

Intel® Open Source HD Graphics, Intel Iris™ Graphics, and

Intel Iris™ Pro Graphics

Programmer's Reference Manual

For the 2015 - 2016 Intel Core™ Processors, Celeron™ Processors,

and Pentium™ Processors based on the "Skylake" Platform

Volume 6: Command Stream Programming

May 2016, Revision 1.0

 Command Stream Programming

ii Doc Ref # IHD-OS-SKL-Vol 6-05.16

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 iii

Table of Contents

Graphics Command Formats ... 1

Command Header .. 2

Memory Interface Commands .. 5

2D Commands ... 7

3D Commands ... 8

VEBOX Commands .. 13

MFX Commands ... 13

Scheduling ... 15

RINGBUF — Ring Buffer Registers .. 15

Command Stream Virtual Memory Control ... 15

Execlists .. 15

Execlist Structure .. 16

Overall Context Layout .. 17

Context Layout ... 17

Ring Context ... 17

Ring Buffer.. 17

Context Descriptor Format .. 18

Logical Ring Context Format .. 18

Context Status ... 20

Render Engine Command Streamer (RCS) .. 23

Batch Buffer Privilege Register .. 24

Mode Registers ... 24

Logical Context Support .. 24

Context Save Registers .. 25

MI Commands for Render Engine ... 25

Watchdog Timer Registers ... 26

Interrupt Control Registers ... 27

Bit Definition for Interrupt Control Registers: ... 27

Hardware-Detected Error Bit Definitions (for EIR EMR ESR) ... 28

Blitter Engine Command Streamer (BCS) ... 28

Logical Context Support .. 29

Mode Registers ... 30

 Command Stream Programming

iv Doc Ref # IHD-OS-SKL-Vol 6-05.16

MI Commands for Blitter Engine.. 30

Video Command Streamer (VCS) ... 31

Watchdog Timer Registers ... 32

Logical Context Support .. 33

Mode Registers ... 34

Registers in Media Engine .. 34

GFX Pending TLB Cycles Information Registers .. 34

Memory Interface Commands for Video Codec Engine ... 35

Video Enhancement Engine Command Interface .. 36

VECS_RINGBUF — Ring Buffer Registers .. 36

Logical Context Support .. 36

Mode Registers ... 37

MI Commands for Video Enhancement Engine ... 37

Watchdog Timers .. 38

The Per-Process Hardware Status Page .. 39

Preemption .. 39

Ring Buffer Scheduling .. 40

ExecList Scheduling ... 41

Command Streamer (CS) ALU Programming ... 43

MI Commands for Graphics Processing Engines .. 43

User Mode Privileged Commands .. 44

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 1

Graphics Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the

header DWord. The header contains the only field common to all commands, the client field that

determines the device unit that processes the command data. The Command Parser examines the client

field of each command to condition the further processing of the command and route the command

data accordingly.

Graphics commands vary in length, though are always multiples of DWords. The length of a command is

either:

 Implied by the client/opcode

 Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows

how much data to copy/process)

 Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be placed in

Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a

diagram of the formats of the header DWords for all commands. Following that is a list of command

mnemonics by client type.

 Command Stream Programming

2 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Command Header

Render Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord

Commands

 1Xh – Two+ DWord

Commands

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Reserved 001,

 010

Opcode – 11111 23:19

 Sub Opcode 00h –

01h

18:16

 Reserved

15:0

 DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord Count

Common (NP)1 011 00 Opcode – 001 Sub Opcode Data DWord Count

Reserved 011 00 Opcode – 010 – 111

Single Dword

Command

011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord Count

3DState (NP)1 011 11 Opcode – 001 Sub Opcode Data DWord Count

PIPE_Control 011 11 Opcode – 010 Data DWord Count

3DPrimitive 011 11 Opcode – 011 Data DWord Count

Reserved 011 11 Opcode – 100 – 111

Reserved 100 XX

Reserved 101 XX

Reserved 110 XX

Notes:

1The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed before

such a state variable is updated. The other state variables are pipelined (default).

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 3

Video Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Reserved

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for VC1 Common) 011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

 Command Stream Programming

4 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Video Enhancement Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Two+ DWord Commands

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Reserved 001, 010

TYPE 31:29 28:27 26:24 23:21 20:16 15:12 11:0

VEBOX

(Parallel Video Pipe)

011
10: Pipeline

00: Reserved

01: Reserved

11: Reserved

Command

Opcode – 100

Sub Opcode A Sub Opcode B Reserved Dword

Count

Blitter Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Two+ DWord Commands

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Reserved 001, 011

TYPE 31:29 28:22 21:9 8:0

Blitter (2D) 010 Command Opcode Command Dependent Data Dword Count

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 5

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by the

2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

 Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)

 Hardware synchronization (e.g., flush, wait-for-event)

 Software synchronization (e.g., Store DWORD, report head)

 Graphics buffer definition (e.g., Display buffer, Overlay buffer)

 Miscellaneous functions

All of the following commands are defined in Memory Interface Commands.

Memory Interface Commands for RCP

Opcode

 (28:23) Command Pipes

1 DWord

00h MI_NOOP All

01h MI_SET_PREDICATE Render

02h MI_USER_INTERRUPT All

03h MI_WAIT_FOR_EVENT All

05h MI_ARB_CHECK All

06h MI_RS_CONTROL Render

07h MI_REPORT_HEAD All

08h MI_ARB_ON_OFF All except Blitter

09h MI_URB_ATOMIC_ALLOC Render

0Ah MI_BATCH_BUFFER_END All

0Bh MI_SUSPEND_FLUSH All

0Ch MI_PREDICATE Render

0Dh MI_TOPOLOGY_FILTER Render

0Fh MI_RS_CONTEXT Render

2+ DWord

10h Reserved

14h MI_DISPLAY_FLIP Render and Blitter

15h Reserved

16h MI_SEMAPHORE_MBOX All

17h Reserved

18h MI_SET_CONTEXT Render

1Ah MI_MATH All

1Bh MI_SEMAPHORE_SIGNAL All

 Command Stream Programming

6 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Opcode

 (28:23) Command Pipes

1 DWord

1Ch MI_SEMAPHORE_WAIT All

1Dh MI_FORCE_WAKEUP All except Render

1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All

21h MI_STORE_DATA_INDEX All

22h MI_LOAD_REGISTER_IMM All

23h MI_UPDATE_GTT All

24h MI_STORE_REGISTER_MEM All

26h MI_FLUSH_DW All except Render

27h MI_CLFLUSH Render

29h MI_LOAD_REGISTER_MEM All

2Ah MI_LOAD_REGISTER_REG All

2Bh MI_RS_STORE_DATA_IMM Render

2Ch MI_LOAD_URB_MEM Render

2Dh MI_STORE_URB_MEM Render

2Eh MI_MEM_TO_MEM All

2Fh MI_ATOMIC All

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START Render

32h-35h Reserved

36h MI_CONDITIONAL_BATCH_BUFFER_END All

37h-38h Reserved

39h-3Fh Reserved

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 7

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT engine

state without actually performing a BLT. Most commands are of fixed length, though there are a few

commands that include a variable amount of "inline" data at the end of the command.

All the following commands are defined in Blitter Instructions.

2D Command Map

Opcode

(28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

41h-42h Reserved

43h SRC_COPY_BLT

44h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah-70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

 Command Stream Programming

8 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Opcode

(28:22) Command

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter

for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D

Pipeline.

3D Command Map

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 03h Reserved

0h 04h 3DSTATE_CLEAR_PARAMS 3D Pipeline

0h 05h 3DSTATE_DEPTH_BUFFER 3D Pipeline

0h 06h 3DSTATE_STENCIL_BUFFER 3D Pipeline

0h 07h 3DSTATE_HIER_DEPTH_BUFFER 3D Pipeline

0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

0h 0Ch 3DSTATE_VF Vertex Fetch

0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline

0h 0Eh 3DSTATE_CC_STATE_POINTERS 3D Pipeline

0h 10h 3DSTATE_VS Vertex Shader

0h 11h 3DSTATE_GS Geometry Shader

0h 12h 3DSTATE_CLIP Clipper

0h 13h 3DSTATE_SF Strips & Fans

0h 14h 3DSTATE_WM Windower

0h 15h 3DSTATE_CONSTANT_VS Vertex Shader

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 9

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 16h 3DSTATE_CONSTANT_GS Geometry Shader

0h 17h 3DSTATE_CONSTANT_PS Windower

0h 18h 3DSTATE_SAMPLE_MASK Windower

0h 19h 3DSTATE_CONSTANT_HS Hull Shader

0h 1Ah 3DSTATE_CONSTANT_DS Domain Shader

0h 1Bh 3DSTATE_HS Hull Shader

0h 1Ch 3DSTATE_TE Tesselator

0h 1Dh 3DSTATE_DS Domain Shader

0h 1Eh 3DSTATE_STREAMOUT HW Streamout

0h 1Fh 3DSTATE_SBE Setup

0h 20h 3DSTATE_PS Pixel Shader

0h 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP Strips & Fans

0h 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC Windower

0h 24h 3DSTATE_BLEND_STATE_POINTERS Pixel Shader

0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS Pixel Shader

0h 26h 3DSTATE_BINDING_TABLE_POINTERS_VS Vertex Shader

0h 27h 3DSTATE_BINDING_TABLE_POINTERS_HS Hull Shader

0h 28h 3DSTATE_BINDING_TABLE_POINTERS_DS Domain Shader

0h 29h 3DSTATE_BINDING_TABLE_POINTERS_GS Geometry Shader

0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS Pixel Shader

0h 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS Vertex Shader

0h 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS Hull Shader

0h 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS Domain Shader

0h 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS Geometry Shader

0h 2Fh Reserved

0h 30h 3DSTATE_URB_VS Vertex Shader

0h 31h 3DSTATE_URB_HS Hull Shader

0h 32h 3DSTATE_URB_DS Domain Shader

0h 33h 3DSTATE_URB_GS Geometry Shader

0h 34h 3DSTATE_GATHER_CONSTANT_VS Vertex Shader

0h 35h 3DSTATE_GATHER_CONSTANT_GS Geometry Shader

0h 36h 3DSTATE_GATHER_CONSTANT_HS Hull Shader

0h 37h 3DSTATE_GATHER_CONSTANT_DS Domain Shader

0h 38h 3DSTATE_GATHER_CONSTANT_PS Pixel Shader

0h 39h 3DSTATE_DX9_CONSTANTF_VS Vertex Shader

0h 3Ah 3DSTATE_DX9_CONSTANTF_PS Pixel Shader

 Command Stream Programming

10 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 3Bh 3DSTATE_DX9_CONSTANTI_VS Vertex Shader

0h 3Ch 3DSTATE_DX9_CONSTANTI_PS Pixel Shader

0h 3Dh 3DSTATE_DX9_CONSTANTB_VS Vertex Shader

0h 3Eh 3DSTATE_DX9_CONSTANTB_PS Pixel Shader

0h 3Fh 3DSTATE_DX9_LOCAL_VALID_VS Vertex Shader

0h 40h 3DSTATE_DX9_LOCAL_VALID_PS Pixel Shader

0h 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS Vertex Shader

0h 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS Pixel Shader

0h 43h 3DSTATE_BINDING_TABLE_EDIT_VS Vertex Shader

0h 44h 3DSTATE_BINDING_TABLE_EDIT_GS Geometry Shader

0h 45h 3DSTATE_BINDING_TABLE_EDIT_HS Hull Shader

0h 46h 3DSTATE_BINDING_TABLE_EDIT_DS Domain Shader

0h 47h 3DSTATE_BINDING_TABLE_EDIT_PS Pixel Shader

0h 48h 3DSTATE_VF_HASHING Vertex Fetch

0h 49h 3DSTATE_VF_INSTANCING Vertex Fetch

0h 4Ah 3DSTATE_VF_SGVS Vertex Fetch

0h 4Bh 3DSTATE_VF_TOPOLOGY Vertex Fetch

0h 4Ch 3DSTATE_WM_CHROMA_KEY Windower

0h 4Dh 3DSTATE_PS_BLEND Windower

0h 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower

0h 4Fh 3DSTATE_PS_EXTRA Windower

0h 50h 3DSTATE_RASTER Strips & Fans

0h 51h 3DSTATE_SBE_SWIZ Strips & Fans

0h 52h 3DSTATE_WM_HZ_OP Windower

0h 53h 3DSTATE_INT (internally generated state) 3D Pipeline

0h 54h 3DSTATE_RS_CONSTANT_POINTER Resource Streamer

0h 55h 3DSTATE_VF_COMPONENT_PACKING Vertex Fetch

0h 56h Reserved

0h 57h-59h Reserved

 60h-68h Reserved

 69h Reserved

0h 6Ah-6Bh Reserved

0h 6Ch-FFh Reserved

1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

1h 03h Reserved

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 11

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

1h 05h Reserved

1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

1h 08h 3DSTATE_LINE_STIPPLE Windower

1h 0Ah 3DSTATE_AA_LINE_PARAMS Windower

1h 0Bh 3DSTATE_GS_SVB_INDEX Geometry Shader

1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 Sampling Engine

1h 0Dh 3DSTATE_MULTISAMPLE Windower

1h 0Eh 3DSTATE_STENCIL_BUFFER Windower

1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER Windower

1h 10h 3DSTATE_CLEAR_PARAMS Windower

1h 11h 3DSTATE_MONOFILTER_SIZE Sampling Engine

1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS Vertex Shader

1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS Hull Shader

1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS Domain Shader

1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS Geometry Shader

1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS Pixel Shader

1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

1h 18h 3DSTATE_SO_BUFFER HW Streamout

1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Resource Streamer

1h 1Ah 3DSTATE_GATHER_POOL_ALLOC Resource Streamer

1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC Resource Streamer

1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower

1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline

1h 1Eh-FFh Reserved

2h 00h PIPE_CONTROL 3D Pipeline

2h 01h-FFh Reserved

3h 00h 3DPRIMITIVE Vertex Fetch

3h 01h-FFh Reserved

4h-7h 00h-FFh Reserved

Pipeline Type (28:27) Opcode Sub Opcode Command Definition Chapter

Common (pipelined) Bits 26:24 Bits 23:16

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

 Command Stream Programming

12 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Common (non-pipelined) Bits 26:24 Bits 23:16

0h 1h 00h Reserved N/A

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 03h Reserved 3D Pipeline

0h 1h 04h GPGPU CSR BASE ADDRESS Graphics Processing Engine

0h 1h 05h-1Dh Reserved

0h 1h 1Eh Reserved

0h 1h 1Fh-20h Reserved

0h 1h 21h-24h Reserved

0h 1h 25h-FFh Reserved N/A

Reserved Bits 26:24 Bits 23:16

0h 2h-7h XX Reserved N/A

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 13

VEBOX Commands

The VEBOX commands are used to program the Video Enhancement engine attached to the Video

Enhancement Command Parser.

VEBOX Command Map

Pipeline Type (28:27) Opcode (26:24) SubopA (23:21) SubopB (20:16) Command

2h 4h 0h 0h VEBOX_SURFACE_STATE

2h 4h 0h 2h VEBOX_STATE

2h 4h 0h 3h VEBOX_DI_IECP

2h 4h 0h 1h VEBOX_TILING_CONVERT

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format codec

engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a description

of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of

indirect state model is provided here (as a software usage guideline).

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

MFX Common (State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE N/A

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE N/A

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_S

TATE

MFX IMAGE N/A

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_S

TATE

MFX IMAGE N/A

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE N/A

2h 0h 0h 7-8h Reserved N/A N/A N/A

MFX Common (Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX N/A Yes

2h 0h 0h 4-1Fh Reserved N/A N/A N/A

AVC Common (State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE N/A

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE N/A

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STA

TE

MFX SLICE N/A

 Command Stream Programming

14 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE N/A

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE N/A

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_S

TATE

MFX SLICE N/A

2h 1h 0h 6-1Fh Reserved N/A N/A N/A

AVC Dec

2h 1h 1h 0-7h Reserved N/A N/A N/A

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX N/A No

2h 1h 1h 9-1Fh Reserved N/A N/A N/A

AVC Enc

2h 1h 2h 0-1h Reserved N/A N/A N/A

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE N/A

2h 1h 2h 3-7h Reserved N/A N/A N/A

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJE

CT

MFX N/A N/A

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX N/A Yes

2h 1h 2h A-1Fh Reserved N/A N/A N/A

2h 1h 2h 0-1Fh Reserved N/A N/A N/A

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE N/A

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE N/A

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STA

TE

MFX SLICE N/A

2h 2h 0h 2-1Fh Reserved N/A N/A N/A

VC1 Dec

2h 2h 1h 0-7h Reserved N/A N/A N/A

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX N/A Yes

2h 2h 1h 9-1Fh Reserved N/A N/A N/A

VC1 Enc

2h 2h 2h 0-1Fh Reserved N/A N/A N/A

MPEG2 Common

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE N/A

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE N/A

2h 3h 0h 2-1Fh Reserved N/A N/A N/A

MPEG2 Dec

2h 3h 1h 1-7h Reserved N/A N/A N/A

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 15

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX N/A Yes

2h 3h 1h 9-1Fh Reserved N/A N/A N/A

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved N/A N/A N/A

The Rest

2h 4-5h, 7h x x Reserved N/A N/A N/A

Scheduling

RINGBUF — Ring Buffer Registers

See the “Device Programming Environment” chapter for detailed information on these registers.

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Command Stream Virtual Memory Control

Per-Process GTT (PPGTT) is setup for an engine (Render, Blitter, Video and Video Enhancement) by

programming corresponding Page Directory Pointer (PDP) registers listed below. Refer “Graphics

Translation Tables” in “Memory Overview” for more details on Per-Process page table entries and related

translations.

Execlists

Execlists are the method by which new contexts are submitted for execution. Note that this mechanism

cannot be used when the Execlist Enable bit in the corresponding engines MODE register is not set, i.e

GFX_MODE register for Render Engine, BLT_MODE register for Blitter Engine, VCS_MODE register for

Video Engine, or VECS_MODE register for Video Enhancement Engine. If this bit is not set in the engine's

MODE register, writing to the registers in this section is UNDEFINED.

Broadwell implements two execlists. Each execlist can have up to two context descriptors in it, each

describing a context to run. SW assembles an execlist by writing each of the context descriptor elements

to the Execlist Submit Port register. Writing the final DWord triggers the submission. It is the

responsibility of SW to keep track of when an empty execlist entry is available to receive a new execlist

submitted via the Submit Port. Submitting a new execlist when there is already a pending execlist (in

addition to the current execlist) is UNDEFINED. In general, the interrupt indicating that the pending

execlist has become the current execlist should always be observed before a new pending execlist is

 Command Stream Programming

16 Doc Ref # IHD-OS-SKL-Vol 6-05.16

submitted. This includes the case where the ring is idle and the very first execlist is submitted; it should

not be assumed that this execlist becomes the current list instantaneously.

The submission of a new execlist (known as a preemption request) is interpreted as a request to switch

execlists as soon as possible. This is the only trigger for an execlist switch. Within an execlist, a switch

from one element (context) to the next can be triggered for several reasons, all of which are synchronous

to what the running context itself is doing. Once a context is switched out, the relevant context state and

context descriptor doesn’t exist in HW, only way the context can be brought back in to HW is by SW

resubmitting the context through Execlist Submit Port.

SW must ensure the contexts submitted to both the context descriptors in the execlist are different; i.e

SW must not submit the same context descriptor to both the elements of the execlist.

The following are Execlist Registers:

Execlist Submit Port Register

Execlist 1 Contents

EXECLIST_STATUS - Execlist Status Register

Execlist Structure

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 17

Before submitting a context for the first time, the context image must be properly initialized. Proper

initialization includes the ring context registers (ring location, head/tail pointers, etc.) and the page

directory.

Render CS Only: Render state need not be initialized; the Render Context Restore Inhibit bit in the

Context/Save image in memory should be set to prevent restoring garbage render context. See the

Logical Ring Context Format section for details.

Context Descriptor Format Structure

Overall Context Layout

Context Layout

When Execlists are enabled, the Context Image for the rendering engine consists of 20 4K pages:

Per-Process HW Status Page (4K)

Register State Context

When Execlists are disabled, the context image doesn’t consist the Per-Process HW status page.

Register State context is explained in detail in “Register State Context” Section.

Ring Context

Ring Context starts at 4K offset from LRCA. Ring context contains all the details that are needed to be

initialized by SW for submitting a context to HW for execution (Ring Buffer Details, Page Directory

Information, etc.). Ring context is five cachelines in size. Note that the last cacheline of the ring context is

specific for a given Engine and hence SW needs to populate it accordingly.

Ring Context comprises of the EXECLIST CONTEXT, EXECLIST CONTEXT (PPGTT Base) of the register state

context. In Ring Buffer mode of scheduling EXECLIST CONTEXT contents are save/restored as NOOPS by

HW.

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

Ring Buffer

Ring Buffer can exist anywhere in memory mapped via Global GTT. Ring buffer details are mentioned in

the ring context area of LRCA (Ring Buffer - Start Address, Head Offset, Tail Pointer & Control Register) in

Execution List mode of scheduling. Ring Buffer registers are directly programmed in Ring Buffer mode of

scheduling.

../../../../Content/BXmlSnippets/Structure_ContextDescriptorFormat_DevBDW+_BSpec.html

 Command Stream Programming

18 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Context Descriptor Format

Context Descriptor Format

Before submitting a context for the first time, the context image must be properly initialized. Proper

initialization includes the ring context registers (ring location, head/tail pointers, etc.) and the page

directory.

Render CS Only: Render state need not be initialized; the Render Context Restore Inhibit bit in the

Context/Save image in memory should be set to prevent restoring garbage render context. See the

Logical Ring Context Format section for details.

Programming Note on Context ID field in the Context Descriptor

This section describes the current usage by SW.

Layout:

6

3

6

2

6

1

6

0

5

9

5

8

5

7

5

6

5

5

5

4

5

3

5

2

5

1

5

0

4

9

4

8

4

7

4

6

4

5

4

4

4

3

4

2

4

1

4

0

3

9

3

8

3

7

3

6

3

5

3

4

3

3

3

2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

Eng. ID SW Counter

HW

Use SW Context ID

Logical Ring Context Format

Context descriptor has the graphics virtual address pointing to the logical context in memory. Logical

context has all the details required for an engine to execute a context. This is the only means through

which software can pass on all the required information to hardware for executing a context. Engine first

step on selecting a context for execution is to restore (fetch-context save) the logical context from

memory to setup the appropriate state in the hardware. Engine on switching out the context from

execution saves (store- context restore) the latest updated state to logical context in memory, the

updated state is result of the command buffer execution.

When execution lists are enabled, the Logical Context of each engine (Render, Video, Blitter, Video

Enhancement, etc.) primarily consists of the following sections:

 Per-Process HW Status Page (4K)

 Ring Context (Ring Buffer Control Registers, Page Directory Pointers, etc.)

 Engine Context (PipelineState, Non-pipelineState, Statistics, MMIO)

Per-Process of HW status Page (PPHWSP)

This is a 4KB scratch space memory allocated for each of the context in global address space. First few

cachelines are used by the engine for implicit reports like auto-report of head pointer, timestamp

statistics associated with a context execution, rest of the space is available for software as scratch space

for reporting fences through MI commands. Context descriptor points to the base of Per-Process HW

status page. See the PPHWSP format in PPHWSP_LAYOUT.

../../../../Content/BXmlSnippets/Structure_PPHWSP_LAYOUT_BDW+_BSpec.html

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 19

Logical Ring Context

Logical Ring Context starts immediately following the PPHWSP in memory. Logical ring context is five

cachelines in size. This is the minimal set of hardware state required to be programmed by SW for setting

up memory access and the ring buffer for a context to be executed on an engine. Memory setup is

required for appropriate address translation in the memory interface. Ring buffer details the location of

the ring buffer in global graphics virtual address space with its corresponding head pointer and the tail

pointer. Ring context also has “Context Save/Restore Control Register-CTXT_SR_CTL” which details the

engine context save/restore format. Engine first restores the Logical Ring Context and upon processing

CTXT_SR_CTL it further decides the due course of Engine Context restore. Logical Ring Context is mostly

identical across all engines. Logical ring context is saved to memory with the latest up to date state when

a context is switched out.

Engine Context

Engine context starts immediately following the logical ring context in memory. This state is very specific

to an engine and differs from engine to engine. This part of the context consists of the state from all the

units in the engine that needs to be save/restored across context switches. Engine restores the engine

context following the logical ring context restore. It is tedious for software to populate the engine

context as per the requirements, it is recommended to implicitly use engine to populate this portion of

the context. Below method can be followed to achieve the same:

 When a context is submitted for the first time for execution, SW can inhibit engine from restoring

engine context by setting the “Engine Context Restore Inhibit” bit in CTXT_SR_CTL register of the

logical ring context. This will avoid software from populating the Engine Context. Software must

program all the state required to initialize the engine in the ring buffer which would initialize the

hardware state. On a subsequent context save engine will populate the engine context with

appropriate values.

 Above method can be used to create a complete logical context with engine context populated by

the hardware. This Logical context can be used as an Golden Context Image or template for

subsequently created contexts.

Engine saves the engine context following the logical ring context on switching out a context.

The detailed format of the logical ring context (Blitter/Video/VideoEnhancement) is documented in the

Memory Data Formats chapter.

The detailed formats of the Render Logical Ring and Engine Context, including their size, is mentioned in

the “Register/State Context” topic for each product.

../../../../Content/GPU_Overview/Memory%20Data%20Formats.htm

 Command Stream Programming

20 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Context Status

A context switch interrupt will be sent anytime a context switch or execlist change occurs (including the

execlist change without context switch scenario described in the ELSP -- Execlist Submit Port Register

section). A status QW for the context that was just switched away from will be written to the Context

Status Buffer in the Global Hardware Status Page. A copy of the Context Status Buffer is also maintained

ON CHIP inside the command streamer, which is MMIO mapped and can be read/written using MMIO

access.

Context Status Buffer in Global Hardware Status Page is exercised when IA based scheduling is done. The

status contains the context ID and the reason for the context switch. Note that since there will have been

no running contexts when the very first (after reset) execlist is submitted or when HW is idle, the Context

ID in the first Context Status Qword will be UNDEFINED, this is indicated by setting IDLE to ACTIVE bit in

the context status.

Format of Context Status QWord

Bits Description

63:32 Context ID

31:29 Reserved

28 Reserved

27:24 Reserved

23:20 Reserved

19:16 Display Plane. This indicates the display plane for which Wait on Scanline/V-Blank/Sync Flip has been

executed leading to context switch. This field is only valid when one of the "Wait on Scanline" or "Wait on

Vblnak" or "Wait on sync Flip" is set.

 0000b: Reserved (Look at field 14:12)

 0001b: Reserved

 0010b: Reserved

 0011b: Display Plane-7

 0100b: Display Plane-8

 0101b: Display Plane-9

 0110b: Display Plane-10

 0111b: Display Plane-11

 1000b: Display Plane-12

 1001b to 1111b: Reserved

15 Lite Restore. This bit is only valid only when Preempted bit is set. When set, this bit indicates a given context

got preempted with the same context resulting in Lite Restore in HW.

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 21

Bits Description

14:12 Display Plane. This indicates the display plane for which Wait on Scanline/V-Blank/Sync Flip has been

executed leading to context switch.

 This field must be looked at only when Display Plane on bits [19:16] is "0000b" and when one of the "Wait

on Scanline" or "Wait on Vblank" or "Wait on sync Flip" is set.

 000b: Display Plane-1(Pipe A if Wait on V-blank)

 001b: Display Plane-2(Pipe B if Wait on V-blank)

 010b: Display Plane-3(Pipe C if Wait on V-blank)

 011b: Display Plane-4

 100b: Display Plane-5

 101b: Display Plane-6

11 Semaphore Wait Mode

 0: Signal Mode

 1: Poll Mode

 This field is valid and must be looked at only when the "Wait on Semaphore" field is set.

10 Reserved

9 Reserved

8 Wait on Scanline has resulted in context switch.

7 Wait on Semaphore has resulted in context switch.

6 Wait on V-Blank has resulted in context switch.

5 Wait on Sync Flip has resulted in context switch.

4 Context Complete Element is completely processed (Head eqv to Tail) and resulted in a context switch.

3 ACTIVE to IDLE following this context switch there is no active element available in HW to execute.

2 Element Switch. Context Switch happened from first element in the current execlist to the second element

of the same execlist.

1 Preempted. Submission of a new execlist has resulted in context switch. The switch is from element in

current execlist to element in pending execlist.

0 IDLE to ACTIVE. Execlist Submitted when HW is IDLE.

 When this bit is set rest of the fields in CSQ are not valid.

Context Status should be inferred as described in the tables below. In the two tables below only one of

the context switch types will be set and it's quite possible multiple context switch reasons are set. A "Y" in

a cell indicates the possibility of the context switch type for the corresponding context switch reason.

Inference of Context Status

Ctx Switch Type

 Ctx Switch Reason IDLE to Active

Preempted/

 Execlist Switch **Element Switch ACTIVE to IDLE

Context Complete X Y Y Y

Wait on Sync Flip X Y Y Y

Wait on V-Blank X Y Y Y

Wait on ScanLine X Y Y Y

Wait on Semaphore X Y Y Y

 Command Stream Programming

22 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Ctx Switch Type

 Ctx Switch Reason IDLE to Active

Preempted/

 Execlist Switch **Element Switch ACTIVE to IDLE

High Priority Context Y Y X Y

** This field is not valid when High Priority Context field is set and HW must force it to '0'.

When SW services a context switch interrupt, it should read the Context Status Buffer beginning where it

left off reading the last time it serviced a context switch interrupt. It should read up to the Context

Status Buffer Write Pointer, which is recorded in the Context Status Buffer Pointer register. At the end

of the context switch interrupt processing SW will update the Context Status Buffer Read Pointer with

the write buffer pointer value. The status QWs can be examined to determine which contexts were

switched out between context interrupt service intervals, and why.

Number of Context Status Entries

Number of Status Entries

6 (QW) Entries

Status QWords are written to the Context Status Buffer at incrementing locations. The Context Status

Buffer has a limited size (see Table Number of Context Status Entries) and simply wraps around to the

beginning when the end is reached. Normally the number of status updates that can occur without SW

intervening to submit a new execlist (and presumably reading any new status) is the number of execlists

times the maximum number of context elements per execlist. Also note that there is no predictable

relationship between a context's position in an execlist and the position of its corresponding status

QWord in the Context Status Buffer.

The Context Status Buffer fits into a single cacheline so that the whole buffer is read from memory at

once if the driver performs a cacheable read.

Format of the Context Status Buffer

QW Description

7 Last Written Status Offset. The lower byte of this QWord is written on every context switch with the (pre-

increment) value of the b>Context Status Buffer Write Pointer. The lower 3 bits increment for every status

QWord write; bits[7:3] are reserved and must be '0'. The lowest 3 bits indicate which of the Context Status

QWords was just written. The rest of the bits [63:8] are reserved.

6 Reserved: MBZ

5:0 Context Status QWords. A circular buffer of context status QWs. As each context is switched away from, its

status is written here at ascending QWs as indicated by the Last Written Status Offset. Once QW 5 has been

written, the pointer wraps around so that the next status will be written at QW0.

 Format = ContextStatusDW

The following are Context Status Registers:

CTXT_ST_BUF - Context Status Buffer Contents

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 23

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching

of data packets (3D/Media Commands with the header DWord removed) to the front end interface

module of Render Engine.

Logic Functions Included

 MMIO register programming interface.

 DMA action for fetching of ring data from memory.

 Management of the Head pointer for the Ring Buffer.

 Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) &

GPGPU.

 Handling of user interrupts.

 Flushing the 3D and GPGPU Engine.

 Handle NOP.

 DMA action for fetching of execlists from memory.

 Handling of ring context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The

RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to 0x27FF. The

Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards

Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the

actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to

the tail pointer.

 Command Stream Programming

24 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Batch Buffer Privilege Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

Mode Registers

The following are the Mode Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

RS_PRE_HINT - RS Preemption Hint

RS_PREEMPTION_HINT_UDW - RS Preemption Hint UDW

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

CCID - Current Context Register

CXT_SIZE - Context Sizes

RS_CXT_OFFSET - Resource Streamer Context Offset

URB_CXT_OFFSET - URB Context Offset

VF_CXT_OFFSET - Vertex Fetch Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 25

Register

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

R_PWR_CLK_STATE - Render Power Clock State Register

CS_CONTEXT_STATUS1 - Context Status1 for RCS-BE

Context Save Registers

The following are the Context Save Registers:

Register

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

GAM_CTX - GAM Context Save Register

LNCF_CTX - LNCF Context Save Register

TDL_CONTEXT_SAVE - Context Save Request to TDL

MI Commands for Render Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for

Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing

the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

 Command Stream Programming

26 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Commands

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Watchdog Timer Registers

These registers together implement a watchdog timer. Writing ones to the control register enables the

counter, and writing zeros disables the counter. The second register is programmed with a threshold

value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold

value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle

sequences. SW must enable and disable watch dog timer for any given workload within the same

command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for

events commands so that HW can trigger appropriate idle sequence for power savings.

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 27

Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit

definition is as follows:

Bit Definition for Interrupt Control Registers:

Bit Definition for Interrupt Control Registers - Render

Bit Definition for Interrupt Control Registers - Blitter

Bit Definition for Interrupt Control Registers - Media#1

Bit Definition for Interrupt Control Registers - Media#2

Bit Definition for Interrupt Control Registers - Video Enhancement

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to

ISR changes:

Bit Interrupt Bit

ISR Bit Reporting Via

Hardware Status Write

(When Unmasked Via

HWSTAM)

9 Reserved

8 Context Switch Interrupt. Set when a context switch has just occurred. Not supported to be

unmasked.

7 Page Fault. This bit is set whenever there is a pending PPGTT (page or directory)

fault.

 This interrupt is for handling Legacy Page Fault interface for all Command

Streamers (BCS, RCS, VCS, VECS). When Fault Repair Mode is enabled, Interrupt

mask register value is not looked at to generate interrupt due to page fault.

Please refer to vol1c "Page Fault Support" section for more details.

Set when event occurs,

cleared when event cleared.

 Not supported to be

unmasked.

6 Media Decode Pipeline Counter Exceeded Notify Interrupt. The counter

threshold for the execution of the media pipeline is exceeded. Driver needs to

attempt hang recovery.

Not supported to be

unmasked. Only for Media

Pipe.

5 L3 Parity interrupt Only for Render Pipe

4 Flush Notify Enable 0

3 Master Error Set when error occurs,

cleared when error cleared.

2 Reserved

0 User Interrupt 0

IMR - Interrupt Mask Register

Command Streamer (All) > Hardware Status Mask Register

 Command Stream Programming

28 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Hardware-Detected Error Bit Definitions (for EIR EMR ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,

EMR, and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.

Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the

appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with 1 (except for the

unrecoverable bits described below).

The following structures describe the Hardware-Detected Error bits:

RCS Hardware-Detected Error Bit Definitions Structure

BCS Hardware-Detected Error Bit Definitions Structure

VCS Hardware-Detected Error Bit Definitions Structure

VECS Hardware-Detected Error Bit Definitions Structure

The following are the EIR, EMR, and ESR registers:

EIR - Error Identity Register

EMR - Error Mask Register

ESR - Error Status Register

Blitter Engine Command Streamer (BCS)

The BCS (Blitter Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the Blitter Engine. It is responsible for fetching, decoding, and dispatching of

data packets (Blitter Commands) to the front end interface module of Blitter Engine.

Logic Functions Included

 MMIO register programming interface.

 DMA action for fetching of ring data from memory.

 Management of the Head pointer for the Ring Buffer.

 Decode of ring data and sending it to the blit engine.

 Handling of user interrupts.

 Flushing the Blitter Engine.

 Handle NOP.

 DMA action for fetching of execlists from memory.

 Handling of ring context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The

BCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x22000 to 0x224FF.

The Blitter, Render and Media Engines use semaphore to synchronize their operations.

BCS operates completely independent of the other render and media command streams.

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 29

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside BCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards Blit

Engine or the command parser. After execution of every command, the actual head pointer is updated.

The ring is considered empty when the head pointer becomes equal to the tail pointer.

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

CCID - Current Context Register

SBB_STATE - Second Level Batch Buffer State Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

../../../../Content/BXmlSnippets/Register_BatchBufferHeadPointerRegister_DevSNB+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchBufferUpperHeadPointerRegister_DevBDW+_BSpec.html
../../../../Content/BXmlSnippets/Register_SecondLevelBatchBufferHeadPointerRegister_DevHSW+_CommandStreamer.html
../../../../Content/BXmlSnippets/Register_SecondLevelBatchBufferUpperHeadPointerRegister_DevBDW+_BSpec.html
../../../../Content/BXmlSnippets/Register_WaitForEventandDisplayFlipFlagsRegister_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_WaitForEventandDisplayFlipFlagsRegister1_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_WaitForEventandDisplayFlipFlagsRegister2_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_DisplayMessageForwardStatusRegister_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchBufferStartHeadPointerRegister_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchBufferStartUpperHeadPointerRegister_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchAddressDifferenceRegister_DevHSW+_BSpec.html
../../../../Content/BXmlSnippets/Register_CurrentContextRegister_SKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_SecondLevelBatchBufferStateRegister_DevSKL+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchOffsetRegister_DevHSW+_BSpec.html
../../../../Content/BXmlSnippets/Register_RING_BUFFER_HEAD_PREEMPT_REG_DevIVB+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchBufferHeadPointerPreemptionRegister_DevHSW+_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchBufferUpperHeadPointerPreemptionRegister_DevBDW+_BSpec.html
../../../../Content/BXmlSnippets/Register_SecondLevelBatchBufferHeadPointerPreemptionRegister_DevHSW+_BSpec.html
../../../../Content/BXmlSnippets/Register_SecondLevelBatchBufferUpperHeadPointerPreemptionRegister_DevBDW+_BSpec.html
../../../../Content/BXmlSnippets/Register_PredicateRenderingDataResult1_DevHSW+_BSpec.html
../../../../Content/BXmlSnippets/Register_PredicateRenderingDataResult2_DevBDW+_BSpec.html
../../../../Content/BXmlSnippets/Register_IndirectContextPointer_DevBDW+EXCLUDEDevBDWA_BSpec.html
../../../../Content/BXmlSnippets/Register_IndirectContextOffsetPointer_DevBDW+EXCLUDEDevBDWA_BSpec.html
../../../../Content/BXmlSnippets/Register_BatchBufferPerContextPointer_DevBDW+_BSpec.html

 Command Stream Programming

30 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Mode Registers

The following are Mode Registers:

Registers

BCS_CXT_SIZE - BCS Context Sizes

MI_MODE - Mode Register for Software Interface

Mode Registers (continued)

Reisters

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

RESET_CTRL - Reset Control Register

PREEMPTION_HINT - Preemption Hint

PREEMPTION_HINT_UDW - Preemption Hint Upper DWord

Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

MI Commands for Blitter Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The term “for Blitter

Engine” in the title has been added to differentiate this chapter from a similar one describing the MI

commands for the Media Decode Engine and the Rendering Engine.

The commands detailed in this chapter are used across products. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 31

The following table lists the non-privileged registers that can be written to from a non-secure batch

buffer executed from Render Command Streamer.

User Mode Non-Privileged Registers

MMIO Name MMIO Offset Size in DWords

BCS_GPR 22600h 32

BCS_SWCTRL 22200h 32

Commands

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_FLUSH_DW

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of

data packets (Media Commands with the header DWord removed) to the front end interface module of

MFX Engine.

Its logic functions include:

 MMIO register programming interface

 DMA action for fetching of execlists and ring data from memory

 Management of the Head pointer for the Ring Buffer

 Command Stream Programming

32 Doc Ref # IHD-OS-SKL-Vol 6-05.16

 Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine

 Handling of user interrupts

 Handling of ring context switch interrupt

 Flushing the MFX Engine

 Handle NOP

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command

Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000

to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards

AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head

pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail

pointer.

Watchdog Timer Registers

The following registers are defined as Watchdog Timer registers:

PR_CTR_CTL - Watchdog Counter Control

PR_CTR_THRSH - Watchdog Counter Threshold

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 33

Logical Context Support

This section contains the registers for Logical Context Support.

Register

BB_STATE - Batch Buffer State Register

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_ADDR - Batch Buffer Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

CCID - Current Context Register

SBB_STATE - Second Level Batch Buffer State Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

 Command Stream Programming

34 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Mode Registers

The following are Mode Registers:

Mode Register

MI_MODE - Mode Register for Software Interface

INSTPM - Instruction Parser Mode Register

NOPID - NOP Identification Register

IDLEDLY - Idle Switch Delay

RESET_CTRL - Reset Control Register

PREEMPTION_HINT - Preemption Hint

PREEMPTION_HINT_UDW - Preemption Hint Upper DWord

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

Misc Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Registers in Media Engine

This topic describes the memory-mapped registers associated with the Memory Interface, including brief

descriptions of their use. The functions performed by some of these registers are discussed in more

detail in the Memory Interface Functions, Memory Interface Instructions, and Programming Environment

chapters.

The registers detailed in this chapter are used across multiple projects and are extensions to previous

projects. However, slight changes may be present in some registers (i.e., for features added or removed),

or some registers may be removed entirely. These changes are clearly marked within this chapter.

GFX Pending TLB Cycles Information Registers

The following registers contain information about cycles that did not complete their TLB translation.

Information is organized as 64 entries, where each entry has a valid and ready bit, collapsed into separate

registers.

TIMESTAMP - Reported Timestamp Count

CTX_TIMESTAMP - Context Timestamp Count

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 35

Memory Interface Commands for Video Codec Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for details.

MI Commands

MI_ARB_CHECK

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_MATH

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_LOAD_REGISTER_MEM

MI_ATOMIC

MI_FORCE_WAKEUP

 Command Stream Programming

36 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Video Enhancement Engine Command Interface

The following topics describe the Video Enhancement Engine Command Interface.

VECS_RINGBUF — Ring Buffer Registers

The following are Ring Buffer Registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Logical Context Support

The following are Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

BB_STATE - Batch Buffer State Register

TIMESTAMP - Reported Timestamp Count

CTX_TIMESTAMP - Context Timestamp Count

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

CCID - Current Context Register

SBB_STATE - Second Level Batch Buffer State Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 37

Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

Mode Registers

Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

MI Commands for Video Enhancement Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for details.

MI Command

MI_ARB_CHECK

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_LOAD_REGISTER_REG

MI_MATH

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_ATOMIC

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_MEM

MI_FORCE_WAKEUP

 Command Stream Programming

38 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Watchdog Timers

Watchdog Counter Control

The Watchdog Counter Control determines if the watchdog is enabled, disabled and count mode. The

watchdog is enabled is when the value of the register [30:0] is equal to zero([30:0] = ’d0). If enabled,

then the Watchdog Counter is allowed to increment. The watchdog is disabled is when the value of the

register [30:0] is equal to one where only bit zero is a value of ‘1’([30:0] = 0x00000001). If disabled, then

the value of Watchdog Counter is reset to a value of zero. Bit 31, specifies the counting mode. If bit 31

is zero, then we will count based timestamp toggle (refer to Reported Timestamp Count register for

toggle time). If bit 31 is one, then we will count every ungated GPU clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle

sequences. SW must enable and disable watch dog timer for any given workload within the same

command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for

events commands so that HW can trigger appropriate idle sequence for power savings.

This register is context saved as part of engine context.

Watchdog Counter Threshold

If the Watchdog Counter Threshhold is equal to Watchdog Counter, then the interrupt bit is set in the

IIR(bit 6) and the Watchdog Counter is reset to zero.

This register is context saved as part of engine context.

Watchdog Counter

The Watchdog Counter is the count value of the watchdog timer. The Counter can be reset due to the

Watchdog Counter Control being disabled or being equal to the Watchdog Counter Threshhold. The

increment of the Watchdog counter is enabled when the Watchdog Counter Control is enabled and the

current context is valid and execlist is enabled which includes the time to execute, flush and save the

context.

 The increment of the Watchdog counter is under the following conditions:

 Watchdog timer is enabled.

 Context is valid

The increment granularity is based controlled by Watchdog Counter Control mode(bit 31).

This register is not context saved and restored.

../../../../Content/BXmlSnippets/Register_WatchdogCounterControl_SKL+_BSpec.html

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 39

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the table are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

This page is designed to be read by SW to glean additional details about a context beyond what it can

get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to locate

this page in any region where snooping is illegal (such as in stolen memory).

Preemption

Preemption is a means by which HW is instructed to stop executing an ongoing workload and switch to

the new workload submitted. Preemption flows are different based on the mode of scheduling.

 Command Stream Programming

40 Doc Ref # IHD-OS-SKL-Vol 6-05.16

Ring Buffer Scheduling

In Ring Buffer mode of scheduling SW triggers preemption by programming UHPTR (Updated Head

Pointer Register) register with a valid head pointer. UHPTR contains head pointer and head pointer valid

bit; the head pointer is valid only when the head pointer valid bit is set.

HW triggers preemption on a preemptable command on detecting Head Pointer Valid bit asserted in the

UHPTR register. Following preemption HW updates its current head pointer with the Head Pointer from

the UHPTR and starts execution; i.e all the commands from current head pointer to the updated head

pointer are skipped by HW. HW samples the head pointer and the batch buffer address on preemption

and updates them to the RING_BUFFER_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR respectively.

RING_BUFFER_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR provide the graphics memory address of

the preemptable command on which last preemption has occurred. HW resets the head pointer valid bit

in UHPTR upon completion of preemption.

Programming Notes:

Preemption is not supported for Media Workloads. Hence preemption can be achieved only on

Command Buffer boundaries. Media Command Buffers must be bracketed with MI_ARB_OFF and

MI_ARB_ON commands to avoid preemption of media command buffers.

Example:

Ring Buffer

 .

 .

 .

 MI_ARB_ON_OFF // OFF

 MI_BATCH_START // Media Workload

 MI_ARB_ON_OFF // ON

 MI_ARB_CHK // Preemptable command outside media command buffer.

 .

 .

 End Ring Buffer

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 41

The following tables list the Preemptable Commands in the Ring Buffer mode of scheduling:

Engine

 (below)

Preemptable Commands

MI_ARB_CHECK 3DPRIMITIVE GPGPU_WALKER

PIPE_CONTROL

MEDIA

STATE

FLUSH

Render

AP Object Level (if

enabled *)

Mid-Thread (if

enabled **)

PIPESEL-GPGPU

MODE

PIPESEL-

GPGPU

MODE

Blitter AP N/A N/A N/A N/A

Media AP N/A N/A N/A N/A

VideoEnhancement AP N/A N/A N/A N/A

AP: Allow preemption on UHPTR valid and arbitration enabled. Arbitration can be enabled/disabled using

MI_ARB_ON_OFF command.

ExecList Scheduling

In ExecList mode of scheduling SW triggers preemption by submitting a new pending execlist to ELSP

(ExecList Submit Port). HW triggers preemption on a preemptable command on detecting the availability

of the new pending execlist, following preemption context switch happens to the newly submitted

execlist. As part of the context switch preempted context state is saved to the preempted context LRCA,

context state contains the details such that on resubmission of the preempted context HW can resume

execution from the point where it was preempted.

Example:

 Ring Buffer

 MI_ARB_ON_OFF // OFF

 MI_BATCH_START // Media Workload

 MI_ARB_ON_OFF // ON

 MI_ARB_CHK // Preemptable command outside media command buffer.

 Command Stream Programming

42 Doc Ref # IHD-OS-SKL-Vol 6-05.16

The following tables list the Preemptable Commands in ExecList mode of scheduling:

Engine

 (below)

Preemptable Commands

MI_ARB_CH

ECK

Element

Boundar

y

Semaph

ore

Wait

Wait for

Event

3DPRIMIT

IVE

 GPGPU_WA

LKER

PIPE_CONT

ROL ***

MEDI

A

STATE

FLUS

H

Render

AP AP Unsucce

ssful &

AP

Unsucces

sful & AP

Object

Level (if

enabled *)

Mid-Thread (if

enabled **)

PIPESEL-

GPGPU

MODE

PIPESE

L-

GPGP

U

MODE

Blitter

AP AP Unsucce

ssful &

AP

Unsucces

sful & AP

N/A N/A N/A N/A

Media

AP AP Unsucce

ssful &

AP

N/A N/A N/A N/A N/A

Video

Enhancem

ent

AP AP Unsucce

ssful &

AP

N/A N/A N/A N/A N/A

Preemption is not supported for Media Workloads. Hence preemption can be achieved only on Command Buffer

boundaries. Media Command Buffers must be bracketed with MI_ARB_OFF and MI_ARB_ON command to avoid

preemption of media command buffers.

Table Notes:

AP - Allow Preemption if arbitration is enabled.

* 0x229c bit 11 determines whether the level of preemption is command or object level.

** 0x20E4 bits 2:1 determine the level of preemption for GPGPU workloads.

*** MI_ATOMIC and MI_SEMAPHORE_SIGNAL commands with Post Sync Op bit set are treated as PIPE_CONTROL

command with Post Sync Operation as Atomics or Semaphore Signal.

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 43

Command Streamer (CS) ALU Programming

The command streamer implements a rudimentary Arithmetic Logic Unit (ALU) which supports basic

arithmetic (Addition and Subtraction) and logical operations (AND, OR, XOR) on two 64-bit operands.

The ALU has two 64-bit registers at the input, SRCA and SRCB, to which source operands are loaded. The

ALU result is written to a 64-bit accumulator. The Zero Flag and Carry Flag are assigned based on the

accumulator output.

See the ALU Programming section in the Render Engine Command Streamer, for a description of the ALU

programming model. That model is the same for all command streamers that support ALU programming,

but each command streamer uses different address offsets for the registers used. The following

subsections describe the ALU registers in the Blitter command streamer.

CS ALU Programming and Design

MI Commands for Graphics Processing Engines

This chapter lists the MI Commands that are supported by Generic Command Streamer Front End

implemented in the graphics processing engines (Render, Video, Blitter and Video Enhance.

Command

MI_NOOP

MI_ARB_CHECK

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

 Command Stream Programming

44 Doc Ref # IHD-OS-SKL-Vol 6-05.16

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch

buffer or directly from a ring. Batch buffers in GGTT memory space are privileged and batch buffers in

PPGTT memory space are non-privileged. On parsing privileged command from a non-privileged batch

buffer, a Command Privilege Violation Error is flagged and the command is dropped. Command Privilege

Violation Error is logged in Error identity register of command streamer which gets propagated as

“Command Parser Master Error” interrupt to SW. Privilege access violation checks in HW can be disabled

by setting “Privilege Check Disable” bit in GFX_MODE register. When privilege access checks are disabled

HW executes the Privilege command as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers Source

MI_UPDATE_GTT Command is converted to NOOP. *CS

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_STORE_DATA_INDEX Command is converted to NOOP. *CS

MI_STORE_REGISTER_MEM Register read is always performed. Memory update is

dropped if Use Global GTT is enabled.

*CS

MI_BATCH_BUFFER_START
Command when executed from a batch buffer can set

its “Privileged” level to its parent batch buffer or lower.

Chained or Second level batch buffer can be

“Privileged” only if the parent or the initial batch buffer

is “Privileged”. This is HW enforced.

*CS

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register

accessed is privileged.

*CS

MI_LOAD_REGISTER_MEM
Command is converted to NOOP if Use Global GTT is

enabled.

Command is converted to NOOP if the register

accessed is privileged.

*CS

MI_LOAD_REGISTER_REG Register write to a Privileged Register is discarded. *CS

MI_REPORT_PERF_COUNT Command is converted to NOOP if Use Global GTT is

enabled.

Render CS

PIPE_CONTROL
Still send flush down, Post-Sync Operation is NOOP if

Use Global GTT or Use “Store Data Index” is enabled.

Post-Sync Operation LRI to Privileged Register is

discarded.

Render CS

MI_SET_CONTEXT Command is converted to NOOP. Render CS

MI_ATOMIC Command is converted to NOOP if Use Global GTT is Render CS

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 45

User Mode Privileged Command Function in Non-Privileged Batch Buffers Source

enabled.

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is

used for source or destination address.

*CS

MI_SEMAPHORE_WAIT
Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_ARB_ON_OFF Command is converted to NOOP. *CS

MI_DISPLAY_FLIP Command is converted to NOOP. *CS

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_FLUSH_DW Still send flush down, Post-Sync Operation is converted to

NOOP if Use Global GTT or Use “Store Data Index” is

enabled.

Blitter CS, Video

CS,

 Video

Enhancement CS

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and

converts the command to a NOOP.

The tables below list the non-privileged registers that can be written to from a non-privileged batch

buffer executed from various command streamers.

User Mode Non-Privileged Registers for Render Command Streamer (RCS)

MMIO Name MMIO Offset Size in DWords

Cache_Mode_0 0x7000 1

Cache_Mode_1 0x7004 1

GT_MODE 0x7008 1

L3_Config 0x7034 1

TD_CTL 0xE400 1

TD_CTL2 0xE404 1

L3SQCREG4 0xB118 1

NOPID 0x2094 1

INSTPM 0x20C0 1

IA_VERTICES_COUNT 0x2310 2

IA_PRIMITIVES_COUNT 0x2318 2

VS_INVOCATION_COUNT 0x2320 2

HS_INVOCATION_COUNT 0x2300 2

DS_INVOCATION_COUNT 0x2308 2

GS_INVOCATION_COUNT 0x2328 2

GS_PRIMITIVES_COUNT 0x2330 2

SO_NUM_PRIMS_WRITTEN0 0x5200 2

 Command Stream Programming

46 Doc Ref # IHD-OS-SKL-Vol 6-05.16

MMIO Name MMIO Offset Size in DWords

SO_NUM_PRIMS_WRITTEN1 0x5208 2

SO_NUM_PRIMS_WRITTEN2 0x5210 2

SO_NUM_PRIMS_WRITTEN3 0x5218 2

SO_PRIM_STORAGE_NEEDED0 0x5240 2

SO_PRIM_STORAGE_NEEDED1 0x5248 2

SO_PRIM_STORAGE_NEEDED2 0x5250 2

SO_PRIM_STORAGE_NEEDED3 0x5258 2

SO_WRITE_OFFSET0 0x5280 1

SO_WRITE_OFFSET1 0x5284 1

SO_WRITE_OFFSET2 0x5288 1

SO_WRITE_OFFSET3 0x528C 1

CL_INVOCATION_COUNT 0x2338 2

CL_PRIMITIVES_COUNT 0x2340 2

PS_INVOCATION_COUNT_0 0x22C8 2

PS_DEPTH_COUNT _0 0x22D8 2

PS_INVOCATION_COUNT_1 0x22F0 2

PS_DEPTH_COUNT _1 0x22F8 2

PS_INVOCATION_COUNT_2 0x2448 2

PS_DEPTH_COUNT_2 0x2450 2

GPUGPU_DISPATCHDIMX 0x2500 1

GPUGPU_DISPATCHDIMY 0x2504 1

GPUGPU_DISPATCHDIMZ 0x2508 1

MI_PREDICATE_SRC0 0x2400 1

MI_PREDICATE_SRC0 0x2404 1

MI_PREDICATE_SRC1 0x2408 1

MI_PREDICATE_SRC1 0x240C 1

MI_PREDICATE_DATA 0x2410 1

MI_PREDICATE_DATA 0x2414 1

MI_PREDICATE_RESULT 0x2418 1

MI_PREDICATE_RESULT_1 0x241C 1

MI_PREDICATE_RESULT_2 0x23BC 1

3DPRIM_END_OFFSET 0x2420 1

3DPRIM_START_VERTEX 0x2430 1

3DPRIM_VERTEX_COUNT 0x2434 1

3DPRIM_INSTANCE_COUNT 0x2438 1

3DPRIM_START_INSTANCE 0x243C 1

3DPRIM_BASE_VERTEX 0x2440 1

 Command Stream Programming

Doc Ref # IHD-OS-SKL-Vol 6-05.16 47

MMIO Name MMIO Offset Size in DWords

GPGPU_THREADS_DISPATCHED 0x2290 2

BB_OFFSET 0x2158 1

CS_GPR (1-16) 0x2600 32

OA_CTX_CONTROL 0x2360 1

OACTXID 0x2364 1

OA CONTROL 0x2B00 1

PERF_CNT_1_DW0 0x91b8 1

PERF_CNT_1_DW1 0x91bc 1

PERF_CNT_2_DW0 0x91c0 1

PERF_CNT_2_DW1 0x91c4 1

User Mode Non-Privileged Registers for Blitter Command Streamer (BCS)

MMIO Name MMIO Offset Size in DWords

BCS_GPR 0x22600 32

BCS_SWCTRL 0x22200 1

This table represents the Base offset for Video Command Streamers and Media Engine message range:

Unit MMIO Base Offset Description

VCS/MFC 0x13000 Video Command Streamer 0

VCS1/MFC1 0x1D000 Video Command Streamer 1

VECS 0x1B000 Video Enhancement Command Streamer

HEVC 0x1E900

User Mode Non-Privileged Registers for Video Enhancement Command Streamer (VECS)

MMIO Name MMIO Offset Size in DWords

VECS_GPR 0x600 32

User Mode Non-Privileged Registers for Video Command Streamer (ALL VCS)

MMIO Name MMIO Range Size in DWords

VCS_GPR 0x600 32

MFC_VDBOX1 0x800-0xFFF 512

HEVC 0x00 64

HEVC-Enc 0x00 64

