

Intel® Iris® Xe and UHD Graphics Open Source

Programmer's Reference Manual

For the 2020-2021 11th Generation Intel Xeon®, Core™, Celeron®,

Pentium® Gold Processors based on the "Tiger Lake" Platform

Volume 7: Memory Cache

December 2021, Revision 1.0

ii Doc Ref # IHD-OS-TGL-Vol 7-12.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document, with the sole exceptions that a) you may publish an unmodified copy and b) code

included in this document is licensed subject to Zero-Clause BSD open source license (0BSD). You may

create software implementations based on this document and in compliance with the foregoing that are

intended to execute on the Intel product(s) referenced in this document. No rights are granted to create

modifications or derivatives of this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-TGL-Vol 7-12.21 iii

Table of Contents

Memory Cache... 1

L3 Cache ... 1

Overview ... 1

L3 Coherency ... 6

L3 Cache Error Protection .. 9

Doc Ref # IHD-OS-TGL-Vol 7-12.21 1

Memory Cache

This section describes the GFX L3 Cache, which is a large storage that backs up various L2/L1 caches in

the GPU's internal units. It supports a simple, way-based partitioning for segregating the cache among

groups of clients.

It also has a provision to dedicate a (programmable) section of the storage for the GFX Unified Return

Buffer.

L3 Cache

This volume describes the L3 and the Unified Return Buffer. Much of the design is similar to prior

generations, with important changes to enhance performance.

Overview

To cater to the bandwidth demands, the L3 cache is organized as multiple independent banks which can

be accessed concurrently. The L3 banks are no longer clocked at 2x and hence support one operation per

clock.

The L3 cache and URB data form a single contiguous memory space across all the banks and sub banks

in the design. The vision is to build a compute scalable cache where with each additional compute block,

both the size and bandwidth of L3 Cache are scaled while maintaining the monolithic cache concept.

Each added bank becomes a part of a unified cache rather than an independent localized segment. The

concept is to be able to keep a single copy of a line and service all requesters via distributing their

accesses over many physical cache banks. The L3 cache can operate concurrently in the non-IA-coherent

GFX virtual address space as well as the IA-coherent address space.

• Each logical bank consists of:

• The Data Array - This array stores the actual data

• The Tag Array - This array stores the tags for the cachelines above

• The LRU Array - This array stores information that helps determining the cache line that will

be evicted when a fill arrives for a set

• The State Array - This array stores the cache state information (MESI States of the cache lines

and some additional internal information)

• The SuperQ Buffer - This array stores data temporarily on the way in or out of the data array

for each access that is in progress

• the Atomic Processing Units - This unit houses the ALU and associated logic to perform

atomic operations on the data

• The rest of the support logic around L3 consists of:

• The SuperQ: This is the main scheduler of the micro-sequences to be followed for each

access to the cache

• Ingress/Egress queues: These queues buffer incoming accesses and outgoing data on their

way into or out of the cache

2 Doc Ref # IHD-OS-TGL-Vol 7-12.21

• CAM structures: These structures are used to maintain coherency in cases of proximal

accesses to the same address

• Crossbars: These are used for routing the data to and from the various sub-banks/arrays

Note: A portion of the L3 cache can be allocated as a Unified Return Buffer (URB) region

L3 Bank Configuration

Each L3 bank is configured as described below.

• Each bank consists of a 480KB data-array organized as 120 logical ways

• Up to 104 ways representing 416KB, tagged for L3$, remaining ways treated as dedicated URB.

• The minimum URB size per L3 Bank is 64KB, but this can be programmed up to 128KB.

• 64B Cacheline storage per cell.

• The total L3 array bandwidth is 64B for each core cycle. The bandwidth can be utilized for either a

64B read cycle or a 64B write cycle

• Data protection via ECC.

• 48b virtual addressing support in TAG.

• 1b LRU implementation for selecting the line to be replaced.

L3 Cache Theory of Operation

Following are the L3/URB clients:

L3 Cache Clients RW/RO

Data Cluster (i.e., spill/fills, load/stores, Global memory accesses) RW

Sampler (L2$) RO

IME (Motion Estimation) RO

Instruction Cache (I$) RO

State Arbiter RO

Constant Cache RO

URB Clients RW/RO

Local Thread Dispatcher RO

SF Backend RO

Stream Out RO

Clipper RO

Geometry shader RO

Tesselator RO

VF RW

Data Cluster RW

Doc Ref # IHD-OS-TGL-Vol 7-12.21 3

The L3 and the URB are separate address spaces with clients capable of accessing only one or the other

except for the data port. L3 access/cacheability is determined via a parameter, part of the surface state or

base address programming of L3 clients.

Size of L3 Bank and Allocations

General notes

The L3 Cache has been divided into following client pools:

• URB: Local memory space

• DC: Data Cluster Data type

• Color: Color cache allocation

• Z: Depth cache allocation

In addition to these sub-groups, a collection of groups bundle multiple clients under the same allocation

set:

• Read-Only (RO) Clients: Inst/State, Constants & Textures (I/S/C/T)

• All L3 Clients (a.k.a "Rest of L3"): DC, Inst/State, Constants & Textures

• Unified Tile Cache: Color/Z combined

Multi-Bank Allocation Options with Tile Cache and Command buffer support

The L3 cache no longer supports the highly banked SLM mode of operations. Out of the total L3 space

per bank, a minimum of 64Kbytes will be earmarked for URB storage. The rest can be used as tagged L3

cache. The L3 Cache allocation is done on a per way basis. The Bank programming options allow a varied

set of configurations to be programmed in the L3. Broadly, the number of ways allocated to the various

sections (URB, DC, RO, Z, C and the command buffer) is selectable. Each of these sections can be

allocated a subset of ways out of the total ways. Apart from that, in lieu of the DC and RO sections a

single unified “Rest of L3” section can be used. Similarly, in lieu of separate Z and C partitions in the L3, a

single Unified Tile Cache programming allows all Z and C streams to share a common section of the L3.

L3 Allocation programming (KBytes per bank)

URB Rest

(DC+RO)

DC RO

(I/S/C/T)

Z Color Unified

Tile Cache

Command

Buffer/

State

Sum

64KB or

128KB

0 to 416

in

increments

of 8KB

0 to 416

in

increments

of 8KB

0 to 416

in

increments

of 8KB

0 to 416

in

increments

of 8KB

0 to 416

in

increments

of 8KB

0 to 416

in

increments

of 8KB

0 to 416

in

increments

of 8KB

480

4 Doc Ref # IHD-OS-TGL-Vol 7-12.21

Note: The granularity of 8KB delta for each section arises from the fact that the L3 is implemented as a

sectored cache with 2 ways per sector. Due to this, the number of ways programmed for each section of

the L3 cache should be an even number. The programming of the L3ALLOCREG to configure the sections

should be determined based on the size of the cache per way. The total number of ways implemented in

the design is available in the L3 Parameter Information register.

However, several restrictions apply.

• It is not allowed to allocate the entire cache to DC (Data space) with 0KB for reads.

• It is not allowed to have Rest and DC to be "0KB" at the same time. Cache requires either Rest or DC to have

at least non-0KB allocation.

• It is not allowed to have Rest and RO to be "0KB" at the same time. Cache requires either Rest or RO to have

at least non-0KB allocation.

State is now stored as part of Command Streamer allocation. If specific allocation is 0KB, it will be placed

in the Rest section.

L3 Allocation programming (KBytes per bank)

Config URB

Rest

(DC+RO) DC

RO

(I/S/C/T) Z Color

Unified

Tile Cache

Command

Buffer Sum

0 (def) 64 416 0 0 0 0 0 0 480

1 128 240 0 0 48 48 0 16 480

2 64 0 32 240 64 64 0 16 480

3 64 144 0 0 128 128 0 16 480

4 64 48 0 0 0 0 352 16 480

5 64 272 0 0 0 0 128 16 480

6 64 400 0 0 0 0 0 16 480

7 128 352 0 0 0 0 0 0 480

8 128 336 0 0 0 0 0 16 480

The number of L3 Banks will vary for different products and SKUs. The number of banks supported for

each product is defined in the Configurations section of this document. The total amount of L3$ and URB

supported by a product can be calculated by multiplying the number of banks by the values in the above

tables.

Note that any allocation for <64KB will limit the bank allocation and proper set distribution. Such

programming will lead to set allocation to be less efficient and will not be sufficient to contain the

surface unless it is programmed to be natively aligned.

Performance configurations are listed as #5 (deferred rendering) and #6 (immediate and deferred

rendering).

L3 Ordering Restrictions

The Super Q will enforce specific ordering requirements on the accesses to the L3/URB but will still allow

out-of-order accesses where possible.

Doc Ref # IHD-OS-TGL-Vol 7-12.21 5

Basic Ordering Requirements

The primary purpose of ordering of transactions is to ensure coherency and causality for software

accesses to memory. For example, if a thread writes to a memory address, it can expect that any

subsequent read issued by the same thread to the same address should read back what it wrote.

Conversely, if the read is before the write, it shall receive the value prior to the write.

L3 Cache Allocation Policy

The L3 cache allocation policy is "Allocate on fill". i.e., a line in the cache storage is allocated only upon

receipt of the data from the external memory and not at the time that the cache detects a miss. The

"Allocate on Fill" policy eliminates many boundary cases by regulating the entry invalidation at the last

phase of the data servicing.

If the data already residing in the allocated entry is not modified, then the incoming Fill will overwrite the

location. If the allocated entry carries a dirty data, then an eviction is generated, and the dirty data will

be moved to the super queue for writing out to memory.

Cache replacement algorithm

The L3 cache uses a 1b LRU algorithm for cache replacement. An N-way 1b LRU has an N-bit vector for

each set. The vector is initialized to all 0's. As each Fill request arrives, the first bit in the vector with a 0 is

selected, that way is used, and the bit is flipped. Each subsequent fill will search for the first 0 and replace

that line and flip its bit. Eventually, when all N bits are 1 and there are no candidates, all bits are cleared.

Any hits to lines present in the cache will update the LRU vector to set the bit corresponding to the way.

In this manner, after the first set of allocations are done, any hits will mark the way as "recently used" and

avoid replacement. If during a hit operation, a set becomes fully "recent" i.e., all ways have a '1' in the

LRU vector, the vector is cleared making way for fresh marking for recent uses.

Memory Object Control State on Cacheability

This 7-bit field is used in various state commands and indirect state objects to define L3/LLC cacheability,

memory type, and graphics data type for memory objects.

Note that memory type information from state is used for non-IA compatible paging structures (legacy

context). For new context definition where IA compatible (IA32e) paging structures are used, memory

typing follows the IOMMU defined structures.

MOCS[6:1] in L3 is used as an index to a set of programmable tables starting with address xB020h. GFX

Software can set up the tables as part of the h/w context, and program various index values in surfaces

to point to a table that best suits for that particular surface.

6 Doc Ref # IHD-OS-TGL-Vol 7-12.21

L3 Coherency

Coherency is one of the crucial topics within L3, there are multiple levels of coherency that are checked

and ensured via L3. The list of domains and flows is dependent on the usage models however basic

premise is always the same.

The coherency levels:

1. Thread Level Coherency within a Thread Group

2. Thread Group Coherency between multiple domains

3. GPU/IA level coherency

Besides these special domains basic producer/consumer models are followed which are listed as:

1. Fixed function is producing

2. Data Port is producing

When textures are stored as compressed in L3, the expectation is to ensure that the compressed RO-

content is invalidated before same surface can produced as R/W.

Thread Level Coherency

A given thread group is contained within a sub-slice, where its writes and reads target the L3 for global

memory and SLM for shared local memory. Given the shared local memory view is the same for all sub-

slice accesses, coherency or data sharing is guaranteed within the thread group. Local syncs are executed

up to Data Port boundary and not exposed to L3.

Thread Group Coherency

Thread groups can be distributed to multiple sub-slices that are physically far from each other. The

coherency between thread groups can only be maintained for their global memory accesses. There are

two implications of this coherency depending on the mode we are operating at:

1. Non IA-Coherent L3 mode: This is the same methodology that was introduced with the addition of

GT4 support. The cross-thread group coherency is maintained via Sync Global which is processed

by L3 as well as introducing WT mode to be able to update global memory with latest data. This

mechanism is not expected to be used.

2. IA-Coherent L3 mode: For the new mode of operation, there is no need to have WT behavior. The

data in L3 is already visible to all consumers (i.e. other thread groups of GPU or IA cores).

Sync'global has no affect given the data in L3 is already globally visible to all consumers.

GPUIA Level Coherency

In non-coherent L3 mode, data sharing between GPU and IA happens via a s/w controlled flow which

requires the internal GPU caches to be flushed in order to make the data visible, similarly same caches

need to be invalidated when IA produces data. This mode of operation is still available. Within the L3,

Doc Ref # IHD-OS-TGL-Vol 7-12.21 7

non-coherent accesses use "virtual" addresses and are tagged in the L3 Tag array using the

Virtual/Physical bit.

Coherent memory is also supported where L3 content is visible to IA via snoops. This allows certain

streams (i.e. data port) to be GO (Globally Observable) for IA once posted to L3, allowing shorter loop for

completions and eliminating the need to do an entire pipeline flush over L3 to get it sync'ed to IA

coherent domain. Coherency enhances the general programmability of GPU when cooperating with IA.

Within the L3, coherent accesses use a full 48-bit physical address and are tagged using the

Virtual/Physical bit in the l3 Tag array.

Coherency Usage Models

This section is to give some examples of usage models and high-level handling within L3. They are

specific to L3 flows and not meant to represent over coherency usage models on the system level.

Fixed Func Producing (Push Constants)

Push constants are also similarly processed; in fact, the target is the same: URB. However, URB accesses

are processed with their URB offsets via TAG, their original address is based on virtual memory pointing

to buffer location in memory. The delivery mechanism makes the CAMs not possible hence the

completions are managed once access is deemed towards SuperQ of the corresponding L3 Bank.

There are additional constraints independent of L3 handling of push constants which are defined as part

of the Global Arbitration fabric.

EUs Producing via HDC

Data port is the producer for Global and Shared Local memory types. The shared local memory is specific

to a data port, hence L3 does not have to do anything special to maintain coherency but to keep

accesses to SLM in-order.

For Global memory coherency is maintained via combination of many mechanisms.

1. Completion tracking: Each Data Port tracks their writes towards L3 and wait for them to reach to

GO. GO message is given by L3

a. For Non-coherent/virtual addressed Write: Once the ingress queue retires the write in the

corresponding node to targeted bank.

b. For Coherent/physical addressed Write: Once the ownership is obtained for the write (i.e. read-for-

ownership or invalid-to-modified) which means write is GO with respect to IA cores.

GO information is used within data port to make sure handle releases are gated until the producer’s

updates are globally visible.

2. Thread Level Flush: EU threads have the capability to push globally tagged data from L3 to next

level caches. Usage is not recommended.

8 Doc Ref # IHD-OS-TGL-Vol 7-12.21

Invalidation and Flushes

There are two different sources to initiate flushes and invalidations:

• Command Streamer initiated

• EU/thread initiated

Both cases have two modes of operation

• Non-IA coherent L3

• IA coherent L3

In addition, there are side flows that back up the various flows and they do require invalidation/flush

sequences to be executed for their purpose. Their behavior has no impact between two modes of L3

operation.

• Global Invalidation

• Power Management Invalidation

Command Streamer Invalidation Flows

The Command streamer can initiate the following flush/invalidation flows.

1. Top of the pipe invalidations: These are direct, asynchronous commands from the command

streamer unit to L3 in respective slices.

2. Pipeline flush: These commands flow through the pipe and are issued through the data port to

the L3 cache in each slice.

Non-IA Coherent Flows

This is the traditional flow where the content of L3 needs to be invalidated or flushed.

Top of the Pipe Invalidations

For this case, the invalidation causes the cache to drain all FIFOs and pipelines, and the node performs all

invalidations. Only after completion in all slices will new transactions be sent to the L3.

The Top of the Pipe invalidation is intended for cases where invalidation and completion need to be

coordinated between slices. Therefore, each slice performs invalidation, but will not proceed until all

slices have completed the invalidation.

Pipeline Flush

Pipeline invalidation is much simpler and optimized for performance. In this case there is no need to

coordinate between slices and the operation is more like a "sync" point. Transactions arriving after the

invalidation request will still be queued in the SQ but will only be processed after the invalidation of all

candidate lines in the cache is complete. The invalidation acts like a fence.

Doc Ref # IHD-OS-TGL-Vol 7-12.21 9

The pipeline flush send via the dataport will only flush dataport generated allocations. In previous

generations this was not optimized and used flush all content of L3 cache.

IA-Coherent Flows

In principle IA-coherent flow is same from the L3 cache perspective, the only difference is within the

banks given the data that we are trying to flush or invalidate is already coherent with IA. Such case

eliminates the need to push any bank content explicitly out to LLC.

The L3 bank will ensure that the transactions in flight are all globally observable when a flush/invalidation

is received.

EUThread Flows

There is continued support for the EUs to perform flush/invalidation events that are not coordinated with

other EUs. The data cluster will relate the request to the corresponding L3 and require the entire content

of this buffer to be invalidated or flushed to relative coherency domain.

The IA-coherent vs non-IA coherent treatment is same as command streamer flows and still applicable

for EU/Thread Flows for invalidation/flush.

Power Management Invalidation

Given we have a IA-coherent mode where a standard pipeline flush does not push the modified lines to

outside of GT and we are progressing to deferred invalidations, we need a way to ensure L3 content is

cleared and deferred events are complete. This is where PM interaction will have to be introduced.

Corresponding PM will message to L3 config agent to request a flush when needed. Main usage mode is

prior to entering RC6. The rest of the treatment in the nodes is the same. Once flush/invalidate event is

complete, message(s) will be sent back to PM with the completion status.

L3 Cache Error Protection

L3 cache error protection is covered via ECC (SECDED). All accesses are subject to ECC protection where

single bit errors are fixed silently. Double bit errors are reported via a register structure and

communicated by an interrupt to GFX driver. L3 cache HW is additionally capable of stalling execution

upon a double bit error.

