

Intel® Open Source HD Graphics and

Intel Iris™ Graphics

Programmer's Reference Manual

For the 2014-2015 Intel Core™ Processors, Celeron™ Processors

and Pentium™ Processors based on the "Broadwell" Platform

Volume 2a: Command Reference: Instructions (Command Opcodes)

October 2015, Revision 1.1

 Command Reference: Instructions

ii Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 iii

Table of Contents

3DPRIMITIVE ... 1

3DSTATE_AA_LINE_PARAMETERS .. 6

3DSTATE_BINDING_TABLE_EDIT_DS .. 8

3DSTATE_BINDING_TABLE_EDIT_GS .. 10

3DSTATE_BINDING_TABLE_EDIT_HS .. 12

3DSTATE_BINDING_TABLE_EDIT_PS .. 14

3DSTATE_BINDING_TABLE_EDIT_VS .. 16

3DSTATE_BINDING_TABLE_POINTERS_DS .. 18

3DSTATE_BINDING_TABLE_POINTERS_GS .. 20

3DSTATE_BINDING_TABLE_POINTERS_HS .. 22

3DSTATE_BINDING_TABLE_POINTERS_PS .. 24

3DSTATE_BINDING_TABLE_POINTERS_VS .. 26

3DSTATE_BINDING_TABLE_POOL_ALLOC ... 28

3DSTATE_BLEND_STATE_POINTERS... 30

3DSTATE_CC_STATE_POINTERS .. 32

3DSTATE_CHROMA_KEY .. 34

3DSTATE_CLEAR_PARAMS .. 36

3DSTATE_CLIP ... 38

3DSTATE_CONSTANT_DS .. 45

3DSTATE_CONSTANT_GS .. 47

3DSTATE_CONSTANT_HS .. 49

3DSTATE_CONSTANT_PS ... 51

3DSTATE_CONSTANT_VS ... 53

3DSTATE_DEPTH_BUFFER .. 55

3DSTATE_DRAWING_RECTANGLE .. 62

3DSTATE_DS .. 65

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC .. 74

3DSTATE_DX9_CONSTANTB_PS ... 76

3DSTATE_DX9_CONSTANTB_VS ... 78

3DSTATE_DX9_CONSTANTF_PS .. 80

3DSTATE_DX9_CONSTANTF_VS .. 82

3DSTATE_DX9_CONSTANTI_PS ... 84

 Command Reference: Instructions

iv Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTI_VS .. 86

3DSTATE_DX9_GENERATE_ACTIVE_PS ... 88

3DSTATE_DX9_GENERATE_ACTIVE_VS .. 90

3DSTATE_DX9_LOCAL_VALID_PS .. 92

3DSTATE_DX9_LOCAL_VALID_VS .. 94

3DSTATE_GATHER_CONSTANT_DS .. 96

3DSTATE_GATHER_CONSTANT_GS .. 99

3DSTATE_GATHER_CONSTANT_HS ... 102

3DSTATE_GATHER_CONSTANT_PS ... 105

3DSTATE_GATHER_CONSTANT_VS ... 108

3DSTATE_GATHER_POOL_ALLOC .. 111

3DSTATE_GS ... 113

3DSTATE_HIER_DEPTH_BUFFER ... 125

3DSTATE_HS ... 128

3DSTATE_INDEX_BUFFER .. 136

3DSTATE_LINE_STIPPLE .. 138

3DSTATE_MONOFILTER_SIZE ... 140

3DSTATE_MULTISAMPLE .. 142

3DSTATE_POLY_STIPPLE_OFFSET .. 145

3DSTATE_POLY_STIPPLE_PATTERN ... 147

3DSTATE_PS_BLEND .. 148

3DSTATE_PS .. 151

3DSTATE_PS_EXTRA .. 160

3DSTATE_PUSH_CONSTANT_ALLOC_DS .. 164

3DSTATE_PUSH_CONSTANT_ALLOC_GS .. 166

3DSTATE_PUSH_CONSTANT_ALLOC_HS .. 168

3DSTATE_PUSH_CONSTANT_ALLOC_PS ... 170

3DSTATE_PUSH_CONSTANT_ALLOC_VS ... 172

3DSTATE_RASTER .. 174

3DSTATE_SAMPLE_MASK ... 180

3DSTATE_SAMPLE_PATTERN ... 182

3DSTATE_SAMPLE_PATTERN ... 189

3DSTATE_SAMPLER_PALETTE_LOAD0 .. 196

3DSTATE_SAMPLER_PALETTE_LOAD1 .. 197

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 v

3DSTATE_SAMPLER_STATE_POINTERS_DS .. 199

3DSTATE_SAMPLER_STATE_POINTERS_GS .. 200

3DSTATE_SAMPLER_STATE_POINTERS_HS .. 201

3DSTATE_SAMPLER_STATE_POINTERS_PS .. 202

3DSTATE_SAMPLER_STATE_POINTERS_VS .. 203

3DSTATE_SBE .. 204

3DSTATE_SBE_SWIZ ... 208

3DSTATE_SCISSOR_STATE_POINTERS .. 210

3DSTATE_SF .. 211

3DSTATE_SO_BUFFER .. 216

3DSTATE_SO_DECL_LIST .. 219

3DSTATE_STENCIL_BUFFER .. 222

3DSTATE_STREAMOUT ... 225

3DSTATE_TE .. 231

3DSTATE_URB_DS .. 235

3DSTATE_URB_GS .. 237

3DSTATE_URB_HS .. 239

3DSTATE_URB_VS .. 241

3DSTATE_VERTEX_BUFFERS ... 243

3DSTATE_VERTEX_ELEMENTS .. 245

3DSTATE_VF .. 247

3DSTATE_VF_INSTANCING ... 249

3DSTATE_VF_SGVS ... 251

3DSTATE_VF_STATISTICS .. 254

3DSTATE_VF_TOPOLOGY .. 255

3DSTATE_VIEWPORT_STATE_POINTERS_CC .. 256

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP ... 257

3DSTATE_VS .. 258

3DSTATE_WM_CHROMAKEY .. 268

3DSTATE_WM_DEPTH_STENCIL ... 269

3DSTATE_WM ... 274

3DSTATE_WM_HZ_OP ... 281

A64 Byte Scattered Write MSD.. 287

A64 Dword Scattered Read MSD... 289

 Command Reference: Instructions

vi Doc Ref # IHD-OS-BDW-Vol 2a-10.15

A64 Dword Scattered Write MSD .. 291

A64 Dword SIMD4x2 Untyped Atomic Integer Binary with Return Data Operation MSD293

A64 Dword SIMD4x2 Untyped Atomic Integer Binary Write Only Operation MSD 295

A64 Dword SIMD4x2 Untyped Atomic Integer Trinary with Return Data Operation MSD297

A64 Dword SIMD4x2 Untyped Atomic Integer Trinary Write Only Operation MSD 299

A64 Dword SIMD4x2 Untyped Atomic Integer Unary with Return Data Operation MSD301

A64 Dword SIMD4x2 Untyped Atomic Integer Unary Write Only Operation MSD 303

A64 Dword Untyped Atomic Integer Binary with Return Data Operation MSD 305

A64 Dword Untyped Atomic Integer Binary Write Only Operation MSD......................... 307

A64 Dword Untyped Atomic Integer Trinary with Return Data Operation MSD 309

A64 Dword Untyped Atomic Integer Trinary Write Only Operation MSD 311

A64 Dword Untyped Atomic Integer Unary with Return Data Operation MSD 313

A64 Dword Untyped Atomic Integer Unary Write Only Operation MSD 315

A64 Hword Block Read MSD .. 317

A64 Hword Block Write MSD ... 319

A64 Oword Block Read MSD .. 321

A64 Oword Block Write MSD ... 323

A64 Oword Dual Block Read MSD .. 325

A64 Oword Dual Block Write MSD ... 327

A64 Oword Unaligned Block Read MSD .. 329

A64 Qword Scattered Write MSD ... 331

A64 Qword SIMD4x2 Untyped Atomic Integer Binary with Return Data Operation MSD333

A64 Qword SIMD4x2 Untyped Atomic Integer Binary Write Only Operation MSD 335

A64 Qword SIMD4x2 Untyped Atomic Integer Trinary with Return Data Operation MSD337

A64 Qword SIMD4x2 Untyped Atomic Integer Trinary Write Only Operation MSD 339

A64 Qword SIMD4x2 Untyped Atomic Integer Unary with Return Data Operation MSD341

A64 Qword SIMD4x2 Untyped Atomic Integer Unary Write Only Operation MSD 343

A64 Qword Untyped Atomic Integer Binary with Return Data Operation MSD 345

A64 Qword Untyped Atomic Integer Binary Write Only Operation MSD 347

A64 Qword Untyped Atomic Integer Trinary with Return Data Operation MSD 349

A64 Qword Untyped Atomic Integer Trinary Write Only Operation MSD 351

A64 Qword Untyped Atomic Integer Unary with Return Data Operation MSD 353

A64 Qword Untyped Atomic Integer Unary Write Only Operation MSD 355

A64 Untyped Surface Read MSD ... 357

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 vii

A64 Untyped Surface Write MSD .. 358

Addition .. 359

Addition with Carry ... 361

Arithmetic Shift Right ... 362

Average ... 364

Bit Field Extract .. 365

Bit Field Insert 1 ... 368

Bit Field Insert 2 ... 370

Bit Field Reverse ... 373

Branch Converging .. 374

Branch Diverging ... 376

Break .. 378

Byte Scattered Read MSD ... 380

Byte Scattered Write MSD .. 382

Call.. 384

Call Absolute ... 386

Compare .. 388

Compare NaN ... 390

Conditional Select .. 392

Conditional Send Message ... 395

Constant Cache Oword Block Read MSD ... 397

Constant Cache Oword Unaligned Block Read MSD .. 399

Continue .. 400

Count Bits Set ... 402

Dot Product 2 ... 403

Dot Product 3 ... 405

Dot Product 4 ... 407

Dot Product Homogeneous ... 409

Dword Atomic Counter Binary with Return Data Operation MSD 411

Dword Atomic Counter Binary Write Only Operation MSD .. 412

Dword Atomic Counter Unary with Return Data Operation MSD 413

Dword Atomic Counter Unary Write Only Operation MSD .. 414

Dword Scattered Write MSD .. 415

Dword SIMD4x2 Atomic Counter Binary with Return Data Operation MSD 417

 Command Reference: Instructions

viii Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Atomic Counter Binary Write Only Operation MSD 418

Dword SIMD4x2 Atomic Counter Unary with Return Data Operation MSD 419

Dword SIMD4x2 Atomic Counter Unary Write Only Operation MSD 420

Dword SIMD4x2 Typed Atomic Integer Binary with Return Data Operation MSD......... 421

Dword SIMD4x2 Typed Atomic Integer Binary Write Only Operation MSD 422

Dword SIMD4x2 Typed Atomic Integer Trinary with Return Data Operation MSD 423

Dword SIMD4x2 Typed Atomic Integer Trinary Write Only Operation MSD 424

Dword SIMD4x2 Typed Atomic Integer Unary with Return Data Operation MSD 425

Dword SIMD4x2 Typed Atomic Integer Unary Write Only Operation MSD 426

Dword SIMD4x2 Untyped Atomic Integer Binary with Return Data Operation MSD 427

Dword SIMD4x2 Untyped Atomic Integer Trinary with Return Data Operation MSD ... 428

Dword SIMD4x2 Untyped Atomic Integer Trinary Write Only Operation MSD 429

Dword SIMD4x2 Untyped Atomic Integer Unary with Return Data Operation MSD 430

Dword SIMD4x2 Untyped Atomic Integer Unary Write Only Operation MSD 431

Dword Typed Atomic Integer Binary with Return Data Operation MSD 432

Dword Typed Atomic Integer Binary Write Only Operation MSD 433

Dword Typed Atomic Integer Trinary with Return Data Operation MSD 434

Dword Typed Atomic Integer Trinary Write Only Operation MSD 435

Dword Typed Atomic Integer Unary with Return Data Operation MSD........................... 436

Dword Typed Atomic Integer Unary Write Only Operation MSD 437

Else ... 438

End If .. 440

Extended Math Function .. 442

Find First Bit from LSB Side .. 445

Find First Bit from MSB Side .. 446

Fraction .. 448

Goto ... 449

GPGPU_CSR_BASE_ADDRESS ... 451

GPGPU_WALKER .. 453

Halt ... 457

HI8DS Render Target Write MSD .. 459

If ... 462

Illegal ... 464

Integer Subtraction with Borrow .. 465

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 ix

Join ... 466

Jump Indexed ... 468

Leading Zero Detection .. 470

Line ... 471

Linear Interpolation ... 473

LO8DS Render Target Write MSD ... 476

Logic And .. 479

Logic Not ... 480

Logic Or ... 481

Logic Xor ... 483

MEDIA_CURBE_LOAD .. 485

MEDIA_INTERFACE_DESCRIPTOR_LOAD .. 487

MEDIA_OBJECT ... 489

MEDIA_OBJECT_GRPID .. 494

MEDIA_OBJECT_PRT .. 498

MEDIA_OBJECT_WALKER .. 500

MEDIA_STATE_FLUSH .. 507

MEDIA_VFE_STATE ... 509

Media Block Read MSD ... 517

Media Block Write MSD .. 518

Media Transpose Read MSD .. 519

Memory Fence MSD .. 520

MFC_AVC_PAK_OBJECT ... 522

MFC_MPEG2_PAK_OBJECT.. 524

MFC_MPEG2_SLICEGROUP_STATE ... 526

MFD_AVC_BSD_OBJECT .. 534

MFD_AVC_DPB_STATE ... 536

MFD_AVC_PICID_STATE .. 539

MFD_AVC_SLICEADDR ... 541

MFD_IT_OBJECT.. 543

MFD_JPEG_BSD_OBJECT ... 546

MFD_MPEG2_BSD_OBJECT ... 549

MFD_VC1_BSD_OBJECT ... 551

MFD_VC1_LONG_PIC_STATE ... 554

 Command Reference: Instructions

x Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_SHORT_PIC_STATE ... 569

MFD_VP8_BSD_OBJECT ... 579

MFX_AVC_DIRECTMODE_STATE .. 585

MFX_AVC_IMG_STATE ... 592

MFX_AVC_REF_IDX_STATE .. 612

MFX_AVC_SLICE_STATE ... 615

MFX_AVC_WEIGHTOFFSET_STATE .. 628

MFX_BSP_BUF_BASE_ADDR_STATE ... 630

MFX_DBK_OBJECT .. 638

MFX_FQM_STATE ... 648

MFX_IND_OBJ_BASE_ADDR_STATE ... 650

MFX_JPEG_HUFF_TABLE_STATE ... 665

MFX_JPEG_PIC_STATE ... 667

MFX_MPEG2_PIC_STATE ... 672

MFX_PAK_INSERT_OBJECT ... 687

MFX_PIPE_BUF_ADDR_STATE ... 691

MFX_PIPE_MODE_SELECT ... 713

MFX_QM_STATE ... 720

MFX_STATE_POINTER.. 722

MFX_STITCH_OBJECT .. 724

MFX_SURFACE_STATE ... 726

MFX_VC1_DIRECTMODE_STATE ... 734

MFX_VC1_PRED_PIPE_STATE .. 739

MFX_VP8_PAK_OBJECT ... 745

MFX_VP8_PIC_STATE ... 747

MFX_WAIT... 776

MI_ARB_CHECK .. 777

MI_ARB_CHECK .. 778

MI_ARB_CHECK .. 779

MI_ARB_CHECK .. 780

MI_ARB_ON_OFF .. 781

MI_ATOMIC ... 783

MI_BATCH_BUFFER_END ... 789

MI_BATCH_BUFFER_END ... 790

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 xi

MI_BATCH_BUFFER_END ... 791

MI_BATCH_BUFFER_END ... 792

MI_BATCH_BUFFER_START ... 793

MI_BATCH_BUFFER_START ... 796

MI_BATCH_BUFFER_START ... 799

MI_BATCH_BUFFER_START ... 801

MI_CLFLUSH .. 804

MI_CONDITIONAL_BATCH_BUFFER_END ... 806

MI_CONDITIONAL_BATCH_BUFFER_END ... 808

MI_CONDITIONAL_BATCH_BUFFER_END ... 810

MI_CONDITIONAL_BATCH_BUFFER_END ... 812

MI_COPY_MEM_MEM .. 814

MI_COPY_MEM_MEM .. 817

MI_COPY_MEM_MEM .. 819

MI_COPY_MEM_MEM .. 822

MI_DISPLAY_FLIP ... 825

MI_FLUSH_DW .. 830

MI_FLUSH_DW .. 834

MI_FLUSH_DW .. 838

MI_LOAD_REGISTER_IMM ... 841

MI_LOAD_REGISTER_IMM ... 843

MI_LOAD_REGISTER_IMM ... 845

MI_LOAD_REGISTER_IMM ... 847

MI_LOAD_REGISTER_MEM .. 849

MI_LOAD_REGISTER_REG .. 852

MI_LOAD_SCAN_LINES_EXCL ... 854

MI_LOAD_SCAN_LINES_EXCL ... 856

MI_LOAD_SCAN_LINES_INCL .. 858

MI_LOAD_SCAN_LINES_INCL .. 860

MI_LOAD_URB_MEM ... 862

MI_MATH .. 864

MI_MATH .. 865

MI_MATH .. 866

MI_MATH .. 867

 Command Reference: Instructions

xii Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_NOOP ... 868

MI_NOOP ... 869

MI_NOOP ... 870

MI_NOOP ... 871

MI_PREDICATE .. 872

MI_REPORT_HEAD ... 874

MI_REPORT_HEAD ... 875

MI_REPORT_HEAD ... 876

MI_REPORT_HEAD ... 877

MI_REPORT_PERF_COUNT .. 878

MI_RS_CONTEXT .. 880

MI_RS_CONTROL .. 881

MI_RS_STORE_DATA_IMM .. 883

MI_SEMAPHORE_SIGNAL ... 885

MI_SEMAPHORE_WAIT ... 888

MI_SEMAPHORE_WAIT ... 892

MI_SEMAPHORE_WAIT ... 895

MI_SEMAPHORE_WAIT ... 899

MI_SEMAPHORE_WAIT ... 902

MI_SET_CONTEXT ... 905

MI_SET_PREDICATE .. 908

MI_STORE_DATA_IMM .. 910

MI_STORE_DATA_IMM .. 912

MI_STORE_DATA_IMM .. 915

MI_STORE_DATA_IMM .. 918

MI_STORE_DATA_INDEX ... 921

MI_STORE_DATA_INDEX ... 923

MI_STORE_DATA_INDEX ... 925

MI_STORE_DATA_INDEX ... 927

MI_STORE_REGISTER_MEM .. 929

MI_STORE_URB_MEM .. 932

MI_SUSPEND_FLUSH ... 934

MI_SUSPEND_FLUSH ... 935

MI_SUSPEND_FLUSH ... 936

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 xiii

MI_SUSPEND_FLUSH ... 937

MI_TOPOLOGY_FILTER .. 938

MI_UPDATE_GTT .. 939

MI_UPDATE_GTT .. 940

MI_UPDATE_GTT .. 942

MI_UPDATE_GTT .. 943

MI_URB_ATOMIC_ALLOC .. 945

MI_URB_CLEAR ... 946

MI_USER_INTERRUPT .. 948

MI_USER_INTERRUPT .. 949

MI_USER_INTERRUPT .. 950

MI_USER_INTERRUPT .. 951

MI_WAIT_FOR_EVENT .. 952

MI_WAIT_FOR_EVENT .. 956

Move .. 962

Move Indexed ... 964

Multiply ... 966

Multiply Accumulate ... 968

Multiply Accumulate High ... 969

Multiply Add ... 971

Multiply Add for Macro .. 974

No Operation .. 977

Oword Block Read MSD .. 978

Oword Block Write MSD ... 980

Oword Dual Block Write MSD ... 981

Oword Unaligned Block Read MSD .. 982

PIPE_CONTROL ... 983

PIPELINE_SELECT .. 992

Plane .. 994

REP16 Render Target Write MSD .. 996

Return .. 999

Round Down ... 1001

Round to Nearest or Even .. 1002

Round to Zero .. 1003

 Command Reference: Instructions

xiv Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Round Up .. 1004

Scattered Move .. 1005

Scratch Block Read MSD ... 1007

Scratch Block Write MSD .. 1009

Select ... 1011

Send Message ... 1013

Shift Left .. 1016

Shift Right ... 1018

SIMD8 Render Target Write MSD ... 1019

SIMD16 Render Target Write MSD ... 1022

STATE_BASE_ADDRESS ... 1025

STATE_PREFETCH ... 1033

STATE_SIP .. 1035

Sum of Absolute Difference 2 .. 1036

Sum of Absolute Difference Accumulate 2 .. 1037

SWTESS_BASE_ADDRESS .. 1039

Typed Surface Read MSD ... 1041

Typed Surface Write MSD .. 1042

Untyped Surface Write MSD .. 1043

URB Hword Dual Block Read MSD .. 1044

URB Hword Dual Block Write MSD ... 1046

URB Oword Block Write MSD .. 1048

URB Oword Dual Block Read MSD .. 1050

URB Oword Dual Block Write MSD ... 1052

VEBOX_STATE ... 1054

VEBOX_SURFACE_STATE ... 1060

Wait Notification ... 1067

While .. 1069

XY_COLOR_BLT ... 1071

XY_FULL_BLT ... 1074

XY_FULL_IMMEDIATE_PATTERN_BLT .. 1078

XY_FULL_MONO_PATTERN_BLT ... 1081

XY_FULL_MONO_PATTERN_MONO_SRC_BLT .. 1085

XY_FULL_MONO_SRC_BLT... 1089

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 xv

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT ... 1093

XY_MONO_PAT_BLT .. 1096

XY_MONO_PAT_FIXED_BLT .. 1099

XY_MONO_SRC_COPY_BLT ... 1103

XY_MONO_SRC_COPY_IMMEDIATE_BLT .. 1106

XY_PAT_BLT .. 1109

XY_PAT_BLT_IMMEDIATE ... 1112

XY_PAT_CHROMA_BLT .. 1115

XY_PAT_CHROMA_BLT_IMMEDIATE ... 1118

XY_PIXEL_BLT .. 1121

XY_SCANLINES_BLT ... 1122

XY_SETUP_BLT .. 1123

XY_SETUP_CLIP_BLT ... 1126

XY_SETUP_MONO_PATTERN_SL_BLT .. 1127

XY_SRC_COPY_BLT ... 1130

XY_SRC_COPY_CHROMA_BLT ... 1133

XY_TEXT_BLT ... 1137

XY_TEXT_IMMEDIATE_BLT .. 1139

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1

3DPRIMITIVE

3DPRIMITIVE
Project: BDW

Source: RenderCS

Length Bias: 2

The 3DPRIMITIVE command is used to submit 3D primitives to be processed by the 3D pipeline. Typically the

processing results in rendering pixel data into the render targets, but this is not required.

The parameters passed in this command are forwarded to the Vertex Fetch function. The Vertex Fetch function

will use this information to generate vertex data structures and store them in the URB. These vertices are then

passed down the 3D pipeline.

Programming Notes

If the threads spawned by this command are required to observe memory writes performed by threads

spawned from a previous command, software must precede this command with a command that performs a

(preferably pipelined) memory flush (e.g., 3D_PIPECONTROL).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 3h 3DPRIMITIVE

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0h 3DPRIMITIVE

Format: OpCode

15 Reserved

Project: BDW

14 Reserved

Format: MBZ

13 Reserved

Format: MBZ

12 Reserved

Project: BDW

11 Reserved

Project: BDW

 Command Reference: Instructions

2 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DPRIMITIVE
10 Indirect Parameter Enable

Format: Enable

If set, the values in DW 2-5 are ignored and replaced by the current values of the corresponding

3DPRIM_xxx MMIO registers:

 3DPRIM_VERTEX_COUNT (instead of DW2: VertexCountPerInstance)

 3DPRIM_START_VERTEX (instead of DW3: StartVertexLocation)

 3DPRIM_INSTANCE_COUNT (instead of DW4: InstanceCount)

 3DPRIM_START_INSTANCE (instead of DW5: StartInstanceLocation)

 3DPRIM_BASE_VERTEX (instead of DW6: BaseVertexLocation)

Indirect Parameter Enable and End Offset Enable shall not be ENABLED at the same time, or

behavior is UNDEFINED.

9 UAV Coherency Required

Project: BDW

Format: U1

 SW will be required to set this bit if there is the possibility of sharing a UAV from a previous

3DPRIMITVE command. If set, this command may cause a flush due to UAV coherency

requirements. If none of the shaders have UAV access enabled, then this bit is ignored.

8 Predicate Enable

Format: Enable

 If set, this command is executed (or not) depending on the current value of the MI Predicate

internal state bit. This command is ignored only if PredicateEnable is set and the Predicate state

bit is 0.

7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Project: BDW

Format: =n Total Length - 2

1 31:10 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 3

3DPRIMITIVE
9 End Offset Enable

Format: Enable

If set, the Vertex Count Per Instance field is IGNORED, and the 3DPRIM_END_OFFSET register is

used to indirectly specify the vertex count by defining the amount of valid data in VB0. The

following restrictions apply:

 VB0 must be enabled for use

 VertexAccessType = SEQUENTIAL

 Start Vertex Location = 0

 Start Instance Location = 0

 Base Vertex Location = 0

Vertices are output until EndOffset is reached or exceeded in VB0. If EndOffset is reached or

exceeded within the data associated with a vertex, that vertex is considered incomplete and will

not be output. Partial objects will be discarded (as is normally done).

If clear, End Offset is ignored.

Indirect Parameter Enable and End Offset Enable must not be ENABLED at the same time, or

behavior is UNDEFINED.

8 Vertex Access Type

 This field specifies how data held in vertex buffers marked as VERTEXDATA is accessed by Vertex

Fetch.

Value Name Description

0h SEQUENTIAL VERTEXDATA buffers are accessed sequentiallyRequiref if End Offset

Enable is ENABLED.

1h RANDOM VERTEXDATA buffers are accessed randomly via an index obtained from

the Index Buffer.

7:6 Reserved

Format: MBZ

5:0 Primitive Topology Type

Format: 3D_Prim_Topo_Type [BDW] See table below for encoding, see 3D Overview for

diagrams and general comments

Description

This field specifies the topology type of 3D primitive generated by this command. Note that a

single primitive topology (list/strip/fan/etc.) can contain a number of basic objects (lines,

triangles, etc.).

This field is ignored. The topology type is specified via the 3DSTATE_VF_TOPOLOGY command.

 Command Reference: Instructions

4 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DPRIMITIVE
2 31:0 Vertex Count Per Instance

Format: U32 Count of vertices

 This field specifies how many vertices are to be generated for each instance of the primitive

topology. If End Offset Enable is clear: Format = U32 count of vertices Range = [0, 2^32-1]

(upper limit probably constrained by VB size) Ignored if End Offset Enable or Indirect Parameter

Enable is ENABLED.

Programming Notes

 This per-instance value should specify a valid number of vertices for the primitive

topology type. E.g., for 3DPRIM_TRILIST_ADJ, this field should specify a multiple of 6

vertices. However, in cases where too few or too many vertices are provided, the unused

vertices will be silently discarded by the pipeline.

 A 0 value is this field effectively makes the command a 'no-operation'.

3 31:0 Start Vertex Location

Format: U32 structure index

 This field specifies the "starting vertex" for each instance. This allows skipping over part of the

vertices in a buffer if, for example, a previous 3DPRIMITIVE command had already drawn the

primitives associated with the earlier entries. For SEQUENTIAL access, this field specifies, for each

instance, a starting structure index into the vertex buffers For RANDOM access, this field

specifies, for each instance, a starting index into the Index Buffer.

Programming Notes

 Access of any data outside of the valid extent of a vertex or index buffer will return the

value 0 (i.e., appears as if the data stored at the invalid location was 0).

 Must be set to 0 if End Offset Enable is ENABLED.

 Ignored if Indirect Parameter Enable is ENABLED

4 31:0 Instance Count

Format: U32 Count of instances

 This field specifies the number of instances by which the primitive topology is to be regenerated.

A value of 0 indicates "no instances" (no-op operation). A value of 1 effectively specifies "non-

instanced" operation, though vertex buffers will still be used to provide instance data, if so

programmed. Ignored if Indirect Parameter Enable is ENABLED.

Value Name

[0, FFFFFFFFh]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 5

3DPRIMITIVE
5 31:0 Start Instance Location

Format: U32 structure index

Description

This field specifies the "starting instance" for the command as an initial structure index into

Vertex Buffers for vertex elements with InstancingEnable set.

Subsequent instances will access sequential instance data structures, as controlled by the

Instance Data Step Rate.

Programming Notes

 Access of any data outside of the valid extent of a vertex or index buffer will return the

value 0 (i.e., appears as if the data stored at the invalid location was 0).

 Must be set to 0 if End Offset Enable is ENABLED.

 Ignored if Indirect Parameter Enable is ENABLED.

6 31:0 Base Vertex Location

Format: S31 index structure bias

 This field specifies a signed bias to be added to values read from the index buffer. This allows

the same index buffer values to access different vertex data for different commands.This field

applies only to RANDOM access mode. This field is ignored for SEQUENTIAL access mode, where

there Start Vertex Location can be used to specify different regions in the vertex buffers.

Programming Notes

 Access of any data outside of the valid extent of a vertex or index buffer will return the

value 0 (i.e., appears as if the data stored at the invalid location was 0).

 Must be set to 0 if End Offset Enable is ENABLED.

 Ignored if Indirect Parameter Enable is ENABLED.

 Command Reference: Instructions

6 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_AA_LINE_PARAMETERS

3DSTATE_AA_LINE_PARAMETERS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_AA_LINE_PARAMS command is used to specify the slope and bias terms used in the improved

alpha coverage computation (specifically for DX WHQL compliance). Note that in these devices the coverage

values passed to PS threads are full U0.8 values, versus [DevBWR, DevCLN] where U0.4 values are passed.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ah 3DSTATE_AA_LINE_PARAMETERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 1h Excludes Dword (0,1)

Project: All

Format: =n Total Length - 2

1 31:24 AA Point Coverage Bias

Project: BDW

Format: U0.8

 This field specifies the bias term to be used in the aa coverage computation for edges 0 and 3.

23:16 AA Coverage Bias

Project: All

Format: U0.8

 This field specifies the bias term to be used in the aa coverage computation for edges 0 and 3.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 7

3DSTATE_AA_LINE_PARAMETERS
15:8 AA Point Coverage Slope

Project: BDW

Format: U0.8

 This field specifies the slope term to be used in the aa coverage computation for edges 0 and

3.If this field is zero, the Windower will revert to legacy aa line coverarge computation (though

still output expanded U0.8 coverage values).

7:0 AA Coverage Slope

Project: All

Format: U0.8

 This field specifies the slope term to be used in the aa coverage computation for edges 0 and

3.If this field is zero, the Windower will revert to legacy aa line coverarge computation (though

still output expanded U0.8 coverage values).

2 31:24 AA Point Coverage EndCap Bias

Project: BDW

Format: U0.8

 This field specifies the bias term to be used in the aa coverage computation for edges 1 and 2.

23:16 AA Coverage EndCap Bias

Project: All

Format: U0.8

 This field specifies the bias term to be used in the aa coverage computation for edges 1 and 2.

15:8 AA Point Coverage EndCap Slope

Project: BDW

Format: U0.8

 This field specifies the slope term to be used in the aa coverage computation for edges 1 and 2.

7:0 AA Coverage EndCap Slope

Project: All

Format: U0.8

 This field specifies the slope term to be used in the aa coverage computation for edges 1 and 2.

 Command Reference: Instructions

8 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_EDIT_DS

3DSTATE_BINDING_TABLE_EDIT_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command edits the binding table for DS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 46h 3DSTATE_BINDING_TABLE_EDIT_DS

Format: OpCode

15:9 Reserved

Format: MBZ

8:0 DWord Length

Format: =n

Value Name

0h DWORD_COUNT_n [Default]

0h - 100h Range

1 31:16 Binding Table Block Clear

Format: U16

 Each bit in this field corresponds to a 16 entry block of the binding table. Bit 0 of this field

corresponds to entries 0-15, bit 1 to 16-31, and so on. When a bit is set it clears the

corresponding bind table entries to 0. (effectively disabling them). The clear is applied before the

individual binding table entries contained in this message are applied. When this bit is clear then

the corresponding 16 entry block is not cleared.

15:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 9

3DSTATE_BINDING_TABLE_EDIT_DS
1:0 Binding Table Edit Target

 Specifies which core should respond to this 3DSTATE_BINDING_TABLE_EDIT_DS command:

Value Name Description

11b All Cores All cores should respond to this command

10b Core 1 Only Core1 should respond to this command

01b Core 0 Only Core0 should respond to this command

00b Reserved Reserved

2..n 31:0 Entry [n]

Format: BINDING_TABLE_EDIT_ENTRY

 Command Reference: Instructions

10 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_EDIT_GS

3DSTATE_BINDING_TABLE_EDIT_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command edits the binding table for GS.;

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 44h 3DSTATE_BINDING_TABLE_EDIT_GS

Format: OpCode

15:9 Reserved

Format: MBZ

8:0 DWord Length

Format: =n

Value Name

0h DWORD_COUNT_n [Default]

0h - 100h Range

1 31:16 Binding Table Block Clear

Format: U16

 Each bit in this field corresponds to a 16 entry block of the binding table. Bit 0 of this field

corresponds to entries 0-15, bit 1 to 16-31, and so on. When a bit is set it clears the

corresponding bind table entries to 0. (effectively disabling them). The clear is applied before the

individual binding table entries contained in this message are applied. When this bit is clear then

the corresponding 16 entry block is not cleared.

15:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 11

3DSTATE_BINDING_TABLE_EDIT_GS
1:0 Binding Table Edit Target

 Specifies which core should respond to this 3DSTATE_BINDING_TABLE_EDIT_GS command:

Value Name Description

11b All Cores All cores should respond to this command

10b Core 1 Only Core1 should respond to this command

01b Core 0 Only Core0 should respond to this command

00b Reserved Reserved

2..n 31:0 Entry [n]

Format: BINDING_TABLE_EDIT_ENTRY

 Command Reference: Instructions

12 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_EDIT_HS

3DSTATE_BINDING_TABLE_EDIT_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command edits the binding table for HS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 45h 3DSTATE_BINDING_TABLE_EDIT_HS

Format: OpCode

15:9 Reserved

Format: MBZ

8:0 DWord Length

Format: =n

Value Name

0h DWORD_COUNT_n [Default]

0h - 100h Range

1 31:16 Binding Table Block Clear

Format: U16

 Each bit in this field corresponds to a 16 entry block of the binding table. Bit 0 of this field

corresponds to entries 0-15, bit 1 to 16-31, and so on. When a bit is set it clears the

corresponding bind table entries to 0. (effectively disabling them). The clear is applied before the

individual binding table entries contained in this message are applied. When this bit is clear then

the corresponding 16 entry block is not cleared.

15:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 13

3DSTATE_BINDING_TABLE_EDIT_HS
1:0 Binding Table Edit Target

 Specifies which core should respond to this 3DSTATE_BINDING_TABLE_EDIT_HS command:

Value Name Description

11b All Cores All cores should respond to this command

10b Core 1 Only Core1 should respond to this command

01b Core 0 Only Core0 should respond to this command

00b Reserved Reserved

2..n 31:0 Entry [n]

Format: BINDING_TABLE_EDIT_ENTRY

 Command Reference: Instructions

14 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_EDIT_PS

3DSTATE_BINDING_TABLE_EDIT_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command edits the binding table for PS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 47h 3DSTATE_BINDING_TABLE_EDIT_PS

Format: OpCode

15:9 Reserved

Format: MBZ

8:0 DWord Length

Format: =n

Value Name

0h DWORD_COUNT_n [Default]

0h - 100h Range

1 31:16 Binding Table Block Clear

Format: U16

 Each bit in this field corresponds to a 16 entry block of the binding table. Bit 0 of this field

corresponds to entries 0-15, bit 1 to 16-31, and so on. When a bit is set it clears the

corresponding bind table entries to 0. (effectively disabling them). The clear is applied before the

individual binding table entries contained in this message are applied. When this bit is clear then

the corresponding 16 entry block is not cleared.

15:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 15

3DSTATE_BINDING_TABLE_EDIT_PS
1:0 Binding Table Edit Target

 Specifies which core should respond to this 3DSTATE_BINDING_TABLE_EDIT_PS command:

Value Name Description

11b All Cores All cores should respond to this command

10b Core 1 Only Core1 should respond to this command

01b Core 0 Only Core0 should respond to this command

00b Reserved Reserved

2..n 31:0 Entry [n]

Format: BINDING_TABLE_EDIT_ENTRY

 Command Reference: Instructions

16 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_EDIT_VS

3DSTATE_BINDING_TABLE_EDIT_VS
Project: BDW

Source: RenderCS

Length Bias: 2

This command edits the binding table for VS.

The 3DSTATE_BINDING_TABLE_EDIT_VS is a variable length command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 43h 3DSTATE_BINDING_TABLE_EDIT_VS

Format: OpCode

15:9 Reserved

Format: MBZ

8:0 DWord Length

Format: =n

Value Name

0h DWORD_COUNT_n [Default]

0h - 100h Range

1 31:16 Binding Table Block Clear

Format: U16

 Each bit in this field corresponds to a 16 entry block of the binding table. Bit 0 of this field

corresponds to entries 0-15, bit 1 to 16-31, and so on. When a bit is set it clears the

corresponding bind table entries to 0. (affectively disabling them). The clear is applied before the

individual binding table entries contained in this message are applied. When this bit is clear then

the corresponding 16 entry block is not cleared.

15:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 17

3DSTATE_BINDING_TABLE_EDIT_VS
1:0 Binding Table Edit Target

 Specifies which core should respond to this 3DSTATE_BINDING_TABLE_EDIT_VS command:

Value Name Description

11b All Cores All cores should respond to this command

10b Core 1 Only Core1 should respond to this command

01b Core 0 Only Core0 should respond to this command

00b Reserved Reserved

2..n 31:0 Entry [n]

Format: BINDING_TABLE_EDIT_ENTRY

 Command Reference: Instructions

18 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_POINTERS_DS

3DSTATE_BINDING_TABLE_POINTERS_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_BINDING_TABLE_POINTERS_DS command is used to define the location of fixed functions'

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 28h 3DSTATE_BINDING_TABLE_POINTERS_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 19

3DSTATE_BINDING_TABLE_POINTERS_DS
15:5 Pointer to DS Binding Table

Project: BDW

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256 When HW binding table is

disabled

Format: SurfaceStateOffset[16:6]BINDING_TABLE_STATE*256 When HW-generated binding

table is enabled

 Specifies an aligned address offset of the function's BINDING_TABLE_STATE. The offset's base

and alignment differ depending on whether HW Binding Table is enabled: If HW Binding Table is

disabled, the offset is relative to Surface State Base Address and the alignment is 32B. If HW

Binding Table is enabled the offset is relative to the Binding Table Pool Base Address and the

alignment is 64B.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

20 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_BINDING_TABLE_POINTERS_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_BINDING_TABLE_POINTERS_GS command is used to define the location of fixed functions'

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 29h 3DSTATE_BINDING_TABLE_POINTERS_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 21

3DSTATE_BINDING_TABLE_POINTERS_GS
15:5 Pointer to GS Binding Table

Project: BDW

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256 When HW binding table is

disabled

Format: SurfaceStateOffset[16:6]BINDING_TABLE_STATE*256 When HW-generated binding

table is enabled

 Specifies an aligned address offset of the function's BINDING_TABLE_STATE. The offset's base

and alignment differ depending on whether HW Binding Table is enabled: If HW Binding Table is

disabled, the offset is relative to Surface State Base Address and the alignment is 32B. If HW

Binding Table is enabled the offset is relative to the Binding Table Pool Base Address and the

alignment is 64B.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

22 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_BINDING_TABLE_POINTERS_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_BINDING_TABLE_POINTERS_HS command is used to define the location of fixed functions'

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 27h 3DSTATE_BINDING_TABLE_POINTERS_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 23

3DSTATE_BINDING_TABLE_POINTERS_HS
15:5 Pointer to HS Binding Table

Project: BDW

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256 When HW binding table is

disabled

Format: SurfaceStateOffset[16:6]BINDING_TABLE_STATE*256 When HW-generated binding

table is enabled

 Specifies an aligned address offset of the function's BINDING_TABLE_STATE. The offset's base

and alignment differ depending on whether HW Binding Table is enabled: If HW Binding Table is

disabled, the offset is relative to Surface State Base Address and the alignment is 32B. If HW

Binding Table is enabled the offset is relative to the Binding Table Pool Base Address and the

alignment is 64B.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

24 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_POINTERS_PS

3DSTATE_BINDING_TABLE_POINTERS_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_BINDING_TABLE_POINTERS_PS command is used to define the location of fixed functions'

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 25

3DSTATE_BINDING_TABLE_POINTERS_PS
15:5 Pointer to PS Binding Table

Project: BDW

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256 When HW binding table is

disabled

Format: SurfaceStateOffset[16:6]BINDING_TABLE_STATE*256 When HW-generated binding

table is enabled

 Specifies an aligned address offset of the function's BINDING_TABLE_STATE. The offset's base

and alignment differ depending on whether HW Binding Table is enabled: If HW Binding Table is

disabled, the offset is relative to Surface State Base Address and the alignment is 32B. If HW

Binding Table is enabled the offset is relative to the Binding Table Pool Base Address and the

alignment is 64B.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

26 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_BINDING_TABLE_POINTERS_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_BINDING_TABLE_POINTERS_VS command is used to define the location of fixed functions'

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 26h 3DSTATE_BINDING_TABLE_POINTERS_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 27

3DSTATE_BINDING_TABLE_POINTERS_VS
15:5 Pointer to VS Binding Table

Project: BDW

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256 When HW binding table is

disabled

Format: SurfaceStateOffset[16:6]BINDING_TABLE_STATE*256 When HW-generated binding

table is enabled

 Specifies an aligned address offset of the function's BINDING_TABLE_STATE. The offset's base

and alignment differ depending on whether HW Binding Table is enabled: If HW Binding Table is

disabled, the offset is relative to Surface State Base Address and the alignment is 32B. If HW

Binding Table is enabled the offset is relative to the Binding Table Pool Base Address and the

alignment is 64B.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

28 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BINDING_TABLE_POOL_ALLOC

3DSTATE_BINDING_TABLE_POOL_ALLOC
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the binding table pool for HW generated binding tables.

Programming Notes

When RS is enabled due to a MI_RS_CONTROL or MI_BATCH_BUFFER_START with RS enable bit set, driver must

reprogam the 3DSTATE_BINDING_TABLE_POOL_ALLOC to ensure the resource streamer and render engine are

in sync with the programming with the command. Otherwise there could be cases where RS sees that the

Binding Table Pool is disabled while the render pipeline sees the binding table is enabled in the case

the 3DSTATE_BINDING_TABLE_POOL_ALLOC was enabled while RS was off.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n

Value Name

2h DWORD_COUNT_n [Default]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 29

3DSTATE_BINDING_TABLE_POOL_ALLOC
1..2

Project:

BDW

63:12 Binding Table Pool Base Address

Project: BDW

Format: GraphicsAddress[63:12]BindingTablePool

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within

the host's 64-bit virtual address space.

11 Binding Table Pool Enable

Project: BDW

Format: U1

 When this bit is set it enables HW generation of binding tables. When this bit is cleared it

disables HW generation of binding tables.

10 Reserved

Project: BDW

9:7 Reserved

Project: BDW

6:0 Surface Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for this surface.

Programming Notes

Bit 2 is not programmable and is always zero.

3

Project:

BDW

31:12 Binding Table Pool Buffer Size

Project: BDW

Format: U20

 This field specifies the size of the buffer in 4K pages. Any access which straddle or go past

the end of the buffer will return 0.

Value Name Description

[0,1048575]

0 No Valid Data There is no valid data in the buffer

Restriction

Programming size of zero is illegal in the case that the pool is enabled.

11 Reserved

Project: BDW

Format: MBZ

10:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

30 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_BLEND_STATE_POINTERS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_BLEND_STATE_POINTERS command is used to set up the pointers to the color calculator state.

Programming Notes

When the BLEND_STATE pointer changes but not the CC_STATE pointer, driver needs to force a CC_STATE

pointer change to improve blend performance in pixel backend.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 24h 3DSTATE_BLEND_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:6 Blend State Pointer

Project: All

Format: DynamicStateOffset[31:6]BLEND_STATE*8

 Specifies the 64-byte aligned offset of the BLEND_STATE. This offset is relative to the Dynamic

State Base Address.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 31

3DSTATE_BLEND_STATE_POINTERS
5:1 Reserved

Project: All

Format: MBZ

0 Blend State Pointer Valid

Project: BDW

Format: Enable

 This bit, if set, indicates that the BLEND_STATE pointer has changed and new state needs to be

fetched.

 Command Reference: Instructions

32 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CC_STATE_POINTERS

3DSTATE_CC_STATE_POINTERS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_CC_STATE_POINTERS command is used to set up the pointers to the color calculator state.

Programming Notes

When the CC_STATE pointer changes but not the BLEND_STATE pointer, driver needs to force a BLEND_STATE

pointer change in order to improve blend performance in the pixel backend.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Eh 3DSTATE_CC_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:6 Color Calc State Pointer

Project: All

Format: DynamicStateOffset[31:6]COLOR_CALC_STATE

 Specifies the 64-byte aligned offset of the COLOR_CALC_STATE. This offset is relative to the

Dynamic State Base Address.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 33

3DSTATE_CC_STATE_POINTERS
5:1 Reserved

Project: All

Format: MBZ

0 Color Calc State Pointer Valid

Project: BDW

Format: Enable

 If set, the hardware will fetch the CC state. This bit is context saved and restored so the CC state

is considered undefined once this bit is cleared due to the possiblity of the CC state changing

between context switches.

 Command Reference: Instructions

34 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CHROMA_KEY

3DSTATE_CHROMA_KEY
Project: DevBWR+

Source: RenderCS

Length Bias: 2

 The 3DSTATE_CHROMA_KEY instruction is used to program texture color/chroma-key key values. A table

containing four set of values is supported. The ChromaKey Index sampler state variable is used to select which

table entry is associated with the map. Texture chromakey functions are enabled and controlled via use of the

ChromaKey Enable texture sampler state variable.Texture Color Key (keying on a paletted texture index) is not

supported.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: Opcode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: Opcode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: Opcode

23:16 3D Command Sub Opcode

Default Value: 04h 3DSTATE_CHROMA_KEY

Format: Opcode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31:30 ChromaKey Table Index

Project: All

Format: U2 index

 Selects which entry in the ChromaKey table is to be loaded

Value Name

[0,3]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 35

3DSTATE_CHROMA_KEY
29:0 Reserved

Project: All

Format: MBZ

2 31:0 ChromaKey Low Value

 This field specifies the "low" (minimum) value of the chroma key range. Texel samples are

considered "matching the key" if each component of the texel falls within the (inclusive) chroma

range.See ChromaKey High Value for further format, programming info.

3 31:0 ChromaKey High Value

 This field specifies the "high" (maximum) value of the chroma key range. Texel samples are

considered "matching the key" if each component of the texel falls within the (inclusive) chroma

range.

Programming Notes

ChromaKey values are specified using 8-bit channels. When using surface formats with less

than 8 bits per channel, the device will expand channels by replicating the required number of

MSBs into the LSBs of each channel. Software must account for this conversion when it

programs Chromakey Low/High Values (e.g., by performing the same replication).

For channels that do not exist in the actual surface (e.g., Alpha channel for non-ARGB maps),

software must explicitly program full range high/low values (High=FFh, Low=0h for formats

using unsigned chroma key values, High=7Fh, Low=FFh for formats using sign magnitude

chroma key values) in order to effectively remove the comparison of that field from the

ChromaKey function.

For channels in SNORM format in the surface format, the value in the high/low value for that

channel is interpreted in sign magnitude format. Negative zero value is not supported (use

positive zero instead). For channels with mixed UNORM/SNORM formats (i.e.

R5G5_SNORM_B6_UNORM), the ChromaKey is programmed as if all channels are SNORM.

YUV ChromaKey will use an interpolated chrominance value from the map for comparison to

the chroma key values for those texels without chrominance due to downsampling. The

chrominance value used is the average of values to the left and right of the texel in question.

It is UNDEFINED to program any component of the ChromaKey High Value to be less than the

corresponding component of ChromaKey Low Value.

Format = interpreted according to associated texel format "class":

Only the surface formats listed as supported for chroma key in the surface formats table can be

used with this feature. Use of any other surface format with chroma key enabled is UNDEFINED.

Surface Format 31:24 23:15 16:8 7:0

ARGB and BC (DXT) formats A R G B

YCrCb formats A Cr Y Cb

 Command Reference: Instructions

36 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CLEAR_PARAMS

3DSTATE_CLEAR_PARAMS
Project: BDW

Source: RenderCS

Length Bias: 2

Description

This command defines the depth clear value delivered as a pipelined state command. However, the state

change pipelining isn't completely transparent (see restriction below).

HW will internally manage the draining pipe and flushing of the caches when this command is issued. The

PIPE_CONTROL restrictions are removed.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 04h 3DSTATE_CLEAR_PARAMS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 Dword Length

Default Value: 1h Excludes Dword (0,1)

Format: =n Total Length - 2

1 31:0 Depth Clear Value

Project: BDW

Format: IEEE_Float

 This field defines the clear value that will be applied to the depth buffer if the Depth Buffer Clear

field is enabled. It is valid only if Depth Buffer Clear Value Valid is set.

Programming Notes

The clear value must be between the min and max depth values (inclusive) defined in the

CC_VIEWPORT. If the depth buffer format is D32_FLOAT, then values must be limited to the

range of +0.0f and 1.0f inclusive; values outside this range are reserved.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 37

3DSTATE_CLEAR_PARAMS
2 31:1 Reserved

Format: MBZ

0 Depth Clear Value Valid

Format: Boolean

 This field enables the Depth Clear Value. If clear, the depth clear value is obtained from

interpolated depth of an arbitrary pixel of the primitive rendered with Depth Buffer Clear set in

WM_STATE or 3DSTATE_WM. If set, the depth clear value is obtained from the Depth Clear

Value field of this command.

 Command Reference: Instructions

38 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CLIP

3DSTATE_CLIP
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 12h 3DSTATE_CLIP

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 02h Excludes DWord (0,1)

Project: All

Format: =n

 Total Length - 2

1 31:21 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 39

3DSTATE_CLIP
20 Force User Clip Distance Cull Test Enable Bitmask

Project: All

Format: Enable

 This field provides a work around override for the computation of SOL_INT::Render_Enable

Value Name Description

0h Normal Clip_INT::User Clip Distance Cull Test Enable Bitmask normally

1h Force Forces Clip_INT::User Clip Distance Cull Test Enable Bitmask to use the value in

3DSTATE_CLIP:: User Clip Distance Cull Test Enable Bitmask

19 Vertex Sub Pixel Precision Select

Project: All

Format: U1

 Selects the number of fractional bits maintained in the vertex data

Value Name Description

0h 8 Bit 8 sub pixel precision bits maintained

1h 4 Bit 4 sub pixel precision bits maintained

18 Early Cull Enable

Project: All

Format: Enable

 This field is used to enable/disable the EarlyCull function.

17 Force User Clip Distance Clip Test Enable Bitmask

Project: All

Format: Enable

 This field provides a work around override for the computation of SOL_INT::Render_Enable.

Value Name Description

0b Normal Clip_INT:: User Clip Distance Clip Test Enable Bitmask normally

1b Force Forces Clip_INT:: User Clip Distance Clip Test Enable Bitmask to use the value in

3DSTATE_CLIP::User Clip Distance Clip Test Enable Bitmask

16 Force Clip Mode

Format: Enable

 This field provides a work around override for the computation of SOL_INT::Render_Enable.

Value Name Description

0b Normal Clip_INT::Clip Mode is computed normally.

1b Force Forces Clip_INT::Clip Mode to use the value in 3DSTATE_CLIP::User Clip Mode.

15:11 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

40 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CLIP
10 Clipper Statistics Enable

Project: All

Format: Enable

 This bit controls whether Clip-unit-specific statistics register(s) can be incremented.

Value Name Description

0h Disable CL_INVOCATIONS_COUNT cannot increment

1h Enable CL_INVOCATIONS_COUNT can increment

9:8 Reserved

Project: BDW

Format: MBZ

7:0 User Clip Distance Cull Test Enable Bitmask

Project: All

Format: Enable[8]

 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial

accept determination needs to be made (does not cause a must clip).DX10 allows simultaneous

use of ClipDistance and Cull Distance test of up to 8 distances.

2 31 Clip Enable

Project: All

Format: Enable

 Specifies whether the Clip function is enabled or disabled (pass-through).

30 API Mode

Project: All

 Controls the definition of the NEAR clipping plane

Value Name Description

0h OGL NEAR VP boundary == 0.0 (NDC)

29 Reserved

Project: All

Format: MBZ

28 Viewport XY Clip Test Enable

Project: All

Format: Enable

 This field is used to control whether the Viewport X, Y extents are considered in VertexClipTest.

See Tristrip Clipping subsection.

27 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 41

3DSTATE_CLIP
26 Guardband Clip Test Enable

Project: All

Format: Enable

 This field is used to control whether the Guardband X, Y extents are considered in VertexClipTest

for non-point objects. If the Guardband ClipTest is DISABLED but the Viewport XY ClipTest is

ENABLED, ClipDetermination operates as if the Guardband were coincident with the Viewport. If

both the Guardband and Viewport XY ClipTest are DISABLED, all vertices are considered "visible"

with respect to the XY directions.

25:24 Reserved

Project: All

Format: MBZ

23:16 User Clip Distance Clip Test Enable Bitmask

Project: All

Format: Enable[8]

 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial

accept / must clip determination needs to be made.DX10 allows simultaneous use of

ClipDistance and Cull Distance test of up to 8 distances.

15:13 Clip Mode

Project: All

 This field specifies a general mode of the CLIP unit, when the CLIP unit is ENABLED.

Value Name Description

0h NORMAL TrivialAccept objects are passed down the pipeline, MustClip objects

Clipped in the Fixed Function Clipper HW, TrivialReject and BAD objects

are discarded

1h Reserved

2h Reserved

3h REJECT_ALL All objects are discarded

4h ACCEPT_ALL All objects (except BAD objects) are trivially accepted. This effectively

disables the clip-test/clip-determination function. Note that the CLIP unit

will still filter out adacency information, which may be required since the

SF unit does not accept primitives with adjacency.

5h-7h Reserved

12:10 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

42 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CLIP
9 Perspective Divide Disable

Project: All

Format: Disable

 This field disables the Perspective Divide function performed on homogeneous position read

from the URB. This feature can be used by software to submit pre-transformed "screen-space"

geometry for rasterization. This likely requires the W component of positions to contain "rhw"

(aka 1/w) in order to support perspective-correct interpolation of vertex attributes. Likewise, the

X, Y, Z components will likely be required to be X/W, Y/W, Z/W. Note that the device does not

support clipping when perspective divide is disabled. Software must specify

CLIPMODE_ACCEPT_ALL whenever it disables perspective divide. This implies that software must

ensure that object positions are completely contained within the "guardband" screen-space

limits imposed by the SF unit (e.g., by clipping in CPU SW before submitting the objects).

8 Non-Perspective Barycentric Enable

Project: All

Format: Enable

 This field enables computation of non-perspective barycentric parameters in the clipper, which

are sent to SF unit in the must clip case. This field must be enabled if any non-perspective

barycentric parameters are enabled in the Windower.

7:6 Reserved

Project: All

Format: MBZ

5:4 Triangle Strip/List Provoking Vertex Select

Project: All

Format: U2

enumerated type

This field selects which vertex of a triangle (in a triangle strip or list primitive) is considered the

"provoking vertex".

Value Name

0h 0

1h 1

2h 2

3h Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 43

3DSTATE_CLIP
3:2 Line Strip/List Provoking Vertex Select

Project: All

Format: U2

enumerated type

This field selects which vertex of a line (in a line strip or list primitive) is considered the

"provoking vertex".

Value Name

0h 0

1h 1

2h Reserved

3h Reserved

1:0 Triangle Fan Provoking Vertex Select

Project: All

Format: U2

enumerated type

This field selects which vertex of a triangle (in a triangle fan primitive) is considered the

"provoking vertex".

Value Name

0h 0

1h 1

2h 2

3h Reserved

3 31:28 Reserved

Project: All

Format: MBZ

27:17 Minimum Point Width

Project: All

Format: U8.3 pixels

 This value is used to clamp read-back PointWidth values.

16:6 Maximum Point Width

Project: All

Format: U8.3 pixels

 This value is used to clamp read-back PointWidth values.

 Command Reference: Instructions

44 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CLIP
5 Force Zero RTA Index Enable

Project: All

Format: Enable

 If set, the Clip unit will ignore the read-back RTAIndex and operate as if the value 0 was read-

back. If clear, the read-back value is used.

4 Reserved

Project: All

Format: MBZ

3:0 Maximum VP Index

Project: All

Format: U4-1 index value (# of viewports)

 This field specifies the maximum valid VPIndex value, corresponding to the number of active

viewports. If the source of the VPIndex exceeds this maximum value, a VPIndex value of 0 is

passed down the pipeline. Note that this clamping does not affect a VPIndex value stored in the

URB.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 45

3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets pointers to the push constants for the DS unit. The constant data pointed to by this

command is loaded into the DS unit's push constant buffer (PCB).

Programming Notes

[BDW] A 3DSTATE_GATHER_DS command must be dispatched along with any 3DSTATE_CONSTANT_DS

command when Gather Pool is enabled within a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ah 3DSTATE_CONSTANT_DS

Format: OpCode

15 Reserved

Project: BDW

Format: MBZ

14:8 Constant Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for all constant buffers defined in this command.

Programming Notes

Constant Buffer Object Control State must be always programmed to zero.

 Command Reference: Instructions

46 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CONSTANT_DS
7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project

9h Excludes DWord (0,1) [Default] BDW

1..10

Project:

BDW

319:0 Constant Body

Project: BDW

Format: 3DSTATE_CONSTANT(Body)

 See the 3DSTATE_CONSTANT(Body) format for the shared portion of the

3DSTATE_CONSTANT command for VS, HS, DS, and GS.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 47

3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets pointers to the push constants for the GS unit. The constant data pointed to by this

command will be loaded into the GS unit's push constant buffer (PCB).

Programming Notes

[BDW]: A 3DSTATE_GATHER_GS command must be dispatched along with any 3DSTATE_CONSTANT_GS

command when the Gather Pool is enabled within a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 16h 3DSTATE_CONSTANT_GS

Format: OpCode

15 Reserved

Project: All

Format: MBZ

14:8 Constant Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for all constant buffers defined in this

command.

Programming Notes

Constant Buffer Object Control State must be always programmed to zero.

 Command Reference: Instructions

48 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CONSTANT_GS
7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name

9h Excludes DWord (0,1) [Default]

1..10

Project:

BDW

319:0 Constant Body

Project: BDW

Format: 3DSTATE_CONSTANT(Body)

 Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS,

DS, and GS

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 49

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets pointers to the push constants for the HS unit. The constant data pointed to by this

command is loaded into the HS unit's push constant buffer (PCB).

Programming Notes

A 3DSTATE_GATHER_HS command must be dispatched along with any 3DSTATE_CONSTANT_HS command

when Gather Pool is enabled within a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 19h 3DSTATE_CONSTANT_HS

Format: OpCode

15 Reserved

Project: BDW

Format: MBZ

14:8 Constant Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for all constant buffers defined in this

command.

Programming Notes

Constant Buffer Object Control State must be always programmed to zero.

 Command Reference: Instructions

50 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CONSTANT_HS
7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name

9h Excludes DWord (0,1) [Default]

1..10

Project:

BDW

319:0 Constant Body

Project: BDW

Format: 3DSTATE_CONSTANT(Body)

 Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS,

DS, and GS

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 51

3DSTATE_CONSTANT_PS

3DSTATE_CONSTANT_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets pointers to the push constants for the PS unit. The constant data pointed to by this

command is loaded into the PS unit's push constant buffer (PCB).

Programming Notes

[BDW]: A 3DSTATE_GATHER_PS command must be dispatched along with any 3DSTATE_CONSTANT_PS

command when the Gather Pool is enabled within a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 17h 3DSTATE_CONSTANT_PS

Format: OpCode

15 Reserved

Project: BDW

Format: MBZ

14:8 Constant Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for all constant buffers defined in this

command.

Programming Notes

Constant Buffer Object Control State must be always programmed to zero.

 Command Reference: Instructions

52 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CONSTANT_PS
7:0 Dword Length

Project: All

Format: =n Total Length - 2

Value Name

9h Excludes DWord (0,1) [Default]

1..10

Project:

BDW

319:0 Constant Body

Project: BDW

Format: 3DSTATE_CONSTANT(Body)

 Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS,

DS, and GS

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 53

3DSTATE_CONSTANT_VS

3DSTATE_CONSTANT_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets pointers to the push constants for VS unit. The constant data pointed to by this command is

loaded into the VS unit's push constant buffer (PCB).

Programming Notes

[BDW] A 3DSTATE_GATHER_VS command must be dispatched along with any 3DSTATE_CONSTANT_VS

command when Gather Pool is enabled within a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 15h 3DSTATE_CONSTANT_VS

Format: OpCode

15 Reserved

Project: BDW

Format: MBZ

14:8 Constant Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for all constant buffers defined in this

command.

Programming Notes

Constant Buffer Object Control State must be always programmed to zero.

 Command Reference: Instructions

54 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_CONSTANT_VS
7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name

9h Excludes DWord (0,1) [Default]

1..10

Project:

BDW

319:0 Constant Body

Project: BDW

Format: 3DSTATE_CONSTANT(Body)

 Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS,

DS, and GS

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 55

3DSTATE_DEPTH_BUFFER

3DSTATE_DEPTH_BUFFER
Project: BDW

Source: RenderCS

Length Bias: 2

The depth buffer surface state is delivered as a pipelined state packet. However, the state change pipelining isn't

completely transparent (see restriction below).

WM HW will internally manage the draining pipe and flushing of the caches when this commands is issued. The

PIPE_CONTROL restrictions are removed.

Programming Notes

Note for validation teams. If the depth surface is backdoor initialized or written to directly by the CPU, the values

placed in the Depth Surface must be within the valid numeric range permitted by the Viewport Min and Max

documentation, which may change per API. Currently this is the numeric range of [0.0 ... 1.0] for DirectX and may

in the future include +/- max floating point values; but not +/-Inf or any NaN code.

DWord Bit Description

0 31:2

9

Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:2

7

Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:2

4

3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:1

6

3D Command Sub Opcode

Default Value: 5h 3DSTATE_DEPTH_BUFFER

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 6h Excludes Dword (0,1)

Format: =n

 Excludes DWord(0,1)

 Command Reference: Instructions

56 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DEPTH_BUFFER
1 31:2

9

Surface Type

Value Name Description

0h SURFTYPE_1D Defines a 1-dimensional map or array of maps

1h SURFTYPE_2D Defines a 2-dimensional map or array of maps

2h SURFTYPE_3D Defines a 3-dimensional (volumetric) map

3h SURFTYPE_CUBE Defines a cube map

4h-6h Reserved

7h SURFTYPE_NULL Defines a null surface

Programming Notes

The Surface Type of the depth buffer must be the same as the Surface Type of the render

target(s) (defined in SURFACE_STATE), unless either the depth buffer or render targets are

SURFTYPE_NULL.

28 Depth Write Enable

Format: Enable

 This field enables depth writes to the depth buffer surface. Both this field and the Depth Buffer

Write Enable field in DEPTH_STENCIL_STATE must be enabled in order for depth writes to

occur.

27 Stencil Write Enable

Format: Enable

 This field enables stencil writes to the depth buffer or stencil buffer surface, depending on

where stencil is located. Both this field and the Stencil Buffer Write Enable field in

DEPTH_STENCIL_STATE must be enabled in order for stencil writes to occur.

26:2

4

Reserved

Format: MBZ

23 Reserved

Project: BDW

Format: MBZ

 This field, when ENABLED, indicates when a surface is using corner texel-mode for depth

surface. This bit changes how the size of each MIP when calculating the offset within a surface.

Value Name Description

0h Disable [Default] Corner Texel mode is not enabled.

1h Enable Corner Texel Mode is enabled.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 57

3DSTATE_DEPTH_BUFFER
22 Hierarchical Depth Buffer Enable

Format: Enable

 If enabled, indicates that a hierarchical depth buffer is defined.

Programming Notes

If this field is enabled, the Software Tiled Rendering Mode must be NORMAL. This field must

be disabled if Early Depth Test Enable is disabled OR if depth buffer surface type is NULL.

21 Reserved

Format: MBZ

20:1

8

Surface Format

 Specifies the format of the depth buffer. See Stencil Test Enable field in

DEPTH_STENCIL_STATE field for restrictions on the use of some of these formats.

Value Name

0h Reserved

1h D32_FLOAT

2h Reserved

3h D24_UNORM_X8_UINT

4h Reserved

5h D16_UNORM

6h-7h Reserved

17:0 Surface Pitch

Format: U18-1 Pitch in (Bytes-1)

Value Name Description

[7Fh,3FFFFh] corresponding to [128B, 256KB] also restricted to a multiple of 128B

Programming Notes

The pitch specified must be a multiple of the tile pitch, in the range [128B, 128KB].

2..3

Project:

BDW

63:0 Surface Base Address

Project: BDW

Format: GraphicsAddress[63:0]DepthBuffer

 This field specifies address of the buffer in mapped Graphics Memory. Graphics Address

[63:48] are ignored by the HW and assumed to be in correct canonical form [63:48] = [47].

Programming Notes

The Depth Buffer can only be mapped to Main Memory (uncached).

If the buffer is linear, the surface must be 64-byte aligned.

 Command Reference: Instructions

58 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DEPTH_BUFFER
4 31:1

8

Height

Format: U14-1

 This field specifies the height of the surface. If the surface is MIP-mapped, this field contains

the height of the base MIP level.

Value Name Description Exists If

[0,0] Legal

Range

Must be zero (Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_1D')

[0,16383] Legal

Range

Height of surface -

1 (y/v dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_2D')

[0,2047] Legal

Range

Height of surface -

1 (y/v dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_3D')

[0,16383] Legal

Range

y/v dimension (Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_CUBE')

Programming Notes

The Height of the depth buffer must be the same as the Height of the render target(s)

(defined in SURFACE_STATE), unless Surface Type is SURFTYPE_1D or SURFTYPE_2D with

Depth = 0 (non-array) and LOD = 0 (non-mip mapped).

17:4 Width

Format: U14-1

 This field specifies the width of the surface. If the surface is MIP-mapped, this field specifies

the width of the base MIP level. The width is specified in units of pixels.

Value Name Description Exists If

[0,16383] Legal

Range

Width of surface -

1 (x/u dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_1D')

[0,16383] Legal

Range

Width of surface -

1 (x/u dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_2D')

[0,2047] Legal

Range

Width of surface -

1 (x/u dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_3D')

[0,16383] Legal

Range

Width of surface -

1 (x/u dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_CUBE')

Programming Notes

The Width specified by this field must be less than or equal to the surface pitch (specified in

bytes via the Surface Pitch field). For cube maps, Width must be set equal to Height. The

Width of the depth buffer must be the same as the Width of the render target(s) (defined in

SURFACE_STATE), unless Surface Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-

array) and LOD = 0 (non-mip mapped).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 59

3DSTATE_DEPTH_BUFFER
3:0 LOD

Format: U4 for LOD units

Value Name

[0,14]

Programming Notes

The LOD of the depth buffer must be the same as the LOD of the render target(s) (defined in

SURFACE_STATE)

5 31:2

1

Depth

Format: U11-1

 This field specifies the total number of levels for a volume texture or the number of array

elements allowed to be accessed starting at the Minimum Array Element for arrayed surfaces. If

the volume texture is MIP-mapped, this field specifies the depth of the base MIP level.

Value Name Description Exists If

[0,2047] Legal

Range

Number of array

elements - 1

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_1D')

[0,2047] Legal

Range

Number of array

elements - 1

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_2D')

[0,2047] Legal

Range

Depth of surface -

1 (r/z dimension)

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_3D')

[0,0] Legal

Range

Must be zero (Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_CUBE')

Programming Notes

The Depth of the depth buffer must be the same as the Depth of the render target(s) (defined

in SURFACE_STATE).

 Command Reference: Instructions

60 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DEPTH_BUFFER
20:1

0

Minimum Array Element

Format: U11

For 1D and 2D Surfaces:

This field indicates the minimum array element that can be accessed as part of this surface. The

delivered array index is added to this field before being used to address the surface.

For 3D Surfaces

This field indicates the minimum 'R' coordinate on the LOD currently being rendered to. This

field is added to the delivered array index before it is used to address the surface.

For Other Surfaces

This field is ignored

Value Name Exists If

[0,2047

]

SURFTYPE_1D/2

D

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_1D'|Structure[RENDER_SURFACE_STATE][Surfa

ce Type]=='SURFTYPE_2D')

[0,2047

]

SURFTYPE_3D (Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_3D')

9:7 Reserved

Format: MBZ

6:0 Depth Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for the depth buffer.

6 31:2

6

Reserved

Project: BDW

Format: MBZ

25:0 Reserved

Format: MBZ

7

For 1D

and 2D

Surfaces:

This field

must be

set to the

same value

as the

Depth

field.

 For 3D

Surfaces:

This field

31:2

1

Render Target View Extent

Format: U11-1

Value Name Description Exists If

[0,2047] Legal

Range

Number of array

elements- 1

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_1D')

[0,2047] Legal

Range

Number of array

elements- 1

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_2D')

[0,2047] Legal

Range

To indication

extent of [1,2048]

(Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_3D')

[0,0] Legal

Range

Must be zero (Structure[RENDER_SURFACE_STATE][Surface

Type]=='SURFTYPE_CUBE')

20:1

5

Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 61

3DSTATE_DEPTH_BUFFER
indicates

the extent

of the

accessible

'R'

coordinate

s minus 1

on the

LOD

currently

being

rendered

to.

 For Other

Surfaces

This field is

ignored.

14:0 Surface QPitch

Format: QPitch[16:2]

Description

This field specifies the distance in rows between array slices. It is used only in the following

cases:

 Surface Array is enabled OR

 Number of Mulitsamples is not NUMSAMPLES_1 and Multisampled Surface

Storage Format set to MSFMT_MSS OR

 Surface Type is SURFTYPE_CUBE

Other surface types: field is ignored

Value Name Description

[4h, 1FFFCh] in multiples of 4 (low 2 bits missing)

Programming Notes

Software must ensure that this field is set to a value sufficiently large that array slices in the

surface do not overlap. Refer to the Memory Data Formats section for information on how

surfaces are stored.

 Command Reference: Instructions

62 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DRAWING_RECTANGLE

3DSTATE_DRAWING_RECTANGLE
Project: DevBWR+

Source: RenderCS

Length Bias: 2

 The 3DSTATE_DRAWING_RECTANGLE command is used to set the 3D drawing rectangle and related state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h 3DSTATE_DRAWING_RECTANGLE

Format: OpCode

15:14 Core Mode Select

Project: BDW

Format: U2

 Specifies which core this command will be considered valid and update based on the state in

this command.

Value Description

0h Both cores are enabled and will update the state.

1h State will be updated in Core 0 only

2h State will be updated in Core 1 only

3h

13:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 63

3DSTATE_DRAWING_RECTANGLE
1 31:16 Clipped Drawing Rectangle Y Min

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

 Specifies Ymin value of (inclusive) intersection of Drawing rectangle with the Color (Destination)

Buffer, used for clipping. Pixels with Y coordinates less than Ymin will be clipped out.

Value Name

[0,16383] Device ignores bits 31:30

Programming Notes

This value can be larger than Clipped Drawing Rectangle Y Max. If Ymin>Ymax, the clipped

drawing rectangle is null, all polygons are discarded. If Ymin==Ymax, the clipped drawing

rectangle is 1 pixel wide in the Y direction.

15:0 Clipped Drawing Rectangle X Min

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

 Specifies Xmin value of (inclusive) intersection of Drawing rectangle with the Color (Destination)

Buffer, used for clipping. Pixels with X coordinates less than Xmin will be clipped out.

Value Name

[0,16383] Device ignores bits 15:14

Programming Notes

This value can be larger than Clipped Drawing Rectangle X Max. If Xmin>Xmax, the clipped

drawing rectangle is null, all polygons are discarded. If Xmin==Xmax, the clipped drawing

rectangle is 1 pixel wide in the X direction.

2 31:16 Clipped Drawing Rectangle Y Max

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

 Specifies Ymax value of (inclusive) intersection of Drawing rectangle with the Color (Destination)

Buffer, used for clipping. Pixels with coordinates greater than Ymax will be clipped out.

Value Name

[0,16383] Device ignores bits 31:30

Programming Notes

This value can be less than Clipped Drawing Rectangle Y Min. If Ymax<Ymin, the clipped

drawing rectangle is null, all polygons are discarded. If Ymin==Ymax, the clipped drawing

rectangle is 1 pixel wide in the Y direction.

 Command Reference: Instructions

64 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DRAWING_RECTANGLE
15:0 Clipped Drawing Rectangle X Max

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

 Specifies Xmax value of (inclusive) intersection of Drawing rectangle with the Color (Destination)

Buffer, used for clipping. Pixels with coordinates greater than Xmax will be clipped out.

Value Name

[0,16383] Device ignores bits 15:14

Programming Notes

This value can be less than Clipped Drawing Rectangle X Min. If Xmax<Xmin, the clipped

drawing rectangle is null, all polygons are discarded.If Xmin==Xmax, the clipped drawing

rectangle is 1 pixel wide in the X direction.

3 31:16 Drawing Rectangle Origin Y

Project: All

Format: S15 in Pixels from Color Buffer origin (upper left corner).

Description

Range: [-16384,16383] (Bit 31 should be a sign extension)

Specifies Y origin of Drawing Rectangle (in whole pixels) relative to origin of the Color Buffer,

used to map incoming (Draw Rectangle-relative) vertex positions to the Color Buffer space.

15:0 Drawing Rectangle Origin X

Project: All

Format: S15 in Pixels from Color Buffer origin (upper left corner).

Description

Range: [-16384,16383] (Bit 15 should be a sign extension)

Specifies X origin of Drawing Rectangle (in whole pixels) relative to origin of the Color Buffer,

used to map incoming (Draw Rectangle-relative) vertex positions to the Color Buffer space.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 65

3DSTATE_DS

3DSTATE_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 The state used by DS is defined with this inline state packet

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Dh 3DSTATE_DS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 7h Excludes DWord (0,1)

Project: BDW

Format: =n Total Length - 2

1..2

Project:

BDW

63:6 Kernel Start Pointer

Project: BDW

Format: InstructionBaseOffset[63:6]Kernel

 This field specifies the starting location of the kernel program run by threads spawned by this

FF unit. It is specified as a 64-byte-granular offset from the Instruction Base Address. This field is

ignored if DS Function Enable is DISABLED.

5:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

66 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DS
3 31 Single Domain Point Dispatch

Project: BDW

Format: U1 Enumerated Type

 This field can be used to force single domain point SIMD4x2 DS threads.

 This field is ignored if SIMD8 Dispatch Enable is set.

Value Name Description

0h Multiple Dual domain point SIMD4x2 thread dispatches are allowed.

1h Single Single domain point SIMD4x2 thread dispatches are forced.

Workaround

Workaround BDW: The Single Domain Point Dispatch must always be set to 0.

30 Vector Mask Enable

Project: BDW

Format: U1 Enumerated Type

 Upon subsequent DS thread dispatches, this bit is loaded into the EU's Vector Mask Enable

(VME, cr0.0[3]) thread state. Refer to EU documentation for the definition and use of VME state.

Value Name Description

0h Dmask The EU will use the Dispatch Mask (supplied by the DS stage) for instruction

execution.

1h Vmask The EU will use the Vector Mask (derived from the Dispatch Mask) for

instruction execution.

Programming Notes

Under normal conditions SW shall specify DMask, as the DS stage will provide a Dispatch

Mask appropriate to SIMD4x2 or SIMD8 thread execution (as a function of dispatch mode).

 E.g., for SIMD4x2 thread execution, the DS stage will generate a Dispatch Mask that is equal

to what the EU would use as the Vector Mask. For SIMD8 execution there is no known usage

model for use of Vector Mask (as there is for PS shaders).

29:27 Sampler Count

Project: BDW

Format: U3

 Specifies how many samplers (in multiples of 4) the kernel uses. Used only for prefetching the

associated sampler state entries.

 This field is ignored if DS Function Enable is DISABLED.

Value Name Description

0h No Samplers No samplers used

1h 1-4 Samplers between 1 and 4 samplers used

2h 5-8 Samplers between 5 and 8 samplers used

3h 9-12 Samplers between 9 and 12 samplers used

4h 13-16 Samplers between 13 and 16 samplers used

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 67

3DSTATE_DS
26 Reserved

Project: BDW

Format: MBZ

25:18 Binding Table Entry Count

Project: BDW

Format: U8

When HW Generated Binding Table is disabled: Specifies how many binding table entries the

kernel uses. Used only for prefetching of the binding table entries and associated surface

state. Note:For kernels using a large number of binding table entries, it may be wise to set

this field to zero to avoid prefetching too many entries and thrashing the state cache. This

field is ignored if DS Function Enable is DISABLED.

When HW Generated Binding Table bit is enabled: This field indicates which cache lines

(512bit units - 32 Binding Table Entry section) should be fetched. Each bit in this field

corresponds to a cache line. Only the 1st 4 non-zero Binding Table entries of each 32 Binding

Table entry section prefetched will have its surface state prefetched.

Value Name

[0,255]

Programming Notes

When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be

generated at JIT time.

17 Thread Dispatch Priority

Project: BDW

Format: U1 Enumerated Type

 Specifies the priority of the thread for dispatch: This field is ignored if DS Function Enable is

DISABLED.

Value Name Description

0h Normal Normal Priority

1h High High Priority

16 Floating Point Mode

Project: BDW

Format: U1 Enumerated Type

 Specifies the initial floating point mode used by the dispatched thread. This field is ignored if

DS Function Enable is DISABLED.

Value Name Description

0h IEEE-754 Use IEEE-754 Rules

1h Alternate Use alternate rules

 Command Reference: Instructions

68 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DS
15 Reserved

Project: BDW

Format: MBZ

14 Accesses UAV

Project: BDW

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment.

Programming Notes

This field must not be set when DS Function Enable is disabled.

13 Illegal Opcode Exception Enable

Project: BDW

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment. This field is ignored if DS Function Enable is DISABLED.

12:8 Reserved

Project: BDW

Format: MBZ

7 Software Exception Enable

Project: BDW

Format: Enable

 This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA

Execution Environment. This field is ignored if DS Function Enable is DISABLED.

6:0 Reserved

Project: BDW

Format: MBZ

4..5

Project:

BDW

63:10 Scratch Space Base Pointer

Project: BDW

Format: GeneralStateOffset[63:10]ScratchSpace

 Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-byte

aligned offset from the General State Base Address. If required, each thread spawned by this FF

unit will be allocated some portion of this space, as specified by Per-Thread Scratch Space. The

computed offset of the thread-specific portion will be passed in the thread payload as Scratch

Space Offset. The thread is expected to utilize "stateless" DataPort read/write requests to access

scratch space, where the DataPort will cause the General State Base Address to be added to the

offset passed in the request header. This field is ignored if DS Function Enable is DISABLED.

9:4 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 69

3DSTATE_DS
3:0 Per-Thread Scratch Space

Project: BDW

Format: U4 power of 2 Bytes over 1K Bytes

 Specifies the amount of scratch space to be allocated to each thread spawned by this FF

unit.The driver must allocate enough contiguous scratch space, starting at the Scratch Space

Base Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread Scratch

Space size without exceeding the driver-allocated scratch space.

 This field is ignored if DS Function Enable is DISABLED.

Value Name

[0,11] indicating [1K Bytes, 2M Bytes]

Programming Notes

This amount is available to the kernel for information only. It will be passed verbatim (if not

altered by the kernel) to the Data Port in any scratch space access messages, but the Data Port

will ignore it.

6

Project:

BDW

31:25 Reserved

Project: BDW

Format: MBZ

24:20 Dispatch GRF Start Register For URB Data

Project: BDW

Format: GRFRegister[4:0]

 Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the

thread payload. This field is ignored if DS Function Enable is DISABLED.

Value Name Description

[0,31] indicating GRF [R0, R31]

19:18 Reserved

Project: BDW

Format: MBZ

17:11 Patch URB Entry Read Length

Project: BDW

Format: U7

 Specifies how much data (in 256-bit units) is to be read from the Patch URB entry and passed

in the DS thread payload. This field is ignored if DS Function Enable is DISABLED.

Value Name

[0,64]

10 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

70 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DS
9:4 Patch URB Entry Read Offset

Project: BDW

Format: U6

 Specifies the offset (in 256-bit units) at which Patch URB data is to be read from the URB

before being included in the thread payload. This field is ignored if DS Function Enable is

DISABLED.

Value Name

[0,63]

3:0 Reserved

Project: BDW

Format: MBZ

7

Project:

BDW

31 Reserved

Project: BDW

Format: MBZ

30 Reserved

Project: BDW

Format: MBZ

29:21 Maximum Number of Threads

Project: BDW

Format: U9-1 Thread Count

 Specifies the maximum number of simultaneous DS threads allowed to be active. Used to avoid

using up the scratch space. Programming the value of the max threads over the number of

threads based off number of threads supported in the execution units may improve

performance since the architecture allows threads to be buffered between the check for max

threads and the actual dispatch into the EU. Programming the max values to a number less than

the number of threads supported in the execution units may reduce performance. This field is

ignored if DS Function Enable is DISABLED.

Value Name Description

[0,503] indicating thread count of [1,504]

20:11 Reserved

Project: BDW

Format: MBZ

10 Statistics Enable

Project: BDW

Format: Enable

If ENABLED, this FF unit will engage in statistics gathering. Refer to the Statistics Gathering

section.

If DISABLED, statistics information associated with this FF stage will be left unchanged.

This field is ignored if DS Function Enable is DISABLED.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 71

3DSTATE_DS
9:5 Reserved

Project: BDW

Format: MBZ

4 Reserved

Project: BDW

Format: MBZ

3 SIMD8 Dispatch Enable

Project: BDW

Format: Enable

 This field is used to specify how DS threads are dispatched. The setting of this field must agree

with how the DS kernel was compiled. If ENABLED, SIMD8 DS thread dispatches are performed.

The Single Domain Point Dispatch field is ignored. If DISABLED, SIMD4x2 thread dispatches

are performed. The Single Domain Point Dispatch field can be used to force single domain

point dispatches.

2 Compute W Coordinate Enable

Project: BDW

Format: Enable

 If ENABLED, the DS unit will (for each domain point) compute W = 1 - (U + V) and pass the

result as a floating point value in the DS thread payload. If DISABLED, 0.0 will be passed. This

field must only be ENABLED for the tessellation of TRI domains, where UVW coordinates are

required. This field must be DISABLED for other domains (as they only require UV coordinates)

otherwise the computed W coordinate is UNDEFINED. This field is ignored if DS Function

Enable is DISABLED.

1 Cache Disable

Project: BDW

Format: Disable

 This bit controls the operation of the DS Cache. This field is ignored if DS Function Enable is

DISABLED. If the DS Cache is DISABLED and the DS Function is ENABLED, the DS Cache is not

used and all incoming domain points will be passed to DS threads. If the DS Cache is ENABLED

and the DS Function is ENABLED, incoming domain points that do not hit in the DS Cache will

be passed to DS threads. The DS Cache is invalidated whenever the DS Cache becomes

DISABLED , whenever the DS Function Enable toggles, and between patches.

Workaround Project

 Command Reference: Instructions

72 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DS
0 Function Enable

Project: BDW

Format: Enable

 If ENABLED, DS threads will be spawned to process incoming domain points which miss in the

DS cache. If DISABLED, the DS stage goes into pass-through mode and performs no specific

processing. This field is always used.

Programming Notes

The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw

commands can only be issued if all three stages are enabled or all three stages are disabled,

otherwise the behavior is UNDEFINED.

8

Project:

BDW

31:28 Reserved

Project: BDW

Format: MBZ

27 Reserved

Project: BDW

26:21 Vertex URB Entry Output Read Offset

Project: BDW

Format: U6

 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB by

SBE.

Value Name

[0,63]

20:16 Vertex URB Entry Output Length

Project: BDW

Format: U5

 Specifies the amount of URB data written for each Vertex URB entry, in 256-bit register

increments.

Value Name

[1,16]

Programming Notes

This length does not include the vertex header.

15:8 User Clip Distance Clip Test Enable Bitmask

Project: BDW

Format: Mask[8]

 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial

accept / must clip determination needs to be made. DX10 allows simultaneous use of

ClipDistance and Cull Distance test of up to 8 distances.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 73

3DSTATE_DS
7:0 User Clip Distance Cull Test Enable Bitmask

Project: BDW

Format: Mask[8]

 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial

accept determination needs to be made (does not cause a must clip). DX10 allows simultaneous

use of ClipDistance and Cull Distance test of up to 8 distances.

 Command Reference: Instructions

74 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the Gather Pool for Gather Buffers.

Programming Notes

This command must only be programmed when resource streamer is enabled thru batch buffer start and

MI_RS_CONTROL has not disabled resource streamer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

 GFXPIPE_3D

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name

2h DWORD_COUNT_n [Default]

1..2

Project:

BDW

63:48 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 75

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC
47:13 Dx9 Constant Buffer Pool Base Address

Project: BDW

Format: GraphicsAddress[47:13]Dx9_Constant_Buffer_Pool

 Specifies the base address of the Dx9 Constant Buffer pool.

12:11 Reserved

Project: BDW

Format: MBZ

10 Dx9 Constant Buffer Pool Enable

Project: BDW

Format: Enable

 When this bit is set it enables HW Dx9 constants buffers. When this bit is cleared it disables

HW Dx9 constant buffers, the local bits for the constant buffers are cleared and the buffers will

not be save or restored as part of context.

9:7 Reserved

Project: BDW

Format: MBZ

6:0 Surface Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for this surface.

Programming Notes

Bit 2 is not programmable and is always zero.

3

Project:

BDW

31:13 Dx9 Constant Buffer Pool Buffer Size

Project: BDW

Format: U19

This field specifies the size of the buffer in 8K pages. Any access which straddle or go past the

end of the buffer will return 0.

Note that BufferSize=0 indicates that there is no valid data in the buffer.

Restriction

Programming size of zero is illegal in the case that the pool is enabled.

12:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

76 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTB_PS

3DSTATE_DX9_CONSTANTB_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets a DX9 constant Boolean register for PS.

Programming Notes

 The 3DSTATE_DX9_CONSTANTB_PS is a variable length command.

 Programming this command in batch buffer requires that all float, integer and boolean constants

initialized prior to any commands or events that cause the constants to be written to memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 3Eh 3DSTATE_DX9_CONSTANTB_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name

0h [Default]

0h-10h Excludes DWord (0,1)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 77

3DSTATE_DX9_CONSTANTB_PS
1 31:16 Reserved

Project: All

Format: MBZ

15 Global Constant Register

Project: All

Format: U1

 When this bit is set the global constant register set will be updated. When this bit is clear the

local constant register set will be updated.

14:4 Reserved

Project: All

Format: MBZ

3:0 Constant Register Index

Project: All

Format: U4

 This field specifies the index of 1st boolean to be updated.

2..n 31:0 Entry

Format: DX9_CONSTANTB_ENTRY

 The nth boolean to be updated.

 Command Reference: Instructions

78 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTB_VS

3DSTATE_DX9_CONSTANTB_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets a DX9 constant Boolean register for PS.

Programming Notes

 The 3DSTATE_DX9_CONSTANTB_VS is a variable length command.

 Programming this command in batch buffer requires that all float, integer and boolean constants

initialized prior to any commands or events that cause the constants to be written to memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 3Dh 3DSTATE_DX9_CONSTANTB_VS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2

Value Name

0h [Default]

0h-10h Excludes DWord (0,1)

1 31:16 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 79

3DSTATE_DX9_CONSTANTB_VS
15 Global Constant Register

Format: U1

 When this bit is set the global constant register set will be updated. When this bit is clear the

local constant register set will be updated.

14:4 Reserved

Format: MBZ

3:0 Constant Register Index

Format: U4

 This field specifies the index of 1st boolean to be updated.

2..n 31:0 Entry

Format: DX9_CONSTANTB_ENTRY

 The nth boolean to be updated.

 Command Reference: Instructions

80 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTF_PS

3DSTATE_DX9_CONSTANTF_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets one or more DX9 constant float registers for PS.

Programming Notes

 The 3DSTATE_DX9_CONSTANTF_PS is a variable length command.

 Programming this command in batch buffer requires that all float, integer and boolean constants

initialized prior to any commands or events that cause the constants to be written to memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 3Ah 3DSTATE_DX9_CONSTANTF_PS

Format: OpCode

15:11 Reserved

Format: MBZ

10:0 DWord Length

Format: =n Total Length - 2

Value Name

1h Excludes DWord (0,1) [Default]

1h-400h multiples of 4

1 31:16 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 81

3DSTATE_DX9_CONSTANTF_PS
15 Global Constant Register

Format: U1

 When this bit is set the global constant register set will be updated. When this bit is clear the

local constant register set will be updated.

14:8 Reserved

Format: MBZ

7:0 Constant Register Index

Format: U8

 This field specifies the index of 1st 4 component float to be updated.

2..n 127:0 Entry

Format: DX9_CONSTANTF_ENTRY

 The four components of the nth float to be updated.

 Command Reference: Instructions

82 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTF_VS

3DSTATE_DX9_CONSTANTF_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets one or more DX9 constant float registers for VS.

Programming Notes

 The 3DSTATE_DX9_CONSTANTF_VS is a variable length command.

 Programming this command in batch buffer requires that all float, integer and boolean constants

initialized prior to any commands or events that cause the constants to be written to memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 39h 3DSTATE_DX9_CONSTANTF_VS

Format: OpCode

15:11 Reserved

Format: MBZ

10:0 DWord Length

Format: =n Total Length - 2

Value Name

1h Excludes DWord (0,1) [Default]

1h-400h multiples of 4

1 31:16 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 83

3DSTATE_DX9_CONSTANTF_VS
15 Global Constant Register

Format: U1

 When this bit is set the global constant register set will be updated. When this bit is clear the

local constant register set will be updated.

14:8 Reserved

Format: MBZ

7:0 Constant Register Index

Format: U8

 This field specifies the index of 1st 4 component float to be updated.

2..n 127:0 Entry

Format: DX9_CONSTANTF_ENTRY

 The four components of the nth float to be updated.

 Command Reference: Instructions

84 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTI_PS

3DSTATE_DX9_CONSTANTI_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets one or more DX9 constant integer registers for PS.

Programming Notes

 The 3DSTATE_DX9_CONSTANTI_PS is a variable length command.

 Programming this command in batch buffer requires that all float, integer and boolean constants

initialized prior to any commands or events that cause the constants to be written to memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 3Ch 3DSTATE_DX9_CONSTANTI_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2

Value Name Description

1h [Default] Excludes DWord (0,1)

0h-80h multiples of 4

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 85

3DSTATE_DX9_CONSTANTI_PS
15 Global Constant Register

Project: All

Format: U1

 When this bit is set the global constant register set will be updated. When this bit is clear the

local constant register set will be updated.

14:5 Reserved

Project: All

Format: MBZ

4:0 Constant Register Index

Project: All

Format: U5

 This field specifies the index of 1st 4 component integer to be updated.

2..n 127:0 Entry

Format: DX9_CONSTANTI_ENTRY

 The four components of the nth float to be updated.

 Command Reference: Instructions

86 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_CONSTANTI_VS

3DSTATE_DX9_CONSTANTI_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets one or more DX9 constant integer registers for PS.

Programming Notes

 The 3DSTATE_DX9_CONSTANTI_VS is a variable length command.

 Programming this command in batch buffer requires that all float, integer and boolean constants

initialized prior to any commands or events that cause the constants to be written to memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 3Bh 3DSTATE_DX9_CONSTANTI_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2

Value Name Description

0h [Default] Excludes DWord (0,1)

0h-80h multiples of 4

1 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 87

3DSTATE_DX9_CONSTANTI_VS
15 Global Constant Register

Project: All

Format: U1

 When this bit is set the global constant register set will be updated. When this bit is clear the

local constant register set will be updated.

14:5 Reserved

Project: All

Format: MBZ

4:0 Constant Register Index

Project: All

Format: U5

 This field specifies the index of 1st 4 component integer to be updated.

2..n 127:0 Entry

Format: DX9_CONSTANTI_ENTRY

 The four components of the nth float to be updated.

 Command Reference: Instructions

88 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_GENERATE_ACTIVE_PS

3DSTATE_DX9_GENERATE_ACTIVE_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_DX9_GENERATE_ACTIVE_PS command is used to generate fixed functions' DX9 Constant Buffer. A

DX9 Constant register is made active by writing it out to the constant buffer.

Programming Notes

Restriction: The global and local buffers are not initialized after reset. Any data written without being initialized

will be undefined. DX9 constant buffers are written due to context save/restore or the Generate Active

Command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n

 Total Length - 2

1 31:24 Reserved

Project: All

Format: MBZ

23:13 Pointer to PS Constant Buffer

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 89

3DSTATE_DX9_GENERATE_ACTIVE_PS

Project: All

Format: ConstantBufferOffset[23:13]BINDING_TABLE_STATE*

 Specifies the 8KB aligned address offset of the PS function's Dx9 constant buffer. This offset is

relative to the DX9 Constant buffer Base Address.

12 DX9 Enable

Project: All

Format: Enable

Format: U1

When this bit is set, the Resource Streamer will generate the PS constant buffer according to the

DX9 rules:

1. Valid local register are made active.

2. Global register becomes active, unless the corresponding local register is valid.

3. Local register valids are reset.

When this bit is cleared, the Resource Streamer will generate the PS constant buffer according to

the DX8 rules:

1. Global register become active.

2. Local register valids are reset.

Programming Notes

In DX8 mode software will set all constants as globals, even ones locally defined within a

shader.

11 Clamp Enable

Project: All

Format: Enable

Format: U1

 When this bit is set, the Resource Streamer will generate the PS constant buffer with the global

values clamped to [-1,1]. When this bit is cleared, the Resource Streamer will generate the PS

constant buffer without the global value clamped.

Programming Notes

The clamping only affects the values written out to the constant buffer and not the on-die

registers.

10:8 Reserved

Project: BDW

Format: MBZ

7:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

90 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_GENERATE_ACTIVE_VS

3DSTATE_DX9_GENERATE_ACTIVE_VS
Project: BDW

Source: RenderCS

Length Bias: 2

The 3DSTATE_DX9_GENERATE_ACTIVE_VS command is used to generate fixed functions' DX9 Constant Buffer.

A DX9 Constant register is made active by writing it out to the constant buffer.

Programming Restriction:The global and local buffers are not initialized after reset. Any data written without

being initialized will be undefined. DX9 constant buffers are written due to context save/restore or the

Generate Active Command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:24 Reserved

Format: MBZ

23:13 Pointer to VS Constant Buffer

Format: ConstantBufferOffset[23:13]

 Specifies the 8KB aligned address offset of the VS function's Dx9 constant buffer. This offset is

relative to the DX9 Constant buffer Base Address.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 91

3DSTATE_DX9_GENERATE_ACTIVE_VS
12 DX9 Enable

Format: Enable

When this bit is set, the Resource Streamer will generate the VS constant buffer according to the

DX9 rules:

1. Valid local register are made active.

2. Global register becomes active, unless the corresponding local register is valid.

3. Local register valids are reset.

When this bit is cleared, the Resource Streamer will generate the VS constant buffer according to

the DX8 rules:

1. Global register become active.

2. Local register valids are reset.

Programming Notes

In DX8 mode software will set all constants as globals, even ones locally defined within a

shader.

11 Clamp Enable

Format: Enable

 When this bit is set, the Resource Streamer will generate the VS constant buffer with the global

values clamped to [-1,1]. When this bit is cleared, the Resource Streamer will generate the VS

constant buffer without the global value clamped.

Programming Notes

The clamping only affects the values written out to the constant buffer and not the on-die

registers.

10:8 Reserved

Project: BDW

Format: MBZ

7:0 Reserved

Format: MBZ

 Command Reference: Instructions

92 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_LOCAL_VALID_PS

3DSTATE_DX9_LOCAL_VALID_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets the local valid bits for the DX9 Constant Buffer

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 40h 3DSTATE_DX9_LOCAL_VALID_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 9h Excludes Dword (0,1)

Project: BDW

Format: =n Total Length - 2

1..8 31:0 Local ConstantF Valid Bits

Project: All

Format: U32

 Each bit field when set indicates that the corresponding local register is valid. When the bit is

clear it indicates the local register is invalid.

9 31:0 Local ConstantI Valid Bits

Project: BDW

Format: U32

 Each bit field when set indicates that the corresponding local register is valid. When the bit is

clear it indicates the local register is invalid.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 93

3DSTATE_DX9_LOCAL_VALID_PS
10 31:16 Reserved

Project: All

Format: MBZ

15:0 Local ConstantB Valid Bits

Project: BDW

Format: U16

 Each bit field when set indicates that the corresponding local register is valid. When the bit is

clear it indicates the local register is invalid.

 Command Reference: Instructions

94 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_DX9_LOCAL_VALID_VS

3DSTATE_DX9_LOCAL_VALID_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets the local valid bits for the DX9 Constant Buffer

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 3Fh 3DSTATE_DX9_LOCAL_VALID_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 9h Excludes DWord (0,1)

Project: BDW

Format: =n Total Length - 2

1..8 31:0 Local ConstantF Valid Bits

Project: All

Format: U32

 Each bit field when set indicates that the corresponding local register is valid. When the bit is

clear it indicates the local register is invalid.

9 31:0 Local ConstantI Valid Bits

Project: BDW

Format: U32

 Each bit field when set indicates that the corresponding local register is valid. When the bit is

clear it indicates the local register is invalid.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 95

3DSTATE_DX9_LOCAL_VALID_VS
10

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Local ConstantB Valid Bits

Project: BDW

Format: U16

 Each bit field when set indicates that the corresponding local register is valid. When the bit is

clear it indicates the local register is invalid.

 Command Reference: Instructions

96 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_DS

3DSTATE_GATHER_CONSTANT_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command uses the constant buffer binding table entries to reference constant buffer surface states for the

DS unit. The constant data in these is gathered and packed according to a gather table contained in this

command.

Programming Notes

The HW generated binding table must be enabled to use this command.

The constant buffer block (group of aligned 16 binding table entries) must be set before this command is

issued.

If the surface type is NULL, any fetch using the surface state base address is not bound by the size of the

surface state and the fetch still occurs.

The length of the gather table is derived from the total length of the command. The command length is in

DWords, but the gather table entries are 16 bits in length. If there is an unused odd entry at the end of the

command the channel mask should be set to all 0s.

When a 3DSTATE_GATHER_CONSTANT_* command is used there must be a matching 3DSTATE_CONSTANT_*.

Furthermore the 3DSTATE_CONSTANT_* must occur in the same order as the 3DSTATE_GATHER_CONSTANT_*.

For example if a 3DSTATE_GATHER_CONSTANT_VS occurs before a 3DSTATE_GATHER_CONSTANT_PS, then the

3DSTATE_CONSTANT_VS must occur before the 3DSTATE_CONSTANT_PS.

If Gather pool is enabled, there must be a corresponding 3DSTATE_GATHER_CONSTANT command with any

3DSTATE_CONSTANT for any particular shader. To avoid any update to the Gather pool, and yet program the

3DSTATE_CONSTANT for a particular shader, send a 3DSTATE_GATHER_CONSTANT command with all valid bits

set to zero.

The following commands must be executed after any 3DSTATE_GATHER_CONSTANT_* command that has

Constant Buffer Valid greater than zero: •(N times, mininum number is 4) MI_RS_STORE_DATA_IMM –To force

engine idle before executing the next instruction. Write must occur to address that will not corrupt memory:

•Resource Streamer Flush = 1

•3DSTATE_GATHER_CONSTANT_* (Ensures correct timing of sync between resource streamer and render

pipeline) •The Constant Buffer Valid field should be zero and the Dword length equal to 1h.

 •3DSTATE_CONSTANT_*: •All values match the previous 3DSTATE_CONSTANT_*

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 97

3DSTATE_GATHER_CONSTANT_DS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 37h 3DSTATE_GATHER_CONSTANT_DS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

1 DWORD_COUNT_n [Default] excludes DWords 0,1

[1,128] Range 1-128 Entries

1 31:16 Constant Buffer Valid

Format: U16

 This field specifies which of the 16 constant buffers are used in the push constant gather. If a bit

is set it indicates the corresponding constant buffer is used. If a bit is clear it indicates the

corresponding constant buffer is not used. If this field is zero it indicate that the gather buffer is

not used.

15:12 Constant Buffer Binding Table Block

Format: U4

 This field specifies the 16 entry block constant buffer in the binding table. The constant buffer

entry block must be aligned on a 16 entry boundary.

11:2 Reserved

Format: MBZ

1 Reserved

Project: BDW

Format: MBZ

0 Reserved

Format: MBZ

2 31:23 Reserved

Format: MBZ

 Command Reference: Instructions

98 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_DS
22:6 Gather Buffer Offset

Format: GatherBufferOffset[22:6]

 This field specifies the offset of the gather buffer within the Gather Pool

Programming Notes

SW increments the offset by the size of the gather buffer in 512 bit units for each gather buffer

generated.

5 Constant Buffer Dx9 Generate Stall

Project: BDW

Format: Enable

 When this bit is set the resource streamer will wait for the Dx9 constant buffer generator to be

done before issuing this command to ensure buffer synchronization.

4 Reserved

Project: All

Format: MBZ

3 Reserved

Project: BDW

Format: MBZ

2:0 Reserved

Project: All

Format: MBZ

3..n 15:0 Entry

Format: GATHER_CONSTANT_ENTRY

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 99

3DSTATE_GATHER_CONSTANT_GS

3DSTATE_GATHER_CONSTANT_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command uses the constant buffer binding table entries to reference constant buffer surface states for GS

unit. The constant data in these is gathered and packed according to a gather table contained in this command.

Programming Notes

The HW generated binding table must be enabled to use this command.

The constant buffer block (group of aligned 16 binding table entries) must be set before this command is

issued.

If the surface type is NULL, any fetch using the surface state base address is not bound by the size of the

surface state and the fetch still occurs.

The length of the gather table is derived from the total length of the command. The command length is in

DWords, but the gather table entries are 16 bits in length. If there is an unused odd entry at the end of the

command the channel mask should be set to all 0s.

When a 3DSTATE_GATHER_CONSTANT_* command is used there must be a matching 3DSTATE_CONSTANT_*.

Furthermore the 3DSTATE_CONSTANT_* must occur in the same order as the 3DSTATE_GATHER_CONSTANT_*.

For example if a 3DSTATE_GATHER_CONSTANT_VS occurs before a 3DSTATE_GATHER_CONSTANT_PS, then the

3DSTATE_CONSTANT_VS must occur before the 3DSTATE_CONSTANT_PS.

If Gather pool is enabled, there must be a corresponding 3DSTATE_GATHER_CONSTANT command with any

3DSTATE_CONSTANT for any particular shader. To avoid any update to the Gather pool, and yet program the

3DSTATE_CONSTANT for a particular shader, send a 3DSTATE_GATHER_CONSTANT command with all valid bits

set to zero.

The following commands must be executed after any 3DSTATE_GATHER_CONSTANT_* command that has

Constant Buffer Valid greater than zero: •(N times, mininum number is 4) MI_RS_STORE_DATA_IMM –To force

engine idle before executing the next instruction. Write must occur to address that will not corrupt memory:

•Resource Streamer Flush = 1

•3DSTATE_GATHER_CONSTANT_* (Ensures correct timing of sync between resource streamer and render

pipeline) •The Constant Buffer Valid field should be zero and the Dword length equal to 1h.

 •3DSTATE_CONSTANT_*: •All values match the previous 3DSTATE_CONSTANT_*

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

 Command Reference: Instructions

100 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_GS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 35h 3DSTATE_GATHER_CONSTANT_GS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

1 DWORD_COUNT_n [Default] excludes DWords 0,1

[1,128] Range 1-128 Entries

1 31:16 Constant Buffer Valid

Format: U16

 This field specifies which of the 16 constant buffers are used in the push constant gather. If a bit

is set it indicates the corresponding constant buffer is used. If a bit is clear it indicates the

corresponding constant buffer is not used. If this field is zero it indicate that the gather buffer is

not used.

15:12 Constant Buffer Binding Table Block

Format: U4

 This field specifies the 16 entry block constant buffer in the binding table. The constant buffer

entry block must be aligned on a 16 entry boundary.

11:2 Reserved

Format: MBZ

1 Reserved

Project: BDW

Format: MBZ

0 Reserved

Format: MBZ

2 31:23 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 101

3DSTATE_GATHER_CONSTANT_GS
22:6 Gather Buffer Offset

Format: GatherBufferOffset[22:6]

 This field specifies the offset of the gather buffer within the Gather Pool.

Programming Notes

SW increments the offset by the size of the gather buffer in 512 bit units for each gather buffer

generated.

5 Constant Buffer Dx9 Generate Stall

Project: BDW

Format: Enable

 When this bit is set the resource streamer will wait for the Dx9 constant buffer generator to be

done before issuing this command to ensure buffer synchronization.

4 Reserved

Project: All

Format: MBZ

3 Reserved

Project: BDW

Format: MBZ

2:0 Reserved

Project: All

Format: MBZ

3..n 15:0 Entry

Format: GATHER_CONSTANT_ENTRY

 Command Reference: Instructions

102 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_HS

3DSTATE_GATHER_CONSTANT_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command uses the constant buffer binding table entries to reference constant buffer surface states for HS

unit. The constant data in these is gathered and packed according to a gather table contained in this command.

Programming Notes

The HW generated binding table must be enabled to use this command.

The constant buffer block (group of aligned 16 binding table entries) must be set before this command is

issued.

If the surface type is NULL, any fetch using the surface state base address is not bound by the size of the

surface state and the fetch still occurs.

The length of the gather table is derived from the total length of the command. The command length is in

DWords, but the gather table entries are 16 bits in length. If there is an unused odd entry at the end of the

command the channel mask should be set to all 0s.

When a 3DSTATE_GATHER_CONSTANT_* command is used there must be a matching 3DSTATE_CONSTANT_*.

Furthermore the 3DSTATE_CONSTANT_* must occur in the same order as the 3DSTATE_GATHER_CONSTANT_*.

For example if a 3DSTATE_GATHER_CONSTANT_VS occurs before a 3DSTATE_GATHER_CONSTANT_PS, then the

3DSTATE_CONSTANT_VS must occur before the 3DSTATE_CONSTANT_PS.

If Gather pool is enabled, there must be a corresponding 3DSTATE_GATHER_CONSTANT command with any

3DSTATE_CONSTANT for any particular shader. To avoid any update to the Gather pool, and yet program the

3DSTATE_CONSTANT for a particular shader, send a 3DSTATE_GATHER_CONSTANT command with all valid bits

set to zero.

The following commands must be executed after any 3DSTATE_GATHER_CONSTANT_* command that has

Constant Buffer Valid greater than zero: •(N times, mininum number is 4) MI_RS_STORE_DATA_IMM –To force

engine idle before executing the next instruction. Write must occur to address that will not corrupt memory:

•Resource Streamer Flush = 1

•3DSTATE_GATHER_CONSTANT_* (Ensures correct timing of sync between resource streamer and render

pipeline) •The Constant Buffer Valid field should be zero and the Dword length equal to 1h.

 •3DSTATE_CONSTANT_*: •All values match the previous 3DSTATE_CONSTANT_*

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 103

3DSTATE_GATHER_CONSTANT_HS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 36h 3DSTATE_GATHER_CONSTANT_HS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

1 DWORD_COUNT_n [Default] excludes DWords 0,1

[1,128] Range 1-128 Entries

1 31:16 Constant Buffer Valid

Format: U16

 This field specifies which of the 16 constant buffers are used in the push constant gather. If a bit

is set it indicates the corresponding constant buffer is used. If a bit is clear it indicates the

corresponding constant buffer is not used. If this field is zero it indicate that the gather buffer is

not used.

15:12 Constant Buffer Binding Table Block

Format: U4

 This field specifies the 16 entry block constant buffer in the binding table. The constant buffer

entry block must be aligned on a 16 entry boundary.

11:2 Reserved

Format: MBZ

1 Reserved

Project: BDW

Format: MBZ

0 Reserved

Format: MBZ

2 31:23 Reserved

Format: MBZ

 Command Reference: Instructions

104 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_HS
22:6 Gather Buffer Offset

Format: GatherBufferOffset[22:6]

 This field specifies the offset of the gather buffer within the Gather Pool.

Programming Notes

SW increments the offset by the size of the gather buffer in 512 bit units for each gather buffer

generated.

5 Constant Buffer Dx9 Generate Stall

Project: BDW

Format: Enable

 When this bit is set the resource streamer will wait for the Dx9 constant buffer generator to be

done before issuing this command to ensure buffer synchronization.

4 Reserved

Project: All

Format: MBZ

3 Reserved

Project: BDW

Format: MBZ

2:0 Reserved

Project: All

Format: MBZ

3..n 15:0 Entry

Format: GATHER_CONSTANT_ENTRY

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 105

3DSTATE_GATHER_CONSTANT_PS

3DSTATE_GATHER_CONSTANT_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command uses the constant buffer binding table entries to reference constant buffer surface states for PS

unit. The constant data in these is gathered and packed according to a gather table contained in this command.

Programming Notes

The HW generated binding table must be enabled to use this command.

The constant buffer block (group of aligned 16 binding table entries) must be set before this command is

issued.

If the surface type is NULL, any fetch using the surface state base address is not bound by the size of the

surface state and the fetch still occurs.

The length of the gather table is derived from the total length of the command. The command length is in

DWords, but the gather table entries are 16 bits in length. If there is an unused odd entry at the end of the

command the channel mask should be set to all 0s.

When a 3DSTATE_GATHER_CONSTANT_* command is used there must be a matching 3DSTATE_CONSTANT_*.

Furthermore the 3DSTATE_CONSTANT_* must occur in the same order as the 3DSTATE_GATHER_CONSTANT_*.

For example if a 3DSTATE_GATHER_CONSTANT_VS occurs before a 3DSTATE_GATHER_CONSTANT_PS, then the

3DSTATE_CONSTANT_VS must occur before the 3DSTATE_CONSTANT_PS.

If Gather pool is enabled, there must be a corresponding 3DSTATE_GATHER_CONSTANT command with any

3DSTATE_CONSTANT for any particular shader. To avoid any update to the Gather pool, and yet program the

3DSTATE_CONSTANT for a particular shader, send a 3DSTATE_GATHER_CONSTANT command with all valid bits

set to zero.

The following commands must be executed after any 3DSTATE_GATHER_CONSTANT_* command that has

Constant Buffer Valid greater than zero: •(N times, mininum number is 4) MI_RS_STORE_DATA_IMM –To force

engine idle before executing the next instruction. Write must occur to address that will not corrupt memory:

•Resource Streamer Flush = 1

•3DSTATE_GATHER_CONSTANT_* (Ensures correct timing of sync between resource streamer and render

pipeline) •The Constant Buffer Valid field should be zero and the Dword length equal to 1h.

 •3DSTATE_CONSTANT_*: •All values match the previous 3DSTATE_CONSTANT_*

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

 Command Reference: Instructions

106 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_PS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 38h 3DSTATE_GATHER_CONSTANT_PS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

1 DWORD_COUNT_n [Default] excludes DWords 0,1

[1,128] Range 1-128 Entries

1 31:16 Constant Buffer Valid

Format: U16

 This field specifies which of the 16 constant buffers are used in the push constant gather. If a bit

is set it indicates the corresponding constant buffer is used. If a bit is clear it indicates the

corresponding constant buffer is not used. If this field is zero it indicate that the gather buffer is

not used.

15:12 Constant Buffer Binding Table Block

Format: U4

 This field specifies the 16 entry block constant buffer in the binding table. The constant buffer

entry block must be aligned on a 16 entry boundary.

11:2 Reserved

Format: MBZ

1:0 Reserved

Project: BDW

Format: MBZ

2 31:23 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 107

3DSTATE_GATHER_CONSTANT_PS
22:6 Gather Buffer Offset

Format: GatherBufferOffset[22:6]

 This field specifies the offset of the gather buffer within the Gather Pool.

Programming Notes

SW increments the offset by the size of the gather buffer in 512 bit units for each gather buffer

generated.

5 Constant Buffer Dx9 Generate Stall

Project: BDW

Format: Enable

 When this bit is set the resource streamer will wait for the Dx9 constant buffer generator to be

done before issuing this command to ensure buffer synchronization.

4 Constant Buffer Dx9 Enable

Format: Enable

 When this bit is set it indicates that the constant buffer is a HW generated Dx9 constant buffer.

The resource streamer will wait for the Dx9 constant buffer generator to be done before issuing

this command to ensure buffer synchronization. Additionally the Dx9 constant buffers are a

single buffer but larger than 4KB. Internally the HW will treat the DX9 buffer as 2 constant

buffers. When this bit is enable only the 1st constant buffer valid bit is set. The 2nd constant

buffer surface pointer will automatically be the 1st pointer + 4KB.

3 Reserved

Project: BDW

Format: MBZ

2:0 Reserved

Format: MBZ

3..n 15:0 Entry

Format: GATHER_CONSTANT_ENTRY

 Command Reference: Instructions

108 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_VS

3DSTATE_GATHER_CONSTANT_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command uses the constant buffer binding table entries to reference constant buffer surface states for VS

unit. The constant data in these is gathered and packed according to a gather table contained in this command.

Programming Notes

The HW generated binding table must be enabled to use this command.

The constant buffer block (group of aligned 16 binding table entries) must be set before this command is

issued.

If the surface type is NULL, any fetch using the surface state base address is not bound by the size of the

surface state and the fetch still occurs.

The length of the gather table is derived from the total length of the command. The command length is in

DWords, but the gather table entries are 16 bits in length. If there is an unused odd entry at the end of the

command the channel mask should be set to all 0s.

When a 3DSTATE_GATHER_CONSTANT_* command is used there must be a matching 3DSTATE_CONSTANT_*.

Furthermore the 3DSTATE_CONSTANT_* must occur in the same order as the 3DSTATE_GATHER_CONSTANT_*.

For example if a 3DSTATE_GATHER_CONSTANT_VS occurs before a 3DSTATE_GATHER_CONSTANT_PS, then the

3DSTATE_CONSTANT_VS must occur before the 3DSTATE_CONSTANT_PS.

If Gather pool is enabled, there must be a corresponding 3DSTATE_GATHER_CONSTANT command with any

3DSTATE_CONSTANT for any particular shader. To avoid any update to the Gather pool, and yet program the

3DSTATE_CONSTANT for a particular shader, send a 3DSTATE_GATHER_CONSTANT command with all valid bits

set to zero.

The following commands must be executed after any 3DSTATE_GATHER_CONSTANT_* command that has

Constant Buffer Valid greater than zero: •(N times, mininum number is 4) MI_RS_STORE_DATA_IMM –To force

engine idle before executing the next instruction. Write must occur to address that will not corrupt memory:

•Resource Streamer Flush = 1

•3DSTATE_GATHER_CONSTANT_* (Ensures correct timing of sync between resource streamer and render

pipeline) •The Constant Buffer Valid field should be zero and the Dword length equal to 1h.

 •3DSTATE_CONSTANT_*: •All values match the previous 3DSTATE_CONSTANT_*

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 109

3DSTATE_GATHER_CONSTANT_VS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 34h 3DSTATE_GATHER_CONSTANT_VS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

0 DWORD_COUNT_n [Default] excludes DWords 0,1

[1,128] Range 1-128 Entries

1 31:16 Constant Buffer Valid

Format: U16

 This field specifies which of the 16 constant buffers are used in the push constant gather. If a bit

is set it indicates the corresponding constant buffer is used. If a bit is clear it indicates the

corresponding constant buffer is not used. If this field is zero it indicate that the gather buffer is

not used.

15:12 Constant Buffer Binding Table Block

Format: U4

 This field specifies the 16 entry block constant buffer in the binding table. The constant buffer

entry block must be aligned on a 16 entry boundary.

11:2 Reserved

Format: MBZ

1:0 Reserved

Project: BDW

Format: MBZ

2 31:23 Reserved

Format: MBZ

 Command Reference: Instructions

110 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_CONSTANT_VS
22:6 Gather Buffer Offset

Format: GatherBufferOffset[22:6]

 This field specifies the offset of the gather buffer within the Gather Pool.

Programming Notes

SW increments the offset by the size of the gather buffer in 512 bit units for each gather buffer

generated.

5 Constant Buffer Dx9 Generate Stall

Project: BDW

Format: Enable

 When this bit is set the resource streamer will wait for the Dx9 constant buffer generator to be

done before issuing this command to ensure buffer synchronization.

4 Constant Buffer Dx9 Enable

Format: Enable

 When this bit is set it indicates that the constant buffer is a HW generated Dx9 constant buffer.

The resource streamer will wait for the Dx9 constant buffer generator to be done before issuing

this command to ensure buffer synchronization. Additionally the Dx9 constant buffers are a

single buffer but larger than 4KB. Internally the HW will treat the DX9 buffer as 2 constant

buffers. When this bit is enable only the 1st constant buffer valid bit is set. The 2nd constant

buffer surface pointer will automatically be the 1st pointer + 4KB.

3 Reserved

Project: BDW

Format: MBZ

2:0 Reserved

Format: MBZ

3..n 15:0 Entry

Format: GATHER_CONSTANT_ENTRY

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 111

3DSTATE_GATHER_POOL_ALLOC

3DSTATE_GATHER_POOL_ALLOC
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the Gather Pool for Gather Buffers.

Programming Notes

If the Gather Constant Pool is enabled and RS is enabled, then for each 3DSTATE_CONSTANT_* command there

must be a corresponding 3DSTATE_GATHER_CONSTANT_* command. If gather pool is enabled, then Buffer 1

of the 3DSTATE_CONSTANT command address will be an offset from the Gather Pool Base Address.

The gather constants can only be enabled if the binding table generator is also enabled. This command must

only be programmed when resource streamer is enabled to parse commands within a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ah 3DSTATE_GATHER_POOL_ALLOC

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

Value Name

2h DWORD_COUNT_n [Default]

1..2

Project:

BDW

63:12 Gather Pool Base Address

Project: BDW

Format: GraphicsAddress[63:12]Gather_Pool

 GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

 Command Reference: Instructions

112 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GATHER_POOL_ALLOC
11 Gather Pool Enable

Project: BDW

Format: Enable

 When this bit is set it enables HW gathering of push constants. When this bit is cleared it

disables HW gathering of push constants.

10:7 Reserved

Project: BDW

Format: MBZ

6:0 Memory Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for this surface.

Programming Notes

Bit 2 is not programmable and is always zero.

3

Project:

BDW

31:12 Gather Pool Buffer Size

Project: BDW

Format: U20

 This field specifies the size of the buffer in 4K pages. Any access which straddle or go past the

end of the buffer will return undefined data. Note that BufferSize=0 indicates that there is no

valid data in the buffer.

Value Name

[0,1048575]

Restriction

Programming size of zero is illegal in the case that the pool is enabled.

11:0 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 113

3DSTATE_GS

3DSTATE_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 Controls the GS stage hardware.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 11h 3DSTATE_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 8h Excludes DWord (0,1)

Format: =n

1..2 63:6 Kernel Start Pointer

Project: All

Format: InstructionBaseOffset[63:6]Kernel

 This field specifies the starting location (1st GEN4 core instruction) of the kernel program run by

threads spawned by this FF unit. It is specified as a 64-byte-granular offset from the Instruction

Base Address.

5:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

114 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GS
3 31 Single Program Flow

 Specifies the initial condition of the kernel program as either a single program flow (SIMDnxm

with m = 1) or as multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA

Execution Environment.

Value Name Description

0h Disable Single Program Flow disabled

1h Enable Single Program Flow enabled

30 Vector Mask Enable

Format: U1 Enumerated Type

 Upon subsequent GS thread dispatches, this bit is loaded into the EU's Vector Mask Enable

(VME, cr0.0[3]) thread state. Refer to EU documentation for the definition and use of VME state.

Value Name Description

0h Dmask The EU will use the Dispatch Mask (supplied by the GS stage) for instruction

execution.

1h Vmask The EU will use the Vector Mask (derived from Dispatch Mask) for instruction

execution.

Programming Notes

Under normal conditions SW shall specify DMask, as the GS stage will provide a Dispatch Mask

appropriate to SIMD4x2 or SIMD8 thread execution (as a function of dispatch mode). E.g., for

SIMD4x2 execution, the GS stage will generate a Dispatch Mask that is equal to what the EU

would use as the Vector Mask. For SIMD8 execution there is no known usage model for use of

Vector Mask (as there is for PS shaders).

29:27 Sampler Count

Format: U3

 Specifies how many samplers (in multiples of 4) the geometry shader kernel uses. Used only for

prefetching the associated sampler state entries.

Value Name Description

0h No Samplers No Samplers used

1h 1-4 Samplers Between 1 and 4 samplers used

2h 5-8 Samplers Between 5 and 8 samplers used

3h 9-12 Samplers Between 9 and 12 samplers used

4h 13-16 Samplers Between 13 and 16 samplers used

5h-7h Reserved

26 Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 115

3DSTATE_GS
25:18 Binding Table Entry Count

Format: U8

 When HW Generated Binding Table is disabled: Specifies how many binding table entries the

kernel uses. Used only for prefetching of the binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be wise to set this field to

zero to avoid prefetching too many entries and thrashing the state cache. When HW Generated

Binding Table bit is enabled: This field indicates which cache lines (512bit units - 32 Binding

Table Entry section) should be fetched. Each bit in this field corresponds to a cache line. Only the

1st 4 non-zero Binding Table entries of each 32 Binding Table entry section prefetched will have

its surface state prefetched.

Programming Notes

When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be

generated at JIT time.

17 Thread Dispatch Priority

 Specifies the priority of the thread for dispatch.

Value Name Description

0h Normal Normal thread dispatch priority

1h High High thread dispatch priority

16 Floating Point Mode

Project: All

 Specifies the initial floating point mode used by the dispatched thread.

Value Name Description

0h IEEE-754 Use IEEE-754 Rules

1h Alternate Use alternate rules

15:14 Reserved

Format: MBZ

13 Illegal Opcode Exception Enable

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment.

12 Accesses UAV

Format: Enable

 This field must be set when GS has a UAV access.

Programming Notes

This field must not be set when GS Function Enable is disabled.

11 Mask Stack Exception Enable

Format: Enable

 This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution Environment.

 Command Reference: Instructions

116 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GS
10:8 Reserved

Format: MBZ

7 Software Exception Enable

Format: Enable

 This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA

Execution Environment.

6 Reserved

Format: MBZ

5:0 Expected Vertex Count

Format: U6

 Specifies the number of vertices per input object expected by the GS thread. Input topologies

not matching this expect value are discarded. Note that DiscardAdjacency is also considered

(e.g., if the value programmed is 3 and DiscardAdjacency is set, TRILIST_ADJ and TRISTRIP_ADJ

topologies are not discarded as they will pass 3 vertices/object to the GS threads).

Value Name

[1,32]

4..5 63:10 Scratch Space Base Pointer

Format: GeneralStateOffset[63:10]ScratchSpace

 Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-byte

aligned offset from the General State Base Address. If required, each thread spawned by this FF

unit will be allocated some portion of this space, as specified by Per-Thread Scratch Space. The

computed offset of the thread-specific portion will be passed in the thread payload as Scratch

Space Offset. The thread is expected to utilize "stateless" DataPort read/write requests to access

scratch space, where the DataPort will cause the General State Base Address to be added to the

offset passed in the request header. This field is ignored if VS Function Enable is DISABLED.

9:4 Reserved

Format: MBZ

3:0 Per-Thread Scratch Space

Format: U4 power of 2 Bytes over 1K Bytes

 Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space Base

Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space

size without exceeding the driver-allocated scratch space.

Value Name Description

[0,11] indicating [1K Bytes, 2M Bytes]

6 31 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 117

3DSTATE_GS
30:29 Reserved

Project: BDW

Format: MBZ

28:23 Output Vertex Size

Project: All

Format: U6

[0,63] indicating [1,64] 16B units

Specifies the size of each vertex stored in the GS output entry (following any Control Header

data) as a number of 128-bit units (minus one).

Programming Notes

Programming Restrictions: The vertex size must be programmed as a multiple of 32B units with

the following exception: Rendering is disabled (as per SOL stage state) and the vertex size

output by the GS thread is 16B. If rendering is enabled (as per SOL state) the vertex size must

be programmed as a multiple of 32B units. In other words, the only time software can program

a vertex size with an odd number of 16B units is when rendering is disabled.

22:17 Output Topology

Project: All

Format: 3DPrimType

 This field specifies the topology type (3DPrimType) to be associated with GS-thread output

vertices (if any).

16:11 Vertex URB Entry Read Length

Project: All

 Specifies the amount of URB data read and passed in the thread payload for each Vertex URB

entry, in 256-bit register increments.

Programming Notes

Programming Restriction:This field must be a non-zero value if Include Vertex Handles is

cleared to zero.

10 Include Vertex Handles

Project: All

Format: Boolean

 If set, all the input Vertex URB handles are included in the payload. These are referred to as "pull

model" URB handles, as the thread will use them to read from the URB.

Programming Notes

Programming Restriction: This field must be set if Vertex URB Entry Read Length is cleared to

zero.

 Command Reference: Instructions

118 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GS
9:4 Vertex URB Entry Read Offset

Project: All

Format: U6

 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB before

being included in the thread payload. This offset applies to all Vertex URB entries passed to the

thread.

3:0 Dispatch GRF Start Register For URB Data

Project: All

Format: U4

 Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the

thread payload.

Value Name Description

[0,15] indicating GRF [R0, R15]

Programming Notes

If Include Vertex Handles is enabled (pull or hybrid handles case), then

For simd4x2:

For DUAL_OBJECT dispatch mode this field should be:

(((2*numVerticesPerObject) + 8 - 1)/8) + 1

For SINGLE and DUAL_INSTANCE dispatch modes this field should be:

((numVerticesPerObject +8 - 1)/8) + 1

If Include Primitive ID is set, then add 1 to the value obtained by using the above

For simd8: For InstanceCount == 1: numVerticesPerObject + 2 For InstanceCount > 1: 3

7 31:24 Maximum Number of Threads

Project: BDW

Format: U8/2-1 Thread Count

 Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid

using up the scratch space. Programming the value of the max threads over the number of

threads based off number of threads supported in the execution units may improve performance

since the architecture allows threads to be buffered between the check for max threads and the

actual dispatch into the EU. Programming the max values to a number less than the number of

threads supported in the execution units may reduce performance.

Value Name Description

[3,251] indicating thread count of [8,504]

Programming Notes

Note that this "Maximum Number of Threads" field is different from the other FF stages in that

only an even number of threads.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 119

3DSTATE_GS
23:20 Control Data Header Size

Format: U4

 Specifies the number of 32B units of control data header located at the start of the GS URB

entry. The value 0 indicates there is no control data header, and Control Data Format is ignored.

Software must ensure that the Control Data Header Size is sufficient to accommodate the

maixumum number of vertices output by the GS thread. It is UNDEFINED for a GS thread to

report more output vertices than can be accomodated in a non-zero-sized header. (If the header

size is zero, by definition neither cut nor StreamID bits are defined.

Value Name

[0,8] 32B Units

19:15 Instance Control

Format: U5-1 #Instances

 Specifies the number of instances (minus one) for each input object. To avoid confusion, this

document uses the term "InstanceCount" to refer to InstanceControl+1, with a range of [1,32] If

InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely want to use

DUAL_INSTANCE mode for higher performance, but SINGLE mode is also supported. When

InstanceCount=1 (one instance per object), software can decide which dispatch mode to use.

DUAL_OBJECT mode would likely be the best choice for performance, followed by SINGLE mode.

DUAL_INSTANCE mode is not recommended but is supported.

Value Name Description

[0,31] Indicating [1,31] instances

14:13 Default Stream Id

Format: U2

 When the GS is enabled, unless the GS output entry contains StreamID bits in the control

header, this field specifies the default StreamID associated with any GS-thread output vertices.

When the GS is disabled, StreamID will be output as 0.

 Command Reference: Instructions

120 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GS
12:11 Dispatch Mode

Format: U2

 This field specifies how the GS unit dispatches multiple instances and/or multiple objects.

Value Name Description

Programming

Notes

0h Single Each thread shades a single instance of one object.

1h Dual

Instance

Each thread shades possibly two instances of one object.

If the InstanceCount is odd, a trailing dispatch of only

one instance will be made for each object received. Not

recommended if InstanceCount = 1, assuming a kernel

optimized for SINGLE or DUAL_OBJECT dispatch would

outperform a kernel compiled for DUAL_INSTANCE but

only passed one instance.

2h Dual

Object

Each thread shades one instance of possibly two objects.

The GS unit attempt to pair objects together into one

dispatch, but under some circumstances only one object

may be dispatched (as controlled by the DispatchMask

generated by the GS unit). Not valid for objects with

more than 16 vertices per object. Not valid if

InstanceCount > 1 (more than one instance per object).

3h SIMD8 Each thread shades up to 8 different objects or (if

InstanceCount >1) 8 instances of a single object.

Not valid for

objects with more

than 6 vertices per

object.

Programming Notes

The GS must be allocated at least two URB handles or behavior is UNDEFINED for Dual Instance

or Dual Object mode.

At least 8 URB entries must be allocated in order to use SIMD8 DispatchMode.

10 Statistics Enable

Format: Enable

 This bit controls whether GS-unit-specific statistics register(s) can be incremented.

Value Name Description

0h Disable GS_INVOCATIONS_COUNT and GS_PRIMITIVES_COUNT cannot increment

1h Enable GS_INVOCATIONS_COUNT and GS_PRIMITIVES_COUNT can increment

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 121

3DSTATE_GS
9:5 Invocations Increment Value

Format: U5

 Specifies how much to increment the GS_INVOCATIONS_COUNT for each instance of each

object. This control is provided to allow software to process multiple instances (from an API POV)

in a single kernel invocation. In SINGLE dispatch mode, the counter will increment by this value

for each dispatch (as it's only one instance of one object). In DUAL_INSTANCE mode, the counter

will be incremented by the value if only one instance is included in the dispatch (i.e., the last odd

instance), otherwise the counter will be incremented by twice this value. In DUAL_OBJECT

dispatch mode, the counter will be incremented by the value if only one object is included in the

dispatch (i.e., a forced dispatch of one object), otherwise the counter will be incremented by

twice this value.

Value Name Description

[0,31] indicating an increment of [1,32]

4 Include Primitive ID

Format: Boolean

 If set, R1 of the payload is written with Primitive ID value(s). If clear, these Primitive ID values are

not included in the payload R1.

3 Hint

Format: U1

 This state bit is simply passed in GS thread payloads for use by the GS kernel - it has no other

impact on hardware operation.

2 Reorder Mode

 This bit controls how vertices of triangle objects resulting from TRISTRIP[_ADJ][_REV] topologies

are [re]ordered when passed in the GS thread payload See Object Vertex Ordering table (below).

Value Name Description

0h LEADING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ] such that the

leading (first) vertices are in consecutive order starting at v0. A similar

reordering is performed on alternating triangles in a TRISTRIP_REV.

1h TRAILING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ] such that the

trailing (last) vertices are in consecutive order starting at v2. A similar

reordering is performed on alternating triangles in a TRISTRIP_REV.

Programming Notes

Workaround: reorder mode must be set to REORDER_LEADING and reordering must be done in

the Geometry shader.

 Command Reference: Instructions

122 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GS
1 Discard Adjacency

Format: Enable

When set, adjacent vertices will not be passed in the GS payload when objects with adjacency

are processed. Instead, only the non-adjacent vertices will be passed in the same fashion as the

without-adjacency form of the primitive. Software should set this bit whenever a GS kernel is

used that does not expect adjacent vertices. This allows both with-adjacency/without-adjacency

variants of the primitive to be submitted to the pipeline (via 3DPRIMITIVE) - the GS unit will

silently discard any adjacent vertices and present the GS thread with only the internal object.

When clear, adjacent vertices will be passed to the GS thread, as dictated by the incoming

primitive type. Software should only clear this bit when a GS kernel is used that does expect

adjacent vertices. E.g., if the GS kernel is compiled to expect a TRIANGLE_ADJ object, software

must clear this bit. Software should also clear this bit if the GS kernel expects a POINT or

PATCHLIST_n object (which don't have with-adjacency variants).

The only hardware assistance is to allow the submission of a with-adjacency variant of a

primitive when operating with a GS kernel that expects the without-adjacency variant of the

object. (E.g., when the GS kernel is compiled to expect a TRIANGLE object, software should set

this bit just in case a TRILIST_ADJ is submitted to the pipeline.) Note that the GS unit is

otherwise not aware of the object type that is expected by the GS kernel. It is up to software to

ensure that the submitted primitive type (in 3DPRIMITIVE) is otherwise compatible with the

object type expected by the GS kernel. (E.g., if the GS kernel expects a LINE_ADJ object, only

LINELIST_ADJ or LINESTRIP_ADJ should be submitted, otherwise the GS kernel will produce

unpredictable results.) Also note that it is possible to craft a GS kernel which can accept any

object type that's thrown at it by first examining the PrimType passed in the payload and then

using this info to correctly interpret the number of vertices passed in the payload.

0 Enable

Format: Enable

 Specifies whether the GS stage is enabled or disabled (pass-through).

8 31 Control Data Format

Format: U1

 This field specifies the format of the control data header (if any).

Value Name Description

0h CUT The control data header contains cut bits.

1h SID The control data header contains StreamID bits. . Output Topology must be set

to POINTLIST, or behavior is UNDEFINED.

30 Static Output

Format: Enable

 Specifies whether the GS shader outputs a static number of vertices per invocation. If this bit is

clear, the number of vertices output by each GS shader invocation is stored by the GS thread at

the very beginning of the output URB entry (see GS URB Entry section below).

29:27 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 123

3DSTATE_GS
26:16 Static Output Vertex Count

Format: U11 Count of object vertices

 If GSEnable is set and StaticOutput is set, this field specifies the total number of vertices output

each GS shader invocation. If GSEnable is set and StaticOutput is clear (variable GS output), the

total number of vertices output by a GS shader invocation is stored by the thread at the very

beginning of the output URB entry. This field is then ignored. (See GS URB Entry below).

15:9 Reserved

Format: MBZ

8:0 Reserved

Project: BDW

Format: MBZ

9 31:28 Reserved

Format: MBZ

27 Reserved

Project: BDW

26:21 Vertex URB Entry Output Read Offset

Format: U6

 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB by

SBE.

Value Name

[0,63]

20:16 Vertex URB Entry Output Length

Format: U5

 Specifies the amount of URB data written for each Vertex URB entry, in 256-bit register

increments.

Value Name

[1,16]

Programming Notes

This length does not include the vertex header.

15:8 User Clip Distance Clip Test Enable Bitmask

Format: Enable[8]

 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial

accept / must clip determination needs to be made. DX10 allows simultaneous use of

ClipDistance and Cull Distance test of up to 8 distances.

 Command Reference: Instructions

124 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_GS
7:0 User Clip Distance Cull Test Enable Bitmask

Format: Enable[8]

 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial

accept determination needs to be made (does not cause a must clip). DX10 allows simultaneous

use of ClipDistance and Cull Distance test of up to 8 distances.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 125

3DSTATE_HIER_DEPTH_BUFFER

3DSTATE_HIER_DEPTH_BUFFER
Project: BDW

Source: RenderCS

Length Bias: 2

Description

This command sets the surface state of the hierarchical depth buffer, delivered as a pipelined state command.

However, the state change pipelining isn't completely transparent (see restriction below).

WM HW will internally manage the draining pipe and flushing of the caches when this command is issued. The

PIPE_CONTROL restrictions are removed.

Programming Notes

Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any combination of

3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,

3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall (PIPE_CONTROL with Depth

Stall bit set, followed by a pipelined depth cache flush (PIPE_CONTROL with Depth Flush Bit set,

followed by another pipelined depth stall (PIPE_CONTROL with Depth Stall Bit set), unless SW can

otherwise guarantee that the pipeline from WM onwards is already flushed (e.g., via a preceding

MI_FLUSH).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 07h 3DSTATE_HIER_DEPTH_BUFFER

Format: OpCode

15:8 Reserved

Format: MBZ

 Command Reference: Instructions

126 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_HIER_DEPTH_BUFFER
7:0 Dword Length

Format: =n Total Length - 2

Value Name

3h Excludes Dword (0,1) [Default]

1 31:25 Hierarchical Depth Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for the hierarchical depth buffer.

24:23 Reserved

Project: BDW

Format: MBZ

22 Reserved

Project: BDW

Format: MBZ

21:17 Reserved

Format: MBZ

16:0 Surface Pitch

Format: U17-1 Pitch in Bytes

 This field specifies the pitch of the hierarchical depth buffer in (#Bytes - 1).

Value Name

[127, 1FFFFh] corresponding to [128B, 128KB] also restricted to a multiple of 128B

Programming Notes

Since this surface is tiled, the pitch specified must be a multiple of the tile pitch, in the

range [128B, 128KB].

2..3

Project:

BDW

63:0 Surface Base Address

Project: BDW

Format: GraphicsAddress[63:0]HierarchicalDepthBuffer

 This field specifies the address of the buffer in Graphics Memory.

Programming Notes

The Hierarchical Depth Buffer can only be mapped to Main Memory (uncached).

4

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 127

3DSTATE_HIER_DEPTH_BUFFER
14:0 Surface QPitch

Project: BDW

Format: QPitch[16:2]

Description

This field specifies the distance in rows between array slices. It is used only in the

following cases:

 Surface Array is enabled OR

 Number of Mulitsamples is not NUMSAMPLES_1 and Multisampled Surface

Storage Format set to MSFMT_MSS OR

 Surface Type is SURFTYPE_CUBE

Value Name

[4h, 1FFFCh]

 Command Reference: Instructions

128 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_HS

3DSTATE_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 Controls the HS stage hardware.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Bh 3DSTATE_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n

Value Name

7 Excludes DWord (0,1) [Default]

1 31:30 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 129

3DSTATE_HS
29:27 Sampler Count

Project: All

Format: U3

 Specifies how many samplers (in multiples of 4) the HS kernels use. Used only for prefetching

the associated sampler state entries.

Value Name Description

0h No Samplers no samplers used

1h 1-4 Samplers between 1 and 4 samplers used

2h 5-8 Samplers between 5 and 8 samplers used

3h 9-12 Samplers between 9 and 12 samplers used

4h 13-16 Samplers between 13 and 16 samplers used

5h-7h Reserved Reserved

26 Reserved

Project: All

Format: MBZ

25:18 Binding Table Entry Count

Project: All

Format: U8

 When HW Generated Binding Table is disabled:

 Specifies how many binding table entries the kernel uses. Used only for prefetching of the

binding table entries and associated surface state.

 Note: For kernels using a large number of binding table entries, it may be wise to set this field

to zero to avoid prefetching too many entries and thrashing the state cache.

Programming Notes

When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will

be generated at JIT time.

17 Thread Dispatch Priority

Project: BDW

 Specifies the priority of the thread for dispatch

Value Name Description

0h Normal Normal Priority

1h High High Priority

16 Floating Point Mode

Project: All

 Specifies the initial floating point mode used by the dispatched thread.

Value Name Description

0h IEEE-754 Use IEEE-754 Rules

1h alternate Use alternate rules

 Command Reference: Instructions

130 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_HS
15:14 Reserved

Project: All

Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment.

12 Software Exception Enable

Project: BDW

Format: Enable

 This bit gets loaded into EU CRO1[13] (note the bit # difference). See Exceptions and ISA

Execution Environment.

11:8 Reserved

Project: All

Format: MBZ

7:0 Reserved

Project: BDW

Format: MBZ

2 31 Enable

Project: All

Format: Enable

 Specifies whether the HS function is enabled or disabled (pass-through). If ENABLED

MI_TOPOLOGY_FILTER must be used to silently discard any topologies that the HS kernel is not

expecting. E.g., if the HS kernel is expecting PATCHLIST_32 topologies, MI_TOPOLOGY_FILTER

must be set to PATCHLIST_32 so only those topologies can reach the enabled HS.

Programming Notes

The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw

commands can only be issued if all three stages are enabled or all three stages are disabled,

otherwise the behavior is UNDEFINED.

30 Reserved

Format: MBZ

29 Statistics Enable

Project: All

Format: Enable

 This bit controls whether HS-unit-specific statistics register(s) will increment (for each patch).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 131

3DSTATE_HS
28:27 Reserved

Project: BDW

Format: MBZ

26:18 Reserved

Project: All

Format: MBZ

17 Reserved

Project: BDW

Format: MBZ

16:8 Maximum Number of Threads

Project: BDW

Format: U9-1

 Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid

using up the scratch space. Programming the value of the max threads over the number of

threads based off number of threads supported in the execution units may improve

performance since the architecture allows threads to be buffered between the check for max

threads and the actual dispatch into the EU. Programming the max values to a number less than

the number of threads supported in the execution units may reduce performance.

Value Name Description

[0,503] indicating thread count of [1,504]

7:4 Reserved

Project: All

Format: MBZ

3:0 Instance Count

Format: U4-1

 This field determines the number of threads (minus one) spawned per input patch. If the HS

kernel uses a barrier function, software must restrict the Instance Count to the number of

threads that can be simultaneously active within a subslice. Factors which must be considered

includes scratch memory availability.

Value Name Description

[0,15] representing [1,16] instances

Programming Notes

A pipe_control with cs stall must be sent whenever the HS_STATE.InstanceCount changes from

0 (no instancing) to >0 (instancing) or when there is transition from HS_STATE.Enabled = false

to (HS_STATE.Enabled = true && InstanceCount > 0).

 Command Reference: Instructions

132 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_HS
3..4

Project:

BDW

63:6 Kernel Start Pointer

Project: BDW

Format: InstructionBaseOffset[63:6]Kernel

 This field specifies the starting location (1st GEN core instruction) of the kernel program run by

threads spawned by this FF unit. It is specified as a 64-byte-granular offset from the Instruction

Base Address.

5:0 Reserved

Project: BDW

Format: MBZ

5..6

Project:

BDW

63:10 Scratch Space Base Pointer

Project: BDW

Format: GeneralStateOffset[63:10]

Value Name Description

[0,31] Specifies the location of the scratch space area allocated to this FF unit,

specified as a 1KB-granular offset from the General State Base Address. If

required, each thread spawned by this FF unit will be allocated some portion of

this space, as specified by Per-Thread Scratch Space.

9:4 Reserved

Project: BDW

Format: MBZ

3:0 Per-Thread Scratch Space

Project: BDW

Format: U4 power of 2 Bytes over 1K Bytes

 Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space Base

Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread Scratch

Space size without exceeding the driver-allocated scratch space.

Value Name Description

[0,11] Indicating[1K Bytes, 2M Bytes

7

Project:

BDW

31:29 Reserved

Project: BDW

Format: MBZ

28 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 133

3DSTATE_HS
27 Single Program Flow

Project: BDW

Format: Enable

 Specifies the initial condition of the kernel program as either a single program flow (SIMDnxm

with m = 1) or as multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA

Execution Environment.

Value Name Description

0h Reserved

1h Enable Single Program Flow Enabled

26 Vector Mask Enable

Project: BDW

Format: U1 Enumerated Type

 Upon subsequent HS thread dispatches, this bit is loaded into the EU's Vector Mask Enable

(VME, cr0.0[3]) thread state. Refer to the EU documentation for the definition and use of VME

state.

Value Name Description

0h Dmask The EU will use the Dispatch Mask (supplied by the HS stage) for instruction

execution.

1h Vmask The EU will use the Vector Mask (derived from the Dispatch Mask) for

instruction execution.

Programming Notes

Under normal conditions SW shall specify DMask, as the HS stage will provide a Dispatch

Mask appropriate to SIMD4x2 or SIMD8 thread execution (as a function of dispatch mode).

E.g., for SIMD4x2 thread execution, the HS state will generate a Dispatch Mask that is equal to

what the EU would use as a Vector Mask. For SIMD8 execution there is no known usage

model for use of Vector Mask (as there is for PS shaders).

25 Accesses UAV

Project: BDW

Format: Enable

 This field must be set when HS has a UAV access

Programming Notes

This field must not be set when HS Function Enable is disabled.

 Command Reference: Instructions

134 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_HS
24 Include Vertex Handles

Project: BDW

Format: Boolean

 If set, all the input Vertex URB handles are included in payloads. This field is ignored if HS

Function Enable is DISABLED.

Programming Notes

Programming Restriction: This field must be set if value if Vertex URB Entry Read Length is

cleared to zero.

23:19 Dispatch GRF Start Register For URB Data

Project: BDW

Format: U5

 Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the

thread payload. This field is ignored if HS Function Enable is DISABLED.

Value Name Description

[0,31] indicating GRF [R0, R31]

18:17 Reserved

Project: BDW

Format: MBZ

16:11 Vertex URB Entry Read Length

Project: BDW

Format: U6

 Specifies the amount of URB data read and passed in the thread payload for each Vertex URB

entry, in 256-bit register increments. This field is ignored if HS Function Enable is DISABLED.

Value Name

[0,63]

Programming Notes

Programming Restriction: This field must be a non-zero value if Include Vertex Handles is

cleared to zero.

10 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 135

3DSTATE_HS
9:4 Vertex URB Entry Read Offset

Project: BDW

Format: U6

 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB

before being included in the thread payload. This offset applies to all Vertex URB entries passed

to the thread. This field is ignored if HS Function Enable is DISABLED.

Value Name

[0,63]

3:1 Reserved

Project: BDW

Format: MBZ

0 Reserved

Project: BDW

Format: MBZ

8

Project:

BDW

31:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

136 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_INDEX_BUFFER

3DSTATE_INDEX_BUFFER
Project: BDW

Source: RenderCS

Length Bias: 2

 This command is used to specify the current IB state used by the VF function. At most one IB is defined and

active at any given time.NOTES: The IB must be specified before any RANDOM 3D_PRIMITIVE commands are

issued It is possible to have vertex elements source completely from generated ID values and therefore not

require any Index Buffer accesses. In this case, VF function will simply ignore the Index Buffer state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ah 3DSTATE_INDEX_BUFFER

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:11 Reserved

Project: All

Format: MBZ

10 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 137

3DSTATE_INDEX_BUFFER
9:8 Index Format

Project: All

Format: U2 Enumerated type

 This field specifies the data format of the index buffer. All index values are UNSIGNED.

Value Name Project

0h BYTE All

1h WORD All

2h DWORD All

7 Reserved

Project: All

Format: MBZ

6:0 Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for this index buffer.

2..3 63:0 Buffer Starting Address

Project: All

Format: GraphicsAddress[63:0]Index_Buffer_Entry

This field contains the size-aligned (as specified by Index Format) Graphics Address LSBs of the

first element of interest within the index buffer. Software must program this value with the

combination (sum) of the base address of the memory resource and the byte offset from the

base address to the starting structure within the buffer.

Programming Notes

Index Buffers can only be allocated in linear (not tiled) graphics memory.

4 31:0 Buffer Size

Project: All

Format: U32 Count of bytes

 This field specifies the size of the buffer in bytes. Index accesses which straddle or go past the

end of the buffer will return 0..Note that BufferSize=0 indicates that there is no valid data in the

buffer.

Value Name

[0, FFFFFFFFh]

 Command Reference: Instructions

138 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_LINE_STIPPLE

3DSTATE_LINE_STIPPLE
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_LINE_STIPPLE command is used to specify state variables used in the Line Stipple function.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 08h 3DSTATE_LINE_STIPPLE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 1h Excludes Dword (0,1)

Project: All

Format: =n Total Length - 2

1 31 Modify Enable (Current Repeat Counter, Current Stipple Index)

Project: All

Format: Enable

 Modify enable for Current Repeat Counter and Current Stipple Index fields.

Programming Notes

It is provided only for HW-generated commands as part of context save/restore.

SW must initilize the current repeat counter, current stipple count fields if it sets this bit to

enable.

SW must set this bit to reset the stipple count.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 139

3DSTATE_LINE_STIPPLE
30 Reserved

Project: All

Format: MBZ

29:21 Current Repeat Counter

Project: All

Format: U9

This field sets the HW-internal repeat counter state.

SW must initilize it to 1 if the modify enable is set.

20 Reserved

Project: All

Format: MBZ

19:16 Current Stipple Index

Project: All

Format: U4

This field sets the HW-internal stipple pattern index.

SW must initialize it to 0 if the modify enable is set.

15:0 Line Stipple Pattern

Project: All

Format: 16 bit mask Bit 15 = most significant bit, Bit 0 = least significant bit

 Specifies a pattern used to mask out bit specific pixels while rendering lines.

2 31:15 Line Stipple Inverse Repeat Count

Project: All

Format: U1.16

Range: [0.00390625, 1.0]

Specifies the inverse (truncated) of the repeat count for the line stipple function.

14:9 Reserved

Project: All

Format: MBZ

8:0 Line Stipple Repeat Count

Project: All

Format: U9

 Specifies the repeat count for the line stipple function.

Value Name

[1, 256]

 Command Reference: Instructions

140 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_MONOFILTER_SIZE

3DSTATE_MONOFILTER_SIZE
Project: BDW

Source: RenderCS

Length Bias: 2

 This state specifies the size of the filter which is used when filtering in MAPFILTER_MONO mode.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 11h 3DSTATE_MONOFILTER_SIZE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n

 Total Length - 2

1 31:6 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 141

3DSTATE_MONOFILTER_SIZE
5:3 Monochrome Filter Width

Project: All

Format: U3

 This field specifies the width of the monochrome filter. It is ignored if the monochrome filter is

not enabled.

Value Name

[1,7]

2:0 Monochrome Filter Height

Project: All

Format: U3

 This field specifies the height of the monochrome filter. It is ignored if the monochrome filter is

not enabled.

Value Name

[1,7]

 Command Reference: Instructions

142 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_MULTISAMPLE

3DSTATE_MULTISAMPLE
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_MULTISAMPLE command is used to specify multisample state associated with the current render

target/depth buffer.

Programming Notes

It is illegal to render to surfaces with multiple different values of the state fields in this command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Dh 3DSTATE_MULTISAMPLE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h

Project: All

Format: =n Total Length - 2

 Excludes Dword (0,1)

1 31:6 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 143

3DSTATE_MULTISAMPLE
5 Pixel Position Offset Enable

Project: BDW

Format: U1

 Enables the device to offset pixel positions by 0.5 both in horizontal and vertical directions.

Programming Notes

Setting this field along with setting the Pixel Location to upper left and number of multisamples

to greater than one will cause the device to offset pixel postions by 0.5 both in horizontal and

vertical directions.

It is to be noted this is done to adjust the pixel co-ordinate system to DX9 like, so any

WM_HZ_OP screen space rectangles (eg: legacy HiZ Clear, Resolve etc) generated internally by

driver in this mode needs to be aware of this offset adjustment and send the rectangles

according to alignment restriction taking this offset adjustment into consideration.

SW can choose to set this bit only for DX9 API. DX10/OGL API's should not have any effect by

setting or not setting this bit.

4 Pixel Location

Project: All

Format: U1

 This field specifies where the device evaluates "pixel" (vs. centroid or sample) values/attributes.

Value Name Description

0h CENTER Use the pixel center (0.5, 0.5 offset)

1h UL_CORNER Use the pixel upper-left corner

Programming Notes Project

The programming of this field is assumed to be a function of the API being supported.

Specifically, it is expected that OpenGL and DX10+ APIs require CENTER selection,

while DX9- APIs require UL_CORNER selection.

When 3DSTATE_RASTER::ForcedSampleCount is other than NUMRASTSAMPLES_0,

this field must be 0h.

BDW

 Command Reference: Instructions

144 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_MULTISAMPLE
3:1 Number of Multisamples

Project: All

Format: U3

 This field specifies how many samples/pixel exist in all RTs and the Depth Buffer, as

log2(#samples). This field is valid regardless of the setting of Multisample Rasterization Mode.

Value Name Description Project

0h 1 1 sample/pixel All

1h 2 2 samples/pixel BDW

2h 4 4 samples/pixel All

3h 8 8 samples/pixel BDW

5h-7h Reserved All

Programming Notes Project

The setting of this field must match the Number of Multisamples field in

SURFACE_STATE of all bound render targets.

0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 145

3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_OFFSET
Project: DevBWR+

Source: RenderCS

Length Bias: 2

 The 3DSTATE_POLY_STIPPLE_OFFSET command is used to specify the origin of the repeated screen-space

Polygon Stipple Pattern as an X, Y offset from the Color Buffer origin.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 06h 3DSTATE_POLY_STIPPLE_OFFSET

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n Total Length - 2

1 31:13 Reserved

Project: All

Format: MBZ

12:8 Polygon Stipple X Offset

Project: All

Format: U5

 Specifies a 5 bit x address offset in the poly stipple pattern

Value Name

[0,31]

 Command Reference: Instructions

146 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_POLY_STIPPLE_OFFSET
7:5 Reserved

Project: All

Format: MBZ

4:0 Polygon Stipple Y Offset

Project: All

Format: U5

 Specifies a 5 bit y address offset in the poly stipple pattern

Value Name

[0,31]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 147

3DSTATE_POLY_STIPPLE_PATTERN

3DSTATE_POLY_STIPPLE_PATTERN
Project: DevBWR+

Source: RenderCS

Length Bias: 2

 The 3DSTATE_POLY_STIPPLE_PATTERN command is used to specify the 32x32 Polygon Stipple Pattern used in

the Polygon Stipple function of the WM unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 07h 3DSTATE_POLY_STIPPLE_PATTERN

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 1Fh Excludes Dword (0,1)

Project: All

Format: =n Total Length - 2

1..32 31:0 Pattern Row

Project: All

Format: 32 bit mask Bit 31 = upper left corner, Bit 0 = upper right corner of first row.

 Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32 area

rendered.

 Command Reference: Instructions

148 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS_BLEND

3DSTATE_PS_BLEND
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 4Dh 3DSTATE_PS_BLEND

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

0h [Default] Excludes Dword (0,1)

1 31 Alpha To Coverage Enable

Project: All

Format: Enable

 If set, indicates that AlphaToCoverage is on RT[0], since this bit must be set the same for all RTs

in the MRT case.

30 Has Writeable RT

Project: All

Format: Enable

 When set indicates the there is at least one non-null RT w/ at least one channel write enabled

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 149

3DSTATE_PS_BLEND
29 Color Buffer Blend Enable

Project: All

Format: Enable

 When set indicates that RT[0] has color buffer blend enabled.

28:24 Source Alpha Blend Factor

Project: All

Format: 3D_Color_Buffer_Blend_Factor

 Indicates the "source factor" in alpha Color Buffer Blending stage for RT[0]

23:19 Destination Alpha Blend Factor

Project: All

Format: 3D_Color_Buffer_Blend_Factor

 Indicates the "destination factor" in alpha Color Buffer Blending stage for RT[0]

18:14 Source Blend Factor

Project: All

Format: 3D_Color_Buffer_Blend_Factor

 Indicates the "source factor" in Color Buffer Blending stage for RT[0]

13:9 Destination Blend Factor

Project: All

Format: 3D_Color_Buffer_Blend_Factor

 Indicates the "destination factor" in Color Buffer Blending stage for RT[0]

8 Alpha Test Enable

Project: All

Format: Enable

 Indicates the AlphaTestEnable for RT[0]

7 Independent Alpha Blend Enable

Project: All

Format: Enable

 Indicates the Independent Alpha Blend Enable for RT[0] When enabled, the other fields in this

instruction control the combination of the alpha components in the Color Buffer Blend stage.

When disabled, the alpha components are combined in the same fashion as the color

components.

 Command Reference: Instructions

150 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS_BLEND
6:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 151

3DSTATE_PS

3DSTATE_PS
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 20h 3DSTATE_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0Ah Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1..2 63:6 Kernel Start Pointer 0

Project: All

Format: InstructionBaseOffset[63:6]Kernel

 Specifies the 64-byte aligned address offset of the first instruction in the kernel[0]. This pointer is

relative to the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

152 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS
3 31 Single Program Flow

Project: All

 Single Program Flow (SPF) specifies the initial condition of the kernel program as either a single

program flow (SIMDnxm with m = 1) or as multiple program flows (SIMDnxm with m > 1). See

CR0 description in ISA Execution Environment.

Value Name Description Project

0h Multiple Multiple Program Flows All

1h Single Single Program Flows All

30 Vector Mask Enable

Project: All

Format: U1 Enumerated Type

 When SPF=0, Vector Mask Enable (VME) specifies which mask to use to initialize the initial

channel enables. When SPF=1, VME specifies which mask to use to generate execution channel

enables.

Value Name Description Project

0h Dmask Channels are enabled based on the dispatch mask All

1h Vmask Channels are enabled based on the vector mask All

29:27 Sampler Count

Project: All

 Specifies how many samplers (in multiples of 4) the vertex shader 0 kernel uses. Used only for

prefetching the associated sampler state entries.

Value Name Description Project

[0,4]

0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12 Samplers between 9 and 12 samplers used All

4h 13-16 Samplers between 13 and 16 samplers used All

5h-7h Reserved All

26 Single Precision Denormal Mode

Project: All

 Specifies the single precision denornal mode used by the dispatched thread.

Value Name Description Project

0h Flushed to Zero Single Precision denormals are flushed to zero All

1h Retained Single Precision denormals are retained All

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 153

3DSTATE_PS
25:18 Binding Table Entry Count

Project: All

Description Project

Specifies how many binding table entries the kernel uses. Used only for prefetching of

the binding table entries and associated surface state. Note: For kernels using a large

number of binding table entries, it may be advantageous to set this field to zero to

avoid prefetching too many entries and thrashing the state cache. This field is ignored

if [PS Function Enable] is DISABLED.

When [HW Generated Binding Table] bit is enabled: This field indicates which cache

lines (512bit units - 32 Binding Table Entry section) should be fetched. Each bit in this

field corresponds to a cache line. Only the 1st 4 non-zero Binding Table entries of each

32 Binding Table entry section prefetched will have its surface state prefetched. See 3D

Pipeline for more information.

BDW

Programming Notes

When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be

generated at JIT time.

17 Thread Dispatch Priority

Project: All

 Specifies the priority of the thread for dispatch.

Value Name Description Project

0h Normal Normal Priority All

1h High High Priority All

16 Floating Point Mode

Project: All

 Specifies the floating point mode used by the dispatched thread.

Value Name Description Project

0h IEEE-754 Use IEEE-754 rules All

1h Alternate Use alternate rules All

15:14 Rounding Mode

Project: All

 Specifies the rounding mode used by the dispatched thread.

Value Name Description Project

0h RTNE Round to Nearest Even All

1h RU Round toward +infinity All

2h RD Round toward -infinity All

3h RTZ Round toward zero All

 Command Reference: Instructions

154 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS
13 Illegal Opcode Exception Enable

Project: All

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment.

12 Reserved

Project: All

Format: MBZ

11 Mask Stack Exception Enable

Project: All

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment.

10:8 Reserved

Project: All

Format: MBZ

7 Software Exception Enable

Project: All

Format: Enable

 This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA

Execution Environment.

6:0 Reserved

Project: All

Format: MBZ

4..5 63:10 Scratch Space Base Pointer

Project: All

Format: GeneralStateOffset[63:10]ScratchSpace

 Specifies the 1k-byte aligned address offset to scratch space for use by the kernel. This pointer is

relative to the General State Base Address.

9:4 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 155

3DSTATE_PS
3:0 Per Thread Scratch Space

Project: All

Format: U4

 Specifies the amount of scratch space allowed to be used by each thread. The driver must

allocate enough contiguous scratch space, pointed to by the Scratch Space Pointer, to ensure

that the Maximum Number of Threads each get Per Thread Scratch Space size without exceeding

the driver-allocated scratch space.

Value Name

[0,11] indicating [1k bytes, 2M bytes] in powers of two

6 31:23 Maximum Number of Threads Per PSD

Project: BDW

Format: U8-2 Representing Thread Count

Description Project

Range = [0, 62] --> [2, 64] threads. Specifies the maximum number of simultaneous

threads allowed to be active per PSD. Depending on the GT mode register, Number

of PSDs in the system determine maximum number PS threads per configuration.

Has 2 PSDs therefore actual range for max PS threads is [4,128]. BDW:GT1

Has 3 PSDs therefore actual range for max PS threads is [6,192]. BDW:GT2

Has 6 PSDs therefore actual range for max PS threads is [12,384]. BDW:GT3

Programming Notes

If this field is changed between 3DPRIMITIVE commands, a PIPE_CONTROL command with Stall

at Pixel Scoreboard set is required to be issued.

22:12 Reserved

Project: All

Format: MBZ

11 Push Constant Enable

Project: All

Format: Enable

 This field must be enabled if the sum of the PS Constant Buffer [3:0] Read Length fields in

3DSTATE_CONSTANT_PS is nonzero, and must be disabled if the sum is zero.

10 Reserved

Project: All

Format: MBZ

9 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

156 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS
8 Render Target Fast Clear Enable

Project: All

Format: Enable

 This field is set to enable fast clear of the bound render targets. See "Render Target Fast Clear"

for restrictions on enabling this field.

7 Reserved

Project: BDW

Format: MBZ

6 Render Target Resolve Enable

Project: BDW

Format: Enable

 This field is set to enable clear value resolve on non-multisampled render targets. See "Render

Target Resolve" for restrictions on enabling this field.

5 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 157

3DSTATE_PS
4:3 Position XY Offset Select

Project: All

Format: U2 Enumerated Type

 This field specifies if/what Position XY Offset values are passed in the PS payload. Note that

these are per-slot (pixel|sample) offsets, and therefore separate from the subspan XY coordinates

passed in R1.

Value Name Description

0h POSOFFSET_NONE No Position XY Offsets are included in the PS payload.

1h Reserved

2h POSOFFSET_CENTROID Position XY Offsets will be passed in the PS payload, and these

will reflect the Centroid position(s).

3h POSOFFSET_SAMPLE Position XY Offsets will be passed in the PS payload, and these

will reflect the multisample position(s).

Programming Notes

SW Recommendation: If the PS kernel needs the Position Offsets to compute a Position XY

value, this field should match Position ZW Interpolation Mode to ensure a consistent

position.xyzw computation

If the PS kernel does not need the Position XY Offsets to compute a Position Value, then this

field should be programmed to POSOFFSET_NONE, as the PS kernel should be using the

various barycentric inputs to evaluate other-than-position attributes. However, this field can be

used to pass Centroid or Sample offsets in the payload for special test modes (e.g., where

barycentric coordinates are computed in the PS vs. being HW-generated and passed in the

payload).

MSDISPMODE_PERSAMPLE is required in order to select POSOFFSET_SAMPLE.

2 32 Pixel Dispatch Enable

Project: All

Format: Enable

 Enables the Windower to dispatch 8 subspans in one payload. Variable Pixel Dispatch in Section:

Pixel Grouping (Dispatch size) control for valid pixel dispatch combinations.

1 16 Pixel Dispatch Enable

Project: All

Format: Enable

 Enables the Windower to dispatch 4 subspans in one payload. Variable Pixel Dispatch in Section:

Pixel Grouping (Dispatch size) control for valid pixel dispatch combinations.

 Command Reference: Instructions

158 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS
0 8 Pixel Dispatch Enable

Project: All

Format: Enable

 Enables the Windower to dispatch 2 subspans from 1 object (polygon) in one payload. Variable

Pixel Dispatch in Section: Pixel Grouping (Dispatch size) control for valid pixel dispatch

combinations.

Programming Notes Project

When Render Target Fast Clear Enable is ENABLED or Render Target Resolve Type =

RESOLVE_PARTIAL or RESOLVE_FULL, this bit must be DISABLED.

BDW

7 31:23 Reserved

Project: All

Format: MBZ

22:16 Dispatch GRF Start Register For Constant/Setup Data 0

Format: U7

 Specifies the starting GRF register number for the Constant/Setup portion of the thread payload

for kernel[0].

Value Name

[0,127]

15 Reserved

Project: All

Format: MBZ

14:8 Dispatch GRF Start Register For Constant/Setup Data 1

Project: All

Format: U7

 Specifies the starting GRF register number for the Constant/Setup portion of the thread payload

for kernel[1].

Value Name

[0,127]

7 Reserved

Project: All

Format: MBZ

6:0 Dispatch GRF Start Register For Constant/Setup Data 2

Project: All

Format: U7

 Specifies the starting GRF register number for the Constant/Setup portion of the thread payload

for kernel[2].

Value Name

[0,127]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 159

3DSTATE_PS
8..9 63:6 Kernel Start Pointer 1

Project: All

Format: InstructionBaseOffset[63:6]Kernel

 Specifies the 64-byte aligned address offset of the first instruction in kernel[1]. This pointer is

relative to the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

10..11 63:6 Kernel Start Pointer 2

Project: All

Format: InstructionBaseOffset[63:6]Kernel

 Specifies the 64-byte aligned address offset of the first instruction in kernel[2]. This pointer is

relative to the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

160 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS_EXTRA

3DSTATE_PS_EXTRA
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 4fh 3DSTATE_PS_EXTRA

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n

 Total Length - 2

1 31 Pixel Shader Valid

Project: All

Format: Enable

 When set indicates a valid pixel shaderWhen this bit clear the rest of this command should also

be clear.

30 Pixel Shader Does not write to RT

Project: All

Format: Enable

 When set indicates the pixel shader does not write to render target.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 161

3DSTATE_PS_EXTRA
29 oMask Present to Render Target

Project: All

Format: Enable

 This bit is inserted in the PS payload header and made available to the DataPort (either via the

message header or via header bypass) to indicate that oMask data from the shader (one or two

phases) is included in Render Target Write messages. If present, the oMask data is used to mask

off samples.

28 Pixel Shader Kills Pixel

Project: All

Format: Enable

This bit, if ENABLED, indicates that the PS kernel has the ability to kill (discard) pixels or samples,

other than due to depth or stencil testing. This bit is required to be ENABLED in the following

situations:

 The API pixel shader program contains "killpix" or "discard" instructions, or other code in

the pixel shader kernel that can cause the final pixel mask to differ from the pixel mask

received on dispatch.

27:26 Pixel Shader Computed Depth Mode

Project: All

Format: U2 Enumerated Type

 This field specifies the computed depth mode for the pixel shader.

Value Name Description Project

0h PSCDEPTH_OFF Pixel shader does not compute depth All

1h PSCDEPTH_ON Pixel shader computes depth with no guarantee as to its

value

All

2h PSCDEPTH_ON_GE Pixel shader computes depth and guarantees that oDepth

>= SourceDepth

All

3h PSCDEPTH_ON_LE Pixel shader computes depth and guarantees that oDepth

<= SourceDepth

All

Programming Notes

If this field is set to any value other than PSCDEPTH_OFF, a multi-phase shader (i.e. dispatch

RATE_COARSE or RATE_PIXEL with pixel/sample loops or sample loop respectively) must output

depth and render targets only at the last phase.

25 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

162 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PS_EXTRA
24 Pixel Shader Uses Source Depth

Project: All

Format: Enable

 This bit, if ENABLED, indicates that the PS kernel requires the source depth value (vPos.z) to be

passed in the payload. The source depth value is interpolated according to the Position ZW

Interpolation Mode state.

23 Pixel Shader Uses Source W

Project: All

Format: Enable

 This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value

(vPos.w) to be passed in the payload. The W value is interpolated according to the Position ZW

Interpolation Mode state.

22 Reserved

Project: BDW

Format: MBZ

21:18 Reserved

Project: BDW

Format: MBZ

17 Removed

Project: BDW

Format: MBZ

16:11 Reserved

Project: All

Format: MBZ

10 Reserved

Project: BDW

Format: MBZ

9 Reserved

Project: BDW

8 Attribute Enable

Format: Enable

 This field must be enabled if the Number of SF Output Attributes field in 3DSTATE_SBE is

nonzero, and must be disabled if that field is zero.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 163

3DSTATE_PS_EXTRA
7 Pixel Shader Disables Alpha To Coverage

Project: All

Format: Enable

 When set indicates the pixel shader AlphaToCoverage should be disabled due to oMask output.

The setting of this bit is API dependent.

6 Pixel Shader Is Per Sample

Project: BDW

Format: Enable

 This bit, when ENABLED, indicates that the pixel shader is dispatched at the per sample shading

rate. If the bit is DISABLED, the pixel shader is dispatched at the per pixel rate.

Programming Notes

This bit must NOT be set when PS is used to do clear MSRTs with Fast Clear Optimization

Enabled.

5 Reserved

Project: BDW

Format: MBZ

4 Reserved

Project: BDW

Format: MBZ

3 Reserved

Project: BDW

Format: MBZ

2 Pixel Shader Has UAV

Project: All

Format: Enable

Format: U1 Enumerated Type

 This field when set indicates that the pixel shader has a UAV attached to it.

1 Pixel Shader Uses Input Coverage Mask

Project: BDW

Format: Enable

 This bit, if ENABLED, indicates that the PS kernel requires the input coverage mask to be passed

in the payload.

0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

164 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the URB configuration for DS Push Constant Buffer.

Programming Notes

Programming Restriction:

 The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value

of the Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_DS must be equal or smaller then

the size of the allocated space in the URB including the buffering for half cachelines. See Push Constant

URB Allocation section for more details.

 The 3DSTATE_CONSTANT_DS must be reprogrammed prior to the next 3DPRIMITIVE command after

programming the 3DSTATE_PUSH_CONSTANT_ALLOC_DS.

DWord Bit Description

0

Programming Notes:

Workaround : This command

must be followed by a

PIPE_CONTROL with CS Stall

bit set.

31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 165

3DSTATE_PUSH_CONSTANT_ALLOC_DS
1 31:21 Reserved

Project: BDW

Format: MBZ

20:16 Constant Buffer Offset

Project: BDW

Format: U5

 Specifies the offset of the DS constant buffer into the URB.

Value Name Project

[0,31] (0KB - 31KB) Increments of 2KB BDW

15:6 Reserved

Project: BDW

Format: MBZ

5:0 Constant Buffer Size

Project: BDW

Format: U6

 Specifies the size of the DS constant buffer. This value will determine the

amount of data the command stream can pre-fetch before the buffer is

full. Value of zero is only valid when constants are not enabled for DS.

Value Name Project

[0,32] (0KB - 32KB) Increments of 2KB BDW

 Command Reference: Instructions

166 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the URB configuration for GS Push Constant Buffer.

Programming Notes

 The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value

of the Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_GS must be equal or smaller then

the size of the allocated space in the URB including the buffering for half cachelines.

 The 3DSTATE_CONSTANT_GS must be reprogrammed prior to the next 3DPRIMITIVE command after

programming the 3DSTATE_PUSH_CONSTANT_ALLOC_GS.

See Push Constant URB Allocation section for more details.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2

Value Name Description

0h 3DSTATE_PUSH_CONSTANT_ALLOC_GS [Default] Excludes DWord (0,1)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 167

3DSTATE_PUSH_CONSTANT_ALLOC_GS
1 31:21 Reserved

Project: BDW

Format: MBZ

20:16 Constant Buffer Offset

Project: BDW

Format: U5

 Specifies the offset of the GS constant buffer into the URB.

Value Name Project

[0,31] (0KB - 31KB) Increments of 2KB BDW

15:6 Reserved

Project: BDW

Format: MBZ

5:0 Constant Buffer Size

Project: BDW

Format: U6

 Specifies the size of the GS constant buffer. This value will determine the amount of data the

command stream can pre-fetch before the buffer is full. Value of zero is only valid when

constants are not enabled for GS.

Value Name Project

[0,32] (0KB - 32KB) Increments of 2KB BDW

 Command Reference: Instructions

168 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the URB configuration for HS Push Constant Buffer.

Programming Notes

Programming Restriction:

 The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value

of the Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_HS must be equal or smaller then

the size of the allocated space in the URB including the buffering for half cachelines. See Push Constant

URB Allocation section for more details.

 The 3DSTATE_CONSTANT_HS must be reprogrammed prior to the next 3DPRIMITIVE command after

programming the 3DSTATE_PUSH_CONSTANT_ALLOC_HS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 169

3DSTATE_PUSH_CONSTANT_ALLOC_HS
1 31:21 Reserved

Project: BDW

Format: MBZ

20:16 Constant Buffer Offset

Project: BDW

Format: U5

 Specifies the offset of the HS constant buffer into the URB.

Value Name Project

[0,31] (0KB - 31KB) Increments of 2KB BDW

15:6 Reserved

Project: BDW

Format: MBZ

5:0 Constant Buffer Size

Project: BDW

Format: U6

 Specifies the size of the HS constant buffer. This value will determine the amount of data the

command stream can pre-fetch before the buffer is full. Value of zero is only valid when

constants are not enabled for HS.

Value Name Project

[0,32] (0KB - 32KB) Increments of 2KB BDW

 Command Reference: Instructions

170 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PUSH_CONSTANT_ALLOC_PS

3DSTATE_PUSH_CONSTANT_ALLOC_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the URB configuration for PS Push Constant Buffer.

Programming Notes

Restriction:

 The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value

of the Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_PS must be equal or smaller then

the size of the allocated space in the URB including the buffering for half cachelines. See Push Constant

URB Allocation section for more details.

 The 3DSTATE_CONSTANT_PS must be reprogrammed prior to the next 3DPRIMITIVE command after

programming the 3DSTATE_PUSH_CONSTANT_ALLOC_PS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 171

3DSTATE_PUSH_CONSTANT_ALLOC_PS
1 31:21 Reserved

Project: BDW

Format: MBZ

20:16 Constant Buffer Offset

Project: BDW

Format: U5

 Specifies the offset of the PS constant buffer into the URB.

Value Name Project

[0,31] (0KB - 31KB) Increments of 2KB BDW

15:6 Reserved

Project: BDW

Format: MBZ

5:0 Constant Buffer Size

Project: BDW

Format: U6

 Specifies the size of the PS constant buffer. This value will determine the amount of data the

command stream can pre-fetch before the buffer is full. Value of zero is only valid when

constants are not enabled for PS.

Value Name Project

[0,32] (0KB - 32KB) Increments of 2KB BDW

 Command Reference: Instructions

172 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_PUSH_CONSTANT_ALLOC_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command sets up the URB configuration for VS Push Constant Buffer.

Programming Notes

Programming Restriction:

 The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value

of the Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_VS must be equal or smaller then

the size of the allocated space in the URB including the buffering for half cachelines. See Push Constant

URB Allocation section for more details.

 The 3DSTATE_CONSTANT_VS must be reprogrammed prior to the next 3DPRIMITIVE command after

programming the 3DSTATE_PUSH_CONSTANT_ALLOC_VS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 173

3DSTATE_PUSH_CONSTANT_ALLOC_VS
1 31:21 Reserved

Project: BDW

Format: MBZ

20:16 Constant Buffer Offset

Project: BDW

Format: U5

 Specifies the offset of the VS constant buffer into the URB.

Value Name Project

[0,31] (0KB - 31KB) Increments of 2KB BDW

15:6 Reserved

Project: BDW

Format: MBZ

5:0 Constant Buffer Size

Project: BDW

Format: U6

 Specifies the size of the VS constant buffer. This value will determine the amount of data the

command stream can pre-fetch before the buffer is full. Value of zero is only valid when

constants are not enabled for VS.

Value Name Project

[0,32] (0KB - 32KB) Increments of 2KB BDW

 Command Reference: Instructions

174 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_RASTER

3DSTATE_RASTER
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 50h 3DSTATE_RASTER

Format: OpCode

15:8 Reserved

Project: BDW

Format: MBZ

7:0 DWord Length

Default Value: 03h Excludes DWord (0,1)

Project: All

Format: =n

 Total Length - 2

1 31:28 Reserved

Project: All

Format: MBZ

27 Reserved

Project: BDW

Format: MBZ

26:24 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 175

3DSTATE_RASTER
23:22 API Mode

Project: All

 Software sets this field according to the API's version. These bits are set for DX9 or

OGL/DX10.0/DX10.1+/DX11.1 per the following values.

Value Name Project

0h DX9/OGL All

1h DX10.0 All

2h DX10.1+ All

3h Reserved All

21 Front Winding

Project: All

 Determines whether a triangle object is considered "front facing" if the screen space vertex

positions, when traversed in the order, result in a clockwise (CW) or counter-clockwise (CCW)

winding order. Does not apply to points or lines.

Value Name Description Project

0h Clockwise FRONTWINDING_CW All

1h Counter Clockwise [Default] FRONTWINDING_CCW All

20:18 Forced Sample Count

Project: All

Format: U3 Enumerated Type

 This field specifies how many samples/pixel exist for RT Independent Rasterization

Value Name Description Project

0h NUMRASTSAMPLES_0 No RT Independent Rasterization All

1h NUMRASTSAMPLES_1 1 rast-sample/pixel All

2h NUMRASTSAMPLES_2 2 rast-samples/pixel All

3h NUMRASTSAMPLES_4 4 rast-samples/pixel All

4h NUMRASTSAMPLES_8 8 rast-samples/pixel All

5h NUMRASTSAMPLES_16 16 rast-samples/pixel All

6h-7h Reserved All

Programming Notes

When 3DSTATE_MULTISAMPLE::Number of Multisamples !=NUMSAMPLES_1, this field mus be

either NUMRASTSAMPLES_0 or NUMRASTSAMPLES_1.

When 3DSTATE_MULTISAMPLE::Number of Multisamples == NUMSAMPLES_1, this field mus

not be NUMRASTSAMPLES_1.

 Command Reference: Instructions

176 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_RASTER
17:16 Cull Mode

Project: All

Format: 3D_CullMode

 Controls removal (culling) of triangle objects based on orientation. The cull mode only applies to

triangle objects and does not apply to lines, points or rectangles.

Value Name Description Project

0h CULLMODE_BOTH All triangles are discarded (i.e., no triangle objects

are drawn)

All

1h CULLMODE_NONE

[Default]

No triangles are discarded due to orientation All

2h CULLMODE_FRONT Triangles with a front-facing orientation are

discarded

All

3h CULLMODE_BACK Triangles with a back-facing orientation are

discarded

All

Programming Notes

Orientation determination is based on the setting of the Front Winding state.

15 Reserved

Project: All

Format: MBZ

14 Force Multisampling

Project: All

 This field provides a work around override for the computation of SF_INT::Multisample

Rasterization Mode and WM_INT::Multisample Rasterization Mode.

Value Name Description Project

0h Normal Multisampling mode is computed by HW according to formula for

signal SF_INT::Multisample Rasterization Mode and

WM_INT::Multisample Rasterization Mode in vol2a.11 3D Pipeline

Windower [BDW] > Windower Pipelined State > 3DSTATE_WM >

3DSTATE_WM [BDW].

All

1h Force Forces the DX Multisampling mode to be used directly All

13 Smooth Point Enable

Project: BDW

Format: Enable

 Software sets this according to API. When OGL and smooth point rasterization is required, this

bit must be set. HW ignores this bit for primitives other than points.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 177

3DSTATE_RASTER
12 DX Multisample Rasterization Enable

Project: All

Format: Enable

 Software sets this according to the API's multisample enable

Programming Notes

This state only effects how the SF_INT/WM_INT::Multisample Rasterization Mode are set

depending on some other states. This state mainly modifies the how the line rendering is done

by setting SF_INT/WM_INT::Multisample Rasterization Mode to either OFF* or ON* . Please

refer to table under SF_INT::Multisample Rasterization Mode.

11:10 DX Multisample Rasterization Mode

Project: All

Format: U2 enumerated type

 This field determines whether multisample rasterization is turned on/off, and how the pixel

sample point(s) are defined. Software sets this according to the API's multisample state setting (if

any)

Value Name Project

0h MSRASTMODE_ OFF_PIXEL All

1h MSRASTMODE_ OFF_PATTERN All

2h MSRASTMODE_ ON_PIXEL All

3h MSRASTMODE_ ON_PATTERN All

Programming Notes

This field is used to directly set the SF_INT/WM_INT::Multisample Rasterization Mode when DX

Multisample Rasterization Enable is set. Please refer to equation of SF_INT::Multisample

Rasterization Mode.

9 Global Depth Offset Enable Solid

Project: All

Format: Enable

 Enables computation and application of Global Depth Offset for SOLID objects.

8 Global Depth Offset Enable Wireframe

Project: All

Format: Enable

 Enables computation and application of Global Depth Offset when triangles are rendered in

WIREFRAME mode.

 Command Reference: Instructions

178 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_RASTER
7 Global Depth Offset Enable Point

Project: All

Format: Enable

 Enables computation and application of Global Depth Offset when triangles are rendered in

POINT mode.

6:5 Front Face Fill Mode

Project: All

Format: U2 enumerated type

 This state controls how front-facing triangle and rectangle objects are rendered.

Value Name Description Project

0h SOLID Any triangle or rectangle object found to be front-facing is

rendered as a solid object. This setting is required when

rendering rectangle (RECTLIST) objects.

All

1h WIREFRAME Any triangle object found to be front-facing is rendered as a

series of lines along the triangle boundaries (as determined by

the topology type and controlled by the vertex EdgeFlags).

All

2h POINT Any triangle object found to be front-facing is rendered as a set

of point primitives at the triangle vertices (as determined by the

topology type and controlled by the vertex EdgeFlags).

All

3h Reserved All

4:3 Back Face Fill Mode

Project: All

Format: U2 enumerated type

 This state controls how back-facing triangle and rectangle objects are rendered.

Value Name Description Project

0h SOLID Any triangle or rectangle object found to be back-facing is

rendered as a solid object. This setting is required when

rendering rectangle (RECTLIST) objects.

All

1h WIREFRAME Any triangle object found to be back-facing is rendered as a

series of lines along the triangle boundaries (as determined by

the topology type and controlled by the vertex EdgeFlags).

All

2h POINT Any triangle object found to be back-facing is rendered as a set

of point primitives at the triangle vertices (as determined by the

topology type and controlled by the vertex EdgeFlags).

All

3h Reserved All

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 179

3DSTATE_RASTER
2 Antialiasing Enable

Project: All

Format: Enable

 This field enables "alpha-based" line antialiasing.

Programming Notes

This field must be disabled if any of the render targets have integer (UINT or SINT) surface

format.

1 Scissor Rectangle Enable

Project: All

Format: Enable

 Enables operation of Scissor Rectangle.

0 Viewport Z Clip Test Enable

Project: BDW

Format: Enable

 This field is used to control whether the Viewport Z extents (near, far) are considered in

VertexClipTest.

2 31:0 Global Depth Offset Constant

Format: IEEE_Float

 Specifies the constant term in the Global Depth Offset function.

3 31:0 Global Depth Offset Scale

Format: IEEE_Float

 Specifies the scale term used in the Global Depth Offset function.

4 31:0 Global Depth Offset Clamp

Format: IEEE_Float

 Specifies the clamp term used in the Global Depth Offset function.

 Command Reference: Instructions

180 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_MASK

3DSTATE_SAMPLE_MASK
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 18h 3DSTATE_SAMPLE_MASK

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Format: =n Total Length - 2

1 31:16 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 181

3DSTATE_SAMPLE_MASK
15:0 Sample Mask

Project: BDW

Format: 16 bit mask Right-justified bitmask (Bit 0 = Sample0). Number of bits that are used is

determined by Num Multisamples (3DSTATE_MULTISAMPLE)

 A per-multisample-position mask state variable that is immediately and unconditionally ANDed

with the sample coverage mask as part of the rasterization process. This mask is applied prior to

centroid selection. This mask must be ignored for centroid selection when RTIR is enabled i.e.

Forced_Sample_Count > 0.

Programming Notes

 If Number of Multisamples is NUMSAMPLES_1, bits 15:1 of this field will be zeroed by

HW.

 If NNumber of Multisamples is NUMSAMPLES_2, bits 15:2 of this field will be zeroed by

HW.

 If Number of Multisamples is NUMSAMPLES_4, bits 15:4 of this field will be zeroed by

HW.

 If Number of Multisamples is NUMSAMPLES_8, bits 15:8 of this field will be zeroed by

HW.

 Command Reference: Instructions

182 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN

3DSTATE_SAMPLE_PATTERN
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLE_PATTERN command is used to specify the sample offsets for all multisample sample

modes. The set of offset used will be selected based on the multisample mode. This is non-pipelined state.

Programming Notes

When programming the sample offsets (for NUMSAMPLES_4 or _8 and MSRASTMODE_xxx_PATTERN), the

order of the samples 0 to 3 (or 7 for 8X, or 15 for 16X) must have monotonically increasing distance from the

pixel center. This is required to get the correct centroid computation in the device.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ch 3DSTATE_SAMPLE_PATTERN

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 Dword Length

Default Value: 7

Format: =n Total Length - 2

 Excludes Dword (0,1)

1..4

Project: BDW

31:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 183

3DSTATE_SAMPLE_PATTERN
5 31:28 8x Sample7 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 7 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

27:24 8x Sample7 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 7 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

23:20 8x Sample6 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 6 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

19:16 8x Sample6 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 6 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

15:12 8x Sample5 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 5 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

11:8 8x Sample5 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 5 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

 Command Reference: Instructions

184 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN
7:4 8x Sample4 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 4 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

3:0 8x Sample4 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 4 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

6 31:28 8x Sample3 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 3 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

27:24 8x Sample3 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 3 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

23:20 8x Sample2 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 2 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

19:16 8x Sample2 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 2 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 185

3DSTATE_SAMPLE_PATTERN
15:12 8x Sample1 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 1 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

11:8 8x Sample1 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 1 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

7:4 8x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

3:0 8x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

7 31:28 4x Sample3 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 3 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

27:24 4x Sample3 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 3 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

 Command Reference: Instructions

186 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN
23:20 4x Sample2 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 2 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

19:16 4x Sample2 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 2 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

15:12 4x Sample1 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 1 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

11:8 4x Sample1 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 1 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

7:4 4x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

3:0 4x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 187

3DSTATE_SAMPLE_PATTERN
8 31:24 Reserved

Project: All

Format: MBZ

23:20 1x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 1x mode.

Range: [0,0.9375]

19:16 1x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 1x mode.

Range: [0,0.9375]

15:12 2x Sample1 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 1 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

11:8 2x Sample1 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 1 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

7:4 2x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

 Command Reference: Instructions

188 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN
3:0 2x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 189

3DSTATE_SAMPLE_PATTERN

3DSTATE_SAMPLE_PATTERN
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLE_PATTERN command is used to specify the sample offsets for all multisample sample

modes. The set of offset used will be selected based on the multisample mode. This is non-pipelined state.

Programming Notes

When programming the sample offsets (for NUMSAMPLES_4 or _8 and MSRASTMODE_xxx_PATTERN), the

order of the samples 0 to 3 (or 7 for 8X) must have monotonically increasing distance from the pixel center.

This is required to get the correct centroid computation in the device.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ch 3DSTATE_SAMPLE_PATTERN

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 3

Project: All

Format: =n Total Length - 2

 Excludes Dword (0,1)

 Command Reference: Instructions

190 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN
1 31:28 8x Sample7 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 7 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

27:24 8x Sample7 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 7 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

23:20 8x Sample6 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 6 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

19:16 8x Sample6 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 6 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

15:12 8x Sample5 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 5 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

11:8 8x Sample5 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 5 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 191

3DSTATE_SAMPLE_PATTERN
7:4 8x Sample4 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 4 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

3:0 8x Sample4 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 4 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

2 31:28 8x Sample3 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 3 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

27:24 8x Sample3 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 3 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

23:20 8x Sample2 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 2 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

19:16 8x Sample2 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 2 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

 Command Reference: Instructions

192 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN
15:12 8x Sample1 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 1 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

11:8 8x Sample1 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 1 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

7:4 8x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

3:0 8x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 8x mode.

Range: [0,0.9375]

3 31:28 4x Sample3 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 3 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

27:24 4x Sample3 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 3 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 193

3DSTATE_SAMPLE_PATTERN
23:20 4x Sample2 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 2 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

19:16 4x Sample2 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 2 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

15:12 4x Sample1 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 1 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

11:8 4x Sample1 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 1 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

7:4 4x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

3:0 4x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 4x mode.

Range: [0,0.9375]

 Command Reference: Instructions

194 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLE_PATTERN
4 31:24 Reserved

Project: All

Format: MBZ

23:20 1x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 1x mode.

Range: [0,0.9375]

19:16 1x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 1x mode.

Range: [0,0.9375]

15:12 2x Sample1 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 1 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

11:8 2x Sample1 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 1 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

7:4 2x Sample0 X Offset

Project: All

Format: U0.4

Subpixel X offset of Sample 0 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 195

3DSTATE_SAMPLE_PATTERN
3:0 2x Sample0 Y Offset

Project: All

Format: U0.4

Subpixel Y offset of Sample 0 relative to the UL pixel origin for 2x mode.

Range: [0,0.9375]

 Command Reference: Instructions

196 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLER_PALETTE_LOAD0

3DSTATE_SAMPLER_PALETTE_LOAD0
Project: DevBWR+

Source: RenderCS

Length Bias: 2

Description

The 3DSTATE_SAMPLER_PALETTE_LOAD0 instruction is used to load 32-bit values into the first texture palette.

The texture palette is used whenever a texture with a paletted format (containing "Px [palette0]") is referenced

by the sampler.

This instruction is used to load all or a subset of the 256 entries of the first palette. Partial loads always start

from the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: Opcode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: Opcode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: Opcode

23:16 3D Command Sub Opcode

Default Value: 02h 3DSTATE_SAMPLER_PALETTE_LOAD0

Format: Opcode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length = 1 + entryCount - 2

Value Name Description

[0,255] Range 1-256 Entries

1..n 31:0 Entry

Format: PALETTE_ENTRY

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 197

3DSTATE_SAMPLER_PALETTE_LOAD1

3DSTATE_SAMPLER_PALETTE_LOAD1
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLER_PALETTE_LOAD1 instruction is used to load 32-bit values into the second texture

palette. The second texture palette is used whenever a texture with a paletted format (containing

"Px...[palette1]") is referenced by the sampler.This instruction is used to load all or a subset of the 256 entries of

the second palette. Partial loads always start from the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1..n 31:24 Palette Alpha[0:N-1]

Project: All

Format: U8

 Alpha channel loaded into the Nth entry of the texture color palette.

23:16 Palette Red[0:N-1]

Project: All

Format: U8

 Alpha channel loaded into the Nth entry of the texture color palette.

 Command Reference: Instructions

198 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLER_PALETTE_LOAD1
15:8 Palette Green[0:N-1]

Project: All

Format: U8

 Alpha channel loaded into the Nth entry of the texture color palette.

7:0 Palette Blue[0:N-1]

Project: All

Format: U8

 Alpha channel loaded into the Nth entry of the texture color palette.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 199

3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_SAMPLER_STATE_POINTERS_DS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLER_STATE_POINTERS_DS command is used to define the location of DS SAMPLER_STATE

table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to DS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

 Specifies the 32-byte aligned address offset of the DS function's SAMPLER_STATE table. This

offset is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

200 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLER_STATE_POINTERS_GS

3DSTATE_SAMPLER_STATE_POINTERS_GS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLER_STATE_POINTERS_GS command is used to define the location of GS SAMPLER_STATE

table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to GS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

 Specifies the 32-byte aligned address offset of the GS function's SAMPLER_STATE table. This

offset is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 201

3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLER_STATE_POINTERS_HS command is used to define the location of HS SAMPLER_STATE

table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to HS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

 Specifies the 32-byte aligned address offset of the HS function's SAMPLER_STATE table. This

offset is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

202 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SAMPLER_STATE_POINTERS_PS

3DSTATE_SAMPLER_STATE_POINTERS_PS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLER_STATE_POINTERS_PS command is used to define the location of PS SAMPLER_STATE

table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Fh 3DSTATE_SAMPLER_STATE_POINTERS_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to PS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

 Specifies the 32-byte aligned address offset of the PS function's SAMPLER_STATE table. This

offset is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 203

3DSTATE_SAMPLER_STATE_POINTERS_VS

3DSTATE_SAMPLER_STATE_POINTERS_VS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SAMPLER_STATE_POINTERS_VS command is used to define the location of VS SAMPLER_STATE

table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to VS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

 Specifies the 32-byte aligned address offset of the VS function's SAMPLER_STATE table. This

offset is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

204 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SBE

3DSTATE_SBE
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Fh 3DSTATE_SBE

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 02h Excludes DWord (0,1)

Project: BDW

Format: =n

 Total Length - 2

1 31:30 Reserved

Format: MBZ

29 Force Vertex URB Entry Read Length

Project: BDW

Format: Enable

 This field provides a work around override for the computation of SBE_INT::Vertex URB Entry

Read Length. If asserted, 3DSTATE_SBE::Vertex URB Entry Read Length is be used directly.

Otherwise, SBE_INT::Vertex URB Entry Read Length is computed normally.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 205

3DSTATE_SBE
28 Force Vertex URB Entry Read Offset

Project: BDW

Format: Enable

 This field provides a work around override for the computation of SBE_INT::Vertex URB Entry

Read Offset. If asserted, 3DSTATE_SBE::Vertex URB Entry Read Offset is be used directly.

Otherwise, SBE_INT::Vertex URB Entry Read Offset is computed normally.

27:22 Number of SF Output Attributes

Project: BDW

Format: U6 count of attributes

 Specifies the number of vertex attributes passed from the SF stage to the WM stage (does not

include Position).

Value Name

[0,32]

21 Attribute Swizzle Enable

Format: Enable

 Enables the SF to perform swizzling on (up to the first 16) vertex attributes. If DISABLED, all

vertex attributes are passed through.

20 Point Sprite Texture Coordinate Origin

 This state controls how Point Sprite Texture Coordinates are generated (when enabled on a per-

attribute basis by Point Sprite Texture Coordinate Enable).

Value Name Description

0h UPPERLEFT Top Left = (0,0,0,1)Bottom Left = (0,1,0,1)Bottom Right = (1,1,0,1)

1h LOWERLEFT Top Left = (0,1,0,1)Bottom Left = (0,0,0,1)Bottom Right = (1,0,0,1)

19 Primitive ID Override Component W

Project: BDW

Format: Enable

 If set, the W component of output attribute selected by Primitive ID Override Attribute Select is

overridden with the Primitive ID.

18 Primitive ID Override Component Z

Project: BDW

Format: Enable

 If set, the Z component of output attribute selected by Primitive ID Override Attribute Select is

overridden with the Primitive ID.

 Command Reference: Instructions

206 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SBE
17 Primitive ID Override Component Y

Project: BDW

Format: Enable

 If set, the Y component of output attribute selected by Primitive ID Override Attribute Select is

overridden with the Primitive ID.

16 Primitive ID Override Component X

Project: BDW

Format: Enable

 If set, the X component of output attribute selected by Primitive ID Override Attribute Select is

overridden with the Primitive ID.

15:11 Vertex URB Entry Read Length

Format: U5

 Specifies the amount of URB data read for each Vertex URB entry, in 256-bit register increments.

Value Name

[1,16]

Programming Notes

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read.This field should

be set to the minimum length required to read the maximum source attribute. The maximum

source attribute is indicated by the maximum value of the enabled Attribute # Source Attribute

if Attribute Swizzle Enable is set, Number of Output Attributes-1 if enable is not set.

read_length = ceiling((max_source_attr+1)/2)

10:5 Vertex URB Entry Read Offset

Project: BDW

 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB.

4:0 Primitive ID Override Attribute Select

Project: BDW

 Specifies which attribute is overridden w/ the Primitive ID

Programming Notes Project

Set all Primitive ID Override Component Select X/Y/Z/W to 0 to indicate there is no

Primitive ID override.

BDW

2 31:0 Point Sprite Texture Coordinate Enable

Format: Enable[32]

 When processing point primitives, the attributes from the incoming point vertex are typically

copied to the point object corner vertices. However, if a bit is set in this field, the corresponding

Attribute is selected as a Point Sprite Texture Coordinate, in which case each corner vertex is

assigned a pre-defined texture coordinate as defined by the Point Sprite Texture Coordinate

Origin state bit. Bit 0 corresponds to output Attribute 0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 207

3DSTATE_SBE
3 31:0 Constant Interpolation Enable

Format: Enable[32]

 This field is a bitmask containing a Constant Interpolation Enable bit for each corresponding

attribute. If a bit is set, that attribute will undergo constant interpolation, and the corresponding

WrapShortest Enable bits (if defined) will be ignored. If a bit is clear, components which are not

enabled for WrapShortest interpolation (if defined) will be linearly interpolated.

 Command Reference: Instructions

208 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SBE_SWIZ

3DSTATE_SBE_SWIZ
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 51h 3DSTATE_SBE_SWIZ

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 9h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1..8 15:0 Attribute

Format: SF_OUTPUT_ATTRIBUTE_DETAIL

9..10 63:60 Attribute 15 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

59:56 Attribute 14 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

55:52 Attribute 13 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

51:48 Attribute 12 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 209

3DSTATE_SBE_SWIZ
47:44 Attribute 11 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

43:40 Attribute 10 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

39:36 Attribute 09 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

35:32 Attribute 08 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

31:28 Attribute 07 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

27:24 Attribute 06 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

23:20 Attribute 05 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

19:16 Attribute 04 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

15:12 Attribute 03 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

11:8 Attribute 02 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

7:4 Attribute 01 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

3:0 Attribute 00 Wrap Shortest Enables

Format: WRAP_SHORTEST_ENABLE

 Command Reference: Instructions

210 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SCISSOR_STATE_POINTERS

3DSTATE_SCISSOR_STATE_POINTERS
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_SCISSOR_STATE_POINTERS command is used to define the location of the indirect SCISSOR_RECT

state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Fh 3DSTATE_SCISSOR_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Scissor Rect Pointer

Project: All

Format: DynamicStateOffset[31:5]SCISSOR_RECT*16

 Specifies the 32-byte aligned address offset of the SCISSOR_RECT state. This offset is relative to

the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 211

3DSTATE_SF

3DSTATE_SF
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 13h 3DSTATE_SF

Format: OpCode

15:8 Reserved

Project: BDW

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31:30 Reserved

Format: MBZ

29:12 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

212 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SF
11 Legacy Global Depth Bias Enable

Format: Enable

 Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is not set,

the SF will scale the Global Depth Offset Constant as described in section Error! Reference source

not found. of this document.

Programming Notes

This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Setting this

bit may have some degradation of performance for some workloads.

10 Statistics Enable

Project: All

Format: Enable

 If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP stage. If

DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.

Programming Notes

This bit should be set whenever clipping is enabled and the Statistics Enable bit is set in

CLIP_STATE. It should be cleared if clipping is disabled or Statistics Enable in CLIP_STATE is

clear.

9:2 Reserved

Format: MBZ

1 Viewport Transform Enable

Format: Enable

 This bit controls the Viewport Transform function.

0 Reserved

Format: MBZ

2 31:29 Reserved

Format: MBZ

28 Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 213

3DSTATE_SF
27:18 Line Width

Project: BDW

Format: U3.7

Range: [0.0, 7.9921875]

Range: [0.0, 2047.9921875]

Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization of the

"thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides the effect

of AAEnable (though the AAEnable state variable is not modified).

Programming Notes

Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx modes -

zero-width lines are not available when multisampling rasterization is enabled.

17:16 Line End Cap Antialiasing Region Width

Format: U2

 This field specifies the distances over which the coverage of anti-aliased line end caps are

computed.

Value Name Description

0h 0.5 pixels 0.5 pixels

1h 1.0 pixels 1.0 pixels

2h 2.0 pixels 2.0 pixels

3h 4.0 pixels 4.0 pixels

15 Reserved

Format: MBZ

14 Reserved

Format: MBZ

13 Reserved

12 Reserved

11:0 Reserved

Format: MBZ

3 31 Last Pixel Enable

Format: Enable

 If ENABLED, the last pixel of a diamond line will be lit. This state will only affect the rasterization

of Diamond lines (will not affect wide lines or anti-aliased lines).

Programming Notes

Last pixel is applied to all lines of a LINELIST, and only the last line of a LINESTRIP.

 Command Reference: Instructions

214 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SF
30:29 Triangle Strip/List Provoking Vertex Select

Format: 0-based vertex index

 Selects which vertex of a triangle (in a triangle strip or list primitive) is considered the "provoking

vertex". Used for flat shading of primitives.Does current implementation send provoking vertex

first?

Value Name

0h 0

1h 1

2h 2

3h Reserved

28:27 Line Strip/List Provoking Vertex Select

Project: All

Format: 0-based vertex index

 Selects which vertex of a line (in a line strip or list primitive) is considered the "provoking vertex".

Value Name Description

0h 0 Vertex 0

1h 1 Vertex 1

2h Reserved Reserved

3h Reserved Reserved

26:25 Triangle Fan Provoking Vertex Select

Format: 0-based vertex index

 Selects which vertex of a triangle (in a triangle fan primitive) is considered the "provoking

vertex".

Value Name

0h 0

1h 1

2h 2

3h Reserved

24:15 Reserved

Format: MBZ

14 AA Line Distance Mode

Format: U1

 This bit controls the distance computation for antialiased lines.

Value Name Description

1h AALINEDISTANCE_TRUE True distance computation. This is the normal setting which

should yield WHQL compliance.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 215

3DSTATE_SF
13 Smooth Point Enable

Format: Enable

Double Buffer Armed By: Enables logic to draw smooth OGL Points

Programming Notes

If Enabled, SF will treat points in the same fashion that AA lines are processed

12 Vertex Sub Pixel Precision Select

Format: U1

 Selects the number of fractional bits maintained in the vertex data

Value Name Description

0h Disable 8 sub pixel precision bits maintained

1h Enable 4 sub pixel precision bits maintained

11 Point Width Source

 Controls whether the point width passed on the vertex or from state is used for rendering point

primitives.

Value Name Description

0h Vertex Use Point Width on Vertex

1h State [Default] Use Point Width from State

10:0 Point Width

Format: U8.3

Range: [0.125, 255.875] pixels

This field specifies the size (width) of point primitives in pixels. This field is overridden (though

not overwritten) whenever point width information is passed in the FVF

 Command Reference: Instructions

216 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SO_BUFFER

3DSTATE_SO_BUFFER
Project: BDW

Source: RenderCS

Length Bias: 2

Programming Notes Project

Foreach SO Buffer, the 3DSTATE_SO_BUFFER must only be sent once prior to each 3DPRIMITIVE

command.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 18h 3DSTATE_SO_BUFFER

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 6h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31 SO Buffer Enable

Format: Enable

 If set, stream output to SO Buffer is enabled, if 3DSTATE_STREAMOUT::SO Function ENABLE is

also enabled..If clear, the SO Buffer is considered "not bound" and effectively treated as a zero-

length buffer for the purposes of SO output and overflow detection. If an enabled stream's

Stream to Buffer Selects includes this buffer it is by definition an overflow condition. That stream

will cause no writes to occur, and only SO_PRIM_STORAGE_NEEDED[<stream>] will increment.

30:29 SO Buffer Index

Format: U2

 Specifies which of the four SO Buffers is being defined.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 217

3DSTATE_SO_BUFFER
28:22 SO Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for the SO buffer.

21 Stream Offset Write Enable

Format: Enable

 When set, this field allows the hardware to write SO_WRITE_OFFSET[Buffer#] as specified in the

Stream Offset field.

Programming Notes

The field is operates irrespective of whether SO Buffer Enable is set or clear.

20 Stream Output Buffer Offset Address Enable

Format: Enable

 When set, this field allows the hardware to read/write the stream output buffer offset as

specified in the "Stream Output Buffer Offset Address" field.

Programming Notes

The field is operates irrespective of whether SO Buffer Enable is set or clear.

19:12 Reserved

Format: MBZ

11:0 Reserved

Format: MBZ

2..3 63:48 Reserved

Format: MBZ

47:2 Surface Base Address

Format: GraphicsAddress[47:2]SurfaceBase

 This field specifies the starting DWord address of the buffer in Graphics Memory.

1:0 Reserved

Format: MBZ

4 31:30 Reserved

Format: MBZ

29:0 Surface Size

Format: U30-1

This field specifies the size of buffer in number DWords minus 1 of the buffer in Graphics

Memory.

5..6 63:48 Reserved

Format: MBZ

 Command Reference: Instructions

218 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SO_BUFFER
47:2 Stream Output Buffer Offset Address

Format: GraphicsAddress[47:2]OutputBuffer

 This field specifies the high 16 bits of address of the buffer in Graphics Memory where the

Stream Output Buffer Offset is stored when all the data has been written. It is also used to fetch

the stream Output buffer Offset when needed.

1:0 Reserved

Format: MBZ

7 31:0 Stream Offset

 This field specifies the Offset in stream output buffer to start at, or whether to append to the

end of an existing buffer. The Offset must be DWORD aligned. If Stream Offset is equal to

0xFFFFFFFF then load the value at the Stream Output Buffer Offset address into

SO_WRITE_OFFSET[Buffer#]. Otherwise, SO_WRITE_OFFSET[Buffer#] = Stream Offset.

Value Name Description

FFFFFFFFh Load the value at the Stream Output Buffer Offset address

into MMIO_SO_OFFSET[Buffer#].

xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxx00b

 MMIO_SO_OFFSET[Buffer#] = Stream Offset

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 219

3DSTATE_SO_DECL_LIST

3DSTATE_SO_DECL_LIST
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 17h 3DSTATE_SO_DECL_LIST

Format: OpCode

15:9 Reserved

Format: MBZ

8:0 DWord Length

Format: =n Total Length - 2

Value Name Description

[1,257] Excludes DWORD (0,1) 0-128 Entries Value = 2 * (# of SO_DECL quads) + 1

1 31:16 Reserved

Format: MBZ

15:12 Stream to Buffer Selects [3]

Format: U4 bitmask

 Identifies to which SO Buffers stream 3 outputs. See Stream To Buffer Selects [0] field

description.

11:8 Stream to Buffer Selects [2]

Format: U4 bitmask

 Identifies to which SO Buffers stream 2 outputs. See Stream To Buffer Selects [0] field

description.

 Command Reference: Instructions

220 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_SO_DECL_LIST
7:4 Stream to Buffer Selects [1]

Format: U4 bitmask

 Identifies to which SO Buffers stream 1 outputs. See Stream To Buffer Selects [0] field

description.

3:0 Stream to Buffer Selects [0]

Format: U4 bitmask

 Identifies to which SO Buffers stream 0 outputs (irrespective of whether those buffers are

enabled via 3DSTATE_STREAMOUT). Software is required to scan the SO_DECL list in order to

provide this summary information. Note: For "inactive" streams, software must program this field

to all zero (no buffers written to) and the corresponding Num Entries field to zero (no valid

SO_DECLs).

Value Name

1xxxb SO Buffer 3

x1xxb SO Buffer 2

xx1xb SO Buffer 1

xxx1b SO Buffer 0

2 31:24 Num Entries [3]

Format: U8 #entries

 Specifies the number of valid SO_DECL entries for Stream 3. (See notes in Num Entries [0] field

description).

Value Name

[0,128] entries

23:16 Num Entries [2]

Format: U8 #entries

 Specifies the number of valid SO_DECL entries for Stream 2. (See notes in Num Entries [0] field

description).

Value Name

[0,128] entries

15:8 Num Entries [1]

Format: U8 #entries

 Specifies the number of valid SO_DECL entries for Stream 1. (See notes in Num Entries [0] field

description).

Value Name

[0,128] entries

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 221

3DSTATE_SO_DECL_LIST
7:0 Num Entries [0]

Format: U8 #entries

 Specifies the number of valid SO_DECL entries for Stream 0.Note that the SO_DECLs are

programmed in groups of four (one SO_DECL for each of the four streams). Therefore the

number of 2-DWord groups of SO_DECLs supplied in this command is derived from the stream(s)

with the most valid SO_DECLs. The NumEntries value specific to each stream will indicate how

many SO_DECLS are valid for that particular stream. Any trailing invalid SO_DECLs supplied for

streams with fewer valid SO_DECLs will be ignored. It is legal to specify Num Entries = 0 for all

four streams simultaneously. In this case there will be no SO_DECLs included in the command

(only DW 0-2). Note that all Stream to Buffer Selects bits must be zero in this case (as no streams

produce output).

Value Name

[0,128] entries

3..n 63:0 Entry

Format: SO_DECL_ENTRY

 Command Reference: Instructions

222 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_STENCIL_BUFFER

3DSTATE_STENCIL_BUFFER
Project: BDW

Source: RenderCS

Length Bias: 2

Description Project

This command sets the surface state of the separate stencil buffer, delivered as a pipelined state

command. However, the state change pipelining isn't completely transparent (see restriction below).

WM HW will internally manage the draining pipe and flushing of the caches when this command is

issued. The PIPE_CONTROL restrictions are removed.

BDW

Programming Notes Project

Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any combination of

3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,

3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall (PIPE_CONTROL with Depth

Stall bit set, followed by a pipelined depth cache flush (PIPE_CONTROL with Depth Flush Bit set,

followed by another pipelined depth stall (PIPE_CONTROL with Depth Stall Bit set), unless SW can

otherwise guarantee that the pipeline from WM onwards is already flushed (e.g., via a preceding

MI_FLUSH).

The stencil buffer is always Tile-W BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 06h 3DSTATE_STENCIL_BUFFER

Format: OpCode

15:8 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 223

3DSTATE_STENCIL_BUFFER
7:0 Dword Length

Format: =n Total Length - 2

Value Name Project

3h Excludes Dword (0,1) [Default] BDW

1 31 Stencil Buffer Enable

Project: BDW

Format: U1

 When set indicates that there is a valid stencil buffer.

Programming Notes

This bit should be "0" if Depth buffer surface format is D16_UNORM OR Depth buffer surface

type is NULL.

30:29 Reserved

Format: MBZ

28:22 Stencil Buffer Object Control State

Project: BDW

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for the stencil buffer.

21 Reserved

Project: BDW

Format: MBZ

20:17 Reserved

Format: MBZ

16:0 Surface Pitch

Format: U17-1 Pitch in Bytes

 This field specifies the pitch of the stencil buffer in (#Bytes - 1).

Value Name Description

[127, 1FFFFh] corresponding to [128B, 128KB]also restricted to a multiple of 128B

Programming Notes

Since this surface is tiled, the pitch specified must be a multiple of the tile pitch, in the range

[128B, 128KB].

The pitch must be set to 2x the value computed based on width, as the stencil buffer is stored

with two rows interleaved. For details on the separate stencil buffer storage format in

memory, see GPU Overview (vol1a), Memory Data Formats, Surface Layout, 2D Surfaces,

Stencil Buffer Layout (section 8.20.4.8).

 Command Reference: Instructions

224 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_STENCIL_BUFFER
2..3

Project:

BDW

63:0 Surface Base Address

Project: BDW

Format: GraphicsAddress[63:0]Stencil_Buffer

 This field specifies the address of the buffer in Graphics Memory.

Programming Notes

The Stencil Buffer can only be mapped to Main Memory (uncached).

4

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:0 Surface QPitch

Project: BDW

Format: QPitch[16:2]

Description Project

This field specifies the distance in rows between array slices. It is used only in the

following cases:

 Surface Array is enabled OR

 Number of Mulitsamples is not NUMSAMPLES_1 and Multisampled

Surface Storage Format set to MSFMT_MSS OR

 Surface Type is SURFTYPE_CUBE

BDW

Value Name Description

[4h,1FFFCh] in multiples of 4 (low 2 bits missing)

Programming Notes

This field must be set to an integer multiple of 8 (QPitch[2] MBZ)

Software must ensure that this field is set to a value sufficiently large such that the array slices

in the surface do not overlap. Refer to the Memory Data Formats section for information on

how surfaces are stored in memory.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 225

3DSTATE_STREAMOUT

3DSTATE_STREAMOUT
Project: BDW

Source: RenderCS

Length Bias: 2

 This command contains pipelined state required by the SOL unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Eh 3DSTATE_STREAMOUT

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Project: BDW

Format: =n Total Length - 2

1 31 SO Function Enable

Project: All

Format: U1

 If set, the SO function is enabled. Vertex data will be streamed out to memory (subject to

overflow detection) as controlled by the various SO-related state variables. If clear, the SO

function is disabled, and therefore no vertex data will be streamed out to memory. However,

the Rendering Disable and Render Stream Select fields will still be used to determine which

vertices (if any) are forwarded down the pipeline for (possible) rendering.

 Command Reference: Instructions

226 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_STREAMOUT
30 API Rendering Disable

Project: BDW

Format: U1

 If set, Indicates the API wants the SO stage not to forward any topologies down the pipeline. If

clear, Indicates the API wants the SO stage to forward topologies associated with Render

Stream Select down the pipeline. This bit is used even if SO Function Enable is DISABLED.

Programming Notes

The SOL unit generates an SOL_INT::Render_Enable which ultimately controls whether

rendering occurs or not.

29 Reserved

Project: All

Format: MBZ

28:27 Render Stream Select

Project: All

Format: U2

Description Project

This field specifies which stream has been selected to be forwarded down the

pipeline for possible rendering. Topologies from other streams will not be passed

down the pipeline. If Rendering Disable is set, this field is ignored, as no topologies

are sent down the pipeline.

SO Function Enable must also be ENABLED in order for thiis field to select a stream

for rendering. When SO Function Enable is DISABLED and Rendering Disable is

cleared (i.e., rendering is enabled), StreamID is ignored downstream of the SO stage,

allowing any stream to be rendered.

BDW

26 Reorder Mode

Project: All

 This bit controls how vertices of triangle objects in TRISTRIP[_ADJ] and TRISTRIP_REV are

reordered for the purposes of stream-out only (does not impact rendering). See table in Input

Buffering.

Value Name Description Project

0h LEADING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ]

such that the leading (first) vertices are in consecutive order

starting at v0. A similar reordering is performed on alternating

triangles in a TRISTRIP_REV.

All

1h TRAILING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ]

such that the trailing (last) vertices are in consecutive order starting

at v2. A similar reordering is performed on alternating triangles in a

TRISTRIP_REV.

All

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 227

3DSTATE_STREAMOUT
25 SO Statistics Enable

Project: All

Format: Enable

 This bit controls whether StreamOutput statistics register(s) can be incremented.

Value Name Description Project

0h Disable SO_NUM_PRIMS_WRITTEN[0..3] and

SO_PRIM_STORAGE_NEEDED[0..3] registers cannot increment.

All

1h Enable SO_NUM_PRIMS_WRITTEN[0..3] and

SO_PRIM_STORAGE_NEEDED[0..3] registers can increment.

All

24:23 Force Rendering

Project: BDW

 This field provides a work around override for the computation of SOL_INT::Render_Enable

Value Name Description Project

0h Normal SOL_INT::Render_Enable is computed normally All

1h Resreved All

2h Force_Off Forces the rendering to be disabled. All

3h Force_on Forces the rendering to be enabled. All

22:21 Reserved

Project: BDW

Format: MBZ

20:12 Reserved

Project: All

Format: MBZ

11:8 Reserved

Project: BDW

Format: MBZ

7:0 Reserved

Project: All

Format: MBZ

2 31:30 Reserved

Project: All

Format: MBZ

29 Stream 3 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

 Specifies amount of data to skip over before reading back Stream 3 vertex data. (See Stream 0

Vertex Read Offset)

 Command Reference: Instructions

228 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_STREAMOUT
28:24 Stream 3 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

 (See Stream 0 Vertex Read Length)

23:22 Reserved

Project: All

Format: MBZ

21 Stream 2 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

 Specifies amount of data to skip over before reading back Stream 2 vertex data. (See Stream 0

Vertex Read Offset)

20:16 Stream 2 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

15:14 Reserved

Project: All

Format: MBZ

13 Stream 1 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

 Specifies amount of data to skip over before reading back Stream 1 vertex data. (See Stream 0

Vertex Read Offset)

12:8 Stream 1 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

 (See Stream 0 Vertex Read Length)

7:6 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 229

3DSTATE_STREAMOUT
5 Stream 0 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

 Specifies amount of data to skip over before reading back Stream 0 vertex data. Must be zero if

the GS is enabled and the Output Vertex Size field in 3DSTATE_GS is programmed to 0 (i.e., one

16B unit).

4:0 Stream 0 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

 Specifies amount of vertex data to read back for Stream 0 vertices, starting at the Stream 0

Vertex Read Offset location. Maximum readback is 17 256-bit units (34 128-bit vertex

attributes). Read data past the end of the valid vertex data has undefined contents, and

therefore shouldn't be used to source stream out data. Must be zero (i.e., read length = 256b) if

the GS is enabled and the Output Vertex Size field in 3DSTATE_GS is programmed to 0 (i.e., one

16B unit).

3

Project:

BDW

31:28 Reserved

Project: BDW

Format: MBZ

27:16 Buffer 1 Surface Pitch

Project: BDW

15:12 Reserved

Project: BDW

Format: MBZ

11:0 Buffer 0 Surface Pitch

Project: BDW

Format: U12 pitch in Bytes

 This field specifies the pitch of the SO buffer in #Bytes.

Value Name

[0,2048] Must be 0 or a multiple of 4 Bytes.

Programming Notes

A Surface Pitch of 0 indicates an un-bound buffer. No writes are performed. Surface Base

Address is ignored.

4

Project:

BDW

31:28 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

230 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_STREAMOUT
27:16 Buffer 3 Surface Pitch

Project: BDW

Format: U12

15:12 Reserved

Project: BDW

Format: MBZ

11:0 Buffer 2 Surface Pitch

Project: BDW

Format: U12

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 231

3DSTATE_TE

3DSTATE_TE
Project: BDW

Source: RenderCS

Length Bias: 2

 For [BDW], the state used by TE is defined with this inline state packet.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ch 3DSTATE_TE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:20 Reserved

Project: All

Format: MBZ

19 Reserved

Project: BDW

Format: MBZ

18:16 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

232 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_TE
15:14 Reserved

Project: All

Format: MBZ

13:12 Partitioning

Project: All

Format: U2

 This field specifies how edges are partitioned based on tessellation factor.

Value Name Description Project

0h INTEGER Outside/inside edges are divided into an integer number

of equal-sized segments.

All

1h ODD_FRACTIONAL Outside/inside edges are divided into an odd number of

possibly-unequal-sized segments.

All

2h EVEN_FRACTIONAL Outside/inside edges are divided into an even number of

possibly-unequal-sized segments.

All

11:10 Reserved

Project: All

Format: MBZ

9:8 Output Topology

Project: All

Format: U2

 This field specifies which primitive types are to be output.

Value Name Description Project

0h POINT Points are output (as POINTLIST topologies) All

1h LINE Lines are output (as LINESTRIP topologies). Only valid if ISOLINE

domain is selected.

All

2h TRI_CW Clockwise-ordered triangles are output (either as TRISTRIP,

TRISTRIP_REV or TRILIST topologies). Not valid if ISOLINE domain is

selected.

All

3h TRI_CCW Count-clockwise-ordered triangles are output (either as TRISTRIP,

TRISTRIP_REV or TRILIST topologies). Not valid if ISOLINE domain is

selected.

All

7:6 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 233

3DSTATE_TE
5:4 TE Domain

Project: All

Format: U2

 This field specifies which type of domain is to be tessellated.

Value Name Description Project

0h QUAD 2D (U, V) domain is tessellated All

1h TRI Triangular (U, V, W) domain is tessellated All

2h ISOLINE 2D (U, V) domain is tessellated. All

3 Reserved

Project: All

Format: MBZ

2:1 TE Mode

Project: All

Format: U2

 When TE Enable is ENABLED, this field specifies the overall operation of the TE stage.This field is

ignored if TE Enable is DISABLED.

Value Name Description Project

0h HW_TESS Normal HW Tessellation Mode. The TessFactors are read from the

patch URB entry, and are used to perform fixed-function hardware

tessellation of the specified domain.

All

1h SW_TESS Software Tessellation Mode. The TE unit will pass down HS-thread-

generated tessellated domain points instead of generating them

itself from TessFactors. The TE unit will read the Domain Point Count

and Domain Point Buffer Starting Address fields from the patch

header, and if the count is 0 it will consider the patch culled and

discard it. Otherwise the address is used to start fetching

DOMAIN_POINT structures from memory and passing them down

the pipeline to DS.

BDW

0 TE Enable

Project: All

Format: Enable

 If ENABLED, the TE stage will perform tessellation processing on incoming patch primitives. The

TE Mode field determines how this tessellation operation proceeds.If DISABLED, the TE goes into

pass-through mode. All other state fields are ignored.

Programming Notes

The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw

commands can only be issued if all three stages are enabled or all three stages are disabled,

otherwise the behavior is UNDEFINED.

 Command Reference: Instructions

234 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_TE
2 31:0 Maximum Tessellation Factor Odd

Project: All

Format: IEEE_Float

 This field specifies the maximum TessFactor for ODD_FRACTIONAL partitioning when in

HW_TESS mode.

Value Name Description

[427c0000h,427c0000h] 63

[Default]

Per API Spec, For normal operation software should set

this value to 63.0

Programming Notes

Note that ISOLINE's LineDensity TF is always subjected to INTEGER partitioning regardless of

the Partitioning state.

3 31:0 Maximum Tessellation Factor Not Odd

Project: All

Format: IEEE_Float

 This field specifies the maximum TessFactor for EVEN_FRACTIONAL or INTEGER partitioning

when in HW_TESS mode.

Value Name Description

[42800000h,42800000h] 64

[Default]

Per API Spec, For normal operation software should set

this value to 64.0

Programming Notes

Note that ISOLINE's LineDensity TF is always subjected to INTEGER partitioning regardless of

the Partitioning state.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 235

3DSTATE_URB_DS

3DSTATE_URB_DS
Project: BDW

Source: RenderCS

Length Bias: 2

Description Project

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

The URB Starting Address and Number of URB Entries fields shall be programmed as if there is only

one slice enabled. When more than one slice is enabled, hardware will (a) recompute the actual URB

Starting Address based on the number of enabled slices and (b) multiply the Number of URB Entries

by the number of enabled slices. Software shall ensure that the values programmed do not exceed the

URB capacity of a single slice. Refer to the L3 allocation and programming guide for valid URB

configurations.

BDW

Programming Notes

When programming DS URB state for the RCS 3D pipe, 3DSTATE_URB_VS, 3DSTATE_URB_HS, and

3DSTATE_URB_GS must also be programmed in order for the programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 32h 3DSTATE_URB_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

236 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_URB_DS
7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:25 DS URB Starting Address

Project: BDW

Format: U7

 Offset from the start of the URB memory where DS starts its allocation, specified in multiples of

8 KB.

Value Name Project Exists If

[0,48] BDW Device[SliceCount] == 1

[4,48] BDW Device[SliceCount] GT 1

24:16 DS URB Entry Allocation Size

Project: All

Format: U9-1 Count of 512-bit units

 Specifies the length of each URB entry owned by DS. This field is always used (even if DS

Function Enable is DISABLED).

Value Name

[0,9]

15:0 DS Number of URB Entries

Project: All

Description Project

Specifies the number of URB entries that are used by DS, based on only 1 slice

enabled. When multiple slices are enabled, HW will multiply the value programmed by

the number of slices in order to determine the total number of entries. SW shall

ensure that the total number of entries does not exceed the relevant ValidValue range

listed below.

This field is always used (even if DS Function Enable is DISABLED).

If Domain Shader Thread Dispatch is Enabled then the minimum number of handles

that must be allocated is 34 URB entries.

BDW

Value Name Project

[0,1536] BDW

Programming Notes

DS Number of URB Entries must be divisible by 8 if the DS URB Entry Allocation Size is

programmed to a value less than 9, which is 10 512-bit URB entries. "2:0" = reserved "000"

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 237

3DSTATE_URB_GS

3DSTATE_URB_GS
Project: BDW

Source: RenderCS

Length Bias: 2

Description Project

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

The URB Starting Address and Number of URB Entries fields shall be programmed as if there is only

one slice enabled. When more than one slice is enabled, hardware will (a) recompute the actual URB

Starting Address based on the number of enabled slices and (b) multiply the Number of URB Entries

by the number of enabled slices. Software shall ensure that the values programmed do not exceed the

URB capacity of a single slice. Refer to the L3 allocation and programming guide for valid URB

configurations

BDW

Programming Notes

When programming GS URB state for the RCS 3D pipe, 3DSTATE_URB_VS, 3DSTATE_URB_HS, and

3DSTATE_URB_DS must also be programmed in order for the programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 33h 3DSTATE_URB_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

238 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_URB_GS
7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:25 GS URB Starting Address

Project: BDW

Format: U7

 Offset from the start of the URB memory where GS starts its allocation, specified in multiples of

8 KB.

Value Name Project Exists If

[0,48] BDW Device[SliceCount] == 1

[4,48] BDW Device[SliceCount] GT 1

24:16 GS URB Entry Allocation Size

Project: All

Format: U9-1 512-bit units

 Specifies the length of each URB entry owned by GS. This field is always used (even if GS

Function Enable is DISABLED).

15:0 GS Number of URB Entries

Project: All

Specifies the number of URB entries that are used by GS, based on only 1 slice enabled. When

multiple slices are enabled, HW will multiply the value programmed by the number of slices in

order to determine the total number of entries. SW shall ensure that the total number of entries

does not exceed the relevant ValidValue range listed below.

This field is always used (even if GS Function Enable is DISABLED).

Value Name Project

[0,960] BDW

Programming Notes

Only if GS is disabled can this field be programmed to 0. If GS is enabled this field shall be

programmed to a value greater than 0. For GS Dispatch Mode "Single", this field shall be

programmed to a value greater than or equal to 1. For other GS Dispatch Modes, refer to the

definition of Dispatch Mode (3DSTATE_GS) for minimum values of this field.

GS Number of URB Entries must be divisible by 8 if the GS URB Entry Allocation Size is less than

9 512-bit URB entries. "2:0" = reserved "000"

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 239

3DSTATE_URB_HS

3DSTATE_URB_HS
Project: BDW

Source: RenderCS

Length Bias: 2

Description Project

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

The URB Starting Address and Number of URB Entries fields shall be programmed as if there is only

one slice enabled. When more than one slice is enabled, hardware will (a) recompute the actual URB

Starting Address based on the number of enabled slices and (b) multiply the Number of URB Entries

by the number of enabled slices. Software shall ensure that the values programmed do not exceed the

URB capacity of a single slice. Refer to the L3 allocation and programming guide for valid URB

configurations

BDW

Programming Notes

When programming HS URB state for the RCS 3D pipe, 3DSTATE_URB_VS, 3DSTATE_URB_DS, and

3DSTATE_URB_GS must also be programmed in order for the programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 31h 3DSTATE_URB_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

240 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_URB_HS
7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:25 HS URB Starting Address

Project: BDW

Format: U7

 Offset from the start of the URB memory where HS starts its allocation, specified in multiples of

8 KB.

Value Name Project Exists If

[0,48] BDW Device[SliceCount] == 1

[4,48] BDW Device[SliceCount] GT 1

24:16 HS URB Entry Allocation Size

Project: All

Format: U9-1 Count of 512-bit units

 Specifies the length of each URB entry owned by HS. This field is always used (even if HS

Function Enable is DISABLED).

15:0 HS Number of URB Entries

Project: All

Specifies the number of URB entries that are used by HS, based on only 1 slice enabled. When

multiple slices are enabled, HW will multiply the value programmed by the number of slices in

order to determine the total number of entries. SW shall ensure that the total number of entries

does not exceed the relevant ValidValue range listed below.

This field is always used (even if HS Function Enable is DISABLED).

Programming Restriction:HS Number of URB Entries must be divisible by 8 if the HS URB Entry

Allocation Size is less than 9 512-bit URB entries."2:0" = reserved "000"

Value Name Project

[0,504] BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 241

3DSTATE_URB_VS

3DSTATE_URB_VS
Project: BDW

Source: RenderCS, PositionCS

Length Bias: 2

Description Project

VS URB Entry Allocation Size equal to 4(5 512-bit URB rows) may cause performance to decrease due

to banking in the URB. Element sizes of 16 to 20 should be programmed with six 512-bit URB rows.

BDW

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

The offset and size should be programmed as if there is only one slice enabled. Hardware will grow

the size based on the slice configuration. Software shall ensure that the values programmed do not

exceed the URB capacity of one slice. Refer to the L3 allocation and programming guide for valid URB

configurations.

BDW

Programming Notes

When programming VS URB state for the RCS 3D pipe, 3DSTATE_URB_HS, 3DSTATE_URB_DS, and

3DSTATE_URB_GS must also be programmed in order for the programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 30h 3DSTATE_URB_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

242 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_URB_VS
7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:25 VS URB Starting Address

Project: BDW

Format: U7

 Offset from the start of the URB memory where VS starts its allocation, specified in multiples of 8

KB.

Value Name Project Exists If

[0,48] BDW Device[SliceCount] == 1

[4,48] BDW Device[SliceCount] GT 1

24:16 VS URB Entry Allocation Size

Project: All

Format: U9-1 count of 512-bit units

 Specifies the length of each URB entry owned by VS. This field is always used (even if VS

Function Enable is DISABLED).

Value Name Project

[0,9] BDW

Programming Notes

Programming Restriction: As the VS URB entry serves as both the per-vertex input and output

of the VS shader, the VS URB Allocation Size must be sized to the maximum of the vertex input

and output structures.

15:0 VS Number of URB Entries

Project: All

Format: U16

Specifies the number of URB entries that are used by VS, based on only 1 slice enabled. When

multiple slices are enabled, HW will multiply the value programmed by the number of slices in

order to determine the total number of entries. SW shall ensure that the total number of entries

does not exceed the relevant ValidValue range listed below.

This field is always used (even if VS Function Enable is DISABLED).

Value Name Project

[64,2560] BDW

Programming Notes Project

Programming Restriction: VS Number of URB Entries must be divisible by 8 if the VS

URB Entry Allocation Size is less than 9 512-bit URB entries."2:0" = reserved "000b"

When tessellation is enabled, the VS Number of URB Entries must be greater than or

equal to 192.

BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 243

3DSTATE_VERTEX_BUFFERS

3DSTATE_VERTEX_BUFFERS
Project: BDW

Source: RenderCS

Length Bias: 2

Description Project

This command is used to specify VB state used by the VF function.

[BDW]: Can specify from 1 to 33 VBs. BDW

The VertexBufferID field within a VERTEX_BUFFER_STATE structure indicates the specific VB. If a VB

definition is not included in this command, its associated state is left unchanged and is available for

use if previously defined.

Programming Notes

It is possible to have individual vertex elements sourced completely from generated ID values and therefore not

require any vertex buffer accesses for that vertex element. In this case, VF function will simply ignore the VB

state associated with that vertex element. If all enabled vertex elements have this characteristic, no VBs are

required to process 3DPRIMITIVE commands. For example, this might arise when the user wants to perform all

data lookups in the first shader, so only generated index values need to be passed down to it. In this extreme

case, SW would not need to program any VB state, and therefore not need to issue any

3DSTATE_VERTEX_BUFFERS commands.

For any 3DSTATE_VERTEX_BUFFERS command, at least one VERTEX_BUFFER_STATE structure must be included.

VERTEX_BUFFER_STATE structures are 4 DWords for both VERTEXDATA buffers and INSTANCEDATA buffers.

Inclusion of partial VERTEX_BUFFER_STATE structures is UNDEFINED.

The order in which VBs are defined within this command can be arbitrary, though a vertex buffer must be

defined only once in any given command (otherwise operation is UNDEFINED).

The VF cache (and the VFR cache if POSH is enabled) needs to be invalidated before binding and then using

Vertex Buffers that overlap with any previously bound Vertex Buffer (at a 64B granularity) since the last

invalidation.

A VF cache invalidate is performed by setting the "VF Cache Invalidation Enable" bit in PIPE_CONTROL.

DWord Bit Description

0 31:29 Command Type

Default Value: 03h GFXPIPE

Format: Opcode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: Opcode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: Opcode

 Command Reference: Instructions

244 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VERTEX_BUFFERS
23:16 3D Command Sub Opcode

Default Value: 08h 3DSTATE_VERTEX_BUFFERS

Format: Opcode

15:8 Reserved

7:0 DWord Length

Format: =n

 n = 4b-1 (where b = # of buffer states included)

Value Name Project

3 DWORD_COUNT_n [Default]

[3,131] 1-33 Buffers BDW

1..n 127:0 Vertex Buffer State

Format: VERTEX_BUFFER_STATE

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 245

3DSTATE_VERTEX_ELEMENTS

3DSTATE_VERTEX_ELEMENTS
Project: BDW

Source: RenderCS

Length Bias: 2

Description Project

This is a variable-length command used to specify the active vertex elements. Each

VERTEX_ELEMENT_STATE structure contains a Valid bit which determines which elements are used.

BDW

[BDW]: Up to 34 elements. BDW

Programming Notes Project

[BDW]: At least one VERTEX_ELEMENT_STATE structure must be included. BDW

The 3DSTATE_VERTEX_ELEMENTS must not be programmed more than once before each 3DPRIMITIVE

command.

BDW

Inclusion of partial VERTEX_ELEMENT_STATE structures is UNDEFINED.

[BDW]: SW must ensure that at least one vertex element is defined prior to issuing a 3DPRIMTIVE

command, or operation is UNDEFINED.

BDW

[BDW]: There are no 'holes' allowed in the destination vertex: NOSTORE components must be

overwritten by subsequent components unless they are the trailing DWords of the vertex. Software

must explicitly chose some value (probably 0) to be written into DWords that would otherwise be

'holes'.

BDW

[BDW]: Within a VERTEX_ELEMENT_STATE structure, if a Component Control field is set to something

other than VFCOMP_STORE_SRC, no higher-numbered Component Control fields may be set to

VFCOMP_STORE_SRC. In other words, only trailing components can be set to something other than

VFCOMP_STORE_SRC.

BDW

[BDW]: See additional restrictions listed in the command fields and VERTEX_ELEMENT_STATE

description.

BDW

[BDW]: Element[0] must be valid. BDW

[BDW]: All elements must be valid from Element[0] to the last valid element. (I.e. if Element[2] is valid

then Element[1] and Element[0] must also be valid).

BDW

[BDW]: The pitch between elements packed in the URB will always be 128 bits. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 03h GFXPIPE

Format: Opcode

28:27 Command SubType

Default Value: 3h 3D

Format: Opcode

 Command Reference: Instructions

246 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VERTEX_ELEMENTS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: Opcode

23:16 3D Command Sub Opcode

Default Value: 09h 3DSTATE_VERTEX_ELEMENTS

Format: Opcode

15:8 Reserved

7:0 DWord Length

Format: =n

 Vertex Element Count = (DWord Count + 1) / 2

Value Name Description Project

1 DWORD_COUNT_n [Default] excludes DWords 0,1

[1,67] Range 1-34 Elements BDW

1..n 63:0 Element

Format: VERTEX_ELEMENT_STATE [BDW] [BDW]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 247

3DSTATE_VF

3DSTATE_VF
Project: BDW

Source: RenderCS

Length Bias: 2

 This command is used to set various state variables in the VF stage.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ch 3DSTATE_VF

Format: OpCode

15:13 Reserved

Project: All

Format: MBZ

12 Reserved

Project: BDW

11 Reserved

Project: BDW

Format: MBZ

10 Reserved

Project: BDW

Format: MBZ

9 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

248 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VF
8 Indexed Draw Cut Index Enable

Project: All

Format: Enable

 If ENABLED, vertex indices in RANDOM 3DPRIMITIVE commands are compared to the Cut Index

(specified below). When the vertex index matches the Cut Index any previous topology is

terminated.If DISABLED, vertex indices are not compared to the Cut Index and are used strictly as

indices into vertex buffers.This field can only be enabled for certain primitive topology types.

Refer to the table later in this section for details.

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:0 Cut Index

Project: All

 This field specifies the index value that is considered the "cut index" which vertex indices are

compared to if a Cut Index Enable is set. The Cut Index is compared to the fetched (and possibly-

sign-extended) vertex index, and if these values are equal, the current primitive topology is

terminated. Note that, for index buffers less than 32bpp, it is possible to set the Cut Index to a

(large) value that will never match a sign-extended vertex index.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 249

3DSTATE_VF_INSTANCING

3DSTATE_VF_INSTANCING
Project: BDW

Source: RenderCS

Length Bias: 2

 This command is used to control the "instancing" state associated with a specific vertex element.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 49h 3DSTATE_VF_INSTANCING

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2

Value Name

1h Excludes DWord (0,1) [Default]

43h Context Restore

1 31:9 Reserved

Format: MBZ

 Command Reference: Instructions

250 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VF_INSTANCING
8 Instancing Enable

Format: Enable

Value Name Description

0h Disabled This vertex element is not instanced and therefore vertices within instances

can each receive different data for this vertex element. Within each instance,

the source vertex data for this vertex element is determined according the the

Vertex Access Type of the 3DPRIMITIVE command. Instance Data Step Rate is

ignored for this vertex element.

1h Enabled This vertex element is instanced and therefore vertices within instances will

receive the same data for this vertex element. The source pointer for this

particular vertex element will be (a) initialized at the start of 3DPRIMITIVE

processing, (b) held constant for all vertices within an instance, and (c)

advanced between instances as a function of Instance Data Step Rate.

7:6 Reserved

Format: MBZ

5:0 Vertex Element Index

Format: U6

 This field identifies which vertex element state is to be modified by this command.

Value Name

[0,33]

2 31:0 Instance Data Step Rate

 If Instancing Enable is ENABLED, this field determines the rate at which data for this particular

vertex element is changed between instances. Only after the number of instances specified by

this field is generated is new (sequential) vertex element data provided. This process continues

for each group of instances defined in the 3DPRIMTIVE command. For example, a value of 1 in

this field causes new data to be supplied for this vertex element with each sequential (instance)

group of vertices. A value of 2 causes every other instance group of vertices to be provided with

new vertex element data. The special value of 0 causes all vertices of all instances generated by

the 3DPRIMITIVE command to be provided with the same data for this vertex element. (The same

effect can be achieved by setting this field to its maximum value.) If Instancing Enable is

DISABLED, this field is ignored.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 251

3DSTATE_VF_SGVS

3DSTATE_VF_SGVS
Project: BDW

Source: RenderCS

Length Bias: 2

 This command is used to control the insertion of the VertexID and InstanceID System-Generated Values (SGVs)

into an input Vertex URB Entry (VUE) (available as input to a VS thread). VertexID and InstanceID insertion can be

individually controlled. The insertion locations are specified as 128-bit element locations (starting at the

beginning of the VUE) and the 32-bit component within those specified elements. The SGV values can be

inserted either (a) within a valid vertex element (in which case the value overwrites the value specified via

3DSTATE_VERTEX_ELEMENTS) or (b) beyond the last valid vertex element written to the URB. This permits some

orthogonality between the programming of vertex elements (which typically is known at draw time) and

programming of SGV insertion (which is associated with the shader). There are some restrictions however (see

below). If an SGV is inserted beyond the last valid vertex element, zeroes are first inserted in the VUE after the

last valid vertex element up to and including the vertex element receiving an SGV. If both of the SGVs are

enabled for insertion, the zeroes will extend to the last (largest index) vertex element receiving an SGV. Then the

SGV(s) are inserted.

Programming Notes

Programming Restrictions:

 It is INVALID to store both the VertexID and InstanceID in the same element/component location within

the VUE.

 The states programmed by this command overwrite the state programmed by any previous commands.

I.e., VertexID and InstanceID (if enabled) can only be inserted in one component of a vertex.

 It is INVALID to insert an SGV value past the end of the VUE entry (as determined by VS URB Entry

Allocation Size) or past the 33rd vertex element. Therefore the programming of VS URB Entry Allocation

Size needs to comprehend any SGV insertion requirements.

 It is INVALID to use this command to overwrite any portion of a 64-bit vertex element component.

 It is INVALID to use this command to overwrite a EdgeFlag vertex element component or any vertex

element beyond it.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

 Command Reference: Instructions

252 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VF_SGVS
26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 4Ah 3DSTATE_VF_SGVS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31 InstanceID Enable

Project: All

Format: Boolean

Value Name Description Project

0h Disabled InstanceID is not inserted All

1h Enabled InstanceID is inserted All

30:29 InstanceID Component Number

Project: All

If InstanceID Enable is ENABLED, this field specifies the 32-bit component location (within the 4-

component VUE) where it is inserted.

If InstanceID Enable is DISABLED, this field is ignored.

Value Name Description Project

0 COMP_0 If enabled, InstanceID is inserted in component 0 (.x) All

1 COMP_1 If enabled, InstanceID is inserted in component 1 (.y) All

2 COMP_2 If enabled, InstanceID is inserted in component 2 (.z) All

3 COMP_3 If enabled, InstanceID is inserted in component 3 (.w) All

28:22 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 253

3DSTATE_VF_SGVS
21:16 InstanceID Element Offset

Project: All

Format: U6 Offset of 128-bit element

 If InstanceID Enable is ENABLED, this field specifies the VUE element offset of the 128-bit

element where it is to be inserted. The InstanceID Component Number specifies where in the

specified element it is inserted.

Value Name

[0,33]

15 VertexID Enable

Project: All

Format: Boolean

Value Name Description Project

0h Disabled VertexID is not inserted All

1h Enabled VertexID is inserted All

14:13 VertexID Component Number

Project: All

 If VertexID Enable is ENABLED, this field specifies the 32-bit component location (within the 4-

component VUE) where it is inserted.If VertexID Enable is DISABLED, this field is ignored.

Value Name Description Project

0 COMP_0 If enabled, VertexID is inserted in component 0 (.x) All

1 COMP_1 If enabled, VertexID is inserted in component 1 (.y) All

2 COMP_2 If enabled, VertexID is inserted in component 2 (.z) All

3 COMP_3 If enabled, VertexID is inserted in component 3 (.w) All

12:6 Reserved

Project: All

Format: MBZ

5:0 VertexID Element Offset

Project: All

Format: U6 Offset of 128-bit element

 If VertexID Enable is ENABLED, this field specifies the VUE element offset of the 128-bit element

where it is to be inserted. The VertexID Component Number specifies where in the specified

element it is inserted. This is also the vertex element index. If VertexID Enable is DISABLED, this

field is ignored.

Value Name

[0,33]

 Command Reference: Instructions

254 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VF_STATISTICS

3DSTATE_VF_STATISTICS
Project: DevBWR+

Source: RenderCS

Length Bias: 1

 The VF stage tracks two pipeline statistics, the number of vertices fetched and the number of objects generated.

VF will increment the appropriate counter for each when statistics gathering is enabled by issuing the

3DSTATE_VF_STATISTICS command with the [Statistics Enable] bit set.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: Opcode

28:27 Command SubType

Format: Opcode

Value Name

1h GFXPIPE_SINGLE_DW [Default]

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: Opcode

 GFXPIPE[28:27 = 1h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined, Single DWord)

23:16 3D Command Sub Opcode

Default Value: 0Bh 3DSTATE_VF_STATISTICS

Format: Opcode

 GFXPIPE[28:27 = 1h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined, Single DWord)

15:1 Reserved

Format: MBZ

0 Statistics Enable

Format: Enable

 If ENABLED, VF will increment the pipeline statistics counters IA_VERTICES_COUNT and

IA_PRIMITIVES_COUNT for each vertex fetched and each object output, respectively, for

3DPRIMITIVE commands issued subsequently. If DISABLED, these counters will not be

incremented for subsequent 3DPRIMITIVE commands.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 255

3DSTATE_VF_TOPOLOGY

3DSTATE_VF_TOPOLOGY
Project: BDW

Source: RenderCS

Length Bias: 2

 This command specifies the VF stage's Topology state which can be used to override the Primitive Topology

Type in subsequent 3DPRIMITIVE commands.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 4Bh 3DSTATE_VF_TOPOLOGY

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:6 Reserved

Project: All

Format: MBZ

5:0 Primitive Topology Type

Project: All

Format: 3D_Prim_Topo_Type

 This field specifies the VF stage's Topology state.

 Command Reference: Instructions

256 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VIEWPORT_STATE_POINTERS_CC

3DSTATE_VIEWPORT_STATE_POINTERS_CC
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_VIEWPORT_STATE_POINTERS_CC command is used to define the location of fixed functions'

viewport state table.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 CC Viewport Pointer

Project: All

Format: DynamicStateOffset[31:5]CC_VIEWPORT*16

 Specifies the 32-byte aligned address offset of the CC_VIEWPORT state. This offset is relative to

the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 257

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP
Project: BDW

Source: RenderCS

Length Bias: 2

 The 3DSTATE_VIEWPORT_STATE_POINTERS_CLIP command is used to define the location of fixed functions'

viewport state table.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:6 SF Clip Viewport Pointer

Project: All

Format: DynamicStateOffset[31:6]SF_CLIP_VIEWPORT*16

 Specifies the 64-byte aligned address offset of the SF_CLIP_VIEWPORT state. This offset is

relative to the Dynamic State Base Address.

5:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

258 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VS

3DSTATE_VS
Project: BDW

Source: RenderCS, PositionCS

Length Bias: 2

Description Project

This command specifies most of the state used by the Vertex Shader (VS) stage. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 10h 3DSTATE_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 7h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1..2 63:6 Kernel Start Pointer

Project: All

Format: InstructionBaseOffset[63:6]Kernel

This field specifies the starting location of the kernel program run by threads spawned by the VS

pipeline stage. It is specified as a 64-byte-granular offset from the Instruction Base Address. This

field is ignored if VS Function Enable is DISABLED.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 259

3DSTATE_VS
5:0 Reserved

Project: All

Format: MBZ

3 31 Single Vertex Dispatch

Project: BDW

Format: U1 Enumerated Type

When this bit is set, SIMD4x2 VS threads will only process a single vertex, otherwise SIMD4x2

threads will process either one or two vertices. This field is ignored if SIMD8 Dispatch Enable is

set.

Value Name Description Project

0h Multiple Dual vertex SIMD4x2 thread dispatches are allowed. All

1h Single Single vertex SIMD4x2 thread dispatches are forced. All

30 Vector Mask Enable

Project: All

Upon subsequent VS thread dispatches, this bit is loaded into the EU’s Vector Mask Enable

(VME, cr0.0[3]) thread state. Refer to EU documentation for the definition and use of VME state.

Value Name Description Project

0h Dmask The EU will use the Dispatch Mask (supplied by the VS stage) for

instruction execution.

All

1h Vmask The EU will use the Vector Mask (derived from the Dispatch Mask) for

instruction execution.

All

Programming Notes

Under normal conditions SW shall specify DMask, as the VS stage will provide a Dispatch Mask

appropriate to SIMD4x2 or SIMD8 thread execution (as a function of SIMD8 Dispatch Enable).

E.g., for SIMD4x2 thread execution, the VS stage will generate a Dispatch Mask that is equal to

what the EU would use as the Vector Mask. For SIMD8 execution there is no known usage

model for use of Vector Mask (as there is for PS shaders).

 Command Reference: Instructions

260 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VS
29:27 Sampler Count

Project: All

Format: U3

This field specifies (in multiples of 4) the number of sets of sampler state that will be prefetched

for use by the VS kernel. While the prefetching of sampler state is optional and does not impact

functionality, it may improve performance.

This field is ignored if the Function Enable state is set to DISABLED.

Value Name Description Project

0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12 Samplers between 9 and 12 samplers used All

4h 13-16 Samplers between 13 and 16 samplers used All

26 Reserved

Project: All

Format: MBZ

25:18 Binding Table Entry Count

Project: All

Format: U8

Description Project

Specifies how many binding table entries the kernel uses. Used only for prefetching of

the binding table entries and associated surface state.

 Note: For kernels using a large number of binding table entries, it may be wise to set

this field to zero to avoid prefetching too many entries and thrashing the state cache.

 This field is ignored if VS Function Enable is DISABLED.

When HW Generated Binding Table bit is enabled: This field indicates which cache

lines (512bit units - 32 Binding Table Entry section) should be fetched. Each bit in this

field corresponds to a cache line. Only the 1st 4 non-zero Binding Table entries of each

32 Binding Table entry section prefetched will have its surface state prefetched.

BDW

Value Name

[0,255]

Programming Notes Project

When HW binding table bit is set, it is assumed that the Binding Table Entry Count

field will be generated at JIT time.

BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 261

3DSTATE_VS
17 Thread Dispatch Priority

Project: All

Format: U1 Enumerated Type

 Specifies the priority of the thread for dispatch: This field is ignored if VS Function Enable is

DISABLED.

Value Name Description Project

0h Normal Normal Priority All

1h High High Priority All

16 Floating Point Mode

Project: All

Format: U1 Enumerated Type

 Specifies the initial floating point mode used by the dispatched thread. This field is ignored if VS

Function Enable is DISABLED.

Value Name Description Project

0h IEEE-754 Use IEEE-754 Rules All

1h Alternate Use Alternate Rules All

15:14 Reserved

Project: All

Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

 This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA

Execution Environment. This field is ignored if VS Function Enable is DISABLED.

12 Accesses UAV

Format: Enable

 This field must be set when VS has a UAV access.

Programming Notes Project

This field must not be set when VS Function Enable is disabled.

Workaround: If the vertex shader is the last shader to have UAV access,

a PIPE_CONTROL with CS_STALL must be sent before the 3dprimitive using the UAV

access.

BDW

11:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

262 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VS
7 Software Exception Enable

Project: All

Format: Enable

 This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA

Execution Environment. This field is ignored if VS Function Enable is DISABLED.

6:0 Reserved

Project: All

Format: MBZ

4..5 63:10 Scratch Space Base Pointer

Project: All

Format: GeneralStateOffset[63:10]ScratchSpace

 Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-byte

aligned offset from the General State Base Address. If required, each thread spawned by this FF

unit will be allocated some portion of this space, as specified by Per-Thread Scratch Space. The

computed offset of the thread-specific portion will be passed in the thread payload as Scratch

Space Offset. The thread is expected to utilize "stateless" DataPort read/write requests to access

scratch space, where the DataPort will cause the General State Base Address to be added to the

offset passed in the request header. This field is ignored if VS Function Enable is DISABLED. In

64b OS all pointers need to be seen by SW as 48b. HW does not support a Scratch Space Base

Pointer larger than 32b, therefore SW must ensure Bits<63:32> are set to 0's.

9:4 Reserved

Project: All

Format: MBZ

3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes

 Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space Base

Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space

size without exceeding the driver-allocated scratch space. This field is ignored if VS Function

Enable is DISABLED.

Value Name Description

[0,11] Indicating [1K Bytes, 2M Bytes]

Programming Notes

This amount is available to the kernel for information only. It will be passed verbatim (if not

altered by the kernel) to the Data Port in any scratch space access messages, but the Data Port

will ignore it.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 263

3DSTATE_VS
6 31:25 Reserved

Format: MBZ

24:20 Dispatch GRF Start Register For URB Data

Project: All

Format: U5

Specifies the starting GRF number for the URB portion (URB constants and vertices) of the thread

payload.

This field is ignored if VS Function Enable is DISABLED.

Value Name Description

[0,31] indicating GRF [R0, R31]

19:17 Reserved

Project: All

Format: MBZ

16:11 Vertex URB Entry Read Length

Format: U6

 Specifies the number of pairs of 128-bit vertex elements to be passed into the payload for each

vertex. This field is ignored if VS Function Enable is DISABLED. For SIMD4x2 dispatch, each vertex

element requires one GRF of payload data, therefore the number of GRFs with vertex data will be

double the value programmed in this field. For SIMD8 dispatch, each vertex element requires 4

GRFs of payload data, therefore the number of GRFs with vertex data will be 8 times the value

programmed in this field. The EU limit of 128 GRFs imposes a maximum limit of 30 elements per

vertex pushed into the payload, though the practical limit may be lower. If input vertices exceed

the practical limit, software must decide between resorting to pulling elements during thread

execution or dropping back to SIMD4x2 dispatch. Note that the VUE is used for both input and

output, so when using the pull-model software must ensure inputs are not overwritten before

last use.

Value Name Description

[1,63] if SIMD8 dispatch disabled

[0,15] if SIMD8 dispatch enabled

10 Reserved

Project: All

Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6

 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB before

being included in the thread payload. This offset applies to all Vertex URB entries passed to the

thread. This field is ignored if VS Function Enable is DISABLED.

Value Name

[0,63]

 Command Reference: Instructions

264 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VS
3:0 Reserved

Project: All

Format: MBZ

7 31:23 Maximum Number of Threads

Project: BDW

Format: U9-1 Thread count

 Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid

using up the scratch space. Programming the value of the max threads over the number of

threads based off number of threads supported in the execution units may improve performance

since the architecture allows threads to be buffered between the check for max threads and the

actual dispatch into the EU. Programming the max values to a number less than the number of

threads supported in the execution units may reduce performance. This field is ignored if VS

Function Enable is DISABLED.

Value Name Description Project

[0,503] indicating thread count of [1,504] BDW

22 Reserved

Project: BDW

Format: MBZ

21:13 Reserved

Project: All

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10 Statistics Enable

Project: All

Format: Enable

If ENABLED, the VS stage will perform statistics gathering. See the Statistics Gathering

subsection.

If DISABLED, statistics information associated with the VS stage will be left unchanged.

9 Reserved

Project: BDW

Format: MBZ

8:3 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 265

3DSTATE_VS
2 SIMD8 Dispatch Enable

Project: All

Format: Enable

This field determines how VS threads are dispatched and how the thread payloads are generated.

The setting of this field must agree with how the VS kernel was compiled.

If ENABLED, SIMD8 VS thread dispatches are performed. The Single Vertex Dispatch field is

ignored.

If DISABLED, SIMD4x2 thread dispatches are performed. The Single Vertex Dispatch field can be

used to force single-vertex dispatches.

1 Vertex Cache Disable

Project: All

Format: Disable

This bit controls the operation of the Vertex Cache. This field is always used.

If the Vertex Cache is DISABLED and the VS Function is ENABLED, the Vertex Cache is not used

and all incoming vertices will be passed to VS threads.

If the Vertex Cache is ENABLED and the VS Function is ENABLED, only incoming vertices that do

not hit in the Vertex Cache will be passed to VS threads.

If the Vertex Cache is ENABLED and the VS Function is DISABLED, input vertices that miss in the

Vertex Cache will be assembled and written to the URB (by the VF stage), and subsequently

passed through the VS stage unmodified (i.e, no VS threads are spawned).

The Vertex Cache is invalidated whenever the Vertex Cache becomes DISABLED, whenever the VS

Function Enable toggles, between 3DPRIMITIVE commands and between instances within a

3DPRIMITIVE command.

Programming Notes

See the Vertex Caching subsection for details on implicit Vertex Cache disabling.

0 Function Enable

Format: Enable

This bit determines whether or not the VS stage spawns VS threads, which comprises the bulk of

the VS stage functionality.

If ENABLED, VS threads may be spawned to process VF-generated vertices before the resulting

vertices are passed down the pipeline.

If DISABLED, VF-generated vertices will pass thru the VS function and are sent down the pipeline

unmodified. The Vertex Cache (if enabled) is still available.

8 31:28 Reserved

Project: All

Format: MBZ

27 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

266 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_VS
26:21 Vertex URB Entry Output Read Offset

Project: All

Format: U6

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB by the

Setup Back-End (SBE) function. The offset programmed will specify the start of Attribute 0 to be

passed in subsequent Pixel Shader thread payloads. Refer to the Attribute Interpolator Setup

documentation.

Value Name

[0,63]

Programming Notes

As the vertex header data located at the start of the Vertex URB entry is typically only used by

3D pipeline FFs (i.e., Clipper, Setup FrontEnd) and not required as interpolated attributes in

PIxel Shader threads, it is expected that SW will program this Start Offset skip over the vertex

header.

This offset value is ignored if SBE's Number of SF Attributes state is programmed to 0 (i.e., no

attributes are defined beyond the position read from the Vertex Header)

20:16 Vertex URB Entry Output Length

Project: All

Format: U5

Specifies the amount of Vertex Attribute URB data to be read by the Setup Back-End function for

each Vertex URB entry, in 256-bit units. The attribute data will be read starting at the offset

specified by the Vertex URB Entry Output Read Offset state.

Value Name

[1,16]

Programming Notes

This length value is ignored if SBE's Number of SF Attributes state is programmed to 0 (i.e., no

attributes are defined beyond the position read from the Vertex Header).

15:8 User Clip Distance Clip Test Enable Bitmask

Project: All

Format: mask[8]

This 8 bit mask field selects which of the 8 Clip Distance Values (if any) are to be included in the

Clip stage's trivial reject / trivial accept / must clip determination function.

The ClipDistance Values (if present) are located in DW8-15 of the VUE Vertex Header located at

the beginning of VUE URB entries. Bit 0 of this field corresponds to Clip Distance Value 0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 267

3DSTATE_VS
7:0 User Clip Distance Cull Test Enable Bitmask

Project: All

Format: mask[8]

This 8 bit mask field selects which of the 8 Clip Distance Values (if any) are to be included in the

Clip stage's trivial reject / trivial accept determination function. Note that must clip determination

is not included in this function.

The ClipDistance Values (if present) are located in DW8-15 of the VUE Vertex Header located at

the beginning of VUE URB entries. Bit 0 of this field corresponds to Clip Distance Value 0.

 Command Reference: Instructions

268 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM_CHROMAKEY

3DSTATE_WM_CHROMAKEY
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 4Ch 3DSTATE_WM__CHROMAKEY

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n

 Total Length - 2

1 31 ChromaKey Kill Enable

Project: All

Format: Enable

 If ENABLED, indicates that at least one of the attached samplers has ChromaKeyKill enabled.

30:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 269

3DSTATE_WM_DEPTH_STENCIL

3DSTATE_WM_DEPTH_STENCIL
Project: BDW

Source: RenderCS

Length Bias: 2

 This command replaces the indirect state DEPTH_STENCIL_STATE with an inline state command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 4Eh 3DSTATE_WM_DEPTH_STENCIL

Format: OpCode

15:8 Reserved

Project: BDW

Format: MBZ

7:0 Dword Length

Project: All

Format: =n

 Total Length - 2

Value Name Project

01h Excludes Dword (0,1) [Default] BDW

1 31:29 Stencil Fail Op

Project: All

Format: 3D_Stencil_Operation

 This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil

test fails.

Programming Notes

if all three stencil ops (Stencil Fail, Stencil Pass Depth Fail, and Stencil Pass Depth Pass) are

KEEP, ZERO, or REPLACE, the stencil buffer is not read.

 Command Reference: Instructions

270 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM_DEPTH_STENCIL
28:26 Stencil Pass Depth Fail Op

Project: All

Format: 3D_Stencil_Operation

 This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil

test passes but the depth pass fails.

25:23 Stencil Pass Depth Pass Op

Project: All

Format: 3D_Stencil_Operation

 This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil

test passes but the depth test passes.

22:20 Backface Stencil Test Function

Project: All

Format: 3D_Compare_Function

19:17 Backface Stencil Fail Op

Project: All

Format: 3D_Stencil_Operation

16:14 Backface Stencil Pass Depth Fail Op

Project: All

Format: 3D_Stencil_Operation

 This field specifies the operation to perform on the Stencil Buffer when the stencil test passes

but the depth pass fails.

13:11 Backface Stencil Pass Depth Pass Op

Project: All

Format: 3D_Stencil_Operation

 This field specifies the operation to perform on the Stencil Buffer when the stencil test passes

and the depth pass passes (or is disabled).

10:8 Stencil Test Function

Project: All

Format: 3D_Compare_Function

 This field specifies the comparison function used in the (front face) StencilTest function.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 271

3DSTATE_WM_DEPTH_STENCIL
7:5 Depth Test Function

Project: All

Format: 3D_Compare_Function

 Specifies the comparison function used in DepthTest function.

Programming Notes

If the Depth Test Function is ALWAYS or NEVER, the depth buffer is not read.

4 Double Sided Stencil Enable

Project: All

Format: Enable

 Enable doubled sided stencil operations.

Value Name Description Project

0h False Double Sided Stencil Disabled All

1h True Double Sided Stencil Enabled All

Programming Notes

 Back-facing primitives have a vertex winding order opposite to the currently selected

Front Winding state.

 Culling of primitives is not affected by the double sided stencil state

 Back-facing primitives will be rendered, honoring all current device state, as though it

were a front-facing primitive with no implicitly overloaded state.

3 Stencil Test Enable

Project: All

Format: Enable

 Enables StencilTest function of the Pixel Processing pipeline.

Programming Notes

If any of the render targets are YUV format, this field must be disabled.

2 Stencil Buffer Write Enable

Project: All

Format: Enable

 Enables writes to the Stencil Buffer.

Programming Notes

If this field is enabled, Stencil Test Enable must also be enabled.

 Command Reference: Instructions

272 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM_DEPTH_STENCIL
1 Depth Test Enable

Project: All

Format: Enable

 Enables the DepthTest function of the Pixel Processing pipeline.

Value Name Project

0h Disable All

1h Enable All

Programming Notes

If any of the render targets are YUV format, this field must be disabled.

0 Depth Buffer Write Enable

Project: All

Format: Enable

 Enables writes to the Depth Buffer.

Programming Notes Project

A Depth Buffer must be defined before enabling writes to it, or operation is

UNDEFINED.

This bit must not be set when WM_INT::RT Independent Rasterization Enable is true. BDW

Workaround Project

If Depth_Test_Enable = 1 AND Depth_Test_func = EQUAL, the Depth_Write_Enable

must be set to 0

BDW

2 31:24 Stencil Test Mask

Project: All

Format: U8

 This field specifies a bit mask applied to stencil test values. Both the stencil reference value and

value read from the stencil buffer will be logically ANDed with this mask before the stencil

comparison test is performed.

23:16 Stencil Write Mask

Project: All

Format: U8

 This field specifies a bit mask applied to stencil buffer writes. Only those stencil buffer bits

corresponding to bits set in this mask will be modified.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 273

3DSTATE_WM_DEPTH_STENCIL
15:8 Backface Stencil Test Mask

Project: All

Format: U8

 This field specifies a bit mask applied to backface stencil test values. Both the stencil reference

value and value read from the stencil buffer will be logically ANDed with this mask before the

stencil comparison test is performed.

7:0 Backface Stencil Write Mask

Project: All

Format: U8

 This field specifies a bit mask applied to backface stencil buffer writes. Only those stencil buffer

bits corresponding to bits set in this mask will be modified.

 Command Reference: Instructions

274 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM

3DSTATE_WM
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 14h 3DSTATE_WM

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n

 Total Length - 2

1 31 Statistics Enable

Project: All

Format: Enable

 If ENABLED, the Windower and pixel pipeline will engage in statistics gathering. If DISABLED,

statistics information associated with this FF stage will be left unchanged. See Statistics

Gathering.

Programming Notes

This bit must be disabled if any of these bits is set: 3DSTATE_WM::Legacy Depth Buffer Clear,

3DSTATE_WM::Legacy Hierarchical Depth Buffer Resolve Enable or 3DSTATE_WM::Legacy

Depth Buffer Resolve Enable.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 275

3DSTATE_WM
30 Legacy Depth Buffer Clear Enable

Project: All

Format: Enable

 When set, the depth buffer is initialized as a side-effect of rendering pixels.

Programming Notes

If this field is enabled,

1. the Depth Test Enable field in DEPTH_STENCIL_STATE must be disabled.

2. 3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

3. 3DSTATE_DEPTH_BUFFER::Stencil Write Enable must be set if

3DSTATE_STENCIL_BUFFER::Stencil buffer enable is set. Additionally the following must

be set to the correct values.

1. DEPTH_STENCIL_STATE::Stencil Write Mask must be 0xFF

2. DEPTH_STENCIL_STATE::Stencil Test Mask must be 0xFF

3. DEPTH_STENCIL_STATE::Back Face Stencil Write Mask must be 0xFF

4. DEPTH_STENCIL_STATE::Back Face Stencil Test Mask must be 0xFF

 Refer to section 0 "Depth Buffer Clear" for additional restrictions when this field is enabled. If

this field is enabled,Pixel Shader Kill Pixel must be disabled.

29 Reserved

Project: All

Format: MBZ

28 Legacy Depth Buffer Resolve Enable

Project: All

Format: Enable

 When set, the depth buffer is made to be consistent with the hierarchical depth buffer as a side-

effect of rendering pixels. This is intended to be used when the depth buffer is to be used as a

surface outside of the 3D rendering operation.

Programming Notes

If this field is enabled,

1. the Legacy Depth Buffer Clear and Legacy Hierarchical Depth Buffer Resolve Enable

fields must both be disabled.

2. 3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

 Refer to section 11.5.4.2 "Depth Buffer Resolve" for additional restrictions when this field is

enabled. If Hierarchical Depth Buffer Enable is disabled, enabling this field will have no effect.

 Command Reference: Instructions

276 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM
27 Legacy Hierarchical Depth Buffer Resolve Enable

Project: All

Format: Enable

 When set, the hierarchical depth buffer is made to be consistent with the depth buffer as a side-

effect of rendering pixels. This is intended to be used when the depth buffer has been modified

outside of the 3D rendering operation.

Programming Notes

If this field is enabled,

1. the Legacy Depth Buffer Clear and Legacy Depth Buffer Resolve Enable fields must

both be disabled.

2. 3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

 Refer to section 11.5.4.3 "Hierarchical Depth Buffer Resolve" for additional restrictions when

this field is enabled. If Hierarchical Depth Buffer Enable is disabled, enabling this field will

have no effect. Performance Note: expect the hierarchical depth buffer's impact on

performance to be reduced for some period of time after this operation is performed, as the

hierarchical depth buffer is initialized to a state that makes it ineffective. Further rendering will

tend to bring the hierarchical depth buffer back to a more effective state.

26 Legacy Diamond Line Rasterization

Project: All

Format: Enable

 This bit, if ENABLED, indicates that the Windower will rasterize zero width lines using the DX9

rasterization rules. If DISABLED, the Windower will rasterize zero width lines using the DX10

rasterization rules (see Strips Fans chapter).

25:23 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 277

3DSTATE_WM
22:21 Early Depth/Stencil Control

Project: BDW

Format: U2 Enumerated Type

 This field specifies the behavior of early depth/stencil test.

Value Name Description Project

0h NORMAL Depth/Stencil Test/Write behaves as if it happens post-shader,

however the pixel shader is not necessarily executed if the pixel fails

depth or stencil test (this is the legacy behavior)

All

1h PSEXEC Depth/Stencil Test/Write behaves as if it happens post-shader, and

the pixel shader is executed if the pixel fails depth or stencil test

(although pre-shader actions such as primitive inclusion, stipple, etc.

will still cause the shader not to execute)

All

2h PREPS Depth/Stencil Test/Write behaves as if it happens pre-shader. The

pixel shader is not executed if the pixel fails depth or stencil test.

Depth and stencil writes occur even if the pixel is killed by the

shader or post-shader by alpha test, etc. Depth output by the pixel

shader is ignored.

All

3h Reserved All

Programming Notes

The Early Depth/Stencil Control field cannot be set to PREPS (value = 2h) if ForceKillpix =

ForceON or Forced Thread Dispatch = ForceON

20:19 Force Thread Dispatch Enable

Project: All

Value Name Description Project

0h Normal WM_INT::ThreadDispatchEnable is computed normally All

1h ForceOff Forces WM_INT::ThreadDispatchEnable Off All

2h ForceON Forces WM_INT::ThreadDispatchEnable On All

3h Reserved All

Programming Notes

This must always be set to Normal.

 Command Reference: Instructions

278 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM
18:17 Position ZW Interpolation Mode

Project: All

Format: U2 Enumerated Type

 This field elects "interpolation mode" associated with the Position Z (source depth) and W

coordinates passed in the PS payload when the PS requires Position as input. This field does not

determine whether these coordinates are actually included in the payload (see Pixel Shader

Requires Depth, Pixel Shader Requires W).

Value Name Description Project

0h INTERP_PIXEL Evaluate Z & W at the pixel center or UL corner (as

specified by Pixel Location of 3DSTATE_MULTISAMPLE)

All

1h Reserved All

2h INTERP_CENTROID All

3h INTERP_SAMPLE All

Programming Notes

WM_INT::RT Independent Rasterization Enable must be disabled in order to select

INTERP_SAMPLE.

MSDISPMODE_PERSAMPLE is required in order to select INTERP_SAMPLE.

16:11 Barycentric Interpolation Mode

Project: All

Format: Enable[6]

 Controls which barycentric interpolation terms must be passed into the pixel shader kernel. Bit 0:

Perspective Pixel Location barycentric is required Bit 1: Perspective Centroid barycentric is

required Bit 2: Perspective Sample barycentric is required Bit 3: Non-perspective Pixel Location

barycentric is required Bit 4: Non-perspective Centroid barycentric is required Bit 5: Non-

perspective Sample barycentric is required

Programming Notes

If contiguous dispatch modes are enabled, only bit 3 (non-perspective pixel location) can be

set, all other bits in this field must be zero. Pixel Location below refers to either the upper left

corner or pixel center depending on the Pixel Location state of 3DSTATE_MULTISAMPLING).

MSDISPMODE_PERSAMPLE is required in order to select Perspective Sample or Non-

perspective Sample barycentric coordinates.

10 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 279

3DSTATE_WM
9:8 Line End Cap Antialiasing Region Width

Project: All

Format: U2

 This field specifies the distances over which the coverage of anti-aliased line end caps are

computed.

Value Name Description Project

0h 0.5 pixels 0.5 pixels All

1h 1.0 pixels 1.0 pixels All

2h 2.0 pixels 2.0 pixels All

3h 4.0 pixels 4.0 pixels All

7:6 Line Antialiasing Region Width

Project: All

Format: U2

 This field specifies the distance over which the anti-aliased line coverage is computed.

Value Name Description Project

0h 0.5 pixels 0.5 pixels All

1h 1.0 pixels 1.0 pixels All

2h 2.0 pixels 2.0 pixels All

3h 4.0 pixels 4.0 pixels All

5 Reserved

Project: All

Format: MBZ

4 Polygon Stipple Enable

Project: All

Format: Enable

 Enables the Polygon Stipple function.

3 Line Stipple Enable

Project: All

Format: Enable

 Enables the Line Stipple function.

 Command Reference: Instructions

280 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM
2 Point Rasterization Rule

Project: All

Format: 3D_RasterizationRule

 This field specifies the rasterization rules to be applied whenever the edges of a point primitive

fall exactly on a pixel sampling point.

Value Name Description Project

0h RASTRULE_UPPER_LEFT To match "normal" upper left rules for surface

primitives

All

1h RASTRULE_UPPER_RIGHT To match OpenGL point rasterization rules (round to

+ infinity, where this is the upper right direction wrt

OpenGL screen origin of lower left).

All

1:0 Force Kill Pixel Enable

Project: All

Value Name Description Project

0h Normal WM_INT:: Pixel Shader Kill Pixel is computed normally All

1h ForceOff Forces WM_INT:: Pixel Shader Kill Pixel Off All

2h ForceON Forces WM_INT:: Pixel Shader Kill Pixel On All

3h Reserved All

Programming Notes

This must always be set to Normal.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 281

3DSTATE_WM_HZ_OP

3DSTATE_WM_HZ_OP
Project: BDW

Source: RenderCS

Length Bias: 2

 This command provides for clearing Z and/or stencil or resolving either HZ buffer or Z buffer.

Programming Notes Project

3DSTATE_MULTISAMPLE packet must be used prior to this packet to change the Number of

Multisamples. This packet must not be used to change Number of Multisamples in a rendering

sequence.

3DSTATE_RASTER if used must be programmed prior to using this packet.

BDW

This command does support predication from the use of the MI_PREDICATE register. To predicate

depth clears and resolves on [BDW] you must fall back to using the 3D_PRIMITIVE or GPGPU_WALKER

commands.

BDW

As this command generates an implicit rectangle, SW must make sure any MMIO register writes

following WM_HZ_OP must be preceded by PIPE_CONTROL with Command Streamer Stall Enable

bit set.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 52h 3DSTATE_WM_HZ_OP

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

282 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM_HZ_OP
7:0 Dword Length

Default Value: 03h Excludes Dword (0,1)

Project: All

Format: =n

 Total Length - 2

1 31 Stencil Buffer Clear Enable

Project: All

Format: Enable

 When set, the stencil buffer is initialized.

Programming Notes

If this field is enabled,

1. the Depth Buffer Resolve Enable and Hierarchical Depth Buffer

Resolve Enable fields must both be disabled.

2. 3DSTATE_DEPTH_BUFFER::Stencil Write Enable must be set if

3DSTATE_STENCIL_BUFFER::Stencil buffer enable is set.

30 Depth Buffer Clear Enable

Project: All

Format: Enable

 When set, the depth buffer is initialized.

Programming Notes

If this field is enabled,

1. the Depth Buffer Resolve Enable and Hierarchical Depth Buffer

Resolve Enable fields must both be disabled.

2. 3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

29 Scissor Rectangle Enable

Project: All

Format: Enable

 Enables operation of Scissor Rectangle.

Programming Notes

In order get the functionality right if this bit is disabled, driver must clip the

clear rectangle to scissor rectangle if scissor test is enabled before clearing.

Workaround Project

Workaround (BDW bug# 1911422) : Due to a Hardware issue this

bit must not be set.

BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 283

3DSTATE_WM_HZ_OP
28 Depth Buffer Resolve Enable

Project: All

Format: Enable

 When set, the depth buffer is made to be consistent with the hierarchical

depth buffer as a side-effect of rendering pixels. This is intended to be used

when the depth buffer is to be used as a surface outside of the 3D rendering

operation.

Programming Notes

If this field is enabled,

1. the Depth Buffer Clear and Hierarchical Depth Buffer Resolve

Enable fields must both be disabled.

2. 3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

 Refer to section 11.5.4.2 "Depth Buffer Resolve" for additional restrictions

when this field is enabled. If Hierarchical Depth Buffer Enable is disabled,

enabling this field will have no effect.

27 Hierarchical Depth Buffer Resolve Enable

Project: All

Format: Enable

 When set, the hierarchical depth buffer is made to be consistent with the

depth buffer as a side-effect of rendering pixels. This is intended to be used

when the depth buffer has been modified outside of the 3D rendering

operation.

Programming Notes

If this field is enabled,

1. the Depth Buffer Clear and Depth Buffer Resolve Enable fields

must both be disabled.

2. 3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

 Refer to section 11.5.4.3 "Hierarchical Depth Buffer Resolve" for additional

restrictions when this field is enabled. If Hierarchical Depth Buffer Enable

is disabled, enabling this field will have no effect. Performance Note:

expect the hierarchical depth buffer's impact on performance to be

reduced for some period of time after this operation is performed, as the

hierarchical depth buffer is initialized to a state that makes it ineffective.

Further rendering will tend to bring the hierarchical depth buffer back to a

more effective state.

 Command Reference: Instructions

284 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM_HZ_OP
26 Pixel Position Offset Enable

Project: All

Format: U1 Enumerated Type

 Enables the device to offset pixel positions by 0.5 both in horizontal and

vertical directions.

Programming Notes

Setting this field along with setting the Pixel Location to upper left and

number of multisamples to greater than one will cause the device to offset

pixel postions by 0.5 both in horizontal and vertical directions.It is to be

noted this is done to adjust the pixel co-ordinate system to DX9 like, so

any WM_HZ_OP screen space rectangles (eg: legacy HiZ Clear, Resolve etc)

generated internally by driver in this mode needs to be aware of this offset

adjustment and send the rectangles according to alignment restriction

taking this offset adjustment into consideration. SW can choose to set this

bit only for DX9 API. DX10/OGL API's should not have any effect by setting

or not setting this bit.

25 Full Surface Depth Clear

Project: All

Format: Enable

Programming Notes

Setting this field to "1" along with "Depth buffer clear" will cause all the

pixels/samples in an 8x4 block in the HIZ buffer to be cleared. If "Stc-buffer

clear" is also set, then all pixels/samples in a 8x8 block of STC buffer will be

cleared to the stc-ref value. Software must set this only when the APP

requires the entire Depth surface to be cleared. Setting this field to "1" for

STC-buffer only clear without "depth buffer clear" will cause all the

pixels/samples in an 8x8 block in the STC buffer to get the stc-ref value.

24 Reserved

Project: All

Format: MBZ

23:16 Stencil Clear Value

Format: U8.0

 This field specifies the stencil clear value.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 285

3DSTATE_WM_HZ_OP
15:13 Number of Multisamples

Project: All

Format: U3 Enumerated Type

 This field specifies how many samples/pixel exist in the Depth Buffer and

Stencil buffers, as log2(#samples).

Value Name Description Project

0h 1 1 sample/pixel All

1h 2 2 samples/pixel All

2h 4 4 samples/pixel All

3h 8 8 samples/pixel All

4h Reserved BDW

5h-7h Reserved All

12:0 Reserved

Project: All

2

Programming Notes:

The clear rectangle x

and y min and max

values must be shifted

by the LOD level; i.e. the

hardware does not

include the LOD in this

function. Hence to

clear any particular X, Y

from the base level, to

clear the contents at

level "LOD" use (X»LOD)

and (Y»LOD).

31:16 Clear Rectangle Y Min

Project: All

Format: U16 in Pixels from Depth Buffer origin (upper left corner)

 Specifies Ymin value of (inclusive) of clear rectangle with the Depth Buffer,

used for clipping. Pixels with Y coordinates less than Ymin will not be

affected.

Value Name Project

[0,16383] (Device ignores bits 31:30) BDW

15:0 Clear Rectangle X Min

Project: All

Format: U16 in Pixels from Depth Buffer origin (upper left corner)

 Specifies Xmin value of (inclusive) of clear rectangle with the Depth Buffer,

used for clipping. Pixels with X coordinates less than or equal to Xmin will

not be affected.

Value Name Project

[0,16383] (Device ignores bits 15:14) BDW

3

Programming Notes:

See the programming

note in the previous

DWORD for the Min

values.

The clear rectangle x

and y min and max

31:16 Clear Rectangle Y Max

Project: All

Format: U16 in Pixels from Depth Buffer origin (lower right corner)

 Specifies Ymax value of (exclusive) of clear rectangle with the Depth Buffer,

used for clipping. Pixels with Y coordinates greater than Ymax will be not be

cleared.

Value Name Project

[0,16383] (Device ignores bits 31:30) BDW

 Command Reference: Instructions

286 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

3DSTATE_WM_HZ_OP
values must be shifted

by the LOD level; i.e. the

hardware does not

include the LOD in this

function. Hence to

clear any particular X, Y

from the base level, to

clear the contents at

level "LOD" use (X»LOD)

and (Y»LOD).

Hence the max values

must be less than or

equal to:

 (Surface Width » LOD)

and (Surface Height »

LOD) for X Max and Y

Max respectively.

15:0 Clear Rectangle X Max

Project: All

Format: U16 in Pixels from Depth Buffer origin (lower right corner)

 Specifies Xmax value of (exclusive) of clear rectangle with the Depth Buffer,

used for clipping. Pixels with X coordinates greater than or equal to Xmax

will be not be affected.

Value Name Project

[0,16383] (Device ignores bits 15:14) BDW

4 31:16 Reserved

Project: All

Format: MBZ

15:0 Sample Mask

Project: All

Format: Right-justified bitmask (Bit 0 = Sample0). Number of bits that are

used is determined by Num Multisamples (3DSTATE_WM_HZ_OP)

A per-multisample-position mask state variable that is immediately and

unconditionally ANDed with the sample coverage mask as part of the

rasterization process. This mask is applied prior to centroid selection.

Programming Notes

If Number of Multisamples is NUMSAMPLES_1, bits 15:1 of this field will be

zeroed by HW.If Number of Multisamples is NUMSAMPLES_2, bits 15:2 of

this field will be zeroed by HW.If Number of Multisamples is

NUMSAMPLES_4, bits 15:4 of this field will be zeroed by HW.If Number of

Multisamples is NUMSAMPLES_8, bits 15:8 of this field will be zeroed by

HW.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 287

A64 Byte Scattered Write MSD

MSD1W_A64_BS - A64 Byte Scattered Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Scattered R/W

Group: Byte Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 Indicates that the message forbids a header

18:14 Message Type

Default Value: 1Ah

Project: All

Format: Opcode

 A64 Scattered Write message

13 Reserved

Project: All

Format: MBZ

 Ignored

12 Reserved

Project: BDW

Format: Ignore

 Ignored

11:10 Data Elements

Project: All

Format: MDC_A64_DS

 Specifies the number of data elements to be read or written

 Command Reference: Instructions

288 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_BS - A64 Byte Scattered Write MSD
9:8 A64 Scattered Message Subtype

Default Value: 0h

Project: All

Format: Opcode

 Byte Read/Write subtype

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 289

A64 Dword Scattered Read MSD

MSD1R_A64_DWS - A64 Dword Scattered Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Scattered R/W

Group: DW Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 Indicates that the message forbids a header

18:14 Message Type

Default Value: 10h

Project: All

Format: Opcode

 A64 Scattered Read message

13 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

12 Reserved

Project: BDW

Format: Ignore

 Ignored

11:10 Data Elements

Project: All

Format: MDC_A64_DS

 Specifies the number of data elements to be read or written

 Command Reference: Instructions

290 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWS - A64 Dword Scattered Read MSD
9:8 A64 Scattered Message Subtype

Default Value: 1h

Project: All

Format: Opcode

 Dword Read/Write subtype

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 291

A64 Dword Scattered Write MSD

MSD1W_A64_DWS - A64 Dword Scattered Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Scattered R/W

Group: DW Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 Indicates that the message forbids a header

18:14 Message Type

Default Value: 1Ah

Project: All

Format: Opcode

 A64 Scattered Write message

13 Reserved

Project: All

Format: MBZ

 Ignored

12 Reserved

Project: BDW

Format: Ignore

 Ignored

11:10 Data Elements

Project: All

Format: MDC_A64_DS

 Specifies the number of data elements to be read or written

 Command Reference: Instructions

292 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWS - A64 Dword Scattered Write MSD
9:8 A64 Scattered Message Subtype

Default Value: 1h

Project: All

Format: Opcode

 Dword Read/Write subtype

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 293

A64 Dword SIMD4x2 Untyped Atomic Integer Binary with Return

Data Operation MSD

MSD1R_A64_DWAI2_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Binary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

294 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWAI2_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Binary with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 295

A64 Dword SIMD4x2 Untyped Atomic Integer Binary Write Only

Operation MSD

MSD1W_A64_DWAI2_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Binary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

296 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWAI2_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Binary Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 297

A64 Dword SIMD4x2 Untyped Atomic Integer Trinary with Return

Data Operation MSD

MSD1R_A64_DWAI3_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Trinary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

 Command Reference: Instructions

298 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWAI3_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Trinary with Return Data Operation MSD
11:8 Atomic Integer Operation

Project: BDW

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

Workaround

CMPWR_2W Operation is not supported in A64 SIMD4x2.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 299

A64 Dword SIMD4x2 Untyped Atomic Integer Trinary Write Only

Operation MSD

MSD1W_A64_DWAI3_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Trinary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

 Command Reference: Instructions

300 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWAI3_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Trinary Write Only Operation MSD
11:8 Atomic Integer Operation

Project: BDW

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

Workaround

CMPWR_2W is not supported by A64 SIMD4x2.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 301

A64 Dword SIMD4x2 Untyped Atomic Integer Unary with Return

Data Operation MSD

MSD1R_A64_DWAI1_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Unary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

302 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWAI1_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Unary with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 303

A64 Dword SIMD4x2 Untyped Atomic Integer Unary Write Only

Operation MSD

MSD1W_A64_DWAI1_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Unary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

304 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWAI1_4x2 - A64 Dword SIMD4x2 Untyped Atomic

Integer Unary Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 305

A64 Dword Untyped Atomic Integer Binary with Return Data

Operation MSD

MSD1R_A64_DWAI2 - A64 Dword Untyped Atomic Integer Binary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

306 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWAI2 - A64 Dword Untyped Atomic Integer Binary

with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 307

A64 Dword Untyped Atomic Integer Binary Write Only Operation

MSD

MSD1W_A64_DWAI2 - A64 Dword Untyped Atomic Integer Binary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

308 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWAI2 - A64 Dword Untyped Atomic Integer Binary

Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 309

A64 Dword Untyped Atomic Integer Trinary with Return Data

Operation MSD

MSD1R_A64_DWAI3 - A64 Dword Untyped Atomic Integer Trinary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

310 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWAI3 - A64 Dword Untyped Atomic Integer Trinary

with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 311

A64 Dword Untyped Atomic Integer Trinary Write Only Operation

MSD

MSD1W_A64_DWAI3 - A64 Dword Untyped Atomic Integer Trinary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

312 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWAI3 - A64 Dword Untyped Atomic Integer Trinary

Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 313

A64 Dword Untyped Atomic Integer Unary with Return Data

Operation MSD

MSD1R_A64_DWAI1 - A64 Dword Untyped Atomic Integer Unary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

314 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_DWAI1 - A64 Dword Untyped Atomic Integer Unary

with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 315

A64 Dword Untyped Atomic Integer Unary Write Only Operation

MSD

MSD1W_A64_DWAI1 - A64 Dword Untyped Atomic Integer Unary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 0h

Project: All

Format: Opcode

 Operations are on 32-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

316 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_DWAI1 - A64 Dword Untyped Atomic Integer Unary

Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 317

A64 Hword Block Read MSD

MSD1R_A64_HWB - A64 Hword Block Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: HW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 14h

Project: All

Format: Opcode

 A64 Oword Block Read message

13 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

12:11 A64 Block Message Subtype

Default Value: 3h

Project: All

Format: Opcode

 Hword Block Read/Write subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_HW

 Specifies the number of contiguous Hwords to be read or written

 Command Reference: Instructions

318 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_HWB - A64 Hword Block Read MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 319

A64 Hword Block Write MSD

MSD1W_A64_HWB - A64 Hword Block Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: HW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 15h

Project: All

Format: Opcode

 A64 Hword Block Write message

13 Reserved

Project: All

Format: MBZ

 Ignored

12:11 A64 Block Message Subtype

Default Value: 3h

Project: All

Format: Opcode

 Hword Block Read/Write subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_HW

 Specifies the number of contiguous Hwords to be read or written

 Command Reference: Instructions

320 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_HWB - A64 Hword Block Write MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 321

A64 Oword Block Read MSD

MSD1R_A64_OWB - A64 Oword Block Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: OW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 14h

Project: All

Format: Opcode

 A64 Oword Block Read message

13 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

12:11 A64 Block Message Subtype

Default Value: 0h

Project: All

Format: Opcode

 Oword Block Read/Write subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_OW

 Specifies the number of contiguous Owords to be read or written

 Command Reference: Instructions

322 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_OWB - A64 Oword Block Read MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 323

A64 Oword Block Write MSD

MSD1W_A64_OWB - A64 Oword Block Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: OW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 15h

Project: All

Format: Opcode

 A64 Oword Block Write message

13 Reserved

Project: All

Format: MBZ

 Ignored

12:11 A64 Block Message Subtype

Default Value: 0h

Project: All

Format: Opcode

 Oword Block Read/Write subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_OW

 Specifies the number of contiguous Owords to be read or written

 Command Reference: Instructions

324 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_OWB - A64 Oword Block Write MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 325

A64 Oword Dual Block Read MSD

MSD1R_A64_OWDB - A64 Oword Dual Block Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: OW Dual Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 14h

Project: All

Format: Opcode

 A64 Oword Block Read message

13 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

12:11 A64 Block Message Subtype

Default Value: 2h

Project: All

Format: Opcode

 Oword Dual Block Read/Write subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_OWD

 Specifies the number of contiguous Owords to be read or written

 Command Reference: Instructions

326 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_OWDB - A64 Oword Dual Block Read MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 327

A64 Oword Dual Block Write MSD

MSD1W_A64_OWDB - A64 Oword Dual Block Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: OW Dual Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 15h

Project: All

Format: Opcode

 A64 Oword Block Write message

13 Reserved

Project: All

Format: MBZ

 Ignored

12:11 A64 Block Message Subtype

Default Value: 2h

Project: All

Format: Opcode

 Oword Dual Block Read/Write subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_OWD

 Specifies the number of contiguous Owords to be read or written

 Command Reference: Instructions

328 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_OWDB - A64 Oword Dual Block Write MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 329

A64 Oword Unaligned Block Read MSD

MSD1R_A64_OWUB - A64 Oword Unaligned Block Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Block R/W

Group: OW Unaligned Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 14h

Project: All

Format: Opcode

 A64 Oword Block Read message

13 Reserved

Project: All

Format: MBZ

 Ignored

12:11 A64 Block Message Subtype

Default Value: 1h

Project: All

Format: Opcode

 Oword Unaligned Block Read subtype

10:8 Data Elements

Project: All

Format: MDC_A64_DB_OW

 Specifies the number of contiguous Owords to be read

 Command Reference: Instructions

330 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_OWUB - A64 Oword Unaligned Block Read MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 331

A64 Qword Scattered Write MSD

MSD1W_A64_QWS - A64 Qword Scattered Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Scattered R/W

Group: QW Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 Indicates that the message forbids a header

18:14 Message Type

Default Value: 1Ah

Project: All

Format: Opcode

 A64 Scattered Write message

13 Reserved

Project: All

Format: MBZ

 Ignored

12 Reserved

Project: BDW

Format: Ignore

 Ignored

11:10 Data Elements

Project: All

Format: MDC_A64_DS

 Specifies the number of data elements to be read or written

 Command Reference: Instructions

332 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWS - A64 Qword Scattered Write MSD
9:8 A64 Scattered Message Subtype

Default Value: 2h

Project: All

Format: Opcode

 Qword Read/Write subtype

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 333

A64 Qword SIMD4x2 Untyped Atomic Integer Binary with Return

Data Operation MSD

MSD1R_A64_QWAI2_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Binary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

334 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_QWAI2_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Binary with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 335

A64 Qword SIMD4x2 Untyped Atomic Integer Binary Write Only

Operation MSD

MSD1W_A64_QWAI2_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Binary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

336 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWAI2_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Binary Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 337

A64 Qword SIMD4x2 Untyped Atomic Integer Trinary with Return

Data Operation MSD

MSD1R_A64_QWAI3_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Trinary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

 Command Reference: Instructions

338 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_QWAI3_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Trinary with Return Data Operation MSD
11:8 Atomic Integer Operation

Project: BDW

 Specifies the atomic integer operation to be performed.

Workaround

CMPWR_2W is not supported in A64 SIMD4x2

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 339

A64 Qword SIMD4x2 Untyped Atomic Integer Trinary Write Only

Operation MSD

MSD1W_A64_QWAI3_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Trinary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

 Command Reference: Instructions

340 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWAI3_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Trinary Write Only Operation MSD
11:8 Atomic Integer Operation

Project: BDW

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

Workaround

CMPWR_2W is not supported in A64 SIMD4x2.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 341

A64 Qword SIMD4x2 Untyped Atomic Integer Unary with Return

Data Operation MSD

MSD1R_A64_QWAI1_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Unary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

342 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_QWAI1_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Unary with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 343

A64 Qword SIMD4x2 Untyped Atomic Integer Unary Write Only

Operation MSD

MSD1W_A64_QWAI1_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Unary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 13h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

344 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWAI1_4x2 - A64 Qword SIMD4x2 Untyped Atomic

Integer Unary Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 345

A64 Qword Untyped Atomic Integer Binary with Return Data

Operation MSD

MSD1R_A64_QWAI2 - A64 Qword Untyped Atomic Integer Binary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

346 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_QWAI2 - A64 Qword Untyped Atomic Integer Binary

with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 347

A64 Qword Untyped Atomic Integer Binary Write Only Operation

MSD

MSD1W_A64_QWAI2 - A64 Qword Untyped Atomic Integer Binary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

348 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWAI2 - A64 Qword Untyped Atomic Integer Binary

Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 349

A64 Qword Untyped Atomic Integer Trinary with Return Data

Operation MSD

MSD1R_A64_QWAI3 - A64 Qword Untyped Atomic Integer Trinary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

 Command Reference: Instructions

350 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_QWAI3 - A64 Qword Untyped Atomic Integer Trinary

with Return Data Operation MSD
11:8 Atomic Integer Operation

Project: BDW

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

Workaround

CMPWR_2W is not supported in A64 QWord SIMD8.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 351

A64 Qword Untyped Atomic Integer Trinary Write Only Operation

MSD

MSD1W_A64_QWAI3 - A64 Qword Untyped Atomic Integer Trinary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

 Command Reference: Instructions

352 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWAI3 - A64 Qword Untyped Atomic Integer Trinary

Write Only Operation MSD
11:8 Atomic Integer Operation

Project: BDW

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

Workaround

CMPWR_2W is not supported in A64 QWord SIMD8.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 353

A64 Qword Untyped Atomic Integer Unary with Return Data

Operation MSD

MSD1R_A64_QWAI1 - A64 Qword Untyped Atomic Integer Unary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

354 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1R_A64_QWAI1 - A64 Qword Untyped Atomic Integer Unary

with Return Data Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 355

A64 Qword Untyped Atomic Integer Unary Write Only Operation

MSD

MSD1W_A64_QWAI1 - A64 Qword Untyped Atomic Integer Unary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Qword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 The message forbids a header

18:14 Message Type

Default Value: 12h

Project: All

Format: Opcode

 A64 Untyped Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Data Width

Default Value: 1h

Project: All

Format: Opcode

 Operations are on 64-bit integers

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

 Command Reference: Instructions

356 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD1W_A64_QWAI1 - A64 Qword Untyped Atomic Integer Unary

Write Only Operation MSD
7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 357

A64 Untyped Surface Read MSD

MSD1R_A64_US - A64 Untyped Surface Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Surface R/W

Group: Scattered Untyped Surface R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 Indicates that the message forbids a header

18:14 Message Type

Default Value: 11h

Project: All

Format: Opcode

 A64 Untyped Surface Read message

13:12 SIMD Mode

Project: All

Format: MDC_SM3

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Channel Mask

Project: All

Format: MDC_CMASK

 Specifies which RGBA channels are included in the message payload.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

 Command Reference: Instructions

358 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

A64 Untyped Surface Write MSD

MSD1W_A64_US - A64 Untyped Surface Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Surface R/W

Group: Scattered Untyped Surface R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHF

 Indicates that the message forbids a header

18:14 Message Type

Default Value: 19h

Project: All

Format: Opcode

 A64 Untyped Surface Write message

13:12 SIMD Mode

Project: All

Format: MDC_SM3

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Channel Mask

Project: All

Format: MDC_UW_CMASK

 Specifies which RGBA channels are included in the message payload.

7:0 Binding Table Index

Project: All

Format: MDC_STATELESS

 Specifies the message is stateless

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 359

Addition

add - Addition
Project: BDW

Source: EuIsa

Length Bias: 4

The add instruction performs component-wise addition of src0 and src1 and stores the results in dst. Addition

of two floating-point numbers follows rules in add (IEEE mode) or add (ALT mode).

Format: [(pred)] add[.cmod] (exec_size) dst src0 src1

Programming Notes

Use a source modifier with add to implement subtraction.

Syntax

[(pred)] add[.cmod] (exec_size) reg reg reg [(pred)] add[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] + src1.chan[n]; }

}

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*B,*W,*D F

F F

DF DF BDW

HF HF BDW

*B,*W,*D HF BDW

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

360 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

add - Addition
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 361

Addition with Carry

addc - Addition with Carry
Project: BDW

Source: EuIsa

Length Bias: 4

The addc instruction performs component-wise addition of src0 and src1 and stores the results in dst; it also

stores the carry into acc. If the operation produces a carry out, 0x00000001 is stored in acc, else 0x00000000 is

stored in acc.

Format: [(pred)] addc[.cmod] (exec_size) dst src0 src1

Restriction

AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit destination

operand.

Syntax

[(pred)] addc[.cmod] (exec_size) reg reg reg [(pred)] addc[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] + src1.chan[n];

acc.chan[n] = carry(src0.chan[n] + src1.chan[n]); } }

Predication Conditional Modifier Saturation Source Modifier

Y Y N N

Src Types Dst Types

UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

362 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Arithmetic Shift Right

asr - Arithmetic Shift Right
Project: BDW

Source: EuIsa

Length Bias: 4

Perform component-wise arithmetic right shift of the bits in src0 by the shift count indicated in src1, storing the

results in dst. If src0 has a signed type, insert copies of src0's sign bit in the number of MSBs indicated by the

shift count. Otherwise insert 0 bits. [Pre-DevBDW]: The shift count is taken from the low five bits of src1,

regardless of the src1 type and treated as an unsigned integer in the range 0 to 31. [BDW]: In QWord mode,

the shift count is taken from the low six bits of src1 regardless of the src1 type and treated as an unsigned

integer in the range 0 to 63. Otherwise the shift count is taken from the low five bits of src1 regardless of the

src1 type and treated as an unsigned integer in the range 0 to 31. The operation uses QWord mode if src0 or

dst has the Q or UQ type but not if src1 is the only operand with the Q or UQ type. For positive values, this

operation is src0 / 2shiftCount and for negative values, this operation is src0 / 2shiftCount - 1.

Format: [(pred)] asr[.cmod] (exec_size) dst src0 src1

Programming Notes

If src0 is -1, the result is -1 regardless of the shift count.

For unsigned src0 types, asr and shr produce the same result.

Syntax

[(pred)] asr[.cmod] (exec_size) reg reg reg [(pred)] asr[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.channel[n]) { [Pre-DevBDW]: shiftCnt = src1.chan[n]

& 0x1F; // Always use low 5 bits for shift count.[BDW]: shiftCnt = src0 or dst has Q or UQ type ? src1.chan[n] &

0x3F : src1.chan[n] & 0x1F if (src0.chan[n] >= 0) { dst.chan[n] = src0.chan[n] » shiftCnt; } else { int maskLSB =

pow(2, shiftCnt) - 1; if (maskLSB & src0.chan[n] == 0) { dst.chan[n] = sign(src0.chan[n]) * ((abs)src0.chan[n] »

shiftCnt); } else { dst.chan[n] = sign(src0.chan[n]) * ((abs)src0.chan[n] » shiftCnt) - 1; } } } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 363

asr - Arithmetic Shift Right
127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

364 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Average

avg - Average
Project: BDW

Source: EuIsa

Length Bias: 4

The avg instruction performs component-wise integer average of src0 and src1 and stores the results in dst. An

integer average uses integer upward rounding. It is equivalent to increment one to the addition of src0 and

src1 and then apply an arithmetic right shift to this intermediate value.

Format: The avg instruction performs component-wise integer average of src0 and src1 and stores the results in

dst. An integer average uses integer upward rounding. It is equivalent to increment one to the addition of src0

and src1 and then apply an arithmetic right shift to this intermediate value.

Syntax

[(pred)] avg[.cmod] (exec_size) reg reg reg [(pred)] avg[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = (src0.chan[n] + src1.chan[n]

+ 1) » 1; // Use arithmetic shift right. } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

*B,*W,*D *B,*W,*D

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 365

Bit Field Extract

bfe - Bit Field Extract
Project: BDW

Source: EuIsa

Length Bias: 4

Component-wise extract a bit field from src2 using the bit field width from src0 and the bit field offset from

src1. Store the extracted bit field value in the low bits of dst and sign extend (if D type) or zero extend (if UD

type). The width and offset values are from the low five bits of src0 and src1 respectively, or src0 & 0x1f and

src1 & 0x1f. If width is zero, the result is zero. If offset + width > 32 then the extracted bit field is bits offset to

31 of src2, extracting only 32 - offset bits, less than width as the bit field cannot extend past the MSB of the

source value. Otherwise extract width bits extending from bit positions offset to offset + width - 1.

Format: [(pred)] bfe (exec_size) dst src0 src1 src2

Restriction Project

No accumulator access, implicit or explicit.

All three-source instructions have certain restrictions, described in Instruction Formats [BDW]. BDW

Syntax

[(pred)] bfe (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD width = src0.chan[n][4:0]; UD offset =

src1.chan[n][4:0]; if (width == 0) { dst.chan[n] = 0x00000000; } else if ((width + offset) < 32) { dst.chan[n] =

src2.chan[n] « (32 - width - offset); if (src2 is signed) { dst.chan[n] = dst.chan[n] » (32 - width); // pad sign bit of

dst.chan } else { dst.chan[n] = dst.chan[n] » (32 - width); // pad 0 } } else { if (src2 is signed) { dst.chan[n] =

src2.chan[n] » offset; // pad sign bit } else { dst.chan[n] = src2.chan[n] » offset; // pad 0 } } } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

UD UD

D D

DWord Bit Description

0..3 127:126 Reserved

Format: MBZ

125:106 Source 2

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 Reserved

Format: MBZ

 Command Reference: Instructions

366 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

bfe - Bit Field Extract
104:85 Source 1

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

Format: MBZ

83:64 Source 0

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

63:56 Destination Register Number

Format: DstRegNum

55:53 Destination Subregister Number

Format: DstSubRegNum[2:0]

52:49 Destination Channel Enable

Format: ChanEn[4]

 Four channel enables are defined for controlling which channels are written into the

destination region. These channel mask bits are applied in a modulo-four manner to all

ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the

bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is

enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,

where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project:

Format: MBZ

47 NibCtrl

Project:

Format: NibCtrl

46 Reserved

Project:

Format: MBZ

45:44 Destination Data Type

Project:

 This field contains the data type for the destination

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 367

bfe - Bit Field Extract
43:42 Source Data Type

Project:

 This field contains the data type for all three sources

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

41:40 Source 2 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

39:38 Source 1 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

37:36 Source 0 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

35 Reserved

Format: MBZ

34 Flag Register Number

Project:

 This field contains the flag register number for instructions with a non-zero Conditional

Modifier.

33 Flag Subregister Number

 This field contains the flag subregister number for instructions with a non-zero Conditional

Modifier.

32 Reserved

Project:

Format: MBZ

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

368 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Bit Field Insert 1

bfi1 - Bit Field Insert 1
Project: BDW

Source: EuIsa

Length Bias: 4

The bfi1 instruction is the first instruction in a two-instruction macro for bfi (Bit Field Insert). The bfi1 instruction

component-wise generates mask with control from src0 and src1 and stores the results in dst. The mask is used

in the bfi2 instruction to generate the final result of bfi. Create a bit mask corresponding to the bit field width

and offset in src0 and src1. Store the bit mask in dst. The mask has all bits in the bit field set to 1 and all other

bits as 0. The width and offset values are from the low five bits of src0 and src1 respectively, or src0 & 0x1f and

src1 & 0x1f. If width is zero, the result is zero. The bfi macro has four source operands: src0 - bit field width in

low five bits, src1 - bit field offset/starting bit position in low five bits, src2 - bit field value to insert, using only

the number of least significant bits given by width in src0, and src3 - overall value into which the bit field is

inserted, providing all bits other than the inserted bits for the result value. bfi dst src0 src1 src2 src3 //

Translates to these two instructions: bfi1 dst src0 src1 bfi2 dst dst src2 src3

Format: [(pred)] bfi1 (exec_size) dst src0 src1

Programming Notes

No accumulator access, implicit or explicit.

Syntax

[(pred)] bfi1 (exec_size) reg reg reg [(pred)] bfi1 (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD width = src0.chan[n][4:0]; UD offset =

src1.chan[n][4:0]; dst = ((1 « width) - 1) « offset; } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

UD UD

D D

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 369

bfi1 - Bit Field Insert 1
63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

370 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Bit Field Insert 2

bfi2 - Bit Field Insert 2
Project: BDW

Source: EuIsa

Length Bias: 4

The bfi2 instruction is the second instruction in a two-instruction macro for bfi (Bit Field Insert). The bfi2

instruction component-wise performs the bitfield insert operation on src1 and src2 based on the mask in src0.

Use the mask in src0 to take a bit field value from the low bits of src1 and combine it with the value from src2

(so src2 provides all bits other than those masked out and replaced by the bit field value). Store the result in

dst. The bfi macro has four source operands: src0 - bit field width in low five bits, src1 - bit field offset/starting

bit position in low five bits, src2 - bit field value to insert, using only the number of least significant bits given

by width in src0, and src3 - overall value into which the bit field is inserted, providing all bits other than the

inserted bits for the result value. bfi dst src0 src1 src2 src3 // Translates to these two instructions: bfi1 dst src0

src1 bfi2 dst dst src2 src3

Format: [(pred)] bfi2 (exec_size) dst src0 src1 src2

Restriction Project

No accumulator access, implicit or explicit.

All three-source instructions have certain restrictions, described in Instruction Formats [BDW]. BDW

Syntax

[(pred)] bfi2 (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD offset = LZD(reverse(src0.chan[n]))-1;

// offset is the number of LSB zero bits below the bit mask which has all 1s. // width (implied by the logic) is the

number of 1 bits in the mask value, which should be all 1s. dst.chan[n] = ((src1.chan[n] « offset) & src0.chan[n])

| (src2.chan[n] & ! src0.chan[n]); }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

UD UD

D D

DWord Bit Description

0..3 127:126 Reserved

Format: MBZ

125:106 Source 2

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 371

bfi2 - Bit Field Insert 2
105 Reserved

Format: MBZ

104:85 Source 1

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

Format: MBZ

83:64 Source 0

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

63:56 Destination Register Number

Format: DstRegNum

55:53 Destination Subregister Number

Format: DstSubRegNum[2:0]

52:49 Destination Channel Enable

Format: ChanEn[4]

 Four channel enables are defined for controlling which channels are written into the

destination region. These channel mask bits are applied in a modulo-four manner to all

ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the

bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is

enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,

where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project:

Format: MBZ

47 NibCtrl

Project:

Format: NibCtrl

46 Reserved

Project:

Format: MBZ

45:44 Destination Data Type

Project:

 This field contains the data type for the destination

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

 Command Reference: Instructions

372 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

bfi2 - Bit Field Insert 2
43:42 Source Data Type

Project:

 This field contains the data type for all three sources

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

41:40 Source 2 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

39:38 Source 1 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

37:36 Source 0 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

35 Reserved

Format: MBZ

34 Flag Register Number

Project:

 This field contains the flag register number for instructions with a non-zero Conditional

Modifier.

33 Flag Subregister Number

 This field contains the flag subregister number for instructions with a non-zero Conditional

Modifier.

32 Reserved

Project:

Format: MBZ

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 373

Bit Field Reverse

bfrev - Bit Field Reverse
Project: BDW

Source: EuIsa

Length Bias: 4

The bfrev instruction component-wise reverses all the bits in src0 and stores the results in dst.

Format: [(pred)] bfrev (exec_size) dst src0

Restriction

No accumulator access, implicit or explicit.

Syntax

[(pred)] bfrev (exec_size) reg reg [(pred)] bfrev (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { for (idx = 0; idx < 32; idx++) {

dst.chan[n][idx] = src0.chan[n][31-idx]; } } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

374 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Branch Converging

brc - Branch Converging
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

The brc instruction redirects the execution forward or backward to the instruction pointed by (current

IP + offset). The jump will occur if all channels are branched away. UIP should reference the instruction

where all channels are expected to come together. JIP should reference the end of the innermost

conditional block.

In GEN binary, JIP and UIP use locations src1 and src0 respectively when immediate and location src0

when reg64, where reg64 is accessed as paired DWord (regioning being <2;2,1>). dst must be IP.

When the offsets are immediate, src0 regfile must be immediate.

BDW

Format: [(pred)] brc (exec_size) JIP UIP

Restriction Project

A brc instruction cannot use the Switch instruction option. BDW

Syntax Project

[(pred)] brc (exec_size) imm32 imm32 [(pred)] brc (exec_size) reg64 BDW

Pseudocode

Evaluate(WrEn); for (n = 0; n < 32; n++) { if (WrEn[n]) { PcIP[n] = IP + UIP; } else { PcIP[n] = IP + 1; } } if (all

PcIP != IP + 1) { // for all channels Jump(IP + JIP); }

Errata Description Project

 [DevBDW:A]: A brc instruction must not be followed by any instruction requiring register

indirect access on source operands.

BDW

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types

D

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 The byte-aligned jump distance if a jump is taken for the channel.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 375

brc - Branch Converging
95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

376 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Branch Diverging

brd - Branch Diverging
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

The brd instruction redirects the execution forward or backward to the instruction pointed by (current

IP + offset). The jump will occur if any channels are branched away.

In GEN binary, JIP is at location src1 when immediate and at location src0 when reg32, where reg32 is

accessed as a scalar DWord. The ip register must be used (for example, by the assembler) as dst.

BDW

Format: [(pred)] brd (exec_size) JIP

Restriction Project

A brd instruction cannot use the Switch instruction option. BDW

Syntax Project

[(pred)] brd (exec_size) imm32 [(pred)] brd (exec_size) reg32 BDW

Pseudocode

Evaluate(WrEn); for (n = 0; n < 32; n++) { if (WrEn[n]) { PcIP[n] = IP + JIP; } else { PcIP[n] = IP + 1; } } if (any

PcIP == ExIP + JIP) { // any channel Jump(ExIP + JIP); }

Errata Description Project

 [DevBDW:A]: A brd instruction must not be followed by any instruction requiring register

indirect access on source operands.

BDW

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types

D

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 377

brd - Branch Diverging
94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

378 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Break

break - Break
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

The break instruction is used to early-out from the inner most loop, or early out from the inner most

switch block. When used in a loop, upon execution, the break instruction terminates the loop for all

execution channels enabled. If all the enabled channels hit the break instruction, jump to the

instruction referenced by JIP. JIP should be the offset to the end of the inner most conditional or loop

block, UIP should be the offset to the while instruction of the loop block. If SPF is ON, the UIP must be

used to update IP; JIP is not used in this case

The following table describes the two 32-bit instruction pointer offsets. Both the JIP and UIP are

signed 32-bit numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at locations src0 and

src1 and must be of type DW (signed DWord integer). When the offsets are immediate, src0 regfile

must be immediate.

BDW

Format: [(pred)] break (exec_size) JIP UIP

Syntax Project

[(pred)] break (exec_size) imm16 imm16 BDW

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.channel[n]) { PcIP[n] = IP + UIP; else { PcIP[n] = IP +

1; } } if (PcIP != (IP + 1)) { // all channels Jump(IP + JIP); }

Errata Description Project

 [DevBDW:A]: A break instruction must not be followed by any instruction requiring register

indirect access on source operands.

BDW

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 The byte-aligned jump distance if a jump is taken for the channel.

95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 379

break - Break
63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

380 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Byte Scattered Read MSD

MSD0R_BS - Byte Scattered Read MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Scattered R/W

Group: Byte Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: Enable

 If set, indicates that the message includes the header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 04h

Project: All

Format: Opcode

 Byte Scattered Read message

13 Reserved

Project: BDW

Format: MBZ

 Ignored

12 Reserved

Project: All

Format: MBZ

 Ignored

11:10 Data Elements

Project: All

Format: MDC_DS

 Specifies the number of Bytes to be read or written per Dword

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 381

MSD0R_BS - Byte Scattered Read MSD
9 Reserved

Project: All

Format: MBZ

 Ignored

8 SIMD Mode

Project: All

Format: MDC_SM2

 Specifies the SIMD mode of the message (number of slots processed)

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

382 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Byte Scattered Write MSD

MSD0W_BS - Byte Scattered Write MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Scattered R/W

Group: Byte Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: Enable

 If set, indicates that the message includes the header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Byte Scattered Write message

13:12 Reserved

Project: All

Format: MBZ

 Ignored

11:10 Data Elements

Project: All

Format: MDC_DS

 Specifies the number of Bytes to be read or written per Dword

9 Reserved

Project: All

Format: MBZ

 Ignored

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 383

MSD0W_BS - Byte Scattered Write MSD
8 SIMD Mode

Project: All

Format: MDC_SM2

 Specifies the SIMD mode of the message (number of slots processed)

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

384 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Call

call - Call
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The call instruction jumps to a subroutine. It can be predicated or non-predicated. If non-predicated, all

enabled channels jump to the subroutine. If predicated, only the channels enabled by PMask jump to the

subroutine; the rest of the channels move to the next instruction after the call instruction. If none of the

channels jump into the subroutine, the call instruction is treated as a nop. In case of a jump, the call instruction

stores the return IP onto the first DWord of the destination register and stores the CallMask in the second

DWord of the destination register. When SPF is on, the predication control must be scalar.

The following table describes JIP, the jump offset. JIP can be an immediate or register value. When a jump

occurs, this value is added to IP pre-increment. For BDW, in GEN binary, JIP is at location src1 when immediate

and at location src0 when in a register. The IP register must be put (for example, by the assembler) at dst

location. When offsets are immediate, src0 must be null.

Format: [(pred)] call (exec_size) dst JIP

Restriction

The call instruction must have DWord source and destination type, and the destination must be QWord

aligned.

A call instruction must use a Switch

A call instruction must be followed by an instruction that supports Switch. When call takes a jump, the first

instruction must have a Switch.

Syntax

[(pred)] call (exec_size) reg imm32 [(pred)] call (exec_size) reg reg32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { PcIP[n] = IP + JIP; CallMask[n] = 1; } else {

PcIP[n] = IP + 1; CallMask[n] = 0; } } if (PcIP[n] != (IP + 1)) { // any channel jumped dst.chan[0] = IP + 1;

dst.chan[1] = CallMask; Jump(IP + JIP); }

Errata Description

 [DevBDW:A]: A call instruction must not be followed by any instruction requiring register indirect access

on source operands.

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Dst Types

D, UD

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 385

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

386 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Call Absolute

calla - Call Absolute
Project: BDW

Source: EuIsa

Length Bias: 4

The calla instruction jumps to a subroutine. It can be predicated or non-predicated. If non-predicated, all

enabled channels jump to the subroutine. If predicated, only the channels enabled by PMask jump to the

subroutine; the rest of the channels move to the next instruction after the calla instruction. If none of the

channels jump into the subroutine, the calla instruction is treated as a nop. In case of a jump, the call

instruction stores the return IP onto the first DWord of the destination register and stores the CallMask in the

second DWord of the destination register. If SPF is ON, none of the PcIP are updated. When SPF is on, the

predication control must be scalar. The difference between calla and call is that calla uses JIP as the IP value

rather than adding it to the IP value.

Format: [(pred)] calla (exec_size) dst JIP

Restriction

The calla instruction must have DWord source and destination type, and the destination must be QWord-

aligned.

The src0 regioning control must be <2;2,1>

Syntax Project

[(pred)] calla (exec_size) reg imm32 BDW

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.channel[n]) { PcIP[n] = JIP; CallMask[n] = 1; } else {

PcIP[n] = IP + 1; CallMask[n] = 0; } } if (PcIP[n] != (IP + 1)) { // any channel jumped dst.chan[0] = IP + 1;

dst.chan[1] = CallMask; Jump(JIP); }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Dst Types

D, UD

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 387

calla - Call Absolute
94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

388 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Compare

cmp - Compare
Project: BDW

Source: EuIsa

Length Bias: 4

The cmp instruction performs component-wise comparison of src0 and src1 and stores the results in the

selected flag register and in dst. It takes component-wise subtraction of src0 and src1, evaluating the

conditional code (excluding NS signal) based on the conditional modifier, and storing the conditional bits in

bit-packed form in the destination flag register and all bits of dst channels. If the dst is not null, for the enabled

channels, then all bits of the destination channel will contain the flag value for the channel. When the

instruction operates on packed word format, one general register may store up to 16 such comparison results.

In DWord format, one general register may store up to 8 results. A conditional modifier must be specified; the

conditional modifier field cannot be 0000b. The comparison does not use the NS (NaN source) signals, as

described in the Creating Conditional Flags section. Accordingly the conditional modifier should not be .u

(unordered). For each enabled channel 0b or 1b is assigned to the appropriate flag bit and 0/all zeros or all

ones (e.g, byte 0xFF, word 0xFFFF, DWord 0xFFFFFFFF) is assigned to dst. When any source type is floating-

point, the cmp instruction obeys the rules described in the tables in the Floating Point Modes section of the

Data Types chapter.

Format: [(pred)] cmp[.cmod] (exec_size) dst src0 src1

Restriction

Accumulator cannot be destination, implicit or explicit. The destination must be a general register or the null

register.

Syntax

[(pred)] cmp[.cmod] (exec_size) reg reg reg [(pred)] cmp[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { bitMask[n] = 0; if (WrEn.chan[n]) { results[n] = src0.chan[n] -

src1.chan[n]; bitMask[n] = Condition(results[n]); dst.chan[n] = bitMask[n]; // All bits for dst channel } } flag# =

bitMask;

Predication Conditional Modifier Saturation Source Modifier

Y Y N Y

Src Types Dst Types

*B,*W,*D *B,*W,*D

*B,*W,*D F

F F

DF DF

HF HF

*B,*W,*D HF

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 389

cmp - Compare

*W,*D,*Q *W,*D,*Q

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

390 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Compare NaN

cmpn - Compare NaN
Project: BDW

Source: EuIsa

Length Bias: 4

The cmpn instruction performs component-wise special-NaN comparison of src0 and src1 and stores the

results in the selected flag register and in dst. It takes component-wise subtraction of src0 and src1, evaluating

the conditional signals including NS based on the conditional modifier, and storing the conditional flag bits in

bit-packed form in the destination flag register and all bits of dst channels. If the dst is not null, for the enabled

channels, then all bits of the destination channel will contain the flag value for the channel. When the

instruction operates on packed word format, one general register may store up to 16 such comparison results.

In DWord format, one general register may store up to 8 results. A conditional modifier must be specified; the

conditional modifier field cannot be 0000b. More information about the conditional signals used is in the

Creating Conditional Flags section. For each enabled channel 0b or 1b is assigned to the appropriate flag bit

and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord 0xFFFFFFFF) is assigned to dst. Min/Max

instructions use cmpn to select the destination from the input sources (see the Min Max of Floating Point

Numbers section for details).

Format: [(pred)] cmpn[.cmod] (exec_size) dst src0 src1

Restriction Project

Accumulator cannot be destination, implicit or explicit. The destination must be a general register or

the null register.

.l and .ge are the only two conditional modifiers are supported for this instruction. BDW

Syntax

[(pred)] cmpn[.cmod] (exec_size) reg reg reg [(pred)] cmpn[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { bitMask[n] = 0; if (WrEn.chan[n]) { results[n] = src0.chan[n] -

src1.chan[n]; bitMask[n] = ConditionNaN(results[n]); dst.chan[n][0] = bitMask[n]; // All bits for dst channel } }

flag# = bitMask;

Predication Conditional Modifier Saturation Source Modifier

Y Y N Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*B,*W,*D F

F F

DF DF BDW

HF HF BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 391

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

392 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Conditional Select

csel - Conditional Select
Project: BDW

Source: EuIsa

Length Bias: 4

The csel instruction selectively moves components in src0 or src1 to the dst based on the result of the compare

of src2 with zero. If the channel condition is true, data in src0 is moved into dst. Otherwise, data in src1 is

moved into dst. The csel instruction provides the function of a cmp followed by sel. The instruction must not be

used if cmpn is required. The instruction does not update the flag register.

The comparison follows the same rule as cmp instruction for that data type.

Format: csel (exec_size) dst src0 src1 src2

Syntax

csel[.cmod] (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { bitMask[n] = 0; if (EMask.chan[n]) { result[n] = src2.chan[n] -

0; bitMask[n] = Condition(result[n]); if (bitMask[n] = 1) { dst.chan[n] = src0.chan[n]; } else { dst.chan[n] =

src1.chan[n]; } } }

Predication Conditional Modifier Saturation Source Modifier

N Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:126 Reserved

Format: MBZ

125:106 Source 2

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 Reserved

Format: MBZ

104:85 Source 1

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

Format: MBZ

83:64 Source 0

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 393

csel - Conditional Select
63:56 Destination Register Number

Format: DstRegNum

55:53 Destination Subregister Number

Format: DstSubRegNum[2:0]

52:49 Destination Channel Enable

Format: ChanEn[4]

 Four channel enables are defined for controlling which channels are written into the

destination region. These channel mask bits are applied in a modulo-four manner to all

ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the

bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is

enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,

where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project:

Format: MBZ

47 NibCtrl

Project:

Format: NibCtrl

46 Reserved

Project:

Format: MBZ

45:44 Destination Data Type

Project:

 This field contains the data type for the destination

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

43:42 Source Data Type

Project:

 This field contains the data type for all three sources

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

 Command Reference: Instructions

394 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

csel - Conditional Select
41:40 Source 2 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

39:38 Source 1 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

37:36 Source 0 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

35 Reserved

Format: MBZ

34 Flag Register Number

Project:

 This field contains the flag register number for instructions with a non-zero Conditional

Modifier.

33 Flag Subregister Number

 This field contains the flag subregister number for instructions with a non-zero Conditional

Modifier.

32 Reserved

Project:

Format: MBZ

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 395

Conditional Send Message

sendc - Conditional Send Message
Project: BDW

Source: EuIsa

Length Bias: 4

The sendc instruction has the same behavior as the send instruction except the following. sendc first checks the

dependent threads inside the Thread Dependency Register. There are up to 8 dependent threads in the TDR

register. The sendc instruction executes only when all the dependent threads in the TDR register are retired.

Wait for dependencies in the TDR Register to clear, then send a message stored in registers starting at src to a

shared function identified by exdesc along with control from desc with a general register writeback location at

dst.

Format: [(pred)] sendc (exec_size) dst src0 exdesc desc

Restriction

The sendc instruction has the same restrictions as the send instruction.

Pseudocode

if (TDR[7] ... || TDR[2] || TDR[1] || TDR[0]) { wait; } Evaluate(WrEn); MsgChEnable = WrEn; SourceReg =

src0.RegNum; MessageEnqueue(MsgChEnable, ResponseReg, SourceReg, desc, exdesc);

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 Message

Format: EU_INSTRUCTION_OPERAND_SEND_MSG

95:89 Flags

Format: EU_INSTRUCTION_FLAGS

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:28 Controls B

Format: EU_INSTRUCTION_CONTROLS_B

27:24 Shared Function ID (SFID)

Format: SFID

 Command Reference: Instructions

396 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

sendc - Conditional Send Message
23:8 Controls A

Format: EU_INSTRUCTION_CONTROLS_A

7 Reserved

Format: MBZ

6:0 Opcode

Format: EU_OPCODE

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 397

Constant Cache Oword Block Read MSD

MSD_CC_OWB - Constant Cache Oword Block Read MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

Family: Block R/W

Group: OW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 00h

Project: All

Format: Opcode

 Oword Block Read Constant Cache message

13 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

12:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Data Elements

Project: All

Format: MDC_DB_OW

 Specifies the number of contiguous Owords to be read or written

 Command Reference: Instructions

398 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD_CC_OWB - Constant Cache Oword Block Read MSD
7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 399

Constant Cache Oword Unaligned Block Read MSD

MSD_CC_OWUB - Constant Cache Oword Unaligned Block Read

MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

Family: Block R/W

Group: OW Unaligned Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 01h

Project: All

Format: Opcode

 Oword Unaligned Block Read Constant Cache message

13:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Data Elements

Project: All

Format: MDC_DB_OW

 Specifies the number of contiguous Owords to be read

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

400 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Continue

cont - Continue
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The cont instruction disables execution for the subset of channels for the remainder of the current loop

iteration. Channels remain disabled until right before the while instuction or right before the condition check

code block for the while instruction. If all enabled channels hit this instruction, jump to the instruction

referenced by JIP where execution continues. UIP should always reference the loop's associated while

instruction. JIP should point to the last instruction of the inner most conditional block if the cont instruction is

inside a conditional block. In case of the break instruction directly under the loop, the JIP and the UIP are the

same. If SPF is ON, the UIP must be used to update IP; JIP is not used in this case.

The following table describes the two 32-bit instruction pointer offsets. Both the JIP and UIP are signed 32-bit

numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at locations src0 and src1 and must be of

type DW (signed DWord integer). When the offsets are immediate, src0 regfile must be immediate.

Format: [(pred)] cont (exec_size) JIP UIP

Restriction

The execution size must be the same for the while, break, and cont instructions of the same code block.

Syntax

[(pred)] cont (exec_size) imm32 imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.channel[n]) { if (PMask[n]) { // PMask is for all

channels enabled for the cont instruction. PcIP[n] = IP + UIP; } else { PcIP[n] = IP + 1; } } } for (n = exec_size; n <

32; n++) { PcIP[n] = IP + 1; } if (PcIP != (IP + 1)) { // all channels true Jump(IP + JIP); }

Errata Description

 [DevBDW:A]: A cont instruction must not be followed by any instruction requiring register indirect

access on source operands.

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 The byte-aligned jump distance if a jump is taken for the channel.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 401

cont - Continue
95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

402 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Count Bits Set

cbit - Count Bits Set
Project: BDW

Source: EuIsa

Length Bias: 4

The cbit instruction counts component-wise the total bits set in src0 and stores the resulting counts in dst.

Format: [(pred)] cbit (exec_size) dst src0

Restriction

No accumulator access, implicit or explicit.

Syntax

[(pred)] cbit (exec_size) reg reg [(pred)] cbit (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD cnt = 0; UD val = src0.chan[n]; while (

val) { if (val & 1) { cnt ++; } val = val » 1; } dst.chan[n] = cnt; } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

UB, UW, UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 403

Dot Product 2

dp2 - Dot Product 2
Project: BDW

Source: EuIsa

Length Bias: 4

The dp2 instruction performs a two-wide dot product on four-tuple vector basis and storing the same scalar

result per four tuple to all four channels in dst. This instruction is similar to dp4 except that every third and

fourth element of src0 (post-source-swizzle if present) are not involved in the computation. The dot product of

two vectors of equal length is the sum of the products of each pair of corresponding elements. The dp4

instruction includes all four elements of each vector in the dot product. The dp3 instruction includes the first

three elements of each vector in the dot product.

Format: [(pred)] dp2[.cmod] (exec_size) dst src0 src1

Restriction

Execution size cannot be less than 4.

Horizontal strides must be 1.

Source operands cannot be accumulators.

Syntax

[(pred)] dp2[.cmod] (exec_size) reg reg reg [(pred)] dp2[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n += 4) { fTmp = src0.chan[n] * src1.chan[n] + src0.chan[n+1] *

src1.chan[n+1]; if (WrEn.chan[n]) dst.chan[n] = fTmp; if (WrEn.chan[n+1]) dst.chan[n+1] = fTmp; if (

WrEn.chan[n+2]) dst.chan[n+2] = fTmp; if (WrEn.chan[n+3]) dst.chan[n+3] = fTmp; }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

404 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

dp2 - Dot Product 2
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 405

Dot Product 3

dp3 - Dot Product 3
Project: BDW

Source: EuIsa

Length Bias: 4

The dp3 instruction performs a three-wide dot product on four-tuple vector basis and storing the same scalar

result per four tuple to all four channels in dst. This instruction is similar to dp4 except that every fourth

element of src0 (post-source-swizzle if present) is not involved in the computation. The dot product of two

vectors of equal length is the sum of the products of each pair of corresponding elements. The dp4 instruction

includes all four elements of each vector in the dot product. The dp2 instruction includes the first two elements

of each vector in the dot product.

Format: [(pred)] dp3[.cmod] (exec_size) dst src0 src1

Restriction

Execution size cannot be less than 4.

Horizontal strides must be 1.

Source operands cannot be accumulators.

Syntax

[(pred)] dp3[.cmod] (exec_size) reg reg reg [(pred)] dp3[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n += 4) { fTmp = src0.chan[n] * src1.chan[n] + src0.chan[n+1] *

src1.chan[n+1] + src0.chan[n+2] * src1.chan[n+2]; if (WrEn.chan[n]) dst.chan[n] = fTmp; if (WrEn.chan[n+1])

dst.chan[n+1] = fTmp; if (WrEn.chan[n+2]) dst.chan[n+2] = fTmp; if (WrEn.chan[n+3]) dst.chan[n+3] = fTmp;

}

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

 Command Reference: Instructions

406 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

dp3 - Dot Product 3
63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 407

Dot Product 4

dp4 - Dot Product 4
Project: BDW

Source: EuIsa

Length Bias: 4

The dp4 instruction performs a four-wide dot product on four-tuple vector basis and storing the same scalar

result per four tuple to all four channels in dst. The dot product of two vectors of equal length is the sum of the

products of each pair of corresponding elements.

Format: [(pred)] dp4[.cmod] (exec_size) dst src0 src1

Restriction

Execution size cannot be less than 4.

Horizontal strides must be 1.

Source operands cannot be accumulators.

Syntax

[(pred)] dp4[.cmod] (exec_size) reg reg reg [(pred)] dp4[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n += 4) { fTmp = src0.chan[n] * src1.chan[n] + src0.chan[n+1] *

src1.chan[n+1] + src0.chan[n+2] * src1.chan[n+2] + src0.chan[n+3] * src1.chan[n+3]; if (WrEn.chan[n])

dst.chan[n] = fTmp; if (WrEn.chan[n+1]) dst.chan[n+1] = fTmp; if (WrEn.chan[n+2]) dst.chan[n+2] = fTmp; if (

WrEn.chan[n+3]) dst.chan[n+3] = fTmp; }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

408 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

dp4 - Dot Product 4
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 409

Dot Product Homogeneous

dph - Dot Product Homogeneous
Project: BDW

Source: EuIsa

Length Bias: 4

The dph instruction performs a four-wide homogeneous dot product on four-tuple vector basis and storing the

same scalar result per four tuple to all four channels in dst. This instruction is similar to dp4 except that every

fourth element of src0 (post-source-swizzle if present) is forced to 1.0f. Use the dp4 instruction to do a four-

wide dot product that includes all elements of src0 and src1.

Format: [(pred)] dph[.cmod] (exec_size) dst src0 src1

Restriction

Execution size cannot be less than 4.

Horizontal strides must be 1.

Source operands cannot be accumulators.

Syntax

[(pred)] dph[.cmod] (exec_size) reg reg reg [(pred)] dph[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n += 4) { fTmp = src0.chan[n] * src1.chan[n] + src0.chan[n+1] *

src1.chan[n+1] + src0.chan[n+2] * src1.chan[n+2] + src1.chan[n+3]; // Use 1.0f in place of src0.chan[n+3]. if (

WrEn.chan[n]) dst.chan[n] = fTmp; if (WrEn.chan[n+1]) dst.chan[n+1] = fTmp; if (WrEn.chan[n+2])

dst.chan[n+2] = fTmp; if (WrEn.chan[n+3]) dst.chan[n+3] = fTmp; }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

410 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

dph - Dot Product Homogeneous
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 411

Dword Atomic Counter Binary with Return Data Operation MSD

MSD1R_DWAC2 - Dword Atomic Counter Binary with Return Data

Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Bh

Project: All

Format: Opcode

 Atomic Counter Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 SIMD Mode

Project: All

Format: MDC_SM2RS

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

412 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword Atomic Counter Binary Write Only Operation MSD

MSD1W_DWAC2 - Dword Atomic Counter Binary Write Only

Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Bh

Project: All

Format: Opcode

 Atomic Counter Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 SIMD Mode

Project: All

Format: MDC_SM2RS

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 413

Dword Atomic Counter Unary with Return Data Operation MSD

MSD1R_DWAC1 - Dword Atomic Counter Unary with Return Data

Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Bh

Project: All

Format: Opcode

 Atomic Counter Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 SIMD Mode

Project: All

Format: MDC_SM2RS

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

414 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword Atomic Counter Unary Write Only Operation MSD

MSD1W_DWAC1 - Dword Atomic Counter Unary Write Only

Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Bh

Project: All

Format: Opcode

 Atomic Counter Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 SIMD Mode

Project: All

Format: MDC_SM2RS

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 415

Dword Scattered Write MSD

MSD0W_DWS - Dword Scattered Write MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Scattered R/W

Group: DW Scattered R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: Enable

 If set, indicates that the message includes the header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 0Bh

Project: All

Format: Opcode

 Dword Scattered Write message

13:12 Reserved

Project: All

Format: MBZ

 Ignored

11:10 Reserved

Project: BDW

Format: MBZ

 Ignored

9 Legacy SIMD Mode

Default Value: 1h

Project: All

Format: Opcode

 Must be set for compatibility.

 Command Reference: Instructions

416 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD0W_DWS - Dword Scattered Write MSD
8 SIMD Mode

Project: All

Format: MDC_SM2

 Specifies the SIMD mode of the message (number of slots processed)

7:0 Binding Table Index

Project: BDW

Format: MDC_BTS_A32

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 417

Dword SIMD4x2 Atomic Counter Binary with Return Data

Operation MSD

MSD1R_DWAC2_4x2 - Dword SIMD4x2 Atomic Counter Binary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Atomic Counter Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

418 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Atomic Counter Binary Write Only Operation MSD

MSD1W_DWAC2_4x2 - Dword SIMD4x2 Atomic Counter Binary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Atomic Counter Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 419

Dword SIMD4x2 Atomic Counter Unary with Return Data Operation

MSD

MSD1R_DWAC1_4x2 - Dword SIMD4x2 Atomic Counter Unary

with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Atomic Counter Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

420 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Atomic Counter Unary Write Only Operation MSD

MSD1W_DWAC1_4x2 - Dword SIMD4x2 Atomic Counter Unary

Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Atomic Counter Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header

18:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Atomic Counter Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 421

Dword SIMD4x2 Typed Atomic Integer Binary with Return Data

Operation MSD

MSD1R_DWTAI2_4x2 - Dword SIMD4x2 Typed Atomic Integer

Binary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Typed Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

422 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Typed Atomic Integer Binary Write Only

Operation MSD

MSD1W_DWTAI2_4x2 - Dword SIMD4x2 Typed Atomic Integer

Binary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Typed Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 423

Dword SIMD4x2 Typed Atomic Integer Trinary with Return Data

Operation MSD

MSD1R_DWTAI3_4x2 - Dword SIMD4x2 Typed Atomic Integer

Trinary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Typed Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

424 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Typed Atomic Integer Trinary Write Only

Operation MSD

MSD1W_DWTAI3_4x2 - Dword SIMD4x2 Typed Atomic Integer

Trinary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Typed Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 425

Dword SIMD4x2 Typed Atomic Integer Unary with Return Data

Operation MSD

MSD1R_DWTAI1_4x2 - Dword SIMD4x2 Typed Atomic Integer

Unary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Typed Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

426 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Typed Atomic Integer Unary Write Only Operation

MSD

MSD1W_DWTAI1_4x2 - Dword SIMD4x2 Typed Atomic Integer

Unary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Typed Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 427

Dword SIMD4x2 Untyped Atomic Integer Binary with Return Data

Operation MSD

MSD1R_DWAI2_4x2 - Dword SIMD4x2 Untyped Atomic Integer

Binary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 03h

Project: All

Format: Opcode

 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

428 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Untyped Atomic Integer Trinary with Return Data

Operation MSD

MSD1R_DWAI3_4x2 - Dword SIMD4x2 Untyped Atomic Integer

Trinary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 03h

Project: All

Format: Opcode

 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 429

Dword SIMD4x2 Untyped Atomic Integer Trinary Write Only

Operation MSD

MSD1W_DWAI3_4x2 - Dword SIMD4x2 Untyped Atomic Integer

Trinary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 03h

Project: All

Format: Opcode

 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

430 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword SIMD4x2 Untyped Atomic Integer Unary with Return Data

Operation MSD

MSD1R_DWAI1_4x2 - Dword SIMD4x2 Untyped Atomic Integer

Unary with Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 03h

Project: All

Format: Opcode

 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 431

Dword SIMD4x2 Untyped Atomic Integer Unary Write Only

Operation MSD

MSD1W_DWAI1_4x2 - Dword SIMD4x2 Untyped Atomic Integer

Unary Write Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Atomic Operation

Group: Dword Untyped Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 03h

Project: All

Format: Opcode

 Untyped Atomic Integer Operation SIMD4x2 message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Reserved

Project: All

Format: MBZ

 Ignored

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

432 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword Typed Atomic Integer Binary with Return Data Operation

MSD

MSD1R_DWTAI2 - Dword Typed Atomic Integer Binary with

Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 06h

Project: All

Format: Opcode

 Typed Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Slot Group

Project: All

Format: MDC_SG2

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 433

Dword Typed Atomic Integer Binary Write Only Operation MSD

MSD1W_DWTAI2 - Dword Typed Atomic Integer Binary Write Only

Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Binary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 06h

Project: All

Format: Opcode

 Typed Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Slot Group

Project: All

Format: MDC_SG2

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP2

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

434 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword Typed Atomic Integer Trinary with Return Data Operation

MSD

MSD1R_DWTAI3 - Dword Typed Atomic Integer Trinary with

Return Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 06h

Project: All

Format: Opcode

 Typed Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Slot Group

Project: All

Format: MDC_SG2

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 435

Dword Typed Atomic Integer Trinary Write Only Operation MSD

MSD1W_DWTAI3 - Dword Typed Atomic Integer Trinary Write

Only Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Trinary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 06h

Project: All

Format: Opcode

 Typed Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Slot Group

Project: All

Format: MDC_SG2

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP3S

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

436 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Dword Typed Atomic Integer Unary with Return Data Operation

MSD

MSD1R_DWTAI1 - Dword Typed Atomic Integer Unary with Return

Data Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 06h

Project: All

Format: Opcode

 Typed Atomic Integer Operation message

13 Return Data Control

Default Value: 1h

Project: All

Format: Opcode

 Specifies that return data is sent back to the thread.

12 Slot Group

Project: All

Format: MDC_SG2

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 437

Dword Typed Atomic Integer Unary Write Only Operation MSD

MSD1W_DWTAI1 - Dword Typed Atomic Integer Unary Write Only

Operation MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Atomic Operation

Group: Dword Typed Atomic Integer Unary Operation

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 06h

Project: All

Format: Opcode

 Typed Atomic Integer Operation message

13 Return Data Control

Default Value: 0h

Project: All

Format: Opcode

 Specifies that no return data is sent back to the thread.

12 Slot Group

Project: All

Format: MDC_SG2

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Atomic Integer Operation

Project: All

Format: MDC_AOP1

 Specifies the atomic integer operation to be performed.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

438 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Else

else - Else
Project: BDW

Source: EuIsa

Length Bias: 4

The else instruction is an optional statement within an if/else/endif block of code. It restricts execution within

the else/endif portion to the opposite set of channels enabled under the if/else portion. Channels which were

inactive prior to entering the if/endif block remain inactive throughout the entire block. All enabled channels

upon arriving the else instruction will be redirected to the matching endif. If all channels are redirected (by else

or before else), a relative jump is performed to the location specified by <JIP>. The jump target should be the

matching endif instruction for that conditional block. The following table describes the 32-bit <JIP>. In GEN

binary, <JIP> is at location <src1> and must be of type D (signed dword integer). <JIP> must be an immediate

operand, it is a signed 32-bit number and is intended to be forward referencing. This value is added to IP pre-

increment. If the <branch_ctrlt> bit is set, then the <JIP> points to the first join instruction within the else block

and <UIP> points to the endif instruction. If the <branch_ctrl> bit is not set, <JIP> and <UIP>, both point to

endif.

Format: else (<exec_size>) <JIP> <UIP>; <branch_ctrlt>

Programming Notes

If all channels are redirected (by else or before else), relative jump is performed to the location specified by

<JIP> + 1.

Restriction

Predication is not allowed.

The execution size must be the same for the if, else, and endif instructions of the same code block.

Syntax

else (<exec_size>) imm32 imm32 <branch_ctrlt>

Pseudocode

Evaluate(WrEn); for (n = 0; n < 32; n++) { if (WrEn.channel[n] == 1 || <branch_ctrlt>) { PcIP[n] = IP + <JIP>; }

else { PcIP[n] = IP + <UIP>; } } if (PcIP != (IP+1)) { // for all channels Jump(IP + <JIP>); }

Predication Conditional Modifier Saturation Source Modifier

N N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 The byte-aligned jump distance if a jump is taken for the channel.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 439

else - Else
95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

440 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

End If

endif - End If
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The endif instruction terminates an if/else/endif block of code. It restores execution to the channels that were

active prior to the if/else/endif block. The endif instruction is also used to hop out of nested conditionals by

jumping to the end of the next outer conditional block when all channels are disabled.

The following table describes the 32-bit JIP. In GEN binary, JIP is at location src1 and must be of type D (signed

DWord integer). JIP must be an immediate operand, it is a signed 32-bit number. This value is added to IP pre-

increment.

Format: endif JIP

Restriction

Predication is not allowed.

The execution size must be the same for the if, else, and endif instructions of the same code block.

Syntax

endif (exec_size) imm32

Pseudocode

Evaluate(WrEn); if (WrEn == 0) { // all channels false Jump(IP + JIP); }

Errata Description

 [DevBDW:A]: An endif instruction must not be followed by any instruction requiring register indirect

access on source operands.

Predication Conditional Modifier Saturation Source Modifier

N N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 441

endif - End If
94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

442 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Extended Math Function

math - Extended Math Function
Project: BDW

Source: EuIsa

Length Bias: 4

The math instruction performs extended math function on the components in src0, or src0 and src1, and write

the output to the channels of dst. The type of extended math function are based on the FC[3:0] encoding in the

table below.

Format: [(pred)] math (exec_size) dst src0 src1 <FC>

Restriction

Accumulator access is allowed only for ieee macro functions.

The math instruction does not support indirect addressing modes.

The only supported rounding mode for math instruction is Round to Nearest Even.

INT DIV function does not support SIMD16.

INT DIV function does not support simulataneous write to two registers.

INT DIV function does not support source modifiers.

The FDIV function is not supported in ALT_MODE.

The math instruction can use GRF or immediates as source. The source formats for immediates must be one of

the source formats supported by math operation.

DepCtrl must not be used.

The math instruction must use GRF as destination.

The supported regioning mode for math instruction is align1 and align16. The following restrictions apply for

align1 mode: Scalar source is supported. Source and destination horizontal stride must be the same. Regioning

must ensure Src.Vstride = Src.Width * Src.Hstride . Source and destination offset must be the same, except the

case of scalar source.

For one source math operations src1 must be NULL.

Syntax

[(pred)] math (exec_size) reg reg reg imm4

Pseudocode

 Evaluate(WrEn);

 for (n = 0; n < exec_size; n++) {

 if (WrEn.channel[n] == 1) {

 switch FC[3:0] {

 case 1h:

 dst.channel[n] = rcp(src0.channel[n]);

 case 2h:

 dst.channel[n] = log(src0.channel[n]);

 case 3h:

 dst.channel[n] = exp(src0.channel[n]);

 case 4h:

 dst.channel[n] = sqrt(src0.channel[n]);

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 443

math - Extended Math Function
 case 5h:

 dst.channel[n] = rsq(src0.channel[n]);

 case 6h:

 dst.channel[n] = sin(src0.channel[n]);

 case 7h:

 dst.channel[n] = cos(src0.channel[n]);

 case 9h: // src0 / src1

 dst.channel[n] = fdiv(src0.channel[n], src1.channel[n]);

 case Ah:

 dst.channel[n] = pow(src0.channel[n], src1/channel[n]);

 case Bh: // src0 / src1

 idiv(src0.channel[n], src1.channel[n]);

 dst.channel[n] = quotient;

 dst+1.channel[n] = remainder;

 case Ch:

 idiv(src0.channel[n], src1.channel[n]);

 dst.channel[n] = quotient;

 case Dh:

 idiv(src0.channel[n], src1.channel[n]);

 dst.channel[n] = remainder;

 }

 }

 }

 }

Predication Conditional Modifier Saturation Source Modifier [BDW]

Y N Y Y

Src Types Dst Types

F F

D D

UD UD

DWord Bit Description

0..3 127:64 RegSource

Format: EU_INSTRUCTION_SOURCES_REG_REG

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:28 Controls B

Format: EU_INSTRUCTION_CONTROLS_B

27:24 Function Control (FC)

Format: FC

23:8 Controls A

Format: EU_INSTRUCTION_CONTROLS_A

7 Reserved

Format: MBZ

 Command Reference: Instructions

444 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

math - Extended Math Function
6:0 Opcode

Format: EU_OPCODE

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 445

Find First Bit from LSB Side

fbl - Find First Bit from LSB Side
Project: BDW

Source: EuIsa

Length Bias: 4

The fbl instruction counts component-wise the number of LSB 0 bits before the first 1 bit in src0, storing that

number in dst.

Format: [(pred)] fbl (exec_size) dst src0

Programming Notes

If src0 contains no 1 bits, store 0xFFFFFFFF in dst.

Restriction

No accumulator access, implicit or explicit.

Syntax

[(pred)] fbl (exec_size) reg reg [(pred)] fbl (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD cnt = 0; UD udScalar = src0.chan[n];

while ((udScalar & 1) == 0 && cnt != 32) { cnt ++; udScalar = udScalar » 1; } if (src0.chan[n] == 0x00000000)

{ dst.chan[n] = 0xFFFFFFFF; } else { dst.chan[n] = cnt; } } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

446 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Find First Bit from MSB Side

fbh - Find First Bit from MSB Side
Project: BDW

Source: EuIsa

Length Bias: 4

If src0 is unsigned, the fbh instruction counts component-wise the leading zeros from src0 and stores the

resulting counts in dst. If src0 is signed and positive, the fbh instruction counts component-wise the leading

zeros from src0 and stores the resulting counts in dst. If src0 is signed and negative, the fbh instruction counts

component-wise the leading ones from src0 and stores the resulting counts in dst.

Format: [(pred)] fbh (exec_size) dst src0

Programming Notes

If src0 is zero, store 0xFFFFFFFF in dst.

If src0 is signed and is -1 (0xFFFFFFFF), store 0xFFFFFFFF in dst.

Restriction

No accumulator access, implicit or explicit.

Syntax

[(pred)] fbh (exec_size) reg reg [(pred)] fbh (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD cnt = 0; if (src0 is unsigned) { UD

udScalar = src0.chan[n]; while ((udScalar & (1 « 31)) == 0 && cnt != 32) { cnt ++; udScalar = udScalar « 1; } if (

src0.chan[n] == 0x00000000) { dst.chan[n] = 0xFFFFFFFF; } else { dst.chan[n] = cnt; } } else { // src0 is signed. D

dScalar = src0.chan[n]; bit cval = dScalar[31]; while ((dScalar & (1 « 31)) == cval && cnt != 32) { cnt ++; dScalar

= dScalar « 1; } if ((src0.chan[n] == 0xFFFFFFFF) || (src0.chan[n] == 0x00000000)) { dst.chan[n] = 0xFFFFFFFF; }

else { dst.chan[n] = cnt; } } } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types

D, UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 447

fbh - Find First Bit from MSB Side
63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

448 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Fraction

frc - Fraction
Project: BDW

Source: EuIsa

Length Bias: 4

The frc instruction computes, component-wise, the truncate-to-minus-infinity fractional values of src0 and

stores the results in dst. The results, in the range of [0.0, 1.0], are the fractional portion of the source data. The

result is in the range [0.0, 1.0] irrespective of the rounding mode. Floating-point fraction computation follows

the rules in the following tables, based on the current floating-point mode.

Format: [(pred)] frc[.cmod] (exec_size) dst src0

Syntax

[(pred)] frc[.cmod] (exec_size) reg reg [(pred)] frc[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] -

floor(src0.chan[n]); } }

Predication Conditional Modifier Saturation Source Modifier

Y Y N Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 449

Goto

goto - Goto
Project: BDW

Source: EuIsa

Length Bias: 4

The goto instruction directs the instruction pointer to the offset specified by the UIP offset or to the next IP

based on the BranchCtrl bit in the instruction. The active channels that are predicated on this instruction will

take the IP + UIP path when BranchCtrl is set else the channels take IP + 1. The active channels that are not

predicated on this instruction will be made inactive and waiting to be joined at the join IP. The join IP is IP +

UIP when BranchCtrl is clear else it is the next IP.

When there are no active channels the instruction pointer will move to IP + JIP.

The goto instruction is used in conjunction with a join instruction. A goto deactivates some channels that are

reactivated at some program-specified join instruction. See the join instruction for the activation rules.

The goto and join instructions enable unstructured program control flow. These instructions must be used with

additional care where dangling channels can result without proper compiler checks, meaning that it is expected

that programs will navigate through these paths to reactivate the channels. Hardware does not provide native

checks or reconvergence.

The following table describes the two 32-bit instruction pointer offsets. Both the JIP and UIP are signed 32-bit

numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at locations src0 and src1 and must be of

type DW (signed DWord integer).

If SPF is ON, none of the PcIP are updated.

Format: [(pred)] goto (exec_size) JIP UIP BranchCtrl

Restriction

Cannot have a goto in the body and the corresponding join in the function or the subroutine. Similarly the brd

and brc.

Syntax

[(pred)] goto (exec_size) imm32 imm32 BranchCtrl

Pseudocode

Evaluate(WrEn);

 for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { // for the predicated

active channels if (BranchCtrl) { PcIP[n] = IP + UIP; } else { PcIP[n] = IP +

1; } } else { // join IP, for the active non predicated channels if (BranchCtrl

) { PcIP[n] = IP + 1; } else { PcIP[n] = IP + UIP; } } } if (BranchCtrl) { //

if (PcIP != (IP + UIP)) { // for all channels if (PcIP != (IP + 1)) { // for

all channels Jump(IP + JIP); } else { Jump(IP + 1); } } else { Jump(IP + UIP); }

} else { // if (PcIP != (IP + 1)) { // for all channels Jump(IP + JIP); } else {

Jump(IP + 1); } }

Errata Description

 [DevBDW:A]: A goto instruction must not be followed by any instruction requiring register indirect

access on source operands.

 Command Reference: Instructions

450 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

goto - Goto

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 The byte-aligned jump distance if a jump is taken for the channel.

95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 451

GPGPU_CSR_BASE_ADDRESS

GPGPU_CSR_BASE_ADDRESS
Project: BDW

Length Bias: 2

 The GPGPU_CSR_BASE_ADDRESS command sets the base pointers for EU and L3 to Context Save and Restore

EU State and SLM for GPGPU mid.

Programming Notes

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher

performance. State and instruction caches are flushed on completion of the flush.

SW must always program PIPE_CONTROL with "CS Stall" and "Render Target Cache Flush Enable" set prior to

programming GPGPU_CSR_BASE_ADDRESS command for GPGPU workloads i.e when pipeline select is GPGPU

via PIPELINE_SELECT command. This is required to achieve better GPGPU preemption latencies for certain

programming sequences. If programming PIPE_CONTROL has performance implications then preemption

latencies can be trade off against performance by not implementing this programming note.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: Opcode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

Format: Opcode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

Format: Opcode

23:16 3D Command Sub Opcode

Default Value: 04h GPGPU_CSR_BASE_ADDRESS

Format: Opcode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length -2

Value Name Description Project

1h [Default] Excludes DWord(0,1) BDW

 Command Reference: Instructions

452 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

GPGPU_CSR_BASE_ADDRESS
1..2

Project:

BDW

63:12 GPGPU CSR Base Address

Project: BDW

Format: GraphicsAddress[63:12]

 Specifies the 256K-byte aligned base address for GPGPU context GraphicsAddress [63:48]

are ignored by the HW and assumed to be in correct canonical form [63:48] == [47].

11:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 453

GPGPU_WALKER

GPGPU_WALKER
Project: BDW

Source: RenderCS

Length Bias: 2

Programming Notes

If the threads spawned by this command are required to observe memory writes performed by threads

spawned from a previous command, software must precede this command with a command that performs a

memory flush (e.g., MI_FLUSH).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h GPGPU_WALKER

Format: OpCode

23:16 SubOpcode

Default Value: 05h GPGPU_WALKER SubOp

Format: OpCode

15:11 Reserved

Format: MBZ

10 Indirect Parameter Enable

Format: Enable

If set, the values in DW 7, 10, 12 are ignored and replaced by the current values of the

corresponding GPGPU_xxx MMIO registers:

 GPGPU_DISPATCHDIMX (instead of DW7)

 GPGPU_DISPATCHDIMY (instead of DW10)

 GPGPU_DISPATCHDIMZ (instead of DW12)

9 Reserved

Format: MBZ

 Command Reference: Instructions

454 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

GPGPU_WALKER
8 Predicate Enable

Format: Enable

 If set, this command is executed (or not) depending on the current value of the MI Predicate

internal state bit. This command is ignored only if PredicateEnable is set and the Predicate state

bit is 0.

7:0 DWord Length

Format: =n Total Length - 2

Value Name Description

0Dh DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:8 Reserved

7:6 Reserved

Format: MBZ

5:0 Interface Descriptor Offset

Format: U6

 This field specifies the offset from the interface descriptor base pointer to the interface

descriptor which will be applied to this object. It is specified in units of interface descriptors.

2 31:17 Reserved

Format: MBZ

16:0 Indirect Data Length

Format: U17 in bytes

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. If

Indirect Data is enabled, it is assumed that CURBE is not being used except for cross-thread

constant data. This field must have the same alignment as the Indirect Object Data Start Address.

It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB, the total size

of Indirect data must be less than 63,488 (2048 URB lines - 64 lines for Interface Descriptors).

Workaround Project

The indirect payload is limited to 4032 bytes or less. BDW

3 31:6 Indirect Data Start Address

Format: IndirectObjectOffset[31:6]

 This field specifies the Graphics Memory starting address of the data to be loaded into the

kernel for processing. This pointer is relative to the Indirect Object Base Address. Hardware

ignores this field if indirect data is not present. Alignment of this address depends on the mode

of operation. It is the 64-byte aligned address of the indirect data.

Value Name Description

[0 - 512MB] (Bits 31:29 MBZ)

5:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 455

GPGPU_WALKER
4 31:30 SIMD Size

 This field determines the size of the payload and the number of bits of the execution mask that

are expected. The kernel pointed to by the interface descriptor should match the SIMD declared

here.

Value Name Description

0 SIMD8 8 LSBs of the execution mask are used

1 SIMD16 16 LSBs used in execution mask

2 SIMD32 32 bits of execution mask used

29:22 Reserved

Format: MBZ

21:16 Thread Depth Counter Maximum

The maximum value of the thread depth counter. Since the counter starts at 0, the depth is this

value + 1.

(Thread_Depth_Max+1)*(Thread_Height_Max+1)*(Thread_Width_Max+1) must equal

Number of Threads in GPGPU Thread Group in the Interface Descriptor.

15:14 Reserved

Format: MBZ

13:8 Thread Height Counter Maximum

Format: U6-1

 The maximum value of the thread height counter. The height is this value + 1.

7:6 Reserved

Format: MBZ

5:0 Thread Width Counter Maximum

Format: U6-1

 The maximum value of the thread width counter. The height is this value + 1.

5 31:0 Thread Group ID Starting X

 This is the initial value of the X component of the thread group. When X reaches the maximum

value it rolls around to this value.

6 31:0 Reserved

Format: MBZ

7 31:0 Thread Group ID X Dimension

 The X dimension of the thread group (maximum X is dimension -1)

8 31:0 Thread Group ID Starting Y

 This is the initial value of the Y component of the thread group. When Y reaches the maximum

value it rolls around to this value.

9 31:0 Reserved

Format: MBZ

 Command Reference: Instructions

456 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

GPGPU_WALKER
10 31:0 Thread Group ID Y Dimension

 The Y dimension of the thread group (maximum Y is dimension -1)

11 31:0 Thread Group ID Starting/Resume Z

 This is the initial value of the Z component of the thread group.

12 31:0 Thread Group ID Z Dimension

 The Z dimension of the thread group (maximum Z is dimension -1)

13 31:0 Right Execution Mask

 The execution mask used for threads on the right (maximum X) of the thread group.

14 31:0 Bottom Execution Mask

 The execution mask used for threads on the bottom (maximum Y) of the thread group.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 457

Halt

halt - Halt
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The halt instruction temporarily suspends execution for all enabled compute channels. Upon execution, the

enabled channels are sent to the instruction at (IP + UIP), if all channels are enabled at HALT, jump to the

instruction at (IP + JIP). If the halt instruction is not inside any conditional code block, the values of JIP and UIP

should be the same. If the halt instruction is inside a conditional code block, the UIP should be the end of the

program and the JIP should be the end of the inner most conditional code block. The UIP must point to a HALT

Instruction. If SPF is ON, the UIP must be used to update IP; JIP is not used in this case.

The following table describes the two 32-bit instruction pointer offsets. Both the JIP and UIP are signed 32-bit

numbers, added to IP pre-increment. In GEN binary, JIP and UIP are at locations src0 and src1 and must be of

type DW (signed DWord integer). When the offsets are immediate, src0 regfile must be immediate.

Format: [(pred)] halt (exec_size) JIP UIP

Restriction

dst and src0 must be NULL.

Syntax

[(pred)] halt (exec_size) imm32 imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < 32; n++) { if (WrEn.channel[n]) { PcIP[n] = IP + UIP; else { PcIP[n] = IP + 1; } } if

(PcIP != (IP + 1)) { // for all channels Jump(IP + JIP); }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 The byte-aligned jump distance if a jump is taken for the channel.

95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

 Command Reference: Instructions

458 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

halt - Halt
63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 459

HI8DS Render Target Write MSD

MSD_RTW_HI8DS - HI8DS Render Target Write MSD
Project: BDW

Source: Render Cache DataPort

Length Bias: 1

Family: Other

Group: Render Target R/W

DWord Bit Description

0 31 Reserved

Project: All

Format: MBZ

 Ignored

30 Message Precision Subtype

Default Value: 0h

Project: All

Format: Opcode

 Full precision data message

29 Reserved

Project: All

Format: MBZ

 Ignored

28:25 Message Length

Project: All

Format: U4

 Specifies the number of 256-bit GRF registers sent as the message payload (including the

header). Valid value ranges are 1 to 15.

24:20 Response Length

Project: All

Format: U5

 Specifies the number of 256-bit GRF registers expected as the message response payload. Valid

value ranges are 0 to 16.

19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the 2-register header.

 Command Reference: Instructions

460 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD_RTW_HI8DS - HI8DS Render Target Write MSD
18 Reserved

Project: BDW

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Render Target Write message

13 Reserved

Project: BDW

Format: MBZ

 Ignored

12 Last Render Target Select

Project: All

Format: Enable

 This bit must be set on the last render target write message sent for each group of pixels. For

single render target pixel shaders, this bit is set on all render target write messages. For multiple

render target pixel shaders, this bit is set only on messages sent to the last render target. This bit

must be zero for SIMD8 Image Write message. In general, when threads are not launched by 3D

FF, this bit must be zero.

Programming Notes

When a pixel shader has render target writes at finer granularity than the dispatch rate, last

render target write to a null surface must be present at the dispatch rate with this bit set. In

particular, if a kernel is dispatched at pixel rate and it only writes to render targets at sample-

rate, it must include a pixel-rate render target write to a null surface with Last Render Target

Select bit enabled.

11 Slot Group Select

Project: All

Format: MDC_RT_SGS

 This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

10:8 Render Target Message Subtype

Default Value: 3h

Project: All

Format: Opcode

 SIMD8 dual source message. Use slots [15:8] for pixel enables, X/Y addresses, and oMask.

Programming Notes

The above slots indicated are within the 16 slots selected by Slot Group Select. If SLOTGRP_HI is

selected, slots [31:24] are referenced instead of [15:8].

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 461

MSD_RTW_HI8DS - HI8DS Render Target Write MSD
7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

462 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

If

if - If
Project: BDW

Source: EuIsa

Length Bias: 4

Description

An if instruction starts an if/endif or an if/else/endif block of code. It restricts execution within the conditional

block to only those channels that were enabled via the predicate control. Each if instruction must have a

matching endif instruction and may have up to one matching else instruction before the matching endif. If all

channels are inactive (for the if/endif or if/else/endif block), a jump is performed to the instruction referenced

by JIP. This jump must be to right after the matching else instruction when present, or otherwise to the

matching endif instruction of the conditional block. If SPF is ON, the UIP must be used to update IP; JIP is not

used in this case.

The following table describes the 32-bit exit code <JIP> and <UIP>. If <branch_ctrl> is set, then the JIP points

to the first join instruction within the if block. If <branch_ctrl%gt; is not set, <JIP> should point to the

instruction right after the matching else instruction if it exsits, otherwise <JIP> should point to the endif

instruction. <UIP> should always point to the endif instruction. When a jump occurs, this value is added to IP

pre-increment. In GEN instruction binary, <JIP> and <UIP> are at location <src0> & <src1> and must be of

type D (signed dword integer).

Format: [(pred)] if (exec_size JIP UIP <branch_ctrl>

Restriction

The execution size must be the same for the if, else, and endif instructions of the same code block.

Syntax

[(pred)] if (exec_size) imm32 imm32 <branch_ctrl>

Pseudocode

Evaluate(WrEn); for (n = 0; n < 32; n++) { if (WrEn.channel[n] == 0) { PcIP[n] = IP + JIP; } else { PcIP[n] = IP +

1; } } if (PcIP != (IP + 1)) { // for all channels Jump(IP + JIP); }

Errata Description

 [DevBDW:A]: An if instruction must not be followed by any instruction requiring register indirect access

on source operands.

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 463

if - If
 The byte-aligned jump distance if a jump is taken for the channel.

95:64 UIP

Project: BDW

Format: S31

 The byte aligned jump distance if a jump is taken for the instruction.

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

464 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Illegal

illegal - Illegal
Project: BDW

Source: EuIsa

Length Bias: 4

The Illegal Opcode Exception Enable flag in cr0.1 is normally set so the normal processing of an illegal opcode

is to transfer control to the System Routine. Instruction dispatch treats any unused 8-bit opcode (including bit 7

of the instruction, reserved for future opcode expansion) as if it is the illegal opcode. The illegal opcode is zero

because that byte value is more likely than most to be read via a wayward instruction pointer. The illegal

instruction is an instruction only in the same way that a NULL pointer in software is a pointer. Both are special

values indicating invalid instances.

Format: illegal

Restriction

The illegal instruction takes no instruction options.

Syntax

illegal

Pseudocode

{ Set the Illegal Opcode Exception Status bit in cr0.1. if (Illegal Opcode Exception Enable is set in cr0.1) {

Transfer control to the System Routine (return address to AIP, IP = SIP). } }

Predication Conditional Modifier Saturation Source Modifier

N N N N

DWord Bit Description

0..3 127:7 Reserved

Format: MBZ

6:0 Opcode

Format: EU_OPCODE

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 465

Integer Subtraction with Borrow

subb - Integer Subtraction with Borrow
Project: BDW

Source: EuIsa

Length Bias: 4

The subb instruction performs component-wise subtraction of src0 and src1 and stores the results in dst, it also

stores the borrow into acc. If the operation produces a borrow (src0 < src1), write 0x00000001 to acc, else write

0x00000000 to acc.

Format: [(pred)] subb[.cmod] (exec_size) dst src0 src1

Restriction

AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit destination

operand.

Syntax

[(pred)] subb[.cmod] (exec_size) reg reg reg [(pred)] subb[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] - src1.chan[n];

acc.chan[n] = borrow(src.chan[n] - src1.chan[n]); } }

Predication Conditional Modifier Saturation Source Modifier

Y N Y N

Src Types Dst Types

UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

466 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Join

join - Join
Project: BDW

Source: EuIsa

Length Bias: 4

The join instruction makes the inactive channels active at the join IP if those channels are predicated. Any

deactivated channels due to a goto instruction match the join IP are activated (qualified with predicates at join).

If no IP is matched at this join, the program goes to the next IP with the active channels which followed the

program path up to the join instruction. If no active channels are present after executing the join instruction,

the program jumps to the offset specified by JIP instead of next IP. The join instruction is used in conjunction

with a goto instruction. The join activates channels that are deactivated by the goto instruction. See the goto

instruction for the deactivation rules. The goto and join instructions enable unstructured program control flow.

These instructions must be used with additional care where dangling channels can result without proper

compiler checks, meaning that it is expected that programs will navigate through these paths to reactivate the

channels. Hardware does not provide native checks or reconvergence. The following table describes the 32-bit

JIP. In GEN binary, JIP is at location src1 and must be of type D (signed DWord integer). JIP must be an

immediate operand and is a signed 32-bit number. This value is added to IP pre-increment. If SPF is ON, none

of the PcIP are updated.

Format: [(pred)] join (exec_size) JIP

Programming Notes

An index of 0 does nothing, continuing execution with the next instruction.

An index of -16 (if the jmpi instruction is in native format) or -8 (if the jmpi instruction is in compact format) is

an infinite loop on the jmpi instruction.

Restriction

The {NoMask} instruction option must be specified.

The index data type must be D (Signed DWord Integer).

Syntax

[(pred)] join (exec_size) imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { // for the predicated channels and the

remaining channels PcIP[n] = IP + 1; } } if (PcIP != (IP + 1)) { // for all channels when no channels are activated

and no other active channels Jump(IP + JIP); }

Errata Description

 [DevBDW:A]: A join instruction must not be followed by any instruction requiring register indirect

access on source operands.

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 467

join - Join

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

468 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Jump Indexed

jmpi - Jump Indexed
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The jmpi instruction redirects program execution to an index offset relative to the post-incremented instruction

pointer. The index is a signed integer value, with positive or zero integers for forward jumps, and negative

integers for backward jumps. Note: Unlike other flow control instructions, the offset used by jmpi is relative to

the incremented instruction pointer rather than the IP value for the instruction itself. In GEN binary, index is at

location src1. The ip register must be put (for example, by the assembler) at the dst and src0 locations.

Predication is allowed to provide conditional jump with a scalar condition. As the execution size is 1, the first

channel of PMASK (flags post prediction control and negate) is used to determine whether the jump is taken or

not. If the condition is false, the jump is not taken and execution continues with the next instruction.

Format: [(pred)] jmpi (1) index {NoMask}

Programming Notes

An index of 0 does nothing, continuing execution with the next instruction.

An index of -16 (if the jmpi instruction is in native format) or -8 (if the jmpi instruction is in compact format) is

an infinite loop on the jmpi instruction.

Restriction

The execution size must be 1.

The {NoMask} instruction option must be specified.

The index data type must be D (Signed DWord Integer).

QtrCtrl must not be used for jmpi instruction.

Syntax

[(pred)] jmpi (1) reg32 {NoMask} [(pred)] jmpi (1) imm32 {NoMask}

Pseudocode

Evaluate(WrEn); if (WrEn != 0) { Jump(IP + 1 + index); // IP + 1 is a pseudocode idiom for the IP of the

following instruction. }

Errata Description

 [DevBDW:A]: A jmpi instruction must not be followed by any instruction requiring register indirect

access on source operands.

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 469

jmpi - Jump Indexed

Src Types

D

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

470 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Leading Zero Detection

lzd - Leading Zero Detection
Project: BDW

Source: EuIsa

Length Bias: 4

The lzd instruction counts component-wise the leading zeros from src0 and stores the resulting counts in dst. If

src0 is zero, store 32 in dst.

Format: [(pred)] lzd[.cmod] (exec_size) dst src0

Restriction

Accumulator cannot be destination, implicit or explicit.

Syntax

[(pred)] lzd[.cmod] (exec_size) reg reg [(pred)] lzd[.cmod] (exec_size) reg reg

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { UD udScalar = src0.chan[n]; UD cnt = 0;

while ((udScalar & (1 « 31)) == 0 && cnt != 32) { cnt ++; udScalar = udScalar « 1; } dst.chan[n] = cnt; } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

D, UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 471

Line

line - Line
Project: BDW

Source: EuIsa

Length Bias: 4

The line instruction computes a component-wise line equation (v = p * u + q where u, v are vectors and p, q

are scalars) of src0 and src1 and stores the results in dst. src1 is the input vector u. src0 provides input scalars p

and q, where p is the scalar value based on the region description of src0 and q is the scalar value implied from

src0 region. Specifically, q is the fourth component of the 4-tuple (128-bit aligned) that p belongs to.

Format: [(pred)] line[.cmod] (exec_size) dst src0 src1

Restriction

This is a specialized instruction that only supports an execution size (ExecSize) of 8 or 16.

The src0 region must be a replicated scalar (with HorzStride == VertStride == 0).

src0 must specify .0 or .4 as the subregister number, corresponding to a subregister byte offset of 0 or 16.

Source operands cannot be accumulators.

Syntax

[(pred)] line[.cmod] (exec_size) reg reg reg [(pred)] line[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { dwP = src0.RegNum.SubRegNum[bits4:2]; // A DWord-

aligned scalar. dwQ = src0.RegNum.(SubRegNum[bit4] | 0x8); // Fourth component. if (WrEn.chan[n]) {

dst.chan[n] = dwP * src1.chan[n] + dwQ; } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

472 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

line - Line
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 473

Linear Interpolation

lrp - Linear Interpolation
Project: BDW

Source: EuIsa

Length Bias: 4

The lrp instruction takes component-wise multiplication of src0 and src1, and adds the result to the

component-wise multiplication of src2 and (1 - src0), and then stores the final results in dst.

Format: [(pred)] lrp[.cmod] (exec_size) dst src0 src1 src2

Restriction

The vertical stride (VertStride) is overloaded to 4 in HW for 3-source instructions.

The overflow conditional modifier (.o) is not allowed.

No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for implicitly

updating the accumulator.

All three-source instructions have certain restrictions, described in Instruction Formats [BDW].

Syntax

[(pred)] lrp[.cmod] (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src1.chan[n] * src0.chan[n] +

src2.chan[n] * (1.0 - src0.chan[n]); } }

Predication Conditional Modifier Saturation Source Modifier

Y N Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:126 Reserved

Format: MBZ

125:106 Source 2

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 Reserved

Format: MBZ

104:85 Source 1

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

Format: MBZ

 Command Reference: Instructions

474 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

lrp - Linear Interpolation
83:64 Source 0

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

63:56 Destination Register Number

Format: DstRegNum

55:53 Destination Subregister Number

Format: DstSubRegNum[2:0]

52:49 Destination Channel Enable

Format: ChanEn[4]

 Four channel enables are defined for controlling which channels are written into the

destination region. These channel mask bits are applied in a modulo-four manner to all

ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the

bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is

enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,

where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project:

Format: MBZ

47 NibCtrl

Project:

Format: NibCtrl

46 Reserved

Project:

Format: MBZ

45:44 Destination Data Type

Project:

 This field contains the data type for the destination

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 475

lrp - Linear Interpolation
43:42 Source Data Type

Project:

 This field contains the data type for all three sources

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

41:40 Source 2 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

39:38 Source 1 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

37:36 Source 0 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

35 Reserved

Format: MBZ

34 Flag Register Number

Project:

 This field contains the flag register number for instructions with a non-zero Conditional

Modifier.

33 Flag Subregister Number

 This field contains the flag subregister number for instructions with a non-zero Conditional

Modifier.

32 Reserved

Project:

Format: MBZ

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

476 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

LO8DS Render Target Write MSD

MSD_RTW_LO8DS - LO8DS Render Target Write MSD
Project: BDW

Source: Render Cache DataPort

Length Bias: 1

Family: Other

Group: Render Target R/W

DWord Bit Description

0 31 Reserved

Project: All

Format: MBZ

 Ignored

30 Message Precision Subtype

Default Value: 0h

Project: All

Format: Opcode

 Full precision data message

29 Reserved

Project: All

Format: MBZ

 Ignored

28:25 Message Length

Project: All

Format: U4

 Specifies the number of 256-bit GRF registers sent as the message payload (including the

header). Valid value ranges are 1 to 15.

24:20 Response Length

Project: All

Format: U5

 Specifies the number of 256-bit GRF registers expected as the message response payload. Valid

value ranges are 0 to 16.

19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the 2-register header.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 477

MSD_RTW_LO8DS - LO8DS Render Target Write MSD
18 Reserved

Project: BDW

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Render Target Write message

13 Reserved

Project: BDW

Format: MBZ

 Ignored

12 Last Render Target Select

Project: All

Format: Enable

 This bit must be set on the last render target write message sent for each group of pixels. For

single render target pixel shaders, this bit is set on all render target write messages. For multiple

render target pixel shaders, this bit is set only on messages sent to the last render target. This bit

must be zero for SIMD8 Image Write message. In general, when threads are not launched by 3D

FF, this bit must be zero.

Programming Notes

When a pixel shader has render target writes at finer granularity than the dispatch rate, last

render target write to a null surface must be present at the dispatch rate with this bit set. In

particular, if a kernel is dispatched at pixel rate and it only writes to render targets at sample-

rate, it must include a pixel-rate render target write to a null surface with Last Render Target

Select bit enabled.

11 Slot Group Select

Project: All

Format: MDC_RT_SGS

 This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

 Command Reference: Instructions

478 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD_RTW_LO8DS - LO8DS Render Target Write MSD
10:8 Render Target Message Subtype

Default Value: 2h

Project: All

Format: Opcode

 SIMD8 dual source message. Use slots [7:0] for pixel enables, X/Y addresses, and oMask.

Programming Notes

The above slots indicated are within the 16 slots selected by Slot Group Select. If SLOTGRP_HI is

selected, slots [23:16] are referenced instead of [7:0].

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 479

Logic And

and - Logic And
Project: BDW

Source: EuIsa

Length Bias: 4

The and instruction performs component-wise logic AND operation between src0 and src1 and stores the

results in dst. Register source operands can use source modifiers: [Pre-DevBDW]: Any source modifier is

numeric, optionally changing a source value s to -s, abs(s), or -abs(s) before the AND operation. [BDW]: Any

source modifier is logical, optionally changing a source value s to ~s (inverting all source bits). This capability

allows expressions like a AND (NOT b) to be calculated with one instruction. This operation does not produce

sign or overflow conditions. Only the .e/.z or .ne/.nz conditional modifiers should be used.

Format: Source modifier is not allowed if source is an accumulator.

Restriction

Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] and[.cmod] (exec_size) reg reg reg [(pred)] and[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] & src1.chan[n];

} }

Predication Conditional Modifier Saturation Source Modifier

Y Y N Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

480 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Logic Not

not - Logic Not
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

The not instruction performs logical NOT operation (or one's complement) of src0 and storing the

results in dst. This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz

conditional modifiers should be used.

A register source operand can use a source modifier: Any source modifier is logical, optionally

changing a source value s to ~s (inverting all source bits). Such a source modifier is not particularly

useful with the not instruction, as it changes the effect of not to just copying bits.

BDW

Format: [(pred)] not[.cmod] (exec_size) dst src0

Restriction

Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] not[.cmod] (exec_size) reg reg [(pred)] not[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = ~ src0.chan[n]; } }

Predication Conditional Modifier Saturation Source Modifier

Y N N Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 481

Logic Or

or - Logic Or
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The or instruction performs component-wise logic OR operation between src0 and src1 and stores the results

in dst. This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz conditional

modifiers should be used.

Register source operands can use source modifiers: Any source modifier is logical, optionally changing a source

value s to ~s (inverting all source bits). This capability allows expressions like a OR (NOT b) to be calculated

with one instruction.

Format: [(pred)] or[.cmod] (exec_size) dst src0 src1

Restriction

Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] or[.cmod] (exec_size) reg reg reg [(pred)] or[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] | src1.chan[n]; }

}

Predication Conditional Modifier Saturation Source Modifier

Y N N Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

482 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

or - Logic Or
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 483

Logic Xor

xor - Logic Xor
Project: BDW

Source: EuIsa

Length Bias: 4

Description

The xor instruction performs component-wise logic XOR operation between src0 and src1 and stores the results

in dst. This operation does not produce sign or overflow conditions. Only the .e/.z or .ne/.nz conditional

modifiers should be used.

Register source operands can use source modifiers: Any source modifier is logical, optionally changing a source

value s to ~s (inverting all source bits). This capability allows expressions like a XOR (NOT b) to be calculated

with one instruction.

Format: [(pred)] xor[.cmod] (exec_size) dst src0 src1

Restriction

Source modifier is not allowed if source is an accumulator.

Syntax

[(pred)] xor[.cmod] (exec_size) reg reg reg [(pred)] xor[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] ^ src1.chan[n]; }

}

Predication Conditional Modifier Saturation Source Modifier

Y Y N Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

484 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

xor - Logic Xor
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 485

MEDIA_CURBE_LOAD

MEDIA_CURBE_LOAD
Project: BDW

Source: RenderCS

Length Bias: 2

 Workaround : See "GPGPU Command Workarounds" section for additional programming constraints for this

command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_CURBE_LOAD

Format: OpCode

23:16 SubOpcode

Default Value: 1h MEDIA_CURBE_LOAD SubOp

Format: OpCode

15:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

2h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:0 Reserved

Project: All

Format: MBZ

2 31:17 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

486 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_CURBE_LOAD
16:0 CURBE Total Data Length

Project: All

Format: U17 In Bytes

Description

This field provides the length in bytes of the CURBE data. This field must have the same

alignment as the Curbe Object Data Start Address.As the CURBE data are sent directly to ROB,

range is limited to CURBE Allocation Size.

This field must be 64-byte aligned.

3 31:0 CURBE Data Start Address

Project: All

Format: DynamicStateOffset[31:0] CURBE

Description

Specifies the 64-byte aligned address of the CURBE data. This pointer is relative to the

Dynamics Base Address.

Value Name

[0, FFFFFFFFh]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 487

MEDIA_INTERFACE_DESCRIPTOR_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD
Project: BDW

Source: RenderCS

Length Bias: 2

A Media_State_Flush should be used before this command to ensure that the temporary Interface Descriptor

storage is cleared.

Workaround : See "GPGPU Command Workarounds" section for additional programming constraints for this

command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_INTERFACE_DESCRIPTOR_LOAD

Format: OpCode

23:16 SubOpcode

Default Value: 2h MEDIA_INTERFACE_DESCRIPTOR_LOAD SubOp

Format: OpCode

15:0 DWord Length

Format: =n Total Length - 2

Value Name Description

2h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:0 Reserved

Format: MBZ

2 31:17 Reserved

Format: MBZ

 Command Reference: Instructions

488 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_INTERFACE_DESCRIPTOR_LOAD
16:0 Interface Descriptor Total Length

Format: U17 In bytes

 This field provides the length in bytes of the Interface Descriptor data. This field must have the

same alignment as the Interface Descriptor Data Start Address.It must be DQWord (32-byte)

aligned. As the Interface Descriptor data are sent directly to ROB, range is limited to CURBE

Allocation Size.

Value Name

[32,2048] [1,64] interface descriptor entries

3 31:0 Interface Descriptor Data Start Address

Format: DynamicStateOffset[31:0]INTERFACE_DESCRIPTOR_DATA

Description

This bit specifies the 64-byte aligned address of the Interface Descriptor data. This pointer is

relative to the Dynamics Base Address.

Value Name

[0, FFFFFFFFh]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 489

MEDIA_OBJECT

MEDIA_OBJECT
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Media Command Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h MEDIA_OBJECT

Format: OpCode

23:16 Media Command Sub-Opcode

Default Value: 0h MEDIA_OBJECT SubOp

Format: OpCode

15:0 DWord Length

Default Value: 4h DWORD_COUNT_n

Project: BDW

Format: =n Total Length - 2

 Excludes DWords 0,1 Generic Mode: DWord Length = N+4, where N is in the range of [0,504].

The maximum is 504 DW (equivalent to 63 8-DW registers). When both inline and indirect data

are fetched for this command, the total size in 8-DW registers must be less than 112 (with both

inline data length N and indirect data length rounded up to 8-DW aligned individually). The

minimal inline data length is 0.

1 31:8 Reserved

7:6 Reserved

Format: MBZ

5:0 Interface Descriptor Offset

Project: BDW

Format: U6

 This field specifies the offset from the interface descriptor base pointer to the interface

descriptor which will be applied to this object. It is specified in units of interface descriptors.

 Command Reference: Instructions

490 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT
2 31 Children Present

Format: Enable

 Indicates that the root thread may send spawn messages to spawn child threads and/or

synchronized root threads. If Children Present is not set, TS signals VFE to dereference the URB

handle immediately after it receives acknowledgement from TD that the thread is dispatched. If

Children Present is set, the URB handle is forwarded to the root thread and serves as the return

URB handle for the root thread. TS does not signal deference at the time of dispatch. TS signals

URB handle deference only when it receives a resource dereference message from the thread. In

order avoid deadlock, such dereference must be issued once and only once for each URB handle.

30:27 Reserved

Format: MBZ

26:25 Reserved

Project: BDW

24 Thread Synchronization

 This field when set indicates that the dispatch of the thread originated from this command is

based on the "spawn root thread" message.

Value Name

0 No thread synchronization

1 Thread dispatch is synchronized by the 'spawn root thread' message

23 Reserved

Format: MBZ

22 Force Destination

Project: BDW

 If set, bits 20:17 are used to determine the destination of this dispatch, if clear the destination

will be chosen based on load.

21 Use Scoreboard

Project: BDW

 This field specifies whether the thread associated with this command uses hardware scoreboard.

Only when this field is set, the scoreboard control fields in the VFE Dword are valid. If this field is

cleared, the thread associated with this command bypasses hardware scoreboard.

Value Name

0 Not using scoreboard

1 Using scoreboard

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 491

MEDIA_OBJECT
20:19 Slice Destination Select

Project: BDW

 This bit along with the subslice destination select determines the slice that this thread must be

sent to. Ignored if Force Destination = 0, or if product only has 1 slice.

Value Name Description

00b Slice 0

01b Slice 1 Cannot be used in products without a Slice 1.

10b Slice 2 Cannot be used in products without a Slice 2.

11b Reserved

18:17 SubSlice Destination Select

Project: BDW

 This field selects the SubSlice that this thread must be sent to. Ignored if Force Destination = 0

Value Name Project

11b Reserved BDW

10b SubSlice 2

01b SubSlice 1

00b SubSlice 0

16:0 Indirect Data Length

Format: U17 In bytes

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This field

must have the same alignment as the Indirect Object Data Start Address. It must be DQWord

(32-byte) aligned. As the indirect data are sent directly to URB, range is limited to 496 DW. When

both inline and indirect data are fetched for this command, the total size in 8-DW registers must

be less than 112 (with both inline data length and indirect data length rounded up to 8-DW

aligned).

 Command Reference: Instructions

492 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT
3 31:0 Indirect Data Start Address

Format: GraphicsAddress[31:0]

Description

This field specifies the Graphics Memory starting address of the data to be loaded into the

kernel for processing. This pointer is relative to the Indirect Object Base Address. Hardware

ignores this field if indirect data is not present. Alignment of this address depends on the mode

of operation.

This field specifies the 64-byte aligned address of the indirect data.

Value Name

[0,512MB]

Programming Notes

Bits 31:29 MBZ

4 31:25 Reserved

Format: MBZ

24:16 Scoredboard Y

Project: BDW

Format: U9

 This field provides the Y term of the scoreboard value of the current thread.

15:9 Reserved

Format: MBZ

8:0 Scoreboard X

Project: BDW

Format: U9

 This field provides the X term of the scoreboard value of the current thread.

5 31:20 Reserved

Project: BDW

Format: MBZ

19:16 Scoreboard Color

Project: BDW

Format: U4

 This field specifies which dependency color the current thread belongs to. It affects the

dependency scoreboard control.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 493

MEDIA_OBJECT
15:8 Reserved

Format: MBZ

7:0 Scoreboard Mask

Project: BDW

Format: Boolean

 Each bit indicates the corresponding dependency scoreboard is dependent on. This field is

AND'd with the corresponding Scoreboard Mask field in the MEDIA_VFE_STATE command. Bit n

(for n = 0…7): Scoreboard n is dependent, where bit 0 maps to n = 0.

6..n 31:0 Inline Data

 Generic Mode: The format of this data is specified by software. Hardware does not interpret this

data; it merely passes it to the kernel for processing. The total size for the inline data and indirect

data must not exceed 112 registers.

 Command Reference: Instructions

494 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_GRPID

MEDIA_OBJECT_GRPID
Project: BDW

Source: RenderCS

Length Bias: 2

The MEDIA_OBJECT_GRPID command is a variation of MEDIA_OBJECT which includes a group id which is used to

allocate and track Barriers and Shared Local Memory. The Interface Descriptor is used to specify how much SLM

is needed and how many threads will be reporting to the Barrier. All MEDIA_OBJECT_GRPIDs with the same

group id should have the same interface descriptor and be dispatched to the same Tslice – the dispatcher will

ensure this if Force Destination = 0, but software must ensure this if Force Destination = 1. Software should also

ensure that all the threads needed for the Barrier will fit into a Tslice, or the Barrier will never be satisfied. Either

SLM or a barrier must be used with MEDIA_OBJECT_GRPID, if neither is needed then a MEDIA_OBJECT must be

used instead.

MEDIA_OBJECT_GRPID supports the GPGPU version of payload delivery – either indirect or CURBE can be split

between the threads in a group (per-thread payload), as well as a section which is sent to all threads (cross-

thread payload). See the GPGPU payload section. For indirect, the same pointer must be sent with all the

commands associated with the thread group for payload splitting to work properly. Inline data is not split, but

the payload attached to each command is sent with that thread. Only one of inline, indirect, or CURBE is allowed,

but at least one form of payload must be sent.

MEDIA_STATE_FLUSH with the watermark bit must be placed between groups created by MEDIA_OBJECT_GRPID.

The Interface Descriptor associated with the watermark must match the Interface Descriptor used for the

following group.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Media Command Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h MEDIA_OBJECT_GRPID

Format: OpCode

23:16 Media Command Sub-Opcode

Default Value: 6h MEDIA_OBJECT_GRPID SubOp

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 495

MEDIA_OBJECT_GRPID
15:0 DWord Length

Default Value: 5h DWORD_COUNT_n

Format: =n Total Length - 2

 Excludes DWords 0,1 Generic Mode: DWord Length = N+5, where N is in the range of [0,504].

The maximum is 504 DW (equivalent to 63 8-DW registers). When both inline and indirect data

are fetched for this command, the total size in 8-DW registers must be less than 112 (with both

inline data length N and indirect data length rounded up to 8-DW aligned individually). The

minimal inline data length is 0.

1 31:8 Reserved

7:6 Reserved

Format: MBZ

5:0 Interface Descriptor Offset

Format: U6

 This field specifies the offset from the interface descriptor base pointer to the interface

descriptor which will be applied to this object. It is specified in units of interface descriptors.

Value Name

[0,30]

2 31:25 Reserved

Format: MBZ

24 Reserved

Project: BDW

23 End of Thread Group

 This bit indicates that this dispatch is the last for the current thread group.

22 Force Destination

Project: BDW

 If set, bits 20:17 are used to determine the destination of this dispatch, if clear the destination

will be chosen based on load.

21 Use Scoreboard

Project: BDW

 This field specifies whether the thread associated with this command uses hardware scoreboard.

Only when this field is set, the scoreboard control fields in the VFE Dword are valid. If this field is

cleared, the thread associated with this command bypasses hardware scoreboard.

Value Name

0 Not using scoreboard

1 Using scoreboard

 Command Reference: Instructions

496 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_GRPID
20:19 Slice Destination Select

Project: BDW

 This bit along with the SubSlice destination select determines the slice that this thread must be

sent to. Ignored if Force Destination = 0, or if product only has 1 slice.

Value Name Description

00b Slice 0

01b Slice 1 Cannot be used in products without a Slice 1.

10b Slice 2 Cannot be used in products without a Slice 2.

11b Reserved

18:17 SubSlice Destination Select

Project: BDW

 This field selects the SubSlice that this thread must be sent to. Ignored if Force Destination = 0

Value Name Project

11b Reserved BDW

10b SubSlice 2

01b SubSlice 1

00b SubSlice 0

16:0 Indirect Data Length

Format: U17 In bytes

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This field

must have the same alignment as the Indirect Object Data Start Address. It must be DQWord

(32-byte) aligned. As the indirect data are sent directly to URB, range is limited to 496 DW. When

both inline and indirect data are fetched for this command, the total size in 8-DW registers must

be less than 112 (with both inline data length and indirect data length rounded up to 8-DW

aligned).

3 31:0 Indirect Data Start Address

Format: GraphicsAddress[31:0]

Description Project

This field specifies the Graphics Memory starting address of the data to be loaded into

the kernel for processing. This pointer is relative to the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present. Alignment of this address

depends on the mode of operation.

It is the 64-byte aligned address of the indirect data. BDW

Value Name Description

[0-512MB] Bits 31:29 MBZ

4 31:25 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 497

MEDIA_OBJECT_GRPID
24:16 Scoreboard Y

Project: BDW

Format: U9

 This field provides the Y term of the scoreboard value of the current thread.

15:9 Reserved

Format: MBZ

8:0 Scoreboard X

Project: BDW

Format: U9

 This field provides the X term of the scoreboard value of the current thread.

5 31:20 Reserved

Project: BDW

Format: MBZ

19:16 Scoreboard Color

Project: BDW

Format: U4

 This field specifies which dependency color the current thread belongs to. It affects the

dependency scoreboard control.

15:8 Reserved

Format: MBZ

7:0 Scoreboard Mask

Project: BDW

Format: Boolean

 Each bit indicates the corresponding dependency scoreboard is dependent on. This field is

AND'd with the corresponding Scoreboard Mask field in the MEDIA_VFE_STATE command. Bit n

(for n = 0…7): Scoreboard n is dependent, where bit 0 maps to n = 0.

6 31:0 GroupID

 A unique identifying number which describes the threads which share a barrier and/or SLM.

Reuse of numbers is allowed as long as the old group is not currently running.

7..n 31:0 Inline Data

 The format of this data is specified by software. Hardware does not interpret this data; it merely

passes it to the kernel for processing. The total size for the inline data and indirect data must not

exceed 112 registers.

 Command Reference: Instructions

498 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_PRT

MEDIA_OBJECT_PRT
Project: BDW

Source: RenderCS

Length Bias: 2

command is for generating Persistent Root Thread for the media pipeline. It only supports loading of inline

data but not indirect data. This command should be used for a root thread that might have to be present in the

system for a period longer than the certain minimal context-switch interrupt latency. It has to honor the

context interrupt signal to terminate upon request. It should also handle replay from theinterrupted point upon

context restore (the same thread being dispatched more than once). In contrary, if a thread is not a Persistent

Root Thread, if dispatched, it must run to completion. The command can be used in all VFE modes, except VLD

mode.

For simplification, _PRT command has a fixed size of 16 DWORD

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h MEDIA_OBJECT_PRT

Format: OpCode

23:16 SubOpcode

Default Value: 2h MEDIA_OBJECT_PRT SubOp

Format: OpCode

15:0 DWord Length

Project: BDW

Format: =n Total Length - 2

 Note: Regardless of the mode, inline data must be present in this command. The command size

must fit within 16 dwords.

Value Name Description

0Eh DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:6 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 499

MEDIA_OBJECT_PRT
5:0 Interface Descriptor Offset

Project: BDW

Format: U6

 This field specifies the offset from the interface descriptor base pointer to the interface

descriptor which will be applied to this object. It is specified in units of interface descriptors.

2 31 Children Present

Format: Enable

 Indicates that the root thread may send spawn messages to spawn child threads and/or

synchronized root threads. If Children Present is not set, TS signals VFE to dereference the URB

handle immediately after it receives acknowledgement from TD that the thread is dispatched. If

Children Present is set, the URB handle is forwarded to the root thread and serves as the return

URB handle for the root thread. TS does not signal deference at the time of dispatch. TS signals

URB handle deference only when it receives a resource dereference message from the thread. In

order avoid deadlock, such de-reference must be issued once and only once for each URB

handle.

30:24 Reserved

Format: MBZ

23 PRT_Fence Needed

Format: Enable

 This field specifies that a PRT_Fence is generated after dispatching the thread associated with

this MEDIA_OBJECT_PRT. The PRT_Fence prevents additional threads following this persistent

root thread until a thread spawn message is sent. The PRT_Fence is generated on first dispatch of

the persistent root, as well as on re-dispatches of the persistent root after context restore.

22 PRT_FenceType

 This field specifies the type of fence the PRT thread uses. If this field is set to 0, the fence is set at

the end of the root thread queue. It will block the dispatch of the next root thread, but allowed

these root threads to be populated through VFE to the root thread queue in TS. If this field is set

to 1, the fence is set at the entry of VFE, similar to the fence set by the MEDIA_STATE_FLUSH

command. No more command can go into the media pipe until a thread spawn message is sent

(by the PRT). This field is only valid when PRT_Fence Needed is set to 1. Otherwise, it is ignored

by hardware.

Value Name Description

0h Root thread queue Root thread queue fence

1h VFE state flush VFE state flush fence

21:0 Reserved

Format: MBZ

3 31:0 Reserved

Format: MBZ

4..15 31:0 Inline Data

Format: U32

 Command Reference: Instructions

500 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_WALKER

MEDIA_OBJECT_WALKER
Project: BDW

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h MEDIA_OBJECT_WALKER

Format: OpCode

23:16 SubOpcode

Default Value: 03h MEDIA_OBJECT_WALKER SubOp

Format: OpCode

15:0 DWord Length

Default Value: 0Fh DWORD_COUNT_n

Format: =n Total Length - 2

Note: If this field is greater than 15, it indicates that inline data is present. If present, inline data is

common for all threads generated from this command, If this field is 15, it indicates that inline

data is not present. It should be noted that unlike other media object command, inline data is

optional for this command.

1 31:8 Reserved

7:6 Reserved

Format: Reserved

5:0 Interface Descriptor Offset

Project: BDW

Format: U6

 This field specifies the offset from the interface descriptor base pointer to the interface

descriptor which will be applied to this object. It is specified in units of interface descriptors.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 501

MEDIA_OBJECT_WALKER
2 31 Children Present

Format: Boolean

 Indicates that the root thread may send spawn messages to spawn child threads and/or

synchronized root threads. If Children Present is not set, TS signals VFE to dereference the URB

handle immediately after it receives acknowledgement from TD that the thread is dispatched. If

Children Present is set, the URB handle is forwarded to the root thread and serves as the return

URB handle for the root thread. TS does not signal deference at the time of dispatch. TS signals

URB handle deference only when it receives a resource dereference message from the thread. In

order avoid deadlock, such dereference must be issued once and only once for each URB handle.

30:25 Reserved

Format: MBZ

24 Thread Synchronization

 This field when set indicates that the dispatch of the thread originated from this command is

based on the "spawn root thread" message.

Value Name

0 No thread synchronization

1 Thread dispatch is synchronized by the 'spawn root thread' message

23:22 Reserved

Format: MBZ

21 Use Scoreboard

 This field specifies whether the thread associated with this command uses hardware scoreboard.

Only when this field is set, the scoreboard control fields in the VFE Dword are valid. If this field is

cleared, the thread associated with this command bypasses hardware scoreboard.

Value Name

0 Not using scoreboard

1 Using scoreboard

20:17 Reserved

Format: MBZ

16:0 Indirect Data Length

Format: U17 in bytes

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This field

must have the same alignment as the Indirect Object Data Start Address. It must be DQWord

(32-byte) aligned. As the indirect data are sent directly to URB, range is limited to 496 DW. When

both inline and indirect data are fetched for this command, the total size in 8-DW registers must

be less than or equal to 63 (with both inline data length and indirect data length rounded up to

8-DW aligned).

 Command Reference: Instructions

502 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_WALKER
3 31:0 Indirect Data Start Address

Format: IndirectObjectOffset[31:0]

Description

This field specifies the Graphics Memory starting address of the data to be loaded into the

kernel for processing. This pointer is relative to the Indirect Object Base Address. Hardware

ignores this field if indirect data is not present. Alignment of this address depends on the mode

of operation.

It is the 64-byte aligned address of the indirect data

Value Name Description

[0 - 512MB] (Bits 31:29 MBZ)

4 31:0 Reserved

Format: MBZ

5 31:8 Group ID Loop Select

Project: BDW

 This bit field chooses which of the nested loops of the walker are used to identify threads which

share a group id and therefore a shared barrier and SLM. The programmer must ensure that each

group will fit into a single subslice. When barriers are enabled every group must have the same

number of threads matching the number specified in the Interface Descriptor.

Value Name Description

0 Groups are not created, barriers and SLM are not allocated

1 Each complete iteration of the Color loop defines a group, the group id is the

concatenation of the Outer global, Inner global, Outer local, Mid local and Inner

local loop execution counts.

2 Each complete iteration of the Inner local loop and Color loop defines a group,

the group id is the concatenation of the Outer global loop to the Mid local loop

execution counts.

3 Each complete iteration of the Mid local loop and lower loops defines a group,

the group id is the concatenation of the Outer global loop to the Outer local

loop execution counts.

4 Each complete iteration of the Outer local loop and lower loops defines a group,

the group id is the concatenation of the Outer global loop and the Inner global

loop execution counts.

5 Each complete iteration of the Inner global loop and lower loops defines a

group, the group id is the Outer global loop execution count.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 503

MEDIA_OBJECT_WALKER
7:0 Scoreboard Mask

Format: Boolean

 Each bit indicates the corresponding dependency scoreboard is dependent on. This field is

AND'd with the corresponding Scoreboard Mask field in the MEDIA_VFE_STATE. All threads

generated by this walker command share the same dynamic mask. Bit n (for n = 0...7):

Scoreboard n is dependent, where bit 0 maps to n = 0.

6 31:29 Reserved

Project: BDW

28 Reserved

Format: MBZ

27:24 Color Count Minus One

Format: U4

 This field specifies the number of repeat of the inner most loop of the walker. Each repeated

walk position is assigned with an incremental Color number. The Color number together with the

X and Y position of the thread is used for dependency scoreboard control. Usage Example: This

allows multiple sets of dependency threads to be dispatched.

23:21 Reserved

Format: MBZ

20:16 Middle Loop Extra Steps

Format: U5

15:14 Reserved

Format: MBZ

13:12 Local Mid-Loop Unit Y

Format: S1

11:10 Reserved

Format: MBZ

9:8 Mid-Loop Unit X

Format: S1

7:0 Reserved

Format: MBZ

7 31:26 Reserved

Format: MBZ

25:16 Global Loop Exec Count

Format: U10

15:10 Reserved

Format: MBZ

9:0 Local Loop Exec Count

Format: U10

 Command Reference: Instructions

504 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_WALKER
8 31:25 Reserved

Format: MBZ

24:16 Block Resolution Y

Format: U9

 Vertical resolution of the local loop.

15:9 Reserved

Format: MBZ

8:0 Block Resolution X

Format: U9

 Horizontal resolution of the local loop.

9 31:25 Reserved

Format: MBZ

24:16 Local Start Y

Format: U9

 Starting vertical position of the local loop.

15:9 Reserved

Format: MBZ

8:0 Local Start X

Format: U9

 Starting horizontal position of the local loop.

10 31:25 Reserved

Format: MBZ

24:16 Reserved

Project: BDW

Format: MBZ

15:9 Reserved

Format: MBZ

8:0 Reserved

Project: BDW

Format: MBZ

11 31:26 Reserved

Format: MBZ

25:16 Local Outer Loop Stride Y

Format: S9

 Vertical stride of the local outer loop, in 2's complement.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 505

MEDIA_OBJECT_WALKER
15:10 Reserved

Format: MBZ

9:0 Local Outer Loop Stride X

Format: S9

 Horizontal stride of the local outer loop, in 2's complement.

12 31:26 Reserved

Format: MBZ

25:16 Local Inner Loop Unit Y

Format: S9

 Vertical stride of the local inner loop, in 2's complement.

15:10 Reserved

Format: MBZ

9:0 Local Inner Loop Unit X

Format: S9

 Horizontal stride of the local inner loop, in 2's complement.

13 31:25 Reserved

Format: MBZ

24:16 Global Resolution Y

Format: U9

 Vertical resolution of the global loop.

15:9 Reserved

Format: MBZ

8:0 Global Resolution X

Format: U9

 Horizontal resolution of the global loop.

14 31:26 Reserved

Format: MBZ

25:16 Global Start Y

Format: S9

 Starting vertical location of the global loop, in 2's complement.

15:10 Reserved

Format: MBZ

9:0 Global Start X

Format: S9

 Starting horizontal location of the global loop, in 2's complement.

15 31:26 Reserved

Format: MBZ

 Command Reference: Instructions

506 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_OBJECT_WALKER
25:16 Global Outer Loop Stride Y

Format: S9

 Vertical stride of the global outer loop, in 2's complement.

15:10 Reserved

Format: MBZ

9:0 Global Outer Loop Stride X

Format: S9

 Horizontal stride of the global outer loop, in 2's complement.

16 31:26 Reserved

Format: MBZ

25:16 Global Inner Loop Unit Y

Format: S9

 Vertical stride of the global inner loop, in 2's complement.

15:10 Reserved

Format: MBZ

9:0 Global Inner Loop Unit X

Format: S9

 Horizontal stride of the global inner loop, in 2's complement.

17..n 31:0 Inline Data

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 507

MEDIA_STATE_FLUSH

MEDIA_STATE_FLUSH
Project: BDW

Source: RenderCS

Length Bias: 2

 This command updates the Message Gateway state. In particular, it updates the state for a selected Interface

Descriptor. This command can be considered same as a MI_Flush except that only media parser will get flushed

instead of the entire 3D/media render pipeline. The command should be programmed prior to new Media state,

curbe and/or interface descriptor commands when switching to a new context or programming new state for the

same context. With this command, pipelined state change is allowed for the media pipe. It should be cautious

when using this command when child_present flag in the media state is enabled. This is because that CURBE

state as well as Interface Descriptor state are shared between root threads and child threads. Changing these

states while child threads are generated on the fly may cause unexpected behavior. Combining with

MI_ARB_ON/OFF command, it is possible to support interruptability with the following command sequence

where interrupt may be allowed only when MI_ARB_ON_OFF is ON: MEDIA_STATE_FLUSH VFE_STATE // VFE will

hold CS if watermark isn't met MI_ARB_OFF // There must be at least one VFE command before this one

MEDIA_OBJECT …. MI_ARB_ON

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_STATE_FLUSH

Format: OpCode

23:16 SubOpcode

Default Value: 4h MEDIA_STATE_FLUSH SubOp

Format: OpCode

15:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

0h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:9 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

508 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_STATE_FLUSH
8 Reserved

Project: N, BDW

7 Flush to GO

Project: BDW

Format: Enable

 This bit indicates that the write data out of this thread group should be flushed to the point

where it is visible to following commands.

Workaround

Use PIPE_CONTROL with CS stall and DC flush bits set, in place of MEDIA_STATE_FLUSH with

Flush-to-GO set, to work around a preemption boundary condition.

6 Watermark Required

Project: BDW

 This is a single bit specifying if the MEDIA_STATE_FLUSH should stall further commands until

there is enough room in a half-slice for the following thread group. The characteristics of the

thread group are specified in the Interface Descriptor Offset. If set, the MEDIA_STATE_FLUSH

stalls CS until there are enough threads in a half-slice, and enough SLM available in the same

half-slice, and a free barrier if one is required. An Interface Descriptors can be updated after a

Watermarked MEDIA_STATE_FLUSH only if it has not been used in the current context. Reusing

an interface desciptor requires that this bit is clear to ensure the ID cache is reloaded. If clear, the

MEDIA_STATE_FLUSH stalls CS until the TDL has dispatched the last thread, allowing the CURBE

and Interface Descriptors to be updated by following commands.

Programming Notes

The Interface Descriptor Offset used for the flush must be the same as that used for the

GPGPU_OBJECTs. GPGPU_WALKER automatically checks the Watermark conditions before

starting a thread, so this bit should not be set before GPGPU_WALKER.

If pre-emption is used, the WatermarkRequired bit must not be set.

5:0 Interface Descriptor Offset

Format: U6

 This field specifies the offset from the interface descriptor base pointer to the interface

descriptor which describes what resources are required to meet the watermark.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 509

MEDIA_VFE_STATE

MEDIA_VFE_STATE
Project: BDW

Source: RenderCS

Length Bias: 2

 A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless the only bits that are changed are

scoreboard related: Scoreboard Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For these

scoreboard related states, a MEDIA_STATE_FLUSH is sufficient.

 MEDIA_STATE_FLUSH (optional, only if barrier dependency is needed)

 MEDIA_INTERFACE_DESCRIPTOR_LOAD (optional)

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_VFE_STATE

Format: OpCode

23:16 SubOpcode

Default Value: 0h MEDIA_VFE_STATE SubOp

Format: OpCode

15:0 DWord Length

Format: =n Total Length - 2

Value Name Description

07h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:10 Scratch Space Base Pointer

Format: GeneralStateOffset[31:10]

 Specifies the 1k-byte aligned address offset to scratch space for use by the kernel. This pointer is

relative to the General State Base Address.

9:8 Reserved

Format: MBZ

 Command Reference: Instructions

510 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_VFE_STATE
7:4 Stack Size

Value Name Description

[0,11] indicating [1KBytes, 2MBytes]

Programming Notes

Since the stack uses the upper portion of the scratch space, Stack Size =< Per Thread Scratch

Space

3:0 Per Thread Scratch Space

Format: U4

Specifies the amount of scratch space allowed to be used by each thread. The driver must

allocate enough contiguous scratch space, pointed to by the Scratch Space Pointer, to ensure

that the maximum threads in the device each get Per Thread Scratch Space size without

exceeding the driver-allocated scratch space.

Value Name Description

[0,11] indicating [1k bytes, 2 Mbytes]: 0 -> 1k, 1->2k, 2->4k, 3->8k … 11->2M

2 31:16 Reserved

Format: MBZ

15:0 Scratch Space Base Pointer High

Format: GeneralStateOffset[47:32]

 This field specifies the high 16 bits of starting address of the Scratch Space Base Pointer

3 31:16 Maximum Number of Threads

Format: U16-1 representing thread count

Range: [0, n-1] where n = (# EUs) * (# threads/EU). See Graphics Processing Engine for listing of

#EUs and #threads in each device.

Specifies the maximum number of simultaneous root threads allowed to be active. Used to

avoid potential deadlock. If child threads are not planning on being used then this field can be

set to its maximum value and there will be no thread limit beyond what is currently available in

the system; the maximum value can include threads in slices that have been shut down for

power reasons. For GPGPU threads the maximum value must be used.

Programming Notes

MSB will be zero due to the range limit below.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 511

MEDIA_VFE_STATE
15:8 Number of URB Entries

Format: U8

 Specifies the number of URB entries that are used by the unit.

Value Name Description Project

[1,64] [1,64] Entries BDW:GT1, DevBDW:GT2

[1,128] [1,128] Entries BDW:GT3

Programming Notes

Please note that 0 is not allowed for this field.

7 Reset Gateway Timer

Project: BDW

 This field controls the reset of the timestamp counter maintained in Message Gateway.

Value Name

0h Maintaining the existing timestamp state

1h Resetting relative timer and latching the global timestamp

6 Bypass Gateway Control

Project: BDW

 This field configures Gateway to use a simple message protocol.

Value Name

0h Maintaining OpenGateway/ForwardMsg/CloseGateway protocol (legacy mode)

1h Bypassing OpenGateway/CloseGateway protocol

5:3 Reserved

Project: BDW

Format: MBZ

2 Reserved

Project: BDW

Format: MBZ

1:0 Reserved

4 31:8 Reserved

7:4 Reserved

Format: MBZ

3:2 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

512 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_VFE_STATE
1:0 Slice Disable

 This field disables dispatch to slices and subslices for Media and GPGPU applications. It is used

to limit the amount of scratch space that needs to be allocated for a context. If a particular

configuration doesn't have slice or subslice then there is no impact to disabling it.

Value Name Description

00b All subslices are enabled.

01b Slice 2 and 1 are disabled, only Slice 0 with all subslices is enabled.

10b Reserved

11b Slice 2 and 1 are disabled, only Slice 0 with only subslice 0 enabled.

5 31:16 URB Entry Allocation Size

Format: U16

Description

Specifies the length of each URB entry used by the unit, in 256-bit register increments. ROB

address for URB starts after CURBE Allocated region. (URB Entry Allocation Size * Number of

URB Entries) + CURBE Allocation Size + Number of Interface Descriptors) must be less than

(number of bytes allocated for the URB in L3CNTLREG / 32 bytes per entry). Note: Number of

Interface Descriptors is 64.

If SLM is enabled for GPGPU work then the number of available entries will be 1/2 the

maximum URB entries.

Programming Notes

When Inline data is used with MEDIA_OBJECT or MEDIA_OBJECT_WALKER, then the URB entry

allocation size must match the Inline data size. If Indirect data is being used with

MEDIA_OBJECT or GPGPU_WALKER then the allocation size must be sufficient for the Indirect

data. If both Inline and Indirect are being used, then the allocation size must match the sum of

the Inline and Indirect.

15:0 CURBE Allocation Size

Format: U16

Description

Specifies the total length allocated for CURBE, in 256-bit register increments. ROB address for

CURBE starts at address 64. (URB Entry Allocation Size * Number of URB Entries) + CURBE

Allocation Size + Interface Descriptor Entries) must be less than or equal to the number of

entries in the URB as described in Configurations. Interface Descriptor Entries is 64

If SLM is enabled for GPGPU work then the number of available entries will be ½ the maximum

URB entries.

Programming Notes

CURBE Allocation Size should be 0 for GPGPU workloads that uses indirect instead of CURBE.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 513

MEDIA_VFE_STATE
6 31 Scoreboard Enable

Project: BDW

 This field enables and disables the hardware scoreboard in the Media Pipeline. If this field is

cleared, hardware ignores the following scoreboard state fields.

Value Name

0h Scoreboard disabled

1h Scoreboard enabled

30 Scoreboard Type

Project: BDW

 This field selects the type of scoreboard in use.

Value Name

0h Stalling Scoreboard

1h Non-Stalling Scoreboard

29:16 Reserved

Format: MBZ

15:8 Reserved

Project: BDW

Format: MBZ

7:0 Scoreboard Mask

Project: BDW

Format: Enable[8]

 Each bit indicates the corresponding dependency scoreboard is enabled. The scoreboard is

based on the relative (X, Y) distance from the current threads' (X, Y) position. Bit n (for n =

0…7): Score n is enabled.

7 31:28 Scoreboard 3 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 3, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

27:24 Scoreboard 3 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 3, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

 Command Reference: Instructions

514 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_VFE_STATE
23:20 Scoreboard 2 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 2, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

19:16 Scoreboard 2 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 2, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

15:12 Scoreboard 1 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 1, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

11:8 Scoreboard 1 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 1, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

7:4 Scoreboard 0 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 0, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 515

MEDIA_VFE_STATE
3:0 Scoreboard 0 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 0, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

8 31:28 Scoreboard 7 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 7, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

27:24 Scoreboard 7 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 7, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

23:20 Scoreboard 6 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 6, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

19:16 Scoreboard 6 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 6, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

 Command Reference: Instructions

516 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MEDIA_VFE_STATE
15:12 Scoreboard 5 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 5, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

11:8 Scoreboard 5 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 5, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

7:4 Scoreboard 4 Delta Y

Project: BDW

Format: S3

 Relative vertical distance of the dependent instance assigned to scoreboard 4, in the form of 2's

compliment.

Programming Notes

MBZ if scoreboard is disabled.

3:0 Scoreboard 4 Delta X

Project: BDW

Format: S3

 Relative horizontal distance of the dependent instance assigned to scoreboard 4, in the form of

2's compliment.

Programming Notes

MBZ if scoreboard is disabled.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 517

Media Block Read MSD

MSD1R_MB - Media Block Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Other

Group: Media Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 04h

Project: All

Format: Opcode

 Media Block Read message

13:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Vertical Line Stride Override

Project: All

Format: MDC_VLSO

 If enabled, specifies the Vertical Line Stride and Vertical Line Stride Offset override fields.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

518 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Media Block Write MSD

MSD1W_MB - Media Block Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Other

Group: Media Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 0Ah

Project: All

Format: Opcode

 Media Block Write message

13:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Vertical Line Stride Override

Project: All

Format: MDC_VLSO

 If enabled, specifies the Vertical Line Stride and Vertical Line Stride Offset override fields.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 519

Media Transpose Read MSD

MSD1R_TT - Media Transpose Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Other

Group: Transpose Read

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18:14 Message Type

Default Value: 00h

Project: All

Format: Opcode

 Transpose Read message

13:8 Reserved

Project: All

Format: MBZ

 Ignored

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

520 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Memory Fence MSD

MSD_MEMFENCE - Memory Fence MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Other

Group: Memory Fence

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

 Indicates that the message requires a header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 07h

Project: All

Format: Opcode

 Memory Fence message

13 Commit

Project: All

Format: Enable

 Specifies whether control is returned to the thread only after the fence has been honored.

12:9 L3 Flush

 The L3 Flush control is one of the following GSYNC signals.

Value Name Description

0h Disabled [Default] The L3 caches are not flushed.

Programming Notes

If multiple caches need to be flushed, the commands need to be sent separately.

8 Reserved

Project: BDW

Format: MBZ

 Ignored

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 521

MSD_MEMFENCE - Memory Fence MSD
7:0 Reserved

Project: BDW

Format: MBZ

 Ignored

 Command Reference: Instructions

522 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFC_AVC_PAK_OBJECT

MFC_AVC_PAK_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

 The MFC_AVC_PAK_OBJECT command is the second primitive command for the AVC Encoding Pipeline. The

same command is used for both CABAC and CAVLC modes. The MV Data portion of the bitstream is loaded as

indirect data object.Before issuing a MFC_AVC_PAK_OBJECT command, all AVC MFX states need to be valid.

Therefore the commands used to set these states need to have been issued prior to the issue of this

command.MB record must be consecutive with no gaps, hence we do not need MB(x,y) in each MB command.

Internal counter will keep track of the current MB address, starting from the Start_MB_In_Slice loaded at the

beginning of each slice. MFC_AVC_PAK_OBJECT command follows the MbType definition like MFD. Many fields

in this command are identical to that in VME output. This is intended to reduce software converting overhead

from VME to PAK. Encoding statistical data such as the total size of the output bitstream are provided through

MMIO registers. Software may access these registers through MI_STORE_REGISTER_MEM command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFC_AVC_PAK_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_ENC

Format: OpCode

23:21 SubOpcode A

Default Value: 2h

Format: OpCode

20:16 SubOpcode B

Default Value: 9h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n Length -2

Value Name Project

000Ah DWORD_COUNT_n [Default] BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 523

MFC_AVC_PAK_OBJECT
1 31:10 Reserved

Format: MBZ

9:0 Indirect PAK-MV Data Length

 This field provides the length in bytes of the indirect data, which contains all the MVs for the

current MB (in any partitioning and subpartitioning form). A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect PAK-MV Data Start Address field is ignored.

This field must have the same alignment as the Indirect PAK-MV Data Start Address. This field

must be DW aligned (since each MV is 4 bytes in size).Driver has to derived this field from

MVsize (MVquantity in DXVA, exact size) *4 bytes per MV.

2 31:29 Reserved

Format: MBZ

28:0 Indirect PAK-MV Data Start Address Offset

 This field specifies the memory starting address (offset) of the MV data to be fetched into PAK

Subsystem for processing. This pointer is relative to the MFC Indirect PAK-MV Object Base

Address.Hardware ignores this field if indirect data is not present, i.e. the Indirect PAK-MV Data

Length is set to 0. It is a Dword aligned address in all AVC encoding configuration, since each MV

is 4 bytes in size.

Value Name

[0,512MB)

3..10 31:0 Inline Data

 All the required MB level controls and parameters for encoding are captured as inline data of

the MFC_AVC_PAK_OBJECT command. It has a fixed size of 8 DWs. Its definition is described in

the next section.

 Command Reference: Instructions

524 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFC_MPEG2_PAK_OBJECT

MFC_MPEG2_PAK_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

The MFC_MPEG2_PAK_OBJECT command is the second primitive command for the MPEG-2 Encoding Pipeline.

Different from AVC, the MV Data portion of the bitstream is loaded as part of MB control data.

Before issuing a MFC_MPEG2_PAK_OBJECT command, all MPEG2_MFX states need to be valid. Therefore the

commands used to set these states need to have been issued prior to the issue of this command.

MB record must be consecutive with no gaps, hence we do not need MB(x,y) in each MB command. Internal

counter will keep track of the current MB address, starting from the Start_MB_In_Slice loaded at the beginning of

each slice.

MFC_ MPEG2_PAK_OBJECT command follows the MbType definition like MFD. Many fields in this command are

identical to that in VME output. This is intended to reduce software converting overhead from VME to PAK.

Encoding statistical data such as the total size of the output bitstream are provided through MMIO registers.

Software may access these registers through MI_STORE_REGISTER_MEM command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFC_AVC_PAK_INSERT_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 3h MPEG2

Format: OpCode

23:21 SubOpcode A

Default Value: 2h ENC

Format: OpCode

20:16 SubOpcode B

Default Value: 9h MEDIA_

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 525

MFC_MPEG2_PAK_OBJECT
11:0 DWord Length

Default Value: 0007h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1..8 31:0 Inline Data

 All the required MB level controls and parameters for encoding are captured as inline data of

the MFC_MPEG2_PAK_OBJECT command. It has a fixed size of 8 DWs. Its definition is described

in the next section

 Command Reference: Instructions

526 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFC_MPEG2_SLICEGROUP_STATE

MFC_MPEG2_SLICEGROUP_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a slice group level command and can be issued multiple times within a picture that is comprised of

multiple slice groups. The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT

modes).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MPEG2_SLICEGROUP_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 3h MPEG2

Format: OpCode

23:21 SubOpcode A

Default Value: 2h MEDIA_

Format: OpCode

20:16 SubOpcode B

Default Value: 3h MEDIA_

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 6h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 527

MFC_MPEG2_SLICEGROUP_STATE
1 31 MbRateCtrlFlag- RateControlCounterEnable (Encoder-only)

 To enable the accumulation of bit allocation for rate controlThis field enables hardware Rate

Control logic. The rest of the RC control fields are only valid when this field is set to 1. Otherwise,

hardware ignores these fields.Note: To reset MB level rate control (QRC), we need to set both bits

MbRateCtrlFlag and MbRateCtrlReset to 1 in the new slice

Value Name

0h Disable

1h Enable

30 MbRateCtrlReset- ResetRateControlCounter (Encoder-only)

 To reset the bit allocation accumulation counter to 0 to restart the rate control.

Value Name Description

0h Disable Not reset

1h Enable reset

29:28 MbRateCtrlMode- RC Triggle Mode (Encoder-only)

Value Name Description

00b Always Rate Control, whereas RC becomes active if sum_act > sum_target or

sum_act < sum_target

01b Gentle Rate Control, whereas RC becomes active if sum_act > upper_midpt or

sum_act < lower_midpt

10b Loose Rate Control, whereas RC becomes active if sum_act > sum_max or

sum_act < sum_min

11b Reserved

27:24 MbRateCtrlParam- RC Stable Tolerance (Encoder-only)

Format: U4

 This field specifies the tolerance required to deactivate RC once it has been triggered.

Value Name

[0, 15]

23 RateCtrlPanicFlag - RC Panic Enable (Encoder-only)

 If this field is set to 1, RC enters panic mode when sum_act > sum_max. RC Panic Type field

controls what type of panic behavior is invoked.

Value Name

0 Disable

1 Enable

 Command Reference: Instructions

528 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFC_MPEG2_SLICEGROUP_STATE
22 RateCtrlPanicType - RC Panic Type (Encoder-only)

 This field selects between two RC Panic methods. If it is set to 0, in panic mode, the macroblock

QP is maxed out, setting to requested QP + QP_max_pos_mod. If it is set to 1, for an intra

macroblock, AC CBPs are set to zero (note that DC CBPs are not modified). For inter macroblocks,

AC and DC CBPs are forced to zero.

Value Name Description

0h QP Panic

1h CBP Panic

21 Reserved

Project: All

Format: MBZ

20 SkipConvDisabled - MB Type Skip Conversion Disable (Encoder-only)

 This field is only valid for a P or B slice. It must be zero for other slice types. Rules are provided

in Section 2.3.3.1.6

Value Name Description

0h Enable Enable skip type conversion

1h Disable Disable skip type conversion

19 IsLastSliceGrp

 IsLastSliceGrp = 1 if the current slice group is the last slice group of a picture; 0 otherwise.It is

used by the zero filling in the Minimum Frame Size test.

18 BitstreamOutputFlag - Compressed BitStream Output Disable Flag (Encoder-only)

Value Name Description

0h Enable enable the writing of the output compressed bitstream

1h Disable disable the writing of the output compressed bitstream

17 HeaderPresentFlag - Header Insertion Present in Bitstream (Encoder-only)

Value Name Description

0h Disable no header insertion into the output bitstream buffer, in front of the current

slice encoded bits

1h Enable header insertion into the output bitstream buffer is present, and is in front of

the current slice encoded bits.

16 SliceData PresentFlag - SliceData Insertion Present in Bitstream (Encoder-only)

Value Name Description

0h Disable no Slice Data insertion into the output bitstream buffer

1h Enable Slice Data insertion into the output bitstream buffer is present.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 529

MFC_MPEG2_SLICEGROUP_STATE
15 TailPresentFlag - Tail Insertion Present in bitstream (Encoder-only)

Value Name Description

0h no tail insertion into the output bitstream buffer, after the current slice encoded

bits

1h tail insertion into the output bitstream buffer is present, and is after the current

slice encoded bits.

14 FirstSliceHdrDisabled

 when this is on, the first slice header of the slice group is expected to be provided by the user

via insertion command. PAK HW will skip it.

13 IntraSlice

 intra slice value included in slice headers, when IntraSliceFlag = 1.

12 IntraSliceFlag

 intra slice flag included in slice headers

11:8 Reserved

Format: MBZ for SliceID extension

7:4 SliceID[3:0] (Encoder-only)

 To identify the output data (coding information record) returned for rate control from PAK to

ENC and VPP

3:2 Reserved

Format: MBZ for StreamID extension

1:0 StreamID[1:0] (Encoder-only)

 To identify the output data (coding information record) returned for rate control from PAK to

ENC and VPP

2 31:24 NextSgMbYcnt - also NextStartVertPos

 Vertical count of the first MB in the next slice group (Encoder-only)Note: This field restricts total

number of MB in the Y direction to 255 or less.

23:16 NextSgMbXcnt - also NextStartHorzPos

 BitFieldDesc

15:8 FirstMbYcnt - also CurrStartVertPos

Project: All

Format: U8

 also CurrStartVertPos, Vertical count of the first MB in the current slice group (Encoder-only)

7:0 FirstMbXcnt - also CurrStartHorzPos

Project: All

Format: U8

 Horizontal count of the first MB in the current slice group (Encoder-only)

3 31:9 Reserved

Format: MBZ

 Command Reference: Instructions

530 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFC_MPEG2_SLICEGROUP_STATE
8 SliceGroupSkip

Project: All

Exists If: //Encoder Only

Format: U1

 All macroblocks are skipped

7:6 Reserved

Format: MBZ

5:0 SliceGroupQp

Project: All

Exists If: //Encoder Only

Format: U6

 Initial slice quality parameter

4 31:29 Reserved

Format: MBZ

28:0 BitstreamOffset - Indirect PAK-BSE Data Start Address (Write)

Exists If: //Encoder Only

 This field specifies the memory starting address (offset) to write out the compressed bitstream

data from the BSE processing. This pointer is relative to the MFC Indirect PAK-BSE Object Base

Address.It is a byte-aligned address for the AVC bitstream data in both CABAC/CAVLC Modes.For

Write, there is no need to have a data length field. It is assumed the global memory bound check

specified in the IND_OBJ_BASE_ADDRESS command (Indirect PAK-BSE Object Access Upper

Bound) will take care of any illegal write access.This field is only valid for AVC encode mode.

Value Name

[0,512MB)

5 31:24 MaxQpNegModifier - Magnitude of QP Max Negative Modifier (Encoder-only)

Format: U8

 This field specifies the lower limit of the QP modifier.

Value Name

[0, 51]

23:16 MaxQpPosModifier - Magnitude of QP Max Positive Modifier (Encoder-only)

Format: U8

 This field specifies the upper limit of the QP modifier.

Value Name

[0, 51]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 531

MFC_MPEG2_SLICEGROUP_STATE
15:12 ShrinkParam - Shrink Resistance (Encoder-only)

Format: U4

 This field specifies the additional points added each time decreased correction is invoked.

Value Name

[0, 15]

11:8 Shrinkaram - Shrink Init (Encoder-only)

Format: U4

 This field specifies the initial points required to trip decreased control.

Value Name

[0, 15]

7:4 GrowParam - Grow Resistance (Encoder-only)

Format: U4

 This field specifies the additional points added each time increased correction is invoked.

Value Name

[0, 15]

3:0 GrowParam - Grow Init (Encoder-only)

Format: U4

 This field specifies the initial points required to trip increased control.

Value Name

[0, 15]

6 31:24 Reserved

Format: MBZ

23:20 CorrectPoints - Correct 6 (Encoder-only)

Format: U4

 This field specifies the points used in the lowermost RC region when sum_act <= sum_min.

Value Name

[0, 15]

19:16 CorrectPoints - Correct 5 (Encoder-only)

Format: U4

 This field specifies the points used in the fifth RC region when sum_act > sum_min but <=

lower_midpt.

Value Name

[0, 15]

 Command Reference: Instructions

532 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFC_MPEG2_SLICEGROUP_STATE
15:12 CorrectPoints - Correct 4 (Encoder-only)

Format: U4

 This field specifies the points used in the fourth RC region when sum_act > lower_midpt but <=

sum_target.

Value Name

[0, 15]

11:8 CorrectPoints - Correct 3 (Encoder-only)

Format: U4

 This field specifies the points used in the third RC region when sum_act > sum_target but <=

upper_midpt.

Value Name

[0, 15]

7:4 CorrectPoints - Correct 2 (Encoder-only)

Format: U4

 This field specifies the points used in the second RC region when sum_act > upper_midpt but

<= sum_max.

Value Name

[0, 15]

3:0 CorrectPoints - Correct 1 (Encoder-only)

Format: U4

 This field specifies the points used in the topmost RC region when sum_act > sum_max

Value Name

[0, 15]

7 31:28 CV7 - Clamp Value 7 (Encoder-only)

Exists If: //Encoder Only

27:24 CV6 - Clamp Value 6 (Encoder-only)

Project: All

Exists If: //Encoder Only

Format: U4

23:20 CV5 - Clamp Value 5 (Encoder-only)

Project: All

Exists If: //Encoder Only

Format: U4

19:16 CV4 - Clamp Value 4 (Encoder-only)

Project: All

Exists If: //Encoder Only

Format: U4

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 533

MFC_MPEG2_SLICEGROUP_STATE
15:12 CV3 - Clamp Value 3 (Encoder-only)

Project: All

Exists If: //Encoder Only

Format: U4

11:8 CV2 - Clamp Value 2 (Encoder-only)

Project: All

Exists If: //Encoder Only

Format: U4

7:4 CV1 - Clamp Value 1 (Encoder-only)

Project: All

Exists If: //Encoder Only

Format: U4

3:0 CV0 - Clamp Value 0 (Encoder-only)

If the magnitude of coefficients at locations assigned with CV0 (mapping shown below) exceeds

2CV0-1, they are replaced with 2CV0-1. For coefficients at locations marked as 'none', no

clamping is performed. The following mappings are only applied to luma and chroma

blocks\subblocks containing AC coefficiencts (blocks\sublocks with only DC coeffs will not be

clamped).

For 8x8 frame block, each coefficient is mapped to one of the eight CV values as following:

none none CV7 CV6 CV5 CV4 CV3 CV3

none CV7 CV6 CV5 CV4 CV3 CV3 CV2

CV7 CV6 CV5 CV4 CV3 CV3 CV2 CV2

CV6 CV5 CV4 CV3 CV3 CV2 CV2 CV1

CV5 CV4 CV3 CV3 CV2 CV2 CV1 CV1

CV4 CV3 CV3 CV2 CV2 CV1 CV1 CV0

CV3 CV3 CV2 CV2 CV1 CV1 CV0 CV0

CV3 CV2 CV2 CV1 CV1 CV0 CV0 CV0

For 8x8 field block, each coefficient is mapped to one of the eight CV values as following:

none none CV6 CV5 CV4 CV3 CV2 CV1

none CV7 CV6 CV5 CV4 CV3 CV2 CV1

CV7 CV6 CV5 CV4 CV3 CV3 CV2 CV1

CV7 CV6 CV5 CV4 CV3 CV2 CV2 CV1

CV6 CV5 CV4 CV4 CV3 CV2 CV1 CV0

CV6 CV5 CV4 CV3 CV2 CV2 CV1 CV0

CV5 CV5 CV4 CV3 CV2 CV1 CV1 CV0

CV5 CV5 CV4 CV3 CV2 CV1 CV1 CV0

 Command Reference: Instructions

534 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_AVC_BSD_OBJECT

MFD_AVC_BSD_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

Description

The MFD_AVC_BSD_OBJECT command is the only primitive command for the AVC Decoding Pipeline. The same

command is used for both CABAC and CAVLD modes. The Slice Data portion of the bitstream is loaded as

indirect data object.Before issuing a MFD_AVC_BSD_OBJECT command, all AVC states of the MFD Engine need

to be valid. Therefore the commands used to set these states need to have been issued prior to the issue of a

MFD_AVC_BSD_OBJECT command.

Context switch interrupt is not supported by this command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_AVC_BSD_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 8h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n Total Length - 2

Value Name

4h Excludes DWord (0,1) = 0004 [Default]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 535

MFD_AVC_BSD_OBJECT
1 31:0 Indirect BSD Data Length

Format: U32

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This field

must have the same alignment as the Indirect Object Data Start Address. AVC Short Format : It is

the length in bytes of the bitstream data for the current slice, including Slice Header + Slice Data

+ Emulation Prevention Bytes + any filling trailing zeros after the last MB. Hardware ignores the

contents after the last non-zero byte. Trailing zero is allowed and handled correctly in both

CABAC and CAVLC modes.

2 31:29 Reserved

Format: MBZ

28:0 Indirect BSD Data Start Address

Project: BDW

Format: U29

This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This pointer is relative to the MFD Indirect Object Base Address. Hardware

ignores this field if indirect data is not present. It is a byte-aligned address for the AVC bitstream

data in both CABAC/CAVLD Modes. In implementing a phantom slice at the end of a picture for

automatic error concealment, this field should set to 0. It includes the NAL Header (the NAL

Header does not need to perform EMU detection). For AVC Base Layer, it is a single byte. But for

MVC, the NAL Header is 4 Bytes long. These NAL Header Unit must be passed to HW in the

compressed bitstream buffer.

Value Name

[0,512MB)

3..5 31:0 Inline Data

 All the required Slice Header parameters and error handling settings are captured as InLine Data

of the AVC_BSD_OBJECT command. It has a fixed size of 4 DWs. Its definition is described in the

follwoing section: Inline Data Description [BDW].

 Command Reference: Instructions

536 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_AVC_DPB_STATE

MFD_AVC_DPB_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a frame level state command used only in DXVA2 AVC Short Slice Bitstream Format VLD mode.

RefFrameList[16] of DXVA2 interface is replaced with intel Reference Picture Addresses[16] of

MFX_PIPE_BUF_ADDR_STATE command. The LongTerm Picture flag indicator of all reference pictures are

collected into LongTermPic_Flag[16]. FieldOrderCntList[16][2] and CurrFieldOrderCnt[2] of DXVA2 interface are

replaced with intel POCList[34] of MFX_AVC_DIRECTMODE_STATE command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 6h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n Total Length - 2

Value Name

9h Excludes DWord (0,1) [Default]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 537

MFD_AVC_DPB_STATE
1 31:16 LongTermFrame_Flag[16][1 bit]

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 1 bit per reference

frame.

Value Name

1 the picture is a long term reference picture

0 the picture is a short term reference picture

15:0 Non-ExistingFrame_Flag[16][1 bit]

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 1 bit per reference

frame.

Value Name Description

1 INVALID the reference picture in that entry of RefFrameList[] does not exist anymore.

0 VALID the reference picture in that entry of RefFrameList[] is a valid reference

Programming Notes

When an element of the list of frames is not relevant (e.g., due to the corresponding

reference entry being empty or being marked as "not used for reference"), the value of the

corresponding bit of NonExistingFrameFlags shall be set to 0.

2 31:0 UsedForReference_Flag[16][2 bits]

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 2 bits per reference

frame.

Value Name Description

0 NOT_REFERENCE indicates a frame is "not used for reference".

1 TOP_FIELD bit[0] indicates that the top field of a frame is marked as "used for

reference".

2 BOTTOM_FIELD bit[1] indicates that the bottom field of a frame is marked as "used

for reference".

3 FRAME bit[1:0] indicates that a frame (or field pair) is marked as "used for

reference".

3..10 31:0 LTSTFrameNumList[16][16 bits]

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 16 bits per

reference frame.Depending on the corresponding LongTermFrame_Flag[], the content of this

field is interpreted differently.

Value Name Description

1 LongTermFrame_Flag[i] LTSTFrameNumList[i] represent LongTermFrameIdx.

0 ShortTermFrame_Flag[i] LTSTFrameNumList[i]represent Short Term Picture

FrameNum.

Programming Notes

When an element of the list of frames is not relevant (e.g., due to the corresponding

reference entry being empty or being marked as "not used for reference"), the value of the

LTSTFrameNumList entry shall be set to 0.

 Command Reference: Instructions

538 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_AVC_DPB_STATE
11..18

Project:

BDW

31:0 ViewIDList[16][16 bits]

Project: BDW

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 16 bits per

reference frame. The view ids are 10-bits, the upper 6 bits are ignored."000000" & ViewId1[9:0]

& "000000" & ViewId0[9:0]

Programming Notes

When an Intel RefFrameList[i] is not an valid entries, Viewid should be set to 0x00

19..22

Project:

BDW

31:0 ViewOrderListL0[16][8 bits]

Project: BDW

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 8 bits per reference

frame. The view order need 4-bits, the upper 4 bits are ignored. 0000 & ViewOrder3[3:0] &

0000 & ViewOrder2[3:0] & 0000 & ViewOrder1[3:0] & 0000 & ViewOrder0[3:0]

Programming Notes

When the ViewOrderListL0[i] is not an valid inter-view reference, its corresponding ViewOrder

should be set to 0xF

Since only interview with the same polarity will be used, there is no need to have field bit in

this list. Hardware is going to append correct polarity bit as needed.

23..26

Project:

BDW

31:0 ViewOrderListL1[16][8 bits]

Project: BDW

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 8 bits per reference

frame. The view order need 4-bits, the upper 4 bits are ignored. 0000 & ViewOrder3[3:0] &

0000 & ViewOrder2[3:0] & 0000 & ViewOrder1[3:0] & 0000 & ViewOrder0[3:0]

Programming Notes

When the ViewOrderListL1[i] is not an valid inter-view reference, its corresponding ViewOrder

should be set to 0xF

Since only interview with the same polarity will be used, there is no need to have field bit in

this list. Hardware is going to append correct polarity bit as needed.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 539

MFD_AVC_PICID_STATE

MFD_AVC_PICID_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a frame level state command used for both AVC Long and Short Format in VLD mode.PictureID[16]

contains the pictureID of each reference picture (16 maximum) so hardware can uniquely identify the reference

picture across frames (this will be used for DMV operation).This command will be needed for both short and

long format.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h MFD_AVC_DPB_STATE

Format: OpCode

23:21 SubOpcode A

Default Value: 1h DEC

Format: OpCode

20:16 SubOpcode B

Default Value: 5h MEDIA_

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0008h Excludes DWord (0,1)

Project: BDW

Format: =n Total Length - 2

1 31:1 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

540 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_AVC_PICID_STATE
0 PictureID Remapping Disable

Project: BDW

Value Name Description

0h AVC decoder will use 16 bits Picture ID to handle DMV and identify the

reference picture

Desc

1h AVC decoder will use 4 bits FrameStoreID (index to RefFrameList) to

handle DMV and identify the reference picture.

Desc

Programming Notes

If Picture ID Remapping Disable is "1", PictureIDList will not be used.

2..9 31:0 PictureIDList[16][16 bits]

Project: BDW

 One-to-one correspondence with the entries of the Intel RefFrameList[16]. 16 bits per reference

frame. PictureID of each Frame uniquely identifies the reference picture across frames. The same

number cannot be reused until the referece picture is completely retired(no longer used for

referece)When an element of the list of frames is not relevant (e.g., due to the corresponding

reference entry being empty or being marked as "not used for reference"), the value of the

LTSTFrameNumList entry shall be set to 0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 541

MFD_AVC_SLICEADDR

MFD_AVC_SLICEADDR
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a Slice level command used only for DXVA2 AVC Short Slice Bitstream Format VLD mode.When decoding

a slice, H/W needs to know the last MB of the slice has reached in order to start decoding the next slice. It also

needs to know if a slice is terminated but the last MB has not reached, error conealment should be invoked to

generate those missing MBs. For AVC DXVA2 Short Format, the only way to know the last MB position of the

current slice, H/W needs to snoop into the next slice's start MB address (a linear address encoded in the Slice

Header). Since each BSD Object command can have only one indirect bitstream buffer address, this command is

added to help H/W to snoop into the next slice's slice header and retrieve its Start MB Address. This command

will take the next slice's bitstream buffer address as input (exactly the same way as a BSD Object command), and

parse only the first_mb_in_slice syntax element. The result will stored inside the H/W, and will be used to decode

the current slice specified in the BSD Object command.Only the very first few bytes (max 5 bytes for a max 4K

picture) of the Slice Header will be decoded, the rest of the bitstream are don't care. This is because the

first_mb_in_slice is encoded in Exponential Golomb, and will take 33 bits to represent the max 256 x 256 = 64K-1

value. The indirect data of MFD_AVC_SLICEADDR is a valid BSD object and is decoded as in BSD OBJECT

command.The next Slice Start MB Address is also exposed to the MMIO interface.The Slice Start MB Address

(first_mb_in_slice) is a linear MB address count; but it is translated into the corresponding 2D MB X and Y raster

position, and are stored internally as NextSliceMbY and NextSliceMbX.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_AVC_ SLICEADDR

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 7h

Format: OpCode

15:12 Reserved

Format: MBZ

 Command Reference: Instructions

542 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_AVC_SLICEADDR
11:0 DWord Length

Format: =n Total Length - 2

Value Name

1h Excludes DWord (0,1) [Default]

1 31:0 Indirect BSD Data Length

Project: BDW

Format: U32

This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. Driver

always programs this up to 5 bytes; for bitstream less than 5 bytes, driver program the lesser

value. (Emulation Prevention Byte should never happen for the first 5 bytes when the max picture

size can only be 4Kx4K)It is the length in bytes of the bitstream data for the current slice,

including Slice Header + Slice Data + Emulation Prevention Bytes + any filling trailing zeros after

the last MB. Hardware ignores the contents after the last non-zero byte. Trailing zero is allowed

and handled correctly in both CABAC and CAVLC modes.

2 31:29 Reserved

Format: MBZ

28:0 Indirect BSD Data Start Address

This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This pointer is relative to the MFD Indirect Object Base Address.Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the AVC bitstream data in

both CABAC/CAVLD Modes.In implementing a phantom slice at the end of a picture for

automatic error concealment, this field should set to 0.It includes the NAL Header Byte. (but does

not perform EMU detection).Must provide a valid MB address, even if error. MB must be clamped

to within a pic boundary.

Value Name

[0,512MB)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 543

MFD_IT_OBJECT

MFD_IT_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

 All weight mode (default and implicit) are mapped to explicit mode. But the weights come in either as explicit or

implicit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_IT_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 9h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default

Value:

06h Excludes DWord (0,1) For AVC = Ch

Format: =n Total Length - 2 Note: Regardless of the mode, inline data must be present in

this command.

1 31:10 Reserved

Format: MBZ

 Command Reference: Instructions

544 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_IT_OBJECT
9:0 Indirect IT-MV Data Length

Format: U10 FormatDesc: In bytes

 This field provides the length in bytes of the indirect data, which contains all the MVs for the

current MB (in any partitioning and subpartitioning form). A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect IT-MV Data Start Address field is ignored.

This field must have the same alignment as the Indirect Object Data Start Address.AVC-IT Mode:

It must be DWord aligned (since each MV is 4bytes in size)Driver has to derived this field from

MVsize (MVquantity in DXVA, exact size) *4 bytes per MV.This field is only valid in AVC decoder

IT mode (VC1 and MPEG uses inline MV data).

2 31:29 Reserved

Format: MBZ

28:0 Indirect IT-MV Data Start Address Offset

 This field specifies the memory starting address (offset) of the MV data to be fetched into the IT

pipeline for processing. This pointer is relative to the Indirect IT-MV Object Base

Address.Hardware ignores this field if indirect data is not present, i.e. the Indirect MV Data

Length is set to 0. Alignment of this address depends on the mode of operation.AVC-IT Mode: It

must be DWord aligned (since each MV is 4 bytes in size). This field is only valid in AVC decoder

IT mode (VC1 and MPEG uses inline MV data).

Value Name

[0,512MB)

3 31:12 Reserved

Format: MBZ

11:0 Indirect IT-COEFF Data Length

Project: All

 This field provides the length in bytes of the indirect data, which contains all the non-zero

coefficients for the current MB. A value zero indicates that indirect data fetching is disabled -

subsequently, the Indirect IT-COEFF Data Start Address field is ignored. Since each IT-COEFF data

is 1 DW in size, with 12 bits, this field can be extended to support up to 4:4:4 format.(256 pixel *

3 byte pixel components * 4 bytes per coeff).This field must be integer multiple of 16-bytes for

AVC (since each coefficient is 4 bytes in size).This field is only valid in AVC, VC1, MPEG2 decoder

IT mode.

Value Name

[0,3072] In bytes [0, 256*3*4]

4 31:29 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 545

MFD_IT_OBJECT
28:0 Indirect IT-COEFF Data Start Address Offset

Project: All

 This field specifies the memory starting address (offset) of the coeff data to be loaded into the IT

pipeline for processing. This pointer is relative to the Indirect IT-COEFF Object Base

Address.Hardware ignores this field if indirect IT-COEFF data is not present, i.e. the Indirect IT-

COEFF Data Length is set to 0.This field must be DW aligned, since each coeff icient is 4 bytes in

size.Driver will determine the Num of EOB 4x4/8x8 must match the block cbp flags, if not match,

hardware cannot hang - add error handling.This field is only valid in AVC, VC1, MPEG2 decoder

IT mode.

Value Name

[0,512MB)

5 31:6 Reserved

Format: MBZ

5:0 Indirect IT-DBLK Control Data Length

Project: All

Format: U6

 This field provides the length in bytes of the indirect data, which contains all the deblocker

control information for the current MB (in 4x4 sub-block partitioning). A value zero indicates that

indirect data fetching is disabled - subsequently, the Indirect IT-DBLK Data Start Address field is

ignored. This field must have the same alignment as the Indirect IT-DBLK Data Start Address. It

must be DWord aligned. Each Deblock Control Data record is 48 bytes or 12 DWords in size.This

field is only valid in AVC decoder IT mode.

6 31:29 Reserved

Format: MBZ

28:0 Indirect IT-DBLK Control Data Start Address Offset

Format: IndirectObjectBaseAddress[28:0]

 This field specifies the memory starting address (offset) of the Deblocker control data to be

fetched into the IT Pipeline for processing. This pointer is relative to the Indirect IT-DBLK Object

Base Address. Hardware ignores this field if indirect data is not present, ie. The indirect IT-DBLK

Control Data Length is set to 0. It must be DWord aligned. Each Deblock Control Data record is

48 bytes or 12 DWords in size. This field is only valid in AVC decoder IT mode.

Value Name

[0,512MB)

7..n 31:0 Inline Data

 Union for all 3 codecs Includes IT, MC, IntraPred inline data as well as Deblocker control

information AVC-IT Modes: Hardware interprets this data in the specified format. VC1-IT Modes:

Hardware interprets this data in the specified format. MV inline MPEG2-IT Modes: Hardware

interprets this data in the specified format. (IS mode) MV inline For AVC there 7 DWords of inline

data, hence N is equal to 13.

 Command Reference: Instructions

546 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_JPEG_BSD_OBJECT

MFD_JPEG_BSD_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

Exists If: //Decoder

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_JPEG_BSD_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 7h JPEG_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 8h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 004h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:0 Indirect Data Length

Project: All

 . It is the length in bytes of the bitstream data for the current Scan. It includes the first byte of

the first MCU and the last non-zero byte of the last MCU in the Scan. Specifically, the zero-

padding bytes (if present) are excluded. Hardware ignores the contents after the last non-zero

byte.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 547

MFD_JPEG_BSD_OBJECT
2 31:29 Reserved

Project: All

Format: MBZ

28:0 Indirect Data Start Address

Project: All

Format: IndirectObjectOffset[28:0]

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This pointer is relative to the BSD Indirect Object Base Address.Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the JPEG bitstream data

3 31:29 Reserved

Project: All

Format: MBZ

28:16 Scan Horizontal Position

Project: All

Format: U13 bits in blocks

 This field indicates the horizontal position (in block units) of the first MCU in the Scan.

15:13 Reserved

Project: All

Format: MBZ

12:0 Scan Vertical Position

Project: All

Format: U13 bits in blocks

 This field indicates the vertical position (in block units) of the first MCU in the Scan.

4 31 Reserved

Format: MBZ

30 Interleaved

Value Name Description

0 Non-Interleaved one component in the Scan

1 Interleaved multiple components in the Scan

29:27 Scan Components

 Bit0: Y Bit1: U Bit2: V For example, if non-interleaved Y, then it will be set to 001b. If interleaved

Y, U, and V, it will be set to 111b.

26 Reserved

Format: MBZ

25:0 MCU Count

Project: All

Format: U26

 This field indicates the number of MCUs in the Scan.

 Command Reference: Instructions

548 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_JPEG_BSD_OBJECT
5 31:16 Reserved

Project: All

Format: MBZ

15:0 RestartInterval(16 bit)

Project: All

Format: U16

 Specifies the number of MCU in restart interval. Valid values are 1->0xFFFFValue of 0 implies

that all the SCAN have only one ECS.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 549

MFD_MPEG2_BSD_OBJECT

MFD_MPEG2_BSD_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

 Different from AVC and VC1, MFD_MPEG2_BSD_OBJECT command is pipelinable. This is for performance

purpose as in MPEG2 a slice is defined as a group of MBs of any size that must be within a macroblock row.Slice

header parameters are passed in as inline data and the bitstream data for the slice is passed in as indirect data.

Of the inline data, slice_horizontal_position and slice_vertical_position determines the location within the

destination picture of the first macroblock in the slice. The content in this command is identical to that in the

MEDIA_OBJECT command in VLD mode described in the Media Chapter.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_MPEG2_BSD_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 3h MPEG2_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 8h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0003h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

 Command Reference: Instructions

550 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_MPEG2_BSD_OBJECT
1 31:0 Indirect BSD Data Length

Project: All

Format: U32

 It is the length in bytes of the bitstream data for the current slice. It includes the first byte of the

first macroblock and the last non-zero byte of the last macroblock in the slice. Specifically, the

zero-padding bytes (if present) and the next start-code are excluded. This field is sized to

support beyond MPEG-2 MP@HL bitstream (<4K). According to Table 8-6 of ISO/IEC 13818-2,

the maximum number of bits per macroblock for 4:2:0 is 4608. So the maximum slice size for 4K

x 4K is 4608 * 256 / 8 = 147,456 bytes (0x24000), which requires 18 bits.

Programming Notes

As MPEG-2 spec does not post any limitation of the size of zero-padding bytes, it is possible to

have a slice data with large length (including zero-padding bytes). As the data beyond 0x10E00

would only be zero bytes for a valid slice data

zero-padding restriction is removed

2 31:29 Reserved

Project: All

Format: MBZ

28:0 Indirect Data Start Address

Format: IndirectObjectOffset[28:0]

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This pointer is relative to the BSD Indirect Object Base Address.Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the MPEG2 VLD bitstream

data This address points to the first byte of the MB layer data, i.e. not including slice header.

3..4 31:0 Inline Data

 All the required Slice Header parameters and error handling settings are captured as

MPEG2_BSD_OBJECT Inline Data Descriptor structures. It has a fixed size of 2 DWs. Its definition is

described in the next section.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 551

MFD_VC1_BSD_OBJECT

MFD_VC1_BSD_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

 The MFD_VC1_BSD_OBJECT command is the only primitive command for the VC1 Decoding Pipeline. The

macroblock data portion of the bitstream is loaded as indirect data object.Before issuing a

MFD_VC1_BSD_OBJECT command, all VC1 states of the MFD Engine need to be valid. Therefore the commands

used to set these states need to have been issued prior to the issue of a MFD_VC1_BSD_OBJECT command.VC1

deblock filter kernel cross the slice boundary if in the last MB row of a slice, so need to know the last MB row of a

slice to disable the edge mask. There is why VC1 BSD hardware need to know the end of MB address for the

current slice. As such no more phantom slice is needed for VC1, as long as the driver will program both start MB

address in the current slice and the start MB address of the next slice. As a result, we can also support multiple

picture state commands in between slices.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 2h VC1_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 8h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0003h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

 Command Reference: Instructions

552 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_BSD_OBJECT
1 31:24 Reserved

Project: All

Format: MBZ

23:0 Indirect BSD Data Length

Project: All

Format: U24

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This field

must have the same alignment as the Indirect Object Data Start Address.GEN6 Long Format : It is

the length in bytes of the bitstream data for the current slice/picture. It includes the first byte of

the first macroblock and the last byte of the last macroblock in the slice/picture. Specifically, the

zero-padding bytes (if present) and the next start-code are excluded. Hardware ignores the

contents after the last non-zero byte (trailing zeros). This field is sized to support VC1 AP@L4

Level bitstream. It includes the byte that contains the First MB Bit OffsetGEN7 Short Format : It is

the length in bytes of the bitstream data for the current slice, including Picture/Slice Header +

Emulation Prevention Bytes + any filling trailing zeros after the last MB. Hardware ignores the

contents after the last non-zero byte. Trailing zero is allowed and handled correctly.

2 31:29 Reserved

Project: All

Format: MBZ

28:0 Indirect Data Start Address

Project: All

Format: IndirectObjectOffset[28:0]

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This pointer is relative to the MFD Indirect Object Base Address.Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VC1 bitstream data.

Value Name

[0,512MB)

3 31:24 Reserved

Format: MBZ

23:16 Slice Start Vertical Position

 This field specifies the position in y-direction of the first macroblock in the Slice in unit of

macroblocks. For SecondField this value is reset to zero as oppoed to the VC1 spec Ref: 9.1.2

Slice Layer.This field is for both Long and Short VC1 Interface Format.

15:9 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 553

MFD_VC1_BSD_OBJECT
8:0 Next Slice Vertical Position

 This field specifies the position in y-direction of the first macroblock in the next Slice in unit of

macroblocks.This field is primarily used for error concealment. In the case that current slice is the

last slice, this field should set to the height of picture (since y-direction is zero-based

numbering)This field is maintained and provided by the driver for both Long and Short VC1

Interface Format.

4 31:16 First_MB_Byte_Offset of Slice Data or Slice Header

 For DXVA2 VC1 Short Format onlyIt gives the byte offset to locate the first MB data in the

bitstream for a slice, relative to the Indirect BSD Data Start Address.

15:5 Reserved

Project: All

Format: MBZ

4 Emulation Prevention Byte Present

Value Name Description Project

0h H/W needs to perform Emulation Byte Removal All

1h H/W does not need to perform Emulation Byte Removal All

3 Reserved

Project: All

Format: MBZ

2:0 FirstMbBitOffset (First Macroblock Bit Offset)

Format: U3

 This field provides the bit offset of the first macroblock of the Slice in the first byte of the input

compressed bitstream.It is used with First_MB_Byte_Offset for non-byte aligned position.

 Command Reference: Instructions

554 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE

MFD_VC1_LONG_PIC_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 MFX_VC1_LONG PIC_STATE command encapsulates the decoding parameters that are read or derived from

bitstream syntax elements above (inclusive) picture header layer. These parameters are static for a picture and

when slice structure is present, these parameters are not changed from slice to slice of the same picture. Hence,

this command is only issued at the beginning of processing a new picture and prior to the VC1_*_OBJECT

command. The values set for these state variables are retained internally across slices.Only the parameters

needed by hardware (BSD unit) to decode bit sequence for the macroblocks in a picture layer or a slice layer are

presented in this command. Other parameters such as the ones used for inverse transform or motion

compensation are provided in MFX_VC1_PRED_PIPE_STATE command.This Long interface format is intel

proprietary interface. Driver will need to perform addition operations to generate all the fields in this command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_VC1_LONG_PIC_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 2h VC1_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 1h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0004h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 555

MFD_VC1_LONG_PIC_STATE
1 31:24 Reserved

Project: BDW

Format: MBZ

23:16 PictureHeightInMBsMinus1 (Picture Height Minus 1 in Macroblocks)

Project: BDW

Format: U8

 This field indicates the height of the picture in unit of macroblocks. For example, for a

1920x1080 frame picture, PictureHeightInMBs equals 68 (1080 divided by 16, and rounded up,

i.e. effectively specified as 1088 instead).This field is used in VLD and IT modes.

Value Name Description

[0,254] Value_0_to_254 a valid range of [0,254] [1, 255] MB

Programming Notes

Note: Even though the Advanced Profile allows frame dimensions (width, height) to not be

aligned to macroblock boudary, it doesn't affect the bitstream decoding. And it is preferable to

use 'intermediate buffer' that is macroblock aligned for decoding. In order to simplify the out-

of-bound reference pixel access, the out-of-bound extrapolation rule in VC1 spec can be used

to expand the expected decoded frame to the intermediate buffer dimension.

15:8 Reserved

Project: BDW

Format: MBZ

7:0 PictureWidthInMBsMinus1 (Picture Width Minus 1 in Macroblocks)

Project: BDW

Format: U8-1

 This field indicates the width of the picture in unit of macroblocks. For example, for a 1920x1080

frame picture, PictureWidthInMBs equals 120 (1920 divided by 16).This field is used in VLD and IT

modes

Value Name Description

[0,254] Value_0_to_254 [1,255] MB

 Command Reference: Instructions

556 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
2 31:24 Bitplane Buffer Pitch Minus 1

Project: BDW

Format: U7-1 Pitch in (Bytes - 1).

 Specifies the bitplane buffer pitch in (#Bytes - 1). Bitplane buffer is a linear buffer. It is needed

only when the bitplane is not encoded as raw, and therefore is present in the header explicitly. In

VC1 Long Format (Gen6 and Gen7), it is written by an application and later read by the HW. But

in VC1 Short Format (Gen7 only), it is written and read by H/W only.This field is specified for

better performance

Value Name

[0, FFFFFFFFh]

Programming Notes

For Gen6 : The pitch must be equal to PictureWidthInMBs/2.For Gen7 VC1 Long Format : The

pitch must be equal to PictureWidthInMBs/2.For Gen7 VC1 Short Format : If Pic Width is less

than or equal to 2K pixels, bitplane pitch is set to 64 (one cacheline; programmed as 63) bytes

per MB row. If Pic Width is greater than 2K pixels, bitplane pitch is set to 128 (two cachelines;

programmed as 127) bytes per MB row.This field is not used in IT mode, used in VLD mode

only.For VC1 DXVA2 Short Format, the bitplane specification is between H/W and Driver only.

For Long Format, application is responsible for allocation with the driver.

23:16 Reserved

Project: BDW

Format: MBZ

15 DmvSurfaceValid

Project: BDW

 Indicated when the DMV read surface is valid. This surface stored the direct motion vectors and

Mb type.This field is set for B pictures that can refer to a previous P picture for DMV. If there is an

I-picture before a B (in decoding order) then this field is not set (as a result, zero's DMV's will be

assumed while decoding the B picture. That is, there is no explicit DMV buffer for an I-

picture).Whne the current picture being decoded is an I, P or BI, this bit is set to 0, since there is

no DMV read in these picture decoding process.This field is not used in IT mode, used in VLD

mode only.

14 ImplicitQuantizer

Project: BDW

 Derived by driver from QUANTIZER.This field is used in intel VC1 VLD Long Format only, not

used in IT and DXVA2 VC1.This bit is set to 1 when syntax element QUANTIZER=0, else its set to

0

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 557

MFD_VC1_LONG_PIC_STATE
13 Interpolation Rounder Contro

Project: BDW

 Used only in MC operation. This field specifies the rounding control value used in interpolation

operation of motion prediction process.This field is used in VLD and IT modes.

Programming Notes

This bit field is taken from bRcontrol in DXVA_PictureParameters data structure

12 SyncMarker

Project: BDW

 Indicates whether sync markers are enabled/disabled. If enable, sync markers "may be" present

in the current video sequence being decoded. It is a sequence level syntax element and is valid

only for Simple and Main Profiles.

Value Name Description

0h Not Present Sync Marker is not present in the bitstream

1h Maybe present Sync Marker maybe present in the bitstream

Programming Notes

This field is only valid in VLD mode.For Simple Profile, SyncMarker must set to 0.For Main

Profile, SyncMarker can be set to 0 or 1.This field is used in both intel and MS DXVA2 VLD

interface, but not used in IT mode.

11:8 Motion Vector Mode

Project: BDW

 This field indicates one of the following motion compensation interpolation modes for P and B

pictures. The MC interpolation modes apply to prediction values of luminance blocks and are

always in quarter-sample. For chrominance blocks, it always performs bilinear interpolation with

either half-pel or quarter-pel precision.Before the polarity of Chroma Half-pel or Q-pel is

reversed from DXVA2 Spec, now I have fixed it to match with DXVA2 VC1 Spec.

Value Name Description

0XX0b Chroma Quarter -pel + Luma bicubic. (can only be 1MV)

0XX1b Chroma Half-pel + Luma bicubic. (can be 1MV or 4MV)

1XX0b Chroma Quarter -pel + Luma bilinear. (can only be 1MV)

1XX1b Chroma Half-pel + Luma bilinear

Programming Notes

Bits 11:8 are taken from bMVprecisionAndChromaRelation in DXVA_PictureParameters data

structure.Bit 11 of Motion Vector Mode = 1 for Luma Bilinear MC; = 0 for Luma Bicubic MCBit 8

of Motion Vector Mode = 1 for half-sample Chroma motion = 0 for quarter-sample Chroma

motion.This field is used in both VLD and IT modes.

 Command Reference: Instructions

558 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
7 RangeReductionScale

Project: BDW

 This field specifies whether the reference picture pixel values should be scaled up or scaled

down on-the-fly, if RangeReduction is Enabled.

Value Name Description

0h Scale down reference picture by factor of 2

1h Scale up reference picture by factor of 2

Programming Notes

This bit is derived by driver for Main Profile only. Ignored in Simple and Advanced Profiles. This

field is used in both VLD and IT modes.This is derived by driver from the history of RANGERED

and RANGEREDFRM syntax elements (i.e. of forward/preceding reference picture) and those of

the current picture. RANGERED is the same as (bPicOverflowBlocks » 3) & 1. RANGEREDFRM is

the same as (bPicDeblocked » 5) & 1. For the current picture is a B picture, this field represents

the state of the forward/preceding reference picture onlyDriver is responsible to keep

RangeReductionScale, RangeReduction Enable and RANGERED Present Flag of current picture

coherent.

6 RangeReduction Enable

Project: BDW

 This field specifies whether on-the-fly pixel value range reduction should be performed for the

preceding (or forward) reference picture. Along with RangeReductionScale to specify whether

scale up or down should be performed. It is not the same value as RANGEREDFRM Syntax

Element (DXVA_PictureParameters bPicDeblocked bit 5) in the Picture Header.

Value Name Description

0h Disable Range reduction is not performed

1h Enable Range reduction is performed

Programming Notes

This field is for Main Profile only. Simple Profile is always disable, and not applicable to

Advanced Profile. This field is used in both VLD and IT modes.This is derived by driver from the

history of RANGERED and RANGEREDFRM syntax elements (i.e. of forward/preceding reference

picture) and those of the current picture.RANGERED is the same as (bPicOverflowBlocks » 3) &

1. RANGEREDFRM is the same as (bPicDeblocked » 5) & 1.For the current picture is a B picture,

this field represents the state of the forward/preceding reference picture onlyDriver is

responsible to keep RangeReductionScale, RangeReduction Enable and RANGERED Present

Flag of current picture coherent.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 559

MFD_VC1_LONG_PIC_STATE
5 LOOPFILTER Enable Flag

 This filed is the decoded syntax element LOOPFILTER in bitstream. It indicates if In-loop

Deblocking is ON according to picture level bitstream syntax control. This bit affects BSD unit

and also the loop filter unit.When this bit is set to 1, PostDeblockOutEnable field in

MFX_PIPE_MODE_SELECT command must also be set to 1. In this case, in-loop deblocking

operation follows the VC1 standard - deblocking doesn't cross slice boundary.When this bit is set

to 0, but PostDeblockOutEnable field in MFX_PIPE_MODE_SELECT command is set to 1. This field

is used in VLD mode only, not in IT mode.

Value Name Description

0h Disable Disables loop filter

1h Enable Enables loop filter

4 Overlap Smoothing Enable Flag

 This field is the decoded syntax element OVERLAP in bitstreamIndicates if Overlap smoothing is

ON at the picture levelThis field is used in both VLD and IT modes.

Value Name Description

0h Disable to disable overlap smoothing filter

1h Enable to enable overlap smoothing filter

3 Secondfield

 This flag is set for the second field in field pictures.This field is used in both VLD and IT modes.

2:1 Reserved

Project: All

Format: MBZ

0 VC1 Profile

 specifies the bitstream profile.This field is used in both VLD and IT modes.

Value Name Description

0h Disable current picture is in Simple or Main Profile (No need to distinguish Simple and

Main Profile)

1h Enable current picture is in Advanced Profile

Programming Notes

This is required because 128 is added for intra blocks post inverse transform in advanced

profile and also to find out if Motion vectors are adjusted or not.

3 31 Reserved

Format: MBZ

 Command Reference: Instructions

560 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
30:29 CondOver

 This field is the decoded syntax element CONDOVER in a bitstream of advanced profile. It

controls the overlap smoothing filter operation for an I frame or an BI frame when the picture

level qualization step size PQUANT is 8 or lower.This field is used in intel VC1 VLD mode only,

not in DXVA2 VC1 and IT modes.

Value Name Description

00b No overlap smoothing

01b Reserved

10b Always perform overlap smoothing filter

11b Overlap smoothing on a per macroblock basis based on OVERFLAGS

28:26 PicType (Picture Type)

 This field specifies the coding type of the picture according to the Frame Coding Mode. When

FCM = 00 | 01 (a Progressive or Interlaced Frame Picture):000 = I001 = P010 = B011 = BI100 =

SkippedOther encodings are reservedWhen FCM = 10 | 11 (a Field Picture)000 = I/I001 = I/P010

= P/I011 = P/P100 = B/B101 = B/BI110 = BI/B111 = BI/BIAlthough, for a field picture, it is set for

a field-pair, but HW will only look at one field state only, and the other field state is don't care.

This field is read and qualified with the SecondField flag internally.This field is unique to intel VC1

VLD Long format, and is used in IT mode as well. For DXVA2 VC1 IT mode, driver needs to

convert the DXVA2 interface to intel HW VLD Long Format interface.

25:24 FCM (Frame Coding Mode)

 This is the same as the variable FCM defined in VC1.This field must be set to 0 for Simple and

Main ProfilesThis field is unique to intel VC1 VLD Long format, and is used in IT mode as well. For

DXVA2 VC1 IT mode, driver needs to convert the DXVA2 interface to intel HW VLD Long Format

interface.

Value Name Description

00b Disable Progressive Frame Picture

01b Enable Interlaced Frame Picture

10b Field Picture with Top Field First

11b Field Picture with Bottom Field First

23:21 Reserved

Project: All

Format: MBZ

20:16 AltPQuant (Alternative Picture Quantization Value)

 This field is identical to the variable ALTPQUANT which is derived from VOPDQUANT

configuration in the VC1 standard.This field must be set to 0 for Simple/Main I and BI pictures as

VOPDQUANT is not present.This field is used in intel VC1 VLD Long Format mode only, not used

in DXVA2 VC1 VLD and IT modes.

15:13 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 561

MFD_VC1_LONG_PIC_STATE
12:8 PQuant (Picture Quantization Value)

Project: All

Format: U5

 This is the same as the calculated variable PQUANT in VC1 standard where PQuant = PQINDEX,

except when QUANTIZER = 0 and PQINDEX > 8, it is given asPQuant = (PQINDEX < 29) ?

PQINDEX - 3 : PQINDEX*2 - 31This field is used in all picture types (I, P, B and BI) and all

operating modes (IT mode and intel and DXVA2 VLD modes).

7:0 BScaleFactor

 BScaleFactorThis field is the scale factor for computing Direct-mode motion vectors. It is derived

from the variable BFRACTION in the VC1 standard, section 8.4.5.4.There are only 21 valid values

corresponding to the 21 encodings of BFRACTION as shown in the table here. Other values are

reserved.MSB of this field can be used to determine if BFRACTION is greater than or equal to 1/2,

which is used to determine Motion Prediction Type for B pictures. Effectively, condition

"BFRACTION >= 1/2" is equivalent to condition "BScaleFactor >= 128".This field is only valid for

B pictures. This field is used only in intel VC1 VLD Long format mode, it is not used in DXVA2 VC1

VLD and IT modes.BFRACTION

VLCBFRACTIONBScaleFactor0001/21280011/3850102/31700111/4641003/41921011/5511102/

510211100003/515311100014/520411100101/64311100115/621511101001/73711101012/

77411101103/711111101114/714811110005/718511110016/722211110101/83211110113/

89611111005/816011111017/8224

4 31:30 Reserved

Format: MBZ

29:28 UnifiedMvMode (Unified Motion Vector Mode)

 This field is a combination of the variables MVMODE and MVMODE2 in the VC1 standard, for

parsing Luma MVD from the bitstream. This field is used to signal 1MV vs 4MVallowed (Mixed

Mode). This field is also used to signal Q-pel or Half-pel MVD read from the bitstream. The

bicubic or bilinear Luma MC interpolation mode is duplicate information from Motion Vector

Mode field, and is ignored here.This field is used in intel VC1 VLD Long Format mode only, it is

not used in DXVA2 VC1 VLD and IT modes.

Value Name Description

00b Mixed MV, Q-pel bicubic

01b 1-MV, Q-pel bicubic

10b 1-MV half-pel bicubic

11b 1-MV half-pel bilinear

27 FourMvSwitch (Four Motion Vector Switch)

 This field indicates if 4-MV is present for an interlaced frame P picture. It is identical to the

variable 4MVSWITCH (4 Motion Vector Switch) in VC1 standard.This field is used in intel VC1 VLD

Long Format mode only, it is not used in DXVA2 VC1 VLD and IT modes.

Value Name Description

0h Disable only 1-MV

1h Enable 1, 2, or 4 MVs

 Command Reference: Instructions

562 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
26 FastUVMCFlag (Fast UV Motion Compensation Flag)

 This field specifies whether the motion vectors for UV is rounded to half or full pel position. It is

identical to the variable FASTUVMC in VC1 standard.This field is used in both VLD and IT

modes.It is derived from FASTUVMC = (bPicSpatialResid8 » 4) & 1 in both VLD and IT modes,

and should have the same value as Motion Vector Mode LSBit.

Value Name Description

0h no rounding

1h quarter-pel offsets to half/full pel positions

25 RefFieldPicPolarity (Reference Field Picture Polarity)

 This field specifies the polarity of the one reference field picture used for a field P picture. It is

derived from the variable REFFIELD defined in VC1 standard and is only valid when one field is

referenced (NUMREF = 0) for a field P picture.When NUMREF = 0 and REFFIELD = 0, this field is

the polarity of the reference I/P field that is temporally closest; When NUMREF = 0 and REFFIELD

= 1, this field is the polarity of the reference I/P field that is the second most temporally closest.

The distance is measured based on display order but ignoring the repeated field if present (due

to RFF = 1).This field is unique to intel VC1 VLD Long format mode, and is not used in IT and

DXVA2 VC1 modes.

Value Name Description

0h Top (even) field

1h Bottom (odd) field

24 NumRef (Number of References)

 This field indicates how many reference fields are referenced by the current (field) picture. It is

identical to the variable NUMREF in the VC1 standard. This field is only valid for field P picture

(FCM = 10 | 11).This field is unique to intel VC1 VLD Long format mode, and is not used in IT and

DXVA2 VC1 modes.

Value Name Description

0h One field referenced

1h Two fields referenced

23:20 BwdRefDist (Reference Distance)

 This field is valid only in B field pictures giving the value of BRFD. The field is ignored in P

Picture.This field is unique to intel VC1 VLD Long format mode, and is not used in IT and DXVA2

VC1 modes.

19:16 FwdRefDist (Reference Distance)

Format: U4

 This field is the number of frames between the current frame and its reference frame. It is

derived from the syntax element REFDIST (P Reference Distance) in the VC1 standard. 0 means

that the previous frame is the reference frame.It has the same value as of FRFD for both P and B

field pictures.This field is unique to intel VC1 VLD Long format mode, and is not used in IT and

DXVA2 VC1 modes.

Value Name

[0, 15]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 563

MFD_VC1_LONG_PIC_STATE
15:12 Reserved

Format: MBZ

11:10 ExtendedDMVRange (Extended Differential Motion Vector Range Flag)

 This field specifies the differential motion vector range in interlaced pictures. It is equivalent to

the variable DMVRANGE in the VC1 standard. This field is unique to intel VC1 VLD Long format

mode, and is not used in IT and DXVA2 VC1 modes.

Value Name Description

00b No extended range

01b Extended horizontally

10b Extended vertically

11b Extended in both directions

9:8 ExtendedMVRange (Extended Motion Vector Range Flag)

 This field specifies the motion vector range in quarter-pel or half-pel modes. It is equivalent to

the variable MVRANGE in the VC1 standard. This field is unique to intel VC1 VLD Long format

mode, and is not used in IT and DXVA2 VC1 modes

Value Name Description

00b [-256, 255] x [-128, 127]

01b 512, 511] x [-256, 255]

10b [-2048, 2047] x [-1024, 1023]

11b [-4096, 4095] x [-2048, 2047]

7:4 AltPQuantEdgeMask (Alternative Picture Quantization Edge Mask)

 This field is a bit mask for the four edges in clock-wise order, indicating whether AltPQuant is

used for the edge macroblocks.It is derived based on the following variables DQUANT,

DQUANTFRM, DQPROFILE, DQSBEDGE, DQDBEDGE, and DQBILEVEL defined in the VC1 standard,

as shown in Error! Reference source not found..This field is valid only if AltPQuantConfig is 01. Bit

0: Left picture edge macroblocksBit 1: Top picture edge macroblocksBit 2: Right picture edge

macroblocksBit 3: Bottom picture edge macroblocksThis field is unique to intel VC1 VLD Long

format mode, and is not used in IT and DXVA2 VC1 modes.

3:2 AltPQuantConfig (Alternative Picture Quantization Configuration)

 This field specifies the way AltPQuant is used in the picture. It determines how to compute the

macroblock quantizer step size, MQUANT. It is derived based on the following variables

DQUANT, DQUANTFRM, DQPROFILE, DQSBEDGE, DQDBEDGE, and DQBILEVEL defined in the

VC1 standard, as shown in Error! Reference source not found..This field is unique to intel VC1

VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

Value Name Description

00b AltPQuant not used

01b AltPQuant is used and applied to edge macroblocks only

10b MQUANT is encoded in macroblock layer

11b AltPQuant and PQuant are selected on macroblock basis

 Command Reference: Instructions

564 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
1 HalfQP

 This field is used for inverse quantization of AC coefficients. It is valid only when PQuant is

used.This field is unique to intel VC1 VLD Long format mode, and is not used in IT and DXVA2

VC1 modes.

0 PQuantUniform

 Indicating if uniform quantization applies to the picture. It is used for inverse quantization of the

AC coefficients.QUANTIZER 001123PQUANTIZER - -01--PQINDEX>=9<=8----

PQuantUniform010201ImplicitQuantizer = 0, and PQuantUniform = 0 is used to represent 2

cases : 1) QUANTIZER=01 and PQUANTIZER=0; and 2) QUANTIZER = 10b.ImplicitQuantizer = 0,

and PQuantUniform = 1 is used to represent 2 cases : 1) QUANTIZER=01 and PQUANTIZER=1;

and 2) QUANTIZER = 11bThis field is unique to intel VC1 VLD Long format mode, and is not used

in IT and DXVA2 VC1 modes.

Value Name Description Project

0h Non-uniform All

1h Uniform All

5 31 BitplanePresentFlag (Bitplane Buffer Present Flag)

 This field indicates whether the bitplane buffer is present for the picture. If set, at least one of

the fields listed in bits 22:16 is coded in non-raw mode, and Bitplane Buffer Base Address field in

the VC1_BSD_BUF_BASE_STATE command points to the bitplane buffer. Otherwise, all the fields

that are applicable for the current picture in bits 22:16 must be coded in raw mode.This field is

unique to intel VC1 VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

Value Name Description

0h bitplane buffer is not present

1h bitplane buffer is present

30 ForwardMbRaw

 This field indicates whether the FORWARDMB field is coded in raw or non-raw mode.This field is

only valid when PictureType is B.This field is unique to intel VC1 VLD Long format mode, and is

not used in IT and DXVA2 VC1 modes.

Value Name Description

0h non-raw mode

1h raw mode

29 MvTypeMbRaw

 This field indicates whether the MVTYPREMB field is coded in raw or non-raw mode.This field is

only valid when PictureType is P.This field is unique to intel VC1 VLD Long format mode, and is

not used in IT and DXVA2 VC1 modes.

Value Name Description

0h Non-Raw Mode

1h Raw Mode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 565

MFD_VC1_LONG_PIC_STATE
28 SkipMbRaw

 This field indicates whether the SKIPMB field is coded in raw or non-raw mode.This field is only

valid when PictureType is P or B.0 = non-raw mode1 = raw modeThis field is unique to intel VC1

VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

Value Name Description

0h Disable Non-Raw Mode

1h Enable Raw Mode

27 DirectMbRaw

 This field indicates whether the DIRECTMB field is coded in raw or non-raw mode.This field is

only valid when PictureType is P or B.This field is unique to intel VC1 VLD Long format mode, and

is not used in IT and DXVA2 VC1 modes.

Value Name Description

0h Non-Raw Mode

1h Raw Mode

26 OverflagsRaw

 This field indicates whether the OVERFLAGS field is coded in raw or non-raw mode.This field is

only valid when PictureType is I or BI.This field is unique to intel VC1 VLD Long format mode, and

is not used in IT and DXVA2 VC1 modes.

Value Name Description

0h Non-Raw Mode

1h Raw Mode

25 AcPredRaw

 This field indicates whether the ACPRED field is coded in raw or non-raw mode.This field is only

valid when PictureType is I or BI.This field is unique to intel VC1 VLD Long format mode, and is

not used in IT and DXVA2 VC1 modes.

Value Name Description

0h Disable Non-Raw Mode

1h Enable Raw Mode

24 FieldTxRaw

 This field indicates whether the FIELDTX field is coded in raw or non-raw mode.This field is only

valid when PictureType is I or BI.This field is unique to intel VC1 VLD Long format mode, and is

not used in IT and DXVA2 VC1 modes.

Value Name Description

0h Disable Non-Raw Mode

1h Enable Raw Mode

23 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

566 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
22:20 MvTab (Motion Vector Table)

Project: All

Format: U3

 This field specifies which motion vector table(s) is (are) used for motion vector (differential)

decoding in a P or B picture. This field is the combination of the variables MVTAB and IMVTAB in

the VC1 standard. Two bits are defined for progressive frame pictures; And two or three bits are

defined for interlaced field/frame pictures depending on NUMREF and P or B picture types.This

field is valid for P and B pictures. It is not valid for I pictures.For P or B progressive frame

pictures0 = Motion Vector Differential VLD Table 01 = Motion Vector Differential VLD Table 12 =

Motion Vector Differential VLD Table 23 = Motion Vector Differential VLD Table 3The other

encodings are reservedFor P interlace field pictures with NUMREF = 0 or P/B interlace frame

pictures0 = 1-Reference Table 01 = 1-Reference Table 12 = 1-Reference Table 23 = 1-Reference

Table 3The other encodings are reservedFor P interlace field picture with NUMREF = 1 or B

interlaced field pictures0 = 2-Reference Table 01 = 2-Reference Table 12 = 2-Reference Table 23

= 2-Reference Table 34 = 2-Reference Table 45 = 2-Reference Table 56 = 2-Reference Table 67

= 2-Reference Table 7The other encodings are reservedThis field is unique to intel VC1 VLD Long

format mode, and is not used in IT and DXVA2 VC1 modes.

19:18 FourMvBpTab (4-MV Block Pattern Table)

 This field specifies which table is used to decode the 4-MV block pattern (4MVBP) syntax

element in 4-MV macroblocks. It is identical to the variables 4MVBPTAB in the VC1 standard,

section 9.1.1.37. This field is valid only in interlace frame P, B pictures, or interlace field P, B

pictures. It is not valid for I picture.For interlace field P and B pictures, it is only valid if

UnifiedMvMode is equal to Mixed-MV Type. For interlace frame P picture, it is only valid if

FourMvSwitch is 1.For interlace frame B picture, it is always valid.0 = 4MVBP Table 01 = 4MVBP

Table 12 = 4MVBP Table 23 = 4MVBP Table 3This field is unique to intel VC1 VLD Long format

mode, and is not used in IT and DXVA2 VC1 modes.

17:16 TwoMvBpTab (2MV Block Pattern Table)

 This field specifies which table is used to decode the 2MV block pattern (2MVBP) syntax element

in 2MV field macroblocks. It is identical to the variables 2MVBPTAB in the VC1 standard, section

9.1.1.36. This field is valid only in interlace frame P/B pictures. It is not valid for I picture, nor for

interlace field P or B pictures.0 = 2MVBP Table 01 = 2MVBP Table 12 = 2MVBP Table 23 =

2MVBP Table 3This field is unique to intel VC1 VLD Long format mode, and is not used in IT and

DXVA2 VC1 modes.

15:14 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 567

MFD_VC1_LONG_PIC_STATE
13:12 TransType (Picture-level Transform Type)

Project: All

Format: U2

 This field specifies the Transform Type at picture level. It is identical to the variable TTFRM in the

VC1 standard, section 7.1.1.41.This field is only valid when TransTypeMbFlag is 1. Otherwise, it is

reserved and MBZ.This field is set to 00 when VSTRANSFORM is 0 in the entry point layer.00 =

8x8 Transform01 = 8x4 Transform10 = 4x8 Transform11 = 4x4 TransformThis field is unique to

intel VC1 VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

11 TransTypeMbFlag (Macroblock Transform Type Flag)

 This field indicates whether Transform Type is fixed at picture level or variable at macroblock

level. It is identical to the variable TTMBF in the VC1 standard, section 7.1.1.40.This field is set to 1

when VSTRANSFORM is 0 in the entry point layer.This field is unique to intel VC1 VLD Long

format mode, and is not used in IT and DXVA2 VC1 modes.

Value Name Description

0h variable transform type in macroblock layer

1h use picture level transform type TransType

10:8 MbModeTab (Macroblock Mode Table)

 This field signals which code table is used to decode the macroblock mode syntax element

(MBMODE) in the macroblock layer in a P or B picture. This field is identical to the variables

MBMODETAB in the VC1 standard, section 9.1.1.33. This field is valid for interlace frame P, B

picture and interlace field P, B picture. It is not valid for I picture, nor progressive frame P, B

pictures.Two bits are defined for interlace frame P, B pictures; And three bits are defined for

interlaced field P, B pictures.Two bits are defined for interlace frame P, B pictures. There are two

set of code tables selected based on if UnifiedMvMode is equal to 4-MV Type or not. 0 = Code

Table 01 = Code Table 12 = Code Table 23 = Code Table 3Other encodings are invalidThree bits

are defined for interlace field P, B pictures. There are two set of code tables selected based on if

UnifiedMvMode is equal to Mixed-MV Type or not. 0 = Code Table 01 = Code Table 12 = Code

Table 23 = Code Table 34 = Code Table 45 = Code Table 56 = Code Table 67 = Code Table 7This

field is unique to intel VC1 VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

7:6 TransAcY (Picture-level Transform Luma AC Coding Set Index, TRANSACTABLE2

 BitFieldDesc

5:4 TransAcUV (Picture-level Transform Chroma AC Coding Set Index, TRANSACTABLE)

 This field, together with PQINDEX, specifies which intra AC coding set to be used for decoding

the non-zero AC coefficients in a coded luma (Y) block. This field is the combination of the

variables TRANSACFRM and TRANSACFRM2 in the VC1 standard.For I pictures, TransAcY is the

same as TRANSACFRM2. For other pictures, it is the same as TRANSACFRM, and therefore must

be programmed to be the same as TransAcUV. This field is valid for all picture types.0 = Coding

set index 01 = Coding set index 12 = Coding set index 23 is invalidThis field is unique to intel

VC1 VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

 Command Reference: Instructions

568 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_LONG_PIC_STATE
3 TransDcTab (Intra Transform DC Table)

 This field specifies whether the low motion tables or the high motion tables are used to decode

the Transform DC coefficients in intra-coded blocks. This field is identical to the variable

TRANSDCTAB in the VC1 standard, section 8.1.1.2.This field is valid for all picture types.This field

is unique to intel VC1 VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

Value Name Description Project

0h The high motion tables All

1h The low motion tables All

2:0 CbpTab (Coded Block Pattern Table)

 This field specifies the table used to decode the CBPCY syntax element for each coded

macroblock in P and B pictures. This field is combination of the variable CBPTAB for P and B

frame pictures and the variable ICBPTAB in interlace field P, B pictures and interlace frame P, B

pictures in the VC1 standard (Table 52 and Table 102).This field is reserved and MBZ for I or BI

pictures as I only has a fixed table.000 = Table 0 (Table 169 for P, B frames or Table 124

otherwise)001 = Table 1 (Table 170 for P, B frames or Table 125 otherwise)010 = Table 2 (Table

171 for P, B frames or Table 126 otherwise)011 = Table 3 (Table 172 for P, B frames or Table 127

otherwise)100 = Table 4 (Table 128 for interlace field/frame P, B pictures)101 = Table 5 (Table

129 for interlace field/frame P, B pictures)110 = Table 6 (Table 130 for interlace field/frame P, B

pictures)111 = Table 7 (Table 131 for interlace field/frame P, B pictures)This field is unique to

intel VC1 VLD Long format mode, and is not used in IT and DXVA2 VC1 modes.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 569

MFD_VC1_SHORT_PIC_STATE

MFD_VC1_SHORT_PIC_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_VC1_SHORT_PIC_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 2h VC1_DEC

Format: OpCode

23:21 SubOpcode A

Default Value: 1h

Format: OpCode

20:16 SubOpcode B

Default Value: 0h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0003h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:24 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

570 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_SHORT_PIC_STATE
23:16 Picture Height

Format: U8-1 Picture Height in Macroblocks

 This field indicates the height of the picture in unit of macroblocks. For example, for a

1920x1080 frame picture, PictureHeightInMBs equals 68 (1080 divided by 16, and rounded up,

i.e. effectively specified as 1088 instead).This field is used in VLD and IT modes.Note: Even

though the Advanced Profile allows frame dimensions (width, height) to not be aligned to

macroblock boudary, it doesn't affect the bitstream decoding. And it is preferable to use

'intermediate buffer' that is macroblock aligned for decoding. In order to simplify the out-of-

bound reference pixel access, the out-of-bound extrapolation rule in VC1 spec can be used to

expand the expected decoded frame to the intermediate buffer dimension.

Value Name Description

[0,127] Value_0_to_127 [1, 128] MB

15:8 Reserved

Project: All

Format: MBZ

7:0 Picture Width

Format: U8-1 Picture Width in Macroblocks

 This field indicates the width of the picture in unit of macroblocks. For example, for a 1920x1080

frame picture, PictureWidthInMBs equals 120 (1920 divided by 16).This field is used in VLD and

IT modes.

Value Name Description

[0,127] Value_0_to_127 [1, 128] MB

2 31:24 Bitplane Buffer Pitch Minus 1

Format: U7-1 Pitch in Bytes

 Specifies the bitplane buffer pitch in (#Bytes - 1). Bitplane buffer is a linear buffer. It is needed

only when the bitplane is not encoded as raw, and therefore is present in the header explicitly. In

VC1 Long Format (Gen6 and Gen7), it is written by an application and later read by the HW. In

VC1 Long Format (Gen6 and Gen7), it is written by an application, and later read by the HW. But

in VC1 Short Format (Gen7 only), it is written and read by H/W only.This field is specified for

better performanceFor Gen6 : The pitch must be equal to PictureWidthInMBs/2.For Gen7 VC1

Long Format : The pitch must be equal to PictureWidthInMBs/2.For Gen7 VC1 Short Format : If

Pic Width is less than or equal to 2K pixels, bitplane pitch is set to 64 (one cacheline;

programmed as 63) bytes per MB row. If Pic Width is greater than 2K pixels, bitplane pitch is set

to 128 (two cachelines; programmed as 127) bytes per MB row.This field is not used in IT mode,

used in VLD mode only.For VC1 DXVA2 Short Format, the bitplane specification is between H/W

and Driver only. For Long Format, application is responsible for allocation with the driver.

23 Interpolation Rounder Control

 Used only in MC operation. This field specifies the rounding control value used in interpolation

operation of motion prediction process. Note: This bit field is taken from bRcontrol in

DXVA_PictureParameters data structure This field is used in VLD and IT modes.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 571

MFD_VC1_SHORT_PIC_STATE
22:20 Reserved

Project: All

Format: MBZ

19:16 Motion Vector Mode

 This field indicates one of the following motion compensation interpolation modes for P and B

pictures. The MC interpolation modes apply to prediction values of luminance blocks and are

always in quarter-sample. For chrominance blocks, it always performs bilinear interpolation with

either half-pel or quarter-pel precision.0XX0 = Chroma Quarter -pel + Luma bicubic. (can only

be 1MV)0XX1 = Chroma Half-pel + Luma bicubic. (can be 1MV or 4MV)1XX0 = Chroma Quarter

-pel + Luma bilinear. (can only be 1MV)1XX1 = Chroma Half-pel + Luma bilinearNote: Bits 19:16

are taken from bMVprecisionAndChromaRelation in DXVA_PictureParameters data structure.Bit

19 of Motion Vector Mode = 1 for Luma Bilinear MC; = 0 for Luma Bicubic MCBit 16 of Motion

Vector Mode = 1 for half-sample Chroma motion = 0 for quarter-sample Chroma motion.This

field is used in both VLD and IT modes.Before the polarity of Chroma Half-pel or Q-pel is

reversed from DXVA2 Spec, now I have fixed it to match with DXVA2 VC1 Spec. ???

15 DmvSurfaceValid

 Indicated when the DMV read surface is valid. This surface stored the direct motion vectors. This

field is set fo B pictures that can refer to a previous P picture for DMV. If there is an I-picture

before a B (in decoding order) then this field is not set (as a result, zero's DMV's will be assumed

while decoding the B picture. That is, there is no explicit DMV buffer for an I-picture). This field is

not used in IT mode, used in VLD mode only.

14:12 Reserved

Project: All

Format: MBZ

11 VC1 Profile

Project: All

 specifies the bitstream profile. Note: This is required because 128 is added for intra blocks post

inverse transform in advanced profile and also to find out if Motion vectors are adjusted or not.

This field is used in both VLD and IT modes.

Value Name Description

0h Default] current picture is in Simple or Main Profile (No need to distinguish Simple

and Main Profile)

1h current picture is in Advanced Profile

10:6 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

572 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_SHORT_PIC_STATE
5 Backward Prediction Present Flag

 Note : a B picture that only uses forward prediction may have this flag set to 1 as well. Driver

may still need to provide a valid reference picture index. This field is used in both DXVA2 VC1

VLD mode and IT mode. It is the same parameter as bPicBackwardPrediction in DXVA2 VC1

spec. The Intra Picture Flag, Backward Prediction Present Flag and RefPicFlag are used to derive

the picture type, as specified in PTYPE for a frame, and in FPTYPE for a field, in DXVA2 VC1 VLD

and IT mode.

4 Intra Picture Flag

 This field is used in both DXVA2 VC1 VLD mode and IT mode. It is the same parameter as

bPicIntra in DXVA2 VC1 spec. The Intra Picture Flag, Backward Prediction Present Flag and

RefPicFlag are used to derive the picture type, as specified in PTYPE for a frame, and in FPTYPE

for a field, in DXVA2 VC1 VLD and IT mode.

Value Name Description

0h entire picture can have a mixture of intra and inter MB type or just inter MB

type.

1h entire picture is coded in intra MB type

3 SecondField

 This flag is set for the second field in field pictures.This field is used in both VLD and IT modes.

2 Reserved

Project: All

Format: MBZ

1:0 Picture Structure

 This field is used in both DXVA2 VC1 VLD mode and IT mode. It is the same parameter as

bPicStructure in DXVA2 VC1 spec. The Picture Structure and Progressive Pic Type are used to

derive the picture structure as specified in FCM, in DXVA2 VC1 VLD and IT mode.

Value Name Description

01b top field (bit 0)

10b bottom field (bit 1)

11b frame (both fields are present)

00b illegal

3 31 Reserved

Project: All

Format: MBZ

30 Overlap Smoothing Enable Flag

 This field is the decoded syntax element OVERLAP in bitstreamIndicates if Overlap smoothing is

ON at the picture levelThis field is used in both VLD and IT modes

Value Name Description

0h Disable to disable overlap smoothing filter

1h Enable to enable overlap smoothing filter

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 573

MFD_VC1_SHORT_PIC_STATE
29 Range Reduction Scale

Project: All

Access: None

 This field specifies whether the reference picture pixel values should be scaled up or scaled

down on-the-fly, if RangeReduction is Enabled.NOTE: This bit is derived by driver for Main

Profile only. Ignored in Simple and Advanced Profiles. This field is used in both VLD and IT

modes.This is derived by driver from the history of RANGERED and RANGEREDFRM syntax

elements (i.e. of forward/preceding reference picture) and those of the current picture.

RANGERED is the same as (bPicOverflowBlocks » 3) & 1. RANGEREDFRM is the same as

(bPicDeblocked » 5) & 1. For the current picture is a B picture, this field represents the state of

the forward/preceding reference picture onlyDriver is responsible to keep RangeReductionScale,

RangeReduction Enable and RANGERED Present Flag of current picture coherent.

Value Name Description

0h Disable [Default] Scale down reference picture by factor of 2

1h Enable Scale up reference picture by factor of 2

28 Range Reduction Enable

Project: All

 This field specifies whether on-the-fly pixel value range reduction should be performed for the

preceding (or forward) reference picture. Along with RangeReductionScale to specify whether

scale up or down should be performed. It is not the same value as RANGEREDFRM Syntax

Element (DXVA_PictureParameters bPicDeblocked bit 5) in the Picture Header.This field is for

Main Profile only. Simple Profile is always disable, and not applicable to Advanced Profile. This

field is used in both VLD and IT modes.This is derived by driver from the history of RANGERED

and RANGEREDFRM syntax elements (i.e. of forward/preceding reference picture) and those of

the current picture.RANGERED is the same as (bPicOverflowBlocks » 3) & 1. RANGEREDFRM is

the same as (bPicDeblocked » 5) & 1.For the current picture is a B picture, this field represents

the state of the forward/preceding reference picture onlyDriver is responsible to keep

RangeReductionScale, RangeReduction Enable and RANGERED Present Flag of current picture

coherent.

Value Name Description

0h Disable [Default] Range reduction is not performed

1h Enable Range reduction is performed

27:24 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

574 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_SHORT_PIC_STATE
23:22 Progressive Pic Type

 This field is used in both DXVA2 VC1 VLD mode and IT mode. It is the same parameter as

bPicExtrapolation in DXVA2 VC1 spec.The Picture Structure and Progressive Pic Type are used to

derive the picture structure as specified in FCM, in DXVA2 VC1 VLD and IT mode.

Value Name Description

0 progressive only picture

1 progressive only picture

2 interlace picture (frame-interlace or field-interlace)

3 illegal

21 Reserved

Project: All

Format: MBZ

20:16 P-Pic Ref Distance

Project: All

Access: None

 This element defines the number of frames between the current frame and the reference frame.

It is the same as the REFDIST SE in VC1 interlaced field picture header. It is present if the entry-

level flag REFDIST_FLAG == 1, and if the picture type is not one of the following types: B/B, B/BI,

BI/B, BI/BI. If the entry level flag REFDIST_FLAG == 0, REFDIST shall be set to the default value of

0.This field is used in DXVA2 VC1 VLD mode only, not used in IT and intel VC1 VLD Long Format

modes.

Value Name

0-16 unsigned integer

0h [Default]

15:14 QUANTIZER

Value Name Description

00b implicit quantizer at frame leve

01b explicit quantizer at frame level, and use PQUANTIZER SE to specify uniform

or non-uniform

10b explicit quantizer, and non-uniform quantizer for all frames

11b explicit quantizer, and uniform quantizer for all frames

13 MULTIRES Present Flag (for Simple/Main Profile only)

Value Name Description

0h RESPIC Parameter is present in the picture header

1h RESPIC Parameter is present in the picture header

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 575

MFD_VC1_SHORT_PIC_STATE
12 SYNCMARKER Present Flag (for Simple/Main Profile only)

Value Name Description

0 Bitstream for Simple and Main Profile has no sync marker

1 Bitstream for Simple and Main Profile may have sync marker(s)

11 RANGERED Present Flag (for Simple/Main Profile only)

 It is needed for Picture Header Parsing.Driver is responsible to keep RangeReductionScale,

RangeReduction Enable and RANGERED Present Flag of current picture coherent.

Value Name Description

0 Range Reduction Parameter (RANGEREDFRM) is not present in the picture

header

1 Range Reduction Parameter (RANGEREDFRM) is present in the picture header.

10:8 MAXBFRAMES

 Number of consecutive B Frames.

7 PANSCAN Present Flag

Value Name Description

0 Pan Scan Parameters are not present in the picture header

1 Pan Scan Parameters are present in the picture header

6 REFDIST_FLAG

 For header parsing REFDIST.This is used in DXVA2 VC1 VLD mode only, not used in IT and intel

VC1 VLD modes.

5 LOOPFILTER Enable Flag

 This filed is the decoded syntax element LOOPFILTER in bitstream. It indicates if In-loop

Deblocking is ON according to picture level bitstream syntax control. This bit affects BSD unit

and also the loop filter unit.When this bit is set to 1, PostDeblockOutEnable field in

MFX_PIPE_MODE_SELECT command must also be set to 1. In this case, in-loop deblocking

operation follows the VC1 standard - deblocking doesn't cross slice boundary.

Value Name Description

0 In-Loop-Deblocking-Filter is disabled

1 In-Loop-Deblocking-Filter is enabled

4 FastUVMCFlag (Fast UV Motion Compensation Flag)

 This field specifies whether the motion vectors for UV is rounded to half or full pel position. It is

identical to the variable FASTUVMC in VC1 standard.This field is used in both VLD and IT

modes.It is derived from FASTUVMC = (bPicSpatialResid8 » 4) & 1 in both VLD and IT modes,

and should have the same value as Motion Vector Mode LSBit.

Value Name Description

0h no rounding

1h quarter-pel offsets to half/full pel positions

 Command Reference: Instructions

576 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_SHORT_PIC_STATE
3 EXTENDED_MV Present Flag

 BitFieldDesc

Value Name Description

0h Extended_MV is not present in the picture header

1h Extended_MV is present in the picture header

2:1 DQUANT

Project: All

Access: None

Format: U2

 Use for Picture Header Parsing of VOPDUANT elements

Value Name Description

0h [Default]

00b no VOPDQUANT elements; Quantizer cannot vary in frame, same

quantization step size PQUANT is used for all MBs in the frame

01b refer to VC1 Spec. for all the MB position dependent quantizer selection

10b The macroblocks located on the picture edge boundary shall be quantized

with ALTPQUANT while the rest of the macroblocks shall be quantized with

PQUANT.

11b Reserved

0 VSTRANSFORM flag

Value Name Description

0h Disable variable-sized transform coding is not enabled

1h Enable variable-sized transform coding is enabled

4 31:29 Reserved

Format: MBZ (for possible future change to BFraction Enumeration)

28:24 BFraction Enumeration

 This field is the scale factor for computing Direct-mode motion vectors. It is derived from the

variable BFRACTION in the VC1 standard, section 8.4.5.4.There are only 21 valid values

corresponding to the 21 encodings of BFRACTION as shown in the table here. Other values are

reserved. The VLD decoded value of BFRACTION (from the picture header) is mapped into an

enum value from 0 to 20.(??? MSB of this field can be used to determine if BFRACTION is greater

than or equal to 1/2, which is used to determine Motion Prediction Type for B pictures.

Effectively, condition "BFRACTION >= 1/2" is equivalent to condition "ScaleFactor >= 128". ???

How can the enum replicate this feature ???)This field is only valid for B pictures. This field is

used only in DXVA2 VC1 VLD mode, it is not used in Intel VC1 VLD Long Format mode and IT

mode.BFRACTION VLCBFRACTION

Enum0001/200011/310102/320111/431003/441011/551102/5611100003/5711100014/5811100

101/6911100115/61011101001/71111101012/71211101103/71311101114/71411110005/71511

110016/71611110101/81711110113/81811111005/81911111017/8201111111BI Pic Indicator31

(optional)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 577

MFD_VC1_SHORT_PIC_STATE
23 Reserved

Project: All

Format: MBZ Advanced Profile only; RANGE_MAPY_FLAG Range Mapping not supported

22:20 Reserved

Project: All

Format: MBZ Advanced Profile only; RANGE_MAPY Range Mapping not supported

19 Reserved

Project: All

Format: MBZ Advanced Profile only; RANGE_MAPUV_FLAG Range Mapping not supported

18:16 Reserved

Project: All

Format: MBZ Advanced Profile only; RANGE_MAPUV Range Mapping not supported

15:9 Reserved

Project: All

Format: MBZ

8 4MV Allowed Flag

7 POSTPROC Flag

6 PULLDOWN

5 INTERLACE

4 TFCNTRFLAG

3 FINTERFLAG

2 REFPIC Flag

 For a BI picture, REFPIC flag must set to 0For I and P picture, REFPIC flag must set to 0.For a B

picture, REFPIC flag must set to 0, except for a B-field in interlaced field mode which can be 0 or

1 (e.g. the top B field can be used as a reference for decoding its corresponding bottom B-field

in a field pair).In VLD mode, this flag cannot be used as an optimization signaling for an I or P

picture that is not used as a reference picture.This field is used in both DXVA2 VC1 VLD mode

and IT mode. It is the same parameter as bPicDeblockConfined[bit2] in DXVA2 VC1 spec.The

Intra Picture Flag, Backward Prediction Present Flag and RefPicFlag are used to derive the picture

type, as specified in PTYPE for a frame, and in FPTYPE for a field, in DXVA2 VC1 VLD and IT

mode.

Value Name Description

0h the current picture after decoded, will never used as a reference picture

1h the current picture after decoded, will be used as a reference picture later

1 PSF

 Command Reference: Instructions

578 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VC1_SHORT_PIC_STATE
0 EXTENDED_DMV Present Flag

Value Name Description

0h [Default] Extended_DMV is not present in the picture header

1h Extended_DMV is present in the picture header

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 579

MFD_VP8_BSD_OBJECT

MFD_VP8_BSD_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

 The MFD_VP8_BSD_OBJECT command is the only primitive command for the VP8 Decoding Pipeline. The

Partitions of the bitstream is loaded as indirect data object. Before issuing a MFD_VP8_BSD_OBJECT command,

all VP8 frame level states of the MFD Engine need to be valid. Therefore the commands used to set these states

need to have been issued prior to the issue of a MFD_VP8_BSD_OBJECT command. Context switch interrupt is

not supported by this command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFD_VP8_BSD_OBJECT

Format: OpCode

26:24 Media Command OpCode

Default Value: 4h VP8_DEC

Format: OpCode

23:21 subOpcodeA

Default Value: 1h

Format: OpCode

20:16 subOpcodeB

Default Value: 8h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 14h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:21 Reserved

Format: MBZ

20:16 Partition0 CPBAC Entropy Count

 Pass the Partition0 CPBAC State to HW. Max value is 24.

15:8 Partition0 CPBAC Entropy Range

 Pass the Partition0 CPBAC State to HW.

 Command Reference: Instructions

580 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VP8_BSD_OBJECT
7:6 Reserved

Format: MBZ

5:4 Coded Num of Coeff Token Partitions

 Num of Partitions = 2^CodedNumCoeffTokenParititons. 0 = 1 Partition only 1 = 2 Partitions 2 =

4 Partitions 3 = 8 Partitions are present in the bitstream.

3 Reserved

Format: MBZ

2:0 Partition0 FirstMBBitOffset from Frame Header

 Allow HW to jump to the location in the bitstream where per MB information starts in the

Partition0.

2 31:24 Partition0 CPBAC Entropy Value

 Pass the Partition0 CPBAC State to HW.

23:0 Reserved

Format: MBZ

3 31:24 Reserved

Format: MBZ

23:0 Indirect Partition0 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

4 31:0 Indirect Partition0 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

5 31:24 Reserved

Format: MBZ

23:0 Indirect Partition1 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

6 31:0 Indirect Partition1 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 581

MFD_VP8_BSD_OBJECT
7 31:24 Reserved

Format: MBZ

23:0 Indirect Partition2 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

8 31:0 Indirect Partition2 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

9 31:24 Reserved

Format: MBZ

23:0 Indirect Partition3 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

10 31:0 Indirect Partition3 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

11 31:24 Reserved

Format: MBZ

23:0 Indirect Partition4 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

12 31:0 Indirect Partition4 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

13 31:24 Reserved

Format: MBZ

 Command Reference: Instructions

582 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VP8_BSD_OBJECT
23:0 Indirect Partition5 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

14 31:0 Indirect Partition5 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

15 31:24 Reserved

Format: MBZ

23:0 Indirect Partition6 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

16 31:0 Indirect Partition6 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

17 31:24 Reserved

Format: MBZ

23:0 Indirect Partition7 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

18 31:0 Indirect Partition7 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

19 31:24 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 583

MFD_VP8_BSD_OBJECT
23:0 Indirect Partition8 Data Length

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Partition Start Offset field is ignored. The

Partition is byte aligned in both ends. It is the length in bytes of the bitstream data for the

current partition. It includes the first byte of the first macroblock and the last byte of the last

macroblock in the partition.

20 31:0 Indirect Partition8 Data Start Offset

 This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit

for processing. This offset is relative to the MFD Indirect Object Base Address. Hardware ignores

this field if indirect data is not present. It is a byte-aligned address for the VP8 bitstream data in

each partition.

21 31 Concealment Method

 This field specifies the method used for concealment when error is detected.

Value Name Description

0 Intra 16x16

Prediction

A copy from the current picture is performed using Intra 16x16

Prediction method.

1 Inter P Copy A copy from collocated macroblock location is performed from the

concealment reference indicated by the ConCeal_Pic_Id field.

30:18 Reserved

Format: MBZ

17:16 Conceal_Pic_Id (Concealment Picture ID)

Exists If: [Concealment Method] == 1

 This field identifies the picture in the reference list to be used for concealment. This field is only

valid if Concealment Method is Inter P Copy. 00 - Last Decoded Picture 01 - Golden Reference

Picture 02 - Alternate Reference Picture 03 - User provided Reference Picture

15 Reserved

Format: MBZ

14 BSDPrematureComplete Error Handling

 It occurs in situation where the decode is completed but there are still data in the bitstream.

Value Name

0 Ignore the error and continue (masked the interrupt), assume the hardware

automatically perform the error handling

1 Set the interrupt to the driver (provide MMIO registers for MB address R/W)??

13 Reserved

Format: MBZ

 Command Reference: Instructions

584 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFD_VP8_BSD_OBJECT
12 MPR Error (MV out of range) Handling

Value Name

0 Ignore the error and continue (masked the interrupt), assume the hardware

automatically perform the error handling

1 Set the interrupt to the driver (provide MMIO registers for MB address R/W)??

11 Reserved

Format: MBZ

10 Entropy Error Handling

Value Name

0 Ignore the error and continue (masked the interrupt), assume the hardware

automatically perform the error handling

1 Set the interrupt to the driver (provide MMIO registers for MB address R/W)??

9 Reserved

Format: MBZ

8 MB Header Error Handling

Value Name

0 Ignore the error and continue (masked the interrupt), assume the hardware

automatically perform the error handling

1 Set the interrupt to the driver (provide MMIO registers for MB address R/W)??

7:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 585

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_DIRECTMODE_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a picture level command and is issued once per picture. All DMV buffers are treated as standard media

surfaces, in which the lower 6 bits are used for conveying surface states.Current Pic POC number is assumed to

be available in POCList[32 and 33] of the MFX_AVC_DIRECTMODE_STATE Command.This command is only valid

in the AVC decoding in VLD and IT modes, and AVC encoder mode. The same command supports both Long

and Short DXVA2 AVC Interface. The DMV buffers are not required to be programmed for encoder mode.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_SINGLE_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_COMMON

Format: OpCode

23:21 SubOpcodeA

Default Value: 0h

Format: OpCode

20:16 SubOpcodeB

Default Value: 2h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 0045h Excludes DWord (0,1)

Format: =n Total Length - 2

 Command Reference: Instructions

586 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_DIRECTMODE_STATE
1 31:6 Direct MV Buffer Base Address for Picture 0 (In Frame)

Format: GraphicsAddress[31:6]

Note:This filed is changed to one per frame (both top and bottom field share the same Direct

MV Buffer Base Address).

This field provides the base address of the DMV write buffer to store motion vectors decoded

in the current picture (top field), which may be used later as a collocated motion information

read buffer of the associated reference picture in decoding subsequent B-pictures that have

MB coded in direct mode. It is a private buffer used by the MPR hardware only. Itscontent is

not accessed by software. This buffer must be 64-byte cacheline aligned. The write buffer size

is 557,056 bytes for 1 frame. Scalable with frame height, but do not scale with frame width as

the hardware assumes frame width (in MBs) fixed at 128 (smallest power of 2 value larger

than 120 - 1920x1088 screen resolution) It is only valid if the current picture is a progressive

frame, MbAff frame, or a top field. There are a total of 32 reference picture (previously

decoded) Direct MV Buffers (0 to 31, not including the DMV write buffer 32 and 33 of the

current picture) to read in the corresponding collocated DMV and motion information. For

reference picture, these 32 DMV read Buffers can be indexed by the frame_store_ID[4:0],

which is obtained from RefPicList L0/L1[RefPicIdx]. frame_Store_IDbit[0] (indicator for

Top/Bottiom Field). For writing out motion information during the decoding of the current

picture, all 34 DMV buffers can be addressed by [img_dec_fs_idc[4:0]«1 + img_structure[1]].

5:0 Reserved

Project: BDW

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 Direct MV Buffer Base Address for Picture 0 - Read/Write [47:32]

Project: BDW

Description Project

This field is for the upper range of AACS Bit Vector Surface Starting Byte Address.

This field is used for 48-bit addressing. BDW

3..32 63:48 Reserved

Format: MBZ

47:32 Direct MV Buffer Base Address for Reference Frame 1 to 15 (In Frame) High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Pre-Deblocking Destination Address. This field is ignored if

PreDeblockOutEnable is set to 0 (disable). This field is used for 48-bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 587

MFX_AVC_DIRECTMODE_STATE
31:6 Direct MV Buffer Base Address for Reference Frame 1 to 15 (In Frame)

Format: GraphicsAddress[31:6]

Note:This field is changed to one per frame (both top and bottom field shared the same

Direct MV Buffer Base Address)

This field provides the base address of the DMV buffer for reference frame 2 to 31. They are

needed if the current B-Picture has MBs coded in direct mode. It is a private buffer used by

the MPR hardware only. Its content is not accessed by software. All these buffers must be 64-

byte cacheline aligned. There are a total of 32 possible Direct MV Read Buffers (not including

the current write buffer of the current picture) to read in the corresponding DMV. Each read

buffer size is 557,056 bytes for 1 frame (the selected colPic). Scalable with frame height, but

do not scale with frame width as the hardware assumes frame width (in MBs) fixed at 128

(smallest power of 2 value larger than 120 - 1920x1088 screen resolution). The adjacent DMV

buffers are paired ([2 and 3], [4 and 5], [N and N+1], ..[30 and 31]).

5:0 Reserved

Format: MBZ

 Reserved for 64-bit address extension.

33

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Direct MV Buffer Base Address for Reference Frame - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

588 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_DIRECTMODE_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Direct MV Buffer for

Reference Picture 0 to 15

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Direct MV Buffer for Reference Picture 0 to 15

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Direct MV Buffer for Reference Picture 0 to 15

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 589

MFX_AVC_DIRECTMODE_STATE
34 31:6 Direct MV Buffer Base Address for Write (Write-Only Buffer)(in frame)

Format: GraphicsAddress[31:6]

This field provides the base address of the DMV write-only buffer for the current decoding

frame/field. It is a private buffer used by the MPR hardware only. Its content is not accessed

by software. All these buffers must be 64-byte cacheline aligned, i.e. the same as the above

DMV read/write buffers. These 2 buffers can only be addressed by [img_dec_fs_idc[4:0]«1 +

img_structure[1]] for the current picture being decoded.

Each write buffer size is 557,056 bytes for 1 frame (the selected colPic). Scalable with frame

height, but do not scale with frame width as the hardware assumes frame width (in MBs) fixed

at 128 (smallest power of 2 value larger than 120 - 1920x1088 screen resolution).

DMV write buffer 32 is valid only if the current picture is a progressive frame, MbAff frame, or

a top field. DMV write buffer 33 is valid only if the current picture is a bottom field.

5:0 Reserved

Project: BDW

Format: MBZ

35

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 Direct MV Buffer Base Address for Write (Write-Only Buffer)(in frame) High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Direct MV Buffer Base Address. This field is ignored if

PreDeblockOutEnable is set to 0 (disable). This field is used for 48-bit addressing.

36

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

590 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_DIRECTMODE_STATE
8:7 Direct MV Buffer Base Address for Write - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Direct MV Buffer for Write

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Direct MV Buffer for Write

Project: BDW

This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of

"00" points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access

will be allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM.

Setting of "10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only

option for a memory access to be allocated in L3$ as well as LLC/eLLC

00b: eLLC Only ("00" setting points TC selection to PTE which defaults to eLLC)

01b: LLC Only (Works at the allocation time, later victimization from LLC downgrades the line to

eLLC if present).

10b: LLC/eLLC Allowed.

11b: L3, LLC, eLLC Allowed.

Errata BDW:A-E (FIXED BY:G0 Stepping):

For all system that does NOT use SVM (i.e. coherent L3$ surfaces), back snoops from LLC has to

be disabled (Dis_GtCvUpdtOnRd = “1”). Than target Cache settings can be programmed as

POR requirements of L3/LLC/eDRAM caching.

For all systems that does use SVM (i.e. coherent L3$ surfaces), the recomended setting would

be "00" in target cache settings. In case of L3 surfaces, the performance has to be tuned

between "00" and "11" setting based on the benefits of L3 caching outweighting the

degradation of backsnoops.

Post G0-stepping, the above w/a for coherent L3$ surfaces is not needed.

Value Name

00b eLLC Only - not snooped in GT (BDW)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 591

MFX_AVC_DIRECTMODE_STATE

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Direct MV Buffer for Write

Project: BDW

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age (“0,1,2”) it tends to stay longer in the cache. This option is

given to GFX software to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

37..70 31:0 POC List, POCList[34][31:0]

 Each POC value is a signed 32-bit number. One-to-one correspondence with the 34 Direct MV

Buffer Address for Reference and Currrent Frames/Fields There are 34 POC entries in the list.

For reference picture, only the lower 32 POC [0-31] entries can be used, and POCList is indexed

by the frame_store_ID[4:0], which is obtained from RefPicList L0/L1[RefPicIdx].

frame_Store_IDbit[0] (indicator for Top/Bottiom Field). For current picture, all 34 POC entries [0-

33] can be addressed by POCList[img_dec_fs_idc[4:0]«1 + img_structure[1]]. For frame-only

mode, every other entry is skipped. For MBAFF and field-only picture, each entry is a field POC,

and every two entries are paired.

 Command Reference: Instructions

592 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE

MFX_AVC_IMG_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This must be the very first command to issue after the surface state, the pipe select and base address setting

commands. This command supports both Long and Short VLD and IT DXVA2 AVC Decoding Interface.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_AVC_IMG_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 0h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default

Value:

0Ch Excludes DWord (0,1)

Format: =n 00Eh, used for normal decode and encode mode000h, a special case to

provide a dummy image state for stitch mode operation. In this case, fields

in DW1 which is part of the dummy image state command are ignored by

hardware.

1 31:16 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 593

MFX_AVC_IMG_STATE
15:0 Frame Size

Format: U16-1 in MB unit

The value for FrameSizeInMBs must match the product of FrameWidthInMBs and

FrameHeightInMBs.Max. Screen resolution is therefore limited to 256 x 256 in MB unit.

It is enough to cover all the Profile-Level specified in the current HD-DVD specification.

E.g., for 1920x1080, FrameSizeInMBs[15:0] = 8160 (1920/16 * 1088/16; rounded up

1080). This parameter is specified for Intel interface only, not present in the DXVA.

Value Name Description

[0,16383] representing Number of MBs [1,16384]

2 31:24 Reserved

Format: MBZ

 (bit[31:24] must be zero to match the DXVA 16-bit definition for

FrameHeightInMBsMinus1)

23:16 Frame Height

Format: U8-1 in MB unit

 It is set to the value of (FrameHeightInMBsMinus1+ 1). Since the max value for

FrameHeightInMBs is 255, the max allowed value for FrameHeightInMBsMinus1 is only

254. The min value for FrameHeightInMBs is 1.Although the max. value that can be

specified for FrameHeightInMBs is 255 (in the current implementation),

FrameWidthInMBs * FrameHeightInMBs must not exceed the max value of

FrameSizeInMBs[14:0].e.g. for 1920x1080, FrameHeightInMBs[7:0] is equal to 68 (1080

divided by 16, and rounded up, i.e. effectively specified as 1088 instead).It is derived

from FrameHeightInMbs = (2 - frame_mbs_only_flag) * PicHeightInMapUnits and

PicHeightInMbs = FrameHeightInMbs / (1 + field_pic_flag) internally done. For MBAFF,

PicHeightInMapUnits is in MB pair unit, so the bitstream sends only half frame height.

Value Name Description

[0,255] representing height [1,256]

15:8 Reserved

Format: MBZ

 (bit[15:8] must be zero to match the DXVA 16-bit definition for

FrameWidthInMBsMinus1)

 Command Reference: Instructions

594 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
7:0 Frame Width

Format: U8-1 in MB unit

 It is set to the value of (FrameWidthInMBsMinus1+ 1). Since the max value for

FrameWidthInMBs is 255, the max allowed value for FrameWidthInMBsMinus1 is only

254. The min value for FrameWidthInMBs is 1.Although the max. value that can be

specified for FrameWidthInMBs is 255 (in the current implementation),

FrameWidthInMBs * FrameWidthInMBs must not exceed the max value of

FrameSizeInMBs[14:0].e.g. for 1920x1080, FrameHeightInMBs[7:0] is equal to 68 (1080

divided by 16, and rounded up, i.e. effectively specified as 1088 instead).It is derived

from FrameWidthInMbs = (2 - frame_mbs_only_flag) * PicWidthInMapUnits and

PicWidthInMbs = FrameWidthInMbs / (1 + field_pic_flag) internally done. For MBAFF,

PicWidthInMapUnits is in MB pair unit, so the bitstream sends only half frame width.

Value Name Description

[0,255] representing width [1,256]

3 31:29 Reserved

Format: MBZ

 (bit[31:29] must be zero to match the DXVA2 8-bit definition for InitQpChroma[1])

28:24 Second Chroma QP Offset

 Signed integer value. It should be in the range of -12 to +12 (according to AVC spec).It

specifies the offset for determining QP Cr from QP Y. It is set to the upper 5 bits of the

value of the syntax element (Chroma_qp_offset[9:0]) read from the current active

PPS.Chroma_qp_offset [4:0] - chroma_qp_offset_bits (from the current active

PPS)Chroma_qp_offset [9:5] - second_chroma_qp_offset_bits

23:21 Reserved

Format: MBZ

 (bit[23:21] must be zero to match the DXVA2 8-bit definition for InitQpChroma[1])

20:16 First Chroma QP Offset

 Signed integer value. It should be in the range of -12 to +12 (according to AVC spec).It

specifies the offset for determining QP Cb from QP Y. It is set to the lower 5 bits of the

value of the syntax element (Chroma_qp_offset[9:0]) read from the current active

PPS.Chroma_qp_offset [4:0] - chroma_qp_offset_bits (from the current active

PPS)Chroma_qp_offset [9:5] - second_chroma_qp_offset_bits

15:14 Reserved

Format: MBZ

13 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 595

MFX_AVC_IMG_STATE
12 Weighted_Pred_Flag

Format: Enable

 (This field is defined differently from Gen6, Gen7 follows strictly DXVA2 AVC interface.)

Value Name Description

0 Disable

[Default]

specifies that weighted prediction is not used for P and SP

slices

1 Enable specifies that weighted prediction is used for P and SP slices

Programming Notes

This field must set to '0' for B and I pictures.

11:10 Weighted_BiPred_Idc

 (This field is defined differently from DevSNB; DevIVB follows strictly DXVA2 AVC

interface.)

Value Name Description

0 DEFAULT

[Default]

Specifies that the default weighted prediction is used for B

slices

1 EXPLICIT Specifies that explicit weighted prediction is used for B

slices

2 IMPLICIT Specifies that implicit weighted prediction is used for B

slices.

3 Reserved Illegal value

Programming Notes

This field must set to 0 for P and I pictures.

9:8 ImgStruct - Image Structure, img_structure[1:0]

 The current encoding picture structure can only takes on 3 possible values

Value Name

00b Frame Picture

01b Top Field Picture

11b Bottom Field Picture

10b Invalid, not allowed.

Programming Notes

img_structure[0] can be used as a flag to distinguish between frame and field

structure. It must be consistent with the field_pic_flag setting in the Slice Header.This

parameter is specified for Intel interface only, not present in the DXVA as a separate

state (instead the img_structure[1] is embedded inside the DXVA picture definition).

7:0 Reserved

Format: MBZ

 Command Reference: Instructions

596 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
4 31:16 MinFrameWSize

Default Value: 0h

Format: U16

Minimum Frame Size [15:0] (in Word, 16-bit)(Encoder Only) Mininum Frame Size is

specified to compensate for intel Rate Control Currently zero fill (no need to perform

emulation byte insertion) is done only to the end of the CABAC_ZERO_WORD insertion

(if any) at the last slice of a picture. Intel encoder parameter, not part of DXVA. The

caller should always make sure that the value, represented by Mininum Frame Size, is

always less than maximum frame size FrameBitRateMax (DWORD 10 bits 29:16).This

field is reserved in Decode mode.

The programmable range 0…2^18-1

When MinFrameWSizeUnits is 00.

Programmable range is 0…2^20-1 when MinFrameWSizeUnits is 01.

Programmable range is 0…2^26-1 when MinFrameWSizeUnits is 10.

Programmable range is 0…2^32-1 when MinFrameWSizeUnits is 11.

15 MbStatEnabled

Format: Enable

Enable reading in MB status buffer (a.k.a. encoding stream-out buffer) Note: For multi-

pass encoder, all passes except the first one need to set this value to 1. By setting the

first pass to 0, it does save some memory bandwidth.

In VDenc mode this must be set to zero as no MB level rate control is used.

Value Name Description

0 Disable Disable Reading of Macroblock Status Buffer

1 Enable Enable Reading of Macroblock Status Buffer

14 LoadSlicePointerFlag

Format: Enable

 LoadBitStreamPointerPerSlice (Encoder-only)To support multiple slice picture and

additional header/data insertion before and after an encoded slice.When this field is set

to 0, bitstream pointer is only loaded once for the first slice of a frame. For subsequent

slices in the frame, bitstream data are stitched together to form a single output data

stream.When this field is set to 1, bitstream pointer is loaded for each slice of a frame.

Basically bitstream data for different slices of a frame will be written to different

memory locations.

Value Name Description

0 Disable Load BitStream Pointer only once for the first slice of a frame

1 Enable Load/reload BitStream Pointer only once for the each slice, reload the

start location of the bitstream buffer from the Indirect PAK-BSE

Object Data Start Address field

13 Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 597

MFX_AVC_IMG_STATE
12 MvUnpackedFlag

 MVUnPackedEnable (Encoder Only)This field is reserved in Decode mode.

Value Name Description

0 PACKED use packed MV format (compliant to DXVA)

1 UNPACKED use unpacked 8MV/32MV format only

11:10 ChromaFormatIdc

 Chroma Format IDC, ChromaFormatIdc[1:0]It specifies the sampling of chroma

component (Cb, Cr) in the current picture as follows :

Value Name Description

00b monochrome picture Desc

01b 4:2:0 picture Desc

10b 4:2:2 picture (not supported)

11b 4:4:4 picture (not supported)

Programming Notes

It is set to the value of the syntax element read from the current active SPS.The

corresponding Monochrome Flag (monochrome_flag) can be derived from this field.

9 Reserved

Format: MBZ

8 MbMvFormatFlag

 Use MB level MvFormat flag (Encoder Only)

Value Name Description Project

0 IGNORE HW PAK ignore MvFormat in the MB data.

When bit 12 == 0, all MBs use packed MV formatWhen bit

12 == 1, each MB data must use unpacked MV format,

8MV when there is no minor MV involved, and 32MV if

there are some minor MVs.

1 FOLLOW HW PAK will follow MvFormat value set within each MB

data.

BDW

Programming Notes

They must take one of the two values: the 8MV unpacked format (MvFormat =101b),

and the 32MV unpacked format (MvFormat =110b).This bit can be set only when

MvUnpackedFlag (bit 12 of this register) is set otherwise system could hang.

 Command Reference: Instructions

598 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
7 EntropyCodingFlag

 Entropy Coding Flag, entropy_coding_flag

Value Name Description

0 CAVLC bit-serial encoding mode Desc

1 CABAC bit-serial encoding mode. Desc

Programming Notes

It specifies one of the two possible bit stream encoding modes in the AVC. It is set to

the value of the syntax element read from the current active PPS.

6 ImgDisposableFlag

 Current Img Disposable Flag or Non-Reference Picture Flag

Value Name Description

0 REFERENCE the current decoding picture may be used as a reference picture

for others

1 DISPOSABLE the current decoding picture is not used as a reference picture

(e.g. a B-picture cannot be a reference picture for any

subsequent decoding)

Programming Notes

It is derived from ImgDisposableFlag = (nal_ref_idc == 0). nal_ref_idc is a syntax

element from a NAL unit. When this flag is set, no reference picture and DMV are

written out.This field is only valid for VLD decoding mode.

5 ConstrainedIPredFlag

 Constrained Intra Prediction Flag, constrained_ipred_flagIt is set to the value of the

syntax element in the current active PPS.

Value Name Description

0 INTRA_AND_INTER allows both intra and inter neighboring MB to be used in

the intra-prediction encoding of the current MB.

1 INTRA_ONLY allows only to use neighboring Intra MBs in the intra-

prediction encoding of the current MB. If the neighbor is

an inter MB, it is considered as not available.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 599

MFX_AVC_IMG_STATE
4 Direct8x8InfFlag

 Direct 8x8 Inference Flag, direct_8x8_inference_flagIt is set to the value of the syntax

element in the current active SPS.It specifies the derivation process for luma motion

vectors in the Direct MV coding modes (B_Skip, B_Direct_16x16 and B_Direct_8x8).

When frame_mbs_only_flag is equal to 0, direct_8x8_inference_flag shall be equal to 1.It

must be consistent with the frame_mbs_only_flag and transform_8x8_mode_flag

settings.

Value Name Description

0 SUBBLOCK allows subpartitioning to go below 8x8 block size (i.e. 4x4, 8x4 or

4x8)

1 BLOCK allows processing only at 8x8 block size. MB Info is stored for 8x8

block size.

3 Transform8x8Flag

 8x8 IDCT Transform Mode Flag, trans8x8_mode_flagSpecifies 8x8 IDCT transform may

be used in this pictureIt is set to the value of the syntax element in the current active

PPS.

Value Name Description

0 4x4 no 8x8 IDCT Transform, only 4x4 IDCT transform blocks are present

1 8x8 8x8 Transform is allowed

2 FrameMbOnlyFlag

 Frame MB only flag, frame_mbs_only_flagIt is set to the value of the syntax element in

the current active SPS.

Value Name Description

0 FALSE not true ; effectively enables the possibility of MBAFF mode.

1 TRUE true, only frame MBs can occur in this sequence, hence disallows the

MBAFF mode and field picture.

1 MbaffFlameFlag

 MBAFF mode is active, mbaff_frame_flag.It is derived from MbaffFrameFlag =

(mb_adaptive_frame_field_flag && ! field_pic_flag). mb_adaptive_frame_field_flag is a

syntax element in the current active SPS and field_pic_flag is a syntax element in the

current Slice Header. They both are present only if frame_mbs_only_flag is 0. Although

mbaff_frame_flag is a Slice Header parameter, its value is expected to be the same for

all the slices of a picture.It must be consistent with the mb_adaptive_frame_field_flag,

the field_pic_flag and the frame_mbs_only_flag settings.This bit is valid only when the

img_structure[1:0] indicates the current picture is a frame.

Value Name Description

0 FALSE not in MBAFF mode

1 TRUE in MBAFF mode

 Command Reference: Instructions

600 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
0 FieldPicFlag

 Field picture flag, field_pic_flag, specifies the current slice is a coded field or not.It is set

to the same value as the syntax element in the Slice Header. It must be consistent with

the img_structure[1:0] and the frame_mbs_only_flag settings.Although field_pic_flag is a

Slice Header parameter, its value is expected to be the same for all the slices of a

picture.

Value Name Description

0h FRAME a slice of a coded frame

1h FIELD a slice of a coded field

5

 [ExistsIf]Encode

Only

31 Trellis Quantization Enabled (TQEnb)

Format: Enable

 The TQ improves output video quality of AVC CABAC encoder by selecting quantized

values for each non-zero coefficient so as to minimize the total R-D cost.This flag is

only valid AVC CABAC mode. Otherwise, this flag should be disabled.

Value Name Description Project

0h Disable Use Normal

1h Enable Use Trellis quantization BDW

30:28 Trellis Quantization Rounding (TQR)

 This rounding scheme is only applied to the quantized coefficients ranging from 0 to 1

when TQEnb is set to 1 in AVC CABAC mode. One of the following values is added to

quantized coefficients before truncating fractional part.

Value Name Description Project

000b Add 1/8 BDW

001b Add 2/8 BDW

010b Add 3/8 BDW

011b Add 4/8 (rounding 0.5) BDW

100b Add 5/8 BDW

101b Add 6/8 BDW

110b Default Add 7/8 (Default rounding 0.875) BDW

27 Trellis Quantization Chroma Disable (TQChromaDisable)

 This signal is used to disable chroma TQ. To enable TQ for both luma and chroma,

TQEnb=1, TQChromaDisable=0. To enable TQ only for luma, TQEnb=1,

TQChromaDisable=1.

Value Name Description Project

0h Enable Trellis Quantization chroma BDW

1h Default Disable Trellis Quantization chroma BDW

26:17 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 601

MFX_AVC_IMG_STATE
16 NonFirstPassFlag

 This signals the current pass is not the first pass. It will imply designate HW behavior:

e.g

Value Name Description

0h Disable Always use the MbQpY from initial PAK inline object for all passes of

PAK

1h Enable Use MbQpY from stream-out buffer if MbRateCtrlFlag is set to 1

15:13 Reserved

Format: MBZ

12 Reserved

Project: BDW

Format: MBZ

11:10 MinFrameWSizeUnits

 This field is the Minimum Frame Size Units

Value Name Description

00b compatibility mode Minimum Frame Size is in old mode (words, 2bytes)

01b 16 byte Minimum Frame Size is in 16bytes

10b 4Kb Minimum Frame Size is in 4Kbytes

11b 16Kb Minimum Frame Size is in 16Kbytes

9 MbRateCtrlFlag - MB level Rate Control Enabling Flag

MB Rate Control conformance mask

In VDenc mode, this field must be zero as frame level rate control is used.

Value Name Description

0h Disable Apply accumulative delta QP for consecutive passes on top of the

macroblock QP values in inline data

1h Enable Apply RC QP delta to suggested QP values in Macroblock Status

Buffer except the first pass.

Programming Notes

This field is ignored when MacroblockStatEnable is disabled or MB level Rate control

flag for the current MB is disable in Macroblock Status Buffer.

8 Reserved

Format: MBZ

 Command Reference: Instructions

602 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
7 Intra/InterMbIpcmFlag - ForceIPCMControlMask

 This field is to Force IPCM for Intra or Inter Macroblock size conformance mask.

Value Name Description Project

0h Disable Do not change intra or Inter macroblocks even BDW

1h Enable Change intra or Inter macroblocks MB_type to IPCM BDW

Programming Notes

This field is ignored when MacroblockStatEnable is disabled or MB level Intra MB

conformance flag for the current MB is disable in Macroblock Status Buffer.

6:4 Reserved

Format: MBZ

3 FrameSzUnderFlag - FrameBitRateMinReportMask

 This is a mask bit controlling if the condition of frame level bit count is less than

FrameBitRateMin

Value Name Description

0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register.

1h Enable set bit0 and bit 1of MFC_IMAGE_STATUS control register if the total

frame level bit counter is less than or equal to Frame Bit rate

Minimum limit.

2 FrameSzOverFlag - FrameBitRateMaxReportMask

 This is a mask bit controlling if the condition of frame level bit count exceeds

FrameBitRateMax.

Value Name Description

0 Disable Do not update bit0 of MFC_IMAGE_STATUS control register.

1 Enable Set bit0 and bit 1 of MFC_IMAGE_STATUS control register if the total

frame level bit counter is greater than or equal to Frame Bit rate

Maximum limit.

1 InterMbMaxBitFlag - InterMBMaxSizeReportMask

 This is a mask bit controlling if the condition of any inter MB in the frame exceeds

InterMBMaxSize.

Value Name Description

0 Disable Do not update bit0 of MFC_IMAGE_STATUS control register.

1 Enable Set bit0 of MFC_IMAGE_STATUS control register if the total bit

counter for the current MB is greater than the Inter MB Conformance

Max size limit.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 603

MFX_AVC_IMG_STATE
0 IntraMbMaxBitFlag - IntraMBMaxSizeReportMask

 This is a mask bit controlling if the condition of any intra MB in the frame exceeds

IntraMBMaxSize.

Value Name Description

0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register.

1 Enable set bit0 of MFC_IMAGE_STATUS control register if the total bit

counter for the current MB is greater than the Intra MB Conformance

Max size limit.

6

 [ExistsIf]Encode

Only

31:28 Reserved

27:16 InterMbMaxSz

Format: U12

 This field, Inter MB Conformance Max size limit,indicates the allowed max bit count

size for Inter MB

15:12 Reserved

Format: MBZ

11:0 IntraMbMaxSz

Exists If: //Intra Only

Format: U12

This field, Intra MB Conformance Max size limit,indicates the allowed max bit count

size for Intra MB

All IPCM MBs should ignore this Max size limit.

7

 [ExistsIf]Encode

Only

31:1 Reserved

0 VSL Top MB Trans8x8flag

Project: BDW

Value Name Description

0 Disable

[Default]

VSL will only fetch the current MB data.

1 Enable When this bit is set VSL will make extra fetch to memory to

fetch the MB data for top MB.

 Command Reference: Instructions

604 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
8

 [ExistsIf]Encode

Only

31:24 SliceDeltaQpMax[3]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for total bit-count above FrameBitRateMax - first

1/8 regionThis field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame

exceeds FrameBitRateMax but is within 1/8 of FrameBitRateMaxDelta above

FrameBitRateMax, i.e., in the range of (FrameBitRateMax, (FrameBitRateMax+

FrameBitRateMaxDelta»3).

23:16 SliceDeltaQpMax[2]

Format: U8

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/8

and below 1/ 4 This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between 1/8 and ¼ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the

range of ((FrameBitRateMax+ FrameBitRateMaxDelta»3), (FrameBitRateMax+

FrameBitRateMaxDelta»2).

15:8 SliceDeltaQpMax[1]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above1/ 4

and below 1/2 This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between ¼ and ½ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the

range of ((FrameBitRateMax+ FrameBitRateMaxDelta»2), (FrameBitRateMax+

FrameBitRateMaxDelta»1).

7:0 SliceDeltaQpPMax[0]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/

2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS

control register when total bit count for the entire frame is above FrameBitRateMax

by more than half the distance of FrameBitRateMaxDelta , i.e., in the range of

((FrameBitRateMax+ FrameBitRateMaxDelta»1), infinite).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 605

MFX_AVC_IMG_STATE
9

 [ExistsIf]Encode

Only

31:24 SliceDeltaQpMin[3]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for total bit-count below FrameBitRateMin - first

1/8 regionThis field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is less

than FrameBitRateMin and greater than or equal to 1/8 the distance of

FrameBitRateMinDelta from FrameBitRateMin, i.e., in the range of [(FrameBitRateMin-

FrameBitRateMinDelta»3), FrameBitRateMin).

23:16 SliceDeltaQpMin[2]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count below FrameBitRateMin - below 1/ 8

and above 1/ 4This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between one-eighth and quarter the distance of FrameBitRateMinDelta from

FrameBitRateMin, i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta»2),

(FrameBitRateMin- FrameBitRateMinDelta»3)).

15:8 SliceDeltaQpMin[1]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice level delta QP for bit-count below FrameBitRateMin- below 1/4

and above 1/ 2This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between quarter and half the distance of FrameBitRateMinDelta from

FrameBitRateMin, i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta»1),

(FrameBitRateMin- FrameBitRateMinDelta»2)).

7:0 SliceDeltaQpMin[0]

Format: S7

Range: [0:MAX_QP_DELTA]

This field is the Slice Level Delta QP for bit-count below FrameBitRateMin - below 1/

2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS

control register when total bit count for the entire frame is below FrameBitRateMin by

more than half the distance of FrameBitRateMinDelta , i.e., in the range of [0,

(FrameBitRateMin- FrameBitRateMinDelta»1).

 Command Reference: Instructions

606 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
10

 [ExistsIf]Encode

Only

31 FrameBitrateMaxUnit

 This field is the Frame Bitrate Maximum Limit Units.

Value Name Description

0 Byte FrameBitRateMax is in units of 32 Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 128 Bytes if

FrameBitrateMaxUnitMode is 0

1 Kilo

Byte

FrameBitRateMax is in units of 4KBytes Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if

FrameBitrateMaxUnitMode is 0

30 FrameBitrateMaxUnitMode

 This field is the Frame Bitrate Maximum Limit Units.

Value Name Description

0h compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb)

1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb)

29:16 FrameBitRateMax

 This field is the Frame Bitrate Maximum Limit. This field along with

FrameBitrateMaxUnit determines maximum allowed bits in a frame before multi-pass

gets triggered (when enabled). In other words, multi-pass is triggered when the actual

frame byte count exceeds this value. When FrameBitrateMaxUnitMode is

0(compatibility mode) bits 16:27 should be used, bits 28 and 29 should be 0..

Value Name Description

0-512KB The programmable range is 0-512KB when FrameBitrateMaxUnit is

0.

0-

8190KB

 The programmable range is 0-8190KB when FrameBitrateMaxUnit

is 1.

15 FrameBitrateMinUnit

 This field is the Frame Bitrate Minimum Limit Units.

Value Name Description

0 Byte FrameBitRateMax is in units of 32 Bytes when

FrameBitrateMinUnitMode is 1 and in units of 128 Bytes if

FrameBitrateMinUnitMode is 0

1 Kilo

Byte

FrameBitRateMax is in units of 4KBytes Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if

FrameBitrateMaxUnitMode is 0

14 FrameBitrateMinUnitMode

 This field is the Frame Bitrate Minimum Limit Units.

Value Name Description

0h Compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb)

1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 607

MFX_AVC_IMG_STATE
13:0 FrameBitRateMin

 RangeThe programmable range 0-512KB When FrameBitrateMinUnit is in

0.Programmable range is 0-8190 KB when FrameBitrateMinUnit is in 1.This field is the

Frame Bitrate Minimum Limit ()This field along with FrameBitrateMinUnit determines

minimum allowed bits in a Frame before Multi-Pass gets triggered (when enabled). In

other words, multi-pass is triggered when the actual frame byte count is less than this

value. When FrameBitrateMinUnitMode is 0 (compatibility mode) bits 0:11 should be

used, bits 12 and 13 should be 0.

11

 [ExistsIf]Encode

Only

31 Slice Stats Streamout Enable

30:16 FrameBitRateMaxDelta

Format: U15

 This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It

shares the same FrameBitrateMaxUnit. When FrameBitrateMaxUnitMode is

0(compatibility mode) bits 16:27 should be used, bits 28, 29 and 30 should be 0.

Value Name Description

0-1024KB The Programmable range 0-1024KB when

FrameBitRateMaxUnit is 0.

0-

16380KB

 The Programmable range is 0-16380KB when

FrameBitRateMaxUnit is 1.

0h

[Default]

15 Reserved

Format: MBZ

14:0 FrameBitRateMinDelta

Range: The programmable range 0-1024KB When FrameBitrateMinUnit is in

32Bytes.Programmable range is 0-16380KB when FrameBitrateMinUnit is in 4Kbytes.

This field is used to select the slice delta QP when FrameBitRateMin Is exceeded. It

shares the same FrameBitrateMinUnit. When FrameBitrateMinUnitMode is

0(compatibility mode) bits 0:11 should be used, bits 12, 13 and 14 should be 0.Note:

HW requires the following condition FrameBitRateMinDelta <=

2*FrameBitRateMinMust be true, otherwise it may cause unpredicted behavior.

12 31:21 Reserved

Format: MBZ

20 VMD Error Logic

Project: BDW

Value Name Description

0 Disable [Default]

1 Enable Error Handling

 Command Reference: Instructions

608 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
19 Reserved

Format: MBZ

18 VAD Error Logic

Project: BDW

Value Name Description

0 Enable

[Default]

Error reporting ON in case of premature Slice done

1 Disable CABAC Engine will auto decode the bitstream in case of

premature slice done.

17 Reserved

Project: BDW

16 Reserved

15:0 Reserved

Format: MBZ

13 31:30 Reserved

Project: All

Format: MBZ

29 Current Picture Has Performed MMCO5

 Set to 1 if the current Pic has performed the memory_management_control_operation

= = 5.

28:24 Number of Reference Frames

Format: U5

Range: Range 0 to MaxDpbSize (=16 for Level 4.1)

Specifies the maximum number of reference frames (frames, field pairs, unpaired field)

existed in the current DBP for decoding the current picture.

23:22 Reserved

Format: MBZ

21:16 Number of Active Reference Pictures from L1

Format: U6-1

 Specifies the initial maximum reference index value minus 1 to access the L1 Reference

List. It is extracted from PPS. It corresponds to the number of active reference pictures

from L1 to decode the current picture. It can be modified by the slice header if

num_ref_idx_active_override_flag is set. Only valid for B picture.

Value Name

[0,31]

15:14 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 609

MFX_AVC_IMG_STATE
13:8 Number of Active Reference Pictures from L0

Format: U6-1

 Specifies the initial maximum reference index value minus 1 to access the L0 Reference

List. It is extracted from PPS. It corresponds to the number of active reference pictures

from L0 to decode the current picture. It can be modified by the slice header if

num_ref_idx_active_override_flag is set. Valid for both P and B pictures.

Value Name

[0,31]

7:0 Initial QP Value

Format: S7

Range: [-26,25]

Initial QP value for a Slice, extracted from PPS. It may further get modified by

slice_qp_delta in slice header and mb_qp_delta in MB header.

14

 [ExistsIf] Short

Format only

31:24 Log2_max_pic_order_cnt_lsb_minus4

Exists If: //Short Format Only

 It is a SPS syntax element, used to determine how many bits in the bitstream are used

to represent pic_order_cnt_lsb syntax element in the slice header.Unsigned

23:16 Log2_max_frame_num_minus4

Exists If: //Short Format Only

 It is a SPS syntax element, used to determine how many bits in the bitstream are used

to represent frame_num syntax element in the slice header.Unsigned.

15 deblocking_filter_control_present_flag

Exists If: //Short Format Only

 It is a PPS syntax element, indicates if more deblocking filter control syntax elements

are present in the slice header.

14:12 num_slice_groups_minus1

Exists If: //Short Format Only

 BitField It is a PPS syntax element.Use for Slice Header parsing only, to read in

slice_group_change_cycle, if any, but is not used by H/W, i.e. no slice group

support.Desc

11 redundant_pic_cnt_present_flag

Exists If: //Short Format Only

 It is a PPS syntax element.Use for Slice Header parsing only, to read-in

redundant_pic_cnt, if any, but is not used by H/W, i.e. no support for redundant slice

processing.

 Command Reference: Instructions

610 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_IMG_STATE
10:8 slice_group_map_type

Exists If: //Short Format Only

 It is a PPS syntax element.Use for Slice Header parsing only, to read in

slice_group_change_cycle, if any, but is not used by H/W, i.e. no slice group support.

7:4 Reserved

Format: MBZ

 IDR flag is decoded from NAL Header Byte

3:2 Pic_order_cnt_type

Exists If: //Short Format Only

 It is a SPS syntax element.Use for Slice Header parsing only.

1 Delta_pic_order_always_zero_flag

Exists If: //Short Format Only

 It is a SPS syntax element.Use for Slice Header parsing only.

0 Pic_order_present_flag

Exists If: //Short Format Only

 It is a PPS syntax element.Use for Slice Header parsing only.

15

 [ExistsIf] Short

Format only

31:16 Curr Pic Frame Num

Exists If: //Short Format Only

Format: U16

 Derived from Slice Header syntax element

15:0 Slice Group Change Rate

Exists If: //Short Format Only

Format: U16-1

 It is a PPS syntax element Use for Slice Header parsing only, to read in

slice_group_change_cycle, if any, but is not used by H/W, i.e. no slice group support.

16

 [ExistsIf]: Short

Format only

31 Inter View Order Disable

Project: BDW

Exists If: //Short Format Only

 It indicates how to append inter-view picture into initial sorted reference list. (due to

ambiguity in the MVC Spec)

Value Name Description

0h Default [Default] View Order Ascending

1h Disable View ID Ascending

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 611

MFX_AVC_IMG_STATE
30:22 Reserved

Project: BDW

Format: MBZ

21:18 Max View IDXL1

Project: BDW

Exists If: //Short Format Only

 It is a PPS syntax element corresponding to Anchor/Non-Anchor Reference ListL1 It

indicates the maximum number of inter-view picture for Reference List L1

17:16 Reserved

Project: BDW

Format: MBZ

15:12 Max View IDXL0

Project: BDW

Exists If: //Short Format Only

 Reference ListL0 It indicates the maximum number of inter-view picture for Reference

List L0

11:10 Reserved

Project: BDW

Format: MBZ

9:0 Current Frame View ID

Project: BDW

Exists If: //Short Format Only

 It indicates the View ID of the current decoding frame

 Command Reference: Instructions

612 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_REF_IDX_STATE

MFX_AVC_REF_IDX_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a slice level command and can be issued multiple times within a picture that is comprised of multiple

slices. The same command is used for AVC encoder (PAK mode) and decoder (VLD mode); it is not need in

decoder IT mode.

The inline data of this command is interpreted differently for encoder as for decoder. For decoder, it is

interpreted as RefIdx List L0/L1 as in AVC spec., and it matches with the DXVA2 AVC API data structure for

decoder in VLD mode : RefPicList[2][32] (L0:L1, 0:31 RefPic). But for encoder, it is interpreted as a Reference Index

Mapping Table for L0 and L1 reference pictures. For packing the bits at the output of PAK, the syntax elements

must follow the definition of RefIdxL0/L1 list according to the AVC spec. However, the decoder pipeline was

designed to use a variation of that standard definition, as such a conversion (mapping) is needed to support the

hardware design.

The Reference lists are needed in processing both P and B slice in AVC codec. For P-MB, only L0 list is used; for

B-MB both L0 and L1 lists are needed. For a B-MB that is coded in L1-only Prediction, only L1 list is used.

Programming Notes

DXVA2 specifies that an application will create the RefPicList L0 and L1 and pass onto the driver. The content of

each entry of RefPicList L0/L1 is a 7-bit picture index. This picture index is the same as that of RefFrameList

content. This picture index, however, is not defined the same as the frame store ID (0 to 16, 5-bits) we have

implemented in H/W. Hence, driver is required to manage a table to convert between DXVA2 picture index and

intel frame store ID. As such, the final RefPicList L0/L1 that the driver passes onto the H/W is not the same as

that defined in the DXVA2.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_AVC_REF_IDX_STATE

Format: OpCode

26:24 Command Opcode

Default Value: 1h AVC

Format: OpCode

23:21 SubOpcodeA

Default Value: 0h MFX_AVC_REF_IDX_STATE

Format: OpCode

20:16 SubOpcodeB

Default Value: 4h MFX_AVC_REF_IDX_STATE

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 613

MFX_AVC_REF_IDX_STATE
15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 0008h

Format: =n

 Excludes DWords 0,1

1 31:1 Reserved

Format: MBZ

0 RefPicList Select

Num_ref_idx_l1_active is resulted from the specifications in both PPS and Slice Header for the

current slice. However, since the full reference list L0 and/or L1 are always sent, only present flags

are specified instead.

This parameter is specified for Intel interface only, not present in the DXVA.

Value Name Description

0 RefPicList

0

The list that followed represents RefList L0 (Decoder VLD mode) or Ref Idx

Mapping Table L0 (Encoder PAK mode)

1 RefPicList1 The list that followed represents RefList L1 (Decoder VLD mode) or Ref Idx

Mapping Table L1 (Encoder PAK mode)

 Command Reference: Instructions

614 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_REF_IDX_STATE
2..9 31:0 Reference List Entry

 This set of fields is always present whenever this command is issued.

 It always specifies the full 32 reference pictures in the selected list, regardless they are "existing

picture" or not. If a picture is non-existing, the corresponding entry should be set to all ones.

Each list entry is 1 byte. A 32-bit DW can hold 4 list entries in the following format

 31:24 entry X+3 (e.g. listY_3)

 23:16 entry X+2 (e.g. listY_2)

 15:8 entry X+1 (e.g. listY_1)

 7:0 entry X (e.g. listY_0)

 X is replaced by the paddr[2:0] * 4 ; paddr[5:0] with 0x20 and 0x27, and Y is replaced by 0 or 1.

The byte definition for a reference picture :

 Bit 7 : Non-Existing - indicates that frame store index that should have been at this entry

did not exist and was replaced by an index 0 (a valid entry) for error concealment

 Bit 6 : Long term bit - set this reference picture to be used as long term reference

 Bit 5 : Field picture flag - indicates frame/field

 Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table

index in intel implementation)

 This is the final Reference List L0 or L1 after any reordering specified in the Slice Header as well

as modified by the driver, and its indices values are all translated to the intel specification. If the

reference picture is a frame (Bit5 = 1), frame store ID is always an even number. This list is used

in outputting MV information by the BSD unit in VLD mode. DMV access also reads and writes

Mvlist0 using this frame store ID. If this set of fields is interpreted as Reference Index Mapping

Table L0/L1, the same field alignment is followed, i.e. 4 mapping entries per DW. Each mapping

entry is one byte in size, but only the least significant 5 bits [4:0] is relevant. Driver should zero all

the upper bits [7:5] for each entry.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 615

MFX_AVC_SLICE_STATE

MFX_AVC_SLICE_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a slice level command and can be issued multiple times within a picture that is comprised of multiple

slices. The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT modes).

Programming Notes

MFX_AVC_SLICE_STATE command is not issued for AVC DXVA2 Short Format Bitstream decode, instead

MFD_AVC_SLICEADDR command is executed to retrieve the next slice MB Start Address X and Y by H/W itself.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_AVC_SLICE_STATE

Format: OpCode

26:24 Command Opcode

Default Value: 1h AVC

Format: OpCode

23:21 SubOpcodeA

Default Value: 0h MFX_AVC_SLICE_STATE

Format: OpCode

20:16 Command SubOpcodeB

Default Value: 3h MFX_AVC_SLICE_STATE

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 8h DWORD_COUNT_n

Format: =n

 Excludes DWords 0,1

1 31:4 Reserved

Format: MBZ

 Command Reference: Instructions

616 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_SLICE_STATE
3:0 Slice Type

 It is set to the value of the syntax element read from the Slice Header.

Value Name

0000b P Slice

0001b B Slice

0010b I Slice

0011b-1111b Reserved

Programming Notes

Bits[3:2] must be 0

2 31:30 Reserved

Format: MBZ

29:24 Number of Reference Pictures in Inter-prediction List 1

Format: U6

 This field is valid only for encoding a B Slice, for which it is expected to have at least one entry

in the reference list L1; otherwise (if Slice Type is not a B Slice), this field must be set to 0. This

field can be derived for a B Slice from the Slice Header syntax element NumRefIdxActiveMinus1

as, Num_Ref_Idx_L1 = NumRefIdxActiveMinus1[1] + 1.

Value Name

0-32

23:22 Reserved

Format: MBZ

21:16 Number of Reference Pictures in Inter-prediction List 0

Format: U6

 This field is valid for encoding a P or B Slice, for which it is expected to have at least one entry

in the reference list L0; otherwise (if Slice Type is not a P or B Slice), this field must be set to 0.

This field can be derived for a P or B Slice from the Slice Header syntax element

NumRefIdxActiveMinus1 as, Num_Ref_Idx_L0 = NumRefIdxActiveMinus1[0] + 1.

Value Name

0-32

15:11 Reserved

Format: MBZ

10:8 Log 2 Weight Denom Chroma

Format: U3

Value Name

0-7

7:3 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 617

MFX_AVC_SLICE_STATE
2:0 Log 2 Weight Denom Luma

Format: U3

It is the base 2 logarithm of the denominator for all Luma weighting factors. It is set to the

value of the syntax element read from the Slice Header Pred_Weight_Table().

Value Name

0-7

3 31:30 Weighted Prediction Indicator

 This field indicates the Weighted Prediction mode for a P or B Slice. It is a combined field

corresponding to the syntax element WeightedBiPredIdc or WeightedPredFlag read from the

current active PPS.

 If it is a B-Slice, these bits are interpreted as:

 00b - Specifies the default weighted inter-prediction to be applied 01b - Specifies the explicit

weighted inter-prediction to be applied 10b - Specifies the implicit weighted inter-prediction to

be applied 11b - Reserved (not allowed)

 If it is a P Slice, these bits are interpreted as:

 00b - Disables weighted inter-prediction (Default weighted) 01b - Enables weighted inter-

prediction (Explicit weighted) 10b - 11b - Reserved

Programming Notes

Only when in B Slice with Weighted_Pred_Idc = 1 (explicit weighted prediction), will there be a

L1 and/or a L0 weight+offset tables being sent to the BSD unit through the Slice_State

command. Only when in P Slice with Weighted_Pred_Idc = 1, will there be a L0 weight+offset

table being sent to the BSD.

If Weighted_Pred_Idc != 1 for B Slice or Weighted_Pred_Idc =0 for P Slice, no Slice_State

command should be issued to send these tables. If still being issued, the data is read but

ignored.

DXVA specifies Weighted_Bipred and Weighted_Pred in frame-level state. However, these two

flags are combined and specified in slice level for both P and B slice type.

29 Direct Prediction Type

 Type of direct prediction used for B Slices. This field is valid only for Slice_Type = B Slice;

otherwise, it must be set to 0.

Value Name

0 Temporal

1 Spatial

 Command Reference: Instructions

618 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_SLICE_STATE
28:27 Disable Deblocking Filter Indicator

Value Name Description

00b FilterInternalEdgesFlag is set equal to 1

01b Disable all deblocking operation, no deblocking parameter syntax element is

read; filterInternalEdgesFlag is set equal to 0

10b Macroblocks in different slices are considered not available;

filterInternalEdgesFlag is set equal to 1

11b Reserved Not defined in AVC

26 Reserved

Format: MBZ

25:24 Cabac Init Idc[1:0]

 Specifies the index for determining the initialization table used in the context variable

initialization process.

Value Name

0-2

Programming Notes

Cabac initialization is also dependent on the field/frame picture type, Slice type, and the

current SliceQP value.

23:22 Reserved

Format: MBZ

21:16 Slice Quantization Parameter

 Quantization Parameter for current slice. Derived from PPS and slice_delta_qp syntax element

in Slice Header. It is needed for CABAC context initialization and deblocking filter control. And it

is also used as the starting QP value in the very first MB of a slice. It is in the range of unsigned

integer 0 to 51, for 8-bit pixel bit-depth.

15:12 Reserved

Format: MBZ

11:8 Slice Beta Offset Div2

Format: S3 2's Complement

Range: [-6, 6] Inclusive

Specifies the offset used in accessing the deblocking filter strength tables.

7:4 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 619

MFX_AVC_SLICE_STATE
3:0 Slice Alpha C0 Offset Div2

Format: S3 2's Complement

Range: [-6, 6] Inclusive

Specifies the offset used in accessing the deblocking filter strength tables.

4 31:24 Slice Vertical Position

 This field specifies the position in y-direction of the first macroblock in the Slice in unit of

macroblocks. The fields (Slice_MB_Start_Hor_Pos, Slice_MB_Start_Vert_Pos) are valid in VLD

(decoding) mode only. They are ignored by hardware in decoding IT mode and encoding mode

(whereas the position is provided by the per-macroblock object command). Derived

Programming Notes

Error Handling: Driver needs to check if FirstMbY starts at 0 on the first slice of frame. If not,

driver needs to add a phantom slice with FirstMbX and FirstMbY set to 0.

23:16 Slice Horizontal Position

 This field specifies the position in x-direction of the first macroblock in the Slice in unit of

macroblocks. Derived

Programming Notes

Error Handling: Driver needs to check if FirstMbY starts at 0 on the first slice of frame. If not,

driver needs to add a phantom slice with FirstMbX and FirstMbY set to 0.

15 Reserved

Format: MBZ

14:0 Slice Start Mb Num

Exists If: //Decoder Only

 The MB number (linear MB address in a picture) at the start of a Slice, it must match with the

Slice Horizontal Position (Slice_MB_Start_Hor_Pos) and Vertical Position

(Slice_MB_Start_Vert_Pos) in the picture.

Programming Notes

In creating the Phantom Slice for error concealment, this field should set to the total number

of MB in the current picture + 1.

5 31:24 Reserved

Format: MBZ

23:16 Next Slice Vertical Position

 This field specifies the position in y-direction of the first macroblock in the next Slice in unit of

macroblocks. This field is primarily used for error concealment. In the case that current slice is

the last slice, this field should set to the height of picture (since y-direction is zero-based

numbering).

15:8 Reserved

Format: MBZ

 Command Reference: Instructions

620 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_SLICE_STATE
7:0 Next Slice Horizontal Position

 This field specifies the position in x-direction of the first macroblock in the next Slice in unit of

macroblocks. This field is primarily used for error concealment. In the case that current slice is

the last slice, this field should set to 0.

6

 Encoder

Only

31 Rate Control Counter Enable

 To enable the accumulation of bit allocation for rate control This field enables hardware Rate

Control logic. The rest of the RC control fields are only valid when this field is set to 1.

Otherwise, hardware ignores these fields.

Value Name

0 Disable

1 Enable

30 ResetRateControlCounter

 To reset the bit allocation accumulation counter to 0 to restart the rate control.

Value Name

0 Not Reset

1 Reset

29:28 RC Triggle Mode

Value Name Description

00b Always Rate

Control

Whereas RC becomes active if sum_act > sum_target or sum_act <

sum_target

01b Gentle Rate

Control

whereas RC becomes active if sum_act > upper_midpt or sum_act <

lower_midpt

10b Loose Rate

Control

whereas RC becomes active if sum_act > sum_max or sum_act <

sum_min

11b Reserved

27:24 RC Stable Tolerance

Format: U4

 This field specifies the tolerance required to deactivate RC once it has been triggered.

Value Name

0-15

23 RC Panic Enable

 If this field is set to 1, RC enters panic mode when sum_act > sum_max. RC Panic Type field

controls what type of panic behavior is invoked.

Value Name

0 Disable

1 Enable

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 621

MFX_AVC_SLICE_STATE
22 RC Panic Type

 This field selects between two RC Panic methods

Value Name

0 QP Panic

1 CBP Panic

Programming Notes

If it is set to 0, in panic mode, the macroblock QP is maxed out, setting to requested QP +

QP_max_pos_mod. If it is set to 1, for an intra macroblock, AC CBPs are set to zero (note that

DC CBPs are not modified). For inter macroblocks, AC and DC CBPs are forced to zero.

21 MB Type Direct Conversion Disable

Exists If: //B-Slice

 For all Macroblock type conversions in different slices, refer to Section "Macroblock Type

Conversion Rules" in the same volume.

Value Name

0 Enable direct mode conversion

1 Disable direct mode conversion

Programming Notes

This field is zero for all other slices other than B-Slice.

20 MB Type Skip Conversion Disable

Exists If: //P-Slice or B-Slice

 For all Macroblock type conversions in different slices, refer to Section "Macroblock Type

Conversion Rules" in the same volume.

Value Name

0 Enable skip type conversion

1 Disable skip type conversion

Programming Notes

This field is zero for all other slices other than P_Slice or B-Slice. \

19 Is Last Slice

 It is used by the zero filling in the Minimum Frame Size test.

Value Name Description

1 Current slice is the last slice of a picture

0 Current slice is NOT the last slice of a picture

18 Reserved

 Command Reference: Instructions

622 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_SLICE_STATE
17 Header Insertion Present in Bitstream

Value Name Description

0 No header insertion into the output bitstream buffer, in front of the current

slice encoded bits.

1 Header insertion into the output bitstream buffer is present, and is in front of

the current slice encoded bits.

Programming Notes

Note: In VDEnc mode, the slice header PAK object maximum size is 25 DWs.

16 SliceData Insertion Present in Bitstream

Value Name Description

0 No Slice Data insertion into the output bitstream buffer

1 Slice Data insertion into the output bitstream buffer is present.

15 Tail Insertion Present in bitstream

Value Name Description

0 No tail insertion into the output bitstream buffer, after the current slice

encoded bits

1 Tail insertion into the output bitstream buffer is present, and is after the

current slice encoded bits.

14 Reserved

Format: MBZ

13 EmulationByteSliceInsertEnable

 To have PAK outputting SODB or EBSP to the output bitstream buffer

Value Name Description

0 outputting RBSP

1 outputting EBSP

12 CabacZeroWordInsertionEnable

 To pad the end of a SliceLayer RBSP to meet the encoded size requirement.

Value Name Description

0 No Cabac_Zero_Word Insertion

1 Allow internal Cabac_Zero_Word generation and append to the end of RBSP

(effectively can be used as an indicator for last slice of a picture, if the

assumption is only the last slice of a picture needs to insert

CABAC_ZERO_WORDs.

11:8 Reserved

Format: MBZ

7:4 Slice ID [3:0]

 To identify the output data (coding information record) returned for rate control from PAK to

ENC and VPP.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 623

MFX_AVC_SLICE_STATE
3:2 Reserved

Format: MBZ

1:0 Stream ID [1:0]

 To identify the output data (coding information record) returned for rate control from PAK to

ENC and VPP.

7

 Encoder

Only

31:29 Reserved

Format: MBZ

28:0 Indirect PAK-BSE Data Start Address (Write)

Exists If: //AVC Encode Mode

 This field specifies the memory starting address (offset) to write out the compressed bitstream

data from the BSE processing. This pointer is relative to the MFC Indirect PAK-BSE Object Base

Address. It is a byte-aligned address for the AVC bitstream data in both CABAC/CAVLC Modes.

For Write, there is no need to have a data length field. It is assumed the global memory bound

check specified in the IND_OBJ_BASE_ADDRESS command (Indirect PAK-BSE Object Access

Upper Bound) will take care of any illegal write access.

Value Name

0 - 512MB

8

 Encoder

Only

31:24 Magnitude of QP Max Negative Modifier

Format: U8

 This field specifies the lower limit of the QP modifier.

Value Name

0-51

23:16 Magnitude of QP Max Positive Modifier

Format: U8

 This field specifies the upper limit of the QP modifier.

Value Name

0 - 15

15:12 Shrink Param - Shrink Resistance

Format: U4

 This field specifies the additional points added each time decreased correction is invoked.

Value Name

0 - 15

11:8 Shrink Param - Shrink Init

Format: U4

 This field specifies the initial points required to trip decreased control.

Value Name

0 - 15

 Command Reference: Instructions

624 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_SLICE_STATE
7:4 Grow Param - Grow Resistance

Format: U4

 This field specifies the additional points added each time increased correction is invoked.

Value Name

0 - 15

3:0 Grow Param - Grow Init

Format: U4

 This field specifies the initial points required to trip increased control.

Value Name

0 - 15

9

 Encoder

Only

31 RoundInterEnable

Format: Enable

 When this bit is not set, RoundInter defaults to 2 to match SNB.

30:28 RoundInter

Format: U3

 Rounding precision for Inter quantized coefficients

Value Name

000b +1/16 [Default]

001b +2/16

010b +3/16

011b +4/16

100b +5/16

101b +6/16

110b +7/16

111b +8/16

27 RoundIntraEnable

Format: Enable

 When this bit is not set, RoundIntra defaults to 4 to match SNB.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 625

MFX_AVC_SLICE_STATE
26:24 RoundIntra

Format: U3

 Rounding precision for Intra quantized coefficients

Value Name

000b +1/16 [Default]

001b +2/16

010b +3/16

011b +4/16

100b +5/16

101b +6/16

110b +7/16

111b +8/16

23:20 Correct 6

Format: U4

 This field specifies the points used in the lowermost RC region when sum_act <= sum_min.

Value Name

0 - 15

19:16 Correct 5

Format: U4

 This field specifies the points used in the fifth RC region when sum_act > sum_min but <=

lower_midpt.

Value Name

0 - 15

15:12 Correct 4

Format: U4

 This field specifies the points used in the fourth RC region when sum_act > lower_midpt but

<= sum_target.

Value Name

0 - 15

11:8 Correct 3

Format: U4

 This field specifies the points used in the third RC region when sum_act > sum_target but <=

upper_midpt.

Value Name

0 - 15

 Command Reference: Instructions

626 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_SLICE_STATE
7:4 Correct 2

Format: U4

 This field specifies the points used in the second RC region when sum_act > upper_midpt but

<= sum_max.

Value Name

0 - 15

3:0 Correct 1

Format: U4

 This field specifies the points used in the topmost RC region when sum_act > sum_max.

Value Name

0 - 15

10

 Encoder

Only

31:28 ClampValues - CV7

27:24 CV6

23:20 CV5

19:16 CV4

15:12 CV3

11:8 CV2

7:4 CV1

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 627

MFX_AVC_SLICE_STATE
3:0 CV0 - Clamp Value 0

Format: U4

If the magnitude of coefficients at locations assigned with CV0 (mapping shown below) exceeds

2CV0-1, they are replaced with 2CV0-1. For coefficients at locations marked as 'none', no clamping

is performed. The following mappings are only applied to luma and chroma blocks\subblocks

containing AC coefficiencts (blocks\sublocks with only DC coeffs will not be clamped).

For 4x4 frame block, each coefficient is mapped to one of the eight CV values as

following:

none CV7 CV5 CV4

CV7 CV6 CV4 CV3

CV5 CV4 CV2 CV1

CV4 CV3 CV1 CV0

For 8x8 frame block, each coefficient is mapped to one of the eight CV values as

following:

none none CV7 CV6 CV5 CV4 CV3 CV3

none CV7 CV6 CV5 CV4 CV3 CV3 CV2

CV7 CV6 CV5 CV4 CV3 CV3 CV2 CV2

CV6 CV5 CV4 CV3 CV3 CV2 CV2 CV1

CV5 CV4 CV3 CV3 CV2 CV2 CV1 CV1

CV4 CV3 CV3 CV2 CV2 CV1 CV1 CV0

CV3 CV3 CV2 CV2 CV1 CV1 CV0 CV0

CV3 CV2 CV2 CV1 CV1 CV0 CV0 CV0

For 4x4 field block, each coefficient is mapped to one of the eight CV values as following:

none CV6 CV3 CV1

CV7 CV6 CV3 CV1

CV5 CV4 CV2 CV0

CV5 CV4 CV2 CV0

For 8x8 field block, each coefficient is mapped to one of the eight CV values as following:

none none CV6 CV5 CV4 CV3 CV2 CV1

none CV7 CV6 CV5 CV4 CV3 CV2 CV1

CV7 CV6 CV5 CV4 CV3 CV3 CV2 CV1

CV7 CV6 CV5 CV4 CV3 CV2 CV2 CV1

CV6 CV5 CV4 CV4 CV3 CV2 CV1 CV0

CV6 CV5 CV4 CV3 CV2 CV2 CV1 CV0

CV5 CV5 CV4 CV3 CV2 CV1 CV1 CV0

CV5 CV5 CV4 CV3 CV2 CV1 CV1 CV0

Value Name

0 - 15

 Command Reference: Instructions

628 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_AVC_WEIGHTOFFSET_STATE

MFX_AVC_WEIGHTOFFSET_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a slice level command and can be issued multiple times within a picture that is comprised of multiple

slices. The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT modes). However,

since for AVC decoder VLD and IT modes, and AVC encoder mode, the implicit weights are computed in

hardware, this command is not issued. For encoder, regardless of the type of weight calculation is active for the

current slice (default, implicit or explicit), they are all sent to the PAK as if they were all in explicit mode. However,

for implicit weight and offset, each entry contains only a 16-bit weight and no offset (offset = 0 always in implicit

mode and can be hard-coded inside the hardware).The weights (and offsets) are needed in processing both P

and B slice in AVC codec. For P-MB, at most only L0 list is used; for B-MB both L0 and L1 lists may be needed. For

a B-MB that is coded in L1-only Prediction, only L1 list is sent.The content of this command matches with the

DXVA2 AVC API data structure for explicit prediction mode only : Weights[2][32][3][2] (L0:L1, 0:31 RefPic, Y:Cb:Cr,

W:0)

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_ AVC_ WEIGHTOFFSET_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 1h AVC_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 5h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 60h Excludes DWord (0,1)

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 629

MFX_AVC_WEIGHTOFFSET_STATE
1 31:1 Reserved

Format: MBZ

0 Weight and Offset Select

 It must be set in consistent with the WeightedPredFlag and WeightedBiPredIdc in the Img_State

command. This parameter is specified for Intel interface only, not present in the DXVA. For

implicit even though only one entry may be used, still loading the whole 32-entry table.

Value Name Description

0 Weight and Offset L0

table

The list that followed is associated with the weight and offset

for RefPicList L0

1 Weight and Offset L1

table

The list that followed is associated with the weight and offset

for RefPicList L1

2..97 31:0 WeightOffset

WeightOffset[L=L0=0 or L1=1][i=0 to 31][Y=0/Cb=1/Cr=2][weight=0/offset=1]

WeightOffset[L][i=0][Y=0][Weight=0], WeightOffset[L][i=0][Y=0][Offset=1] WeightOffset[L][

i=0][Cb=1][Weight=0], WeightOffset[L][i=0][Cb=1][Offset=1] WeightOffset[L][

i=0][Cr=2][Weight=0], WeightOffset[L][i=0][Cr=2][Offset=1]: WeightOffset[L][

i=31][Y=0][Weight=0], WeightOffset[L][i=31][Y=0][Offset=1] WeightOffset[L][

i=31][Cb=1][Weight=0], WeightOffset[L][i=31][Cb=1][Offset=1] WeightOffset[L][

i=31][Cr=2][Weight=0], WeightOffset[L][i=31][Cr=2][Offset=1]

Format for explicit: Both Weight and Offset are S15 in two's compliment, with a valid range

from -128 to 128 Format for implicit: S15

This set of fields is always present whenever this command is issued. The full table, one entry

for each reference picture, is always specified. Any reference list L0/L1[i] that does not exist, the

corresponding weight and offset are set to 0. Weight and Offset are 2 byte each. Apair of

Weight and Offset forms a dword, with Weight in the LOWER word and Offset in the HIGHER

word. WeightOffset[L0=0][i=0 to 31][Y=0] (i.e. luma_weight_l0[i]) are specified for the

weighting and offset factors applied to the luma prediction value for list 0 prediction using

RefPicList0[i] (one-to-one correspondence in i). When luma_weight_l0_flag (Slice Header

syntax element) is equal to 1, the value of luma_weight_l0[i] shall be in the range of -128 to

127. When luma_weight_l0_flag is equal to 0, luma_weight_l0[i] shall be inferred to be equal to

2luma_log2_weight_denom for RefPicList0[i]. luma_log2_weight_denom is a Slice Header

syntax element. WeightOffset[L0=0][i=0 to 31][Cb=1] (i.e. chromaCb_weight_l0[i]) are

specified for the weighting and offset factors applied to the chroma Cb prediction values for list

0 prediction using RefPicList0[i] (one-to-one correspondence in i). When

chroma_weight_l0_flag (Slice Header syntax element) is equal to 1, the value of

chromaCb_weight_l0[i] shall be in the range of -128 to 127. When chroma_weight_l0_flag is

equal to 0, chromaCb_weight_l0[i] shall be inferred to be equal to

2chroma_log2_weight_denom for RefPicList0[i]. chroma_log2_weight_denom is a Slice Header

syntax element. WeightOffset[L0=0][i=0 to 31][Cr=2] (i.e. chromaCr_weight_l0[i]) are specified

for the weighting and offset factors applied to the chroma Cr prediction values for list 0

prediction using RefPicList0[i] (one-to-one correspondence in i). When chroma_weight_l0_flag

(Slice Header syntax element) is equal to 1, the value of chromaCr_weight_l0[i] shall be in the

range of -128 to 127. When chroma_weight_l0_flag is equal to 0, chromaCr_weight_l0[i] shall

be inferred to be equal to 2chroma_log2_weight_denom for RefPicList0[i].

 Command Reference: Instructions

630 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This frame-level state command is used to specify all the buffer base addresses needed for the operation of the

AVC Bit Stream Processing Units (for decoder, it is BSD Unit; for encoder, it is BSE Unit) For both encoder and

decoder, currently it is assumed that all codec standards can share the same BSP_BUF_BASE_STATE. The

simplicity of this command is the result of moving all the direct MV related processing into the ENC Subsystem.

Since all implicit weight calculations and directMV calculations are done in ENC and all picture buffer

management are done in the Host, there is no need to provide POC (POC List - FieldOrderCntList, CurrPic POC -

CurrFieldOrderCnt) information to PAK. For decoder, all the direct mode information are sent in a separate slice-

level command (AVC_DIRECTMODE_STATE command). In addition, in Encoder, the row stores for CABAC

encoding and MB Parameters Construction (MPC) are combined into one single row store. The row stores

specified in this command do not combine with those specified in the MFC_PIPE_BUF_ADDR_STATE command

for hardware simplification reason.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Pipeline

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 4h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 631

MFX_BSP_BUF_BASE_ADDR_STATE
11:0 DWord Length

Default Value: 8h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:6 BSD/MPC Row Store Scratch Buffer Base Address - Read/Write

This field provides the base address of the scratch buffer used by BSD (decoder) and MPC

(encoder) unit to store MB information of the previous row for coding each macroblock in the

current row. It is a private buffer used by the BSD (decoder) and MPC (encoder) hardware

only. Its content is not accessible by software. ThisRow Store buffer must be 64-byte cacheline

aligned. Hardware uses the horizontal address of the current macroblock to address this Row

Store.

For AVC BSD, 2 cacheline (CL) per MB when in MBAFF mode (row of MB pair); 1 CL per MB for

non-MBAFF. So, to support 256 MBs per row (4K screen resolution), 2 * 256 * 64 bytes =

32,768 bytes are required. Cacheline alignment should be followed. For AVC MPC, 1 cachline

for non-MBAFF, 2 cachelines for MBAFF per MB. For VC1, the BSD row store is 512-bit (one

cacheline) per MB, times the number of MBs per picture MB row.

5:0 Reserved

Project: BDW

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 BSD/MPC Row Store Scratch Buffer Base Address - Read/Write [47:32]

Project: BDW

Description Project

This field is for the upper range of BSD/MPC Row Store Scratch Buffer Base Address.

This field is used for 48-bit addressing. BDW

3

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

632 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_BSP_BUF_BASE_ADDR_STATE
11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 BSD/MPC Row Store Scratch Buffer - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for BSD/MPC Row Store Scratch

Buffer Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for BSD/MPC Row Store Scratch Buffer Base Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 633

MFX_BSP_BUF_BASE_ADDR_STATE
1:0 Age for QUADLRU (AGE) BSD/MPC Row Store Scratch Buffer Base Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

4 31:6 MPR Row Store Scratch Buffer Base Address - Read/Write (Decoder Only)

 This field provides the base address of the scratch buffer used by decoder's MPR unit to store

MB information of the previous row for decoding each macroblock in the current row. It is a

private buffer used by the MPR hardware only. Its content is not accessible by software.

Programming Notes

The MPR Row Store buffer must be 64-byte cacheline aligned.Hardware uses the horizontal

address of each macroblock to address the MPR Row Store. Except ILDB Control Data, all

other operations does not cross slice boundary. This field is specified in frame-level.2

cacheline (CL) per MB when in MBAFF mode (row of MB pair); 1 CL per MB for non-MBAFF,

So, to support 256 MBs per row (4K screen resolution), 2 * 256 * 64 bytes = 32,768 bytes are

required. Cacheline alignment should be followed.This field is only valid for AVC decoder

mode

5:0 Reserved

Project: BDW

Format: MBZ

5

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MPR Row Store Scratch Buffer Base Address - Read/Write [47:32]

Project: All

 This field is for the upper range of MPR Row Store Scratch Buffer Base Address. This field is

used for 48-bit addressing.

6

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

634 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_BSP_BUF_BASE_ADDR_STATE
14:13 Reserved

Project: BDW

Format: MBZ

12 Reserved

Project: BDW

Format: MBZ

11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 MPR Row Store Scratch Buffer - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for MPR Row Store Scratch

Buffer Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 635

MFX_BSP_BUF_BASE_ADDR_STATE
4:3 Target Cache (TC) MPR Row Store Scratch Buffer Base Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) MPR Row Store Scratch Buffer Base Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

7 31:6 Bitplane Read Buffer Base Address

Project: All

 It must be cacheline aligned (i.e. 64 bytes address boundary), so lower bit 0 to 5 are used for

controlling information.(In Cantiga, this field must be dword aligned.)Bitplane buffer is a linear

buffer. In VC1 Long format, it is written by an application. In VC1 Short Format, it is written and

read by H/W only.For VC1 intel Long Format : it is a read-only bufferFor VC1 DXVA2 Short

Format : it is a write and a read bufferThis field is only valid for VC1 decoder mode.

5:0 Reserved

Project: BDW

Format: MBZ

8

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 Bitplane Read Buffer Base Address - Read/Write [47:32]

Project: All

 This field is for the upper range of Bitplane Read Buffer Base Address. This field is used for 48-

bit addressing.

 Command Reference: Instructions

636 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_BSP_BUF_BASE_ADDR_STATE
9

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Bitplane Read Buffer - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Bitplane Read Buffer Base

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 637

MFX_BSP_BUF_BASE_ADDR_STATE
4:3 Target Cache (TC) Bitplane Read Buffer Base Address

Project: BDW

This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of

"00" points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access

will be allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM.

Setting of "10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only

option for a memory access to be allocated in L3$ as well as LLC/eLLC

00b: eLLC Only ("00" setting points TC selection to PTE which defaults to eLLC)

01b: LLC Only (Works at the allocation time, later victimization from LLC downgrades the line to

eLLC if present).

10b: LLC/eLLC Allowed.

11b: L3, LLC, eLLC Allowed.

Errata BDW:A-E (FIXED BY:G0 Stepping):

For all system that does NOT use SVM (i.e. coherent L3$ surfaces), back snoops from LLC has to

be disabled (Dis_GtCvUpdtOnRd = “1”). Than target Cache settings can be programmed as

POR requirements of L3/LLC/eDRAM caching.

For all systems that does use SVM (i.e. coherent L3$ surfaces), the recomended setting would

be "00" in target cache settings. In case of L3 surfaces, the performance has to be tuned

between "00" and "11" setting based on the benefits of L3 caching outweighting the

degradation of backsnoops.

Post G0-stepping, the above w/a for coherent L3$ surfaces is not needed.

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) Bitplane Read Buffer Base Address

Project: BDW

Format: Enable

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age (“0,1,2”) it tends to stay longer in the cache. This option is

given to GFX software to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

 Command Reference: Instructions

638 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_DBK_OBJECT

MFX_DBK_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_DBK_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h Common

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 9h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 0Bh Excludes DWord (0,1)

Format: =n

 Note: Regardless of the mode, inline data must be present in this command

1 31:6 Pre Deblocking Source Address

Format: GraphicsAddress[31:6]

 Specifies the 4K byte aligned frame buffer address for outputting the non-filtered

reconstructed YUV picture (i.e. output of final adder in each codec standard, and prior to the

deblocking filter unit).

5:0 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 639

MFX_DBK_OBJECT
2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Pre Deblocking Source Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Pre-Deblocking Source Address. This field is used for 48-bit

addressing.

3

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Pre Deblocking Source - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

640 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_DBK_OBJECT
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Pre Deblocking Source

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Pre Deblocking Source Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Pre Deblocking Source Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

4 31:6 Deblocking Control Address

Format: GraphicsAddress[31:6]

 Specifies the 4K byte aligned frame buffer address as input MB-level deblocking parameters to

control the way hardware deblock the each micro-block. One 512-bit cacheline is allocated for

each Macroblock in raster scan order.

5:0 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 641

MFX_DBK_OBJECT
5

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Deblocking Control Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Deblocking Control Address (DeblockCntrlAddr). This field is

used for 48-bit addressing.

6

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Deblocking Control - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

642 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_DBK_OBJECT
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Deblocking Control Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Deblocking Control Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Deblocking Control Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

7 31:6 Deblocking Destination Address

Format: GraphicsAddress[31:6]

 Specifies the 4K byte aligned frame buffer address for outputting the post-loop filtered

reconstructed YUV picture (i.e. output of the deblocking filter unit)

5:0 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 643

MFX_DBK_OBJECT
8

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Deblocking Destination Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Deblocking Destination Address. This field is used for 48-bit

addressing.

9

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Deblocking Destination - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

644 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_DBK_OBJECT
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Deblocking Destination

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Deblocking Destination Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Deblocking Destination Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

10 31:6 Deblock Row Store Address

Format: GraphicsAddress[31:6]

 This field provides the base address of the scratch buffer (read and write) used by the

deblocking filter unit to store MB information of the previous row for filtering of each

macroblock in the current row. The Deblocking Filter Row Store buffer must be 64-byte

cacheline aligned.Hardware uses the horizontal address of the current macroblock to address

the Deblocking Filter Row Store.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 645

MFX_DBK_OBJECT
5:0 Reserved

Project: BDW

Format: MBZ

11

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 Deblock Row Store Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Deblock Row Store Address (DeblockRowStoreAddr). This

field is used for 48-bit addressing.

12

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12 Reserved

Project: BDW

Format: MBZ

11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Deblock Row Store - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

646 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_DBK_OBJECT
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Deblock Row Store Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Deblock Row Store Address

Project: BDW

This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of

"00" points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access

will be allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM.

Setting of "10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only

option for a memory access to be allocated in L3$ as well as LLC/eLLC

00b: eLLC Only ("00" setting points TC selection to PTE which defaults to eLLC)

01b: LLC Only (Works at the allocation time, later victimization from LLC downgrades the line to

eLLC if present).

10b: LLC/eLLC Allowed.

11b: L3, LLC, eLLC Allowed.

Errata BDW:A-E (FIXED BY:G0 Stepping):

For all system that does NOT use SVM (i.e. coherent L3$ surfaces), back snoops from LLC has to

be disabled (Dis_GtCvUpdtOnRd = “1”). Than target Cache settings can be programmed as

POR requirements of L3/LLC/eDRAM caching.

For all systems that does use SVM (i.e. coherent L3$ surfaces), the recomended setting would

be "00" in target cache settings. In case of L3 surfaces, the performance has to be tuned

between "00" and "11" setting based on the benefits of L3 caching outweighting the

degradation of backsnoops.

Post G0-stepping, the above w/a for coherent L3$ surfaces is not needed.

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 647

MFX_DBK_OBJECT
1:0 Age for QUADLRU (AGE) for Deblock Row Store Address

Project: BDW

Format: Enable

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age (“0,1,2”) it tends to stay longer in the cache. This option is

given to GFX software to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

 Command Reference: Instructions

648 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_FQM_STATE

MFX_FQM_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a common state command for AVC encoder modes. For encoder, it represents both the forward QM

matrices as well as the decoding QM matrices.This is a Frame-level state. Only Scaling Lists specified by an

application are being sent to the hardware. The driver is responsible for determining the final set of scaling lists

to be used for decoding the current slice, based on the AVC Spec Table 7-2 (Fall-Back Rules A and B).In MFX AVC

PAK mode, PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are sent as in MFD in

raster scan order. But the Forward Q scaling lists are sent in column-wise raster order (column-by-column) to

simplify the H/W. Driver will perform all the scan order conversion for both ForwardQ and IQ.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 8h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 20h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 649

MFX_FQM_STATE
1:0 AVC

Exists If: //AVC- Decoder Only

For AVC QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name

0 AVC_4x4_Intra_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)

1 AVC_4x4_Inter_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)

2 AVC_8x8_Intra_MATRIX

3 AVC_8x8_Inter_MATRIX

1:0 MPEG2

Exists If: //MPEG2- Decoder Only

For MPEG2 QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name

0 MPEG_INTRA_QUANTIZER_MATRIX

1 MPEG_NON_INTRA_QUANTIZER_MATRIX

2-3 Reserved

2..33 31:0 Forward Quantizer Matrix

Project: All

Format: U32

 The format of a Quantizer Matrix is an 8x8 matrix in raster order. Each element is an

unsigned byte.

 Command Reference: Instructions

650 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

This state command provides the memory base addresses for all row stores, StreamOut buffer and

reconstructed picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores

of the Bit Stream Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level

state command and is common among all codec standards and for both encoder and decoder operating

modes. However, some fields may only applicable to a specific codec standard. All Pixel Surfaces (original,

reference frame and reconstructed frame) in the Encoder are programmed with the same surface state (NV12

and TileY format), except each has its own frame buffer base address. In the tile format, there is no need to

provide buffer offset for each slice; since from each MB address, the hardware can calculated the

corresponding memory location within the frame buffer directly.

The MFX_IND_OBJ_BASE_ADDR command sets the memory base address pointers for the corresponding

Indirect Object Data Start Addresses (Offsets) specified in each OBJECT commands. The characteristic of these

indirect object data is their variable size (per MB or per Slice). Hence, each OBJECT command must specify the

indirect object data offset from the base address to start fetching or writing object data.

While the use of base address is unconditional, the indirection can be effectively disabled by setting the base

address to zero.

For decoder, there are:

 1 read-only per-slice indirect object in the BSD_OBJECT Command, and

 2 read-only per-MB indirect objects in the IT_OBJECT Command.

For decoder: the Video Command Streamer (VCS) will perform the memory access bound check automatically

using the corresponding MFC Indirect Object Access Upper Bound specification. If any access is at or beyond

the upper bound, zero value is returned. The request to memory is still being sent, but the corresponding

codec's BSD unit will detect this condition and perform the zeroing return. If the Upper Bound is turned off, the

beyond bound request will return whatever on the bus (invalid data).

For encoder, there are:

 1 read-only per-MB indirect object in the PAK_OBJECT Command, and

 1 write-only per-slice indirect object in the PAK Slice_State Command

For encoder: whenever an out of bound address accessing request is generated, VMX will detect such requests

and snap the address to the corresponding [indirect object base address + indirect data start address]. VMX

will return all 0s as the data to the requestor. NotationDefinitionPhysicalAddress[n:m] Corresponding bits of a

physical graphics memory byte address (not mapped by a GTT) GraphicsAddress[n:m] Corresponding bits of an

absolute, virtual graphics memory byte address (mapped by a GTT).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 651

MFX_IND_OBJ_BASE_ADDR_STATE
28:27 Pipeline

Default Value: 2h MFX_IND_OBJ_BASE_ADDR_STATE

Format: OpCode

26:24 Common Opcode

Default Value: 0h MFX_IND_OBJ_BASE_ADDR_STATE

Format: OpCode

23:21 Sub OpcodeA

Default Value: 0h MFX_IND_OBJ_BASE_ADDR_STATE

Format: OpCode

20:16 SubOpcodeB

Default Value: 3h MFX_IND_OBJ_BASE_ADDR_STATE

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 0018h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:12 MFX Indirect Bitstream Object - Base Address (Decoder and Stitch Modes)

Project: All

Format: GraphicsAddress[31:12]

 Specifies the 4K-byte aligned memory base address for the read-only indirect data object

pointed in the MFD_XXX_BSD_OBJECT command for fetching (reading) the compressed Slice

Data.This field is only valid in MPEG2, AVC and VC1 decoder VLD mode.

11:6 Reserved

Format: MBZ

5:0 Reserved

Project: BDW

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

 Reserved for 64-bit address extension.

 Command Reference: Instructions

652 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
15:0 MFX Indirect Bitstream Object - Destination Address (Decoder and Stitch Modes)[47:32]

Project: All

Description Project

This field is for the upper range of MFX Indirect Bitstream Object Base Address.

This field is used for 48-bit addressing. BDW

3

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 MFX Indirect Bitstream ObjectBase - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 653

MFX_IND_OBJ_BASE_ADDR_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for MFX Indirect Bitstream

ObjectBase Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) MFX Indirect Bitstream ObjectBase Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) MFX Indirect Bitstream ObjectBase Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

4 31:12 MFX Indirect Bitstream Object - Access Upper Bound (Decoder and Stitch Modes)

Format: GraphicsAddress[31:12]

 This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access

by the indirect data object in the MFD_XXX_BSD_OBJECT command for the compressed Slice

Data. Indirect data accessed at this address and beyond will return as 0 by the hardware.

Setting this field to 0 will cause this range check to be ignored.If non-zero, this address must be

greater than the MFX Indirect Bitstream ObjectBase Address state.Hardware ignores this field if

indirect data is not present, i.e. the Indirect Data Length field of the MFD_XXX_BSD_OBJECT

command is set to 0.This field is only valid in MPEG2, AVC, VP8, and VC1 decoder VLD mode.

 Command Reference: Instructions

654 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
11:0 Reserved

Format: MBZ

5

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFX Indirect Bitstream Object UpperBound (Decoder and Stitch Modes)[47:32]

Project: BDW

Description Project

This field is for the upper range of MFX Indirect Bitstream Object UpperBound.

This field is used for 48-bit addressing. BDW

6 31:12 MFX Indirect MV Object - Base Address

Format: GraphicsAddress[31:12]

 Specifies the 4K-byte aligned memory base address for the read-only indirect data object

pointed in the encoder MFC_AVC_PAK_OBJECT command or the decoder MFD_IT_OBJECT

command for fetching the per-MB MV data.This field is only valid in AVC encoder mode or in

AVC decoder IT mode

11:6 Reserved

Format: MBZ

5:0 Reserved

Project: BDW

Format: MBZ

7

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFX Indirect MV Object Base Address [47:32]

Project: All

Description Project

This field is for the upper range of MFX Indirect MV Object Base Address.

This field is used for 48-bit addressing. BDW

8

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 655

MFX_IND_OBJ_BASE_ADDR_STATE
14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 MFX Indirect MV Object - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for MFX Indirect MV ObjectBase

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) MFX Indirect MV ObjectBase Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

 Command Reference: Instructions

656 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
2 Reserved

1:0 Age for QUADLRU (AGE) MFX Indirect MV ObjectBase Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

9 31:12 MFX Indirect MV Object Access Upper Bound

Format: GraphicsAddress[31:12]

 This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access

by the indirect data object in the MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command for the

per-MB MV data. Indirect data accessed at this address and beyond will return as 0 by the

hardware. Setting this field to 0 will cause this range check to be ignored.If non-zero, this

address must be greater than the MFX Indirect MV Object Base Address state.Hardware ignores

this field if indirect data is not present, i.e. the Indirect Data Length field of the

MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command is set to 0.This field is only valid in AVC

encoder mode or in AVC decoder IT mode.

11:0 Reserved

Format: MBZ

10

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFX Indirect MV Object UpperBound [47:32]

Project: All

Description Project

This field is for the upper range of MFX Indirect MV Object Base Address.

This field is used for 48-bit addressing. BDW

11 31:12 MFD Indirect IT-COEFF Object - Base Address (Decoder Only)

Format: GraphicsAddress[31:12]

 Specifies the 4K-byte aligned memory base address for the read-only indirect data object

pointed in the MFD_IT_OBJECT command for fetching (reading) the per-MB non-scaled

coefficient data (all inverse scaling and quantization are done in hardware).This field is only

valid in MPEG2, AVC and VC1 decoder IT mode.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 657

MFX_IND_OBJ_BASE_ADDR_STATE
11:6 Reserved

Format: MBZ

5:0 Reserved

Project: BDW

Format: MBZ

12

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFD Indirect IT-COEFF Object Base Address [47:32]

Project: BDW

Description Project

This field is for the upper range of MFX Indirect IT-COEFF Object Base Address.

This field is for the upper range of MFX Indirect MV Object Base Address.

This field is used for 48-bit addressing. BDW

13

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 MFD Indirect IT-COEFF Object Desitnation - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

658 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for MFD Indirect IT-COEFF

ObjectBase Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) MFD Indirect IT-COEFF ObjectBase Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) MFD Indirect IT-COEFF ObjectBase Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

14 31:12 MFD Indirect IT-COEFF Object - Access Upper Bound (Decoder Only)

Format: GraphicsAddress[31:12]

 This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access

by the indirect data object in the MFD_IT_OBJECT command for the per-MB non-scaled

coefficient data. Indirect data accessed at this address and beyond will return as 0 by the

hardware. Setting this field to 0 will cause this range check to be ignored.If non-zero, this

address must be greater than the MFD Indirect IT-COEFF Object Base Address state.Hardware

ignores this field if indirect data is not present, i.e. the Indirect COEFF Data Length field of the

MFD_IT_OBJECT command is set to 0.This field is only valid in MPEG2, AVC and VC1 decoder IT

mode.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 659

MFX_IND_OBJ_BASE_ADDR_STATE
11:0 Reserved

Format: MBZ

15

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFD Indirect IT-COEFF Object UpperBound [47:32]

Project: BDW

Description Project

This field is for the upper range of MFX Indirect IT-COEFF Object UpperBound.

This field is for the upper range of MFX Indirect MV Object Base Address.

This field is used for 48-bit addressing. BDW

16 31:12 MFD Indirect IT-DBLK Object - Base Address (Decoder Only)

Format: GraphicsAddress[31:12]

 Specifies the 4K-byte aligned memory base address for the read-only indirect data object

pointed in the MFD_IT_OBJECT command for fetching (reading) the per-MB Deblocking filter

control data.This field is only valid in AVC decoder IT mode.

11:6 Reserved

Format: MBZ

5:0 Reserved

Project: BDW

Format: MBZ

17

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFD Indirect IT-DBLK Object Base Address [47:32]

Project: BDW

Description Project

This field is for the upper range of MFX Indirect IT-DBLK Object Base Address.

This field is used for 48-bit addressing. BDW

18

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

660 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 MFD Indirect IT-DBLK Object - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for MFD Indirect IT-DBLK

ObjectBase Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) MFD Indirect IT-DBLK ObjectBase Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 661

MFX_IND_OBJ_BASE_ADDR_STATE
2 Reserved

1:0 Age for QUADLRU (AGE) MFD Indirect IT-DBLK ObjectBase Address

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

19 31:12 MFD Indirect IT-DBLK Object - Access Upper Bound (Decoder Only)

Format: GraphicsAddress[31:12]

 This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access

by the indirect data object in the MFD_IT_OBJECT command for the per-MB Deblocking filter

control data. Indirect data accessed at this address and beyond will return as 0 by the hardware.

Setting this field to 0 will cause this range check to be ignored.If non-zero, this address must be

greater than the MFD Indirect IT-DBLK Object Base Address state.Hardware ignores this field if

indirect data is not present, i.e. the Indirect Deblocking Control Data Length field of the

MFD_IT_OBJECT command is set to 0.This field is only valid in AVC decoder IT mode.

11:0 Reserved

Format: MBZ

20

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFD Indirect IT-DBLK Object UpperBound [47:32]

Project: All

Description Project

This field is for the upper range of MFX Indirect IT-DBLK Object UpperBound.

This field is used for 48-bit addressing. BDW

21 31:12 MFC Indirect PAK-BSE Object - Base Address (Encoder Only)

Project: All

Format: GraphicsAddress[31:12]

 Specifies the 4K-byte aligned memory base address for the write-only indirect data object

pointed in the PAK_SLICE_STATE command for writing out the compressed bitstream.This field

is only valid in AVC encoder mode.

 Command Reference: Instructions

662 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
11:6 Reserved

Project: All

Format: MBZ

5:0 Reserved

Project: BDW

Format: MBZ

22

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFC Indirect PAK-BSE Object Base Address [47:32]

Project: BDW

Description Project

This field is for the upper range of MFX Indirect PAK-BSE Object Base Address.

This field is used for 48-bit addressing. BDW

23

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 663

MFX_IND_OBJ_BASE_ADDR_STATE
8:7 MFC Indirect PAK-BSE Object Desitnation - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for MFC Indirect PAK-BSE

ObjectBase Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) MFC Indirect PAK-BSE ObjectBase Address

Project: BDW

This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of

"00" points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access

will be allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM.

Setting of "10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only

option for a memory access to be allocated in L3$ as well as LLC/eLLC

00b: eLLC Only ("00" setting points TC selection to PTE which defaults to eLLC)

01b: LLC Only (Works at the allocation time, later victimization from LLC downgrades the line to

eLLC if present).

10b: LLC/eLLC Allowed.

11b: L3, LLC, eLLC Allowed.

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

 Command Reference: Instructions

664 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_IND_OBJ_BASE_ADDR_STATE
1:0 Age for QUADLRU (AGE) MFC Indirect PAK-BSE ObjectBase Address

Project: BDW

Format: Enable

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age (“0,1,2”) it tends to stay longer in the cache. This option is

given to GFX software to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

24

Project:

BDW

31:12 MFC Indirect PAK-BSE Object - Access Upper Bound (Eecoder Only)

Project: BDW

Format: GraphicsAddress[31:12]

 This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access

by the indirect data object in the PAK_SLICE_STATE command for the per-slice output

bitstream. Indirect data accessed at this address and beyond will be blocked by the hardware

and ignored. Setting this field to 0 will cause this range check to be ignoredIf non-zero, this

address must be greater than the MFC Indirect PAK-BSE Object Base Address state.This field is

only valid in AVC encoder mode.

11:0 Reserved

Project: BDW

Format: MBZ

25

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

 Reserved for 64-bit address extension.

15:0 MFC Indirect PAK-BSE Object UpperBound [47:32]

Project: BDW

Description Project

This field is for the upper range of MFC Indirect PAK-BSE Object UpperBound

This field is used for 48-bit addressing. BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 665

MFX_JPEG_HUFF_TABLE_STATE

MFX_JPEG_HUFF_TABLE_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This Huffman table commands contains both DC and AC tables for either luma or chroma. Once a Huffman

table has been defined for a particular destination, it replaces the previous tables stored in that destination and

shall be used in the remaining Scans of the current image. A Huffman table will be sent to H/W only when it is

loaded from bitstream.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 7h JPEG_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 2h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 033Dh Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:1 Reserved

Format: MBZ

 Command Reference: Instructions

666 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_JPEG_HUFF_TABLE_STATE
0 HuffTableID (1-bit)

 Identifies the huffman table.

Value Name Description

0 Y Huffman table for Y

2..4 31:0 DC_BITS (12 8-bit array)

 The number of DC Huffman codes of length i, where i is 1~12

5..7 31:0 DC_HUFFVAL (12 8-bit array)

 The value associated with each DC Huffman code of length i.

8..11 31:0 AC_BITS (16 8-bit array)

 the list of Li, number of Huffman codes of length i, where i is 1~16

12..51 31:0 AC_HUFFVAL (160 8-bit array)

 the list of Vi,j, the value associated with each Huffman code of length i

52 31:16 Reserved

Project: All

Format: MBZ

15:0 AC_HUFFVAL(2-8 bit array)

 In AC table, BITS can have up to 16-bit codeword. Li can be 0 ~ 162. HUFFVAL will have a

list of likely random distributed values

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 667

MFX_JPEG_PIC_STATE

MFX_JPEG_PIC_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 7h JPEG

Format: OpCode

23:21 SubOpcode A

Default Value: 0h Common

Format: OpCode

20:16 SubOpcode B

Default Value: 0h MEDIA_

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

0001h [Default] Excludes DWord (0,1)

1 31:21 Reserved

Exists If: //Decoder Only

Format: MBZ

 Command Reference: Instructions

668 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_JPEG_PIC_STATE
20 Vertical Up-Sampling Enable

Project: BDW

Exists If: //Decoder Only

 Only applied to chroma blocks. This flag is used for 2:1 vertical up-sampling for chroma 420 and

outputting chroma422 YUY2 or UYVY format. To enable this flag, the input should be interleaved

Scan, InputFormatYUV should be set to YUV420, and OutputFormatYUV should be set to YUY2

or UYVY.

Value Name Description

0b no up-sampling

1b 2:1 vertical up-sampling

19 Reserved

Project: BDW

Exists If: //Decoder Only

18 Horizontal Down-Sampling Enable

Project: BDW

Exists If: //Decoder Only

 Only applied to chroma blocks. This flag is used for 2:1 horizontal down-sampling for chroma

422 and outputting chroma420 NV21 format. To enable this flag, the input should be interleaved

Scan, InputFormatYUV should be set to YUV422V_2Y or YUV422V_4Y, and OutputFormatYUV

should be set to NV12.

Value Name Description

0b no down-sampling

1b 2:1 horizonatl down-sampling

17 Vertical Down-Sampling Enable

Project: BDW

Exists If: //Decoder Only

 Only applied to chroma blocks. This flag is used for 2:1 vertical down-sampling for chroma 422

and outputting chroma420 NV21 format. To enable this flag, the input should be interleaved

Scan, InputFormatYUV should be set to YUV422H_2Y or YUV422H_4Y, and OutputFormatYUV

should be set to NV12.

Value Name Description

0b no down-sampling

1b 2:1 vertical down-sampling

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 669

MFX_JPEG_PIC_STATE
16 Average Down Sampling

Project: BDW

Exists If: //Decoder Only

 This flag is used to select a down-sampling method when VertDownSamplingEnb or

HoriDownSamplingEnb is set to 1.

Value Name Description

0b Drop every other line (or column) pixels

1b Average neighboring two pixels

15:12 Reserved

Exists If: //Decoder Only

Format: MBZ

11:8 Output Format YUV

Project: BDW

Exists If: //Decoder Only

 This field specifies the surface format to write the decoded JPEG image.Note that any non-

interleaved JPEG input should be set to "0000". For the interleaved input Scan data, it can be set

either "0000" or the corresponding format.

Value Name Description

0000b 3 separate plane for Y, U, and V respectively

0001b NV12 for chroma 4:2:0

0010b UYVY for chroma 4:2:2

0011b YUY2 for chroma 4:2:2

Programming Notes

The MFX_SURFACE_STATE command should be set accordingly for each OutputFormatYUV.

For NV12, Surface Format = 4 (PLANAR_420_8)

For YUY2, Surface Format = 0 (YCRCB_NORMAL)

For UYVY, Surface Format = 3 (YCRCB_SWAPY)

NV12 (0001b) can be set only when Y, U, V are interleaved in a single Scan data with the

following cases

 InputFormatYUV is YUV420 and VertDownSamplingEnb is disalbed

 InputFormatYUVis YUV422H_2Y or YUV422H_4Y, and VertDownSamplingEnb is

enabled

UYVY (0010b) and YUY2 (0011b) can be set only when Y, U, V are interleaved in a single Scan

data with the following cases

 InputFormatYUV is YUV420 and VertUpSamplingEnb is enabled

 InputFormatYUV is YUV422H_2Y or YUV422H_4Y and VertUpSamplingEnb is disabled

 Command Reference: Instructions

670 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_JPEG_PIC_STATE
7:6 Reserved

Exists If: //Decoder Only

Format: MBZ

5:4 Rotation

Exists If: //Decoder Only

Value Name Description

00b no rotation

01b rotate clockwise 90 degree

10b rotate counter-clockwise 90 degree (same as rotating 270 degree clockwise)

11b rotate 180 degree (NOT the same as flipped on the x-axis)

Programming Notes Project

Rotation can be set to 01b, 10b, or 11b when OutputFormatYUV is set to 0000b. For

other OutputFormatYUV, Rotation is not allowed.

BDW

3 Reserved

Exists If: //Decoder Only

Format: MBZ

2:0 Input Format YUV

Exists If: //Decoder Only

Format: U3

Value Name Description

0

[Default]

YUV400 (grayscale image)

1 YUV420

2 YUV422H_2Y (Horizontally chroma 2:1 subsampled) - horizontal 2 Y-block,

1U and 1V

3 YUV444

4 YUV411

5 YUV422V_2Y (Vertically chroma 2:1 subsampled) - vertical 2 Y-blocks, 1U and

1V

6 YUV422H_4Y - 2x2 Y-blocks, vertical 2U and 2V

7 YUV422V_4Y - 2x2 Y-blocks, horizontal 2U and 2V

2 31:30 Reserved

Exists If: //Decoder Only

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 671

MFX_JPEG_PIC_STATE
29 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

28:16 Frame Height In Blocks Minus 1

Exists If: //Decoder Only

Format: U13-1

Description Project

(The number of blocks in height) - 1. This value is calculated using the number of lines

Y and vertical sampling factor of the first component V1 in Frame header. See the note

following this table. For interleaved components, (((Y + (V1*8 -1)) / (V1*8)) * V1) - 1,

where "/" is integer division. For non-interleaved components, ((Y + 7) / 8) - 1.

Workaround: For interleaved components, when Input Format YUV is set to

YUV422H_2Y, OutputFormatYUV is set to NV12,

 If ((((((Y + (V1*8 -1)) / (V1*8)) * V1) - 1)% 2) == 0),

 then Frame Height In Blocks Minus 1 = ((Y + (V1*8 -1)) / (V1*8)) * V1

 else

 then Frame Height In Blocks Minus 1 = (((Y + (V1*8 -1)) / (V1*8)) * V1) - 1

BDW

15:13 Reserved

Exists If: //Decoder Only

Format: MBZ

12:0 Frame Width In Blocks Minus 1

Exists If: //Decoder Only

Format: U13-1

 (The number of blocks in width) - 1. This value is calculated using the number of samples per

line X and horizontal sampling factor of the first component H1 in Frame header. See the note

following this table. For interleaved components, (((X + (H1 *8 -1)) / (H1 *8)) * H1) - 1. For non-

interleaved components, ((X + 7) / 8) - 1.

 Command Reference: Instructions

672 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE

MFX_MPEG2_PIC_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This must be the very first command to issue after the surface state, the pipe select and base address setting

commands. For MPEG-2 the encoder is called per slice-group, however the picture state is called per

picture.Notice that a slice-group is a group of consecutive slices that no non-trivial slice headers are inserted in

between.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MPEG2_PIC_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 3h MPEG2_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 0h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default

Value:

0h Excludes DWord (0,1)= 00Bh, used for normal decode and encode

mode000h, a special case to provide a dummy image state for stitch mode

operation. In this case, fields in DW1 which is part of the dummy image

state command are ignored by hardware.

Format: =n Total Length - 2

1 31:28 f_code[1][1].

 Used for backward motion vector prediction. See ISO/IEC 13818-2 7.6.3.1 for details

27:24 f_code[1][0].

 Used for backward motion vector prediction. See ISO/IEC 13818-2 7.6.3.1 for details

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 673

MFX_MPEG2_PIC_STATE
23:20 f_code[0][1]

 Used for forward motion vector prediction. See ISO/IEC 13818-2 7.6.3.1 for details

19:16 f_code[0][0]

 Used for forward motion vector prediction. See ISO/IEC 13818-2 7.6.3.1 for details

15:14 Intra DC Precision

Project: All

Format: U2

 See ISO/IEC 13818-2 6.3.10 for details.

13:12 Picture Structure

 This field specifies whether the picture is encoded in the form of a frame picture or one

field (top or bottom) picture. See ISO/IEC 13818-2 6.3.10 for details.Format =

MPEG_PICTURE_STRUCTURE00 = Reserved01 = MPEG_TOP_FIELD10 =

MPEG_BOTTOM_FIELD11 = MPEG_FRAME

11 TFF (Top Field First)

 When two fields are stored in a picture, this bit indicates if the top field is the first

field.For a frame P picture, the value 1 indicates that the top field of the reconstructed

frame is the first field output by the decoding process, the same as defined in ISO/IEC

13818-2 6.3.10. Particularly, it is used by the hardware to calculate derivative motion

vectors from the dual-prime motion vectors.For a field P picture, hardware uses this bit

together with the Picture Structure to determine if the current picture is the Second

Field. In this case, the definition of this bit differs from ISO/IEC 13818-2 6.3.10 - software

must derive the value for this bit according to the following relation:Picture Structure =

top fieldPicture Structure = bottom fieldSecond Field = 0TFF = 1TFF = 0Second Field =

1TFF = 0TFF = 1

10 Frame Prediction Frame DCT

 This field provides constraints on the DCT type and prediction type. It affects the syntax

of the bitstream.

9 Concealment Motion Vector Flag

 This field indicates if the concealment motion vectors are coded in intra macroblocks. It

affects the syntax of the bitstream.

8 Quantizer Scale Type

Format: MPEG_Q_SCALE_TYPE

 This field specifies the quantizer scaling type.

Value Name Description

0h MPEG_QSCALE_LINEAR

1h D MPEG_QSCALE_NONLINEAR esc

7 Intra VLC Format

 This field is used by VLD

 Command Reference: Instructions

674 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
6 Scan Order

Format: MPEG_INVERSESCAN_TYPE

 This field specifies the Inverse Scan method for the DCT-domain coefficients in the

blocks of the current picture.

Value Name Description

0h MPEG_ZIGZAG_SCAN

1h MPEG_ALTERNATE_VERTICAL_SCAN

5:0 Reserved

2 31 I Slice Concealment Mode

Project: BDW

Exists If: //Decoder

 This field controls how MPEG decoder handles MB concealment in I Slice

Value Name Description

0h Intra Concealment Using Coefficient values to handle MB concealment

1h Inter Concealment Using Motion Vectors to handle MB concealment

Programming Notes

If this field is set to "1", driver must provide a valid forward reference picture (both top

and bottom Field must be valid)

30 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 675

MFX_MPEG2_PIC_STATE
29:28 P/B Slice Concealment Mode

Project: BDW

Exists If: //Decoder

 This field controls how MPEG decoder handles MB concealment in P/B Slice.

Value Name Description

00b INTER If left MB is NOT Intra MB type (including skipMB), use left MB inter

prediction mode [frame/field or forward/backward/bi] and MV final

values as concealment. Otherwise (left MB is Intra MB), use forward

reference (same polarity for field pic) with MV final values set to 0.

01b LEFT If left MB is NOT Intra MB type (including skipMB), use left MB inter

prediction mode [frame/field or forward/backward/bi] and MV final

values as concealment. Otherwise (left MB is Intra MB), use left MB

dct_dc_pred[cc] values for concealment (Macroblock is concealed as

INTRA MB and dct_dc_pred[cc] are DC predictor for Luma, Cr, Cb data)

10b ZERO Always use forward reference (same polarity for field pic) with MV final

values set to 0 (Macroblock is concealed as INTER coded)

11b INTRA Use left MB dct_dc_pred[cc] values for concealment (Macroblock is

concealed as INTRA MB and dct_dc_pred[cc] are DC predictor for Luma,

Cr, Cb data

27 Reserved

Project: BDW

Format: MBZ

26:25 P/B Slice Predicted BiDir Motion Type Override - Bi-direction MV Type Override

Project: BDW

Exists If: //Decoder

 This field is only applicable if the Concealment Motion Type is predicted to be Bi-

directional. (It is only possible if "P/B Slice Concealment Mode" is set to "00" or "01" and

left MB is a bi-directional MB).

Value Name Description

0h BID Keep Bi-direction Prediction

1h RESERVED

2h FWD Only use Forward Prediction (Backward MV is forced to invalid

3h BWD Only use Backward Prediction (Forward MV is forced to invalid)

 Command Reference: Instructions

676 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
24 P/B Slice Predicted Motion Vector Override Final MV value Override

Project: BDW

Exists If: //Decoder

 This field is only applicable if the Concealment Motion Vectors are non-zero. It is only

possible if "P/B Slice Concealment Mode" is set to "00" or "01" and left MB has non-zero

motion vectors).

Value Name Description

0h Predicted Motion Vectors use predicted values

1h ZERO Motion Vectors force to 0

23:15 Reserved

Format: MBZ

14 LoadSlicePointerFlag - LoadBitStreamPointerPerSlice

Exists If: //Encoder

 To support multiple slice picture and additional header/data insertion before and after

an encoded slice.When this field is set to 0, bitstream pointer is only loaded once for the

first slice of a frame. For subsequent slices in the frame, bitstream data are stitched

together to form a single output data stream.When this field is set to 1, bitstream

pointer is loaded for each slice of a frame. Basically bitstream data for different slices of

a frame will be written to different memory locations.

Value Name Description

0h Load BitStream Pointer only once for the first slice of a frame

1h Load/reload BitStream Pointer only once for the each slice, reload the

start location of the bitstream buffer from the Indirect PAK-BSE Object

Data Start Address field

13 Reserved

Format: MBZ

12 Reserved

Format: MBZ

11 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 677

MFX_MPEG2_PIC_STATE
10:9 Picture Coding Type

Format: MPEG_PICTURE_CODING_TYPE

 This field identifies whether the picture is an intra-coded picture (I), predictive-coded

picture (P) or bi-directionally predictive-coded picture (B). See ISO/IEC 13818-2 6.3.9 for

details.

Value Name

00b Reserved

01b MPEG_I_PICTURE

10b 10 = MPEG_P_PICTURE

11b MPEG_B_PICTURE

8:2 Reserved

Format: MBZ

1 MismatchControlDisabled

 These 2 bits flag disables mismatch control of the inverse transformation for some

specific cases during reference reconstruction.

Value Name Description

00b Mismatch control applies to all MBs

01b Disable mismatch control to all intra MBs whose all AC-coefficients are

zero.

10b Disable mismatch control to all MBs whose all AC-coefficients are zero.

11b Disable mismatch control to all MBs.

0 Disable Mismatch

 To disable MPEG2 IDCT fixed point arithmetic correction

3 31 Slice Concealment Disable Bit

Project: BDW

Exists If: //Decode

 If VINunit detects the next slice starting position is either out-of-bound or smaller than

or equal to the current slice starting position, VIN will set the current slice to be 1 MB

and force VMDunit to do slice concealment on the next slice. This bit will disable this

feature and the MB data from the next slice will be decoded from bitstream.

Value Name Description

0h Enable

[Default]

VIN will force next slice to be concealment if detects slice

boundary error

1h Disable VIN will not force next slice to be in concealment

Programming Notes

Driver has an option to detect the scenario given in description (above) and remove

the second (out-of-order) slice. In this case, hardware will decode the first slice in

completion and do concealment till the third slice. It should yield a picture with better

quality this way.

 Command Reference: Instructions

678 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
30:29 Reserved

Format: MBZ

28:24 Reserved

23:16 FrameHeightInMBsMinus1[7:0] (Picture Height in Macroblocks)

Format: U8

15:8 Reserved

Format: MBZ for future supporting width > 4K

7:0 FrameWidthInMBsMinus1[7:0] (Picture Width in Macroblocks)

Project: All

Format: U8

4 31:16 MinFrameWSize

Project: All

Format: U16

 - Minimum Frame Size [15:0] (16-bit) (Encoder Only)Mininum Frame Size is specified to

compensate for intel Rate ControlCurrently zero fill (no need to perform emulation byte

insertion) is done only to the end of the CABAC_ZERO_WORD insertion (if any) at the last

slice of a picture. Intel encoder parameter, not part of DXVA. The caller should always

make sure that the value, represented by Mininum Frame Size, is always less than

maximum frame size FrameBitRateMax (DWORD 10 bits 29:16). This field is reserved in

Decode mode.

Value Name Description

[0,0003FFFFh] The programmable range when MinFrameWSizeUnits is 00.

[0,000FFFFFh] The Programmable range when MinFrameWSizeUnits is 01.

[0,03FFFFFFh] The Programmable range when MinFrameWSizeUnits is 10.

[0, FFFFFFFFh] The Programmable range when MinFrameWSizeUnits is 11.

0h [Default]

15 Reserved

Project: All

Format: MBZ

14:12 RoundInterAC,

 rounding precision for non-Intra AC000: +1/16001: +2/16010: +3/16011: +4/16100:

+5/16101: +6/16110: +7/16111: +8/16

11 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 679

MFX_MPEG2_PIC_STATE
10:8 RoundIntraAC

Project: All

Format: U3

 rounding precision for Intra AC000: +1/16001: +2/16010: +3/16011: +4/16100:

+5/16101: +6/16110: +7/16111: +8/16

7 Reserved

Format: MBZ

6:4 RoundInterDC

 rounding Precision for non-Intra-DC000: +1/16001: +2/16010: +3/16011: +4/16100:

+5/16101: +6/16110: +7/16111: +8/16

3 Reserved

Format: MBZ

2:1 RoundIntraDC

 rounding Precision for Intra-DC00: +1/801: +2/810: +3/811: +4/8

0 Reserved

5 31:17 Reserved

 (for future Mask bits)

16 FrameSizeControlMask

 Frame size conformance maskThis field is used when MacroblockStatEnable is set to 1.

Value Name Description

0h Do not change Slice Quantization Parameter values in

MFC_MPEG2_SLICEGROUP_STATE with suggested slice QP value for

frame level Rate control

1h Replace Slice Quantization Parameter values in

MFC_MPEG2_SLICEGROUP_STATE with suggested slice QP value for

frame level Rate control values in MFC_IMAGE_STATUS control register.

15:13 Reserved

12 InterMBForceCBPZeroControlMask

Format: U1

 Inter MB Force CBP ZERO mask.

Value Name Description

[0,

FFFFFFFFh]

0h No effect

1h Zero out all A/C coefficients for the inter MB violating Inter

Confirmance

 Command Reference: Instructions

680 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
11:10 MinFrameWSizeUnits

 This field is the Minimum Frame Size Units

Value Name Description

00b compatibility mode Minimum Frame Size is in old mode (words, 2bytes)

01b 16 byte Minimum Frame Size is in 16bytes

10b 4Kb Minimum Frame Size is in 4Kbytes

11b 16Kb Minimum Frame Size is in 16Kbytes

9 MBRateControlMask

 MB Rate Control conformance maskThis field is ignored when MacroblockStatEnable is

disabled or MB level Rate control flag for the current MB is disable in Macroblock Status

Buffer.

Value Name Description

0h Do not change QP values of inter macroblock with suggested QP values

in Macroblock Status Buffer

1h Apply RC QP delta for all macroblock

8 Reserved

7 Reserved

Format: MBZ

6:4 Reserved

3 FrameBitRateMinReportMask

 This is a mask bit controlling if the condition of frame level bit count is less than

FrameBitRateMin.

Value Name Description

0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register.

1h Enable set bit0 and bit 1of MFC_IMAGE_STATUS control register if the total

frame level bit counter is less than or equal to Frame Bit rate Minimum

limit.

2 FrameBitRateMaxReportMask

 This is a mask bit controlling if the condition of frame level bit count exceeds

FrameBitRateMax.

Value Name Description

0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register.

1h Enable set bit0 and bit 1 of MFC_IMAGE_STATUS control register if the total

frame level bit counter is greater than or equal to Frame Bit rate

Maximum limit.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 681

MFX_MPEG2_PIC_STATE
1 InterMBMaxSizeReportMask

 This is a mask bit controlling if the condition of any inter MB in the frame exceeds

InterMBMaxSize.

Value Name Description

0h Do not update bit0 of MFC_IMAGE_STATUS control register.

1h set bit0 of MFC_IMAGE_STATUS control register if the total bit counter

for the current MB is greater than the Inter MB Conformance Max size

limit.

0 IntraMBMaxSizeReportMask

 This is a mask bit controlling if the condition of any intra MB in the frame exceeds

IntraMBMaxSize.

Value Name Description

0h Do not update bit0 of MFC_IMAGE_STATUS control register.

1h set bit0 of MFC_IMAGE_STATUS control register if the total bit counter

for the current MB is greater than the Intra MB Conformance Max size

limit.

6

 [ExistsIf]Encode

Only

31:28 Reserved

Format: MBZ

27:16 InterMBMaxSize

Default Value: FFFh

 This field, Inter MB Conformance Max size limit,indicates the allowed max bit count size

for Inter MB

15:12 Reserved

Format: MBZ

11:0 IntraMBMaxSize

Default Value: FFFh

 This field, Intra MB Conformance Max size limit,indicates the allowed max bit count size

for Intra MB

7 31:1 Reserved

Format: MBZ

0 VSL top MB Trans8x8flag

Project: BDW

Exists If: //Encode Only

Value Name Description

0 Disable VSL will only fetch the current MB data.

1 Enable When this bit is set VSL will make extra fetch to memory to fetch the

MB data for top MB.

 Command Reference: Instructions

682 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
8

 [ExistsIf]Encode

Only

31:24 SliceDeltaQPMax[3]

Format: S7

This field is the Slice level delta QP for total bit-count above FrameBitRateMax - first

1/8 regionThis field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame exceeds

FrameBitRateMax but is within 1/8 of FrameBitRateMaxDelta above FrameBitRateMax,

i.e., in the range of (FrameBitRateMax, (FrameBitRateMax+ FrameBitRateMaxDelta»3).

Range: [-30,30]

Value Name

0h Disable

1h Enable

23:16 SliceDeltaQPMax[2]

Format: S7

Range: [-30,30]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/8

and below 1/ 4 This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between 1/8 and ¼ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the

range of ((FrameBitRateMax+ FrameBitRateMaxDelta»3), (FrameBitRateMax+

FrameBitRateMaxDelta»2).

15:8 SliceDeltaQPMax[1]

Format: S7

Range: [-30,30]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above1/ 4

and below 1/2 This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between ¼ and ½ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the range

of ((FrameBitRateMax+ FrameBitRateMaxDelta»2), (FrameBitRateMax+

FrameBitRateMaxDelta»1).

7:0 SliceDeltaQPMax[0]

Format: S7

Range: [-30,30]

This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/

2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS

control register when total bit count for the entire frame is above FrameBitRateMax by

more than half the distance of FrameBitRateMaxDelta , i.e., in the range of

((FrameBitRateMax+ FrameBitRateMaxDelta»1), infinite).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 683

MFX_MPEG2_PIC_STATE
9

 [ExistsIf]Encode

Only

31:24 SliceDeltaQPMin[3]

Format: S7

Range: [-30,30]

This field is the Slice level delta QP for total bit-count below FrameBitRateMin - first

1/8 regionThis field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is less

than FrameBitRateMin and greater than or equal to 1/8 the distance of

FrameBitRateMinDelta from FrameBitRateMin, i.e., in the range of [(FrameBitRateMin-

FrameBitRateMinDelta»3), FrameBitRateMin).

23:16 SliceDeltaQPMin[2]

Format: S7

Range: [-30,30]

This field is the Slice level delta QP for bit-count below FrameBitRateMin - below 1/ 8

and above 1/ 4This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between one-eighth and quarter the distance of FrameBitRateMinDelta from

FrameBitRateMin, i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta»2),

(FrameBitRateMin- FrameBitRateMinDelta»3)).

15:8 SliceDeltaQPMin[1]

Format: S7

Range: [-30,30]

This field is the Slice level delta QP for bit-count below FrameBitRateMin- below 1/4

and above 1/ 2This field is used to calculate the suggested slice QP into the

MFC_IMAGE_STATUS control register when total bit count for the entire frame is

between quarter and half the distance of FrameBitRateMinDelta from

FrameBitRateMin, i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta»1),

(FrameBitRateMin- FrameBitRateMinDelta»2)).

7:0 SliceDeltaQPMin[0]

Format: S7

Range: [-30,30]

This field is the Slice Level Delta QP for bit-count below FrameBitRateMin - below 1/

2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS

control register when total bit count for the entire frame is below FrameBitRateMin by

more than half the distance of FrameBitRateMinDelta , i.e., in the range of [0,

(FrameBitRateMin- FrameBitRateMinDelta»1).

 Command Reference: Instructions

684 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
10

 [ExistsIf]Encode

Only

31 FrameBitrateMaxUnit

 This field is the Frame Bitrate Maximum Limit Units.

Value Name Description

0h Byte FrameBitRateMax is in units of 32 Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 128 Bytes if

FrameBitrateMaxUnitMode is 0

1h Kilobyte FrameBitRateMax is in units of 4KBytes Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if

FrameBitrateMaxUnitMode is 0

30 FrameBitrateMaxUnitMode

 BitFiel This field is the Frame Bitrate Maximum Limit Units.dDesc

Value Name Description

0h Compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb)

1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb)

29:16 FrameBitRateMax

 This field is the Frame Bitrate Maximum Limit. This field along with FrameBitrateMaxUnit

determines maximum allowed bits in a frame before multi-pass gets triggered (when

enabled). In other words, multi-pass is triggered when the actual frame byte count

exceeds this value. When FrameBitrateMaxUnitMode is 0(compatibility mode) bits 16:27

should be used, bits 28 and 29 should be 0.

Value Name Description

0-512KB The programmable range 0-512KB when FrameBitrateMaxUnit is 0.

0-8190KB The programmable range 0-8190KB when FrameBitrateMaxUnit is 1.

15 FrameBitrateMinUnit

 This field is the Frame Bitrate Minimum Limit Units.

Value Name Description

0h Byte FrameBitRateMax is in units of 32 Bytes when

FrameBitrateMinUnitMode is 1 and in units of 128 Bytes if

FrameBitrateMinUnitMode is 0

1h KiloByte FrameBitRateMax is in units of 4KBytes Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if

FrameBitrateMaxUnitMode is 0

14 FrameBitrateMinUnitMode

 This field is the Frame Bitrate Minimum Limit Units.ValueNameDescriptionProject

Value Name Description

0h compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb)

1h New Mode FrameBitRateMaxUnit is in new mode (32byte/4Kb)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 685

MFX_MPEG2_PIC_STATE
13:0 FrameBitRateMin

 This field is the Frame Bitrate Minimum Limit ()This field along with FrameBitrateMinUnit

determines minimum allowed bits in a Frame before Multi-Pass gets triggered (when

enabled). In other words, multi-pass is triggered when the actual frame byte count is less

than this value. When FrameBitrateMinUnitMode is 0 (compatibility mode) bits 0:11

should be used, bits 12 and 13 should be 0. Range: The programmable range 0-512KB

When FrameBitrateMinUnit is in 0. Programmable range is 0-8190 KB when

FrameBitrateMinUnit is in 1

11

 [ExistsIf]Encode

Only

31 Reserved

Format: MBZ

30:16 FrameBitRateMaxDelta

Default Value: 0h

Project: All

Access: None

Format: U15

This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It

shares the same FrameBitrateMaxUnit. The programmable range is either 0- 512KB or

4MBB in FrameBitrateMaxUnit of 128 Bytes or 16KB respectively.

This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It

shares the same FrameBitrateMaxUnit. When FrameBitrateMaxUnitMode is

0(compatibility mode) bits 16:27 should be used, bits 28, 29 and 30 should be 0.

15 Reserved

Project: All

Format: MBZ

14:0 FrameBitRateMinDelta

 This field is used to select the slice delta QP when FrameBitRateMin Is exceeded. It

shares the same FrameBitrateMinUnit. When FrameBitrateMinUnitMode is

0(compatibility mode) bits 0:11 should be used, bits 12, 13 and 14 should be 0.Note: HW

requires the following condition FrameBitRateMinDelta <= 2*FrameBitRateMinMust be

true, otherwise it may cause unpredicted behavior.

Value Name Description

0-1024KB The programmable range 0-1024KB When FrameBitrateMinUnit is

in 32Bytes.

0-

16380KB

 Programmable range is 0-16380KB when FrameBitrateMinUnit is in

4Kbytes.

12 31:21 Reserved

Format: MBZ

 Command Reference: Instructions

686 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_MPEG2_PIC_STATE
20 VMD Error Logic

Project: BDW

Value Name Description

0 Disable [Default]

1 Enable Error Handling

19 Reserved

Format: MBZ

18 VAD Error Logic

Project: BDW

Value Name Description

0 Enable

[Default]

Error reporting ON in case of premature Slice done

1 Disable CABAC Engine will auto decode the bitstream in case of

premature slice done.

17 Reserved

Project: BDW

16 Reserved

15:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 687

MFX_PAK_INSERT_OBJECT

MFX_PAK_INSERT_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

Description

The MFX_PAK_INSERT_OBJECT command is the first primitive command for the AVC and MPEG2 Encoding

Pipeline.

This command is issued to setup the control and parameters of inserting a chunk of compressed/encoded bits

into the current bitstream output buffer starting at the specified bit locationto perform the actual insertion by

transferring the command inline data to the output buffer max, 32 bits at a time.

It is a variable length command as the data to be inserted are presented as inline data of this command. It is a

multiple of 32-bit (1 DW), as the data bus to the bitstream buffer is 32-bit wide.

Multiple insertion commands can be issued back to back in a series. It is host software's responsibility to make

sure their corresponding data will properly stitch together to form a valid H.264 bitstream.

Internally, MFX hardware will keep track of the very last two bytes' (the very last byte can be a partial byte)

values of the previous insertion. It is required that the next Insertion Object Command or the next PAK Object

Command to perform the start code emulation sequence check and prevention 0x03 byte insertion with this

end condition of the previous insertion.

Hardware will keep track of an output bitstream buffer current byte position and the associated next bit

insertion position index. Data to be inserted can be a valid H.264 NAL units or a partial NAL unit. Certain NAL

unit has a minimum byte size requirement. As such the hardware will optionally (enabled by STATE Command)

determines the number of CABAC_ZERO_WORD to be inserted to the end of the current NAL, based on the

minimum byte size of a NAL and the actual bin count of the encoded Slice. Since prior to the

CABAC_ZERO_WORD insertion, the RBSP or EBSP is already byte-aligned, so each CABAC_ZERO_WORD

insertion is actually a 3-byte sequence 0x00 00 03. The inline data may have already been processed for start

code emulation byte insertion, except the possibility of the last 2 bytes plus the very last partial byte (if any).

Hence, when hardware performing the concatenation of multiple consecutive insertion commands, or

concatenation of an insertion command and a PAK object command, it must check and perform the necessary

start code emulation byte insert at the junction.The inline data is required to be byte aligned on the left (first

transmitted bit order) and may or may not be byte aligned on the right (last transmitted bits).

The command will specify the bit offset of the last valid DW.Each insertion state command defines a chunk of

bits (compressed data) to be inserted at a specific location of the output compressed bitstream in the output

buffer.Depend on CABAC or CAVLC encoding mode (from Slice State), PAK Object Command is always ended

in byte aligned output bitstream except for CABAC header insertion which is bit aligned. In the aligned cases,

PAK will perform 0 filling in CAVLC mode, and 1 filling in CABAC mode.

Insertion data can include:any encoded syntax elements bit data before the encoded Slice Data (PAK Object

Command) of the current SliceSPS NALPPS NALSEI NALOther Non-Slice NALLeading_Zero_8_bits (as many

bytes as there is)Start Code PrefixNAL Header ByteSlice HeaderAny encoded syntax elements bit data after the

encoded Slice Data (PAK Object Command) of the current Slice and prior to the next encoded Slice Data of the

next Slice or prior to the end of the bistream, whichever comes firstCabac_Zero_Word or Trailing_Zero_8bits (as

many bytes as there is).

Anything listed above before a Slice DataContext switch interrupt is not supported by this command.

DWord Bit Description

 Command Reference: Instructions

688 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PAK_INSERT_OBJECT
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_PAK_INSERT_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 2h

Format: OpCode

20:16 SubOpcode B

Default Value: 8h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 0h Excludes DWord (0,1) = Variable Length in DW

Format: =n Total Length - 2

1 31:18 Reserved

Format: MBZ

17:16 DataByteOffset - SrcDataStartingByteOffset[1:0]

 Source Data Starting Byte Position within the very first inline DW.

15 HeaderLengthExcludeFrmSize

 In case this flag is on, bits are NOT accumulated during current access unit coding neither for

Cabac Zero Word insertion bits counting or for output in MMIO register

MFC_BITSTREAM_BYTECOUNT_FRAME_NO_HEADER. When using HeaderLenghtExcludeFrmSize

for header insertion, the software needs to make sure that data comes already with inserted start

code emulation bytes. SW shouldn't set EmulationFlag bit (Bit 3 of DWORD1 of

MFX_PAK_INSERT_OBJECT).

Value Name Description

1 NO_ACCUMULATION Bits during current call are not accumulated

0 ACCUMULATE All bits accumulated

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 689

MFX_PAK_INSERT_OBJECT
14 Slice Header Indicator

 This bit indicates if the insert object is a slice header. In the VDEnc mode, PAK only gets this

command at the beginning of the frame for slice position X=0, Y=0. It internally generates the

header that needs to be inserted per slice. For VDEnc mode, this bit should always be set.

Value Name Description

1 SLICE_HEADER Insertion Object is a Slice Header. The command is stored internally by

HW and is used for inserting slice headers.

0 LEGACY Legacy Insertion Object command. The PAK Insertion Object command

is not stored in HW.

Programming Notes

In VDENC mode, we support only Slice layer without partitioning RBSP syntax. The payload for

PAK_INS_OBJ should contain only start code for Slice header followed by NAL_type and slice

header (slice_header() in AVC spec). The payload for PAK_INS_OBJ shouldn't contain CABAC

Byte alignment bits. HW adds these alignment bits which are part of slice_data. Example

PAK_INS_OBJ payload : 00 00 01 <NAL_type> <slice_header_Byte0> …………..<slice_header_Byte

LAST> Any zero_bytes that are added before slice header can be inserted by any preceding

general PAK_INS_OBJ.

13:8 DataBitsInLastDW - SrCDataEndingBitInclusion[5:0]

 Source Data to be included in the very last inline DW. Follows the MSBit is the upper bit of each

byte within the DW. The lower byte is actually processed first.For example,

SrCDataEndingBitInclusion = 9, bit 7:0 and bit 15 are included as valid header data.

Value Name

[1,32]

7:4 SkipEmulByteCnt - Skip Emulation Byte Count

 Skip emulation check for number of starting bytesIt can be programmed from 0 to 15 bytes.For

example, to skip the start code that has already prefixed in the bitstream.

3 EmulationFlag - EmulationByteBitsInsertEnable

Value Name Description

0 NONE No emulation

1 EMULATE Instruct the hardware to perform Start Code Prefix (0x 00 00 01/02/03/00)

Search and Prevention Byte (0x 03) insertion on the insertion data of this

command. It is required that hardware will handle a start code prefix crossing

the boundary between insertion commands, or an insertion command

followed by a PAK Object command.

2 LastHeaderFlag - LastSrcHeaderDataInsertCommandFlag

 To process a series of consecutive insertion commands, this flag (=1) indicates the current

command is the last 'header' insertion in the series.In CABAC, hardware must perform the "1"

insert for byte align for Slice Header before Slice Data comes in in the next PAK-OBJECT

command.In CAVLC, hardware ignores this bit

 Command Reference: Instructions

690 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PAK_INSERT_OBJECT
1 EndOfSliceFlag - LastDstDataInsertCommandFlag

 No more insertion command and no more PAK-OBJECT command follows.Flush data out to

memory

0 BitstreamStartReset - ResetBitStreamStartingPos

Value Name Description

1 RESET Reset the bitstream buffer insertion position to the bitstream buffer starting

position.

0 INSERT Insert the current command inline data starting at the current bitstream buffer

insertion position

2..n 31:0 Insert Data PayLoad

 Actual Data to be inserted to the output bitstream buffer.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 691

MFX_PIPE_BUF_ADDR_STATE

MFX_PIPE_BUF_ADDR_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This state command provides the memory base addresses for all row stores, StreamOut buffer and

reconstructed picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores

of the Bit Stream Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level

state command and is common among all codec standards and for both encoder and decoder operating modes.

However, some fields may only applicable to a specific codec standard. All Pixel Surfaces (original, reference

frame and reconstructed frame) in the Encoder are programmed with the same surface state (NV12 and TileY

format), except each has its own frame buffer base address. In the tile format, there is no need to provide buffer

offset for each slice; since from each MB address, the hardware can calculated the corresponding memory

location within the frame buffer directly.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_PIPE_BUF_ADDR_STATE

Format: OpCode

26:24 Common Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 2h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n

 Fixed Length

Value Name Description Project

3Bh DWORD_COUNT_n [Default] Excludes DWord (0,1) BDW

 Command Reference: Instructions

692 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
1 31:6 Pre Deblocking Destination Address

Format: GraphicsAddress[31:6]

 Specifies the 4K byte aligned frame buffer address for outputting the non-filtered reconstructed

YUV picture (i.e. output of final adder in each codec standard, and prior to the deblocking filter

unit). This field is ignored if PreDeblockOutEnable is set to 0 (disable).

5:0 Reserved

Project: BDW

2 31:16 Reserved

Format: MBZ

15:0 Pre Deblocking Destination Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Pre-Deblocking Destination Address. This field is ignored if

PreDeblockOutEnable is set to 0 (disable).

3 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Pre Deblocking - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 693

MFX_PIPE_BUF_ADDR_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Pre Deblocking Destination

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) Pre Deblocking Destination Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching.

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) Pre Deblocking Destination Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

4 31:6 Post Deblocking Destination Address

Format: GraphicsAddress[31:6]

 Specifies the 4K byte aligned frame buffer address for outputting the post-loop filtered

reconstructed YUV picture (i.e. output of the deblocking filter unit)This field is ignored if

PostDeblockOutEnable is set to 0 (disable).

Programming Notes

 Command Reference: Instructions

694 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
5:0 Reserved

Project: BDW

5 31:16 Reserved

Format: MBZ

15:0 Post Deblocking Destination Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Post-Deblocking Destination Address. This field is ignored if

PostDeblockOutEnable is set to 0 (disable).

6 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Post Deblocking - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 695

MFX_PIPE_BUF_ADDR_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Post Deblocking Destination

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) for Post Deblocking Destination Address

Project: BDW

This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of "00"

points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access will be

allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM. Setting of

"10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only option for

a memory access to be allocated in L3$ as well as LLC/eLLC

00b: eLLC Only ("00" setting points TC selection to PTE which defaults to eLLC)

01b: LLC Only (Works at the allocation time, later victimization from LLC downgrades the line to

eLLC if present).

10b: LLC/eLLC Allowed.

11b: L3, LLC, eLLC Allowed.

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Project: BDW

 Command Reference: Instructions

696 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
1:0 Age for QUADLRU (AGE) for Post Deblocking Destination Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent good chance of generating hits

00b Poor good chance of generating hits

7 31:6 Original Uncompressed Picture Source Address

Format: GraphicsAddress[31:6]

 Specifies the 64 byte aligned frame buffer address for fetching YUV pixel data from the original

uncompressed input picture for encoding. This field is only valid in encoding mode.

5:0 Reserved

Project: BDW

Format: MBZ

8 31:16 Reserved

Format: MBZ

15:0 Original Uncompressed Picture Source Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Original Uncompressed Picture Source Address. This field is

valid for encoding mode only.

9 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 697

MFX_PIPE_BUF_ADDR_STATE
8:7 Original Uncompressed Picture Source - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Original Uncompressed Picture

Source Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) for Original Uncompressed Picture Source Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Project: BDW

 Command Reference: Instructions

698 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
1:0 Age for QUADLRU (AGE) for Original Uncompressed Picture Source Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

10 31:6 StreamOut Data Destination Base Address

Format: GraphicsAddress[31:6]

 Specifies the 64 byte aligned address for outputting the per-MB indirect data to memory when

StreamOutEnable is set in the MFX_PIPE_MODE_SELECT command. For Decoder : This field is

used for transcoding purpose. For Encoder : This field is used for dynamic repeat of frame in PAK

for Rate Control. Also used for feeding coding information back to the Host, Video Preprocessing

Unit and ENC Unit. All data are written in fixed formats, and therefore all record sizes are known

in the hardware. Hardware can calculate the offset into this base address for per-MB data.

5:0 Reserved

Project: BDW

Format: MBZ

11 31:16 Reserved

Format: MBZ

15:0 StreamOut Data Destination Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Original Uncompressed Picture Source Address

12 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 699

MFX_PIPE_BUF_ADDR_STATE
8:7 StreamOut Data Destination - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for StreamOut Data Destination

Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) for StreamOut Data Destination Base Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Project: BDW

 Command Reference: Instructions

700 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
1:0 Age for QUADLRU (AGE) for StreamOut Data Destination Base Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

13 31:6 Intra Row Store Scratch Buffer Base Address

Format: GraphicsAddress[31:6]

 This field provides the base address of the scratch buffer (read/write) used by the AVC/VP8

IntraPrediction unit to store MB information of the previous row for processing of each

macroblock in the current row. The Intra Row Store buffer must be 64-byte cacheline

aligned.Hardware uses the horizontal address of the current macroblock to address the Intra Row

Store. This field is ignored in MPEG2 and VC1 mode. Max 256 cachelines for 4K pixels (1

cacheline for either MBAFF or non-MBAFF)Intra Row Store Scratch Buffer - Arbitration Priority

Control

5:0 Reserved

Project: BDW

Format: MBZ

14 31:16 Reserved

Format: MBZ

15:0 Intra Row Store Scratch Buffer Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Intra RowStore/Scratch Buffer Base Address This field is

ignored in MPEG2 and VC1 mode.

15 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 701

MFX_PIPE_BUF_ADDR_STATE
11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Intra Row Store Scratch Buffer - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Intra Row Store Scratch Buffer

Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Reserved

Project: BDW

2 Reserved

Project: BDW

 Command Reference: Instructions

702 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
1:0 Age for QUADLRU (AGE) for Intra Row Store Scratch Buffer Base Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

16 31:6 Deblocking Filter Row Store Scratch Base Address

Format: GraphicsAddress[31:6]

 Deblocking Filter Row Store is needed for:

 AVC and VC1 In-Loop Deblocking Filter

 VC1 Overlap-smoothing Filter

 This field provides the 64-byte aligned base address of the scratch buffer (read and write) used

by the deblocking filter unit to store MB information of the previous row for filtering of each

macroblock in the current row. The Deblocking Filter Row Store buffer must be 64-byte cacheline

aligned. Hardware uses the horizontal address of the current macroblock to address the

Deblocking Filter Row Store. Max 6 cachelines for VC1 and MPEG2, and max 4 for AVC (for

MBAFF, 2 for non-MBAFF)

5:0 Reserved

Project: BDW

Format: MBZ

17 31:16 Reserved

Format: MBZ

15:0 Deblocking Filter Row Store Scratch Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Deblocking Filter Row Store Scratch Buffer Address.

18 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 703

MFX_PIPE_BUF_ADDR_STATE
12 Reserved

Project: BDW

Format: MBZ

11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Deblocking Filter Row Store Scratch - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Deblocking Filter Row Store

Scratch Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) for Deblocking Filter Row Store Scratch Base Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

 Command Reference: Instructions

704 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
2 Reserved

Project: BDW

1:0 Age for QUADLRU (AGE) for Deblocking Filter Row Store Scratch Base Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

19..50 63:48 Reserved

Project: BDW

Format: MBZ

47:32 Reference Picture Address [n] High

Project: BDW

Format: Address[47:32]

 This field is for the upper range of Reference Picture Addresses

31:6 Reference Picture Address [n]

Format: Address[31:6]

 Specifies the 64 byte aligned reference frame buffer addresses for the motion compensation

operation in AVC/ /MPEG2. AVC can specify up to 16 YUV frame-based surfaces for both forward

and backward references, i.e. L0+L1 total = 16 max. Any entry can be assigned to L0 or L1 or

both lists.But VC1 and MPEG2, worst case, can use up to 2 YUV frame-based surfaces for both

forward and backward references:

 P-MB : RefAddr[0] - temporal closest previous field of a reference frame (can be the

current frame)

 RefAddr[1]- next temporal closest previous field of a reference frame (must be different

from the current frame)

 It is a variant (without the LongTermRefPic specification) of the RefFrameList[16] defined in AVC

DXVA Spec. RefAddr[0-15] is indexed by frame_storeID »1. It is not a packed list, i.e. invalid

entries can scatter among the list. All invalid addresses must be set to a valid address RefAddr[0]

by the driver. The same applies to VC1 and MPEG2.

Programming Notes

AVC: Always specifies all 16 addresses even some of them are not needed as indicated by the

max num of active reference pictures. This is done for preventing data corruption (error, fault

condition, etc.) by having all the references being set to a legal location.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 705

MFX_PIPE_BUF_ADDR_STATE
5:0 Reserved

Project: BDW

Format: MBZ

51 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:9 Reserved

Format: MBZ

8:7 Reference Picture - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Reference Picture Addresses

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream. Note: There is ONLY ONE LLC/eLLC

Cacheability Control (LeLLCCC) for all 16 Reference Picture Addresses (RefAddr[0-15])

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

 Command Reference: Instructions

706 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
4:3 Target Cache (TC) for Reference Picture Addresses

Project: BDW

 This field allows the choice of LLC vs eLLC for caching. NOTE: There is ONLY ONE Target Cache

(TC) for all 16 Reference Picture Addresses (RefAddr[0-15])

Value Name

00b eLLC Only - not snooped in GT

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Project: BDW

1:0 Age for QUADLRU (AGE) for Reference Picture Addresses

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches. NOTE: There

is ONLY ONE Age for QUADLRU (AGE) for all 16 Reference Picture Addresses (RefAddr[0-

15])

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

52 31:6 Macroblock Buffer Base Address or Decoded Picture Error/Status Buffer Base Address

Project: BDW

Format: GraphicsAddress[31:6]

For decoder: Specifies the 64 byte aligned buffer address for writing a single error/status record

into the memory when Pic Error/Status Report Enable is set in the MFX_PIPE_MODE_SELECT

Command. The error/status record is written by HW at the end of decoding one single picture.

The record is written in a fixed format, total 96-bits in size always.

Please refer to "Media VDBOX -> Video Codec -> Other Codec Functions -> MFX Error Handling

-> Decoder" session for the output format.

For encoder: Specifies the 64 byte aligned buffer address for reading the per-MB indirect data

from memory when MacroblockStatEnable is set in the MFX_AVC_IMG_STATE Command. This

field is used for dynamic repeat of frame in PAK for Rate Control. Also used for feeding coding

information back to the Host, Video Preprocessing Unit, and ENC Unit. All data are written in

fixed formats, and therefore all record sizes are known in the hardware. Hardware can calculate

the offset into this base address for per-MB data.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 707

MFX_PIPE_BUF_ADDR_STATE
5:0 Reserved

Project: BDW

Format: MBZ

53 31:16 Reserved

Format: MBZ

15:0 Macroblock Buffer Base Address or Decoded Picture Error/Status Buffer Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Macroblock Status Buffer Base Address

54 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Macroblock Status Buffer - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

708 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Macroblock Status Buffer Base

Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) for Macroblock Status Buffer Base Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching.

Value Name

00b eLLC Only - not snooped in GT

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Project: BDW

1:0 Age for QUADLRU (AGE) for Macroblock Status Buffer Base Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 709

MFX_PIPE_BUF_ADDR_STATE
55 31:6 Macroblock ILDB StreamOut Buffer Base Address

Format: GraphicsAddress[31:6]

 Specifies the 64 byte aligned buffer address for writing MB ILDB parameter per MB to memory

when Debocker streamout enable is set in the MFX_PIPE_MODE_SELECT Command. The ildb

MB control parameters are written by HW at the end of each decoding MB. Only AVC edge

information is being streamed out. It is used in AVC decode mode only.

5:0 Reserved

Project: BDW

Format: MBZ

56 31:16 Reserved

Format: MBZ

15:0 Macroblock ILDB StreamOut Buffer Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Deblocking Filter Row Store Scratch Address

57 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Macroblock ILDB StreamOut Buffer - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

710 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Macroblock ILDB StreamOut

Buffer Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if

coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 Target Cache (TC) for Macroblock ILDB StreamOut Buffer Base Address

Project: BDW

 This field allows the choice of LLC vs eLLC for caching.

Value Name

00b eLLC Only - not snooped in GT

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Macroblock ILDB StreamOut Buffer Base Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

58 31:6 Second Macroblock ILDB StreamOut Buffer Base Address

Format: GraphicsAddress[31:6]

 64 byte aligned buffer. Specifies the 64 byte aligned buffer address for writing MB ILDB

parameter per MB to memory when Debocker streamout enable is set in the

MFX_PIPE_MODE_SELECT Command. The ildb MB control parameters are written by HW at the

end of each decoding MB. Only AVC edge information is being streamed out. It is used in AVC

decode mode only.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 711

MFX_PIPE_BUF_ADDR_STATE
5:0 Reserved

Project: BDW

Format: MBZ

59 31:16 Reserved

Format: MBZ

15:0 Second Macroblock ILDB StreamOut Buffer Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field is for the upper range of Second Macroblock ILDB StreamOutBuffer Base Address.

60 31:15 Reserved

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Second Macroblock ILDB StreamOut Buffer - Arbitration Priority Control

Project: BDW

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Second Macroblock ILDB

StreamOut Buffer Base Address

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence (if coherent

cycle)

01b UC Uncacheable

10b WT Writethrough

11b WB Writeback

 Command Reference: Instructions

712 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_BUF_ADDR_STATE
4:3 Second Macroblock ILDB StreamOut Buffer Base Address - Target Cache (TC)

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name Description

00b eLLC Only not snooped in GT

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Second Macroblock ILDB StreamOut Buffer Base Address

Project: BDW

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a particular

allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older

age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces

are more likely to generate HITs, hence need to be replaced least often in caches.

Value Name

00b Poor chance of generating hits

01b Decent chance of generating hits

10b Next good chance of generating hits

11b Good chance of generating hits

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 713

MFX_PIPE_MODE_SELECT

MFX_PIPE_MODE_SELECT
Project: BDW

Source: VideoCS

Length Bias: 2

Specifies which codec and hardware module is being used to encode/decode the video data, on a per-frame

basis.

The MFX_PIPE_MODE_SELECT command specifies which codec and hardware module is being used to

encode/decode the video data, on a per-frame basis. It also configures the hardware pipeline according to the

active encoder/decoder operating mode for encoding/decoding the current picture. Commands issued

specifically for AVC and MPEG2 are ignored when VC1 is the active codec.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_COMMON

Format: OpCode

26:24 Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpA

Default Value: 0h

Format: OpCode

20:16 SubOpB

Default Value: 0h MFX_PIPE_MODE_SELECT

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n Total Length - 2

Value Name Description

3h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31 Reserved

30 Reserved

Project: BDW

29 Reserved

 Command Reference: Instructions

714 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_MODE_SELECT
28:27 Reserved

26 Reserved

Project: BDW

Format: MBZ

25 Reserved

Project: BDW

Format: MBZ

24 Reserved

Project: BDW

Format: MBZ

23:19 Reserved

Format: MBZ

18 Extended stream out enable

Format: U1

 This bit can be set only when VDEnc_Mode is set.

When this bit is set and MB stream out is enabled, per MB 1CL of data is streamed out. The

actual contents of the stream out are listed in Media VDBOX > Encoder VDEnc mode StreamOut

Data Structure Definition.

When this bit is not set, per MB ¼ CL data is streamed out. The actual contents of the stream out

are listed in Media VDBOX > Encoder StreamOut Mode Data Structure Definition.

17 Decoder Short Format Mode

 For IT mode, this bit must be 0.

Value Name Description

1 Long Format Driver

Interface

[BDW] AVC/VC1/MVC/VP8 Long Format Mode is in use.

0 Short Format Driver

Interface [Default]

AVC/VC1/MVC/VP8 Short Format Mode is in use

Note: There is no Short Format for VP8 yet, so this field

must be set to 1 for VP8.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 715

MFX_PIPE_MODE_SELECT
16:15 Decoder Mode select

 Each coding standard supports two entry points: VLD entry point and IT (IDCT) entry point. This

field selects which one is in use.This field is only valid if Codec Select is 0 (decoder).

Value Name Description Project

0h VLD Mode All codec minimum must support this mode

Configure the MFD Engine for VLD Mode Note: All codec

minimum must support this mode

1h IT Mode Configure the MFD Engine for IT Mode Note: Only VC1 and

MPEG2 support this mode

2h Deblocker

Mode

Configure the MFD Engine for Standalone Deblocker Mode.

Require streamout AVC edge control information from

preceeding decoding pass.

BDW

3h Reserved BDW

14:13 Reserved

Project: BDW

Format: MBZ

12 Deblocker Stream-Out Enable

Project: BDW

 This field indicates if Deblocker information is going to be streamout during VLD decoding. For

AVC, it is needed to enable the deblocker streamout as the AVC Disable_DLKFilterIdc is a slice

level parameters. Driver needs to determine ahead of time if at least one slice of the current

frame/ has deblocker ON.

Value Name Description

0h Disable Disable streamout of deblocking control information for standalone deblocker

operation.

1h Enable

11 Pic Error/Status Report Enable.

Project: BDW

This field control whether the error/status reporting is enable or not.0: Disable1: EnableIn

decoder modes: Error reporting is written out once per frame. The Error Report frame ID listed in

DW3 along with the VLD/IT error status bits are packed into one cache and written to the

"Decoded Picture Error/Status Buffer address" listed in the MFX_PIPE_BUF_ADDR_STATE

Command. Note: driver shall program different error buffer addresses between pictrues;

otherwise, hardware might overwrite previous written data if driver does not read it fast

enough.In encoder modes: Not used

Please refer to "Media VDBOX -> Video Codec -> Other Codec Functions -> MFX Error Handling

-> Decoder" session for the output format.

Value Name

0h Disable

1h Enable

 Command Reference: Instructions

716 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_MODE_SELECT
10 Stream-Out Enable

 This field controls whether the macroblock parameter stream-out is enabled during VLD

decoding for transcoding purpose.

Value Name

0h Disable

1h Enable

Programming Notes

In decoder modes: The Stream-Out feature is added to support transcoding. While decoding

the input compressed stream, selected decoded information may be used by the encoder for

re-compression.In encoder modes: This feature used to perform dynamic Multipass of PAK for

conformance pupose. Also it provides feedback to host (ENC) for future needs. Software can

use this bit to disable writing PAK steam data to the streamout buffer for last pass of frame in

PAK. Thus, save memory bandwidth.

9 Post Deblocking Output Enable (PostDeblockOutEnable)

 This field controls the output write for the reconstructed pixels AFTER the deblocking filter.In

MPEG2 decoding mode, if this is enabled, VC1 deblocking filter is used.

Value Name

0h Disable

1h Enable

8 Pre Deblocking Output Enable (PreDeblockOutEnable)

 This field controls the output write for the reconstructed pixels BEFORE the deblocking filter.

Value Name

0h Disable

1h Enable

7:6 Reserved

Project: BDW

Format: MBZ

5 Stitch Mode

Exists If: //CodecSel=Encode and StandardSel=AVC

Value Name Description

0h Not in stitch mode

1h In the special stitch

mode

This mode can be used for any Codec as long as bitfield

conditions are met.

4 Codec Select

Value Name Description

0h Decode

1h Encode Valid only if StandardSel is AVC and MPEG2)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 717

MFX_PIPE_MODE_SELECT
3:0 Standard Select

Value Name Description Project

0000b MPEG2

0001b VC1

0010b AVC Covers both AVC and MVC

0011b JPEG

0100b Reserved BDW

0101b VP8 Decoder starting from BDW BDW

0110b Reserved

0111b Reserved

1111b UVLD SW decoder w/ embedded micro-controller and co-processor BDW

2 31 Reserved

Format: MBZ

30 Reserved

Project: BDW

29 Reserved

Format: MBZ

28 Reserved

27 Reserved

26 Reserved

Project: BDW

25 Reserved

Project: BDW

24 VHR MVC Field Reference List Logic Enable

Project: BDW

Value Name Description

0 Disable [Default] Disable MVC Field Logic

1 Enable VHR MVC Field Enable

23 Reserved

Project: BDW

22:21 Reserved

20:19 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

718 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_PIPE_MODE_SELECT
18 Reserved

Format: MBZ

17 Reserved

Project: BDW

16 Reserved

15 Reserved

14 VLF 720i (Odd Height) in VC1 Mode

Project: BDW

 This bit indicates VLF write out VC1 picture with odd height (in MBs).

Value Name Description

0 Disable [Default]

1 Enable 720i Enable

13 Reserved

Format: MBZ

12 Reserved

Project: BDW

11 Reserved

10 MPC pref08x8_disable Flag (Default 0)

Value Name

0 Disable

1 Enable

9 Reserved

Project: BDW

Format: MBZ

8 Reserved

Project: BDW

7 Reserved

6 Clock gate Enable at Slice-level

 BitFieldDesc:

Value Name Description

0 Disable Disable Slice-level Clock gating, Unit-level Clock gating will apply

1 Enable Enable Slice-level Clock gating, overrides any Unit level Clock gating

5 Reserved

4 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 719

MFX_PIPE_MODE_SELECT
3 VDS ILDB Calculation

Project: BDW

 This bit forces all MB into INTRA MBs before doing ILDB control generation in VDS.

Value Name Description

0 Disable [Default] Use original definition for ILDB calculation.

1 Enable Force neighbor Intra MB = 1 on ILDB BS calculation.

Programming Notes

When the bit is '0', the ILDB control generation will be the same as the original spec (AVC/VC1).

2:1 Reserved

Project: BDW

0 Reserved

Project: BDW

3 31:0 Pic Status/Error Report ID

Exists If: //Decoder Mode Only

Format: U32

 In decoder modes: Error reporting is written out once per frame. This field along with the VLD

error status bits are packed into one cache and written to the memory location specified by

"Decoded Picture Error/Status Buffer address" listed in the MFX_PIPE_BUF_ADDR_STATE

Command.

Value Name Description

0h 32-bit unsigned Unique ID Number

1h Reserved

4 31:0 Media Soft-Reset Counter (per 1000 clocks)

Project: BDW

 In decoder modes, this indicates the number of clocks (per 1000) VINunit will wait for inactivity

from MFX pipeline before issuing media soft reset. If this counter is set to 0, VINunit will never

issue soft media reset. In encoder modes: This counter must be set to 0 to disable media soft

reset since encoder mode is not supported.

Value Name Project

0 Disable BDW

 Command Reference: Instructions

720 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_QM_STATE

MFX_QM_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This is a common state command for AVC encoder modes. For encoder, it represents both the forward QM

matrices as well as the decoding QM matrices.This is a Frame-level state. Only Scaling Lists specified by an

application are being sent to the hardware. The driver is responsible for determining the final set of scaling lists

to be used for decoding the current slice, based on the AVC Spec Table 7-2 (Fall-Back Rules A and B).In MFX AVC

PAK mode, PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are sent as in MFD in

raster scan order. But the Forward Q scaling lists are sent in column-wise raster order (column-by-column) to

simplify the H/W. Driver will perform all the scan order conversion for both ForwardQ and IQ.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_MULTI_DW

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 7h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 20h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 721

MFX_QM_STATE
1:0 AVC

Exists If: //AVC- Decoder Only

For AVC QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name

0 AVC_4x4_Intra_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)

1 AVC_4x4_Inter_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-4DWs)

2 AVC_8x8_Intra_MATRIX

3 AVC_8x8_Inter_MATRIX

1:0 MPEG2

Exists If: //MPEG2- Decoder Only

For MPEG2 QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name

0 MPEG_INTRA_QUANTIZER_MATRIX

1 MPEG_NON_INTRA_QUANTIZER_MATRIX

2-3 Reserved

2..33 31:0 Forward Quantizer Matrix

Project: All

Format: U32

 The format of a Quantizer Matrix is an 8x8 matrix in raster order. Each element is an

unsigned byte.

 Command Reference: Instructions

722 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_STATE_POINTER

MFX_STATE_POINTER
Project: BDW

Source: VideoCS

Length Bias: 2

The MFX_STATE_POINTER command, issued at picture level, is used to set up the indirect pointers for VCS to

fetch all the MFX states (Image state, Slice state, etc.) needed for the encoding/decoding process in PAK/IT

mode. The encoding/decoding states are presented by state commands, which are grouped into separate sets

(picture level, slice level, etc.), and each is stored in its own memory buffer referred by an indirect state pointer.

The content of each indirect state buffer is a list of MFX state commands with no special format requirements.

The sequence of commands in each indirect state buffer is terminated by a MI_BATCH_BUFFER_END command

(acts as the last command marker). Therefore, indirect state buffers can have different and variable length of

command sequences.

The indirection is designed to facilitate context switching in the middle of a codec operation. The smallest

granularity of interruption is designed to be at a completed MB row in AVC/VC1/MPEG2 IT and AVC PAK

operating modes as well as in VC1/MPEG2 VLD mode. There is no support for context switch in AVC VLD mode.

Hardware supports up to 4 separate indirect state pointers, allowing software to manage the grouping of state

commands. During context switch, hardware restores (re-issues) the latest version of each indirect state pointer,

if present.

MFX_STATE_POINTER command can only program one indirect state pointer at a time. MI_FLUSH will invalidate

all indirect state buffer pointers inside VCS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFX_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 6h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 723

MFX_STATE_POINTER
11:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n Total Length - 2

1 31:5 State Pointer

Format: GeneralStateOffset[31:5]Indirect State Buffer

 Specifies the 32-byte aligned address of an Indirect State Buffer. This pointer is relative to

the General State Base Address.

4:2 Reserved

Project: All

Format: MBZ

1:0 State Pointer Index

 Specifies one of the four indirect state pointers to program.

Value Name Description Project

00b indirect state pointer 0 (image state) All

01b indirect state pointer 1 (slice state)sc All

10b indirect state pointer 2

11b indirect state pointer 3

 Command Reference: Instructions

724 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_STITCH_OBJECT

MFX_STITCH_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

The MFC_STITCH_OBJECT command is used when stitch-enabled is set to 1, while CodecSel and StandardSel are

set to ENCODE and AVC, respectively. This command is used, for example, to stitch multiple bitstreams to form a

transport stream.

It is a variable length command as the data to be inserted are presented as either inline data and/or indirect data

of this command. Multiple insertion commands can be issued back to back in a series. It is host software's

responsibility to make sure their corresponding data will properly stitch together to form a valid output.

Hardware keeps track of an output bitstream buffer current byte position and the associated next bit insertion

position index. Context switch interrupt is not supported by this command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFC_STITCH_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MFX_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 2h

Format: OpCode

20:16 SubOpcode B

Default Value: Ah

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Default Value: 0h Excludes DWord (0,1) = Variable Length in DW (>= 3)

Format: =n Total Length - 2

 If it is 3, it indicates the absent of inline data.

1 31:18 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 725

MFX_STITCH_OBJECT
17:16 Source Data Starting Byte Offset

 Source Data Starting Byte Position within the very first inline DW.

15:14 Reserved

Format: MBZ

13:8 Source Data Ending Bit Inclusion

 Source Data to be included in the very last inline DW. Follows the MSBit is the upper bit of each

byte within the DW. The lower byte is actually processed first.For example,

SrCDataEndingBitInclusion =9, bit 7:0 and bit 15 are included as valid header data.

Value Name

[1,32]

7:4 Reserved

3 Reserved

2 Last Source Header Data Insert Command Flag

 To process a series of consecutive insertion commands, this flag (=1) indicates the current

command is the last 'header' insertion in the series.In CABAC, hardware must perform the "1"

insert for byte align for Slice Header before Slice Data comes in in the next PAK-OBJECT

command.In CAVLC, hardware ignores this bit.

1 Last Destination Data Insert Command Flag

THIS FIELD MUST BE THE SAME AS Last Source Header Data Insert Command Flag

No more insertion command and no more PAK-OBJECT command follows.Flush data out to

memory

0 Reserved

2 31:19 Reserved

Format: MBZ

18:0 Indirect Data Length

Project: BDW

Format: U19

 This field provides the length in bytes of the indirect data. A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect Data Start Address field is ignored. This

field must have the same alignment as the Indirect Object Data Start Address.

3 31:0 Indirect Data Start Address

Format: MfxIndirectBitstreamObjectAddress[31:0]

 This field specifies the Graphics Memory starting address of the data to be loaded into the

kernel for processing. This pointer is relative to the MFX Indirect Bitstream Object Base Address.

Hardware ignores this field if indirect data is not present.

4..n 31:0 Insert Data PayLoad

 Inline data to be inserted to the output bitstream buffer

 Command Reference: Instructions

726 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_SURFACE_STATE

MFX_SURFACE_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

This command is common for all encoding/decoding modes, to specify the uncompressed YUV picture (i.e.

destination surface) or intermediate streamout in/out surface (e.g. coefficient/residual) (field, frame or

interleaved frame) format for reading and writing:

 Uncompressed, original input picture to be encoded

 Reconstructed non-filtered/filtered display picturec(becoming reference pictures as well for subsequent

temporal inter-prediction)

Since there is only one media surface state being active during the entire encoding/decoding process, all the

uncompressed/reconstructed pictures are defined to have the same surface state. The primary difference among

picture surface states is their individual programmed base addresses, which are provided by other state

commands and not included in this command. MFX engine is making the association of surface states and

corresponding buffer base addresses.

MFX engine currently supports only one media surface type for video and that is the NV12 (Planar YUV420 with

interleaved U (Cb) and V (Cr). For optimizing memory efficiency based on access patterns, only TileY is

supported. For JPEG decoder, only IMC1 and IMC3 are supported. Pitch can be wider than the Picture Width in

pixels and garbage will be there at the end of each line. The following describes all the different formats that are

supported and not supported in Gen7 MFX :

 NV12 - 4:2:0 only; UV interleaved; Full Pitch, U and V offset is set to 0 (the only format supported for video

codec); vertical UV offset is MB aligned; UV xoffsets = 0. JPEG does not support NV12 format because

non-interleave JPEG has performance issue with partial write (in interleaved UV format)

 IMC 1 & 3 - Full Pitch, U and V are separate plane; (JPEG only; U plane + garbage first in full pitch

followed by V plane + garbage in full pitch). U and V vertical offsets are block aligned; U and V xoffset =

0; there is no gap between Y, U and V planes. IMC1 and IMC3 are different by a swap of U and V. This is

the only format supported in JPEG for all video subsampling types (4:4:4, 4:2:2 and 4:2:0)

 We are not supporting IMC 2 & 4 - Full Pitch, U and V are separate plane (JPEG only; U plane first in full

pitch followed by V plane in full pitch - U and V plane are side-by-side). U and V vertical offsets are 16-

pixel aligned; V xoffset is half-pitch aligned; U xoffset is 0; there is no gap between Y, U and V planes.

IMC2 and IMC4 are different by a swap of U and V.

 We are not supporting YV12 - half pitch for each U and V plane, and separate planes for Y, U and V (U

plane first in half pitch followed by V plane in half pitch). For YV12, U and V vertical offsets are block

aligned; U and V xoffset = 0; there is no gap between Y, U and V planes

Note that the following data structures are not specified through the media surface state

 1D buffers for row-store and other miscellaneous information.

 2D buffers for per-MB data-structures (e.g. DMV biffer, MB info record, ILDB Control and Tcoeff/Stocoeff).

This surface state here is identical to the Surface State for deinterlace and sample_8x8 messages described in the

Shared Function Volume and Sampler Chapter.

For non pixel data, such as row stores, indirect data (Compressed Slice Data, AVC MV record, Coeff record and

AVC ILDB record) and streamin/out and output compressed bitstream, a linear buffer is employed. For row

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 727

MFX_SURFACE_STATE
stores, the H/W is designed to guarantee legal memory accesses (read and write). For the remaining cases,

indirect object base address, indirect object address upper bound, object data start address (offset) and object

data length are used to fully specified their corresponding buffer. This mechanism is chosen over the pixel

surface type because of their variable record sizes.

All row store surfaces are linear surface. Their addresses are programmed in Pipe_Buf_Base_State or

Bsp_Buf_Base_Addr_State

Programming Notes

VC1 I picture scaling: Even though VC1 allows I reconstructed picture scaling (via RESPIC), as such scaling is

only allowed at I picture. All subsequent P (and B) pictures must have the same picture dimensions with the

preceding I picture. Therefore, all reference pictures for P or B picture can share the same surface state with the

current P and B picture. Note : H/W is not processing RESPIC. Application is no longer expecting intel decoder

pipelineand kernel to perform this function, it is going to be done in the video post-processing scaler or display

controller scale as a separate step and controller.

All video codec surfaces must be NV12 Compliant, except JPEG. U/V vertical must be MB aligned for all video

codec (further contrained for field picture), but JPEG can be block aligned. All video codec and JPEG uses Tiled -

Y format only, for uncompressed pixel surfaces.

Even for JPEG planar 420 surface, application may provide only 1 buffers, but there is still only one single

surface state for all of them. If IMC equal to 1, 2, 3 or 4, U and V have the pitch same as Y. And U and V will

have different offset, each offset is block aligned.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_COMMON

Format: OpCode

26:24 Opcode

Default Value: 0h MFX_COMMON_STATE

Format: OpCode

23:21 SubOpA

Default Value: 0h

Format: OpCode

20:16 SubOpB

Default Value: 1h

Format: OpCode

15:12 Reserved

Format: MBZ

 Command Reference: Instructions

728 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_SURFACE_STATE
11:0 DWord Length

Format: =n Total Length - 2

Value Name Description

4h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:4 Reserved

Format: MBZ

3:0 Surface Id

Project: BDW

Format: U4

Value Name Description

0000b Reserved 8-bit uncompressed data

0001b Reserved 16-bit uncompressed data

0010b Reserved 8-bit uncompressed data.

0011b Reserved 16-bit uncompressed data

0100b Source Input Picture (encoder) 8-bit uncompressed data

0101b Reconstructed Scaled Reference Picture 8-bit data

2 31:18 Height

Format: U14-1 Height

 This field specifies the height of the Picture in units of pixels/residuals. For PLANAR surface

formats, this field indicates the height of the Y (luma) plane. Note : Gen7 Video Codecs must

program less than and equal to 4K.(In future, it will be ideal to have this field define in a WORD

boundary.)AVC - multiple of 2 MB rows for field pictureVC1 - mulitple of 4 pixels for field

pictureMPEG2 - multiple of 2 MB rows for field picJPEG - mulitple of integral MCU (8 or 16 pixels)

per picture

Value Name Description

[0,16383] representing heights [1,16384]

Programming Notes

 For AVC : For frame picture is a multiple of 16; for field picture is a multiple of 32

 For VC1 : For progressive frames, the frame height and frame width is a multiple of 2

pixels. For interlaced frames, the frame height shall be a multiple of 4 pixels, and its

width is a multiple of 2 pixels, based on a PLANAR_420 surface.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 729

MFX_SURFACE_STATE
17:4 Width

Format: U14-1 Width

 This field specifies the width of the Picture in units of pixels/residuals. For PLANAR surface

formats, this field indicates the width of the Y (luma) plane.

Value Name Description

[0,16383] representing widths [1,16384]

Programming Notes

 The Width specified by this field multiplied by the pixel size in bytes must be less than or

equal to the surface pitch (specified in bytes via the Surface Pitch field).

 Width (field value + 1) must be a multiple of 2 for PLANAR_420

 MFX HW does not use this field, the picture width is read from IMG State instead,

because this field may not equal to the actual picture width. This field is used by the

KMD to allocate surface in GTT.

3:2 Reserved

Format: MBZ

1:0 Cr(V)/Cb(U) Pixel Offset V Direction

Project: All

Format: U0.2 exactly as shown in the original spec

 Specifies the distance to the U/V values with respect to the even numbered Y channels in the V

direction

Programming Notes

This field is ignored for all formats except PLANAR_420_8

 Command Reference: Instructions

730 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_SURFACE_STATE
3 31:28 Surface Format

Format: U4

 Specifies the format of the surface. All of the Y and G channels will use table 0 and all of the

Cr/Cb/R/B channels will use table 1.Usage: For 420 planar YUV surface, use 4; for monochrome

surfaces, use 12. For monochrome surfaces, hardware ignores control fields for Chroma

planes.This field must be set to 4 - PLANAR_420_8, or 12 - Y8_UNORMNot used for MFX, and is

ignored. But for JPEG decoding, this field should be programmed to the same format as

JPEG_PIC_STATE. For video codec, it should set to 4 always.

Value Name Description

0 YCRCB_NORMAL

1 YCRCB_SWAPUVY

2 YCRCB_SWAPUV

3 YCRCB_SWAPY

4 PLANAR_420_8 (NV12, IMC1,2,3,4, YV12)

5 PLANAR_411_8 Deinterlace Only

6 PLANAR_422_8 Deinterlace Only

7 STMM_DN_STATISTICS Deinterlace Only

8 R10G10B10A2_UNORM Sample_8x8 Only

9 R8G8B8A8_UNORM Sample_8x8 Only

10 R8B8_UNORM (CrCb Sample_8x8 Only

11 R8_UNORM (Cr/Cb) Sample_8x8 Only

12 Y8_UNORM Sample_8x8 Only

27 Interleave Chroma

Format: Enable

 This field indicates that the chroma fields are interleaved in a single plane rather than stored as

two separate planes. This field is only used for PLANAR surface formats.For AVC/VC1/MPEG VLD

and IT modes : set to Enable to support interleave U/V only.For JPEG : set to Disable for all

formats (including 4:2:0) - because JPEG does not support NV12. (This field is needed only if JPEG

will support NV12; otherwise is ignored.)

Value Name

1 Enable

0 Disable

26:20 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 731

MFX_SURFACE_STATE
19:3 Surface Pitch

Format: U17-1 pitch in Bytes

 This field specifies the surface pitch in (#Bytes).

Value Name Description

[0,2047] to [1B, 2048B]

Programming Notes

For tiled surfaces, the pitch must be a multiple of the tile width (i.e.128 bytes aligned). If Half

Pitch for Chroma is set, this field must be a multiple of two tile widths for tiled surfaces, or a

multiple of 2 bytes for linear surfaces.For Y-tiled surfaces: Range = [127, 524287] to

[128B,256KB] = [1 tile, 2048 tiles]

2 Half Pitch for Chroma

Format: Enable

 (This field must be set to Disable)This field indicates that the chroma plane(s) will use a pitch

equal to half the value specified in the Surface Pitch field. This field is only used for PLANAR

surface formats.This field is igored by MFX (unless we support YV12)

1 Tiled Surface

Format: Boolean

 (This field must be set to TRUE: Tiled)This field specifies whether the surface is tiled.This field is

ignored by MFX

Value Name Description

0 False Linear

1 True Tiled

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable,

snooped). Tiled surfaces can only be mapped to Main Memory.The corresponding cache(s)

must be invalidated before a previously accessed surface is accessed again with an altered state

of this bit.

 Command Reference: Instructions

732 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_SURFACE_STATE
0 Tile Walk

Format: 3D_Tilewalk

 (This field must be set to 1: TILEWALK_YMAJOR)This field specifies the type of memory tiling

(XMajor or YMajor) employed to tile this surface. See Memory Interface Functions for details on

memory tiling and restrictions.This field is ignored when the surface is linear.This field is ignored

by MFX. Internally H/W is always treated this set to 1 for all video codec and for JPEG.

Value Name Description

0h XMAJOR TILEWALK_XMAJOR

1h YMAJOR TILEWALK_YMAJOR

Programming Notes

The corresponding cache(s) must be invalidated before a previously accessed surface is

accessed again with an altered state of this bit

4 31 Reserved

Format: MBZ

30:16 X Offset for U(Cb)

Project: All

Format: U15 Pixel Offset

 This field specifies the horizontal offset in pixels from the Surface Base Address to the start

(origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field

is only used for PLANAR surface formats. This field must be set to zero.X Offset for U(Cb) in pixel

(This field must be zero for NV12 and IMC 1 and 3)

Programming Notes

For PLANAR_420 and PLANAR_422 surface formats, this field must be zero.

15 Reserved

Project: All

Format: MBZ

14:0 Y Offset for U(Cb)

Project: All

Format: U15 Pixel Row Offset

 This field specifies the veritical offset in rows from the Surface Base Address to the start (origin)

of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only

used for PLANAR surface formats.

Programming Notes

For PLANAR_420 and PLANAR_422 surface formats, this field must be multiple of 16 pixels - i.e.

multiple MBs. For JPEG, this field must be a multiple of 16 pixels.

5 31:29 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 733

MFX_SURFACE_STATE
28:16 X Offset for V(Cr)

Format: U13 Offset in Pixels

This field must be zero for NV12 and IMC 1 and 3

This field specifies the horizontal offset in pixels from the Surface Base Address to the start

(origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave

Chroma disabled.

Programming Notes

For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of

pixels.

15:0 Y Offset for V(Cr)

Format: U16 Row Offset in Pixels

 This field specifies the veritical offset in rows from the Surface Base Address to the start (origin)

of the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma

disabled. This field is ignored by all video codec, only used by JPEG.

Programming Notes

For PLANAR_420 surface formats, this field must be multiple of 16 pixels - i.e. multiple MBs. For

JPEG, this field must be a multiple of 16 pixels.

 Command Reference: Instructions

734 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_DIRECTMODE_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

Exists If: //VC1 decoding in VLD modes

 This is a picture level command and should be issued only once, even for a multi-slices picture. There is only one

DMV buffer for read (when processing a B-picture) and one for write (when processing a P-Picture). Each DMV

record is 64 bits per MB, to store the top and bottom field MVs (32-bit MVx,y each).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_VC1_DIRECTMODE_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 2h VC1_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 2h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0005h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 735

MFX_VC1_DIRECTMODE_STATE
1 31:6 Direct MV Write Buffer Base Address for the Current Picture

 This field provides the base address of the DMV write buffer to store the motion vectors

decoded in the current picture. It is a private buffer used by the MPR hardware only. Its content

is not accessed by software.This buffer must be 64-byte cacheline aligned.The write buffer size

is 557,056 bytes for 1 frame. Scalable with frame height, but do not scale with frame width as

the hardware assumes frame width (in MBs) fixed at 128 (smallest power of 2 value larger than

120 - 1920x1088 screen resolution).This field is only valid for a P picture

5:0 Reserved

Project: BDW

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Direct MV Write Buffer Base Address for the Current Picture [47:32]

Project: BDW

 This field is for the upper range of Direct MV Write Buffer Base Address for the Current Picture.

This field is used for 48-bit addressing.

3

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

736 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VC1_DIRECTMODE_STATE
8:7 Direct MV Write Buffer Base Address for the Current Picture - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Direct MV Write Buffer for

the Current Picture

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Direct MV Write Buffer for the Current Picture

Project: BDW

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Direct MV Write Buffer for the Current Picture

Project: BDW

Format: Enable

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 737

MFX_VC1_DIRECTMODE_STATE
4 31:6 Direct MV Read Buffer Base Address for the Reference Picture

 This field provides the base address of the DMV buffer for reference picture. It is a private

buffer used by the MPR hardware only. Its content is not accessed by software.All these buffers

must be 64-byte cacheline aligned.This field is only valid for a B picture.

5:0 Reserved

Project: BDW

Format: MBZ

5

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Reserved for 64-bit address extension.

15:0 Direct MV Read Buffer Base Address for the Current Picture [47:32]

Project: BDW

 This field is for the upper range of Direct MV Read Buffer Base Address for the Current Picture.

This field is used for 48-bit addressing.

6

Project:

BDW

31:15 Reserved

Project: BDW

Format: MBZ

14:13 Reserved

Project: BDW

Format: MBZ

12:11 Reserved

Project: BDW

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

8:7 Direct MV Read Buffer Base Address for the Current Picture - Arbitration Priority Control

Project: BDW

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

 Command Reference: Instructions

738 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VC1_DIRECTMODE_STATE
6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Direct MV Read Buffer for the

Current Picture

Project: BDW

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name

00b Use Cacheability Controls from page table / UC with Fence (if coherent cycle)

01b Uncacheable (UC) - non-cacheable

10b Writethrough (WT)

11b Writeback (WB)

4:3 Target Cache (TC) for Direct MV Read Buffer for the Current Picture

Project: BDW

 This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of

"00" points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access

will be allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM.

Setting of "10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only

option for a memory access to be allocated in L3$ as well as LLC/eLLC 00b: eLLC Only ("00"

setting points TC selection to PTE which defaults to eLLC) 01b: LLC Only (Works at the

allocation time, later victimization from LLC downgrades the line to eLLC if present). 10b:

LLC/eLLC Allowed. 11b: L3, LLC, eLLC Allowed.

Value Name

00b eLLC Only - not snooped in GT (BDW)

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) for Direct MV Read Buffer for the Current Picture

Project: BDW

Format: Enable

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular

allocation is done at youngest age (“0,1,2”) it tends to stay longer in the cache. This option is

given to GFX software to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 739

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_PRED_PIPE_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This command is used to set the operating states of the MFD Engine beyond the BSD unit. It is used with both

VC1 Long and Short format.Driver is responsible to take the intensity compensation enable signal, the LumScale

and the LumShift provided from the DXVA2 VC1 interface, and maintain a history of these values for reference

pictures. Together with these three parameters specified for the current picture being decoded, driver will derive

and supply the above sets of LumScaleX, LumShiftX and intensity compensation enable (single or double,

forward or backward) signals. H/W is responsible to take these state values, and use them to build the lookup

table (including the derivation of iScale and iShift) for remapping the reference frame pixels, as well as perfoming

the actual pixel remapping calculations/process.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_VC1_PRED_PIPE_STATE

Format: OpCode

26:24 Media Command Opcode

Default Value: 2h VC1_COMMON

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 1h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 0004h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:16 Reserved

Format: MBZ

 Command Reference: Instructions

740 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VC1_PRED_PIPE_STATE
15:14 vin_intensitycomp_Double_FWDen

Format: U2

 for forward reference picture only, to enable top or/and bottom of the reference field enable for

single compensation. For frame, may only need one bit. This field is maintained and provided by

driver for both long and short VC1 interface format. And is derived from the intensity

compensation enable flag, wBitstreamPCEelement and wBitstreamFcodes parameters provided

by the DXVA2 VC1 interface to the driver for each current picture.

13:12 vin_intensitycomp_Double_BWDen

Format: U2

 for backward reference picture only, no double for backward reference. This field is maintained

and provided by driver for both long and short VC1 interface format. And is derived from the

intensity compensation enable flag, wBitstreamPCEelement and wBitstreamFcodes parameters

provided by the DXVA2 VC1 interface to the driver for each current picture.

11:10 vin_intensitycomp_Single_FWDen

Format: U2

 for forward reference picture only, to enable top or/and bottom of the reference field enable for

single compensation. For frame, may only need one bit. This field is maintained and provided by

driver for both long and short VC1 interface format. And is derived from the intensity

compensation enable flag, wBitstreamPCEelement and wBitstreamFcodes parameters provided

by the DXVA2 VC1 interface to the driver for each current picture.

9:8 vin_intensitycomp_Single_BWDen

Format: U2

 for backward reference picture only, no double for backward reference. This field is maintained

and provided by driver for both long and short VC1 interface format. And is derived from the

intensity compensation enable flag, wBitstreamPCEelement and wBitstreamFcodes parameters

provided by the DXVA2 VC1 interface to the driver for each current picture.

7:4 Reference Frame Boundary Replication Mode

Format: U4

 This is a bit field with each bit indicating the corresponding picture's boundary replication mode.

Bit 11: reference 3 Bit 10: reference 2 Bit 9: reference 1 Bit 8: reference 0 0 = progressive frame

replication 1 = interlace frame replication This field is maintained and provided by driver for both

long and short VC1 interface format.

3:0 Reserved

Format: MBZ

2 31:30 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 741

MFX_VC1_PRED_PIPE_STATE
29:24 LumShift2- single - FWD

Format: U6

 This field is maintained and provided by driver for both long and short VC1 interface format.

And is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

23:22 Reserved

Format: MBZ

21:16 LumShift1 - single - FWD

Format: U6

 This field is maintained and provided by driver for both long and short VC1 interface format.

And is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

15:14 Reserved

Format: MBZ

13:8 LumScale2 - single - FWD

Format: U6

 This field is maintained and provided by driver for both long and short VC1 interface format.

And is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

7:6 Reserved

Format: MBZ

5:0 LumScale1 - Single - FWD

Format: U6

 This field is maintained and provided by driver for both long and short VC1 interface format.

And is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

3 31:30 Reserved

Format: MBZ

 Command Reference: Instructions

742 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VC1_PRED_PIPE_STATE
29:24 LumShift2- double - FWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

23:22 Reserved

Format: MBZ

21:16 LumShift1 - double -FWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

15:14 Reserved

Format: MBZ

13:8 LumScale2 - double - FWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

7:6 Reserved

Format: MBZ

5:0 LumScale1 - double - FWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

4 31:30 Reserved

Format: MBZ

29:24 LumShift2- single - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 743

MFX_VC1_PRED_PIPE_STATE
23:22 Reserved

Format: MBZ

21:16 LumShift1 - single - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

15:14 Reserved

Format: MBZ

13:8 LumScale2 - single - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

7:6 Reserved

Format: MBZ

5:0 LumScale1 - Single - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

5 31:30 Reserved

Format: MBZ

29:24 LumShift2- double - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

23:22 Reserved

Format: MBZ

 Command Reference: Instructions

744 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VC1_PRED_PIPE_STATE
21:16 LumShift1 - double -BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

15:14 Reserved

Format: MBZ

13:8 LumScale2 - double - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

7:6 Reserved

Format: MBZ

5:0 LumScale1 - double - BWD

Format: U6

 This field is maintained andprovided by driver for both long and short VC1 interface format. And

is derived from the intensity compensation enable flag, wBitstreamPCEelement and

wBitstreamFcodes parameters provided by the DXVA2 VC1 interface to the driver for each

current picture.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 745

MFX_VP8_PAK_OBJECT

MFX_VP8_PAK_OBJECT
Project: BDW

Source: VideoCS

Length Bias: 2

 The MFX_VP8_PAK_OBJECT command is the second primitive command for the VP8 Encoding Pipeline. The MV

Data portion of the bitstream is loaded as indirect data object.Before issuing a MFX_VP8_PAK_OBJECT command,

all VP8 MFX states need to be valid; therefore the commands used to set these states need to have been issued

prior to the issue of this command. MB record must be consecutive with no gaps, hence we do not need MB(x,y)

in each MB command. Internal counter will keep track of the current MB address, starting from the first MB.

MFX_VP8_PAK_OBJECT command follows the MbType definition like MFD. Encoding statistical data such as the

total size of the output bitstream are provided through MMIO registers. Software may access these registers

through MI_STORE_REGISTER_MEM command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h MFX_VP8_PAK_OBJECT

Format: OpCode

26:24 Media Command Opcode

Default Value: 4h VP8_ENC

Format: OpCode

23:21 SubOpcode A

Default Value: 2h

Format: OpCode

20:16 SubOpcode B

Default Value: 9h

Format: OpCode

15:12 Reserved

Project: All

Format: MBZ

11:0 DWord Length

Default Value: 5h DWORD_COUNT_n

Project: All

Format: =n Length -2

 Command Reference: Instructions

746 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PAK_OBJECT
1 31:30 Reserved

Project: All

Format: MBZ

29 Reserved

Project: BDW

Format: MBZ

28:10 Reserved

Project: All

Format: MBZ

9:0 Indirect PAK-MV Data Length

Format: U10

 This field provides the length in bytes of the indirect data, which contains all the MVs for the

current MB (in any partitioning and subpartitioning form). A value zero indicates that indirect

data fetching is disabled - subsequently, the Indirect PAK-MV Data Start Address field is ignored.

This field must have the same alignment as the Indirect PAK-MV Data Start Address. This field

must be DW aligned (since each MV is 4 bytes in size).Driver has to derived this field from

MVsize (MVquantity in DXVA, exact size) *4 bytes per MV.

2 31:29 Reserved

Format: MBZ

28:0 Indirect PAK-MV Data Start Address Offset

 This field specifies the memory starting address (offset) of the MV data to be fetched into PAK

Subsystem for processing. This pointer is relative to the MFC Indirect PAK-MV Object Base

Address.Hardware ignores this field if indirect data is not present, i.e. the Indirect PAK-MV Data

Length is set to 0. It is a Dword aligned address in all AVC encoding configuration, since each MV

is 4 bytes in size.

Value Name

[0,512MB)

3..6 127:0 Inline Data

 All the required MB level controls and parameters for encoding are captured as Inline Data

Description - VP8 PAK OBJECT. It has a fixed size of 4 DWs. Its definition is described in the next

section.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 747

MFX_VP8_PIC_STATE

MFX_VP8_PIC_STATE
Project: BDW

Source: VideoCS

Length Bias: 2

 This must be the very first command to issue after the surface state, the pipe select and base address setting

commands and must be issued before MFX_VP8_IMG_STATE.

Programming Notes Project

Only able to use this instruction for decoder workloads. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Video Codec

Format: OpCode

26:24 Media Command OpCode

Default Value: 4h VP8

Format: OpCode

23:21 Sub Opcode A

Default Value: 0h VP8 Common

Format: OpCode

20:16 Sub Opcode B

Default Value: 0h MFX_VP8_PIC_STATE

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n

Value Name Description

000h Excludes DWord

(0,1) [Default]

A special case to provide a dummy image state for stitch mode

operation. In this case, fields in DW1 which is part of the dummy

image state command are ignored by hardware."

024h Used for normal decode and encode mode

 Command Reference: Instructions

748 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
1 31:24 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

23:16 Frame Height Minus 1

Exists If: //Decoder / Encoder

Format: U8

 Picture Height in integer number of MBs minus 1, so the min pic height can be program is 16

rows of pixels.

15:8 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

7:0 Frame Width Minus 1

Exists If: //Decoder / Encoder

Format: U8

 Picture Width in integer number of MBs minus 1, so the min pic width can be program is 16

pixels.

2 31:26 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

25:24 Log2 Num of Partition

Exists If: //Decoder / Encoder

Format: U2

Value Name

0 1 Token partition

1 2 Token partition

2 4 Token partition

3 8 Token partition

23:19 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 749

MFX_VP8_PIC_STATE
18:16 Deblock Sharpness Level

Exists If: //Decoder / Encoder

Format: U3

 Specifiy the sharpness level, as one of the regular deblocking strength control parameters.

Programming Notes

Set to 0 to disable the use of sharpness control.

15:14 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

13 Alternate Ref Pic MV SignBias Flag

Exists If: //Decoder / Encoder

 Alternate Reference Picture MV sign bias flag, specified for non-key frame only.

12 Golden Ref Picture MV SignBias Flag

Exists If: //Decoder / Encoder

 Golden Reference Picture MV sign bias flag, specified for non-key frame only.

11 Mode Reference Loop Filter Delta Enabled

Exists If: //Decoder / Encoder

Value Name Description

0 Mode or Reference Loop Filter Delta Adjustment for current frame is disabled.

1 Mode or Reference Loop Filter Delta Adjustment for current frame is enabled.

10 MB NoCoeff SkipFlag

Exists If: //Decoder / Encoder

 Frame level control if Skip MB (with no non-zero coefficient) is allowed or not.

Value Name Description

0 All MBs will have its MB level signaling mb_skip_coeff forced to 0. That is, no

skip of coefficient record in the bitstream (even their values are all 0s)

1 Skip MB is enabled in the per MB record.

9 Update MBSegment Map Flag

Exists If: //Decoder / Encoder

Value Name Description

0 Disable segmentation update

1 Enable segmentation update, and to enable reading segment_id for each MB.

 Command Reference: Instructions

750 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
8 Segment Enable Flag

Exists If: //Decoder / Encoder

Value Name Description

0 Disable Segmentation processing in the current frame

1 Enable Segmentation processing in the current frame

7 Segmentation ID StreamIn Enable

Exists If: //Decoder Only

Value Name

0 StreamIn Disabled

1 StreamIn Enabled

Programming Notes

When 0, no input needed.

7:6 Reserved

Exists If: //Encoder Only

Format: MBZ

6 Segmentation ID StreamOut Enable

Exists If: //Decoder Only

Value Name

0 StreamOut Disabled

1 StreamOut Enabled

Programming Notes

When 0, no output needed.

5 sKeyFrameFlag

Exists If: //Decoder / Encoder

Value Name

0 Non-Key Frame (P-Frame)

1 Key Frame (I-Frame)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 751

MFX_VP8_PIC_STATE
4 DBLKFilterType

Exists If: //Decoder / Encoder

 To specify VP8 Profile of operation.

Value Name Description

0 Use a full feature normal deblocking filter

1 Use a simple filter for deblocking

3:2 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

1 Chroma Full Pixel MC Filter Mode

Exists If: //Decoder / Encoder

 To specify VP8 Profile of operation.

Value Name Description

0 Chroma MC filter operates in sub-pixel mode

1 Chroma MC filter only operates in full pixel position, i.e. no sub-pixel

interpolation.

0 MC Filter Select

Exists If: //Decoder / Encoder

 To specify VP8 Profile of operation.

Value Name Description

0 6-tap filter (regular filter mode)

1 2-tap bilinear filter (simple profile/version mode)

3 31:30 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

29:24 DBLKFilterLevel for Segment3

Exists If: //Decoder / Encoder

Format: U6

Value Name Description

0 Signifies disable in loop deblocking

operation

This is used to set a VP8 profile without in loop

deblocker.

Programming Notes

There are max 4 segments per frame, each segment can have its own deblocking filter level.

When segmentation is disabled, only segment 0 parameter is used for the entire frame.

 Command Reference: Instructions

752 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
23:22 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

21:16 DBLKFilterLevel for Segment2

Exists If: //Decoder / Encoder

Format: U6

Value Name Description

0 Signifies disable in loop deblocking

operation

This is used to set a VP8 profile without in loop

deblocker.

Programming Notes

There are max 4 segments per frame, each segment can have its own deblocking filter level.

When segmentation is disabled, only segment 0 parameter is used for the entire frame.

15:14 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

13:8 DBLKFilterLevel for Segment1

Exists If: //Decoder / Encoder

Format: U6

Value Name Description

0 Signifies disable in loop deblocking

operation

This is used to set a VP8 profile without in loop

deblocker.

Programming Notes

There are max 4 segments per frame, each segment can have its own deblocking filter level.

When segmentation is disabled, only segment 0 parameter is used for the entire frame.

7:6 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 753

MFX_VP8_PIC_STATE
5:0 DBLKFilterLevel for Segment0

Exists If: //Decoder / Encoder

Format: U6

Value Name Description

0 Signifies disable in loop deblocking

operation

This is used to set a VP8 profile without in loop

deblocker.

Programming Notes

There are max 4 segments per frame, each segment can have its own deblocking filter level.

When segmentation is disabled, only segment 0 parameter is used for the entire frame.

4

Project:

BDW

31:25 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [0][BlockType1=Y1AC]

Project: BDW

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Project: BDW

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [0][BlockType0=Y1DC]

Project: BDW

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

5

Project:

BDW

31:25 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

 Command Reference: Instructions

754 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
24:16 Quantizer Value [0][BlockType3=UVAC]

Project: BDW

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Project: BDW

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [0][BlockType2=UVDC]

Project: BDW

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

6

Project:

BDW

31:25 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [0][BlockType5=Y2AC]

Project: BDW

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Project: BDW

Exists If: //Encoder Only

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 755

MFX_VP8_PIC_STATE
8:0 Quantizer Value [0][BlockType4=Y2DC]

Project: BDW

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

7

Project:

BDW

31:25 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [1][BlockType1=Y1AC]

Project: BDW

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Project: BDW

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [1][BlockType0=Y1DC]

Project: BDW

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

8 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [1][BlockType3=UVAC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

 Command Reference: Instructions

756 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [1][BlockType2=UVDC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

9 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [1][BlockType5=Y2AC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [1][BlockType4=Y2DC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

10 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [2][BlockType1=Y1AC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 757

MFX_VP8_PIC_STATE
15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [2][BlockType0=Y1DC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

11 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [2][BlockType3=UVAC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [2][BlockType2=UVDC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

12 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [2][BlockType5=Y2AC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

 Command Reference: Instructions

758 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [2][BlockType4=Y2DC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

13 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [3][BlockType1=Y1AC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [3][BlockType0=Y1DC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

14 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [3][BlockType3=UVAC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 759

MFX_VP8_PIC_STATE
15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [3][BlockType2=UVDC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15 31:25 Reserved

Exists If: //Decoder Only

Format: MBZ

24:16 Quantizer Value [3][BlockType5=Y2AC]

Exists If: //Decoder Only

Format: U9

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

15:9 Reserved

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

8:0 Quantizer Value [3][BlockType4=Y2DC]

Exists If: //Decoder Only

Quantizer Value [n = Segment_Id = 0..3][BlockType = 0..5]

16 31:6 CoeffProbability StreamIn Base Address

Exists

If:

//Decoder Only

Format: StreamInAddress[31:6] 64 bytes aligned buffer in linear format. (not tile for better

performance)

 It is specified for non-key frame only. It is the final computed probability table for parsing

Coeff in the bitstream. The buffer is unsigned 8-bit * 1056 entries (CoeffProbs[4][8][3][11].

 Command Reference: Instructions

760 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
31:0 Reserved

Exists If: //Encoder Only

Format: MBZ

5:0 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

17

Project:

BDW

31:16 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

31:0 Reserved

Project: BDW

Exists If: //Encoder Only

Format: MBZ

15:0 CoeffProbability StreamIn Address

Project: BDW

Exists If: //Decoder Only

 This field is for the upper range of CoeffProbability StreamIn Address

18

Project:

BDW

31:15 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

14:13 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

12:11 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

10:9 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 761

MFX_VP8_PIC_STATE
8:7 CoeffProbability StreamIn - Arbitration Priority Control

Project: BDW

Exists If: //Decoder Only

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for CoeffProbability StreamIn

Address

Project: BDW

Exists If: //Decoder Only

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description Exists If

00b Use Cacheability Controls from page table / UC

with Fence (if coherent cycle)

 //Decoder

Only

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

4:3 CoeffProbability StreamIn Address - Target Cache (TC)

Project: BDW

Exists If: //Decoder Only

 This field allows the choice of LLC vs eLLC for caching

Value Name

00b eLLC Only - not snooped in GT

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

Project: BDW

 Command Reference: Instructions

762 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
31:0 Reserved

Project: BDW

Exists If: //Encoder Only

Format: MBZ

1:0 CoeffProbability StreamIn Address - Age for QUADLRU (AGE)

Project: BDW

Exists If: //Decoder Only

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

19 31:24 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

23:16 MBSegmentIDTreeProbs[2]

Exists If: //Decoder / Encoder

Format: U8

 MBSegmentIDTreeProbs[2:0] probability tree table for CPBAC parsing Segment_ID of each MB.

15:8 MBSegmentIDTreeProbs[1]

Exists If: //Decoder / Encoder

Format: U8

 MBSegmentIDTreeProbs[2:0] probability tree table for CPBAC parsing Segment_ID of each MB.

7:0 MBSegmentIDTreeProbs[0]

Exists If: //Decoder / Encoder

Format: U8

 MBSegmentIDTreeProbs[2:0] probability tree table for CPBAC parsing Segment_ID of each MB.

20 31:24 MBNoCoeffSkipFalseProb

Exists If: //Decoder / Encoder

Format: U8

 8-bit probability value for CPBAC parsing of the MBNoCoeffSkip Flag in the bistream.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 763

MFX_VP8_PIC_STATE
23:16 IntraMBProb

Exists If: //Decoder / Encoder

Format: U8

 8-bit probability value for CPBAC parsing of the intra or inter MB type flag in the bitstream.

15:8 InterPredFromLastRefProb

Exists If: //Decoder / Encoder

Format: U8

 8-bit probability value for CPBAC parsing of the flag in the bitstream that determines which

reference frame to be used for the current MB motion compensation.

7:0 InterPredFromGRefRefProb

Exists If: //Decoder / Encoder

Format: U8

 8-bit probability value for CPBAC parsing of the flag in the bitstream that determines which

reference frame to be used for the current MB motion compensation.

21 31:24 YModeProb[3]

Exists If: //Decoder / Encoder

Format: U8

 YModeProb[3:0] probability tree table for CPBAC parsing Luma MBType of each MB.

23:16 YModeProb[2]

Exists If: //Decoder / Encoder

Format: U8

 YModeProb[3:0] probability tree table for CPBAC parsing Luma MBType of each MB.

15:8 YModeProb[1]

Exists If: //Decoder / Encoder

Format: U8

 YModeProb[3:0] probability tree table for CPBAC parsing Luma MBType of each MB.

7:0 YModeProb[0]

Exists If: //Decoder / Encoder

Format: U8

 YModeProb[3:0] probability tree table for CPBAC parsing Luma MBType of each MB.

22 31:24 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

 Command Reference: Instructions

764 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
23:16 UVModeProb[2]

Exists If: //Decoder / Encoder

Format: U8

 UVModeProb[2:0] probability tree table for CPBAC parsing Chroma MBType of each MB.

15:8 UVModeProb[1]

Exists If: //Decoder / Encoder

Format: U8

 UVModeProb[2:0] probability tree table for CPBAC parsing Chroma MBType of each MB.

7:0 UVModeProb[0]

Exists If: //Decoder / Encoder

Format: U8

 UVModeProb[2:0] probability tree table for CPBAC parsing Chroma MBType of each MB.

23 31:24 MVUpdateProbs[0][3]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

23:16 MVUpdateProbs[0][2]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[0][1]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[0][0]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 765

MFX_VP8_PIC_STATE
24 31:24 MVUpdateProbs[0][7]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

23:16 MVUpdateProbs[0][6]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[0][5]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[0][4]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

25 31:24 MVUpdateProbs[0][11]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

23:16 MVUpdateProbs[0][10]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

15:8 MVUpdateProbs[0][9]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

 Command Reference: Instructions

766 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
7:0 MVUpdateProbs[0][8]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

26 31:24 MVUpdateProbs[0][15]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

23:16 MVUpdateProbs[0][14]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[0][13]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[0][12]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

27 31:24 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

23:16 MVUpdateProbs[0][18]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 767

MFX_VP8_PIC_STATE
15:8 MVUpdateProbs[0][17]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[0][16]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

28 31:24 MVUpdateProbs[1][3]

Exists If: //Decoder Only

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

23:16 MVUpdateProbs[1][2]

Exists If: //Decoder Only

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[1][1]

Exists If: //Decoder Only

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[1][0]

Exists If: //Decoder Only

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

29 31:24 MVUpdateProbs[1][7]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

 Command Reference: Instructions

768 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
23:16 MVUpdateProbs[1][6]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[1][5]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[1][4]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

30 31:24 MVUpdateProbs[1][11]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

23:16 MVUpdateProbs[1][10]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[1][9]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[1][8]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 769

MFX_VP8_PIC_STATE
31 31:24 MVUpdateProbs[1][15]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

23:16 MVUpdateProbs[1][14]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[1][13]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

7:0 MVUpdateProbs[1][12]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

32 31:24 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

23:16 MVUpdateProbs[1][18]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

15:8 MVUpdateProbs[1][17]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

 Command Reference: Instructions

770 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
7:0 MVUpdateProbs[1][16]

Exists If: //Decoder / Encoder

Format: U8

 MVUpdateProbs[1:0][18:0] probability table for CPBAC parsing of MV update value of each MB.

To map into DWord, it becomes MVUpdate[1:0][19:0].

33 31 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

30:24 RefLFDelta3 (for ALTREF FRAME)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for reference frame based adjustment of the MB-level's filter level value.

RefLFDeltas [ref_frametype = 0 to 3]

Programming Notes

Please note that although RefDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

23 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

22:16 RefLFDelta2 (for GOLDEN FRAME)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for reference frame based adjustment of the MB-level's filter level value.

RefLFDeltas [ref_frametype = 0 to 3]

Programming Notes

Please note that although RefDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

15 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 771

MFX_VP8_PIC_STATE
14:8 RefLFDelta1 (for LAST FRAME)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for reference frame based adjustment of the MB-level's filter level value.

RefLFDeltas [ref_frametype = 0 to 3]

Programming Notes

Please note that although RefDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

7 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

6:0 RefLFDelta0 (for INTRA FRAME)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for reference frame based adjustment of the MB-level's filter level value.

RefLFDeltas [ref_frametype = 0 to 3]

Programming Notes

Please note that although RefDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

34 31 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

30:24 ModeLFDelta3 (for SPLITMV mode)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for mode based adjustment of the MB-level's filter level value.

ModeLFDeltas[MB_Type = 0 to 3]

Programming Notes

Please note that although ModeLFDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

23 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

 Command Reference: Instructions

772 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
22:16 ModeLFDelta2 (for Nearest, Near and New mode)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for mode based adjustment of the MB-level's filter level value.

ModeLFDeltas[MB_Type = 0 to 3]

Programming Notes

Please note that although ModeLFDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

15 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

14:8 ModeLFDelta1(for ZEROMV mode)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for mode based adjustment of the MB-level's filter level value.

ModeLFDeltas[MB_Type = 0 to 3]

Programming Notes

Please note that although ModeLFDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

7 Reserved

Exists If: //Decoder / Encoder

Format: MBZ

6:0 ModeLFDelta0 (for B_PRED mode)

Exists If: //Decoder / Encoder

Format: S6 2's Compliment

Delta value for mode based adjustment of the MB-level's filter level value.

ModeLFDeltas[MB_Type = 0 to 3]

Programming Notes

Please note that although ModeLFDelta is signed 2's complement, bitstream is sign bit + 6 bit

magnitude.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 773

MFX_VP8_PIC_STATE
35

Project:

BDW

31:0 Segmentation ID Stream Base Address

Project: BDW

Exists If: //Decoder Only

Format: StreamAddress[31:0] 64 bytes linear aligned buffer

 It is specified when SegmentationIDStreamInEnable or SegmentationIDStreamOutEnable

is specified.

Programming Notes

Each cache has only 8 bits for 4 segmentation ID from 4 continuous MBs.

36

Project:

BDW

31:16 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

15:0 Segmentation ID Stream Base Address [47:32]

Project: BDW

Exists If: //Decoder Only

 This field is for the upper range of Segmentation ID Stream Base Address

37

Project:

BDW

31:15 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

14:13 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

12:11 Reserved

Project: BDW

Exists If: //Decoder Only

Format: MBZ

10:9 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

774 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_VP8_PIC_STATE
8:7 Segmentation ID Stream - Arbitration Priority Control

Project: BDW

Exists If: //Decoder Only

Format: U2

 This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name

00b Highest priority

01b Second highest priority

10b Third highest priority

11b Lowest priority

6:5 Memory Type: LLC/eLLC Cacheability Control (LeLLCCC) for Segmentation ID Stream Base

Address

Project: BDW

Exists If: //Decoder Only

 This is the field used in GT interface block to determine what type of access need to be

generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are

generated to enable LLC usage for particular stream.

Value Name Description

00b Use Cacheability Controls from page table / UC with Fence

(if coherent cycle)

01b UC Uncacheable - non-

cacheable

10b WT Writethrough

11b WB Writeback

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 775

MFX_VP8_PIC_STATE
4:3 Target Cache (TC) Segmentation ID Stream Base Address

Project: BDW

Exists If: //Decoder Only

This field controls the L3$, LLC and eLLC (eDRAM) cacheability for a given surface. Setting of

"00" points to PTE settings which defaults to eDRAM (when present). If no eDRAM, the access

will be allocated to LLC. Setting of "01", allocates into LLC and victimizes the line to eDRAM.

Setting of "10" allows the line to be allocated in either LLC or eDRAM. Setting of "11" is the only

option for a memory access to be allocated in L3$ as well as LLC/eLLC

00b: eLLC Only ("00" setting points TC selection to PTE which defaults to eLLC)

01b: LLC Only (Works at the allocation time, later victimization from LLC downgrades the line to

eLLC if present).

10b: LLC/eLLC Allowed.

11b: L3, LLC, eLLC Allowed.

Value Name

00b eLLC Only - not snooped in GT

01b LLC Only

10b LLC/eLLC Allowed

11b L3, LLC, eLLC Allowed

2 Reserved

1:0 Age for QUADLRU (AGE) Segmentation ID Stream Base Address

Project: BDW

Exists If: //Decoder Only

 This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a

particular allocation is done at youngest age (“0,1,2”) it tends to stay longer in the cache. This

option is given to GFX software to be able to decide which surfaces are more likely to generate

HITs, hence need to be replaced least often in caches.

Value Name

11b Good chance of generating hits.

10b Next good chance of generating hits

01b Decent chance of generating hits

00b Poor chance of generating hits

 Command Reference: Instructions

776 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MFX_WAIT

MFX_WAIT
Project: BDW

Source: VideoCS

Length Bias: 1

This command can be considered the same as an MI_NOOP except that the command parser will not parse the

next command until the following happens

 AVC or VC1 BSD mode: The command will stall the parser until completion of the BSD object

 IT, encoder, and MPEG2 BSD mode: The command will stall the parser until the object package is sent

down the pipelineThis command should be used to ensure the preemption enable window occurs during

the time the object command is being executed down the pipeline.

DWord Bit Description

0 31:29 Command Type

Default Value: 03h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Command Subtype

Default Value: 01h MFX_SINGLE_DW

Format: OpCode

26:16 Sub-Opcode

Default Value: 0h MFX_WAIT

Format: OpCode

15:10 Reserved

Project: All

Format: MBZ

9 Reserved

8 MFX Sync Control Flag

 If set, VCS will stall the parser until all prior MFX objects are completed down the MFX

pipeline

7:6 Reserved

Project: All

Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n

 Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 777

MI_ARB_CHECK

MI_ARB_CHECK
Project: BDW

Source: VideoEnhancementCS

Length Bias: 1

Description Project

The MI_ARB_CHECK is used to check for a change in arbitration. If executed as part of a Ring Buffer

the command checks the UHPTR valid bit and if set the head of the ring will jump to the value of the

head pointer programmed in the UHPTR.

BDW

Programming Notes Project

This instruction cannot be placed in a batch buffer.

If execlist is enabled, there is a pending execution list and this command is parsed, then the command

streamer will preempt the current context and start executing the new execution list.

BDW

DWord Bit Description

0 31:29 MI Instruction Type

Default Value: 0h MI_INSTRUCTION

Format: OpCode

28:23 MI Instruction Opcode

Default Value: 05h MI_ARB_CHECK

Format: OpCode

22:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

778 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_ARB_CHECK

MI_ARB_CHECK
Project: BDW

Source: BlitterCS

Length Bias: 1

Description Project

The MI_ARB_CHECK is used to check for a change in arbitration. If executed as part of a Ring Buffer

the command checks the UHPTR valid bit and if set the head of the ring will jump to the value of the

head pointer programmed in the UHPTR.

BDW

Programming Notes Project

This instruction cannot be placed in a batch buffer.

If execlist is enabled, there is a pending execution list and this command is parsed, then the command

streamer will preempt the current context and start executing the new execution list.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_INSTRUCTION

Format: OpCode

28:23 MI Command Opcode

Default Value: 05h MI_ARB_CHECK

Format: OpCode

22:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 779

MI_ARB_CHECK

MI_ARB_CHECK
Project: BDW

Source: RenderCS

Length Bias: 1

Description Project

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head pointer (register

UHPTR). This instruction can be used to pre-empt the current execution of the ring buffer. Note that

the valid bit in the updated head pointer register needs to be set for the command streamer to be

pre-empted.

BDW

Programming Notes Project

Ring Buffer mode of scheduling:

 The current head pointer is loaded with the updated head pointer register independent of the

location of the updated head.

 If the current head pointer and the updated head pointer register are equal, hardware will

automatically reset the valid bit corresponding to the UHPTR.

 For pre-emption, the wrap count in the ring buffer head register is no longer maintained by

hardware. The hardware updates the wrap count to the value in the UHPTR register.

Execlist mode of scheduling:

MI_ARB_CHK will be used to indicate a command boundary on which Preemption will be honored by

Command Streamer in the execlist mode of operation. UHPTR is ignored when processing

MI_ARB_CHK in execlist mode.

BDW

This instruction can be in either a ring buffer or batch buffer. BDW

MI_ARB_CHK command must not be programmed in INDIRECT_CTX and BB_PER_CTX_PTR buffers. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 05h MI_ARB_CHECK

Format: OpCode

22:0 Reserved

Format: MBZ

 Command Reference: Instructions

780 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_ARB_CHECK

MI_ARB_CHECK
Project: BDW

Source: VideoCS

Length Bias: 1

Description Project

The MI_ARB_CHECK is used to check for a change in arbitration. If executed as part of a Ring Buffer

the command checks the UHPTR valid bit and if set the head of the ring will jump to the value of the

head pointer programmed in the UHPTR.

BDW

Programming Notes Project

This instruction cannot be placed in a batch buffer.

If execlist is enabled, there is a pending execution list and this command is parsed, then the command

streamer will preempt the current context and start executing the new execution list.

BDW

DWord Bit Description

0 31:29 MI Instruction Type

Default Value: 0h MI_INSTRUCTION

Format: OpCode

28:23 MI Instruction Opcode

Default Value: 05h MI_ARB_CHECK

Format: OpCode

22:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 781

MI_ARB_ON_OFF

MI_ARB_ON_OFF
Project: BDW

Source: CommandStreamer

Length Bias: 1

Description

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. This instruction can be used to

prevent submission of a new execlist from interrupting a command sequence, however lite restore preemption

is allowed with in the arbitration disabled command execution zone. Note that context switching will remain

disabled until re-enabled through use of this command. This command will also prevent a switch in the case of

waiting on events, running out of commands. These will effectively hang the device if allowed to occur while

arbitration is off (context switching is disabled.) This command should always be used as an off-on pair with the

sequence of instructions to be protected from context switch between MI_ARB_OFF and MI_ARB_ON. Software

must use this arbitration control with caution since it has the potential to increase the response time of the

Render Engine to pre-emption requests. This is a privileged command; it will not be effective (will be converted

to a no-op) if executed from within a non-privileged batch buffer.

Execution List Mode of Scheduling: The MI_ARB_ON_OFF instruction is used to disable/enable context

switching. Context swiching could be either due to preemption or un-succesfull wait for events or semaphore

waits. This instruction can be used to prevent submission of a new execlist from interrupting a command

sequence, however lite restore preemption is allowed with in the arbitration disabled command execution

zone. Note that context switching will remain disabled until re-enabled through use of this command. This

command will also prevent a switch in the case of waiting on events, running out of commands. These will

effectively hang the device if allowed to occur while arbitration is off (context switching is disabled.)

Ring Buffer Mode of Scheduling: The MI_ARB_ON_OFF instruction is used to disable preemption on the

preemptable commands. SW can explicitly make section of commands in a command buffer non-preemptable

by sandwitching them between ARB_OFF and ARB_ON, HW will ingore preemption request (UHPTR Valid) until

arbitration is enabled.

Programming Notes

This command must be always be programmed in pairs of off/on in the same command dispatch. Sequence of

instructions to be protected from cntext switch or preemption must be programmed between the MI_ARB_OFF

and MI_ARB_ON. Software must use this arbitration control with caution since it has the potential to increase

the response time of the Render Engine to pre-emption requests. This is a privileged command; it will not be

effective (will be converted to a no-op) if executed from within a non-privileged batch buffer.

HW doesn’t treat Arbitration Disabled as equivalent to “Inhibit Synchronous Context Switch” set in

CTXT_SR_CTL register. Power management optimizations (RDOP on WT4EVT) available on setting “Inhibit

Synchronous Context Switch” are not enabled by default on Arbitration Disabled. SW must explicitly program

“Inhibit Synchronous Switch” when Arbitration Disabled to enable power management optimizations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

 Command Reference: Instructions

782 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_ARB_ON_OFF
28:23 MI Command Opcode

Default Value: 08h MI_ARB_ON_OFF

Format: OpCode

22:2 Reserved

Format: MBZ

1 Reserved

Project: BDW

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ

0 Arbitration Enable

Format: Enable

 This field enables or disables context switches due to pre-emption (a new execlist).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 783

MI_ATOMIC

MI_ATOMIC
Project: BDW

Length Bias: 2

Description

MI_ATOMIC is used to carry atomic operation on data in graphics memory. Atomic operations are supported

on data granularity of 4B, 8B and 16B. The atomic operation leads to a read-modify-write operation on the data

in graphics memory with the option of returning value. The data in graphics memory is modified by doing

arithmetic and logical operation with the inline/indirect data provided with the MI_ATOMIC command.

Inline/Indirect provided in the command can be one or two operands based on the atomic operation. Ex:

Atomic-Compare operation needs two operands while Atomic-Add operation needs single operand and

Atomic-increment requires no operand. Refer Vol1i L3 URB [BDW] B-spec for detailed atomic operations

supported. Atomic operations can be enabled to return value by setting "Return Data Control" field in the

command, return data is stored to CS_GPR registers.

CS_GPR4/5 registers are updated with memory Return Data based on the "Data Size". Each GPR register is

qword in size and occupies two MMIO registers.

Note: Any references to CS_GPR registers in the command should be understood as the CS_GPR registers

belonging to the corresponding engines *CS_GPR registers.

Engine Name Corresponding GPR Registers

RCS CS_GPR

BCS BCS_GPR

VCS VCS_GPR

VECS VECS_GPR

Indirect Source Operands:

Operand1 is sourced from [CS_GPR1, CS_GPR0]

Operand2 is sourced from [CS_GPR3, CS_GPR2]

Read return Data is stored in [CS_GPR_5, CS_GPR4]

When "Data Size" is QWORD or DWORD only CS_GPR4 (Qword) is updated with the qword data returned from

memory. When the data size is OCTWORD CS_GPR4/5 are updated with the OCTWORD data returned from

memory. CS_GPR4 is loaded with lower qword returned from memory and CS_GPR5 is loaded with upper

qword returned from memory.

Programming Notes

 When Inline Data mode is not set, Dwords 3..10 must not be included as part of the command. Dword

Length field in the header must be programmed accordingly.

 When Inline Data Mode is set, Dwords3..10 must be included based on the Data Size field of the header.

Both Operand-1 and Operand-2 dwords must be programmed based on the Data Size field. Operand-2

must be programmed to 0x0 if the atomic operation doesn't require it. Dword Length field in the header

must be programmed accordingly.

DWord Bit Description

 Command Reference: Instructions

784 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_ATOMIC
0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Fh MI_ATOMIC

Format: OpCode

22 Memory Type

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21 Reserved

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 785

MI_ATOMIC
21 Post-Sync Operation

Source: RenderCS

Value Name Description

0h No Post

Sync

Operation

Command is executed as usual.

1h Post Sync

Operation

MI_ATOMIC command is executed as a pipelined PIPE_CONTROL flush

command with Atomics operation as post sync operation. Flush

completion only guarantees the workload prior to this command is

pushed till Windower unit and completion of any outstanding flushes

issued prior to this command.

When this bit set following ristiriciton apply to atomic operation:

 Non-Compare atomic operations are supported on data

granularity of 4B and 8B. DW3 is the lower dword of the operand

and DW4 is the upper dword of the operand for the atomic

operation.

 Compare atomic operations are supported on data granularity of

4B. DW3 is Operand-0 and DW4 is Operand-1 for the atomic

operation.

 Atomic operations to GGTT/PPGTT memory surface are supported.

 Only Inline data mode for atomic operand is supported, no

support for indirect data mode.

 No support for Return Data Control functionality.

 No support for atomic operations on data granularity of 16B.

 No support for compare atomic operations on data granularity of

8B.

Programming Notes

Any desired pipeline flush operation can be achieved by programming PIPE_CONTROL

command prior to this command.

AWhen this bit is set Command Streamer sends a flush down the pipe and the atomic

operation is saved as post sync operation. Command streamer goes on executing the following

commands. Atomic operation saved as post sync operation is executed at some point later on

completion of corresponding flush issued.

AWhen this bit is set atomic semaphore signal operation will be out of order with rest of the MI

commands programmed in the ring buffer or batch buffer, it will be in order with respect to the

post sync operations resulting due to PIPE_CONTROL command.

Workaround

Workaround : "Post Sync Operation" bit must not be set when MI_ATOMIC command is

programmed by GPGPU and MEDIA workloads (i.e when PIPELINE_SELECT command is set to

GPGPU or MEDIA). This is to WA FFDOP CG issue, this WA need not be implemented when

FF_DOP_CG is disabled via "Fixed Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL

register.

 Command Reference: Instructions

786 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_ATOMIC
20:19 Data Size

 This field indicates the size of the operand in dword/qword/octword on which atomic operation

will be performed. Data size must match with the Atomic Opcode. Operation Data size could be

4B, 8B or 16B

Value Name Description

0h DWORD Operand size used by Atomic Operation is DWORD.

1h QWORD Operand Size used by Atomic Operation is QWORD.

2h OCTWORD Operand Size used by Atomic Operation is OCTWORD.

3h RESERVED

18 Inline Data

 This bit when set indicates the source operands are provided in line within the command. When

reset the source operands are in CS_GPR registers.

Programming Notes

CS_GPR registers must be programmed with appropriate values before issuing MI_ATOMIC

command with this field reset.

17 CS STALL

 This bit when set command stream waits for completion of this command before executing the

next command.

Programming Notes Source

Render Command Streamer Only: CS will not guarantee atomic operation to be

complete upon setting this bit along with Post Sync Operation set. When Post Sync

Operation is set, this bit has no significance.

RenderCS

Workaround Project

Workaround : When CS STALL bit is set, Return Data Control must also be set in

MI_ATOMIC command.

BDW

16 Return Data Control

Project: BDW

Source: RenderCS, BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Description Project

When "Data Size" is QWORD or DWORD only CS_GPR4 (Qword) is updated with the

qword data returned from memory. When the data size is OCTWORD CS_GPR4/5 are

updated with the OCTWORD data returned from memory. CS_GPR4 is loaded with

lower qword returned from memory and CS_GPR5 is loaded with upper qword

returned from memory

BDW

Workaround Project

Workaround : When Return Data Control bit is set, CS STALL must also be set in

MI_ATOMIC command.

BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 787

MI_ATOMIC
15:8 ATOMIC OPCODE

 This field selects the kind of atomic operation to be performed. Refer Vol1i L3 URB [BDW] B-

spec for atomic opcode corresponding to an atomic operation.

Programming Notes Project

Atomic Opcode must not be set to 0x00 (no-atomic). BDW

7:0 DWord Length

Format: =n

 Total Length - 2. Excludes DWord (0,1).

Value Name Exists If

1h [Default] ([Inline Data]==0)

9h ([Inline Data]==1)

1 31:2 Memory Address

Project: All

Format: GraphicsAddress[31:2]

 This field contains the graphics memory address of the data on which atomic operation has to

be performed. Atomic operation can be performed on data granularity of 4B, 8B or 16B and

hence the Address has to be correspondingly aligned to 4B,8B or 16B respectively.

Programming Notes Project

Memory Address must be qword aligned for all dword atomic operations. Upper

Dword of the memory location should be initialized to 0x0.

BDW

1:0 Reserved

Format: MBZ

2 31:16 Reserved

Format: MBZ

15:0 Memory Address High

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

3 31:0 Operand1 Data Dword 0

Format: U32

 Dword0 of Operand1 when Inline Data mode is set.

4 31:0 Operand2 Data Dword 0

Format: U32

 Dword0 of Operand2 when Inline Data mode is set.

5 31:0 Operand1 Data Dword 1

Format: U32

 Dword1 of Operand1 when Inline Data mode is set.

 Command Reference: Instructions

788 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_ATOMIC
6 31:0 Operand2 Data Dword 1

Format: U32

 Dword1 of Operand2 when Inline Data mode is set.

7 31:0 Operand1 Data Dword 2

Format: U32

 Dword2 of Operand1 when Inline Data mode is set.

8 31:0 Operand2 Data Dword 2

Format: U32

 Dword2 of Operand2 when Inline Data mode is set.

9 31:0 Operand1 Data Dword 3

Format: U32

 Dword3 of Operand1 when Inline Data mode is set.

10 31:0 Operand2 Data Dword 3

Format: U32

 Dword3 of Operand2 when Inline Data mode is set.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 789

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: BDW

Source: VideoEnhancementCS

Length Bias: 1

 The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch

buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ah MI_BATCH+_BUFFER_END

Format: OpCode

22:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

790 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: BDW

Source: BlitterCS

Length Bias: 1

 The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch

buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0Ah MI_ BATCH_BUFFER_END

22:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 791

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: BDW

Source: RenderCS

Length Bias: 1

 The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch

buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ah MI_ BATCH_BUFFER_END

Format: OpCode

22:0 Reserved

Format: MBZ

 Command Reference: Instructions

792 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: BDW

Source: VideoCS

Length Bias: 1

 The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch

buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ah MI_BATCH+_BUFFER_END

Format: OpCode

22:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 793

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.

For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter

of MI Functions. The batch buffer can be specified as privileged or non-privileged, determining the operations

considered valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer

Protection in the Device Programming Interface chapter of MI Functions.

Programming Notes

 A batch buffer initiated with this command must end either with a MI_BATCH_BUFFER_END command or

by chaining to another batch buffer with an MI_BATCH_BUFFER_START command.

 It is essential that the address location beyond the current page be populated inside the GTT. HW

performs over-fetch of the command addresses and any over-fetch requires a valid TLB entry. A single

extra page beyond the batch buffer is sufficient.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 31h MI_BATCH_BUFFER_START

Format: OpCode

22 2nd Level Batch Buffer

 The command streamer contains three storage elements; one for the ring head address, one for

the batch head address, and one for the 2nd level batch head address. When performing batch

buffer chaining, hardware simply updates the head pointer of the 1st level batch address storage.

There is no stack in hardware. When this bit is set, hardware uses the 2nd level batch head

address storage element. Upon MI_BATCH_BUFFER_END, it will automatically return to the 1st

(traditional) level batch buffer address. this allows hardware to mimic a simple 3-level stack.

Value Name Description

0h 1st level

batch

Place the batch buffer address in the 1st (traditional) level batch address

storage element.

1h 2nd level

batch

Place the batch buffer address in the 2nd-level batch address storage

element.

Programming Notes

Within a second level batch buffer there can't be any chained batch buffers.

MI_BATCH_BUFFER_START command is not allowed inside a second level batch buffer.

 Command Reference: Instructions

794 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_START
21:17 Reserved

Format: MBZ

16 Add Offset Enable

Format: Enable

 If this bit is set then the value stored in the BB_OFFSET MMIO register will be added to the Batch

Buffer Start Address and the summation will be used as the address to fetch from memory.

Specific to the render command stream only.

15 Predication Enable

 This bit is used to enable predication of this command. If this bit is set and Bit 0 of the Predicate

Result-1 register is clear, this command is ignored. Otherwise the command is performed

normally. Specific to the Render command stream only.

14:12 Reserved

Format: MBZ

11 Reserved

Format: MBZ

10 Resource Streamer Enable

Format: Enable

 When this bit is set, the Resource Streamer will execute the batch buffer. When this bit is clear

the Resource Streamer will not execute the batch buffer. Specific to the Render command

stream only.

9 Reserved

Format: MBZ

8 Address Space Indicator

 Batch buffers accessed via PPGTT are considered as non-privileged. Certain operations (e.g.,

MI_STORE_DATA_IMM commands to GGTT memory) are prohibited within non-privileged

buffers. More details mentioned in User Mode Privileged command section. When

MI_BATCH_BUFFER_START command is executed from within a batch buffer (i.e., is a "chained" or

"second level" batch buffer command), the current active batch buffer's "Address Space

Indicator" and this field determine the "Address Space Indicator" of the next buffer in the chain.

 Chained or Second level batch buffer can be in GGTT or PPGTT if the parent batch buffer

is in GGTT.

 Chained or Second level batch buffer can only be in PPGTT if the parent batch buffer is in

PPGTT. This is enforced by Hardware.

Value Name Description

0h GGTT This batch buffer is located in GGTT memory and is privileged.

1h PPGTT This batch buffer is located in PPGTT memory and is Non-Privileged.

Programming Notes Project

This field must be '0' unless the Per-Process GTT Enable is '1'

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 795

MI_BATCH_BUFFER_START
7:0 DWord Length

Default Value: 1h

Format: =n

 Total - Bias. Excludes DWord (0,1).

1 31:2 Batch Buffer Start Address

Format: GraphicsAddress[31:2]BatchBuffer

 This field specifies Bits 31:2 of the starting address of the batch buffer.

1:0 Reserved

Format: MBZ

2 31:16 Reserved

15:0 Batch Buffer Start Address High

Format: GraphicsAddress[47:32]BatchBuffer

 This field specifies the 4GB aligned base address of Gfx 4GB virtual address spece within the

hosts 64-bit virtual address space.

 Command Reference: Instructions

796 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.

For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter

of MI Functions.

The batch buffer can be specified as secure or non-secure, determining the operations considered valid when

initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer Protection in the

Device Programming Interface chapter of MI Functions.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 31h MI_BATCH_BUFFER_START

Format: OpCode

22 2nd Level Batch Buffer

The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the

batch head address, and 1 for the 2nd level batch head address. When performing batch buffer

chaining, hardware simply updates the head pointer of the 1st level batch address storage.

There is no stack in hardware.

When this bit is set, hardware uses the 2nd level batch head address storage element. Upon

MI_BATCH_BUFFER_END, it will automatically return to the 1st (traditional) level batch buffer

address. this allows hardware to mimic a simple 3 level stack.

Value Name Description

0h 1st level

batch

Place the batch buffer address in the 1st (traditional) level batch address

storage element

1h 2nd level

batch

Place the batch buffer address in the 2nd level batch address storage

element

21:13 Reserved

Format: MBZ

12 Reserved

11:9 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 797

MI_BATCH_BUFFER_START
8 Address Space Indicator

Project: BDW

 Batch buffers accessed via PPGTT are considered as non-privileged. Certain operations (e.g.,

MI_STORE_DATA_IMM commands to GGTT memory) are prohibited within non-privileged

buffers. More details mentioned in User Mode Privileged command section. When

MI_BATCH_BUFFER_START command is executed from within a batch buffer (i.e., is a "chained"

or "second level" batch buffer command), the current active batch buffer's "Address Space

Indicator" and this field determine the "Address Space Indicator" of the next buffer in the chain.

 Chained or Second level batch buffer can be in GGTT or PPGTT if the parent batch buffer

is in GGTT.

 Chained or Second level batch buffer can only be in PPGTT if the parent batch buffer is in

PPGTT. This is enforced by Hardware.

Value Name Description

0h GGTT This batch buffer is located in GGTT memory and is privileged.

1h PPGTT This batch buffer is located in PPGTT memory and is Non-Privileged.

Programming Notes

This field must be '0' unless the Per-Process GTT Enable is '1'

7:0 DWord Length (Excludes D-Word 0,1) = 0

Value Name Project

1h Excludes DWord (0,1) [Default] BDW

1 31:2 Batch Buffer Start Address

Format: GraphicsAddress[31:2]

Programming Notes

 A batch buffer initiated with this command must end either with a

MI_BATCH_BUFFER_END command or by chaining to another batch buffer with an

MI_BATCH_BUFFER_START command.

 The selection of PPGTT vs. GGTT for the batch buffer is determined by the Buffer

Security Indicator (bit 8).

1:0 Reserved

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

798 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_START
15:0 Batch Buffer Start Address High

Project: BDW

Format: GraphicsAddress[47:32]BatchBuffer

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 799

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: BDW

Source: BlitterCS

Length Bias: 2

 The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.

For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter

of MI Functions.The batch buffer can be specified as secure or non-secure, determining the operations

considered valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer

Protection in the Device Programming Interface chapter of MI Functions.

Programming Notes

 Batch buffers referenced with physical addresses must not extend beyond the end of the starting

physical page (can't span physical pages). However, a batch buffer initiated using a physical address can

chain to another buffer in another physical page.

 A batch buffer initiated with this command must end either with a MI_BATCH_BUFFER_END command or

by chaining to another batch buffer with an MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 31h MI_BATCH_BUFFER_START

Format: OpCode

22 2nd Level Batch Buffer

Project: BDW

The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the

batch head address, and 1 for the 2nd level batch head address. When performing batch buffer

chaining, hardware simply updates the head pointer of the 1st level batch address storage.

There is no stack in hardware.

When this bit is set, hardware uses the 2nd level batch head address storage element. Upon

MI_BATCH_BUFFER_END, it will automatically return to the 1st (traditional) level batch buffer

address. this allows hardware to mimic a simple 3 level stack.

Value Name Description Project

0h 1st level

batch

Place the batch buffer address in the 1st (traditional) level batch

address storage element

BDW

1h 2nd level

batch

Place the batch buffer address in the 2nd level batch address

storage element

BDW

21:9 Reserved

Format: MBZ

 Command Reference: Instructions

800 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_START
8 Address Space Indicator

Project: BDW

 Batch buffers accessed via PPGTT are considered as non-privileged. Certain operations (e.g.,

MI_STORE_DATA_IMM commands to GGTT memory) are prohibited within non-privileged

buffers. More details mentioned in User Mode Privileged command section. When

MI_BATCH_BUFFER_START command is executed from within a batch buffer (i.e., is a "chained"

or "second level" batch buffer command), the current active batch buffer's "Address Space

Indicator" and this field determine the "Address Space Indicator" of the next buffer in the chain.

 Chained or Second level batch buffer can be in GGTT or PPGTT if the parent batch buffer

is in GGTT.

 Chained or Second level batch buffer can only be in PPGTT if the parent batch buffer is in

PPGTT. This is enforced by Hardware.

Value Name Description

0h GGTT This batch buffer is located in GGTT memory and is privileged.

1h PPGTT This batch buffer is located in PPGTT memory and is Non-Privileged.

Programming Notes

This field must be '0' unless the Per-Process GTT Enable is '1'

7:0 DWord Length

Format: =n

 Total - Bias

Value Name Project

1h Excludes DWord (0,1) [Default] BDW

1 31:2 Batch Buffer Start Address

Format: GraphicsAddress[31:2]BatchBuffer

 This field specifies Bits 31:2 of the starting address of the batch buffer.

1:0 Reserved

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Batch Buffer Start Address High

Project: BDW

Format: GraphicsAddress[47:32]BatchBuffer

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 801

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.

For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter

of MI Functions.The batch buffer can be specified as secure or non-secure, determining the operations

considered valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer

Protection in the Device Programming Interface chapter of MI Functions.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 31h MI_BATCH_BUFFER_START

Format: OpCode

22 2nd Level Batch Buffer

Project: BDW

 The command streamer contains 3 storage elements; 1 for the ring head address, 1 for the

batch head address, and 1 for the 2nd level batch head address. When performing batch buffer

chaining, hardware simply updates the head pointer of the 1st level batch address storage.

There is no stack in hardware. When this bit is set, hardware uses the 2nd level batch head

address storage element. Upon MI_BATCH_BUFFER_END, it will automatically return to the 1st

(traditional) level batch buffer address. this allows hardware to mimic a simple 3 level stack.

Value Name Description

0h 1st level

batch

Place the batch buffer address in the 1st (traditional) level batch address

storage element

1h 2nd level

batch

Place the batch buffer address in the 2nd level batch address storage

element

Programming Notes

 2nd level batch buffer chaining is not supported.

21:10 Reserved

Format: MBZ

9 Reserved

 Command Reference: Instructions

802 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_BATCH_BUFFER_START
8 Address Space Indicator

Project: BDW

Batch buffers accessed via PPGTT are considered as non-privileged. Certain operations (e.g.,

MI_STORE_DATA_IMM commands to GGTT memory) are prohibited within non-privileged

buffers. More details mentioned in User Mode Privileged command section. When

MI_BATCH_BUFFER_START command is executed from within a batch buffer (i.e., is a "chained"

or "second level" batch buffer command), the current active batch buffer's "Address Space

Indicator" and this field determine the "Address Space Indicator" of the next buffer in the chain.

 Chained or Second level batch buffer can be in GGTT or PPGTT if the parent batch buffer

is in GGTT.

 Chained or Second level batch buffer can only be in PPGTT if the parent batch buffer is in

PPGTT. This is enforced by Hardware.

Value Name Description

0h GGTT This batch buffer is located in GGTT memory and is privileged.

1h PPGTT This batch buffer is located in PPGTT memory and is Non-Privileged.

Programming Notes

This field must be '0' unless the Per-Process GTT Enable is '1'.

7:0 DWord Length

Format: =n Total Length - 2

Value Name Project

1h Excludes DWord (0,1) [Default] BDW

1 31:2 Batch Buffer Start Address

Format: GraphicsAddress[31:2]

Programming Notes

 A batch buffer initiated with this command must end either with a

MI_BATCH_BUFFER_END command or by chaining to another batch buffer with an

MI_BATCH_BUFFER_START command.

 The selection of PPGTT vs. GGTT for the batch buffer is determined by the Buffer

Security Indicator (bit8).

1:0 Reserved

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 803

MI_BATCH_BUFFER_START
15:0 Batch Buffer Start Address High

Project: BDW

Format: GraphicsAddress[47:32]BatchBuffer

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

 Command Reference: Instructions

804 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_CLFLUSH

MI_CLFLUSH
Project: BDW

Source: RenderCS

Length Bias: 2

Flushes out the page given in the command out to system memory. This command is specific to the render

engine and is not privileged.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 27h Store DW MI_CLFLUSH

Format: OpCode

22 Use Global GTT

Value Name Description

0h Per Process Graphics

Address

1h Global Graphics Address This command will use the global GTT to translate the

Address.

21:10 Reserved

Format: MBZ

9:0 DWord Length

Format: n Total Length - 2

Value Name Description

1h [Default] Excludes DWord (0,1)

Programming Notes Project

The value of this field must not exceed a value 3Fh when programmed in a batch

buffer with resource streamer enabled.

BDW

1 31:12 Page Base Address

Format: GraphicsAddress[31:12]

 4KB aligned Page Address which software requires hardware to flush to DRAM.

11:6 Starting Cacheline Offset

Format: U6 Zero based starting cacheline offset in to the Page Base Address

5:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 805

MI_CLFLUSH
2 31:16 Reserved

Format: MBZ

15:0 Page Base Address High

Format: GraphicsAddress[47:32]

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

3..n 31:0 DW Representing a Half Cache Line

Format: MBZ

 The information given to hardware is the DW itself, not the contents. Hardware uses the DW

count of the command to determine the offset from the base to flush out. The offset is ½ cache

line (8 DW = 1HW) granular so for a full page, the command will need 4096 bytes / 4 bytes per

DW / 8 DW per HW = 128 DW.

Programming Notes

Always even number of "DW Representing 1/2 cacheline" terms must be programmed.

 Command Reference: Instructions

806 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END
Project: BDW

Source: BlitterCS

Length Bias: 2

 The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of

commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second

level batch buffer due to this command will also terminate the parent/first level batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END

Format: OpCode

22 Use Global GTT

Default Value: 0h

Format: Boolean

 If set, this command uses the global GTT to translate the Compare Address and this command

must be executing from a privileged (secure) batch buffer. If clear, the PPGTT is used to translate

the Compare Address.

21 Compare Semaphore

Default Value: 0h

Format: Boolean

If set, the value from the Compare Data Dword is compared to the value from the Compare

Address in memory. If the value at Compare Address is greater than the Compare Data Dword,

execution of the current command buffer should continue.

If clear, the parser will continue to the next command and not exit the batch buffer.

20 Reserved

19:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 Compare Data Dword

 Data DWord to compare to memory. The Data DWord is supplied by software to control

execution of the command buffer. If the compare is enabled and the data at Semaphore Address

is greater than this DWord, the execution of the command buffer should continue.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 807

MI_CONDITIONAL_BATCH_BUFFER_END
2 31:3 Compare Address

Format: GraphicsAddress[31:3]

Qword address to fetch Data Dword(DW0) from memory.

HW will compare the Data Dword(DW0) with Compare Data Dword

2:0 Reserved

Project: All

Format: MBZ

3 31:16 Reserved

Format: MBZ

15:0 Compare Address High

Format: GraphicsAddress[47:32]

 This field specifies the 4 GB-aligned base address of GFX 4 GB virtual address space within the

host's 64-bit virtual address space.

 Command Reference: Instructions

808 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

 The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of

commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second

level batch buffer due to this command will also terminate the parent/first level batch buffer.

Programming Notes

This command is only valid with a 1st level batch buffer (bit 22 in MI_BATCH_BUFFER_START is set to '0')

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END

Format: OpCode

22 Use Global GTT

Default Value: 0h

Format: Boolean

 If set, this command will use the global GTT to translate the Compare Address and this

command must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be

used to translate the Compare Address.

21 Compare Semaphore

Default Value: 0h

Format: Boolean

If set, the value from the Compare Data Dword is compared to the value from the Compare

Address in memory. If the value at Compare Address is greater than the Compare Data

Dword, execution of current command buffer should continue.

If clear, the parser will continue to the next command and not exit the batch buffer.

20 Reserved

19:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2

Value Name Project

1h Excludes DWord (0,1) [Default] BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 809

MI_CONDITIONAL_BATCH_BUFFER_END
1 31:0 Compare Data Dword

 Data dword to compare memory. The Data dword is supplied by software to control execution

of the command buffer. If the compare is enabled and the data at Semaphore Address is

greater than this dword, the execution of the command buffer should continue.

2 31:3 Compare Address

Format: GraphicsAddress[31:3]

Qword address to fetch Data Dword(DW0) from memory.

HW will compare the Data Dword(DW0) with Compare Data Dword

2:0 Reserved

Format: MBZ

3

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Compare Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space

 Command Reference: Instructions

810 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of

commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second

level batch buffer due to this command will also terminate the parent/first level batch buffer.

Programming Notes

This command is only valid with a 1st level batch buffer (bit 22 in MI_BATCH_BUFFER_START is set to 0).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END

Format: OpCode

22 Use Global GTT

Default Value: 0h DefaultVaueDesc

Format: Boolean

Format: U1 FormatDesc

Description Project

If set, this command will use the global GTT to translate the Compare Address and

this command must be executing from a privileged (secure) batch buffer. If clear, the

PPGTT will be used to translate the Compare Address.

BDW

21 Compare Semaphore

Default Value: 0h DefaultVaueDesc

Format: Boolean

 If set, the value from the Compare Data Dword is compared to the value from the Compare

Address in memory. If the value at Compare Address is greater than the Compare Data Dword,

execution of current command buffer should continue.If clear, no comparison takes place.

20 Reserved

19:8 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 811

MI_CONDITIONAL_BATCH_BUFFER_END
7:0 DWord Length

Format: =n Total Length - 2

Value Name Project

1h Excludes DWord (0,1) [Default] BDW

1 31:0 Compare Data Dword

 Data dword to compare memory. The Data dword is supplied by software to control execution

of the command buffer. If the compare is enabled and the data at Semaphore Address is

greater than this dword, the execution of the command buffer should continue.

2 31:3 Compare Address

Format: GraphicsAddress[31:3]

 Qword address to fetch compare Mask (DW0) and Data Dword(DW1) from memory. HW will

do AND operation on Mask(DW0) with Data Dword(DW1) and then compare the result against

Semaphore Data Dword

2:0 Reserved

Format: MBZ

3

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Compare Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space

 Command Reference: Instructions

812 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_CONDITIONAL_BATCH_BUFFER_END command is used to conditionally terminate the execution of

commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command. Termination of second

level batch buffer due to this command will also terminate the parent/first level batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END

Format: OpCode

22 Use Global GTT

Default Value: 0h

 If set, this command will use the global GTT to translate the Compare Address and this

command must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be

used to translate the Compare Address.

21 Compare Semaphore

Default Value: 0h

If set, the value from the Compare Data Dword is compared to the value from the Compare

Address in memory. If the value at Compare Address is greater than the Compare Data Dword,

execution of current command buffer should continue. If clear, the parser will continue to the

next command and not exit the batch buffer.

20 Reserved

19:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2. Excludes DWord (0,1).

Value Name Project

1h [Default] BDW

1 31:0 Compare Data Dword

 Data dword to compare memory. The Data dword is supplied by software to control execution

of the command buffer. If the compare is enabled and the data at Compare Address is greater

than this dword, the execution of the command buffer should continue.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 813

MI_CONDITIONAL_BATCH_BUFFER_END
2 31:3 Compare Address

Format: GraphicsAddress[31:3]

Qword address to fetch Data Dword(DW0) from memory.

HW will compare the Data Dword(DW0) with Compare Data Dword

2:0 Reserved

Format: MBZ

3

Project:

BDW

31:16 Reserved

Project: BDW

15:0 Compare Address High

Project: BDW

Format: GraphicsAddress[47:32]

 This field specifies the 4GB aligned base address of Gfx 4GB virtual address space within the

host's 64-bit virtual address space.

 Command Reference: Instructions

814 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_COPY_MEM_MEM

MI_COPY_MEM_MEM
Project: BDW

Source: BlitterCS

Length Bias: 2

 The MI_COPY_MEM_MEM command reads a DWord from memory and stores the value of that DWord to back

to memory. The source and destination addresses are specified in the command. The command temporarily halts

command execution.

Programming Notes

This command should not be used within a "non_privilege"batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

This command can be used within ring buffers and/or privilege batch buffers to access global virtual space.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Eh MI_MEM_TO_MEM

Format: OpCode

22 Use Global GTT Source

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch buffer or ring buffer. This bit must be clear when programmed from within a non-

privileged batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21 Use Global GTT Destination

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch buffer or ring buffer. This bit must be clear when programmed from within a non-

privileged batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 815

MI_COPY_MEM_MEM
20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 3

Format: =n Total Length - 2

1 31:2 Destination Memory Address

Project: All

Format: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value fetched specified in the

DWord address above will be written. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Project: All

Format: MBZ

2 31:16 Reserved

Project: All

Format: MBZ

15:0 Destination Memory Address High

Project: All

Format: GraphicsAddress[47:32]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[47:32] for a DWord register

3 31:2 Source Memory Address

Project: All

Format: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

816 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_COPY_MEM_MEM
4 31:16 Reserved

Project: All

Format: MBZ

15:0 Source Memory Address High

Project: All

Format: GraphicsAddress[47:32]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[47:32] for a DWord register

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 817

MI_COPY_MEM_MEM

MI_COPY_MEM_MEM
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_COPY_MEM_MEM command reads a DWord from memory and stores the value of that DWord to back

to memory. The source and destination addresses are specified in the command. The command temporarily halts

command execution.

Programming Notes

This command should not be used within a "non_privilege"batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

This command can be used within ring buffers and/or privilege batch buffers to access global virtual space.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Eh MI_MEM_TO_MEM

Format: OpCode

22 Use Global GTT Source

 It is allowed for this bit to be set when executing this command from a privileged (secure) batch

buffer or ring buffer. This bit must be clear when programmed from within a non-privileged

batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics

Address

1h Global

Graphics

Address

It is allowed for this bit to be set when executing this command from a

privileged (secure) batch buffer or ring buffer. This bit must be clear

when programmed from within a non-privileged batch buffer. This bit

must be 1 if the Per Process GTT Enable bit is clear.

 Command Reference: Instructions

818 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_COPY_MEM_MEM
21 Use Global GTT Destination

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be '1' if the Per Process GTT Enable bit is clear. This bit will

determine write to memory uses Global or Per Process GTT.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

20:8 Reserved

Format: MBZ

7:0 Dword Length

Default Value: 3

Format: =n Total Length - 2

1..2 63:2 Destination Memory Address

Project: All

Format: GraphicsAddress[63:2]

 Surface Type: MMIO Register This field specifies the address of the memory location where the

value fetched specified in the DWord address above will be written. The address specifies the

DWord location of the data. Range = GraphicsVirtualAddress[63:2] for a DWord register

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

1:0 Reserved

Project: All

Format: MBZ

3..4 63:2 Source Memory Address

Project: All

Format: GraphicsAddress[63:2]

 Surface Type: MMIO Register This field specifies the address of the memory location where the

value is located that will be written to the address below. The address specifies the DWord

location of the data. Range = GraphicsVirtualAddress[63:2] for a DWord register GraphicsAddress

[63:48] are ignored by the HW and assumed to be in correct canonical form [63:48] == [47].

1:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 819

MI_COPY_MEM_MEM

MI_COPY_MEM_MEM
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_COPY_MEM_MEM command reads a DWord from memory and stores the value of that DWord to back

to memory. The source and destination addresses are specified in the command. The command temporarily halts

command execution.

Programming Notes

This command should not be used within a "non_privilege"batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

This command can be used within ring buffers and/or privilege batch buffers to access global virtual space.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Eh MI_MEM_TO_MEM

Format: OpCode

22 Use Global GTT Source

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch buffer or ring buffer. This bit must be clear when programmed from within a non-

privileged batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21 Use Global GTT Destination

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch buffer or ring buffer. This bit must be clear when programmed from within a non-

privileged batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

 Command Reference: Instructions

820 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_COPY_MEM_MEM
20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 3

Format: =n Total Length - 2

1 31:2 Destination Memory Address

Project: All

Format: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value fetched specified in the

DWord address above will be written. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Project: All

Format: MBZ

2 31:16 Reserved

Project: All

Format: MBZ

15:0 Destination Memory Address High

Project: All

Format: GraphicsAddress[47:32]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[47:32] for a DWord register

3 31:2 Source Memory Address

Project: All

Format: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Project: All

Format: MBZ

4 31:16 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 821

MI_COPY_MEM_MEM
15:0 Source Memory Address High

Project: All

Format: GraphicsAddress[47:32]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[47:32] for a DWord register

 Command Reference: Instructions

822 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_COPY_MEM_MEM

MI_COPY_MEM_MEM
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

 The MI_COPY_MEM_MEM command reads a DWord from memory and stores the value of that DWord to back

to memory. The source and destination addresses are specified in the command. The command temporarily halts

command execution.

Programming Notes

This command should not be used within a "non_privilege"batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

This command can be used within ring buffers and/or privilege batch buffers to access global virtual space.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Eh MI_MEM_TO_MEM

Format: OpCode

22 Use Global GTT Source

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch buffer or ring buffer. This bit must be clear when programmed from within a non-

privileged batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21 Use Global GTT Destination

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch buffer or ring buffer. This bit must be clear when programmed from within a non-

privileged batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 823

MI_COPY_MEM_MEM
20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 3

Format: =n Total Length - 2

1 31:2 Destination Memory Address

Project: All

Format: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value fetched specified in the

DWord address above will be written. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Project: All

Format: MBZ

2 31:16 Reserved

Project: All

Format: MBZ

15:0 Destination Memory Address High

Project: All

Format: GraphicsAddress[47:32]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[47:32] for a DWord register

3 31:2 Source Memory Address

Project: All

Format: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Project: All

Format: MBZ

4 31:16 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

824 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_COPY_MEM_MEM
15:0 Source Memory Address High

Project: All

Format: GraphicsAddress[47:32]

Surface Type: MMIO Register

This field specifies the address of the memory location where the value is located that will be

written to the address below. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[47:32] for a DWord register

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 825

MI_DISPLAY_FLIP

MI_DISPLAY_FLIP
Project: BDW

Source: BlitterCS

Length Bias: 2

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to display a new

buffer. The buffer is specified with a starting address and pitch. The tiled attribute of the buffer start address is

programmed as part of the packet.

The operation this command performs is also known as a "display flip request" operation - in that the flip

operation itself will occur at some point in the future. This command specifies when the flip operation is to

occur: either synchronously with vertical retrace to avoid tearing artifacts

Programming Notes

This command simply requests a display flip operation -- command execution then continues normally. There is

no guarantee that the flip (even if asynchronous) will occur prior to subsequent commands being executed.

(Note that completion of the MI_FLUSH_DW command does not guarantee that outstanding flip operations

have completed). The MI_WAIT_FOR_EVENT command must be used to provide this synchronization to avoid

back to back MI_DISPLAY_FLIP commands to the same display plane - by pausing command execution until a

pending flip has actually completed. This synchronization can also be performed by use of the Display Flip

Pending hardware status. See Display Flip Synchronization in the Device Programming Interface chapter of MI

Functions.

After a display flip operation is requested, software is responsible for initiating any required synchronization

with subsequent buffer clear or blitter operations. For multi-buffering (e.g., double buffering) operations, this

will typically require updating SURFACE_STATE or the binding table to change the blitter (back) buffer. In

addition, prior to any subsequent clear or blitter operations, software must typically ensure that the new blitter

buffer is not actively being displayed. Again, the MI_WAIT_FOR_EVENT command or Display Flip Pending

hardware status can be used to provide this synchronization. See Display Flip Synchronization in the Device

Programming Interface chapter of MI Functions.

The display buffer command uses the X and Y offset for the tiled buffers from the Display Interface registers.

Software is allowed to change the offset via the MMIO interface irrespective of the flip commands enqueued in

the command stream. For tiled buffers, the display subsystem uses the X and Y offset in generation of the final

request to memory. The offset is always updated on the next vblank for both Synchronous and Asynch Flips. It

is not necessary to have a flip enqueued to update the X and Y offset

The display buffer command uses the linear DWord offset for the linear buffers from the Display Interface

registers. Software is allowed to change the offset via the MMIO interface irrespective of the flip commands

enqueued in the command stream. For linear buffers, the display subsystem uses the Dword offset in

generation of the final request to memory.

 For synchronous flips the offset is updated on the next vblank. It is not necessary to have a sync flip

enqueued to update the DWord offset.

 Linear memory does not support asynchronous flips.

Events must be unmasked in the Display Engine Render Response Mask Register (DE RRMR 0x44050) prior to

waiting for them with a MI_WAIT_FOR_EVENT command, or in the case of flips or scanlines, prior to starting the

flip or loading the scanline. Unmasked events will wake command streamer as they occur, so for improved

 Command Reference: Instructions

826 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_DISPLAY_FLIP

power savings it is recommended to only unmask events that are required. Programming the DE RRMR register

can be done through MMIO or a LOAD_REGISTER_IMMEDIATE command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 14h MI_DISPLAY_FLIP

Format: OpCode

22 Async Flip Indicator

Format: Enable

 This bit should always be set if DW2 [1:0] == '01' (async flip). This field is required due to

HW limitations. This bit is used by the blitter pipe while DW2 is used by the display

hardware.

21:19 Display (Plane) Select

 This field selects which display plane is to perform the flip operation.

Value Name

0h Display Plane A

1h Display Plane B

2h Display Sprite A

3h Display Sprite B

4h Display Plane C

5h Display Sprite C

18:17 Reserved

16 Reserved

Project: BDW

Format: MBZ

15:13 Reserved

Format: MBZ

12:8 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 827

MI_DISPLAY_FLIP
7:0 DWord Length

Format: =n Total Length - 2

 For Synchronous Flips and Asynchronous Flips, this field must be programmed to 1h for a

total length of 3.

Value Name Exists If

0h Excludes DWord (0,1) [Default]

1h ([Flip Type]!='Stereo 3D Flip')

2h ([Flip Type]=='Stereo 3D Flip')

1 31 Reserved

Project: BDW

30:16 Reserved

Project: All

Format: MBZ

15:6 Reserved

Project: All

5:1 Reserved

Project: All

Format: MBZ

0 Tile Parameter

Project: BDW

Format: Enable

For Asynchronous Flips, this parameter cannot be changed. All the flips in a flip chain should

maintain the same tile parameter as programmed with the last synchronous flip or direct

thru MMIO.

Value Name Description

0h Linear [Default] For Syncronous Flips Only

1h Tiled X

Programming Notes

Performing a synchronous or asynchronous flip will drop any previous synchronous flip

that has not yet completed.

2 31:12 Display Buffer Base Address

Project: All

Format: GraphicsAddress[31:12]

 This field specifies Bits 31:12 of the Graphics Address of the new display buffer.

Programming Notes

The Display buffer must reside completely in Main Memory.

This address is always translated via the global (rather than per-process) GTT

 Command Reference: Instructions

828 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_DISPLAY_FLIP
11:3 Reserved

Project: All

Format: MBZ

2 Reserved

Project: BDW

1:0 Flip Type

Project: BDW

 This field specifies whether the flip operation should be performed asynchronously to

vertical retrace.

Value Name Description

00b Sync Flip

[Default]

The flip will occur during the vertical blanking interval - thus

avoiding any tearing artifacts.

01b Async Flip The flip will occur "as soon as possible" - and may exhibit tearing

artifacts

1b Reserved

Programming Notes

 The Display Buffer Pitch and Tile parameter cannot be changed for asynchronous

flips (i.e., the new buffer must have the same pitch/tile format as the previous

buffer).

 Async flips are supported on X-Tiled Frame buffers only.

 For Asynch Flips the Buffers used must be 32KB aligned.

 Asynch flips are supported on Display Planes A and B and C only.

3

Project:

BDW

31:12 Reserved

Project: BDW

11:3 Reserved

Project: BDW

Format: MBZ

2 Reserved

Project: BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 829

MI_DISPLAY_FLIP
1:0 Flip Type

Project: BDW

 This field specifies whether the flip operation should be performed asynchronously to

vertical retrace.

Value Name Description

00b Sync Flip

[Default]

The flip will occur during the vertical blanking interval - thus

avoiding any tearing artifacts.

01b Async Flip The flip will occur "as soon as possible" - and may exhibit tearing

artifacts

Programming Notes

 The Display Buffer Pitch and Tile parameter cannot be changed for asynchronous

flips (i.e., the new buffer must have the same pitch/tile format as the previous

buffer).

 Async flips are supported on X-Tiled Frame buffers only.

 For Asynch Flips the Buffers used must be 32KB aligned.

 Asynch flips are supported on Display Planes A and B and C only.

 Command Reference: Instructions

830 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_FLUSH_DW

MI_FLUSH_DW
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

 The MI_FLUSH_DW command is used to perform an internal "flush" operation. The parser pauses on an internal

flush until all drawing engines have completed any pending operations. In addition, this command can also be

used to:

 Flush any dirty data to memory.

 Invalidate the TLB cache inside the hardware

Usage note: After this command is completed with a Store DWord enabled, CPU access to graphics memory will

be coherent (assuming the Render Cache flush is not inhibited).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 26h MI_FLUSH_DW

22 Reserved

Project: All

21 Store Data Index

Project: All

Format: U1

Description

Ring Buffer Mode Scheduling: This field is valid only if the post-sync operation is not 0. If

this bit is set, the store data address is actually an index into the global hardware status page.

This bit only applies to the Global HW status page. If this field is 1, the Destination Address

Type in this command must be set to 1 (GGTT).

Execlist Mode Scheduling: This field is valid only if the post-sync operation is not 0. If this bit

is set, the store data address is index into the global hardware status page when destination

address type in the command is set to 1 (GGTT). The store data address is index into the per-

process hardware status page when destination address type in the command is set to 0

(PPGTT).

20:19 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 831

MI_FLUSH_DW
18 TLB Invalidate

Project: All

Format: U1

Description

If ENABLED, all TLBs belonging to Video Enhancement Engine will be invalidated once the

flush operation is complete.

This bit is only valid when the Post-Sync Operation field is a value of 1h or 3h.

If GFX_MODE (0x229c) bit 13, this command will cause a config write to MMIO register space

with the address 0x4f100.

17 Reserved

Project: BDW

Format: MBZ

16 Reserved

Project: All

Format: MBZ

15:14 Post-Sync Operation

Project: All

Value Name Description

0h No Write No write occurs as a result of this instruction. This can be used to

implement a "trap" operation, etc.

1h Write Immediate

Data

Write the QWord containing Immediate Data Low, High DWs to

the Destination Address

2h Reserved Reserved

3h Write TIMESTAMP

register

Write the TIMESTAMP register to the Destination Address. The

upper 28 bits of the TIMESTAMP register are tied to '0'.

Programming Notes

If executed in non-secure batch buffer, the address given will be in a PPGTT address space. If

in a secure ring or batch, address given will be in GGTT space

13:10 Reserved

Project: All

Format: MBZ

9 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

832 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_FLUSH_DW
8 Notify Enable

Project: All

Format: U1

 If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt

Control registers) once the sync operation is complete. See Interrupt Control Registers in

Memory Interface Registers for details.

7 Reserved

Project: All

Format: MBZ

6 Reserved

Project: BDW

5:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project

3h Excludes DWord (0,1) = 2 for DWord, 3 for QWord [Default] BDW

1 31:3 Address

Project: All

Format: GraphicsAddress[31:3]U28

 This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. Note

that the address can only be QWord aligned, irrespective of data size.

2 Destination Address Type

Project: All

 Defines address space of Destination Address

Value Name Description Project

0h PPGTT Use PPGTT address space for DW write All

1h GGTT Use GGTT address space for DW write All

Programming Notes

Ignored if "No write" is the selected in Operation.

1:0 Reserved

Project: All

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 833

MI_FLUSH_DW
15:0 Address High

Project: BDW

Format: GraphicsAddress[47:32]U64

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space

3..4

Project:

BDW

31:0 Immediate Data

Project: BDW

This field specifies the DWord value to be written to the targeted location. DW2 is the lower

DW if QW is desired. Only valid when 15:14 in header is set to 1h

To avoid hitting a known hardware bug, drivers cannot send a QW write when bit 5 of the

address is '1'

 Command Reference: Instructions

834 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_FLUSH_DW

MI_FLUSH_DW
Project: BDW

Source: BlitterCS

Length Bias: 2

The MI_FLUSH_DW command is used to perform an internal "flush" operation. The parser pauses on an internal

flush until all drawing engines have completed any pending operations. In addition, this command can also be

used to: Flush any dirty data to memory. Invalidate the TLB cache inside the hardware

Usage note: After this command is completed with a Store DWord enabled, CPU access to graphics

memory will be coherent (assuming the Render Cache flush is not inhibited).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 26h MI_FLUSH_DW

22 Reserved

Project: All

Format: U1

21 Store Data Index

Project: BDW

Format: U1

Description

Ring Buffer Mode Scheduling: This field is valid only if the post-sync operation is not 0. If

this bit is set, the store data address is actually an index into the global hardware status page.

This bit only applies to the Global HW status page. If this field is 1, the Destination Address

Type in this command must be set to 1 (GGTT).

Execlist Mode Scheduling: This field is valid only if the post-sync operation is not 0. If this bit

is set, the store data address is index into the global hardware status page when destination

address type in the command is set to 1 (GGTT). The store data address is index into the per-

process hardware status page when destination address type in the command is set to 0

(PPGTT).

20:19 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 835

MI_FLUSH_DW
18 TLB Invalidate

Project: BDW

Format: U1

Description

If ENABLED, all TLBs belonging to Blitter Engine will be invalidated once the flush operation is

complete. This bit is only valid when the Post-Sync Operation field is a value of 1h or 3h.

If GFX_MODE (0x229c) bit 13, this command will cause a config write to MMIO register space

with the address 0x4f100.

17 Reserved

Project: BDW

Format: MBZ

16 Reserved

Project: All

Format: MBZ

15:14 Post-Sync Operation

Project: BDW

 BitFieldDesc

Value Name Description

0h No Write No write occurs as a result of this instruction. This can be used

to implement a "trap" operation, etc.

1h Write Immediate

Data QWord

Write the QWord containing Immediate Data Low, High DWs to

the Destination Address

2h Reserved Reserved

3h Write TIMESTAMP

Register

Write the TIMESTAMP register to the Destination Address. The

upper 28 bits of the TIMESTAMP register are tied to '0'.

13:10 Reserved

Project: All

Format: MBZ

9 Reserved

Project: BDW

Format: MBZ

8 Notify Enable

Project: BDW

Format: U1

 If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt

Control registers) once the sync operation is complete. See Interrupt Control Registers in

Memory Interface Registers for details.

 Command Reference: Instructions

836 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_FLUSH_DW
7:6 Reserved

Project: All

Format: MBZ

5:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project

3h Excludes DWord (0,1) = 2 for DWord, 3 for QWord [Default] BDW

1 31:3 Address

Project: BDW

Format: GraphicsAddress[31:3]U28

 This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. Note

that the address can only be QWord aligned, irrespective of data size.

2 Destination Address Type

Project: All

 Defines address space of Destination Address

Value Name Description Project

0h PPGTT Use PPGTT address space for DW write All

1h GGTT Use GGTT address space for DW write All

Programming Notes

Ignored if "No write" is the selected in Operation.

1:0 Reserved

Project: All

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Address High

Project: BDW

Format: GraphicsAddress[47:32]U64

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 837

MI_FLUSH_DW
3..4

Project:

BDW

31:0 Immediate Data

Project: BDW

This field specifies the DWord value to be written to the targeted location. DW2 is the lower

DW if QW is desired. Only valid when 15:14 in header is set to 1h

To avoid hitting a known hardware bug, drivers cannot send a QW write when bit 5 of the

address is '1'

 Command Reference: Instructions

838 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_FLUSH_DW

MI_FLUSH_DW
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_FLUSH_DW command is used to perform an internal "flush" operation. The parser pauses on an internal

flush until all drawing engines have completed any pending operations. In addition, this command can also be

used to:Flush any dirty data to memory. Invalidate the TLB cache inside the hardware Usage note: After this

command is completed with a Store DWord enabled, CPU access to graphics memory will be coherent (assuming

the Render Cache flush is not inhibited).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 26h MI_FLUSH_DW

22 Reserved

Project: BDW

21 Store Data Index

Project: BDW

Format: U1

Description Project

Ring Buffer Mode Scheduling: This field is valid only if the post-sync operation is

not 0. If this bit is set, the store data address is actually an index into the global

hardware status page. This bit only applies to the Global HW status page. If this field

is 1, the Destination Address Type in this command must be set to 1 (GGTT).

Execlist Mode Scheduling: This field is valid only if the post-sync operation is not 0.

If this bit is set, the store data address is index into the global hardware status page

when destination address type in the command is set to 1 (GGTT). The store data

address is index into the per-process hardware status page when destination address

type in the command is set to 0 (PPGTT).

BDW

20:19 Reserved

Format: MBZ

18 TLB Invalidate

Project: BDW

Format: U1

 If ENABLED, all TLBs belonging to Video Engine will be invalidated once the flush operation is

complete. This bit is only valid when the Post-Sync Operation field is a value of 1h or 3h.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 839

MI_FLUSH_DW
17 Reserved

Project: BDW

Format: MBZ

16 Reserved

Format: MBZ

15:14 Post-Sync Operation

Project: BDW

 BitFieldDesc

Value Name Description Project

0h No Write No write occurs as a result of this instruction. This can be used

to implement a "trap" operation, etc.

1h Write

Immediate

Data

HW implicitly detects the Data size to be Qword or Dword to be

written to memory based on the command dword length

programmed . When Dword Length indicates Qword, Writes the

QWord containing Immediate Data Low, High DWs to the

Destination Address . When Dword Length indicates Dword,

Writes the DWord containing Immediate Data Low to the

Destination Address

2h Reserved Reserved

3h Write the TIMESTAMP register to the Destination Address. The

upper 28 bits of the TIMESTAMP register are tied to '0'.

BDW

13:10 Reserved

Project: All

Format: MBZ

9 Reserved

Project: BDW

Format: MBZ

8 Notify Enable

Project: BDW

Format: U1

 If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt

Control registers) once the sync operation is complete. See Interrupt Control Registers in

Memory Interface Registers for details.

7 Video Pipeline Cache invalidate

Project: BDW

Format: U1

 Enable the invalidation of the video cache at the end of this flush

 Command Reference: Instructions

840 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_FLUSH_DW
6 Reserved

Project: BDW

5:0 DWord Length

Format: =n Total Length - 2

Value Name Project

3h Excludes DWord (0,1) = 2 for DWord, 3 for QWord [Default] BDW

1 31:3 Address

Format: GraphicsAddress[31:3]U28

 This field specifies Bits 31:3 of the Address where the DWord or QWord will be stored. Note

that the address can only be QWord aligned, irrespective of data size.

2 Destination Address Type

 Defines address space of Destination Address

Value Name Description

0h PPGTT Use PPGTT address space for DW write

1h GGTT Use GGTT address space for DW write

Programming Notes

Ignored if "No write" is the selected in Operation.

1:0 Reserved

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

15:0 Address High

Project: BDW

Format: GraphicsAddress[47:32]U64

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space

3..4

Project:

BDW

31:0 Immediate Data

Project: BDW

This field specifies the DWord value to be written to the targeted location. DW2 is the lower

DW if QW is desired. Only valid when 15:14 in header is set to 1h

To avoid hitting a known hardware bug, drivers cannot send a QW write when bit 5 of the

address is '1'

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 841

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

 The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command

to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before

the next command is executed.

 The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF

register. If this command is disallowed then the command stream converts it to a NOOP.

 If this command is executed from a batch buffer then the behavior of this command is controlled by

Dword 0, Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is non-

secure then the command stream converts this command to a NOOP.

 The following addresses should NOT be used for LRIs

1. 0x8800 - 0x88FF

2. >= 0x40000

Any offset that is to a destination outside of the GT core will allow the parser to continue once the cycle is at the

GT boundry and not destination. Any other address will ensure the destination is updated prior to parsing the

next command

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 22h MI_LOAD_REGISTER_IMM

Format: OpCode

22:12 Reserved

Project: All

Format: MBZ

11:8 Byte Write Disables

Project: All

Format: Enable[4] (bit 8 corresponds to Data DWord [7:0]).

Range: Must specify a valid register write operation

If [11:8] is '1111b', then the register write will not occur.

 If [11:8] is '0000b', then the register DW will be updated.

 Any other value, the behavior will be specifically specified by the register or the behavior is

undefined.

 Command Reference: Instructions

842 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_REGISTER_IMM
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:23 Reserved

Project: All

Format: MBZ

22:2 Register Offset

Project: All

Format: MmioAddress[22:2]

 This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this

field specifies a DWord offset).Mapped

Programming Notes Project

Bits 22:18 must be zero. Setting these bits could cause a hang due to PM requesting

a stop at the same time the request is going to a MMIO space outside the GT core.

BDW

1:0 Reserved

Project: All

Format: MBZ

2 31:0 Data DWord

Project: All

Format: U32

 This field specifies the DWord value to be written to the targeted location.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 843

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: BDW

Source: BlitterCS

Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command

to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before

the next command is executed.

Any offset that is to a destination outside of the GT core will allow the parser to continue once the cycle is at the

GT boundry and not destination. Any other address will ensure the destination is updated prior to parsing the

next command

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 22h MI_LOAD_REGISTER_IMM

22:12 Reserved

Format: MBZ

11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord [7:0]

Range: Must specify a valid register write operation

If [11:8] is '1111b', then the register write will not occur. If [11:8] is '0000b', then the register

DW will be updated. Any other value, the behavior will be specifically specified by the register

or the behavior is undefined.

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:23 Reserved

Format: MBZ

22:2 Register Offset

Format: U21

Format: MmioAddress[22:2]

 This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this

field specifies a DWord offset).

Programming Notes Project

Bits 22:18 must be zero. Setting these bits could cause a hang due to PM requesting

a stop at the same time the request is going to a MMIO space outside the GT core.

BDW

 Command Reference: Instructions

844 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_REGISTER_IMM
1:0 Reserved

Project: All

Format: MBZ

2 31:0 Data DWord

Mask: Bytes Write Disables

Format: U32

 This field specifies the DWord value to be written to the targeted location.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 845

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: BDW

Source: RenderCS

Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command

to the specified Register Offset (i.e., offset into Memory-Mapped Register Range).

Any offset that is to a destination outside of the GT core will allow the parser to continue once the cycle is at the

GT boundry and not destination. Any other address will ensure the destination is updated prior to parsing the

next command

Programming Notes

A stalling flush must be sent down pipeline before issuing this command. The behavior of this command is

controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF register. If this command is disallowed

then the command stream converts it to a NOOP.

If this command is executed from a BB then the behavior of this command is controlled by Dword 0, Bit 8

(Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure then the command

stream converts this command to a NOOP. Note that the corresponding ring buffer must allow a register

update for this command to execute.

To ensure this command gets executed before upcoming commands in the ring, either a stalling pipeControl

should be sent after this command, or MMIO 0x20C0 bit 7 should be set to 1.

When base address of 0x180000 is added to the Register Offset, when executed will result in updating of the

register in the other GT in GTB mode of operation then the GT from which this instruction is executed. When

this instruction is executed by Command Streamer with COREID-0 will result in updating the register in GT with

COREID-1 and vice versa, when base address of 0x180000 is added to the register offset.

The following addresses should NOT be used for LRIs:

1. 0x8800 - 0x88FF

2. >= 0xC0000

Limited LRI cycles to the Display Engine 0x40000-0xBFFFF) are allowed, but must be spaced to allow only one

pending at a time. This can be done by issuing an SRM to the same address immediately after each LRI.

Programming an MMIO register is equivalent to programming a non-pipeline state to the hardware and hence

an explicit stalling flush needs to be programmed prior to programming this command. However for certain

MMIO registers based on their functionality doing an explicit stalling flush is exempted. Listed below are the

exempted registers.

 3DPRIM_END_OFFSET - Auto Draw End Offset [BDW]

 3DPRIM_START_VERTEX - Load Indirect Start Vertex [BDW]

 3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count [BDW]

 3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count [BDW]

 3DPRIM_START_INSTANCE - Load Indirect Start Instance [BDW]

 3DPRIM_BASE_VERTEX - Load Indirect Base Vertex [BDW]

Writes to the range 0x9400-0x97FF must be either be avoided, or serialized with a read (e.g.

STORE_REGISTER_MEM) between them.

 Command Reference: Instructions

846 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 22h MI_LOAD_REGISTER_IMM

Format: OpCode

22:13 Reserved

Format: MBZ

12 Reserved

Project: BDW

11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord [7:0]

Range: Must specify a valid register write operation

If [11:8] is '1111b', then this command will behave as a NOOP. Otherwise, the value is

forwarded to the destination register.

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:23 Reserved

Format: MBZ

22:2 Register Offset

Format: MmioAddress[22:2]

 This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e.,

this field specifies a DWord offset).

1:0 Reserved

Format: MBZ

2 31:0 Data DWord

Mask: Bytes Write Disables

Format: U32

 This field specifies the DWord value to be written to the targeted location.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 847

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: BDW

Source: VideoCS

Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command

to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before

the next command is executed.

Any offset that is to a destination outside of the GT core will allow the parser to continue once the cycle is at the

GT boundry and not destination. Any other address will ensure the destination is updated prior to parsing the

next command

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 22h MI_LOAD_REGISTER_IMM

Format: OpCode

22:12 Reserved

Format: MBZ

11:8 Byte Write Disables

Format: Enable[4] (bit 8 corresponds to Data DWord [7:0]).

Range: Must specify a valid register write operation

If [11:8] is '1111b', then the register write will not occur. If [11:8] is '0000b', then the register

DW will be updated. Any other value, the behavior will be specifically specified by the register

or the behavior is undefined.

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:23 Reserved

Format: MBZ

22:2 Register Offset

Format: MmioAddress[22:2]

 This field specifies bits [22:2] of the offset into the Memory Mapped Register Range (i.e., this

field specifies a DWord offset).Mapped

Programming Notes Project

Bits 22:18 must be zero. Setting these bits could cause a hang due to PM requesting

a stop at the same time the request is going to a MMIO space outside the GT core.

BDW

 Command Reference: Instructions

848 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_REGISTER_IMM
1:0 Reserved

Format: MBZ

2 31:0 Data DWord

Format: U32 FormatDesc

 This field specifies the DWord value to be written to the targeted location.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 849

MI_LOAD_REGISTER_MEM

MI_LOAD_REGISTER_MEM
Project: BDW

Source: RenderCS, BlitterCS, VideoCS, VideoEnhancementCS

Length Bias: 2

 The MI_LOAD_REGISTER_MEM command requests from a memory location and stores that DWord to a register.

Programming Notes

The command temporarily halts commands that will cause cycles down the 3D pipeline.

The following addresses should NOT be used for MMIO writes:

 0x8800 - 0x88FF

 >= 0xC0000

Limited MMIO writes cycles to the Display Engine 0x40000-0xBFFFF) are allowed, but must be spaced to allow

only one pending at a time. This can be done by issuing an SRM to the same address immediately after each

MMIO write.

Any updates to the memory location exercised by this command must be ensured to be coherent in memory

prior to programming of this command. This must be achieved by programming MI_ATOMIC (write to scratch

space) with "CS STALL" set prior to programming of this command. Example: MI_STORE_REGISTE_MEM

(0x2288, 0x2CF0_0000) ……… ……… MI_ATOMIC (MOV, Dummy data, Scratch Address)

MI_LOAD_REGISTER_MEM(0x2288, 0x2CF0_0000)

This command should not be used within a non-privilege batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

This command is not allowed to update the privilege register range when executed from a non-privilege batch

buffer.

Writes to the range 0x9400-0x97FF must be either be avoided, or serialized with a read (e.g.

STORE_REGISTER_MEM) between them.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 29h MI_LOAD_REGISTER_MEM

Format: OpCode

 Command Reference: Instructions

850 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_REGISTER_MEM
22 Use Global GTT

Format: Boolean

 This bit if set when executing from a non-privileged batch buffer will be treated as privilege

access violation. It is allowed for this bit to be clear when executing this command from a

privileged (secure) batch buffer or ring buffer. This command will use the global GTT to

translate the Address and this command must be executing from a privileged (secure) batch

buffer.

21 Async Mode Enable

 If this bit is set then the command stream will not wait for completion of this command before

executing the next command. Please refer to the LOAD_INDIRECT and Predicate registers for

usage of this bit.

20 Reserved

Project: BDW

19 Reserved

Project: BDW

18:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2. Excludes DWord (0,1).

Value Name Project

2h Excludes DWord (0,1) [Default] BDW

1 31:23 Reserved

Format: MBZ

22:2 Register Address

Format: MMIOAddress[22:2]

 This field specifies Bits 22:2 of the Register offset the DWord will be written to. As the register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes Project Source

Bits 22:18 must be zero. Setting these bits could

cause a hang due to PM requesting a stop at the

same time the request is going to a MMIO space

outside the GT core.

BDW BlitterCS, VideoCS, VideoCS2,

VideoEnhancementCS

1:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 851

MI_LOAD_REGISTER_MEM
2..3

Project:

BDW

63:2 Memory Address

Project: BDW

Format: GraphicsAddress[63:2]

This field specifies the address of the memory location where the register value specified in the

DWord above will read from. The address specifies the DWord location of the data. Range =

GraphicsVirtualAddress[63:2] for a DWord register

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

1:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

852 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_REG
Project: BDW

Source: CommandStreamer

Length Bias: 2

The MI_LOAD_REGISTER_REG command reads from a source register location and writes that value to a

destination register location.

Any offset that is to a destination outside of the GT core will allow the parser to continue once the cycle is at the

GT boundry and not destination. Any other address will ensure the destination is updated prior to parsing the

next command

Programming Notes Project

The command temporarily halts commands that will cause cycles down the 3D pipeline.

Destination register with mask implemented will not get updated unless the value read from source

register has the bits corresponding to the mask bits set. Note that any mask implemented register

when read returns "0" for the bits corresponding to mask location. When the source and destination

are mask implemented registers, destination register will not get updated with the source register

contents.

This command is not allowed to update the privilege register range when executed from a non-

privilege batch buffer.

BDW

Writes to the range 0x9400-0x97FF must be either be avoided, or serialized with a read (e.g.

STORE_REGISTER_MEM) between them.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Ah MI_LOAD_REGISTER_REG

Format: OpCode

22:20 Reserved

Format: MBZ

19:18 Reserved

Project: BDW

Format: MBZ

17:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 1h

Format: =n Total Length - 2. Excludes DWord (0,1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 853

MI_LOAD_REGISTER_REG
1 31:23 Reserved

Format: MBZ

22:2 Source Register Address

Format: MMIOAddress[22:2]MMIO_Register

 This field specifies Bits 22:2 of the Register offset the DWord will be written to. As the register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes Project Source

Bits 22:18 must be zero. Setting these bits could

cause a hang due to PM requesting a stop at the

same time the request is going to a MMIO space

outside the GT core.

BDW BlitterCS, VideoCS, VideoCS2,

VideoEnhancementCS

1:0 Reserved

Format: MBZ

2 31:23 Reserved

Format: MBZ

22:2 Destination Register Address

Format: MMIOAddress[22:2]MMIO_Register

 This field specifies Bits 22:2 of the Register offset the DWord will be written to. As the register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes Project Source

Bits 22:18 must be zero. Setting these bits could

cause a hang due to PM requesting a stop at the

same time the request is going to a MMIO space

outside the GT core.

BDW BlitterCS, VideoCS, VideoCS2,

VideoEnhancementCS

1:0 Reserved

Format: MBZ

 Command Reference: Instructions

854 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_EXCL
Project: BDW

Source: BlitterCS

Length Bias: 2

The MI_LOAD_SCAN_LINES_EXCL command is used to initialize the Scan Line Window registers for a specific

Display Pipe. If the display refresh is outside this window the Display Engine asserts a signal that is used by the

command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while outside). This

command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or

MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display pipe.

Note: The two scan-line numbers are inclusive. If programmed to the same values, that single line defines the

region in question.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single

MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical MI_LOAD_SCAN_LINES_EXCL/INCL

command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 13h MI_LOAD_SCAN_LINES_EXCL

Format: OpCode

22 Reserved

Project: All

Format: MBZ

21:19 Display Pipe Select

Project: All

Format: U3

 This field selects which Display Engine (pipe) this command is targeting.

Value Name Project

0h Display Pipe A All

1h Display Pipe B All

2h, 3h Reserved All

4h Display Pipe C All

5h Reserved BDW

6h, 7h Reserved All

18:17 Reserved

Project: BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 855

MI_LOAD_SCAN_LINES_EXCL
16:6 Reserved

Project: BDW

Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:16 Start Scan Line Number

Format: U16 In scan lines, where scan line 0 is the first line of the display frame.

 This field specifies the starting scan line number of the Scan Line Window. Range: [0,

Display Buffer height in lines-1]

15:0 End Scan Line Number

Format: U16 In scan lines, where scan line 0 is the first line of the display frame.

 This field specifies the ending scan line number of the Scan Line Window. Range: [0, Display

Buffer height in lines-1]

 Command Reference: Instructions

856 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_EXCL
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_LOAD_SCAN_LINES_EXCL command is used to initialize the Scan Line Window registers for a specific

Display Pipe. If the display refresh is outside this window the Display Engine asserts a signal that is used by the

command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while outside). This

command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or

MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display pipe. Note: The two scan-line numbers

are inclusive. If programmed to the same values, that single line defines the region in question. Always place an

even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single

MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical MI_LOAD_SCAN_LINES_EXCL/INCL

command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 13h MI_LOAD_SCAN_LINES_EXCL

Format: OpCode

22 Reserved

Format: MBZ

21:19 Display (Plane) Select

Format: U3

 This field selects which display plane is to perform the scanline operation.

Value Name Project

0h Display Plane A

1h Display Plane B

2h Reserved

3h Reserved

4h Display Plane C

5h Reserved BDW

18:17 Reserved

Project: BDW

16:6 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 857

MI_LOAD_SCAN_LINES_EXCL
5:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:29 Reserved

Format: MBZ

28:16 Start Scan Line Number

Format: U13 In scan lines, where scan line 0 is the first line of the display frame.

Range: [0, Display Buffer height in lines-1]

This field specifies the starting scan line number of the Scan Line Window.

15:13 Reserved

Format: MBZ

12:0 End Scan Line Number

Format: U13 In scan lines, where scan line 0 is the first line of the display frame.

This field specifies the ending scan line number of the Scan Line Window.

Range: [0, Display Buffer height in lines-1]

 Command Reference: Instructions

858 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_SCAN_LINES_INCL

MI_LOAD_SCAN_LINES_INCL
Project: BDW

Source: BlitterCS

Length Bias: 2

The MI_LOAD_SCAN_LINES_INCL command is used to initialize the Scan Line Window registers for a specific

Display Engine. If the display refresh is within this window the Display Engine asserts a signal that is used by the

command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while inside of the

window). This command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL

or MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single

MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 12h MI_LOAD_SCAN_LINES_INCL

Format: OpCode

22 Reserved

Project: All

Format: MBZ

21:19 Display Pipe Select

Project: All

Format: U3

 This field selects which Display Engine (pipe) this command is targeting.

Value Name Project

0h Display Pipe A

1h Display Pipe B

2h, 3h Reserved All

4h Display Pipe C

5h Reserved BDW

6h, 7h Reserved All

18:17 Reserved

Project: BDW

16:6 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 859

MI_LOAD_SCAN_LINES_INCL
5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:16 Start Scan Line Number

Format: U16 In scan lines, where scan line 0 is the first line of the display frame.

 This field specifies the starting scan line number of the Scan Line Window. Range: [0,

Display Buffer height in lines-1]

15:0 End Scan Line Number

Format: U16 In scan lines, where scan line 0 is the first line of the display frame.

 This field specifies the ending scan line number of the Scan Line Window. Range: [0, Display

Buffer height in lines-1]

 Command Reference: Instructions

860 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_SCAN_LINES_INCL

MI_LOAD_SCAN_LINES_INCL
Project: BDW

Source: RenderCS

Length Bias: 2

The MI_LOAD_SCAN_LINES_INCL command is used to initialize the Scan Line Window registers for a specific

Display Engine. If the display refresh is within this window the Display Engine asserts a signal that is used by the

command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while inside the window).

This command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or

MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a single

MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical MI_LOAD_SCAN_LINES_EXCL/INCL

command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 12h MI_LOAD_SCAN_LINES_INCL

Format: OpCode

22 Reserved

Format: MBZ

21:19 Display (Plane) Select

Project: BDW

Format: U3

 This field selects which display plane is to perform the scanline operation.

Value Name

0h Display Plane A

1h Display Plane B

2h Reserved

3h Reserved

4h Display Plane C

5h Reserved

18:17 Reserved

16:6 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 861

MI_LOAD_SCAN_LINES_INCL
5:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31 Reserved

Project: BDW

Format: MBZ

30 Reserved

Default Value: 1h

Project: BDW

Format: Must Be One

29 Reserved

Format: MBZ

28:16 Start Scan Line Number

Format: U13 In scan lines, where scan line 0 is the first line of the display frame.

Range: [0, Display Buffer height in lines-1]

This field specifies the starting scan line number of the Scan Line window.

15:13 Reserved

Format: MBZ

12:0 End Scan Line Number

Format: U13 In scan lines, where scan line 0 is the first line of the display frame.

Range: [0, Display Buffer height in lines-1]

This field specifies the ending scan line number of the Scan Line Window.

 Command Reference: Instructions

862 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_LOAD_URB_MEM

MI_LOAD_URB_MEM
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_LOAD_URB_MEM command requests from a memory location and stores that DWord to the URB.

Programming Notes

The command temporarily halts commands that will cause cycles down the 3D pipeline.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Ch MI_LOAD_URB_MEM

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2. Excludes DWord (0,1).

Value Name Project

2h [Default] BDW

1 31:15 Reserved

Format: MBZ

14:2 URB Address

 This field specifies Bits 14:2 of the URB offset the DWord will be written in the URB. This

command only supports writing below 32KB of the URB space.

1:0 Reserved

Format: MBZ

2..3

Project:

BDW

63:6 Memory Address

Project: BDW

Format: GraphicsAddress[63:6]

 This field specifies the address of the location of where the value will be read from memory.

The value must be in the first DW location of the cache line. Range =

GraphicsVirtualAddress[47:6] GraphicsAddress [63:48] are ignored by the HW and assumed to

be in correct canonical form [63:48] == [47].

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 863

MI_LOAD_URB_MEM
5:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

864 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_MATH

MI_MATH
Project: BDW

Source: BlitterCS

Length Bias: 2

The MI_MATH command allows software to send instructions to the ALU in the Command Streamer.

This command is the means by which the ALU is accessed. ALU instructions form the data payload of the

MI_MATH command. An ALU instruction takes one DWord in size. The MI_MATH DWord Length is programmed

based on the number of ALU instructions included, limited only by the max DWord Length supported.

When the command streamer parses an MI_MATH command, it sends the included ALU instructions to the ALU.

The ALU processes any instruction in a single clock. See the ALU section for more details.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ah MI_MATH

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 ALU INSTRUCTION 1

Format: Table Entry

2 31:0 ALU INSTRUCTION 2

Format: Table Entry

3..n 31:0 ALU INSTRUCTION n

Format: Table Entry

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 865

MI_MATH

MI_MATH
Project: BDW

Source: VideoCS

Length Bias: 2

The MI_MATH command allows software to send instructions to the ALU in the Command Streamer.

This command is the means by which the ALU is accessed. ALU instructions form the data payload of the

MI_MATH command. An ALU instruction takes one DWord in size. The MI_MATH DWord Length is programmed

based on the number of ALU instructions included, limited only by the max DWord Length supported.

When the command streamer parses an MI_MATH command, it sends the included ALU instructions to the ALU.

The ALU processes any instruction in a single clock. See the ALU section for more details.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ah MI_MATH

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 ALU INSTRUCTION 1

Format: Table Entry

2 31:0 ALU INSTRUCTION 2

Format: Table Entry

3..n 31:0 ALU INSTRUCTION n

Format: Table Entry

 Command Reference: Instructions

866 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_MATH

MI_MATH
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

The MI_MATH command allows software to send instructions to the ALU in the Command Streamer.

This command is the means by which the ALU is accessed. ALU instructions form the data payload of the

MI_MATH command. An ALU instruction takes one DWord in size. The MI_MATH DWord Length is programmed

based on the number of ALU instructions included, limited only by the max DWord Length supported.

When the command streamer parses an MI_MATH command, it sends the included ALU instructions to the ALU.

The ALU processes any instruction in a single clock. See the ALU section for more details.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ah MI_MATH

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 ALU INSTRUCTION 1

Format: Table Entry

2 31:0 ALU INSTRUCTION 2

Format: Table Entry

3..n 31:0 ALU INSTRUCTION n

Format: Table Entry

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 867

MI_MATH

MI_MATH
Project: BDW

Source: RenderCS

Length Bias: 2

The MI_MATH command allows SW to send instruction to ALU in Render Command Streamer.

MI_MATH command is the means by which ALU can be accessed. ALU instructions form the data payload of

MI_MATH command, ALU instruction is dword in size. MI_MATH Dword Length should be programmed based on

the number of ALU instruction packed, max number is limited by the max Dword Length supported. When

MI_MATH command is parsed by command streamer it outputs the payload dwords (ALU instructions) to the

ALU. ALU takes single clock to process any given instruction. Refer to B-spec "Command Streamer (CS) ALU

Programming" section in Command Streamer Programming.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ah MI_MATH

Format: OpCode

22:8 Reserved

Format: MBZ

7:6 Reserved

Project: BDW

Format: MBZ

5:0 DWord Length

Default Value: 0h

Project: BDW

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 ALU INSTRUCTION 1

Format: Table Entry

2 31:0 ALU INSTRUCTION 2

Format: Table Entry

3..n 31:0 ALU INSTRUCTION n

Format: Table Entry

 Command Reference: Instructions

868 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_NOOP

MI_NOOP
Project: BDW

Source: VideoEnhancementCS

Length Bias: 1

 The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to

pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one

minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.

This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide

sequencing information for a subsequent breakpoint interrupt).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 00h MI_NOOP

Format: OpCode

22 Identification Number Register Write Enable

Format: Enable

 This field enables the value in the Identification Number field to be written into the MI NOPID

register. If disabled, that register is unmodified - making this command an effective "no

operation" function.

Value Name Description

1 Write th NOP_ID Register

0 Do not write the NOP_ID register

21:0 Identification Number

Project: All

Format: U22

 This field contains a 22-bit number which can be written to the MI NOPID register.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 869

MI_NOOP

MI_NOOP
Project: BDW

Source: BlitterCS

Length Bias: 1

 The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to

pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one

minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.

This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide

sequencing information for a subsequent breakpoint interrupt).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0h MI_NOOP

22 Identification Number Register Write Enable

Project: All

Format: Enable

 This field enables the value in the Identification Number field to be written into the MI NOPID

register. If disabled, that register is unmodified - making this command an effective "no

operation" function.

Value Name Description Project

0h Disable Do not write the NOP_ID register. All

1h Enable Write the NOP_ID register. All

21:0 Identification Number

Project: All

Format: U22

 This field contains a 22-bit number which can be written to the MI NOPID register.

 Command Reference: Instructions

870 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_NOOP

MI_NOOP
Project: BDW

Source: RenderCS

Length Bias: 1

 The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to

pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one

minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.

This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide

sequencing information for a subsequent breakpoint interrupt).

Performance Project

The MI_NOOP process time is reduced to 1 clock. An example use of the improved NOOP throughput

is for some multi-pass media applications where some unwanted media object commands are

replaced by MI_NOOP commands without repacking the commands in a batch buffer.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0h MI_NOOP

22 Identification Number Register Write Enable

Format: Enable

 This field enables the value in the Identification Number field to be written into the MI NOPID

register. If disabled, that register is unmodified, making this command an effective "no

operation" function.

Value Name Description

0h Disable Do not write the NOP_ID register.

1h Enable Write the NOP_ID register.

21:0 Identification Number

Format: U22

 This field contains a 22-bit number which can be written to the MI NOPID register.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 871

MI_NOOP

MI_NOOP
Project: BDW

Source: VideoCS

Length Bias: 1

 The MI_NOOP command basically performs a "no operation" in the command stream and is typically used to

pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one

minor (optional) function this command can perform - a 22-bit value can be loaded into the MI NOPID register.

This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide

sequencing information for a subsequent breakpoint interrupt).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 00h MI_NOOP

Format: OpCode

22 Identification Number Register Write Enable

Format: Enable

 This field enables the value in the Identification Number field to be written into the MI NOPID

register. If disabled, that register is unmodified - making this command an effective "no

operation" function.

Value Name

1 Write the NOP_ID register.

21:0 Identification Number

Format: U22

 This field contains a 22-bit number which can be written to the MI NOPID register.

 Command Reference: Instructions

872 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_PREDICATE

MI_PREDICATE
Project: BDW

Source: RenderCS

Length Bias: 1

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ch MI_PREDICATE

Format: OpCode

22:8 Reserved

Format: MBZ

7:6 Load Operation

 This field controls if/how the Predicate state bit is modified.

Value Name Description

0h KEEP The Predicate state bit is unmodified.

1h Reserved

2h LOAD The Predicate state bit is loaded with the combine operation result.

3h LOADINV The Predicate state bit is loaded with the inverted combine operation result.

5 Reserved

Format: MBZ

4:3 Combine Operation

 This field controls if/how the result of the compare operation is combined with the current

Predicate state bit.

Value Name Description

0h SET The combine operation output the compare result unmodified.

1h AND The combine operation outputs the AND of the compare result and the current

Predicate state bit.

2h OR The combine operation outputs the OR of the compare result and the current

Predicate state bit.

3h XOR The combine operation outputs the XOR of the compare result and the current

Predicate state bit.

2 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 873

MI_PREDICATE
1:0 Compare Operation

 This field controls how Data DWord 0 and Data DWord 1 fields are used to generate a compare

operation result and possibly modify the PredicateData register.

Value Name Description

0h TRUE The compare operation outputs TRUE. The PredicateData register is

unmodified.

1h FALSE The compare operation outputs FALSE. The PredicateData register is

unmodified.

2h SRCS_EQUAL (MItemp0 - MItemp1) is computed and loaded into the PredicateData

register. The compare operation outputs (MItemp0 == MItemp1).

3h DELTAS_EQUAL (MItemp0 - MItemp1) is computed and compared to the PredicateData

register. If the values are equal, the compare operation outputs TRUE,

otherwise it outputs FALSE. The PredicateData register is unmodified.

 Command Reference: Instructions

874 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_REPORT_HEAD

MI_REPORT_HEAD
Project: BDW

Source: VideoEnhancementCS

Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the ring buffer to be written to a cacheable

(snooped) system memory location.

When the Per-Process Virtual Address Space and Execlist Enable bit is reset: The location written is relative to

the address programmed in the Hardware Status Page Address Register. When the Execlist Enable is set, the

head pointer will be reported to the PP HW Status Page.

Programming Notes

This command must not be executed from a Batch Buffer (Refer to the description of the HWS_PGA register).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 07h MI_REPORT_HEAD

Format: OpCode

22:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 875

MI_REPORT_HEAD

MI_REPORT_HEAD
Project: BDW

Source: BlitterCS

Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a

cacheable (snooped) system memory location.

When the Execlist Enable bit is reset:

The location written is relative to the address programmed in the Hardware Status Page Address Register.

Programming Notes

This command must not be executed from a Batch Buffer (Refer to the description of the HWS_PGA register).

When the Execlist Disable is clear, the head pointer will be reported to the PP HW Status Page.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 07h MI_REPORT_HEAD

22:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

876 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_REPORT_HEAD

MI_REPORT_HEAD
Project: BDW

Source: RenderCS

Length Bias: 1

 The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a

cacheable (snooped) system memory location. When Execlist Enable is set, the head pointer will be reported to

the PP HW Status Page. The location written is relative to the address programmed in the Hardware Status Page

Address Register.

Programming Notes

This command must not be executed from a Batch Buffer. (Refer to the description of the HWS_PGA register.)

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 07h MI_REPORT_HEAD

Format: OpCode

22:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 877

MI_REPORT_HEAD

MI_REPORT_HEAD
Project: BDW

Source: VideoCS

Length Bias: 1

 The MI_REPORT_HEAD command causes the Head Pointer value of the ring buffer to be written to a cacheable

(snooped) system memory location.When the Per-Process Virtual Address Space and Execlist Enable bitis

reset:The location written is relative to the address programmed in the Hardware Status Page Address Register.

When the Execlist Enable is set, the head pointer will be reported to the PP HW Status Page.

Programming Notes

This command must not be executed from a Batch Buffer (Refer to the description of the HWS_PGA register).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 07h MI_REPORT_HEAD

Format: OpCode

22:0 Reserved

Format: MBZ

 Command Reference: Instructions

878 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_REPORT_PERF_COUNT

MI_REPORT_PERF_COUNT
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_REPORT_PERF_COUNT command causes the GFX hardware to write out a snap-shot of performance

counters to the address specified in this command along with constant ID field supplied and the time-stamp

counter. This write is required to be treated as a cacheable write irrespective of GTT entry memory type. This

command is specific to the render engine.

Programming Notes

This command is to be used for performance debug mode and can be inserted after events of interest

(frequently before and after a 3DPRIMITIVE command). SW is entirely responsible for managing the ID field and

addresses used by such a series of commands.

GTT_SELECT must not be set to 1 (i.e. GGTT) when MI_REPORT_PERF_COUNT command is programmed in a

non-privileged batch buffer. Refer to the "User Mode Privileged commands" Table in

MI_BATCH_BUFFER_START command section for more details.

All batch buffers in PPGTT are considered as Non-privileged.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 28h MI_REPORT_PERF_COUNT

Format: OpCode

22:6 Reserved

Format: MBZ

5:0 DWord Length

Format: =n

Total Length - 2

Value Name

2h Excludes DWord (0,1) [Default]

1..2 63:6 Memory Address

Format: GraphicsAddress[63:6]

This field specifies 64B aligned GFX MEM address where the chap counter values are reported.

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47]

Programming Notes

This field is ignored if "Report to OABUFFER" bit is set.

5 Reserved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 879

MI_REPORT_PERF_COUNT

Format: MBZ

4 Core Mode Enable

Format: U1

This bit is set then the address will be offset by the Core ID:If Core ID 0, then there is no offsetIf

Core ID 1, then the Memory is offset by the size of the data(64b).

3:1 Reserved

Format: MBZ

0 Use Global GTT

Format: Boolean

This field when set (i.e. bit = 1) selects the GGTT for address translation. When this bit is 0 (

default value), HW should use PGTT for address translation.

3 31:0 Report ID

Format: U32

This field specifies the ID provided by SW for a given report command. It can be tracked to use

different flavors of these reports based on where in command-stream they are inserted. This

field is reported only when Counter Select Field is 0.

Programming Notes

If a privilege access violation occurs, the REPORT ID field in the report generated by the next

legitimate MI_REPORT_PERF_COUNT will be corrupted.

 Command Reference: Instructions

880 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_RS_CONTEXT

MI_RS_CONTEXT
Project: BDW

Source: RenderCS

Length Bias: 1

 The MI_RS_CONTEXT command is used to force a resource streamer context save or restore.

Programming Notes Project

This command must not be used/programmed in Execution List mode of scheduling. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Fh MI_RS_CONTEXT

Format: OpCode

22:1 Reserved

Format: MBZ

0 Resource Streamer Save

Format: U1

 This bit specifies whether the MI_RS_CONTEXT command will cause the resource streamer

context to be saved or restored.

Value Name Description

0h Restore Resource Streamer context is restored

1h Save Resource Streamer context is saved

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 881

MI_RS_CONTROL

MI_RS_CONTROL
Project: BDW

Source: RenderCS

Length Bias: 1

 The MI_RS_CONTROL command is used to start or stop the Resource Streamer.

Programming Notes

 This command must be programmed only inside a Resource Streamer enabled batch buffer.

 This command provides means to selectively disable or enable Resource Streamer for set of commands

in a Resource Streamer enabled batch buffer

 On re-enabling the Resource Streamer through this command, command streamer will start Resource

Streamer on the next non-sync command of the batch buffer.

 This command status is render context save/restored during context switching.

 The scope of MI_RS_CONTROL is within the batch buffer it is programmed, it doesn’t get carried to the

following chained batch buffer or second level batch buffer. RS control status goes back to default mode

of Resource Streamer Enabled on all batch buffer arbitration boundaries. Batch buffer arbitration

boundaries includes calling a chained or a second level batch buffer through MI_BATCH_BUFFER_START

command or terminating a batch buffer through MI_BATCH_BUFFER_END command.

 Example:

1. MI_BATCH_START (Primary batch buffer with RS enable)

2. Command 1 --> CS starts RS

3. Command 2

4. :

5. MI_RS_CONTROL (stop option) -> RS will stop on this command, CS sets RS control status to STOP.

6. Command 3

7. MI_BATCH_START (2nd level batch with RS enable not set, RS control status gets reset to default status of

 START)

8. :

9. MI_BATCH_END (Second Level Batch End)

10. Command 4 --> CS starts RS here as RS control flag gets reset to START at step-7

11. MI_BATCH_BUFFER_END

Workaround

Workaround :

Due to known HW issue “Resource Streamer Control” status of MI_RS_CONTROL command is not context

save/restored across context switches. SW must ensure all pool allocations

(3DSTATE_BINDING_TABLE_POOL_ALLOC, 3DSTATE_GATHER_POOL_ALLOC,

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC) are disabled and no Resource Streamer specific commands

are programmed when the “Resource Streamer Control” is programmed to “Stop”.

 Command Reference: Instructions

882 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_RS_CONTROL

Example:

...................

MI_RS_CONTROL (Stop Resource Streamer)

3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Disable)

3DSTATE_GATHER_POOL_ALLOC (Gather Pool Disable)

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC (Constant Buffer Pool Disable)

//Following Commands must not be programmed

//3DSTATE_BINDING_TABLE_EDIT_*

//3DSTATE_GATHER_CONSTANT_*

//3DSTATE_DX9_CONSTANTF_*

………..

MI_RS_CONTROL (Start Resource Streamer)

3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Enable)

3DSTATE_GATHER_POOL_ALLOC (Gather Pool Enable)

3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC (Constant Buffer Pool Enable)

…………………..

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 06h MI_RS_CONTROL

Format: OpCode

22:1 Reserved

Format: MBZ

0 Resource Streamer Control

Format: U1

 This bit specifies whether the command is starting or stopping the Resource Streamer.

Value Name Description

0h Stop Stop and disable the Resource Streamer

1h Start Start and enable the Resource Streamer

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 883

MI_RS_STORE_DATA_IMM

MI_RS_STORE_DATA_IMM
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_RS_STORE_DATA_IMM command requests a write of the DWord constant supplied in the packet to the

specified Memory Address.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Bh

Format: OpCode

 MI_RS_STORE_DATA_IMM

22 Reserved

Project: BDW

Format: MBZ

21 Reserved

20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h

Format: =n Total Length - 2. Excludes DWord (0,1).

1..2

Project:

BDW

63:2 Destination Address

Project: BDW

Format: GraphicsAddress[63:2]

This field specifies Bits 47:2 of the Address where the DWord will be stored. GraphicsAddress

[63:48] are ignored by the HW and assumed to be in correct canonical form [63:48] == [47].

When render engine is PPGTT enabled this Address is translated using PPGTT, else GGTT is

used for translation.

1 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

884 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_RS_STORE_DATA_IMM
0 Core Mode Enable

Project: BDW

If this bit is set then the address will be offset by the Core ID:

If Core ID 0, then there is no offset

If Core ID 1, then the Memory is offset by the size of the data.

3 31:0 Data DWord 0

Format: U32

 This field specifies the DWord value to be written to the targeted location.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 885

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_SIGNAL
Project: BDW

Source: CommandStreamer

Length Bias: 2

Description Project

This command is used to signal the target engine stating the memory semaphore update occurrence

to one of its contexts with Target Context ID. MI_SEMPHORE_SIGNAL and MI_SEMAPHORE_WAIT

together replace the MI_SEMAPHORE_MBOX command on BDW. MI_ATOMIC (non-posted) command

will be programmed prior to this command to update the semaphore data in memory.

BDW

Workaround Project

Workaround : Post-Sync operation bit must not be set when Target Engine Select is set to RCS. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Bh MI_SEMAPHORE_SIGNAL

Format: OpCode

22 Reserved

Format: MBZ

 Command Reference: Instructions

886 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_SIGNAL
21 Post-Sync Operation

Project: BDW

Source: RenderCS

Value Name Description

0h No Post

Sync

Operation

Command is executed as usual.

1h Post Sync

Operation

MI_SEMAPHORE_SIGNAL command is executed as a pipelined

PIPE_CONTROL flush command with Semaphore Signal as post sync

operation. Flush completion only guarantees the workload prior to this

command is pushed till Windower unit and completion of any outstanding

flushes issued prior to this command.

Programming Notes

Any desired pipeline flush operation can be achieved by programming PIPE_CONTROL

command prior to this command.

When this bit is set Command Streamer sends a flush down the pipe and the atomic operation

is saved as post sync operation. Command streamer goes on executing the following

commands. Atomic operation saved as post sync operation is executed at some point later on

completion of corresponding flush issued.

When this bit is set atomic semaphore signal operation will be out of order with rest of the MI

commands programmed in the ring buffer or batch buffer, it will be in order with respect to the

post sync operations resulting due to PIPE_CONTROL command.

Workaround

Workaround :

"Post Sync Operation" bit must not be set when MI_SEMAPHPORE_SIGNAL command is

programmed by GPGPU and MEDIA workloads (i.e when PIPELINE_SELECT command is set to

GPGPU or MEDIA). This is to WA FFDOP CG issue, this WA need not be implemented when

FF_DOP_CG is disabled via "Fixed Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL

register.

Workaround :

Post-Sync operation bit must not be set when Target Engine Select is set to RCS.

21 Reserved

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ

20:19 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 887

MI_SEMAPHORE_SIGNAL
18 Reserved

Project: BDW

Format: MBZ

17:15 Target Engine Select

Project: BDW

 This field selects the target engine to which SIGNAL will be send to.

Value Name Project

0h RCS

1h VCS0

2h BCS

3h VECS

4h VCS1

5h Reserved BDW

6h,7h Reserved

14:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n

 Total Length - 2. Excludes DWord (0,1).

1 31:0 Target Context ID

Project: BDW

Description

In execlist based scheduling this field contains the Context ID corresponding to the context of

the target engine that this command is signaling. Target engine waiting on

MI_SEMPHORE_WAIT in signal mode will re-fetch the data from memory or comparison if its

context ID is same as this signaled Context ID. When execlists are enabled, Target engine on

receiving this Context ID sends message to the SHIM if it doesn't have the context with the

same Context ID running. Message send to SHIM carries the Context ID which will be looked at

by UC for rescheduling the signaled Context ID. Target engine waiting on

MI_SEMAPHORE_WAIT in signal mode will fetch data from memory for comparison on

receiving signal irrespective of the context id received.

In ring buffer mode of scheduling this field doesn't have any relevance.

 Command Reference: Instructions

888 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT

MI_SEMAPHORE_WAIT
Project: BDW

Source: CommandStreamer

Length Bias: 2

Description

This command supports memory based Semaphore WAIT. Memory based semaphores will be used for

synchronization between the Producer and the Consumer contexts. Producer and Consumer Contexts could be

running on different engines or on the same engine inside GT. Running on the same engine is only possible

when execlists are enabled. Producer Context implements a Signal and Consumer context implements a Wait.

Command Streamer on parsing this command fetches data from the Semaphore Address mentioned in this

command and compares it with the inline Semaphore Data Dword.

 If comparison passes, the command streamer moves to the next command.

 When execlists are enabled, if comparison fails Command streamer switches out the context. Context

switch can be inhibited by setting "Inhibit Synchronous Context Switch" in CTXT_SR_CTL register.

 In ring buffer mode of scheduling or Execlist with "Inhibit Synchronous context Switch", if comparison

fails, Command Streamer evaluates the Compare Operation based on the Wait Mode until the compare

operation is true or Wait is canceled by SW.

 Exec-List Scheduling: CS generates semaphore wait interrupt to the scheduler when

MI_SEMAPHORE_WAIT command is un-successful and when "Inhibit Synchronous Context Switch" is set.

Scheduler can use this interrupt to preempt the context waiting on semaphore wait.preempt the context

waiting on semaphore wait.

MI_SEMPHORE_SIGNAL and MI_SEMAPHORE_WAIT together replace the MI_SEMAPHORE_MBOX command on

DevBDW.

Programming Notes Source

Render CS Only: SW must always program PIPE_CONTROL with "CS Stall" and

"Render Target Cache Flush Enable" set prior to programming

MI_SEMAPHORE_WAIT command for GPGPU workloads i.e when pipeline select is

GPGPU via PIPELINE_SELECT command. This is required to achieve better GPGPU

preemption latencies for certain programming sequences. If programming

PIPE_CONTROL has performance implications then preemption latencies can be

trade off against performance by not implementing this programming note.

RenderCS

Render CS Only: Ring Buffer Scheduling: CS doesn't generate semaphore wait

interrupt to the scheduler when MI_SEMAPHORE_WAIT command is un-successful.

RenderCS

[Ring Buffer Mode Of scheduling] [BlitterCS, VideoCS, VideoEnhancementCS,

VideoCS2: Command Streamers Only]: HW loses Page Directory (PPGTT)

information on becoming IDLE. SW must always program the PD information

following MI_SEMAPHORE_WAIT command. This will ensure Page Directory

information gets reprogrammed after exiting IDLE flow triggered on

MI_SEMAPHORE_WAIT command. Alternatively SW can disable IDLE flows on

MI_SEMAPHORE_WAIT by setting “Semaphore Wait Event IDLE Message Disable“

BlitterCS, VideoCS,

VideoCS2,

VideoEnhancementCS

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 889

MI_SEMAPHORE_WAIT

bit in “BCS_ECOSKPD” register.

Workaround

Workaround : [All Command Streamers][Ring Buffer Mode of Scheduling]: MI_SEMAPHORE_WAIT command

must be always programmed with “Wait Mode” set to “Polling Mode” Or MI_SEMAPHORE_WAIT command

with “Wait Mode” set to “Polling Mode” can be programmed when “Semaphore Wait Event IDLE message

Disable” bit in “RC_PSMI_CTRL” register is set to disable Idle messaging on unsuccessful MI_SEMPAHORE_WAIT.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ch MI_SEMAPHORE_WAIT

Format: OpCode

22 Memory Type

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21:18 Reserved

Format: MBZ

17 Reserved

Format: MBZ

16 Reserved

Project: BDW

 Command Reference: Instructions

890 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT
15 Wait Mode

 This bit specifies the WAIT behavior when the semaphore comparison fails and before the

context is switched out.

Value Name Description

1h Polling

Mode

In this mode HW periodically reads the semaphore data from memory for

comparison until it is context switched out. Periodicity will be mentioned in

a SEMA_WAIT_POLL register.

0h Signal

Mode

In this mode HW will reacquire the semaphore data from memory on

receiving SIGNAL with the same Context ID. In ring buffer mode of

scheduling Context ID associated with SIGNAL is ignored and always treated

as a match.

14:12 Compare Operation

This field specifies the operation that will be executed to create the result that will either

allow the context to continue or wait.

SAD = Semaphore Address Data

SDD = Semaphore Data Dword

Value Name Description

0h SAD_GREATER_THAN_SDD If Indirect fetched data is greater than inline

data then continue.

1h SAD_GREATER_THAN_OR_EQUAL_SDD If Indirect fetched data is greater than or

equal to inline data then continue.

2h SAD_LESS_THAN_SDD If Indirect fetched data is less than inline data

then continue.

3h SAD_LESS_THAN_OR_EQUAL_SDD If Indirect fetched data is less than or equal to

inline data then continue.

4h SAD_EQUAL_SDD If Indirect fetched data is equalto inline data

then continue.

5h SAD_NOT_EQUAL_SDD If Indirect fetched data is not equal to inline

data then continue.

6h Reserved

7h Reserved

11:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2. Excludes DWord (0,1)

Value Name Project

2h [Default] BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 891

MI_SEMAPHORE_WAIT
1 31:0 Semaphore Data Dword

Format: U32

 This Data dword is supplied by software to control execution of the command buffer. This

value is used as part of the comparison to result in waiting or continuing in the command

parser if enabled.

2..3

Project:

BDW

63:2 Semaphore Address

Project: BDW

Format: GraphicsAddress[63:2]

 This field is the Graphics Memory Address of the 32-bit value for the semaphore.

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form.

1:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

892 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT

MI_SEMAPHORE_WAIT
Project: BDW

Source: BlitterCS

Length Bias: 2

Description

This command supports memory based Semaphore WAIT. Memory based semaphores will be used for

synchronization between the Producer and the Consumer contexts. Producer and Consumer Contexts could be

running on different engines or on the same engine inside GT, same engine only possible when execlists are

enabled. Producer Context implements a Signal and Consumer context implements a Wait.

Command Streamer on parsing this command fetches data from the Semaphore Address mentioned in this

command and compares it with the inline Semaphore Data Dword.

 If comparison passes, the command streamer moves to the next command.

 When execlists are enabled, if comparison fails Command streamer switches out the context. Context

switch can be inhibited by setting "Inhibit Synchronous Context Switch" in BCS_CTXT_SR_CTL register.

 In ring buffer mode of scheduling or Execlist with "Inhibit Synchronous context Switch", if comparison

fails, Command Streamer evaluates the Compare Operation based on the Wait Mode until the compare

operation is true or Wait is canceled by SW.

 BCS always generates an interrupt to the scheduler on encountering semaphore failure.

MI_SEMPHORE_SIGNAL and MI_SEMAPHORE_WAIT together replace the MI_SEMAPHORE_MBOX command.

Programming Notes

[Ring Buffer Mode Of scheduling][Video CS, Video Enhancement CS, Blitter CS]: HW loses Page Directory

(PPGTT) information on becoming IDLE. SW must always program the PD information following

MI_SEMAPHORE_WAIT command. This will ensure Page Directory information gets reprogrammed after exiting

IDLE flow triggered on MI_SEMAPHORE_WAIT command. Alternatively SW can disable IDLE flows on

MI_SEMAPHORE_WAIT by setting “Semaphore Wait Event IDLE Message Disable“ bit in “BCS_ECOSKPD”

register.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ch MI_SEMAPHORE_WAIT

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 893

MI_SEMAPHORE_WAIT
22 Memory Type

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be '1' if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21:16 Reserved

Format: MBZ

15 Wait Mode

 This bit specifies the WAIT behavior when the semaphore comparison fails and before the

context is switched out.

Value Name Description

1h Polling

Mode

In this mode HW periodically reads the semaphore data from memory for

comparison until it is context switched out. Periodicity will be mentioned in a

SEMA_WAIT_POLL register.

0h Signal

Mode

In this mode HW will reacquire the semaphore data from memory on

receiving SIGNAL with the same Context ID. In ring buffer mode of

scheduling Context ID associated with SIGNAL is ignored and always treated

as a match.

14:12 Compare Operation

This field specifies the operation that will be executed to create the result that will either allow

the context to continue or wait. If the below operation is TRUE then

SAD = Semaphore Address DataSDD = Semaphore Data Dword

Value Name Description

0h SAD > SDD If Indirect fetched data is greater than inline data then continue

1h SAD >=

SDD

If Indirect fetched data is greater than or equal to inline data then

continue.

2h SAD < SDD If Indirect fetched data is less than inline data then continue.

3h SAD <=

SDD

If Indirect fetched data is less than or equal to inline data then continue.

4h SAD ==

SDD

If Indirect fetched data is equalto inline data then continue.

5h SAD != SDD If Indirect fetched data is not equal to inline data then continue.

6h Reserved

7h Reserved

 Command Reference: Instructions

894 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT
11:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31:0 Semaphore Data Dword

Format: U32

 Data dword to compare. The Data dword is supplied by software to control execution of the

command buffer. If the data at Semaphore Address is greater than this dword, the execution of

the command buffer continues.

2..3 63:48 Reserved

Format: MBZ

47:2 Semaphore Address

Format: GraphicsAddress[47:2]

 This field is the Graphics Memory Address of the 32 bit value for the semaphore.

1:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 895

MI_SEMAPHORE_WAIT

MI_SEMAPHORE_WAIT
Project: BDW

Source: RenderCS

Length Bias: 2

This command supports memory based Semaphore WAIT. Memory based semaphores will be used for

synchronization between the Producer and the Consumer contexts. Producer and Consumer Contexts could be

running on different engines or on the same engine inside GT. Running on the same engine is only possible

when execlists are enabled. Producer Context implements a Signal and Consumer context implements a Wait.

Command Streamer on parsing this command fetches data from the Semaphore Address mentioned in this

command and compares it with the inline Semaphore Data Dword.

 If comparison passes, the command streamer moves to the next command.

 When execlists are enabled, if comparison fails Command streamer switches out the context. Context

switch can be inhibited by setting "Inhibit Synchronous Context Switch" in CTXT_SR_CTL register

 . In ring buffer mode of scheduling or Execlist with "Inhibit Synchronous context Switch", if comparison

fails, Command Streamer evaluates the Compare Operation based on the Wait Mode until the compare

operation is true or Wait is canceled by SW.

 Exec-List Scheduling: CS generates semaphore wait interrupt to the scheduler when

MI_SEMAPHORE_WAIT command is un-successful and when "Inhibit Synchronous Context Switch" is set.

Scheduler can use this interrupt to preempt the context waiting on semaphore wait.

MI_SEMPHORE_SIGNAL and MI_SEMAPHORE_WAIT together replace the MI_SEMAPHORE_MBOX command on

DevBDW.

Programming Notes Project

Render CS Only: SW must always program PIPE_CONTROL with "CS Stall" and "Render Target Cache

Flush Enable" set prior to programming MI_SEMAPHORE_WAIT command for GPGPU workloads i.e

when pipeline select is GPGPU via PIPELINE_SELECT command. This is required to achieve better

GPGPU preemption latencies for certain programming sequences. If programming PIPE_CONTROL has

performance implications then preemption latencies can be trade off against performance by not

implementing this programming note.

BDW

Render CS Only: Ring Buffer Scheduling: CS doesn't generate semaphore wait interrupt to the

scheduler when MI_SEMAPHORE_WAIT command is un-successful.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ch MI_SEMAPHORE_WAIT

Format: OpCode

 Command Reference: Instructions

896 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT
22 Memory Type

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

21:16 Reserved

Format: MBZ

15 Wait Mode

 This bit specifies the WAIT behavior when the semaphore comparison fails and before the

context is switched out.

Value Name Description

1h Polling

Mode

In this mode HW periodically reads the semaphore data from memory for

comparison until it is context switched out. Periodicity will be mentioned in a

SEMA_WAIT_POLL register.

0h Signal

Mode

In this mode HW will reacquire the semaphore data from memory on

receiving SIGNAL with the same Context ID. In ring buffer mode of

scheduling Context ID associated with SIGNAL is ignored and always treated

as a match.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 897

MI_SEMAPHORE_WAIT
14:12 Compare Operation

This field specifies the operation that will be executed to create the result that will either allow

the context to continue or wait.

SAD = Semaphore Address Data

SDD = Semaphore Data Dword

Value Name Description

0h SAD_GREATER_THAN_SDD If Indirect fetched data is greater than inline

data then continue.

1h SAD_GREATER_THAN_OR_EQUAL_SDD If Indirect fetched data is greater than or equal

to inline data then continue.

2h SAD_LESS_THAN_SDD If Indirect fetched data is less than inline data

then continue.

3h SAD_LESS_THAN_OR_EQUAL_SDD If Indirect fetched data is less than or equal to

inline data then continue.

4h SAD_EQUAL_SDD If Indirect fetched data is equalto inline data

then continue.

5h SAD_NOT_EQUAL_SDD If Indirect fetched data is not equal to inline

data then continue.

6h Reserved

7h Reserved

11:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h

Format: =n Total Length - 2. Excludes DWord (0,1)

1 31:0 Semaphore Data Dword

Format: U32

 Data dword to compare. The Data dword is supplied by software to control execution of the

command buffer. If the data at Semaphore Address is greater than this dword, the execution of

the command buffer continues.

2 31:2 Semaphore Address

Format: GraphicsAddress[31:2]

 This field is the Graphics Memory Address of the 32-bit value for the semaphore.

1:0 Reserved

Format: MBZ

3 31:16 Reserved

Format: MBZ

 Command Reference: Instructions

898 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT
15:0 Semaphore Address High

Format: GraphicsAddress[47:32]

This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 899

MI_SEMAPHORE_WAIT

MI_SEMAPHORE_WAIT
Project: BDW

Source: VideoCS

Length Bias: 2

This command supports memory based Semaphore WAIT. Memory based semaphores will be used for

synchronization between the Producer and the Consumer contexts. Producer and Consumer Contexts could be

running on different engines or on the same engine inside GT, same engine only possible when execlists are

enabled. Producer Context implements a Signal and Consumer context implements a Wait.

Command Streamer on parsing this command fetches data from the Semaphore Address mentioned in this

command and compares it with the inline Semaphore Data Dword.

 If comparison passes, the command streamer moves to the next command.

 When execlists are enabled, if comparison fails Command streamer switches out the context. Context

switch can be inhibited by setting "Inhibit Synchronous Context Switch" in VCS_CTXT_SR_CTL register.

 In ring buffer mode of scheduling or Execlist with "Inhibit Synchronous context Switch", if comparison

fails, Command Streamer evaluates the Compare Operation based on the Wait Mode until the compare

operation is true or Wait is canceled by SW.

 VCS always generates an interrupt to the scheduler on encountering semaphore failure.

MI_SEMPHORE_SIGNAL and MI_SEMAPHORE_WAIT together replace the MI_SEMAPHORE_MBOX command on

BDW.

Programming Notes

[Ring Buffer Mode Of scheduling][Video CS]: HW loses Page Directory (PPGTT) information on becoming IDLE.

SW must always program the PD information following MI_SEMAPHORE_WAIT command. This will ensure Page

Directory information gets reprogrammed after exiting IDLE flow triggered on MI_SEMAPHORE_WAIT

command. Alternatively SW can disable IDLE flows on MI_SEMAPHORE_WAIT command by setting “Semaphore

Wait Event IDLE Message Disable“ bit in “VCS_ECOSKPD” register.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ch MI_SEMAPHORE_WAIT

Format: OpCode

22 Memory Type

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be '1' if the Per Process GTT Enable bit is clear.

Value Name

0h Per Process Graphics Address

 Command Reference: Instructions

900 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT
21:16 Reserved

Format: MBZ

15 Wait Mode

 This bit specifies the WAIT behavior when the semaphore comparison fails and before the

context is switched out.

Value Name Description

1h Polling

Mode

In this mode HW periodically reads the semaphore data from memory for

comparison until it is context switched out. Periodicity will be mentioned in a

SEMA_WAIT_POLL register.

0h Signal

Mode

In this mode HW will reacquire the semaphore data from memory on

receiving SIGNAL with the same Context ID. In ring buffer mode of

scheduling Context ID associated with SIGNAL is ignored and always treated

as a match.

14:12 Compare Operation

 This field specifies the operation that will be executed to create the result that will either allow

the context to continue or wait. If the below operation is TRUE then

Value Name Description

0h SAD > SDD If Indirect fetched data is greater than inline data then continue.

1h SAD >=

SDD

If Indirect fetched data is greater than or equal to inline data then

continue.

2h SAD < SDD If Indirect fetched data is less than inline data then continue.

3h SAD <=

SDD

If Indirect fetched data is less than or equal to inline data then continue.

4h SAD ==

SDD

If Indirect fetched data is equalto inline data then continue.

5h SAD != SDD If Indirect fetched data is not equal to inline data then continue.

6h Reserved

7h Reserved

Programming Notes

SAD = Semaphore Address DataSDD = Semaphore Data Dword

11:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

 Total Length - 2

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 901

MI_SEMAPHORE_WAIT
1 31:0 Semaphore Data Dword

Format: U32

 Data dword to compare. The Data dword is supplied by software to control execution of the

command buffer. If the data at Semaphore Address is greater than this dword, the execution of

the command buffer continues.

2 31:2 Semaphore Address

Format: GraphicsVirtualAddress[31:2]

 This field is the Graphics Memory Address of the 32 bit value for the semaphore.

1:0 Reserved

Format: MBZ

3 31:16 Reserved

Format: MBZ

15:0 Semaphore Address High

Format: GraphicsAddress[47:32]

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

 Command Reference: Instructions

902 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT

MI_SEMAPHORE_WAIT
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

This command supports memory based Semaphore WAIT. Memory based semaphores will be used for

synchronization between the Producer and the Consumer contexts. Producer and Consumer Contexts could be

running on different engines or on the same engine inside GT, same engine only possible when execlists are

enabled. Producer Context implements a Signal and Consumer context implements a Wait.

Command Streamer on parsing this command fetches data from the Semaphore Address mentioned in this

command and compares it with the inline Semaphore Data Dword.

 If comparison passes, the command streamer moves to the next command.

 When execlists are enabled, if comparison fails Command streamer switches out the context. Context

switch can be inhibited by setting "Inhibit Synchronous Context Switch" in VECS_CTXT_SR_CTL register.

 In ring buffer mode of scheduling or execlist with "Inhibit Synchronous context Switch", if comparison

fails, Command Streamer evaluates the Compare Operation based on the Wait Mode until the compare

operation is true or Wait is canceled by SW.

 VECS always generates an interrupt to the scheduler on encountering semaphore failure.

MI_SEMPHORE_SIGNAL and MI_SEMAPHORE_WAIT together replace the MI_SEMAPHORE_MBOX command on

BDW.

Programming Notes

[Ring Buffer Mode Of scheduling][Video Enhancement CS]: HW loses Page Directory (PPGTT) information on

becoming IDLE. SW must always program the PD information following MI_SEMAPHORE_WAIT command. This

will ensure Page Directory information gets reprogrammed after exiting IDLE flow triggered on

MI_SEMAPHORE_WAIT command. Alternatively SW can disable IDLE flows on MI_SEMAPHORE_WAIT by setting

“Semaphore Wait Event IDLE Message Disable“ bit in “VECS_ECOSKPD” register.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 1Ch MI_SEMAPHORE_WAIT

Format: OpCode

22 Memory Type

 This bit will be ignored and treated as if clear when executing from a non-privileged batch

buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer. This bit must be '1' if the Per Process GTT Enable bit is clear.

Value Name

0h Per Process Graphics Address

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 903

MI_SEMAPHORE_WAIT
21:16 Reserved

Format: MBZ

15 Wait Mode

 This bit specifies the WAIT behavior when the semaphore comparison fails and before the

context is switched out.

Value Name Description

1h Polling

Mode

In this mode HW periodically reads the semaphore data from memory for

comparison until it is context switched out. Periodicity will be mentioned in a

SEMA_WAIT_POLL register.

0h Signal

Mode

In this mode HW will reacquire the semaphore data from memory on

receiving SIGNAL with the same Context ID.

In ring buffer mode of scheduling Context ID associated with SIGNAL is

ignored and always treated as a match.

14:12 Compare Operation

 This field specifies the operation that will be executed to create the result that will either allow

the context to continue or wait. If the below operation is TRUE then

Value Name Description

0h SAD > SDD If Indirect fetched data is greater than inline data then continue.

1h SAD >=

SDD

If Indirect fetched data is greater than or equal to inline data then

continue.

2h SAD < SDD If Indirect fetched data is less than inline data then continue.

3h SAD <=

SDD

If Indirect fetched data is less than or equal to inline data then continue.

4h SAD ==

SDD

If Indirect fetched data is equalto inline data then continue.

5h SAD != SDD If Indirect fetched data is not equal to inline data then continue.

6h Reserved

7h Reserved

Programming Notes

SAD = Semaphore Address DataSDD = Semaphore Data Dword

11:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

 Total Length - 2

 Command Reference: Instructions

904 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SEMAPHORE_WAIT
1 31:0 Semaphore Data Dword

Format: U32

 Data dword to compare. The Data dword is supplied by software to control execution of the

command buffer. If the data at Semaphore Address is greater than this dword, the execution of

the command buffer continues.

2 31:2 Semaphore Address

Format: GraphicsVirtualAddress[31:2]

 This field is the Graphics Memory Address of the 32 bit value for the semaphore.

1:0 Reserved

Format: MBZ

3 31:16 Reserved

Format: MBZ

15:0 Semaphore Address High

Format: GraphicsAddress[47:32]

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 905

MI_SET_CONTEXT

MI_SET_CONTEXT
Project: BDW

Source: RenderCS

Length Bias: 2

The MI_SET_CONTEXT command is used to specify the logical context associated with the hardware context. A

logical context is an area in memory used to store hardware context information, and the context is referenced

via a 2KB-aligned pointer. If the (new) logical context is different (i.e., at a different memory address), the device

saves the current HW context values to the current logical context address, and then restores (loads) the new

logical context by reading the context from the new address and loading it into the hardware context state. If the

logical context address specified in this command matches the current logical context address, this command is

effectively treated as a NOOP. Specific to the Render command stream only. This command also includes some

controls over the context save/restore process. The Force Restore bit can be used to refresh the on-chip device

state from the same memory address if the indirect state buffers have been modified. The Restore Inhibit bit can

be used to prevent the new context from being loaded at all. This must be used to prevent an uninitialized

context from being loaded. Once software has initialized a context (by setting all state variables to initial values

via commands), the context can then be stored and restored normally. When switching from a generic media

context to a 3D context, the generic media state must be cleared via the Generic Media State Clear bit 16 in

PIPE_CONTROL (or bit 4 in MI_FLUSH) before saving 3D context. MI_SET_CONTEXT commands are permitted

only within a ring buffer (not within a batch buffer).

All context is saved and restored from a GGTT space.

This command does not initiate any interrupt due to context switch of any kind and does not support any

workaround batch buffer or indirect context offset feature.

Programming Notes

This command is legal only if Execlist Enable in the GFX_MODE register is reset. Otherwise, execlists must be

used to switch context in lieu of MI_SET_CONTEXT.

For ring buffer mode, the first 128B(2 cache lines) of the context image are saved as zeros.

This command needs to be always followed by a single MI_NOOP instruction to workaround a silicon issue.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 18h MI_SET_CONTEXT

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

 Command Reference: Instructions

906 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SET_CONTEXT
1 31:12 Logical Context Address

Project: BDW

Format: GraphicsAddress[31:12]LogicalContext

Description

This field contains the 4KB-aligned graphics memory address of the Logical Context that is to

be loaded into the hardware context. If this address is equal to the CCID register associated

with the current ring, no load will occur. Prior to loading this new context, the device will save

the existing context as required. After the context switch operation completes, this address will

be loaded into the associated CCID register.

This field needs to be 4KB aligned virtual address.

11:10 Reserved

Format: MBZ

9 Reserved

Project: BDW

Format: MBZ

8 Reserved, Must be 1

Format: Must Be One

7:5 Reserved

Format: MBZ

4 Core Mode Enable

Project: BDW

Format: Enable

If set the Context Image will be offset based off the Core ID:

 If Core ID 0, no offset

 If Core ID 1, 36KB Offset

3 Resource Streamer State Save Enable

Project: BDW

Format: Enable

 If set, the resource streamer state identified in the Logical Context Data section of the Memory

Data Formats chapter is saved as part of switching away from this logical context. This bit will be

stored in the associated CCID register to control the context save operation when switching away

from this context (as part of a subsequent MI_SET_CONTEXT command).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 907

MI_SET_CONTEXT
2 Resource Streamer State Restore Enable

Project: BDW

Format: Enable

 If set, the resource streamer state identified in the Logical Context Data section of the Memory

Data Formats chapter is loaded (or restored) as part of switching to this logical context. This bit

affects the switch (if required) to the context specified in Logical Context Address. This bit will

also be stored in the associated CCID register to control a subsequent context save operation

when switching to this context (as part of a subsequent ring buffer switch).

1 Force Restore

 When switching to this logical context a comparison between Logical Context Address and the

contests of the CCID register is performed. Normally, matching addresses prevent a context

restore from occurring; however, when this bit is set a context restore is forced to occur. This bit

cannot be set with Restore Inhibit. Note: This bit is not saved in the associated CCID register. It

only affects the processing of this command.

0 Restore Inhibit

 If set, the restore of the HW context from the logical context specified by Logical Context

Address is inhibited (i.e., the existing HW context values are maintained). This bit must be used to

prevent the loading of an uninitialized logical context. If clear, the context switch proceeds

normally. This bit cannot be set with Force Restore. Note: This bit is not saved in the associated

CCID register. It only affects the processing of this command.

 Command Reference: Instructions

908 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SET_PREDICATE

MI_SET_PREDICATE
Project: BDW

Source: RenderCS

Length Bias: 1

Description

This command sets the Predication Check for the subsequent commands in the command buffer except for

MI_SET_PREDICATE itself. Render Command Streamer NOOPs the following commands based on the

PREDICATE_ENABLE from MI_SET_PREDICATE, MI_SET_PREDICATE_RESULT and MI_SET_PREDICATE_RESULT_2

status. Resource Streamer doesn't take any action of parsing MI_SET_PREDICATE, this command is similar to

any other command which is not meant for resource streamer.

Executing MI_SET_PREDICATE command sets PREDICATE_ENABLE bits in MI_MODE register, MI_MODE register

gets render context save restored.

Programming Notes

 MI_SET_PREDICATE predication scope must be confined within a Batch Buffer to set of commands.

 MI_SET_PREDICATE with Predicate Enable Must always have a corresponding MI_SET_PREDICATE with

Predicate Disable within the same Batch Buffer.

 MI_ARB_CHK command must be programmed outside the Predication Scope of MI_SET_PREDICATE.

 MI_SET_PREDICATE Predication Scope must not involve any RC6 triggering events.

Only the following command(s) can be programmed between the MI_SET_PREDICATE command enabled for

predication: 3DSTATE_URB_VS 3DSTATE_URB_HS 3DSTATE_URB_DS 3DSTATE_URB_GS

3DSTATE_PUSH_CONSTANT_ALLOC_VS 3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_DS 3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_PS MI_LOAD_REGISTER_IMM MEDIA_VFE_STATE MEDIA_OBJECT

MEDIA_OBJJECT_WALKER MEDIA_INTERFACE_DESCRIPTOR_LOAD 3DSTATE_WM_HZ_OP

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 01h MI_SET_PREDICATE

Format: OpCode

22:4 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 909

MI_SET_PREDICATE
3:0 PREDICATE ENABLE

Project: BDW

 This field sets the predication logic in render command streamer when parsed. Predicate

Disable is the default mode of operation.

Value Name Description

0h NOOP Never Predication is Disabled and RCS will process commands as

usual.

1h NOOP on Result2 clear Following Commands will be NOOPED by RCS only if the

MI_PREDICATE_RESULT_2 is clear.

2h NOOP on Result2 set Following Commands will be NOOPED by RCS only if the

MI_PREDICATE_RESULT_2 is set.

3h NOOP on Result clear Following Commands will be NOOPED by RCS only if the

MI_PREDICATE_RESULT is clear.

4h NOOP on Result set Following Commands will be NOOPED by RCS only if the

MI_PREDICATE_RESULT is set.

5h Execute when one slice

enabled.

Following Commands will be Executed by RCS only when

one slice is enabled.

6h Execute when two slices

are enabled.

Following Commands will be Executed by RCS only when

two slices are enabled.

7h Execute when three

slices are enabled.

Following Commands will be Executed by RCS only when

all the three slices are enabled.

8h-Ah Reserved

Bh,

Ch

Reserved

Dh,

Eh

Reserved

Fh NOOP Always Following Commands will be NOOPED by RCS

unconditionally.

 Command Reference: Instructions

910 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_STORE_DATA_IMM command requests a write of the QWord or DWord constant supplied in the packet

to the specified Memory Address. This command also supports writing to consecutive dword or qword memory

locations form the starting address. As the write targets a System Memory Address, the write operation is

coherent with the CPU cache (i.e., the processor cache is snooped).

Programming Notes

This command can be used for general software synchronization through variables in cacheable memory (i.e.,

where software does not need to poll un-cached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally. Although the

write operation is guaranteed to complete "eventually", there is no mechanism to synchronize command

execution with the completion (or even initiation) of these operations.

This command should not be used within a non_privilege batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM

Format: OpCode

22 Use Global GTT

Format: U1

 If set, this command will use the global GTT to translate the Address and this command must be

executing from a privileged (secure) batch or ring buffer. If clear, the PPGTT will be used. It is

allowed for this bit to be clear when executing this command from a privileged (secure) batch

buffer. This bit must be '1' if the Per Process GTT Enable bit is clear.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 911

MI_STORE_DATA_IMM
21 Store Qword

Format: U1

Value Name Description

0h Store

Dword

If set, this command generates dword writes to memory. Number of dwords

generated depends upon the number of 'Data Dword' programmed in the

command. If 'x' number of data dwords are programmed in the command it

results in 'x' dword writes to memory.

1h Store

Qword

If set, this command generates Qword writes to memory, two 'Data Dword' are

paired to form a Qword. Number of qwords generated depends upon the

number of 'Data Dword' programmed in the command. If 'x' number of data

dwords are programmed in the command it results in 'x/2' qword writes to

memory.

20:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1..2 63:2 Destination Address

Format: GraphicsAddress[63:2]

 This field specifies the 4GB aligned base address within the host's 64-bit virtual address space.

As the store address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be

8B aligned if "Store Qword" is enabled. GraphicsAddress [63:48] are ignored by the HW and

assumed to be in correct canonical form [63:48] == [47].

1:0 Reserved

Format: MBZ

3 31:0 Data DWord 0

Format: U32 FormatDesc

 This field specifies the DWord value to be written to the targeted location.For a QWord write this

DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 Data DWord 1

Format: U32 FormatDesc

 This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

 Command Reference: Instructions

912 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

 The MI_STORE_DATA_IMM command requests a write of the QWord or DWord constant supplied in the packet

to the specified Memory Address. This command also supports writing to consecutive dword or qword memory

locations form the starting address. As the write targets a System Memory Address, the write operation is

coherent with the CPU cache (i.e., the processor cache is snooped).

Programming Notes

This command should not be used within a "non_privilege" batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

This command can be used within ring buffers and/or "privilege" batch buffers. If used within a non-privilege

batch buffer, Use Global GTT must be clear. This command can be used for general software synchronization

through variables in cacheable memory (i.e., where software does not need to poll un-cached memory or

device registers). This command simply initiates the write operation with command execution proceeding

normally. Although the write operation is guaranteed to complete "eventually", there is no mechanism to

synchronize command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM

Format: OpCode

22 Use Global GTT

Project: All

Format: U1

 If set, this command will use the global GTT to translate the Address and this command must be

executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used. It is allowed for

this bit to be clear when executing this command from a privileged (secure) batch buffer. This bit

must be '1' if the Per Process GTT Enable bit is clear.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 913

MI_STORE_DATA_IMM
21 Store Qword

Project: BDW

Value Name Description

0h Store

Dword

If set, this command generates dword writes to memory. Number of dwords

generated depends upon the number of 'Data Dword' programmed in the

command. If 'x' number of data dwords are programmed in the command it

results in 'x' dword writes to memory.

1h Store

Qword

If set, this command generates Qword writes to memory, two 'Data Dword' are

paired to form a Qword. Number of qwords generated depends upon the

number of 'Data Dword' programmed in the command. If 'x' number of data

dwords are programmed in the command it results in 'x/2' qword writes to

memory.

20:10 Reserved

Project: All

Format: MBZ

9:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:2 Address

Format: GraphicsAddress[31:2]U32(2)

 This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store address

must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B aligned for a

store "QW" command.

1:0 Reserved

Format: MBZ

2 31:16 Reserved

Format: MBZ

15:0 Address High

Format: GraphicsAddress[47:32]U16

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

3 31:0 Data DWord 0

Format: U32

 This field specifies the DWord value to be written to the targeted location.For a QWord write this

DWord is the lower DWord of the QWord to be reported (DW 0).

 Command Reference: Instructions

914 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_IMM
4 31:0 Data DWord 1

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 915

MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: BDW

Source: BlitterCS

Length Bias: 2

Description

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the

specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with

the CPU cache (i.e., the processor cache is snooped).

This command supports writing to multiple consecutive dword or qword memory locations from the starting

address.

Programming Notes

This command can be used for general software synchronization through variables in cacheable memory (i.e.,

where software does not need to poll un-cached memory or device registers). However, the cacheable nature

of the transaction is determined by the setting of the "mapping type" in the GTT entry. This command simply

initiates the write operation with command execution proceeding normally. Although the write operation is

guaranteed to complete "eventually", there is no mechanism to synchronize command execution with the

completion (or even initiation) of these operations. All writes to memory generated using this command are

expected to finish in order.

This command should not be used within a "non_privilege" batch buffer to access global virtual space, doing so

will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM

22 Use Global GTT

Project: All

 This bit must be '1' if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and

this command must be executing from a privileged (secure) batch

buffer.

 Command Reference: Instructions

916 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_IMM
21 Store Qword

Project: BDW

Value Name Description

0h Store

Dword

If set, this command generates dword writes to memory. Number of dwords

generated depends upon the number of "Data Dword" programmed in the

command. If 'x' number of data dwords are programmed in the command it

results in "x" dword writes to memory.

1h Store

Qword

If set, this command generates Qword writes to memory, two "Data Dword"

are paired to form a Qword. Number of qwords generated depends upon the

number of "Data Dword" programmed in the command. If 'x' number of data

dwords are programmed in the command it results in "x/2" qword writes to

memory.

20:10 Reserved

Project: All

Format: MBZ

9:0 DWord Length

Default Value: 2h Excludes DWord (0,1) = 2 for DWord, 3 for QWord

Format: =n Total Length - 2

1

Project:

BDW

31:2 Address

Project: BDW

Format: GraphicsAddress[31:2]U32(2)

 This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store

address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B aligned

for a store "QW" command.

1 Reserved

Project: BDW

Format: MBZ

0 Core Mode Enable

Project: BDW

Format: U1

 This bit is set then the address will be offset by the Core ID: If Core ID 0, then there is no offset

If Core ID 1, then the Memory is offset by the size of the data(32b or 64b based off number of

DW length).

2

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 917

MI_STORE_DATA_IMM
15:0 Address High

Project: BDW

Format: GraphicsAddress[47:32]U32(2)

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space.

3 31:0 Data DWord 0

Project: All

Format: U32

 This field specifies the DWord value to be written to the targeted location.For a QWord write

this DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 Data DWord 1

Project: All

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW

1).

 Command Reference: Instructions

918 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: BDW

Source: RenderCS

Length Bias: 2

Description

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the

specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with

the CPU cache (i.e., the processor cache is snooped).

This command supports writing to multiple consecutive dwords or qwords memory locations from the starting

address.

Programming Notes

 This command should not be used within a "non-privilege" batch buffer to access global virtual space,

doing so will be treated as privilege access violation. Refer "User Mode Privilege Command" in

MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access

violation. This command can be used within ring buffers and/or privilege batch buffers to access global

virtual space.

 This command can be used for general software synchronization through variables in cacheable memory

(i.e., where software does not need to poll un-cached memory or device registers).

 This command simply initiates the write operation with command execution proceeding normally.

Although the write operation is guaranteed to complete eventually, there is no mechanism to

synchronize command execution with the completion (or even initiation) of these operations.

Number of consecutive dwords or qwords programmed must be restricted such that the DWord Length

doesn't exceed 0x3FE, i.e single command supports updating 1021 consecutive dword locations or 510 qword

locations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 919

MI_STORE_DATA_IMM
22 Use Global GTT

Project: All

Format: Boolean

Description

If set, this command will use the global GTT to translate the Address and this command must

be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used. It is

allowed for this bit to be clear when executing this command from a privileged (secure) batch

buffer. This bit must be '1' if the Per Process GTT Enable bit is clear.

21 Store Qword

Project: BDW

Format: Boolean

 If set, this command generates Qword writes to memory, two "Data Dword" are paired to form

a Qword. Number of qwords generated depends upon the number of "Data Dword"

programmed in the command. If 'x' number of "Data Dwords" are programmed in this

command it results in "x/2" qword writes to memory. If reset this command generates Dwords

writes to memory. Number of dwords generated depends upon the number of "Data Dword"

programmed in the command. If 'x' number of "Data Dwords" are programmed in this

command it results in "x" dword writes to memory.

20:10 Reserved

Format: MBZ

9:0 DWord Length

Project: BDW

Format: =n Total Length - 2. Excludes DWord (0,1)

Value Name

2h Store Dword [Default]

3h Store Qword

Programming Notes Project

DWord Length programmed must not exceed 0x3FE.

If RS is enabled in the batch buffer, then the value of this field must not exceed 0x3F. BDW

1..2

Project:

BDW

63:48 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

920 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_IMM
47:2 Address

Project: BDW

Format: GraphicsAddress[47:2]

 This field specifies Bits 47:2 of the Address where the DWord will be stored. As the store

address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B aligned

for a store "QW" command.

1 Reserved

Project: BDW

Format: MBZ

0 Core Mode Enable

Project: BDW

Format: U1

 This bit is set then the address will be offset by the Core ID: If Core ID 0, then there is no offset

If Core ID 1, then the Memory is offset by the size of the data(32b or 64b based off number of

DW length).

3 31:0 Data DWord 0

Format: U32

 This field specifies the DWord value to be written to the targeted location.For a QWord write

this DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 Data DWord 1

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW

1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 921

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

 The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the

specified offset from the System Address defined by the Hardware Status Page Address Register. As the write

targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is

snooped).

Programming Notes

 Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register

is UNDEFINED.

 This command can be used for general software synchronization through variables in cacheable memory

(i.e., where software does not need to poll uncached memory or device registers).

 This command simply initiates the write operation with command execution proceeding normally.

Although the write operation is guaranteed to complete "eventually", there is no mechanism to

synchronize command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX

Format: OpCode

22 Reserved

Project: All

Format: MBZ

21 Use Per-Process Hardware Status Page

Project: BDW

 If this bit is set, this command will index into the per-process hardware status page at offset 0K

from the LRCA. If clear, the Global Hardware Status Page will be indexed. This bit must be '0' if

the Execlist Enable bit is clear.

20:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

922 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_INDEX
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1) = 2 for QWord

Project: All

Format: =n Total Length - 2

1 31:12 Reserved

Project: All

Format: MBZ

11:2 Offset

Project: All

Format: U10 Zero-based DWord offset into the HW status page

Format: GraphicsAddress[11:2]U32

This field specifies the offset (into the hardware status page) to which the data will be written.

Note that the first few DWords of this status page are reserved for special-purpose data storage

- targeting these reserved locations via this command is UNDEFINED.

For a QWord write, the offset is valid down to bit 3 only.

Value Name

[16, 1023]

1:0 Reserved

Project: All

Format: MBZ

2 31:0 Data DWord 0

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

3 31:0 Data Word 1

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 923

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: BDW

Source: BlitterCS

Length Bias: 2

 The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the

specified offset from the System Address defined by the Hardware Status Page Address Register. As the write

targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is

snooped).

Programming Notes

Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is

UNDEFINED. This command can be used for general software synchronization through variables in cacheable

memory (i.e., where software does not need to poll uncached memory or device registers). This command

simply initiates the write operation with command execution proceeding normally. Although the write

operation is guaranteed to complete "eventually", there is no mechanism to synchronize command execution

with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX

22 Reserved

Project: All

Format: MBZ

21 Use Per-Process Hardware Status Page

Project: BDW

 If this bit is set, this command will index into the per-process hardware status page at offset 0K

from the LRCA. If clear, the Global Hardware Status Page will be indexed. This bit must be '0' if

the Execlist Enable bit is clear.

20:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1) = 1 for DWord, 2 for QWord

Format: =n Total Length - 2

1 31:12 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

924 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_INDEX
11:2 Offset

Project: All

Format: U10 zero-based DWord offset into the HW status page.

Format: HardwareStatusPageOffset[11:2]U32

 This field specifies the offset (into the hardware status page) to which the data will be written.

Note that the first few DWords of this status page are reserved for special-purpose data storage

- targeting these reserved locations via this command is UNDEFINED.This address must be 8B

aligned for a store "QW" command.

Value Name

[16, 1023]

1:0 Reserved

Project: All

Format: MBZ

2 31:0 Data DWord 0

Project: All

Format: U32

 This field specifies the DWord value to be written to the targeted location.For a QWord write

this DWord is the lower DWord of the QWord to be reported (DW 0).

3 31:0 Data DWord 1

Project: All

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 925

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the

specified offset from the System Address defined by the Hardware Status Page Address Register. As the write

targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is

snooped).

Programming Notes

 Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register

is UNDEFINED.

 This command can be used for general software synchronization through variables in cacheable memory

(i.e., where software does not need to poll uncached memory or device registers).

 This command simply initiates the write operation with command execution proceeding normally.

Although the write operation is guaranteed to complete eventually, there is no mechanism to

synchronize command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX

Format: OpCode

22 Reserved

Project: BDW

21 Use Per-Process Hardware Status Page

Project: BDW

 If this bit is set, this command will index into the per-process hardware status page at offset 0K

from the LRCA. If clear, the Global Hardware Status Page will be indexed. This bit must be 0 if the

Execlist Enable bit is clear.

20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 1h

Format: =n Total Length - 2. Excludes DWord (0,1) = 1 for DWord, 2 for QWord.

 Command Reference: Instructions

926 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_INDEX
1 31:12 Reserved

Format: MBZ

11:2 Offset

Format: U10 zero-based DWord offset into the HW status page.

Format: HardwareStatusPageOffset[11:2]U32

 This field specifies the offset (into the hardware status page) to which the data will be written.

Note that the first few DWords of this status page are reserved for special-purpose data storage

- targeting these reserved locations via this command is UNDEFINED. This address must be 8B

aligned for a store QW command.

Value Name

[16, 1023]

1:0 Reserved

Format: MBZ

2 31:0 Data DWord 0

Format: U32

 This field specifies the DWord value to be written to the targeted location.For a QWord write this

DWord is the lower DWord of the QWord to be reported (DW 0).

3 31:0 Data DWord 1

Format: U32

 This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 927

MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the

specified offset from the System Address defined by the Hardware Status Page Address Register. As the write

targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is

snooped).

Programming Notes

 Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register

is UNDEFINED.

 This command can be used for general software synchronization through variables in cacheable memory

(i.e., where software does not need to poll uncached memory or device registers).

 This command simply initiates the write operation with command execution proceeding normally.

Although the write operation is guaranteed to complete "eventually", there is no mechanism to

synchronize command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX

Format: OpCode

22 Reserved

Format: MBZ

21 Use Per-Process Hardware Status Page

Project: BDW

 If this bit is set, this command will index into the per-process hardware status page at offset 0K

from the LRCA. If clear, the Global Hardware Status Page will be indexed. This bit must be '0' if

the Execlist Enable bit is clear.

20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1) = 2 for QWord

Format: =n Total Length - 2

 Command Reference: Instructions

928 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_DATA_INDEX
1 31:12 Reserved

Format: MBZ

11:2 Offset

Format: U10 zero-based DWord offset into the HW status page

Format: GraphicsAddress[11:2]U32

 This field specifies the offset (into the hardware status page) to which the data will be written.

 For a QWord write, the offset is valid down to bit 3 only.

Value Name

[16, 1023]

Programming Notes

The first few DWords of this status page are reserved for special-purpose data storage -

targeting these reserved locations via this command is UNDEFINED.

1:0 Reserved

Format: MBZ

2 31:0 Data DWord 0

Format: U32 FormatDesc

 This field specifies the upper DWord value to be written to the targeted QWord location (DW

1).

3 31:0 Data Word 1

Format: U32 FormatDesc

 This field specifies the upper DWord value to be written to the targeted QWord location (DW

1).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 929

MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM
Project: BDW

Source: CommandStreamer

Length Bias: 2

 The MI_STORE_REGISTER_MEM command requests a register read from a specified memory mapped register

location in the device and store of that DWord to memory. The register address is specified along with the

command to perform the read.

Programming Notes Source

 The command temporarily halts command execution.

 The memory address for the write is snooped on the host bus.

 This command should not be used from within a "non-privilege" batch buffer

to access global virtual space. doing so will be treated as privilege access

violation. Refer "User Mode Privilege Command" in MI_BATCH_BUFFER_START

command section to know HW behavior on encountering privilege access

violation. This command can be used within ring buffers and/or "privilege"

batch buffers to access global virtual space.

 This command will cause undefined data to be written to memory if given

register addresses for the PGTBL_CTL_0 or FENCE registers.

Source: BlitterCS, VideoCS, VideoEnhancementCS

The source MMIO offset must be limited to any MMIO that is not replicated due to

multiple slice configurations. If slice zero is disabled, then any MMIO read from this

command streamer to a register replicated in the slice will cause a return value of

zero.

BlitterCS, VideoCS,

VideoEnhancementCS

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 24h MI_STORE_REGISTER_MEM

Format: OpCode

22 Use Global GTT

Format: Boolean

 It is allowed for this bit to be set when executing this command from a privileged (secure)

batch or ring buffer. This bit must be clear when programmed from within a non-privileged

batch buffer. This bit must be 1 if the Per Process GTT Enable bit is clear. This command will use

the global GTT to translate the Address and this command must be executing from a privileged

(secure) batch buffer.

 Command Reference: Instructions

930 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_REGISTER_MEM
21 Reserved

Project: BDW

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ

21 Predicate Enable

Project: BDW

Source: RenderCS

Format: U1

 If set, this command is executed (or not) depending on the current value of the MI Predicate

internal state bit. This command is ignored only if PredicateEnable is set and the Predicate state

bit is 0.

20 Reserved

Format: MBZ

19 Reserved

Project: BDW

18:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n Total Length - 2

Value Name Project

2h Excludes DWord (0,1) [Default] BDW

1 31:23 Reserved

Format: MBZ

22:2 Register Address

Format: MMIOAddress[22:2]MMIO_Register

 This field specifies Bits 22:2 of the Register offset the DWord will be read from. As the register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes

 Storing a VGA register is not permitted and will store an UNDEFINED value.

 The values of PGTBL_CTL0 or any of the FENCE registers cannot be stored to memory;

UNDEFINED values will be written to memory if the addresses of these registers are

specified.

1:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 931

MI_STORE_REGISTER_MEM
2..3

Project:

BDW

63:2 Memory Address

Project: BDW

Format: GraphicsAddress[63:2]MMIO

This field specifies the address of the memory location where the register value specified in the

DWord above will be written. The address specifies the DWord location of the data.Range =

GraphicsVirtualAddress[63:2] for a DWord register

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

1:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

932 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_STORE_URB_MEM

MI_STORE_URB_MEM
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_STORE_URB_MEM command requests a URB read from a specified memory mapped URB location in the

device and store of that DWord to memory. The URB address is specified along with the command to perform

the read.

Programming Notes

 The command temporarily halts command execution

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 2Dh MI_STORE_URB_MEM

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

 Total Length - 2. Excludes DWord (0,1).

Value Name Project

2h [Default] BDW

1 31:15 Reserved

Format: MBZ

14:2 URB Address

 This field specifies Bits 14:2 of the URB offset the DWord will be read in the URB. This

command only supports reading from the lower 32KB of the URB space.

1:0 Reserved

Format: MBZ

2..3

Project:

BDW

63:6 Memory Address

Project: BDW

Format: GraphicsAddress[63:6]

 This field specifies the address of the location of where the value will be written to memory.

The value must be in the first DW location of the cache line. GraphicsAddress [63:48] are

ignored by the HW and assumed to be in correct canonical form [63:48] == [47].

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 933

MI_STORE_URB_MEM
5:0 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

934 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH
Project: BDW

Source: VideoEnhancementCS

Length Bias: 1

Description Project

Blocks PM Flush Requests. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0Bh MI_SUSPEND_FLUSH

22:1 Reserved

Project: All

Format: MBZ

0 Suspend Flush

Project: All

Format: Enable

Description Project

This field suspends flush due to a PM flush request. BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 935

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH
Project: BDW

Source: BlitterCS

Length Bias: 1

Description Project

Blocks PM Flush Requests. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0Bh MI_SUSPEND_FLUSH

22:1 Reserved

Project: All

Format: MBZ

0 Suspend Flush

Project: All

Format: Enable

Description Project

This field suspends flush due to a PM flush request. BDW

 Command Reference: Instructions

936 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH
Project: BDW

Source: RenderCS

Length Bias: 1

Description Project

Blocks PM Flush Requests. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Bh MI_SUSPEND_FLUSH

Format: OpCode

22:1 Reserved

Format: MBZ

0 Suspend Flush

Format: Enable

Description Project

This field suspends flush due to a PM flush request. BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 937

MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH
Project: BDW

Source: VideoCS

Length Bias: 1

Description Project

Blocks PM Flush Requests. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0Bh MI_SUSPEND_FLUSH

22:1 Reserved

Format: MBZ

0 Suspend Flush

Format: Enable

Description Project

This field suspends flush due to a PM flush request. BDW

 Command Reference: Instructions

938 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_TOPOLOGY_FILTER

MI_TOPOLOGY_FILTER
Project: BDW

Source: RenderCS

Length Bias: 1

 This command is used to specify a specific 3DPrimType value, where the CS will ignore all 3DPRIMITIVE

commands that do no have a matching 3DPrimType. This primitive culling is optional (turned off by using this

command with a Topology Filter Value of 0). This command is specific to the Render command stream only.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Dh MI_TOPOLOGY_FILTER

Format: OpCode

22:6 Reserved

Format: MBZ

5:0 Topology Filter Value

Format: 3D_Prim_Topo_Type

 When non-zero, the CS will discard all 3DPRIMITIVE commands which do not match the

specified 3DPrimTopologyType. When zero, no filtering is performed (normal operation).

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 939

MI_UPDATE_GTT

MI_UPDATE_GTT
Project: BDW

Source: BlitterCS

Length Bias: 2

 The MI_UPDATE_GTT command is used to update GGTT page table entries in a coherent manner and at a

predictable place in the command flow. A MI_FLUSH_DWORD flush command with "CS Stall" bit set must be

programmed prior to MI_UPDATE_GTT command, since work associated with preceding commands that are still

in the pipeline may be referencing GTT entries that will be changed by its execution. The flush must also

invalidate TLBs and read caches that may become invalid as a result of the changed GTT entries. A

MI_FLUSH_DWORD flush command with "CS Stall" bit set must be programmed post MI_UPDATE_GTT command

to ensure the GGTT is updated with modified page table entries before the following workload references the

modified entries. MI_FLUSH_DWORD flush is not required if it can be guaranteed that the pipeline is free of any

work that relies on changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that is

doing only update/mapping activities and no rendering). MI_UPDATE_GTT command is privilege operation and

will be converted to a no-op and an error flagged if it is executed from within a non-secure batch buffer. PPGTT

updates cannot be done via MI_UPDATE_GTT, gfx driver will have to use MI_STORE_DATA_IMM for PPGTT inline

updates.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 23h MI_UPDATE_GTT

Format: OpCode

22:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31:12 Entry Address

Format: GraphicsAddress[31:12]

 This field holds the QW offset of the first table entry to be modified in GGTT.

11:0 Reserved

Format: MBZ

2..n 31:0 Entry Data

Format: PageTableEntry

 This Dword becomes the lower dword new page table entry. See PPGTT/Global GTT Table

Entries (PTEs) in Memory Interface Registers.

 Command Reference: Instructions

940 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_UPDATE_GTT

MI_UPDATE_GTT
Project: BDW

Source: RenderCS

Length Bias: 2

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a

predictable place in the command flow.

A PIPE_CONTROL flush command with "CS Stall" bit set must be programmed prior to MI_UPDATE_GTT

command, since work associated with preceding commands that are still in the pipeline may be referencing GTT

entries that will be changed by its execution. The flush must also invalidate TLBs and read caches that may

become invalid as a result of the changed GTT entries. A PIPE_CONTROL flush command with "CS Stall" bit set

must be programmed post MI_UPDATE_GTT command to ensure the GGTT is updated with modified page table

entries before the following workload references the modified entries.

PIPE_CONTROL flush is not required if it can be guaranteed that the pipeline is free of any work that relies on

changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that is doing only

update/mapping activities and no rendering).

MI_UPDTE_GTT command is privilege operation and will be converted to a no-op and an error flagged if it is

executed from within a non-secure batch buffer.

PPGTT updates cannot be done via MI_UPDATE_GTT, gfx driver will have to use MI_STORE_DATA_IMM for

PPGTT inline updates.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 23h MI_UPDATE_GTT

Format: OpCode

22:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

Programming Notes Project

The value of this field must not exceed a value 3Fh when programmed in a batch

buffer with resource streamer enabled.

BDW

1 31:12 Entry Address

Format: GraphicsAddress[31:12]

 This field holds the QW offset of the first table entry to be modified in GGTT.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 941

MI_UPDATE_GTT
11:0 Reserved

Format: MBZ

2..n 63:0 Entry Data

Format: PageTableEntry

 This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries (PTEs)

in Memory Interface Registers.

 Command Reference: Instructions

942 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_UPDATE_GTT

MI_UPDATE_GTT
Project: BDW

Source: VideoCS

Length Bias: 2

 The MI_UPDATE_GTT command is used to update GGTT page table entries in a coherent manner and at a

predictable place in the command flow. A MI_FLUSH_DWORD flush command with "CS Stall" bit set must be

programmed prior to MI_UPDATE_GTT command, since work associated with preceding commands that are still

in the pipeline may be referencing GTT entries that will be changed by its execution. The flush must also

invalidate TLBs and read caches that may become invalid as a result of the changed GTT entries. A

MI_FLUSH_DWORD flush command with "CS Stall" bit set must be programmed post MI_UPDATE_GTT command

to ensure the GGTT is updated with modified page table entries before the following workload references the

modified entries. MI_FLUSH_DWORD flush is not required if it can be guaranteed that the pipeline is free of any

work that relies on changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that is

doing only update/mapping activities and no rendering). MI_UPDATE_GTT command is privilege operation and

will be converted to a no-op and an error flagged if it is executed from within a non-secure batch buffer. PPGTT

updates cannot be done via MI_UPDATE_GTT, gfx driver will have to use MI_STORE_DATA_IMM for PPGTT inline

updates.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 23h MI_UPDATE_GTT

Format: OpCode

22:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31:12 Entry Address

Format: GraphicsAddress[31:12]

 This field holds the QW offset of the first table entry to be modified in GGTT.

11:0 Reserved

Format: MBZ

2..n 63:0 Entry Data

Format: PageTableEntry

 This Dword becomes the lower dword new page table entry. See PPGTT/Global GTT Table

Entries (PTEs) in Memory Interface Registers.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 943

MI_UPDATE_GTT

MI_UPDATE_GTT
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

The MI_UPDATE_GTT command is used to update GGTT page table entries in a coherent manner and at a

predictable place in the command flow.

A MI_FLUS_DWORD flush command with "CS Stall" bit set must be programmed prior to MI_UPDATE_GTT

command, since work associated with preceding commands that are still in the pipeline may be referencing GTT

entries that will be changed by its execution. The flush must also invalidate TLBs and read caches that may

become invalid as a result of the changed GTT entries. A MI_FLUSH_DWORD flush command with "CS Stall" bit

set must be programmed post MI_UPDATE_GTT command to ensure the GGTT is updated with modified page

table entries before the following workload references the modified entries.

MI_FLUSH_DWORD flush is not required if it can be guaranteed that the pipeline is free of any work that relies on

changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that is doing only

update/mapping activities and no rendering).

MI_UPDTE_GTT command is privilege operation and will be converted to a no-op and an error flagged if it is

executed from within a non-secure batch buffer.

PPGTT updates cannot be done via MI_UPDATE_GTT, gfx driver will have to use MI_STORE_DATA_IMM for

PPGTT inline updates.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 23h MI_UPDATE_GTT

Format: OpCode

22:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n

 Total Length - 2

1 31:12 Entry Address

Format: GraphicsAddress[31:12]

 This field holds the QW offset of the first table entry to be modified in GGTT.

11:0 Reserved

Format: MBZ

 Command Reference: Instructions

944 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_UPDATE_GTT
2..n 63:0 Entry Data

Format: PageTableEntry

 This Dword becomes the lower dword new page table entry. See PPGTT/Global GTT Table

Entries (PTEs) in Memory Interface Registers.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 945

MI_URB_ATOMIC_ALLOC

MI_URB_ATOMIC_ALLOC
Project: BDW

Source: RenderCS

Length Bias: 1

This command is used to specify the region in URB allocated for URB atomic value storage.

This command is specific to the Render command stream only.

Programming Notes

This command can only be sent after a flush has occurred.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 09h MI_URB_ALLOC

Format: OpCode

22:20 Reserved

Format: MBZ

19:12 URB Atomic Storage Offset

Format: U8 Number of 128B Entries

 This field specifies the offset of a 128B granular starting address in the URB. The value of URB

Atomic Storage Offset plus the value of the URB Atomic Storage Size must not exceed 256.

Value Name Description

[0,255] 0-(32KB-128B)

11:9 Reserved

Format: MBZ

8:0 URB Atomic Storage Size

Format: U9 Number of 128B Entries

 This field specifies the size of the buffer in the URB in number of 128B entries. If this field has a

value of zero then the URB Atomic allocation is disabled and will not be context save/restored.

Value Name Description

[0,256] 0-32KB

 Command Reference: Instructions

946 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_URB_CLEAR

MI_URB_CLEAR
Project: BDW

Source: RenderCS

Length Bias: 2

 The MI_URB_CLEAR command allows SW to clear (write zero) to a section in the URB.

Programming Notes

 The command temporarily halts command execution.

 This command is part of context save/restore. Only the last instance will be part of context.

 This command requires the 3D pipeline to be flushed before execution.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 19h MI_URB_CLEAR

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1

Project: BDW

31:30 Reserved

Project: BDW

Format: MBZ

29:16 URB Clear Length

Project: BDW

 This field specifies the number of 256b entries in the URB to be cleared to zero.

Value Name

[0,16383]

15 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 947

MI_URB_CLEAR
14:0 URB Address

Project: BDW

Format: URBAddress[19:5] 256b aligned

 This field specifies Bits 19:5 of the URB Address

 Command Reference: Instructions

948 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: BDW

Source: VideoEnhancementCS

Length Bias: 1

 The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT

Format: OpCode

22:0 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 949

MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: BDW

Source: BlitterCS

Length Bias: 1

 The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT

22:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

950 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: BDW

Source: RenderCS

Length Bias: 1

 The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT

Format: OpCode

22:0 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 951

MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: BDW

Source: VideoCS

Length Bias: 1

 The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT

Format: OpCode

22:0 Reserved

Format: MBZ

 Command Reference: Instructions

952 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: BDW

Source: BlitterCS

Length Bias: 1

 The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a specific event occurs

or while a specific condition exists. Only one event/condition can be specified -- specifying multiple events is

UNDEFINED.The effect of the wait operation depends on the source of the command. If executed from a batch

buffer, the parser will halt (and suspend command arbitration) until the event/condition occurs. If executed from

a ring buffer, further processing of that ring will be suspended, although command arbitration (from other rings)

will continue. Note that if a specified condition does not exist (the condition code is inactive) at the time the

parser executes this command, the parser proceeds, treating this command as a no-operation.If execution of this

command from a primary ring buffer causes a wait to occur, the active ring buffer will effectively give up the

remainder of its time slice (required in order to enable arbitration from other primary ring buffers).

Programming Notes

[Ring Buffer Mode Of scheduling Only][Blitter CS]: HW loses Page Directory (PPGTT) information on becoming

IDLE. SW must always program the PD information following MI_WAIT_FOR_EVENT command. This will ensure

Page Directory information gets reprogrammed on exiting IDLE flow triggered on MI_WAIT_FOR_EVENT.

Alternatively SW can disable IDLE flows on MI_WAIT_FOR_EVENT by setting below bits in “BCS_ECOSKPD”

register. Disable GT C6 Enter Due to Blitter Waiting on Vblank Disable GT C6 Enter Due to Blitter Waiting on

Scanline Disable GT C6 Enter Due to Blitter Waiting on Flip Done

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 03h MI_WAIT_FOR_EVENT

22 Reserved

Project: All

Format: MBZ

21 Display Pipe C Vertical Blank Wait Enable

Project: BDW

Format: Enable

 This field enables a wait until the next Display Pipe C "Vertical Blank" event occurs. This event is

described as the start of the next Display C vertical blank period. Note that this can cause a wait

for up to an entire refresh period. See Vertical Blank Event in the Device Programming Interface

chapter of MI Functions.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 953

MI_WAIT_FOR_EVENT
20 Display Sprite C Flip Pending Wait Enable

Project: All

Format: Enable

 This field enables a wait for the duration of a Display Sprite C "Flip Pending" condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

19:16 Reserved

Project: BDW

Format: MBZ

15 Display Plane C Flip Pending Wait Enable

Project: All

Format: Enable

 This field enables a wait for the duration of a Display Plane C "Flip Pending" condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

14 Display Pipe C Scan Line Wait Enable

Project: BDW

Format: Enable

 This field enables a wait while a Display Pipe C "Scan Line" condition exists. This condition is

defined as the the start of the scan line specified in the Pipe C Display Scan Line Count Range

Compare Register.

13:12 Reserved

Project: All

Format: MBZ

11 Display Pipe B Vertical Blank Wait Enable

Project: BDW

Format: Enable

 This field enables a wait until the next Display Pipe B "Vertical Blank" event occurs. This event is

described as the start of the next Display Pipe B vertical blank period. Note that this can cause a

wait for up to an entire refresh period.

10 Display Sprite B Flip Pending Wait Enable

Project: All

Format: Enable

 This field enables a wait for the duration of a Display Sprite B "Flip Pending" condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

 Command Reference: Instructions

954 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_WAIT_FOR_EVENT
9 Display Plane B Flip Pending Wait Enable

Project: All

Format: Enable

 This field enables a wait for the duration of a Display Plane B "Flip Pending" condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

8 Display Pipe B Scan Line Wait Enable

Project: BDW

Format: Enable

 This field enables a wait while a Display Pipe B "Scan Line" condition exists. This condition is

defined as the the start of the scan line specified in the Pipe B Display Scan Line Count Range

Compare Register.

7 Display Sprite B2 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite B2 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

6 Display Sprite A2 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite A2 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

5:4 Reserved

Project: All

Format: MBZ

3 Display Pipe A Vertical Blank Wait Enable

Project: BDW

Format: Enable

 This field enables a wait until the next Display Pipe A "Vertical Blank" event occurs. This event is

described as the start of the next Display Pipe A vertical blank period. Note that this can cause a

wait for up to an entire refresh period.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 955

MI_WAIT_FOR_EVENT
2 Display Sprite A Flip Pending Wait Enable

Project: All

Format: Enable

 This field enables a wait for the duration of a Display Sprite A "Flip Pending" condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

1 Display Plane A Flip Pending Wait Enable

Project: All

Format: Enable

 This field enables a wait for the duration of a Display Plane A "Flip Pending" condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

0 Display Pipe A Scan Line Wait Enable

Project: BDW

Format: Enable

 This field enables a wait while a Display Pipe A "Scan Line" condition exists. This condition is

defined as the the start of the scan line specified in the Pipe A Display Scan Line Count Range

Compare Register.

 Command Reference: Instructions

956 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: BDW

Source: RenderCS

Length Bias: 1

Description

The MI_WAIT_FOR_EVENT command is used to pause command stream processing of this pipe only until a

specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device Programming

Interface in MI Functions. Only one event/condition can be specified. Specifying multiple events is UNDEFINED.

Once parsed, the parser will halt (and suspend command arbitration) until the event/condition occurs. Note

that if a specified condition does not exist (the condition code is inactive) at the time the parser executes this

command, the parser proceeds, treating this command as a no-operation.

If CSunit is waiting for V-blank or flip done, HW can go into RC1/RC6 state.

MI_NOOP setting NOP register (or any other benign command) must be set after MI_WAIT_FOR_EVENT under

the following conditions:

 Back-to-back MI_WAIT_FOR_EVENT commands

 MI_WAIT_FOR_EVENT is the last command before head = tail

Events must be unmasked in the Display Engine Render Response Mask Register (DE RRMR 0x44050) prior to

waiting for them with a MI_WAIT_FOR_EVENT command, or in the case of flips or scanlines, prior to starting the

flip or loading the scanline. Unmasked events will wake command streamer as they occur, so for improved

power savings it is recommended to only unmask events that are required. Programming the DE RRMR register

can be done through MMIO or a LOAD_REGISTER_IMMEDIATE command.

Execution List Mode of Scheduling: CS on evaluating MI_WAIT_FOR_EVENT to be unsuccessful (has to wait

for event to happen) triggers synchronous context switch stating the switch reason in Context Status Buffer.

Note that synchronous context switch can be inhibited through programming "Inhibit Synchronous Context

Switch" bit in CTXT_SR_CTL register or by disabling arbitration through MI_ARB_ON_OFF command.

Programming Notes Source

Ring Buffer Mode of Scheduling Only: SW must always program a dummy

MI_SEMAPHORE_WAIT command in Signal Mode which is always successful prior to

programming MI_WAIT_FOR_EVENT.

 If the above programming restriction is not followed, in certain order of programming sequences

HW would enter IDLE_DOP instead of IDLE_C6 on encountering MI_WAIT_FOR_EVENT unsuccessful.

RenderCS

Render CS Only: SW must always program PIPE_CONTROL with "CS Stall" and "Render Target

Cache Flush Enable" set prior to programming MI_WAIT_FOR_EVENT command for GPGPU

workloads i.e when pipeline select is GPGPU via PIPELINE_SELECT command. This is required to

achieve better GPGPU preemption latencies for certain programming sequences.

 If programming PIPE_CONTROL has performance implications then preemption latencies can be

trade off against performance by not implementing this programming note.

RenderCS

DWord Bit Description

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 957

MI_WAIT_FOR_EVENT
0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 03h MI_WAIT_FOR_EVENT

Format: OpCode

22 Reserved

Project: BDW

Format: MBZ

21 Display Pipe C Vertical Blank Wait Enable

Project: BDW

Format: Enable

Description Project

This field enables a wait until the next Display Pipe C Vertical Blank event occurs. This

event is described as the start of the next Display C vertical blank period. Note that

this can cause a wait for up to an entire refresh period.

Render and Blitter Engines BDW

20 Display Sprite C Flip Pending Wait Enable

Project: BDW

Format: Enable

Description Project

This field enables a wait for the duration of a Display Sprite C Flip Pending condition.

If a flip request is pending, the parser will wait until the flip operation has completed

(i.e., the new front buffer address has now been loaded into the active front buffer

registers).

Render and Blitter Engines BDW

19 Display Sprite C3 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite C3 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

 Command Reference: Instructions

958 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_WAIT_FOR_EVENT
18 Display Sprite B3 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite B3 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

17 Display Sprite A3 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite A3 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

16 Display Sprite C2 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite C2 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

15 Display Plane C Flip Pending Wait Enable

Project: BDW

Format: Enable

Description Project

This field enables a wait for the duration of a Display Plane C "Flip Pending" condition.

If a flip request is pending, the parser will wait until the flip operation has completed

(i.e., the new front buffer address has now been loaded into the active front buffer

registers).

Render and Blitter Engines BDW

14 Display Pipe C Scan Line Wait Enable

Project: BDW

Format: Enable

Description Project

This field enables a wait while a Display Pipe C Scan Line condition exists. This

condition is defined as the start of the scan line specified in the Pipe C Display Scan

Line Count Range Compare Register.

Render and Blitter Engines BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 959

MI_WAIT_FOR_EVENT
13 Reserved

Project: BDW

Format: MBZ

12 Reserved

Format: MBZ

11 Display Pipe B Vertical Blank Wait Enable

Format: Enable

Description Project

This field enables a wait until the next Display Pipe B "Vertical Blank" event occurs.

This event is described as the start of the next Display Pipe B vertical blank period.

Note that this can cause a wait for up to an entire refresh period.

Render and Blitter Engines BDW

10 Display Sprite B Flip Pending Wait Enable

Format: Enable

Description Project

This field enables a wait for the duration of a Display Sprite B "Flip Pending"

condition. If a flip request is pending, the parser will wait until the flip operation has

completed (i.e., the new front buffer address has now been loaded into the active

front buffer registers).

Render and Blitter Engines BDW

9 Display Plane B Flip Pending Wait Enable

Format: Enable

Description Project

This field enables a wait for the duration of a Display Plane B Flip Pending condition. If

a flip request is pending, the parser will wait until the flip operation has completed

(i.e., the new front buffer address has now been loaded into the active front buffer

registers.

Render and Blitter Engines BDW

8 Display Pipe B Scan Line Wait Enable

Format: Enable

Description Project

This field enables a wait while a Display Pipe B Scan Line condition exists. This

condition is defined as the start of the scan line specified in the Pipe B Display Scan

Line Count Range Compare Register.

Render and Blitter Engines BDW

 Command Reference: Instructions

960 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MI_WAIT_FOR_EVENT
7 Display Sprite B2 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite B2 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

6 Display Sprite A2 Flip Pending Wait Enable

Project: BDW

Format: Enable

 This field enables a wait for the duration of a Display Sprite A2 Flip Pending condition. If a flip

request is pending, the parser will wait until the flip operation has completed (i.e., the new front

buffer address has now been loaded into the active front buffer registers).

5 Reserved

Project: BDW

Format: MBZ

4 Reserved

Format: MBZ

3 Display Pipe A Vertical Blank Wait Enable

Format: Enable

Description Project

This field enables a wait until the next Display Pipe A "Vertical Blank" event occurs.

This event is described as the start of the next Display Pipe A vertical blank period.

Note that this can cause a wait for up to an entire refresh period.

Render and Blitter Engines BDW

2 Display Sprite A Flip Pending Wait Enable

Format: Enable

Description Project

This field enables a wait for the duration of a Display Sprite A "Flip Pending"

condition. If a flip request is pending, the parser will wait until the flip operation has

completed (i.e., the new front buffer address has now been loaded into the active

front buffer registers).

Render and Blitter Engines BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 961

MI_WAIT_FOR_EVENT
1 Display Plane A Flip Pending Wait Enable

Format: Enable

Description Project

This field enables a wait for the duration of a Display Plane A "Flip Pending" condition.

If a flip request is pending, the parser will wait until the flip operation has completed

(i.e., the new front buffer address has now been loaded into the active front buffer

registers).

Render and Blitter Engines BDW

0 Display Pipe A Scan Line Wait Enable

Format: Enable

Description Project

This field enables a wait while a Display Pipe A "Scan Line" condition exists. This

condition is defined as the start of the scan line specified in the Pipe A Display Scan

Line Count Range Compare Register.

Render and Blitter Engines BDW

 Command Reference: Instructions

962 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Move

mov - Move
Project: BDW

Source: EuIsa

Length Bias: 4

The mov instruction moves the components in src0 into the channels of dst. If src0 and dst are of different

types, format conversion is performed. If src0 is a scalar immediate, the immediate value is loaded into enabled

channels of dst. A mov with the same source and destination type, no source modifier, and no saturation is a

raw move. A packed byte destination region (B or UB type with HorzStride == 1 and ExecSize > 1) can only be

written using raw move.

When denorm mode is flush to zero, a raw mov instruction with saturation modifier will not flush the denorm

input or output to zero (Denorm is preserved).

Format: [(pred)] mov[.cmod] (exec_size) dst src0

Programming Notes

A mov instruction with a source modifier always copies a denorm source value to a denorm destination value

(in the manner of a raw move).

There is no direct conversion from B/UB to DF or DF to B/UB. Use two instructions and a word or DWord

intermediate type.

There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB. Use two instructions and a word or DWord

intermediate integer type.

There is no direct conversion from HF to DF or DF to HF. Use two instructions and F (Float) as an intermediate

type.

There is no direct conversion from HF to Q/UQ or Q/UQ to HF. Use two instructions and F (Float) or a word

integer type or a DWord integer type as an intermediate type.

Restriction

Raw move is not supported for Float values in ALT mode if any values are infinities or NaNs.

An accumulator can be a source or destination operand but not both.

Syntax

[(pred)] mov[.cmod] (exec_size) reg reg [(pred)] mov[.cmod] (exec_size) reg imm32 [(pred)] mov[.cmod]

(exec_size) reg imm64

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n]; } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 963

mov - Move

*B,*W,*D F

F *B,*W,*D

F F

*W,*D DF BDW

F DF BDW

DF *W,*D BDW

DF F BDW

DF DF BDW

*W,*D,*Q *W,*D,*Q BDW

F *Q BDW

DF *Q BDW

*Q F BDW

*Q DF BDW

*B,*W,*D HF BDW

F HF BDW

HF *B,*W,*D BDW

HF F BDW

HF HF BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

964 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Move Indexed

movi - Move Indexed
Project: BDW

Source: EuIsa

Length Bias: 4

The movi instruction performs a fast component-wise indexed move for subfields from src0 to dst. The source

operand must be an indirectly-addressed register. All channels of the source operand share the same register

number, which is provided by the register field of the first address subregister, with a possible immediate

register offset. The register fields of the subsequent address subregisters are ignored by hardware. The

subregister number of a source channel is provided by the subregister field of the corresponding address

subregister, with a possible immediate subregister offset.

The destination register may be either a directly-addressed or an indirectly-addressed register.

This instruction effectively performs a subfield shuffling from one register to another. Up to eight subfields can

be selected by an instruction.

Format: [(pred)] movi (exec_size) dst src0

Programming Notes

HW Implementation Details:

The source register is calculated by adding the register portion of the first index register with the register

portion of the address immediate, a0.0[11:5] + addr_imm[9:5]

For byte movi, byte0 of the destination is selected by (a0.0[4:0]), byte1 is selected by (a0.1[4:0]), ..., and byte7 is

selected by (a0.7[4:0]). The rest of the bytes are undefined.

For word movi, byte0 of the destination is selected by (a0.0[4:1] & 0), byte1 is selected by (a0.0[4:1] & 1), byte2

is selected by (a0.1[4:1] & 0), byte3 is selected by (a0.1[4:1] & 1), ..., and byte15 is selected by (a0.7[4:1] & 1).

The rest of the bytes are undefined.

For DWord or float movi, byte0 of the destination is selected by (a0.0[4:2] & 00b), byte1 is selected by (a0.0[4:2]

& 01b), byte2 is selected by (a0.0[4:2] & 10b), byte3 is selected by (a0.0[4:2] & 11b), byte4 is selected by

(a0.1[4:2] & 00b), byte5 is selected by (a0.1[4:2] & 01b), ..., byte31 is selected by (a0.7[4:2] & 11b).

For all 3 conditions above, a0.n[4:0] = a0.n[4:0] + addr_imm[4:0].

Restriction

Source operand cannot be accumulators. The source operand must be a general register.

The source and destination must have the same type.

The execution size must be 8.

The address register for the source must be aligned to the base (a0.0).

The destination register (directly or indirectly addressed) must be 16-byte aligned.

The destination region (directly or indirectly addressed) must point to the same GRF register.

The destination stride in bytes must equal the source element size in bytes.

The Align16 access mode is not allowed.

All the index registers (address subregisters) used must point to the same GRF register.

The instruction must use 1x1 indirect regioning.

The destination offset is only used to create channel enables. Each element of the destination is directly

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 965

movi - Move Indexed

mapped to the index registers for the movi instruction. i.e. a0.0 -> dst.0, a0.1 -> dst.1, a0.2 -> dst.2, etc.

Only 8 address subregisters are used (a0.0-a0.7). Destination element 8 will be sourced from address register

zero (a0.0), dst.9 <-a0.1, etc. This is an exception to the above restriction, for example:

movi (8) r31.8:uw r[a0.0,0]<8;8,1>:uw // r31.8:uw<-a0.0:uw, r31.9:uw<-a0.1:uw, etc.

Conditional Modifier is not allowed for this instruction.

Syntax

[(pred)] movi (exec_size) reg reg imm

Pseudocode

Evaluate(WrEn); srcregfile = regfile(src0); srcregbase = reg(address[0]) + reg(addr_imm); for (n = 0; n <

RegWidth; n++) { if (WrEn.chan[n]) { srcsubreg = subreg(address[n] + addr_imm); dst.chan[n] =

srcregfile.srcreg.srcsubreg; } }

Predication Conditional Modifier Saturation Source Modifier

Y N Y Y

Src Types Dst Types

B B

UB UB

W W

UW UW

D D

UD UD

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

966 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Multiply

mul - Multiply
Project: BDW

Source: EuIsa

Length Bias: 4

The mul instruction performs component-wise multiplication of src0 and src1 and stores the results in dst.

When multiplying integer datatypes, if src0 is DW and src1 is W, irrespective of the destination datatype, the

accumulator maintains full 48-bit precision. This is required to handle the macro for 32x32 multiplication. The

macro described in the mach instruction should be used to obtain the full precision 64-bit multiplication

results. Note: A 32x32 multiply operation is handled natively, without a macro. When operating in this mode,

the resulting 64-bit data is packed, unlike the macro, where the lower and upper 32 bits of the result are

written to different general registers by two separate instructions. Refer to the macro description for details.

When multiplying integer data types, if one of the sources is a DW, the resulting full precision data is stored in

the accumulator. However, if the destination data type is either W or DW, the low bits of the result are written

to the destination register and the remaining high bits are discarded. This results in undefined Overflow and

Sign flags. Therefore, conditional modifiers and saturation (.sat) cannot be used in this case.

Format: [(pred)] mul[.cmod] (exec_size) dst src0 src1

Restriction

Integer source operands cannot be accumulators.

When multiplying a DW and any lower precision integer, the DW operand must on src0.

[BDW-A]: DW * W is not supported outside MACH macro.

[BDW]: When multiplying DW x DW, the dst cannot be accumulator.

Syntax

[(pred)] mul[.cmod] (exec_size) reg reg reg [(pred)] mul[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] * src1.chan[n]; }

}

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

*B *B

*B *W

*B *D

*W *W

*W *D

*W,*D *D

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 967

mul - Multiply

*D *Q

F F

DF DF

HF HF

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

968 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Multiply Accumulate

mac - Multiply Accumulate
Project: BDW

Source: EuIsa

Length Bias: 4

The mac instruction takes component-wise multiplication of src0 and src1, adds the results with the

corresponding accumulator values, and then stores the final results in dst.

Format: [(pred)] mac[.cmod] (exec_size) dst src0 src1

Restriction

Accumulator is an implicit source and thus cannot be an explicit source operand.

Syntax

[(pred)] mac[.cmod] (exec_size) reg reg reg [(pred)] mac[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src0.chan[n] * src1.chan[n] +

acc0.chan[n]; } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

*B,*W *B,*W,*D

F F

DF DF BDW

HF HF BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 969

Multiply Accumulate High

mach - Multiply Accumulate High
Project: BDW

Source: EuIsa

Length Bias: 4

The mach instruction performs DWord integer multiply-accumulate operation and outputs the high DWord

(bits 63:32). For each enabled channel, this instruction multiplies the DWord in src0 with the high word of the

DWord in src1, left shifts the result by 16 bits, adds it with the corresponding accumulator values, and keeps

the whole 64-bit result in the accumulator. It then stores the high DWord (bits 63:32) of the results in dst. This

instruction is intended to be used to emulate 32-bit DWord integer multiplication by using the large number of

bits available in the accumulator. For example, the following instructions perform vector multiplication of two

32-bit signed integer sources from r2 and r3 and store the resulting vectors with the high 32 bits in r5 and the

low 32 bits in r6.

 mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw

 mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d

 mov (8) r6.0<1>:d acc0:d // Low 32 bits.

Here is a different example including negation. An added preliminary mov is required for source modification

on src1.

 mov (8) r3.0<1>:d -r3<8;8,1>:d

 mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw

 mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d // High 32 bits

 mov (8) r6.0<1>:d acc0:d // Low 32 bits.

The mach should have channel enable from the destHI of IMUL, the mov should have the channel enable from

the destLO of IMUL. As mach is used to generate part of the 64-bit DWord integer results, saturation modifier

should not be used. In fact, saturation modifier should not be used for any of these four instructions. Source

and destination operands must be DWord integers. Source and destination must be of the same type, signed

integer or unsigned integer. If dst is UD, src0 and src1 may be UD and/or D. However, if any of src0 and src1 is

D, source modifier (abs) must be present to convert it to match with dst. If dst is D, src0 and src1 must also be

D. They cannot be UD as it may cause unexpected overflow because the computed results are limited to 64

bits.

Format: [(pred)] mach[.cmod] (exec_size) dst src0 src1

Restriction

Accumulator is an implicit source and thus cannot be an explicit source operand.

AccWrEn is required.

Syntax

[(pred)] mach[.cmod] (exec_size) reg reg reg [(pred)] mach[.cmod] (exec_size) reg reg imm32

Pseudocode

 Evaluate(WrEn);

 for (n = 0; n < exec_size; n++) {

 if (WrEn.chan[n]) {

 acc.chan[n][63:0] = (src1.chan[n][31:16] *

 src0.chan[n][31:0]) « 16 + acc.chan[n][63:0];

 Command Reference: Instructions

970 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

mach - Multiply Accumulate High
 dst.chan[n][31:0] = acc.chan[n][63:32];

 }

 }

Errata Description

 A source modifier must not be used on src1 for the macro operation. This applies to both mul and

mach of the macro. If source modifier is required, an additional mov instruction may be used before the

macro.

Predication Conditional Modifier Saturation Source Modifier

Y N Y Y

Src Types Dst Types

D D

UD UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 971

Multiply Add

mad - Multiply Add
Project: BDW

Source: EuIsa

Length Bias: 4

The mad instruction takes component-wise multiplication of src1 and src2, adds the results with the

corresponding src0 values, and then stores the final results in dst.

The destination modifier saturation (.sat) must not be used when src1 or src2 are dwords.

Format: [(pred)] mad[.cmod] (exec_size) dst src0 src1 src2

Restriction

[BDW]: No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for

implicitly updating the accumulator.

[BDW]: All three-source instructions have certain restrictions, described in Instruction Formats [BDW].

Syntax

[(pred)] mad[.cmod] (exec_size) reg reg reg reg

Pseudocode

 Evaluate(WrEn);

 for (n = 0; n < exec_size; n++) {

 if (WrEn.chan[n]) {

 dst.chan[n] = src1.chan[n] * src2.chan[n] + src0.chan[n];

 }

 }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

F F

DF DF BDW

HF HF BDW

DWord Bit Description

0..3 127:126 Reserved

Format: MBZ

125:106 Source 2

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 Reserved

Format: MBZ

 Command Reference: Instructions

972 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

mad - Multiply Add
104:85 Source 1

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

84 Reserved

Format: MBZ

83:64 Source 0

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

63:56 Destination Register Number

Format: DstRegNum

55:53 Destination Subregister Number

Format: DstSubRegNum[2:0]

52:49 Destination Channel Enable

Format: ChanEn[4]

 Four channel enables are defined for controlling which channels are written into the

destination region. These channel mask bits are applied in a modulo-four manner to all

ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the

bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is

enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,

where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project: BDW

Format: MBZ

47 NibCtrl

Project: BDW

Format: NibCtrl

46 Reserved

Project: BDW

Format: MBZ

45:44 Destination Data Type

Project: BDW

 This field contains the data type for the destination

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 973

mad - Multiply Add
48:42 Reserved

Project: BDW

Format: MBZ

43:42 Source Data Type

Project: BDW

 This field contains the data type for all three sources

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

41:40 Source 2 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

39:38 Source 1 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

41:36 Reserved

Exists If: //([Property[Source Modifier]=='false')

Format: MBZ

37:36 Source 0 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

35 Reserved

Format: MBZ

34 Reserved

Project:

Format: MBZ

33 Flag Subregister Number

 This field contains the flag subregister number for instructions with a non-zero Conditional

Modifier.

32 Reserved

Project:

Format: MBZ

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

974 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Multiply Add for Macro

madm - Multiply Add for Macro
Project: BDW

Source: EuIsa

Length Bias: 4

The madm instruction takes component-wise multiplication of src1 and src2, adds the results with the

corresponding src0 values, and then stores the final results in dst. The source and destination operands have a

higher precision carried in the exponent for this operation. The madm instruction is used for macro operations,

where precision is accumulated over several instructions. This accumulation requires the exponent to increase

by 2 extra bits across multiple madm operations. Refer to Macros Defined in 'Math' Section for usage and

restrictions of this operation.

Format: [(pred)] madm[.cmod] (exec_size) dst src0 src1 src2

Restriction

Accumulator access is restricted to the special accumulators (acc2-acc9). Refer to the Accumulator Section for

details on the special accumulators.

Syntax

[(pred)] madm[.cmod] (exec_size) reg reg reg reg

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = src1.chan[n] * src2.chan[n] +

src0.chan[n]; } }

Predication Conditional Modifier Saturation Source Modifier

N N N N

Src Types Dst Types

F F

DF DF

DWord Bit Description

0..3 127:126 Reserved

Format: MBZ

125:106 Source 2

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

105 Reserved

Format: MBZ

104:85 Source 1

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 975

madm - Multiply Add for Macro
84 Reserved

Format: MBZ

83:64 Source 0

Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC

63:56 Destination Register Number

Format: DstRegNum

55:53 Destination Subregister Number

Format: DstSubRegNum[2:0]

52:49 Destination Channel Enable

Format: ChanEn[4]

 Four channel enables are defined for controlling which channels are written into the

destination region. These channel mask bits are applied in a modulo-four manner to all

ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the

bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the write is

enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,

where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group

48 Reserved

Project: BDW

Format: MBZ

47 NibCtrl

Project: BDW

Format: NibCtrl

46 Reserved

Project: BDW

Format: MBZ

45:44 Destination Data Type

Project: BDW

 This field contains the data type for the destination

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

 Command Reference: Instructions

976 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

madm - Multiply Add for Macro
43:42 Source Data Type

Project: BDW

 This field contains the data type for all three sources

Value Name

00b Single Precision Float

01b DWord

10b Unsigned DWord

11b Double Precision Float

41:40 Source 2 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

39:38 Source 1 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

37:36 Source 0 Modifier

Exists If: //([Property[Source Modifier]=='true')

Format: SrcMod

35 Reserved

Format: MBZ

34 Flag Register Number

Project:

 This field contains the flag register number for instructions with a non-zero Conditional

Modifier.

33 Flag Subregister Number

 This field contains the flag subregister number for instructions with a non-zero Conditional

Modifier.

32 Reserved

Project:

Format: MBZ

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 977

No Operation

nop - No Operation
Project: BDW

Source: EuIsa

Length Bias: 4

Do nothing. The nop instruction takes an instruction dispatch but performs no operation. It can be used for

assembly patching in memory, or to insert a delay in the program sequence.

Format: nop

Restriction

The nop instruction takes no instruction options other than Breakpoint.

Syntax

nop

Pseudocode

{ ; // The null statement, which does nothing. }

Predication Conditional Modifier Saturation Source Modifier

N N N N

DWord Bit Description

0..3 127:31 Reserved

Format: MBZ

30 Reserved

29:7 Reserved

Format: MBZ

6:0 Opcode

Format: EU_OPCODE

 Command Reference: Instructions

978 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Oword Block Read MSD

MSD0R_OWB - Oword Block Read MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Block R/W

Group: OW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 00h

Project: All

Format: Opcode

 Oword Block Read message

13 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

12:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Data Elements

Project: All

Format: MDC_DB_OW

 Specifies the number of contiguous Owords to be read or written

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 979

MSD0R_OWB - Oword Block Read MSD
7:0 Binding Table Index

Project: All

Format: MDC_BTS_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

980 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Oword Block Write MSD

MSD0W_OWB - Oword Block Write MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Block R/W

Group: OW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 08h

Project: All

Format: Opcode

 Oword Block Write message

13:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Data Elements

Project: All

Format: MDC_DB_OW

 Specifies the number of contiguous Owords to be read or written

7:0 Binding Table Index

Project: All

Format: MDC_BTS_A32

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 981

Oword Dual Block Write MSD

MSD0W_OWDB - Oword Dual Block Write MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Block R/W

Group: OW Dual Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: Enable

 If set, indicates that the message includes the header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 0Ah

Project: All

Format: Opcode

 Oword Block Read message

13:10 Reserved

Project: All

Format: MBZ

 Ignored

9:8 Data Elements

Project: All

Format: MDC_DB_OWD

 Specifies the number of contiguous Owords to be read or written

7:0 Binding Table Index

Project: All

Format: MDC_BTS_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

982 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Oword Unaligned Block Read MSD

MSD0R_OWUB - Oword Unaligned Block Read MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Block R/W

Group: OW Unaligned Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Legacy Message

Default Value: 0h

Project: All

Format: Opcode

 Legacy Message

17:14 Message Type

Default Value: 01h

Project: All

Format: Opcode

 Oword Unaligned Block Read message

13:11 Reserved

Project: All

Format: MBZ

 Ignored

10:8 Data Elements

Project: All

Format: MDC_DB_OW

 Specifies the number of contiguous Owords to be read

7:0 Binding Table Index

Project: All

Format: MDC_BTS_A32

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 983

PIPE_CONTROL

PIPE_CONTROL
Project: BDW

Source: RenderCS

Length Bias: 2

 The PIPE_CONTROL command is used to effect the synchronization described above.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 2h PIPE_CONTROL

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0h PIPE_CONTROL

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 4h DWORD_COUNT_n

Project: BDW

Format: =n

 Total Length - 2. Excludes DWord (0,1).

1 31:29 Reserved

Project: All

Format: MBZ

28 Reserved

Project: BDW

Format: MBZ

27 Reserved

Project: BDW

 Command Reference: Instructions

984 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

PIPE_CONTROL
26 Reserved

Project: BDW

Format: MBZ

25 Reserved

Project: All

Format: MBZ

24 Destination Address Type

Project: BDW

 Defines address space of Destination Address

Value Name Description Project

0h PPGTT Use PPGTT address space for DW write All

1h GGTT Use GGTT address space for DW write All

Programming Notes

Ignored if ""No Write" is selected in Operation.

23 LRI Post Sync Operation

Project: BDW

Value Name Description Project

0h No LRI Operation No LRI operation occurs as a result of this instruction. The

Post-Sync Operation field is valid and may be used to

specify an operation.

All

1h MMIO Write

Immediate Data

Write the DWord contained in Immediate Data Low (DW3)

to the MMIO offset specifed in the Address field.

All

Programming Notes Project

This bit caues a post sync operation with an LRI (Load Register Immediate) operation.

If this bit is set then the Post-Sync Operation field must be cleared.

22 Reserved

Project: All

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 985

PIPE_CONTROL
21 Store Data Index

Format: U1

Description Project

Ring Buffer Mode Scheduling: This field is valid only if the post-sync operation is not

0. If this bit is set, the store data address is actually an index into the global hardware

status page. This bit only applies to the Global HW status page. If this field is 1, the

Destination Address Type in this command must be set to 1 (GGTT).

Execlist Mode Scheduling: This field is valid only if the post-sync operation is not 0. If

this bit is set, the store data address is index into the global hardware status page

when destination address type in the command is set to 1 (GGTT). The store data

address is index into the per-process hardware status page when destination address

type in the command is set to 0 (PPGTT).

BDW

20 Command Streamer Stall Enable

Project: All

Format: U1

 If ENABLED, the sync operation will not occur until all previous flush operations pending a

completion of those previous flushes will complete, including the flush produced from this

command. This enables the command to act similar to the legacy MI_FLUSH command.

Programming Notes Project

One of the following must also be set:

 Render Target Cache Flush Enable ([12] of DW1)

 Depth Cache Flush Enable ([0] of DW1)

 Stall at Pixel Scoreboard ([1] of DW1)

 Depth Stall ([13] of DW1)

 Post-Sync Operation ([13] of DW1)

 DC Flush Enable([5] of DW1)

BDW

This bit must be always set when PIPE_CONTROL command is programmed by

GPGPU and MEDIA workloads, except for the cases when only Read Only Cache

Invalidation bits are set (State Cache Invalidation Enable, Instruction cache

Invalidation Enable, Texture Cache Invalidation Enable, Constant Cache Invalidation

Enable). This is to WA FFDOP CG issue, this WA need not implemented when

FF_DOP_CG is disable via "Fixed Function DOP Clock Gate Disable" bit in

RC_PSMI_CTRL register.

BDW

19 Reserved

 Command Reference: Instructions

986 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

PIPE_CONTROL
18 TLB Invalidate

Project: All

Format: U1

If ENABLED, all TLBs belonging to Render Engine will be invalidated once the flush operation

is complete. Note that if the flush TLB invalidation mode is clear, a TLB invalidate will occur

irrespective of this bit setting

If ENABLED, PIPE_CONTROL command will flush the in flight data written out by render

engine to Global Observation point on flush done. Also Requires stall bit ([20] of DW1) set.

Programming Notes Project

If ENABLED, all TLBs belonging to Render Engine will be invalidated once the flush

operation is complete. Note that if the flush TLB invalidation mode is clear, a TLB

invalidate will occur irrespective of this bit setting.

BDW

17 Reserved

Project: BDW

Format: MBZ

16 Generic Media State Clear

Project: BDW

Format: Disable

If set, all generic media state context information will be invalidated. Any state invalidated will

not be saved as part of the render engine context image. The state only only become valid

once it is parsed by the command streamer.

15:14 Post Sync Operation

Project: All

Description

This field specifies an optional action to be taken upon completion of the synchronization

operation.

This field must be cleared if the LRI Post-Sync Operation bit is set.

Value Name Description

0h No Write No write occurs as a result of this instruction. This can be used to

implement a "trap" operation, etc.

1h Write Immediate

Data

Write the QWord containing Immediate Data Low, High DWs to the

Destination Address

2h Write PS Depth

Count

Write the 64-bit PS_DEPTH_COUNT register to the Destination

Address

3h Write Timestamp Write the 64-bit TIMESTAMP register to the Destination Address

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 987

PIPE_CONTROL

Programming Notes

If executed in non-secure batch buffer, the address given will be in a PPGTT address space. If

in a secure ring or batch, address given will be in GGTT space

Workaround

Workaround : PIPECONTROL command with “Command Streamer Stall Enable” must be

programmed prior to programming a PIPECONTROL command with Post Sync Op in GPGPU

mode of operation (i.e when PIPELINE_SELECT command is set to GPGPU mode of operation).

13 Depth Stall Enable

Project: All

Format: Enable

This bit must be set when obtaining a "visible pixel" count to preclude the possible inclusion in

the PS_DEPTH_COUNT value written to memory of some fraction of pixels from objects initiated

after the PIPE_CONTROL command.

Value Name Description Project

0h Disable 3D pipeline will not stall subsequent primitives at the Depth Test

stage.

All

1h Enable 3D pipeline will stall any subsequent primitives at the Depth Test

stage until the Sync and Post-Sync operations complete.

All

Programming Notes Project

This bit must be DISABLED for operations other than writing PS_DEPTH_COUNT. BDW

This bit will have no effect (besides preventing write cache flush) if set in a

PIPE_CONTROL command issued to the Media pipe.

12 Render Target Cache Flush Enable

Project: All

Format: Enable

Setting this bit will force Render Cache to be flushed to memory prior to this synchronization

point completing. This bit must be set for all write fence sync operations to assure that results

from operations initiated prior to this command are visible in memory once software observes

this synchronization.

Value Name Description Project

0h Disable Flush Render Target Cache is NOT flushed. All

1h Enable Flush Render Target Cache is flushed. All

Programming Notes

This bit must be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or TIMESTAMP

queries.

This bit must not be set when Depth Stall Enable bit is set in this packet.

 Command Reference: Instructions

988 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

PIPE_CONTROL
11 Instruction Cache Invalidate Enable

Project: All

Format: Enable

 Setting this bit is independent of any other bit in this packet. This bit controls the invalidation

of the L1 and L2 at the top of the pipe i.e. at the parsing time.

10 Texture Cache Invalidation Enable

Project: All

Format: Enable

 Setting this bit is independent of any other bit in this packet. This bit controls the invalidation

of the texture caches at the top of the pipe i.e. at the parsing time.

9 Indirect State Pointers Disable

Project: All

Format: Enable

Description Project

At the completion of the post-sync operation associated with this pipe control

packet, the indirect state pointers in the hardware are considered invalid; the indirect

pointers are not saved in the context. If any new indirect state commands are

executed in the command stream while the pipe control is pending, the new indirect

state commands are preserved.

[BDW]: Using Invalidate State Pointer (ISP) only inhibits context restoring of Push

Constant (3DSTATE_CONSTANT_*) commands. Push Constant commands are only

considered as Indirect State Pointers. Once ISP is issued in a context, SW must

initialize by programming push constant commands for all the shaders (at least to

zero length) before attempting any rendering operation for the same context.

BDW

8 Notify Enable

Project: All

Format: Enable

 If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt

Control registers) once the sync operation is complete. See Interrupt Control Registers in

Memory Interface Registers for details.

7 Pipe Control Flush Enable

Project: BDW

Format: Enable

Hardware on parsing PIPECONTROL command with Pipe Control Flush Enable set will wait for

all the outstanding post sync operations corresponding to previously executed PIPECONTROL

commands are complete before making forward progress.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 989

PIPE_CONTROL
6 Reserved

Project: BDW

5 DC Flush Enable

Project: BDW

Format: Enable

 Setting this bit enables flushing of the L3$ portions that caches DC writes.

Programming Notes

DC Flush (L3 Flush) by default doesn’t result in flushing/invalidating the IA Coherent lines from

L3$, however this can be achieved by setting control bit “Pipe line flush Coherent lines” in

“L3SQCREG4” register.

4 VF Cache Invalidation Enable

Project: All

Format: Enable

 Setting this bit is independent of any other bit in this packet. This bit controls the invalidation

of VF address based cache at the top of the pipe i.e. at the parsing time.

Workaround Project

Workaround :

When VF Cache Invalidate is set “Post Sync Operation” must be enabled to “Write

Immediate Data” or “Write PS Depth Count” or “Write Timestamp”.

BDW

3 Constant Cache Invalidation Enable

Project: All

Format: Enable

 Setting this bit is independent of any other bit in this packet. This bit controls the invalidation

of the constant cache at the top of the pipe i.e. at the parsing time.

2 State Cache Invalidation Enable

Project: All

Format: Enable

 Setting this bit is independent of any other bit in this packet. This bit controls the invalidation

of the L1 and L2 state caches at the top of the pipe i.e. at the parsing time.

 Command Reference: Instructions

990 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

PIPE_CONTROL
1 Stall At Pixel Scoreboard

Project: All

Format: Enable

 Defines the behavior of PIPE_CONTROL command at the pixel scoreboard.

Value Name Description Project

0h Disable Stall at the pixel scoreboard is disabled. All

1h Enable Stall at the pixel scoreboard is enabled. All

Programming Notes

This bit must be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or TIMESTAMP

queries. This bit is ignored if Depth Stall Enable is set. Further the render cache is not flushed

even if Write Cache Flush Enable bit is set.

0 Depth Cache Flush Enable

Project: All

Format: Enable

 Setting this bit enables flushing (i.e. writing back the dirty lines to memory and invalidating the

tags) of depth related caches. This bit applies to HiZ cache, Stencil cache and depth cache.

Value Name Description Project

0h Flush

Disabled

Depth relates caches (HiZ, Stencil and Depth) are NOT

flushed.

All

1h Flush Enabled Depth relates caches (HiZ, Stencil and Depth) are flushed. All

Programming Notes

Ideally depth caches need to be flushed only when depth is required to be coherent in

memory for later use as a texture, source or honoring CPU lock. This bit must be DISABLED for

End-of-pipe (Read) fences, PS_DEPTH_COUNT or TIMESTAMP queries.

2 31:2 Address

Project: BDW

Format: GraphicsAddress[31:2]U32

 If Post Sync Operation is set to 1h ([BDW]: LRI Post-Sync Operation must be clear): Bits 31:3

secify the QW address of where the Immediate Data following this DW in the packet to be

stored. Bit 2 MBZ Ignored if "No Write" is the selected in Post-Sync Operation [BDW]: If LRI

Post-Sync Operation is set: Bits 22:2 (Bits 31:23 are reserved MBZ) specify the MMIO offset

destination for the data in the Immediate Data Low (DW3) field. Only DW writes are valid.

1:0 Reserved

Format: MBZ

3

Project:

BDW

31:16 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 991

PIPE_CONTROL
15:0 Address High

Project: All

Format: GraphicsAddress[47:32]U32

 This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the

host's 64-bit virtual address space. This field is valid only if the post-sync operation is not 0 and

the LRI Post-Sync Operation is clear.

4..5

Project:

BDW

63:0 Immediate Data

Project: BDW

Format: U64

 This field specifies the QWord value to be written to the targeted location. Only valid when

Post-Sync Operation is 1h (Write Immediate Data) or LRI Post-Sync Operation is set. Ignored if

Post-Sync Operation is "No write", "Write PS_DEPTH_COUNT" or "Write TIMESTAMP".

Programming Notes Project

This field must be programmed to 0 when Post-Sync Operation is set to Write PS

Depth Count or Write Timestamp.

BDW

 Command Reference: Instructions

992 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

PIPELINE_SELECT

PIPELINE_SELECT
Project: DevBWR+

Length Bias: 1

Description

The PIPELINE_SELECT command is used to specify which GPE pipeline is to be considered the 'current' active

pipeline. Issuing 3D-pipeline-specific commands when the Media pipeline is selected, or vice versa, is

UNDEFINED.

Issuing 3D-pipeline-specific commands when the GPGPU pipeline is selected, or vice versa, is UNDEFINED.

Programming common non pipeline commands (e.g., STATE_BASE_ADDRESS) is allowed in all pipeline modes.

Programming Notes

Software must ensure all the write caches are flushed through a stalling PIPE_CONTROL command followed by

another PIPE_CONTROL command to invalidate read only caches prior to programming MI_PIPELINE_SELECT

command to change the Pipeline Select Mode. Example: ... Workload-3Dmode PIPE_CONTROL (CS Stall, Depth

Cache Flush Enable, Render Target Cache Flush Enable, DC Flush Enable) PIPE_CONTROL (Constant Cache

Invalidate, Texture Cache Invalidate, Instruction Cache Invalidate, State Cache invalidate) PIPELINE_SELECT (

GPGPU)

Software must clear the COLOR_CALC_STATE Valid field in 3DSTATE_CC_STATE_POINTERS command prior to

send a PIPELINE_SELECT with Pipeline Select set to GPGPU.

Render CS Only: SW must always program PIPE_CONTROL with CS Stall and Render Target Cache Flush Enable

set prior to programming PIPELINE_SELECT command for GPGPU workloads i.e when pipeline mode is set to

GPGPU. This is required to achieve better GPGPU preemption latencies for certain programming sequences. If

programming PIPE_CONTROL has performance implications then preemption latencies can be trade off against

performance by not implementing this programming note.

Hardware Binding Tables are only supported for 3D workloads. Resource streamer must be enabled only for 3D

workloads. Resource streamer must be disabled for Media and GPGPU workloads. Batch buffer containing both

3D and GPGPU workloads must take care of disabling and enabling Resource Streamer appropriately while

changing the PIPELINE_SELECT mode from 3D to GPGPU and vice versa. Resource streamer must be disabled

using MI_RS_CONTROL command and Hardware Binding Tables must be disabled by programming

3DSTATE_BINDING_TABLE_POOL_ALLOC with "Binding Table Pool Enable" set to disable (i.e. value '0'). Example

below shows disabling and enabling of resource streamer in a batch buffer for 3D and GPGPU workloads.

MI_BATCH_BUFFER_START (Resource Streamer Enabled) PIPELINE_SELECT (3D)

3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Enabled) 3D WORKLAOD MI_RS_CONTROL

(Disable Resource Streamer) 3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool Disabled)

PIPELINE_SELECT (GPGPU) GPGPU Workload 3DSTATE_BINDING_TABLE_POOL_ALLOC (Binding Table Pool

Enabled) MI_RS_CONTROL (Enable Resource Streamer) 3D WORKLOAD MI_BATCH_BUFFER_END

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 993

PIPELINE_SELECT
28:27 Command SubType

Default Value: 1h GFXPIPE_SINGLE_DW

Format: OpCode

26:24 3D Command Opcode

Format: OpCode

Value Name Project

1h GFXPIPE_NONPIPELINED [Default] BDW

23:16 3D Command Sub Opcode

Default Value: 04h PIPELINE_SELECT

Format: OpCode

6 Reserved

Project: BDW

15:2 Reserved

Project: BDW

1:0 Pipeline Selection

Value Name Description Project

0 3D 3D pipeline is selected

1 Media Media pipeline is selected (Includes HD optical disc playback, HD

video playback, and generic media workloads)

2 GPGPU GPGPU pipeline is selected BDW

 Command Reference: Instructions

994 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Plane

pln - Plane
Project: BDW

Source: EuIsa

Length Bias: 4

The pln instruction computes a component-wise plane equation (w = p*u+q*v+r where u/v/w are vectors and

p/q/r are scalars) of src0 and src1 and stores the results in dst. src1 is the input vector u. src0 provides input

scalars p, q, and r, where p is the scalar value based on the region description of src0 and q and r are the scalar

values implied from the src0 region. Specifically, q is the second component and r is the fourth component of

the 4-tuple (128-bit aligned) that p belongs to.

Format: [(pred)] pln[.cmod] (exec_size) dst src0 src1

Restriction

This is a specialized instruction that only supports an execution size (ExecSize) of 8 or 16.

The src0 region must be a replicated scalar (with HorzStride == VertStride == 0).

src0 must specify .0 or .4 as the subregister number, corresponding to a subregister byte offset of 0 or 16.

Source operands cannot be accumulators.

Syntax

[(pred)] pln[.cmod] (exec_size) reg reg reg

Pseudocode

 Evaluate(WrEn);

 for (n = 0; n < exec_size; n++) {

 float dwP = src0.RegNum.SubRegNum[bits4:2]; // A DWord-aligned scalar.

 float dwQ = src0.RegNum.(SubRegNum[bit4:2] | 0x1); // Second component.

 float dwR = src0.RegNum.(SubRegNum[bit4:2] | 0x3); // Fourth component.

 if (ExecSize == 8) {

 u = src1.RegNum

 v = src1.(RegNum + 1)

 } else {

 if (n < 8) {

 u = src1.RegNum

 v = src1.(RegNum + 1)

 } else {

 u = src1.(RegNum + 2)

 v = src1.(RegNum + 3)

 }

 }

 if (WrEn.chan[n]) {

 dst.chan[n] = dwP * u.chan[n] + dwQ * v.chan[n] + dwR;

 }

 }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y N

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 995

pln - Plane

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

996 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

REP16 Render Target Write MSD

MSD_RTW_REP16 - REP16 Render Target Write MSD
Project: BDW

Source: Render Cache DataPort

Length Bias: 1

Family: Other

Group: Render Target R/W

DWord Bit Description

0 31 Reserved

Project: All

Format: MBZ

 Ignored

30 Message Precision Subtype

Default Value: 0h

Project: All

Format: Opcode

 Full precision data message

29 Reserved

Project: All

Format: MBZ

 Ignored

28:25 Message Length

Project: All

Format: U4

 Specifies the number of 256-bit GRF registers sent as the message payload (including the

header). Valid value ranges are 1 to 15.

24:20 Response Length

Project: All

Format: U5

 Specifies the number of 256-bit GRF registers expected as the message response payload. Valid

value ranges are 0 to 16.

19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the 2-register header.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 997

MSD_RTW_REP16 - REP16 Render Target Write MSD
18 Reserved

Project: BDW

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Render Target Write message

13 Reserved

Project: BDW

Format: MBZ

 Ignored

12 Last Render Target Select

Project: All

Format: Enable

 This bit must be set on the last render target write message sent for each group of pixels. For

single render target pixel shaders, this bit is set on all render target write messages. For multiple

render target pixel shaders, this bit is set only on messages sent to the last render target. This bit

must be zero for SIMD8 Image Write message. In general, when threads are not launched by 3D

FF, this bit must be zero.

Programming Notes

When a pixel shader has render target writes at finer granularity than the dispatch rate, last

render target write to a null surface must be present at the dispatch rate with this bit set. In

particular, if a kernel is dispatched at pixel rate and it only writes to render targets at sample-

rate, it must include a pixel-rate render target write to a null surface with Last Render Target

Select bit enabled.

11 Slot Group Select

Project: All

Format: MDC_RT_SGS

 This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

 Command Reference: Instructions

998 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD_RTW_REP16 - REP16 Render Target Write MSD
10:8 Render Target Message Subtype

Default Value: 1h

Project: All

Format: Opcode

 SIMD16 Single source message with replicated data. Use slots [15:0] for pixel enables, X/Y

addresses, and oMask.

Programming Notes

The above slots indicated are within the 16 slots selected by Slot Group Select. If SLOTGRP_HI is

selected, slots [31:16] are referenced instead of [15:0].

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 999

Return

ret - Return
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

Return execution to the code sequence that called a subroutine. The ret instruction can be predicated

or non-predicated. If non-predicated, all channels jump to the return IP in the first channel of src0 and

restore CallMask from the second channel of src0. If predicated, the enabled channels jump to the

return IP from the first channel of src0 and the corresponding bits in the CallMask are cleared to zero;

if all CallMask bits are zero after the ret instruction, then execution jumps to the return IP from the first

channel of src0. When SPF is on, the predication control must be scalar.

BDW

Format: [(pred)] ret (exec_size) null src0

Restriction Project

This instruction cannot take accumulator as source.

The src0 regioning control must be <2;2,1>

Syntax

[(pred)] ret (exec_size) null reg

Pseudocode Project

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { PcIP[n] = src0.chan[0];

CallMask[n] = 0; } else { PcIP[n] = IP + 1; } } for (n = exec_size; n < 32; n++) { PcIP[n] = IP + 1; } if (

CallMask[n:0] == 0)) { // all channels are zero Jump(src0.chan[0]); CallMask = src0.chan[1]; }

BDW

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types

D, UD

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

1000 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

ret - Return
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1001

Round Down

rndd - Round Down
Project: BDW

Source: EuIsa

Length Bias: 4

The rndd instruction takes component-wise floating point downward rounding (to the integral float number

closer to negative infinity) of src0 and storing the rounded integral float results in dst. This is commonly

referred to as the floor() function. Each result follows the rules in the following tables based on the floating-

point mode.

Format: [(pred)] rndd[.cmod] (exec_size) dst src0

Syntax

[(pred)] rndd[.cmod] (exec_size) reg reg [(pred)] rndd[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = floor(src0.chan[n]); } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

1002 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Round to Nearest or Even

rnde - Round to Nearest or Even
Project: BDW

Source: EuIsa

Length Bias: 4

The rnde instruction takes component-wise floating point round-to-even operation of src0 with results in two

pieces - a downward rounded integral float results stored in dst and the round-to-even increments stored in

the rounding increment bits. The round-to-even increment must be added to the results in dst to create the

final round-to-even values to emulate the round-to-even operation, commonly known as the round() function.

The final results are the one of the two integral float values that is nearer to the input values. If the neither

possibility is nearer, the even alternative is chosen. Each result follows the rules in the following tables based on

the floating-point mode.

Format: [(pred)] rnde[.cmod] (exec_size) dst src0

Syntax

[(pred)] rnde[.cmod] (exec_size) reg reg [(pred)] rnde[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { if (src0.chan[n] - floor(src0.chan[n]) > 0.5f

) { dst.chan[n] = floor(src0.chan[n]) + 1; } else if (src0.chan[n] - floor(src0.chan[n]) < 0.5f) { dst.chan[n] =

floor(src0.chan[n]); } else { if (floor(src0.chan[n]) is odd) { dst.chan[n] = floor(src0.chan[n]) + 1; } else {

dst.chan[n] = floor(src0.chan[n]); } } } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1003

Round to Zero

rndz - Round to Zero
Project: BDW

Source: EuIsa

Length Bias: 4

The rndz instruction takes component-wise floating point round-to-zero operation of src0 with results in two

pieces - a downward rounded integral float results stored in dst and the round-to-zero increments stored in

the rounding increment bits. The round-to-zero increment must be added to the results in dst to create the

final round-to-zero values to emulate the round-to-zero operation, commonly known as the truncate()

function. The final results are the one of the two closest integral float values to the input values that is nearer to

zero.

Format: [(pred)] rndz[.cmod] (exec_size) dst src0

Syntax

[(pred)] rndz[.cmod] (exec_size) reg reg [(pred)] rndz[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { dst.chan[n] = floor(src0.chan[n]); if (

abs(src0.chan[n]) < abs(dst.chan[n])) { dst.chan[n] = floor(src0.chan[n]) + 1; } else { dst.chan[n] =

floor(src0.chan[n]); } } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

1004 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Round Up

rndu - Round Up
Project: BDW

Source: EuIsa

Length Bias: 4

The rndu instruction takes component-wise floating point upward rounding (to the integral float number closer

to positive infinity) of src0, commonly known as the ceiling() function. Each result follows the rules in the

following tables based on the floating-point mode.

Format: [(pred)] rndu[.cmod] (exec_size) dst src0

Syntax

[(pred)] rndu[.cmod] (exec_size) reg reg [(pred)] rndu[.cmod] (exec_size) reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { if (src0.chan[n] - floor(src0.chan[n]) > 0.0f

) { dst.chan[n] = floor(src0.chan[n]) + 1; } else { dst.chan[n] = src0.chan[n]; } } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

F F

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([Operand Controls][Src0.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

127:64 ImmSource

Exists If: ([Operand Controls][Src0.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1005

Scattered Move

smov - Scattered Move
Project: BDW

Source: EuIsa

Length Bias: 4

The smov instruction moves the components in src0 into dst. For each enabled channel, copy src0 to dst. The

immediate is used to selectively enable channels without using flags. When predication is enabled, the

predicate mask is not generated from the flags. Instead, the immediate is used to mask the execution mask. If

any channel is enabled as a result of this masking, the instruction is executed. When predication is not enabled,

the immediate masks the execution mask. This provides flexibility to mask out any channel with an immediate.

Format: [(pred)] smov[.cmod] (exec_size) dst src0 src1

Programming Notes

When predication is disabled, the immediate provides the flexibility to perform a select operation without the

use of flags.

When predication is enabled, the usage model provides flexibility to select any bit in the flag registers for

predication for execution size of 1.

Syntax

[(pred)] smov[.cmod] (exec_size) reg reg imm32

Pseudocode

if pred emask = OR (emask AND imm32) Else pmask = imm32. Evaluate(WrEn); for (n = 0; n < 32; n++) { if (

WrEn.chan[n]) { dst.chan[n] = src0.chan[n]; } }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

Src Types Dst Types Project

*W,*D,*Q, HF, F, DF *W,*D,*Q, HF, F, DF BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

1006 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

smov - Scattered Move
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1007

Scratch Block Read MSD

MSD0R_HWB - Scratch Block Read MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Block R/W

Group: HW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Scratch Block Message

Default Value: 1h

Project: All

Format: Opcode

 Scratch Block Message

17 Operation Type

Default Value: 0h

Project: All

Format: Opcode

 Scratch Block Read message

16 Channel Mode

Project: BDW

Format: MDC_CMODE

 Specifies whether the read or write operation occurs on all 4 Dwords if any of those channel

enables are set, or else only on the dwords whose corresponding channel enable is set.

15 Invalidate After Read

Project: All

Format: MDC_IAR

 Specifies if L3 cache lines accessed by the message should be invalidated after the read occurs

 Command Reference: Instructions

1008 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD0R_HWB - Scratch Block Read MSD
14 Reserved

Project: All

Format: MBZ

 Ignored

13:12 Data Elements

Project: All

Format: MDC_DB_HW

 Specifies the number of registers to be read or written

11:0 Address Offset

Project: All

Format: GeneralStateOffset[17:6]

 HWORD (32 byte) based address offset to the BufferAddress in the Message Header.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1009

Scratch Block Write MSD

MSD0W_HWB - Scratch Block Write MSD
Project: BDW

Source: DataPort 0

Length Bias: 1

Family: Block R/W

Group: HW Block R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

 Indicates that the message requires a header.

18 Scratch Block Message

Default Value: 1h

Project: All

Format: Opcode

 Scratch Block Message

17 Operation Type

Default Value: 1h

Project: All

Format: Opcode

 Scratch Block Write message

16 Channel Mode

Project: BDW

Format: MDC_CMODE

 Specifies whether the read or write operation occurs on all 4 Dwords if any of those channel

enables are set, or else only on the dwords whose corresponding channel enable is set.

15:14 Reserved

Project: All

Format: MBZ

 Ignored

 Command Reference: Instructions

1010 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD0W_HWB - Scratch Block Write MSD
13:12 Data Elements

Project: All

Format: MDC_DB_HW

 Specifies the number of registers to be read or written

11:0 Address Offset

Project: All

Format: GeneralStateOffset[17:6]

 HWORD (32 byte) based address offset to the BufferAddress in the Message Header.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1011

Select

sel - Select
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

The sel instruction selectively moves the components in src0 or src1 into the channels of dst based on

the predication. On a channel by channel basis, if the channel condition is true, data in src0 is moved

into dst. Otherwise, data in src1 is moved into dst.

As the predication is used to select the two sources, it is not included in the evaluation of WrEn. The

predicate clause is mandatory if cmod is omitted/0000b. If both predication and the conditional

modifier are omitted, the results are undefined.

If the conditional modifier is specified (not 0000b, a compare is performed and the resulting condition

flag is used for the sel instruction. Conditional modifiers .ge and .l follow the cmpn rules, and all other

conditional modifiers follow the cmp rules. Predication is not allowed in this mode.

A sel instruction with cmod .l is used to emulate a MIN instruction.

A sel instruction with cmod .ge is used to emulate a MAX instruction.

For a sel instruction with a .l or .ge conditional modifier, if one source is NaN and the other not NaN,

the non-NaN source is the result. If both sources are NaNs, the result is NaN. For all other conditional

modifiers, if either source is NaN then src1 is selected.

A sel instruction without a conditional modifier always copies a denorm source value to a denorm

destination value (in the manner of a raw move). This applies even if the source modifies are set on the

sel instruction sources.

The sel instruction uses any conditional modifier internally and does not update the flag register if a

conditional modifier is used.

A sel instruction with cmod or source modifier will flush denorm to zero, depending on the denorm

mode bit; a sel instruction without cmod and source modifier will retain denorm.

BDW

Format: (pred) sel[.cmod] (exec_size) dst src0 src1

Syntax

(pred) sel[.cmod] (exec_size) reg reg reg (pred) sel[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn, NoPMask); if (cmod == "0000") { // no CMod Evaluate(PMask); for (n = 0; n < exec_size; n++) {

if (WrEn.chan[n]) { if (PMask.channel[n]) { dst.chan[n] = src0.chan[n]; } else { dst.chan[n] = src1.chan[n]; } } } }

else { // with CMod Evaluate(CMod); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { if (CMod.chan[n]) {

dst.chan[n] = src0.chan[n]; } else { dst.chan[n] = src1.chan[n]; } } } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

*B,*W*D *B,*W,*D

F F

 Command Reference: Instructions

1012 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

sel - Select

DF DF BDW

*W,*D,*Q *W,*D,*Q BDW

HF HF BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1013

Send Message

send - Send Message
Project: BDW

Source: EuIsa

Length Bias: 4

Description

Send a message stored in GRF starting at <src> to a shared function identified by <ex_desc> along with

control from <desc> with a GRF writeback location at <dest>.

The send instruction performs data communication between a thread and external function units, including

shared functions (Sampler, Data Port Read, Data Port Write, URB, and Message Gateway) and some fixed

functions (e.g. Thread Spawner, who also have an unique Shared Function ID). The send instruction adds an

entry to the EU's message request queue. The request message is stored in a block of contiguous GRF registers.

The response message, if present, will be returned to a block of contiguous GRF registers. The return GRF writes

may be in any order depending on the external function units. <src> is the lead GRF register for request.

<dest> is the lead GRF register for response. The message descriptor field <desc> contains the Message

Length (the number of consecutive GRF registers) and the Response Length (the number of consecutive GRF

registers). It also contains the header present bit, and the function control signals. The extend mesage

descriptor field <ex_desc> contains the target function ID. WrEn is forwarded to the target function in the

message sideband.

The send instruction is the only way to terminate a thread. When the EOT (End of Thread) bit of <ex_desc> is

set, it indicates the end of thread to the EU, the Thread Dispatcher and, in most cases, the parent fixed function.

Message descriptor field <desc> can be a 32-bit immediate, imm32, or a 32-bit scalar register, <reg32a>. GEN

restricts that the 32-bit scalar register <reg32a> must be the leading dword of the address register. It should

be in the form of a0.0<0;1,0>:ud. When <desc> is a register operand, only the lower 29 bits of <reg32a> are

used.

<ex_desc> is a 6-bit immediate, imm6. The lower 4bits of the <ex_desc> specifies the SFID for the message.

The MSb of the message descriptor, the EOT field, always comes from bit 127 of the instruction word, which is

the MSb of imm6. A thread must terminate with a send instruction with EOT turned on.

<src> is a 256-bit aligned GRF register. It serves as the leading GRF register of the request.

<dest> serves for two purposes: to provide the leading GRF register location for the response message if

present, and to provide parameters to form the channel enable sideband signals. <dest> signals whether there

is a response to the message request. It can be either a null register, a direct-addressed GRF register or a

register-indirect GRF register. Otherwise, hardware behavior is undefined. If <dest> is null, there is no response

to the request. Meanwhile, the Response Length field in <desc> must be 0. Certain types of message requests,

such as memory write (store) through the Data Port, do not want response data from the function unit. If so,

the posted destination operand can be null. If <dest> is a GRF register, the register number is forwarded to the

shared function. In this case, the target function unit must send one or more response message phases back to

the requesting thread. The number of response message phases must match the Response Length field in

<desc>, which of course cannot be zero. For some cases, it could be an empty return message. An empty

return message is defined as a single phase message with all channel enables turned off. The subregister

number, horizontal stride, destination mask and type fields of <dest> are always valid and are used in part to

generate on the WrEn. This is true even if <dest> is a null register (this is an exception for null as for most cases

these fields are ignored by hardware). The 16-bit channel enables of the message sideband are formed based

 Command Reference: Instructions

1014 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

send - Send Message

on the WrEn. Interpretation of the channel enable sideband signals is subject to the target external function. In

general for a 'send' instruction with return messages, they are used as the destination dword write mask for the

GRF registers starting at <dest>. For a message that has multiple return phases, the same set of channel enable

signals applies to all the return phases. Thread managed memory coherency: A special usage of using non-null

<dest> is to support write-commit signaling for memory write service by the Data Port Write unit. If

<post_dest> is not null for a memory write request, the Data Port along with the Data Cache or Render Cache

will wait until all the posted writes for the request have reached the coherent domain before sending back to

the requesting thread an empty message to <dest> register. A memory write reaching the coherent domain,

also referred to as reaching the global observable state, means that subsequent read to the same memory

location, no matter which thread issues the read, must return the data of the write. The destination dependency

control, {NoDDClr}, can be used in this instruction. This allows software to control the destination dependencies

for multiple 'read'-type messages similar to that for multiple instructions using EU execution pipeline. As send

does not check register dependencies for the post destination, {NoDDChk} should not be used for this

instruction.

Restriction

Software must obey the following rules in signaling the end of thread using the send instruction: The posted

destination operand must be null. No acknowledgement is allowed for the send instruction that signifies the

end of thread. This is to avoid deadlock as the EU is expecting to free up the terminated thread's resource. A

thread must terminate with a send instruction with message to a shared function on the output message bus;

therefore, it cannot terminate with a send instruction with message to the following shared functions: Sampler

unit, NULL function For example, a thread may terminate with a URB write message or a render cache write

message. A root thread originated from the media (generic) pipeline must terminate with a send instruction

with message to the Thread Spawner unit. A child thread should also terminate with a send to TS. Please refer

to the Media Chapter for more detailed description. The send instruction can not update accumulator registers.

Saturate is not supported for send instruction. ThreadCtrl are not supported for send instruction. The send with

EOT should use register space R112-R127 for <src>. This is to enable loading of a new thread into the same

slot while the message with EOT for current thread is pending dispatch. Any instruction updating the ARF must

use a {Switch} if the ARF is not used before EOT. DepCtrl Must not be used with Send Instruction. When

pagefault is enabled, the source and destination operands must not overlap. This is required to ensure the

messages can be replayed.</src>

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 Message

Format: EU_INSTRUCTION_OPERAND_SEND_MSG

95:89 Flags

Format: EU_INSTRUCTION_FLAGS

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1015

send - Send Message
88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:28 Controls B

Format: EU_INSTRUCTION_CONTROLS_B

27:24 Shared Function ID (SFID)

Format: SFID

23:8 Controls A

Format: EU_INSTRUCTION_CONTROLS_A

7 Reserved

Format: MBZ

6:0 Opcode

Format: EU_OPCODE

 Command Reference: Instructions

1016 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Shift Left

shl - Shift Left
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

Perform component-wise logical left shift of the bits in src0 by the shift count indicated in src1, storing

the results in dst, inserting zero bits in the number of LSBs indicated by the shift count. Hardware

detects overflow properly and uses it to perform any saturation operation on the result, as long as the

shifted result is within 33 bits. Otherwise, the result is undefined. Note: For word and DWord operands,

the accumulators have 33 bits.

In QWord mode, the shift count is taken from the low six bits of src1 regardless of the src1 type and

treated as an unsigned integer in the range 0 to 63. Otherwise the shift count is taken from the low

five bits of src1 regardless of the src1 type and treated as an unsigned integer in the range 0 to 31.

The operation uses QWord mode if src0 or dst has the Q or UQ type but not if src1 is the only

operand with the Q or UQ type.

BDW

Format: [(pred)] shl[.cmod] (exec_size) dst src0 src1

Restriction

Accumulator cannot be destination, implicit or explicit.

Syntax

[(pred)] shl[.cmod] (exec_size) reg reg reg [(pred)] shl[.cmod] (exec_size) reg reg imm32

Pseudocode Project

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { shiftCnt = src0 or dst has Q or

UQ type ? src1.chan[n] & 0x3F : src1.chan[n] & 0x1F dst.chan[n] = src0.chan[n] « shiftCnt; } }

BDW

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

*B,*W,*D *B,*W,*D

*W,*D,*Q *W,*D,*Q BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1017

shl - Shift Left
63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

 Command Reference: Instructions

1018 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Shift Right

shr - Shift Right
Project: BDW

Source: EuIsa

Length Bias: 4

Description

Perform component-wise logical right shift with zero insertion of the bits in src0 by the shift count indicated in

src1, storing the results in dst. Insert zero bits in the number of MSBs indicated by the shift count. src0 and dst

can have different types and can be signed or unsigned. Note: For word and DWord operands, the

accumulators have 33 bits. Note: For unsigned src0 types, shr and asr produce the same result.

In QWord mode, the shift count is taken from the low six bits of src1 regardless of the src1 type and treated as

an unsigned integer in the range 0 to 63. Otherwise the shift count is taken from the low five bits of src1

regardless of the src1 type and treated as an unsigned integer in the range 0 to 31. The operation uses QWord

mode if src0 or dst has the Q or UQ type but not if src1 is the only operand with the Q or UQ type.

Format: [(pred)] shr[.cmod] (exec_size) dst src0 src1

Syntax

[(pred)] shr[.cmod] (exec_size) reg reg reg [(pred)] shr[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n++) { if (WrEn.chan[n]) { shiftCnt = src0 or dst has Q or UQ type ?

src1.chan[n] & 0x3F : src1.chan[n] & 0x1F dst.chan[n] = src0.chan[n] » shiftCnt; } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types Project

UB, UW, UD UB, UW, UD

UW, UD, UQ UW, UD, UQ BDW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1019

SIMD8 Render Target Write MSD

MSD_RTW_SIMD8 - SIMD8 Render Target Write MSD
Project: BDW

Source: Render Cache DataPort

Length Bias: 1

Family: Other

Group: Render Target R/W

DWord Bit Description

0 31 Reserved

Project: All

Format: MBZ

 Ignored

30 Message Precision Subtype

Default Value: 0h

Project: All

Format: Opcode

 Full precision data message

29 Reserved

Project: All

Format: MBZ

 Ignored

28:25 Message Length

Project: All

Format: U4

 Specifies the number of 256-bit GRF registers sent as the message payload (including the

header). Valid value ranges are 1 to 15.

24:20 Response Length

Project: All

Format: U5

 Specifies the number of 256-bit GRF registers expected as the message response payload. Valid

value ranges are 0 to 16.

 Command Reference: Instructions

1020 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD_RTW_SIMD8 - SIMD8 Render Target Write MSD
19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the 2-register header.

18 Reserved

Project: BDW

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Render Target Write message

13 Reserved

Project: BDW

Format: MBZ

 Ignored

12 Last Render Target Select

Project: All

Format: Enable

 This bit must be set on the last render target write message sent for each group of pixels. For

single render target pixel shaders, this bit is set on all render target write messages. For multiple

render target pixel shaders, this bit is set only on messages sent to the last render target. This bit

must be zero for SIMD8 Image Write message. In general, when threads are not launched by 3D

FF, this bit must be zero.

Programming Notes

When a pixel shader has render target writes at finer granularity than the dispatch rate, last

render target write to a null surface must be present at the dispatch rate with this bit set. In

particular, if a kernel is dispatched at pixel rate and it only writes to render targets at sample-

rate, it must include a pixel-rate render target write to a null surface with Last Render Target

Select bit enabled.

11 Slot Group Select

Project: All

Format: MDC_RT_SGS

 This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1021

MSD_RTW_SIMD8 - SIMD8 Render Target Write MSD
10:8 Render Target Message Subtype

Default Value: 4h

Project: All

Format: Opcode

 SIMD8 single source message. Use slots [7:0] for pixel enables, X/Y addresses, and oMask.

Programming Notes

The above slots indicated are within the 16 slots selected by Slot Group Select. If SLOTGRP_HI is

selected, slots [23:16] are referenced instead of [7:0].

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

1022 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

SIMD16 Render Target Write MSD

MSD_RTW_SIMD16 - SIMD16 Render Target Write MSD
Project: BDW

Source: Render Cache DataPort

Length Bias: 1

Family: Other

Group: Render Target R/W

DWord Bit Description

0 31 Reserved

Project: All

Format: MBZ

 Ignored

30 Message Precision Subtype

Default Value: 0h

Project: All

Format: Opcode

 Full precision data message

29 Reserved

Project: All

Format: MBZ

 Ignored

28:25 Message Length

Project: All

Format: U4

 Specifies the number of 256-bit GRF registers sent as the message payload (including the

header). Valid value ranges are 1 to 15.

24:20 Response Length

Project: All

Format: U5

 Specifies the number of 256-bit GRF registers expected as the message response payload. Valid

value ranges are 0 to 16.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1023

MSD_RTW_SIMD16 - SIMD16 Render Target Write MSD
19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the 2-register header.

18 Reserved

Project: BDW

Format: MBZ

 Ignored

17:14 Message Type

Default Value: 0Ch

Project: All

Format: Opcode

 Render Target Write message

13 Reserved

Project: BDW

Format: MBZ

 Ignored

12 Last Render Target Select

Project: All

Format: Enable

 This bit must be set on the last render target write message sent for each group of pixels. For

single render target pixel shaders, this bit is set on all render target write messages. For multiple

render target pixel shaders, this bit is set only on messages sent to the last render target. This bit

must be zero for SIMD8 Image Write message. In general, when threads are not launched by 3D

FF, this bit must be zero.

Programming Notes

When a pixel shader has render target writes at finer granularity than the dispatch rate, last

render target write to a null surface must be present at the dispatch rate with this bit set. In

particular, if a kernel is dispatched at pixel rate and it only writes to render targets at sample-

rate, it must include a pixel-rate render target write to a null surface with Last Render Target

Select bit enabled.

11 Slot Group Select

Project: All

Format: MDC_RT_SGS

 This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

 Command Reference: Instructions

1024 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

MSD_RTW_SIMD16 - SIMD16 Render Target Write MSD
10:8 Render Target Message Subtype

Default Value: 0h

Project: All

Format: Opcode

 SIMD16 Single source message. Use slots [15:0] for pixel enables, X/Y addresses, and oMask.

Programming Notes

The above slots indicated are within the 16 slots selected by Slot Group Select. If SLOTGRP_HI is

selected, slots [31:16] are referenced instead of [15:0].

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1025

STATE_BASE_ADDRESS

STATE_BASE_ADDRESS
Project: BDW

Length Bias: 2

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect

object accesses by the GPE.

For more information see the Base Address Utilization table in the Memory Access Indirection narrative topic.

Programming Notes Project

The following commands must be reissued following any change to the base addresses:

 3DSTATE_CC_POINTERS

 3DSTATE_BINDING_TABLE_POINTERS

 3DSTATE_SAMPLER_STATE_POINTERS

 3DSTATE_VIEWPORT_STATE_POINTERS

 MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher

performance.

SW must always program PIPE_CONTROL with "CS Stall" and "Render Target Cache Flush Enable" set

before programming STATE_BASE_ADDRESS command for GPGPU workloads i.e when pipeline select

is GPGPU via PIPELINE_SELECT command. This is required to achieve better GPGPU preemption

latencies in certain workload programming sequences. If programming PIPE_CONTROL has

performance implications then preemption latencies can be traded off against performance by not

implementing this programming note.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

23:16 3D Command Sub Opcode

Default Value: 01h STATE_BASE_ADDRESS

15:8 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

1026 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

STATE_BASE_ADDRESS
7:0 DWord Length

Project: BDW

Format: =n Total Length - 2

Value Name Description

Eh DWORD_COUNT_n [Default] Excludes DWord (0,1)

1..2 63:12 General State Base Address

Project: All

Format: GraphicsAddress[63:12]

Specifies the 4K-byte aligned base address for general state accesses. GraphicsAddress [63:48]

are ignored by the HW and assumed to be in correct canonical form [63:48] == [47].

Programming Notes

Bounds checking is performed on general state accesses by Data Port Shared Functions for

stateless A32 messages.

Bounds checking is enabled when General State Base Address [46:12] + General State Buffer

Size [31:12] is <= 2^47. This ensures that the General State Buffer does not straddle the

canonical address boundary where GraphicsAddress [47] changes.

Restriction Project

General State Base Address [47:12] + General State Buffer Size [31:12] must be < 2^48.

It is illegal programming for this to be >= 2^48.

When using stateless (A32) Data Port messages, General State Base Address [47:12] +

Buffer Base Address [31:0] must be < 2^48. It is illegal for this to be >= 2^48.

BDW

11 Reserved

Project: All

Format: MBZ

10:4 General State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for indirect state using the General State Base

Address, with the exception of the stateless data port accesses.

3:1 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1027

STATE_BASE_ADDRESS
0 General State Base Address Modify Enable

Project: All

Format: Enable

The other fields in this DWord and the following DWord are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address. All

1h Enable Modify the address. All

3 31:23 Reserved

Project: All

Format: MBZ

22:16 Stateless Data Port Access Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for stateless data port accesses.

15:0 Reserved

Project: All

Format: MBZ

4..5 63:12 Surface State Base Address

Project: All

Format: GraphicsAddress[63:12]

 Specifies the 4K-byte aligned base address for binding table and surface state accesses.

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

11 Reserved

Project: All

Format: MBZ

10:4 Surface State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for indirect state using the Surface State Base

Address.

3:1 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

1028 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

STATE_BASE_ADDRESS
0 Surface State Base Address Modify Enable

Project: All

Format: Enable

 The other fields in this DWord and the following DWord are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address. All

1h Enable Modify the address. All

Programming Notes

Setting this bit to 1 in a batch buffer causes the resource streamer to stop; for performance

reasons the SW should only place commands with this bit set in the ring buffer.

Before programming the Surface State Base Address, the RS must be disabled. Within a batch

buffer where the RS is enabled, RS may be disabled thru a MI_RS_CONTROL command with

Resource Streamer Control cleared prior to the STATE_BASE_ADDRESS with Surface State Base

Address Modify Enable set and then re-enabled with another MI_RS_CONTROL with Resource

Streamer Control set.

6..7 63:12 Dynamic State Base Address

Project: All

Format: GraphicsAddress[63:12]

 Specifies the 4K-byte aligned base address for sampler and viewport state accesses.

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

11 Reserved

Project: All

Format: MBZ

10:4 Dynamic State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for indirect state using the Dynamic State Base

Address. Push constants defined in 3DSTATE_CONSTANT_(VS | GS | PS) commands do not use

this control state, although they can use the corresponding base address. The memory object

control state for push constants is defined within the command.

3:1 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1029

STATE_BASE_ADDRESS
0 Dynamic State Base Address Modify Enable

Project: All

Format: Enable

 The other fields in this DWord and the following DWord are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address. All

1h Enable Modify the address. All

8..9 63:12 Indirect Object Base Address

Project: All

Format: GraphicsAddress[63:12]IndirectObject

 Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT command.

11 Reserved

Project: All

Format: MBZ

10:4 Indirect Object Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for indirect objects using the Indirect Object Base

Address.

3:1 Reserved

Project: All

Format: MBZ

0 Indirect Object Base Address Modify Enable

Project: All

Format: Enable

The other fields in this DWord and the following DWord are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address. All

1h Enable Modify the address. All

10..11 63:12 Instruction Base Address

Project: All

Format: GraphicsAddress[63:12]

 Specifies the 4K-byte aligned base address for all EU instruction accesses.

 GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

 Command Reference: Instructions

1030 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

STATE_BASE_ADDRESS
11 Reserved

Project: All

Format: MBZ

10:4 Instruction Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state for EU instructions using the Instruction Base

Address.

3:1 Reserved

Project: All

Format: MBZ

0 Instruction Base Address Modify Enable

Project: All

Format: Enable

The other fields in this DWord and the following DWord are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address. All

1h Enable Modify the address. All

12 31:12 General State Buffer Size

Project: All

Format: U20

FormatDesc

This field specifies the size of the buffer in 4K pages. Any access that straddles or goes past the

end of the buffer returns 0.

Note that BufferSize=0 indicates that there is no valid data in the buffer.

Workaround Project

When the General State Buffer Size is programmed to 0, SLM accesses are treated as

out-of-bounds (should only apply to Stateless accesses). Workaround is to program

the General State Buffer Size to a value > 0.

BDW

If Per Thread Scratch Space Size bounds checking is enabled by GT_MODE[15], then

General State Buffer Size must be set larger than the maximum Per Thread Scratch

Space Size.

BDW

11:1 Reserved

Project: All

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1031

STATE_BASE_ADDRESS
0 General State Buffer Size Modify Enable

Project: All

Format: Enable

 The bound in this DWord is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound. All

1h Enable Modify the updated bound. All

13 31:12 Dynamic State Buffer Size

Project: All

Format: U20

FormatDesc

This field specifies the size of the buffer in 4K pages. Any access that straddles or goes past the

end of the buffer returns 0.

Note that BufferSize=0 indicates that there is no valid data in the buffer.

11:1 Reserved

Project: All

Format: MBZ

0 Dynamic State Buffer Size Modify Enable

Project: All

Format: Enable

FormatDesc

The bound in this DWord is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound. All

1h Enable Modify the updated bound. All

14 31:12 Indirect Object Buffer Size

Project: All

Format: U20

FormatDesc

This field specifies the size of the buffer in 4K pages. Any access that straddles or goes past the

end of the buffer returns 0.

Note that BufferSize=0 indicates that there is no valid data in the buffer.

 Command Reference: Instructions

1032 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

STATE_BASE_ADDRESS
11:1 Reserved

Project: All

Format: MBZ

0 Indirect Object Buffer Size Modify Enable

Project: All

Format: Enable

FormatDesc

The bound in this DWord is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound. All

1h Enable Modify the updated bound. All

15 31:12 Instruction Buffer Size

Project: All

Format: U20

FormatDesc

This field specifies the size of the buffer in 4K pages. Any access that straddles or goes past the

end of the buffer returns 0.

Note that BufferSize=0 indicates that there is no valid data in the buffer.

11:1 Reserved

Project: All

Format: MBZ

0 Instruction Buffer size Modify Enable

Project: All

Format: Enable

FormatDesc

The bound in this DWord is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound. All

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1033

STATE_PREFETCH

STATE_PREFETCH
Project: BDW

Length Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some

experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into

the GPE-internal cache ("L2 ISC") used to access EU kernel instructions and fixed/shared function indirect state

data. While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this

command may be used to prefetch data not automatically prefetched, such as: 3D viewport state; Media pipeline

Interface Descriptors; EU kernel instructions.

Restriction Project

Restriction BDW bug# 1910068 : Due to know HW issue this command doesn't achieve its intended

purpose and must not be exercised/programmed by SW.

BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

23:16 3D Command Sub Opcode

Default Value: 03h STATE_PREFETCH

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

0h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:6 Prefetch Pointer

Project: All

Format: GraphicsAddress[31:6]

 Specifies the 64-byte aligned address to start the prefetch from. This pointer is an absolute

virtual address, it is not relative to any base pointer.

 Command Reference: Instructions

1034 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

STATE_PREFETCH
5:3 Reserved

Project: All

Format: MBZ

2:0 Prefetch Count

Project: All

Format: U3-1 count of cache lines

 Indicates the number of contiguous 64-byte cache lines that will be prefetched.

Value Name Description

[0,7] indicating a count of [1,8]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1035

STATE_SIP

STATE_SIP
Project: All

Length Bias: 2

 The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all

threads in execution.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

23:16 3D Command Sub Opcode

Default Value: 02h STATE_SIP

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description Project

1h DWORD_COUNT_n [Default] Excludes DWord (0,1) BDW

1..2

Project:

BDW

63:4 System Instruction Pointer

Project: All

Format: InstructionBaseOffset[63:4]Kernel

 Specifies the instruction address of the system routine associated with the current context as a

128-bit granular offset from the Instruction Base Address. SIP is shared by all threads in

execution. The address specifies the double quadword aligned instruction location.

GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form

[63:48] == [47].

Programming Notes

This portion of the command is not context save/restored. The context image may restore this

command as a 2 dword command rather than a 3 dword command.

3:0 Reserved

Project: All

Format: MBZ

 Command Reference: Instructions

1036 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Sum of Absolute Difference 2

sad2 - Sum of Absolute Difference 2
Project: BDW

Source: EuIsa

Length Bias: 4

The sad2 instruction takes source data channels from src0 and src1 in groups of 2-tuples. For each 2-tuple, it

computes the sum-of-absolute-difference (SAD) between src0 and src1 and stores the scalar result in the first

channel of the 2-tuple in dst. The results are also stored in the accumulator register. The destination operand

and the accumulator maintain 16 bits per channel precision. The destination register must be aligned to even

word (DWord). The even words in the destination region will contain the correct data. The odd words are also

written but with undefined values.

Format: [(pred)] sad2[.cmod] (exec_size) dst src0 src1

Restriction

Source operands cannot be accumulators.

The execution size cannot be 1 as the computation requires at least two data channels.

Syntax

[(pred)] sad2[.cmod] (exec_size) reg reg reg [(pred)] sad2[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n += 2) { if (WrEn.chan[n]) { dst.chan[n] = abs(src0.chan[n] -

src1.chan[n]) + abs(src0.chan[n+1] - src1.chan[n+1]); } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

B, UB W, UW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1037

Sum of Absolute Difference Accumulate 2

sada2 - Sum of Absolute Difference Accumulate 2
Project: BDW

Source: EuIsa

Length Bias: 4

The sada2 instruction takes source data channels from src0 and src1 in groups of 2-tuples. For each 2-tuple, it

computes the sum-of-absolute-difference (SAD) between src0 and src1, adds the intermediate result with the

accumulator value corresponding to the first channel, and stores the scalar result in the first channel of the 2-

tuple in dst. The destination operand and the accumulator maintain 16 bits per channel precision. Higher

precision (guide bits) stored in the accumulator allows up to 64 rounds of sada2 instructions to be issued back

to back without overflowing the accumulator. The destination register must be aligned to even word (DWord).

The even words in the destination region will contain the correct data. The odd words are also written but with

undefined values.

Format: [(pred)] sada2[.cmod] (exec_size) dst src0 src1

Restriction

Source operands cannot be accumulators.

The execution size cannot be 1 as the computation requires at least two data channels.

Syntax

[(pred)] sada2[.cmod] (exec_size) reg reg reg [(pred)] sada2[.cmod] (exec_size) reg reg imm32

Pseudocode

Evaluate(WrEn); for (n = 0; n < exec_size; n += 2) { uwTmp = abs(src0.chan[n] - src1.chan[n]) +

abs(src0.chan[n+1] - src1.chan[n+1]); if (WrEn.chan[n]) { dst.chan[n] = uwTmp + acc[n]; } }

Predication Conditional Modifier Saturation Source Modifier

Y Y Y Y

Src Types Dst Types

B, UB W, UW

DWord Bit Description

0..3 127:64 RegSource

Exists If: ([RegSource][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_REG

127:64 ImmSource

Exists If: ([ImmSource][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_REG_IMM

63:32 Operand Controls

Format: EU_INSTRUCTION_OPERAND_CONTROLS

 Command Reference: Instructions

1038 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

sada2 - Sum of Absolute Difference Accumulate 2
31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1039

SWTESS_BASE_ADDRESS

SWTESS_BASE_ADDRESS
Project: BDW

Length Bias: 2

 The SWTESS_BASE_ADDRESS command sets the base pointers for SW Tessellation data read access by the TE

unit.

Programming Notes

This base address must also be comprehended in the SURFACE_STATE used by the HS kernel to write the SW

tessellation data.

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher

performance.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

23:16 3D Command Sub Opcode

Default Value: 03h SWTESS_BASE_ADDRESS

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

0h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:12 SW Tessellation Base Address

Project: All

Format: GraphicsAddress[31:12]

 Specifies the 4K-byte aligned base address for TE unit SW tessellation data read accesses.

 Command Reference: Instructions

1040 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

SWTESS_BASE_ADDRESS
11:8 SW Tessellation Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

 Specifies the memory object control state used by the TE unit to read SW tessellation data

from memory.

7:0 Reserved

Project: All

Format: MBZ

2

Project:

BDW

31:16 Reserved

Project: All

Format: MBZ

15:0 SW Tessellation Base Address High

Project: BDW

Format: GraphicsAddress[47:32]

 Specifies most significant bits of the 4K-byte aligned base address for TE unit SW tessellation

data read accesses. See SW Tessellation Base Address[31:12] in DWord 0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1041

Typed Surface Read MSD

MSD1R_TS - Typed Surface Read MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Surface R/W

Group: Scattered Typed Surface R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 05h

Project: All

Format: Opcode

 Typed Surface Read message

13:12 Slot Group

Project: All

Format: MDC_SG3

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Channel Mask

Project: All

Format: MDC_CMASK

 Specifies which RGBA channels are included in the message payload.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

1042 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

Typed Surface Write MSD

MSD1W_TS - Typed Surface Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Typed Surface R/W

Group: Scattered Typed Surface R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 0Dh

Project: All

Format: Opcode

 Typed Surface Write message

13:12 Slot Group

Project: All

Format: MDC_SG3

 Specifies the Slot Group mode of the message (which slots are processed)

11:8 Channel Mask

Project: All

Format: MDC_CMASK

 Specifies which RGBA channels are included in the message payload.

7:0 Binding Table Index

Project: All

Format: MDC_BTS

 Specifies the Binding Table Index for the message

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1043

Untyped Surface Write MSD

MSD1W_US - Untyped Surface Write MSD
Project: BDW

Source: DataPort 1

Length Bias: 1

Family: Untyped Surface R/W

Group: Scattered Untyped Surface R/W

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHP

 If set, indicates that the message includes the header.

18:14 Message Type

Default Value: 09h

Project: All

Format: Opcode

 Untyped Surface Write message

13:12 SIMD Mode

Project: All

Format: MDC_SM3

 Specifies the SIMD mode of the message (number of slots processed)

11:8 Channel Mask

Project: All

Format: MDC_UW_CMASK

 Specifies which RGBA channels are included in the message payload.

7:0 Binding Table Index

Project: All

Format: MDC_BTS_SLM_A32

 Specifies the Binding Table Index for the message

 Command Reference: Instructions

1044 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

URB Hword Dual Block Read MSD

MSD_UR_HWDB - URB Hword Dual Block Read MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

Ignored

17 Per Slot Offset

Format: MHC_PSOP

Specifies if per-slot offsets are present and will be added to the Global Offset.

16 Reserved

Project: All

Format: MBZ

Ignored

15 Swizzle Control

Project: All

Format: Opcode

Value Name Description Project

1 URB_INTERLEAVED

[Default]

Use two URB entries (URB Handle 0 and URB

Handle 1).

All

14:4 Global Offset

Project: All

Format: U11

Specifes the offset, in units of Hword elements, from the start of the URB handle for the access.

If Per Slot Offset is set, the global offset is added to those offsets to form the overall offset.

Range [0,1023]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1045

MSD_UR_HWDB - URB Hword Dual Block Read MSD
3:0 URB Opcode

Project: All

Format: Opcode

Value Name Description Project

2 URB_READ_HWORD [Default] URB Hword Read message All

 Command Reference: Instructions

1046 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

URB Hword Dual Block Write MSD

MSD_UW_HWDB - URB Hword Dual Block Write MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

Ignored

17 Per Slot Offset

Format: MHC_PSOP

Specifies if per-slot offsets are present and will be added to the Global Offset.

16 Reserved

Project: All

Format: MBZ

Ignored

15 Swizzle Control

Project: All

Format: Opcode

Value Name Description Project

1 URB_INTERLEAVED

[Default]

Use two URB entries (URB Handle 0 and URB

Handle 1).

All

14:4 Global Offset

Project: All

Format: U11

Specifes the offset, in units of Hword elements, from the start of the URB handle for the access.

If Per Slot Offset is set, the global offset is added to those offsets to form the overall offset.

Range [0,1023]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1047

MSD_UW_HWDB - URB Hword Dual Block Write MSD
3:0 URB Opcode

Project: All

Format: Opcode

Value Name Description Project

0 URB_WRITE_HWORD [Default] URB Hword Read message All

 Command Reference: Instructions

1048 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

URB Oword Block Write MSD

MSD_UW_OWB - URB Oword Block Write MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

Ignored

17 Per Slot Offset

Format: MHC_PSOP

Specifies if per-slot offsets are present and will be added to the Global Offset.

16 Reserved

Project: All

Format: MBZ

Ignored

15 Swizzle Control

Project: All

Format: Opcode

Value Name Description Project

0 URB_NOSWIZZLE [Default] Use a single URB entry (URB Handle 0). All

14:4 Global Offset

Project: All

Format: U11

Specifes the offset, in units of Oword elements, from the start of the URB handle for the access.

If Per Slot Offset is set, the global offset is added to those offsets to form the overall offset.

Range [0,2047]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1049

MSD_UW_OWB - URB Oword Block Write MSD
3:0 URB Opcode

Project: All

Format: Opcode

Value Name Description Project

1 URB_WRITE_OWORD [Default] URB Oword Write message All

 Command Reference: Instructions

1050 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

URB Oword Dual Block Read MSD

MSD_UR_OWDB - URB Oword Dual Block Read MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

Ignored

17 Per Slot Offset

Format: MHC_PSOP

Specifies if per-slot offsets are present and will be added to the Global Offset.

16 Reserved

Project: All

Format: MBZ

Ignored

15 Swizzle Control

Project: All

Format: Opcode

Value Name Description Project

1 URB_INTERLEAVED

[Default]

Use two URB entries (URB Handle 0 and URB

Handle 1).

All

14:4 Global Offset

Project: All

Format: U11

Specifes the offset, in units of Oword elements, from the start of the URB handle for the access.

If Per Slot Offset is set, the global offset is added to those offsets to form the overall offset.

Range [0,2047]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1051

MSD_UR_OWDB - URB Oword Dual Block Read MSD
3:0 URB Opcode

Project: All

Format: Opcode

Value Name Description Project

3 URB_READ_OWORD [Default] URB Oword Read message All

 Command Reference: Instructions

1052 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

URB Oword Dual Block Write MSD

MSD_UW_OWDB - URB Oword Dual Block Write MSD
Project: BDW

Source: Read-Only DataPort

Length Bias: 1

DWord Bit Description

0 19 Header Present

Project: All

Format: MDC_MHR

Indicates that the message requires a header.

18 Reserved

Project: All

Format: MBZ

Ignored

17 Per Slot Offset

Format: MHC_PSOP

Specifies if per-slot offsets are present and will be added to the Global Offset.

16 Reserved

Project: All

Format: MBZ

Ignored

15 Swizzle Control

Project: All

Format: Opcode

Value Name Description Project

1 URB_INTERLEAVED

[Default]

Use two URB entries (URB Handle 0 and URB

Handle 1).

All

14:4 Global Offset

Project: All

Format: U11

Specifes the offset, in units of Oword elements, from the start of the URB handle for the access.

If Per Slot Offset is set, the global offset is added to those offsets to form the overall offset.

Range [0,2047]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1053

MSD_UW_OWDB - URB Oword Dual Block Write MSD
3:0 URB Opcode

Project: All

Format: Opcode

Value Name Description Project

1 URB_WRITE_OWORD [Default] URB Oword Write message All

 Command Reference: Instructions

1054 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_STATE

VEBOX_STATE
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

This command controls the internal functions of the VEBOX. This command has a set of indirect state buffers:

 DN/DI state

 Capture Pipe state

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Command OpCode

Default Value: 4h VEBOX

Format: OpCode

23:21 SubOpcode A

Default Value: 0h

Format: OpCode

20:16 SubOpcode B

Default Value: 2h

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n Total Length - 2

Value Name Description Project

Ah (Excludes DWords 0, 1) BDW

1 31:25 State Surface Control Bits

Project: BDW

 See definition under "VEB_DI_IECP_COMMAND_SURFACE_CONTROL_BITS [BDW]"

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1055

VEBOX_STATE
24:23 Reserved

Project: BDW

Format: MBZ

22 Reserved

Project: BDW

Format: MBZ

21 Reserved

Project: BDW

Format: MBZ

20 Reserved

Project: BDW

Format: MBZ

19:15 Reserved

Project: BDW

Format: MBZ

14 Single Slice VEBOX Enable

Project: BDW

 For products that have 2 entire VEBOXes that automatically split the frame, this enable emulates

a 1 VEBOX product, running at 1/2 speed and only outputting a single set of per command

statistics.

13 Hot Pixel Filtering Enable

 Enables hot pixel detection/filtering.

12 Alpha Plane Enable

 Enables the reading of an independent Alpha plane. Mutually exclusive with Vignette Enable. If

Alpha from State Select is set it overrides this bit.

11 Vignette Enable

 Enables Vignette Correction surface read and correction in IECP. Mutually exclusive with Alpha

Plane Enable.

Programming Notes Project

Demosaic must also be enabled if this bit is enabled. BDW

10 Demosaic Enable

 The Demosaic will be used, and White balance statistics will be gathered. The Capture Pipe State

Table will be read. This bit is mutually exclusive with DI Enable.

 Command Reference: Instructions

1056 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_STATE
9:8 DI Output Frames

 Indicates which frames to output in DI mode.

Value Name

00b Output Both Frames

01b Output Previous Frame Only

10b Output Current Frame Only

Programming Notes

Field is ignored if DI Enable = 0. If Previous Frame Only or Current Frame Only are selected,

then the LACE Single Histogram Set must not try to collect a histogram from the disabled

frame.

Field must be programmed to 10 (Output Current Frame Only) for DI First Frame.

7 444 -> 422 Downsample Method

Project: BDW

Value Name

1 Average horizontally aligned chromas

0 Drop right chroma of the pair [Default]

Programming Notes

444->422 422->420 Description

0 0 No averaging, only down sampling

0 1 Not Supported

1 0 Only Horizontal averaging

1 1 Horizontal and Vertical averaging

6 422 -> 420 Downsample Method

Project: BDW

Value Name

1 Average vertically aligned chromas

0 Drop lower chroma of the pair [Default]

Programming Notes

To enable averaging in case of 420 (NV12/P016) output formats, 444->422 and 422->420

should be set.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1057

VEBOX_STATE
5 DN/DI First Frame

Format: Enable

 Indicates that this is the first frame of the stream, so previous clean is not available.

Value Name

0 Not first field; previous clean surface state is valid

1 First field; previous clean surface state is invalid

Programming Notes

If both DN and DI are disabled, this bit must be 0.

4 DI Enable

Format: Enable

 Deinterlacer is bypassed if this is disabled: the output is the same as the input (same as a 2:2

cadence). FMD and STMM are not calculated and the values in the response message are 0.

Value Name

0 Do not calculate DI

1 Calculate DI

3 DN Enable

Format: Enable

 Denoise is bypassed if this is low - BNE is still calculated and output, but the denoised fields are

not. VDI does not read in the denoised previous frame but uses the pointer for the original

previous frame.

Value Name

0 Do not denoise frame

1 Denoise frame

Programming Notes

If DN and/or Hotpixel are the only functions enabled then the only output is the Denoised

Output which is the same surface format as the input.

2 Global IECP Enable

 Indicates if any of the IECP features is enabled. If this is disabled then no state will be read from

any of the state pointers. If set then the IECP state will be read.

1 Color Gamut Compression Enable

 Indicates if the Gamut Compression feature is enabled. If set then the Gamut State will be read.

VEB_VERTEXTABLE_STATE is only needed if this bit is set.

0 Color Gamut Expansion Enable

 Indicates if the Gamut Expansion feature is enabled. If set then the Gamut State will be read.

2 31:12 DN/DI State Pointer Low

Format: GraphicAddress[31:12]

 Bits 31:12 of the starting address of the DN/DI State buffer. This points to a buffer containing

the 10 Dwords of the DN/DI state.

 Command Reference: Instructions

1058 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_STATE
11:0 Reserved

Format: MBZ

3 31:16 Reserved

Format: MBZ

15:0 DN/DI State Pointer High

Format: GraphicAddress[47:32]

 Bits 47:32 of the starting address of the DN/DI State Buffer.

4 31:12 IECP State Pointer Low

Format: GraphicAddress[31:12]

 Bits 31:12 of the starting address of the IECP State buffer. This points to a buffer containing the

64 Dwords of IECP state.

11:0 Reserved

Format: MBZ

5 31:16 Reserved

Format: MBZ

15:0 IECP State Pointer High

Format: GraphicAddress[47:32]

 Bits 47:32 of the starting address of the IECP State Buffer Table.

6 31:12 Gamut State Pointer Low

Format: GraphicAddress[31:12]

 Bits 31:12 of the starting address of the Gamut State buffer. This points to a buffer containing

the 42 Dwords of Gamut Compression / Gamut Expansion state.

11:0 Reserved

Format: MBZ

7 31:16 Reserved

Format: MBZ

15:0 Gamut State Pointer High

Format: GraphicAddress[47:32]

 Bits 47:32 of the starting address of the Gamut State Buffer.

8 31:12 Vertex Table State Pointer Low

Format: GraphicAddress[31:12]

 Bits 31:12 of the starting address of the Vertex Table. This points to a buffer containing the 512

Dwords of the Gamut Compression Vertex Table.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1059

VEBOX_STATE
11:0 Reserved

Format: MBZ

9 31:16 Reserved

Format: MBZ

15:0 Vertex Table State Pointer High

Format: GraphicAddress[47:32]

 Bits 47:32 of the starting address of the Vertex State Buffer.

10 31:12 Capture Pipe State Pointer Low

Format: GraphicAddress[31:12]

 Bits 31:12 of the starting address of the Capture Pipe State Table. This points to a buffer

containing the X Dwords of the Capture Pipe State.

11:0 Reserved

Format: MBZ

11 31:16 Reserved

Format: MBZ

15:0 Capture Pipe State Pointer High

Format: GraphicAddress[47:32]

 Bits 47:32 of the starting address of the Capture Pipe State Table.

 Command Reference: Instructions

1060 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_SURFACE_STATE

VEBOX_SURFACE_STATE
Project: BDW

Source: VideoEnhancementCS

Length Bias: 2

Description Project

The input and output data containers accessed are called "surfaces". Surface state is sent to VEBOX via

an inline state command rather than using binding tables. SURFACE_STATE contains the parameters

defining each surface to be accessed, including its size, format, and offsets to its subsurfaces. The

surface's base address is in the execution command. Despite having multiple input and output

surfaces, we limit the number of surface states to one for input surfaces and one for output surfaces.

The other surfaces are derived from the input/output surface states.

The Current Frame Input surface uses the Input SURFACE_STATE

The Previous Denoised Input surface uses the Input SURFACE_STATE.

(For 12-bit Bayer pattern inputs this will be 8-bit.)

BDW

The Current Denoised Output surface uses the Input SURFACE_STATE.

(For 12-bit Bayer pattern inputs this will be 8-bit.)

BDW

The STMM/Noise History Input surface uses the Input SURFACE_STATE with Tile-Y and Width/Height a

multiple of 4.

The STMM/Noise History Output surface uses the Input SURFACE_STATE with Tile-Y and Width/Height

a multiple of 4.

The FMD per block output / per Frame Output surface uses the Linear SURFACE_STATE (see note

below).

The Alpha surface uses the Linear A8 SURFACE_STATE with Width/Height equal to Input Surface. Pitch

is width rounded to next 64.

BDW

The Vignette Correction surface uses the Linear 16-bit SURFACE_STATE with:

Width = 4 * ((Input Width 3)/4)

Height = ((Input Height 3)/4)

Pitch in bytes is (vignette width*2) rounded to next 64.

BDW

The STMM height is the same as the Input Surface height except when the input Surface Format is

Bayer Pattern and the Bayer Pattern Offset is 10 or 11, in which case the height is the input height +

4.

For Bayer pattern inputs when the Bayer Pattern Offset is 10 or 11, the Current Denoised

Output/Previous Denoised Input will also have a height which is the input height + 4. For Bayer

pattern inputs only the Current Denoised Output/Previous Denoised Input are in Tile-Y.

BDW

The linear surface for FMD statistics is linear (not tiled). The height of the per block statistics is (Input

Height +3)/4 - the Input Surface height in pixels is rounded up to the next even 4 and divided by 4.

The width of the per block section in bytes is equal to the width of the Input Surface in pixels rounded

up to the next 16 bytes. The pitch of the per block section in bytes is equal to the width of the Input

Surface in pixels rounded up to the next 64 bytes.

The STMM surfaces must be identical to the Input surface except for the tiling mode must be Tile-Y

and the pitch must be legal for Tile-Y (increased to the next larger legal pitch). If the input surface is

BDW

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1061

VEBOX_SURFACE_STATE

packed (Surface Format from 0 to 3 for DN/DI) or 12/10-bit Bayer Pattern then the pitch for the STMM

surface is 1/2 the pitch of the input surface (rounded up to the next larger legal Tile-Y pitch). The

width and height must be a multiple of 4 rounded up from the input height.

Programming Notes Project

VEBOX may write to memory between the surface width and the surface pitch for output surfaces.

For 8bit Alpha input, when converting to 16bit output it is padded with 8bit zeros in the LSB. BDW

DWord Bit Description

0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE

Format: OpCode

28:27 Media Command Pipeline

Default Value: 2h Media

Format: OpCode

26:24 Media Command OpCode

Default Value: 4h VEBOX

Format: OpCode

23:21 SubOpcode A

Default Value: 0h VEBOX

Format: OpCode

20:16 SubOpcode B

Default Value: 0h VEBOX

Format: OpCode

15:12 Reserved

Format: MBZ

11:0 DWord Length

Format: =n Total Length - 2

Value Name Description Project

4h DWORD_COUNT_n [Default] (Excludes DWords 0, 1) BDW

1 31:1 Reserved

Format: MBZ

0 Surface Identification

 Specifies which set of surfaces this command refers to:

Value Name

1 Output surface (all except the Denoised Current output surface)

0 Input surface and Denoised Current Output Surface

 Command Reference: Instructions

1062 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_SURFACE_STATE
2 31:18 Height

Format: U14

 This field specifies the height of the surface in units of pixels. For PLANAR surface formats, this

field indicates the height of the Y (luma) plane.

Value Name Description Exists If

[15, 16383] representing heights [16,16384]

[15, 8191] //Scalar Enabled - For Input surface only

[63, 2047] //Scalar - For Input surface only

Programming Notes Project

Height (field value + 1) must be a multiple of 2 for PLANAR_420 surfaces. Height

(field value +1) must be a multiple of 2 when the deinterlace function is enabled

(field mode) or when the denoise function is enabled with Progressive DN = 0. It

must be a multiple of 4 when interleaved deinterlace/denoise and PLANAR_420 are

both being used. VEBOX supports a minimum height of 16.

Height (field value + 1) must be a multiple of 2 for Bayer surfaces. BDW

17:4 Width

Format: U14

 This field specifies the width of the surface in units of pixels. For PLANAR surface formats, this

field indicates the width of the Y (luma) plane.

Value Name Description Exists If

[63,16383] representing widths [64,16384]

[63,8191] //Scalar Enabled - For Input surface only

[63,2047] //Scalar Enabled - For Input Surface only

Programming Notes

The Width specified by this field multiplied by the pixel size in bytes must be less than or

equal to the surface pitch (specified in bytes via the Surface Pitch field). Width (field value +

1) must be a multiple of 2 for PLANAR_420, PLANAR_422, and all YCRCB_* surfaces, and must

be a multiple of 4 for PLANAR_411 surfaces. VEBOX supports a minimum width of 64

3:0 Reserved

Format: MBZ

3 31:28 Surface Format

Project: BDW

Format: U4

 Specifies the format of the surface. All of the Y and G channels will use table 0 and all of the

Cr/Cb/R/B channels will use table 1.

Value Name Description Project

0 YCRCB_NORMAL

1 YCRCB_SWAPUVY

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1063

VEBOX_SURFACE_STATE

2 YCRCB_SWAPUV

3 YCRCB_SWAPY

4 PLANAR_420_8 NV12 with Interleave Chroma set

5 Reserved Reserved

6 Reserved Reserved

7 Reserved Reserved

8 Reserved Reserved BDW

9 Reserved Reserved

10 Reserved Reserved

11 Y8_UNORM

12 Reserved Reserved

13 Reserved Reserved BDW

14 Bayer pattern Demosaic input only BDW

15 Reserved BDW

27 Interleave Chroma

Project: BDW

Format: Enable

 This field indicates that the chroma fields are interleaved in a single plane rather than stored as

two separate planes. This field is only used for PLANAR surface formats.

26:25 Bayer Pattern Offset

Project: BDW

 Specifies the starting pixel offset for the Bayer pattern used for Capture Pipe.

Value Name

00b Pixel at X=0, Y=0 is Blue

01b Pixel at X=0, Y=0 is Red

10b Pixel at X=0, Y=0 is Green, Pixel at X=1, Y=0 is Red

11b Pixel at X=0, Y=0 is Green, Pixel at X=1, Y=0 is Blue

24 Bayer Pattern Format

Project: BDW

 Specifies the format of the Bayer Pattern:

Value Name Project

0b 8-bit input at a 8-bit stride

1b 12 or 10-bit input at a 16-bit stride. Valid data is in the MSBs BDW

23:21 Reserved

Project: BDW

Format: MBZ

 Command Reference: Instructions

1064 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_SURFACE_STATE
20 Reserved

Project: BDW

Format: MBZ

19:3 Surface Pitch

Format: U17 pitch in (Bytes - 1)

 This field specifies the surface pitch in (#Bytes - 1):

Value Name Description

[63, 131071] For other linear surfaces [64B, 128KB]

[511, 131071] For X-tiled surface [512B, 128KB] = [1tile, 256 tiles]

[127, 131071] For Y-tiled surfaces [128B,128KB] = [1 tile, 1024 tiles]

Programming Notes

For tiled surfaces, the pitch must be a multiple of the tile width. For linear surfaces, the pitch

must be a multiple of 64. If Half Pitch for Chroma is set, this field must be a multiple of two tile

widths for tiled surfaces, or a multiple of 2 bytes for linear surfaces.

2 Half Pitch for Chroma

Format: Enable

 This field indicates that the chroma plane(s) will use a pitch equal to half the value specified in

the Surface Pitch field. This field is only used for PLANAR surface formats.

Programming Notes

Must be programmed to Zero always as this field is not used

1 Tiled Surface

Format: Boolean

 This field specifies whether the surface is tiled.

Value Name Description

1 True Tiled

0 False Linear

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable,

snooped). Tiled surfaces can only be mapped to Main Memory. The corresponding cache(s)

must be invalidated before a previously accessed surface is accessed again with an altered

state of this bit.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1065

VEBOX_SURFACE_STATE
0 Tile Walk

Format: 3D_TileWalk

 This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this surface.

See Memory Interface Functions for details on memory tiling and restrictions. This field is

ignored when the surface is linear.

Value Name

0 TILEWALK_XMAJOR

1 TILEWALK_YMAJOR

Programming Notes

The corresponding cache(s) must be invalidated before a previously accessed surface is

accessed again with an altered state of this bit.

4 31:29 Reserved

Format: MBZ

28:16 X Offset for U

Format: U13 Pixel Offset

 This field must be zero for the VEBOX surface formats

15 Reserved

Format: MBZ

14:0 Y Offset for U

Format: U15 Row Offset

 This field specifies the veritical offset in rows from the start (origin) or the Luma(Y) plane to the

start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled.

This field is only used for PLANAR surface formats.

Programming Notes

This field must indicate an even number (bit 0 = 0). This field must be evenly divisible by 4 for

Tile-Y surfaces (so the offset points to the start of a cache line) For Planar formats, if the

surface is in YS or YF tile modes, the Y Offset for U should be an integral multiple of the Tile

height of the Luma plane

5 31:29 Reserved

Format: MBZ

28:16 X Offset for V

Format: U13 Pixel Offset

 This field must be zero for the VEBOX surface formats.

15 Reserved

Format: MBZ

 Command Reference: Instructions

1066 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

VEBOX_SURFACE_STATE
14:0 Y Offset for V

Format: U15 Row Offset

 This field specifies the veritical offset in rows from the start (origin) of the Luma(Y) plane to the

start (origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with

Interleave Chroma disabled.

Programming Notes

This field must indicate an even number (bit 0 = 0). This field must be evenly divisible by 4 for

Tile-Y surfaces (so the offset points to the start of a cache line). For Planar formats, if the

surface is in YS or YF tile modes, the Y Offset for V should be an integral multiple of the Tile

height of the Luma plane

6..7

Project:

BDW

31:0 Reserved

Project: BDW

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1067

Wait Notification

wait - Wait Notification
Project: BDW

Source: EuIsa

Length Bias: 4

The wait instruction evaluates the value of the notification count register nreg. If nreg is zero, thread execution

is suspended and the thread is put in 'wait_for_notification' state. If nreg is not zero (i.e., one or more

notifications have been received), nreg is decremented by one and the thread continues executing on the next

instruction. If a thread is in the 'wait_for_notification' state, when a notification arrives, the notification count

register is incremented by one. As the notification count register becomes nonzero, the thread wakes up to

continue execution and at the same time the notification register is decremented by one. If only one

notification arrived, the notification register value becomes zero. However, during the above mentioned time

period, it is possible that more notifications may arrive, making the notification register nonzero again. When

multiple notifications are received, software must use wait instructions to decrement notification count

registers for each notification. Notification register n0.0:ud is for thread to thread communication (via the

Message Gateway shared function) and n0.1:ud for host to thread communication (through MMIO registers).

See the Message Gateway chapter for thread-thread communication.

Format: wait (exec_size) nreg

Restriction

src0 and dst must be n0.0, n0.1, or n0.2.

Execution size must be 1 as the notification registers are scalar.

Predication is not allowed.

Two back-to-back wait instructions are not allowed. At minimum, a nop instruction must be inserted between

two wait instructions

Syntax

wait (1) n#

Pseudocode

N/A

Predication Conditional Modifier Saturation Source Modifier

N N N N

Src Types Dst Types

UD UD

DWord Bit Description

0 127:64 Sources

Exists If: ([Operand Control][Src1.RegFile]!='IMM')

Format: EU_INSTRUCTION_SOURCES_REG

 Command Reference: Instructions

1068 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

wait - Wait Notification
127:64 Sources

Exists If: ([Operand Control][Src1.RegFile]=='IMM')

Format: EU_INSTRUCTION_SOURCES_IMM32

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1069

While

while - While
Project: BDW

Source: EuIsa

Length Bias: 4

Description Project

The while instruction marks the end of a do-while block. The instruction first evaluates the loop

termination condition for each channel based on the current channel enables and the predication

flags specified in the instruction. If any channel has not terminated, a branch is taken to a destination

address specified in the instruction, and the loop continues for those channels. Otherwise, execution

continues to the next instruction.ld point to the first instruction with the do label of the do-while block

of code. It should be a negative number for the backward referencing. In GEN binary, JIP is at location

dst and must be of type W (signed word integer). If SPF is ON, none of the PcIP are updated.

The following table describes the 32-bit jump target offset JIP. JIP is a signed 32-bit number, added to

IP pre-increment, and should point to the first instruction with the do label of the do-while block of

code. It should be a negative number for the backward referencing. In GEN binary, JIP is at location

src1 and must be of type D (signed dword integer).

BDW

Format: [(pred)] while (exec_size) JIP

Restriction Project

The execution size must be the same for the while instruction and any break and cont instructions of

the same code block.

Syntax Project

[(pred)] while (exec_size) imm32 BDW

Pseudocode

Evaluate(WrEn); for (n = 0; n < 32; n++) { if (WrEn.chan[n]) { PcIP[n] = IP + JIP; } else { PcIP[n] = IP + 1; } } if (|

PMask == 1) { // any enabled channel true Jump(IP + JIP); }

Predication Conditional Modifier Saturation Source Modifier

Y N N N

DWord Bit Description

0..3 127:96 JIP

Project: BDW

Format: S31

 Jump Target Offset. The relative offset in bytes if a jump is taken for the instruction.

95 Source 0 Address Immediate [9] Sign Bit

Project: BDW

 Command Reference: Instructions

1070 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

while - While
94:91 Src1.SrcType

Project: BDW

Format: SrcType

90:89 Src1.RegFile

Project: BDW

Format: RegFile

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16

88:64 Source 0

Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1')

Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1

63:32 Operand Control

Format: EU_INSTRUCTION_OPERAND_CONTROLS

31:0 Header

Format: EU_INSTRUCTION_HEADER

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1071

XY_COLOR_BLT

XY_COLOR_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination (with a possible ROP). The

only operand is the destination operand which is written dependent on the raster operation. The solid pattern

color is stored in the pattern background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical (and fastest) Raster operation code = F0 which performs a copy of the pattern background register to

the destination.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 50h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

1xb Write Alpha Channel

x1b Write RGB Channel

19:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled Tile-X or Tile-Y

10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 05h

Format: =n

1

31 Reserved

Format: MBZ

 Command Reference: Instructions

1072 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_COLOR_BLT
 BR13 30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement

For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity

for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1073

XY_COLOR_BLT
6

 BR16

31:0 Solid Pattern Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

 Command Reference: Instructions

1074 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_BLT

XY_FULL_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:

destination, source, and pattern. The source and pattern operands are the same bit width as the destination

operand.

The source and destination operands may overlap, which means that the X and Y directions can be either

forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y

coordinates determine if there is an overlap between the source and destination operands. If the base addresses

of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine

performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the

base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at

Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 55h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:16 Reserved

Format: MBZ

15 Src Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1075

XY_FULL_BLT
14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Dest Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0 DWord Length

Default Value: 0Ah

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_15 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

 Command Reference: Instructions

1076 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_BLT
4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR11

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Source Pitch (double word aligned and signed) and in DWords

 2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

7

 BR26

31:16 Source Y1 Coordinate (Top)

 16 bit signed number.

15:0 Source X1 Coordinate (Left)

 16 bit signed number.

8

 BR12

31:0 Source Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_15 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL(64byte) aligned.

9

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1077

XY_FULL_BLT
10

 BR15

31:0 Pattern Base Address

Format: GraphicsAddress[31:0]

(28:06 are implemented) (Note no NPO2 change here). Lower 32bits of the 48bit addressing.

The pattern data must be located in linear memory.

The Pattern Base Address programmed, must always be Cache Line (64byte) aligned.

11

 BR29

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Pattern Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

 Command Reference: Instructions

1078 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_IMMEDIATE_PATTERN_BLT

XY_FULL_IMMEDIATE_PATTERN_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:

destination, source, and pattern. The source and immediate pattern operands are the same bit width as the

destination operand. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or 256 (64 DWs) for 8,

16, and 32 bpp color patterns. DWL indicates the total number of Dwords of immediate data.

The source and destination operands may overlap, which means that the X and Y directions can be either

forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y

coordinates determine if there is an overlap between the source and destination operands. If the base addresses

of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine

performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the

base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at

Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 74h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:16 Reserved

Format: MBZ

15 Src Tiling Enable

Value Name Description

0b Tiling Disabled (Linear)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1079

XY_FULL_IMMEDIATE_PATTERN_BLT
14:12 Pattern Horizontal Seed

 (pixel of the scan line to start on corresponding to DST X=0)

11 Dest Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0 DWord Length

Default Value: 08h Excludes DWORD 0,1

 08 + DWL = (Number of Immediate double words)h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_15 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

 Command Reference: Instructions

1080 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_IMMEDIATE_PATTERN_BLT
4

 BR9

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR11

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Source Pitch (double word aligned and signed) and in DWords

 2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

7

 BR26

31:16 Source Y1 Coordinate (Top)

 16 bit signed number.

15:0 Source X1 Coordinate (Left)

 16 bit signed number.

8

 BR12

31:0 Source Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Src Tiling is enabled (Bit_15 enabled), this address is limited to 4Kbytes. When Tiling is not

enabled, this address should be CL (64byte) aligned.

9

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

10..n 31:0 Immediate Data 0

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1081

XY_FULL_MONO_PATTERN_BLT

XY_FULL_MONO_PATTERN_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:

destination, source, and pattern. The pattern operand is monochrome and the source operand is the same bit

width as the destination operand.

The source and destination operands may overlap, which means that the X and Y directions can be either

forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y

coordinates determine if there is an overlap between the source and destination operands. If the base addresses

of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine

performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the

base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at

Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-

assert the write enables when the bit in the source is 0. When the source bit is 1, then the pattern foreground

color is used in the ROP operation.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Setting both Solid Pattern Select =1 and Mono Pattern Transparency = 1 is mutually exclusive. The device

implementation results in NO PIXELs DRAWN.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 57h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:16 Reserved

 Command Reference: Instructions

1082 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_PATTERN_BLT
15 Src Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

14:12 Pattern Horizontal Seed

 (pixel of the scan line to start on corresponding to DST X=0)

11 Dest Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vectical Seed

 Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0 DWord Length

Value Name

0Ch

1

 BR13

31 Solid Pattern Select

Value Name

0 No Solid Pattern

1 Solid Pattern

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Reserved

Format: MBZ

28:27 Mono Source Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

26 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1083

XY_FULL_MONO_PATTERN_BLT
25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR11

31:16 Reserved

Format: MBZ

15:0 Source Pitch (double word aligned and signed) and in DWords

 2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

7

31:16 Source Y1 Coordinate (Top)

 16 bit signed number.

 Command Reference: Instructions

1084 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_PATTERN_BLT
 BR26 15:0 Source X1 Coordinate (Left)

 16 bit signed number.

8

 BR12

31:0 Source Address

Format: GraphicsAddress[31:0]

 (base address of the source surface: X=0, Y=0). Lower 32bits of the 48bit addressing. When Src

Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

9

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

10

 BR16

31:0 Pattern Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

11

 BR17

31:0 Pattern Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

12

 BR20

31:0 Pattern Data 0

 (least significant DW)

13

 BR21

31:0 Pattern Data 1

 (most significant DW)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1085

XY_FULL_MONO_PATTERN_MONO_SRC_BLT

XY_FULL_MONO_PATTERN_MONO_SRC_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The full BLT provides the ability to specify all 3 operands: destination, source, and pattern. The pattern and

source operands are monochrome.

The monochrome source transparency mode indicates whether to use the source background color or de-assert

the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is

used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the monochrome source, the

remaining bits until the next word boundary are ignored. The Monochrome source data bit position field [2:0]

indicates which bit position within the first byte should be used as the first source pixel which corresponds to the

destination X1 coordinate.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-

assert the write enables when the bit in the pattern is 0. When the source bit is 1, then the pattern foreground

color is used in the ROP operation. The monochrome source transparency mode works identical to the pattern

transparency mode.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Setting both Solid Pattern Select =1 and Mono Pattern Transparency = 1 is mutually exclusive. The device

implementation results in NO PIXELs DRAWN.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 58h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

 Command Reference: Instructions

1086 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_PATTERN_MONO_SRC_BLT
16:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 (pixel of the scan line to start on corresponding to DST X=0)

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Starting scan line of the 8x8 pattern corresponding to DST Y = 0.

7:0 DWord Length

Value Name

0Ch

1

 BR13

31 Solid Pattern Select

Value Name

0 No Solid Pattern

1 Solid Pattern

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Mono Source Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

28 Mono Pattern Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

27:26 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1087

XY_FULL_MONO_PATTERN_MONO_SRC_BLT
25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR12

31:0 Mono Source Address

Format: GraphicsAddress[31:0]

(address corresponds to DST X1, Y1) (Note no NPO2 change here). Lower 32bits of the 48bit

addressing.

This Monosource Base Address programmed, must always be Cache Line (64byte) aligned.

 Command Reference: Instructions

1088 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_PATTERN_MONO_SRC_BLT
7

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Mono Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

8

 BR18

31:0 Source Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

9

 BR19

31:0 Source Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

10

 BR16

31:0 Pattern Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

11

 BR17

31:0 Pattern Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

12

 BR20

31:0 Pattern Data 0

 (least significant DW)

13

 BR21

31:0 Pattern Data 1

 (most significant DW)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1089

XY_FULL_MONO_SRC_BLT

XY_FULL_MONO_SRC_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:

destination, source, and pattern. The source operand is monochrome and the pattern operand is the same bit

width as the destination.

The monochrome source transparency mode indicates whether to use the source background color or de-assert

the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is

used in the ROP operation.

All non-text and non-immediate monochrome sources are word aligned. At the end of a scan line the

monochrome source, the remaining bits until the next word boundary are ignored. The Monochrome source

data bit position field [2:0] indicates which bit position within the first byte should be used as the first source

pixel which corresponds to the Destination X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 56h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

16:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 (pixel of the scan line to start on corresponding to DST X=0)

 Command Reference: Instructions

1090 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_SRC_BLT
11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Starting scan line of the 8x8 pattern corresponding to DST Y = 0.

7:0 DWord Length

Value Name

0Ah

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Mono Source Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

28:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1091

XY_FULL_MONO_SRC_BLT
 BR23 15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR12

31:0 Mono Source Address

Format: GraphicsAddress[31:0]

(address corresponds to DST X1, Y1) (Note no NPO2 change here). Lower 32bits of the 48bit

addressing.

This Monosource Base Address programmed, must always be Cache Line (64byte) aligned.

7

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Mono Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

8

 BR18

31:0 Source Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

9

 BR19

31:0 Source Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

10

 BR15

31:0 Pattern Base Address

Format: GraphicsAddress[31:0]

(28:06 are implemented) (Note no NPO2 change here). Lower 32bits of the 48bit addressing.

The pattern data must be located in linear memory.

The Pattern Base Address programmed, must always be Cache Line (64byte) aligned.

 Command Reference: Instructions

1092 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_SRC_BLT
11

 BR29

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Pattern Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1093

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:

destination, source, and pattern. The source operand is a monochrome and the immediate pattern operand is

the same bit width as the destination. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or

256 (64DWs) for 8, 16, and 32 bpp color patterns. The monochrome source transparency mode indicates whether

to use the source background color or de-assert the write enables when the bit in the source is 0. When the

source bit is 1, then the source foreground color is used in the ROP operation. All non-text monochrome sources

are word aligned. At the end of a scan line the monochrome source, the remaining bits until the next word

boundary are ignored. The Monochrome source data bit position field [2:0] indicates which bit position within

the first byte should be used as the first source pixel which corresponds to the destination X1 coordinate. All

scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the ClipRectX

coordinates and the Destination X coordinates are written using the raster operation. The Pattern Seeds

correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to the destination

coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal seed) modulo

8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8. Negative Stride (=

Pitch) is NOT ALLOWED.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 75h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

16:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 (pixel of the scan line to start on corresponding to DST X=0)

 Command Reference: Instructions

1094 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Starting scan line of the 8x8 pattern corresponding to DST Y=0.

7:0 DWord Length

Default Value: 08h Excludes DWORD 0,1

 08 + DWL = (Number of Immediate double words)h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Mono Source Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

28:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1095

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
 BR23 15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR12

31:0 Mono Source Address

Format: GraphicsAddress[31:0]

(address corresponds to DST X1, Y1) (Note no NPO2 change here). Lower 32bits of the 48bit

addressing.

This Monosource Base Address programmed, must always be Cache Line (64byte) aligned.

7

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Mono Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

8

 BR18

31:0 Source Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

9

 BR19

31:0 Source Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

10..n 31:0 Immediate Data

 Command Reference: Instructions

1096 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_PAT_BLT

XY_MONO_PAT_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

MONO_PAT_BLT is used when we have no source and the monochrome pattern is not trivial (is not a solid color

only). The monochrome pattern is loaded from the instruction stream.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-

assert the write enables when the bit in the pattern is 0. When the pattern bit is 1, then the pattern foreground

color is used in the ROP operation.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 52h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1097

XY_MONO_PAT_BLT
7:0 DWord Length

Value Name

08h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Reserved

Format: MBZ

28 Mono Pattern Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

27:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

 Command Reference: Instructions

1098 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_PAT_BLT
4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR16

31:0 Pattern Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7

 BR17

31:0 Pattern Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

8

 BR20

31:0 Pattern Data 0

9

 BR21

31:0 Pattern Data 1

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1099

XY_MONO_PAT_FIXED_BLT

XY_MONO_PAT_FIXED_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

MONO_PAT_FIXED_BLT is used when we have no source and the monochrome pattern is not trivial (is not a solid

color only). The monochrome pattern is one of 10 fixed patterns described below. The pattern seeds can still be

used with the fixed patterns, creating even more fixed patterns. This eliminates 2 doublewords compared to the

XY_MONO_PAT_BLT command packet.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-

assert the write enables when the bit in the pattern is 0. When the pattern bit is 1, then the pattern foreground

color is used in the ROP operation.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 59h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19 Reserved

Format: MBZ

 Command Reference: Instructions

1100 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_PAT_FIXED_BLT
18:15 Fixed Pattern

Value Name

0000b HS_HORIZONTAL

0001b HS_VERTICAL

0010b HS_FDIAGONAL

0011b HS_BDIAGONAL

0100b HS_CROSS

0101b HS_DIAGCROSS

0110b Reserved

0111b Reserved

1000b Screen Door

1001b SD Wide

1010b Walking Bit (one)

1011b Walking Zero

1100b Reserved

1101b Reserved

1110b Reserved

1111b Reserved

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0 DWord Length

Format: =n

Value Name

06h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1101

XY_MONO_PAT_FIXED_BLT
29 Reserved

Format: MBZ

28 Mono Pattern Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

27:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

 Command Reference: Instructions

1102 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_PAT_FIXED_BLT
6

 BR16

31:0 Pattern Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7

 BR17

31:0 Pattern Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1103

XY_MONO_SRC_COPY_BLT

XY_MONO_SRC_COPY_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

This BLT instruction performs a monochrome source copy where the only operands involved is a monochrome

source and destination. The source and destination operands cannot overlap therefore the X and Y directions are

always forward.

All non-text monochrome sources are word aligned. At the end of a scan line of monochrome source, all bits

until the next word boundary are ignored. The monochrome source data bit position field [2:0] indicates the bit

position within the first byte of the scan line that should be used as the first source pixel which corresponds to

the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source background color or de-assert

the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is

used in the ROP operation. The ROP value chosen must involve source and no pattern data in the ROP operation.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 54h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

16:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Reserved

Format: MBZ

 Command Reference: Instructions

1104 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_SRC_COPY_BLT
7:0 DWord Length

Value Name

08h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Mono Source Transparency Mode

Value Name

0 Use Background

1 Transparency Enabled

28:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1105

XY_MONO_SRC_COPY_BLT
5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR12

31:0 Mono Source Address

Format: GraphicsAddress[31:0]

(address corresponds to DST X1, Y1) (Note no NPO2 change here). Lower 32bits of the 48bit

addressing.

This Monosource Base Address programmed, must always be Cache Line (64byte) aligned.

7

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Mono Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

8

 BR18

31:0 Source Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

9

 BR19

31:0 Source Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

 Command Reference: Instructions

1106 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_SRC_COPY_IMMEDIATE_BLT

XY_MONO_SRC_COPY_IMMEDIATE_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

This instruction allows the Driver to send monochrome data through the instruction stream, eliminating the read

latency of the source during command execution.

The IMMEDIATE_BLT data MUST transfer an even number of doublewords and the exact number of quadwords.

DWL indicates the total number of Dwords of immediate data.

All non-text monochrome sources are word aligned. At the end of a scan line of monochrome source, all bits

until the next word boundary are ignored. The Monochrome source data bit position field [2:0] indicates the bit

position within the first byte of the scan line that should be used as the first source pixel which corresponds to

the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source background color or de-assert

the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground color is

used in the ROP operation. The ROP value chosen must involve source and no pattern data in the ROP operation.

The monochrome source data supplied corresponds to the Destination X1 and Y1 coordinates.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 71h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

16:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1107

XY_MONO_SRC_COPY_IMMEDIATE_BLT
10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 06h Excludes DWORD 0,1

 06 + DWL = (Number of Immediate double words)h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Mono Source Transparency Mode

Value Name

0b Transparency Enabled

1b Use Background

28:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

 Command Reference: Instructions

1108 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_MONO_SRC_COPY_IMMEDIATE_BLT
4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR18

31:0 Source Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7

 BR19

31:0 Source Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

8..n 31:0 Immediate Data

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1109

XY_PAT_BLT

XY_PAT_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

PAT_BLT is used when there is no source and the color pattern is not trivial (is not a solid color only).

If clipping is enabled, all scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only

pixels within the ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 51h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0 DWord Length

Default Value: 06h

1

31 Reserved

Format: MBZ

 Command Reference: Instructions

1110 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_PAT_BLT
 BR13 30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11

enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be

upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1111

XY_PAT_BLT
6

 BR15

31:0 Pattern Base Address

Format: GraphicsAddress[31:0]

(28:06 are implemented) (Note no NPO2 change here). Lower 32bits of the 48bit addressing.

The pattern data must be located in linear memory.

The Pattern Base Address programmed, must always be Cache Line (64byte) aligned.

7

 BR29

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Pattern Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

 Command Reference: Instructions

1112 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_PAT_BLT_IMMEDIATE

XY_PAT_BLT_IMMEDIATE
Project: BDW

Source: BlitterCS

Length Bias: 2

PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not trivial (is not a solid color only)

and the pattern is pulled through the command stream. The immediate data sizes are 64 bytes (16 DWs), 128

bytes (32 DWs), or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

DWL indicates the total number of Dwords of immediate data. All scan lines and pixels that fall within the

ClipRect Y and X coordinates are written. Only pixels within the ClipRectX coordinates and the Destination X

coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 72h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1113

XY_PAT_BLT_IMMEDIATE
7:0 DWord Length

Default Value: 04h Excludes DWORD 0,1

 04 + DWL = (Number of Immediate double)h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11

enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be

upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

 Command Reference: Instructions

1114 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_PAT_BLT_IMMEDIATE
5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6..n 31:0 Immediate Data

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1115

XY_PAT_CHROMA_BLT

XY_PAT_CHROMA_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

PAT_BLT is used when there is no source and the color pattern is not trivial (is not a solid color only).

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 76h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Transparency Range Mode

 (chroma-key) - Dst Chroma-key modes ONLY (SRC ILLEGAL)

16:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0 DWord Length

Default Value: 08h Excludes DWORD 0,1

 Command Reference: Instructions

1116 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_PAT_CHROMA_BLT
1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11

enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be

upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1117

XY_PAT_CHROMA_BLT
15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR15

31:0 Pattern Base Address

Format: GraphicsAddress[31:0]

(28:06 are implemented) (Note no NPO2 change here). Lower 32bits of the 48bit addressing.

The pattern data must be located in linear memory.

The Pattern Base Address programmed, must always be Cache Line (64byte) aligned.

7

 BR29

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Pattern Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

8

 BR18

31:0 Transparency Color Low

 (Chroma-key Low = Pixel Greater or Equal)

9

 BR19

31:0 Transparency Color High

 (Chroma-key High = Pixel Less or Equal)

 Command Reference: Instructions

1118 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_PAT_CHROMA_BLT_IMMEDIATE

XY_PAT_CHROMA_BLT_IMMEDIATE
Project: BDW

Source: BlitterCS

Length Bias: 2

PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not trivial (is not a solid color only)

and the pattern is pulled through the command stream. The immediate data sizes are 64 bytes (16 DWs), 128

bytes (32 DWs), or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

DWL indicates the total number of Dwords of immediate data. All scan lines and pixels that fall within the

ClipRect Y and X coordinates are written. Only pixels within the ClipRectX coordinates and the Destination X

coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 77h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Transparency Range Mode

 (chroma-key) - Dst Chroma-key modes ONLY (SRC ILLEGAL)

16:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1119

XY_PAT_CHROMA_BLT_IMMEDIATE
7:0 DWord Length

Default Value: 06h Excludes DWORD 0,1

 06 + DWL = (Number of Immediate double)h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

 Command Reference: Instructions

1120 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_PAT_CHROMA_BLT_IMMEDIATE
15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR18

31:0 Transparency Color Low

 (Chroma-key Low = Pixel Greater or Equal)

7

 BR19

31:0 Transparency Color High

 (Chroma-key High = Pixel Less or Equal)

8..n 31:0 Immediate Data

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1121

XY_PIXEL_BLT

XY_PIXEL_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

The Destination X coordinate and Destination Y coordinate is compared with the ClipRect registers. If it is within

all 4 comparisons, then the pixel supplied in the XY_SETUP_BLT instruction is written with the raster operation to

(Destination Y Address + (Destination Y coordinate * Destination pitch) + (Destination X coordinate * bytes per

pixel)).

ROP field must specify pattern or fill with 0's or 1's. There is no source operand.

Negative Stride (= Pitch) specified in the Setup command is Not Allowed

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 24h

Format: Opcode

21:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 00h

1

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

 Command Reference: Instructions

1122 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SCANLINES_BLT

XY_SCANLINES_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the

ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative to

the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate + horizontal

seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Solid pattern should use the XY_SETUP_MONO_PATTERN_SL_BLT instruction.

ROP field must specify pattern or fill with 0's or 1's. There is no source operand.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 25h

Format: Opcode

21:15 Reserved

Format: MBZ

14:12 Pattern Horizontal Seed

 Pixel of the scan line to start on corresponding to DST X=0.

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Pattern Vertical Seed

 Scan line of the 8x8 pattern to start on corresponding to DST Y=0.

7:0 DWord Length

Default Value: 01h

1

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

2

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1123

XY_SETUP_BLT

XY_SETUP_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

This setup instruction supplies common setup information including clipping coordinates used by the XY

commands: XY_PIXEL_BLT, XY_SCANLINE_BLT, XY_TEXT_BLT, and XY_TEXT_BLT_IMMEDIATE.

These are the only instructions that require that state be saved between instructions other than the Clipping

parameters. There are 5 dedicated registers to contain the state for the 3 setup BLT instructions (XY_SETUP_BLT,

XY_SETUP_MONO_PATTERN_SL_BLT, and XY_SETUP_CLIP_BLT. All other BLTs use a temporary version of these.

The 5 double word registers are: DW1 (Setup Control), DW6 (Setup Foreground color), DW5 (Setup Background

color), DW7 (Setup Pattern address), and DW4 (Setup Destination Base Address).

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 01h

Format: Opcode

21:20 32 bpp Byte Mask

Value Name

1xb Write Alpha Channel

x1b Write RGB Channel

19:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled (Tile-X or Tile-Y)

10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 08h

1

31 Reserved

Format: MBZ

 Command Reference: Instructions

1124 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SETUP_BLT
 BR01 30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Mono Source Transparency Mode

Value Name

0b Use Background

1b Transparency Enabled

28:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11

enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be

upto 128Kbytes (or 32KDwords).

2

 BR24

31:16 ClipRect Y1 Coordinate (Top)

 (30:16 = 15 bit positive number)

15:0 ClipRect X1 Coordinate (Left)

 (14:00 = 15 bit positive number)

3

 BR25

31:16 ClipRect Y2 Coordinate (Bottom)

 (30:16 = 15 bit positive number)

15:0 ClipRect X2 Coordinate (Right)

 (14:00 = 15 bit positive number)

4

 BR09

31:0 Setup Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1125

XY_SETUP_BLT
15:0 Setup Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR05

31:0 Setup Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] All

7

 BR06

31:0 Setup Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] (SLB and TB only)

8

 BR07

31:0 Setup Pattern Base Address for Color Pattern

Format: GraphicsAddress[31:0]

(26:06 are implemented) (SLB only) (Note no NPO2 change here). The pattern data must be

located in linear memory.

Lower 32bits of the 48bit addressing.

The Pattern Base Address programmed, must always be Cache Line (64byte) aligned.

9

 BR30

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Setup Pattern Base Address for Color Pattern High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

 Command Reference: Instructions

1126 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SETUP_CLIP_BLT

XY_SETUP_CLIP_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

 This command is used to only change the clip coordinate registers. These are the same clipping registers as the

Setup clipping registers above.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 03h

Format: Opcode

21:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled (Tile-X or Tile-Y

10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 01h

1

 BR24

31:16 ClipRect Y1 Coordinate (Top)

 (30:16 = 15 bit positive number)

15:0 ClipRect X1 Coordinate (Left)

 (14:00 = 15 bit positive number)

2

 BR25

31:16 ClipRect Y2 Coordinate (Bottom)

 (30:16 = 15 bit positive number)

15:0 ClipRect X2 Coordinate (Right)

 (14:00 = 15 bit positive number)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1127

XY_SETUP_MONO_PATTERN_SL_BLT

XY_SETUP_MONO_PATTERN_SL_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

 This setup instruction supplies common setup information including clipping coordinates used exclusively with

the following instruction: XY_SCANLINE_BLT (SLB) - 1 scan line of monochrome pattern and destination are the

only operands allowed.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 11h

Format: Opcode

21:20 32 bpp Byte Mask

Value Name

1xb Write Alpha Channel

x1b Write RGB Channel

19:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled (Tile-X or Tile-Y

10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 08h

1

 BR01

31 Solid Pattern Select

 (SLB and Pixel only)

Value Name

0 No Solid Pattern

1 Solid Pattern

 Command Reference: Instructions

1128 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SETUP_MONO_PATTERN_SL_BLT
30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29 Reserved

Format: MBZ

28 Mono Pattern Transparency Mode

Value Name

0b Use Background

1b Transparency Enabled

27:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement (Negative Pitch Not allowed for Pixel nor Text) For Tiled surfaces (bit_11

enabled) this pitch is of 512Byte granularity for Tile-X, 128B granularity for Tile-Y and can be

upto 128Kbytes (or 32KDwords).

2

 BR24

31:16 ClipRect Y1 Coordinate (Top)

 (30:16 = 15 bit positive number)

15:0 ClipRect X1 Coordinate (Left)

 (14:00 = 15 bit positive number)

3

 BR25

31:16 ClipRect Y2 Coordinate (Bottom)

 (30:16 = 15 bit positive number)

15:0 ClipRect X2 Coordinate (Right)

 (14:00 = 15 bit positive number)

4

 BR09

31:0 Setup Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1129

XY_SETUP_MONO_PATTERN_SL_BLT
5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Setup Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR05

31:0 Setup Background Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] All

7

 BR06

31:0 Setup Foreground Color

 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] (SLB and TB only)

8

 BR20

31:0 DW0 (least significant) for a Monochrome Pattern

9

 BR21

31:0 DW1 (most significant) for a Monochrome Pattern

 Command Reference: Instructions

1130 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SRC_COPY_BLT

XY_SRC_COPY_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

This BLT instruction performs a color source copy where the only operands involved is a color source and

destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y directions can be either

forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y

coordinates determine if there is an overlap between the source and destination operands. If the base addresses

of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine

performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the

base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at

Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 53h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:16 Reserved

Format: MBZ

15 Src Tiling Enable

Value Name Description

0b Tiling Disabled (Linear)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

14:12 Reserved

Format: MBZ

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1131

XY_SRC_COPY_BLT
11 Dest Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

Value Name

08h

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

 Command Reference: Instructions

1132 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SRC_COPY_BLT
4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address must be 4KB-aligned. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Must be all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 The upper 16bits of the 48-bit address.

6

 BR26

31:16 Source Y1 Coordinate (Top)

 16 bit signed number.

15:0 Source X1 Coordinate (Left)

 16 bit signed number.

7

 BR11

31:16 Reserved

Format: MBZ

15:0 Source Pitch (double word aligned) and in DWords

 2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Yand can be upto 128Kbytes (or 32KDwords).

8

 BR12

31:0 Source Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Src Tiling is enabled (Bit_15 enabled), this address must be 4KB-aligned. When Tiling is not

enabled, this address should be CL (64byte) aligned.

9

 BR28

31:16 Reserved

Format: MBZ

 Must be all 0's for 48-bit addressing.

15:0 Source Base Address High

Format: GraphicsAddress[47:32]

 The upper 16 bits of the 48-bit address.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1133

XY_SRC_COPY_CHROMA_BLT

XY_SRC_COPY_CHROMA_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

This BLT instruction performs a color source copy with chroma-keying where the only operands involved is a

color source and destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y directions can be either

forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y

coordinates determine if there is an overlap between the source and destination operands. If the base addresses

of the source and destination are the same and the Source X1 is less than Destination X1, then the BLT Engine

performs the accesses in the X-backwards access pattern. There is no need to look for an actual overlap. If the

base addresses are the same and Source Y1 is less than Destination Y1, then the scan line accesses start at

Destination Y2 with the corresponding source scan line and the strides are subtracted for every scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 73h

Format: Opcode

21:20 32bpp Byte Mask

 This field is only used for 32bpp.

Value Name

00b [Default]

1xb Write Alpha Channel

x1b Write RGB Channel

19:17 Transparency Range Mode

 (chroma-key)

16 Reserved

Format: MBZ

15 Src Tiling Enable

Value Name Description

0b Tiling Disabled (Linear)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

14:12 Reserved

Format: MBZ

 Command Reference: Instructions

1134 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SRC_COPY_CHROMA_BLT
11 Dest Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Reserved

Format: MBZ

7:0 DWord Length

Value Name

0Ah

1

 BR13

31 Reserved

Format: MBZ

30 Clipping Enabled

Value Name

0b Disabled

1b Enabled

29:26 Reserved

Format: MBZ

25:24 Color Depth

Value Name

00b 8 Bit Color

01b 16 Bit Color(565)

10b 16 Bit Color(1555)

11b 32 Bit Color

23:16 Raster Operation

15:0 Destination Pitch in DWords

 2's complement For Tiled surfaces (bit_11 enabled) this pitch is of 512Byte granularity for Tile-

X, 128B granularity for Tile-Y and can be upto 128Kbytes (or 32KDwords).

2

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

3

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1135

XY_SRC_COPY_CHROMA_BLT
4

 BR09

31:0 Destination Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

5

 BR27

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Destination Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

6

 BR26

31:16 Source Y1 Coordinate (Top)

 16 bit signed number.

15:0 Source X1 Coordinate (Left)

 16 bit signed number.

7

 BR11

31:16 Reserved

Format: MBZ

15:0 Source Pitch (double word aligned) and in DWords

 2's complement. For Tiled Src (bit 15 enabled) this pitch is of 512Byte granularity for Tile-X,

128B granularity for Tile-Yand can be upto 128Kbytes (or 32KDwords).

8

 BR12

31:0 Source Base Address

Format: GraphicsAddress[31:0]

 Base address of the destination surface: X=0, Y=0. Lower 32bits of the 48bit addressing. When

Tiling is enabled (Bit_15 enabled), this address is limited to 4Kbytes. When Tiling is not enabled,

this address should be CL (64byte) aligned.

9

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed all 0's for 48bit addressing.

15:0 Source Base Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

10

 BR18

31:0 Transparency Color Low

 (Chroma-key Low = Pixel Greater or Equal)

 Command Reference: Instructions

1136 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_SRC_COPY_CHROMA_BLT
11

 BR19

31:0 Transparency Color High

 (Chroma-key High = Pixel Less or Equal)

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1137

XY_TEXT_BLT

XY_TEXT_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

All source scan lines and pixels that fall within the ClipRect Y and X coordinates are written. The source address

corresponds to Destination X1 and Y1 coordinate.

Text is either bit or byte packed. Bit packed means that the next scan line starts 1 pixel after the end of the

current scan line with no bit padding. Byte packed means that the next scan line starts on the first bit of the next

byte boundary after the last bit of the current line.

Source expansion color registers are always in the SETUP_BLT.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 26h

Format: Opcode

21:17 Reserved

Format: MBZ

16 Bit / Byte Packed

 Byte packed is for the NT driver.

Value Name

0 Bit

1 Byte

15:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 03h

1

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

 Command Reference: Instructions

1138 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_TEXT_BLT
 BR22 15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

2

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

3

 BR12

31:0 Source Address

Format: GraphicsAddress[31:0]

(address of the first byte on scan line corresponding to Dst X1, Y1). Lower 32bits of the 48bit

addressing.

(Note no NPO2 change here).

Since Text data is Monosource data, the Text source Base Address programmed, must always

be Cache Line (64byte) aligned.

4

 BR28

31:16 Reserved

Format: MBZ

 Should be programmed with all "0"s for 48bit addressing.

15:0 Source Address High

Format: GraphicsAddress[47:32]

 Should be programmed with the upper 16bits of the 48bit addressing.

Command Reference: Instructions

Doc Ref # IHD-OS-BDW-Vol 2a-10.15 1139

XY_TEXT_IMMEDIATE_BLT

XY_TEXT_IMMEDIATE_BLT
Project: BDW

Source: BlitterCS

Length Bias: 2

This instruction allows the Driver to send data through the instruction stream that eliminates the read latency of

reading a source from memory.

If an operand is in system cacheable memory and either small or only accessed once, it can be copied directly to

the instruction stream versus to graphics accessible memory. The IMMEDIATE_BLT data MUST transfer an even

number of doublewords.

The BLT engine will hang if it does not get an even number of doublewords. All source scan lines and pixels that

fall within the ClipRect X and Y coordinates are written. The source data corresponds to Destination X1 and Y1

coordinate.

Source expansion color registers are always in the SETUP_BLT. NEGATIVE STRIDE (= PITCH) IS NOT ALLOWED.

DWord Bit Description

0

 BR00

31:29 Client

Default Value: 02h 2D Processor

Format: Opcode

28:22 Instruction Target(Opcode)

Default Value: 31h

Format: Opcode

21:17 Reserved

Format: MBZ

16 Bit / Byte Packed

 Byte packed is for the NT driver.

Value Name

0 Bit

1 Byte

15:12 Reserved

Format: MBZ

11 Tiling Enable

Value Name Description

0b Tiling Disabled (Linear Blit)

1b Tiling Enabled [BDW] [BDW]: Tile-X or Tile-Y.

10:8 Reserved

Format: MBZ

 Command Reference: Instructions

1140 Doc Ref # IHD-OS-BDW-Vol 2a-10.15

XY_TEXT_IMMEDIATE_BLT
7:0 DWord Length

Default Value: 01h Excludes DWORD 0,1

 01 + DWL = (Number of Immediate double words)h

1

 BR22

31:16 Destination Y1 Coordinate (Top)

 16 bit signed number.

15:0 Destination X1 Coordinate (Left)

 16 bit signed number.

2

 BR23

31:16 Destination Y2 Coordinate (Bottom)

 16 bit signed number.

15:0 Destination X2 Coordinate (Right)

 16 bit signed number.

3..n 31:0 Immediate Data

