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Introduction 

For BDW, the hardware supports three engines: 

 The Render command streamer interfaces to 3D/IE and display streams. 

 The Media command streamer interfaces to the fixed function media. 

 The Blitter command streamer interfaces to the blit commands. 

Software interfaces of all three engines are very similar and should only differ on engine-specific 

functionality. 

Memory Views Glossary 

Term Definition 

BDW Broadwell CPU/GFX platform. 8th generation processor graphics (Gen8). 

IOMMU I/O Memory Mapping unit 

SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and 

processor graphics. 

Page Walker 

(GAM) 

GFX page walker which handles page level translations between GFX virtual memory to physical 

memory domain. 

GPU Memory Interface  

GPU memory interface functions are divided into 4 different major sections: 

 Global Arbitration 

 Memory Interface Functions 

 Page Translations (GFX Page Walker) 

 Ring Interface Functions (GTI) 

GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The 

following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces and 

page translations and page walker functions. 
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Global Arbitration  

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses 

from different stages of the pipeline are consolidated to a single interface towards GT’s connection to 

CPU’s ring interface. 

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels. 

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases 

major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace 

period where its accesses are counted against a global pool. If a particular engine (or pipeline stage) 

exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based prioritization. 

Once all counts are expired, the grace period completes and resets. 

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring 

the pipeline order. 

GFX MMIO – MCHBAR Aperture  

Address: 140000h – 147FFFh 

Default Value: Same as MCHBAR 

Access: Aligned Word, Dword, or Qword Read/Write 

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write 

registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers 

defined within the MCHBAR space are preserved when the same registers are accessed via this space. 

Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal 

Sensor, etc. 

The Alias functions work for MMIO access from the CPU only. A command stream load register 

immediate will drop the data, and the store register immediate will return all Zeroes. 

Graphics MMIO registers can be accessed through MMIO BARs in function #0 and function #1 in Device 

#2. The aliasing mechanism is turned off if memory access to the corresponding function is turned off via 

software or in certain power states. 
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Graphics Memory Interface Functions 

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various 

client functions access to “graphics” memory used to store commands, surfaces, and other information 

used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics 

memory is accessed. 

Information not presented in this chapter includes: 

 Microarchitectural and implementation-dependent features (e.g., internal buffering, caching, and 

arbitration policies). 

 MI functions and paths specific to the operation of external (discrete) devices attached via external 

connections. 

 MI functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional 

“chipset functions”  

 GFX Page Walker and GT interface functions are covered in different chapters. 
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Graphics Memory Clients  

The MI function provides memory access functionality to a number of external and internal graphics 

memory clients, as described in the table below. 

Graphics Memory Clients 

MI Client Access Modes 

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed 

using Device 2 Graphics Memory Range Addresses 

External PEG Graphics 

Device 

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture. (This 

client is not described in this chapter). 

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed 

using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DMI 

access to Graphics registers is not supported. 

Coherent Read/Write 

(internal) 

Internally-generated snooped reads/writes. 

Command Stream 

(internal) 

DMA Read of graphics commands and related graphics data. 

Vertex Stream 

(internal) 

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed 

Function. 

Instruction/State 

Cache (internal) 

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions 

executed by the EUs. 

Render Cache 

(internal) 

Read/Write of graphics data operated upon by the graphics rendering engines (Blitter, 3D, 

MPEG, etc.) Read of render surface state. 

Sampler Cache 

(internal) 

Read of texture (and other sampled surface) data stored in graphics memory. 

Display/Overlay 

Engines (internal) 

Read of display, overlay, cursor, and VGA data. 

Media Engines Read and write of media content and media processing. 

uController Read/Write (DMA) functions for u-controller and scheduler. 
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Graphics Memory Addressing Overview  

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory 

addresses of various types, performs a number of optional operations along address paths, and 

eventually performs reads and writes of graphics memory data using the resultant addresses. The 

remainder of this subsection will provide an overview of the graphics memory clients and address 

operations. 

Graphics Address Path  

Graphics Address Path shows the internal graphics memory address path, connection points, and optional 

operations performed on addresses. Externally-supplied addresses are normalized to zero-based 

Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled address 

(based on inclusion in a fenced region or via explicit surface parameters), address tiling is performed. At 

this point the address is considered a Logical Memory address, and is translated into a Physical Memory 

address via the GTT and associated TLBs. The physical memory location is then accessed. 

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped 

cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory aperture. 
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Graphics Memory Paths  

 

The remainder of this chapter describes the basic features of the graphics memory address pipeline, 

namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation 

considerations. 
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Graphics Memory Address Spaces  

The Graphics Memory Address Types table lists the five supported Graphics Memory Address Spaces. 

Note that the Graphics Memory Range Removal function is automatically performed to transform system 

addresses to internal, zero-based Graphics Addresses. 

Graphics Memory Address Types 

Address 

Type Description Range Gen8(BDW) 

GMADR Address range allocated via the Device 2 (integrated 

graphics device) GMADR register. The processor and other 

peer (DMI) devices utilize this address space to read/write 

graphics data that resides in Main Memory. This address is 

internally converted to a GM_Address. 

This is a 4 GB BAR 

above physical 

memory. 

128 MB, 256 MB, 

512 MB, 1GB, 2GB, 

4GB 

GTTMMADR The combined Graphics Translation Table Modification 

Range and Memory Mapped Range. The range requires 16 

MB combined for MMIO and Global GTT aperture, with 8 MB 

of that used by MMIO and 8 MB used by GTT. GTTADR 

begins at GTTMMADR 8 MB while the MMIO base address is 

the same as GTTMMADR. 

 For the Global GTT, this range is defined as a memory BAR 

in graphics device config space It is an alias into which 

software is required to write Page Table Entry values (PTEs). 

Software may read PTE values from the global Graphics 

Translation Table GTT. PTEs cannot be written directly into 

the global GTT memory area. 

This is a 16MB BAR 

above physical 

memory. 

16 MB (2 MB 

MMIO + 6 MB 

reserved + 8 MB 

GGTT) 

GSM GTT Stolen Memory. It is an 8 MB (max) region taken out of 

physical memory to store the Global GTT entries for page 

translations specific to GFX driver use. 

 It is accessible via GTTMMADR from the CPU path however 

GPU/DE can access the same region directly. 

This is an 8 MB 

region in physical 

memory not visible 

to OS. 

1 MB, 2 MB, 4 MB, 

8 MB 

DSM Data stolen memory, the size is determined with GMS filed 

(8 bits) with MAX size of 4 GB. 

 This is a stolen memory which can be accessed via GMADR 

for CPU and directly for GPU/DE. 

 Size is programmable with 32 MB multiplier. 

 Due to a workaround, first 4KB of DSM has to be reserved 

for GFX hardware use during render engine execution. 

This is a max of 4 

GB stolen physical 

memory for GFX 

data structures. 

0 MB, 32 MB, 64 

MB, 96 MB, 

...4096MB 
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Address Tiling Function Introduction 

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature, 

certain functions within the graphics device support the storage/access of the operands using alternative 

(tiled) memory formats to increase performance. This section describes these memory storage formats, 

why and when they should be used, and the behavioral mechanisms within the device to support them. 

Legacy Tiling Modes: 

 TileY: Used for most tiled surfaces when TR_MODE=TR_NONE. 

 TileX : Used primarily for display surfaces. 

 TileW: Used for Stencil surfaces. 

Linear vs Tiled Storage  

Regardless of the memory storage format, “rectangular” memory operands have a specific width and 

height, and are considered as residing within an enclosing rectangular region whose width is considered 

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must 

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly with 

the surface). Rectangular Memory Operand Parameters shows these parameters. 

Rectangular Memory Operand Parameters 

 

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the 

operand is stored in sequentially increasing memory locations. If the surface width is less than the 

enclosing region’s pitch, there will be additional memory storage between rows to accommodate the 

region’s pitch. The pitch of the enclosing region determines the distance (in the memory address space) 

between vertically-adjacent operand elements (e.g., pixels, texels). 
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Linear Surface Layout 

 

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface 

where each scanline is read sequentially). Here the fact that one object element may reside in a different 

memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally-

adjacent elements are stored contiguously. However, when a device function needs to access a 2D 

subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2 

texel block for bilinear filtering), having vertically-adjacent elements fall within different memory pages is 

to be avoided, as the page crossings required to complete the access typically incur increased memory 

latencies (and therefore lower performance). 

One solution to this problem is to divide the enclosing region into an array of smaller rectangular 

regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same 

physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile 

and thereby increasing performance. 

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows 

high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the 

dimensions of tiles are irrespective of the data contained within – e.g., a tile can hold twice as many 16-

bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels). 
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Memory Tile Dimensions 

 

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled 

region are stored sequentially in memory in row-major order. 

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a 

pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles – 

the surface is not necessarily aligned or dimensioned to tile boundaries. 

Tiled Surface Layout 
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Tile Formats  

Multiple tile formats are supported by the Gen Core. The following sections define and describe these 

formats. 

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the 

RENDER_SURFACE_STATE. 

Tile-X Legacy Format 

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following 

figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords . The 

selection of tile direction only impacts the internal organization of tile data, and does not affect how 

surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a 

linear fashion. 

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE 

to XMAJOR. 

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the organization 

of texels in memory. 

Tile X-Tile (X-Major) Layout 
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Tile-Y Legacy Format 

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as 

shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection 

of tile direction only impacts the internal organization of tile data, and does not affect how surfaces map 

onto tiles. 

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to 

YMAJOR. 

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout 

of pixels. 

Y-Major Tile Layout 
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Tiling Algorithm  

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics 

memory to an address in logical space. 

 Inputs: 

     LinearAddress (offset into regular or LT aperture in terms of bytes) 

     Pitch (in terms of tiles)  

     WalkY (1 for Y and 0 for X) 

     WalkW (1 for W and 0 for the rest) 

 Static Parameters: 

     TileH (Height of tile, 8 for X, 32 for Y, and 64 for W), 

     TileW (Width of Tile in bytes, 512 for X, 128 for Y, and 64 for W) 

   

 TileSize = TileH * TileW; 

 RowSize = Pitch * TileSize; 

 If ( Fenced ) { 

     LinearAddress = LinearAddress – FenceBaseAddress; 

     LinearAddrInTileW = LinearAddress div TileW; 

     Xoffset_inTile = LinearAddress mod TileW; 

     Y = LinearAddrInTileW div Pitch; 

     X = LinearAddrInTileW mod Pitch + Xoffset_inTile; 

 } 

  

 // Internal graphics clients that access tiled memory already have the X, Y coordinates and 

can start here. 

 YOff_Within_Tile = Y mod TileH; 

 XOff_Within_Tile = X mod TileW; 

 TileNumber_InY = Y div TileH; 

 TileNumber_InX = X div TileW; 

 TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX + 

         TileH * 16 * (XOff_Within_Tile div 16) + YOff_Within_Tile * 16 + (XOff_Within_Tile 

mod 16); 

 TiledOffsetW = RowSize * TileNumber_InY + TileSize * TileNumber_InX +  

         TileH * 8 * (XOff_Within_Tile div 8) +  

         64 * (YOff_Within_Tile div 8) +  

         32 * ((YOff_Within_Tile div 4) mod 2) +  

         16 * ((XOff_Within_Tile div 4) mod 2) +  

          8 * ((YOff_Within_Tile div 2) mod 2) +  

          4 * ((XOff_Within_Tile div 2) mod 2) + 

          2 * (YOff_Within_Tile mod 2) +  

              (XOff_Within_Tile mod 2); 

 TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileW * 

YOff_Within_Tile + XOff_Within_Tile; 

 TiledOffset = WalkW ? TiledOffsetW : (WalkY ? TiledOffsetY : TiledOffsetX); 

 TiledAddress = Tiled ? (BaseAddress + TiledOffset) : (BaseAddress + Y*LinearPitch + X); 

 TiledAddress = (Tiled && 

         (Address Swizzling for Tiled-Surfaces == 01)) ? 

         (WalkW || WalkY) ? 

         (TiledAddress div 128) * 128 + 

         (((TiledAddress div 64) mod 2) ^ 

         ((TiledAddress div 512) mod 2)) + 

         (TiledAddress mod 32) 

         : 

         (TiledAddress div 128) * 128 + 

         (((TiledAddress div 64) mod 2) ^ 

         ((TiledAddress div 512) mod 2) 

         ((TiledAddress Div 1024) mod2) + 

         (TiledAddress mod 32) 

         : 

         TiledAddress; 
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For BDW and subsequent generations, Address Swizzling for Tiled-Surfaces is no longer used because 

the main memory controller has a more effective address swizzling algorithm. 

For Address Swizzling for Tiled-Surfaces see ARB_MODE – Arbiter Mode Control register, ARB_CTL—

Display Arbitration Control 1, and TILECTL - Tile Control register. 

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the 

same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial 

locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture 

filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline. 

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements are 

stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned 

in row-major order for operations like display refresh. For this reason, the Display and Overlay memory 

streams only support linear or X-Major tiled surfaces. (Y-Major tiling is not supported by these functions.) 

This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled 

formats if they are to be displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be stored 

in Y-Major order. 

Tiled Channel Select Decision  

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling 

modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13]. 

For Gen8 and subsequent generations, the swizzle fields are all reserved, and the CPU's memory 

controller performs all address swizzling modifications. 

Tiling Support  

The rearrangement of the surface elements in memory must be accounted for in device functions 

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled 

formats). This requires either the modification of an element’s linear memory address or an alternate 

formula to convert an element’s X,Y coordinates into a tiled memory address. 

However, before tiled-address generation can take place, some mechanism must be used to determine 

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile 

region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms 

by which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address 

falls within a “fenced” tiled region, or (b) by an explicit specification of tiling parameters for surface 

operands (i.e., parameters included in surface-defining instructions). 
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The following table identifies the tiling-detection mechanisms that are supported by the various memory 

streams. 

Access Path Tiling-Detection Mechanisms Supported 

Processor access through the Graphics Memory Aperture Fenced Regions 

3D Render (Color/Depth Buffer access) Explicit Surface Parameters 

Sampled Surfaces Explicit Surface Parameters 

Blt operands Explicit Surface Parameters 

Display and Overlay Surfaces Explicit Surface Parameters 

Tiled (Fenced) Regions  

The only mechanism to support the access of surfaces in tiled format by the host or external graphics 

client is to place them within “fenced” tiled regions within Graphics Memory. A fenced region is a block 

of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface 

Registers for details). Surfaces contained within a fenced region are considered tiled from an external 

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since 

external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by 

an internal graphics client) fall within a region covered by an enabled fence register, that enable will be 

effectively masked during the internal graphics client access. Only the explicit surface parameters 

described in the next section can be used to tile surfaces being accessed by the internal graphics clients. 

Restriction: Each FENCE register (if its Fence Valid bit is set) defines a Graphics Memory region ranging 

from 4KB to the aperture size. The region is considered rectangular, with a pitch in tile widths from 1 tile 

width (128B or 512B) to 512 tile X widths (512 * 512B = 256KB) and 2048 tile Y widths (2048 * 128B = 

256KB). Note that fenced regions must not overlap, or operation is UNDEFINED. 

Context: Tiled (Fenced) Regions 

 

Restriction: Also included in the FENCE register is a Tile Walk field that specifies which tile format 

applies to the fenced region. 

Context: Tiled (Fenced) Regions 
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Tiled Surface Parameters  

Internal device functions require explicit specification of surface tiling parameters via information passed 

in commands and state. This capability is provided to limit the reliance on the fixed number of fence 

regions. 

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color 

Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE. 

Surface 

Parameter Description 

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear 

format. 

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-

Major or X-Major tile format. 

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface. 

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile 

width. 

Tiled Surface Restrictions  

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition, 

restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The 

most restricted surfaces are those that will be accessed both by the host (via fence) and by internal 

device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then 

sampled by the device. 

The tiling algorithm for internal device functions is different from that of fence regions. Internal device 

functions always specify tiling in terms of a surface. The surface must have a base address, and this base 

address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y 

addressing within the surface) are transformed through tiling. The base address of the surface must 

therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device 

pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than 

or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by 

the host (via a fence region). 

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated 

in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base 

address in graphics memory equal to the fence base address, and all accesses of the surfaces are 

(possibly quite large) offsets from the fence base address. Fence regions have a virtual “left edge” aligned 

with the fence base address, and a “right edge” that results from adding the fence pitch to the “left 

edge”. Surfaces in the fence region must not straddle these boundaries. 

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host 

have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the 

surface base address (as set in SURFACE_STATE) must be a “Tile Row Start Address” (TRSA). The first 

address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base 



Memory Views   

 

Doc Ref # IHD-OS-BDW-Vol 5-10.15   17 

address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base 

address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.) 

Tiled Surface Placement 

 

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to 

access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different 

GTT mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess 

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in 

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by 

SW between the time the host writes the surface and the device reads it, or it can be accomplished by 

arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory Mapping 

below). 

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch 

and the fence pitch in any scenario where a surface will be accessed by both the host and an internal 

graphics client. Changing the GTT mapping will not help if this restriction is violated. 
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Surface Access Base Address Pitch Width Tile “Walk” 

Host only No restriction Integral multiple of tile size 

<= 256KB 

Must be <= Fence 

Pitch 

No restriction 

Client only 4KB-aligned Integral multiple of tile size 

<= 256KB 

Must be <= 

Surface Pitch 

Restrictions imposed by 

the client (see Per Stream 

Tile Format Support) 

Host and Client, 

No GTT 

Remapping 

Must be TRSA Fence Pitch = Surface Pitch 

= integral multiple of tile 

size <= 256KB 

Width <= Pitch Surface Walk must meet 

client restriction,  Fence 

Walk = Surface Walk 

Host and Client, 

GTT Remapping 

4KB-aligned for 

client (will be tile-

aligned for host) 

Both must be Integral 

multiple of tile size 

<=128KB, but not 

necessarily the same 

Width <= 

Min(Surface Pitch, 

Fence Pitch) 

Surface Walk must meet 

client restriction, Fence 

Walk = Surface Walk 

Per-Stream Tile Format Support  

MI Client Tile Formats Supported 

CPU Read/Write All 

Display/Overlay Y-Major not supported. 

 X-Major required for Async Flips 

Blt Linear and X-Major only 

 No Y-Major support 

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowest. 

3D Color,Depth Rendering Mode 

 Color-vs-Depth bpp Buffer Tiling Supported 

Classical 

 Same Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 

Classical 

 Mixed Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 
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Main Memory  

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for 

graphics functions. Some of this main memory can be “stolen” from the top of system memory during 

initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to 

satisfy application demands. To this end the graphics driver frequently needs to allocate locked-down 

(i.e., non-swappable) physical system memory pages – typically from a cacheable non-paged pool. The 

locked pages required to back large surfaces are typically non-contiguous. Therefore a means to support 

“logically-contiguous” surfaces backed by discontiguous physical pages is required. The Graphics 

Translation Table (GTT) described in previous sections provides the means. 

Optimizing Main Memory Allocation  

This section includes information for software developers on how to allocate SDRAM Main Memory (SM) 

for optimal performance in certain configurations. The general idea is that these memories are divided 

into some number of page types, and careful arrangement of page types both within and between 

surfaces (e.g., between color and depth surfaces) results in fewer page crossings and therefore yields 

somewhat higher performance. 

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is 

somewhat complicated by (1) permutations of memory device technologies (which determine page sizes 

and therefore the number of pages per device row), (2) memory device row population options, and (3) 

limitations on the allocation of physical memory (as imposed by the OS). 

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) Switching 

between open pages is optimal (again, the pages do not need to be sequential), (b) Switching between 

memory device rows does not in itself incur a penalty, and (c) Switching between pages within a 

particular bank of a row incurs a page miss and should therefore be avoided. 

Application of the Theory (Page Coloring)  

This section provides some scenarios of how Main Memory page allocation can be optimized. 

3D Color and Depth Buffers 

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in 

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or 

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within 

a Color or Depth Buffer should be mapped to different page types (where a page’s “type” or “color” 

refers to the row and bank it’s in). 
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Memory Pages Backing Color and Depth Buffers 

 

For higher performance, the Color and Depth Buffers could be allocated from different memory device 

rows. 

Media/Video 

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The U 

and V surfaces would split the same 4 page types as used in the Y surface. 
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Physical Graphics Address Types  

The Physical Memory Address Types table lists the various physical address types supported by the 

integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory 

mappings or are directly specified by graphics device functions. These physical addresses are not subject 

to tiling or GTT re-mappings. 

Physical Memory Address Types 

Address 

Type Description Range 

MM_Address Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1] 

SM_Address System Memory Address. Accesses are snooped in processor cache, allowing 

shared graphics/ processor access to (locked) cacheable memory data. 

[0,512GB] 

Graphics Translation Tables 

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT) 

and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an 

array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to 

physical memory addresses, and sometimes snooped system memory “PCI” addresses. 

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and 

PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The 

GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes 

respectively) and is physically contiguous. The global GTT should only be programmed via the range 

defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT) 

size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB 

in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE 

entries. 
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Virtual Memory  

GT supports standard virtual memory models as defined by the IA programmer’s guide. This section 

describes the different paging models, their behaviors, and the page table formats. 

GFX Page Tables  

The following are the types of Page Tables supported by BDW GFX:  

 IA32e compatible GTT 

 PPGTT – per process GTT (private GFX) 

 GGTT- global GTT 

All page tables have the same PTE format, the difference is how to reach the final physical page and 

which fields with PTE are used. With the addition of VTd, the page walks are extended to cover guest 

physical address to host physical address translation. But conceptually, the GFX page tables remain 

intact. 

The pre-gen8 page tables are formed via a 32-bit format which underwent small adjustments in various 

generations, but nothing fundamental. For gen8, the approach for page walks were modified to allow 

larger page table entries with increased capability and similarity to IA32e page tables to simplify the 

transition. 

Gen8 Page Table Modes  

For gen8, the GFX Aperture and Display accesses are always mapped thru Global GTT. This is done to 

keep the walk simple (i.e. 1-level), however GT accesses to memory can be mapped via Global GTT 

and/or ppGTT with various addressing modes. 

The walk modes are listed as following: 

Walk Mode 

Global GTT with 32b virtual addressing: Global GTT usage is similar to pre-gen8 behavior with extended 

capability to increase the VA to 4GB (from 2GB) and use a similar 64b PTE as ppGTT. The breakdown of the PTE for 

global GTT is given in later sections but fundamentally allows 1-level pagewalk where the 20b index is used to 

select the 64b PTE from stolen memory. 

Legacy 32b VA with ppGTT: This is a mode where ppGTT page tables are managed via GFX s/w (driver) and 

context is tagged as Legacy 32b VA. Given each page walk is managed via 9b of the virtual address, 20b index is 

broken into 3 parts. However to optimize the walks and make it look like pre-gen8, s/w provides 4 pointers to page 

tables (called 4 PDP entries) – GPA. GFX h/w uses the four pointers and fetches the 4x4KB into h/w (for render and 

media) before the context execution starts. The optimization limits the dynamic (on demand) page walks to 1-level 

only. 

Legacy 48b VA with ppGTT: Going forward to allow GFX address expansion beyond 4GB, the capability is added 

address space. 48b VA requires 36b indexing (4x9b) which means for 4-levels of page walk. To prevent the 

overhead slightly, h/w will cache the entire content of PML4 (4kB) to limit the on-demand walks to 3 levels in the 

worst case. 
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Walk Mode 

Advanced 48b VA with IA32e support via IOMMU: 48b addressing in advanced mode is managed via IOMMU 

settings where the base of the page table can be found after the root / context tables based on 

bus/device/function numbers. As final step the PASID# is used as an index in PASID table to find page table pointer 

to start the 4-level page walk. Similar to previous 48b VA mode, h/w will read the entire content of PML4 and limit 

the dynamic page walks to 3-level (worst case) 

Gen8 Per Process GTT  

Gen8 per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks 

on hardware. The listed mechanisms here are selectable per-context and descriptors are delivered to 

hardware as part of context descriptor. 

The entry contents are also modified to match the same format as IA32e page tables allowing future 

expansion for sharable page tables as well as higher order virtual addressing. 

Page Tables Entry (PTE) Formats  

Page Table Entry (PTE) formats will follow the IA32e layout as given below: 

 

Each table entry is further broken down along with the required functions. GFX has a 4 level page table 

which is pointed out by context descriptor starting with the 4th level of PML4. The next levels have slightly 

different formats depending on the size of the page supported. 1GB and 2MB page formats are required 

for support. 
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Pointer to PML4 Table  

Page table pointer is the starting address where the PML4 table starts. The contents of pointer are 

provided by PASID table entry in case of advanced context, else it is provided by software as part of the 

legacy context with 48b addressing. 

 

PWT/PCD bits are used as indexes into a PAT register which defines the cache attributes for the next level 

page table access. The description of their use is listed later in the document. 

GPU architecture does not follow memory typing for page table accesses. Page table accesses are 

handled as WB. 

Physical address of PML4 is a physical address pointer to a 4KB page where the PML4 table would reside. 

PML4E: Pointer to PDP Table  

PML4 is used to locate the page directory pointer tables distributed in physical memory. For Gen8, PML4 

is used for advanced GPGPU context scheduled via PASID table as well as legacy context with 48b VA. 

For 32b VA scheduling, there is no use of PML4. 
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Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the 512-GByte region controlled by this entry when XD=1. 

 (Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only. 

62:52 Ignored/Reserved Ignored/not used by hardware. 

51:39 Ignored/Reserved Ignored/not used by hardware. 

38:12 ADDR: Address Physical address of PDP Table which is a pointer to a 4KB region in memory where the 

corresponding page directory pointer table is. 

11 Ignored/Reserved Ignored/not used by hardware. 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the device's responsibility to set this bit. If EAFE=0 

in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only. 

9:6 Ignored/Reserved Ignored/not used by hardware. 

5 A: Accessed A-bit needs to be managed as the PDP table being accessed. Hardware needs to write 

this bit for the first access to the 512GB region defined with this PML4 entry. See later 

sections for A/D-bit management. 

Advanced mode only. 

4 PCD: Page level 

Cache Disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

3 PWT: Page level 

Write-Through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

2 U/S: User/Supervisor User vs. supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 512-GByte region controlled by this entry. See a later section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 512-GByte region controlled by this entry. See a later 

section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

0 P: Present PML4 Entry is present. It must be 1 to point to a page directory pointer table. 
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PDPE: Pointer to PD Table  

PDP is used to locate the page directory. PDP table is used by GFX in case of standard context, however 

the entries are used regardless of context type. 

Given IA32e supports 1GB pages, the PDPE has a mechanism to identify a way to say whether this PDPE 

represents a pointer to page directory or to a contiguous 1GB physical memory. 

PDPE for PD 

 
 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the 1-GByte region controlled by this entry when XD=1. 

 (Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only. 

62:52 Ignored/Reserved Ignored/not used by hardware. 

51:39 Ignored/Reserved Ignored/not used by hardware. 

38:12 ADDR: Address Physical address of PD Table which is a pointer to a 4KB region in memory where the 

corresponding page directory pointer table is. 

11 Ignored/Reserved Ignored/not used by hardware. 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the device's responsibility to set this bit. If EAFE=0 

in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only. 

9:8 Ignored/Reserved Ignored/not used by hardware. 

7 PS: Page Size As part of IA32e, there is an option to be able to support 1GB pages. Whether to use 

this PDP entry as a pointer to Page Directory vs. pointer to a 1GB page is defined as 

part of the Page Size. i.e. “0” means this entry points to a page directory. 
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Bits Field Description 

6 Ignored/Reserved Ignored/not used by hardware. 

5 A: Accessed A-bit needs to be managed as the PDP table being accessed. Hardware needs to write 

this bit for the first access to the 1GB region defined with this PDP entry. See later 

sections for A/D-bit management. 

Advanced mode only. 

4 PCD: Page level 

Cache Disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

3 PWT: Page level 

Write-Through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 1-GByte region controlled by this entry. See a later section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 1-GByte region controlled by this entry. See a later 

section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

0 P: Present PDP Entry is present. It must be 1 to point to a page directory table. 

PDPE for 1GB Page 
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Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the 1GB page referenced by this entry when XD=1. 

 (Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only. 

62:52 Ignored/Reserved Ignored/not used by hardware. 

51:39 Ignored/Reserved Ignored/not used by hardware. 

38:30 ADDR: Address Physical address of the 1GB page referenced by this entry. This address is the GPA and 

may need to be further translated with 2nd level translations. 

29:13 Ignored/Reserved Ignored/not used by hardware. 

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 1GB page referenced by this entry. 

See later sections for memory type determination. 

11 Ignored/Reserved Ignored/not used by hardware. 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the device's responsibility to set this bit. If EAFE=0 

in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only. 

9 Ignored/Reserved Ignored/not used by hardware. 

8 G: Global Global Page which can be used across contexts and does not need to be invalidated 

with context/PASID level invalidations. 

 If PGE=1 in the relevant extended-context-entry, this field can be Set by software to 

indicate the 1-GByte page translation is global. 

G-bit is not used by GPU. 

7 PS: Page Size As part of IA32e, there is an option to be able to support 1GB pages. Whether to use 

this PDP entry as a pointer to Page Directory vs pointer to a 1GB page is defined as 

part of the Page Size. i.e. 1 means this entry points to a 1GB page and no further 

translation is required. 

6 D: Dirty D-bit needs to be managed as the 1GB page being written. Hardware needs to write 

this bit for the first write access to 1GB defined with PDP entry. See later sections for 

A/D-bit management. 

Advanced mode only. 

5 A: Accessed A-bit needs to be managed as the 1GB page being accessed. Hardware needs to write 

this bit for the first access to 1GB defined with PDP entry. See later sections for A/D-

bit management. 

Advanced mode only. 

4 PCD: Page level 

Cache Disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 1GB page referenced by this entry. 

 See later sections for memory type determination. 

3 PWT: Page level 

Write-Through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 1GB page referenced by this entry. 
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Bits Field Description 

 See later sections for memory type determination. 

2 U/S: User/Supervisor User vs. supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 1GB page referenced by this entry. See a later section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 1GB page referenced by this entry. See a later section 

for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

0 P: Present PDP Entry is present. It must be 1 to map to a 1GB page. 

PDE for Page Table  

Page directory has the same concept as existing GFX page table definition (prior to gen8) with different 

entry format. PDE is used to point to page tables as well as to define large pages (2MB). 

PDE for Page Table 

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted for 

requests to the 2MByte region controlled by this entry when XD=1. 

(Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only 

62:52 Ignored/Reserved Ignored/not used by hardware 

51:39 Ignored/Reserved Ignored/not used by hardware 

38:12 ADDR: Address Physical address of Page Table which is a pointer to a 4KB region in memory where the 

corresponding page directory pointer table is. 
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Bits Field Description 

11 IPS: Intermediate 

Page Size 

If FL64KPE=1 in the relevant PASID-entry, the page-table referenced by PDE with 

IPS=1, translates to 64-KByte pages. If IPS=0 in the PDE, the page-table referenced by 

the PDE translates to 4-KByte pages. 

 If FL64KPE=0 in the relevant PASID-entry, this bit is ignored. 

 Note that 64KB pages are for the Page table under the PD entry. 

Note: Gen8 implementation does not use FL64KPE. 

Note: This bit is only useful til BDW:G0 step. In BDW:G1 and further BDW steppings, this 

bit is ignored. 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the devices responsibility to set this bit. If EAFE=0 in 

the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only 

9:8 Ignored/Reserved Ignored/not used by hardware 

7 PS: Page Size As part of IA32e, there is an option to be able to support 2MB pages. Whether to use 

the this PD entry as a pointer to Page table vs pointer to a 2MB page is defined as part 

of the Page Size. i.e. “0” means this entry points to a page table. 

6 Ignored/Reserved Ignored/not used by hardware 

5 A: Accessed A-bit needs to be managed as the PDP table being accessed. Hardware needs to write 

this bit for the first access to the 2MB region defined with this PD entry. See later 

sections for A/D-bit management. 

Advanced mode only 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures.  

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 2MByte region controlled by this entry. See a later section for access rights. 

(Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 2MByte region controlled by this entry. See a later 

section for access rights. 

(Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only 

0 P: Present PD Entry is present. It must be “1” to point to a page table 
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PDE for 2MB Page 

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the 2MB page referenced by this entry when XD=1. 

(Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only 

62:52 Ignored/Reserved Ignored/not used by hardware 

51:39 Ignored/Reserved Ignored/not used by hardware 

38:21 ADDR: Address Physical address of the 2MB page referenced by this entry. This address is the GPA 

and may need to be further translated with 2nd level translations. 

20:13 Ignored/Reserved Ignored/not used by hardware 

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 2MB page referenced by this entry. 

See later sections for memory type determination. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the devices responsibility to set this bit. If EAFE=0 in 

the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only 

9 Ignored/Reserved Ignored/not used by hardware 

8 G: Global Global Page which can be used across contexts and does not need to be invalidated 

with context/PASID level invalidations. 

 If PGE=1 in the relevant extended-context-entry, this field can be Set by software to 

indicate the 2MByte page translation is global. 

G-bit is not used by GPU 
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Bits Field Description 

7 PS: Page Size As part of IA32e, there is an option to be able to support 2MB pages. Whether to use 

the this PDP entry as a pointer to Page Directory vs pointer to a 2MB page is defined 

as part of the Page Size. i.e. “1” means this entry points to a 2MB page, no further 

translation is required. 

6 D: Dirty D-bit needs to be managed as the 2MB page being written. Hardware needs to write 

this bit for the first write access to 2MB defined with PDP entry. See later sections for 

A/D-bit management. 

Advanced mode only 

5 A: Accessed A-bit needs to be managed as the 2MB page being accessed. Hardware needs to write 

this bit for the first access to 2MB defined with PDP entry. See later sections for A/D-

bit management. 

Advanced mode only 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 2MB page referenced by this entry. 

See later sections for memory type determination. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 2MB page referenced by this entry. 

See later sections for memory type determination.  

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 2MB page referenced by this entry. See a later section for access rights. 

(Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 2MB page referenced by this entry. See a later section 

for access rights. 

(Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only 

0 P: Present PDP Entry is present. It must be “1” to map to a 2MB page. 
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PTE: Page Table Entry for 64KB Page  

Note:BDW A-step does not support 64KB page formats. 

 
 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the 64KB page referenced by this entry when XD=1. 

 (Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only. 

62:52 Ignored/Reserved Ignored/not used by hardware. 

51:39 Ignored/Reserved Ignored/not used by hardware. 

38:16 ADDR: Address Physical address of the 64KB page referenced by this entry. This address is the GPA 

and may need to be further translated with 2nd level translations. 

15:11 Ignored/Reserved Ignored/not used by hardware. 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the device's responsibility to set this bit. If EAFE=0 

in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only. 

9 Ignored/Reserved Ignored/not used by hardware. 

8 G: Global Global Page which can be used across contexts and does not need to be invalidated 

with context/PASID level invalidations. 

 If PGE=1 in the relevant extended-context-entry, this field can be Set by software to 

indicate that the 64KByte page translation is global. 

G-bit is not used by GPU. 

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 64KB page referenced by this entry. 

See later sections for memory type determination. 
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Bits Field Description 

6 D: Dirty D-bit needs to be managed as the 64KB page being written. Hardware needs to write 

this bit for the first write access to 64KB defined with PDP entry. See later sections for 

A/D-bit management. 

Advanced mode only. 

5 A: Accessed A-bit needs to be managed as the 64KB page being accessed. Hardware needs to 

write this bit for the first access to 64KB defined with PDP entry. See later sections for 

A/D-bit management. 

Advanced mode only. 

4 PCD: Page level 

Cache Disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 64KB page referenced by this entry. 

See later sections for memory type determination. 

3 PWT: Page level 

Write-Through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 64KB page referenced by this entry. 

See later sections for memory type determination.  

2 U/S: User/Supervisor User vs. supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 64KB page referenced by this entry. See a later section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 

1 R/W: Read/Write Write permission rights. If 0, write permission is not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 64KB page referenced by this entry. See a later section 

for access rights. 

0 P: Present PDP Entry is present. It must be 1 to map to a 64KB page. 

PTE: Page Table Entry for 4KB Page  
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Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the 4KB page referenced by this entry when XD=1. 

 (Note: Gen8 (BDW) does not support execute privilege.) 

Advanced mode only. 

62:52 Ignored/Reserved Ignored/not used by hardware. 

51:39 Ignored/Reserved Ignored/not used by hardware. 

38:16 ADDR: Address Physical address of the 4KB page referenced by this entry. This address is the GPA and 

may need to be further translated with 2nd level translations. 

15:11 Ignored/Reserved Ignored/not used by hardware. 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If EAFE=1 

in the relevant PASID-entry, this bit indicates whether this entry has been used for 

address translation by device. It is the device's responsibility to set this bit. If EAFE=0 

in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU. 

Advanced mode only. 

9 Ignored/Reserved Ignored/not used by hardware. 

8 G: Global Global Page which can be used across contexts and does not need to be invalidated 

with context/PASID level invalidations. 

 If PGE=1 in the relevant extended-context-entry, this field can be Set by software to 

indicate that the 4KByte page translation is global. 

G-bit is not used by GPU. 

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 4KB page referenced by this entry. 

See later sections for memory type determination. 

6 D: Dirty D-bit needs to be managed as the 4KB page being written. Hardware needs to write 

this bit for the first write access to 4KB defined with PDP entry. See later sections for 

A/D-bit management. 

Advanced mode only. 

5 A: Accessed A-bit needs to be managed as the 4KB page being accessed. Hardware needs to write 

this bit for the first access to 4KB defined with PDP entry. See later sections for A/D-bit 

management. 

Advanced mode only. 

4 PCD: Page level 

Cache Disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 4KB page referenced by this entry. 

See later sections for memory type determination. 

3 PWT: Page level 

Write-Through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the 4KB page referenced by this entry. 

See later sections for memory type determination.  

2 U/S: User/Supervisor User vs. supervisor access rights. If 0, requests with user-level privilege are not allowed 

to the 4KB page referenced by this entry. See a later section for access rights. 

 (Note: Gen8 (BDW) does not support privilege.) 

Advanced mode only. 
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Bits Field Description 

1 R/W: Read/Write Write permission rights. If 0, write permission is not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the 64KB page referenced by this entry. See a later section 

for access rights. 

0 P: Present PDP Entry is present. It must be 1 to map to a 4KB page. 

PPGTT for 32b Virtual Address  

This page walk mechanism is used for traditional 3D, Media type context. There is going to be a 

descriptor in the context header which defines the per process GTT walk that is required. For the 

standard context with 32bit virtual addressing, there is a possibility to take short cuts to reduce the 

overhead of the walk. 
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With 32-bit addressing the only entries that are needed for page directory pointers are 4x64bit locations 

(PDPE). For any standard context scheduling, it is required for SW to provide 4 PDPEs as part of the 

context which would prevent HW to do additional walks. 

Hardware does the remaining walks for PD and PTE similar to legacy behavior. To reduce the overhead of 

walks, hardware implements large caches for PDs: 

 4x4KB for 3D context 

 2x4x4KB for Media Context 

 4KB for VEBOX 

 4KB for Blitter 

For Media and 3D context, the 16KB caches are preloaded for the entire page directory set up which 

limits the walk to 1-level before the final access. For remaining clients the PD cache is loaded on demand 

and can contain up to 512 entries. 

Walk with 64 KB Page  

64 KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB 

page. In page table every 16th entry (PTE#0, PTE#16, PTE#32, ... PTE#496) should be used to index. This is 

calculated using address[21:16] & “0000”. Note that hardware should not make any assumptions for any 

other PTEs. 

Note: BDW production chips do not support 64KB page size. 
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Walk with 2MB Page  

There is an option in the page walk to work with bigger page sizes, one of those sizes is 2MB pages. If 

allocated the page directory entry indicates the page size and walk can be shortened as following: 

 

In this case there is no need to walk the page table after directory. And page directory has a pointer to 

2MB range is physical memory. 

Programming Note 

Context: Walking the Page Table with 2MBPage 

PPGTT32 is not going to support 2MB pages. 
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Walk with 1GB Page  

The same page walk is possible with 1GB page support as well. 

 

Programming Note 

Context: Walking with 1 GB Page 

PPGTT32 is not going to 1GB pages. 
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PPGTT for Standard Context (64b VA)  

For advanced virtual addressing with legacy context, the full page walk mechanism needs to be exercised 

based on 48bit canonical addressing. 

 

64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer 

to highest level page table (PML4 pointer or CR3). The rest of the walk is normal page walk thru various 

levels. 

To repurpose the caches the following mechanism is used: 

 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache. 

Programming Note 

Context: PPGTT for standard context (64b VA). 

Design can section the 512 entries within 4KB to separate areas for PML4, PDP, and PD. 
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Walk with 64 KB Page  

64 KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB 

page. In page table every 16th entry (PTE#0, PTE#16, PTE#32, ... PTE#496) should be used to index. This is 

calculated using address[21:16] & “0000”. Note that hardware should not make any assumptions for any 

other PTEs. 

NOTE:  BDW production chips do not support 64KB page size. 

Walk with 2MB Page  

Similar concept as the 32b VA walk, there is support for larger pages where one of the sizes supported is 

2MB. 
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Walk with 1GB Page  

For the support for 1GB page size, the following mechanism is needed. 

 

Gen8 Global GTT  

The Global GTT mechanism in gen8 looks very similar to pre-gen8 with the distinction of page table 

entry. Aperture and display will still use the global GTT even if GT core is mapped via per-process GTT. 

The PTE format for Gen8 is updated to match per process GTT definitions and GSM is now expanded in 

size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry corresponding to 

a 4KB page with 2^20 entries in GSM (each with 8B content) 

For “MI_update_GTT”, the page address provided 31:12 need to be shifted down to 22:3 for the correct 

QW position within the GGTT. 
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Page Table Entry  

The following page table entry will be used for Global GTT: 

 

 Present (Valid): The pointed PTE is valid. 

 Ignored - R/W (Read/Write): Are writes allowed to the region defined by this 4KB page. For GFX, in 

order 4KB memory to be usable it has to be both present and should also be write-able. 

 Ignored - U/S (User/Supervisor access rights) : iGFX does not use these fields 

 PWT/PCD/PAT bits are used as indexes into a PAT register which defines the cache attributes for 

the entire context. PAT field is used to do the look up in private PAT for memory typing 

 Ignored - A (Accessed): It needs to be managed as the page table being accessed. Hardware needs 

to write this bit for the first access to the 4KB region defined with this PT entry. 

 Ignored - D (Dirty): Hardware needs to set the dirty bit in page table if accessing this particular 4KB 

region in memory with the intention to modify it. 

 Ignored - Global: this is not used by iGFX hardware, the field is used to identify global context 

where invalidation may not be required. 

 Physical address of 4KB page 

For the treatment of the page bit0 AND bit1 defines the validity of the page, the rest of the information 

is not relevant for Aperture and Display usage. 
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Page Walk  

The global GTT page walk is identical to what it was before gen8. The only difference would be that each 

entry is 8B (instead of 4B) hence the entry selection needs to be updated once the corresponding Page 

Table miss read is returned. 

 



Memory Views   

 

Doc Ref # IHD-OS-BDW-Vol 5-10.15   45 

GFX Page Walker (GAM)  

The GPU supports various engines behind the same page walker. These streams/contexts are identified 

by Client level IDs which are carried via the arbitration pipeline. Page walker using look-up tables does 

the correct selection for the page tables in case of concurrent contexts running at the same time. 

There are two types of page tables. Global graphics translation table (GGTT) is a single common 

translation table used for all processes. There can also be many Per-process graphics translation tables 

(PPGTTs). These tables require an additional lookup for translation. 

Virtual Memory Structure Memory Location 

Global (GGTT) GSM Only 

Per-Process (PPGTT) – private 2 to 4-level, Page Tables anywhere 

Per-Process (IA32e) – shared 4 levels, Page Tables anywhere 

 

Programming Note 

Context: Gfx Page Walker (GAM) 

IA32e compatible PPGTT is added to Gen8 to enable SVM (shared virtual memory) functions. 

Context Definition for GFX Page Walker  

Page Walker blocks need details about the context to decide on what type of page tables are used, what 

would be the error handling cases would be and many other details to operate. The information is 

passed to Page Walker (GAM) by the respective command streamer/DMA. 

GAM supports the following engines: 

 Render 

 Media (VDBox) x2 

 Blit 

 VEBOX x2 

The following fields are sent to GAM: 

 Context Type (4 bits) –  

 Legacy vs Advanced Context. Defines the context type and qualifies the rest of the fields. 

Same field may mean something else between the Legacy vs Advanced context. There is no 

restriction for what type of context can run in either combination.  

 Requests without address-space-identifier (Legacy Context). These are the normal 

memory requests from endpoint devices. These requests typically specify the type of 

access (read/write/atomics), targeted DMA address/size, and identity of the device 

originating the request. 

 Requests with address-space-identifier (Advanced Context). These are memory requests 

with additional information identifying the targeted process address space from 

endpoint devices supporting virtual memory capabilities. Beyond attributes in normal 
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requests, these requests specify the targeted process address space identifier (PASID), 

and extended attributes such as Execute-Requested (ER) flag (to indicate reads that 

are instruction fetches), and Privileged-mode-Requested (PR) flag (to distinguish user 

versus supervisor access). For details, refer to the Process Address Space ID (PASID) 

Capability in the PCI-Express specifications. 

 A/D Support Enable. Access and Dirty bits are used when OS managing the page tables 

and have been added to IA32e compatible page walk. Context defines whether A/D bits 

need to be managed via GPU (only applicable in Advanced Context). 

 Privileged Context Support. Enables GPU to run a privileged context which translates into 

page table accesses regardless of user vs. supervisor privileges (only applicable in Advanced 

Context).  

 BDW (Gen8) GPU does not support privileged Context. 

 32b vs 48b VA Support. Enables 48b VA in page tables for the page walks. The rest of the 

HW is seamless to 32b vs 48b VA address walks, however GAM does the check and properly 

aligns the page walk to address bits.  

 Only applicable in Legacy Context, Advanced context is always 48b. 

 Page Fault Support Model: 

 Fault and Hang: The only supported fault handling mode for legacy context and it 

does not apply to advanced mode. Optionally hang can be skipped for HW to make 

progress (same as Gen7.5). 

 PASID – Process Address Space IDentifier. Use to identify the context that is submitted to HW. We 

use the PASID in many places where during the page walk (i.e. PASID table look up) or while 

communicating with SW on page faults. Each engine could be running an independent context 

with different PASID. The page walker should have a mechanism to be able to cache at least some 

number of PASID table entries (matching to the engine count) for faster walk. 

 Context ID (Queue ID, Bell ID) – Context ID is used to further qualify the running context beyond 

the PASID. PASID is given per process, and same process may allocate multiple queues to 

communicate with HW. The only way to further identify the process is to use an additional ID. For 

GFX HW Context ID could be same as the bell number assigned to it. GAM HW uses the context ID 

to populate the queue ID field while communicating page faults to SW. 

 Page Table Pointers – The field could be up to 256 bits (i.e. 4x64bits) to identify the page table 

pointers associated with the context. For legacy 32b context, the entire 256b is valid representing 

the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant pointing to base of 

PML4. In case of advanced context, PASID is given in the context definition. 
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Context Definition Delivery  

Element Descriptor Register 

General 

Description 

Element Information: The register is populated by command streamer and consumed by 

GAM. 

Register Offset See per engine list below. 

 

Bits Access Default Field 

63:32 RO Xh Context ID. Context identification number assigned to separate this context from others. 

Context IDs need to be recycled in such a way that there cannot be two active contexts 

with the same ID. 

 This is a unique identification number by which a context is identified and referenced. 

31:12 RO Xh LRCA. Command Streamer Only. 

11:9 RO Xh 
Function Number. 

GFX device is considered to be on Bus0 with device number of 2. Function number is 

normally assigned as “0”. 

Not used in Gen8. 

8 RO Xh Privileged Context/GGTT vs PPGTT mode. Differs in legacy vs advanced context modes: 

In Legacy Context: Defines the page tables used. This is how page walker comes to know 

PPGTT vs GGTT selection for the entire context. 

 0: Use Global GTT. 

 1: Use Per-Process GTT. 

In Advanced Context: Defines the privilege level for the context. 

 0: User mode context. 

 1: Supervisor mode context. 

7:6 RO Xh 
Fault Model. 

00b: Fault & Hang. Same mode as Gen7.5. 

01b: reserved. 

10b: Fault & Stream & Switch. 

11b: reserved. 

5 RO Xh Deeper IA coherency Support. 

In Advanced Context. Defines the level of IA coherency. 

 0: IA coherency is provided at LLC level for all streams of GPU (i.e. Gen7.5 like mode). 

 1: IA coherency is provided at L3 level for EU data accesses of GPU. 

4 RO Xh A&D Support/ 32&64b Address Support. Differs in legacy vs advanced context modes. 

In Legacy Context: Defines 32b vs 64b (48b canonical) addressing format. 

 0: 32b addressing format. 

 1: 64b (48b canonical) addressing format. 

In Advanced Context: Defines A&D bit support. 

 0: A&D bit management in page tables is NOT supported. 
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Bits Access Default Field 

 1: A&D bit management in page tables is supported. 

3 RO Xh Context Type: Legacy vs Advanced. Defines the context type. 

 0: Advanced Context: Defines the rest of the advanced capabilities (i.e. OS page table 

support, fault models, ...). Note that advanced context is not bounded to GPGPU. 

 1: Legacy Context: Defines the context as legacy mode which is similar to prior generations 

of Gen8. 

Note: Bits [8:4] differ in functions when legacy vs advanced context modes are selected. 

2 RO Xh FR. Command streamer specific. 

1 RO Xh Scheduling Mode. 

 1: Execution List mode of scheduling. 

 0: Ring Buffer mode of scheduling. 

0 RO Xh Valid. Indicates that element descriptor is valid. If GAM is programmed with an invalid 

descriptor, it continues but flags an error. 

PDP0/PML4/PASID Descriptor Register  

General 

Description 

PDP0/PML4/PASID: The register is populated by command streamer and consumed by GAM. It 

contains one of the 3 values which is determined by looking at the element descriptor. 

Register Offset See per engine list below 

 

Bits Access Default Field 

63:0 RO Xh 
PDP0/PML4/PASID: 

This register can contain three values which depend on the element descriptor definition. 

PASID[19:0]: Populated in the first 20bits of the register and selected when Advanced 

Context flag is set. 

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is set 

and 64b address support is selected 

PDP0[38:12]: Pointer to one of the four page directory pointer (lowest) and defines the first 

0-1GB of memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 
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PDP1 Descriptor Register  

General 

Description 

PDP1: The register is populated by command streamer and consumed by GAM. It contains one 

of the pointers to PD. 

Register Offset 
See per engine list below 

 

Bits Access Default Field 

63:12 RO Xh 
PDP1: 

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1-2GB of 

memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 

PDP2 Descriptor Register  

General 

Description 

PDP2: The register is populated by command streamer and consumed by GAM. It contains one 

of the pointers to PD. 

Register Offset 
See per engine list below 

 

Bits Access Default Field 

63:12 RO Xh 
PDP2: 

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2-3GB of 

memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 
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PDP3 Descriptor Register  

General 

Description 

PDP3: The register is populated by command streamer and consumed by GAM. It contains one 

of the pointers to PD. 

Register Offset 
See per engine list below 

 

Bits Access Default Field 

63:12 RO Xh 
PDP3: 

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3-4GB of 

memory mapping 

Note: This is a guest physical address 

(unused bits need to be populated as 0’s) 

List of Registers and Command Streamers  

The following registers are message registers and not written directly by SW. 

Engine Offset Description 

Render x4400h Element Descriptor Register 

x4408h PDP0/PML4/PASID Descriptor Register 

x4410h PDP1 Descriptor Register 

x4418h PDP2 Descriptor Register 

x4420h PDP3 Descriptor Register 

 

Media0 

 (VDBOX0) 

x4440h Element Descriptor Register 

x4448h PDP0/PML4/PASID Descriptor Register 

x4450h PDP1 Descriptor Register 

x4458h PDP2 Descriptor Register 

x4460h PDP3 Descriptor Register 

 

Media1 

 (VDBOX1) 

x4480h Element Descriptor Register 

x4488h PDP0/PML4/PASID Descriptor Register 

x4490h PDP1 Descriptor Register 

x4498h PDP2 Descriptor Register 

x44A0h PDP3 Descriptor Register 

 

VEBOX x44C0h Element Descriptor Register 
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Engine Offset Description 

x44C8h PDP0/PML4/PASID Descriptor Register 

x44D0h PDP1 Descriptor Register 

x44D8h PDP2 Descriptor Register 

x44E0h PDP3 Descriptor Register 

 

Blitter x4500h Element Descriptor Register 

x4508h PDP0/PML4/PASID Descriptor Register 

x4510h PDP1 Descriptor Register 

x4518h PDP2 Descriptor Register 

x4520h PDP3 Descriptor Register 

 

GTT Cache  

Processor graphics page walker implements a GTT cache which holds the remaining entries that are read 

as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf walks and 

not including the 2MB/1GB page sizes. When s/w enables the use of 2MB/1GB page sizes, it will have to 

disable the GTT cache in Gen8. 
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TLB Caching and Management  

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At every 

stage of the page different bits need to be taken into account and proper treatment is required. 

Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear addresses are 

translated using a hierarchy of in-memory paging structures located using the contents of CR3. IA-32e 

paging translates 48-bit linear addresses to 52-bit physical addresses. Although 52 bits corresponds to 4 

PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be 

accessed at any given time. IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, 

or 1-GByte pages. 
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The following rules apply: 

1. M is an abbreviation for MAXPHYSICAL ADDRESS. 

2. Reserved fields must be “0”. 

3. Ignored fields must be ignored (there could be private information). 

4. All ignore options are part of the context entry and coming from IOMMU definition. 

TLB Caches  

For Gen8 the caching structures are separated as following with the architectural view, this is also 

applicable to SW view of these caches when it comes to invalidations. 

Context Cache - CC  

This is the storage for context table entry which is achieved as part of root/context table walk. 

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the 

content of the context cache along with all low level caches. 

PASID Cache - PC  

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for 

every HW engine that could be running an independent context (per GAM): 

 Render/GPGPU 

 MFX (VDBOX) – 1 

 MFX (VDBOX) – 2 

 Video Enhancement (VEBOX) – 1 

 Video Enhancement (VEBOX) – 2 

 Blitter 

The cache content is updated if the corresponding engine is running an advanced context where its page 

table pointers are accessible via PASID table. In case of legacy context running engine, corresponding 

PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per engine which is 

filled/invalidated during the context switch time. 

PASID Cache can also be invalidated with the directed invalidations along with low level caches and 

needs to be re-filled prior to context resuming. 
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Intermediate Page Walk Caches (PML4, PDP, PD) – PWC  

These are the stages where intermediate page walk entries are cached to speed-up/shorten the page 

walk when final TLB is missed. Each level can be cached separately or along with different levels, the 

cacheability structures will have programmability to move the boundary of different levels to 

accommodate more/less on each page walk level. However as a concept, for legacy 32b addressing 

mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and 

media. The others will use cache concept. 

TLB Entry Content  

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as 

well along with the physical address bits. The treatment on these bits would be considered when a HIT vs 

MISS decision needs to be made during a look up. 

The purpose of caching is to accelerate the paging process by caching individual translations in 

translation look-aside buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is 

referenced by a page number. It contains the following information from the paging-structure entries 

used to translate linear addresses with the page number: 

 The physical address corresponding to the page number (the page frame). 

 The access rights from the paging-structure entries used to translate linear addresses with the 

page number:  

 The logical-AND of the R/W flags. 

 The logical-AND of the U/S flags. 

 The logical-OR of the XD flags. 

 Attributes from a paging-structure entry that identifies the final page frame for the page number 

(either a PTE or a paging-structure entry in which the PS flag is 1):  

 The dirty flag. 

 The memory type. 

PRESENT. This is the same VALID bit description as in previous page table designs. The lack of present 

bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For some fault 

models, even NOT PRESENT entries are cached to filter further page faults (see fault models on caching 

page faulting entries). If such an entry is cached, there are ways that it can be removed from the page 

tables: 

1. LRA selection where the entry becomes a victim for replacement. 

2. Global or Selective invalidation. 

3. Page fault response stating the faulting page is now fixed. 

R/W Privilege. Certain pages can be allocated as read-only and write operations are not allowed. To 

make this check work, TLB has to keep the R/W bit. This bit has no affect on read operations; however for 

write operations privilege needs to be checked. If there is a mismatch, the result of the TLB lookup 

should be a MISS. This does not mean a page fault immediately; the walk has to be redone as for any TLB 
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MISS result. There are cases where the OS may change page table privileges without invalidating pages 

in TLB. (Note: All downgrades result in invalidation of the TLB, however upgrades can be done silently 

hence re-walk is required.) In case where the TLB Miss is due to privilege mis-match, the existing entry 

from TLB has to be invalidated and page walk brings in the most up-to-date copy from memory. 

The R/W privilege on final frame is generated as a logical-AND process of all upper page walks pointing 

to this location. 

User vs Supervisor Privilege. The GPU typically operates in user mode when it comes to page tables. So 

the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and the 

context is marked as user mode. The faulted entry can be cached back into TLB with “P” bit off indicating 

a faulted entry. However the page fault report should carry the correct reason why HW detected the fault 

in the first place which was the user vs supervisor privilege. There is an option in context header to define 

the context as supervisor, than it legal to access supervisor pages. 

 This is not stored in TLB. 

The U/S privilege on final frame is generated as a logical-AND process of all upper page walks pointing 

to this location. 

Accessed Bit. This where a stage of the page walk cannot be used if the accessed bit is not set for that 

level in the page walk. This is true for both storage into TLB as well as to make progress on the page 

walk. To achieve the process of Accessed bit, every stage of the ppGTT read is done via a new semantics 

between the GAM and GTI such that GTI can atomically process A-bit without running into access 

violations. The details of the semantics are defined as part of the following sections. The “A” bit does not 

need to be stored as part of the TLB, just the fact that a valid page table entry is present in the TLB does 

mean that HW took care of the “A” bit at the time the page was brought up to TLB. Note that TLB 

prefetching is disabled when A-bit management is enabled. 

IA32e mode page tables cannot coexist with TLB pre-fetching due to lack of A-bit management for all 

entries of the line. 

 This is not stored in TLB. 

Dirty Bit. Similar to accessed bit, dirty bit needs to be managed. It only applies for “write” accesses. 

Given that there are cases where a TLB entry was acquired as part of a read operation, the presence of D-

bit should be maintained with the TLB. This gives us the capability to declare a TLB miss for a write access 

when the D-bit is not set even though TLB has a valid translation. In such case, the TLB entry needs to 

invalidated and the final stage of the walk needs to be redone to ensure the most up-to-date copy of the 

GTT entry is brought into HW. The operation of Dirty bit update is also atomic similar to A-bit 

management. 

Execute (XD) Bit. XD bit is also present on every stage of the walk and applicable to executable code 

that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the 

corresponding page does not have the execute credentials set properly. Similar treatment of the TLB 

entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for 

instruction space has to check the XD bit which is also stored in TLB. If mis-match, the end result is a TLB 

miss and walk has to be redone replacing the different stages of the walk. 
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The XD privilege on final frame is generated as a logical-OR process of all upper page walks pointing to 

this location. 

Faulted Bit. There are usage models where the faulted entries are cached in TLB. This is to filter further 

faults to the same page as an opportunistic way to prevent fault storms. When faulted bit is set the 

address is included in the TLB lookup but final treatment is fault filtering. The rest of the bits are used to 

define what would be the reason for the fault. If the look-up conflicts with the original faulted reason, a 

re-walk is required. As a basic case, take a read access bringing up a PTE with W-flag cleared. A 

subsequent write access has a conflict on privilege, and it performs a re-walk. If the result of the re-walk 

is W-flag set, then TLB is upgraded and write makes progress. However if the result is still W-flag cleared, 

the write access faults and TLB entry is tagged as a faulted entry with only read-allowed. Subsequent 

write accesses are filtered as fault but read accesses should cause a re-walk of the page and if successful, 

the TLB can be updated with PTE as valid with read-only attribute. 

TLB Accessed and Dirty Flags  

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag. 

For paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 

is the dirty flag. These flags are provided for use by memory-management software to manage the 

transfer of pages and paging structures into and out of physical memory. 

Whenever the processor and/or GPU uses a paging-structure entry as part of linear-address translation, it 

sets the accessed flag in that entry (if it is not already set). 

Whenever there is a write to a linear address, the processor and/or GPU sets the dirty flag (if it is not 

already set) in the paging-structure entry that identifies the final physical address for the linear address 

(either a PTE or a paging-structure entry in which the PS flag is 1). 

Memory-management software may clear these flags when a page or a paging structure is initially 

loaded into physical memory. These flags are “sticky,” meaning that, once set, the processor and/or GPU 

does not clear them; only software can clear them. 

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging-

structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty 

flag from 1 to 0, the GPU might not set the corresponding bit in memory on a subsequent access using 

an affected linear address. 

The accessed bit applies to every stage of the page walk; however the dirty bit only applies to the final 

stage of the walk. 

The rule states that a particular access cannot be committed until the Accessed and/or Dirty bits are not 

visible to page management SW. For the GPU to follow the rule, GTT accesses (when A/D bits are 

supported) are done via a special cycle definition between GAM and GTI. 

Replacement  

TLB replacements during runtime are based on LRA algorithm. In addition invalidations and page 

responses have to invalidate the TLB entries. 
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Invalidations of TLB  

There are various ways to invalidate TLBs: 

1. Traditional invalidation from command streamer: Could be part of any fence accesses including 

newly added atomics 

2. SVM based invalidations: Listed as part of the new SVM related invalidations, various stages of 

TLBs including intermediate stages can be invalidated selectively and/or as a whole.  

3. Context Switch: A context switch has to invalidate caches to make sure we have no residual value 

of the TLBs across multiple PASIDs. GAM will treat the context reload message from CS as a form 

of TLB invalidation. 

4. A page response: should invalidate faulted recordings. It should be done via address matching to 

kick the faulted entries within the matching PASID. 

Invalidation response “Invalidation Wait Descriptor” should also be a fence for both READs and WRITEs 

that used the previous TLB entries. Gam can only respond to “invalidation wait descriptor” after getting a 

GTI EMPTY indication. 

Optional Invalidations  

The following cases are listed as page table updates which software may choose not to invalidate the 

TLBs. 

Note: GAM only puts faulted entries to its TLBs if there has been page request for it. This means only 

faultable surfaces can be stored in GAM TLBs as a faulted entry. 

 If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, SW may choose not 

to invalidate TLBs. This affects only the case where GPU keeps the faulted page in its TLB to filter 

out future faults. Regardless of whether SW does invalidation or not, for the cases where HW cares, 

there is a page response from SW which is used to shootdown the faulted record from the TLB. 

 If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is 

necessary (assuming that an invalidation was performed the last time the accessed flag was 

changed from 1 to 0). This is because no TLB entry or paging-structure cache entry is created with 

information from a paging structure entry in which the accessed flag is 0. 

 If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure to 

perform an invalidation may result in a “spurious” page-fault exception (e.g., in response to an 

attempted write access) but no other adverse behavior. Such an exception occurs at most once for 

each affected linear address. 
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Faulting  

Page Faults  

Gen8 supports the WDDM2.0 page fault model, where hardware detects non-present pages post 

translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page fault 

and would require a GPU-only reset to recover. 

Memory Types and Cache Interface 

This section has additional information on the types of memory which are accessible via the various GT 

mechanisms. It includes discussion on how the various paging models are used and accessed. See the 

Graphics Translation Tables for more detailed discussions on paging models. 

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3 

and the different behaviors which can be enabled. 

Memory Object Control State (MOCS)  

The memory object control state defines the behavior of memory accesses beyond the graphics core, 

including graphics data types that allow selective flushing of data from outer caches, and controlling 

cacheability in the outer caches. 

This control uses several mechanisms. Control state for all memory accesses can be defined page by 

page in the GTT entries. Memory objects that are defined by state per surface generally have additional 

memory object control state in the state structure that defines the other surface attributes. Memory 

objects without state defining them have memory object state control defined per class in the 

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some 

memory objects only have the GTT entry mechanism for defining this control. The table below 

enumerates the memory objects and the location of the control state for each:  
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Memory Object Location of Control State 

surfaces defined by SURFACE_STATE: sampling engine surfaces, render 

targets, media surfaces, pull constant buffers, streamed vertex buffers 

SURFACE_STATE 

depth, stencil, and hierarchical depth buffers corresponding state command that 

defined the buffer attributes 

stateless buffers accessed by data port STATE_BASE_ADDRESS 

indirect state objects STATE_BASE_ADDRESS 

kernel instructions STATE_BASE_ADDRESS 

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS) 

index buffers 3DSTATE_INDEX_BUFFER 

vertex buffers 3DSTATE_VERTEX_BUFFERS 

indirect media object STATE_BASE_ADDRESS 

generic state prefetch GTT control only 

ring/batch buffers GTT control only 

context save buffers GTT control only 

store DWord GTT control only 

MOCS Registers 

These registers provide the detailed format of the MOCS table entries, that need to be programmed to 

define each surface state. 

MEMORY_OBJECT_CONTROL_STATE 

Page Walker Access and Memory Types  

Most of these notes are further explained in the document however summarized as part of the page 

table behavior: 
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Page Walker Memory Types  

1. Legacy Contexts 

a. GT access to root/extended-root table and context/extended-context table 

b. GTT access to private paging (PPGTT) entries 

c. GT access to GPA-to-HPA paging entries 

d. GT access to the translated page 

2. Advanced context (without nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

3. Advanced context (with nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry 

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries 

g. GT access to GPA-to-HPA paging entries to translate address of page 

Gen8 Memory Typing for Paging  

The following information is duplicated in the Page Walker Memory Types topic: 

1. Legacy Contexts 

a. GT access to root/extended-root table and context/extended-context table 

b. GTT access to private paging (PPGTT) entries 

c. GT access to GPA-to-HPA paging entries 

d. GT access to the translated page 

2. Advanced context (without nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 



Memory Views   

 

Doc Ref # IHD-OS-BDW-Vol 5-10.15   61 

3. Advanced context (with nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry 

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries 

g. GT access to GPA-to-HPA paging entries to translate address of page 

This information is new in this topic and references the cases and subcases enumerated above: 

For case [1]: 

 [1.a] is always covered as a non-cacheable access 

 [1.b] & [1.c] is covered with MMIO register where PPGTT entries can be forced to be cached in 

LLC (default option is cached). 

 [1.d] is defined via private PAT (MMIO based) and surface state. 

For case [2]: 

 [2.a] is always covered as a non-cacheable access 

 [2.b] is always cached & PASID state table entry is always accessed “atomically” 

 [2.c] is accessed as cached 

 [2.d] use memory-type as evaluated through MTRR, CD, and PCD/PWT/PAT bits in leaf IA-32e 

paging entry 

For case [3]: 

 [3.a] is always covered as a non-cacheable access 

 [3.b] is always cached & PASID state table entry is always accessed “atomically” 

 [3.c] is accessed as cached 

 [3.d] use memory-type as follows (this section is further described in detail in memory typing 

section) 

o If CD=1, memory-type is UC 

o If CD=0: 

 If EMTE=0 in extended-context-entry, it is handled same as [2.d] 

 If EMTE=1 in extended-context-entry: 

 If IGMT=1 in leaf GPA-to-HPA entry, memory type used is the EMT field in 

this GPA-to-HPA entry. 

 If IGMT=0 in leaf GPA-to-HPA entry, memory type from [2.d] is combined 

with EMT field in this GPA-to-HPA entry. 
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 [3.e] is always cached & PASID state table entry is always accessed “atomically” 

 [3.f] &[3.g] is accessed as cached 

Error Cases  

 A/D bit update attempt for paging entry in non-WB memory, causes page-walk to be aborted; 

Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU 

context in error – catastrophic error case. 

 Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver 

as GPGPU context in error (catastrophic error). 

 CD=1 treated same as non-WB memory, for above lock behavior. 

Common Surface Formats 

This section documents surfaces and how they are stored in memory, including 3D and video surfaces, 

including the details of compressed texture formats. Also covered are the surface layouts based on tiling 

mode and surface type. 

Non-Video Surface Formats 

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data 

(e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, 

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory 

object types. 

Surface Format Naming 

Unless indicated otherwise, all pixels are stored in “little endian” byte order. i.e., pixel bits 7:0 are stored 

in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color components in 

little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A). 

The name of most of the surface formats specifies its format. Channels are listed in little endian order 

(LSB channel on the left, MSB channel on the right), with the channel format specified following the 

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of 

red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format. 
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Intensity Formats 

All surface formats containing “I” include an intensity value. When used as a source surface for the 

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered. 

Intensity surfaces are not supported as destinations. 

Luminance Formats 

All surface formats containing “L” include a luminance value. When used as a source surface for the 

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being 

filtered. The alpha channel is provided either from another field or receives a default value. Luminance 

surfaces are not supported as destinations. 

R1_UNORM (same as R1_UINT) and MONO8 

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are 

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to 

Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine. 

7 6 5 4 3 2 1 0 

T7 T6 T5 T4 T3 T2 T1 T0 

 

Bit Description 

T0 Texel 0 

 On texture reads, this (unsigned) 1-bit value is replicated to all color channels. 

 Format: U1 

... ... 

T7 Texel 7 

 On texture reads, this (unsigned) 1-bit value is replicated to all color channels. 

 Format: U1 

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only 

supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter. 
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Palette Formats 

Palette formats are supported by the sampling engine. These formats include an index into the palette 

(Px) that selects the actual channel values from the palette, which is loaded via the 

3DSTATE_SAMPLER_PALETTE_LOAD0 command. 

P4A4_UNORM 

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in 

the low nibble). 

7   4 3   0 

Alpha Palette Index 

 

Bit Description 

7:4 Alpha 

 Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 255 

to yield a [0.0,1.0] Alpha value. 

 Format: U4 

3:0 Palette Index 

 A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 

3DSTATE_SAMPLER_PALETTE_LOADx) 

 Format: U4 

A4P4_UNORM 

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the 

high nibble). 

7   4 3   0 

Palette Index Alpha 

 

Bit Description 

7:4 Palette Index 

 A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

 Format: U4 

3:0 Alpha 

 Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 255 

to yield a [0.0,1.0] alpha value. 

 Format: U4 

P8A8_UNORM 

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in 

the low byte). 
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15   8 7   0 

Alpha Palette Index 

 

Bit Description 

15:8 Alpha 

 Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value. 

 Format: U8 

7:0 Palette Index 

 An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded 

via 3DSTATE_SAMPLER_PALETTE_LOADx) 

 Format: U8 

A8P8_UNORM 

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the 

high byte). 

15   8 7   0 

Palette Index Alpha 

 

Bit Description 

15:8 Palette Index 

 An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

 Format: U8 

7:0 Alpha 

 Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value. 

 Format: U8 

P8_UNORM 

This surface format contains only an 8-bit Color Index value. 

Bit Description 

7:0 Palette Index 

 An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture 

palette. 

 Format: U8 

P2_UNORM 

This surface format contains only a 2-bit Color Index value. 

Bit Description 

1:0 Palette Index 

 A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette. 

 Format: U2 



 

  Memory Views 

66   Doc Ref # IHD-OS-BDW-Vol 5-10.15 

Compressed Surface Formats 

This section contains information on the internal organization of compressed surface formats. 

ETC1_RGB8  

BDW: This format compresses UNORM RGB data using an 8-byte compression block representing a 4x4 

block of texels. The texels are labeled as texel[row][column] where both row and column range from 0 to 

3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

High 24 bits if “diff” is zero (individual mode): 

Bits Description 

7:4 R0[3:0] 

3:0 R1[3:0] 

15:12 G0[3:0] 

11:8 G1[3:0] 

23:20 B0[3:0] 

19:16 B1[3:0] 

High 24 bits if “diff” is one (differential mode): 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

Low 40 bits: 

Bits Description 

31:29 lum table index for sub-block 0 

28:26 lum table index for sub-block 1 

25 diff 

24 flip 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 
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Bits Description 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks 

controlled by the “flip” bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the 

right. If flip=1, sub-block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom. 

The “diff” bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444 

value per sub-block (“individual” mode with diff = 0), or a single 555 value for the first sub-block 

(R0/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block (“differential” mode with diff 

= 1). The delta values are 3-bit two’s-complement values that hold values in the range [-4,3]. These 

values are added to the 5-bit values for sub-block 0 to obtain the 5-bit values for sub-block 1 (if the 

value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit 

per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base 

color for each sub-block. 
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For each sub-block one of 8 different luminance columns is selected based on the 3-bit lum table index. 

Then each texel selects one of the 4 rows of the selected column with a 2-bit per-texel index. The chosen 

value in the table is added to the 8-bit base color for the sub-block (obtained in the previous step) to 

obtain the texel’s color. Values in the table are given in decimal, representing an 8-bit UNORM as an 8-

bit signed integer. 

Luminance Table 

 0 1 2 3 4 5 6 7 

0 
2 5 9 13 18 24 33 47 

1 
8 17 29 42 60 80 106 183 

2 
-2 -5 -9 -13 -18 -24 -33 -47 

3 
-8 -17 -29 -42 -60 -80 -106 -183 

ETC2_RGB8 and ETC2_SRGB8  

The ETC2_RGB8 format builds on top of ETC1_RGB8, using a set of invalid bit sequences to enable three 

new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be 

documented in this section as they are covered in the ETC1_RGB8 section. 

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1 

differential mode. The mode is determined as follows (x indicates don’t care): 

diff Rt Gt Bt mode 

0 x x x individual 

1 0 x x T 

1 1 0 x H 

1 1 1 0 planar 

1 1 1 1 differential 

The inputs in the above table are defined as follows: 

 Rt = (R0 + dR1) in [0,31] 

 Gt = (G0 + dG1) in [0,31] 

 Bt = (G0 + dB1) in [0,31] 

    

8-byte compression block for mode determination 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 
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Bits Description 

23:19 B0[4:0] 

18:16 dB1[2:0] 

31:26 ignored 

25 diff 

24 ignored 

63:32 ignored 

The fields in the table above are used only for mode determination. Some of the bits in this table are 

overloaded with other values within each mode. The algorithm is defined such that there is no ambiguity 

in modes when this is done. 

T mode 

The “T” mode has the following bit definition: 

8-byte compression block for “T” mode 

Bits Description 

7:5 ignored 

4:3 R0[3:2] 

2 ignored 

1:0 R0[1:0] 

15:12 G0[3:0] 

11:8 B0[3:0] 

23:20 R1[3:0] 

19:16 G1[3:0] 

31:28 B1[3:0] 

27:26 di[2:1] 

25 diff = 1 

24 di[0] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 
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Bits Description 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[0][0] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The “T” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual mode, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index “di” is also defined in the compression block. This value is used to look up the 

distance in the following table: 

distance index 

“di” distance “d” 

0 3 

1 6 

2 11 

3 16 

4 23 

5 32 

6 41 

7 64 
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Four colors are possible on each texel. These colors are defined as the following: 

 P0 = (R0, G0, B0) 

 P1 = (R1, G1, B1) + (d, d, d) 

 P2 = (R1, G1, B1) 

 P3 = (R1, G1, B1) – (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index. 

H mode 

The “H” mode has the following bit definition: 

8-byte compression block for “H” mode 

Bits Description 

7 ignored 

6:3 R0[3:0] 

2:0 G0[3:1] 

15:13 ignored 

12 G0[0] 

11 B0[3] 

10 ignored 

9:8 B0[2:1] 

23 B0[0] 

22:19 R1[3:0] 

18:16 G1[3:1] 

31 G1[0] 

30:27 B1[3:0] 

26 di[2] 

25 diff = 1 

24 di[1] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 
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Bits Description 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The “H” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual and T modes, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index “di” is defined by 2 MSBs in the compression block and the LSB computed by the 

following equation, where R/G/B values are the 8-bit values from the first step: 

 di[0] = ((R0 « 16) | (G0 « 8) | B0) >= ((R1 « 16) | (G1 « 8) | B1) 

    

The distance “d” is then looked up in the same table used for T mode. The four colors for H mode are 

computed as follows: 

 P0 = (R0, G0, B0) + (d, d, d) 

 P1 = (R0, G0, B0) - (d, d, d) 

 P2 = (R1, G1, B1) + (d, d, d) 

 P3 = (R1, G1, B1) – (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index as in T mode. 
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Planar mode 

The “planar” mode has the following bit definition: 

8-byte compression block for “planar” mode 

Bits Description 

7 ignored 

6:1 R0[5:0] 

0 G0[6] 

15 ignored 

14:9 G0[5:0] 

8 B[5] 

23:21 ignored 

20:19 B[4:3] 

18 ignored 

17:16 B0[2:1] 

31 B0[0] 

30:26 RH[5:1] 

25 diff = 1 

24 RH[0] 

39:33 GH[6:0] 

32 BH[5] 

47:43 BH[4:0] 

42:40 RV[5:3] 

55:53 RV[2:0] 

52:48 GV[6:2] 

63:62 GV[1:0] 

61:56 BV[5:0] 

The “planar” mode has three base colors stored as RGB 676, with red & blue having 6 bits and green 

having 7 bits. These three base colors are each extended to RGB 888 with bit replication. 

The color of each texel is then computed using the following equations, with x and y representing the 

texel position within the compression block: 

 texel[y][x].R = x(RH-R0)/4 + y(RV-R0)/4 + R0 

 texel[y][x].G = x(GH-G0)/4 + y(GV-G0)/4 + G0 

 texel[y][x].B = x(BH-B0)/4 + y(BV-B0)/4 + B0 

    

All resulting channels are clamped to the range [0,255]. 

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGB8, then a conversion from the resulting RGB 

values to SRGB space is performed. 
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EAC_R11 and EAC_SIGNED_R11  

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

EAC_R11 compression block layout 

Bits Description 

7:0 R0[7:0] 

15:12 m[3:0] 

11:8 ti[3:0] 

23:21 texel[0][0] index 

20:18 texel[1][0] index 

17:16,31 texel[2][0] index 

30:28 texel[3][0] index 

27:25 texel[0][1] index 

24,39:38 texel[1][1] index 

37:35 texel[2][1] index 

34:32 texel[3][1] index 

47:45 texel[0][2] index 

44:42 texel[1][2] index 

41:40,55 texel[2][2] index 

54:52 texel[3][2] index 

51:49 texel[0][3] index 

48,63:62 texel[1][3] index 

61:59 texel[2][3] index 

58:56 texel[3][3] index 

The “ti” (table index) value from the compression block is used to select one of the columns in the table 

below. 

Intensity modifier (im) table 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
-3 -3 -2 -2 -3 -3 -4 -3 -2 -2 -2 -2 -3 -1 -4 -3 

1 
-6 -7 -5 -4 -6 -7 -7 -5 -6 -5 -4 -5 -4 -2 -6 -5 

2 
-9 -10 -8 -6 -8 -9 -8 -8 -8 -8 -8 -7 -7 -3 -8 -7 
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 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 
-15 -13 -13 -13 -12 -11 -11 -11 -10 -10 -10 -10 -10 -10 -9 -9 

4 
2 2 1 1 2 2 3 2 1 1 1 1 2 0 3 2 

5 
5 6 4 3 5 6 6 4 5 4 3 4 3 1 5 4 

6 
8 9 7 5 7 8 7 7 7 7 7 6 6 2 7 6 

7 
14 12 12 12 11 10 10 10 9 9 9 9 9 9 8 8 

The eight possible color values Ri are then computed from the 8 values in the column labeled imi, where i 

ranges from 0 to 7: 

For EAC_R11: 

if (m == 0) Ri = R0*8 + 4 + imi else Ri = R0*8 + 4 + (imi * m * 8) 

Each value is clamped to the range [0,2047]. 

For EAC_SIGNED_R11: 

if (m == 0) Ri = R0*8 + imi else Ri = R0*8 + (imi * m * 8) 

Each value is clamped to the range [-1023,1023]. 

Note that in the signed case, the R0 value is a signed, 2’s complement value in the range [-127, 127]. 

Before being used in the above equations, an R0 value of -128 must be clamped to -127. 

Finally, each texel red value is selected from the 8 possible values Ri using the 3-bit index for that texel. 

The green, blue, and alpha values are set to their default values. 

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer. 
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ETC2_RGB8_PTA and ETC2_SRGB8_PTA  

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the “individual” mode in favor of 

allowing a punch-through alpha. The “diff” bit from ETC2_RGB8 is renamed to “opaque” in this format, 

and the mode selection behaves as if the “diff” bit is always 1, making the “individual” mode inaccessible 

for these formats. 

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is 

determined to be zero, the three other channels are also forced to zero, regardless of what value the 

normal decompression algorithm would have produced. 

Differential Mode 

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGB8 is used. If the opaque bit 

is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out, otherwise 

the table is the same): 

Luminance Table for opaque bit not set 

 0 1 2 3 4 5 6 7 

0 
0 0 0 0 0 0 0 0 

1 
8 17 29 42 60 80 106 183 

2 
0 0 0 0 0 0 0 0 

3 
-8 -17 -29 -42 -60 -80 -106 -183 

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value is 

set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255 and 

RGB is the result of the normal decompression calculations. 

T and H Modes 

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set 

to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255. 

Planar Mode 

In planar mode, the opaque bit is ignored and alpha is set to 255. 

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the 

resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 
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ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8  

The ETC2_EAC_RGBA8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression block 

represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the EAC_R8 

algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm. The EAC_R8 

format differs from EAC_R11 as described below. 

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBA8, then a conversion from 

the resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 

EAC_R8 Format: 

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier 

section, except the procedure for computing the eight possible color values Ri is performed as follows: 

Ri = R0 + (imi * m) 

Each value is clamped to the range [0,255]. 

EAC_RG11 and EAC_SIGNED_RG11  

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows. 

EAC_RG11 compression block layout 

Bits Description 

63:56 G0[7:0] 

55:52 Gm[3:0] 

51:48 Gti[3:0] 

47:45 texel[0][0] G index 

44:42 texel[1][0] G index 

41:39 texel[2][0] G index 

38:36 texel[3][0] G index 

35:33 texel[0][1] G index 

32:30 texel[1][1] G index 

29:27 texel[2][1] G index 

26:24 texel[3][1] G index 

23:21 texel[0][2] G index 

20:18 texel[1][2] G index 

17:15 texel[2][2] G index 

14:12 texel[3][2] G index 

11:9 texel[0][3] G index 
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Bits Description 

8:6 texel[1][3] G index 

5:3 texel[2][3] G index 

66:64 texel[3][3] G index 

63:56 R0[7:0] 

55:52 Rm[3:0] 

51:48 Rti[3:0] 

47:45 texel[0][0] R index 

44:42 texel[1][0] R index 

41:39 texel[2][0] R index 

38:36 texel[3][0] R index 

35:33 texel[0][1] R index 

32:30 texel[1][1] R index 

29:27 texel[2][1] R index 

26:24 texel[3][1] R index 

23:21 texel[0][2] R index 

20:18 texel[1][2] R index 

17:15 texel[2][2] R index 

14:12 texel[3][2] R index 

11:9 texel[0][3] R index 

8:6 texel[1][3] R index 

5:3 texel[2][3] R index 

2:0 texel[3][3] R index 

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that they 

supply two channels of output data, both red and green, from two independent 8-byte portions of the 

compression block. The low half of the compression block contains the red information, and the high half 

contains the green information. Blue and alpha channels are set to their default values. 

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels 

are generated using the data in the compression block. 
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FXT Texture Formats 

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel 

blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged 

according to the following diagram: 

FXT1 Encoded Blocks 

 

Overview of FXT1 Formats 

During the compression phase, the encoder selects one of the four formats for each block based on 

which encoding scheme results in best overall visual quality. The following table lists the four different 

modes and their encodings: 

FXT1 Format Summary 

Bit 

127 

Bit 

126 

Bit 

125 

Block 

Compression 

Mode Summary Description 

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and 

transparent black 

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT. 

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3 discrete colors 

+ transparent black and 2 LUTs using interpolated values of Color 0,1 (t0-15) and 

Color 1,2 (t16-31). 

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and Color2,3 

LUT used for t16-31. Alpha bit selects between LUTs with 4 interpolated colors or 

3 interpolated colors + transparent black. 

FXT1 CC_HI Format 

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the 

encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB 

colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is 

transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a 

color from the table. 
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CC_HI Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format: 

FXT CC_HI Block Encoding 

Bit Description 

127:126 Mode = ‘00’b (CC_HI) 

125:121 Color 1 Red 

120:116 Color 1 Green 

115:111 Color 1 Blue 

110:106 Color 0 Red 

105:101 Color 0 Green 

100:96 Color 0 Blue 

95:93 Texel 31 Select 

... ... 

50:48 Texel 16 Select 

47:45 Texel 15 Select 

... ... 

2:0 Texel 0 Select 

CC_HI Block Decoding 

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3 

MSBs into the 3 LSBs, as shown in the following table: 

FXT CC_HI Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 1 [23:19] Color 1 Red [7:3] [125:121] 

Color 1 [18:16] Color 1 Red [2:0] [125:123] 

Color 1 [15:11] Color 1 Green [7:3] [120:116] 

Color 1 [10:08] Color 1 Green [2:0] [120:118] 

Color 1 [07:03] Color 1 Blue [7:3] [115:111] 

Color 1 [02:00] Color 1 Blue [2:0] [115:113] 

Color 0 [23:19] Color 0 Red [7:3] [110:106] 

Color 0 [18:16] Color 0 Red [2:0] [110:108] 

Color 0 [15:11] Color 0 Green [7:3] [105:101] 

Color 0 [10:08] Color 0 Green [2:0] [105:103] 

Color 0 [07:03] Color 0 Blue [7:3] [100:96] 

Color 0 [02:00] Color 0 Blue [2:0] [100:98] 
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These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors 

(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table: 

FXT CC_HI Interpolated Color Table 

Interpolated 

Color Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh 

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh 

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh 

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh 

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh 

6 Color1.RGB 0FFh 

7 RGB = 0,0,0 0 

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded 

CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the 

CC_HI block. 

FXT1 CC_CHROMA Format 

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block. 

These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB 

colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color 

from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_CHROMA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format: 

FXT CC_CHROMA Block Encoding 

Bit Description 

127:125 Mode = ‘010’b (CC_CHROMA) 

124 Unused 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 
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Bit Description 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

...  

33:32 Texel 16 Select 

31:30 Texel 15 Select 

...  

1:0 Texel 0 Select 

CC_CHROMA Block Decoding 

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 

LSBs, as shown in the following tables: 

FXT CC_CHROMA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10:08] Color 3 Green [2:0] [118:116] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 



Memory Views   

 

Doc Ref # IHD-OS-BDW-Vol 5-10.15   83 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded 

CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 0FFh) 

completing the decode of the CC_CHROMA block. 

FXT CC_CHROMA Interpolated Color Table 

Texel Select Color ARGB 

0 Color0.ARGB 

1 Color1.ARGB 

2 Color2.ARGB 

3 Color3.ARGB 

FXT1 CC_MIXED Format 

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0 

and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31. 

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit 

RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB 

color from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_MIXED Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format: 

FXT CC_MIXED Block Encoding 

Bit Description 

127 Mode = ‘1’b (CC_MIXED) 

126 Color 3 Green [0] 

125 Color 1 Green [0] 

124 Alpha [0] 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 
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Bit Description 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_MIXED Block Decoding 

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block. 

Alpha[0] = 0 Decoding 

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as 

per the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125] 

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into 

the 3 LSBs, as shown in the following table: 

FXT CC_MIXED Decoded Colors (Alpha[0] = 0) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10] Color 2 Green [2] [33] XOR [126]] 

Color 2 [09:08] Color 2 Green [1:0] [103:100] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10] Color 0 Green [2] [1] XOR [125] 

Color 0 [09:08] Color 0 Green [1:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four 

interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15 

indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures: 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh 

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh 

3 Color1.RGB 0FFh 
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FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh 

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh 

3 Color3.RGB 0FFh 

Alpha[0] = 1 Decoding 

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are 

encoded as RGB565 colors, with the Green LSB obtained as shown in the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following 

diagram. 

FXT CC_MIXED Decoded Colors (Alpha[0] = 1) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:19] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:87] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:19] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors. 

The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 

16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 3 

is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures: 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (Color0.RGB + Color1.RGB) /2 0FFh 

2 Color1.RGB 0FFh 

3 Black (0,0,0) 0 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (Color2.RGB + Color3.RGB) /2 0FFh 

2 Color3.RGB 0FFh 

3 Black (0,0,0) 0 

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the 

encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table, 

completing the decode of the CC_CMIXED block. 

FXT1 CC_ALPHA Format 

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control 

bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects. 
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CC_ALPHA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format: 

FXT CC_ALPHA Block Encoding 

Bit Description 

127:125 Mode = ‘011’b (CC_ALPHA) 

124 LERP 

123:119 Color 2 Alpha 

118:114 Color 1 Alpha 

113:109 Color 0 Alpha 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_ALPHA Block Decoding 

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3 

MSBs into the 3 LSBs, as shown in the following tables: 

FXT CC_ALPHA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [31:27] Color 2 Alpha [7:3] [123:119] 

Color 2 [26:24] Color 2 Alpha [2:0] [123:121] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [31:27] Color 1 Alpha [7:3] [118:114] 

Color 1 [26:24] Color 1 Alpha [2:0] [118:116] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [31:27] Color 0 Alpha [7:3] [113:109] 

Color 0 [26:24] Color 0 Alpha [2:0] [113:111] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

LERP = 0 Decoding  

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th 

entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded 

CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of 

the CC_ALPHA block. 

FXT CC_ALPHA Interpolated Color Table (LERP=0) 

Texel Select Color Alpha 

0 Color0.RGB Color0.Alpha 

1 Color1.RGB Color1.Alpha 

2 Color2.RGB Color2.Alpha 

3 Black (RGB=0,0,0) 0 

LERP = 1 Decoding 

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The 

Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-

31 indices, as shown in the following figures: 
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FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15) 

Texel 0-15 Select Color ARGB 

0 Color0.ARGB 

1 (2*Color0.ARGB + Color1.ARGB + 1) /3 

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 

Texel 16-31 Select Color ARGB 

0 Color2.ARGB 

1 (2*Color2.ARGB + Color1.ARGB + 1) /3 

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

DXT/BC1-3 Texture Formats 

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next 

multiple of four texels – here the pad texels are not referenced by the device. 

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is 

opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding 

can be used to support source textures that require more than one-bit alpha: here the 1st QWord is used 

to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values. 

These three types of format are discussed in the following sections: 

 Opaque and One-bit Alpha Textures (DXT1) 

 Opaque Textures (DXT1_RGB) 

 Textures with Alpha Channels (DXT2-5) 

DXT2 and DXT3 are equivalent compression formats from the perspective of the hardware. The only 

difference between the two is the use of pre-multiplied alpha encoding, which does not affect hardware. 

Likewise, DXT4 and DXT5 are the same compression formats with the only difference being the use of 

pre-multiplied alpha encoding. 

Note that the surface formats DXT1-5 are referred to in the DirectX Specification as BC1-3. The mapping 

between formats is shown below: 

 DXT1 ⇒ BC1 

 DXT2/DXT3 ⇒ BC2 

 DXT4/DXT5 ⇒ BC3 
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Programming Note 

Project: All 

Context: DXT Texture Formats 

 Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit 

blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-bit alpha 

formats on a per-block basis within the same texture. In other words, the comparison of the unsigned 

integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels. 

 When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or 

DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once 

interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used 

on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a 

block-by-block basis. 

Opaque and One-bit Alpha Textures (DXT1/BC1) 

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque 

or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This 

totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel. 

In the block bitmap, there are two bits per texel to select between the four colors, two of which are 

stored in the encoded data. The other two colors are derived from these stored colors by linear 

interpolation. 

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color 

values stored in the block. They are treated as unsigned integers. If the first color is greater than the 

second, it implies that only opaque texels are defined. This means four colors will be used to represent 

the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed 

in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha 

transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that 

the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the 

alpha block . 

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a 

transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used 

for encoding the alpha mask. 

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color 

encoding is selected: 

 if (color_0 > color_1) 

 { 

   // Four-color block: derive the other two colors.  

   // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3 

   // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block.  color_2 = (2 * color_0 + color_1) / 3; 

    color_3 = (color 0 + 2 * color_1) / 3; 

 }   

 else 
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 { 

   // Three-color block: derive the other color.  // 00 = color_0, 01 = color_1, 10 = color_2, 

   // 11 = transparent.  // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block.  color_2 = (color_0 + color_1) / 2;   

    color_3 = transparent;   

 } 

    

The following tables show the memory layout for the 8-byte block. It is assumed that the first index 

corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example, 

Texel[1][2] refers to the texture map pixel at (x,y) = (2,1). 

Here is the memory layout for the 8-byte (64-bit) block: 

Word Address 16-bit Word 

0 Color_0 

1 Color_1 

2 Bitmap Word_0 

3 Bitmap Word_1 

Color_0 and Color_1 (colors at the two extremes) are laid out as follows: 

Bits Color 

15:11 Red color component 

10:5 Green color component 

4:0 Blue color component 

 

Bits Texel 

1:0 (LSB) Texel[0][0] 

3:2 Texel[0][1] 

5:4 Texel[0][2] 

7:6 Texel[0][3] 

9:8 Texel[1][0] 

11:10 Texel[1][1] 

13:12 Texel[1][2] 

15:14 Texel[1][3] 

Bitmap Word_1 is laid out as follows: 

Bits Texel 

1:0 (LSB) Texel[2][0] 

3:2 Texel[2][1] 

5:4 Texel[2][2] 

7:6 Texel[2][3] 

9:8 Texel[3][0] 

11:10 Texel[3][1] 
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Bits Texel 

13:12 Texel[3][2] 

15:14 (MSB) Texel[3][3] 

Example of Opaque Color Encoding 

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We 

will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly 

distributed gradient between them. To determine the values for the 4x4 bitmap, the following 

calculations are used: 

 00 ? color_0 

 01 ? color_1 

 10 ? 2/3 color_0 + 1/3 color_1 

 11 ? 1/3 color_0 + 2/3 color_1 

    

Example of One-bit Alpha Encoding 

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit 

integer, color_1. An example of where this format could be used is leaves on a tree to be shown against a 

blue sky. Some texels could be marked as transparent while three shades of green are still available for 

the leaves. Two of these colors fix the extremes, and the third color is an interpolated color. 

The bitmap encoding for the colors and the transparency is determined using the following calculations: 

 00 ? color_0 

 01 ? color_1 

 10 ? 1/2 color_0 + 1/2 color_1 

 11 ? Transparent 

    

Opaque Textures (DXT1_RGB) 

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is 

removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the 

Opaque Color Encoding. The alpha channel defaults to 1.0. 

Programming Note 

Context: Opaque Textures (DXT1_RGB) 

The behavior of this format is not compliant with the OGL spec. 

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3) 

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a 

block that describes the transparency precedes the 64-bit block already described for DXT1. The 

transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with 

fewer bits and linear interpolation analogous to what is used for color encoding. 
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The transparency block and the color block are laid out as follows: 

Word Address  64-bit Block 

3:0  Transparency block 

7:4  Previously described 64-bit block 

Explicit Texture Encoding 

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe 

transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a 

variety of means such as dithering or by simply using the 4 most significant bits of the alpha data. 

However they are produced, they are used just as they are, without any form of interpolation. 

Note: DirectDraw’s compression method uses the 4 most significant bits. 

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word. 

This is the layout for Word 0: 

Bits Alpha 

3:0 (LSB) [0][0] 

7:4 [0][1] 

11:8 [0][2] 

15:12 (MSB) [0][3] 

This is the layout for Word 1: 

Bits Alpha 

3:0 (LSB) [1][0] 

7:4 [1][1] 

11:8 [1][2] 

15:12 (MSB) [1][3] 

This is the layout for Word 2: 

Bits Alpha 

3:0 (LSB) [2][0] 

7:4 [2][1] 

11:8 [2][2] 

15:12 (MSB) [2][3] 

This is the layout for Word 3: 

Bits Alpha 

3:0 (LSB) [3][0] 

7:4 [3][1] 

11:8 [3][2] 

15:12 (MSB) [3][3] 
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Three-Bit Linear Alpha Interpolation 

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear 

encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in 

the first eight bytes of the block. The representative alpha values are used to interpolate intermediate 

alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is 

greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four 

intermediate alpha values are interpolated between the specified alpha extremes. The two additional 

implicit alpha values are 0 (fully transparent) and 255 (fully opaque). 

The following pseudo-code illustrates this algorithm: 

 // 8-alpha or 6-alpha block? 

 if (alpha_0 > alpha_1) { 

    // 8-alpha block: derive the other 6 alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (6 * alpha_0 + alpha_1) / 7;     // Bit code 010 

   alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011 

   alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100 

   alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101 

   alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110 

   alpha_7 = (alpha_0 + 6 * alpha_1) / 7;     // Bit code 111 

  } 

 else {  

    // 6-alpha block: derive the other alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (4 * alpha_0 + alpha_1) / 5;     // Bit code 010 

   alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011 

   alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100 

   alpha_5 = (alpha_0 + 4 * alpha_1) / 5;     // Bit code 101 

   alpha_6 = 0;                               // Bit code 110 

   alpha_7 = 255;                             // Bit code 111 

 } 

        

The memory layout of the alpha block is as follows: 

Byte Alpha 

0 Alpha_0 

1 Alpha_1 

2 [0][2] (2 LSBs), [0][1], [0][0] 

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB) 

4 [1][3], [1][2], [1][1] (2 MSBs) 

5 [2][2] (2 LSBs), [2][1], [2][0] 

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB) 

7 [3][3], [3][2], [3][1] (2 MSBs) 
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BC4 

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data. 

An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] bit code 

21:19 texel[0][1] bit code 

24:22 texel[0][2] bit code 

27:25 texel[0][3] bit code 

30:28 texel[1][0] bit code 

33:31 texel[1][1] bit code 

36:34 texel[1][2] bit code 

39:37 texel[1][3] bit code 

42:40 texel[2][0] bit code 

45:43 texel[2][1] bit code 

48:46 texel[2][2] bit code 

51:49 texel[2][3] bit code 

54:52 texel[3][0] bit code 

57:55 texel[3][1] bit code 

60:58 texel[3][2] bit code 

63:61 texel[3][3] bit code 

There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 

 red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 
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     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

    

BC5 

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. A 

16-byte compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column] 

where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] red bit code 

21:19 texel[0][1] red bit code 

24:22 texel[0][2] red bit code 

27:25 texel[0][3] red bit code 

30:28 texel[1][0] red bit code 

33:31 texel[1][1] red bit code 

36:34 texel[1][2] red bit code 

39:37 texel[1][3] red bit code 

42:40 texel[2][0] red bit code 

45:43 texel[2][1] red bit code 

48:46 texel[2][2] red bit code 

51:49 texel[2][3] red bit code 

54:52 texel[3][0] red bit code 

57:55 texel[3][1] red bit code 

60:58 texel[3][2] red bit code 

63:61 texel[3][3] red bit code 

71:64 green_0 

79:72 green_1 

82:80 texel[0][0] green bit code 

85:83 texel[0][1] green bit code 

88:86 texel[0][2] green bit code 

91:89 texel[0][3] green bit code 

94:92 texel[1][0] green bit code 

97:95 texel[1][1] green bit code 

100:98 texel[1][2] green bit code 

103:101 texel[1][3] green bit code 
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Bit Description 

106:104 texel[2][0] green bit code 

109:107 texel[2][1] green bit code 

112:110 texel[2][2] green bit code 

115:113 texel[2][3] green bit code 

118:116 texel[3][0] green bit code 

121:119 texel[3][1] green bit code 

124:122 texel[3][2] green bit code 

127:125 texel[3][3] green bit code 

There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 

 red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

    

The same calculations are done for green, using the corresponding reference colors and bit codes. 
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BC6H  

For BDW, these formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high dynamic 

range (> 8 bits per channel). BC6H supports floating point denorms but there is no support for INF and 

NaN, other than with BC6H_SF16 –INF is supported. The alpha channel is not included, thus alpha is 

returned at its default value. 

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits 

(either 2 or 5 bits). 

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices 

indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32 

partition sets is indicated which selects which of the two lines each texel is assigned to. 

Field Definition 

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. The 

mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines 

(“TWO”), and the last 4 use one line (“ONE”). The difference between the various two-line and one-line 

modes is with the precision of the first endpoint and the number of bits used to store delta values for the 

remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than using 

the deltas (these are indicated as having no delta values). 

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is “r”, 

“g”, or “b” indicating the color channel. The second letter is “w”, “x”, “y”, or “z” indicating which of the 

four endpoints. The first line has endpoints “w” and “x”, with “w” being the endpoint that is fully specified 

(i.e. not as a delta). The second line has endpoints “y” and “z”. Modes using ONE mode do not have 

endpoints “y” and “z” as they have only one line. 

In addition to the mode and endpoint data, TWO blocks contain a 5-bit “partition” which selects one of 

the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are 

described in more detail below. 

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas 

Bit Description 

1:0 mode = 00 

2 gy[4] 

3 by[4] 

4 bz[4] 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 
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Bit Description 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas 

Bit Description 

1:0 mode = 01 

2 gy[5] 

3 gz[4] 

4 gz[5] 

11:5 rw[6:0] 

12 bz[0] 

13 bz[1] 

14 by[4] 

21:15 gw[6:0] 

22 by[5] 

23 bz[2] 

24 gy[4] 

31:25 bw[6:0] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 
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Bit Description 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas 

Green, Blue: 11-bit endpoint, 4-bit deltas 

Bit Description 

4:0 mode = 00010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 rw[10] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas 

Green: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 00110 

14:5 rw[9:0] 
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Bit Description 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 gw[10] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[0] 

70 bz[2] 

74:71 rz[3:0] 

75 gy[4] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas 

Blue: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 by[4] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 
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Bit Description 

59:55 bx[4:0] 

60 bw[10] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[1] 

70 bz[2] 

74:71 rz[3:0] 

75 bz[4] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01110 

13:5 rw[8:0] 

14 by[4] 

23:15 gw[8:0] 

24 gy[4] 

33:25 bw[8:0] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[3:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas 
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Green, Blue: 8-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 10010 

12:5 rw[7:0] 

13 gz[4] 

14 by[4] 

22:15 gw[7:0] 

23 bz[2] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[3] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 gz[1] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas 

Green: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 10110 

12:5 rw[7:0] 

13 bz[0] 

14 by[4] 

22:15 gw[7:0] 

23 gy[5] 

24 gy[4] 

32:25 bw[7:0] 

33 gz[5] 

34 bz[4] 
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Bit Description 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas 

Blue: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 11010 

12:5 rw[7:0] 

13 bz[1] 

14 by[4] 

22:15 gw[7:0] 

23 by[5] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

69:65 ry[4:0] 
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Bit Description 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas 

Bit Description 

4:0 mode = 11110 

10:5 rw[5:0] 

11 gz[4] 

12 bz[0] 

13 bz[1] 

14 by[4] 

20:15 gw[5:0] 

21 gy[5] 

22 by[5] 

23 bz[2] 

24 gy[4] 

30:25 bw[5:0] 

31 gz[5] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas 

Bit Description 

4:0 mode = 00011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

44:35 rx[9:0] 

54:45 gx[9:0] 

64:55 bx[9:0] 

127:65 indices 

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas 

Bit Description 

4:0 mode = 00111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

43:35 rx[8:0] 

44 rw[10] 

53:45 gx[8:0] 

54 gw[10] 

63:55 bx[8:0] 

64 bw[10] 

127:65 indices 

Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas 

Bit Description 

4:0 mode = 01011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

42:35 rx[7:0] 

43 rw[11] 

44 rw[10] 

52:45 gx[7:0] 

53 gw[11] 

54 gw[10] 

62:55 bx[7:0] 
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Bit Description 

63 bw[11] 

64 bw[10] 

127:65 indices 

Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas 

Bit Description 

4:0 mode = 01111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[15] 

40 rw[14] 

41 rw[13] 

42 rw[12] 

43 rw[11] 

44 rw[10] 

48:45 gx[3:0] 

49 gw[15] 

50 gw[14] 

51 gw[13] 

52 gw[12] 

53 gw[11] 

54 gw[10] 

58:55 bx[3:0] 

59 bw[15] 

60 bw[14] 

61 bw[13] 

62 bw[12] 

63 bw[11] 

64 bw[10] 

127:65 indices 
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Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels. 

The “indices” fields are defined as follows: 

TWO mode indices field with fix-up index [1] at texel[3][3] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

107:105 texel[2][0] index 

110:108 texel[2][1] index 

113:111 texel[2][2] index 

116:114 texel[2][3] index 

119:117 texel[3][0] index 

122:120 texel[3][1] index 

125:123 texel[3][2] index 

127:126 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[0][2] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

88:87 texel[0][2] index 

91:89 texel[0][3] index 

94:92 texel[1][0] index 

97:95 texel[1][1] index 

100:98 texel[1][2] index 

103:101 texel[1][3] index 

106:104 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 
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Bit Description 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[2][0] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

106:105 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

ONE mode indices field 

Bit Description 

67:65 texel[0][0] index 

71:68 texel[0][1] index 

75:72 texel[0][2] index 

79:76 texel[0][3] index 

83:80 texel[1][0] index 

87:84 texel[1][1] index 

91:88 texel[1][2] index 

95:92 texel[1][3] index 

99:96 texel[2][0] index 

103:100 texel[2][1] index 

107:104 texel[2][2] index 

111:108 texel[2][3] index 

115:112 texel[3][0] index 

119:116 texel[3][1] index 
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Bit Description 

123:120 texel[3][2] index 

127:124 texel[3][3] index 

Endpoint Computation 

The endpoints can be defined in many different ways, as shown above. This section describes how the 

endpoints are computed from the bits in the compression block. The method used depends on whether 

the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16). 

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and 

independently, however in some modes different channels have different incoming precision which must 

be accounted for. The following rules are employed: 

 If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits 

 For all other cases, the value is zero-extended to 16 bits 

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that are 

delta values, the next step involves computing the absolute endpoint. The “w” endpoint is always 

absolute and acts as a base value for the other three endpoints. Each channel is handled identically and 

independently. 

 x = w + x 

 y = w + y 

 z = w + z 

    

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any 

resulting high bits are dropped). 

Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 14 

(ONE mode) interpolated colors. Again each channel is processed independently. 

First the endpoints are unquantized, with each channel of each endpoint being processed independently. 

The number of bits in the original base w value represents the precision of the endpoints. The input 

endpoint is called e, and the resulting endpoints are represented as 17-bit signed integers and called e' 

below. 

For the BC6H_UF16 format: 

 if the precision is already 16 bits, e' = e 

 if e = 0, e' = 0 

 if e is the maximum representible in the precision, e' = 0xFFFF 

 otherwise, e' = ((e « 16) + 0x8000) » precision 
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For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e' and e refer 

only to the magnitude portion: 

 if the precision is already 16 bits, e' = e 

 if e = 0, e' = 0 

 if e is the maximum representible in the precision, e' = 0x7FFF 

 otherwise, e' = ((e « 15) + 0x4000) » (precision - 1) 

Next, the palette values are generated using predefined weights, using the tables below: 

palette[i] = (w' * (64 - weight[i]) + x' * weight[i] + 32) » 6 

TWO mode weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

ONE mode weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation w' and x' represent the endpoints e' computed in the previous step corresponding to w 

and x, respectively. For the second line in TWO mode, w and x are replaced with y and z. 

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the 

values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign 

magnitude. These final 16-bit results are ultimately treated as 16-bit floats. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit 

per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter. 

This procedure differs depending on whether the mode is TWO or ONE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, but the “indices” field is 63 bits. This field consists of 

a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 3 

bits, the missing high bit being set to zero. 

TWO Mode 

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1 
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(endpoints y and z). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the 

“fix-up index”. These texels have one less bit in the index. 

  0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

The 46-bit “indices” field consists of a 3-bit palette index for each of the 16 texels, with the exception of 

the bracketed texels that have only two bits each. The high bit of these texels is set to zero. 
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BC7  

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point 

images. 

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC7 

has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 bits 

depending on mode). 

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or 

three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If a 

two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the two 

lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the 

color-only modes, alpha is always returned at its default value of 1.0. 

Some modes contain the following fields: 

 P-bits. These represent shared LSB for all components of the endpoint, which increases the 

endpoint precision by one bit. In some cases both endpoints of a line share a P-bit. 

 Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which of 

the four components has its own indexes (scalar) vs. the other three components (vector). 

 Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit 

index vs. the 2-bit index. 

Field Definition 

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The 

mode is selected by the unique mode bits specified in each table. Each mode has particular 

characteristics described at the top of the table. 

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16 

partitions 

Bit Description 

0 mode = 0 

4:1 partition 

8:5 R0 

12:9 R1 

16:13 R2 

20:17 R3 

24:21 R4 

28:25 R5 

32:29 G0 

36:33 G1 
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Bit Description 

40:37 G2 

44:41 G3 

48:45 G4 

52:49 G5 

56:53 B0 

60:57 B1 

64:61 B2 

68:65 B3 

72:69 B4 

76:73 B5 

77 P0 

78 P1 

79 P2 

80 P3 

81 P4 

82 P5 

127:83 indices 

Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64 

partitions 

Bit Description 

1:0 mode = 10 

7:2 partition 

13:8 R0 

19:14 R1 

25:20 R2 

31:26 R3 

37:32 G0 

43:38 G1 

49:44 G2 

55:50 G3 

61:56 B0 

67:62 B1 

73:68 B2 

79:74 B3 

80 P0 

81 P1 
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Bit Description 

127:82 indices 

Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions 

Bit Description 

2:0 mode = 100 

8:3 partition 

13:9 R0 

18:14 R1 

23:19 R2 

28:24 R3 

33:29 R4 

38:34 R5 

43:39 G0 

48:44 G1 

53:49 G2 

58:54 G3 

63:59 G4 

68:64 G5 

73:69 B0 

78:74 B1 

83:79 B2 

88:84 B3 

93:89 B4 

98:94 B5 

127:99 indices 

Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64 

partitions 

Bit Description 

3:0 mode = 1000 

9:4 partition 

16:10 R0 

23:17 R1 

30:24 R2 

37:31 R3 

44:38 G0 

51:45 G1 

58:52 G2 
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Bit Description 

65:59 G3 

72:66 B0 

79:73 B1 

86:80 B2 

93:87 B3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16 

3-bit indices, 2-bit component rotation, 1-bit index selector 

Bit Description 

4:0 mode = 10000 

6:5 rotation 

7 index selector 

12:8 R0 

17:13 R1 

22:18 G0 

27:23 G1 

32:28 B0 

37:33 B1 

43:38 A0 

49:44 A1 

80:50 2-bit indices 

127:81 3-bit indices 

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices, 

2-bit alpha indices, 2-bit component rotation 

Bit Description 

5:0 mode = 100000 

7:6 rotation 

14:8 R0 

21:15 R1 

28:22 G0 

35:29 G1 

42:36 B0 
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Bit Description 

49:43 B1 

57:50 A0 

65:58 A1 

96:66 color indices 

127:97 alpha indices 

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit 

indices 

Bit Description 

6:0 mode = 1000000 

13:7 R0 

20:14 R1 

27:21 G0 

34:28 G1 

41:35 B0 

48:42 B1 

55:49 A0 

62:56 A1 

63 P0 

64 P1 

127:65 indices 

Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit 

indices, 64 partitions 

Bit Description 

7:0 mode = 10000000 

13:8 partition 

18:14 R0 

23:19 R1 

28:24 R2 

33:29 R3 

38:34 G0 

43:39 G1 

48:44 G2 

53:49 G3 

58:54 B0 

63:59 B1 

68:64 B2 
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Bit Description 

73:69 B3 

78:74 A0 

83:79 A1 

88:84 A2 

93:89 A3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels. 

The indices fields are variable in length and due to the different locations of the fix-up indices depending 

on partition set there are a very large number of possible configurations. Each mode above indicates 

how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, and three in 

THREE mode) each have one less bit than indicated. However, the indices are always packed into the 

index fields according to the table below, with the specific bit assignments of each texel following the 

rules just given. 

Bit Description 

LSBs texel[0][0] index 

  texel[0][1] index 

  texel[0][2] index 

  texel[0][3] index 

  texel[1][0] index 

  texel[1][1] index 

  texel[1][2] index 

  texel[1][3] index 

  texel[2][0] index 

  texel[2][1] index 

  texel[2][2] index 

  texel[2][3] index 

  texel[3][0] index 

  texel[3][1] index 

  texel[3][2] index 

MSBs texel[3][3] index 
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Endpoint Computation 

The endpoints can be defined with different precision depending on mode, as shown above. This section 

describes how the endpoints are computed from the bits in the compression block. Each component of 

each endpoint follows the same steps. 

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint 

value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range from 

0x00 to 0xFF. 

Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14 

interpolated colors, depending on the number of bits in the indices. Again each channel is processed 

independently. 

The equation to compute each palette color with index i, given two endpoints is as follows, using the 

tables below to determine the weight for each palette index: 

palette[i] = (E0 * (64 - weight[i]) + E1 * weight[i] + 32) » 6 

2-bit index weights: 

palette index 0 1 2 3 

weight 0 21 43 64 

3-bit index weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

4-bit index weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation E0 and E1 represent the even-numbered and odd-numbered endpoints computed in the 

previous step for the component and line currently being computed. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit 

per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In 

BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure 

differs depending on whether the mode is ONE, TWO, or THREE. 
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ONE Mode 

In ONE mode, there is only one set of palette colors, thus there is only a single “partition set” defined, 

with all texels selecting line 0 and texel [0][0] being the “fix-up index” with one less bit in the index. 

TWO Mode 

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 (endpoints 

2 and 3). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the “fix-up 

index”. These texels have one less bit in the index. 

  0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 
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  0 1 2 3 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

20 
[0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1 

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1 

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0 

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0 

24 
[0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1 

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1] 

28 
[0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1 

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1 

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 

2C 
[0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0 

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0 

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0 

30 
[0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0 

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

34 
[0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1 

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0 

38 
[0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1 

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1] 

3C 
[0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0 

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1] 
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THREE Mode 

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block 

of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 (endpoints 2 

and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of “[0]”, “[1]”, and “[2]”, the index that 

this is at is termed the “fix-up index”. These texels have one less bit in the index. 

  0 1 2 3 

00 
[0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2] 

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2 

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1 

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1 

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1 

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1 

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1] 

08 
[0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2 

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2 

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2 

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2] 

0C 
[0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1] 

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1 

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0 

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0 

10 
[0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2] 

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2 

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2 

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1] 

14 
[0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0 

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0 

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0 

18 
[0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0 

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1 

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1 

1C 
[0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0 

1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0 

[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1 
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  0 1 2 3 

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1] 

20 
[0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0 

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0 

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0 

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0 

24 
[0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1 

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0 

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2 

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1] 

28 
[0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2 

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2 

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2 

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2] 

2C 
[0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0 

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1 

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1 

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1] 

30 
[0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0 

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2 

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2 

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2] 

34 
[0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0 

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2 

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2] 

38 
[0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0 

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0 

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0 

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2] 

3C 
[0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1] 

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1 

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1 

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0 
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Video Pixel/Texel Formats 

This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay 

chapter for a description of how the Y, U, V components are sampled. 

Packed Memory Organization 

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain 

two pixels and only the byte order affects the memory organization. 

The following four YUV 4:2:2 surface formats are supported, listed with alternate names: 

 YCRCB_NORMAL (YUYV/YUY2) 

 YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM) 

 YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM) 

 YCRCB_SWAPY (UYVY) 

The channels are mapped as follows: 

Cr (V) Red 

Y Green 

Cb (U) Blue 

Memory layout of packed YUV 4:2:2 formats 
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Planar Memory Organization 

Planar formats use what could be thought of as separate buffers for the three color components. 

Because there is a separate stride for the Y and U/V data buffers, several memory footprints can be 

supported. 

Note: There is no direct support for use of planar video surfaces as textures. The sampling engine can be used to 

operate on each of the 8bpp buffers separately (via a single-channel 8-bit format such as I8_UNORM). The U and V 

buffers can be written concurrently by using multiple render targets from the pixel shader. The Y buffer must be 

written in a separate pass due to its different size. 

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data: 

1. The memory organization of the common YV12 data, where all three planes are contiguous and 

the strides of U and V components are half of that of the Y component. 

2. An alternative memory structure that the addresses of the three planes are independent but satisfy 

certain alignment restrictions. 

YUV 4:2:0 Format Memory Organization 

 

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are 

contiguous. 

Note: The chroma planes (U and V), when separate (case b above) are treated as half-pitch with respect 

to the Y plane. In general, YV12 is supported only in linear format because separate planes cannot be 

supported correctly with a tiled format. 
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YUV 4:1:0 Format Memory Organization 

 

The table below shows how position within a Planar YUV surface chroma plane is calculated for various 

cases ot U and V pitch and position. It also shows restrictions on the alignment of the planes in memory 

when Y Height is a multiple of 4 or when Interleaved Chroma (e.g. NV21) is used. 

Case 

Interleave 

Chroma Pitch Vertical U/V Offset Restrictions 

YUV with Half Pitch 

Chroma 

No Half When U is below Y 

 Y_Uoffset = Y_Height * 2 

 Y_Voffset = Y_Height * 2 + 

V_Height 

When V is below Y 

 Y_Uoffset = Y_Height * 2 + 

V_Height 

 Y_Voffset = Y_Height * 2 

(Y Height)%4 = 0 

 (U Height)%2 = 0 

 (V Height)%2 = 0 

 Vertical for Y surface must 

be 0 

YUV with Full Pitch 

Chroma 

Yes Full When U is below Y 

 Y_Uoffset = Y_Height 

 Y_Voffset = Y_Height  + 

V_Height 

When V is below Y 

 Y_Uoffset = Y_Height  + 

V_Height 

 Y_Voffset = Y_Height 

(Y Height)%2 = 0 

 (U Height)%2 = 0 

 (V Height)%2 = 0 

YUV  for Media 

Sampling 

Yes Always 

Full 

Same as 3D full pitch Same as 3D full pitch 
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Raw Format  

A format called "RAW" is available that is only supported with the untyped surface read/write, block, 

scattered, and atomic operation data port messages. It means that the surface has no inherent format. 

Surfaces of type RAW are addressed with byte-based offsets. The RAW surface format can be applied 

only to surface types of BUFFER and STRBUF. 

Surface Memory Organizations 

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats. 

Display, Overlay, Cursor Surfaces 

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode. 

See the Display chapter for specifics on how these surfaces are defined/used. 

2D Render Surfaces 

These surfaces are used as general source and/or destination operands in 2D BLT operations. 

Note that there is no coherency between 2D render surfaces and the texture cache. Software must 

explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine. 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

2D Monochrome Source 

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where the 

BLT engine expands the 1 BPP source to the required color depth. 

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency 

between 2D render surfaces and texture-cached monochrome sources. Software must explicitly 

invalidate the texture cache before using a memory-based monochrome source that has been modified 

via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source 

surfaces as read-only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, coherency rules, etc. 

2D Color Pattern 

Color pattern surfaces are used as special pattern operands in 2D BLT operations. 

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency 

between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly 

invalidate the texture cache before using a memory-based color pattern that has been modified via the 

BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-only 

surfaces.) 



Memory Views   

 

Doc Ref # IHD-OS-BDW-Vol 5-10.15   129 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

3D Color Buffer (Destination) Surfaces 

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always 

requires a Color Buffer to be defined. 

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel 

formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details. 

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 

3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM or SM (snooped or unsnooped), 

and can be linear or tiled. When both the Depth and Color Buffers are tiled, the respective Tile Walk 

directions must match. 

When a linear Color Buffer and a linear Depth Buffer are used together: 

 The buffers may have different pitches, though both pitches must be a multiple of 32 bytes. 

 The buffers must be co-aligned with a 32-byte region. 

3D Depth Buffer Surfaces 

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline. 

The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to perform 

non-trivial Depth Test and Stencil Test operations. 

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that 

instruction in Windower for restrictions. 

See Depth Buffer Formats below for a summary of the possible depth buffer formats. See the Depth 

Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort 

chapters for details on the usage of the Depth Buffer. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent 

BPP (Bits Per 

Pixel) Description 

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit stencil 

in lower byte of second DWord 

D32_FLOAT 32 32-bit floating point Z depth value 

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil 

value in upper byte 

D16_UNORM 16 16-bit fixed point Z depth value 
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3D Separate Stencil Buffer Surfaces  

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D 

Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform 

non-trivial Stencil Test operations. 

UNRESOLVED CROSS-REFERENCE, Depth Buffer Formats summarizes Stencil Buffer formats. Refer to the 

Stencil Buffer Formats section in this chapter for details on the pixel formats. Refer to the Windower 

chapters for Stencil Buffer usage details. 

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction 

description in Windower for restrictions. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent BPP (bits per pixel) Description 

R8_ UNIT 8 8-bit stencil value in a byte 

Surface Layout  

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a 

maximum size in bytes. This maximum is 2 GB for all products and all surface types. 
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Buffers  

A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each element is a 

single surface format using one of the supported surface formats depending on how the surface is being 

accessed. The surface pitch state for the surface specifies the size of each structure in bytes. 

The buffer is stored in memory contiguously with each element in the structure packed together, and the 

first element in the next structure immediately following the last element of the previous structure. 

Buffers are supported only in linear memory. 
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Structured Buffers  

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought of 

as an array of structures, where each structure is a predefined number of DWords in size. The first 

coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure 

which must be a multiple of 4 (DWord-aligned). A structured buffer must be defined with Surface 

Format RAW. 

The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the array 

size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch. 

1D Surfaces  

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces are also 

supported. Please refer to the 2D Surfaces section for details on how these surfaces are stored. 

2D Surfaces  

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced by a 

single base address. The base map and associated mipmaps are located within a single rectangular area 

of memory identified by the base address of the upper left corner and a pitch. The base address 

references the upper left corner of the base map. The pitch must be specified at least as large as the 

widest mip-map. In some cases it must be wider; see the section on Minimum Pitch below. 

These surfaces may be overlapped in memory and must adhere to the following memory organization 

rules: 

 For non-compressed texture formats, each mipmap must start on an even row within the 

monolithic rectangular area. For 1-texel-high mipmaps, this may require a row of padding below 

the previous mipmap. This restriction does not apply to any compressed texture formats; each 

subsequent (lower-res) compressed mipmap is positioned directly below the previous mipmap. 

 Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte (DQWord) 

for tiled. (Note that tiled mipmaps are not required to start at the left edge of a tile row.) 

Computing MIP Level Sizes  

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level (i+1) sizes 

are determined by dividing the width and height of the current (i) LOD level by 2 and truncating to an 

integer (floor). This is equivalent to shifting the width/height by 1 bit to the right and discarding the bit 

shifted off. The map height and width are clamped on the low side at 1. 

In equations, the width and height of an LOD “L” can be expressed as: 

WL = ((width » L) > 0? width » L:1) 

HL = ((height » L) > 0? height » L:1) 
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If the surface is multisampled and it is a depth or stencil surface or Multisampled Surface StorageFormat in 

SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before proceeding: 

Number of Multisamples WL = HL = 

2 
ceiling(WL / 2) * 4 HL [no adjustment] 

4 
ceiling(WL / 2) * 4 ceiling(HL / 2) * 4 

8 
ceiling(WL / 2) * 8 ceiling(HL / 2) * 4d 

16 
ceiling(WL / 2) * 8 ceiling(HL / 2) * 8 

 

Base Address for LOD Calculation  

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y 

are in units of texels, with the upper left corner of the base map at (0, 0). The final step is to convert from 

Cartesian coordinates to linear addresses as documented at the bottom of this section. 

It is useful to think of the concept of “stepping” when considering where the next MIP level will be stored 

in rectangular memory space. We either step down or step right when moving to the next higher LOD. 

 for MIPLAYOUT_RIGHT maps: 

o step right when moving from LOD 0 to LOD 1 

o step down for all of the other MIPs 

 for MIPLAYOUT_BELOW maps: 

o step down when moving from LOD 0 to LOD 1 

o step right when moving from LOD 1 to LOD 2 

o step down for all of the other MIPs 

To account for the cache line alignment required, we define i and j as the width and height, respectively, 

of an alignment unit. This alignment unit is defined below. We then define lower-case wL and hL as the 

padded width and height of LOD “L” as follows: 

 

For separate stencil buffer, the width must be mutiplied by 2 and height divided by 2 as follows: 
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Equations to compute the upper left corner of each MIP level are then as follows: 

for MIPLAYOUT_RIGHT  maps:  

LOD0 = (0,0) 

LOD1 = (w0,0 ) 

LOD2 = (w0,h1) 

LOD3 = (w0,h1 + h2) 

LOD4 = (w0,h1 + h2 + h3) 

... 

 

for MIPLAYOUT_BELOW maps: 

LOD0 = (0,0) 

LOD1 = (0,h0) 

LOD2 = (w1,h0) 

LOD3 = (w1,h0 + h2) 

LOD4 = (w1,h0 + h2 + h3) 

... 

 

    

Minimum Pitch for MIPLAYOUT_RIGHT and Other Maps  

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place 

the map within. This is approximately equal to 1.5x the pitch required by the base map, with possible 

adjustments made for cache line alignment. For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, the 

minimum pitch required is equal to that required by the base (LOD 0) map. 

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for 

MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available, and since it is restricted to 

MIPLAYOUT_RIGHT maps, not much memory is wasted. It is up to the driver (hardware independent) 

whether to use this simple determination of pitch or a more complex one. 

Cartesian to Linear Address Conversion  

A set of variables are defined in addition to the i and j defined above. 

 b = bytes per texel of the native map format (0.5 for DXT1, FXT1, and 4-bit surface format, 2.0 for 

YUV 4:2:2, others aligned to surface format) 

 t = texel rows / memory row (4 for DXT1-5 and FXT1, 1 for all other formats) 

 p = pitch in bytes (equal to pitch in dwords * 4) 

 B = base address in bytes (address of texel 0,0 of the base map) 
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 x, y = cartesian coordinates from the above calculations in units of texels (assumed that x is always 

a multiple of i and y is a multiple of j) 

 A = linear address in bytes 

 

This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line 

alignment requirements). 

Compressed Mipmap Layout  

Mipmaps of textures using compressed (DXTn, FXT) texel formats are also stored in a monolithic format. 

The compressed mipmaps are stored in a similar fashion to uncompressed mipmaps, with each block of 

source (uncompressed) texels represented by a 1 or 2 QWord compressed block. The compressed blocks 

occupy the same logical positions as the texels they represent, where each row of compressed blocks 

represent a 4-high row of uncompressed texels. The format of the blocks is preserved, i.e., there is no 

“intermediate” format as required on some other devices. 

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps: 

 Mipmaps are not required to start on even rows, therefore each successive mip level is located on 

the texel row immediately below the last row of the previous mip level. Pad rows are neither 

required nor allowed. 

 The dimensions of the mip maps are first determined by applying the sizing algorithm presented in 

Non-Power-of-Two Mipmaps above. Then, if necessary, they are padded out to compression block 

boundaries. 

Surface Arrays  

Arrays of 1D and 2D surfaces can be treated as a single surface. This section covers the layout of these 

composite surfaces. 

For All Surfaces  

Both 1D and 2D surfaces can be specified as an array. An array surface is indicated by enabling the 

Surface Array field in SURFACE_STATE. 2D multisampled surfaces with Multisampled Surface Storage 

Format set to MSFMT_MSS also are stored like an array in memory. 

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This 

QPitch is multiplied by the array index to and added to the vertical component of the address to 

determine the vertical component of the address for that slice. Within the slice, the map is stored 

identically to a 2D surface. 

Since cube surfaces are stored identically to 2D arrays, QPitch is used to determine the spacing between 

faces of the cube. 
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For CMS/UMS multisampled surfaces, QPitch is used to determine the spacing between sample slices. 

For IMS multisampled surfaces, QPitch must account for the additional slice size due to sample storage. 

For surfaces defined with SURFACE_STATE, The QPitch field in this state defines the value of QPitch. 

Software must ensure that QPitch is sufficiently large to avoid overlap between array slices in the 

memory layout. If an auxiliary surface is defined, a separate QPitch must be set for that surface. 

For depth and stencil surfaces, QPitch is set in the corresponding state command. 

Multisampled Surfaces  

Starting with [SNB], multisampled render targets and sampling engine surfaces are supported. There are 

three types of multisampled surface layouts designated as follows: 

 IMS Interleaved Multisampled Surface 

 CMS Compressed Mulitsampled Surface 

 UMS Uncompressed Multisampled Surface 

These surface layouts are described in the following sections. 

Compressed Multisampled Surfaces  

Starting with [IVB], multisampled render targets can be compressed. If MCS Enable is enabled in 

SURFACE_STATE, hardware handles the compression using a software-invisible algorithm. However, 

performance optimizations in the multisample resolve kernel using the sampling engine are possible if 

the internal format of these surfaces is understood by software. This section documents the formats of 

the Multisample Control Surface (MCS) and Multisample Surface (MSS). 

The MCS surface consists of one element per pixel, with the element size being an 8-bit unsigned integer 

value for 4x multisampled surfaces and a 32-bit unsigned integer value for 8x multisampled surfaces. 

Each field within the element indicates which sample slice (SS) the sample resides on. 

For BDW, the 2x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

2x MCS [BDW] 

7:2 1 0 

reserved sample 1 SS sample 0 SS 

Each 1-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00 

indicates that both samples are stored in sample slice 0 (thus have the same color). This is the fully 

compressed case. An MCS value of 0x03 indicates that all samples in the pixel are in the clear state and 

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. 

For BDW, the 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 
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4x MCS [BDW] 

7:6 5:4 3:2 1:0 

sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00 

indicates that all four samples are stored in sample slice 0 (thus all have the same color). This is the fully 

compressed case. An MCS value of 0xff indicates that all samples in the pixel are in the clear state, and 

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. 

For BDW, extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 

samples, or 24 bits per pixel. The 24-bit MCS value per pixel is placed in a 32-bit footprint, with the upper 

8 bits unused as shown below. 

8x MCS [BDW] 

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0 

reserved sample 7 SS sample 6 SS sample 5 SS sample 4 SS sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Other than this, the 8x algorithm is the same as the 4x algorithm. The MCS value indicating clear state is 

0x00ffffff. 

Physical MSS Surface 

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching 

the pixel dimensions of the logical multisampled surface. The number of array slices in the physical 

surface is 2, 4, 8, or 16 times that of the logical surface (depending on the number of multisamples). 

Sample slices belonging to the same logical surface array slice are stored in adjacent physical slices. The 

sampling engine ld2dss message gives direct access to a specific sample slice. 

Uncompressed Multisampled Surfaces  

UMS surfaces similar to CMS, except that the MCS is disabled, and there is no MCS surface. UMS 

contains only an MSS surface, where each sample is stored on its sample slice (SS) of the same index. 
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Cube Surfaces  

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the 

origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel 

(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is 

supplied as a 3D “vector” texture coordinate. These cube maps can also be mipmapped. 

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are 

identified by their relationship to the 3D texture coordinate system. The subsections below describe the 

cube maps as described at the API as well as the memory layout dictated by the hardware. 

DirectX API Definition  

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the 

axes on the faces as they would be seen from the inside (at the origin). 

The origin of the U,V texel grid is at the top left corner of each face. 

This will be looking directly at face 4, the +z -face. Y is up by default. 

DirectX Cube Map Definition 
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Hardware Cube Map Layout  

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 2D 

Surfaces [BDW]for details). For cube surfaces, the depth (array instances) is equal to 6. The array index “q” 

corresponds to the face according to the following table: 

“q” coordinate face 

0 +x 

1 -x 

2 +y 

3 -y 

4 +z 

5 -z 

Restrictions  

 The cube map memory layout is the same whether or not the cube map is mip-mapped, and 

whether or not all six faces are “enabled”, though the memory backing disabled faces or non-

supplied levels can be used by software for other purposes. 

 The cube map faces all share the same Surface Format 

Cube Arrays  

Cube arrays are stored identically to 2D surface arrays. A group of 6 consecutive array elements makes 

up a single cube map. A cube array with N array elements is stored identically to a 2D array with 6N array 

elements. 
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3D Surfaces  

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure 

known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture 

maps. See Sampler for a description of how volume textures are used. 

Volume Texture Map 

 

The number of planes defined at each successive mip level is halved. Volumetric texture maps are stored 

as follows. All of the LOD=0 q-planes are stacked vertically, then below that, the LOD=1 q-planes are 

stacked two-wide, then the LOD=2 q-planes are stacked four-wide below that, and so on. 

The width, height, and depth of LOD “L” are as follows: 

WL = ((width » L) > 0 ? width » L:1) 

HL = ((height » L) > 0 ? height » L:1) 

This is the same as for a regular texture. For volume textures we add: 

DL = ((depth » L) > 0 ? depth » L:1) 

Cache-line aligned width and height are as follows, with i and j being a function of the map format as 

shown in Alignment Unit Size. 
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It is not necessary to cache-line align in the “depth” dimension (i.e. lowercase “d”). 

The following equations for LODL,q give the base address Cartesian coordinates for the map at LOD L and 

depth q. 

 

These values are then used as “base addresses” and the 2D MIP Map equations are used to compute the 

location within each LOD/q map. 

Minimum Pitch  

The minimum pitch required to store the 3D map may in some cases be greater than the minimum pitch 

required by the LOD=0 map. This is due to cache line alignment requirements that may impact some of 

the MIP levels requiring additional spacing in the horizontal direction. 

Surface Padding Requirements 

This section covers the requirements for padding around surfaces stored in memory, as there are cases 

where the device will overfetch beyond the bounds of the surface due to implementation of caches and 

other hardware structures. 

Alignment Unit Size  

This section documents the alignment parameters i and j to use, depending on the surface. 

Alignment Parameters 

Surface Defined By Surface Format Alignment Unit Width “i” Alignment Unit Height “j” 

3DSTATE_DEPTH_BUFFER D16_UNORM 8 4 

not D16_UNORM 4 4 

3DSTATE_STENCIL_BUFFER N/A 8 8 

SURFACE_STATE BC*, ETC*, EAC* 4 4 

FXT1 8 4 

all others set by 

Surface Horizontal Alignment 

set by 

Surface Vertical Alignment 
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Sampling Engine Surfaces 

The sampling engine accesses texels outside of the surface if they are contained in the same cache line 

as texels that are within the surface. These texels will not participate in any calculation performed by the 

sampling engine and will not affect the result of any sampling engine operation, however if these texels 

lie outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order to 

avoid these GTT errors, “padding” at the bottom and right side of a sampling engine surface is 

sometimes necessary. 

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All 

pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid 

errors. To determine the necessary padding on the bottom and right side of the surface, refer to the 

table in  Alignment Unit Size section for the i and j parameters for the surface format in use. The surface 

must then be extended to the next multiple of the alignment unit size in each dimension, and all texels 

contained in this extended surface must have valid GTT entries. 

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 and 

j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in texels, 

and must be converted to bytes based on the surface format being used to determine whether 

additional pages need to be defined. 

Buffer Padding Requirements 

 

 For compressed textures (BC*, FXT1, ETC*, and EAC* surface formats), padding at the bottom of the 

surface is to an even compressed row. This is equivalent to a multiple of 2q, where q is the compression 

block height in texels. Thus, for padding purposes, these surfaces behave as if j = 2q only for surface 

padding purposes. The value of j is still equal to q for mip level alignment and QPitch calculation. For 

cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must be 

ensured regardless of whether the surface is stored tiled or linear. This is due to the potential rotation of 

cache line orientation from memory to cache. 

For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required. These 

surfaces require an extra row plus 16 bytes of padding at the bottom in addition to the general padding 

requirements. 

For linear surfaces, additional padding of 64 bytes is required at the bottom of the surface. This is in 

addition to the padding required above. 

Programming Note 

Context: Sampling Engine Surfaces. 

For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array, non-MSAA, non-mip-mapped surfaces in linear 

memory, the only padding requirement is to the next aligned 64-byte boundary beyond the end of the surface. The 

rest of the padding requirements documented above do not apply to these surfaces. 
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Render Target and Media Surfaces 

The data port accesses data (pixels) outside of the surface if they are contained in the same cache 

request as pixels that are within the surface. These pixels will not be returned by the requesting message, 

however if these pixels lie outside of defined pages in the GTT, a GTT error will result when the cache 

request is processed. In order to avoid these GTT errors, “padding” at the bottom of the surface is 

sometimes necessary. 

Device2 PASID Capability Structures  

This part of the document describes the PCI-Express Extended Capability registers required on Processor 

Graphics (Device 2) device to enumerate Shared Virtual Memory (SVM) related capabilities. 

SVM feature support on Device-2 is exposed through three distinct capability structures: 

 Process Address Space ID (PASID) Extended Capability. PASID capability reports support for 

Process Address Space ID (PASID) on Device-2 compliant to PCI-Express PASID ECN. 

 Address Translation Services (ATS) Extended Capability. ATS capability reports support for 

Device-TLBs on Device-2, compliant to PCI-Express ATS specification. 

 Page Request Extended Capability. Page Request capability reports support for page-faults on 

Device-2, compliant to PCIExpress ATS 1.1 specification. 

The following sections describe each of these capability structures and their implementation details for 

Gen8 for both GT and Display. 

PASID Extended Capability  

 

Refer to PCI Express PASID ECN for more details. 

Following sections describe the registers in the PASID Extended Capability structure. 
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PASID Extended Capability Header  

Bits Access Default Field 

31:20 RO Xh Next Capability Offset (NCO): Offset to the next capability; this field provides the offset 

for ATS Capability described in later sections. 

19:16 RO 1h Version (V): Capability Version. 

15:0 RO 001Bh Capability ID (CAPID): PASID Extended Capability ID. 

PASID Capability Register  

Bits Access Default Field 

15:13 RO 0h Reserved. 

12:8 RO 14h Maximum PASID Width (MPW): Indicates the width of the PASID field supported by the 

Endpoint. The value n indicates support for PASID values 0 through 2n-1 (inclusive). The 

value 0 indicates support for a single PASID (0). The value 20 indicates support for all 

PASID values (20 bits). This field must be between 0 and 20 (inclusive). 

 Processor Graphics supports PASID width of 20-bits. 

7:3 RO 0h Reserved. 

2 RO 0h 

(Gen8) 
Privilege Mode Supported (PMS): If Set, the Endpoint supports operating in privileged 

and non-privileged modes, and requests-with-PASID can request privileged mode. 

If Clear, the Endpoint supports operating in non-privileged mode only, and will never 

request privileged mode in requests-with-PASID. 

On Processor Graphics, privileged and non-privileged mode are mapped to an attribute of 

the advanced context. Advanced contexts created for use by user-mode 

applications/drivers are considered non-privileged. Advanced context created for used by 

kernel mode software/drivers can be treated as privileged contexts. The privilege mode 

maps to the user/Supervisor (U/S) privilege checking in the first-level (IA-32e) paging. 

On Gen8, advanced contexts support only requests from usermode drivers/applications 

that do not require privileged mode accesses. Gen8 advanced contexts can only access 

usermode virtual addresses (i.e., virtual addresses that are translated through paging 

entries that do not have the U/S bit Set). 

1 RO 0h 

(Gen8) 

Execute Permission Supported (EPS): If Set, the Endpoint supports requests-with-PASID 

that requests Execute permission. If Clear, the Endpoint will never request Execute 

permission for requests-with-PASID. 

 On Processor Graphics, accesses by advanced contexts that fetch and execute graphics 

instructions are normally treated as requests that require execute permission. These maps 

to requests from GT Instruction Cache (IC) for advanced contexts. 

 On Gen8, advanced contexts accesses (including translations by GT instruction cache (IC)) 

are not checked for execute permission. All Gen8 GT advanced context accesses request 

either read, or read-and-write, permission only. 

0 RO 0h Reserved. 
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PASID Control Register  

Bits Access Default Field 

15:3 RO 0h Reserved. 

2 RO 

(Gen8) 

0b Privilege Mode Enable (PME): When Set, the endpoint is permitted to request privileged 

mode in requests-with-PASID. If Clear, the Endpoint is not permitted to do so. Behavior is 

undefined if this bit changes value when ATS Enable field in ATS Capability is Set. If 

Privileged Mode Supported field in PASID Capability register is Clear, this field is treated as 

Reserved (0). 

 Processor graphics does not use this field. Software is expected to Set this field before 

configuring extended-context-entry for Device-2 with Supervisor Request Enable field Set. 

Gen8 implements this field as read-only. 

1 RO 

(Gen8) 

0b Execute Permission Enable (EPE): If Set, the Endpoint is permitted to request execute 

permission in requests-with-PASID. If Clear, the Endpoint is not permitted to do so. 

Behavior is undefined if this bit changes value when ATS Enable field in ATS Capability is 

Set. If Execute Permission Supported field in PASID Capability register is Clear, this field is 

treated as Reserved (0). 

 Processor graphics does not use this field. Software is expected to Set this field before 

configuring extended-context-entry for Device-2 with Execute Request Enable field Set. 

Gen8 implements this field as read-only. 

0 R/W 0b PASID Enable (PE): If Set, the Endpoint is permitted to generate requests-with-PASID. If 

Clear, the Endpoint is not permitted to do so. Behavior is undefined if this bit changes value 

when ATS Enable field in ATS Capability is Set. 

 Processor Graphics does not use this field. Instead, all accesses from advanced contexts are 

treated as requested-with-PASID, subject to PASID-Enable field in the extended context-

entry. Software is expected to Set this field before configuring extended-context entry for 

Device-2 with PASID Enable field Set. However, for compatibility reasons, this field is 

implemented as RW. 
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ATS Extended Capability  

 

The following sections describe the registers in the ATS Extended Capability structure. 

ATS Extended Capability Header  

Bits Access Default Field 

31:20 RO Xh Next Capability Offset (NCO). Offset to the next capability; Value ‘X’ in this field provides 

the offset for ATS Capability described in later sections. 

19:16 RO 1h Version (V). Capability Version. 

15:0 RO 000Fh Capability ID (CAPID). PASID Extended Capability ID. 

ATS Capability Register  

Bits Access Default Field 

15:6 RO 0h Reserved. 

5 RO 1b 
Page Aligned Request (PAR). If Set, indicates the Untranslated Address is always aligned to 

a 4096 byte boundary. 

Processor graphics reports value of 1b. 

4:0 RO 0h Invalidate Queue Depth (IQD). The number of Invalidate Requests that the endpoint can 

accept before putting backpressure on the upstream connection. If 0h, the function can 

accept 32 Invalidate Requests. 

 Processor Graphics does not use this field, and reports a value of 0h. 
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ATS Control Register  

Bits Access Default Field 

15 R/W 0h ATS Enable (AE). When Set, the function is enabled to cache translations. 

Note: Processor graphics ignores this field, as GT uses GTLB as IOTLB, and only pretends to 

software that it has a Device-TLB. Software is expected to Set this field before configuring 

extended-context-entry for Device-2 with Page Request Enable field Set. For compatibility, 

this field is implemented as RW as software can read it to determine ATS enable status. 

14:5 RO 0h Reserved. 

4:0 RW 0h Smallest Translation Unit (STU). This value indicates to the Endpoint the minimum number 

of 4096-byte blocks that is indicated in a Translation Completion or Invalidate Request. This 

is a power of 2 multiple and the number of blocks is 2STU. A value of 0h indicates one block 

and a value of 1Fh indicates 231 blocks. 

Note: Processor graphics does not use this field, and reports a value of 0h indicating it uses 

4 KB as smallest translation unit (smallest page-size). 

Page Request Extended Capability  

 

The following register descriptions define the requirement. 

Page Request Extended Capability Header  

Bits Access Default Field 

31:20 RO 0h Next Capability Offset (NCO): Offset to the next capability; Value ‘X’ in this field provides 

the offset for ATS Capability described in later sections 

19:16 RO 1h Version (V): Capability Version 

15:0 RO 0013h Capability ID (CAPID): PASID Extended Capability ID. 
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Page Request Control Register  

Bits Access Default Field 

15:2 RO 0h 
Reserved. 

1 RO 0 Reset (RST): When the Enable field is clear, or is being cleared in the same register update 

that sets this field, writing a 1b to this field, clears the associated implementation dependent 

page request credit counter and pending request state for the associated Page Request 

Interface. No action is initiated if this field is written to 0b or if this field is written with any 

value while the PRE field is Set. Read of this field return 0b. 

 Processor graphics does not use this field, and implements it as read-only (0). 

0 RW 0h Page Request Enable (PRE): When Set, indicates that the page request interface on the 

endpoint is allowed to make page requests. If both this field and the Stopped field in Page 

Request Status register are Clear, then the page request interface will not issue new page 

requests, but has outstanding page requests for which page responses is not yet received. 

When this field transitions from 0 to 1, all the status fields in the Page-Request Status 

register are cleared. Enabling a page request interface that has not successfully stopped has 

indeterminate results. 

 Processor graphics ignores this field, as GT uses GTLB as IOTLB, and only pretends to 

software that it has a Device-TLB. For compatibility, this field is implemented as RW as 

software can read it to determine Page-Request enable status. Software is expected to Set 

this field before configuring extended-context-entry for Device-2 with Page Request Enable 

field Set. Software is expected to respond to all page requests in the page-request queue 

before Clearing this field. 
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Page Request Status Register  

Bits Access Default Field 

15:9 RO 0h Reserved. 

8 RO 0 Stopped (S): When this field is Set, the associated page request interface has stopped 

issuing additional page requests and that all previously issued Page Requests have 

completed. When this field is Clear the associate page request interface either has not 

stopped or has stopped issuing new Page Requests but has outstanding Page Requests. This 

field is only meaningful if Enable is Clear. If Enable is Set, this field is undefined. When the 

Enable field is Cleared, after having been previously Set, the interface transitions to the 

stopping state and Clears this field. After all page requests currently outstanding at the 

function have received responses, this field is Set and the interface enters the disabled state. 

If there were no outstanding page requests, this field may be Set immediately when Enable 

is Cleared. Resetting the interface causes an immediate transition to the disabled state. 

While in the stopping state, receipt of a Response Failure message will result in the 

immediate transition to the disabled state (Setting this field). 

 Processor Graphics has no direct use of this field. For compatibility reasons, this field is Set 

when Page-Request Enable (PRE) field in the Page-request Control register transitions from 

1 to 0. When PRE transtions from 0 to 1, this field is Cleared. 

7:2 RO 0h Reserved. 

1 RW1C 0h 
Unexpected Page Request Group Index (UPGRI): When Set, indicates the function 

received a PRG response message containing a PRG index that has no matching request. A 

response failure. This field is Set by the Function and cleared when 1b is written to this field. 

Processor graphics Sets this field when it receives a page_grp_resp_dsc with PRG Index that 

does not match PRG index in any outstanding page_grp_req_dsc. Such a page_grp_resp_dsc is 

ignored. When Page-Request Enable (PRE) field in the Pagerequest Control register 

transitions from 0 to 1, this field is Cleared. 

0 RW1C 0h 
Response Failure (RF): When Set, indicates the function received a PRG response message 

indicating a response failure. The function expects no further response from the host (any 

received are ignored). This field is Set by the Function and cleared when 1b is written to this 

field. 

Processor graphics Sets this field when it receives a page_grp_resp_dsc or 

page_stream_resp_dsc with Response Code of Response Failure (1111b). The advanced 

context corresponding to the PASID in such response is terminated with error. When Page-

Request Enable (PRE) field in the Page request Control register transitions from 0 to 1, this 

field is Cleared. 
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Outstanding Page Request Capacity  

Bits Access Default Field 

31:0 RO 8000h 
Outstanding Page Request Capacity (OPRC): This register contains the number of 

outstanding page request messages the associated Page Request Interface physically 

supports. This is the upper limit on the number of pages that can be usefully allocated to 

the Page Request Interface. 

Processor Graphics device does not use this field. 

Outstanding Page Request Allocation  

Bits Access Default Field 

31:0 RO 0h Outstanding Page Request Allocation (OPRC). This register contains the number of 

outstanding page request messages that the associated Page Request Interface is allowed to 

issue (have outstanding at any given instance). 

Note: Processor Graphics device does not use this field. Software is required to program this 

field with the value 2(X+8), where X is the value in Queue Size (QS) field in the Page Request 

Queue Address register. For compatibility reasons, this field is implemented as RW. 

State Arbiter (SARB)  

Most primary functions of the SARB stay the same in Gen8 as compared to Gen7.5. 

State Invalidation Flow  

State invalidation flow is very much simplified for SARB unit. There is no propagation of state invalidation 

thru SARB unit, just the same signal that is sent to L3 (via command streamer) also need to be 

intercepted in SARB. It is required for SARB to drop all prefetch process upon the state invalidation and 

resume normally. 
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State Request Clients  

Updated list for Gen8: 

Unit Name Request Type Base Address 

 dc0/dc1/dc2 
Surface(Btp) Surface(Btp):Surface State Base Address 

 svsm0/svsm1/svsm2 
Sampler 

 Surface(btp) 

Sampler: Dynamic State Base Address 

 Surface(btp): Surface State Base Address 

 tdl0/tdl1/tdl2 
Demand(Btp) 

 Sampler prefetch 
Demand: Surface State Base Addr 

Sampler prefetch: Dynamic State Base Addr 

 svl CC 

Depth/Stencil 

Generic Prefetch 

CC = Dynamic State Base Address 

Depth/Stencil = Dynamic State Base Address 

Generic Prefetch =  NONE 

SFFE 
Viewport 

 SCISSOR 

Viewport : Dynamic State Base Address 

 SCISSOR : Dynamic State Base Address 

CL 
Viewport Viewport: Dynamic State Base Address 

 rcpbe 
Surface(Btp) 

 CC 

 Blend 

Surface = Surface State Base Address 

 CC =  Dynamic state base address 

 Blend = Dynamic state base address 

 rcpfe Depth/Stencil 

View Port 

Surface(Btp) 

Depth/Stencil: Dynamic state base address 

View Port: Dynamic state base address 

Surface:Surface State Base Address 

 wmfe 
Viewport Viewport: Dynamic State Base Address 

 dapr0/dapr1/dapr2 
Surface(Btp) 

 CC 

 Blend 

Surface = Surface State Base Address 

CC: Dynamic state base address 

Blend: Dynamic state base address 

 rcc 
Surface(Btp) Surface = Surface State Base Address 

 


