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1. Introduction

This chapter contains these sections that introduce this volume.

1 Introducing the Execution Unit

1 EU Terms and Acronyms

1 EU Changes by Processor Generation
1 EU Notation

Subsequent chapters cover:

1 EU Data Types
Execution Environment

Exceptions
Instruction Set Summary

=A =4 =4 =

Instruction Set Reference

T EU Programming Guide

The EU Programming Guide provides some useful examples and information but is not a complete or
comprehensive programming guide.

1.1 Introducing the Execution Unit

This section introduces the Execution Unit (EU), a simple and capable processor within the GPU that
supports graphics processing within the graphics pipelines, can do general purpose computing (GPGPU),
and responds to exceptional conditions via the System Routine.

The EU provides parallelism at two levels: thread and data element. Multiple threads can execute on the
EU; the number executing concurrently depends on the processor and is transparent to EU code. Each
thread has its own registers (GRF and ARF, described below). Most EU instructions operate on arrays of
data elements; the number of data elements is normally the ExecSize (execution size) or number of
channels for the instruction. A channel is a logical unit of execution for data element access, masking,
and flow control within instructions. The number of channels is independent of the number of physical
ALUs or FPUs for a particular graphics processor.

EU native instructions are 128 bits (16 bytes) wide. Some combinations of instruction options can use
compact instruction formats that are 64 bits (8 bytes) wide. Identifying instructions that can be compacted
and creating the compact representations is done by software tools, including compilers and assemblers.

Data manipulation instructions have a destination operand (dst) and one, two, or three source operands
(src0, srcl, or src2). The instruction opcode determines the number of source operands. An instruction's
last source operand can be an immediate value rather than a register.

Data read or written by a thread is generally in the thread's GRF (General Register File), 128 general
registers, each 32 bytes. A data element address within the GRF is denoted by a register number (rO to
r127) and a subregister number. In the instruction syntax, subregister numbers are in units of data
element size. For example, a :d (Signed Doubleword Integer) element can be in subregister 0 to 7,
corresponding to byte numbers in the instruction encoding of 0, 4, ... 28.

Note: The EU cannot directly read or write data in system memory.
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Specialized registers used to implement the ISA are in a distinct per thread Architecture Register File
(ARF). Each such register or group of related registers has its own distinct name. For example, ip is the
instruction pointer and f0 is a flags register. An ARF register can be a srcO or dst operand but not a srcl
or src2 operand. There are restrictions on how particular ARF registers are accessed that should be
understood before directly reading or writing those registers. See the ARF Registers section for more
information.

The EU supports both integer and floating-point data types, as described in the Numeric Data Types
section.

For EU flow control, each channel has its own per-channel instruction pointer (PcIP[n]) and only executes
an instruction when IP == PcIP[n] and any other masks enable the channel. Most flow control instructions
use signed offsets from the current instruction address to reference their targets. Unconditional branches
are done using mov with IP as the destination. Flow control can also use SPF (Single Program Flow)
mode to execute with a single instruction pointer (IP).

The EU ISA supports predication, masking, regioning, swizzling, some type conversions, source
modification, saturation, accumulator updates, and flag updates as part of instruction execution:

9 Predication creates a bit mask (PMask) to enable or disable channels for a particular instruction
execution. Pmask is derived from flag register and subregister values using boolean formulas
determined by the PredCtrl (Predicate Control) and Predinv (Predicate Inversion) instruction fields.
See the Predication section.

1 Masking is the overall process of determining which channels execute for a given instruction based
on five factors:

T'Number of channels (only channels in [0, ExecSize - 1] can execute)
T Execution mask (EMask)

TWhether the channel is on the instruction (if not in Single Program Flow mode and MaskCitrl is not
NoMask)

T Predicate mask (PMask)

fIn Align16 mode, any enabling of channels using the Dst.ChanEn instruction field (if MaskCtrl is
not NoMask).

1 Regioning specifies an array of data elements contained in one or two registers, with options for
scattering, interleaving, or repeating data elements in registers using width and stride values, subject
to significant constraints. Regioning also includes access mode (Alignl or Align16) and addressing
mode (Direct or Indirect). See the Reqisters and Register Regions section.

1 Swizzling allows small scale reordering of data elements within groups of four at the input using the
modulo 4 channel names x, y, z, and w. For example, a swizzle of .wzyx with an ExecSize of 8 reads
execution channels 0 to 7 from these input channels: 3, 2, 1, 0, 7, 6, 5, and 4. Swizzling is only
available in the Align16 access mode, described in the Execution Environment chapter.

1 Type Conversions do any needed conversion from source data type to execution data type and from
execution data type to destination data type. See Execution Data Type for more information. Each
instruction description indicates what combinations of data types are supported.

1 Source Modification modifies a source operand just before doing the requested operation. For a
numeric operation, the choices are:

1No modification (normal).

- indicating negation.

f(abs) indicating absolute value.

1-(abs) indicating a forced negative value.
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Source modification logically occurs after any conversion from source data type to execution data
type. Each instruction description indicates whether it supports source modification.

1 Saturation clamps result values to the nearest value within a saturation range determined by the
destination type. For a floating-point type, the saturation range is [0.0, 1.0]. For an integer type, the
saturation range is the entire range for that type, for example [0, 65535] for the UW (Unsigned Word)
type. Each instruction description indicates whether it supports saturation.

1 Accumulator Updates optionally update the accumulator register or registers in the ARF with
destination values as a side effect of instruction execution. The AccWrCtrl instruction field enables
accumulator updates. The Accumulator Disable flag in control register 0 (cr0) can be used to disable
accumulator updates, regardless of AccWrCtrl values; for example, this flag may be used in the
System Routine.

1 Flag Updates optionally update a flags register and subregister (f0.0, f0.1, f1.0, or f1.1) with
conditional flags based on the CondMaodifier (Condition Modifier) instruction field. For example, a
CondModifier of .nz (not zero) assigns flag bits based on whether result elements are not zero (1) or
zero (0). Each instruction description indicates whether it supports the Condition Modifier and any
restrictions on the values supported.

Note: The EU is not required to execute steps in its internal pipeline sequentially or in order, so long as it
produces correct results.

The assembler syntax uses spaces between operands and encloses ExecSize and any predicate in
parentheses. Instruction mnemonics, register names, conditional modifiers, predicate controls, and type
designators use lowercase. Function names used with the math instruction are UPPERCASE.

( pred ) instcmod sat ( exec_size ) dstsrcOsrcl { inst_opt, ... }

General register destination regions use the syntax rm.n<HorzStride>:type. General register directly
addressed source regions use the syntax rm.n<VertStride;Width,HorzStride>:type. You need to
understand more about register regioning to understand all of these terms.

The following example assembly language instruction adds two packed 16-element single-precision Float
arrays in r4/r5 and r2/r3 writing results to r0/rl, only on those channels enabled by the predicate in f0.0
along with any other applicable masks.

(f0.0) add (16) r0.0<1>:f r2.0<8;8,1>:f r4.0<8;8,1>:f

1.2 EU Terms and Acronyms

This section provides three tables describing EU general terms and acronyms, EU data types, and EU
selected ARF registers.

EU General Terms and Acronyms

Term Description

ALT mode |A floating-point execution mode that maps +/- inf to +/- fmax, +/- denorm to +/-0, and NaN to +0 at the
FPU inputs and never produces infinities, denormals, or NaN values as outputs. See IEEE mode.

ALU IArithmetic Logic Unit. A functional block that performs integer arithmetic and logic operations, as
distinct from instruction fetch and decode, floating-point operations (see FPU), or messaging.

AQOS Array Of Structures. Also see SOA.

ARF IArchitecture Register File, a distinct register file containing registers used to implement specific ISA
features. For example the Instruction Pointer and condition flags are in ARF registers. See GRF.
byte IAn 8-bit value aligned on an 8-bit boundary and the basic unit of addressing. Bits within a byte are

denoted 0 to 7 from LSB to MSB.
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Term Description
channel . . . - -
A logical unit of SIMD data parallel execution within a thread and within the EU. The number of
physical ALUs or FPUs is not directly related to the number of channels.
Supports up to 16 channels.
Supports up to 32 channels.
compact [A 64-bit instruction encoded as described in the EU Compact Instructions section. Only some
instruction |combinations of instruction parameters can be encoded as compact instructions. See native
instruction.
compressed |An instruction that writes to two destination registers. For example a SIMD16 instruction with Float
instruction |operands can write channels 0 to 7 to one 32-byte general register and channels 8 to 15 to a second,
consecutive 32-byte general register.
denorm A very small but nonzero number in IEEE mode, with a magnitude less than the smallest normalized
floating-point number representable in a particular floating-point format. Denormals lose precision as
their values approach zero, called gradual underflow.
DWord Doubleword. A 32-bit (4-byte) value aligned on a 32-bit (4-byte) boundary. Bits within a DWord are
denoted 0 to 31 from LSB to MSB.
EOT End of Thread. A flag set on a send or sendc instruction to terminate a thread's execution on the EU.
EU Execution Unit. The single GPU unit described in this volume. This volume describes individual data
parallel execution paths within a thread in the EU as channels. A few fields, like EUID, use EU to refer
to a particular hardware resource used to implement the overall EU.
exception |An error or interrupt condition that arises during execution that may transfer control to the System
Routine. Some exceptions can be disabled, preventing such transfers. As defined in this volume,
some errors do not produce exceptions.
ExecSize [The number of execution channels for a particular instruction. Channels within that number are

enabled or disabled by various masks.

floating-point

Numeric types that allow fractional values and often a wider range than integer types. The EU
supports binary floating-point types including the single precision type and the double precision
typedefined by the IEEE 754 standard.

GEN

GEN is sometimes used to refer to Intel's mainstream GPU architecture integrated with recent CPU
generations.

GRF

General Register File, a distinct register file containing 128 general registers, r0 to r127. Each general
register is 256 bits (32 bytes), can contain any type of data, and can be accessed with any valid
combination of addressing mode, access mode, and region parameters. A general register is directly
addressed using a register number and subregister number, or indirectly addressed using an address
subregister (index register) and an address immediate offset.

IEEE mode

A floating-point execution mode that supports all the kinds of floating-point values described by the
IEEE 754 standard: normalized finite nonzero binary floating-point numbers, signed zeros, signed
infinities, signed denormals that are closer to zero than any normalized value but still nonzero, and
NaN (not a number) values. See ALT mode.

index register

IAn address subregister when used for indirect addressing.

inf Infinity, +inf or -inf, as a floating-point value in IEEE mode.

instruction |In this volume, instruction always refers to an EU instruction.

ISA Instruction Set Architecture, processor aspects visible to programs and programmers and independent
of a particular implementation, including data types, registers, memory access, addressing modes,
exceptions, instruction encodings, and the instruction set itself. An ISA does not include instruction
timing, hardware pipeline details, or the number of physical resources (ALUs, FPUs, instruction
decoders) mapped to logical constructs (threads, channels). This volume also includes a
recommended assembly language syntax, closely related to the ISA but logically distinct from it.

LSB Least significant bit.

message |A data structure transmitted from a thread to another thread, to a shared function, or to a fixed
function. Message passing is the primary communication mechanism of the GEN architecture.

MSB Most significant bit.
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Term Description

NaN Not a Number. A non-numeric value allowed in the standard single precision and double precision
floating-point number formats. Quiet NaNs propagate through calculations and signaling NaNs cause
exceptions. NaNs are not used in the ALT floating-point mode.

native A 128-bit instruction, the regular instruction format that allows all defined instruction parameters and

instruction |options. Some instructions can also be encoded using a 64-bit compact instruction format.

OWord  |Octword. A 128-bit (16-byte) value aligned on a 128-bit (16-byte) boundary. Bits within an OWord are
denoted 0 to 127 from LSB to MSB. This term is used rarely and may be dropped from future versions
of this volume.

packed . Lo . o . . . . .

A register region is described as packed if its elements are adjacent in memory, with no intervening
space, no overlap, and no replicated values. If there is more than one element in a row, elements
must be adjacent. If there is more than one row, rows must be adjacent. When two registers are
used, the registers must be adjacent and both must exist.

The immediate vector data types are all described as Packed because each such type packs several
small data elements into a 32-bit immediate value.

QWord  |Quadword. A 64-bit (8-byte) value aligned on a 64-bit (8-byte) boundary. Bits within a QWord are
denoted 0 to 63 from LSB to MSB.

region A collection of data locations in registers and subregisters for a source or destination operand. The
associated regioning parameters allow regions to be arrays with various layouts.

register  [Part of the directly accessible state of an EU program, such as a general register in the GRF or an
architecture register in the ARF. Note that system memory is not directly accessible.

SIMD Single Instruction Multiple Data. Each EU instruction can operate on multiple data elements in parallel,
as specified by the instruction's ExecSize.

SIP System Instruction Pointer, the starting IP value for the System Routine.

SOA Structure of Arrays. Also see AOS.

SPF Single Program Flow. A mode in which every execution channel uses the common instruction pointer,
IP in the ip register. The SPF bit in the control register is 1 to enable SPF and 0 to disable it. If SPF is
disabled, then each execution channel n has its own instruction pointer, PcIP[n] and each channel n is
only eligible to execute, subject to other masking, when PclIP[n] == IP.

swizzle Rearrange data elements within a vector. The EU supports modulo four swizzling of register source
operands at the input in the Align16 access mode.

System  |A global EU exception handling routine. Any enabled exception from any EU thread transfers control

Routine [to this routine.

thread An instance of a program executing on the EU. The life cycle for a thread on the EU starts with the first
instruction after being dispatched to the EU by the Thread Dispatcher and ends after executing a send
or sendc instruction with EOT set, signaling thread termination. Threads can be independent or can
communicate with each other via the Message Gateway shared function.

word A 16-bit (2-byte) value aligned on a 16-bit (2-byte) boundary. Bits within a word are denoted O to 15

from LSB to MSB. Word has denoted a 16-bit unit for Intel processors since the 8086 and 8088

processors were introduced in 1978.

The next table lists all EU numeric data types. See the Numeric Data Types section for more information
about each data type.

EU Numeric Data Types (Listed Alphabetically by Short Name)

Size |Size (Integral

Short)Assembler Long in in or
Name| Syntax Name Bytes| Bits | Float Description

B b Signed Byte Integer 1 8 | [Signed integer in the range -128 to 127.

D :d Signed Doubleword 4 32 I [Signed integer in the range -2* to 2% - 1.

Integer

DF .df Double Float 8 64 F |Double precision floating-point number.

F f Float 4 32 F |Single precision floating-point number.
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Size | Size |Integral
Short)Assembler Long in in or
Name| Syntax Name Bytes| Bits | Float Description
UB :ub Unsigned Byte Integer 1 8 | Unsigned integer in the range 0 to 255.
ub :ud Unsigned Doubleword 4 32 I Unsigned integer in the range 0 to 2% - 1.
Integer
uv uv Packed Unsigned Half 4 32 I Eight 4-bit unsigned integer values each in the
Byte Integer Vector range 0 to 15. Only used as an immediate value.
uw uw Unsigned Word Integer 2 16 I Unsigned integer in the range 0 to 65,535.
\% v Packed Signed Half Byte 4 32 I Eight 4-bit signed integer values each in the range -
Integer Vector 8 to 7. Only used as an immediate value.
VF vf Packed Restricted Float 4 32 F  |Four 8-bit restricted float values. Only used as an
\Vector immediate value.
W W Signed Word Integer 2 16 I Signed integer in the range -32,768 to 32,767.

The next table lists the seven ARF registers that you should understand first, omitting several others. See
the ARF Reqisters section for more information, including descriptions of additional registers not listed

below.

EU Selected ARF Registers (Listed Alphabetically by Name)

Assembler
Name Syntax Description

Accumulators| acc0, accl Data registers that can hold integer or floating-point values of various sizes. Many
instructions can implicitly update accumulators with a copy of destination values, done
by setting the AccWrCtrl instruction option. A few instructions, like mac (Multiply
Accumulate), use the accumulators as an implicit source operand, useful for some
iterative calculations.

éidirsesesr a0s Holds subregisters primarily used for indirect addressing. Each subregister is a 16-bit
9 UW (Unsigned Word) value. For an indirectly addressed operand or element, the
subregister value plus an Addrimm signed offset field determines the byte address
(RegNum and SubRegNum) within the register file (GRF ).
There are 8 address subregisters.
Control cr0.s Contains bit fields for floating-point modes, flow control modes, and exception
Register enable/disable. Also contains exception indicator flags and saves the AIP (Application
Instruction Pointer) on transferring control to the System Routine to handle an exception.
Flags fr.s Used as the outputs for various channel conditional signals, such as equality/zero or
overflow. Used as the inputs for predication. There are two 32-bit flags registers each
containing two 16-bit subregisters.
In;grﬂigfn P References the current instruction in memory, as an unsigned offset from the General
P State Base Address. IP is the thread's overall instruction pointer. Each channel n can
(IP) have its own instruction pointer (PcIP[n]). If not in Single Program Flow mode (SPF is 0)
then only those channels where PclIP[n] == IP are eligible to execute the instruction, if
enabled by all other applicable masks.

Null Register null . . . . . .
Indicates a non-existent operand. Unused operands in the instruction format, like the
unused second source operand field in a mov instruction, are encoded as null.

For present source operands, reading a null source operand returns undefined values.
For null destination operands, results are discarded but any implicit updates to
accumulators or flags still occur.

State Register sr0.s Contains thread identification and scheduling fields, and mask fields for enabling or
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Assembler

Name Syntax Description

disabling channels.

1.3 EU Changes by Processor Generation

This section describes how the EU changes for particular processor generations. Instruction compaction
tables can differ for each generation, so that is not mentioned in these lists. Particular readers and
audiences can see only certain content in this section. Errata and workarounds for particular generations,

SKUs, or steppings are not included in these lists. Some small changes in instruction layouts are not

included in these lists.

Ivy Bridge

These features or behaviors are added , continuing to later generations:

1

f
f
f

]

=A =4 =4 4 =4

The maximum ExecSize increases to 32, for byte or word operands.
Increase the number of flag registers from one to two.
Add the NibCitrl field, used with QtrCtrl to select groups of channels or flags.

Add the DF (Double Float) data type, the first time an 8-byte data type is supported. DF only
supports the IEEE floating-point mode and not the ALT floating-point mode.

Add a shared source data type field and a destination data type field for instructions with three
source operands, allowing F (Float), DF (Double Float), D (Signed Doubleword Integer), or UD
(Unsigned Doubleword Integer) types to be specified.

Add bit manipulation instructions: bfil, bfi2, bfrev, cbit, foh, and fbl.

Add the integer addc (Add with Carry) and subb (Subtract with Borrow) instructions.

Add the brc (Branch Converging) and brd (Branch Diverging) instructions.

For the cmp and cmpn instructions, relax the accumulator restrictions.

For the sel instruction, remove the accumulator restriction.

Add the Rounding Mode and Double Precision Denorm Mode fields in Control Register 0.

These features or behaviors are specific to and may not continue to later generations:

1

Each DF (Double Float) operand uses an element size of 4 rather than 8 and all regioning

parameters are twice what the values would be based on the true element size: ExecSize, Width,

HorzStride, and VertStride. Each DF operand uses a pair of channels and all masking and swizzling

should be adjusted appropriately.
The f16t032 and f32t016 instructions convert between half-precision float and Float.

The mul instruction limits integer multiplication involving DWords so that only the low 16 bits of srcl

are used even if srcl is a DWord.
The sel (Select) instruction does not support an ExecSize of 32.

SIMD16 execution on DWords is not allowed when an accumulator is an explicit source or
destination operand.

1.4 EU Notation

The Courier New

in the instruction reference.
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The italic font style is used for instruction mnemonics outside of code (e.g., the send instruction), for
syntactic production names, for key values in algorithms (ExecSize), and to emphasize a word or phrase.
For example: When bit 10 is set, the destination register scoreboard is not cleared.

The bold font weight is used for the short name and long name of a bit field being described, for value
names being defined, for syntactic terminals, for unnumbered subheadings, and for the terms Note,
Erratum/Errata, or Workaround used to introduce a paragraph.

Bit field names and value names used where not being defined and not as syntactic terminals are in plain
text.

Bit field values in hex use the Ox prefix. The BSpec currently uses the 0x prefix for hex in some parts and
the h suffix for hex in other parts. For single bits, values appear as simply 0 or 1. For multi-bit binary
values, the appropriate number of binary digits appears with a b suffix.

Instruction mnemonics are lowercase. Function names invoked using the math instruction are
UPPERCASE. For example, SQRT.

Tables describing bit field layouts or registers proceed from most significant to least significant bits.
Figures showing bit fields or registers show most significant bits on the left and least significant bits on the
right.

Any bit, field, or register described as Reserved should be regarded as undefined and unpredictable.
Such bits should be treated as follows:
1 When testing values, do not depend on the state of reserved bits. Mask out or otherwise ignore such
bits.

1 Sometimes software must initialize reserved bits. For example, a compiler must write complete
instruction values when creating an instruction stream, including reserved bits. In such cases, write
reserved bits as zeros unless otherwise indicated.

1 Do not use reserved bits as extra storage for software-defined values; put nothing in such bits.

I When saving state and restoring state, save and restore any reserved bits as well.

1 Do not assume that reserved bits are invariant between explicit writes. Software should function
even if reserved bits change in undefined and unpredictable ways.

Any value, encoding, or combination of values or encodings described as Reserved must not be used.
The EU's behavior is undefined in this case.

When a combination of instruction parameters or an EU state is described as producing undefined results
or behavior, do not assume that undefined results or behavior are confined to specific instructions,
operands, registers, or channels.
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2. EU Data Types

2.1 Fundamental Data Types

The fundamental data types in the GEN architecture are halfbyte, byte, word, doubleword (DW),

guadword (QW), double quadword (DQ) and quad quadword (QQ). They are defined based on the

number of bits of the data type, ranging from 4 bits to 256 bits. As shown in Fundamental Data Types, a

halfbyte contains 4 bits, a byte contains 8 bits, a word contains two bytes, and a doubleword (dword)

contains two words, and so on. Halfbyte is a special data type such that it cannot be accessed directly as

standalone data element. It is only allowed as a subfieldoft he numeri c data type of #dApa
hal fbyte integer vectoro described in the next section.

Fundamental data types

’—‘ Haltyte®

|1;-|igh byte : l_ Lowbite |

=
o

16 13
High word Lowy wordd

Droubleysord
(L)

Fay
With the exception of halfbyte, the access of a data element to/from a GEN register or to/from memory
must be aligned on the natural boundaries of the data type. The natural boundary for a word has an even-
numbered address in unit of byte. The natural boundary for a doubleword has an address divisible by 4
bytes. Similarly, the natural boundary for a quadword, double quadword and quad quadword has an
address divisible by 8, 16, and 32 bytes, respectively. Quadword, double quadword and quad quadword
do not have corresponding numeric data type. Instead, they are used to describe a group (a vector) of
numeric data elements of smaller size align to larger natural boundaries.

2.2 Numeric Data Types

The numeric data types defined in the GEN architecture include signed and unsigned integers and
floating-point numbers (floats) of various sizes. These numeric data types are described below.
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2.2.1 Integer Numeric Data Types

The Execution Unit supports the following integer data types. Signed integer types use two's complement

representation for negative numbers.

UB: Unsigned Byte, 8-bit Unsigned Integer

7 0

B: Byte, 8-bit Signed Integer

76 0
s|

UW: Unsigned Word, 16-bit Unsigned Integer

1
5 0

W: Word, 16-bit Signed Integer

11
54 0

s|

UD: Unsigned Doubleword, 32-bit Unsigned Integer

3
1

D: Doubleword, 32-bit Signed Integer

33
10

s|

UV: Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer

3 2
1 8

2|2 21 1|1 11

2
7 413 019 615 211 817 4

3 0

V: Packed Signed Half-Byte Integer Vecto

r, 8 x 4-Bit Signed Integer

3 212 212 211 11 1)1
1 817 413 019 615 2|1 817 4

3 0

S S S S S S S

S

The following table summarizes the EU integer data types.

Execution Unit Integer Data Types

Notation|Size in Bits Name Range
UB 8 Unsigned Byte Integer [0, 255]
B 8 Signed Byte Integer [-128, 127]
uw 16 Unsigned Word Integer [0, 65535]
W 16 Signed Word Integer [-32768, 32767]
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Notation|Size in Bits Name Range
uD 32 Unsigned Doubleword Integer{0, 2°27 1]
D 32 Signed Doubleword Integer [[i 2%, 237 1]
uv 32 Packed Unsigned Half-Byte [0, 15] in each of eight 4-bit immediate vector elements.
Integer Vector
\% 32 Packed Signed Half-Byte [-8, 7] in each of eight 4-bit immediate vector elements.
Integer Vector

Restriction: Only a raw move using the mov instruction supports a packed byte destination register
region. For information about raw moves, refer to the Description in mov i Move.

2.2.2 Floating-Point Numeric Data Types

The Execution Unit supports the following floating-point data types. The Float and Double Float types use
the single precision and double precision formats specified in IEEE Standard 754-1985 for Binary
Floating-Point Arithmetic. In the ALT floating-point mode, representations for infinities, denorms, and
NaNs within those formats are not used. The EU does not support the double extended precision (80-bit)
floating-point format found in the x86/x87/Intel 64 floating-point registers. All floating-point formats are
signed using signed magnitude representation (a distinct sign bit, separate from the magnitude
information).

The F (Float) type supports both the ALT and IEEE floating-point modes, controlled by the Single
Precision Floating-Point Mode bit in the Control Register.

In IEEE mode, F calculations flush denormalized values to zero and gradual underflow is not supported.

The DF (Double Float) type only supports the IEEE floating-point mode. Whether DF calculations support
denorms or flush denormalized values to zero is controlled by the Double Precision Denorm Mode bit in
the Control Register.

F: Float, 32-bit Single-Precision Floating-Point Number
33 2 2
10 3 2 0
S biased fraction
exponent

DF: Double Float, 64-bit Double-Precision Floating-Point Number+

6 6 55
32 21 0
S| biased exponent | fraction

VF: Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point Number

33 22 222 21 111 11
10 8 7 4 32 0 9 65 4 21 876 4 3 0
slb. exp.] frac. [s]b.exp.] frac. [S[b.exp.| frac. [S[b.exp.| frac.

The following table summarizes the EU floating-point data types.

Execution Unit Floating-Point Data Types

Size in
Notation| Bits Name Range
F 32 Float

Single precision, 1 sign bit, 8 bits for the biased exponent, and 23 bits for the
significand:
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Sizein
Notation| Bits Name Range
[-I' (2| 2-23)127é ‘I' 2-149, OO, 2-149é (| 223)127]
DF 64 Double Float Double precision, 1 sign bit, 11 bits for the biased exponent, and 52 bits for the
significand:
[I' (2-|- 2—52)1oz3é 7 21074 0.0, 219744 (I 252)1023]
VF 32 Pack(_ed Restricted precision. Each of four 8-bit immediate vector elements has 1 sign
Restricted bit
Float Vector 3 hits for the biased exponent (bias of 3), and 4 bits for the significand:
[[31¢é0125, 0, O0.125¢é 31]

2.2.3 Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers contained in a doubleword.
Each signed halfbyte integer element has a range from -8 to 7 with the sign on bit 3. This numeric data
type is only used by an immediate source operand of doubleword in a GEN instruction. It cannot be used
for the destination operand or a non-immediate source operand. GEN hardware converts the vector into
an 8-element signed word vector by sign extension. This is illustrated in Numeric Data Types.

The short hand format notation for a packed signed half-byte vector is V.

Converting a Packed Half-Byte Vector to a 128-bit Signed Integer Vector

127

al
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|

ry . ,
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15 1a a
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_i-;- Packed Signed Halfb ]
| | | : | Interger Vedor
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-_'r 22|z, 11:_15 il
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B&E35-01

2.2.4 Packed UnSigned Half-Byte Integer Vector

A packed unsigned halfbyte integer vector consists of 8 unsigned halfbyte integers contained in a
doubleword. Each unsigned halfbyte integer element has a range from 0 to 15. This numeric data type is
only used by an immediate source operand of doubleword in a GEN instruction. It cannot be used for the
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destination operand or a non-immediate source operand. GEN hardware converts the vector into an 8-
element signed word vector.

dlc|bla Igned Halfbyte Integer
. T T T T
‘0 0 D‘D‘O[l ‘EI Qlofo D‘:I dic|b|a E«pandad Halfbyie I ntege
|- ]
i I
- | 1510 i lfL
1t rWech
27 12 1 -I- a7 J_‘ 0}

2.2.5 Packed Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a doubleword. Each
restricted float has the sign at bit 7, a 3-bit coded exponent in bits 4 to 6, a 4-bit fraction in bits 0 to 3, and
an implied integer 1. The exponent is in excess-3 format | having a bias of 3. Restricted float provides
zero, positive/negative normalized numbers with a small range (3-bit exponent) and small precision (4-bit
fraction). This numeric data type is only used by an immediate source operand of doubleword in a GEN
instruction. It cannot be used for the destination operand, or a hon-immediate source operand.

The following figure shows how to convert an 8-bit restricted float into a single precision float. Converting
a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is by adding 4, or equivalently
copying bit 2 to bit 7 and putting the inverted bit 2 to bits 6:2. A special logic is also needed to take care of
positive/negative zeros.
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Conversion from a Restricted 8-bit Float to a Single-Precision Float
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The following table shows all possible numbers of the restricted 8-bit float. Only normalized float numbers
can be represented, including positive and negative zero, and positive and negative finite numbers.
Normalized infinites, NaN, and denormalized float numbers cannot be represented by this type. It should
be noted that this 8-bit floating point format does not follow IEEE-754 convention in describing numbers
with small magnitudes. Specifically, when the exponent field is zero and the fraction field is not zero, an
implied one is still present instead of taking a denormalized form (without an implied one). This results in
a simple implementation but with a smaller dynamic range i the magnitude of the smallest non-zero
number is 0.125.

Examples of Restricted 8-bit Float Numbers

Extended Floating Number
Class Hex # [Sign [7][Exponent [6:4]|Fraction [3:0]| 8-bit Exponent in Decimal

Positive Normalized Float [0x70-0x7F |0 111 0000 ¢é |10000011 16 é 31
0x60-0x6F |0 110 0000 ¢é |10000010 8 é 15.5
0x50-0x5F |0 101 0000 ¢é |1000 0001 4 é 7.75
0x40-0x4F |0 100 0000 ¢é |1000 0000 2 é 3.875
0x30-0x3F |0 011 0000 ¢é 01111111 1 é 1.937H5
0x20-0x2F |0 010 0000 ¢é 01111110 0.5 é 0.968§
0x10-0x1F |0 001 0000 ¢é 01111101 0.25 é 0.4
0x01-0x0F |0 000 0001 ¢é 01111100 0.125 é 0.
0x00 0 000 0000 0000 0000 0 (+zero)

Negative Normalized FloatlOxFO-OxFF |1 111 0000 é (10000011 -1 6 -81
OXEO-OXEF|1 110 0000 ¢é |10000010 -8 é15.5
0xD0-0xDF|1 101 0000 ¢é |1000 0001 -4 é7.75
0xC0-0xCF|1 100 0000 ¢é |1000 0000 -2 €3.875
OxB0O-0OxBF|1 011 0000 ¢é (01111111 -1 é1.9375
0xA0-0xAF|1 010 0000 ¢é 01111110 -0 . 5-086875
0x90-0x9F |1 001 0000 ¢é 01111101 -0 . 2 5-0.484375
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Extended Floating Number
Class Hex # [Sign [7][Exponent [6:4]|Fraction [3:0]| 8-bit Exponent in Decimal
0x81-0x8F |1 000 0001 ¢é (01111100 -0 . 1 2 50.2421875
0x80 1 000 0000 0000 0000 -0 (-zero)

The following figure shows the conversion of a packed exponent-only float to a 4-element vector of single
precision floats.

The shorthand format notation for a packed signed half-byte vector is VF.

|31 24|23 | s|? |:||

Packed Restricted Float Yactor

94 64| 32| O

128-bit Expanded\F Data

B&E32-01

2.3 Floating Point Modes

GEN architecture supports two floating point operation modes, namely IEEE floating point mode (IEEE
mode) and alternative floating point mode (ALT mode). Both modes follow mostly the requirements in
IEEE-754 but with different deviations. The deviations will be described in details in later sections. The
primary difference between these modes is on the handling of Infs, NaNs and denorms. The IEEE floating
point mode may be used to support newer versions of 3D graphics APl Shaders and the alternative
floating point mode may be used to support early Shader versions.

These two modes are supported by all units that perform floating point computations, including GEN
execution units, GEN shared functions like Extended Math, the Sampler and the Render Cache color
calculator, and fixed functions like VF, Clipper, SF and WIZ. Host software sets floating point mode
through the fixed function state descriptors for 3D pipeline and the interface descriptor for media pipeline.
Therefore different modes may be associated with different threads running concurrently. Floating point
mode control for EU and shared functions are based on the floating point mode field (bit 0) of crO register.

2.3.1 |IEEE Floating Point Mode

2.3.1.1 Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in GEN architecture. Refer to IEEE-754 for
topics not mentioned.

T INF71 INF =NaN
1 O*(+/1)INF =NaN
T 1/(+INF)=+0and1/(iINF)=i0

0 (+i)INF/ (+/i)INF = NaN as A/B = A * (1/B)

1 INV (+0) = RSQ (+0) = +INF, INV (1 0) = RSQ (i 0) =7 INF, and SQRT (i0) =i 0
1 RSQ (i finite) = SQRT (i finite) = NaN
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LOG (+0) = LOG (1 0) =TINF, LOG (i finite) = LOG (i INF) = NaN

NaN (any OP) any-value = NaN with one exception for min/max mentioned below. Resulting NaN
may have different bit pattern than the source NaN.

Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or both operands is
NaN, returns FALSE. Normal comparison of NE, when either or both operands is NaN, returns
TRUE.

o Note: Normal comparison is either a cmp instruction or an instruction with conditional
modifier

Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when the second source
operand is NaN, returns TRUE, regardless of the first source operand, and when the second source

operand is not NaN, but first one is, returns FALSE. Cmpn of NE, when the second source operand

is NaN, returns FALSE, regardless of the first source operand, and when the second source operand
is not NaN, but first one is, returns TRUE.

0 This is used to support the proposed IEEE-754R rule on min or max operations. For
which, if only one operand is NaN, min and max operations return the other operand
as the result.

Both normal and special comparisons of any non-NaN value against +/i INF return exact result
according to the conditional modifier. This is because that infinities are exact representation in the
sense that +INF = +INF and 7 INF =T INF.

o NaN is unordered in the sense that NaN != NaN.

IEEE-754 requires floating point operations to produce a result that is the nearest representable
value to an infinitely precise result, known as "round to nearest even" (RTNE). 32-bit floating point
operations must produce a result that is within 0.5 Unit-Last-Place (0.5 ULP) of the infinitely precise
result. This applies to addition, subtraction, and multiplication.

All arithmetic floating point instructions does Round To Nearest Even at the end of the computation,
except the round instructions.

2.3.1.2 Complete Listing of Deviations or Additional Requirements vs. IEEE-

754

For a result that cannot be represented precisely by the floating point format, the EU uses rounding to
nearest or even to produce a result that is within 0.5 Unit-Last-Place(0.5 ULP) of the infinitely precise
result.

The rounding mode is specified by the Rounding Mode field in the Control Register.

The EU can report floating point overflow and NaN into conditional flags. Hewever, there is no support for
floating point exceptions, status bits, or traps.

] handle denorms as follows:

il

Single precision (F, Float) denorms are flushed to sign-preserved zero on input and output of any
floating-point mathematical operation.

Double precision (DF, Double Float) denorms are kept or flushed in mathematical operations based
on the Double Precision Denorm Mode in the Control Register.

Denorms are not flushed for format conversions, irrespective of any denorm mode.

Denorms are not flushed for raw mov operations. For information about raw mov operations, refer to
the Description in mov i Move.
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1 Input denorms are not flushed for half precision to single precision floating-point conversion.
Other information regarding floating-point behaviors:

1 NaN input to an operation always produces NaN on output, however the exact bit pattern of the NaN
is not required to staythesame (unl ess the operation is a raw fAmovo
data at all.)

1 x*1.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).

1 x+/- 0.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).
But -0 + 0 = +0.

1 Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results out of 32-bit float
range, but whose final results would be within 32-bit float range if intermediate results were kept at
greater precision. In this case, implementations are permitted to produce either the correct result, or
else zinf. Thus, compatibility between a fused operation, such as mac, with the unfused equivalent,
mul followed by add in this case, is not guaranteed.

91 As the accumulator registers have more precision than 32-bit float, any instruction with accumulator
as a source/destination operand may produce a different result than that using GRF registers.

1 API Shader divide operations are implemented as x*(1.0f/y). With the two-step method, x*(1.0fly),
the multiply and the divide each independently operate at the 32-bit floating point precision level
(accuracy to 1 ULP).

1 See the Type Conversion section for rules on converting to and from float representations.

2.3.1.3 Comparison of Floating Point Numbers

The following tables detail the rul esFifroor otlaommads nfgorp oa |
positive or negative finite precision floating point number. Result is either a true (T) or false (F). Each row

corresponds to a fixed srcO and each column corresponds to a fixed srcl. When comparing two positive

finite numbers (or two negative finite numbers), the result can be T or F depending on the values.

Therefore, the corresponding fields in the following tables are marked as T/F. When comparing two

double float numbers, the result can be T or F depending on the values and the denorm mode

(enabled/disabled). The corresponding fields in the following tables are marked T/F*.

Results ofTh@a@Goe £ enpiaGMiP.s o0 n

srcOsrcl| -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf F F F F F F F F F
-Fin T T/F F F F F F F F
-denorm T T TIF* F F F F F F
-0 T T T/F* F F F F F F
+0 T T T/F* F F F F F F
+denorm T T T/F* T/F* T/F* T/F* F F F
+Fin T T T T T T T T/F F
+inf T T T T T T T T F
NaN F F F F F F F F F
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Results dfhamldoe Lo mpi £MR.Ls o n
srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
. F T T T T T T T F
-inf
. F TIF T T T T T T F
-Fin
F F TIF* T/F* T/F* TIF* T T F
-denorm
0 F F F F F TIF* T T F
F F F F F TIF* T T F
+0
F F F F F TIF* T T F
+denorm
. F F F F F F T/IF T F
+Fin
. F F F F F F F F F
+inf
NaN F F F F F F F F F
Resul ts oTfTod EQumgd & CMPE n
srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf T F F F F F F F F
-Fin F TIF F F F F F F F
-denorm F F T/F* T/F* T/F* T/IF* F F F
-0 F F T/IF* T T T/IF* F F F
+0 F F TIF* T T T/F* F F F
+denorm F F T/F* T/F* T/F* T/F* F F F
+Fin F F F F F F T/F F F
+inf F F F F F F F T F
NaN F F F F F F F F F
Resul t s -Egflal-MdN® t Co mp & CMRSNEN
srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf FALSE T T T T T T T T
-Fin T T/F T T T T T T T
-denorm T T T/F* T/F* T/F* T/F* T T T
-0 T T T/F* FALSE FALSE T/F* T T T
+0 T T T/F* FALSE FALSE T/F* T T T
+denorm T T T/F* T/F* T/F* T/F* T T T
+Fin T T T T T T T/F T T
+inf T T T T T T T FALSE T
NaN T T T T T T T T T
Resul t s dhan@rlEqualsT 0 0 Co mp & CMRLE n
srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf T T T T T T T T F
-Fin F T/F T T T T T T F
-denorm F F TIF* TIF* TIF* TIF* T T F
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srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-0 F F T/F* T T T/F* T T F
+0 F F T/F* T T T/F* T T F
+denorm F F T/F* T/F* T/F* T/F* T T F
+Fin F F F F F F T/IF T F
+inf F F F F F F F T F
NaN F F F F F F E F F

Resul ts ofThdh@GrEgwakTeard Co mp & CMPGEN

srcO srcl -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN
-inf T F F F F F F F F
-Fin T T/IF F F F F F F F
-denorm T T T/IF* T/F* T/F* T/IF* F F F
-0 T T T/IF* T T T/IF* F F F
+0 T T T/IF* T T T/IF* F F F
+denorm T T TIF* T/F* T/F* T/IF* F F F
+Fin T T T T T T T/F F F
+inf T T T T T T T T F
NaN F F F F F F F F F

2.3.1.4 Min/Max of Floating Point Numbers

A special comparison called Compare-NaN is introduced in the GEN architecture to handle the difference
of above mentioned floating-point comparison and the rules on supporting MIN/MAX. To compute the
MIN or MAX of two floating-point numbers, if one of the numbers is NaN and the other is not, MIN or MAX
of the two numbers returns the one that is not NaN. When two numbers are NaN, MIN or MAX of the two
numbers returns sourcel.

Min and Max is supported by conditional select.
Note even though 0.0 is specified in the instruction, the flag register is not touched by this instruction.

The following tables detail the rules for this special compare-NaN operation for floating-point numbers.
Notice that -Equa-BE@d i agmfldmditsdmst columns in all other t

2.3.2 Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf and denorm are not

expected for an application to pass into the graphics pipeline, and the graphics hardware must not

generate NaN, Inf or denorm as computation result. For example, a result that is larger than the maximum

representable floating point number is expected to be flushed to the largest representable floating point

number, i . e., +fmax. The fmax has an exponent of OxXFE
IEEE floating point mode.

Note that this mode is applicable ONLY to Single Precision Float datatype.

This also implies that ALT mode is not supported when Single precision datatype is involved in format
conversion to double precision of half precision.

Here is the complete list of the differences of legacy graphics mode from the relaxed IEEE-754 floating
point mode.

1 Any +/- INF result must be flushed to +/- fmax, instead of being output as +/- INF.
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1 Extended mathematics functions of log(), rsq() and sqrt() take the absolute value of the sources
before computation to avoid generating INF and NaN results.

Alternative Floating Point Mode shows the support of these differences in various hardware units.

Supported Legacy Float Mode and Impacted Units

IEEE-754 Deviations VF | Clipper | SF | WIZ | EU | EM | Sampler RC
Any +/- INF result flushed to Y Y Y Y Y Y Y Y
+/- fmax
Log, rsq, sqrt take abs() of sources N/A N/A N/A| NA [NA| Y N/A N/A

Alternative Floating Point Mode shows some of the desired or recommended alternative floating point
mode behaviors that do not have hardware design impact. The reasons of not needing special hardware
support for these items are also provided. This is based on the compliance requirement that can be

found in the

Di r edandl¥g 6f NaNg,dnési ahd derotnis asrundeffned. Applications

should not pass in such values into the graphics pipeline.o

Dismissed legacy behaviors

Suggested IEEE-754 Deviations

Reason for Dismiss

Mov forces (+/-)INF to (+/-)fmax

(+/-)INF is never present as input

(+/-)INF T (+/-)INF = +/- fmax instead of NaN

(+/-)INF is never present as input

Denorm must be flushed to zero in all cases (including
trivial mov and point sampling)

Denorm is never present as input

IAnything*0=0 (including NaN*0=0 and INF*0=0)

NaN and INF are never present as input

Except propagated NaN, NaN is never generated

NaN is never present as input and GEN never generates
NaN based on rules in the previous table

IAn input NaN gets propagated excepting (a)-(d)

NaN is never present as input

() Rcp (and rsq) of 0 yields fmax

N/ A, as it i s c o v €eNFe

result flushed to +/-f ma x 0

already

(b) Sampler honors 0/0 = 0 as if (1/0)*0

There is no divide in Sampler

| Rep (and rsq) of INF yields +/- 0

(+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if (1/INF)=0
followed by Anything*0 =0

There is no divide in Sampler

2.4 Type Conversion

2.4.1 Float to Integer

Converting from float to integer is based on rounding toward zero. If the floating point value is +0, -0,
+Denorm, -Denorm, +NaN 7 r -NaN, the resulting integer value is always 0. If the floating point value is
positive infinity (or negative infinity), the conversion result takes the largest (or the smallest) represent-
able integer value. If the floating point value is larger (or smaller) than the largest (or the smallest)
represent-able integer value, the conversion result takes the largest (or the smallest) represent-able
integer value. The following table shows these special cases. The last two rows are just examples. They
can be any number outside the represent-able range of the output integer type (UD, D, UW, W, UB and

B).
Input Format Output Format
F ub D uw w uB B
+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000
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Input Format Output Format
F ub D uw w uUB

+/- Denorm 00000000 00000000 00000000 00000000 |00000000 00000000
NAN 00000000 00000000 00000000 00000000 (00000000 00000000
-NAN 00000000 00000000 00000000 00000000 (00000000 00000000
INF FFFFFFEFF 7FFFFFFF 0000FFFF 00007FFF  |000000FF 0000007F
-INF 00000000 80000000 00000000 00008000 (00000000 00000080
2% () FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF |[000000FF 0000007F
291 (¥ 00000000 80000000 00000000 00008000 (00000000 00000080

2.4.2 Integer to Integer with Same or Higher Precision

Converting an unsigned integer to a signed or an unsigned integer with higher precision is based on zero
extension.

Converting an unsigned integer to a signed integer with the same precision is based on modular wrap-
around. Without saturation, a larger than represent-able number becomes a negative number. With
saturation, a larger than represent-able number is saturated to the largest positive represent-able
number.

Converting a signed integer to a signed integer with higher precision is based on sign extension.

Converting a signed integer to an unsigned integer with higher precision is based on sign extension.
Without saturation, a negative number becomes a large positive number with the sign bit wrapped-up.
With saturation, a negative number is saturated to zero.

2.4.3 Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with lower precision is
based on bit truncation. Without saturation, only the lower bits are kept in the output regardless of the
sign-ness of input and output. With saturation, a number that is outside the represent-able range is
saturated to the closest represent-able value.

2.4.4 Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to round to the closest
representable float number. For any integer number with magnitude less than or equal to 24 bits, resulting
float number is a precise representation of the input. However, if it is more than 24 bits, by default a
Airound to nearest eveno is performed.

2.4.5 Double Precision Float to Single Precision Float

Converting a double precision floating-point number to a single precision floating-point number uses the
round to zero rounding mode.

Double Precision Float Single Precision Float

-inf -inf

-finite -finite/-denorm/-0
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Double Precision Float

Single Precision Float

-denorm -0

-0 -0

+0 +0

+denorm +0

+finite +finite/+denorm/+0
+inf +inf

NaN NaN

The upper Dword of every Qword will be written with undefined value when converting DF to F.

2.4.6 Single Precision Float to Double Precision Float

Converting a single precision floating-point number to a double precision floating-point number will

produce a precise representation of the input.

Single Precision Float Double Precision Float
-inf -inf
-finite -finite
-denorm -finite
-0 -0
+0 +0
+denorm +finite
+finite +finite
+inf +inf
NaN NaN
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3. Execution Environment

3.1 EU Overview

The GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and
media computations. Support for 3D graphics API (Application Programming Interface) Shader
instructions is mostly native, meaning that GEN efficiently executes Shader programs. Depending on
Shader program operation modes (for example, a Vertex Shader may be executed on a base of a vertex
pair, while a Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D graphics
API Shader instruction streams into GEN native instructions may be required. In addition, there are many
specific capabilities that accelerate media applications. The following feature list summarizes the GEN
instruction set architecture:

1 SIMD (single instruction multiple data) instructions. The maximum number of data elements per
instruction depends on the data type.

SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.
Instruction level variable-width SIMD execution.

Conditional SIMD execution via destination mask, predication, and execution mask.

Instruction compaction.

An instruction may executed in multiple cycles over a SIMD execution pipeline.

=A =4 =4 -4 -4 -4

Most GEN instructions have three operands. Some instructions have additional implied source or
destination operands. Some instructions have explicit dual destinations.

Region-based register addressing.

Direct or indirect (indexed) register addressing.

Scalar or vector immediate source operand.

Higher precision accumulator registers are architecturally visible.

=A =4 =4 4 =4

Self-modifying code is not allowed (instruction streams, including instruction caches, are read-only).

Colssue/Dual Issue:

The Gen7 generation of EU allows two instructions to be issued at the same time (sometimes referred to

as NdsaledrergeneraslgoficoThe two instructions issued a
threads. The terms AFPU Piped and AEM Piped are the tel
pipes. The Gen7 implementation dual-issue capability is limited to only the most popular instructions and

source operand modes. Later generations of EU expand on this concept to allow more operations.

Description:

Opcodes: add, mov, mad, mul, cmp

1 Datatype: single precision floats.
1 Accessmode:
o Alignl:

A No Scattering or Gathering data. This means data in source and destination registers are
aligned and packed (data is contiguous in a register).

/[Example:
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/l allowed, data is contiguous and source and destination regioning
map one to one.

mov (8) r10.0:f r11.0<8;8,1>:f

// not allow ed, data from source is strided and requires gathering to
write to destination

mov (8) r10.0:f r11.0<4;4,2>:f

/I not allowed, data from source is contiguous but not aligned with
destination. Destination register requires scattering

mov (8) r10.0<2>:w rl1l. 0<8;8,1>:w

/Inot allowed, data from source is contiguous but destination is not
aligned to source

mov (8) r10.1:f r11.0<4;4,1>:f
/I allowed. Source and destination have stride but are aligned
mov (4) r10.1:f r11.1<4;4,1>:f

A A single precision float scalar is allowed.

o Alignl6

9 Addressmode: Direct Addressing
1 Register File: GRF/NULL. No access to Accumulator.
1 Condition modifiers supported only for cmp.

3.2 Primary Usage Models

In describing the usage models of the GEN instruction set, the following sections forward reference
terminology, syntax, and instructions described later in this specification. For clarity reasons, not all
forward references are explained at the point of reference. See the Instruction Set Summarychapter for
information about instruction fields and syntax.

3.2.1 AOS and SOA Data Structures

With the Alignl and Align16 access modes, the GEN instruction set provides effective SIMD computation
whether data is arranged in array of structures (AOS) form or in structure of arrays (SOA) form. The AOS
and SOA data structures are illustrated by the examples in AOS and SOA Data Structures. The example
shows two different ways of storing four vectors in four SIMD registers. For simplicity, the data vector and
the SIMD register both have four data elements. The four data elements in a vector are denoted by X, Y,
Z, and W just as for a vertex in 3D geometry. The AOS structure stores one vector in a register and the
next vector in another register. The SOA structure stores one data element of each vector in a register
and the next element of each vector in the next register and so on. The two structures can be related by a
matrix transpose operation.
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AOS and SOA Data Structures

ADS — Array of Structure SOA — Structure of Array
vectoro | [W [ Z [ v [ ]| reastero| [x] [x] [x] [%]
vectort | [W [ Z [ Y [ X ]| recister 1 |F[Y ] &[] &[] & [V]

) _ N -] - =
vectorz | [W [z [ ¥ | % || reaster2|g[Z]n [2] & [2] & [Z]
lfector 3 | WA | 7 | ¥ | % | Register 3 |W | | W| | Wl | W |

Transpose

B&SS0-01

GEN 3D and media applications take advantage of such broad architecture support and use both AOS
and SOA data arrangements.

1 Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS form and use
SIMD4x2 and SIMD4 modes, respectively, as detailed below.

1 Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA form and use SIMD8 and SIMD16
modes as detailed below.

1 Pixels in media are primarily arranged in SOA form, and occasionally in AOS form with possibly
mixed modes of operation that uses region-based addressing extensively.

These are preferred methods; alternative arrangements may also be possible. Shared function resources
provide data transpose capability to support both modes of operations: The sampler has a transpose for
sample reads, the data port has a transpose for render cache writes, and the URB unit has a transpose
for URB writes.

The following 3D graphics API Shader instruction is used in the following sections to illustrate various
operation modes:

add dst.xyz src0.yxzw srcl.zwxy

This example is a SIMD instruction that takes two source operands srcO and srcl, adds them, and stores
the result to the destination operand dst. Each operand contains four floating-point data elements. The
data type is determined by the instruction opcode. This instruction also uses source swizzles (.yxzw for
src0 and .zwxy for srcl) and a destination mask (.xyz). Please refer to the programming specifications of
3D graphics API Shader instructions for more detalils.

A general register has 256 bits, which can store 8 floating point data elements. For 3D graphics, the
mode of operation is (loosely) termed after the data structure as SIMDmxn, where m is the size of the
vector and n is the number of concurrent program flows executed in SIMD.

Execution with AOS data structures:

1 SIMD4 (short for SIMD4x1) indicates that a SIMD instruction operates on 4-element vectors storedin
registers. There is one program flow.
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1 SIMDA4x2 indicates that a SIMD instruction operates on a pair of 4-element vectors in registers.
There are effectively two programs running side by side with one vector per program.

Execution with SOA data structures, also referred to

1 SIMD8 (short for SIMD1x8) indicates a SIMD instruction based on the SOA data structure where one
register contains one data element (the same one) for each of 8 vectors. Effectively, there are 8
concurrent program flows.

1 SIMD16 (short for SIMD1x16) indicates that a SIMD instruction operates on a pair of registers that
contain one data element (the same one) for each of 16 vectors. SIMD16 has 16 concurrent
program flows.

3.2.2 SIMD4 Mode of Operation

With a register mapping of src0O to doublewords 0-3 of r2, srcl to doublewords 4-7 of r2 and dst to
doublewords 0-3 of r3, the example 3D graphics API Shader instruction can be translated into the
following GEN instruction:

add (4) r3<4>.xyz:if r2<4>.yzwx:f r2.4<4>.zwxy:f {NoMask}

Without diving too much into the syntax definition of a GEN instruction, it is clear that a GEN instruction

also takes two source operands and one destination operands. The second term, (4), is the execution

size that determines the number of data elements processed by the SIMD instruction. It is similar to the

term SIMD Width used in the literature. Each operand is described by the register region parameters such

as 0<4>6 and bgt.a Tthyepsee (Wwa.ld. bfe detailed in the SI MDS8
instruction option field, {NoMask}, ensure that the execution occurs for the execution channels shown in

the instruction, instead of, possibly, being masked out by the conditional masks of the thread (See

Instruction Summary chapter for definition of MaskCtrl instruction field).

The operation of this GEN instruction is illustrated in the following figure. In this example, both source
operands share the same physical GRF register r2. The two are distinguished by the subregister number.
The source swizzles control the routing of source data elements to the parallel adders corresponding to
the destination data elements. The shaded areas in the destination register r3 are not modified. In
particular, doublewords 4-7 are unchanged as the execution size is 4; doubleword 3 is unchanged due to
the destination mask setting.

In this mode of operation, there is only one program flow i any branch decision will be based on a scalar
condition and apply to the whole vector of four elements. Option {NoMask} ensures that the instruction is
not subject to the masks. In fact, most of the instructions in a thread should have {NoMask} set.

Even though the execution only performs four parallel add operations, the GEN instruction still executes
in 2 cycles (with no useful computation in the second cycle).
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A SIMD4 Example
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3.2.3 SIMD4x2 Mode of Operation

In this mode, two corresponding vectors from the two program flows fill a GEN register. With a register
mapping of src0 to r2, srcl to r3 and dst to r4, the example 3D graphics API Shader instruction can be
translated into the following GEN instruction:

add (8) rd<4>.xyz:if r2<4>.yxzw:f r3<4>.zwxy:f

This instruction is subject to the execution mask, which initiated from the dispatch mask. If both program
flows are available (e.g. Vertex Shader executed with two active vertices), the dispatch mask is set to
O0x00FF. The operation of this GEN instruction is illustrated in SIMD4x2 Mode of Operation (a). The
source swizzles control the routing of source data elements to the parallel adders corresponding to the
destination data elements. The shaded areas in the destination register r3 (doublewords 3 and 7) are
unchanged due to the destination mask setting. If only one program flow is available (e.g. the same
SIMD4x2 Vertex Shader with only one active vertex), the dispatch mask is set to 0xO00F. The operation
of the same instruction is shown in SIMD4x2 Mode of Operation (b).

SIMD4x2 Examples with Different Emasks
|w[z|v|x|w|2|v|x|rz [w|z|v|x[w|z|v|x|.z
| " 1 5 - "
1'5\ A \'\. \ \// 0 =5 \ \ \\/ g
(wlzfv[x|w]

WL Z|Y | X |W|Z Y | X |rd W Z Y | X |[W|Z|Y | X |[re

{(a) SIMD4=2 with Emask=0x00FF (b) SIMD< 2 with Emask=0x000F
B&892-01

The two source operands only need to be 16-byte aligned, not have to be GRF register aligned. For

example, the first source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3
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in r2, which is shared by the two program flows. The example 3D graphics API Shader instruction can
then be translated into the following GEN instruction:

add (8) rd4<4>.xyz:if r2<0>.yzwx:f r3<4>.zwxy:f

The only difference here is that the vertical stride of the first source is 0. The operation of this GEN
instruction is illustrated in SIMD4x2 Mode of Operation.

A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows

e
233 ]

WilZ|Y | X |W|Z 1r’ X |r2
Fal
\
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r3

Wl 2| Y | < | W Z|Y | = |rd

-

BE&833-01

3.2.4 SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode,
two corresponding vectors from the two program flows fill a GEN register.

With the following register mappings,

src0:r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),
srcl: r10-r17,

dst:r18-r25,

the example 3D graphics APl Shader instruction can be translated into the following three GEN
instructions:

add (16) r18<1>:f r4<8;8,1>:f rl14<8;8,1>:f// dst.x = src0.y + srcl.z
add (16) r20<1>:f r6<8;8,1>:f rl6<8;8,1>:f// dst.y = src0.z + srcl.w
add (16) r22<1>:f r8<8;8,1>:f rl0<8;8,1>:f // dst.z = srcO.w + srcl.x

The three GEN instructions correspond to the three enabled destination masks As there is no output for
the W elements of dst, no instruction is needed for that element. The first instruction inputs the Y
elements of srcO and the Z elements of src1 and outputs the X elements of dst. The operation of this
instruction is shown in SIMD16 Mode of Operation.

With more than one program flow, the above instructions are also subject to the execution mask. The 16-
bit dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by the
Windower, each 4-bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel
Shader instance, the corresponding 4-bit group in the dispatch mask is not set. Therefore, the same
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instructions can be used independent of the number of available subspans without creating bogus data in
the subspans that are not valid.

A SIMD16 Example
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BE394-01

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the first
source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS
format). The example 3D graphics API Shader instruction can then be translated into the following GEN
instruction:

add (16) r18<1>:f r2.1<0;1,0>:f rl14<8;8,1>:f {Compr}// dst.x = srcO.y + srcl.z
add (16) r20<1>:f r2.2<0;1,0>:f rl16<8;8,1>:f {Compr}// dst.y = src0.z + srcl.w
add (16) r22<1>:f r2.3<0;1,0>:f rl10<8;8,1>:f {Compr}// dst.z = srcO.w + srcl.x

The register region of the first source operand represents a replicated scalar. The operation of the first
GEN instruction is illustrated in SIMD16 Mode of Operation.

Another SIMD16 Example with an AOS Shared Constant
L L [ [ [wlzfyfxfe [ | [ | [W]Z]Y]X]e

a 235 :Wm\ o
(21212 za7Z fi\Al2z s [2]2 ]2 |Z7Z//]\4] 2
4

yd
/ Q \ A
DD PO

.
XA XX | XXX | X |18 Xlx | X [ % | X | X]| x| % |19

r

Add (16) riS<1=:Fr2.1<0;1,0=:F rld=8,8,1=:F {Cornpry // dst x=srcl.y+srcl.z
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3.2.5 SIMD8 Mode of Operation

Each compressed instruction has two corresponding native instructions. Taking the example instruction
shown in SIMD16 Mode of Operation, it is equivalent to the following two instructions.

add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f// dst.x[7:0] = src0.y + srcl.z
add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {SecHalf}// dst.x[15:8] = src0.y + srcl.z
Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent
program flows, some time SIMD8 instruction must be used due to architecture restrictions. For example,
the address register a0 only have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions
are not allowed.

3.3 Registers and Register Regions

3.3.1 Register Files

GEN registers are grouped into different name spaces called register files. There are two register files,
the General Register File and the Architecture Register File. A third encoding of some register file
instruction fields indicates immediate operands within instructions rather than a register file.

1 General Register File (GRF): The GRF contains general-purpose read-write registers.

1 Architecture Register File (ARF): The ARF contains all architectural registers defined for specific
purposes, including address registers (a#), accumulators (acc#), flags (f#), notification count (n#),
instruction pointer (ip), null register (null), etc.

1 Immediate: Certain instructions can take immediate source operands. A distinct register file field
encoding indicates an immediate operand.

Each thread executed in an EU has its own thread context, a dedicated register space that is not shared
between threads, whether executing on a common EU or on a different EU. In the rest of the chapters in
this volume, register access is relative to a given thread.

3.3.2 GRF Registers

Number of Registers:  Various

Default Value: None
Normal Access: RW
Elements: Various
Element Size: Various
Element Type: Various
Access Granularity: Byte

Write Mask Granularity: Byte
Indexable? Yes

Registers in the General Register File are the most commonly used read-write registers. During the
execution of a thread, GRF registers are used to store the temporary data, and serve as the destination to
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receive data from shared function units (and some times from a fixed function unit). They are also used to

store the input (initialization) data when a thread is created. By allowing fixed function hardware to

initialize some portion of GRF registers during thread dispatch time, GEN architecture can achieve better
parallelism. A threadds execution efficiency can also |
to be executed upon. Besides these registers containin:
thread are not initialized.

Summary of GRF Registers

Register File Register Name) Description
General purpose read write registers

General Register File (GRF)| r#

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all
threads on the EU. Each thread has a dedicated space of 128 register, r0 through r127.

GREF registers can be accessed using region-based addressing at byte granularity (both read and write).
A source operand must be contained within two adjacent registers. A destination operand must be
contained within one register. GRF registers support direct addressing and register-indirect addressing.
Register-indirect addressing uses the address registers (ARF registers a#) and an immediate address
offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either
through direct or indirect addressing, the result is unpredictable.

3.3.3 ARF Registers

3.3.3.1 ARF Registers Overview

Besides GRF and MRF registers that are directly indicated by unique register file coding, all other
registers belong to the Architecture Register File (ARF). Encodings of architecture register types are
based on the MSBs of the register number field, RegNum, in the instruction word. The RegNum field has
8 bits. The 4 MSBs, RegNum([7:4], represent the architecture register type. This is summarized in the
following table.

Summary of Architecture Registers

Register
Type
(RegNum Register Register
[7:4]) Name Count Description
0000b null 1 Null register
0001b a0.# 1 IAddress register
0010b acc# 2 IAccumulator register
0011b fi.# 2 Flag register
0101b Reserved Reserved
0110b Reserved Reserved
0111b sr0.# 1 State register
1000b cr0.# 1 Control register
1001b n# 2 Notification Count register
1010b ip 1 Instruction Pointer register
1011b tdr 1 Thread Dependency register
1100b tmO 1 TimeStamp register
1101b Reserved Reserved
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Register
Type

(RegNum Register Register
[7:4]) Name Count Description
1110b Reserved Reserved

The remaining register number field RegNum|[3:0] is used to identify the register number of a given
architecture register type. Therefore, the maximum number of registers for a given architecture register
type is limited to 16. The subregister number field, SubRegNum, in the instruction word has 5 bits. It is
used to address subregister regions for an architecture register supporting register subdivision. The
SubRegNum field is in units of bytes. Therefore, the maximum number of bytes of an architecture register
is limited to 32. Depending on the alignment restriction of a register type, only certain encodings of
SubRegNum field apply for an architecture register. The detailed definitions are provided in the following
sections.

In general an ARF register can be dst (destination) or src0O (source 0, first source operand) for an
instruction. Depending on the register and the instruction, other restrictions may apply.

3.3.3.2 Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and
following the same rule of region-based addressing for GRF. The machine code for register number and
subregister number of ARF follows the same rule as for other register files with byte granularity. For an
ARF as a source operand, the region-based address controls the source swizzle mux. The destination
subregister number and destination horizontal stride can be used to generate the destination write mask
at byte level.

A special restriction on region-based addressing for ARF is that the register region cannot cross a register
boundary.

Subregister fields of an ARF register may not all be populated (indicated by the subregister being
indicated as reserved). Writes to unpopulated subregisters are dropped; there are no side effect. Reads
from unpopulated subregisters, if not specified, return unpredictable data.

Some ARF registers are read-only. Writes to read-only ARF registers are dropped and there are no side
effects.

3.3.3.3 Null Register

Null Register Summary

Attribute Value
IARF Register Type Encoding (RegNum[7:4]):0000b)|
Number of Registers: 1
Default Value: N/A
Normal Access: N/A
Elements: N/A
Element Size: N/A
Element Type: N/A
IAccess Granularity: N/A
\Write Mask Granularity: N/A
SecHalf Control? N/A
Indexable? No
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The null register is a special encoding for an operand that does not have a physical mapping. It is
primarily used in instructions to indicate non-existent operands. Writing to the null register has no side
effect. Reading from the null register returns an undefined resuilt.

The null register can be used where a source operand is absent. For example, for a single source
operand instruction such as MOV or NOT, the second source operand srcl must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed
results are not stored in any registers. However, implied writes to the accumulator register, if applicable,
may still occur for the instruction. When the conditional modifier is present, updates to the selected flag
register also occur. I n this case, theddregister

Another example use is to use the null register as the posted destination of a send instruction for data
write to indicate that no write completion acknowledgement is required. In this case, however, the register
region fields are still valid. The null register can also be the first source operand for a send instruction
indicating the absent of the implied move. See the send instruction for details.

3.3.3.4  Address Register

Address Register Summary

Attribute Value
IARF Register Type Encoding (RegNum([7:4]):0001b
Number of Registers: 1
Default Value: None
Normal Access: RW
Elements: 8
Element Size: 16 bits
Element Type: UW or UD
lAccess Granularity: \Word
\Write Mask Granularity: \Word
SecHalf Control? N/A
Indexable? No

There are eight address subregisters forming an 8-element vector. Each address subregister contains 16
bits. Address subregisters can be used as regular source and destination operands, as the indexing
addresses for register-indirect-addressed access of GRF registers, and also as the source of the
message descriptor for the send instruction.

Register and Subregister Numbers for Address Register

RegNum[3:0] SubRegNum[4:0]

0000b = a0 When register a0 or subregisters in a0 are used as the address register for register-indirect
addressing, the address subregisters must be accessed as unsigned word integers. Therefore,
the subregister number field must also be word-aligned.

00000b = a0.0:uw
00010b = a0.1:uw
00100b = a0.2:uw
00110b = a0.3:uw
01000b = a0.4:uw

All other encodings
are reserved.
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RegNum[3:0]

SubRegNum[4:0]

01010b = a0.5:uw
01100b = a0.6:uw
01110b =a0.7:uw

All other encodings are

reserved.

However, when register a0 or subregisters in a0 are explicit source and/or destination
registers, other data types are allowed as long as the register region falls in the 128-bit range.

Address Register Fields

DWord| Bits

Description

7 [31:16/Address subregister a0.15:uw.

Follows the same format as a0.3.

15:0

IAddress subregister a0.14:uw.

Follows the same format as a0.2.

6 |31:16|Address subregister a0.13:uw.

Follows the same format as a0.3.

15:0

IAddress subregister a0.12:uw.

Follows the same format as a0.2.

5 |31:16|Address subregister a0.11:uw.

Follows the same format as a0.3.

15:0

IAddress subregister a0.10:uw.

Follows the same format as a0.2.

4 (31:16|Address subregister a0.9:uw.

Follows the same format as a0.3.

15:0

IAddress subregister a0.8:uw.

Follows the same format as a0.2.

3 |31:16/Address subregister a0.7:uw.

Follows the same format as a0.3.

15:0

IAddress subregister a0.6:uw.

Follows the same format as a0.2.

2 |31:16/Address subregister a0.5:uw.

Follows the same format as a0.3.

15:0 |JAddress subregister a0.4:uw. Follows the same format as a0.2.
1 3118 Address subregister a0.3:uw. This field, with only the lower 12 bits populated, can be used as an
unsigned integer for register-indirect register addressing.
Format: U12
15:0 Address subregister a0.2:uw. This field, with only the lower 12 bits populated, can be used as an
unsigned integer for register-indirect register addressing.
Format: U12
0 |[31:1f . . - . - . .
Address subregister a0.1:uw. This field can be used for register-indirect register addressing or serve
as message descriptor for a send instruction. When used for register-indirect register addressing, it is a
12-bit unsigned integer. For a send instruction, it provides the higher 16 bits of <desc>.
Format: U12 or U16.
15:0

Address subregister a0.0:uw. This field can be used for register-indirect register addressing or serve
as message descriptor for a send instruction. When used for register-indirect register addressing, it is a
12-bit unsigned integer. For a send instruction, it provides the lower 16 bits of <desc>.

Format: U12 or U16.

When used as a source or destination operand, the address subregisters can be accessed individually or
as a group. In the following example, the first instruction moves 8 address subregisters to the first half of
GREF register r1, the second instruction replicates a0.4:uw as an unsigned word to the second half of r1,
the third instruction moves the first 4 words in rl into the first 4 address subregisters, and the fourth
instruction replicates r1.4 as a unsigned word to the next 4 address subregisters.

mov (8) r1.0<1>:uw a0.0<8;8,1>:uw // r1l.n = a0.n for n = 0 to 7 in words mov (8)
r1.8<1>:uw a0.4<0;1,0>:uw // rl.m = a0. 4 for m = 8 to 15 in words mov (4) a0.0<1>:uw
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r1.0<4;4,1>:uw // a0.n = rl.n for n = 0 to 3 in words mov (4) a0.4<1>:uw
r1.4<0;1,0>:uw // a0.m =r1.4 form =4 to 7 in words

When used as the register-indirect addressing for GRF registers, the address subregisters can be
accessed individually or as a group. When accessed as a group, the address subregisters must be group-
aligned. For example, when two address subregisters are used for register indirect addressing, they must
be aligned to even address subregisters. In the following example, the first instruction is legal. However,
the second one is not. As ExecSize = 8 and the width of src0 is 4, two address subregisters are used as
row indices, each pointing to 4 data elements spaced by HorzStride = 1 dword. For the first instruction,
the two address subregisters are a0.2:uw and a0.3:uw. The two align to a DWord group in the address
register. However, the two address subregisters for the second instruction are a0.3:uw and a0.4:uw. They
are not DWord-aligned in the address register and therefore violate the above mentioned alignment rule.

mov (8) r1.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 are used for src1 mov (8) r1.0<1>:d
r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Implementation restriction: GEN ISA supports per channel indexing for a source operand. As there are
only 8 sub-fields in the address register (to save hardware cost), the execution size of an instruction using
per-channel indexing is limited to 8. Software may reload the address register and use compression
control SecHalf to complete a 16-channel computation.

Implementation restriction: When used as the source operand <desc> for the send instruction, only the
first dword subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the combination of
a0.0:uw and a0.1:uw). In addition, it must be of UD type and in the following form <desc> =
a0.0<0;1,0>:ud.

Implementation restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest of the elements
(a0.2:uw through a0.7:uw) only have 12 bits populated each. 12-bit precision supports full indirect-
addressing capability for the largest GRF register range. Software must observe the asymmetry of the
implementation. When a0.0:uw and a0.1:uw are the source or destination, full 16-bit precision is
preserved. However, when a0.2:uw to a0.7:uw are the destination, the high 4 bits for each element are
dropped; when they are the source, hardware inserts zero to the high 4 bits for each element.

Performance Note: There is only one scoreboard for the whole address register. When a write to some
subregisters is in flight, hardware stalls any instruction writing to other subregisters. Software may use the
destination dependency control {NoDDChk, NoDDCIr} to improve performance in this case. Similarly,
when a write to some subregisters is in flight, hardware stalls any instruction sourcing other subregisters
until the write retires.

3.3.3.5 Accumulator Registers

Accumulator Registers Summary

Attribute Value
IARF Register Type Encoding (RegNum([7:4]):0010b
Number of Registers:

2
Default Value: None
Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.
To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data elements.
However, as described in the Implementation Precision Restriction notes below, each data element may
have higher precision with added guard bits not indicated by the numeric data type.

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel
Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator support.
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See the Accumulator Restrictions section for information about additional general accumulator restrictions
and also accumulator restrictions for specific instructions.

There are two accumulator registers, accO and accl.

Register and Subregister Numbers for Accumulator Registers

RegNum[3:0] SubRegNum[4:0]
0000b = acc0 Reserved: MBZ.
0001b = accl

All other encodings are reserved.

1 Accumulators are updated implicitly only if the AccWrCitrl bit is set in the instruction. The
Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCitrl for
implicit accumulator updates. The write enable in word granularity for the instruction is used to
update the accumulator. Data in disabled channels is not updated.

1 When an accumulator register is an implicit source or destination operand, hardware always uses
accO by default and also uses accl if the execution size exceeds the number of elements in accO.
When implicit access to accl is required, QtrCtrl is used. Note that QtrCtrl can be used only if accl
is accessible for a given data type. If accl is not accessible for a given data type, QtrCtrl defaults to
accO.

acc0 and accl are supported for single-precision Float (F) only. Use QtrCtrl of Q2 or Q4 to access
accl.

Examples:

/I Updates accO and accl because it is SIMD16:

add (16) r10:f r11:f ri2:f {Ac CWrEn}

/I Updates accO because it is SIMD8:

add (8) r10:f r11:f r12:f {AccWrEn}

/l Updates accl. Implicit access to accl using QtrCtrl:
add (8) r10:f r11:f r12:f {AccWrEn, Q2}

/l Updates acc1 for Half Floats using QtrCitrl:

add (16) r10:hf r11:hf r12: hf {AccWrEn, H2}

91 Itisillegal to specify different accumulator registers for source and destination operands in an
i nstr uctadd(8) actldacg0:fo )i. The result of such an instructic

1 Some processor generations or steppings limit SIMD16 Float operations, as follows:

1SIMD16 execution on Floats is not allowed when an accumulator is an explicit source or
destination operand.

1 Accumulator registers may be accessed explicitly as srcO operands only.

1 Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in
an instruction.

1 For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of data,
with only accO supported.

1 When an accumulator register is an explicit destination, it follows the rules of a destination register. If
an accumulator is an explicit source operand, its register region must match that of the destination
register with the exception described below.

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and
UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source
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modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result
becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of
accumulators. Consequently, the results are unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and
UW), it is sufficient to store the multiplication result of two Word operands with and without source
modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with bit
32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before running
into a risk of overflowing. When overflow occurs, only modular addition can generate a correct result. But
in this case, conditional flags may be incorrect. When saturation is used, the output is unpredictable. This
is also true for other operations that may result in more than 33 bits of data. For example, adding UD
(FFFFFFFFh) with D (FFFFFFFFh) results in 1IFFFFFFFEN. The sign bit is now at bit 34 and is lost when
stored in the accumulator. When it is read out later from the accumulator, it becomes a negative number
as bit 32 now becomes the sign bit.

Accumulator Channel Precision

Number
Data |JAccumulator of Bits Per
Type| Number |Channels|Channel Description
DF acc0 4 64 |[When accumulator is used for Double Float, it has the exact same precision
as any GRF register.
F accO/accl 8 32 |When accumulator is used for Float, it has the exact same precision as any
GRF register.
D acc0 8 33/64 |When the internal execution data type is doubleword integer, each
(UD) accumulator register contains 8 channels of (extended) doubleword integer
\values. The data are always stored in accumulator in 2's complement form
with 64 bits total regardless of the source data type. This is sufficient to
construct the 64-bit D or UD multiplication results using an instruction macro
sequence consisting of mul, mach, and shr (or mov).
w acc0 16 33 |When the internal execution data type is word integer, each accumulator
(uw) register contains 16 channels of (extended) word integer values. The data
are always stored in accumulator in 2's complement form with 33 bits total.
This supports single instruction multiplication of two word sources in W
and/or UW format.
B N/A N/A N/A  |Not supported data type.
(UB)
3.3.3.6 Flag Register

Flag Register Summary

Attribute Value
IARF Register Type Encoding (RegNum([7:4]):0011b
Number of Registers: 5
Default Value: None
Normal Access: RW
Elements: 5
Element Size: 32 bits|
Element Type: UbD
IAccess Granularity: \Word
\Write Mask Granularity: \Word
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Attribute Value
SecHalf Control? Yes
Indexable? No

There are two flag registers, fO and f1.

Each flag register contains two 16-bit subregisters. Each flag bit corresponds to a data channel.
Predication uses flag values to enable or disable channels. Conditional modifiers assign flag values. If an
instruction uses both predication and conditional modifiers, both features use the same flag register or
subregisters.

Flags can be split to halfs, quarters, or eighths using the QtrCtrl and NibCtrl instruction fields. Those fields
affect the selection of flags for predication and conditional modifiers, but do not affect reading or writing
flags as explicit instruction operands.

The values held in the individual bits of a flag register are the result of the most recent instruction with a
conditional modifier and specifying that flag register. For example:

add.nz.f0.0 ...

Updates flag subregister f0.0 with the per-channel results of the not zero condition.

The flag register has per-bit write enables. When being updated as the secondary destination associated
with a conditional modifier, only the bits corresponding to the enabled channels in EMask are updated.
Other bits in the flag subregister are unchanged.

Flag registers and subregisters can also be explicit source or destination operands.
The sel instruction does not update flags.

Note: When branching instructions are predicated, branching is evaluated on all channels enabled at
dispatch. This means, the appropriate number of flag register bits must be initialized or used in
predication depending on the execution mask (EMask). Uninitalized flags may result in undesired
branching. For example, if using DMask as EMask and if all 32 channels of DMask are enabled, a SIMD8
kernel must initialize unused flag bits so that predication on branching is evaluated correctly.

Register and Subregister Numbers for Flag Register

RegNum[3:0] SubRegNum[4:0]
0000b = fO:ud 00000b = fn.0:uw
0001b =fl:ud 00010b = fn.1:uw

Other encodings are reserved.| Other encodings are reserved.

Reference an entire flag register as fO:ud or f1:ud. Reference the flag subregisters as f0.0:uw, f0.1:uw,
f1.0:uw, and f1.1:uw.

3.3.3.7 State Register

State Register Summary

Attribute Value
IARF Register Type Encoding (RegNum([7:4]):0111b
Number of Registers: 1
Default Value: Provided by the Dispatcher
Normal Access: RW
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Attribute Value
Elements: 4
Element Size: 32 bits
Element Type: UD
IAccess Granularity: Byte
\Write Mask Granularity: N/A
SecHalf Control? No
Indexable? No

Register and Subregister Numbers for State Register

RegNu

m[3:0] SubRegNum[4:0]

0000b = sr0

All other encodings are reserved.| 00000b i 01100b

Valid encoding range:

All other encodings are reserved.

State Register

Fields

DWord |Bits |

Description

31:28|Reserved. MBZ.

0

27:24|FFID (Fixed Function Identifier). Specifies which fixed function unit generates the current thread.
(sr0.0:ud) This field is set at thread dispatch and is forwarded on the message bus for all out-going messages
from this thread.

23

Priority Class. This field, when set, indicates the thread belongs to the high priority class, which
has higher scheduling priority over any thread with this field cleared. The priority field below
determines the relative priority within the same priority class. This field is initialized by the thread
dispatcher at thread dispatch time and stays unchanged throughout the life span of the thread.

This field is forwarded on the message bus to the message bus arbiter for all out-going messages.
It serves as a priority hint for the target shared function. See the Shared Function chapters for
whether and how a shared function uses this priority hint.

0 = Low priority class.

1 = High priority class.

22:19

Reserved. MBZ.

18:16

Priority. This field is the relative aginggeni ofi
thread relative to other threads within the EU. No two threads in the same EU can have the same
priority number (independent of the priority class value). Within the same priority class, an older
thread (with a larger priority number) has higher schedule priority over a younger thread.

This field is set to zero at a threadbs disp

During a threadé6s run time, this field may o
di spatched to the same EU. |t i s donitynumbemsr em
incremented and reaches the same value. For example, if currently there is a thread with priority O
on an EU, then dispatching a new thread to t
increment to 1. However, if the active thread (assuming for simplicity that there is only one) on an
EU has a priority number 1 (or 2 or 3), then dispatching a new thread to this EU does not change
the old threadébés priority number. As threads
number for a thread depends on the dynamic execution of threads.

15:8

[15:13] Reserved. MBZ.
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DWord |Bits Description
[12] HSID. HalfSlice Identifier for the EU.

[11:8] EUID[3:0]. Execution Unit Identifier. The MSB of this field is the RowID.

7:3 |Reserved. MBZ.

2:0 [TID (The thread identifier). Specifies the thread slot that the current thread is assigned to. This field
is set at thread dispatch.

31:24|FFTID (Fixed Function Thread ID). There is no connection between this thread ID, assigned in fixed
functions, and the TID assigned in the EUs.

(sr0.1:ud)| 23:0 |Reserved. MBZ.

1

1 31:23

(sr0.1:ud)

2 L0 Dispatch Mask (DMask). This 32-bit field specifies which channels are active at Dispatch time.

(s70.2:ud) This field is used by hardware to initialize the mask register.

Format: U32

3 L0 Vector Mask (VMask). This 32-bit field contains, for each 4-bit group, the OR of the corresponding

(s70.3:ud) 4-bit group in the dispatch mask. This field is used by hardware to initialize the mask register.

Format: U32

3.3.3.8  Control Register

Control Register Summary

Attribute Value
IARF Register Type Encoding (RegNum[7:4]):1000b
Number of Registers: 1
Default Value: Provided by the Dispatcher
Normal Access: RW
Elements: 4
Element Size: 32 bits
Element Type: UbD
IAccess Granularity: DWord
\Write Mask Granularity: DWord
SecHalf Control? No
Indexable? No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed
individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating-point mode and the
accumulator disable. It also contains the master exception status/control field that allows software to
switch back to the application thread from the System Routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields
are arranged in significance-decreasing order from MSB to LSB. This arrangement allows the System
Routine to use the Izd instruction to find the high priority exceptions and handle them first. As each
exception is mapped to a single bit, another exception priority order may be implemented by software.
The System Routine may choose to handle one exception at a time, by handling the exception detected
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by an Izdinstruction and returning to the application thread. Or it may choose to handle all the concurrent
exceptions, by looping through the exception fields until all outstanding exceptions are handled before
returning back to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception causes hardware to jump to the
System Routine or not. Exception status and control bits (bits 31:16 in cr0.1:ud) indicate which exceptions
have occurred, and are used by the system routine to clear the exception. Even if a given exception is
disabled, the corresponding exception status and control bit still reflects its status, whether an exception
event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Values written to this subregister are dropped; the result of reading from this
subregister is unpredictable.

Fields in Control registers also reference a virtual register called System IP (SIP). SIP is the virtual

register holding the global System IP, which is the initial instruction pointer for the System Routine. There

is only one SIP for the whole system. 1t is virtual
not readable and not writeable) to the thread software executed on a GEN EU. It can only be accessed

indirectly by the hardware to respond to exception events. Upon an exception, hardware performs some
bookkeeping (e.g. saving the current IP into AIP) and then jumps to SIP. Upon finishing exception

handling, the System Routine may return back to the application by clearing the Master Exception Status

and Control field in crO, which causes the hardware to load AIP to IP register. See the STATE_SIP

command for how to set SIP.

Register and Subregister Numbers for Control Register
RegNum[3:0] SubRegNum[4:0]

0000b = cr0 00000b = cr0.0:ud. It contains general thread control fields.
All other encodings are reserved.| 00100b = cr0.1:ud. It contains exception status and control.
01000b = cr0.2:ud. It contains AIP.

All other encodings are reserved.

Control Register Fields

DWord |Bits Description
0 31 |Master Exception State and Control. This bit is the master state and control for all exceptions.

Reading a 0 indicates that the thread is in normal operation state and a 1 means the thread is in
exception handle state. Upon an exception event, hardware sets this bit to 1 and switches to SIP.
\Writing 1 to this bit has no effect. Writing O to this bit also has no effect if the previous value is 0. In
both cases, the bit keeps the previous value. If the previous value of this bit is 1, software writing a O
causes the thread to return to AIP. This transition is automatic i software does not have to move AIP
to IP. The value of this bit then stays as 0. This bit is initialized to 0.
0 = The thread is in normal state.
1 = The thread is in exception state.
30:16/Reserved. MBZ.

15

Breakpoint Suppress. This bit specifies whether breakpoint exception is suppressed or not. This
bit is normally set by software and cleared by hardware. If Master Exception Status and Control bit
is 1, this bit is ignored by hardware. If Master Exception Status and Control bit is O (i.e. not in
System Routine) and Breakpoint is enabled: If this bit is set, breakpoint is temporally ignored
(suppressed); Upon a breakpoint condition, the instruction is executed and this bit is automatically
reset by hardware.

This bit is provided to prevent infinite loops of jumping to the System Routine on a breakpoint
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DWord

Bits

Description

condition. The System Routine must set this bit (and also clear the corresponding status and control
bit) before returning to the application thread.

This bit has no effect when Breakpoint Enable bits are cleared. This bit is initialized to 0.

0 = Breakpoint exception is not suppressed.
1 = Breakpoint exception is suppressed.

14:10

Reserved. MBZ.

7

Reserved.

6

Double Precision Denorm Mode. This bit determines how denormal numbers are handled for the
DF (Double Float) type. It is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to
zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

5:4

Rounding Mode. This field specifies the FPU rounding mode. It is initialized by Thread Dispatch.
00b = Round to Nearest or Even (RTNE)

01b = Round Up, toward +inf (RU)

10b = Round Down, toward -inf (RD)

11b = Round Toward Zero (RTZ)

\Vector Mask Enable (VME). This bit indicates DMask or Vmask should be used by EU for
execution. This bit is set by the Thread Dispatch.
0: Use Dispatch Mask (DMASK) 1: Use Vector Mask (VMASK)

Single Program Flow (SPF). Specifies whether the thread has a single program flow (SIMDnxm
with m = 1) or multiple program flows (SIMDnxm with m > 1). This bit affects the operation of all
branch instructions. In Single Program Flow mode, all execution channels branch and/or loop
identically. This bit is initialized by the Thread Dispatch.

0: Multiple Program Flows
1: Single Program Flow

Programming Restrictions:

Only H1/Q1/N1 are allowed in SPF mode.

Power Optimization: If an entire shader does not do SIMD branching, the driver can set the SPF bit
to 1 to save power in HW.

Accumulator Disable. This bit controls the update of the accumulator by the instruction field
AccWrCtrl. If this bit is cleared, the accumulator is updated for all instructions with AccWrCtrl
enabled. If set, the accumulator is disabled for all update operations, maintaining its value prior to
being disabled. Setting this bit has no effect if the accumulator is the explicit destination operand for
an instruction. This bit is initialized to 0.

0: Enable accumulator update.
1: Disable accumulator update.

Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not expected to use the
accumulator,though it may need to use instructions that implicitly update the accumulator. To use
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DWord |Bits

Description

such instructions in the System Routine, but still preserve the accumulator contents on returning to
the application kernel, the System Routine would either (a) save and restore the accumulator, or (b)
prevent the accumulator from being unintentionally modified. This control bit has been added for the
latter method.

Software has the option to limit the setting of this control bit to strictly within the System Routine. If,
by convention, this bit is clear within application kernels, the System Routine can simply set the bit
upon entry and clear it before returning control to the application kernel. This usage model would
not necessarily require cr0.0 to be saved/ restored in the System Routine. However, if by
convention application kernels are permitted to set this bit, then the System Routine is required to
preserve the content of this bit.

Single Precision Floating Point Mode (FP Mode). This bit specifies whether the current single-
precision floating-point operation mode is IEEE mode (IEEE Standard 754) or the ALT (alternative
mode). This bit does not affect the floating-point mode used for other floating-point data types. This
bit is also forwarded on the message sideband for all out-going messages, for example, to control
the floating-point mode of the Sampler. Software may modify this bit to dynamically switch between
the two floating-point modes. This bit is initialized by Thread Dispatch.

0 = IEEE floating-point mode for the F (Float) type.
1 = ALT (alternative) floating-point mode for the F (Float) type.

30

External Halt Exception Status and Control. This bit indicates the External Halt exception. It is
set by EU hardware on receiving the broadcast External Halt signal. The System Routine should
reset this bit before returning to an application routine to avoid infinite loops.

This bit may be set or cleared by software. This bit is initialized to 0.

29

Software Exception Control. This bit is the control bit for software exceptions. Setting this bit to 1
in an application routine causes an exception. Clearing this bit in an application routine has no
effect. Upon entering the system routine, the hardware maintains this bit as 1 to signify a software
exception. The System Routine should reset this bit before returning to an application routine.

This bit may be set or cleared by software. This bit is initialized to O.

28

lllegal Opcode Exception Status. This bit, when set, indicates an illegal opcode exception. The
exception handler routine normally does not return back to the application thread upon an illegal
opcode exception. Leaving this bit set has no effect on hardware; if system software adversely
returns to an application routine leaving this bitset,itd o es n6t cause any exc
not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

27

Stack Overflow Exception Status. This bit when set, indicates a stack overflow exception. The
exception handler routine normally does not return back to the application thread upon a stack
overflow exception. Leaving this bit set has no effect on hardware; if system software adversely
returns to an applicati on r causeianyexceptiera This bitghotlch
not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

26:24

Reserved

23:16

Reserved. MBZ.

15

Breakpoint Enable. Specifies whether the breakpoint exception is enabled or not.
This bit is initialized by the Thread Dispatcher.
Format = ENABLED:
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DWord |Bits Description
0: Disabled
1: Enabled
13 Software Exception Enable. This bit enables or disables the software exception. Enabling or
disabling this bit may allow host software to turn on/off certain features (such as profiling) without
changing the kernel program.
This bit is initialized by the Thread Dispatcher.
Format = ENABLED:
0: Disabled
1: Enabled
12 lllegal Opcode Exception Enable. This bit specifies whether the illegal opcode exception is
enabled or not. The Illegal opcode exception includes illegal opcodes and undefined opcodes,
caused by bad programs or run-time data corruption.
This bit is initialized by the Thread Dispatcher.
Software should normally assign this bit in the interface descriptor. Even though this mechanism is
provided to disable the illegal opcode exception, it should be used with extreme caution.
Format = ENABLED:
0: Disabled
1: Enabled
11 Stack Overflow Exception Enable. This bit specifies whether the stack overflow exception is
enabled or not. The stack overflow exception includes an overflow or an underflow in the stack
space allocated for the thread.
This bit is initialized by the Thread Dispatcher.
Software should normally assign this bit in the interface descriptor.
Format = ENABLED:
0: Disabled
1: Enabled
10:0 |Reserved. MBZ.
2 L3 Application IP (AIP). This is the register storing the instruction pointer before an exception is
0.2:ud handled. Upon an exception, hardware automatically saves the current IP into the AIP register, and
(cr0.2:ud) then sets the Master Exception State and Control field to 1, which forces a switch to the System
IP (SIP). The AIP register may contain either the pointer to the instruction that causes the exception
or the one after (such as masked stack overflow/underflow exceptions). This is shown in the
following table, where IP is the instruction that generated the exception.
Exception Type AIP Value
Breakpoint IP
External Halt N/A @
Software Exception IP+1
lllegal Opcode 1P
(1) External Halt exception is asynchronous and not associated with an instruction.
When the System Routine changes the Master Exception State and Control field from 1 to O,
hardware restores IP from this register. This field is writable allowing the returning IP to be altered
after an exception is handled.
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DWord |Bits Description
2:0 |Reserved. MBZ.

Implementation Restriction on Register Access:When the control register is used as an explicit source
and/or destination, hardware does not ensure execution pipeline coherency. Software must set the thread
control field to 6 s w i far anhin§truction that uses control register as an explicit operand. This is important
as the control register is an implicit source for most instructions. For example, fields like FPMode and
Accumulator Disable control the arithmetic and/or logic instructions. Therefore, if the instruction updating
the control r e@s it dalsbqhkn msractions mayehave undefined results.

3.3.39 Notification Registers

Notification Registers Summary

Attribute Value
IARF Register Type Encoding (RegNum([7:4]):1001b
Number of Registers: 3
Default Value: No
Normal Access: RO (RW i Context save/restore only)
Elements: 3
Element Size: 32 bits
Element Type: ub
IAccess Granularity: DWord
\Write Mask Granularity: DWord
SecHalf Control? No
Indexable? No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These
registers are read-only, except under context restore, and can be accessed in 32-bit granularity. Write
access to this register is allowed only when context is restored.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the
maximum allowed number of concurrent threads in the system. Therefore, the range of the thread-to-
thread notification count in n0, is larger than the maximum number of threads computed by EUID * TID.

There is only one bit for the host-to-thread notification count in n1.

When directly accessed, this register is read-only. If the value is non zero, the only way to alter the value
is to use the wait instruction to decrement the value until zero is reached. A wait instruction on a zero
notification subregister causes the thread to stall, waiting for a notification signal from outside targeting
the same subregister. See the wait instruction for details.

Implementation Restriction: The notification registers are initialized to 0 after hardware/software reset.
However, these registers are not reset at thread dispatch time.

Register and Subregister Numbers for Notification Registers

RegNum[3:0] SubRegNum[4:0]
0000b = n0 00000b =n0.0:ud

All other encodings are reserved.| 00100b = n0.1:ud
01000b =n0.2:ud

All other encodings are reserved.
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Notification Register 0 Fields

DWord] Bits | Description
0 [31:16Reserved. MBZ.
15:0

Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-
thread synchronization. The value read from this register specifies the outstanding notifications
received from other threads. It can be changed indirectly by using the WAIT instruction. See the WAIT
instruction for details.

Format: U16

Notification Register 1 Fields

DWord|Bits

Description

0

31:1]

Reserved. MBZ.

Notification Register 2 Fields

DWord| Bits | Description
0 [31:16Reserved. MBZ.
15:0

Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-
thread synchronization. The value read from this register specifies the outstanding notifications
received from other threads. It can be changed indirectly by using the WAIT instruction. See the WAIT
instruction for details.

Format: U16

Format of the Notification Register

95 64 63 32 31 I
no.2 no.1 no.0
L5 80 72 SN PN 33 3E31 16 15 (N
0's nd.2 0's nd.1 0's nid.0
B &398-01
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3.3.3.10 IP Register

IP Register Summary

Attribute Value
IARF Register Type Encoding (RegNum[7:4]):1010b
Number of Registers: 1

Default Value:

Provided by the Dispatcher

Normal Access:

RW

Elements: 1
Element Size: 32 bits
Element Type: UbD
IAccess Granularity: DWord
\Write Mask Granularity: DWord
SecHalf Control? No
Indexable? No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current
instruction pointer, which is relative to the Generate State Base Address. Reading this register returns

the instruction pointer of the current instruction. The 3 LSBs are always read as zero. Writing this register

causes program flow to jump to the new address. When it is written, the 3 LSBs are dropped by

hardware.

Register and Subregister Numbers for

IP Register

RegNum[3:0]

SubRegNum[4:0]

0000b = ip 00000b =

All other encodings are reserved.| All other encodings are reserved.

ip:ud

IP Register Fields

DWord[Bits]

Subfield Description

0 31:3|Ip. Specifies the current instruction pointer. This pointer is relative to the General State Base Address.

2.0 |Reserved. MBZ.

3.3.3.11 TDR Registers

TDR Registers Summary

Attribute Value
IARF Register Type Encoding (RegNum[7:4]):1011b
Number of Registers: 8
Default Value: No
Normal Access: RO/CW,|
Elements: 8
Element Size: 16 bits
Element Type: Uw
IAccess Granularity: \Word
\Write Mask Granularity: \Word
SecHalf Control? No
Indexable? No
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There are 8 thread dependency registers (tdr0.0:uw to tdr0.7:uw) used by HW for the sendc instruction.
These registers are read-only and can be accessed in 16-bit granularity.

When accessed explicitly, each thread dependency register has FFTID in the lower 8 bits, bits 8 to 14 are
forced to zero by HW. Bit 15 is the valid bit, which indicate whether the current thread has a dependency
on the dependency thread stored in this thread dependency register.

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and are

reset by broadcasting end of thread messages after a t|
with a therad dispatch. Any write into any of the TDR registers will clear the valid bit for the particular TDR

if the write enable is true, the FFTID portion is strictly read only.

Register and Subregister Numbers for TDR Registers

RegNum[3:0] SubRegNum[4:0]

1011b = tdrO 00000b = tdr0.0:uw
All other encodings are reserved.| 00010b = tdr0.1:uw
00100b = tdr0.2:uw
00110b =tdr0.3:uw
01000b = tdr0.4:uw
01010b = tdr0.5:uw
01100b = tdr0.6:uw
01110b =tdr0.7:uw

All other encodings are reserved.

TDR Registers Fields

DWord| Bits Description

3 31 |valid7. This field indicates whether the thread specified by FFTID7 is still in-flight.
30:24|Reserved. MBZ
23:16

FFTID7. This field is the FFTID of the third thread that the current thread depends on. It can be
changed by the end of thread broadcasting messages.

Format: U8

15 |Valid6. This field indicates whether the thread specified by FFTIDG is still in-flight.
14:8 |Reserved. MBZ
7:0

FFTIDG6. This field is the FFTID of the third thread that the current thread depends on. It can be
changed by the end of thread broadcasting messages.

Format: U8

2 31 |valid5. This field indicates whether the thread specified by FFTID5 is still in-flight.
30:24|Reserved. MBZ
23:16

FFTIDS. This field is the FFTID of the third thread that the current thread depends on. It can be
changed by the end of thread broadcasting messages.

Format: U8

15 |Valid4. This field indicates whether the thread specified by FFTID4 is still in-flight.
14:8 |Reserved. MBZ
7:0

FFTIDA4. This field is the FFTID of the third thread that the current thread depends on. It can be
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DWord| Bits Description

changed by the end of thread broadcasting messages.

Format: U8

1 31 |valid3. This field indicates whether the thread specified by FFTID3 is still in-flight.

30:24|Reserved. MBZ

23:16 FFTID3. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

15 |Valid2. This field indicates whether the thread specified by FFTID2 is still in-flight.

14:8 |Reserved. MBZ

70 FFTID2. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

0 31 |validl. This field indicates whether the thread specified by FFTID1 is still in-flight.

30:24|Reserved. MBZ

23:16 FFTID1. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

15 |ValidO. This field indicates whether the thread specified by FFTIDO is still in-flight.

14:8 |Reserved. MBZ

70 FFTIDO. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U8

3.3.3.12 Performance Registers

Performance Registers Summary

Attribute Value
IARF Register Type Encoding (RegNum[7:4]):1100b
Number of Registers: 1
Default Value: Oh
Normal Access: RO
Elements: 2
Element Size: 32 bits
Element Type: ubD
lAccess Granularity: Byte
\Write Mask Granularity: N/A
SecHalf Control? No
Indexable? No

Starting with, a block of ARF register space is allocated for per-thread performance information. Currently
only a timestamp register is defined within this space, although it is anticipated that future performance-
related information would be located here also.
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Register and Subregister Numbers for Performance Registers

RegNum[3:0] SubRegNum[4:0]

1100b = timestamp Valid encoding range:
All other encodings are reserved.| 00000b i 00111b (in units of bytes)

All other encodings are reserved.

Timestamp Register

This generation defines a new |l ow |l atency timestamp so
Architectural Register File (ARF). This is a is free running counter, 64b in size, and exposed to the ISA as
individual 32b hi gh woT mhhisg lgéh eadn d nltcewgyed Tmloawur ce operands
register space, access to the timestamp has a low and deterministic latency and therefore can be used

for intra-kernel high resolution performance profiling.

The TM counter is free running basedont he EUO6s ¢l ock and continues to incr
Given a base EU clock frequency of 1.25 GHz and the col
occurs approximately every 3.3 seconds, with the upper 32b value rollover measured as ~450 years. The

TM count continues to increment during a thread's active/standby state transitions as well as context

switches. It is read-only and not pre- or resettable under any software control, either kernel or driver,

other than a full gfx reset. The 64b TM value is expected to be identical across all EUs of the system

unless DOP clock gating is enabled.

The TM features providesal-bit i ndi cator O6TmEvent 6 whi chHmpactngnt i fi es
event such as context switch or frequency change since the last time any portion of the Timestamp

register value was read by that thread. Software that uses the Timestamp capability should check this bit

to identify when a relative time calculation may be suspect. To properly use this additional information,

the instrumentation code should operate on the Timestamp register value as a whole (i.e. as an 8 dword

register) so that the 64b time and this 1b value are captured simultaneously, as opposed to 32b portions,

to eliminate a the chance of missing a TmEvent that might occur between accesses to 32b portions of this

register.

Note: The Timestamp register is saved as part of thread state on context-s a v e , but only &6TmEven
restored (and technically always restored to 616 as a

Timestamp Register Fields

DWord| Bits Description

7:3 |31:0[Undefined.

2 [31:29lUndefined.
0 [TmEvent. Indicates a discontinuous time-impacting event (e.g. context switch, frequency change)
occurred since any portion of the Timestamp register was last read, thus making any relative duration
calculation based on this counter suspect. This bit is reset at the time a new thread is loaded, and on
each read of any portion of the O6Ti mestampd re

Lo|3L0 TmHigh. The upper 32b of the 64b timestamp value sourced from Cr clock. Read-only.

Format: U32

0 310 TmLow. The lower 32b of the 64b timestamp value sourced from Cr clock. Read-only.

Format: U32
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3.3.4 Immediate
Two forms of immediate are provided as a source operand: scalar and vector.

The immediate field in a GEN instruction has 32 bits. For a word or an unsigned word immediate data,
software must replicate the same 16-bit immediate value to both the lower word and the high word of the
32-bit immediate field in a GEN instruction.

For a scalar immediate, it can be of any of the specified numeric data types from a word to a dword. Byte
and unsigned byte are not supported as the smallest internal type of the execution pipeline is word.
These two numeric types are reserved for future extensions.

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. Both integer
and float immediate vectors are supported.

An immediate integer vector is denoted by type v or uv as imm32:v or imm32:uv, where the 32-bit
immediate field is partitioned into 8 4-bit subfields. Refer to the Numeric DataType Section for description
of the packing of vector integers to a dword.

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit immediate field is
partitioned into 4 8-bit subfields. Refer to the Numeric DataType Section for the description of the packing
of vector floats to a dword.

Restriction: When an immediate vector is used in an instruction, the destination must be 128-bit aligned
with destination horizontal stride equivalent to a word for an immediate integer vector (v) and equivalent
to a dword for an immediate float vector (vf).

3.3.5 Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-bit
aligned SIMD data registers, a region-based register addressing scheme is employed in GEN
architecture. The region-based register addressing capability significantly improves the SIMD
computation efficiency by providing per-instruction-based multiple data gathering from register file. This
avoids instruction overhead to perform data pack, unpack, and shuffling, which has been observed on
other SIMD architectures. One benefit of such capability is allowing various kinds of 3D Graphics API
Shader compute models to run efficiently on GEN. Another benefit is allowing high throughput of media
applications, which tend to operate on byte or word data elements.

This can be illustrated by the example shown in Region Parameters and Region Parameters. As shown in
Region Parameters, a sequence of SIMD instruction is executed on a conventional load/store based
superscalar machine with SIMD instruction extension. The data parallelism can be achieved by first level
of loop unrolling. As shown, there is a second level of loop for the task. Before a given SIMD compute
instruction, Process (i), can proceed, there might be a load, a data rearrange and a data unpack (and
conversion) instruction to load and prepare the input data. After the compute instruction is complete, it
might also require pack, re-arrange and store instructions, to format and save the same to memory. At the
loop, other scalar computations such as loop count and address generation may be needed. For the
same program, when the data can fit in the large GEN GRF register file, the outer loop may be unrolled
for GEN. Here one or a few block loads (using send instruction) may be sufficient to move the working set
into GRF. Then the data shuffle can be combined with the processing operation with region-based
addressing capability. Per operand float type and mixed data type operation may also allow GEN to
combine data conditioning operations with computing operations. These techniques in GEN architecture
help to achieve high compute efficiency and throughput for graphics and media applications.
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Conventional SIMD Instruction Sequence

v

Load (i)
¥

Rearrange (i)
¥
Unpack (i)

Y

Process (i) Loop and
1} Addr Gen
I=1..N

Pack (i) |

v

Rearrange (i)
Store (i)

BE&S93-01
GEN SIMD Instruction Sequence for the Same Program
Block Load (1...N)
Process (1)
with pack/unpack
Process (N)
with pack/unpack
Block Store (1...N)
B&900-01

In a GEN instruction, each operand defines a region in the register file. A region may contain multiple
data elements. Each data element is assigned to an execution channel in the EU. The total number of
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data elements of a region is called the size of the region, or the size of the operand. The number of
execution channels is called the execution size (ExecSize), which is specified in the instruction word.
ExecSize determines the size of region for source and destination operands in an instruction.

1 For an instruction with two source operands, the sizes of the two source operands must be the
same.

1 The size of a destination operand generally matches the execution size, therefore equals to
the number of source operand(s) in the same instruction.

0 Exception of this rule is present for the integer reduction instructions (such as sad2
and sada2) where the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named
the horizontal dimension (data elements within a row) and the second dimension is termed the vertical
dimension (data elements in a column). Here, horizontal/vertical and row/column are just symbolic
notations. When the GRF registers are viewed as a row-major 2D array of memory, such a notation
normally matches well with the geometric locations of the data elements of an operand. However, as the
register region is fully described by the parameters discussed below, the data elements of a register
region may not form a regular rectangular shape. For example, Vertical Stride parameter is allowed to be
smaller than Horizontal Stride, making the rows of a register region interleave with each other. It should
also note that the meanings of horizontal/vertical here is different than that used for the flag control in the
Flag Registers section.

Specifically, a region-based description of a source operand can take the following format
RegFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type
Parameters are as the follows.

A Register Region Origin (RegFile, RegNum and SubRegNum): This set of parameters,
including the register file, RegFile, the register number, RegNum, and the subregister number,
SubRegNum, describes the register region origin, which is the location of the first data
element of the operand. RegNum is in unit of 256-bit and SubRegNum is in unit of the data
element size.

A Width (Width): Width specifies the number of data elements along the horizontal dimension, or
the number of data elements of a row.

A Horizontal Stride (HorzStride): HorzStride specifies the step size between two adjacent data
elements within a row. It is in unit of data element size, which is determined by the data
element Type.

A Vertical Stride (VertStride): VertStride specifies the step size between two adjacent data
elements along the vertical dimension (or the step size between two rows). It is again in unit of
data element size, which is determined by the data element Type.

A Data Element Type (Type): Type specifies numeric data type (float, word, byte, etc.) of the
data elements. All data elements within a region must have the same type.

GREF register file consists of a sequence of 256-bit registers. When viewing the register file (GRF for
example) as a sequence of 256-bit aligned registers, RegNum field provides the register number, thus for
the name. SubRegNum provides the sub-field addressing within a register. However, when viewing the
register file as a byte addressable memory array, (RegNum and SubRegNum) is just a byte address
within the register file with SubRegNum providing the lower 5 bits and RegNum providing the higher bits.

The execution size is specified for each instruction by the parameter ExecSize. The size of the vertical
dimension is ExecSize/Width, based on the rule that the size of regions must equal to the execution size.
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Region Parameters depicts the register region description. The example shows a register region of
r4.1<16;8,2>:w, where the shaded fields denote the data elements in the region and the numbers in these
fields are the execution channel assignments. The register region assumes that an ExecSize of 16 is set

for the instruction. Each data element is a word (as noted by the type fiel dwof) . The ori gin
at the second word of r4, denoted by r4.1. Each row of the region has 8 data elements (words) that are 2
data elements (words) apart. The distance between two rows is 16 words. Note that the region shown is

for illustration purpose only. It does not represent a typical usage model nor a performance optimized

mode.

An example of a register region (r4.1<16;8,2>:w) with 16 elements

Region Parameters shows another example where the rows are interleaved. The region, having word
data elements, starts at location r5.0:w. HorzStride, the distance within a row, is 2 words. So the second
element (channel number 1) is at location 5.2:w. And there are 8 elements per row. VertStride, the
distance between two rows, is only 1 word, which is less than HorzStride. Therefore, the first element of
the second row (channel number 8) is at r5.1:w, just next to channel number 0. It is clear from the picture
that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides
more details on the region-based register addressing. However, there are restrictions imposed by
hardware implementation, which can be found in the later sections of this chapter.
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