc Ref # IHD-OS-VLV-Vol7-04.14 191

3D - Media - GPGPU (il'ltEl' Look Inside”

DWord | Bits Description

20 Error Code

000b: Successful. No Error (Normal).
101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

Other codes: Reserved.

CloseGateway Message

The CloseGateway message closes a communication channel for the requesting thread that was
previously opened with OpenGateway. Each thread is allowed to have only one open gateway at a time,
thus no additional information in the message payload is required to close the gateway. The message
consists of a single 256-bit message payload.is

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting
thread after completion of the CloseGateway function. Only the least significant DWord in the post
destination register is overwritten.

The BarrierMsg command does not use a CloseGateway message.

Message Payload

DWord | Bit Description

MO0.7:6 Ignored

MO.S 31:8|Ignored

70 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the

thread. It is used to free u