

Intel® Iris® Xe and UHD Graphics Open Source

Programmer's Reference Manual

For the 2020-2021 11th Generation Intel Xeon®, Core™, Celeron®,

Pentium® Gold Processors based on the "Tiger Lake" Platform

Volume 6: Memory Views

May 2023, Revision 2.0

ii Doc Ref # IHD-OS-TGL-Vol 6-5.23

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document, with the sole exceptions that a) you may publish an unmodified copy and b) code

included in this document is licensed subject to Zero-Clause BSD open source license (0BSD). You may

create software implementations based on this document and in compliance with the foregoing that are

intended to execute on the Intel product(s) referenced in this document. No rights are granted to create

modifications or derivatives of this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 iii

Revision History

Revision Description

1.0 Initial Release

2.0 The following sections were added:

• Memory Types and Cache Interface

• Memory Object Control State (MOCS)

• L3 Control Registers

• Memory Interface Control Registers

• Required PAT & MOCS Tables

• LNCFCMOCSx

• GLOB_MOCS_LECC_x

iv Doc Ref # IHD-OS-TGL-Vol 6-5.23

Table of Contents

Memory Views .. 1

Introduction .. 1

Graphics Virtual Memory .. 3

Graphics Translation Tables ... 4

Memory Types and Cache Interface ... 12

Memory Object Control State (MOCS) ... 13

L3 Control Registers ... 15

Memory Interface Control Registers .. 16

Required PAT & MOCS Tables ... 20

Virtual Addressed TR Translation Tables .. 22

Walk with 64KB Page ... 27

Walk with 2MB Page .. 28

Pointer to PML4 table .. 30

PML4E: Pointer to PDP Table .. 30

PDPE: Pointer to PD Table .. 31

PDPE for PD ... 31

PDPE for 1GB Page ... 32

PD: Pointer to Page Table .. 33

PDE for Page Table ... 33

PDE for 2MB Page ... 34

PTE: Page Table Entry for 64KB Page ... 35

PTE: Page Table Entry for 4KB Page ... 36

LNCFCMOCSx .. 38

GLOB_MOCS_LECC_x .. 41

Doc Ref # IHD-OS-TGL-Vol 6-5.23 1

Memory Views

Introduction

A modern GPU consists of multiple "engines", including Compute, Render (including Fixed Functions),

Media Encode/Decode, Media Enhancement, Blitter/Copy, etc. Engines can operate concurrently and

independently using different virtual address spaces.

All engines rely heavily on access to and from memory resources to perform their various functions. The

memory subsystem connects engines to the memory resources, and provides services such as address

translation, compression, caching, and HW virtualization. The memory subsystem is the heart of the GPU.

Key components of the memory subsystem include:

• Translation Services : Translation Lookaside Buffer (TLB) that translates virtual addresses associated

with a context (process) running on an engine, to the physical address space of the GPU or System,

and performs page table walks if a request misses in the TLB

• L3 Cache : Level 3 cache that is shared by all engines within the "GT" domain. Engines may have

their own Level 1 and Level 2 caches that are not shared.

• LLC : Last Level Cache of the CPU host (only relevant for Integrated GPU)

• L4 Cache : Optional cache between L3 and Memory

• Compression : Handles lossless compression and decompression of memory objects

• System Memory : Memory that is physically attached to the CPU and managed entirely by the

Operating System or Hypervisor

• Device Memory : Memory that is physically attached to a discrete GPU, or "stolen" from System

Memory for an Integrated GPU, and managed entirely by the GPU device driver

 The memory subsystem supports flows that are coherent with CPU memory (including CPU caches), as

well as those that are not coherent with CPU memory. In general, non-coherent flows provide higher

bandwidth more efficiently than coherent flows, but may require special handling by SW.

The following diagram provides an overview of a typical memory subsystem an Integrated GPU.

2 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Cache and Memory Hierarchy

Doc Ref # IHD-OS-TGL-Vol 6-5.23 3

Graphics Virtual Memory

The GPU uses a virtual memory address space, where the graphics virtual address is mapped through a

Page Table to a physical memory address. Normally, this mapping is set up by the graphics device driver

and is private to the GPU context. However, in some cases the graphics virtual address is shared with the

CPU - see for more information.

The range of valid graphics virtual addresses, and the types of page tables supported for address

translation, varies with the GPU configuration. See the section for a summary the ranges and features

supported by a specific graphics device.

Although the range of supported graphics virtual addresses varies, most GPU commands and GPU

instructions use a common 64 bit definition for a graphics virtual address. Addresses outside of the

supported range are reserved for future address space expansion. See the GraphicsAddress structure

definition for specific details.

Some GPU devices support an extended graphics virtual memory address mapping called Tiled

Resources. When enabled, the Tiled Resources Translation Table (TR-TT) pre-processes graphics virtual

addresses. TR-TT maps a graphics virtual memory address either to a new graphics virtual memory

address or to a Null Tile. Null Tiles return zero on reads and drop writes. For translations that are not Null

Tiles, the new graphics virtual memory address is then used for the graphics virtual address and

translated through the normal Page Table to generate a physical memory address.

4 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Graphics Translation Tables

The GPU supports standard virtual memory models as defined by the IA programmer's guide. This

section describes the different paging models, their behaviors, and the page table formats.

The Graphics Translation Tables (GTT) are memory-resident page tables containing an array of Page

Translation Entries (PTEs) used in mapping graphics virtual addresses to physical memory addresses.

There are two types of page tables: Global GTT and Per-Process GTT.

The base address of the GGTT and the PPGTT are programmed via the PGTBL_CTL and PGTBL_CTL2 MI

registers, respectively. The translation table base addresses must be 4KB aligned. The GGTT size is 8MB,

to cover 4GB of Global Virtual Address space, and is physically contiguous (ie, "flat"). The global GTT

should only be programmed via the MMIO range within the GTTMMADR BAR. The PPGTT is

programmed directly in memory and is multi-level. The page tables are further described in later

sections.

GFX Page Tables

This section describes the different types of address translation tables used by the GPU.

Tiled Resources Translation Tables

Sparse Tiled Resources can be thought of as a kind of application-controlled virtual memory scheme. The

application allocates a resource in a virtual address space. Then the application tells the driver to map

specified 64KB tiles within the surface to memory, within resources called Tile Pools. Tiles that are not

mapped to a Tile Pool are null tiles.

Tiled Resource Translation Table (TRTT) is constructed as a 3 level tile Table. Each tile is 64KB in size

which leaves behind 44-16=28 address bits. 28bits are partitioned as 9+9+10 which corresponds to

TRVATT L3, L2 and L1 respectively. This is where TRVATT L3 has 512 entries, L2 has 512 entries and L1 has

1024 entries where each level is contained within a 4KB page hence L3 and L2 is composed of 64b entries

and L1 is composed of 32b entries.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 5

The contents of the TRVATT tables are as listed above where L3 and L2 points to the address of the next

level which is a 4KB page and L1 contains the 32b VA address pointer needed to map the TR tile to

virtual address space.

L1 Entry:

Bits Field Description

31:0 ADDR: Address GFX virtual address of 64KB tile is referenced by this entry.

 This field is treated as GFX Virtual Address (GVA) when translated and maps to 47:16.

L2 Entry:

Bits Field Description

63:48 Ignored Ignored (h/w does not care about values behind ignored registers)

47:12 ADDR:

Address

GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L1.

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address

mode chosen by GFX software.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.

0 Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is

generated to GFX software when an invalid tile is accessed.

6 Doc Ref # IHD-OS-TGL-Vol 6-5.23

L3 Entry:

Bits Field Description

63:48 Ignored Ignored (h/w does not care about values behind ignored registers)

47:12 ADDR:

Address

GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L2.

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address

mode chosen by GFX software.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.

0 Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is

generated to GFX software when an invalid tile is accessed.

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver has to disable the TR-TT bypass mode before using tiled resources translation tables. Details of the

registers are given in "registers for TR-TT management."

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver is not allowed to put TR-TT entries into TR-VA space.

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

Usage model for TR translations are restricted to GFX Render Engine (& POSH pipeline).

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

TRTT is only for PPGTT64 (Advanced or Legacy PPGTT64). Enabling TRTT in Legacy PPGTT32 context or GGTT

context is considered as invalid programming.

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

When partitioned address space based Dual Context is enabled, bit[47] of the virtual address in L3, L2 and L1

entries must be 0.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 7

Registers for TR-TT Management

Following register is a global mechanism to disable the bypass mode which is considered to be default

for h/w. GFX driver has to set this bit to disable bypass mode before using TR-TTs.

Following registers shall be part of the h/w context.

Tiled Resources VA Translation Table L3 Pointer

Register Space: MMIO: 0/2/0

DWord Bit Description

1 63:48
Reserved

Access: RO

Reserved.

47:32
Tiled Resource - VA translation Table L3 Pointer (Upper Address)

Default Value: 0000h

Access: R/W

Upper address bits for tiled resource VA to virtual address translation L3 table.

For physical memory option, address bits [47:39] has to be programmed to "0" as it is defined the

limit of physical memory allocation.

0 31:16
Tiled Resource - VA translation Table L3 Pointer (Lower Address)

Default Value: 0000h

Access: R/W

Lower address bits for tiled resource VA to virtual address translation L3 table.

15:0
Reserved

Access: RO

Reserved.

8 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Tiled Resources Null Tile Detection Register

Register Space: MMIO: 0/2/0

DWord Bit Description

 31:0
Null Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Null

Tiles. Hardware will flag each entry and space behind it as Null Tile for matched entries.

Tiled Resources Invalid Tile Detection Register

Register Space: MMIO: 0/2/0

DWord Bit Description

 31:0
Invalid Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Invalid

Tiles. Hardware will flag each entry and space behind it as Invalid Tile for matched entries.

Tiled Resources Virtual Address Detection Registers (TRVADR)

Register Space: MMIO: 0/2/0

DWord Bit Description

0 31:8
Reserved

Access: RO

Reserved.

7:4
TRVA Mask Value (TRVAMV)

Default Value: 0000b

Access: R/W

4bit MASK value that is mapped to incoming address bits[47:44]. MASK bits are used to identify

which address bits need to be considered for compare. If particular mask bit is "1", mapping address

bit needs to be compared to DATA value provided. If "0", corresponding address bit is masked which

makes it don't care for compare (this field defaults to "0000" to disable detection)

Doc Ref # IHD-OS-TGL-Vol 6-5.23 9

Tiled Resources Virtual Address Detection Registers (TRVADR)

Note that h/w supports two possible values for MASK: "0000" which is disabled case and "1111" where

44 bit TR-VA space is carved out.

3:0
TRVA Data Value (TRVADV)

Default Value: 0b

Access: R/W

4bit DATA value that is mapped to incoming address bits[47:44]. Data bits are used to compare

address values that are not filtered by the TRVAMV for match.

Tiled Resources Translation Table Control Register (TRTTE)

Register Space: MMIO: 0/2/0

DWord Bit Description

0 31:2
Reserved

Access: RO

Reserved.

1
TR-VA Translation Table Memory Location

Default Value: 0b

Access: R/W

This fields specifies whether the translation tables for TR-VA to VA are in virtual address space vs

physical (GPA) address space.

0: Tables are in Physical (GPA) Space

1: Tables are in Virtual Address Space

Tiled Resource Translation Tables in GPA space is not supported in any generations. This mode

should never be set as GPA mode (always set to '1). HW will set TRTT tables in Virtual address

space mode only.

0
TR-TT Enable

Default Value: 0b

Access: R/W

TR translation tables are disabled as default. This field needs to be enabled via s/w to get TR

translation active.

10 Doc Ref # IHD-OS-TGL-Vol 6-5.23

The following register (0x4DFC[0]) has enable and disable control of the bypass path across TR

translations. By default, bypass is enabled, and bypass needs to be disabled (by setting 0x4DFC[0] = '1)

for TR translations to function. Disabling the bypass should be done before render power gating is

enabled.

Detection and Treatment of Null and Invalid Tiles

Two types of definition that need to be extracted from TR-VA walk in addition to reaching the GFX virtual

address.

1. Null Tiles: Null tiles provide the applications the of capability to preventing OS mapping the entire

surface. When a memory access hits a Null tile, the access is terminated and zero's are returned to

the originator of the memory access for loads along with a null indicator and for stores the access

is dropped at the page walker level.

2. Invalid Tiles: This is the case where GFX software did not update the value of the mapping

properly for hardware to separate resident vs null tiles. The Invalid Tile treatment is exactly same

however additionally a unique interrupt is generated in h/w

Both detections are done by GPU:

• For L2/L3 entries, Null and Invalid tile information is already embedded in the TR-TT entries

• For L1 entries, the contents (32bits) are compared in hardware to pre-programmed values by GFX

software (values are provided in GFX MMIO space). For the match values, two separate 32b registers

are defined, one for Null Tile detection and one for Invalid Tile detection.

Hardware walking matching the value or detecting L2/L3 would terminate the walk (i.e. rest of the tables

are not valid) and define the access as either Null or Invalid.

Programming Note

Context: Detection and treatment of null and invalid tiles.

The software is not allowed to program both Null and Invalid values to be the same.

Programming Note

Context: TileX Surfaces and Null Tiles

NULL or Invalid Tiles are not supported on TileX surfaces.

GPU implements a counter mechanism to roll-up the Null tile accesses detected. The counter value is

exposed to GFX software via GFX MMIO.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 11

In implementation, when the TR translation tables are in virtual address domain, the pages faults

encountered while walking the IA32e pages are not reported back to the TR walkers or TLBs. These faults

are handled as fault & halt, making these faults transparent to the TR walkers. However, when such a fault

is not fixed (unsuccessful fault response) or when a non-recoverable fault encountered, main page walker

HW converts the cycle to an invalid cycle. Thus, in this case, TR walker or TR TLBs will get incorrect read

return data without any notification of the non-recoverable fault condition. Thus, TR walker/TLBs will

continue with the TR-walk with incorrect data. This can lead to spurious cycles being generated. However, a

Gfx reset/FLR is expected as a result of the non-recoverable fault.

TR-TT Modes

The L3 table pointer along with TRTTL3e/TRTTL2e is projected to support two modes of address space.

Original intent was to have the contents to be in Virtual Address space (OS managed) and have them to

be translated to GPA to HPA before getting accessed. Such mechanism will incur high latency penalties

due to nested page translations. GPU shall have an additional mode where tiled-resources translation

tables are in physical address space (GPA) and eliminate the need to have nested translations to reduce

the potentially high miss latencies.

TR-TT walker shall have both modes supported. The Mode bit will be part of the same Register that

provides TR-VA TT L3 pointer.

12 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Memory Types and Cache Interface

This section has additional information on the types of memory which are accessible via the various GT

mechanisms. It includes discussion on how the various paging models are used and accessed. See the

Graphics Translation Tables for more detailed discussions on paging models.

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3

and the different behaviors which can be enabled.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 13

Memory Object Control State (MOCS)

The memory object control state defines the behavior of memory accesses beyond the graphics core,

including encryption, graphics data types that allow selective flushing of data from outer caches, and

controlling cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by

page in the GTT entries. Memory objects that are defined by state per surface generally have additional

memory object control state in the state structure that defines the other surface attributes. Memory

objects without state defining them have memory object state control defined per class in the

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some

memory objects only have the GTT entry mechanism for defining this control. The table below

enumerates the memory objects and the location of the control state for each:

Memory Object Location of Control State

surfaces defined by SURFACE_STATE: sampling engine

surfaces, render targets, media surfaces, pull constant

buffers, streamed vertex buffers

SURFACE_STATE

depth, stencil, and hierarchical depth buffers corresponding state command that

defined the buffer attributes

stateless buffers accessed by data port STATE_BASE_ADDRESS

indirect state objects STATE_BASE_ADDRESS

kernel instructions STATE_BASE_ADDRESS

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS)

index buffers 3DSTATE_INDEX_BUFFER

vertex buffers 3DSTATE_VERTEX_BUFFERS

indirect media object STATE_BASE_ADDRESS

generic state prefetch GTT control only

ring/batch buffers GTT control only

context save buffers GTT control only

store DWord GTT control only

14 Doc Ref # IHD-OS-TGL-Vol 6-5.23

MOCS Registers

These registers provide the detailed format of the MOCS table entries, that need to be programmed to

define each surface state.

MEMORY_OBJECT_CONTROL_STATE

Size (in bits): 7

Default Value: 0x00000000

DWord Bit Description

0
6:1

Index to MOCS Tables

The index to define the L3 and system cache memory properties. The details of the controls are

further defined in L3 and Page walker (memory interface) control registers. The field is defined

to populate 64 different surface controls to be used concurrently. Related control registers can

be updated during runtime.

Programming Notes

When an access is made through Data Port and the index to MOCS[6:1] = [48,59]

(decimal), that surface or stateless memory access can be cached in HDC L1 cache.

Accesses made through Data Port with MOCS[6:1] < 48 or > 59 will bypass the HDC

L1 cache. This bypass is useful when software wants to ensure that Data Port access

are coherent with the L3 memory.

0 Reserved

Doc Ref # IHD-OS-TGL-Vol 6-5.23 15

L3 Control Registers

64x16b control registers are defined within L3 space to interpret MOCS indexing and map it to cache

events.

The incoming MOCS value is used to index into one of these registers which hardware uses as control

parameters for a given surface. It allows 64 concurrent surface definitions with unique control values for

L3 caching.

Also attached are the default settings for each 64 locations if driver chooses to use as is.

Following 16b defines per selection definition:

Register#64 (MOCS value 63) is reserved for h/w use and should not be used by s/w.

In L3 Node: B020-B09F (128 Bytes). Please refer to the register section for default values.

Bits Description

16:6 Reserved.

5:4 L3 Cacheability Control (L3CC).

Memory type information used in L3. This field is combined with the additional two bits that are sent by

HDC based on binding table index. For all other L3 requesters, this field is the primary source of L3 cache

controls.

00b: Use binding table index for direct EU accesses - for rest it is reserved.

01b: Uncacheable (UC) - non-cacheable.

10b: Reserved

11b: Writeback (WB).

3:1 Skip Caching Control (SCC).

Defines the bit values to enable caching. Outcome overrides the L3caching for the surface.

If "0" - than corresponding address bit value is don't care.

Bit[1]=1: Address bit[9] needs to be "0" to cache in target.

Bit[2]=1: Address bit[10] needs to be "0" to cache in target.

Bit[3]=1: Address bit[11] needs to be "0" to cache in target.

0 Enable Skip Caching (ESC).

Enable for the Skip cache mechanism.

0: Not enabled.

1: Enabled for L3.

16 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Memory Interface Control Registers

64x32b control registers are defined within the page walker where control parameters for LLC/eDRAM

caching are defined. Incoming memory control object state index is used to do a look up into the table

where the corresponding control parameters are picked for a given surface. These control values are

used to control LLC/eDRAM caching.

For EU surfaces where binding table index is used, we also pass two bits of information in the hardware.

Following 32b defines per selection definition:

All MOCS registers are global and need to be saved/restored on RC6 entry/exit.

Certain MOCS indices are used by hardware and carry special meanings. These indices are restricted from

being used for regular surfaces. In the following list, the indices are 0 based (i.e., MOCS index 0 is the first

register and MOCS index 63 is the last register.)

• Index 'd63 is used for two purposes.

o It is used by the L3 for all its evictions. The programming of the index 'd63 is expected to

allow LLC cacheability to enable coherent flows to be maintained.

o It is also used by hardware to force L3 uncacheable cycles. The programming of the index

#63 is expected to make the surface L3 uncacheable.

• Index 'd62

o This index is used for Tiled-Resources page walker accesses in previous projects.

o This index is used for AuxTT Nodes for current projects.

• Index 'd61 is used for displayable surfaces. The programming of the index 'd61 is expected to

disallow LLC cacheability for the surface to be displayable.

• Index 'd60 is reserved for use in the 3D CCS accesses.

Bits Description

31:19 Reserved

18:17
Self Snoop Enable

00: Default value. Self snoop attribute sent to the uncore is as normal - determined by MIDI unit logic

 01: Override the self snoop bit generated by MIDI with 0. No self snoops are sent to the uncore for any

transactions from this surface

 11: Override the self snoop bit generated by MIDI with 1. Self snoops are always sent to the uncore for any

transactions from this surface

16:15
Class of Service

This field controls the Class of Service sent to the LLC to determine which sub-set of Ways the surface will be

stored in. The allocation of certain LLC ways to different class of service settings is a project dependent

decision and listed in the Bspec.

 00: Value from Private PAT Registers(40E0/40E4/40E8/40EC)

 01: Class 1

 10: Class 2

Doc Ref # IHD-OS-TGL-Vol 6-5.23 17

Bits Description

 11: Class 3

14
Snoop Control Field (SCF):

Enables s/w to have GFX h/w to be able to consume IA generated buffers that are tagged as WB. Driver can

mark these buffers as WB when generating them from IA. In LP-SOCs, the fabric is not forced to be coherent

all the time. IA-core generated WB buffers can only be consumed by GPU if that buffer is tagged as snoop-

able in GPUs buffer definitions (or via GPU Page tables).

1: Non-Coherent Write/Read

0: Coherent Access

13:11
Page Faulting Mode

This fields controls the page faulting mode that will be used in the memory interface block for the given

request coming from this surface:

000: Use the global page faulting mode from context descriptor (default)

 001-111: Reserved

10:8
Skip Caching Control

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface.

If "0" - than corresponding address bit value is do not care

 Bit[8]=1: address bit[9] needs to be "0" to cache in target

 Bit[9]=1: address bit[10] needs to be "0" to cache in target

 Bit[10]=1: address bit[11] needs to be "0" to cache in target

The default value of this field is '000. For coherent surfaces, skip caching should not be enabled, as not

caching in LLC breaks the coherency.

7
Enable Reverse Skip Caching

Enable for the Skip cache mechanism

 0: Not enabled

 1: Enabled for LLC

6
Don't Allocate on miss

Controls defined for RO surfaces in mind, where if the target cache is missed - do not bring the line

(applicable to LLC/eDRAM).

0: Allocate on MISS (normal cache behavior)

 1: Do NOT allocate on MISS

5:4
LRU (Cache Replacement) Management (LRUM).

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular allocation is

done at youngest age ("3") it tends to stay longer in the cache as compared to older age allocations ("2", "1",

18 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Bits Description

or "0"). This option is given to driver to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

00: Take the age value from Uncore CRs.

01: Assign the age of "0"

10: Don’t change the age on a hit.

11: Assign the age of "3"

3:2
Target Cache (TC).

This field allows the choice of LLC vs eLLC for caching.

00b: Use TC/LRU controls from page table

01b: LLC Only.

10b: LLC/eLLC Allowed.

11b: LLC/eLLC Allowed.

For coherent surfaces ensure that LLC caching is enabled - even when using target cache controls

from page table.

1:0
LLC/eDRAM Cacheability Control (LeCC).

Memory type information used in LLC/eDRAM.

00b: Use Cacheability Controls from page table / UC with Fence (if coherent cycle).

01b: Uncacheable (UC) - non-cacheable.

10b: Writethrough (WT).

11b: Writeback (WB).

Note: In case of SVM (advanced context), LLC/eDRAM memory type is used based on the page table

controls and cannot be managed via MOCS index.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 19

Defaults Table

Default LeCC TC LRUM AOM ESC SCC PFM

Default LeCC TC LRUM AOM ESC SCC PFM

000000 00 00 11 0 0 00 000

000000 00 00 11 0 0 00 000

000001 00 01 11 0 0 00 000

000001 00 01 11 0 0 00 000

000010 00 10 11 0 0 00 000

000010 00 10 11 0 0 00 000

000011 01 00 11 0 0 00 000

000011 01 00 11 0 0 00 000

000100 10 00 11 0 0 00 000

000100 10 00 11 0 0 00 000

000101 10 01 11 0 0 00 000

000101 10 01 11 0 0 00 000

000110 10 10 11 0 0 00 000

000110 10 10 11 0 0 00 000

000111 11 00 11 0 0 00 000

000111 11 00 11 0 0 00 000

001000 11 01 11 0 0 00 000

001000 11 01 11 0 0 00 000

001001 11 10 11 0 0 00 000

001001 11 10 11 0 0 00 000

001010 10 00 11 0 0 00 000

001010 10 00 11 0 0 00 000

001011 10 01 11 0 0 00 000

001011 10 01 11 0 0 00 000

001100 10 10 11 0 0 00 000

001100 10 10 11 0 0 00 000

001101 11 00 11 0 0 00 000

001101 11 00 11 0 0 00 000

001110 11 01 11 0 0 00 000

001110 11 01 11 0 0 00 000

001111 11 10 11 0 0 00 000

001111 11 10 11 0 0 00 000

010000 00 00 11 0 0 00 000

010000 00 00 11 0 0 00 000

010001 00 01 11 0 0 00 000

010001 00 01 11 0 0 00 000

010010 00 10 11 0 0 00 000

010010 00 10 11 0 0 00 000

010011 01 00 11 0 0 00 000

010011 01 00 11 0 0 00 000

010100 10 00 11 0 0 00 000

010100 10 00 11 0 0 00 000

010101 10 01 11 0 0 00 000

010101 10 01 11 0 0 00 000

010110 10 10 11 0 0 00 000

010110 10 10 11 0 0 00 000

010111 11 00 11 0 0 00 000

010111 11 00 11 0 0 00 000

011000 11 01 11 0 0 00 000

011000 11 01 11 0 0 00 000

011001 11 10 11 0 0 00 000

011001 11 10 11 0 0 00 000

011010 10 00 11 0 0 00 000

011010 10 00 11 0 0 00 000

011011 10 01 11 0 0 00 000

011011 10 01 11 0 0 00 000

011100 10 10 11 0 0 00 000

011100 10 10 11 0 0 00 000

011101 11 00 11 0 0 00 000

011101 11 00 11 0 0 00 000

011110 11 01 11 0 0 00 000

011110 11 01 11 0 0 00 000

011111 11 10 11 0 0 00 000

011111 11 10 11 0 0 00 000

20 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Required PAT & MOCS Tables

Rather than hard-wire the available PAT and MOCS Table entries, the tables are software programmable.

But to reduce virtualization overhead, Intel requires that all drivers use the table values specified in this

section. This minimizes virtualization overhead while still allowing the flexibility of post-silicon/post-

launch improvements from new performance findings and updated tables.

To ensure software backward and forward compatibility, table entries are version-numbered, where

• An entry version indicates the version of the table in which it was introduced.

• Each platform starts with version 1 entries.

• Entries are only ever added (never modified or removed—except to correct documentation/etc.

errors, if the change is backward-compatible).

• Added entries use previously highest version number, incremented by one.

• Multiple entries added at same time share same version number.

• Spec'ed entries never change versions—Version increases are only for addition of new slots.

Should table versions > 1 be necessary on a given platform, graphics drivers will be able to query to

determine which table version is available on their current (potentially virtualized) platform. When new

drivers find themselves on a platform with older tables, they should remap their new/unavailable entries

back to the most appropriate matches in the available tables.

 PAT:

Version Group Use PAT Index
PAT_INDEX

MEM_TYPE

1

LLC

WB 0 3

1 WC 1 1

1 WT 2 2

1 UC UC 3 0

Doc Ref # IHD-OS-TGL-Vol 6-5.23 21

MOCS:

Version Group Use
MOCS

 Index

LNCFCMOCSx GLOB_MOCS_LECC_x

ESC SCC L3CC LeCC TC LRUM DAoM ERSC SCC PFM SCF CoS SSE

1

Base

Error (Reserved for

Non-Use)
0 0 0 3 3 1 3 0 0 0 0 0 0 0

1 Reserved 1

1 L3 + LLC 2 0 0 3 3 1 3 0 0 0 0 0 0 0

1 Uncached 3 0 0 1 1 1 0 0 0 0 0 0 0 0

1 L3 (Read-Only*) 4 0 0 3 1 1 0 0 0 0 0 0 0 0

1 LLC 5 0 0 1 3 1 3 0 0 0 0 0 0 0

1
Age 0

LLC (Age 0) 6 0 0 1 3 1 1 0 0 0 0 0 0 0

1 L3 + LLC (Age 0) 7 0 0 3 3 1 1 0 0 0 0 0 0 0

1 Age:

 Don't

Chg.

LLC (Age:DC) 8 0 0 1 3 1 2 0 0 0 0 0 0 0

1 L3 + LLC (Age:DC) 9 0 0 3 3 1 2 0 0 0 0 0 0 0

1

No AOM

LLC (No AOM) 10 0 0 1 3 1 3 1 0 0 0 0 0 0

1 L3 + LLC (No AOM) 11 0 0 3 3 1 3 1 0 0 0 0 0 0

1 LLC (No AOM; Age 0) 12 0 0 1 3 1 1 1 0 0 0 0 0 0

1
L3 + LLC (No AOM;

Age 0)
13 0 0 3 3 1 1 1 0 0 0 0 0 0

1 LLC (No AOM; Age:DC) 14 0 0 1 3 1 2 1 0 0 0 0 0 0

1
L3 + LLC (No AOM;

Age:DC)
15 0 0 3 3 1 2 1 0 0 0 0 0 0

1
Reserved

Reserved 16

1 Reserved 17

1
Self-

Snoop
L3 + LLC (Self Snoop) 18 0 0 3 3 1 3 0 0 0 0 0 0 3

1

Skip

 Caching

L3 + LLC(12.5%) 19 0 0 3 3 1 3 0 0 7 0 0 0 0

1 L3 + LLC(25%) 20 0 0 3 3 1 3 0 0 3 0 0 0 0

1 L3 + LLC(50%) 21 0 0 3 3 1 3 0 0 1 0 0 0 0

1 L3 + LLC(75%) 22 0 0 3 3 1 3 0 1 3 0 0 0 0

1 L3 + LLC(87.5%) 23 0 0 3 3 1 3 0 1 7 0 0 0 0

1
Reserved

Reserved 24

1 Reserved 25

1

Special

Indexes

HDC:L1 + L3 + LLC 48 0 0 3 3 1 3 0 0 0 0 0 0 0

1 HDC:L1 + L3 49 0 0 3 1 1 0 0 0 0 0 0 0 0

1 HDC:L1 + LLC 50 0 0 1 3 1 3 0 0 0 0 0 0 0

1 HDC:L1 51 0 0 1 1 1 0 0 0 0 0 0 0 0

1 Special Case (CCS) 60 0 0 1 3 1 3 0 0 0 0 0 0 0

22 Doc Ref # IHD-OS-TGL-Vol 6-5.23

1
Special Case

(Displayable**)
61 0 0 3 1 1 0 0 0 0 0 0 0 0

1
HW Reserved—SW

program but never use.
62 0 0 1 3 1 3 0 0 0 0 0 0 0

1
HW Reserved—SW

program but never use.
63 0 0 1 3 1 3 0 0 0 0 0 0 0

HDC:L1 should only be used in read-only use-cases.

* Suitable solely for Read-Only use, since (written/dirty) L3 evictions essentially always go to LLC (via hard-wiring to

MOCS#63), except for the MOCS#61 special-case.

** MOCS#61 is generally said to be for "Displayable" memory objects—though more precisely, it is for any memory

object desiring writable L3 caching without LLC caching.

Virtual Addressed TR Translation Tables

Having sparse tiled resource translation tables in GFX virtual space requires the h/w TR-TT walker to walk

thru the 1st level tile tables for table accesses to reach to Physical address at the L1 TR translation tables.

The following diagrams provide the view of the walk TR-VA translation tables are in physical memory and

no 2nd Level (VTd) translations enabled.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 23

Once 2nd level translations are enabled each level of 1st level walk needs to be further walked through

VTd page tables.

The level of nested walks does not change the structure of the TR-VA walker; it just defines the recursive

nature of the translations.

TR-TT Page Walk

Sparse Tiled Resources translation tables are separated into 3-levels. The pointer to L3 table is going to

be set up in GFX MMIO space as part of the context, this pointer be would be available to page walker

ahead of any TR-VA memory accesses.

TR-TT L3 walk will be consistent of calculating the 64b of interest based on the L3 table pointer and

using the 9 bit index (address bits[43:35]). L2 will use TR-TT L3 entry as the table pointer and use the next

set of 9 address bits ([34:26]) to locate the L2 entry which is a pointer to L1 table. Final L1 table is located

with L2 entry and indexed by remaining 10 address bits (25:16) to index where 32b virtual address is

extracted.

Post TR-TT walk 32b entry from L1 is mapped to final virtual address 47:16 and remaining 15:0 is passed

from the original TR-VA access as is given all tiles in TR-VA space are 64KB in size.

24 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Page Table Modes

GFX Aperture and Display accesses are mapped thru Global GTT to keep the walk simple (i.e. 1-level) and

latency sensitive. GPU accesses to memory can be mapped via Global GTT and/or ppGTT with various

addressing modes.

Supported walk modes are listed as following:

1. Global GTT with 32b virtual addressing: Global GTT usage is similar to previous generations with

extended capability of increasing virtual address (VA) up to 4GB (from 2GB) and use a standard

64b PTE format. The breakdown of the PTE for global GTT is given in later sections and allows 1-

level page walk where the 20b index is used to select the 64b PTE from memory.

2. Legacy 48b VA with ppGTT: GFX address expansion beyond 4GB is added to address 48b virtual

address space. 48b VA requires 36b indexing (4x9b) translating into 4-levels of page walk. To

reduce the overhead of 4 level walk, GPU will cache the entire content of PML4 (4kB) to limit the

on-demand walks to 3 levels. The caching happens as part of the initial demand where no further

replacements required.

Global GTT

The GPU supports a Global Virtual Address space that is used for resources that are accessible to

privileged (ie kernel-mode) processes, and not tied to a specific user-level process. For example, the

Graphics micro-Controller (GuC) and Display Engine (if present) utilize Global address space. The Global

VA space is 4GB in size (32-bit VA).

The Global GTT (GGTT) translates from the Global virtual address to a physical address that can be

accessed by HW, using a page size of 4KB. The GGTT is a flat, single-level table. Each page table entry

(PTE) in the GGTT is 8B in size, so the overall size of the GGTT 8MB.

The Global GGTT entries can be updated by the graphics driver, via the GTTMMADR MMIO range of the

device, and also via the Command Streamer command MI_UPDATE_GTT.

Page Table Entry

The following page table entry will be used for Global GTT:

Bits Field Description

63:57 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-1):12 Address Physical address of 4KB memory page referenced by this entry.

11:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4:2
Function The Number of the Function to which this page has been assigned. This field is

Doc Ref # IHD-OS-TGL-Vol 6-5.23 25

Bits Field Description

Number ignored.

1 Ignored Ignored (h/w does not care about values behind ignored registers)

0 Present When set to 1, indicates that this Page Table Entry is Valid, and the corresponding

page is Present in physical memory

* HAW = 39 for client, and 46 for server.

The GPU accesses GGTT table entries as uncacheable.

Page Walk

The global GTT page walk is identical to what it was prior. The only difference would be that each entry is

8B (instead of 4B) hence the entry selection needs to be updated once the corresponding Page Table

miss read is returned.

26 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Per-Process GTT with 48b VA

The GPU typically operates on behalf of user-level processes (applications), each of which has it's own

"Per-Process" virtual address space. The size of this space is 256TB (48b address width).

The Per-Process GTT (PPGTT) translates these virtual addresses to physical addresses that are used by

HW. The PPGTT is a multi-level table very similar to the IA32e table utilized by Intel CPUs. Each entry in

the PPGTT is 8 Bytes.

Page Walk in Legacy 48b Mode

Translation of a 48b VA requires 4 levels of page table. assuming each table level is 4KB and each entry is

8B. The top-most level of the PPGTT is located via the PML4 table pointer associated with the process,

and the 48b VA as used to index into consecutive levels of page table.

The following diagram shows the page walk that is needed for a 4KB page.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 27

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.

In page table every 16th entry (PTE#0, PTE#16, PTE#32....PTE#496) should be used to index. This is

calculated using address [20:16]& "0000". Note that hardware should not make any assumptions for any

other PTEs. 64K paging in the PTE is indicated by [11] of PDE. When PDE[11] = '1, every 16th PTE entry is

read (by masking Adr[15:12] bits).

28 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final

page.

Walk with 1GB Page

1GB pages are supported by completing address translation at the PDP level, similar to how 2MB page

translation is complete at PDE level.

Page Tables Entry PTE Formats

Page Table Entry (PTE) formats will follow the IA32e layout as given below:

Doc Ref # IHD-OS-TGL-Vol 6-5.23 29

Each table entry is further broken down along with the required functions. GFX has a 4 level page table

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different

formats depending on the size of the page supported. 1GB and 2MB page formats are required for

support.

30 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Pointer to PML4 table

The pointer to PML4 table is provided via the context descriptor.

PML4E: Pointer to PDP Table

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

0 P: Present PML4 Entry is present. It must be "1" to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 31

PDPE: Pointer to PD Table

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to

identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB

physical memory.

PDPE for PD

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page-directory table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. Access rights are described

later.

GPU does not support Supervisor mode contexts.

0 P: Present PDP Entry is present. It must be "1" to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

32 Doc Ref # IHD-OS-TGL-Vol 6-5.23

PDPE for 1GB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):30

ADDR: Address Physical address of 1GB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested

translations are enabled (NESTE=1) in the relevant extended-context entry.

29:12 Ignored Ignored (h/w does not care about values behind ignored registers)

11 Local Memory Physical Page is located in Local Memory instead of System Memory. Only

applicable for device configurations with local device memory that is

managed by the Device Driver instead of the OS. For other configurations it

is ignored

10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null

Page information to primary (1st Level) translation tables. If Null=1, the h/w

will avoid the memory access and return all zero's for the read access with a

null completion, write accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer

table referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in

the relevant extended-context-entry) to the memory region controlled by this

entry. See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present This bit must be "1" to point to a valid Page.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 33

* HAW = 39 for client, and 46 for server.

PD: Pointer to Page Table

This section describes the following:

• PDE for Page Table

• PDE for 2 MB Page

PDE for Page Table

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page- table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

0 P: Present PDP Entry is present. The value must be "1" to point to a page directory pointer table.

* HAW = 39 for client, and 46 for server.

34 Doc Ref # IHD-OS-TGL-Vol 6-5.23

PDE for 2MB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):21

ADDR: Address Physical address of 1GB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

20:12 Ignored Ignored (h/w does not care about values behind ignored registers)

11 Local Memory Physical Page is located in Local Memory instead of System Memory. Only applicable

for device configurations with local device memory that is managed by the Device

Driver instead of the OS. For other configurations it is ignored

10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero's for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

Doc Ref # IHD-OS-TGL-Vol 6-5.23 35

Bits Field Description

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be "1" to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):16

ADDR: Address Physical address of 64KB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

15:12 Ignored Ignored (h/w does not care about values behind ignored registers)

11 Local Memory Physical Page is located in Local Memory instead of System Memory. Only applicable

for device configurations with local device memory that is managed by the Device

Driver instead of the OS.

10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero's for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

36 Doc Ref # IHD-OS-TGL-Vol 6-5.23

Bits Field Description

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be "1" to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 4KB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-1):12 ADDR: Address Physical address of 64KB memory page referenced by this entry. This field is

treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will

avoid the memory access and return all zero's for the read access with a null

completion, write accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 37

Bits Field Description

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in

the relevant extended-context-entry) to the memory region controlled by this

entry. See a later section for access rights. GPU does not support Supervisor

mode contexts.

0 P: Present It must be "1" to point to a 4KB Page.

* HAW = 39 for client, and 46 for server.

38 Doc Ref # IHD-OS-TGL-Vol 6-5.23

LNCFCMOCSx

LNCFCMOCS0 - LNCF MOCS Register 0

Register Space: MMIO: 0/2/0

Size (in bits): 32

_Custom_GTIReset: DEV

Address: 0B020h

Programming Notes

WAReprogramMOCS: Upon render reset the driver needs to reprogram the LNCF MOCS Register.

DWord Bit Description

0 31 Upper MOCS Index Mask Bit

Access: WO

In order to prevent overwriting the upper MOCS index of this register, this bit must be set as part

of the write.

30:24 Reserved

Access: RO

Format: MBZ

23:22 Reserved

Access: RO

Format: MBZ

21:20 Upper MOCS Index - L3 Cacheability Control

Access: R/W Lock

Memory type information used in L3. This field is combined with the additional two bits that are

sent by HDC based on binding table index.

For all other L3 requesters, this field is the primary source of L3 cache controls

Value Name Description

0h UPPER_DIRECT Use binding table index for direct EU accesses - for the rest it is

reserved.

1h UPPER_UC

[Default]

Uncacheable

2h UPPER_RESERVED Reserved

3h UPPER_WB Writeback

19:17 Upper MOCS Index - Skip Caching Control

Default Value: 0h

Access: R/W Lock

 Defines the bit values to enable caching. Outcome overrides the L3/LLC caching for the surface.

Doc Ref # IHD-OS-TGL-Vol 6-5.23 39

LNCFCMOCS0 - LNCF MOCS Register 0

Programming Notes

If a given bit is programmed to 0, then the corresponding address bit value is treated as a don't

care.

If a given bit is programmed to 1, then the corresponding address bit must be 0 to cache in the

target.

Bit Offset Corresponding Address Bit

0 10 ^ 16

1 11 ^ 17

2 12 ^ 18

16 Upper MOCS Index - Enable Skip Caching

Access: R/W Lock

Enable the skip cache mechanism

Value Name

0h UPPER_ESC_DISABLE [Default]

1h UPPER_ESC_ENABLE

15 Lower MOCS Index Mask Bit

Access: WO

In order to prevent overwriting the lower MOCS index of this register, this bit must be set as part

of the write.

14:8 Reserved

Access: RO

Format: MBZ

7:6 Reserved

Access: RO

Format: MBZ

5:4 Lower MOCS Index - L3 Cacheability Control

Access: R/W Lock

Memory type information used in L3. This field is combined with the additional two bits that are

sent by HDC based on binding table index.

For all other L3 requesters, this field is the primary source of L3 cache controls

Value Name Description

0h LOWER_DIRECT

[Default]

Use binding table index for direct EU accesses - for the rest it

is reserved.

1h LOWER_UC Uncacheable

2h LOWER_RESERVED Reserved

40 Doc Ref # IHD-OS-TGL-Vol 6-5.23

LNCFCMOCS0 - LNCF MOCS Register 0

3h LOWER_WB Writeback

3:1 Lower MOCS Index - Skip Caching Control

Default Value: 0h

Access: R/W Lock

 Defines the bit values to enable caching. Outcome overrides the L3/LLC caching for the surface.

Programming Notes

If a given bit is programmed to 0, then the corresponding address bit value is treated as a don't

care.

If a given bit is programmed to 1, then the corresponding address bit must be 0 to cache in the

target.

Bit Offset Corresponding Address Bit

0 10 ^ 16

1 11 ^ 17

2 12 ^18

0 Lower MOCS Index - Enable Skip Caching

Access: R/W Lock

Enable the skip cache mechanism

Value Name

0h LOWER_ESC_DISABLE [Default]

1h LOWER_ESC_ENABLE

Doc Ref # IHD-OS-TGL-Vol 6-5.23 41

GLOB_MOCS_LECC_x

GLOB_MOCS_LECC_00_TC_00 - Global MOCS LECC 00 TC 00 Register

Register Space: MMIO: 0/2/0

Size (in bits): 32

_Custom_GTIReset: DEV

_Custom_GTIIsContextSaved: true

Address: 04000h

Name: Global MOCS 0

ShortName: GLOB_MOCS_0

Address: 04040h

Name: Global MOCS 16

ShortName: GLOB_MOCS_16

Address: 04080h

Name: Global MOCS 32

ShortName: GLOB_MOCS_32

Address: 040C0h

Name: Global MOCS 48

ShortName: GLOB_MOCS_48

MOCS register

DWord Bit Description

0 31:19 Reserved

Access: RO

Format: MBZ

18:17 Self Snoop Enable

Access: R/W

 00: Default value. Self snoop attribute sent to the uncore is as today - determined by MIDI unit

logic

 01: Override the self snoop bit generated by MIDI with 0. No self snoops are sent to the uncore

for any transactions from this surface

 11: Override the self snoop bit generated by MIDI with 1. Self snoops are always sent to the

uncore for any transactions from this surface

Value Name Description

11b Generated by MIDI with

1

Override the self snoop bit generated by MIDI with 1. Self

snoops are always sent to the uncore for any transactions from

this surface

01b Generated by MIDI with

0

Override the self snoop bit generated by MIDI with 0. No self

snoops are sent to the uncore for any transactions from this

surface.

42 Doc Ref # IHD-OS-TGL-Vol 6-5.23

GLOB_MOCS_LECC_00_TC_00 - Global MOCS LECC 00 TC 00 Register

00b Determined by MIDI

unit logic [Default]

Default value. Self snoop attribute sent to the uncore is as

today - determined by MIDI unit logic

16:15 Class of Service

Access: R/W

Description

Class of Service sent to LLC to determine subset of ways the memory object will be stored in.

00: Class 0

01: Class 1

10: Class 2

11: Class 3

Max* QoS: Class 0

Relative* QoS: 0 > 1 > 2 ≥ 3**

* Max/Relative statements above based on default/non-firmware-overridden GT QoS masks.

** CLOS2 = CLOS3 equivalence only on 4-way LLC SKUs.

Value Name

00b Class 0 [Default]

01b Class 1

10b Class 2

11b Class 3

14 Snoop Control Field

Access: R/W

Enables s/w to have GFX h/w to be able to consume IA generated buffers that are tagged as

WB. Driver can mark these buffers as WB when generating them from IA

In SOCs, the fabric is not forced to be coherent all the time. IA-core generated WB buffers can

only be consumed by GPU if that buffer is tagged as snoop-able in GPUs buffer definitions (or

via GPU Page tables)

1: Non-Coherent Write/Read

0: Coherent Access

Note: There is a performance and power penalty in accessing surfaces that are tagged as

snooped

Value Name

0b Coherent Access [Default]

Doc Ref # IHD-OS-TGL-Vol 6-5.23 43

GLOB_MOCS_LECC_00_TC_00 - Global MOCS LECC 00 TC 00 Register

1b Non-Coherent Write/Read

13:11 Page Faulting Mode

Default Value: 000b Global page faulting mode

Access: R/W

This fields controls the page faulting mode that will be used in the memory interface block for

the given request coming from this surface:

 000: Use the global page faulting mode from context descriptor (default)

 001-111: Reserved

10:8 Skip Caching control

Default Value: 000b Value is do not care

Access: R/W

Format: Enable[3]

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface.

If "0" - than corresponding address bit value is do not care

Bit[8]=1: address bit[9] needs to be "0" to cache in target

Bit[9]=1: address bit[10] needs to be "0" to cache in target

Bit[10]=1: address bit[11] needs to be "0" to cache in target

7 Enable Reverse Skip Caching

Access: R/W

Format: Enable

Enable for the Skip cache mechanism

0: Not enabled

1: Enabled for LLC

Value Name

0b Not Enabled [Default]

1b Enabled for LLC

6 Dont allocate on miss

Access: R/W

Controls defined for RO surfaces in mind, where if the target cache is missed - do not bring the

line (applicable to LLC/eDRAM).

0: Allocate on MISS (normal cache behavior)

1: Do NOT allocate on MISS

 Received confirmation from Altug on 03/13/13 that nothing needs to be done on this bit

44 Doc Ref # IHD-OS-TGL-Vol 6-5.23

GLOB_MOCS_LECC_00_TC_00 - Global MOCS LECC 00 TC 00 Register

Value Name

0b Allocate on MISS [Default]

1b Not allocate on MISS

5:4 LRU management

Access: R/W

Description

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a

particular allocation is done at youngest age ("3") it tends to stay longer in the cache as

compared to older age allocations ("2", "1", or "0"). This option is given to driver to be able to

decide which surfaces are more likely to generate HITs, hence need to be replaced least often

in caches.

LRU Age value is assigned as follows:

11: Assign the age of "3"

10: do not change the age on a hit.

01: Assign the age of "0"

00: Take the age value from Uncore CRs

Value Name

11b Assign age 3 [Default]

10b Do not change age

01b Assign age 0

00b Age value from Uncore

3:2 Target Cache

Access: R/W

Description

This field allows the choice of LLC vs eLLC for caching

00: eLLC Only

01: LLC Only

10: LLC/eLLC Allowed

11: LLC/eLLC Allowed

Value Name

00b eLLC Only [Default]

01b LLC Only

Doc Ref # IHD-OS-TGL-Vol 6-5.23 45

GLOB_MOCS_LECC_00_TC_00 - Global MOCS LECC 00 TC 00 Register

10b LLC/eLLc Allowed

11b LLC/eLLc Allowed 2

1:0 LLC/eDRAM cacheability control

Access: R/W

Description

Memory type information used in LLC/eDRAM.

00: Uncacheable (UC)

01: Uncacheable (WC)

10: Writethrough (WT)

11: Writeback (WB)

Note: Final memory type is based on memory type resolution using MOCS and Page Table

memory types and legacy/advanced mode

Note: Binding table index based memory typing cannot be used for LLC/eDRAM memory type.

Instead page table based controls have to be used

Note: In case of SVM (advanced context), LLC/eDRAM memory type is used based on the page

table controls and cannot be managed via MOCS index

Value Name

00b Uncacheable (UC)

01b Uncacheable (WC)

10b Writethrough (WT)

11b Writeback (WB) [Default]

