

Intel® Open Source HD Graphics

Programmer's Reference Manual

For the 2016 Intel Atom™ Processors, Celeron™ Processors, and

Pentium™ Processors based on the "Apollo Lake" Platform

(Broxton Graphics)

Volume 6: 3D-Media-GPGPU

May 2017, Revision 1.0

3D-Media-GPGPU

ii Doc Ref # IHD-OS-BXT-Vol 6-05.17

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 iii

Table of Contents

Shared Functions .. 1

3D Sampler ... 1

State .. 1

Surface State Fetch ... 1

Sampler State Fetch ... 1

Bindless Sampler State ... 1

State Caching.. 2

Messages .. 2

Message Header.. 2

Message Gateway .. 6

Message Payload .. 6

Media GPGPU Pipeline ... 7

Thread Pools ... 7

GPGPU Commands ... 9

GPGPU Context Switch ... 9

Generic Media ... 12

Media State and Primitive Commands ... 13

Media State and Primitive Command Workarounds .. 14

L3 Cache and URB .. 14

Overview ... 14

L3 Bank Configuration .. 15

Bandwidth and Throughput Capability .. 15

L3 Blocks Overview ... 15

Size of L3 Bank and Allocations .. 16

Shared Local Memory .. 17

Shared Local Memory .. 20

EU Overview ... 21

Accumulator Registers .. 21

Register Region Restrictions ... 25

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 1

Shared Functions

3D Sampler

State

The 3D sampler uses both surface state objects (RENDER_SURFACE_STATE) as well as sampler state

objects (SAMPLER_STATE). These objects are cached locally in the sampler state cache for improved

performance as it is assumed that many sampler messages will utilize the same surface and sampler

states.

Surface State Fetch

Surface state is fetched from system memory using a Binding Table Pointer (BTP). The BTP is a 16-bit

value provided by the command stream (not directly by the shader) which determines the binding-table

to be used. An 8-bit Binding Table Index (BTI) is then provided by the shader via the message

descriptor, which indicates the offset into the Binding Table. The BTP and BTI are relative to the Surface

State Base Address and the binding table itself resides in system memory. The contents of the Binding

Table is a list of pointers to surface state objects. The pointer from the Binding Table is also relative to

the Sampler State Base Address, and points directly to a 256-bit RENDER_SURFACE_STATE object

which sampler will fetch and store in its internal state cache.

Sampler State Fetch

SAMPLER_STATE objects are fetched independently of surface state and cached locally in the 3D

sampler independently (there may one or more SAMPLER_STATE objects associates with one or more

RENDER_SURFACE_STATE objects). The sampler state is fetched using the Sampler State Pointer (SSP)

which is provided either in the message header or directly from the command stream (message headers

are not required). The SSP is an offset relative to the Dynamic_State_Base_Address and selects a table

of 16 sampler states. The 4-bit Sampler Index (SI) in the message descriptor is used to select the

specific SAMPLER_STATE object to be fetched from system memory and cached locally in the 3D

sampler.

Bindless Sampler State

The sampler supports a "Bindless" sampler model. Bindless in this case does not actually refer to the lack

of a Binding table since the legacy Sampler State model also did not have a Binding Table. However, the

mechanism is similar to bindless surfaces in that the pointer provided directly selects a SAMPLER_STATE

object. The sampler uses the same Sampler State Pointer (SSP), but it is relative to the

Bindless_Surface_State_Base_Address rather than the Dynamic_State_Base_Addr. Bindless Samplers can

only be used in conjunction with Bindless Surfaces. The Sampler Index (SI) in the message descriptor is

not used, and can be set to 0. The SAMPLER_STATE object is cached locally in the 3D sampler.

3D-Media-GPGPU

2 Doc Ref # IHD-OS-BXT-Vol 6-05.17

State Caching

As mentioned above, the 3D Sampler allows for automatic caching of RENDER_SURFACE_STATE objects

and SAMPLER_STATE objects to provide higher performance. Coherency with system memory in the

state cache, like the texture cache is handled partially by software. It is expected that the command

stream or shader will issue Cache Flush operation or Cache_Flush sampler message to ensure that the L1

cache remains coherent with system memory.

Programming Note

Context: State Cache Coherency

Whenever the value of the Dynamic_State_Base_Addr, Surface_State_Base_Addr are altered, the L1 state cache must

be invalidated to ensure the new surface or sampler state is fetched from system memory.

Whenever the RENDER_SURFACE_STATE object in memory pointed to by the Binding Table Pointer (BTP) and

Binding Table Index (BTI) is modified or SAMPLER_STATE object pointed to by the Sampler State Pointer (SSP)

and Sampler Index (SI) is modified, the L1 state cache must be invalidated to ensure the new surface or sampler

state is fetched from system memory.

Messages

Message Header

The message header for the sampling engine is the same regardless of the message type. The messasge

header is optional. If the header is not present, the behavior is as if the message was sent with all fields in

the header set to zero and the write channel masks are all enabled and offsets are zero. However, if the

header is not included in the message, the Sampler State Pointer will be obtained from the command

stream input for the given thread.

When Response length is 0 for sample_8x8 message then the data from sampler is directly written out to

memory using media write message.

DWord Bits Description

M0.5 31:5 Reserved

M0.5 4:0 Output format. Only for Sample_8x8 message with direct HDC write:

0 YCRCB_NORMAL

1 YCRCB_SWAPUVY

2 YCRCB_SWAPUV

3 YCRCB_SWAPY

4 PLANAR_420_8 (NV12 only)

5 Y8_UNORM

6 Y16_SNORM

7-16 Reserved

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 3

DWord Bits Description

17 Y32_UNORM

18 Reserved

M0.4 31:16 Destination Y Address (u16)

M0.4 15:0 Destination X Address in bytes (u16)

X Address should always be DWord-aligned.

M0.3 31:4
Sampler State Pointer: Specifies the 16-byte aligned pointer to the sampler state table. This field is

ignored for ld and resinfo message types. This pointer is relative to the Dynamic State Base

Address or Bindless Surface State Base Address depending on the setting of Bindless Surface

Base Address Select bit in the GT_Mode Register.

Format = StateOffset[31:4]

The Sampler State Pointer does not have to be defined by the Message Header (many messages do

not require a message header). The Sampler State Pointer may be delivered from the Command

Streamer without the need for a Message Header.

M0.3 3:0 Ignored

M0.2 31:24
Render Target or Destination Binding Table Index

Specifies the index into the binding table for the render target or HDC for messages with response

length of zero (the binding table index for the sampler surface is in the message descriptor).

Format = U8

Range = [0,255]

M0.2 23
Pixel Null Mask Enable

Specifies whether the writeback message includes an extra phase indicating the pixel null mask.

Refer to the Writeback Message section for details on format. This field must be disabled for

sample+killpix and all SIMD32/64 messages.

Format = Enable

Ignored for

Sample_8x8 message

M0.2 22
SIMD Mode Extension

If SIMD Mode in the message descriptor is set to SIMD8D/SIMD4x2, this field specifies which mode

is used. For other SIMD Modes, this field is ignored.

0: SIMD8D

1: SIMD4x2

M0.2 21 Reserved

M0.2 20 Reserved

3D-Media-GPGPU

4 Doc Ref # IHD-OS-BXT-Vol 6-05.17

DWord Bits Description

M0.2 19:18
SIMD32/64 Output Format Control

Specifies the output format of SIMD32/64 messages (sample_unorm* and sample_8x8). Ignored for

other message types. Refer to the writeback message formats for details on how this field affects

returned data.

This field is ignored for sample_8x8 messages if the Function is not AVS and MinMaxFilter. For

MinMaxFilter only 16 bit Full and 8 bit Full modes are supported.

This field is ignored and not used for HDC write message.

0: 16 bit Full

1: 16 bit Chrominance Downsampled

2: 8 bit Full

3: 8 bit Chrominance Downsampled

This feature should be programmed to 0h because non-0 values may cause data corruption in

returned values.

M0.2 17:16
Gather4 Source Channel Select: Selects the source channel to be sampled in the gather4*

messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

For gather4*_c messages, this field must be set to 0 (Red channel).

M0.2 15
Alpha Write Channel Mask: Enables the alpha channel to be written back to the originating

thread.

0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note

Context: 3D Sampler Messages

 A message with all four channels masked is not allowed.

 This field must be set to zero for sample_8x8 in VSA mode.

 For Sample_8x8 messages, Alpha/Blue/Red channels should be always masked (set to 1)

and only Green channel is enabled (set to 0).

 This field must be set to zero for all gather4* messages.

M0.2 14 Blue Write Channel Mask: See Alpha Write Channel Mask.

M0.2 13 Green Write Channel Mask: See Alpha Write Channel Mask.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 5

DWord Bits Description

M0.2 12 Red Write Channel Mask: See Alpha Write Channel Mask.

M0.2 11.8
U Offset: The u offset from the _aoffimmi modifier on the sample or ld instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi

is not specified. Format is S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

 This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

 This field is ignored if the offu parameter is included in the gather4* messages.

M0.2 7:4
V Offset: The v offset from the _aoffimmi modifier on the sample or ld instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi

is not specified. Format is S3 2’s complement.

Programming Note

Context: 3DSampler Messages

 This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

 This field is ignored if the offu parameter is included in the gather4* messages.

Programming Note

Context: Non-Normalized Floating-Point Coordinates

Texel offsets can only be applied to messages with floating-point normalized coordinates or

integer non-normalized coordinates.

M0.2 3:0
R Offset: The r offset from the _aoffimmi modifier on the sample or ld instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi

is not specified. Format is S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

M0.1 31:0 Reserved

M0.0 31:0 Reserved

3D-Media-GPGPU

6 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Message Gateway

Message Payload

DWord Bits Description

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Predicate Mask. This field has a bit set per SIMD channel that passes the predicate. For SIMD8 and

SIMD16 the rest of the bits must be 0. This field is ignored for non-predicated barriers.

M0.2 31 Barrier ID MSB. This field is bit[4] of the BarrierID, for full 5-bit barrier ID it should be combined

with Barrier ID[3:0].

Format: U1

 M0.2 30 Ignored

 27:24 BarrierID. This field indicates which one from the 16 Barrier States is updated.

There is a fifth bit for the BarrierID, in bit 31.

Format: U4

Note: This field location matches with that of R0 header.

 23:16 Ignored

 15 Barrier Count Enable. Allows the message to reprogram the terminating barrier count. If set, the

stored value of the terminating barrier count is set to the value of Barrier Count field (below), and

used for this barrier operation. If clear, the stored value of the terminating barrier count is not

modified and the stored value is used for this barrier operation.

Programming Note: This control is intended only for Hull Shader threads. Do not use this control if

the barrier is linked with other barriers in other subslices (i.e. pooled EU thread groups in BXT).

Format: Enable

 14:9 Barrier Count. If Barrier Count Enable is set, this field specifies the terminating barrier count.

Otherwise this field is ignored. All threads that belong to a single barrier must deliver the same

value for this field for a particular barrier iteration.

 8:0 Ignored

M0.1 31:0 Ignored

M0.0 31:4 Ignored

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 7

Media GPGPU Pipeline

This section discusses Programming the GPGPU Pipeline, Thread Group Tracking, Generic Media, and

other related topics.

Thread Pools

Overview

Earlier project generations imposed a hardware-enforced restriction on the dispatching of workgroups to

the EU array. Specifically a workgroup, broken down into threads, was dispatched in whole, entirely to a

single subslice; no spanning of subslices was allowed. As long as an implementation’s subslice size (EU *

thread count) was sufficiently large, multiple workgroups of reasonably large sizes could be loaded onto

a single subslice, filling the subslice’s threads, providing good latency coverage leading to good

performance. But for configurations with smaller subslice sizes, either in thread count per EU and/or EU

count, and depending on workgroup size , this workgroup-per-subslice restriction could pose non-

optimal thread loading and non-optimal performance,.

The BXT project improves this situation by relaxing the workgroup-to-subslice coupling by aggregating

EUs from different subslices into one or more ‘virtual pools’ to which a workgroup can be dispatched. For

example, a configuration which has 3 subslices, each with 6 EUs, may create two virtual pools with 9 and

9 EUs each (see figure below). In terms of threads, if each EU has 6 threads, then the two pools have

9*6=54 threads each, vs. the three pools of 6*6=36 threads in previous architectural generations.

Depending on the workgroup size, the pooled and larger aggregated pools allow for a larger integer

number of workgroups to be active in the EU array at any instance, and minimize quantization problems

in thread occupancy.

The creation of pools, and mapping of EUs into them, is done through the new MEDIA_POOL_STATE

command. This command should be issued as part of context initialization. The setting is maintained as

part of context state and preserved across context switch operations.

3D-Media-GPGPU

8 Doc Ref # IHD-OS-BXT-Vol 6-05.17

JIT Impact

Note that other than possibly providing more flexibility in the simd-ness of the JIT, this feature is kernel-

transparent. The kernel itself is oblivious of thread-pools.

Pool Configuration Rules

The restrictions on pool configurations are described in MEDIA_POOL_STATE command.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 9

Legacy-Mode

Primarily for the purposes of backward compatibility of drivers, a ‘LegacyMode’ is defined where the new

thread-pools feature is disabled. In LegacyMode the workgroups are dispatched such that they are

contained to only a single subslice. Additionally the subslice is coupled to a single bank of SLM, and all

barriers of that thread-group remain local to the subslice.

LegacyMode may be set through a field in the MEDIA_POOL_STATE command. By default this mode is

enabled. Only a single ‘enable’ bit is defined for the entire GT device, thus selection of PooledMode or

LegacyMode is global setting across all slices in the implementation.

The performance while in LegacyMode may be significantly less than the architectural capability of the

device. For example it may be that there is insufficient SLM banks to guarantee peak performance of

kernels which stress Local Memory. Or it may be that there is insufficient total thread count in the

subslice to handle large thread groups at the more desirable simd-8 or simd-16 execution width, and

that simd-32 is required to handle the workgroup, and/or load/store operations are required and thereby

introduce instruction overhead. Thus LegacyMode should be used intelligently with the understanding of

its device-specific limitations.

GPGPU Commands

This section contains various commands for GPGPU, including a number of them shared with media

mode.

MEDIA_VFE_STATE with varying definitions for different generations and projects:

MEDIA_CURBE_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD [

Interface Descriptor Data payload as pointed to by the Interface Descriptor Data Start Address, with

varying definitions for different generations and projects:

MEDIA_STATE_FLUSH

MEDIA_POOL_STATE

SubslicePool

GPGPU Context Switch

Context switch allows the switch to take place in the middle of a thread group to provide better response

time.

The command sequence has been simplified – MEDIA_STATE_FLUSH and MI_ARB_CHECK are now

optional between commands for preemption to occur. MEDIA_STATE_FLUSH is now only needed before

MEDIA_LOAD_CURBE commands to ensure CURBE is done being read before reloading it. The watermark

bit in MEDIA_STATE_FLUSH is not needed, since the check is done automatically before a thread group is

started.

Preemption can occur on commands listed here:

3D-Media-GPGPU

10 Doc Ref # IHD-OS-BXT-Vol 6-05.17

 MI_ARB_CHECK

 MEDIA_STATE_FLUSH

 PIPE_CONTROL

 MI_WAIT_FOR_EVENT

 MI_SEMAPHORE_WAIT

 GPGPU_WALKER – Preemption can occur at any time, with thread groups partially complete; the

system state is saved/restored for context save and restore

 MI_WAIT_FOR_EVENT

 MI_SEAMPHORE_WAIT

Messages to the Sampler must use headers (controlled by bit 19 of the Message Descriptor) when pre-

emption is enabled.

Note that command preemption is not supported for MEDIA_OBJECT_* commands for MI_ARB_ON/OFF

should be used to prevent preemption except at frame boundaries, where an MI_ARB_CHECK should be

inserted.

The memory map of the context image that is saved from GPGPU pipeline includes SLM and EU State. A

contiguous space is allocated to save the SLM and EU State starting from the address provided in

GPGPU_CSR_BASE_ADDRESS.

Maximum Upper Bound

Description

The maximum upper bound is set to 2MB for BXT-C.

In GPGPU context save/restore mode, hardware writes to this location and does NOT use the surface

state or scratch space.

Memory Map of the GPGPU Context Image

The address offsets computed by hardware depend on the number of slices, subslices, EUs, and threads.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 11

Base Address Calculation

Base Address = CSR_Base_Address + A* [Config.NumSlmBanks] + B*SubSliceId + C*EuId + D*ThreadId +

Message_Offset

A = 0x10000 // 64K SLM per SubSlice

B = C * [Config.NumEusPerSubSlice]

C = D * [Config.NumThreadsPerEu]

D = 0x2000 // 8KB

Note: The slicenumber and EUIDs may require re-mapping such that a contiguous space is used with no

gaps inbetween.

3D-Media-GPGPU

12 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Generic Media

This introduction provides a brief overview of the Media product features. It includes Media functions,

feature benefits, and how the features fit into graphics products as part of a whole solution.

Media product features include:

 Multi-format codec engine

 Video front end

 Media fixed functions

 Video encoding

 Video decoding

 Sampling

These product features support specific applications, such as interactive gaming, videogames, social

media, virtual reality, and augmented reality.

The following block diagram shows the Main Render Engine, unified for 3D graphics and Media.

 Fixed Function (FF) pipelines: Provide thread generation and control.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 13

 3D graphics or Media FF: Controls EU array at a given time. The EU (Execution Unit) array is

shared between 3D and Media; ISA is optimized for both.

 Shared functions: Are accelerators to run filtered load, scatter, gather, and filter/blended store

operations.

 MFX: Is a parallel codec engine that runs in a separate context.

Media State and Primitive Commands

This section contains various commands for media, all with the RenderCS source.

MEDIA_CURBE_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Interface Descriptor Data payload as pointed to by the Interface Descriptor Data Start Address:

The MEDIA_OBJECT command is the basic media primitive command for the media pipeline. It supports

loading of inline data as well as indirect data. At least one form of payload (either inline, indirect, or

CURBE) must be sent with the MEDIA_OBJECT.

MEDIA_OBJECT

MEDIA_OBJECT_PRT

The MEDIA_OBJECT_WALKER command uses the hardware walker in VFE for generating threads

associated with a rectangular shaped object. It only supports loading of inline data or CURBE but not

indirect data. At least one form of payload must be sent. Control of scoreboards (up to 8) is implicit

based on the (X, Y) address of the generated thread and the scoreboard control state.

The command can be used only in Generic modes.

When Use Scoreboard field is set, the (X, Y) address and the Color field of the generated thread are used

in the hardware scoreboard and the thread dependencies are set by states from the MEDIA_VFE_STATE

command.

One or more threads may be generated by this command. This command does not support indirect

object load. When inline data is present, it is repeated for all threads it generates. Unlike CURBE, which

requires pipeline flush for change, continued change of this kind of ‘global’ (in the sense of shared by

multiple threads from this command) data is supported when MEDIA_OBJECT_WALKER commands are

issued without a pipeline flush in between.

MEDIA_POOL_STATE

SubslicePool

../../../../Content/BXmlSnippets/Structure_SubslicePool_BXTGEN10HAS395162_BSpec.html

3D-Media-GPGPU

14 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Media State and Primitive Command Workarounds

Media State and Primitive Commands have some subtle programming restrictions and workarounds, as

listed below.

Programming Note

When a media walker/media object group id with either a local or global barrier is used, then a stalling

PIPE_CONTROL is required before the next MEDIA_VFE_STATE (instead of the usual MEDIA_STATE_FLUSH).

Global barriers should not be used at the same time as linked barriers. A PIPE_CONTROL with CS Stall should be

placed between work that uses linked barriers and work that uses global barriers. Global and local barriers can be

used together only if the Thread Dispatch Selection Policy in MEDIA_VFE_STATE is set to Legacy.

L3 Cache and URB

This is the volume for BXT L3/URB/SLM. Much of the content is identical to Gen8, with important

changes to enhance performance.

Overview

The overall organization of the L3 and theory of operation have not changed. It retains all the

performance enhancements from previous generations with some additional improvements.

To provide the bandwidth needed L3 is still organized into independent banks which can be accessed

concurrently. Clocking remains 2X in the arrays to balance bandwidth with incoming requests. The L3$

and URB data for all L3 banks are shared as a contiguous memory space for all products regardless of

how many banks or slices.

 Each Bank 192KB in size.

 Each logical bank consists of:

o Data Array

o Tag Array

o LRU Array (implements a Pseudo Least Recently Used algorithm)

o State Array

o SuperQ Buffer

o Atomic Processing Units

 The rest of the support logic around L3 consists of:

 SuperQ (main scheduler).

 Ingress/Egress queues to L3/SQ (L3 arbiter).

 CAM structures to maintain coherency.

 Crossbars for data routing.

 Use of 2x/1x clocking.

 L3 can operate concurrently in GFX and IA coherent domain.

 A portion of L3 can be allocated as highly banked memory and/or unified buffer (URB).

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 15

L3 Bank Configuration

Each L3 bank is identical as described below. In products where there is only a single L3 bank supported,

the bank will be different to support a larger data array. The Multi-bank describes the L3 Bank

configuration for all other products.

Multi-Bank: 192KB data-array and 96 logical ways:

 Up to 64 ways, up to 128KB, tagged for L3$, remaining is treated as memory.

 64KB or 96KB allocated for URB (does not use tag).

 Shared local memory (SLM) capable (64KB)

 Uses Highly-banked memory to allow up to 16 32-bit accesses in parallel within a 64KB

space per sub-slice.

 Highly-banked memory formed from 16x4KB arrays

Single-Bank: 320KB data-array and 160 logical ways:

 Up to 96 ways, up to 192KB, tagged for L3$, remaining is treated as memory.

 64KB or 128KB allocated for URB (does not use tag).

 Shared local memory (SLM) capable (64KB)

 Uses Highly-banked memory to allow up to 16 32-bit accesses in parallel within a 64KB

space per sub-slice.

 Highly-banked memory formed from 16x4KB arrays.

All Bank Implementations:

 64B Cacheline.

 Interface 64B to SQDB for the fill/write path, 64B Read/Evict path to SQDB. Additional 64B read

and 64B write capability for SLM.

 Data protection via ECC.

 TAG/LRU/STATE (using gen-ram via RLS flows):

 39/48-bit addressing support in TAG.

 6-bit state (2-bits of MESI, 2-bits of Surface type, 1 bit Phys/Virtual, 1-bit Global/Local).

 Intel pseudo-LRU implementation for selecting the line to be replaced or 1b LRU (added for

Gen9).

Bandwidth and Throughput Capability

L3 Blocks Overview

L3 is formed via some number of logical banks that are identical to each other. The major blocks in each

logical bank are:

 L3 Cache Arrays & Controller

3D-Media-GPGPU

16 Doc Ref # IHD-OS-BXT-Vol 6-05.17

 Super Q and related data buffer

 Ingress queues and related CAMs with arbitration

 Atomics Block/SLM pipeline & crossbar for data routing

Our vision is to build a compute scalable cache where with each additional compute both the size and

bandwidth are scaled while maintaining the functional single cache concept. Each added bank becomes

an additional cache rather than an independent content. The concept is to be able to keep a single copy

of a line and service all requesters via distributing their accesses over many physical caches.

Size of L3 Bank and Allocations

Multi-Bank Allocation Options

The table below shows the size of the L3 bank and the ranges of allocation for L3$, URB, and SLM. Below

is a table of all validated configurations supported.

No Shared Local Memory Mode (KBytes)

 L3

Config SLM URB Rest DC RO(I/S/C/T) Sum

0 0 96 96 0 0 192

1 0 96 0 32 64 192

2 0 64 0 128 0 192

3 0 64 0 0 128 192

4 0 64 128 0 0 192

Shared Local Memory Mode (KBytes)

 L3

Config SLM URB Rest DC RO(I/S/C/T) Sum

1 64 32 96 0 0 192

2 64 32 0 32 64 192

3 64 32 0 64 32 192

4 64 16 112 0 0 192

Essentially, the L3 block can either support SLM or not. When SLM is supported, each slice provides 64KB

of its 192KB data array for SLM. When SLM is not supported, the 64KB is allocated to URB or split equally

between URB and L3$.

The number of L3 Banks will vary for different products and SKUs. The number of banks supported for

each product is defined in the Configurations section of the BSPEC. The total amount of L3$, URB, and

SLM supported by a product can be calculated by multiplying the number of banks by the values in the

above tables.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 17

Single-Bank Allocation Options

The table below shows the size of the L3 bank and the ranges of allocation for L3$, URB, and SLM in the case of a

product with a single bank (e.g. BXT:*:C).

No Shared Local Memory Mode (KBytes)

 L3

Config SLM URB Rest DC RO(I/S/C/T) Sum

0 0 128 192 0 0 320

1 0 128 0 32 160 320

2 0 128 0 128 64 320

Shared Local Memory Mode (KBytes)

 L3

Config SLM URB Rest DC RO(I/S/C/T) Sum

1 64 64 192 0 0 320

2 64 64 0 160 32 320

3 64 64 0 64 128 320

The table above describes the allocation of the data array for a single-bank BXT:*:C.

Shared Local Memory

Shared local memory (SLM, also known as highly-banked memory) is a portion of L3 which will be

dedicated to EUs as a local memory when enabled.

SLM Behavior and Software Usage

For Gen9LP (BXT derivatives), the SLM in an L3 is not dedicated for use by a single sub-slice. Because there may be

more sub-slices than there are L3 banks, the SLM is shared across all EUs in all sub-slices within a slice. Each SLM

bank is shared by some sub-set of the EUs as determined in the HDC by software. See the volume on HDC for more

details on how SLM is allocated to different EUs/threads.

SLM is enabled statically by the application. When enabled, it uses a fixed 64K block in each L3 Bank. When SLM is

enabled, URB will not use this 64K block of memory. URB accesses will automatically be moved to a different

location in the L3 bank.

SLM is implemented to allow for highly parallel applications. 16 DWord-accesses (all read or all write) can

be done simultaneously to different locations in the 64K space. Atomic operations as described in the

Atomic Operation section of this volume can be performed on the output of the SLM and written back in

one operation.

SLM Bank Hardware Implementation

The accesses are only possible through data cluster with the destination flag set as SLM. To support a

highly banked design, each of the L3 banks are structured to have 16x4KB portion which could be

accessed independently per clock. This part of the L3 can support 16 DW size accesses (per SLM) in a

3D-Media-GPGPU

18 Doc Ref # IHD-OS-BXT-Vol 6-05.17

given clock cycle. Each bank’s SLM is dedicated to a single sub-slice. The diagram below shows the

organization of data for a 192KB L3 Bank.

These 16 banks can either be used as URB or used as shared local memory with parallel accesses to all

banks. The choice of enabling SLM mode is done through MMIO programming

Bits Access

Default

Value Description

0 RW/C 0
Enable Shared Local Memory: When set, it enables the use of 2 banks of L3 as

shared local memory which allows 64KB of L3 to be banked as 16x4KB and

allows independent accesses to all banks within the same clock cycle.

Note: This mode can only be enabled once L3 content is completely flushed.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 19

3D-Media-GPGPU

20 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Shared Local Memory

Shared local memory (SLM, also known as highly-banked memory) is a portion of L3 which will be

dedicated to EUs as a local memory when enabled.

SLM Behavior and Software Usage

For BXT:*:C, the SLM in an L3 is not dedicated for use by a single sub-slice. Because there may be more sub-slices

than there are L3 banks, the SLM is shared across all EUs in all sub-slices within a slice. Each SLM bank is shared by

some sub-set of the EUs as determined in the HDC by software. See the volume on HDC for more details on how

SLM is allocated to different EUs/threads.

SLM is enabled statically by the application. When enabled, it uses a fixed 64K block in each L3 Bank. When SLM is

enabled, URB will not use this 64K block of memory. URB accesses will automatically be moved to a different

location in the L3 bank.

SLM is implemented to allow for highly parallel applications. 16 DWord-accesses (all read or all write) can

be done simultaneously to different locations in the 64K space. Atomic operations as described in the

Atomic Operation section of this volume can be performed on the output of the SLM and written back in

one operation.

SLM Bank Hardware Implementation

The accesses are only possible through data cluster with the destination flag set as SLM. To support a

highly banked design, each of the L3 banks are structured to have 16x4KB portion which could be

accessed independently per clock. This part of the L3 can support 16 DW size accesses (per SLM) in a

given clock cycle. Each bank’s SLM is dedicated to a single sub-slice.

These 16 banks can either be used as URB or used as shared local memory with parallel accesses to all

banks. The choice of enabling SLM mode is done through MMIO programming

Bits Access

Default

Value Description

0 RW/C 0
Enable Shared Local Memory: When set, it enables the use of 2 banks of L3 as

shared local memory which allows 64KB of L3 to be banked as 16x4KB and

allows independent accesses to all banks within the same clock cycle.

Note: This mode can only be enabled once L3 content is completely flushed.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 21

EU Overview

The GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and

media computations. Support for 3D graphics API (Application Programming Interface) Shader

instructions is mostly native, meaning that GEN efficiently executes Shader programs. Depending on

Shader program operation modes (for example, a Vertex Shader may be executed on a base of a vertex

pair, while a Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D graphics

API Shader instruction streams into GEN native instructions may be required. In addition, there are many

specific capabilities that accelerate media applications. The following feature list summarizes the GEN

instruction set architecture:

 SIMD (single instruction multiple data) instructions. The maximum number of data elements per

instruction depends on the data type.

 SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.

 Instruction level variable-width SIMD execution.

 Conditional SIMD execution via destination mask, predication, and execution mask.

 Instruction compaction.

 An instruction may executed in multiple cycles over a SIMD execution pipeline.

 Most GEN instructions have three operands. Some instructions have additional implied source or

destination operands. Some instructions have explicit dual destinations.

 Region-based register addressing.

 Direct or indirect (indexed) register addressing.

 Scalar or vector immediate source operand.

 Higher precision accumulator registers are architecturally visible.

 Self-modifying code is not allowed (instruction streams, including instruction caches, are read-

only).

Accumulator Registers

Accumulator Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0010b

Number of Registers: 10

Default Value: None

Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.

To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data elements.

However, as described in the Implementation Precision Restriction notes below, each data element may

have higher precision with added guard bits not indicated by the numeric data type.

3D-Media-GPGPU

22 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel

Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator support.

See the Accumulator Restrictions section for information about additional general accumulator

restrictions and also accumulator restrictions for specific instructions.

Accumulator Registers

There are 10 accumulator registers. The accumulator registers are of two types.

Register and Subregister Numbers for Accumulator Registers

RegNum[3:0] SubRegNum[4] SubRegNum[3:0]

0000b-1001b = acc0-acc9

All other encodings are reserved.

0 : Lower half

1 : Upper half

Reserved: MBZ

 Accumulators are updated implicitly only if the AccWrCtrl bit is set in the instruction. The

Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCtrl for

implicit accumulator updates. The write enable in word granularity for the instruction is used to

update the accumulator. Data in disabled channels is not updated.

 When an accumulator register is an implicit source or destination operand, hardware always uses

acc0 by default and also uses acc1 if the execution size exceeds the number of elements in acc0.

When implicit access to acc1 is required, QtrCtrl is used. Note that QtrCtrl can be used only if acc1

is accessible for a given data type. If acc1 is not accessible for a given data type, QtrCtrl defaults to

acc0.

Description

acc0 and acc1 are supported for half-precision (HF, Half Float) and single-precision (F, Float). Use QtrCtrl of Q2 or

Q4 to access acc1 for Float. use QtrCtrl of H2 to access acc1 for Half Float.

Examples:

 // Updates acc0 and acc1 because it is SIMD16:

 add (16) r10:f r11:f r12:f {AccWrEn}

 // Updates acc0 because it is SIMD8:

 add (8) r10:f r11:f r12:f {AccWrEn}

 // Updates acc1. Implicit access to acc1 using QtrCtrl:

 add (8) r10:f r11:f r12:f {AccWrEn, Q2}

 // Updates acc1 for Half Floats using QtrCtrl:

 add (16) r10:hf r11:hf r12:hf {AccWrEn, H2}

 It is illegal to specify different accumulator registers for source and destination operands in an

instruction (e.g. “add (8) acc1:f acc0:f”). The result of such an instruction is unpredictable.

Limits on SIMD16 Float Operations

Accumulator registers may be accessed explicitly as src0 operands only.

 Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in

an instruction.

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 23

 Reading accumulator content with a datatype different from the previous write will result in

undeterministic values.

 Word datatype write to accumulator is not allowed when destination is odd offset strided by 2.

 For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of

data, with only acc0 supported.

 When an accumulator register is an explicit destination, it follows the rules of a destination

register. If an accumulator is an explicit source operand, its register region must match that of the

destination register with the exception(s) described below.

Exceptions

Half floats can be written to either the lower or the upper word of the accumulator. However, this is not supported

for integer word operations.

acc1 must not be used with half-float and word datatypes

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and

UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source

modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result

becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of

accumulators. Consequently, the results are unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and

UW), it is sufficient to store the multiplication result of two Word operands with and without source

modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with bit

32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before running

into a risk of overflowing. When overflow occurs, only modular addition can generate a correct result. But

in this case, conditional flags may be incorrect. When saturation is used, the output is unpredictable. This

is also true for other operations that may result in more than 33 bits of data. For example, adding UD

(FFFFFFFFh) with D (FFFFFFFFh) results in 1FFFFFFFEh. The sign bit is now at bit 34 and is lost when stored

in the accumulator. When it is read out later from the accumulator, it becomes a negative number as bit

32 now becomes the sign bit.

Accumulator Channel Precision

Data

Type

Accumulator

 Number

Number

of

Channels

Bits Per

Channel Description

DF acc0 4 64 When accumulator is used for Double Float, it has the exact same

precision as any GRF register.

F
acc0/acc1

8 32 When accumulator is used for Float, it has the exact same precision as

any GRF register.

Q N/A N/A N/A Not supported data type.

D

(UD)

acc0 8 33/64
When the internal execution data type is doubleword integer, each

accumulator register contains 8 channels of (extended) doubleword

3D-Media-GPGPU

24 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Data

Type

Accumulator

 Number

Number

of

Channels

Bits Per

Channel Description

integer values. The data are always stored in accumulator in 2's

complement form with 64 bits total regardless of the source data type.

This is sufficient to construct the 64-bit D or UD multiplication results

using an instruction macro sequence consisting of mul, mach, and shr

(or mov).

W

(UW)

acc0 16 33 When the internal execution data type is word integer, each

accumulator register contains 16 channels of (extended) word integer

values. The data are always stored in accumulator in 2's complement

form with 33 bits total. This supports single instruction multiplication of

two word sources in W and/or UW format.

B

(UB)

N/A N/A N/A Not supported data type.

Accumulators

Accumulators acc2-acc9

These are accumulator registers defined for a special purpose. They are used to emulate IEEE-compliant

fdiv and sqrt macro operations. The access is different from acc0 and acc1. Each of these accumulator

registers are defined as 256-bit registers having 8 DWords. These may be accessed explicitly or implicitly.

 These registers may be accessed explicitly only by a mov operation, with no source modifiers,

condition modifiers, or saturation. When accessed explicitly, the datatype must be D. On reads, the

low 2 bits of each DWord are valid data. The other bits are undefined. On writes, the low two bits

are updated and other bits are dropped.

Example:

 // Move 256 bits from acc2 to r10. Just low two bits of each DWord are valid:

 mov (8) r10:ud acc2:ud

 // Move 256 bits from r10 to acc2. Just low two bits of each DWord are updated:

 mov (8) acc2:ud r10:ud

 These registers are accessed implicitly by three opcodes defined for the macro operations. Note:

These macro operations are defined under the math opcode section. The macro descriptions also

define the restrictive implicit uses of these registers.

Description

Implicit access across accumulator registers is required for each source operand for these macro instructions. These

opcodes are accessed in Align16 mode only. The Channel Select bits in the instruction are used to implicitly address

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 25

Description

the different accumulators for each source. Similarly the Channel Enable bits are used to implicitly address the

accumulators for destination. The noacc value is specified when no write to accumulator is required; think of it as a

null.

Encoding Accumulator Register

00000001b acc3

00000010b acc4

00000011b acc5

00000100b acc6

00000101b acc7

00000110b acc8

00000111b acc9

00001000b noacc

Register Region Restrictions

A register region is described as packed if its elements are adjacent in memory, with no intervening

space, no overlap, and no replicated values. If there is more than one element in a row, elements must be

adjacent. If there is more than one row, rows must be adjacent. When two registers are used, the

registers must be adjacent and both must exist.

The following register region rules apply to the GEN implementation.

1. General Restrictions Based on Operand Types

There are these general restrictions based on operand types:

1. Where n is the largest element size in bytes for any source or destination operand type,

ExecSize * n must be <= 64.

2. When the Execution Data Type is wider than the destination data type, the destination must

be aligned as required by the wider execution data type and specify a HorzStride equal to

the ratio in sizes of the two data types. For example, a mov with a D source and B destination

must use a 4-byte aligned destination and a Dst.HorzStride of 4.

2. General Restrictions on Regioning Parameters

The mapping of data elements within the region of a source operand is in row-major order and is

determined by the region description of the source operand, the destination operand, and the

ExecSize, with these restrictions:

1. ExecSize must be greater than or equal to Width.

2. If ExecSize = Width and HorzStride ≠ 0, VertStride must be set to Width * HorzStride.

3. If ExecSize = Width and HorzStride = 0, there is no restriction on VertStride.

4. If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and VertStride.

5. If ExecSize = Width = 1, both VertStride and HorzStride must be 0.

3D-Media-GPGPU

26 Doc Ref # IHD-OS-BXT-Vol 6-05.17

6. If VertStride = HorzStride = 0, Width must be 1 regardless of the value of ExecSize.

7. Dst.HorzStride must not be 0.

8. VertStride must be used to cross GRF register boundaries. This rule implies that elements

within a ‘Width’ cannot cross GRF boundaries.

3. Region Alignment Rules for Direct Register Addressing

1. In Direct Addressing mode, a source cannot span more than 2 adjacent GRF registers.

2. A destination cannot span more than 2 adjacent GRF registers.

3. When a source or destination spans two registers, there are restrictions that vary by project,

described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

4. Special Cases for Byte Operations

1. When the destination type is byte (UB or B) only a ‘raw move’ using the mov instruction

supports a packed byte destination register region: Dst.HorzStride = 1 and Dst.DstType = (UB

or B). This packed byte destination register region is not allowed for any other instructions,

including a ‘raw move’ using the selinstruction, because the sel instruction is based on Word

or DWord wide execution channels.

2. There is a relaxed alignment rule for byte destinations. When the destination type is byte (UB

or B), destination data types can be aligned to either the lowest byte or the second lowest

byte of the execution channel. For example, if one of the source operands is in word mode (a

signed or unsigned word integer), the execution data type will be signed word integer. In

this case the destination data bytes can be either all in the even byte locations or all in the

odd byte locations.

This rule has two implications illustrated by this example:

 // Example:

 mov (8) r10.0<2>:b r11.0<8;8,1>:w

 mov (8) r10.1<2>:b r11.0<8;8,1>:w

 // Dst.HorzStride must be 2 in the above example so that the destination

 // subregisters are aligned to the execution data type, which is :w.

 // However, the offset may be .0 or .1.

 // This special handling applies to byte destinations ONLY.

5. Special Cases for Word Operations

There are some special cases for word operations for specific projects, described in the following

table. If you are viewing a version of the BSpec limited to other particular projects, the table may

not show and there are no special cases in this category.

There is a relaxed alignment rule for word destinations. When the destination type is word (UW, W,

HF), destination data types can be aligned to either the lowest word or the second lowest word of

the execution channel. This means the destination data words can be either all in the even word

locations or all in the odd word locations.

 // Example:

 add (8) r10.0<2>:hf r11.0<8;8,1>:f r12.0<8;8,1>:hf

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 27

 add (8) r10.1<2>:hf r11.0<8;8,1>:f r12.0<8;8,1>:hf

 // Note: The destination offset may be .0 or .1 although the destination subregister

 // is required to be aligned to execution datatype.

6. Special Requirements for Handling Double Precision Data Types

There are special requirements for handling double precision data types that vary by project,

described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

Special Requirements for Handling Double Precision Data Types

Requirement

When source or destination datatype is 64b or operation is integer DWord multiply, regioning in Align1 must follow

these rules:

1. Source and Destination horizontal stride must be aligned to the same qword.

Example:

 // mov (4) r10.0:df r11.0<16;8,2>:f // Source stride must be 2 since datatype is

smaller.

 // mov (4) r10.0<2>:f r11.0<4;4,1>:df // Destination stride must be 2 since datatype is

smaller.

 // mul (4) r10.0<2>:d r11.0<8;4,2>:d r12.0<8;4,2>:d // Source and Destination stride

must be 2 since the execution type is Qword.

2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.

3. Source and Destination offset must be the same, except the case of scalar source.

When source or destination datatype is 64b or operation is integer DWord multiply, indirect addressing must not

be used.

ARF registers must never be used with 64b datatype or when operation is integer DWord multiply.

When source or destination datatype is 64b or operation is integer DWord multiply, DepCtrl must not be used.

7. Special Requirements for Handling Mixed Mode Float Operations

There are some special requirements for handling mixed mode float operations for specific

projects, described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

Requirement

In Align16 mode, when half float and float data types are mixed between source operands OR between source and

destination operands, the register content are assumed to be packed. In such cases the execution size reflects the

number of float elements. Since a stride of 1 is assumed, source is selected in packed form and 16 bit packed data

is updated on the destination operand, if the datatype is half-float.

For Align16 mixed mode, both input and output packed f16 data must be oword aligned, no oword crossing in

packed f16.

3D-Media-GPGPU

28 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Requirement

Examples:

 Case (a)

 mad (8) r10.0.xy:hf r11.0.xxxx:f r12.xyzw:hf r13.yyyy:hf

 // The 16b of each word (r12.0, r12.1, r12.2, r12.3.. and so on) forms the

source operand.

 // r13.1 and r13.5 is replicated for source operand.

 // The lower 16b of a Dword is updated for destination. With channel enables

.xy , r10.0, r10.1, r10.4 and r10.5 are updated.

 Case (b)

 mad (8) r10.0.xy:f r11.0.xxxx:f r12.xyzw:hf r13.yyyy:hf

 // The example is similar to Case(a), except that entire DWord is updated on

the destination.

In Align16 mode, replicate is supported and is coissueable.

 mad(8) r20.xyzw:hf r3.0.r:f r6.0.xyzw:hf r6.0.xyzw:hf {Q1}

No SIMD16 in mixed mode when destination is packed f16 for both Align1 and Align16.

 mad(8) r3.xyzw:hf r4.xyzw:f r6.xyzw:hf r7.xyzw:hf

 add(8) r20.0<1>:hf r3<8;8,1>:f r6.0<8;8,1>:hf {Q1}

No accumulator read access for Align16 mixed float.

When source is float or half float from accumulator register and destination is half float with a stride of 1, the

source must register aligned. i.e., source must have offset zero.

No swizzle is allowed when an accumulator is used as an implicit source or an explicit source in an instruction. i.e.

 when destination is half float with an implicit accumulator source, destination stride needs to be 2.

 mac(8) r3<2>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

 mov(8) r3<1>:f acc0.0<8;4,2>:hf

In Align16, vertical stride can never be zero for f16

 add(8) r3.xyzw:hf r4.0<4>xyzw:f r6.0<0>.xyzw:hf

Math operations for mixed mode:

- In Align16, only packed format is supported

 math(8) r3.xyzw:hf r4.0.<4>xyzw:f r6.0<0>.xyzw:hf 0x09

- In Align1, f16 inputs need to be strided

 math(8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 29

Requirement

In Align1, destination stride can be smaller than execution type. When destination is stride of 1, 16 bit packed data

is updated on the destination. However, output packed f16 data must be oword aligned, no oword crossing in

packed f16.

 add(8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

8. Regioning Rules for Register Indirect Addressing

Regioning rules for register indirect addressing vary for specific projects, described in the following

table. If you are viewing a version of the BSpec limited to other particular projects, the table may

appear with no data rows.

Rules

1. When the execution size and destination regioning parameters require two adjacent registers, these registers

are accessed using one index register ONLY.

 // Example:

 mov (16) r[a0.0]:f r10:f

 // The above instruction behaves the same as the following two instructions:

 mov (8) r[a0.0]:f r10:f

 mov (8) r[a0.0, 8*4]:f r11:f

2. When the destination requires two registers and the sources are 1x1 indirect mode, the sources must be

assembled from two GRF registers accessed by a single index register. The data for each destination GRF

register is entirely derived from one source register. This is ensured by appropriate use of regioning

parameters. The exception to this is the use of indirect scalar sources, where the same element is used across

the execution size.

 // Example:

 // Case (a)

 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]:f

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]:f

 add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4, 8*4]:f

 // Note that the immediate for the second instruction is based on regioning.

 // In this case, it is 8 DWs.

 // Case (b)

 add (16) r[a0.0]:ud r[a0.2]<4;8,1>:w r10<8;8,1>:ud

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]:f r[a0.2]<4;8,1>:w r10<8;8,1>:ud

 add (8) r[a0.0, 8*4]:f r[a0.2, 4*2]<4;8,1>:w r11<8;8,1>:ud

 // Note that the immediate for the second instruction is based on regioning.

 // VertStride of 4 with data type of word.

 // Case (c):

 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

 add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4]<0;1,0>:f

 // Note that the src1 indirect address does not change.

3. Indirect addressing on src1 must be a 1x1 indexed region mode.

3D-Media-GPGPU

30 Doc Ref # IHD-OS-BXT-Vol 6-05.17

Rules

4. When a Vx1 or a VxH addressing mode is used on src0, the destination may use one or two registers.

 // Example:

 // Case (a)

 add (16) r[a0.0]<1>:d r[a0.0]<4,1>:ud r16.0<8;8,1>:ud

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]<1>:d r[a0.0]<4,1>:ud r16.0<8;8,1>:ud

 add (8) r[a0.0, 8*4]<1>:d r[a0.2]<4,1>:ud r17.0<8;8,1>:ud

 // Since the pointer (index register) is incremented every 4 elements

 // (width), the second instruction moves from a0.0 to a0.2.

 // Case (b)

 add (16) r10.0<2>:uw r[a0.0, 0]<1,0>:uw r16.0<8;8,1>:uw

 // The above instruction behaves the same as the following two instructions:

 add (8) r10.0<2>:uw r[a0.0, 0]<1,0>:uw r16.0<8;8,1>:uw

 add (8) r11.0<2>:uw r[a0.8, 0]<1,0>:uw r17.0<8;8,1>:uw

 // Since the pointer (index register) is incremented every 1 element

 // (width), the second instruction moves from a0.0 to a0.8.

5. Indirect addressing on the destination must be a 1x1 indexed region mode.

Execution size of 32 is NOT supported in Vx1 or VxH modes.

1. Special Restrictions

There are some special restrictions on register region access for specific projects, described

in the following table. If you are viewing a version of the BSpec limited to other particular

projects, the table may appear with no data rows.

Restriction

All flow control (branching) instructions must use the Align1 access mode.

When using Align16 mode for conversion of data elements of different sizes, both source and destination must be

one register each.

In Align16 mode, each destination register gets all data from one source register. This means, the data for one

destination register is never scattered across two source registers.

// Example:

// Allowed – all sources are contained within one register.

mul (8) r10.0:f r11.0:f r12.4<0>:f

// NOT Allowed – src1 (r14) is scattered across two registers.

mad (8) r10.0:f r12.0<0>:f r14.4:f r16.0:f

 3D-Media-GPGPU

Doc Ref # IHD-OS-BXT-Vol 6-05.17 31

Restriction

Conversion between Integer and HF (Half Float) must be DWord-aligned and strided by a DWord on the

destination.

// Example:

add (8) r10.0<2>:hf r11.0<8;8,1>:w r12.0<8;8,1>:w

// Destination stride must be 2.

mov (8) r10.0<2>:w r11.0<8;8,1>:hf

// Destination stride must be 2.

The src, dst overlapping behavior with the second half src and the first half destination to the same register must not be used

with any compressed instruction.

In mid-thread pre-emptible contexts, if a compressed instruction uses vx1 or vxh addressing modes, then the

second half of the compressed instruction must use more than one index register to access source0.

