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1. Subsystem Overview

1.1 Introduction

The subsystem consists of an array of execution units (EUs, sometimes referred to as an arrray of cores)
along with a set of shared functions outside the EUs that the EUs leverage for I/O and for complex
computations. Programmers access the subsystem via the 3D or Media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that has been optimized
to support various 3D API shader languages as well as media functions (primarily video) processing.

Shared functions are hardware units which serve to provide specialized supplemental functionality for the
EUs. A shared function is implemented where the demand for a given specialized function is insufficient
to justify the costs on a per-EU basis. Instead a single instantiation of that specialized function is
implemented as a stand-alone entity outside the EUs and shared among the EUs.

Invocation of the shared functionality is performed via a communication mechanism called a message. A
message is a small self-contained packet of information created by a kernel and directed to a specific
shared function. Messages are dispatched to the shared function under software control via the send
instruction. This instruction identifies the contents of the message and the GRF register locations to direct
any response.

The message construction and delivery mechanisms are general in their definition and capable of
supporting a wide variety of shared functions.

1.2 Subsystem Topology

The subsystem is organized as an array of EUs, and a set of functions that are shared among all of the
EUs. (The EU array is further divided into rows with each row having its own first level instruction cache
and Extended Math shared function, though this aspect of the implemented topology is not exposed to

software). The Sampler, DataPort, URB and Message Gateway functions are shared among the entire

array of EUs.

1.3 Execution Units (EUS)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data of
the same type in parallel (though not necessarily on the same instant in time). In addition, each EU can
support a number of execution contexts called threads that are used to avoid stalling the EU during a
high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a
completely different workload with minimal latency while waiting for the high-latency operation to
complete.

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU
may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the EU.
Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If that
thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler result
arrives back at the EU, the EU can switch back to the original thread and use the returned data as it
continues execution of that thread.
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The fact that there are multiple EU cores each with multiple threads can generally be ignored by software.
There are some exceptions to this rule: e.g., for

1 thread-to-thread communication (see Message Gateway, Media)

1 synchronization of thread output to memory buffers (see Geometry Shader).

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

1.4 Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread

Dispatcher receives the requests. The dispatcher performs such tasks as arbitrating between concurrent

requests, assigning requested threads to hardware threads on EUs, allocating register space in each EU

among multiple threads, a n dwithi data ftom the fixer fumcgpnsandtfrotnr e ad 6s r e |
the URB. This operation is largely transparent to software.

1.5 Shared Functions

In general, a shared function has the ability to receive messages at its input, perform some specialized
amount of work for each,andif r equi r ed, generate output back to the n
unit (Message Gateway may generate output to a target execution unit specified by the message).

To uniquely identify shared functions, each is assigned a unique 4-bit identifiercodec al | ed i ts O6Funct
I D6. This ID is specified in the ésendd instructionbs .
assignments are listed in the Graphics Processing Engine chapter of this specification.

Each shared function may support one or more related operations within itself. For example an Extended

Math shared function may support operations such as reciprocal, sine, cosine, and/or others. These are

generically referred to as sub-functions. The communication method as to which sub-function is desired is
typically containednitm ol lbe fi @&l défodindthieo®msendd instruct
function may choose to define sub-function encodings in-band within message payload, or in the case of

a single function shared-function, the function code may be implied. The architecture, in no way interprets

the sub-function code and the actual implementation choice is left to the function itself.

The Shared Function units included in the Subsystem are as follows (refer to the chapters devoted to
each of these functions):
1 Extended Math function
Sampling Engine function
DataPort function
Message Gateway function
Unified Return Buffer (URB)
Thread Spawner (TS)
9 Null function

=A =4 =4 4 =4

The Extended Math function acts as an extension of the math functions already available inside the EUs.
Certain functions such as inverse, square root, exponentiation, etc., require significant hardware
resources to implement and are used infrequently enough that it is inefficient to implement them
separately in each EU. The EUs therefore send the operands for these operations along with the
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operation to be performed to the Extended Math function which computes and returns the result to the
requesting EU.

The Sampling Engine acts a (read-only) I/O port on behalf of the EUs, translating texture coordinates
(and/or structure references) to memory addresses, reading texels and/or other data from memory, and in
the case of texels, combining and filtering them according to programmed state. The resulting pixel and/or
other data are then returned to the requesting EU.

The Data Port function acts as another I/O port on behalf of the EUs. It is both a read and a write port,
and the only way for the Graphics Processing Engine to write results (e.g., images) back to memory. The
Data Port contains the render and depth caches which receive the newly rendered pixels and write them
out to memory when necessary. They also permit previously rendered objects to be read back efficiently
by the Graphics Processing Engine in order to blend them with other rendered objects and test for
visibility of newly rendered objects. Finally, the Data Port also provides read access constant buffers
(arrays of constants in memory.)

The Message Gateway allows a thread to communicate (send a message to) another thread. A key is
used to connect the sender and receiver threads, and a simple gateway protocol is used to send
messages. This is primarily intended for media where a parent/child thread model is sometimes used and
requires parent and child threads to synchronize and efficiently share information. It is not intended to be
used by 3D graphics rendering threads.

The Unified Return Buffer (URB) is a single set of registers that EU threads use to return result data for

future fixed functions and theirthreads t o make wuse of . I ndividual entries
given fixed function but a mechanism is provided where other fixed functions (those that follow) can read

the data placed there by another fixed frfumcti omo Thecl
need to be able to write result data to it using messages. In general, EU threads write their final results

either to memory via the Data Port or to the URB for re-use by subsequent EU threads or certain 3D

pipeline fixed-function units (CLIP, GS).

The Thread Spawner (TS) is a Shared Function that acts as a conduit for dispatching kernel-software-
generated threads, one thread can request another thread to be dispatched by sending a request to the
TS. TS is unique as it is also a Fixed Function in the media pipeline for dispatching threads originated
from Video Front End fixed function.

The Null shared function is supported to allow the broadcast of certain information (e.g, End Of Thread)
without invoking any other operation or response.

1.5.1 Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the
message (or simply the message header). Consequently, the rest of the message payload is referred to
as the data payload.

Messages to Extended Math do not have a header and only contain data payload. Those messages may
be referred to as header-less messages. Messages to Gateway combine the header and data payloads in
a single message register.

1.5.2 Writebacks

Somemessages generate return datanasolbdcf{apeddby fthel df o
instruction (part of the <desc> field). The execution unit and message passing infrastructure do not

interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields in the

6sendd instruction to the execution unit the starting
execution unit uses this information to set in-flight bits on those registers to prevent execution of any
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instruction which uses them as an operand until the register(s) is(are) eventually written in response to

the message. I f a message is not expected to return da:
specifier (<post _ddsdtéo>)annmdustth eb e esseptontsce drelngt h field of
instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified

by the starting GRF register and length as specif i ed i n the 6sendd instruction. A
back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If

a thread was suspended pending return of that register, the dependency is lifted and the thread is allowed

to continue execution (assuming no other dependency for that thread remains outstanding).

1.5.3 Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were
sent. Messages to different shared functions originating from a single thread may arrive at their respective
shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual
destination registers resulting from a single message may return out of order, potentially allowing
execution to continue before the entire response has returned (depending on the dependency chain
inherent in the thread).

1.5.4 Execution Mask and Messages

The Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field

identifies which SIMD computation channels are enabl ed
is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further the

execution size has no impact on the size of the 6send’
regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD

channels were enabled at the time of the 6sendbd. A shal
dictated by the functionality it exposes. For instance, the Extended Math shared function observes this

field and performs the specified operation only on the operands with enabled channels, while the

DataPort writes to the render cache ignore this field completely, instead using the pixel mask included in-

band in the message payload to indicate which channels carry valid data.

1.5.5 End-Of-Thread (EOT) Message

The final instruction of all thr eads-Offuhsrte abded a ESSTE) n d GA ni
EOT message is one in which the EOT bit is set in the
instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further

execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as
shown in the table below.

Target Shared Functions Target Shared Functions

supporting EOT messages not supporting EOT messages

Null, DataPortWrite, URB, MessageGateway, ThreadSpawner DataPortRead, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each
thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification by snooping
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all message transmissions, regardless of the explicit destination, looking for messages which signal end-
of-thread. The Thread Spawner in the media pipeline does not snoop for EOT. As it is also a shared
function, all threads generated by Thread Spawner must send a message to Thread Spawner to explicity
signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource
usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed
functions require end-of-thread notification to maintain accounting as to which threads it issued have
completed and which remain outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon those
from threads which they originated, as indicated by the 4b fixed-function ID present in RO of end-of-thread
message payload. This 4b field is attached to the thread at new-thread dispatch time and is placed in its
designated field in the RO contents delivered to the GRF. Thus to satisfy the inclusion of the fixed-function
ID, the typical end-of-thread message generally supplies RO from the GRF as the first register of an end-
of-thread message.

As an optimization, anend-of-t hr ead message may be overl oad upon anoth
saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-of-

thread message, most threads issue a message just prior to their termination (for instance, a Dataport

write to the framebuffer) so the overloaded end-of-thread is the common case. The requirement is that

the message contains RO from the GRF (to supply the fixed-function ID), and that destination shared

function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as these functions

reside on the O-Bus. In the case where the last real message of a thread is to some other shared

function, the thread must issue a separate message for the purposes of signaling end-of-thread to the

Anull 06 shared function.

1.5.6 Performance

The Architecture imposes no requirementastoasharedfunct i onds | atency or throughp
well as factors such as message queuing, shared bus arbitration, implementation choices in bus

bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a

response to a message is non-deterministic. It is expected that an implementation has some notion of

fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:
1 A thread may choose to have multiple messages under construction in non-overlapping registers in
the MRF at the same time.

1 Multiple messages are allowed to be enqueued for transmission at the same time, so long as their
MRF payload registers do not overlap.

1 Messages may rely on the MRF registers being maintained across a send message, thus
constructing subsequent messages overlaid on portions of a previous message,

1 Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load
early in the thread for data that is required late in the thread).

1.5.7 Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256
bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is
the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits
[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For
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writeback messages, the register number indicates the offset from the specified starting destination
register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in
the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See
the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread
that initiated the message.

The bits within each DWord are given in the second column in each table.

1.5.8 Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the
possibility that a message may be sent containing one or more errors in its descriptor or payload
contents. There are two points of error detection in the message passing system: (a) the message
delivery subsystem is capable of detecting bad FunctionIlDs and some cases of bad message lengths; (b)
the shared functions contain various error detection mechanisms which identify bad sub-function codes,
bad message lengths, and other misc errors. The error detection capabilities are specific to each shared
function. The execution unit hardware itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through MMIO
registers, and the driver notified via an interrupt mechanism . The set of possible errors is listed in
Message Errors with the associated outcome.

Error Cases

Error Outcome
Bad Shared Function ID|The message is discarded before reaching any shared function. If the message specified a
destination, those registers will be marked as in-flight, and any future usage by the thread of
those registers will cause a dependency which will never clear, resulting in a hung thread
and eventual time-out.
The destinationshar ed f uncti on detects unknown opcQg
instructions <desc> field), and known opcodes where the message payload is either too long
Incorrect message or too short, and threats these cases as errors. When detected, the shared function latches
length and makes available via MMIO registers the following information: the EU and thread ID
which sent the message, the length of the message and expected response, and any
relevant portions of the first register (RO) of the message payload. The shared function alerts
the driver of an erroneous message through and interrupt mechanism , then continues
normal operation with the subsequent message.
Bad message contents |Detection of bad data is an implementation decision of the shared function. Not all fields may
in payload be checked by the shared function, so an erroneous payload may return bogus data or no
data at all. If an erroneous value is detected by the shared function, it is free to discard the
message and continue with the subsequent message. If the thread was expecting a
response, the destination registers speci f
cleared potentially resulting in a hung thread and time-out.

Unknown opcode

Incorrect response

length Case: too few registers specified i the thread may proceed with execution prior to all the

data returning from the shared function, resulting in the thread operating on bad data in the
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Error

QOutcome

GRF.

Case: too many registers specified i the message response does not clear all the registers
of the destination. In this case, if the thread references any of the residual registers, it may
hand and result in an eventual time-out.

Improper use of End-
Of-Thread (EOT)

cifies EO

Any O6senddé instruction which spe
the 6sendo

enforces this and, if detected , wi || not i ssue
and an eventual time-out.

The 6sendd instruction specifies that EOT
instruction is an immediate. Should a thread attempt to end a thread using a <desc>
sourced from a register, the EOT bit will not be recognized. In this case, the thread will
continue to execute beyond the intended end of thread, resulting in a wide range of error
conditions.

Two outstanding
messages using
overlapping GRF
destinations ranges

This is not checked by HW. Due to varying latencies between two messages, and out-of-
order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may be
the result from the first message, or the result from the second message, or a combination of

both.
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2. Sampling Engine

The Sampling Engine provides the capability of advanced sampling and filtering of surfaces in memory.

The sampling engine function is responsible for providing filtered texture values to the Core in response
to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering modes,
address control modes, and other features of the sampling engine. A pointer to the sampler state is
delivered with each message, and an index selects one of 16 states pointed to by the pointer. Some
messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE
to define the attributes of the surface being sampled. This includes the location, size, and format of the
surface as well as other attributes.

Al t hough data is commonly used for Atexturingodo of 3D s
once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the
appropriate subfunctions are complete, the 4-component (reduced to fewer components in some cases)
filtered texture value is provided to the Core in order to complete the sample instruction.

Subfunction Description
Texture Coordinate |Anyrequi red operations are performed on the |
Processing coordinates. These operations may include: cube map intersection.
Texel Address The Sampling Engine will determine the required set of texel samples (specific texel values
Generation from specific texture maps), as defined by the texture map parameters and filtering modes.

This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample
land/or miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch 'The required texel samples will be read from the texture map. This step may require
decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette For streams whitedohaeatfipal surface formats
Lookup read from the texture map to look up texel color data from the texture palette.
Shadow Pre-Filter For shadow mapping, the texel samples are first compared to the 3™ (R) component of the
Compare . A .

pi xelds texture coordinate. The bool ean re
Texel Filtering 'Texel samples are combined using the filter weight coefficients computed in the Texture

Address Generation functi on. mplyhpassingfihcoogmd i n a
Afinearesto sample to blending the results o
[The output of this function is a single 4-component texel value.

Texel Color Gamma [Performs optional gamma decorrection on texel RGB (not A) values.

Linearization

Denoise/ Performs denoise and deinterlacing functions for video content ()

Deinterlacer

8x8 Video Scaler Performs scaling using an 8x8 filter ()

Image Enhancement
Filter / Video Signal
IAnalysis

Image Enhancement functions for video content ()

2.1 Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the
texture coordinates that are required before physical addresses of texel samples can be generated.
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2.1.1 Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized
coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is located
at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right edge of the
lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the associated

mapds height or width. Here the origin is the | ocated
base texture map. Unnormalized coordinates delivered to the sampling engine are only supported with

the Al do gesype messa

Normalized vs. Unnormalized Texture Coordinates

Mormalized Unnormalized
I — — » L 0, N ——.

1,1 LL1]1s, 11

B&STT-01

2.1.2 Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from (interpolated)
screen space back into texture coordinate space by dividingthepixe | 6s S and T components &
component. This operation is done as part of the pixel shader kernel in the Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map faces
(+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest absolute
value determines the proper (major) axis, and then the sign of that component is used to select between
the two faces associated with that axis. The coordinates along the two minor axes are then divided by the
coordinate of the major axis, and scaled and translated, to obtain the 2D texture coordinate ([0,1]) within
the chosen face. Note that the coordinates delivered to the sampling engine must already have been
divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided
below:
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2.2 Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto the

textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral. Any

given pixel of the object may ficover o mtexektRopehch t exel s
pixel, the usual goal is to sample and filter the texture image in order to best represent the covered texel

values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are provided to allow

the user to employ quality/performance/footprint tradeoffs in selecting how the particular texture is to be

sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the
texture maps are to be sampled. Outputs of this function include the number of texel samples to be taken,
along with the physical addresses of the samples and the filter weights to be applied to the samples after
they are read. This information is computed given the incoming texture coordinate and gradient values,
and the relevant state variables associated with the sampler and surface. This function also applies the
texture coordinate address controls when converting the sample texture coordinates to map addresses.

2.2.1 Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent

object warping due to a perspective projection, the texture image may become magnified (where a texel

covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an object.

In the case where an object pixel is found to cover multiple texels (texture minification), merely choosing

one (e.g., the texel sample nearest to t healapingxel 6s t ex/
artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling these
textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps of
decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are
provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object is
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located a significant distance from the viewer), the device will sample the mipmap level(s) offering a
texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texelstoa 1l X 1
texel. Each successive level has % the resolution of the previous level in the U and V directions (to a
minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap
levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the
approximate, log, measure of the ratio of texels per pixel. The highest resolution map is considered LOD
0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[|BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the
maghnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture
map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear
interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

22.1.1 Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log, of the
texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space
distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-
space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates
being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels). The
g coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant O for
2D surfaces.

The ideal LOD computation is included below.

LOD(x, y) =log ,[ p(x. ¥)]
where -

se-mm (& (@ (3] (3) (5 |

22172 LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower
miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap
level will trade off image blurring with possibly increased performance (due to better texture cache reuse).
Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing artifacts.

The LOD bias is defined as sum of the LODBIias state variable and the pixLODBias input from the input
message (which can be non-zero only for sample_b messages). The application of LOD Bias is
unconditional, therefore these variables must both be set to zero in order to prevent any undesired
biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore can
be used to control the min-vs-mag crossover point, its use has the undesired effect of actually changing
the LOD used in texture filtering.
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2.2.1.3 LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.
Enabling pre-clamping matches OpenGL semantics, while disabling it matches .

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by
the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag
Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even

when lower resolution maps may be available. Note that this is the only parameter used to specify the

number of wvalid mip levels that be can be accessed, i.
memor yo par amet er a-mappediedurecAl miplevelhfrom therbage mip level map

through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is

UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where
LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution mip
levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level
filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and
MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

2.2.1.4 Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down) or
magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel

state variable therefore has the effect oMapselecting t|
Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect

of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-
resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the
computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable
specifies whether one or two mip levels are to be included in the texture filtering, and how that (or those)
levels are to be determined as a function of the computed LOD.

2.2.15 LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the
steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not
shown.

Bias:S4.8
MinLod:U4.8
MaxLod:U4.8
Base:U4.1
MIPCnt:U4
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SurfMinLod: U4.8
ResMinLod: U4.8

AdjMaxLod = min(MaxLod, MIPCnt)
AdjMinLod = min(MinLod, MIPCnt)
AdjPR_minLOD = ResMinLod i SurfMinLod
AdjMinLod = max(AdjMinLod, AdjPR_minLOD)
Out_of Bounds = AdjPR_minLOD > MIPCnt

if (sample_b)
LOD += Bias + bias_parameter
else if (sample_| or Id)
LOD = Bias + lod_parameter
else
LOD += Bias
PreClamp = LODPreClampEnable
If (PreClamp)
LOD = min(LOD, MaxLod)
LOD = max(LOD, MinLod)
MagMode = (LOD - Base <= 0)
MagClampMipNone = 1
If (MagMode && MagClampMipNone) or MipFIt = None)
LOD =0
LOD = min(LOD, ceil(AdjMaxLod))
LOD = max(LOD, floor(AdjMinLod))
else if (MipFIt = Nearest)
LOD = min(LOD, AdjMaxLod)
LOD = max(LOD, AdjMinLod)
LOD = min(LOD, AdjMaxLod)
LOD = max(LOD, AdjMinLod)
LOD +=0.5
LOD = floor(LOD)
else// MipFlt = Linear
LOD = min(LOD, AdjMaxLod)
LOD = max(LOD, AdjMinLod)
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TriBeta = frac(LOD)

LOD, = floor(LOD)

LOD; =LOD, + 1
if (!'lod)// ALODO message type
Lod += SurfMinLod

If Out_of Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced
with zero in all channels, except for surface formats
is replaced with one. These texels then proceed through the rest of the pipeline.

Errata: Out of Bound true on surface format that d o e scondain alpha will be forced to O instead of 1.0 for
the case the filet type is Anisotropic.

Errata: when AdjPR_minLOD > MIPCnt and MIPFILTER_LINEAR texel values will not force to zero.

2.2.151 Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The
following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after
LOD clamping).

MIPFILTER_NEAREST|Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be
rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further
restrict this miplevel selection.

MIPFILTER_LINEAR |Apply a filter on the two closest mip levels and linear blend the results using the distance
between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping
may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip
level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to
generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated
LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for
MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the
(integer bits of) MinLOD and MaxLOD state variables.

2.2.2 Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state variable
(respectively) is used to select the sampling filter to be used within a mip level (intra-level, as opposed to
any inter-level filter). Note that for volume maps, this selection also applies to filtering between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number and
texture map coordinates of the texture samples, and the computation of any required filter parameters.
The filtering of the samples occurs later on in the Sampling Engine function.
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The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter

value

Description

MAPFILTER_NEAREST

Supported on all surface types. The tex
read and output from the filter.

MAPFILTER_LINEAR

Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE, or
3D surface, respectively) surrounding t
linear filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC

Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture map is
generated and fisubpi xel 0 samples are ta
(center axis of the longer dimension). The outermost subpixels are weighted according
to closeness to the edge of the projection, inner subpixels are weighted equally. Each
subpixel samples a bilinear 2x2 of texels and the results are blended according to
weights to produce a filtered texel value.

MAPFILTER_MONO

Supported only on 2D surfaces. This filter is only supported with the monochrome
(MONOS8) surface format. The monochrome texel block of the specified size

surrounding the pixel is selected and filtered.

2221 MAPFILTER_NEAREST

When the MAPFILTER_NEAREST i s

coordinate is selected and output as the single texel sample coordinates for the level.

2.2.2.2 MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.
1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding
the pixel 6s

Bilinear Filter Sampling

t e x t upled and later bilchéarydiltered. ar e s am
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The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each
texel 6s contribution according to it smthepixeleentere
receive a smaller weight.

2.2.2.3 MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of
pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and
later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter
employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the texture
map. LODischosen based on the minor axis |l ength in
ratio between the major axis length and the minor axis length. The next larger even integer above the

from

texel

ratio determines the ani sot rminmesmwmannshbpixels aré chdsemalty s 0 ,
line along the major axis is determined, and fisubpixel

apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the pixels
are in yellow.

**‘

B.ES20- 01
Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixe
is then blended together using equal weights on all interior subpixels (not including the two endpoint
subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the

Airatiood is to the number of fAwayso. This is done

22.2.4 MAPFILTER_MONO
When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel

sample location are read and filtered using the kernel described below. The size of this block is controlled
by Monochrome Filter Height and Width (referred to here as N, and N,, respectively) state. Filters from

1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel samples)
is equal to the size of the filter and the pixel center lies at the exact center of this footprint. The position of

the upper left filter kernel sample (us, vi) relative to the pixel center at (u, v) is given by the following:
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b, and b, are the fractional parts of u; and v, respectively. The integer parts select the upper left texel for
the kernel filter, given here as Top.

Sampling Using MAPFILTER_MONO
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The formula for the final filter output F is given by the following. Since this is a monochrome filter, each
texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and
alpha channels.

,
N_*N,

[(1 A1~ ﬁ.)xi',“z_',l? LAy ﬁ.)%,gf H1- ﬂ.)ﬁ.gif +ﬂ.ﬁ.Z‘.ZT ]

S=

2.2.3 Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when
the specific texture coordinate component falls outside of the normalized texture map coordinate range
[0,1).

Doc Ref#: IHD -0OS-V4 Pt1l T 0512 5/31/2012 21



Q"_til

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the
texture coordinates. Software will need to specify TEXCOORDMODE_WRAP mode for the sampler that
is provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control Operation

TEXCOORDMODE CLAMP Clamp to the texel value at the edge of the map.
TEXCOORDMODE_CLAMP_BORDERUs e the texture mapo6s border col or
map. The border color is specified via a pointer in SAMPLER_STATE.
TEXCOORDMODE_HALF_BORDER [Similar to CLAMP_BORDER except texels outside of the map are clamped to
a value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the
same dimension.
TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be

sampled along the edges of faces. This is considered the highest quality
mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

TEXCOORDMODE_MIRROR_ONCE [Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the
TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls
provided for the TCW component as it is only used to scale the other 3 components before addressing
modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may
result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision
loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level (choosing
the wrong texels for filtering).

2.2.3.1 TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is
flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed
normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal again,
and so on. The second row of pictures in the figure below indicate a map that is mirrored in one direction
and then both directions. You can see that in the mirror mode every other integer map wrap the base map
is mirrored in either direction.

Doc Ref#: IHD -0OS-V4 Pt1l T 0512 5/31/2012 22



Texture Wrap vs. Mirror Addressing Mode
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TEXCOORDMODE_WRAP Mode
In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,

Wrap Mode

Mirror Mode

BegE2-01

leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being
continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate

values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through

0.0).

2.2.3.3

TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp
modes. The absolute value of the texture coordinate component is first taken (thus mirroring about 0),
and then the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then

clamped thereafter. This mode is used to reduce the storage required for symmetric maps.

2234

TEXCOORDMODE_CLAMP Mode
The TEXCOORDMODE_CLAMP addressing mode repeatsthefie d g e 0

texel

extends outside the [0,1) range of the base texture map. This is contrasted to

TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.

when

TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be
obtained from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a

texture mapped object with texture coordinates extending outside of the base map region.
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Texture Clamp Mode
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2.2.35 TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the
texture map b BorderColat ésto bey usdd €peany texel samples that fall outside of the base
map. The border color is specified via a pointer in SAMPLER_STATE.

2.2.3.6 TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face
filtering. When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-
level filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed.
This will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be
present.

2.3 Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the texture
addresses associated with each texel sample. The texture data is read either directly from the memory-
resident texture map, or from internal texture caches. The texture caches can be invalidated by the
Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable bit of
PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered
textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will

automatically decompress from the stored format into the appropriate [A]JRGB values. The compressed

texture storage formats and decompression algorithms can be found in the Memory Data Formats

chapter. When the surface format of a texture is defined as being an index into the texture palette (format

namesincl udi ong APx0), the palette | ookup of the index det
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2.3.1 Texel Chroma Keying

ChromakKey is a term used to describe a method of effectively removing or replacing a specific range of

Q"_til

texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an

RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel
sampl es against

a

2.3.1.1 Chroma Key Testing

ChromakKey refers to testing the texel sample components to see if they fall within a range of texel values,
as defined by ChromaKey[][High,Low] state variables. If each component of a texel sample is found to lie
within the respective (inclusive) range and ChromakKey is enabled, then an action will be taken to remove

range,

c éthe key. n

this contribution to the resulting texel stream output. Comparison is done separately on each of the

channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

2.3.1.2 Chroma Key Effects

Therearetwooper ati ons
ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode state
variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

t hat perfor med

firemoveo

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0). .

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample
instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not
done and pixels cannot be killed based on it.

2.4 Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed
on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the

Airef o component ng & empare function selected iy leadowkuisciion, and

of

described in the table below. Note that only single-channel texel formats are supported for shadow

mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction

Result

PREFILTEROP_ALWAYS

0.0

PREFILTEROP_NEVER

1.0

PREFILTEROP_LESS

(texel <ref) 20.0:1.0

PREFILTEROP_EQUAL

(texel ==ref) 20.0: 1.0

PREFILTEROP_LEQUAL

(texel <=ref) 20.0: 1.0

PREFILTEROP_GREATER

(texel >ref) 20.0:1.0

PREFILTEROP_NOTEQUAL]

(texel I=ref) 20.0: 1.0

PREFILTEROP_GEQUAL

(texel >=ref) 20.0: 1.0
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The binary result of each comparison is fed into the subsequent texture filter operation (in place of the

texel 6s value which would normally be used).

Software is responsible forprog r ammi ng t he o0ref d component of the input
approximates the same distance metric programmed in the texture map (e.g., distance from a specific

light to the objectpixel). | n t his way, the comparison famadowh <ctaat be

for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Programming Notes:

I Refer to the Surface Formats table in the section SURFACE STATE for most messages for the specific surface
formats that are supported with shadow mapping.

2.5 Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel values
on and possibly between texture map layers and levels. The output of this function is a single texel color
value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The
MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results of
any filtering on these separate levels are combined to produce a final texel color. The MinFilter and
MagFilter state variables specify how texel samples are filtered within a level.

2.6 Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back into
linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer. This
permits higher quality image blending by performing the blending on colors in linear gamma space.

This function is enabledonapert ext ur e basis by use of a surface for mat
enabled, the pre-filtered texel RGB color to be converted from gamma=2.4 space to gamma=1.0 space
by applying a (1/2.4) = 70.4167 exponential function.

2.7 Multisampled Surface Behavior

The Id message has added an additional parameter for sample index (si) to support unfiltered loading
from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo
message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface would sample a
surface with double the height and width as indicated in the surface state. Each pixel position on the
original-sized surface is replaced with 2x2 samples that have the following arrangement:

sample Ojsample 2
sample ljsample 3

This behavior is useful when implementing the multisample resolve operation by selecting
MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source
texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four
underlying samples.
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2.7.1 Multisample Control Surface

Three new messages have been defined for the sampling engine, Id_mcs, I[d2dms, and Id2dss. A pixel
shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS
surface using the Id_mcs message. This message behaves like the I[d message, except that the surface is
defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is
effectively R8_UINT for 4x surfaces and R32_UINT for 8x surfaces, thus data is returned in unsigned
integer format. Following the Id_mcs, the kernel issues a Id2dms message to sample the surface itself.
The integer value from the MCS surface is delivered in the mcs parameter of this messages.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done
using ld2dms. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS and MCS
Enable set to enabled, an optimization is available to enable higher performance for compressed pixels.
The Id2dss message can be used to sample from a particular sample slice on the surface. By examining
the MCS value, software can determine which sample slices to sample from. A simple optimization with
probable large return in performance is to compare the MCS value to zero (indicating all samples are on
sample slice 0), and sample only from sample slice 0 using Id2dss if MCS is zero. Sample slice 0 is the
pixel color in this case. If MCS is not zero, each sample is then obtained using Id2dms messages and the
results are averaged in the kernel after being returned. Refer to the multisample storage format in the
GPU Overview volume for more details.

2.8 Denoise/Deinterlacer

The Denoise/Deinterlacer function takes a 4:2:0 or 4:2:2 video stream and first applies a denoise filter to it
and then deinterlace it.

The denoise filter is applied before the deinterlacer. The denoise filter detects and tries to minimize noise
in the input field, while the deinterlacer takes a field consisting of every other lines converts a field into a
frame. This block also gathers statistics for a global noise estimate made in software at the end of the
frame which is used in following frames to tune the denoise filter_and image enhancement filter.

The deinterlacer takes the top and bottom fields of each frame and converts them into two individual
frames. This block also gathers statistics for a film mode detector in software run at the end of the frame.
If the film mode detector for the previous frame concludes that the input is progressive rather than
interlaced then the fields will be put together in the best order rather than being interlaced.

2.8.1 Introduction

2.8.1.1 Overview

This diagram shows how the Denoise/Deinterlacer fits in with the other functions of the video pipe. This is
only one possible usage model, other models are possible.

Video Decoder . I Advanced
| I.;':'PFL_:_TF I Danoize f | Hd\}. ?;1:: . mage  —— Calar
| AVC ar V1) | SIS Sesr Scaler [ | Enhancement |—p Processing
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2.8.1.2 Features

1 Denoise Filter i detects noise and motion and filters the block with either a temporal filter when
little motion is detected or a spatial filter. Noise estimates are kept between frames and blended
together. Since the filter is before the deinterlacer it works on individual fields rather than frames.
This usually improves the operation since the deinterlacer can take a single pixel of noise and
spread it to an adjacent pixel, making it harder to remove. The denoise filter works the same whether
deinterlacing or progressive cadence reconstruction is being done.

1 Block Noise Estimate (BNE) 1 part of the Global Noise Estimate (GNE) algorithm, this estimates
the noise over the entire block. The GNE will be calculated at the end of the frame by combining all
the BNEs. The final GNE value is used to control the denoise filter for the next frame.

1 Film Mode Detection (FMD) Variances i FMD determines if the input fields were created by
sampling film and converting it to interlaced video. If so the deinterlacer is turned off in favor of
reconstructing the frame from adjacent fields. Various sum-of-absolute differences are calcluated per
block. The FMD algorithm is run at the end of the frame by looking at the variances of all blocks for
both fields in the frame.

91 Deinterlacer i Estimates how much motion is occuring across the fields. Low motion scenes are
reconstructed by averaging pixels from fields from nearby times (temporal deinterlacer), while high
motion scenes are reconstructed by interpolating pixels from nearby space (spatial deinterlacer).

1 Progressive Cadence Reconstruction i If the FMD for the previous frame determines that film
was converted into interlaced video, then this block reconstructs the original frame by directly putting
together adjacent fields.

1 Chroma Upsampling i If the input is 4:2:0 then chroma will be doubled vertically to convert to
4:2:2. Chroma will then either go through itbdés own
reconstruction.
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When Dl is enabled, the output for a 16x4 block is sent to the EU for further processing and writing to
memory. When DI is disabled and DN enabled the output for a 16x8 block is sent to the EU.

Formats supported are:

NV12 is supported for hardware video decode.

UYVY, YUY2 and NV12 are required for WHQL.

YV12 and 1420 are supported for software video decode.
IMC3 and IMC4 are supported as internal temporary formats.

NV11 and P208 are not supported, since they have been removed from the WHQL logo requirement.

2.8.2 Denoise Algorithm
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