

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12

Intel
®
 OpenSource HD Graphics

Programmerôs Reference Manual (PRM)
Volume 4 Part 3: Execution Unit ISA
(Ivy Bridge)

For the 2012 Intel
®
 CoreÊ Processor Family

May 2012

Revision 1.0

NOTICE:
This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 3

Contents

1. Introduction.. 7

1.1 Introducing the Execution Unit ... 7
1.2 EU Terms and Acronyms ... 9
1.3 EU Changes by Processor Generation .. 13
1.4 EU Notation .. 13

2. EU Data Types ... 15

2.1 Fundamental Data Types ... 15
2.2 Numeric Data Types .. 15

2.2.1 Integer Numeric Data Types ... 16
2.2.2 Floating-Point Numeric Data Types.. 17
2.2.3 Packed Signed Half-Byte Integer Vector .. 18
2.2.4 Packed UnSigned Half-Byte Integer Vector ... 18
2.2.5 Packed Restricted Float Vector .. 19

2.3 Floating Point Modes ... 21
2.3.1 IEEE Floating Point Mode .. 21
2.3.2 Alternative Floating Point Mode.. 25

2.4 Type Conversion .. 26
2.4.1 Float to Integer ... 26
2.4.2 Integer to Integer with Same or Higher Precision... 27
2.4.3 Integer to Integer with Lower Precision .. 27
2.4.4 Integer to Float ... 27
2.4.5 Double Precision Float to Single Precision Float ... 27
2.4.6 Single Precision Float to Double Precision Float ... 28

3. Execution Environment .. 29

3.1 EU Overview .. 29
3.2 Primary Usage Models ... 30

3.2.1 AOS and SOA Data Structures .. 30
3.2.2 SIMD4 Mode of Operation .. 32
3.2.3 SIMD4x2 Mode of Operation .. 33
3.2.4 SIMD16 Mode of Operation .. 34
3.2.5 SIMD8 Mode of Operation .. 36

3.3 Registers and Register Regions .. 36
3.3.1 Register Files .. 36
3.3.2 GRF Registers .. 36
3.3.3 ARF Registers .. 37
3.3.4 Immediate ... 57
3.3.5 Region Parameters ... 57
3.3.6 Region Addressing Modes ... 62
3.3.7 Access Modes .. 67
3.3.8 Execution Data Type .. 68
3.3.9 Register Region Restrictions .. 68
3.3.10 Destination Operand Description.. 72

3.4 SIMD Execution Control ... 73
3.4.1 Predication .. 73
3.4.2 No Predication .. 74
3.4.3 Predication with Horizontal Combination .. 74
3.4.4 Predication with Vertical Combination .. 76

3.5 End of Thread .. 76
3.6 Assigning Conditional Flags ... 77
3.7 Destination Hazard ... 79

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 4

3.8 Non-present Operands... 80
3.9 Instruction Prefetch .. 80

4. Exceptions ... 81

4.1 Exception-Related Architecture Registers ... 81
4.2 System Routine .. 82

4.2.1 Invoking the System Routine .. 82
4.2.2 Returning to the Application Thread ... 83
4.2.3 System IP (SIP) .. 84
4.2.4 System Routine Register Space... 84
4.2.5 System Scratch Memory Space ... 84
4.2.6 Conditional Instructions Within the System Routine .. 85
4.2.7 Use of NoDDClr .. 85

4.3 Exception Descriptions... 86
4.3.1 Illegal Opcode ... 86
4.3.2 Undefined Opcodes .. 86
4.3.3 Software Exception ... 86
4.3.4 Context Save and Restore ... 87

4.4 Events That Do Not Generate Exceptions ... 87
4.4.1 Illegal Instruction Format .. 87
4.4.2 Malformed Message ... 87
4.4.3 GRF Register Out of Bounds .. 87
4.4.4 Hung Thread ... 88
4.4.5 Instruction Fetch Out of Bounds ... 88
4.4.6 FPU Math Errors ... 88
4.4.7 Computational Overflow ... 88

4.5 System Routine Example ... 88
5. Instruction Set Summary .. 92

5.1 Instruction Set Characteristics ... 92
5.1.1 5nstruction Operands and Register Regions ... 92
5.1.2 Instruction Execution .. 92

5.2 Instruction Machine Formats .. 93
5.2.1 EU Instruction Formats ... 96
5.2.2 Common Instruction Fields ... 100
5.2.3 Instruction Operation Doubleword (DW0) .. 105
5.2.4 Instruction Destination Doubleword (DW1) .. 110
5.2.5 Instruction Source 0 Doubleword 2 (DW2) ... 115
5.2.6 Instruction Source 1 Doubleword 3 (DW3) ... 119

5.3 EU Compact Instructions ... 122
5.3.1 EU Compact Instruction Format ... 123

5.4 Opcode Encoding ... 127
5.4.1 Move and Logic Instructions ... 127
5.4.2 Flow Control Instructions .. 128
5.4.3 Miscellaneous Instructions ... 129
5.4.4 Parallel Arithmetic Instructions ... 130
5.4.5 Vector Arithmetic Instructions ... 131
5.4.6 Special Instructions .. 131

5.5 Native Instruction BNF ... 132
5.5.1 Instruction Groups .. 132
5.5.2 Destination Register ... 134
5.5.3 Source Register .. 134
5.5.4 Address Registers .. 135
5.5.5 Register Files and Register Numbers .. 135
5.5.6 Relative Location and Stack Control .. 137
5.5.7 Regions ... 137

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 5

5.5.8 Types .. 137
5.5.9 Write Mask .. 137
5.5.10 Swizzle Control ... 138
5.5.11 Immediate Values ... 138
5.5.12 Predication and Modifiers ... 138
5.5.13 Instruction Options .. 139

5.6 Instruction Set Summary Tables .. 139
5.7 Accumulator Restrictions ... 142

6. Instruction Set Reference ... 145

6.1 Conventions ... 145
6.1.1 Pseudo Code Format ... 145
6.1.2 General Macros and Definitions ... 145

6.2 Evaluate Write Enable.. 146
6.3 Instruction Description .. 147
6.4 add ï Addition .. 147
6.5 addc ï Integer Addition with Carry ... 148
6.6 and ï Logic And ... 149
6.7 asr ï Arithmetic Shift Right .. 150
6.8 avg ï Average .. 151
6.9 bfe ï Bit Field Extract ... 152

6.9.1 bfi1 ï Bit Field Insert 1 .. 153
6.10 bfi2 ï Bit Field Insert 2 .. 154
6.11 bfrev ï Reverse Bits ... 155
6.12 brc ï Branch Converging .. 156
6.13 brd ï Branch Diverging ... 157
6.14 break ï Break ... 159
6.15 call ï Call .. 160
6.16 cbit ï Count Bits Set ... 162
6.17 cmp ï Compare .. 163
6.18 cmpn ï Compare NaN .. 165
6.19 cont ï Continue ... 166
6.20 dp2 ï Dot Product 2 .. 167
6.21 dp3 ï Dot Product 3 .. 168
6.22 dp4 ï Dot Product 4 .. 169
6.23 dph ï Dot Product Homogeneous .. 170
6.24 else ï Else .. 171
6.25 endif ï End If ... 172
6.26 f16to32 ï Half Precision Float to Single Precision Float .. 173
6.27 f32to16 ï Single Precision Float to Half Precision Float .. 174
6.28 fbh ï Find First Bit from MSB Side ... 175
6.29 fbl ï Find First Bit from LSB Side ... 177
6.30 frc ï Fraction ... 178
6.31 halt ï Halt .. 179
6.32 if ï If .. 180
6.33 illegal ï Illegal ... 182
6.34 jmpi ï Jump Indexed ... 183
6.35 line ï Line ... 184
6.36 lrp ï Linear Interpolation ... 185
6.37 lzd ï Leading Zero Detection .. 186
6.38 mac ï Multiply Accumulate ... 187
6.39 mach ï Multiply Accumulate High .. 188
6.40 mad ï Multiply Add ... 189
6.41 math ï Extended Math Function ... 190

6.41.1 INV - Inverse ... 192

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 6

6.41.2 LOG ï Logarithm .. 192
6.41.3 EXP - Exponent .. 192
6.41.4 SQRT .. 192
6.41.5 RSQ .. 193
6.41.6 POW ... 193
6.41.7 SIN .. 194
6.41.8 COS .. 194
6.41.9 INT DIV ... 194
6.41.10 mov ï Move .. 195

6.42 6movi ï Move Indexed .. 196
6.43 mul ï Multiply .. 197
6.44 nop ï No Operation .. 200
6.45 not ï Logic Not .. 201
6.46 or ï Logic Or ... 202
6.47 pln ï Plane .. 203
6.48 ret ï Return ... 204
6.49 rndd ï Round Down .. 205
6.50 rnde ï Round to Nearest or Even ... 206
6.51 rndu ï Round Up .. 208
6.52 rndz ï Round to Zero .. 209
6.53 sad2 ï Sum of Absolute Difference 2 ... 211
6.54 sada2 ï Sum of Absolute Difference Accumulate 2 ... 212
6.55 sel ï Select ... 213
6.56 send Message .. 214
6.57 sendc ï Conditional Send Message ... 218
6.58 shl ï Shift Left ... 219
6.59 shr ï Shift Right .. 220
6.60 subb ï Integer Subtraction with Borrow .. 221
6.61 wait ï Wait Notification ... 222
6.62 while ï While ... 223
6.63 xor ï Logic Xor .. 224

7. EU Programming Guide .. 225

7.1 Assembler Pragmas ... 225
7.2 Declarations ... 225

7.2.1 Defaults and Defines .. 225
7.2.2 Example Pragma Usages ... 226
7.2.3 Assembly Programming Guideline ... 228

7.3 Usage Examples .. 228
7.3.1 Vector Immediate ... 228
7.3.2 Destination Mask for DP4 and Destination Dependency Control ... 230
7.3.3 Null Register as the Destination ... 231
7.3.4 Use of LINE Instruction ... 231
7.3.5 Mask for SEND Instruction ... 232
7.3.6 Flow Control Instructions .. 235
7.3.7 Execution Masking ... 237

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 7

1. Introduction
This chapter contains these sections that introduce this volume.

¶ Introducing the Execution Unit

¶ EU Terms and Acronyms

¶ EU Changes by Processor Generation

¶ EU Notation

Subsequent chapters cover:

¶ EU Data Types

¶ Execution Environment

¶ Exceptions

¶ Instruction Set Summary

¶ Instruction Set Reference

¶ EU Programming Guide

The EU Programming Guide provides some useful examples and information but is not a complete or

comprehensive programming guide.

1.1 Introducing the Execution Unit

This section introduces the Execution Unit (EU), a simple and capable processor within the GPU that

supports graphics processing within the graphics pipelines, can do general purpose computing (GPGPU),

and responds to exceptional conditions via the System Routine.

The EU provides parallelism at two levels: thread and data element. Multiple threads can execute on the

EU; the number executing concurrently depends on the processor and is transparent to EU code. Each

thread has its own registers (GRF and ARF, described below). Most EU instructions operate on arrays of

data elements; the number of data elements is normally the ExecSize (execution size) or number of

channels for the instruction. A channel is a logical unit of execution for data element access, masking,

and flow control within instructions. The number of channels is independent of the number of physical

ALUs or FPUs for a particular graphics processor.

EU native instructions are 128 bits (16 bytes) wide. Some combinations of instruction options can use

compact instruction formats that are 64 bits (8 bytes) wide. Identifying instructions that can be compacted

and creating the compact representations is done by software tools, including compilers and assemblers.

Data manipulation instructions have a destination operand (dst) and one, two, or three source operands

(src0, src1, or src2). The instruction opcode determines the number of source operands. An instruction's

last source operand can be an immediate value rather than a register.

Data read or written by a thread is generally in the thread's GRF (General Register File), 128 general

registers, each 32 bytes. A data element address within the GRF is denoted by a register number (r0 to

r127) and a subregister number. In the instruction syntax, subregister numbers are in units of data

element size. For example, a :d (Signed Doubleword Integer) element can be in subregister 0 to 7,

corresponding to byte numbers in the instruction encoding of 0, 4, ... 28.

Note: The EU cannot directly read or write data in system memory.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 8

Specialized registers used to implement the ISA are in a distinct per thread Architecture Register File

(ARF). Each such register or group of related registers has its own distinct name. For example, ip is the

instruction pointer and f0 is a flags register. An ARF register can be a src0 or dst operand but not a src1

or src2 operand. There are restrictions on how particular ARF registers are accessed that should be

understood before directly reading or writing those registers. See the ARF Registers section for more

information.

The EU supports both integer and floating-point data types, as described in the Numeric Data Types

section.

For EU flow control, each channel has its own per-channel instruction pointer (PcIP[n]) and only executes

an instruction when IP == PcIP[n] and any other masks enable the channel. Most flow control instructions

use signed offsets from the current instruction address to reference their targets. Unconditional branches

are done using mov with IP as the destination. Flow control can also use SPF (Single Program Flow)

mode to execute with a single instruction pointer (IP).

The EU ISA supports predication, masking, regioning, swizzling, some type conversions, source

modification, saturation, accumulator updates, and flag updates as part of instruction execution:

¶ Predication creates a bit mask (PMask) to enable or disable channels for a particular instruction
execution. Pmask is derived from flag register and subregister values using boolean formulas
determined by the PredCtrl (Predicate Control) and PredInv (Predicate Inversion) instruction fields.
See the Predication section.

¶ Masking is the overall process of determining which channels execute for a given instruction based
on five factors:

¶ Number of channels (only channels in [0, ExecSize - 1] can execute)

¶ Execution mask (EMask)

¶ Whether the channel is on the instruction (if not in Single Program Flow mode and MaskCtrl is not
NoMask)

¶ Predicate mask (PMask)

¶ In Align16 mode, any enabling of channels using the Dst.ChanEn instruction field (if MaskCtrl is
not NoMask).

¶ Regioning specifies an array of data elements contained in one or two registers, with options for
scattering, interleaving, or repeating data elements in registers using width and stride values, subject
to significant constraints. Regioning also includes access mode (Align1 or Align16) and addressing
mode (Direct or Indirect). See the Registers and Register Regions section.

¶ Swizzling allows small scale reordering of data elements within groups of four at the input using the
modulo 4 channel names x, y, z, and w. For example, a swizzle of .wzyx with an ExecSize of 8 reads
execution channels 0 to 7 from these input channels: 3, 2, 1, 0, 7, 6, 5, and 4. Swizzling is only
available in the Align16 access mode, described in the Execution Environment chapter.

¶ Type Conversions do any needed conversion from source data type to execution data type and from
execution data type to destination data type. See Execution Data Type for more information. Each
instruction description indicates what combinations of data types are supported.

¶ Source Modification modifies a source operand just before doing the requested operation. For a
numeric operation, the choices are:

¶ No modification (normal).

¶ - indicating negation.

¶ (abs) indicating absolute value.

¶ -(abs) indicating a forced negative value.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 9

Source modification logically occurs after any conversion from source data type to execution data
type. Each instruction description indicates whether it supports source modification.

¶ Saturation clamps result values to the nearest value within a saturation range determined by the
destination type. For a floating-point type, the saturation range is [0.0, 1.0]. For an integer type, the
saturation range is the entire range for that type, for example [0, 65535] for the UW (Unsigned Word)
type. Each instruction description indicates whether it supports saturation.

¶ Accumulator Updates optionally update the accumulator register or registers in the ARF with
destination values as a side effect of instruction execution. The AccWrCtrl instruction field enables
accumulator updates. The Accumulator Disable flag in control register 0 (cr0) can be used to disable
accumulator updates, regardless of AccWrCtrl values; for example, this flag may be used in the
System Routine.

¶ Flag Updates optionally update a flags register and subregister (f0.0, f0.1, f1.0, or f1.1) with
conditional flags based on the CondModifier (Condition Modifier) instruction field. For example, a
CondModifier of .nz (not zero) assigns flag bits based on whether result elements are not zero (1) or
zero (0). Each instruction description indicates whether it supports the Condition Modifier and any
restrictions on the values supported.

Note: The EU is not required to execute steps in its internal pipeline sequentially or in order, so long as it

produces correct results.

The assembler syntax uses spaces between operands and encloses ExecSize and any predicate in

parentheses. Instruction mnemonics, register names, conditional modifiers, predicate controls, and type

designators use lowercase. Function names used with the math instruction are UPPERCASE.

(pred) inst cmod sat (exec_size) dst src0 src1 { inst_opt, ... }

General register destination regions use the syntax rm.n<HorzStride>:type. General register directly

addressed source regions use the syntax rm.n<VertStride;Width,HorzStride>:type. You need to

understand more about register regioning to understand all of these terms.

The following example assembly language instruction adds two packed 16-element single-precision Float

arrays in r4/r5 and r2/r3 writing results to r0/r1, only on those channels enabled by the predicate in f0.0

along with any other applicable masks.

 (f0.0) add (16) r0.0<1>:f r2.0<8;8,1>:f r4.0<8;8,1>:f

1.2 EU Terms and Acronyms

This section provides three tables describing EU general terms and acronyms, EU data types, and EU

selected ARF registers.

EU General Terms and Acronyms

Term Description

ALT mode A floating-point execution mode that maps +/- inf to +/- fmax, +/- denorm to +/-0, and NaN to +0 at the

FPU inputs and never produces infinities, denormals, or NaN values as outputs. See IEEE mode.

ALU Arithmetic Logic Unit. A functional block that performs integer arithmetic and logic operations, as

distinct from instruction fetch and decode, floating-point operations (see FPU), or messaging.

AOS Array Of Structures. Also see SOA.

ARF Architecture Register File, a distinct register file containing registers used to implement specific ISA

features. For example the Instruction Pointer and condition flags are in ARF registers. See GRF.

byte An 8-bit value aligned on an 8-bit boundary and the basic unit of addressing. Bits within a byte are

denoted 0 to 7 from LSB to MSB.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 10

Term Description

channel
A logical unit of SIMD data parallel execution within a thread and within the EU. The number of

physical ALUs or FPUs is not directly related to the number of channels.

Supports up to 16 channels.

Supports up to 32 channels.

compact

instruction

A 64-bit instruction encoded as described in the EU Compact Instructions section. Only some

combinations of instruction parameters can be encoded as compact instructions. See native

instruction.

compressed

instruction

An instruction that writes to two destination registers. For example a SIMD16 instruction with Float

operands can write channels 0 to 7 to one 32-byte general register and channels 8 to 15 to a second,

consecutive 32-byte general register.

denorm A very small but nonzero number in IEEE mode, with a magnitude less than the smallest normalized

floating-point number representable in a particular floating-point format. Denormals lose precision as

their values approach zero, called gradual underflow.

DWord Doubleword. A 32-bit (4-byte) value aligned on a 32-bit (4-byte) boundary. Bits within a DWord are

denoted 0 to 31 from LSB to MSB.

EOT End of Thread. A flag set on a send or sendc instruction to terminate a thread's execution on the EU.

EU Execution Unit. The single GPU unit described in this volume. This volume describes individual data

parallel execution paths within a thread in the EU as channels. A few fields, like EUID, use EU to refer

to a particular hardware resource used to implement the overall EU.

exception An error or interrupt condition that arises during execution that may transfer control to the System

Routine. Some exceptions can be disabled, preventing such transfers. As defined in this volume,

some errors do not produce exceptions.

ExecSize The number of execution channels for a particular instruction. Channels within that number are

enabled or disabled by various masks.

floating-point Numeric types that allow fractional values and often a wider range than integer types. The EU

supports binary floating-point types including the single precision type and the double precision

typedefined by the IEEE 754 standard.

GEN GEN is sometimes used to refer to Intel's mainstream GPU architecture integrated with recent CPU

generations.

GRF General Register File, a distinct register file containing 128 general registers, r0 to r127. Each general

register is 256 bits (32 bytes), can contain any type of data, and can be accessed with any valid

combination of addressing mode, access mode, and region parameters. A general register is directly

addressed using a register number and subregister number, or indirectly addressed using an address

subregister (index register) and an address immediate offset.

IEEE mode A floating-point execution mode that supports all the kinds of floating-point values described by the

IEEE 754 standard: normalized finite nonzero binary floating-point numbers, signed zeros, signed

infinities, signed denormals that are closer to zero than any normalized value but still nonzero, and

NaN (not a number) values. See ALT mode.

index register An address subregister when used for indirect addressing.

inf Infinity, +inf or -inf, as a floating-point value in IEEE mode.

instruction In this volume, instruction always refers to an EU instruction.

ISA Instruction Set Architecture, processor aspects visible to programs and programmers and independent

of a particular implementation, including data types, registers, memory access, addressing modes,

exceptions, instruction encodings, and the instruction set itself. An ISA does not include instruction

timing, hardware pipeline details, or the number of physical resources (ALUs, FPUs, instruction

decoders) mapped to logical constructs (threads, channels). This volume also includes a

recommended assembly language syntax, closely related to the ISA but logically distinct from it.

LSB Least significant bit.

message A data structure transmitted from a thread to another thread, to a shared function, or to a fixed

function. Message passing is the primary communication mechanism of the GEN architecture.

MSB Most significant bit.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 11

Term Description

NaN Not a Number. A non-numeric value allowed in the standard single precision and double precision

floating-point number formats. Quiet NaNs propagate through calculations and signaling NaNs cause

exceptions. NaNs are not used in the ALT floating-point mode.

native

instruction

A 128-bit instruction, the regular instruction format that allows all defined instruction parameters and

options. Some instructions can also be encoded using a 64-bit compact instruction format.

OWord Octword. A 128-bit (16-byte) value aligned on a 128-bit (16-byte) boundary. Bits within an OWord are

denoted 0 to 127 from LSB to MSB. This term is used rarely and may be dropped from future versions

of this volume.

packed
A register region is described as packed if its elements are adjacent in memory, with no intervening

space, no overlap, and no replicated values. If there is more than one element in a row, elements

must be adjacent. If there is more than one row, rows must be adjacent. When two registers are

used, the registers must be adjacent and both must exist.

The immediate vector data types are all described as Packed because each such type packs several

small data elements into a 32-bit immediate value.

QWord Quadword. A 64-bit (8-byte) value aligned on a 64-bit (8-byte) boundary. Bits within a QWord are

denoted 0 to 63 from LSB to MSB.

region A collection of data locations in registers and subregisters for a source or destination operand. The

associated regioning parameters allow regions to be arrays with various layouts.

register Part of the directly accessible state of an EU program, such as a general register in the GRF or an

architecture register in the ARF. Note that system memory is not directly accessible.

SIMD Single Instruction Multiple Data. Each EU instruction can operate on multiple data elements in parallel,

as specified by the instruction's ExecSize.

SIP System Instruction Pointer, the starting IP value for the System Routine.

SOA Structure of Arrays. Also see AOS.

SPF Single Program Flow. A mode in which every execution channel uses the common instruction pointer,

IP in the ip register. The SPF bit in the control register is 1 to enable SPF and 0 to disable it. If SPF is

disabled, then each execution channel n has its own instruction pointer, PcIP[n] and each channel n is

only eligible to execute, subject to other masking, when PcIP[n] == IP.

swizzle Rearrange data elements within a vector. The EU supports modulo four swizzling of register source

operands at the input in the Align16 access mode.

System

Routine

A global EU exception handling routine. Any enabled exception from any EU thread transfers control

to this routine.

thread An instance of a program executing on the EU. The life cycle for a thread on the EU starts with the first

instruction after being dispatched to the EU by the Thread Dispatcher and ends after executing a send

or sendc instruction with EOT set, signaling thread termination. Threads can be independent or can

communicate with each other via the Message Gateway shared function.

word A 16-bit (2-byte) value aligned on a 16-bit (2-byte) boundary. Bits within a word are denoted 0 to 15

from LSB to MSB. Word has denoted a 16-bit unit for Intel processors since the 8086 and 8088

processors were introduced in 1978.

The next table lists all EU numeric data types. See the Numeric Data Types section for more information

about each data type.

EU Numeric Data Types (Listed Alphabetically by Short Name)

Short
Name

Assembler
Syntax

Long
Name

Size
in

Bytes

Size
in

Bits

Integral
or

Float Description

B :b Signed Byte Integer 1 8 I Signed integer in the range -128 to 127.

D :d Signed Doubleword

Integer

4 32 I Signed integer in the range -231 to 231 - 1.

DF :df Double Float 8 64 F Double precision floating-point number.

F :f Float 4 32 F Single precision floating-point number.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 12

Short
Name

Assembler
Syntax

Long
Name

Size
in

Bytes

Size
in

Bits

Integral
or

Float Description

UB :ub Unsigned Byte Integer 1 8 I Unsigned integer in the range 0 to 255.

UD :ud Unsigned Doubleword

Integer

4 32 I Unsigned integer in the range 0 to 232 - 1.

UV :uv Packed Unsigned Half

Byte Integer Vector

4 32 I Eight 4-bit unsigned integer values each in the

range 0 to 15. Only used as an immediate value.

UW :uw Unsigned Word Integer 2 16 I Unsigned integer in the range 0 to 65,535.

V :v Packed Signed Half Byte

Integer Vector

4 32 I Eight 4-bit signed integer values each in the range -

8 to 7. Only used as an immediate value.

VF :vf Packed Restricted Float

Vector

4 32 F Four 8-bit restricted float values. Only used as an

immediate value.

W :w Signed Word Integer 2 16 I Signed integer in the range -32,768 to 32,767.

The next table lists the seven ARF registers that you should understand first, omitting several others. See

the ARF Registers section for more information, including descriptions of additional registers not listed

below.

EU Selected ARF Registers (Listed Alphabetically by Name)

Name
Assembler

Syntax Description

Accumulators acc0, acc1
Data registers that can hold integer or floating-point values of various sizes. Many

instructions can implicitly update accumulators with a copy of destination values, done

by setting the AccWrCtrl instruction option. A few instructions, like mac (Multiply

Accumulate), use the accumulators as an implicit source operand, useful for some

iterative calculations.

Address

Register

a0.s
Holds subregisters primarily used for indirect addressing. Each subregister is a 16-bit

UW (Unsigned Word) value. For an indirectly addressed operand or element, the

subregister value plus an AddrImm signed offset field determines the byte address

(RegNum and SubRegNum) within the register file (GRF).

There are 8 address subregisters.

Control

Register

cr0.s Contains bit fields for floating-point modes, flow control modes, and exception

enable/disable. Also contains exception indicator flags and saves the AIP (Application

Instruction Pointer) on transferring control to the System Routine to handle an exception.

Flags fr.s Used as the outputs for various channel conditional signals, such as equality/zero or

overflow. Used as the inputs for predication. There are two 32-bit flags registers each

containing two 16-bit subregisters.

Instruction

Pointer

(IP)

ip
References the current instruction in memory, as an unsigned offset from the General

State Base Address. IP is the thread's overall instruction pointer. Each channel n can

have its own instruction pointer (PcIP[n]). If not in Single Program Flow mode (SPF is 0)

then only those channels where PcIP[n] == IP are eligible to execute the instruction, if

enabled by all other applicable masks.

Null Register null
Indicates a non-existent operand. Unused operands in the instruction format, like the

unused second source operand field in a mov instruction, are encoded as null.

For present source operands, reading a null source operand returns undefined values.

For null destination operands, results are discarded but any implicit updates to

accumulators or flags still occur.

State Register sr0.s Contains thread identification and scheduling fields, and mask fields for enabling or

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 13

Name
Assembler

Syntax Description

disabling channels.

1.3 EU Changes by Processor Generation

This section describes how the EU changes for particular processor generations. Instruction compaction

tables can differ for each generation, so that is not mentioned in these lists. Particular readers and

audiences can see only certain content in this section. Errata and workarounds for particular generations,

SKUs, or steppings are not included in these lists. Some small changes in instruction layouts are not

included in these lists.

Ivy Bridge

These features or behaviors are added , continuing to later generations:

¶ The maximum ExecSize increases to 32, for byte or word operands.

¶ Increase the number of flag registers from one to two.

¶ Add the NibCtrl field, used with QtrCtrl to select groups of channels or flags.

¶ Add the DF (Double Float) data type, the first time an 8-byte data type is supported. DF only
supports the IEEE floating-point mode and not the ALT floating-point mode.

¶ Add a shared source data type field and a destination data type field for instructions with three
source operands, allowing F (Float), DF (Double Float), D (Signed Doubleword Integer), or UD
(Unsigned Doubleword Integer) types to be specified.

¶ Add bit manipulation instructions: bfi1, bfi2, bfrev, cbit, fbh, and fbl.

¶ Add the integer addc (Add with Carry) and subb (Subtract with Borrow) instructions.

¶ Add the brc (Branch Converging) and brd (Branch Diverging) instructions.

¶ For the cmp and cmpn instructions, relax the accumulator restrictions.

¶ For the sel instruction, remove the accumulator restriction.

¶ Add the Rounding Mode and Double Precision Denorm Mode fields in Control Register 0.

These features or behaviors are specific to and may not continue to later generations:

¶ Each DF (Double Float) operand uses an element size of 4 rather than 8 and all regioning
parameters are twice what the values would be based on the true element size: ExecSize, Width,
HorzStride, and VertStride. Each DF operand uses a pair of channels and all masking and swizzling
should be adjusted appropriately.

¶ The f16to32 and f32to16 instructions convert between half-precision float and Float.

¶ The mul instruction limits integer multiplication involving DWords so that only the low 16 bits of src1
are used even if src1 is a DWord.

¶ The sel (Select) instruction does not support an ExecSize of 32.

¶ SIMD16 execution on DWords is not allowed when an accumulator is an explicit source or
destination operand.

1.4 EU Notation

The Courier New font is used for code examples and for the Syntax, Format, and Pseudocode sections

in the instruction reference.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 14

The italic font style is used for instruction mnemonics outside of code (e.g., the send instruction), for

syntactic production names, for key values in algorithms (ExecSize), and to emphasize a word or phrase.

For example: When bit 10 is set, the destination register scoreboard is not cleared.

The bold font weight is used for the short name and long name of a bit field being described, for value

names being defined, for syntactic terminals, for unnumbered subheadings, and for the terms Note,

Erratum/Errata, or Workaround used to introduce a paragraph.

Bit field names and value names used where not being defined and not as syntactic terminals are in plain

text.

Bit field values in hex use the 0x prefix. The BSpec currently uses the 0x prefix for hex in some parts and

the h suffix for hex in other parts. For single bits, values appear as simply 0 or 1. For multi-bit binary

values, the appropriate number of binary digits appears with a b suffix.

Instruction mnemonics are lowercase. Function names invoked using the math instruction are

UPPERCASE. For example, SQRT.

Tables describing bit field layouts or registers proceed from most significant to least significant bits.

Figures showing bit fields or registers show most significant bits on the left and least significant bits on the

right.

Any bit, field, or register described as Reserved should be regarded as undefined and unpredictable.

Such bits should be treated as follows:

¶ When testing values, do not depend on the state of reserved bits. Mask out or otherwise ignore such
bits.

¶ Sometimes software must initialize reserved bits. For example, a compiler must write complete
instruction values when creating an instruction stream, including reserved bits. In such cases, write
reserved bits as zeros unless otherwise indicated.

¶ Do not use reserved bits as extra storage for software-defined values; put nothing in such bits.

¶ When saving state and restoring state, save and restore any reserved bits as well.

¶ Do not assume that reserved bits are invariant between explicit writes. Software should function
even if reserved bits change in undefined and unpredictable ways.

Any value, encoding, or combination of values or encodings described as Reserved must not be used.

The EU's behavior is undefined in this case.

When a combination of instruction parameters or an EU state is described as producing undefined results

or behavior, do not assume that undefined results or behavior are confined to specific instructions,

operands, registers, or channels.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 15

2. EU Data Types

2.1 Fundamental Data Types

The fundamental data types in the GEN architecture are halfbyte, byte, word, doubleword (DW),

quadword (QW), double quadword (DQ) and quad quadword (QQ). They are defined based on the

number of bits of the data type, ranging from 4 bits to 256 bits. As shown in Fundamental Data Types, a

halfbyte contains 4 bits, a byte contains 8 bits, a word contains two bytes, and a doubleword (dword)

contains two words, and so on. Halfbyte is a special data type such that it cannot be accessed directly as

standalone data element. It is only allowed as a subfield of the numeric data type of ñpacked signed

halfbyte integer vectorò described in the next section.

Fundamental data types

With the exception of halfbyte, the access of a data element to/from a GEN register or to/from memory

must be aligned on the natural boundaries of the data type. The natural boundary for a word has an even-

numbered address in unit of byte. The natural boundary for a doubleword has an address divisible by 4

bytes. Similarly, the natural boundary for a quadword, double quadword and quad quadword has an

address divisible by 8, 16, and 32 bytes, respectively. Quadword, double quadword and quad quadword

do not have corresponding numeric data type. Instead, they are used to describe a group (a vector) of

numeric data elements of smaller size align to larger natural boundaries.

2.2 Numeric Data Types

The numeric data types defined in the GEN architecture include signed and unsigned integers and

floating-point numbers (floats) of various sizes. These numeric data types are described below.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 16

2.2.1 Integer Numeric Data Types

The Execution Unit supports the following integer data types. Signed integer types use two's complement

representation for negative numbers.

UB: Unsigned Byte, 8-bit Unsigned Integer

7 0

B: Byte, 8-bit Signed Integer

7 6 0

S

UW: Unsigned Word, 16-bit Unsigned Integer

1
5 0

W: Word, 16-bit Signed Integer

1
5

1
4 0

S

UD: Unsigned Doubleword, 32-bit Unsigned Integer

3
1 0

D: Doubleword, 32-bit Signed Integer

3
1

3
0 0

S

UV: Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer

3
1

2
8

2
7

2
4

2
3

2
0

1
9

1
6

1
5

1
2

1
1 8 7 4 3 0

V: Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer

3
1

2
8

2
7

2
4

2
3

2
0

1
9

1
6

1
5

1
2

1
1 8 7 4 3 0

S S S S S S S S

The following table summarizes the EU integer data types.

 Execution Unit Integer Data Types

Notation Size in Bits Name Range

UB 8 Unsigned Byte Integer [0, 255]

B 8 Signed Byte Integer [-128, 127]

UW 16 Unsigned Word Integer [0, 65535]

W 16 Signed Word Integer [-32768, 32767]

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 17

Notation Size in Bits Name Range

UD 32 Unsigned Doubleword Integer [0, 232 ï 1]

D 32 Signed Doubleword Integer [ï231, 231 ï 1]

UV 32 Packed Unsigned Half-Byte

Integer Vector

[0, 15] in each of eight 4-bit immediate vector elements.

V 32 Packed Signed Half-Byte

Integer Vector

[-8, 7] in each of eight 4-bit immediate vector elements.

Restriction: Only a raw move using the mov instruction supports a packed byte destination register

region. For information about raw moves, refer to the Description in mov ï Move.

2.2.2 Floating-Point Numeric Data Types

The Execution Unit supports the following floating-point data types. The Float and Double Float types use

the single precision and double precision formats specified in IEEE Standard 754-1985 for Binary

Floating-Point Arithmetic. In the ALT floating-point mode, representations for infinities, denorms, and

NaNs within those formats are not used. The EU does not support the double extended precision (80-bit)

floating-point format found in the x86/x87/Intel 64 floating-point registers. All floating-point formats are

signed using signed magnitude representation (a distinct sign bit, separate from the magnitude

information).

The F (Float) type supports both the ALT and IEEE floating-point modes, controlled by the Single

Precision Floating-Point Mode bit in the Control Register.

In IEEE mode, F calculations flush denormalized values to zero and gradual underflow is not supported.

The DF (Double Float) type only supports the IEEE floating-point mode. Whether DF calculations support

denorms or flush denormalized values to zero is controlled by the Double Precision Denorm Mode bit in

the Control Register.

F: Float, 32-bit Single-Precision Floating-Point Number

3
1

3
0

2
3

2
2 0

S biased

exponent

fraction

DF: Double Float, 64-bit Double-Precision Floating-Point Number+

6
3

6
2

5
2

5
1 0

S biased exponent fraction

VF: Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point Number

3
1

3
0

2
8

2
7

2
4

2
3

2
2

2
0

1
9

1
6

1
5

1
4

1
2

1
1 8 7 6 4 3 0

S b. exp. frac. S b. exp. frac. S b. exp. frac. S b. exp. frac.

The following table summarizes the EU floating-point data types.

Execution Unit Floating-Point Data Types

Notation
Size in

Bits Name Range

F 32 Float
Single precision, 1 sign bit, 8 bits for the biased exponent, and 23 bits for the

significand:

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 18

Notation
Size in

Bits Name Range

[ï(2ï2-23)127éï2-149, 0.0, 2-149é (2ï2-23)127]

DF 64 Double Float
Double precision, 1 sign bit, 11 bits for the biased exponent, and 52 bits for the

significand:

[ï(2ï2-52)1023éï2-1074, 0.0, 2-1074é (2ï2-52)1023]

VF 32 Packed

Restricted

Float Vector

Restricted precision. Each of four 8-bit immediate vector elements has 1 sign

bit,

3 bits for the biased exponent (bias of 3), and 4 bits for the significand:

[ï31éï0.125, 0, 0.125é 31]

2.2.3 Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers contained in a doubleword.

Each signed halfbyte integer element has a range from -8 to 7 with the sign on bit 3. This numeric data

type is only used by an immediate source operand of doubleword in a GEN instruction. It cannot be used

for the destination operand or a non-immediate source operand. GEN hardware converts the vector into

an 8-element signed word vector by sign extension. This is illustrated in Numeric Data Types.

The short hand format notation for a packed signed half-byte vector is V.

Converting a Packed Half-Byte Vector to a 128-bit Signed Integer Vector

2.2.4 Packed UnSigned Half-Byte Integer Vector

A packed unsigned halfbyte integer vector consists of 8 unsigned halfbyte integers contained in a

doubleword. Each unsigned halfbyte integer element has a range from 0 to 15. This numeric data type is

only used by an immediate source operand of doubleword in a GEN instruction. It cannot be used for the

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 19

destination operand or a non-immediate source operand. GEN hardware converts the vector into an 8-

element signed word vector.

2.2.5 Packed Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a doubleword. Each

restricted float has the sign at bit 7, a 3-bit coded exponent in bits 4 to 6, a 4-bit fraction in bits 0 to 3, and

an implied integer 1. The exponent is in excess-3 format ï having a bias of 3. Restricted float provides

zero, positive/negative normalized numbers with a small range (3-bit exponent) and small precision (4-bit

fraction). This numeric data type is only used by an immediate source operand of doubleword in a GEN

instruction. It cannot be used for the destination operand, or a non-immediate source operand.

The following figure shows how to convert an 8-bit restricted float into a single precision float. Converting

a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is by adding 4, or equivalently

copying bit 2 to bit 7 and putting the inverted bit 2 to bits 6:2. A special logic is also needed to take care of

positive/negative zeros.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 20

Conversion from a Restricted 8-bit Float to a Single-Precision Float

The following table shows all possible numbers of the restricted 8-bit float. Only normalized float numbers

can be represented, including positive and negative zero, and positive and negative finite numbers.

Normalized infinites, NaN, and denormalized float numbers cannot be represented by this type. It should

be noted that this 8-bit floating point format does not follow IEEE-754 convention in describing numbers

with small magnitudes. Specifically, when the exponent field is zero and the fraction field is not zero, an

implied one is still present instead of taking a denormalized form (without an implied one). This results in

a simple implementation but with a smaller dynamic range ï the magnitude of the smallest non-zero

number is 0.125.

Examples of Restricted 8-bit Float Numbers

Class Hex # Sign [7] Exponent [6:4] Fraction [3:0]
Extended

 8-bit Exponent
Floating Number

 in Decimal

Positive Normalized Float 0x70-0x7F 0 111 0000 é 1111 1000 0011 16 é 31

0x60-0x6F 0 110 0000 é 1111 1000 0010 8 é 15.5

0x50-0x5F 0 101 0000 é 1111 1000 0001 4 é 7.75

0x40-0x4F 0 100 0000 é 1111 1000 0000 2 é 3.875

0x30-0x3F 0 011 0000 é 1111 0111 1111 1 é 1.9375

0x20-0x2F 0 010 0000 é 1111 0111 1110 0.5 é 0.96875

0x10-0x1F 0 001 0000 é 1111 0111 1101 0.25 é 0.484375

0x01-0x0F 0 000 0001 é 1111 0111 1100 0.125 é 0.2421875

0x00 0 000 0000 0000 0000 0 (+zero)

Negative Normalized Float 0xF0-0xFF 1 111 0000 é 1111 1000 0011 -16 é -31

0xE0-0xEF 1 110 0000 é 1111 1000 0010 -8 é -15.5

0xD0-0xDF 1 101 0000 é 1111 1000 0001 -4 é -7.75

0xC0-0xCF 1 100 0000 é 1111 1000 0000 -2 é -3.875

0xB0-0xBF 1 011 0000 é 1111 0111 1111 -1 é -1.9375

0xA0-0xAF 1 010 0000 é 1111 0111 1110 -0.5 é -0.96875

0x90-0x9F 1 001 0000 é 1111 0111 1101 -0.25 é -0.484375

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 21

Class Hex # Sign [7] Exponent [6:4] Fraction [3:0]
Extended

 8-bit Exponent
Floating Number

 in Decimal

0x81-0x8F 1 000 0001 é 1111 0111 1100 -0.125 é -0.2421875

0x80 1 000 0000 0000 0000 -0 (-zero)

The following figure shows the conversion of a packed exponent-only float to a 4-element vector of single

precision floats.

The shorthand format notation for a packed signed half-byte vector is VF.

2.3 Floating Point Modes

GEN architecture supports two floating point operation modes, namely IEEE floating point mode (IEEE

mode) and alternative floating point mode (ALT mode). Both modes follow mostly the requirements in

IEEE-754 but with different deviations. The deviations will be described in details in later sections. The

primary difference between these modes is on the handling of Infs, NaNs and denorms. The IEEE floating

point mode may be used to support newer versions of 3D graphics API Shaders and the alternative

floating point mode may be used to support early Shader versions.

These two modes are supported by all units that perform floating point computations, including GEN

execution units, GEN shared functions like Extended Math, the Sampler and the Render Cache color

calculator, and fixed functions like VF, Clipper, SF and WIZ. Host software sets floating point mode

through the fixed function state descriptors for 3D pipeline and the interface descriptor for media pipeline.

Therefore different modes may be associated with different threads running concurrently. Floating point

mode control for EU and shared functions are based on the floating point mode field (bit 0) of cr0 register.

2.3.1 IEEE Floating Point Mode

2.3.1.1 Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in GEN architecture. Refer to IEEE-754 for

topics not mentioned.

¶ INF ï INF = NaN

¶ 0 * (+/ï)INF = NaN

¶ 1 / (+INF) = +0 and 1 / (ïINF) = ï0

o (+/ï)INF / (+/ï)INF = NaN as A/B = A * (1/B)

¶ INV (+0) = RSQ (+0) = +INF, INV (ï0) = RSQ (ï0) = ïINF, and SQRT (ï0) = ï0

¶ RSQ (ïfinite) = SQRT (ïfinite) = NaN

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 22

¶ LOG (+0) = LOG (ï0) = ïINF, LOG (ïfinite) = LOG (ïINF) = NaN

¶ NaN (any OP) any-value = NaN with one exception for min/max mentioned below. Resulting NaN
may have different bit pattern than the source NaN.

¶ Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or both operands is
NaN, returns FALSE. Normal comparison of NE, when either or both operands is NaN, returns
TRUE.

o Note: Normal comparison is either a cmp instruction or an instruction with conditional
modifier

¶ Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when the second source
operand is NaN, returns TRUE, regardless of the first source operand, and when the second source
operand is not NaN, but first one is, returns FALSE. Cmpn of NE, when the second source operand
is NaN, returns FALSE, regardless of the first source operand, and when the second source operand
is not NaN, but first one is, returns TRUE.

o This is used to support the proposed IEEE-754R rule on min or max operations. For
which, if only one operand is NaN, min and max operations return the other operand
as the result.

¶ Both normal and special comparisons of any non-NaN value against +/ï INF return exact result
according to the conditional modifier. This is because that infinities are exact representation in the
sense that +INF = +INF and ïINF = ïINF.

o NaN is unordered in the sense that NaN != NaN.

¶ IEEE-754 requires floating point operations to produce a result that is the nearest representable
value to an infinitely precise result, known as "round to nearest even" (RTNE). 32-bit floating point
operations must produce a result that is within 0.5 Unit-Last-Place (0.5 ULP) of the infinitely precise
result. This applies to addition, subtraction, and multiplication.

¶ All arithmetic floating point instructions does Round To Nearest Even at the end of the computation,
except the round instructions.

2.3.1.2 Complete Listing of Deviations or Additional Requirements vs. IEEE-
754

For a result that cannot be represented precisely by the floating point format, the EU uses rounding to

nearest or even to produce a result that is within 0.5 Unit-Last-Place(0.5 ULP) of the infinitely precise

result.

The rounding mode is specified by the Rounding Mode field in the Control Register.

The EU can report floating point overflow and NaN into conditional flags. Hewever, there is no support for

floating point exceptions, status bits, or traps.

] handle denorms as follows:

¶ Single precision (F, Float) denorms are flushed to sign-preserved zero on input and output of any
floating-point mathematical operation.

¶ Double precision (DF, Double Float) denorms are kept or flushed in mathematical operations based
on the Double Precision Denorm Mode in the Control Register.

¶ Denorms are not flushed for format conversions, irrespective of any denorm mode.

¶ Denorms are not flushed for raw mov operations. For information about raw mov operations, refer to
the Description in mov ï Move.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 23

¶ Input denorms are not flushed for half precision to single precision floating-point conversion.

Other information regarding floating-point behaviors:

¶ NaN input to an operation always produces NaN on output, however the exact bit pattern of the NaN
is not required to stay the same (unless the operation is a raw ñmovò instruction which does not alter
data at all.)

¶ x*1.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).

¶ x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).
But -0 + 0 = +0.

¶ Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results out of 32-bit float
range, but whose final results would be within 32-bit float range if intermediate results were kept at
greater precision. In this case, implementations are permitted to produce either the correct result, or
else ±inf. Thus, compatibility between a fused operation, such as mac, with the unfused equivalent,
mul followed by add in this case, is not guaranteed.

¶ As the accumulator registers have more precision than 32-bit float, any instruction with accumulator
as a source/destination operand may produce a different result than that using GRF registers.

¶ API Shader divide operations are implemented as x*(1.0f/y). With the two-step method, x*(1.0f/y),
the multiply and the divide each independently operate at the 32-bit floating point precision level
(accuracy to 1 ULP).

¶ See the Type Conversion section for rules on converting to and from float representations.

2.3.1.3 Comparison of Floating Point Numbers

The following tables detail the rules for floating point comparison. In the tables, ñ+/-Finò stands for a

positive or negative finite precision floating point number. Result is either a true (T) or false (F). Each row

corresponds to a fixed src0 and each column corresponds to a fixed src1. When comparing two positive

finite numbers (or two negative finite numbers), the result can be T or F depending on the values.

Therefore, the corresponding fields in the following tables are marked as T/F. When comparing two

double float numbers, the result can be T or F depending on the values and the denorm mode

(enabled/disabled). The corresponding fields in the following tables are marked T/F*.

Results of ñGreater-Thanò Comparison ï CMP.

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf F F F F F F F F F

-Fin T T/F F F F F F F F

-denorm T T T/F* F F F F F F

-0 T T T/F* F F F F F F

+0 T T T/F* F F F F F F

+denorm T T T/F* T/F* T/F* T/F* F F F

+Fin T T T T T T T T/F F

+inf T T T T T T T T F

NaN F F F F F F F F F

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 24

Results of ñLess-Thanò Comparison ï CMP.L

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf
F T T T T T T T F

-Fin
F T/F T T T T T T F

-denorm
F F T/F* T/F* T/F* T/F* T T F

-0
F F F F F T/F* T T F

+0
F F F F F T/F* T T F

+denorm
F F F F F T/F* T T F

+Fin
F F F F F F T/F T F

+inf
F F F F F F F F F

NaN
F F F F F F F F F

Results of ñEqual-Toò Comparison ï CMP.E

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T F F F F F F F F

-Fin F T/F F F F F F F F

-denorm F F T/F* T/F* T/F* T/F* F F F

-0 F F T/F* T T T/F* F F F

+0 F F T/F* T T T/F* F F F

+denorm F F T/F* T/F* T/F* T/F* F F F

+Fin F F F F F F T/F F F

+inf F F F F F F F T F

NaN F F F F F F F F F

Results of ñNot-Equal-Toò Comparison ï CMP.NE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE T T T T T T T T

-Fin T T/F T T T T T T T

-denorm T T T/F* T/F* T/F* T/F* T T T

-0 T T T/F* FALSE FALSE T/F* T T T

+0 T T T/F* FALSE FALSE T/F* T T T

+denorm T T T/F* T/F* T/F* T/F* T T T

+Fin T T T T T T T/F T T

+inf T T T T T T T FALSE T

NaN T T T T T T T T T

Results of ñLess-Than Or Equal-Toò Comparison ï CMP.LE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T T T T T T T T F

-Fin F T/F T T T T T T F

-denorm F F T/F* T/F* T/F* T/F* T T F

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 25

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-0 F F T/F* T T T/F* T T F

+0 F F T/F* T T T/F* T T F

+denorm F F T/F* T/F* T/F* T/F* T T F

+Fin F F F F F F T/F T F

+inf F F F F F F F T F

NaN F F F F F F F F F

Results of ñGreater-Than or Equal-Toò Comparison ï CMP.GE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T F F F F F F F F

-Fin T T/F F F F F F F F

-denorm T T T/F* T/F* T/F* T/F* F F F

-0 T T T/F* T T T/F* F F F

+0 T T T/F* T T T/F* F F F

+denorm T T T/F* T/F* T/F* T/F* F F F

+Fin T T T T T T T/F F F

+inf T T T T T T T T F

NaN F F F F F F F F F

2.3.1.4 Min/Max of Floating Point Numbers

A special comparison called Compare-NaN is introduced in the GEN architecture to handle the difference

of above mentioned floating-point comparison and the rules on supporting MIN/MAX. To compute the

MIN or MAX of two floating-point numbers, if one of the numbers is NaN and the other is not, MIN or MAX

of the two numbers returns the one that is not NaN. When two numbers are NaN, MIN or MAX of the two

numbers returns source1.

Min and Max is supported by conditional select.

Note even though f0.0 is specified in the instruction, the flag register is not touched by this instruction.

The following tables detail the rules for this special compare-NaN operation for floating-point numbers.

Notice that excepting ñNot-Equal-Toò comparison-NaN, last columns in all other tables have óTô.

2.3.2 Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf and denorm are not

expected for an application to pass into the graphics pipeline, and the graphics hardware must not

generate NaN, Inf or denorm as computation result. For example, a result that is larger than the maximum

representable floating point number is expected to be flushed to the largest representable floating point

number, i.e., +fmax. The fmax has an exponent of 0xFE and a mantissa of all oneôs, which is the same for

IEEE floating point mode.

Note that this mode is applicable ONLY to Single Precision Float datatype.

This also implies that ALT mode is not supported when Single precision datatype is involved in format
conversion to double precision of half precision.

Here is the complete list of the differences of legacy graphics mode from the relaxed IEEE-754 floating

point mode.

¶ Any +/- INF result must be flushed to +/- fmax, instead of being output as +/- INF.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 26

¶ Extended mathematics functions of log(), rsq() and sqrt() take the absolute value of the sources
before computation to avoid generating INF and NaN results.

Alternative Floating Point Mode shows the support of these differences in various hardware units.

Supported Legacy Float Mode and Impacted Units

IEEE-754 Deviations VF Clipper SF WIZ EU EM Sampler RC

Any +/- INF result flushed to

+/- fmax

Y Y Y Y Y Y Y Y

Log, rsq, sqrt take abs() of sources N/A N/A N/A N/A N/A Y N/A N/A

Alternative Floating Point Mode shows some of the desired or recommended alternative floating point

mode behaviors that do not have hardware design impact. The reasons of not needing special hardware

support for these items are also provided. This is based on the compliance requirement that can be

found in the DirectX 9 specification: ñHandling of NaNs, Infs, and denorms is undefined. Applications

should not pass in such values into the graphics pipeline.ò

Dismissed legacy behaviors

Suggested IEEE-754 Deviations Reason for Dismiss

Mov forces (+/-)INF to (+/-)fmax (+/-)INF is never present as input

(+/-)INF ï (+/-)INF = +/- fmax instead of NaN (+/-)INF is never present as input

Denorm must be flushed to zero in all cases (including

trivial mov and point sampling)

Denorm is never present as input

Anything*0=0 (including NaN*0=0 and INF*0=0) NaN and INF are never present as input

Except propagated NaN, NaN is never generated NaN is never present as input and GEN never generates

NaN based on rules in the previous table

An input NaN gets propagated excepting (a)-(d) NaN is never present as input

(a) Rcp (and rsq) of 0 yields fmax N/A, as it is already covered by the general rule ñAny +/- INF

result flushed to +/- fmaxò

(b) Sampler honors 0/0 = 0 as if (1/0)*0 There is no divide in Sampler

I Rcp (and rsq) of INF yields +/- 0 (+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if (1/INF)=0

followed by Anything*0 = 0

There is no divide in Sampler

2.4 Type Conversion

2.4.1 Float to Integer

Converting from float to integer is based on rounding toward zero. If the floating point value is +0, -0,

+Denorm, -Denorm, +NaN ïr -NaN, the resulting integer value is always 0. If the floating point value is

positive infinity (or negative infinity), the conversion result takes the largest (or the smallest) represent-

able integer value. If the floating point value is larger (or smaller) than the largest (or the smallest)

represent-able integer value, the conversion result takes the largest (or the smallest) represent-able

integer value. The following table shows these special cases. The last two rows are just examples. They

can be any number outside the represent-able range of the output integer type (UD, D, UW, W, UB and

B).

Input Format Output Format

F UD D UW W UB B

+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 27

Input Format Output Format

F UD D UW W UB B

+/- Denorm 00000000 00000000 00000000 00000000 00000000 00000000

NAN 00000000 00000000 00000000 00000000 00000000 00000000

-NAN 00000000 00000000 00000000 00000000 00000000 00000000

INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-INF 00000000 80000000 00000000 00008000 00000000 00000080

+232 (*)
FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-232-1 (*)
00000000 80000000 00000000 00008000 00000000 00000080

2.4.2 Integer to Integer with Same or Higher Precision

Converting an unsigned integer to a signed or an unsigned integer with higher precision is based on zero

extension.

Converting an unsigned integer to a signed integer with the same precision is based on modular wrap-

around. Without saturation, a larger than represent-able number becomes a negative number. With

saturation, a larger than represent-able number is saturated to the largest positive represent-able

number.

Converting a signed integer to a signed integer with higher precision is based on sign extension.

Converting a signed integer to an unsigned integer with higher precision is based on sign extension.

Without saturation, a negative number becomes a large positive number with the sign bit wrapped-up.

With saturation, a negative number is saturated to zero.

2.4.3 Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with lower precision is

based on bit truncation. Without saturation, only the lower bits are kept in the output regardless of the

sign-ness of input and output. With saturation, a number that is outside the represent-able range is

saturated to the closest represent-able value.

2.4.4 Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to round to the closest

representable float number. For any integer number with magnitude less than or equal to 24 bits, resulting

float number is a precise representation of the input. However, if it is more than 24 bits, by default a

ñround to nearest evenò is performed.

2.4.5 Double Precision Float to Single Precision Float

Converting a double precision floating-point number to a single precision floating-point number uses the

round to zero rounding mode.

Double Precision Float Single Precision Float

-inf -inf

-finite -finite/-denorm/-0

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 28

Double Precision Float Single Precision Float

-denorm -0

-0 -0

+0 +0

+denorm +0

+finite +finite/+denorm/+0

+inf +inf

NaN NaN

The upper Dword of every Qword will be written with undefined value when converting DF to F.

2.4.6 Single Precision Float to Double Precision Float

Converting a single precision floating-point number to a double precision floating-point number will

produce a precise representation of the input.

Single Precision Float Double Precision Float

-inf -inf

-finite -finite

-denorm -finite

-0 -0

+0 +0

+denorm +finite

+finite +finite

+inf +inf

NaN NaN

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 29

3. Execution Environment

3.1 EU Overview

The GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and

media computations. Support for 3D graphics API (Application Programming Interface) Shader

instructions is mostly native, meaning that GEN efficiently executes Shader programs. Depending on

Shader program operation modes (for example, a Vertex Shader may be executed on a base of a vertex

pair, while a Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D graphics

API Shader instruction streams into GEN native instructions may be required. In addition, there are many

specific capabilities that accelerate media applications. The following feature list summarizes the GEN

instruction set architecture:

¶ SIMD (single instruction multiple data) instructions. The maximum number of data elements per
instruction depends on the data type.

¶ SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.

¶ Instruction level variable-width SIMD execution.

¶ Conditional SIMD execution via destination mask, predication, and execution mask.

¶ Instruction compaction.

¶ An instruction may executed in multiple cycles over a SIMD execution pipeline.

¶ Most GEN instructions have three operands. Some instructions have additional implied source or
destination operands. Some instructions have explicit dual destinations.

¶ Region-based register addressing.

¶ Direct or indirect (indexed) register addressing.

¶ Scalar or vector immediate source operand.

¶ Higher precision accumulator registers are architecturally visible.

¶ Self-modifying code is not allowed (instruction streams, including instruction caches, are read-only).

CoIssue/Dual Issue:

The Gen7 generation of EU allows two instructions to be issued at the same time (sometimes referred to

as ñdual-issueò or more generally ñco-issueò). The two instructions issued are always from different

threads. The terms ñFPU Pipeò and ñEM Pipeò are the terms used when refering to the two simultaneous

pipes. The Gen7 implementation dual-issue capability is limited to only the most popular instructions and

source operand modes. Later generations of EU expand on this concept to allow more operations.

Description:

Opcodes: add, mov, mad, mul, cmp

¶ Datatype: single precision floats.

¶ Accessmode:

o Align1:

Á No Scattering or Gathering data. This means data in source and destination registers are
aligned and packed (data is contiguous in a register).

//Example:

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 30

// allowed, data is contiguous and source and destination regioning

map one to one.

mov (8) r10.0:f r11.0<8;8,1>:f

// not allow ed, data from source is strided and requires gathering to

write to destination

mov (8) r10.0:f r11.0<4;4,2>:f

// not allowed, data from source is contiguous but not aligned with

destination. Destination register requires scattering

mov (8) r10.0<2>:w r11. 0<8;8,1>:w

//not allowed, data from source is contiguous but destination is not

aligned to source

mov (8) r10.1:f r11.0<4;4,1>:f

// allowed. Source and destination have stride but are aligned

mov (4) r10.1:f r11.1<4;4,1>:f

Á A single precision float scalar is allowed.

o Align16

¶ Addressmode: Direct Addressing

¶ Register File: GRF/NULL. No access to Accumulator.

¶ Condition modifiers supported only for cmp.

3.2 Primary Usage Models

In describing the usage models of the GEN instruction set, the following sections forward reference

terminology, syntax, and instructions described later in this specification. For clarity reasons, not all

forward references are explained at the point of reference. See the Instruction Set Summarychapter for

information about instruction fields and syntax.

3.2.1 AOS and SOA Data Structures

With the Align1 and Align16 access modes, the GEN instruction set provides effective SIMD computation

whether data is arranged in array of structures (AOS) form or in structure of arrays (SOA) form. The AOS

and SOA data structures are illustrated by the examples in AOS and SOA Data Structures. The example

shows two different ways of storing four vectors in four SIMD registers. For simplicity, the data vector and

the SIMD register both have four data elements. The four data elements in a vector are denoted by X, Y,

Z, and W just as for a vertex in 3D geometry. The AOS structure stores one vector in a register and the

next vector in another register. The SOA structure stores one data element of each vector in a register

and the next element of each vector in the next register and so on. The two structures can be related by a

matrix transpose operation.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 31

AOS and SOA Data Structures

GEN 3D and media applications take advantage of such broad architecture support and use both AOS

and SOA data arrangements.

¶ Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS form and use
SIMD4x2 and SIMD4 modes, respectively, as detailed below.

¶ Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA form and use SIMD8 and SIMD16
modes as detailed below.

¶ Pixels in media are primarily arranged in SOA form, and occasionally in AOS form with possibly
mixed modes of operation that uses region-based addressing extensively.

These are preferred methods; alternative arrangements may also be possible. Shared function resources

provide data transpose capability to support both modes of operations: The sampler has a transpose for

sample reads, the data port has a transpose for render cache writes, and the URB unit has a transpose

for URB writes.

The following 3D graphics API Shader instruction is used in the following sections to illustrate various

operation modes:

 add dst.xyz src0.yxzw src1.zwxy

This example is a SIMD instruction that takes two source operands src0 and src1, adds them, and stores

the result to the destination operand dst. Each operand contains four floating-point data elements. The

data type is determined by the instruction opcode. This instruction also uses source swizzles (.yxzw for

src0 and .zwxy for src1) and a destination mask (.xyz). Please refer to the programming specifications of

3D graphics API Shader instructions for more details.

A general register has 256 bits, which can store 8 floating point data elements. For 3D graphics, the

mode of operation is (loosely) termed after the data structure as SIMDmxn, where m is the size of the

vector and n is the number of concurrent program flows executed in SIMD.

Execution with AOS data structures:

¶ SIMD4 (short for SIMD4x1) indicates that a SIMD instruction operates on 4-element vectors storedin
registers. There is one program flow.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 32

¶ SIMD4x2 indicates that a SIMD instruction operates on a pair of 4-element vectors in registers.
There are effectively two programs running side by side with one vector per program.

Execution with SOA data structures, also referred to as ñchannel serialò execution, mostly uses:

¶ SIMD8 (short for SIMD1x8) indicates a SIMD instruction based on the SOA data structure where one
register contains one data element (the same one) for each of 8 vectors. Effectively, there are 8
concurrent program flows.

¶ SIMD16 (short for SIMD1x16) indicates that a SIMD instruction operates on a pair of registers that
contain one data element (the same one) for each of 16 vectors. SIMD16 has 16 concurrent
program flows.

3.2.2 SIMD4 Mode of Operation

With a register mapping of src0 to doublewords 0-3 of r2, src1 to doublewords 4-7 of r2 and dst to

doublewords 0-3 of r3, the example 3D graphics API Shader instruction can be translated into the

following GEN instruction:

add (4) r3<4>.xyz:f r2<4>.yzwx:f r2.4<4>.zwxy:f {NoMask}

Without diving too much into the syntax definition of a GEN instruction, it is clear that a GEN instruction

also takes two source operands and one destination operands. The second term, (4), is the execution

size that determines the number of data elements processed by the SIMD instruction. It is similar to the

term SIMD Width used in the literature. Each operand is described by the register region parameters such

as ó<4>ô and data type (e.g. ñ:fò). These will be detailed in the SIMD8 Mode of Operation section. The

instruction option field, {NoMask}, ensure that the execution occurs for the execution channels shown in

the instruction, instead of, possibly, being masked out by the conditional masks of the thread (See

Instruction Summary chapter for definition of MaskCtrl instruction field).

The operation of this GEN instruction is illustrated in the following figure. In this example, both source

operands share the same physical GRF register r2. The two are distinguished by the subregister number.

The source swizzles control the routing of source data elements to the parallel adders corresponding to

the destination data elements. The shaded areas in the destination register r3 are not modified. In

particular, doublewords 4-7 are unchanged as the execution size is 4; doubleword 3 is unchanged due to

the destination mask setting.

In this mode of operation, there is only one program flow ï any branch decision will be based on a scalar

condition and apply to the whole vector of four elements. Option {NoMask} ensures that the instruction is

not subject to the masks. In fact, most of the instructions in a thread should have {NoMask} set.

Even though the execution only performs four parallel add operations, the GEN instruction still executes

in 2 cycles (with no useful computation in the second cycle).

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 33

 A SIMD4 Example

3.2.3 SIMD4x2 Mode of Operation

In this mode, two corresponding vectors from the two program flows fill a GEN register. With a register

mapping of src0 to r2, src1 to r3 and dst to r4, the example 3D graphics API Shader instruction can be

translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<4>.yxzw:f r3<4>.zwxy:f

This instruction is subject to the execution mask, which initiated from the dispatch mask. If both program

flows are available (e.g. Vertex Shader executed with two active vertices), the dispatch mask is set to

0x00FF. The operation of this GEN instruction is illustrated in SIMD4x2 Mode of Operation (a). The

source swizzles control the routing of source data elements to the parallel adders corresponding to the

destination data elements. The shaded areas in the destination register r3 (doublewords 3 and 7) are

unchanged due to the destination mask setting. If only one program flow is available (e.g. the same

SIMD4x2 Vertex Shader with only one active vertex), the dispatch mask is set to 0x000F. The operation

of the same instruction is shown in SIMD4x2 Mode of Operation (b).

SIMD4x2 Examples with Different Emasks

The two source operands only need to be 16-byte aligned, not have to be GRF register aligned. For

example, the first source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 34

in r2, which is shared by the two program flows. The example 3D graphics API Shader instruction can

then be translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<0>.yzwx:f r3<4>.zwxy:f

The only difference here is that the vertical stride of the first source is 0. The operation of this GEN

instruction is illustrated in SIMD4x2 Mode of Operation.

A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows

3.2.4 SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode,

two corresponding vectors from the two program flows fill a GEN register.

With the following register mappings,

src0:r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),

src1: r10-r17,

dst:r18-r25,

the example 3D graphics API Shader instruction can be translated into the following three GEN

instructions:

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f// dst.x = src0.y + src1.z

add (16) r20<1>:f r6<8;8,1>:f r16<8;8,1>:f// dst.y = src0.z + src1.w

add (16) r22<1>:f r8<8;8,1>:f r10<8;8,1>:f // dst.z = src0.w + src1.x

The three GEN instructions correspond to the three enabled destination masks As there is no output for

the W elements of dst, no instruction is needed for that element. The first instruction inputs the Y

elements of src0 and the Z elements of src1 and outputs the X elements of dst. The operation of this

instruction is shown in SIMD16 Mode of Operation.

With more than one program flow, the above instructions are also subject to the execution mask. The 16-

bit dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by the

Windower, each 4-bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel

Shader instance, the corresponding 4-bit group in the dispatch mask is not set. Therefore, the same

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 35

instructions can be used independent of the number of available subspans without creating bogus data in

the subspans that are not valid.

A SIMD16 Example

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the first

source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS

format). The example 3D graphics API Shader instruction can then be translated into the following GEN

instruction:

add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr}// dst.x = src0.y + src1.z

add (16) r20<1>:f r2.2<0;1,0>:f r16<8;8,1>:f {Compr}// dst.y = src0.z + src1.w

add (16) r22<1>:f r2.3<0;1,0>:f r10<8;8,1>:f {Compr}// dst.z = src0.w + src1.x

The register region of the first source operand represents a replicated scalar. The operation of the first

GEN instruction is illustrated in SIMD16 Mode of Operation.

 Another SIMD16 Example with an AOS Shared Constant

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 36

3.2.5 SIMD8 Mode of Operation

Each compressed instruction has two corresponding native instructions. Taking the example instruction

shown in SIMD16 Mode of Operation, it is equivalent to the following two instructions.

add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f // dst.x[7:0] = src0.y + src1.z

add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {SecHalf}// dst.x[15:8] = src0.y + src1.z

Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent

program flows, some time SIMD8 instruction must be used due to architecture restrictions. For example,

the address register a0 only have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions

are not allowed.

3.3 Registers and Register Regions

3.3.1 Register Files

GEN registers are grouped into different name spaces called register files. There are two register files,

the General Register File and the Architecture Register File. A third encoding of some register file

instruction fields indicates immediate operands within instructions rather than a register file.

¶ General Register File (GRF): The GRF contains general-purpose read-write registers.

¶ Architecture Register File (ARF): The ARF contains all architectural registers defined for specific
purposes, including address registers (a#), accumulators (acc#), flags (f#), notification count (n#),
instruction pointer (ip), null register (null), etc.

¶ Immediate: Certain instructions can take immediate source operands. A distinct register file field
encoding indicates an immediate operand.

Each thread executed in an EU has its own thread context, a dedicated register space that is not shared

between threads, whether executing on a common EU or on a different EU. In the rest of the chapters in

this volume, register access is relative to a given thread.

3.3.2 GRF Registers

Number of Registers: Various

Default Value: None

Normal Access: RW

Elements: Various

Element Size: Various

Element Type: Various

Access Granularity: Byte

Write Mask Granularity: Byte

Indexable? Yes

Registers in the General Register File are the most commonly used read-write registers. During the

execution of a thread, GRF registers are used to store the temporary data, and serve as the destination to

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 37

receive data from shared function units (and some times from a fixed function unit). They are also used to

store the input (initialization) data when a thread is created. By allowing fixed function hardware to

initialize some portion of GRF registers during thread dispatch time, GEN architecture can achieve better

parallelism. A threadôs execution efficiency can also be improved as some data are already in the register

to be executed upon. Besides these registers containing threadôs payload, the rest of GRF registers of a

thread are not initialized.

Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) r#
General purpose read write registers

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all

threads on the EU. Each thread has a dedicated space of 128 register, r0 through r127.

GRF registers can be accessed using region-based addressing at byte granularity (both read and write).

A source operand must be contained within two adjacent registers. A destination operand must be

contained within one register. GRF registers support direct addressing and register-indirect addressing.

Register-indirect addressing uses the address registers (ARF registers a#) and an immediate address

offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either

through direct or indirect addressing, the result is unpredictable.

3.3.3 ARF Registers

3.3.3.1 ARF Registers Overview

Besides GRF and MRF registers that are directly indicated by unique register file coding, all other

registers belong to the Architecture Register File (ARF). Encodings of architecture register types are

based on the MSBs of the register number field, RegNum, in the instruction word. The RegNum field has

8 bits. The 4 MSBs, RegNum[7:4], represent the architecture register type. This is summarized in the

following table.

Summary of Architecture Registers

Register
Type

(RegNum
[7:4])

Register
Name

Register
Count Description

0000b null 1 Null register

0001b a0.# 1 Address register

0010b acc# 2 Accumulator register

0011b f#.# 2 Flag register

0101b Reserved Reserved

0110b Reserved Reserved

0111b sr0.# 1 State register

1000b cr0.# 1 Control register

1001b n# 2 Notification Count register

1010b ip 1 Instruction Pointer register

1011b tdr 1 Thread Dependency register

1100b tm0 1 TimeStamp register

1101b Reserved Reserved

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 38

Register
Type

(RegNum
[7:4])

Register
Name

Register
Count Description

1110b Reserved Reserved

The remaining register number field RegNum[3:0] is used to identify the register number of a given

architecture register type. Therefore, the maximum number of registers for a given architecture register

type is limited to 16. The subregister number field, SubRegNum, in the instruction word has 5 bits. It is

used to address subregister regions for an architecture register supporting register subdivision. The

SubRegNum field is in units of bytes. Therefore, the maximum number of bytes of an architecture register

is limited to 32. Depending on the alignment restriction of a register type, only certain encodings of

SubRegNum field apply for an architecture register. The detailed definitions are provided in the following

sections.

In general an ARF register can be dst (destination) or src0 (source 0, first source operand) for an

instruction. Depending on the register and the instruction, other restrictions may apply.

3.3.3.2 Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and

following the same rule of region-based addressing for GRF. The machine code for register number and

subregister number of ARF follows the same rule as for other register files with byte granularity. For an

ARF as a source operand, the region-based address controls the source swizzle mux. The destination

subregister number and destination horizontal stride can be used to generate the destination write mask

at byte level.

A special restriction on region-based addressing for ARF is that the register region cannot cross a register

boundary.

Subregister fields of an ARF register may not all be populated (indicated by the subregister being

indicated as reserved). Writes to unpopulated subregisters are dropped; there are no side effect. Reads

from unpopulated subregisters, if not specified, return unpredictable data.

Some ARF registers are read-only. Writes to read-only ARF registers are dropped and there are no side

effects.

3.3.3.3 Null Register

Null Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0000b

Number of Registers: 1

Default Value: N/A

Normal Access: N/A

Elements: N/A

Element Size: N/A

Element Type: N/A

Access Granularity: N/A

Write Mask Granularity: N/A

SecHalf Control? N/A

Indexable? No

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 39

The null register is a special encoding for an operand that does not have a physical mapping. It is

primarily used in instructions to indicate non-existent operands. Writing to the null register has no side

effect. Reading from the null register returns an undefined result.

The null register can be used where a source operand is absent. For example, for a single source

operand instruction such as MOV or NOT, the second source operand src1 must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed

results are not stored in any registers. However, implied writes to the accumulator register, if applicable,

may still occur for the instruction. When the conditional modifier is present, updates to the selected flag

register also occur. In this case, the register region fields of the ónullô operand are valid.

Another example use is to use the null register as the posted destination of a send instruction for data

write to indicate that no write completion acknowledgement is required. In this case, however, the register

region fields are still valid. The null register can also be the first source operand for a send instruction

indicating the absent of the implied move. See the send instruction for details.

3.3.3.4 Address Register

Address Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0001b

Number of Registers: 1

Default Value: None

Normal Access: RW

Elements:
8

Element Size: 16 bits

Element Type: UW or UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? N/A

Indexable? No

There are eight address subregisters forming an 8-element vector. Each address subregister contains 16

bits. Address subregisters can be used as regular source and destination operands, as the indexing

addresses for register-indirect-addressed access of GRF registers, and also as the source of the

message descriptor for the send instruction.

Register and Subregister Numbers for Address Register

RegNum[3:0] SubRegNum[4:0]

0000b = a0

All other encodings

are reserved.

When register a0 or subregisters in a0 are used as the address register for register-indirect

addressing, the address subregisters must be accessed as unsigned word integers. Therefore,

the subregister number field must also be word-aligned.

00000b = a0.0:uw

00010b = a0.1:uw

00100b = a0.2:uw

00110b = a0.3:uw

01000b = a0.4:uw

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 40

RegNum[3:0] SubRegNum[4:0]

01010b = a0.5:uw

01100b = a0.6:uw

01110b = a0.7:uw

All other encodings are reserved.

However, when register a0 or subregisters in a0 are explicit source and/or destination

registers, other data types are allowed as long as the register region falls in the 128-bit range.

Address Register Fields

DWord Bits Description

7 31:16 Address subregister a0.15:uw. Follows the same format as a0.3.

15:0 Address subregister a0.14:uw. Follows the same format as a0.2.

6 31:16 Address subregister a0.13:uw. Follows the same format as a0.3.

15:0 Address subregister a0.12:uw. Follows the same format as a0.2.

5 31:16 Address subregister a0.11:uw. Follows the same format as a0.3.

15:0 Address subregister a0.10:uw. Follows the same format as a0.2.

4 31:16 Address subregister a0.9:uw. Follows the same format as a0.3.

15:0 Address subregister a0.8:uw. Follows the same format as a0.2.

3 31:16 Address subregister a0.7:uw. Follows the same format as a0.3.

15:0 Address subregister a0.6:uw. Follows the same format as a0.2.

2 31:16 Address subregister a0.5:uw. Follows the same format as a0.3.

15:0 Address subregister a0.4:uw. Follows the same format as a0.2.

1 31:16
Address subregister a0.3:uw. This field, with only the lower 12 bits populated, can be used as an

unsigned integer for register-indirect register addressing.

Format: U12

15:0
Address subregister a0.2:uw. This field, with only the lower 12 bits populated, can be used as an

unsigned integer for register-indirect register addressing.

Format: U12

0 31:16
Address subregister a0.1:uw. This field can be used for register-indirect register addressing or serve

as message descriptor for a send instruction. When used for register-indirect register addressing, it is a

12-bit unsigned integer. For a send instruction, it provides the higher 16 bits of <desc>.

Format: U12 or U16.

15:0
Address subregister a0.0:uw. This field can be used for register-indirect register addressing or serve

as message descriptor for a send instruction. When used for register-indirect register addressing, it is a

12-bit unsigned integer. For a send instruction, it provides the lower 16 bits of <desc>.

Format: U12 or U16.

When used as a source or destination operand, the address subregisters can be accessed individually or

as a group. In the following example, the first instruction moves 8 address subregisters to the first half of

GRF register r1, the second instruction replicates a0.4:uw as an unsigned word to the second half of r1,

the third instruction moves the first 4 words in r1 into the first 4 address subregisters, and the fourth

instruction replicates r1.4 as a unsigned word to the next 4 address subregisters.

 mov (8) r1.0<1>:uw a0.0<8;8,1>:uw // r1.n = a0.n for n = 0 to 7 in words mov (8)

r1.8<1>:uw a0.4<0;1,0>:uw // r1.m = a0. 4 for m = 8 to 15 in words mov (4) a0.0<1>:uw

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 41

r1.0<4;4,1>:uw // a0.n = r1.n for n = 0 to 3 in words mov (4) a0.4<1>:uw

r1.4<0;1,0>:uw // a0.m = r1.4 for m = 4 to 7 in words

When used as the register-indirect addressing for GRF registers, the address subregisters can be

accessed individually or as a group. When accessed as a group, the address subregisters must be group-

aligned. For example, when two address subregisters are used for register indirect addressing, they must

be aligned to even address subregisters. In the following example, the first instruction is legal. However,

the second one is not. As ExecSize = 8 and the width of src0 is 4, two address subregisters are used as

row indices, each pointing to 4 data elements spaced by HorzStride = 1 dword. For the first instruction,

the two address subregisters are a0.2:uw and a0.3:uw. The two align to a DWord group in the address

register. However, the two address subregisters for the second instruction are a0.3:uw and a0.4:uw. They

are not DWord-aligned in the address register and therefore violate the above mentioned alignment rule.

 mov (8) r1.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 are used for src1 mov (8) r1.0<1>:d

r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Implementation restriction: GEN ISA supports per channel indexing for a source operand. As there are

only 8 sub-fields in the address register (to save hardware cost), the execution size of an instruction using

per-channel indexing is limited to 8. Software may reload the address register and use compression

control SecHalf to complete a 16-channel computation.

Implementation restriction: When used as the source operand <desc> for the send instruction, only the

first dword subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the combination of

a0.0:uw and a0.1:uw). In addition, it must be of UD type and in the following form <desc> =

a0.0<0;1,0>:ud.

Implementation restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest of the elements

(a0.2:uw through a0.7:uw) only have 12 bits populated each. 12-bit precision supports full indirect-

addressing capability for the largest GRF register range. Software must observe the asymmetry of the

implementation. When a0.0:uw and a0.1:uw are the source or destination, full 16-bit precision is

preserved. However, when a0.2:uw to a0.7:uw are the destination, the high 4 bits for each element are

dropped; when they are the source, hardware inserts zero to the high 4 bits for each element.

Performance Note: There is only one scoreboard for the whole address register. When a write to some

subregisters is in flight, hardware stalls any instruction writing to other subregisters. Software may use the

destination dependency control {NoDDChk, NoDDClr} to improve performance in this case. Similarly,

when a write to some subregisters is in flight, hardware stalls any instruction sourcing other subregisters

until the write retires.

3.3.3.5 Accumulator Registers

Accumulator Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0010b

Number of Registers:
2

Default Value: None

Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.

To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data elements.

However, as described in the Implementation Precision Restriction notes below, each data element may

have higher precision with added guard bits not indicated by the numeric data type.

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel

Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator support.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 42

See the Accumulator Restrictions section for information about additional general accumulator restrictions

and also accumulator restrictions for specific instructions.

There are two accumulator registers, acc0 and acc1.

Register and Subregister Numbers for Accumulator Registers

RegNum[3:0] SubRegNum[4:0]

0000b = acc0

0001b = acc1

All other encodings are reserved.

Reserved: MBZ.

¶ Accumulators are updated implicitly only if the AccWrCtrl bit is set in the instruction. The
Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCtrl for
implicit accumulator updates. The write enable in word granularity for the instruction is used to
update the accumulator. Data in disabled channels is not updated.

¶ When an accumulator register is an implicit source or destination operand, hardware always uses
acc0 by default and also uses acc1 if the execution size exceeds the number of elements in acc0.
When implicit access to acc1 is required, QtrCtrl is used. Note that QtrCtrl can be used only if acc1
is accessible for a given data type. If acc1 is not accessible for a given data type, QtrCtrl defaults to
acc0.

acc0 and acc1 are supported for single-precision Float (F) only. Use QtrCtrl of Q2 or Q4 to access

acc1.

Examples:

 // Updates acc0 and acc1 because it is SIMD16:

 add (16) r10:f r11:f r12:f {Ac cWrEn}

 // Updates acc0 because it is SIMD8:

 add (8) r10:f r11:f r12:f {AccWrEn}

 // Updates acc1. Implicit access to acc1 using QtrCtrl:

 add (8) r10:f r11:f r12:f {AccWrEn, Q2}

 // Updates acc1 for Half Floats using QtrCtrl:

 add (16) r10:hf r11:hf r12: hf {AccWrEn, H2}

¶ It is illegal to specify different accumulator registers for source and destination operands in an
instruction (e.g. ñadd (8) acc1:f acc0:fò). The result of such an instruction is unpredictable.

¶ Some processor generations or steppings limit SIMD16 Float operations, as follows:

¶ SIMD16 execution on Floats is not allowed when an accumulator is an explicit source or
destination operand.

¶ Accumulator registers may be accessed explicitly as src0 operands only.

¶ Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in
an instruction.

¶ For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of data,
with only acc0 supported.

¶ When an accumulator register is an explicit destination, it follows the rules of a destination register. If
an accumulator is an explicit source operand, its register region must match that of the destination
register with the exception described below.

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and

UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 43

modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result

becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of

accumulators. Consequently, the results are unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and

UW), it is sufficient to store the multiplication result of two Word operands with and without source

modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with bit

32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before running

into a risk of overflowing. When overflow occurs, only modular addition can generate a correct result. But

in this case, conditional flags may be incorrect. When saturation is used, the output is unpredictable. This

is also true for other operations that may result in more than 33 bits of data. For example, adding UD

(FFFFFFFFh) with D (FFFFFFFFh) results in 1FFFFFFFEh. The sign bit is now at bit 34 and is lost when

stored in the accumulator. When it is read out later from the accumulator, it becomes a negative number

as bit 32 now becomes the sign bit.

Accumulator Channel Precision

Data
Type

Accumulator
Number

Number
of

Channels
Bits Per
Channel Description

DF acc0 4 64 When accumulator is used for Double Float, it has the exact same precision

as any GRF register.

F acc0/acc1 8 32 When accumulator is used for Float, it has the exact same precision as any

GRF register.

D

(UD)

acc0 8 33/64 When the internal execution data type is doubleword integer, each

accumulator register contains 8 channels of (extended) doubleword integer

values. The data are always stored in accumulator in 2's complement form

with 64 bits total regardless of the source data type. This is sufficient to

construct the 64-bit D or UD multiplication results using an instruction macro

sequence consisting of mul, mach, and shr (or mov).

W

(UW)

acc0 16 33 When the internal execution data type is word integer, each accumulator

register contains 16 channels of (extended) word integer values. The data

are always stored in accumulator in 2's complement form with 33 bits total.

This supports single instruction multiplication of two word sources in W

and/or UW format.

B

(UB)

N/A N/A N/A Not supported data type.

3.3.3.6 Flag Register

Flag Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0011b

Number of Registers:
2

Default Value: None

Normal Access: RW

Elements:
2

Element Size: 32 bits

Element Type: UD

Access Granularity: Word

Write Mask Granularity: Word

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 44

Attribute Value

SecHalf Control? Yes

Indexable? No

There are two flag registers, f0 and f1.

Each flag register contains two 16-bit subregisters. Each flag bit corresponds to a data channel.

Predication uses flag values to enable or disable channels. Conditional modifiers assign flag values. If an

instruction uses both predication and conditional modifiers, both features use the same flag register or

subregisters.

Flags can be split to halfs, quarters, or eighths using the QtrCtrl and NibCtrl instruction fields. Those fields

affect the selection of flags for predication and conditional modifiers, but do not affect reading or writing

flags as explicit instruction operands.

The values held in the individual bits of a flag register are the result of the most recent instruction with a

conditional modifier and specifying that flag register. For example:

 add.nz.f0.0 ...

Updates flag subregister f0.0 with the per-channel results of the not zero condition.

The flag register has per-bit write enables. When being updated as the secondary destination associated

with a conditional modifier, only the bits corresponding to the enabled channels in EMask are updated.

Other bits in the flag subregister are unchanged.

Flag registers and subregisters can also be explicit source or destination operands.

The sel instruction does not update flags.

Note: When branching instructions are predicated, branching is evaluated on all channels enabled at

dispatch. This means, the appropriate number of flag register bits must be initialized or used in

predication depending on the execution mask (EMask). Uninitalized flags may result in undesired

branching. For example, if using DMask as EMask and if all 32 channels of DMask are enabled, a SIMD8

kernel must initialize unused flag bits so that predication on branching is evaluated correctly.

Register and Subregister Numbers for Flag Register

RegNum[3:0] SubRegNum[4:0]

0000b = f0:ud

0001b = f1:ud

Other encodings are reserved.

00000b = fn.0:uw

00010b = fn.1:uw

Other encodings are reserved.

Reference an entire flag register as f0:ud or f1:ud. Reference the flag subregisters as f0.0:uw, f0.1:uw,

f1.0:uw, and f1.1:uw.

3.3.3.7 State Register

State Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0111b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 45

Attribute Value

Elements: 4

Element Size: 32 bits

Element Type: UD

Access Granularity: Byte

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

Register and Subregister Numbers for State Register

RegNum[3:0] SubRegNum[4:0]

0000b = sr0

All other encodings are reserved.

Valid encoding range:

00000b ï 01100b

All other encodings are reserved.

State Register Fields

DWord Bits Description

0

(sr0.0:ud)

31:28 Reserved. MBZ.

27:24 FFID (Fixed Function Identifier). Specifies which fixed function unit generates the current thread.

This field is set at thread dispatch and is forwarded on the message bus for all out-going messages

from this thread.

23
Priority Class. This field, when set, indicates the thread belongs to the high priority class, which

has higher scheduling priority over any thread with this field cleared. The priority field below

determines the relative priority within the same priority class. This field is initialized by the thread

dispatcher at thread dispatch time and stays unchanged throughout the life span of the thread.

This field is forwarded on the message bus to the message bus arbiter for all out-going messages.

It serves as a priority hint for the target shared function. See the Shared Function chapters for

whether and how a shared function uses this priority hint.

0 = Low priority class.

1 = High priority class.

22:19 Reserved. MBZ.

18:16
Priority. This field is the relative aging priority of the thread. This field indicates the óageô of this

thread relative to other threads within the EU. No two threads in the same EU can have the same

priority number (independent of the priority class value). Within the same priority class, an older

thread (with a larger priority number) has higher schedule priority over a younger thread.

This field is set to zero at a threadôs dispatch.

During a threadôs run time, this field may or may not be incremented when a new thread is

dispatched to the same EU. It is only incremented when another threadôs priority number is

incremented and reaches the same value. For example, if currently there is a thread with priority 0

on an EU, then dispatching a new thread to that EU causes the old threadôs priority number to

increment to 1. However, if the active thread (assuming for simplicity that there is only one) on an

EU has a priority number 1 (or 2 or 3), then dispatching a new thread to this EU does not change

the old threadôs priority number. As threads on an EU may terminate in arbitrary order, the exact

number for a thread depends on the dynamic execution of threads.

15:8
:

[15:13] Reserved. MBZ.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 46

DWord Bits Description

[12] HSID. HalfSlice Identifier for the EU.

[11:8] EUID[3:0]. Execution Unit Identifier. The MSB of this field is the RowID.

7:3 Reserved. MBZ.

2:0 TID (The thread identifier). Specifies the thread slot that the current thread is assigned to. This field

is set at thread dispatch.

1

(sr0.1:ud)

31:24 FFTID (Fixed Function Thread ID). There is no connection between this thread ID, assigned in fixed

functions, and the TID assigned in the EUs.

23:0 Reserved. MBZ.

1

(sr0.1:ud)

31:23

2

(sr0.2:ud)

31:0
Dispatch Mask (DMask). This 32-bit field specifies which channels are active at Dispatch time.

This field is used by hardware to initialize the mask register.

Format: U32

3

(sr0.3:ud)

31:0
Vector Mask (VMask). This 32-bit field contains, for each 4-bit group, the OR of the corresponding

4-bit group in the dispatch mask. This field is used by hardware to initialize the mask register.

Format: U32

3.3.3.8 Control Register

Control Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1000b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed

individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating-point mode and the

accumulator disable. It also contains the master exception status/control field that allows software to

switch back to the application thread from the System Routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields

are arranged in significance-decreasing order from MSB to LSB. This arrangement allows the System

Routine to use the lzd instruction to find the high priority exceptions and handle them first. As each

exception is mapped to a single bit, another exception priority order may be implemented by software.

The System Routine may choose to handle one exception at a time, by handling the exception detected

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 47

by an lzdinstruction and returning to the application thread. Or it may choose to handle all the concurrent

exceptions, by looping through the exception fields until all outstanding exceptions are handled before

returning back to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception causes hardware to jump to the

System Routine or not. Exception status and control bits (bits 31:16 in cr0.1:ud) indicate which exceptions

have occurred, and are used by the system routine to clear the exception. Even if a given exception is

disabled, the corresponding exception status and control bit still reflects its status, whether an exception

event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Values written to this subregister are dropped; the result of reading from this

subregister is unpredictable.

Fields in Control registers also reference a virtual register called System IP (SIP). SIP is the virtual

register holding the global System IP, which is the initial instruction pointer for the System Routine. There

is only one SIP for the whole system. It is virtual only from a threadôs point of view, as it is not visible (i.e.

not readable and not writeable) to the thread software executed on a GEN EU. It can only be accessed

indirectly by the hardware to respond to exception events. Upon an exception, hardware performs some

bookkeeping (e.g. saving the current IP into AIP) and then jumps to SIP. Upon finishing exception

handling, the System Routine may return back to the application by clearing the Master Exception Status

and Control field in cr0, which causes the hardware to load AIP to IP register. See the STATE_SIP

command for how to set SIP.

Register and Subregister Numbers for Control Register

RegNum[3:0] SubRegNum[4:0]

0000b = cr0

All other encodings are reserved.

00000b = cr0.0:ud. It contains general thread control fields.

00100b = cr0.1:ud. It contains exception status and control.

01000b = cr0.2:ud. It contains AIP.

All other encodings are reserved.

Control Register Fields

DWord Bits Description

0 31 Master Exception State and Control. This bit is the master state and control for all exceptions.

Reading a 0 indicates that the thread is in normal operation state and a 1 means the thread is in

exception handle state. Upon an exception event, hardware sets this bit to 1 and switches to SIP.

Writing 1 to this bit has no effect. Writing 0 to this bit also has no effect if the previous value is 0. In

both cases, the bit keeps the previous value. If the previous value of this bit is 1, software writing a 0

causes the thread to return to AIP. This transition is automatic ï software does not have to move AIP

to IP. The value of this bit then stays as 0. This bit is initialized to 0.

 0 = The thread is in normal state.

 1 = The thread is in exception state.

30:16 Reserved. MBZ.

15
Breakpoint Suppress. This bit specifies whether breakpoint exception is suppressed or not. This

bit is normally set by software and cleared by hardware. If Master Exception Status and Control bit

is 1, this bit is ignored by hardware. If Master Exception Status and Control bit is 0 (i.e. not in

System Routine) and Breakpoint is enabled: If this bit is set, breakpoint is temporally ignored

(suppressed); Upon a breakpoint condition, the instruction is executed and this bit is automatically

reset by hardware.

This bit is provided to prevent infinite loops of jumping to the System Routine on a breakpoint

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 48

DWord Bits Description

condition. The System Routine must set this bit (and also clear the corresponding status and control

bit) before returning to the application thread.

This bit has no effect when Breakpoint Enable bits are cleared. This bit is initialized to 0.

0 = Breakpoint exception is not suppressed.

 1 = Breakpoint exception is suppressed.

14:10 Reserved. MBZ.

7
Reserved.

6
Double Precision Denorm Mode. This bit determines how denormal numbers are handled for the

DF (Double Float) type. It is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to

zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

5:4
Rounding Mode. This field specifies the FPU rounding mode. It is initialized by Thread Dispatch.

00b = Round to Nearest or Even (RTNE)

01b = Round Up, toward +inf (RU)

10b = Round Down, toward -inf (RD)

11b = Round Toward Zero (RTZ)

3 Vector Mask Enable (VME). This bit indicates DMask or Vmask should be used by EU for

execution. This bit is set by the Thread Dispatch.

 0: Use Dispatch Mask (DMASK) 1: Use Vector Mask (VMASK)

2
Single Program Flow (SPF). Specifies whether the thread has a single program flow (SIMDnxm

with m = 1) or multiple program flows (SIMDnxm with m > 1). This bit affects the operation of all

branch instructions. In Single Program Flow mode, all execution channels branch and/or loop

identically. This bit is initialized by the Thread Dispatch.

0: Multiple Program Flows

1: Single Program Flow

Programming Restrictions:

Only H1/Q1/N1 are allowed in SPF mode.

Power Optimization: If an entire shader does not do SIMD branching, the driver can set the SPF bit

to 1 to save power in HW.

1
Accumulator Disable. This bit controls the update of the accumulator by the instruction field

AccWrCtrl. If this bit is cleared, the accumulator is updated for all instructions with AccWrCtrl

enabled. If set, the accumulator is disabled for all update operations, maintaining its value prior to

being disabled. Setting this bit has no effect if the accumulator is the explicit destination operand for

an instruction. This bit is initialized to 0.

0: Enable accumulator update.

 1: Disable accumulator update.

Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not expected to use the

accumulator,though it may need to use instructions that implicitly update the accumulator. To use

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 49

DWord Bits Description

such instructions in the System Routine, but still preserve the accumulator contents on returning to

the application kernel, the System Routine would either (a) save and restore the accumulator, or (b)

prevent the accumulator from being unintentionally modified. This control bit has been added for the

latter method.

Software has the option to limit the setting of this control bit to strictly within the System Routine. If,

by convention, this bit is clear within application kernels, the System Routine can simply set the bit

upon entry and clear it before returning control to the application kernel. This usage model would

not necessarily require cr0.0 to be saved/ restored in the System Routine. However, if by

convention application kernels are permitted to set this bit, then the System Routine is required to

preserve the content of this bit.

0
Single Precision Floating Point Mode (FP Mode). This bit specifies whether the current single-

precision floating-point operation mode is IEEE mode (IEEE Standard 754) or the ALT (alternative

mode). This bit does not affect the floating-point mode used for other floating-point data types. This

bit is also forwarded on the message sideband for all out-going messages, for example, to control

the floating-point mode of the Sampler. Software may modify this bit to dynamically switch between

the two floating-point modes. This bit is initialized by Thread Dispatch.

0 = IEEE floating-point mode for the F (Float) type.

1 = ALT (alternative) floating-point mode for the F (Float) type.

 30
External Halt Exception Status and Control. This bit indicates the External Halt exception. It is

set by EU hardware on receiving the broadcast External Halt signal. The System Routine should

reset this bit before returning to an application routine to avoid infinite loops.

This bit may be set or cleared by software. This bit is initialized to 0.

 29
Software Exception Control. This bit is the control bit for software exceptions. Setting this bit to 1

in an application routine causes an exception. Clearing this bit in an application routine has no

effect. Upon entering the system routine, the hardware maintains this bit as 1 to signify a software

exception. The System Routine should reset this bit before returning to an application routine.

This bit may be set or cleared by software. This bit is initialized to 0.

 28
Illegal Opcode Exception Status. This bit, when set, indicates an illegal opcode exception. The

exception handler routine normally does not return back to the application thread upon an illegal

opcode exception. Leaving this bit set has no effect on hardware; if system software adversely

returns to an application routine leaving this bit set, it doesnôt cause any exception. This bit should

not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

 27
Stack Overflow Exception Status. This bit when set, indicates a stack overflow exception. The

exception handler routine normally does not return back to the application thread upon a stack

overflow exception. Leaving this bit set has no effect on hardware; if system software adversely

returns to an application routine leaving this bit set, it doesnôt cause any exception. This bit should

not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

 26:24 Reserved

 23:16 Reserved. MBZ.

 15
Breakpoint Enable. Specifies whether the breakpoint exception is enabled or not.

This bit is initialized by the Thread Dispatcher.

Format = ENABLED:

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 50

DWord Bits Description

 0: Disabled

 1: Enabled

 13
Software Exception Enable. This bit enables or disables the software exception. Enabling or

disabling this bit may allow host software to turn on/off certain features (such as profiling) without

changing the kernel program.

This bit is initialized by the Thread Dispatcher.

Format = ENABLED:

 0: Disabled

 1: Enabled

 12
Illegal Opcode Exception Enable. This bit specifies whether the illegal opcode exception is

enabled or not. The Illegal opcode exception includes illegal opcodes and undefined opcodes,

caused by bad programs or run-time data corruption.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor. Even though this mechanism is

provided to disable the illegal opcode exception, it should be used with extreme caution.

Format = ENABLED:

 0: Disabled

 1: Enabled

 11
Stack Overflow Exception Enable. This bit specifies whether the stack overflow exception is

enabled or not. The stack overflow exception includes an overflow or an underflow in the stack

space allocated for the thread.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor.

Format = ENABLED:

 0: Disabled

 1: Enabled

 10:0 Reserved. MBZ.

2

(cr0.2:ud)

31:3
Application IP (AIP). This is the register storing the instruction pointer before an exception is

handled. Upon an exception, hardware automatically saves the current IP into the AIP register, and

then sets the Master Exception State and Control field to 1, which forces a switch to the System

IP (SIP). The AIP register may contain either the pointer to the instruction that causes the exception

or the one after (such as masked stack overflow/underflow exceptions). This is shown in the

following table, where IP is the instruction that generated the exception.

Exception Type AIP Value

Breakpoint IP

External Halt N/A (1)

Software Exception IP + 1

Illegal Opcode IP

(1) External Halt exception is asynchronous and not associated with an instruction.

When the System Routine changes the Master Exception State and Control field from 1 to 0,

hardware restores IP from this register. This field is writable allowing the returning IP to be altered

after an exception is handled.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 51

DWord Bits Description

2:0 Reserved. MBZ.

Implementation Restriction on Register Access:When the control register is used as an explicit source

and/or destination, hardware does not ensure execution pipeline coherency. Software must set the thread

control field to óswitchô for an instruction that uses control register as an explicit operand. This is important

as the control register is an implicit source for most instructions. For example, fields like FPMode and

Accumulator Disable control the arithmetic and/or logic instructions. Therefore, if the instruction updating

the control register doesnôt set óswitchô, subsequent instructions may have undefined results.

3.3.3.9 Notification Registers

Notification Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1001b

Number of Registers: 3

Default Value: No

Normal Access: RO (RW ï Context save/restore only)

Elements: 3

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These

registers are read-only, except under context restore, and can be accessed in 32-bit granularity. Write

access to this register is allowed only when context is restored.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the

maximum allowed number of concurrent threads in the system. Therefore, the range of the thread-to-

thread notification count in n0, is larger than the maximum number of threads computed by EUID * TID.

There is only one bit for the host-to-thread notification count in n1.

When directly accessed, this register is read-only. If the value is non zero, the only way to alter the value

is to use the wait instruction to decrement the value until zero is reached. A wait instruction on a zero

notification subregister causes the thread to stall, waiting for a notification signal from outside targeting

the same subregister. See the wait instruction for details.

Implementation Restriction: The notification registers are initialized to 0 after hardware/software reset.

However, these registers are not reset at thread dispatch time.

Register and Subregister Numbers for Notification Registers

RegNum[3:0] SubRegNum[4:0]

0000b = n0

All other encodings are reserved.

00000b = n0.0:ud

00100b = n0.1:ud

01000b = n0.2:ud

All other encodings are reserved.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 52

Notification Register 0 Fields

DWord Bits Description

0 31:16 Reserved. MBZ.

15:0
Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-

thread synchronization. The value read from this register specifies the outstanding notifications

received from other threads. It can be changed indirectly by using the WAIT instruction. See the WAIT

instruction for details.

Format: U16

Notification Register 1 Fields

DWord Bits Description

0 31:1 Reserved. MBZ.

Notification Register 2 Fields

DWord Bits Description

0 31:16 Reserved. MBZ.

15:0
Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-

thread synchronization. The value read from this register specifies the outstanding notifications

received from other threads. It can be changed indirectly by using the WAIT instruction. See the WAIT

instruction for details.

Format: U16

Format of the Notification Register

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 53

3.3.3.10 IP Register

IP Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1010b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 1

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current

instruction pointer, which is relative to the Generate State Base Address. Reading this register returns

the instruction pointer of the current instruction. The 3 LSBs are always read as zero. Writing this register

causes program flow to jump to the new address. When it is written, the 3 LSBs are dropped by

hardware.

Register and Subregister Numbers for IP Register

RegNum[3:0] SubRegNum[4:0]

0000b = ip

All other encodings are reserved.

00000b = ip:ud

All other encodings are reserved.

IP Register Fields

DWord Bits Subfield Description

0 31:3 Ip. Specifies the current instruction pointer. This pointer is relative to the General State Base Address.

2:0 Reserved. MBZ.

3.3.3.11 TDR Registers

TDR Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1011b

Number of Registers: 8

Default Value: No

Normal Access: RO/CW

Elements: 8

Element Size: 16 bits

Element Type: UW

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? No

Indexable? No

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 54

There are 8 thread dependency registers (tdr0.0:uw to tdr0.7:uw) used by HW for the sendc instruction.

These registers are read-only and can be accessed in 16-bit granularity.

When accessed explicitly, each thread dependency register has FFTID in the lower 8 bits, bits 8 to 14 are

forced to zero by HW. Bit 15 is the valid bit, which indicate whether the current thread has a dependency

on the dependency thread stored in this thread dependency register.

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and are

reset by broadcasting end of thread messages after a thread retired. The FFTIDôs can only be changed

with a therad dispatch. Any write into any of the TDR registers will clear the valid bit for the particular TDR

if the write enable is true, the FFTID portion is strictly read only.

Register and Subregister Numbers for TDR Registers

RegNum[3:0] SubRegNum[4:0]

1011b = tdr0

All other encodings are reserved.

00000b = tdr0.0:uw

00010b = tdr0.1:uw

00100b = tdr0.2:uw

00110b = tdr0.3:uw

01000b = tdr0.4:uw

01010b = tdr0.5:uw

01100b = tdr0.6:uw

01110b = tdr0.7:uw

All other encodings are reserved.

TDR Registers Fields

DWord Bits Description

3 31 Valid7. This field indicates whether the thread specified by FFTID7 is still in-flight.

30:24 Reserved. MBZ

23:16
FFTID7. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

15 Valid6. This field indicates whether the thread specified by FFTID6 is still in-flight.

14:8 Reserved. MBZ

7:0
FFTID6. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

2 31 Valid5. This field indicates whether the thread specified by FFTID5 is still in-flight.

30:24 Reserved. MBZ

23:16
FFTID5. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

15 Valid4. This field indicates whether the thread specified by FFTID4 is still in-flight.

14:8 Reserved. MBZ

7:0
FFTID4. This field is the FFTID of the third thread that the current thread depends on. It can be

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 55

DWord Bits Description

changed by the end of thread broadcasting messages.

Format: U8

1 31 Valid3. This field indicates whether the thread specified by FFTID3 is still in-flight.

30:24 Reserved. MBZ

23:16
FFTID3. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

15 Valid2. This field indicates whether the thread specified by FFTID2 is still in-flight.

14:8 Reserved. MBZ

7:0
FFTID2. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

0 31 Valid1. This field indicates whether the thread specified by FFTID1 is still in-flight.

30:24 Reserved. MBZ

23:16
FFTID1. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

15 Valid0. This field indicates whether the thread specified by FFTID0 is still in-flight.

14:8 Reserved. MBZ

7:0
FFTID0. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

3.3.3.12 Performance Registers

Performance Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1100b

Number of Registers: 1

Default Value: 0h

Normal Access: RO

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: Byte

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

Starting with, a block of ARF register space is allocated for per-thread performance information. Currently

only a timestamp register is defined within this space, although it is anticipated that future performance-

related information would be located here also.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 56

Register and Subregister Numbers for Performance Registers

RegNum[3:0] SubRegNum[4:0]

1100b = timestamp

All other encodings are reserved.

Valid encoding range:

00000b ï 00111b (in units of bytes)

All other encodings are reserved.

Timestamp Register

This generation defines a new low latency timestamp source, ñTMò, available as part of a thread's

Architectural Register File (ARF). This is a is free running counter, 64b in size, and exposed to the ISA as

individual 32b high óTmHighô and low óTmLowô unsigned integer source operands. As part of the EU's

register space, access to the timestamp has a low and deterministic latency and therefore can be used

for intra-kernel high resolution performance profiling.

The TM counter is free running based on the EUôs clock and continues to increment across all time.

Given a base EU clock frequency of 1.25 GHz and the counterôs 64b size, rollover of the lower 32b

occurs approximately every 3.3 seconds, with the upper 32b value rollover measured as ~450 years. The

TM count continues to increment during a thread's active/standby state transitions as well as context

switches. It is read-only and not pre- or resettable under any software control, either kernel or driver,

other than a full gfx reset. The 64b TM value is expected to be identical across all EUs of the system

unless DOP clock gating is enabled.

The TM features provides a 1-bit indicator óTmEventô which identifies the occurrence of a time-impacting

event such as context switch or frequency change since the last time any portion of the Timestamp

register value was read by that thread. Software that uses the Timestamp capability should check this bit

to identify when a relative time calculation may be suspect. To properly use this additional information,

the instrumentation code should operate on the Timestamp register value as a whole (i.e. as an 8 dword

register) so that the 64b time and this 1b value are captured simultaneously, as opposed to 32b portions,

to eliminate a the chance of missing a TmEvent that might occur between accesses to 32b portions of this

register.

Note: The Timestamp register is saved as part of thread state on context-save, but only óTmEventô is

restored (and technically always restored to ó1ô as a context switch had occurred).

Timestamp Register Fields

DWord Bits Description

7:3 31:0 Undefined.

2 31:29 Undefined.

0 TmEvent. Indicates a discontinuous time-impacting event (e.g. context switch, frequency change)

occurred since any portion of the Timestamp register was last read, thus making any relative duration

calculation based on this counter suspect. This bit is reset at the time a new thread is loaded, and on

each read of any portion of the óTimestampô register.

1 31:0
TmHigh. The upper 32b of the 64b timestamp value sourced from Cr clock. Read-only.

Format: U32

0 31:0
TmLow. The lower 32b of the 64b timestamp value sourced from Cr clock. Read-only.

Format: U32

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 57

3.3.4 Immediate

Two forms of immediate are provided as a source operand: scalar and vector.

The immediate field in a GEN instruction has 32 bits. For a word or an unsigned word immediate data,

software must replicate the same 16-bit immediate value to both the lower word and the high word of the

32-bit immediate field in a GEN instruction.

 For a scalar immediate, it can be of any of the specified numeric data types from a word to a dword. Byte

and unsigned byte are not supported as the smallest internal type of the execution pipeline is word.

These two numeric types are reserved for future extensions.

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. Both integer

and float immediate vectors are supported.

An immediate integer vector is denoted by type v or uv as imm32:v or imm32:uv, where the 32-bit

immediate field is partitioned into 8 4-bit subfields. Refer to the Numeric DataType Section for description

of the packing of vector integers to a dword.

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit immediate field is

partitioned into 4 8-bit subfields. Refer to the Numeric DataType Section for the description of the packing

of vector floats to a dword.

Restriction: When an immediate vector is used in an instruction, the destination must be 128-bit aligned

with destination horizontal stride equivalent to a word for an immediate integer vector (v) and equivalent

to a dword for an immediate float vector (vf).

3.3.5 Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-bit

aligned SIMD data registers, a region-based register addressing scheme is employed in GEN

architecture. The region-based register addressing capability significantly improves the SIMD

computation efficiency by providing per-instruction-based multiple data gathering from register file. This

avoids instruction overhead to perform data pack, unpack, and shuffling, which has been observed on

other SIMD architectures. One benefit of such capability is allowing various kinds of 3D Graphics API

Shader compute models to run efficiently on GEN. Another benefit is allowing high throughput of media

applications, which tend to operate on byte or word data elements.

This can be illustrated by the example shown in Region Parameters and Region Parameters. As shown in

Region Parameters, a sequence of SIMD instruction is executed on a conventional load/store based

superscalar machine with SIMD instruction extension. The data parallelism can be achieved by first level

of loop unrolling. As shown, there is a second level of loop for the task. Before a given SIMD compute

instruction, Process (i), can proceed, there might be a load, a data rearrange and a data unpack (and

conversion) instruction to load and prepare the input data. After the compute instruction is complete, it

might also require pack, re-arrange and store instructions, to format and save the same to memory. At the

loop, other scalar computations such as loop count and address generation may be needed. For the

same program, when the data can fit in the large GEN GRF register file, the outer loop may be unrolled

for GEN. Here one or a few block loads (using send instruction) may be sufficient to move the working set

into GRF. Then the data shuffle can be combined with the processing operation with region-based

addressing capability. Per operand float type and mixed data type operation may also allow GEN to

combine data conditioning operations with computing operations. These techniques in GEN architecture

help to achieve high compute efficiency and throughput for graphics and media applications.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 58

Conventional SIMD Instruction Sequence

GEN SIMD Instruction Sequence for the Same Program

In a GEN instruction, each operand defines a region in the register file. A region may contain multiple

data elements. Each data element is assigned to an execution channel in the EU. The total number of

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 59

data elements of a region is called the size of the region, or the size of the operand. The number of

execution channels is called the execution size (ExecSize), which is specified in the instruction word.

ExecSize determines the size of region for source and destination operands in an instruction.

¶ For an instruction with two source operands, the sizes of the two source operands must be the
same.

¶ The size of a destination operand generally matches the execution size, therefore equals to
the number of source operand(s) in the same instruction.

o Exception of this rule is present for the integer reduction instructions (such as sad2
and sada2) where the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named

the horizontal dimension (data elements within a row) and the second dimension is termed the vertical

dimension (data elements in a column). Here, horizontal/vertical and row/column are just symbolic

notations. When the GRF registers are viewed as a row-major 2D array of memory, such a notation

normally matches well with the geometric locations of the data elements of an operand. However, as the

register region is fully described by the parameters discussed below, the data elements of a register

region may not form a regular rectangular shape. For example, Vertical Stride parameter is allowed to be

smaller than Horizontal Stride, making the rows of a register region interleave with each other. It should

also note that the meanings of horizontal/vertical here is different than that used for the flag control in the

Flag Registers section.

Specifically, a region-based description of a source operand can take the following format

RegFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type

Parameters are as the follows.

Á Register Region Origin (RegFile, RegNum and SubRegNum): This set of parameters,
including the register file, RegFile, the register number, RegNum, and the subregister number,
SubRegNum, describes the register region origin, which is the location of the first data
element of the operand. RegNum is in unit of 256-bit and SubRegNum is in unit of the data
element size.

Á Width (Width): Width specifies the number of data elements along the horizontal dimension, or
the number of data elements of a row.

Á Horizontal Stride (HorzStride): HorzStride specifies the step size between two adjacent data
elements within a row. It is in unit of data element size, which is determined by the data
element Type.

Á Vertical Stride (VertStride): VertStride specifies the step size between two adjacent data
elements along the vertical dimension (or the step size between two rows). It is again in unit of
data element size, which is determined by the data element Type.

Á Data Element Type (Type): Type specifies numeric data type (float, word, byte, etc.) of the
data elements. All data elements within a region must have the same type.

GRF register file consists of a sequence of 256-bit registers. When viewing the register file (GRF for

example) as a sequence of 256-bit aligned registers, RegNum field provides the register number, thus for

the name. SubRegNum provides the sub-field addressing within a register. However, when viewing the

register file as a byte addressable memory array, (RegNum and SubRegNum) is just a byte address

within the register file with SubRegNum providing the lower 5 bits and RegNum providing the higher bits.

The execution size is specified for each instruction by the parameter ExecSize. The size of the vertical

dimension is ExecSize/Width, based on the rule that the size of regions must equal to the execution size.

Doc Ref #: IHD -OS-V4 Pt 3 ï 05 12 5/31/2012 60

Region Parameters depicts the register region description. The example shows a register region of

r4.1<16;8,2>:w, where the shaded fields denote the data elements in the region and the numbers in these

fields are the execution channel assignments. The register region assumes that an ExecSize of 16 is set

for the instruction. Each data element is a word (as noted by the type field ñ:wò). The origin of the region is

at the second word of r4, denoted by r4.1. Each row of the region has 8 data elements (words) that are 2

data elements (words) apart. The distance between two rows is 16 words. Note that the region shown is

for illustration purpose only. It does not represent a typical usage model nor a performance optimized

mode.

An example of a register region (r4.1<16;8,2>:w) with 16 elements

Region Parameters shows another example where the rows are interleaved. The region, having word

data elements, starts at location r5.0:w. HorzStride, the distance within a row, is 2 words. So the second

element (channel number 1) is at location 5.2:w. And there are 8 elements per row. VertStride, the

distance between two rows, is only 1 word, which is less than HorzStride. Therefore, the first element of

the second row (channel number 8) is at r5.1:w, just next to channel number 0. It is clear from the picture

that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides

more details on the region-based register addressing. However, there are restrictions imposed by

hardware implementation, which can be found in the later sections of this chapter.

../../../../Content/vol5c4%20Shared%20Functions%20Message%20Gateway/Message%20Gateway.htm
../../../../Content/vol5c4%20Shared%20Functions%20Message%20Gateway/Message%20Gateway.htm

