

Intel® Open Source HD Graphics, Intel Iris™ Graphics, and

Intel Iris™ Pro Graphics

Programmer's Reference Manual

For the 2015 - 2016 Intel Core™ Processors, Celeron™ Processors,

and Pentium™ Processors based on the "Skylake" Platform

Volume 5: Memory Views

May 2016, Revision 1.0

 Memory Views

ii Doc Ref # IHD-OS-SKL-Vol 5-05.16

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 iii

Table of Contents

Introduction ... 1

Memory Views Glossary .. 1

GPU Memory Interface .. 1

Global Arbitration ... 2

GFX MMIO – MCHBAR Aperture .. 2

Graphics Memory Interface Functions .. 3

Graphics Memory Clients .. 3

Graphics Memory Addressing Overview ... 4

Graphics Address Path .. 4

Graphics Memory Paths ... 5

Graphics Memory Address Spaces .. 6

Address Tiling Function Introduction .. 7

Linear vs Tiled Storage ... 8

Auxiliary Surfaces for Sampled Tiled Resources .. 11

HiZ ... 11

CCS .. 11

MCS ... 12

Tile Formats .. 12

Tile-X Legacy Format ... 12

Tile-Y Legacy Format .. 13

W-Major Tile Format .. 14

Tile-Yf Format.. 15

Tile-Ys Format ... 16

Tiling Algorithm .. 17

Tiled Channel Select Decision ... 31

Tiling Support .. 31

Tiled (Fenced) Regions .. 31

Tiled Surface Parameters .. 32

Tiled Surface Restrictions ... 32

Per-Stream Tile Format Support .. 34

Main Memory .. 35

Optimizing Main Memory Allocation .. 35

 Memory Views

iv Doc Ref # IHD-OS-SKL-Vol 5-05.16

Application of the Theory (Page Coloring).. 36

3D Color and Depth Buffers ... 36

Media/Video ... 37

Physical Graphics Address Types ... 37

Graphics Translation Tables .. 37

Virtual Memory ... 38

GFX Page Tables .. 38

Tiled Resources Translation Tables .. 38

Registers for TR-TT Management .. 40

Detection and Treatment of Null and Invalid Tiles ... 42

TR-TT Modes .. 43

Virtual Addressed TR Translation Tables .. 44

TR-TT Page Walk .. 45

Gen9 Page Table Modes .. 47

Gen9 Per Process GTT ... 47

Page Tables Entry (PTE) Formats .. 47

Pointer to PML4 Table ... 53

PML4E: Pointer to PDP Table .. 53

PDPE: Pointer to PD Table .. 54

PD: Pointer to Page Table .. 56

PTE: Page Table Entry for 64KB Page ... 59

PTE: Page Table Entry for 4KB Page ... 60

PPGTT for 32b Virtual Address .. 61

Walk with 64KB Page ... 65

Walk with 2MB Page .. 66

Walk with 1GB Page ... 66

PPGTT for Standard Context (64b VA) ... 67

Walk with 64KB Page ... 74

Walk with 2MB Page .. 75

Walk with 1GB Page ... 76

Gen9 Global GTT ... 77

Page Table Entry ... 77

Page Walk .. 78

Legacy mode with 32b VA .. 79

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 v

Page Walk in Legacy mode with 32b VA .. 79

Walk with 64KB Page ... 81

Page Table Entry (PTE) Formats .. 82

PDE for Page Table ... 82

PTE: Page Table Entry for 64KB Page ... 83

PTE: Page Table Entry for 4KB Page ... 84

Legacy mode with 48b VA .. 85

Page Walk in Legacy 48b Mode ... 85

Walk with 64KB Page ... 86

Walk with 2MB Page .. 88

Walk with 1GB Page ... 89

Page Tables Entry PTE Formats ... 90

Pointer to PML4 table .. 90

PML4E: Pointer to PDP Table .. 91

PDPE: Pointer to PD Table .. 91

PDPE for PD ... 92

PDPE for 1GB Page ... 93

PD: Pointer to Page Table .. 94

PDE for Page Table ... 94

PDE for 2MB Page ... 95

PTE: Page Table Entry for 64KB Page ... 96

PTE: Page Table Entry for 4KB Page ... 97

Advanced mode with 48b VA and IA32e Support ... 98

Page Walk in Advanced Mode .. 98

Walk with 64KB Page .. 100

Walk with 2MB Page ... 101

Walk with 1GB Page .. 102

Page Tables Entry (PTE) Formats ... 103

Pointer to PML4 table ... 103

PML4E: Pointer to PDP Table ... 104

PDPE: Pointer to PD Table ... 105

PDPE for PD .. 105

PDPE for 1GB Page .. 107

PD: Pointer to Page Table ... 108

 Memory Views

vi Doc Ref # IHD-OS-SKL-Vol 5-05.16

PDE for Page Table .. 108

PDE for 2MB Page .. 110

PTE: Page Table Entry for 64KB Page .. 111

PTE: Page Table Entry for 4KB Page .. 113

GTT Cache ... 114

GFX Page Walker (GAM) .. 114

Context Definition for GFX Page Walker .. 115

Context Definition Delivery .. 116

Element Descriptor Register ... 117

PDP0/PML4/PASID Descriptor Register ... 118

PDP1 Descriptor Register .. 119

PDP2 Descriptor Register .. 119

PDP3 Descriptor Register .. 119

List of Registers and Command Streamers ... 120

Updating Page Table Pointers (aka PD Load) ... 122

Page Walker (GAM) Reset ... 123

TLB Caching and Management ... 124

TLB Caches .. 126

Context Cache - CC .. 126

PASID Cache - PC .. 126

Intermediate Page Walk Caches (PML4, PDP, PD) – PWC ... 126

TLB – Final Page Entry ... 127

TLB Entry Content .. 127

TLB Accessed and Dirty Flags .. 129

Updating A/D Bits ... 130

Replacement .. 135

Invalidations of TLB ... 135

Optional Invalidations ... 135

GTT Walk Request Port (HDC) .. 136

TLB Invalidation .. 139

Faulting.. 139

Page Faulting Support .. 139

Page Faults ... 139

Page Fault Modes ... 140

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 vii

Fault and Hang/Crash (Legacy Mode) ... 140

Memory Types and Cache Interface ... 141

Memory Object Control State (MOCS) ... 141

MOCS Registers .. 142

L3 Control Registers ... 142

Memory Interface Control Registers ... 144

HDCL3GAM Change Specific to Coherent L3 .. 148

Graphics Cache and Memory Interface .. 148

Skip Caching in LLC and eDRAM .. 149

Caching Display Surfaces in LLC ... 150

Page Walker Access and Memory Types ... 151

Page Walker Memory Types .. 151

Error Cases .. 151

Common Surface Formats .. 152

Non-Video Surface Formats ... 152

Surface Format Naming ... 152

Intensity Formats .. 152

Luminance Formats ... 152

R1_UNORM (same as R1_UINT) and MONO8... 153

Palette Formats ... 153

P4A4_UNORM ... 154

A4P4_UNORM ... 154

P8A8_UNORM ... 155

A8P8_UNORM ... 155

P8_UNORM ... 156

P2_UNORM ... 156

Compressed Surface Formats .. 156

ETC1_RGB8 .. 156

ETC2_RGB8 and ETC2_SRGB8 .. 159

T mode ... 159

H mode .. 162

Planar mode ... 164

EAC_R11 and EAC_SIGNED_R11 ... 165

ETC2_RGB8_PTA and ETC2_SRGB8_PTA .. 167

 Memory Views

viii Doc Ref # IHD-OS-SKL-Vol 5-05.16

Differential Mode ... 167

T and H Modes ... 167

Planar Mode ... 167

ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8 .. 168

EAC_RG11 and EAC_SIGNED_RG11 ... 168

FXT Texture Formats .. 170

Overview of FXT1 Formats ... 170

FXT1 CC_HI Format.. 170

CC_HI Block Encoding ... 171

CC_HI Block Decoding ... 171

FXT1 CC_CHROMA Format .. 172

CC_CHROMA Block Encoding .. 172

CC_CHROMA Block Decoding .. 173

FXT1 CC_MIXED Format .. 174

CC_MIXED Block Encoding .. 174

CC_MIXED Block Decoding ... 175

FXT1 CC_ALPHA Format .. 178

CC_ALPHA Block Encoding .. 178

CC_ALPHA Block Decoding ... 179

DXT/BC1-3 Texture Formats .. 181

Opaque and One-bit Alpha Textures (DXT1/BC1) .. 182

Opaque Textures (DXT1_RGB) .. 184

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3) .. 184

BC4 ... 187

BC5 ... 188

BC6H .. 190

Field Definition .. 190

Endpoint Computation .. 202

Palette Color Computation .. 203

Texel Selection .. 204

ONE Mode ... 204

TWO Mode... 204

BC7 ... 205

Field Definition .. 206

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 ix

Endpoint Computation .. 211

Palette Color Computation .. 211

Texel Selection .. 212

ONE Mode ... 212

TWO Mode... 213

THREE Mode .. 215

Adaptive Scalable Texture Compression (ASTC) .. 217

ASTC Fundamentals .. 217

Background .. 217

New Surface Formats for ASTC Texture ... 219

ASTC File Format and Memory Layout .. 223

ASTC Header Data Structure and Amendment ... 223

Data Layout in ASTC Compression File .. 224

Total ASTC Data Block Layout in All Mipmap Levels .. 225

Data Layout in Memory for All Mipmap Levels ... 225

ASTC Data Structure ... 228

Layout and Description of Block Data .. 228

Partitioning .. 228

Index Mode .. 228

Index Planes .. 231

Index Infill Procedure .. 232

Color Endpoint Mode .. 232

Color Endpoint Data Size Determination .. 235

Void-Extent Blocks .. 236

Decoding Process .. 236

Overview Decoding Flow ... 236

Integer Sequence Encoding .. 239

Endpoint Unquantization ... 240

LDR Endpoint Decoding ... 241

HDR Endpoint Decoding .. 244

HDR Endpoint Mode 2 (HDR Luminance, Large Range) ... 245

HDR Endpoint Mode 3 (HDR Luminance, Small Range) ... 245

HDR Endpoint Mode 7 (HDR RGB, Base+Scale) ... 246

HDR Endpoint Mode 11 (HDR RGB, Direct) ... 249

 Memory Views

x Doc Ref # IHD-OS-SKL-Vol 5-05.16

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha) .. 251

HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha) ... 252

Restrictions on Number of Partitions Per Block ... 253

Index Decoding .. 253

Index Unquantization .. 253

Infill Process .. 254

Index Application .. 256

Dual-Plane Decoding .. 257

Partition Pattern Generation ... 257

Data Size Determination .. 259

3D Void-Extent Blocks ... 260

Illegal Encodings .. 260

Profile Support .. 261

Video Pixel/Texel Formats ... 262

Packed Memory Organization ... 262

Planar Memory Organization... 263

Raw Format .. 265

Surface Memory Organizations ... 265

Display, Overlay, Cursor Surfaces ... 265

2D Render Surfaces .. 265

2D Monochrome Source .. 266

2D Color Pattern .. 266

3D Color Buffer (Destination) Surfaces ... 266

3D Depth Buffer Surfaces ... 267

3D Separate Stencil Buffer Surfaces... 267

Surface Layout and Tiling... 268

Maximum Surface Size in Bytes ... 268

Tiling .. 268

Typed Buffers ... 269

MIP Layout .. 270

Raw (Untyped) Buffers .. 271

Structured Buffers .. 271

1D Surfaces ... 271

Tiling and Mip Tail for 1D Surfaces ... 272

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 xi

1D Alignment Requirements ... 273

2D Surfaces ... 274

Calculating Texel Location .. 275

Tiling and Mip Tails for 2D Surfaces ... 277

2D/CUBE Alignment Requirement .. 280

Multisampled 2D Surfaces ... 280

Interleaved Multisampled Surfaces .. 281

Compressed Multisampled Surfaces ... 281

Uncompressed Multisampled Surfaces .. 283

Quilted Textures ... 283

Cube Surfaces .. 284

3D Surfaces ... 286

Tiling and Mip Tails for 3D Surfaces ... 288

3D Alignment Requirements ... 291

Surface Padding Requirements ... 292

Alignment Unit Size ... 292

Alignment Parameters ... 292

Sampling Engine Surfaces ... 292

Render Target and Media Surfaces ... 293

Device2 PASID Capability Structures .. 294

PASID Extended Capability .. 294

PASID Extended Capability Header ... 294

PASID Capability Register ... 295

PASID Control Register .. 296

ATS Extended Capability .. 296

ATS Extended Capability Header .. 297

ATS Capability Register .. 297

ATS Control Register ... 297

Page Request Extended Capability .. 298

Page Request Extended Capability Header .. 298

Page Request Control Register ... 298

Page Request Status Register .. 299

Outstanding Page Request Capacity .. 300

Outstanding Page Request Allocation ... 300

 Memory Views

xii Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomics for Page Table Updates (MSQD) .. 301

Implementation ... 305

Atomic_Page_update_0000: .. 305

Atomic_Page_update_0001: .. 305

Atomic_Page_update_0010: .. 306

Atomic_Page_update_0011: .. 306

Atomic_Page_update_0100: .. 307

Atomic_Page_update_0101: .. 307

Atomic_Page_update_0110: .. 308

Atomic_Page_update_0111: .. 308

Atomic_Page_update_1000: .. 309

Atomic_Page_update_1001: .. 309

Atomic_Page_update_1010: .. 310

Atomic_Page_update_1011: .. 310

Atomic_Page_update_1100: .. 311

Atomic_Page_update_1101: .. 311

Atomic_Page_update_1110: .. 312

Atomic_Page_update_1101: .. 312

Atomic_A_update_000: .. 313

Atomic_A_update_001: .. 314

Atomic_A_update_010: .. 314

Atomic_A_update_011: .. 315

Atomic_A_update_100: .. 315

Atomic_AD_update_101: .. 316

Atomic_AD_update_110: .. 316

Atomic_AD_update_111: .. 317

Atomic Operations between GPU and IA ... 318

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 1

Introduction

The hardware supports three engines:

 The Render command streamer interfaces to 3D/IE and display streams.

 The Media command streamer interfaces to the fixed function media.

 The Blitter command streamer interfaces to the blit commands.

Software interfaces of all three engines are very similar and should only differ on engine-specific

functionality.

Memory Views Glossary

Term Definition

IOMMU I/O Memory Mapping unit

SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and

processor graphics.

SKL SkyLake CPU/GFX platform. 9th generation processor graphics (Gen9)

Page Walker

(GAM)

GFX page walker which handles page level translations between GFX virtual memory to physical

memory domain.

GPU Memory Interface

GPU memory interface functions are divided into 4 different major sections:

 Global Arbitration

 Memory Interface Functions

 Page Translations (GFX Page Walker)

 Ring Interface Functions (GTI)

GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The

following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces and

page translations and page walker functions.

2 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Global Arbitration

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses

from different stages of the pipeline are consolidated to a single interface towards GT’s connection to

CPU’s ring interface.

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels.

Programming Note

Context: Global Memory Arbitration

Gen9 arbitration allows 4 levels of arbitration where each pipeline level can be put into these 4 levels. Each

consolidation stage simply follows the 4-level arbitration with grace periods to allow ahead of the pipeline to get a

higher share of the memory bandwidth.

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases

major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace

period where its accesses are counted against a global pool. If a particular engine (or pipeline stage)

exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based prioritization.

Once all counts are expired, the grace period completes and resets.

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring

the pipeline order.

GFX MMIO – MCHBAR Aperture

Address: 140000h – 147FFFh

Default Value: Same as MCHBAR

Access: Aligned Word, Dword, or Qword Read/Write

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write

registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers

defined within the MCHBAR space are preserved when the same registers are accessed via this space.

Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal

Sensor, etc.

The Alias functions work for MMIO access from the CPU only. A command stream load register

immediate will drop the data, and the store register immediate will return all Zeroes.

Graphics MMIO registers can be accessed through MMIO BARs in function #0 and function #1 in Device

#2. The aliasing mechanism is turned off if memory access to the corresponding function is turned off via

software or in certain power states.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 3

Graphics Memory Interface Functions

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various

client functions access to “graphics” memory used to store commands, surfaces, and other information

used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics

memory is accessed.

Information not presented in this chapter includes:

 Microarchitectural and implementation-dependent features (e.g., internal buffering, caching, and

arbitration policies).

 MI functions and paths specific to the operation of external (discrete) devices attached via external

connections.

 MI functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional

“chipset functions”

 GFX Page Walker and GT interface functions are covered in different chapters.

Graphics Memory Clients

The MI function provides memory access functionality to a number of external and internal graphics

memory clients, as described in the table below.

Graphics Memory Clients

MI Client Access Modes

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed

using Device 2 Graphics Memory Range Addresses

External PEG Graphics

Device

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture. (This

client is not described in this chapter).

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed

using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DMI

access to Graphics registers is not supported.

Coherent Read/Write

(internal)

Internally-generated snooped reads/writes.

Command Stream

(internal)

DMA Read of graphics commands and related graphics data.

Vertex Stream

(internal)

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed

Function.

Instruction/State

Cache (internal)

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions

executed by the EUs.

Render Cache

(internal)

Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D,

MPEG, etc.) Read of render surface state.

Sampler Cache

(internal)

Read of texture (and other sampled surface) data stored in graphics memory.

4 Doc Ref # IHD-OS-SKL-Vol 5-05.16

MI Client Access Modes

Display/Overlay

Engines (internal)

Read of display, overlay, cursor and VGA data.

Media Engines Read and write of media content and media processing.

uController Read/Write (DMA) functions for u-controller and scheduler.

Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory

addresses of various types, performs a number of optional operations along address paths, and

eventually performs reads and writes of graphics memory data using the resultant addresses. The

remainder of this subsection will provide an overview of the graphics memory clients and address

operations.

Graphics Address Path

Graphics Address Path shows the internal graphics memory address path, connection points, and optional

operations performed on addresses. Externally-supplied addresses are normalized to zero-based

Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled address

(based on inclusion in a fenced region or via explicit surface parameters), address tiling is performed. At

this point the address is considered a Logical Memory address, and is translated into a Physical Memory

address via the GTT and associated TLBs. The physical memory location is then accessed.

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped

cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory aperture.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 5

Graphics Memory Paths

The remainder of this chapter describes the basic features of the graphics memory address pipeline,

namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation

considerations.

6 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Graphics Memory Address Spaces

The Graphics Memory Address Spaces table lists the five supported Graphics Memory Address Spaces.

Note that the Graphics Memory Range Removal function is automatically performed to transform system

addresses to internal, zero-based Graphics Addresses.

Graphics Memory Address Types

Address

Type Description Range Gen9 (BXT)

GMADR Address range allocated via the Device 2 (integrated graphics

device) GMADR register. The processor and other peer (DMI)

devices utilize this address space to read/write graphics data

that resides in Main Memory. This address is internally

converted to a GM_Address.

This is a 4 GB BAR

above physical

memory.

128 MB, 256

MB, 512 MB,

1GB, 2GB, 4GB

GTTMMADR
The combined Graphics Translation Table Modification Range

and Memory Mapped Range. The range requires 16 MB

combined for MMIO and Global GTT aperture, with 8MB of that

used by MMIO and 8MB used by GTT. GTTADR will begin at

GTTMMADR 8MB while the MMIO base address will be the

same as GTTMMADR.

For the Global GTT, this range is defined as a memory BAR in

graphics device config space. It is an alias into which software is

required to write Page Table Entry values PTEs. Software may

read PTE values from the global Graphics Translation Table GTT.

PTEs cannot be written directly into the global GTT memory

area.

This is a 16MB BAR

above physical

memory.

16 MB

(2 MB MMIO +

6 MB reserved

+ 8 MB GGTT)

GSM
GTT Stolen Memory. It is an 8 MB (max) region taken out of

physical memory to store the Global GTT entries for page

translations specific to GFX driver use.

It is accessible via GTTMMADR from the CPU path however

GPU/DE can access the same region directly.

This is an 8 MB

region in physical

memory not visible

to OS.

1 MB, 2 MB, 4

MB, 8 MB

DSM
Data stolen memory, the size is determined with GMS filed (8

bits) with MAX size of 4 GB.

This is a stolen memory which can be accessed via GMADR for

CPU and directly for GPU/DE.

Size is programmable with 32 MB multiplier.

First 4KB of DSM has to be reserved for GFX hardware use.

This is a max of 4

GB stolen physical

memory for GFX

data structures.

0 MB, 32 MB,

64 MB, 96 MB,

...4096MB

Next level breakdown for GTTMMADR is given below.

Software is allowed to use range x17_0000 to x17_FFFF as the Null range.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 7

Address Tiling Function Introduction

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,

certain functions within the graphics device support the storage/access of the operands using alternative

(tiled) memory formats to increase performance. This section describes these memory storage formats,

why and when they should be used, and the behavioral mechanisms within the device to support them.

Legacy Tiling Modes:

 TileY: Used for most tiled surfaces when TR_MODE=TR_NONE.

 TileX : Used primarily for display surfaces.

 TileW: Used for Stencil surfaces.

Programming Note

Context: Address Tiling Function

Tiled Resource Tiling Modes

 TileYF: 4KB tiling mode based on TileY

 TileYS: 64KB tiling mode based on TileY

These modes are based on 4KB and 64KB tiles. The 64KB tile is made up of a 4x4 matrix of 4KB tiles. The 4KB tiles in

general have a different layout as compared to the legacy modes, with the sub-mode defining the layout within the

4KB tile. The sub-modes are determined by the bits per element of the surface format. The Tiled Resource Mode

field in SURFACE_STATE is used to select the new modes.

Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile modes). For

1D surfaces, the base address must be 64KB aligned if Tiled Resource Mode is TRMODE_64KB, and 4KB aligned

if Tiled Resource Mode is TRMODE_4KB. An exception to this tile alignment is when a SURFACE_STATE describes a

single MIP within the MIP Tail of another surface, using a 64-bit or 128-bit Surface Format—then Surface Base

Address can refer directly to the given MIP (e.g. to write to a non-renderable Surface Format by re-describing as

an alternative surface).

8 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Linear vs Tiled Storage

Regardless of the memory storage format, “rectangular” memory operands have a specific width and

height, and are considered as residing within an enclosing rectangular region whose width is considered

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly with

the surface). Rectangular Memory Operand Parameters shows these parameters.

Rectangular Memory Operand Parameters

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the

operand is stored in sequentially increasing memory locations. If the surface width is less than the

enclosing region’s pitch, there will be additional memory storage between rows to accommodate the

region’s pitch. The pitch of the enclosing region determines the distance (in the memory address space)

between vertically-adjacent operand elements (e.g., pixels, texels).

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 9

Linear Surface Layout

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface

where each scanline is read sequentially). Here the fact that one object element may reside in a different

memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally-

adjacent elements are stored contiguously. However, when a device function needs to access a 2D

subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2

texel block for bilinear filtering), having vertically-adjacent elements fall within different memory pages is

to be avoided, as the page crossings required to complete the access typically incur increased memory

latencies (and therefore lower performance).

One solution to this problem is to divide the enclosing region into an array of smaller rectangular

regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same

physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile

and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows

high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the

dimensions of tiles are irrespective of the data contained within – e.g., a tile can hold twice as many 16-

bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels).

10 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Memory Tile Dimensions

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled

region are stored sequentially in memory in row-major order.

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a

pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles –

the surface is not necessarily aligned or dimensioned to tile boundaries.

Tiled Surface Layout

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 11

Auxiliary Surfaces for Sampled Tiled Resources

For surfaces which are defined as Tiled Resources (TileYs or TileYf format), there may be auxiliary surfaces

which are associated with the surface (e.g. HiZ, CCS or MCS). These auxiliary surfaces, while actually not

defined as TileYs or TileYf will behave like tiled resources from the hardware perspective. It is possible

for software to map and unmap tiles of auxiliary surfaces as tiles of the associated surface are mapped

and unmapped. Below is a description how sampling to the mapped/unmapped tile resources is

handled for the associated auxiliary surface. Normally, sampling unmapped tiles will return a NULL

response to the requesting agen.

HiZ

A tile of HiZ data must be mapped to memory whenever any depth surface (Z) pixels associated with the

HiZ tile are mapped. When all Z pixels associated with a HiZ tile are unmapped, the HiZ tile may be

mapped or unmapped. Below is a table showing the responses for sampling to mapped and unmapped

depth surfaces.

Responses for Sampling to a Depth-Surface Tiled Resource

Depth Surface Mapping HiZ Surface Mapping Sample Response

Mapped Mapped Normal Sample Response

Mapped Unmapped Undefined

Unmapped Mapped NULL Response

Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)

will indicate the depth pixel is Null.

CCS

A tile of CCS (Color Control Surface) must be mapped to memory whenever color surface pixels

associated with the CCS tile are mapped. When all color pixels associated with a CCS tile are unmapped,

the CCS may be mapped or unmapped. CCS is used to indicate that the color surface is losslessly

compressed. Below is a table showing the responses for sampling to mapped and unmapped.

Responses for Sampling to a Losslessly Compressed Color Surface That is a Tiled Resource

Color Surface Mapping CCS Surface Mapping Sample Response

Mapped Mapped Normal Response

Mapped Unmapped Undefined

Unmapped Mapped NULL Response

Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)

will indicate the depth pixel is Null.

12 Doc Ref # IHD-OS-SKL-Vol 5-05.16

MCS

A tile of MCS (Multi-Sample Control Surface) must be mapped to memory whenever MSAA surface pixels

associated with the CCS tile are mapped. When all MSAA pixels associated with a MCS tile are

unmapped, the MCS may be mapped or unmapped. Below is a table showing the responses for sampling

to mapped and unmapped.

Responses for Sampling to MSAA Tiled Resources

MSAA Surface Mapping MCS Mapping Sample Response

Mapped Mapped Normal Response

Mapped Unmapped Undefined Response

Unmapped Mapped NULL Response

Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested)

will indicate the depth pixel is Null.

Tile Formats

Multiple tile formats are supported by the Gen Core. The following sections define and describe these

formats.

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the

RENDER_SURFACE_STATE.

Tile-X Legacy Format

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following

figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords. The

selection of tile direction only impacts the internal organization of tile data, and does not affect how

surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a

linear fashion.

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE

to XMAJOR.

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the organization

of texels in memory.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 13

Tile X-Tile (X-Major) Layout

Tile-Y Legacy Format

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as

shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection

of tile direction only impacts the internal organization of tile data, and does not affect how surfaces map

onto tiles.

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to

YMAJOR.

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout

of pixels.

Y-Major Tile Layout

14 Doc Ref # IHD-OS-SKL-Vol 5-05.16

W-Major Tile Format

The device supports additional format W-Major storage of tile data units, as shown in the following

figures. A 4KB tile is subdivided into 8-high by 8-wide array of Blocks for W-Major Tiles (W Tiles). Each

Block is 8 rows by 8 bytes. The selection of tile direction only impacts the internal organization of tile

data, and does not affect how surfaces map onto tiles. W-Major Tile Format is used for separate stencil.

Tile-W surface format is selected by programming the Tile_Mode field in the RENDER_SURFACE_STATE to

WMAJOR.

W-Major Tile Layout

W-Major Block Layout

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 15

Tile-Yf Format

Tile-Yf is a 4K-Byte tile format (similar to Tile-Y), but organized in a different manner. Tile-Yf is selected

by programming the Tile_Mode field in the RENDER_SURFACE_STATE to YMAJOR and the

Tiled_Resource_Mode to TILEYF. The diagram below shows how pixels are mapped into the TileYf format

for 2D surfaces, and it uses 32Bpp (bits per pixel) surface format as an example on a 2D surface which is

N tiles wide and m tiles high. The exact aspect ratio will be dependent on the Bpp of the surface. Note

that the TileYf format is identical to the TileYs up to the 4K-Byte tile size.

2D Tile Layout for TileYf

16 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Tile-Ys Format

TileYs is a 64K-Byte tile size. It is enabled by programming the Tile_Mode field (in

RENDER_SURFACE_STATE) to YMAJOR, and programming the Tiled_Resource_Mode to TILEYS. It is

organized as shown below, and is composed of 4KByte blocks which have identical layout to the TileYf

format. The diagram below shows how pixels are mapped into the TileYs format, and it uses 32Bpp (bits

per pixel) surface format as an example on a 2D surface which is N tiles wide and m tiles high. The exact

aspect ratio will be dependent on the Bpp of the surface.

Tile-Ys Layout

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 17

Tiling Algorithm

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics

memory to an address in logical space.

The following new modes are supported for Tiled Resources (TR_MODE != TR_NONE) defined to enable

tiled resources.

For more details about Mip Tails, see Surface Layout and Tiling in the Common Surface Formats section.

 TileYF: 4KB tiling mode based on TileY

 TileYS: 64KB tiling mode based on TileY

 Inputs:

 LinearAddress(offset into regular or LT aperture in terms of bytes),

 Pitch(in terms of tiles),

 WalkY (1 for Y and 0 for X)

 WalkW (1 for W and 0 for the rest)

 Static Parameters:

 TileH (Height of tile, 8 for X, 32 for Y and 64 for W),

 TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W)

 TileSize = TileH * TileW;

 RowSize = Pitch * TileSize;

 If (Fenced) {

 LinearAddress = LinearAddress – FenceBaseAddress

 LinearAddrInTileW = LinearAddress div TileW;

 Xoffset_inTile = LinearAddress mod TileW;

 Y = LinearAddrInTileW div Pitch;

 X = LinearAddrInTileW mod Pitch + Xoffset_inTile;

 }

 // Internal graphics clients that access tiled memory already have the X, Y

 // coordinates and can start here

 YOff_Within_Tile = Y mod TileH;

 XOff_Within_Tile = X mod TileW;

 TileNumber_InY = Y div TileH;

 TileNumber_InX = X div TileW;

 TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX +

TileH * 16 * (XOff_Within_Tile div 16) +

 YOff_Within_Tile * 16 +

 (XOff_Within_Tile mod 16);

 TiledOffsetW = RowSize * TileNumber_InY +

 TileSize * TileNumber_InX +

 TileH * 8 * (XOff_Within_Tile div 8) +

 64 * (YOff_Within_Tile div 8) +

 32 * ((YOff_Within_Tile div 4) mod 2) +

 16 * ((XOff_Within_Tile div 4) mod 2) +

 8 * ((YOff_Within_Tile div 2) mod 2) +

18 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 4 * ((XOff_Within_Tile div 2) mod 2) +

 2 * (YOff_Within_Tile mod 2) +

 (XOff_Within_Tile mod 2);

 TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX +

TileW * YOff_Within_Tile + XOff_Within_Tile;

 TiledOffset = WalkW? TiledOffsetW : (WalkY? TiledOffsetY :

TiledOffsetX);

 TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress +

Y*LinearPitch + X);TiledAddress = (Tiled &&

 (Address Swizzling for Tiled-Surfaces == 01)) ?

 (WalkW || WalkY) ?

 (TiledAddress div 128) * 128 +

 (((TiledAddress div 64) mod 2) ^

 ((TiledAddress div 512) mod 2)) +

 (TiledAddress mod 32)

 :

 (TiledAddress div 128) * 128 +

 (((TiledAddress div 64) mod 2) ^

 ((TiledAddress div 512) mod 2)

 ((TiledAddress Div 1024) mod2) +

 (TiledAddress mod 32)

 :

 TiledAddress;

 }

Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more

effective address swizzling algorithm.

For Address Swizzling for Tiled-Surfaces see ARB_MODE – Arbiter Mode Control register, ARB_CTL—

Display Arbitration Control 1 and TILECTL - Tile Control register

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the

same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial

locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture

filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements are

stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned

in row-major order for operations like display refresh. For this reason, the Display and Overlay memory

streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions).

This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled

formats if they are to be displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be stored

in Y-Major order.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 19

The following Psuedo Code Describes the algorithm for mapping TileYs and TileYf Tile Address to Byte

Offset within a Tile. It describes the support for 2D for both TileYs and TileYf as well as MSAA 2D For

TileYs.

/**

***\

 BitMask

 Used for masking single bits of x, y, z, ss# when _pdep32 instruction

is

 not available

**

***/

 enum BitMask

 {

 BIT0 = 1,

 BIT1 = (1 « 1),

 BIT2 = (1 « 2),

 BIT3 = (1 « 3),

 BIT4 = (1 « 4),

 BIT5 = (1 « 5),

 BIT6 = (1 « 6),

 BIT7 = (1 « 7),

 BIT8 = (1 « 8),

 BIT9 = (1 « 9),

 BIT10 = (1 « 10),

 BIT11 = (1 « 11),

 BIT12 = (1 « 12),

 BIT13 = (1 « 13),

 BIT14 = (1 « 14),

 BIT15 = (1 « 15)

 };

/**

***\

 TileYS/TileYF constant swizzle masks w/o _pdep32 instruction

 Used to mask contiguous x/y/z/sample bit groupings before being shifted

into

 their final swizzled bit positions

**

***/

 // used for fallback 'manual' bit shifting

 static const UINT16 xMaskBits5_4 = 0x0030;

 static const UINT16 xMaskBits3_0 = 0x000F;

 static const UINT16 yMaskBits4_0 = 0x001F;

 static const UINT16 yMaskBits3_0 = 0x000F;

 static const UINT16 yMaskBits2_0 = 0x0007;

 static const UINT16 yMaskBits1_0 = 0x0003;

 static const UINT16 SampleMask3_0 = 0x000F;

 static const UINT16 SampleMask2_0 = 0x0007;

20 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 static const UINT16 SampleMask1_0 = 0x0003;

 static const UINT16 SampleMask0 = 0x0001;

/**

***\

 TileYS 2D Tile address swizzling functions w/o _pdep32

**

***/

 /*

_

 | Num | Bits per element | Tiled element offset bits

|

 | Samples | |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2|

1| 0|

|______________________________|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

__|

 | 1x | 64 & 128

|x9|y5|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0|

 | | 16 & 32

|x8|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0|

 | | 8

|x7|y7|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0|

 */

 UINT16 TileYS2dElementOffset64_128bpe(UINT16 x, UINT16 y)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 // shift bits in x and y to their respective TileYS swizzled bit

locations

 xSwizzle = ((BIT9 & x) « 6) |

 ((BIT8 & x) « 5) |

 ((BIT7 & x) « 4) |

 ((BIT6 & x) « 3) |

 ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6

 (xMaskBits3_0 & x);

 ySwizzle = ((BIT5 & y) « 9) |

 ((BIT4 & y) « 8) |

 ((BIT3 & y) « 7) |

 ((BIT2 & y) « 6) |

 ((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

 // OR the swizzled bit positions for final offset within a tile

 return xSwizzle | ySwizzle;

 }

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 21

 UINT16 TileYS2dElementOffset16_32bpe(UINT16 x, UINT16 y)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 // shift bits in x and y to their respective TileYS swizzled bit

locations

 xSwizzle = ((BIT8 & x) « 7) |

 ((BIT7 & x) « 6) |

 ((BIT6 & x) « 5) |

 ((BIT5 & x) « 4) |

 ((BIT4 & x) « 3) |

 (xMaskBits3_0 & x);

 ySwizzle = ((BIT6 & y) « 8) |

 ((BIT5 & y) « 7) |

 ((BIT4 & y) « 6) |

 ((BIT3 & y) « 5) |

 ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

 // OR the swizzled bit positions for final offset within a tile

 return xSwizzle | ySwizzle;

 }

 UINT16 TileYS2dElementOffset8bpe(UINT16 x, UINT16 y)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 // shift bits in x and y to their respective TileYS swizzled bit

locations

 xSwizzle = ((BIT7 & x) « 8) |

 ((BIT6 & x) « 7) |

 ((BIT5 & x) « 6) |

 ((BIT4 & x) « 5) |

 (xMaskBits3_0 & x);

 ySwizzle = ((BIT7 & y) « 7) |

 ((BIT6 & y) « 6) |

 ((BIT5 & y) « 5) |

 ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

 // OR the swizzled bit positions for final offset within a tile

 return xSwizzle | ySwizzle;

 }

/**

***\

 TileYS 2D MSAA Tile address swizzling functions w/o _pdep32

**

22 Doc Ref # IHD-OS-SKL-Vol 5-05.16

***/

 /*

__

 | Num | Bits per element | Tiled element offset bits

|

 | Samples | |15 |14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2|

1| 0|

|______________________________|___|__|__|__|__|__|__|__|__|__|__|__|__|__|__

|__|

 | 2x | 64 & 128

|ss0|y5|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0|

 | | 16 & 32

|ss0|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0|

 | | 8

|ss0|y7|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0|

 */

 UINT16 TileYS2xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT8 & x) « 5) | // shift to bit position 13

 ((BIT7 & x) « 4) | // shift to bit position 11

 ((BIT6 & x) « 3) | // shift to bit position 9

 ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT5 & y) « 9) | // shift to bit position 14

 ((BIT4 & y) « 8) | // shift to bit position 12

 ((BIT3 & y) « 7) | // shift to bit position 10

 ((BIT2 & y) « 6) | // shift to bit position 8

 ((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

 SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS2xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 23

swizzled bit locations

 xSwizzle = ((BIT7 & x) « 6) | // shift to bit position 13

 ((BIT6 & x) « 7) | // shift to bit position 11

 ((BIT5 & x) « 6) | // shift to bit position 9

 ((BIT4 & x) « 5) | // shift to bit position 7

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT6 & y) « 8) | // shift to bit position 14

 ((BIT5 & y) « 7) | // shift to bit position 12

 ((BIT4 & y) « 6) | // shift to bit position 10

 ((BIT3 & y) « 5) | // shift to bit position 8

 ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

 SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS2xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 13

 ((BIT5 & x) « 6) | // shift to bit position 11

 ((BIT4 & x) « 5) | // shift to bit position 9

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT7 & y) « 7) | // shift to bit position 14

 ((BIT6 & y) « 6) | // shift to bit position 12

 ((BIT5 & y) « 5) | // shift to bit position 10

 ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

 SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 /*

 | Num | Bits per element | Tiled element offset bits

|

 | Samples | |15 |14 |13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2|

1| 0|

24 Doc Ref # IHD-OS-SKL-Vol 5-05.16

|______________________________|___|___|__|__|__|__|__|__|__|__|__|__|__|__|_

_|__|

 | 4x | 64 & 128

|ss1|ss0|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0|

 | | 16 & 32

|ss1|ss0|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0|

 | | 8

|ss1|ss0|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0|

 */

 UINT16 TileYS4xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT8 & x) « 5) | // shift to bit position 13

 ((BIT7 & x) « 4) | // shift to bit position 11

 ((BIT6 & x) « 3) | // shift to bit position 9

 ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT4 & y) « 8) | // shift to bit position 12

 ((BIT3 & y) « 7) | // shift to bit position 10

 ((BIT2 & y) « 6) | // shift to bit position 8

 ((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

 SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions

15..14

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS4xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT7 & x) « 6) | // shift to bit position 13

 ((BIT6 & x) « 7) | // shift to bit position 11

 ((BIT5 & x) « 6) | // shift to bit position 9

 ((BIT4 & x) « 5) | // shift to bit position 7

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT5 & y) « 7) | // shift to bit position 12

 ((BIT4 & y) « 6) | // shift to bit position 10

 ((BIT3 & y) « 5) | // shift to bit position 8

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 25

 ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

 SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions

15..14

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS4xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 13

 ((BIT5 & x) « 6) | // shift to bit position 11

 ((BIT4 & x) « 5) | // shift to bit position 9

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT6 & y) « 6) | // shift to bit position 12

 ((BIT5 & y) « 5) | // shift to bit position 10

 ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

 SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions

15..14

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 /*

 | Num | Bits per element | Tiled element offset bits

|

 | Samples | |15 |14 |13 |12|11|10| 9| 8| 7| 6| 5| 4| 3|

2| 1| 0|

|______________________________|___|___|___|__|__|__|__|__|__|__|__|__|__|__|

__|__|

 | 8x | 64 & 128

|ss2|ss1|ss0|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0|

 | | 16 & 32

|ss2|ss1|ss0|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0|

 | | 8

|ss2|ss1|ss0|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0|

 */

 UINT16 TileYS8xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample)

26 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT7 & x) « 4) | // shift to bit position 11

 ((BIT6 & x) « 3) | // shift to bit position 9

 ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT4 & y) « 8) | // shift to bit position 12

 ((BIT3 & y) « 7) | // shift to bit position 10

 ((BIT2 & y) « 6) | // shift to bit position 8

 ((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

 SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions

15..13

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS8xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 11

 ((BIT5 & x) « 6) | // shift to bit position 9

 ((BIT4 & x) « 5) | // shift to bit position 7

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT5 & y) « 7) | // shift to bit position 12

 ((BIT4 & y) « 6) | // shift to bit position 10

 ((BIT3 & y) « 5) | // shift to bit position 8

 ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

 SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions

15..13

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS8xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 27

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT5 & x) « 6) | // shift to bit position 11

 ((BIT4 & x) « 5) | // shift to bit position 9

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT6 & y) « 6) | // shift to bit position 12

 ((BIT5 & y) « 5) | // shift to bit position 10

 ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

 SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions

15..13

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 /*

 | Num | Bits per element | Tiled element offset bits

|

 | Samples | |15 |14 |13 |12 |11|10| 9| 8| 7| 6| 5| 4| 3|

2| 1| 0|

|______________________________|___|___|___|___|__|__|__|__|__|__|__|__|__|__

|__|__|

 | 16x | 64 & 128

|ss3|ss2|ss1|ss0|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0|

 | | 16 & 32

|ss3|ss2|ss1|ss0|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0|

 | | 8

|ss3|ss2|ss1|ss0|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0|

 */

 UINT16 TileYS16xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16

sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT7 & x) « 4) | // shift to bit position 11

 ((BIT6 & x) « 3) | // shift to bit position 9

 ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6

 (xMaskBits3_0 & x); // leave in bits 3..0

28 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 ySwizzle = ((BIT3 & y) « 7) | // shift to bit position 10

 ((BIT2 & y) « 6) | // shift to bit position 8

 ((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

 SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions

15..12

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS16xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT6 & x) « 7) | // shift to bit position 11

 ((BIT5 & x) « 6) | // shift to bit position 9

 ((BIT4 & x) « 5) | // shift to bit position 7

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT4 & y) « 6) | // shift to bit position 10

 ((BIT3 & y) « 5) | // shift to bit position 8

 ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

 SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions

15..12

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

 UINT16 TileYS16xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 UINT16 SampleSwizzle;

 // shift bits in x, y, and sample to their respective TileYS MSAA

swizzled bit locations

 xSwizzle = ((BIT5 & x) « 6) | // shift to bit position 11

 ((BIT4 & x) « 5) | // shift to bit position 9

 (xMaskBits3_0 & x); // leave in bits 3..0

 ySwizzle = ((BIT5 & y) « 5) | // shift to bit position 10

 ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

 SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions

15..12

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 29

 // OR the swizzled bit positions for final offset within a tile

 return SampleSwizzle | xSwizzle | ySwizzle;

 }

/**

***\

 TileYF 2D Tile address swizzling functions w/o _pdep32

**

***/

 /*

_

 | Num | Bits per element | Tiled element offset bits

|

 | Samples | |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2|

1| 0|

|______________________________|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

__|

 | 1x | 64 & 128 | | | |

|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0|

 | | 16 & 32 | | | |

|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0|

 | | 8 | | | |

|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0|

 */

 UINT16 TileYF2dElementOffset64_128bpe(UINT16 x, UINT16 y)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 // shift bits in x and y to their respective TileYF swizzled bit

locations

 xSwizzle = ((BIT7 & x) « 4) |

 ((BIT6 & x) « 3) |

 ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6

 (xMaskBits3_0 & x);

 ySwizzle = ((BIT3 & y) « 7) |

 ((BIT2 & y) « 6) |

 ((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

 // OR the swizzled bit positions for final offset within a tile

 return xSwizzle | ySwizzle;

 }

 UINT16 TileYF2dElementOffset16_32bpe(UINT16 x, UINT16 y)

30 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 // shift bits in x and y to their respective TileYF swizzled bit

locations

 xSwizzle = ((BIT6 & x) « 5) |

 ((BIT5 & x) « 4) |

 ((BIT4 & x) « 3) |

 (xMaskBits3_0 & x);

 ySwizzle = ((BIT4 & y) « 6) |

 ((BIT3 & y) « 5) |

 ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

 // OR the swizzled bit positions for final offset within a tile

 return xSwizzle | ySwizzle;

 }

 UINT16 TileYF2dElementOffset8bpe(UINT16 x, UINT16 y)

 {

 UINT16 xSwizzle;

 UINT16 ySwizzle;

 // shift bits in x and y to their respective TileYF swizzled bit

locations

 xSwizzle = ((BIT5 & x) « 6) |

 ((BIT4 & x) « 5) |

 (xMaskBits3_0 & x);

 ySwizzle = ((BIT5 & y) « 5) |

 ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

 // OR the swizzled bit positions for final offset within a tile

 return xSwizzle | ySwizzle;

 }

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 31

Tiled Channel Select Decision

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling

modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13].

For Gen8 and subsequent generations, the swizzle fields are all reserved, and the CPU's memory

controller performs all address swizzling modifications.

Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled

formats). This requires either the modification of an element's linear memory address or an alternate

formula to convert an element's X,Y coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be used to determine

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile

region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms

by which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address

falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters for surface

operands (i.e., parameters included in surface-defining instructions).

The following table identifies the tiling-detection mechanisms that are supported by the various memory

streams.

Access Path Tiling-Detection Mechanisms Supported

Processor access through the Graphics Memory Aperture Fenced Regions

3D Render (Color/Depth Buffer access) Explicit Surface Parameters

Sampled Surfaces Explicit Surface Parameters

Blt operands Explicit Surface Parameters

Display and Overlay Surfaces Explicit Surface Parameters

Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics

client is to place them within “fenced” tiled regions within Graphics Memory. A fenced region is a block

of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface

Registers for details). Surfaces contained within a fenced region are considered tiled from an external

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since

external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by

an internal graphics client) fall within a region covered by an enabled fence register, that enable will be

effectively masked during the internal graphics client access. Only the explicit surface parameters

described in the next section can be used to tile surfaces being accessed by the internal graphics clients.

32 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information passed

in commands and state. This capability is provided to limit the reliance on the fixed number of fence

regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color

Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface

Parameter Description

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear

format.

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-

Major or X-Major tile format.

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile

width.

Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition,

restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The

most restricted surfaces are those that will be accessed both by the host (via fence) and by internal

device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then

sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device

functions always specify tiling in terms of a surface. The surface must have a base address, and this base

address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y

addressing within the surface) are transformed through tiling. The base address of the surface must

therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device

pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than

or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by

the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated

in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base

address in graphics memory equal to the fence base address, and all accesses of the surfaces are

(possibly quite large) offsets from the fence base address. Fence regions have a virtual “left edge” aligned

with the fence base address, and a “right edge” that results from adding the fence pitch to the “left

edge”. Surfaces in the fence region must not straddle these boundaries.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 33

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host

have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the

surface base address (as set in SURFACE_STATE) must be a “Tile Row Start Address” (TRSA). The first

address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base

address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base

address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.)

Tiled Surface Placement

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to

access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different

GTT mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by

SW between the time the host writes the surface and the device reads it, or it can be accomplished by

arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory Mapping

below).

34 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch

and the fence pitch in any scenario where a surface will be accessed by both the host and an internal

graphics client. Changing the GTT mapping will not help if this restriction is violated.

Surface Access Base Address Pitch Width Tile “Walk”

Host only No restriction Integral multiple of tile size

<= 256KB

Must be <= Fence

Pitch

No restriction

Client only 4KB-aligned Integral multiple of tile size

<= 256KB

Must be <=

Surface Pitch
Restrictions imposed by

the client (see Per Stream

Tile Format Support)

Host and Client,

No GTT

Remapping

Must be TRSA Fence Pitch = Surface Pitch

= integral multiple of tile

size <= 256KB

Width <= Pitch Surface Walk must meet

client restriction, Fence

Walk = Surface Walk

Host and Client,

GTT Remapping

4KB-aligned for

client (will be tile-

aligned for host)

Both must be Integral

multiple of tile size

<=128KB, but not

necessarily the same

Width <=

Min(Surface Pitch,

Fence Pitch)

Surface Walk must meet

client restriction, Fence

Walk = Surface Walk

Per-Stream Tile Format Support

MI Client Tile Formats Supported

CPU Read/Write All

Display/Overlay Y-Major not supported

 X-Major required for Async Flips

Blt Linear and X-Major only

 No Y-Major support

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowest.

3D Color,Depth Rendering Mode

 Color-vs-Depth bpp Buffer Tiling Supported

Classical

 Same Bpp

Both Linear

 Both TileX

 Both TileY

 Linear & TileX

 Linear & TileY

 TileX & TileY

Classical

 Mixed Bpp

Both Linear

 Both TileX

 Both TileY

 Linear & TileX

 Linear & TileY

 TileX & TileY

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 35

Main Memory

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for

graphics functions. Some of this main memory can be “stolen” from the top of system memory during

initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to

satisfy application demands. To this end the graphics driver will frequently need to allocate locked-down

(i.e., non-swappable) physical system memory pages – typically from a cacheable non-paged pool. The

locked pages required to back large surfaces are typically non-contiguous. Therefore a means to support

“logically-contiguous” surfaces backed by discontiguous physical pages is required. The Graphics

Translation Table (GTT) that was described in previous sections provides the means.

Optimizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory (SM)

for optimal performance in certain configurations. The general idea is that these memories are divided

into some number of page types, and careful arrangement of page types both within and between

surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and therefore yield

somewhat higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is

somewhat complicated by (1) permutations of memory device technologies (which determine page sizes

and therefore the number of pages per device row), (2) memory device row population options, and (3)

limitations on the allocation of physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching

between open pages is optimal (again, the pages do not need to be sequential), (b) switching between

memory device rows does not in itself incur a penalty, and (c) switching between pages within a

particular bank of a row incurs a page miss and should therefore be avoided.

36 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Application of the Theory (Page Coloring)

This section provides some scenarios for how Main Memory page allocation can be optimized.

3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within

a Color or Depth Buffer should be mapped to different page types (where a page’s “type” or “color”

refers to the row and bank it’s in).

Memory Pages Backing Color and Depth Buffers

For higher performance, the Color and Depth Buffers could be allocated from different memory device

rows.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 37

Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The U

and V surfaces would split the same 4 page types as used in the Y surface.

Physical Graphics Address Types

The Physical Memory Address Types table lists the various physical address types supported by the

integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory

mappings or are directly specified by graphics device functions. These physical addresses are not subject

to tiling or GTT re-mappings.

Physical Memory Address Types

Address

Type Description Range

MM_Address Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1]

SM_Address System Memory Address. Accesses are snooped in processor cache, allowing

shared graphics/ processor access to (locked) cacheable memory data.

[0,512GB]

Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)

and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an

array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to

physical memory addresses, and sometimes snooped system memory “PCI” addresses.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and

PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The

GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes

respectively) and is physically contiguous. The global GTT should only be programmed via the range

defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT)

size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB

in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE

entries.

38 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Virtual Memory

GT supports standard virtual memory models as defined by the IA programmer’s guide. This section

describes the different paging models, their behaviors, and the page table formats.

GFX Page Tables

GPU supports three page table mechanisms

 IA32e compatible GTT

 PPGTT – private per process GTT (private GFX)

 GGTT - global GTT

All page tables use the same 64-bit PTE format. Differences are in how various bit fields applies (vs

reserved) under various usage models.

Gen9 follows the same principles that gen8 set it up for improved page tables and compatibility of OS

managed page table formats.

Tiled Resources Translation Tables

Sparse Tiled Resources can be thought of as a kind of application-controlled virtual memory scheme. The

application allocates a resource in a virtual address space. Then the application tells the driver to map

specified 64KB tiles within the surface to memory, within resources called Tile Pools. Tiles that are not

mapped to a Tile Pool are null tiles.

Tiled Resource Translation Table (TRTT) is constructed as a 3 level tile Table. Each tile is 64KB is size which

leaves behind 44-16=28 address bits. 28bits are partitioned as 9+9+10 which corresponds to TRVATT L3,

L2 and L1 respectively. This is where TRVATT L3 has 512 entries, L2 has 512 entries and L1 has 1024

entries where each level is contained within a 4KB page hence L3 and L2 is composed of 64b entries and

L1 is composed of 32b entries.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 39

The contents of the TRVATT tables are as listed above where L3 and L2 points to the address of the next

level which is a 4KB page and L1 contains the 32b VA address pointer needed to map the TR tile to

virtual address space.

L1 Entry:

Bits Field Description

31:0 ADDR: Address GFX virtual address of 64KB tile is referenced by this entry.

 This field is treated as GFX Virtual Address (GPA) when translated and maps to 47:16.

L2 Entry:

Bits Field Description

63:48 Ignored Ignored (h/w does not care about values behind ignored registers)

47:12 ADDR:

Address

GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L1.

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address

mode chosen by GFX software.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.

0 Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is

generated to GFX software when an invalid tile is accessed.

L3 Entry:

Bits Field Description

63:48 Ignored Ignored (h/w does not care about values behind ignored registers)

47:12 ADDR:

Address

GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L2.

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address

mode chosen by GFX software.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.

0 Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is

generated to GFX software when an invalid tile is accessed.

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver has to disable the TR-TT bypass mode before using tiled resources translation tables. Details of the

registers are given in "registers for TR-TT management."

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver is not allowed to put TR-TT entries into TR-VA space.

40 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

Usage model for TR translations are restricted to GFX Render Engine.

Programming Note

Context: Tiled ResourceTranslation Tables in Gfx Page Tables

TRTT is only for PPGTT64 (Advanced or Legacy PPGTT64). Enabling TRTT in Legacy PPGTT32 context or GGTT

context is considered as invalid programming.

Registers for TR-TT Management

Following register is a global mechanism to disable the bypass mode which is considered to be default

for h/w. GFX driver has to set this bit to disable bypass mode before using TR-TTs.

Following registers shall be part of the h/w context.

Tiled Resources VA Translation Table L3 Pointer

Register Space: MMIO: 0/2/0

DWord Bit Description

1 63:48
Reserved

Access: RO

Reserved.

47:32
Tiled Resource – VA translation Table L3 Pointer (Upper Address)

Default Value: 0000h

Access: R/W

Upper address bits for tiled resource VA to virtual address translation L3 table.

For physical memory option, address bits [47:39] has to be programmed to "0" as it is defined the

limit of physical memory allocation.

0 31:16
Tiled Resource – VA translation Table L3 Pointer (Lower Address)

Default Value: 0000h

Access: R/W

Lower address bits for tiled resource VA to virtual address translation L3 table.

15:0
Reserved

Access: RO

Reserved.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 41

Tiled Resources Null Tile Detection Register

Register Space: MMIO: 0/2/0

DWord Bit Description

 31:0
Null Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Null

Tiles. Hardware will flag each entry and space behind it as Null Tile for matched entries.

Tiled Resources Invalid Tile Detection Register

Register Space: MMIO: 0/2/0

DWord Bit Description

 31:0
Invalid Tile Detection Value

Default Value: 00000000h

Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Invalid

Tiles. Hardware will flag each entry and space behind it as Invalid Tile for matched entries.

Tiled Resources Virtual Address Detection Registers (TRVADR)

Register Space: MMIO: 0/2/0

DWord Bit Description

0 31:8
Reserved

Access: RO

Reserved.

7:4
TRVA Mask Value (TRVAMV)

Default Value: 0000b

Access: R/W

4bit MASK value that is mapped to incoming address bits[47:44]. MASK bits are used to identify

which address bits need to be considered for compare. If particular mask bit is “1”, mapping address

bit needs to be compared to DATA value provided. If “0”, corresponding address bit is masked which

makes it don’t care for compare (this field defaults to “0000” to disable detection)

Note that h/w supports two possible values for MASK: "0000" which is disabled case and "1111" where

44 bit TR-VA space is carved out.

42 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Tiled Resources Virtual Address Detection Registers (TRVADR)

3:0
TRVA Data Value (TRVADV)

Default Value: 0b

Access: R/W

4bit DATA value that is mapped to incoming address bits[47:44]. Data bits are used to compare

address values that are not filtered by the TRVAMV for match.

Tiled Resources Translation Table Control Register (TRTTE)

Register Space: MMIO: 0/2/0

DWord Bit Description

0 31:2
Reserved

Access: RO

Reserved.

1
TR-VA Translation Table Memory Location

Default Value: 0b

Access: R/W

This fields specifies whether the translation tables for TR-VA to VA are in virtual address space vs

physical (GPA) address space.

0: Tables are in Physical (GPA) Space

1: Tables are in Virtual Address Space

0
TR-TT Enable

Default Value: 0b

Access: R/W

TR translation tables are disabled as default. This field needs to be enabled via s/w to get TR

translation active.

Detection and Treatment of Null and Invalid Tiles

Two types of definition that need to be extracted from TR-VA walk in addition to reaching the GFX virtual

address.

1. Null Tiles: Null tiles provide the applications of capability to preventing OS mapping the entire

surface. When a memory access hits a Null tile, the access is terminated and zero’s are returned to

the originator of the memory access for loads along with a null indicator and for stores the access

is dropped at the page walker level.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 43

2. Invalid Tiles: This is the case where GFX software did not update the value of the mapping

properly for hardware to separate resident vs null tiles. The Invalid Tile treatment is exactly same

however additionally a unique interrupt is generated in h/w

Both detections are done by GPU:

 For L2/L3 entries, Null and Invalid tile information is already embedded in the TR-TT entries

 For L1 entries, the contents (32bits) are compared in hardware to pre-programmed values by GFX

software (values are provided in GFX MMIO space). For the match values, two separate 32b registers

are defined, one for Null Tile detection and one for Invalid Tile detection.

Hardware walking matching the value or detecting L2/L3 would terminate the walk (i.e. rest of the tables

are not valid) and define the access as either Null or Invalid.

Programming Note

Context: Detection and treatment of null and invalid tiles.

The software is not allowed to program both Null and Invalid values to be the same.

Programming Note

Context: TileX Surfaces and Null Tiles

NULL or Invalid Tiles are not supported on TileX surfaces.

GPU implements a counter mechanism to roll-up the Null tile accesses detected. The counter value is

exposed to GFX software via GFX MMIO.

In Gen9 implementation, when the TR translation tables are in Gfx virtual address domain, the pages faults

encountered while walking the IA32e pages are not reported back to the TR walkers or TLBs. These faults

are handled as fault & halt, making these faults transparent to the TR walkers. However, when such a fault

is not fixed (unsuccessful fault response) or when a non-recoverable fault encountered, main page walker

HW converts the cycle to an invalid cycle. Thus, in this case, TR walker or TR TLBs will get incorrect read

return data without any notification of the non-recoverable fault condition. Thus TR walker/TLBs will

continue with the TR-walk with incorrect data. This can lead to spurious cycles being generated. However,

a Gfx reset/FLR is expected as a result of the non-recoverable fault.

TR-TT Modes

The L3 table pointer along with TRTTL3e/TRTTL2e is projected to support two modes of address space.

Original intent was to have the contents to be in Virtual Address space (OS managed) and have them to

be translated to GPA to HPA before getting accessed. Such mechanism will incur high latency penalties

due to nested page translations. GPU shall have an additional mode where tiled-resources translation

tables are in physical address space (GPA) and eliminate the need to have nested translations to reduce

the potentially high miss latencies.

TR-TT walker shall have both modes supported. The Mode bit will be part of the same Register that

provides TR-VA TT L3 pointer.

44 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Virtual Addressed TR Translation Tables

Having sparse tiled resource translation tables in GFX virtual space requires the h/w TR-TT walker to walk

thru the 1st level tile tables for table accesses to reach to Physical address at the L1 TR translation tables.

The following diagrams provide the view of the walk TR-VA translation tables are in physical memory and

no 2nd Level (VTd) translations enabled.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 45

Once 2nd level translations are enabled each level of 1st level walk needs to be further walked through

VTd page tables.

The level of nested walks does not change the structure of the TR-VA walker; it just defines the recursive

nature of the translations.

TR-TT Page Walk

Sparse Tiled Resources translation tables are separated into 3-levels. The pointer to L3 table is going to

be set up in GFX MMIO space as part of the context, this pointer be would be available to page walker

ahead of any TR-VA memory accesses.

TR-TT L3 walk will be consistent of calculating the 64b of interest based on the L3 table pointer and

using the 9 bit index (address bits[43:35]). L2 will use TR-TT L3 entry as the table pointer and use the next

set of 9 address bits ([34:26]) to locate the L2 entry which is a pointer to L1 table. Final L1 table is located

with L2 entry and indexed by remaining 10 address bits (25:16) to index where 32b virtual address is

extracted.

Post TR-TT walk 32b entry from L1 is mapped to final virtual address 47:16 and remaining 15:0 is passed

from the original TR-VA access as is given all tiles in TR-VA space are 64KB in size.

46 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 47

Gen9 Page Table Modes

GFX Aperture and Display accesses are mapped thru Global GTT to keep the walk simple (i.e. 1-level) and

latency sensitive. GPU accesses to memory can be mapped via Global GTT and/or ppGTT with various

addressing modes.

Supported walk modes are listed as following:

1. Global GTT with 32b virtual addressing: Global GTT usage is similar to previous generations with

extended capability of increasing virtual address (VA) up to 4GB (from 2GB) and use a standard

64b PTE format. The breakdown of the PTE for global GTT is given in later sections and allows 1-

level page walk where the 20b index is used to select the 64b PTE from memory.

2. Legacy 32b VA with ppGTT: This is a mode where ppGTT page tables are considered private and

managed via GFX sotfware (driver) where context is tagged as Legacy 32b VA. Each page walk is

managed via 9b of the virtual address and 20b index to address 4GB memory space is broken into

3 parts. In order to optimize the walks and make it look like previous generations, GFX sotfware

provides 4 pointers to page tables (called 4 PDP entries) all guest physical address. GPU uses the

four pointers and fetches the 4x4KB into h/w (for render and media) before the context execution

starts. The optimization limits the dynamic (on demand) page walks to 1-level only.

3. Legacy 48b VA with ppGTT: GFX address expansion beyond 4GB is added to address 48b virtual

address space. 48b VA requires 36b indexing (4x9b) translating into 4-levels of page walk. To

reduce the overhead of 4 level walk, GPU will cache the entire content of PML4 (4kB) to limit the

on-demand walks to 3 levels. The caching happens as part of the initial demand where no further

replacements required.

4. Advanced 48b VA with IA32e support via IOMMU: 48b addressing in advanced mode is

managed via IOMMU settings where the base of the page table shall be found after the root /

context tables using bus/device/function values. PASID# is used as an index in PASID table to find

page table pointer to start the 4-level page walk. Rest of the mechanism is similar to Legacy 48b

VA mode, GPU has the capability to cache entire content of PML4 and try to limit the dynamic

page walks to 3-level.

Gen9 Per Process GTT

Gen9 per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks

on hardware. The listed mechanisms here are selectable per-context and descriptors are delivered to

hardware as part of context descriptor.

The entry contents are also modified to match the same format as IA32e page tables allowing future

expansion for sharable page tables as well as higher order virtual addressing.

Page Tables Entry (PTE) Formats

Page Table Entry (PTE) formats follow the IA32e layout shown below. Note that the Hardware Address

Width (HAW) is determined by Uncore: typically 39 for client products and 46 for server products.

48 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Each table entry is further broken down along with the required functions. GFX has a 4-level page table

which is pointed out by context descriptor starting with the 4th level of PML4. The next levels have

slightly different formats depending on the size of the page supported. 1GB and 2MB page formats are

required for support.

Page walk in advanced mode with 48b VA requires 4 levels. The walk will start with a PML4 table pointer

extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 49

A 64 bit (48b canonical) address requires 4 levels of page table format where the context carries a

pointer to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk

thru various levels.

To repurpose the caches the following mechanism is used:

 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD.

50 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The 64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB

page. In a page table every 16th entry (PTE#0, PTE#16, PTE#32, ... PTE#496) should be used to index. This

is calculated using address[20:16] & “0000”. Note that hardware should not make any assumptions for

any other PTEs.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 51

With the 2MB Page walk, the last level of the page walk is skipped where the PD entry points to the final

page.

52 Doc Ref # IHD-OS-SKL-Vol 5-05.16

For the support for 1GB page size, the following mechanism is needed.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 53

Pointer to PML4 Table

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be

provided by PASID table entry in case of advanced context, else it will be provided by software as part of

the legacy context with 48b addressing.

Details of PASID entry is given in later sections.

PML4E: Pointer to PDP Table

PML4 is used to locate the page directory pointer tables distributed in physical memory. For gen8/9,

PML4 will be used for advanced GPGPU context scheduled via PASID table as well as legacy context with

48b VA.

Bits Field Description

63 XD: Execute

Disable

If NXE=1 in the relevant extended-context-entry, execute permission is not granted

for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by this

entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored Ignored (h/w does not care about values behind ignored registers)

10 EA: Extended

Access

Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this bit.

If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 This bit applies to GPU Only.

9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

54 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

2 U/S:

User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the base of the PD table:

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by

this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 This bit applies to GPU Only.

9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 55

Bits Field Description

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table

PDP entry for 1 GB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):30

ADDR: Address Physical address of 1GB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

29:13 Reserved Reserved (must return 0’s)

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

56 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to

indicate that the memory region pointed by this entry can be considered global

Global paging is not used by GPU.

7 Page Size Must be 1 to indicate 1GB page.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful

write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PD: Pointer to Page Table

Page Directory entry has few different usage models:

1. It can identify the base of the page table.

2. It can define 2MB page table entries.

Pointer to page table is given below:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 57

Bits Field Description

63 XD: Execute

Disable

If NXE=1 in the relevant extended-context-entry, execute permission is not granted

for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4-KByte aligned page table referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11 IPS An MMIO level control has been introduced to manage 64KB page enabling.

10 EA: Extended

Access

Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this bit.

If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 This bit applies to GPU Only.

9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging structures.

2 U/S:

User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table

58 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PDE for 2MB Page is given below:

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):21

ADDR: Address Physical address of 1GB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

20:13 Reserved Reserved (must return 0’s)

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to

indicate that the memory region pointed by this entry can be considered global

Global paging is not used by GPU.

7 Page Size Must be 1 to indicate 2MB page.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful

write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 59

Bits Field Description

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 2MB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):16

ADDR: Address Physical address of 64KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

15:12 Reserved Reserved (must return 0’s)

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to

indicate that the memory region pointed by this entry can be considered global

Global paging is not used by GPU.

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful

write transaction. See later sections for A/D-bit management.

60 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

64KB pages need to be enabled via MMIO along with the PDE IPS bit per directory entry.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 4KB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been

used for address translation by device. It is the devices responsibility to set this

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 61

Bits Field Description

 This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to

indicate that the memory region pointed by this entry can be considered global

Global paging is not used by GPU.

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful

write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to

set this bit for the first access to the region defined with this page table entry. See

later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 4KB Page.

* HAW = 39 for client, and 46 for server.

PPGTT for 32b Virtual Address

For page walk in legacy mode with 32b VA, we need two levels. The walk starts with a PDP pointer

provided by the context descriptor, and uses the 32b VA as an index to consecutive levels of page tables.

Hardware implements 16KB intermediate caches to limit the page walk needed to a single level, to have

the same sensitivity to latency as previous generations.

The following diagram shows the page walk needed for a 4KB page.

62 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 63

Page Table Entry formats for 32b VA use the following formats:

PDE for the page table

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page table referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests targeted to the

memory range pointed by this PDE.

In Legacy mode with 32b VA, R/W bits from PDE are not used.

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table

PTE for 64KB page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):16

ADDR: Address Physical address of 64KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

15:10 Ignored Ignored (h/w does not care about values behind ignored registers)

64 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

PTE for 4KB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR: Address Physical address of 64KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 65

Bits Field Description

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is

calculated using address[21:16] & “0000”. Note that hardware should not make any assumptions for any

other PTEs.

66 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Walk with 2MB Page

PPGTT32 does not support 2MB pages.

Walk with 1GB Page

PPGTT32 does not support 1GB pages.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 67

PPGTT for Standard Context (64b VA)

For page walk in advanced mode with 48b VA, we need four levels. The walk starts with a PML4 table

pointer given by GFX software and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page:

A 64-bit (48b canonical) address requires 4-levels of page table format where the context carries a

pointer to the highest level page table (PML4 pointer) via PASID. The rest of the walk is a normal page

walk thru the various levels.

68 Doc Ref # IHD-OS-SKL-Vol 5-05.16

To repurpose the caches the following mechanism is used:

 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.

 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD.

Page Table Entry (PTE) formats follow a similar layout to IA32e as given below.

Each table entry is further broken down along with the required functions. GFX has a 4-level page table

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different

formats depending on the size of the page supported. 1GB and 2MB page formats are required for

support.

In 48b legacy mode, the pointer to the PML4 table is provided via the context descriptor provided by

GFX software. The PML4 entry format is given below and points to the base of the PDP table.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 69

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

In 64b Legacy, R/W in PML4 entry can not be used for RO pages.

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table

PDP entry is used to locate the page directory. Similar to IA32e page tables, legacy 48b VA supports 1GB

pages, the PDPE has a mechanism to identify a way to say whether this PDPE represents a pointer to

page directory or to a contiguous 1GB physical memory. PDP entry format is given below and points to

the base of PD table.

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page-directory table referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

In 64b Legacy, R/W in PDP entry can not be used for RO pages

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table

70 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PDP entry for 1GB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):30

ADDR: Address Physical address of 1GB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

29:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 1GB Page.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 71

Page Directory entry point to the base of the page table and format is given below.

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page- table referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

In 64b Legacy, R/W in PD entry can not be used for RO pages

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table

Page Directory entry for 2MB page:

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):21

ADDR: Address Physical address of 1GB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

20:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

72 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 1GB Page.

Page Table entry for 64KB page:

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):16

ADDR: Address Physical address of 64KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

15:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 73

Bits Field Description

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

Page Table Entry for 4KB page:

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR: Address Physical address of 64KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

74 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is

calculated using address [20:16]& “0000”. Note that hardware should not make any assumptions for any

other PTEs.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 75

Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final

page.

76 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 77

Gen9 Global GTT

The Global GTT mechanism in gen9 looks very similar to pre-gen8 with the distinction of page table

entry. Aperture and display will still use the global GTT even if GT core is mapped via per-process GTT.

The PTE format for Gen9 is updated to match per process GTT definitions and GSM is now expanded in

size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry corresponding to

a 4KB page with 2^20 entries in GSM (each with 8B content)

For “MI_update_GTT”, the page address provided 31:12 need to be shifted down to 22:3 for the correct

QW position within the GGTT.

Page Table Entry

The following page table entry will be used for Global GTT:

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

Address Physical address of 4KB memory page referenced by this entry.

11:1 Ignored Ignored (h/w does not care about values behind ignored registers)

0 Present When set to 1, indicates that this Page Table Entry is Valid, and the corresponding page is

Present in physical memory

* HAW = 39 for client, and 46 for server.

The GPU accesses GGTT table entries as uncacheable.

78 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Page Walk

The global GTT page walk is identical to what it was before gen8. The only difference would be that each

entry is 8B (instead of 4B) hence the entry selection needs to be updated once the corresponding Page

Table miss read is returned.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 79

Legacy mode with 32b VA

Gen9 page walker is capable supporting 32b VA address with optimized page tables, this is to keep the

walk to a single level.

Page Walk in Legacy mode with 32b VA

For page walk in legacy mode with 48b VA, we need 2 levels. The walk will start with a PDP pointer

provided by the context descriptor and uses the 48b VA as index to consecutive levels of page tables.

Hardware implements 16KB intermediate caches to limit the page walk needed to a single level to have

the same sensitivity to latency as previous generations.

The following diagram shows the page walk that is needed for a 4KB page.

80 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 81

Walk with 64KB Page

82 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Page Table Entry (PTE) Formats

Page Table Entry formats for 32b VA use the following format:

PDE for Page Table

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address

Physical address of 4-KByte aligned page table referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests targeted to the

memory range pointed by this PDE.

In Legacy mode with 32b VA, R/W bits from PDE are not used.

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 83

PTE: Page Table Entry for 64KB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):16

ADDR: Address Physical address of 64KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

15:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

84 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PTE: Page Table Entry for 4KB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR: Address Physical address of a 4KB memory page referenced by this entry.

 This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present This bit must be “1” to point to a valid Page.

* HAW = 39 for client, and 46 for server.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 85

Legacy mode with 48b VA

Legacy mode with 48b VA enables larger virtual space while keeping the page walk compatible with

IA32e.

Page Walk in Legacy 48b Mode

For page walk in advanced mode with 48b VA, we need 4 levels. The walk will start with a PML4 table

pointer extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page.

86 Doc Ref # IHD-OS-SKL-Vol 5-05.16

64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer

to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk thru

various levels.

To repurpose the caches the following mechanism will be used:

 3d: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache

 VEBOX, Blitter: each with a 4KB acting as PML4, PDP, PD cache.

Note: design can section the 512 entries within 4KB to separate areas for PML4, PDP and PD.

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is

calculated using address [20:16]& “0000”. Note that hardware should not make any assumptions for any

other PTEs.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 87

88 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final

page.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 89

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

90 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Page Tables Entry PTE Formats

Page Table Entry (PTE) formats will follow the IA32e layout as given below:

Each table entry is further broken down along with the required functions. GFX has a 4 level page table

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different

formats depending on the size of the page supported. 1GB and 2MB page formats are required for

support.

Pointer to PML4 table

In legacy mode, pointer to PML4 table is provided via the context descriptor.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 91

PML4E: Pointer to PDP Table

Bits Field Description

63:HAW*
Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address
Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:2
Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write
Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to

identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB

physical memory.

92 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PDPE for PD

Bits Field Description

63:HAW*
Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address
Physical address of 4-KByte aligned page-directory table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:2
Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write
Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. Access rights are described

later.

GPU does not support Supervisor mode contexts.

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 93

PDPE for 1GB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):30

ADDR: Address Physical address of 1GB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

29:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion,

write accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present This bit must be “1” to point to a valid Page.

* HAW = 39 for client, and 46 for server.

94 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PD: Pointer to Page Table

This section describes the following:

 PDE for Page Table

 PDE for 2 MB Page

PDE for Page Table

Bits Field Description

63:HAW*
Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR:

Address
Physical address of 4-KByte aligned page- table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled

(NESTE=1) in the relevant extended-context entry.

11:2
Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W:

Read/Write
Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access

rights.

GPU does not support Supervisor mode contexts.

0 P: Present PDP Entry is present. The value must be “1” to point to a page directory pointer table.

 * HAW = 39 for client, and 46 for server.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 95

PDE for 2MB Page

Bits Field Description

63:HAW*
Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):21

ADDR: Address
Physical address of 1GB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

20:10
Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null
For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8
Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute
For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5
Ignored Ignored (h/w does not care about values behind ignored registers)

4
PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through
For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2
Ignored Ignored (h/w does not care about values behind ignored registers)

1 R/W: Read/Write
Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

96 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

0 P: Present It must be “1” to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

Bits Field Description

63:HAW*
Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):16

ADDR: Address
Physical address of 64KB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

15:10
Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null
For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion, write

accesses are dropped.

8
Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute
For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5
Ignored Ignored (h/w does not care about values behind ignored registers)

4
PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through
For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2
Ignored Ignored (h/w does not care about values behind ignored registers)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 97

Bits Field Description

1 R/W: Read/Write
Write permission rights. If 0, write permission not granted for requests with user-level

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 4KB Page

Bits Field Description

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers)

(HAW-

1):12

ADDR: Address Physical address of 64KB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations are

enabled (NESTE=1) in the relevant extended-context entry.

11:10 Ignored Ignored (h/w does not care about values behind ignored registers)

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the

memory access and return all zero’s for the read access with a null completion,

write accesses are dropped.

8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 PAT: Page

Attribute

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6:5 Ignored Ignored (h/w does not care about values behind ignored registers)

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 Ignored Ignored (h/w does not care about values behind ignored registers)

98 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

1 R/W:

Read/Write

Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant

extended-context-entry) to the memory region controlled by this entry. See a later

section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

Advanced mode with 48b VA and IA32e Support

In advanced mode, Gen9 per process GTT mechanism supports IA32e compatible page tables. Paging

mechanism is controlled via IOMMU which shall be owned by OS or GFX driver (not both at the same

time).

Page Walk in Advanced Mode

For page walk in advanced mode with 48b VA, we need 4 levels. The walk will start with a PML4 table

pointer extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 99

64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer

to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk thru

various levels.

To repurpose the caches the following mechanism will be used:

 3d: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache

 VEBOX, Blitter: each with a 4KB acting as PML4, PDP, PD cache.

Note: design can section the 512 entries within 4KB to separate areas for PML4, PDP and PD.

100 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Walk with 64KB Page

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page.

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is

calculated using address [20:16]& “0000”. Note that hardware should not make any assumptions for any

other PTEs.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 101

Walk with 2MB Page

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final

page.

102 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Walk with 1GB Page

For the support for 1GB page size, the following mechanism is needed.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 103

Page Tables Entry (PTE) Formats

Page Table Entry (PTE) formats will follow the IA32e layout as given below:

Each table entry is further broken down along with the required functions. GFX has a 4 level page table

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different

formats depending on the size of the page supported. 1GB and 2MB page formats are required for

support.

Pointer to PML4 table

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be

provided by PASID table entry in case of advanced context, else it will be provided by software as part of

the legacy context with 48b addressing.

Details of PASID entry is given in later sections.

104 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PML4E: Pointer to PDP Table

Bits Field Description

63 XD: Execute

Disable

If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by

this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored Ignored (h/w does not care about values behind ignored registers)

10 EA: Extended

Access

Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to set

this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table entry.

See later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging

structures.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging

structures.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 105

Bits Field Description

2 U/S:

User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to

identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB

physical memory.

PDPE for PD

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when

XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by

this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored/Reserved Ignored/not used by hardware

106 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table

entry. See later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging

structures.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging

structures.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 107

PDPE for 1GB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when

XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):30

ADDR: Address Physical address of 1GB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

29:13 Reserved Reserved (must return 0’s)

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w

to indicate that the memory region pointed by this entry can be considered

global

Global paging is not used by GPU.

7 Page Size Must be 1 to indicate 1GB page.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a

successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table

entry. See later sections for A/D-bit management.

108 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present The value must be “1” to point to a 1GB Page.

* HAW = 39 for client, and 46 for server.

PD: Pointer to Page Table

PDE for Page Table

Bits Field Description

63 XD: Execute

Disable

If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4-KByte aligned page table referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 109

Bits Field Description

11 IPS If FL64KPE=1 in the corresponding PASID entry, the page table referenced by

this PD entry with IPS=1 translates into 64KB pages. If IPS=0, the page table

referenced here translates into 4KB pages.

If FL64KPE=0 in the corresponding PASID entry, the IPS value is ignored and the

page table referenced by this entry translates into 4KB pages.

10 EA: Extended

Access

Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to set

this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9:8 Ignored Ignored (h/w does not care about values behind ignored registers)

7 Reserved Reserved (must return 0’s)

6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table entry.

See later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging

structures.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

GPU does not support any memory type but WB when accessing paging

structures.

2 U/S:

User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table

* HAW = 39 for client, and 46 for server.

110 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PDE for 2MB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when

XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):21

ADDR: Address Physical address of 1GB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

20:13 Reserved Reserved (must return 0’s)

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w

to indicate that the memory region pointed by this entry can be considered

global

Global paging is not used by GPU.

7 Page Size Must be 1 to indicate 2MB page.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a

successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table

entry. See later sections for A/D-bit management.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 111

Bits Field Description

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 2MB Page.

* HAW = 39 for client, and 46 for server.

PTE: Page Table Entry for 64KB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):16

ADDR: Address Physical address of 64KB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

15:12 Reserved Reserved (must return 0’s)

11 Ignored/Reserved Ignored/not used by hardware

112 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

10 EA: Extended

Access

Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w

to indicate that the memory region pointed by this entry can be considered

global

Global paging is not used by GPU.

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a

successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table

entry. See later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S:

User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 64KB Page.

* HAW = 39 for client, and 46 for server.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 113

PTE: Page Table Entry for 4KB Page

Bits Field Description

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.

Not support in gen9

62:52 Ignored Ignored (h/w does not care about values behind ignored registers)

51:HAW* Reserved Reserved (must return 0’s)

(HAW-

1):12

ADDR: Address Physical address of 4KB memory page referenced by this entry.

This field is treated as Guest Physical Address (GPA) when Nested translations

are enabled (NESTE=1) in the relevant extended-context entry.

11 Ignored/Reserved Ignored/not used by hardware

10 EA: Extended

Access

Extended Access bit is added for devices to separate accesses from IA cores. If

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has

been used for address translation by device. It is the devices responsibility to

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored.

This bit applies to GPU Only.

9 Ignored Ignored (h/w does not care about values behind ignored registers)

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w

to indicate that the memory region pointed by this entry can be considered

global

Global paging is not used by GPU.

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a

successful write transaction. See later sections for A/D-bit management.

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs

to set this bit for the first access to the region defined with this page table

entry. See later sections for A/D-bit management.

4 PCD: Page level

cache disable

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory-pointer table

referenced by this entry.

114 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Field Description

3 PWT: Page level

Write-through

For devices operating in the processor coherency domain, this field indirectly

determines the memory type used to access the page directory- pointer table

referenced by this entry.

2 U/S:

User/Supervisor

User vs supervisor access rights. If 0, requests with user-level privilege are not

allowed to the memory region controlled by this entry. See section for access

rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the

relevant extended-context-entry) to the memory region controlled by this entry.

See a later section for access rights.

GPU does not support Supervisor mode contexts.

0 P: Present It must be “1” to point to a 4KB Page.

* HAW = 39 for client, and 46 for server.

GTT Cache

Processor graphics page walker implements a GTT cache which holds the remaining entries that are read

as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf walks and

not including the 2MB/1GB page sizes. When SW enables the use of 2MB/1GB page sizes, it must disable

the GTT cache.

GFX Page Walker (GAM)

GPU supports various engines behind the same page walker. These streams/contexts are identified Client

level IDs which are carried via the arbitration pipeline. Page walker using look-up tables does the correct

selection for the page tables in case of concurrent context are running at the same time.

There are two different types of page table types:

Global graphics translation table (GGTT) is a single common translation table used for all processes.

There can be many Per-process graphics translation table (PPGTT). This requires an additional lookup for

translation.

Virtual Memory Structure Memory Location

Global (GGTT) GSM Only

Per-Process (PPGTT) – private 2 to4-level, Page Tables anywhere

Per-Process (IA32e) – shared 4 levels, Page Tables anywhere

 IA32e compatible PPGTT is added to gen8/gen9 to enable SVM (shared virtual memory) functions.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 115

Context Definition for GFX Page Walker

Page Walker blocks need details about the context to decide on what type of page tables are used, what

the error handling cases are, and many other details to operate. The information is passed to Page

Walker (GAM) by the respective command streamer/DMA.

GAM needs to support the following engines:

 Render

 Media (VDBox) x2

 Blit

 VEBOX x2

The following fields are sent to GAM:

 Context Type (4 bits):

 Legacy vs Advanced Context. Defines the context type and qualifies the rest of the fields.

Same field may mean something else between the Legacy vs Advanced context. There is no

restriction for what type of context can run in either combination.

 Requests without address-space-identifier (Legacy Context): These are the normal

memory requests from endpoint devices. These requests typically specify the type of

access (read/write/atomics), targeted DMA address/size, and identity of the device

originating the request.

 Requests with address-space-identifier (Advanced Context): These are memory requests

with added information identifying the targeted process address space from endpoint

devices supporting virtual memory capabilities. Beyond attributes in normal requests,

these requests specify the targeted process address space identifier (PASID), and

extended attributes such as Execute-Requested (ER) flag (to indicate reads that are

instruction fetches), and Privileged-mode-Requested (PR) flag (to distinguish user

versus supervisor access). For details, refer to the Process Address Space ID (PASID)

Capability in the PCI-Express specifications.

 A/D Support Enable. Access and Dirty bits are used when OS is managing the page tables

and has been added to IA32e compatible page walk. Context defines whether A/D bits need

to be managed via GPU (only applicable in Advanced Context).

 Privileged Context Support. Enables GPU to be able to run a privileged context which

translates into page table accesses regardless of user vs supervisor privileges (only

applicable in Advanced Context).

 32b vs 48b VA Support. Enables 48b VA in page tables for the page walks. The rest of the

HW is seamless to 32b vs 48b VA address walks, however GAM does the check and properly

aligns the page walk to address bits. Note: Only applicable in Legacy Context. Advanced

Context is always 48b.

 Page Fault Support Model:

116 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 Fault and Hang: The only supported fault handling mode for legacy context and it is

not applicable to advanced mode. Optionally hang can be skipped for HW to make

progress (same as Gen7.5).

 Fault and Stream (Switch if needed): Context can survive thru a number of page faults

and could be switched out by the scheduler if a certain threshold is reached.

 Fault and Halt: HW detects page fault and reports to SW; the request is flagged in

pending queue as “waiting for page response” and is halted until the page response is

returned.

 Function Number – 3-bit field that defines the function number of the device. GFX device is

always on BUS=0 and DEVICE=2. If we are not virtualized, our FUNCTION#=0 however if

virtualized function number can be any 8 possible values (i.e. 0-7). The BUS/DEVICE/FUNCTION

numbers are used for the initial walk for ROOT and CONTEXT tables.

 PASID – Process Address Space IDentifier: Use to identify the context that is submitted to HW. We

use the PASID in many places where during the page walk (i.e. PASID table look up) or while

communicating with SW on page faults. Each engine could be running an independent context

with different PASID. The page walker should have a mechanism to be able to cache at least some

number of PASID table entries (matching the engine count) for faster walk.

 Context ID (Queue ID, Bell ID) – Context ID is used to further qualify the running context beyond

the PASID. PASID is given per process, and same process may allocate multiple queues to

communicate with HW. The only way to further identify the process is to use an additional ID. For

GFX HW Context ID could be same as the bell number assigned to it. GAM HW uses the context ID

to populate the queue ID field while communicating page faults to SW.

 Page Table Pointers – The field could be up to 256 bits (i.e. 4x64bits) to identify the page table

pointers associated with the context. For legacy 32b context, the entire 256b is valid representing

the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant pointing to base of

PML4. In case of advanced context, PASID is given in the context definition.

Context Definition Delivery

Context Definition is supposed to be delivered from the corresponding command streamer to GAM and

GAM has independent storage for each engine present.

Context Definition is given by *CS to GAM via a new message:

Message: “Context Available”

GAM prepares for new context, cleans up internal state and does the proper fencing. Most of these steps

should have been performed when context switch request was done for the previous context, but added

here for completeness.

Message: “Context Receive Ready”

GAM is ready for the context. *CS writes all new context values into the descriptor registers. To push all

context descriptors CS sends the following message to GAM also indicating new context descriptor is

downloaded.

Message: “Context Launched”

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 117

GAM does the context requirements and sends the following message to CS to resume its command

parser.

Message: Context Confirmed

GAM should send context confirmed message only after PD restore is done. CS waiting for context

confirmed message is treated as PD restore busy. Since all clients memory interface are blocked during

PD restore it doesn’t make any difference if the context confirmed message is send by GAM immediately

or after PD restore.

Element Descriptor Register

General

Description

Element Information: The register is populated by command streamer and consumed by

GAM

Register Offset See per engine list below.

Bits Access Default Field

63:32 RO Xh Context ID:

 Context identification number assigned to separate this context from others. Context IDs

needs to be recycled in such a way that there cannot be two active contexts with the same

ID.

 This is a unique identification number by which a context is identified and referenced.

31:12 RO Xh LRCA:

 Command Streamer Only

11:9 RO Xh Function Number:

 GFX device is considered to be on Bus0 with device number of 2. Function number is

normally assigned as 000b.

 Not used in Gen8/9.

8 RO Xh Privileged Context / GGTT vs PPGTT mode: Differs in legacy vs advanced context modes:

In Legacy Context: Defines the page tables to be used. This is how page walker come to

know PPGTT vs GGTT selection for the entire context.

 0: Use Global GTT

 1: Use Per-Process GTT

7:6 RO Xh
Fault Model:

00b: Fault & Hang. Same mode as Gen7.5.

01b: Fault & Halt/Wait. Same as initial release of Fault & Halt as in gen7.5. No Advanced

Context.

10b: Reserved

11b: Reserved

118 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Access Default Field

5 RO Xh Deeper IA coherency Support:

In Advanced Context: Defines the level of IA coherency:

 0: IA coherency is provided at LLC level for all streams of GPU (i.e. Gen7.5 like mode).

 1: IA coherency is provided at L3 level for EU data accesses of GPU.

4 RO Xh A&D Support / 32&64b Address Support: Differs in legacy vs advanced context modes:

In Legacy Context: Defines 32b vs 64b (48b canonical) addressing format:

 0: 32b addressing format.

 1: 64b (48b canonical) addressing format.

In Advanced Context: Defines A&D bit support:

 0: A&D bit management in page tables is NOT supported.

 1: A&D bit management in page tables is supported.

3 RO Xh Context Type: Legacy vs Advanced

 Defines the context type.

 0: Advanced Context: Defines the rest of the advanced capabilities (i.e. OS page table

support, fault models, ...). Note that advanced context is not bounded to GPGPU.

 1: Legacy Context: Defines the context as legacy mode which is similar to prior generations

of Gen8.

Note: Bits [8:4] differs in functions when legacy vs advanced context modes are selected.

2 RO Xh FR: Command streamer specific.

1 RO xh Scheduling Mode:

 0: Indicates Ring Buffer mode of scheduling.

 1: Indicates execlist mode of scheduling.

0 RO Xh Valid: Indicates that element descriptor is valid. If GAM is programmed with an invalid

descriptor, it continues but flags an error.

PDP0/PML4/PASID Descriptor Register

General

Description

PDP0/PML4/PASID: The register is populated by command streamer and consumed by GAM. It

contains one of the 3 values which is determined by looking at the element descriptor.

Register Offset See per engine list below

Bits Access Default Field

63:0 RO Xh PDP0/PML4/PASID:

This register can contain three values which depend on the element descriptor definition.

PASID[19:0]: Populated in the first 20bits of the register and selected when Advanced

Context flag is set.

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is set

and 64b address support is selected

PDP0[38:12]: Pointer to one of the four page directory pointer (lowest) and defines the first

0-1GB of memory mapping

Note: This is a guest physical address

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 119

PDP1 Descriptor Register

General

Description

PDP1: The register is populated by command streamer and consumed by GAM. It contains one

of the pointers to PD.

Register Offset See per engine list below

Bits Access Default Field

63:12 RO Xh PDP1:

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1-2GB of

memory mapping

Note: This is a guest physical address

PDP2 Descriptor Register

General

Description

PDP2: The register is populated by command streamer and consumed by GAM. It contains one

of the pointers to PD.

Register Offset See per engine list below

Bits Access Default Field

63:12 RO Xh PDP2:

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2-3GB of

memory mapping

Note: This is a guest physical address

PDP3 Descriptor Register

General

Description

PDP3: The register is populated by command streamer and consumed by GAM. It contains one

of the pointers to PD.

Register Offset See per engine list below

Bits Access Default Field

63:12 RO Xh PDP3:

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3-4GB of

memory mapping

Note: This is a guest physical address

120 Doc Ref # IHD-OS-SKL-Vol 5-05.16

List of Registers and Command Streamers

The following registers are message registers and not written directly by SW.

Engine Offset Description

Render x4400h Element Descriptor Register

x4408h PDP0/PML4/PASID Descriptor Register

x4410h PDP1 Descriptor Register

x4418h PDP2 Descriptor Register

x4420h PDP3 Descriptor Register

Media0

 (VDBOX0)

x4440h Element Descriptor Register

x4448h PDP0/PML4/PASID Descriptor Register

x4450h PDP1 Descriptor Register

x4458h PDP2 Descriptor Register

x4460h PDP3 Descriptor Register

Media1

 (VDBOX1)

x4480h Element Descriptor Register

x4488h PDP0/PML4/PASID Descriptor Register

x4490h PDP1 Descriptor Register

x4498h PDP2 Descriptor Register

x44A0h PDP3 Descriptor Register

VEBOX x44C0h Element Descriptor Register

 x44C8h PDP0/PML4/PASID Descriptor Register

 x44D0h PDP1 Descriptor Register

 x44D8h PDP2 Descriptor Register

 x44E0h PDP3 Descriptor Register

Blitter x4500h Element Descriptor Register

 x4508h PDP0/PML4/PASID Descriptor Register

 x4510h PDP1 Descriptor Register

 x4518h PDP2 Descriptor Register

 x4520h PDP3 Descriptor Register

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 121

Messages:

Message

Name Source Destination Category Address Bit

Mask

Bit Value Description

Context

Available

CS (GT) GAM (GT) self-clear 4004 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

CS(GT) self-clear 3438 0 16 1 Signal ack from GAM to CS in

response to Context Available

message from CS to GAM.

Context

Launched

CS (GT) GAM (GT) self-clear 4004 1 17 1 Signal indicator to GAM that

context descriptor is pushed.

Context

Confirmed

GAM

(GT)

CS(GT) self-clear 3438 1 17 1 Signal ack from GAM to CS in

response to Context Launched

message from CS to GAM.

Context

Available

BCS

(GT)

GAM (GT) self-clear 4014 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

BCS(GT) self-clear 23438 0 16 1 Signal ack from GAM to BCS in

response to Context Available

message from BCS to GAM.

Context

Launched

BCS

(GT)

GAM (GT) self-clear 4014 1 17 1 Signal indicator to GAM that

context descriptor is pushed.

Context

Confirmed

GAM

(GT)

BCS(GT) self-clear 23438 1 17 1 Signal ack from GAM to BCS in

response to Context Launched

message from BCS to GAM.

Context

Available

VECS

(GT)

GAM (GT) self-clear 4010 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

VECS(GT) self-clear 1B438 0 16 1 Signal ack from GAM to VECS in

response to Context Available

message from VECS to GAM.

Context

Launched

VECS

(GT)

GAM (GT) self-clear 4010 1 17 1 Signal indicator to GAM that

context descriptor is pushed.

Context

Confirmed

GAM

(GT)

VECS(GT) self-clear 1B438 1 17 1 Signal ack from GAM to VECS in

response to Context Launched

message from VECS to GAM.

Context

Available

VCS0

(GT)

GAM (GT) self-clear 4008 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context GAM VCS0(GT) self-clear 13438 0 16 1 Signal ack from GAM to VCS in

122 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Message

Name Source Destination Category Address Bit

Mask

Bit Value Description

Receive

Ready

(GT) response to Context Available

message from VCS to GAM.

Context

Launched

VCS0

(GT)

GAM (GT) self-clear 4008 1 17 1 Signal indicator to GAM that

context descriptor is pushed.

Context

Confirmed

GAM

(GT)

VCS0(GT) self-clear 13438 1 17 1 Signal ack from GAM to VCS in

response to Context Launched

message from VCS to GAM.

Context

Available

VCS1

(GT)

GAM (GT) self-clear 400C 0 16 1 Signal request from CS to GAM as

new context is about to be

submitted.

Context

Receive

Ready

GAM

(GT)

VCS1(GT) self-clear 1D438 0 16 1 Signal ack from GAM to VCS in

response to Context Available

message from VCS to GAM.

Context

Launched

VCS1

(GT)

GAM (GT) self-clear 400C 1 17 1 Signal indicator to GAM that

context descriptor is pushed.

Context

Confirmed

GAM

(GT)

VCS1(GT) self-clear 1D438 1 17 1 Signal ack from GAM to VCS in

response to Context Launched

message from VCS to GAM.

Updating Page Table Pointers (aka PD Load)

In case of legacy context, driver is allowed to add/remove pages as long as it is ensured that h/w is not

using these entries. Pre-gen8 flow allowed a mid-context PD load to update the PD entries and directed

h/w to reload updated entries.

Pre-loading of Page Directory Entries (PD load) for 32b legacy mode is not supported from Gen9

onwards. PD entries are loaded on demand when there is a miss in the PDE cache of the corresponding

page walker. Any new page additions by the driver are transparent to the HW, and the new page

translations will be fetched on demand. However, any removal of the pages by the driver should initiate

a TLB invalidation to remove the stale entries.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 123

Page Walker (GAM) Reset

GAM gets all the engine specific resets as well as device and bus resets to manage its internal logic

domains. It is the expectation of SW when a particular GPU engine (i.e. Render, Media…) gets reset, all its

related HW is cleared and comes out fresh for reprogramming. That is true for most of the logic with the

exception of some shared HW blocks. The following blocks require additional steps (post-reset) from SW

to further clean-up the HW:

 Hardware TLBs: The caching structures for the page walks are often considered shared resources.

The expectation for GFX driver to clear the TLBs via “TLB Invalidate” prior to re-using the engine

post reset. This is the same process that was followed on previous GPU generations.

 Page Requests: At the time of the reset HW may have outstanding page requests to SW for page

faulted accesses. These requests could be at any level hence it is required for SW to clear these

paging requests pre/post-engine reset. Engine reset ensures that no new page requests are sent

from HW. Page requests could be at the “page request queue” in memory where they could be

mapped to a dummy page post engine reset completion. Or they could be at the MMIO registers

which will block completion of the reset; it is up to SW to service paging request interrupts without

waiting for the completion of reset request.

Device reset (FLR) covers most of the page walker. However there are exceptions where all messaging

towards the rest of the system (system agent) should not be impacted by it.

All external interactions and IOMMU related blocks are kept under bus (system) reset. GAM keeps the

following blocks outside the device reset:

 IOMMU registers and content

 All system agent messaging structures (including translation enable flows, root pointer structures,

and DMA fault reporting pieces)

An engine being reset also means the particular context that engine is running, is complete or taken out.

This requires GAM to decrement the PASID_State Counter if the engine was running a PASID based

(advanced) context. For FLR (device reset) similar requirement holds. In case of device reset, GAM needs

to decrement all the PASID state counters that are active on the GPU before completing the sequence.

124 Doc Ref # IHD-OS-SKL-Vol 5-05.16

TLB Caching and Management

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At every

stage of the page different bits need to be taken into account and proper treatment is required.

Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear address are translated

using a hierarchy of in-memory paging structures located using the contents of CR3. IA-32e paging

translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4

PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be

accessed at any given time.IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or

1-GByte pages.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 125

The following rules apply:

1. M is an abbreviation for MAXPHYSICAL ADDRESS

2. Reserved fields must be “0”

3. Ignored field must be ignored (there could be private information)

4. All ignore options are part of the context entry and coming from IOMMU definition.

126 Doc Ref # IHD-OS-SKL-Vol 5-05.16

TLB Caches

For gen8/9 the caching structures are separated as following with the architectural view, this is also

applicable to s/w view of these caches when it comes to invalidations.

Context Cache - CC

This is the storage for context table entry which is achieved as part of root/context table walk.

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the

content of the context cache along with all low level caches.

PASID Cache - PC

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for

every HW engine that could be running an independent context (per GAM):

 Render/GPGPU

 MFX (VDBOX) – 1

 MFX (VDBOX) – 2

 Video Enhancement (VEBOX) – 1

 Video Enhancement (VEBOX) – 2

 Blitter

The cache content is updated if the corresponding engine is running an advanced context where its page

table pointers are accessible via PASID table. In case of legacy context running engine, corresponding

PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per engine which is

filled/invalidated during the context switch time.

PASID Cache can also be invalidated with the directed invalidations along with low level caches and

needs to be re-filled prior to context resuming.

Intermediate Page Walk Caches (PML4, PDP, PD) – PWC

These are the stages where intermediate page walk entries are cached to speed-up/shorten the page

walk when final TLB is missed. Each level can be cached separately or along with different levels, the

cacheability structures will have programmability to move the boundary of different levels to

accommodate more/less on each page walk level. However as a concept, for legacy 32b addressing

mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and

media. The others will use cache concept.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 127

TLB – Final Page Entry

The size of the TLBs has been increased over the previous generation and should be targeting using the

following list:

 L3 TLB: 768 TLB entries – This is where all HDC, I$, Constant, State, and Sampler streams are stored.

 MFX: 512 TLB entries – All Media streams (split 256/256 between two media engines).

 BLT: 32 entries.

 Z: 512 TLB entries – All depth accesses.

 C: 256 (256 TLB entries) – All color accesses.

 FF: 128 (128 TLB entries) – All FF accesses to memory.

 VLF: 32 (32 TLB entries) – Media surface.

 GAV: 64 (64 TLB entries) – Video enhancement.

All TLB entries are increased to 48b to contain larger address as well as the page attributes attached to it.

The max size of a single TLB is 256 entries, larger quantities have to be handled as set-associative

storages. Set associativity will be managed by low order page bits (i.e. address#12, address#13, ...).

Both Color and Z TLBs are designed to process a single memory request per cycle. To achieve a higher

throughput where concurrent Color or Z read/write's are used, following register bit needs to be

enabled: mmio0x04A30h [31]

The sizes of RCCTLB and ZTLB is different in SKL and BXT. In SKL both these have 448 entries and in BXT

they only have 256 entries.

The size of the L3 TLB is also different between projects. The default TLB entry alocations are:

 SKL (L3TLB-Gfx 640): L3(80:0-79), DC(100:80-179), TX(444:180-623), GATR(16:624-639)

 SKL (L3TLB-GPGPU 640): L3(80:0-79), DC(460:80-539), TX(100:540-639)

For giving more TLB resources for both DC and TX, the following allocations are recommended.

 SKL (L3TLB-Gfx 640): L3(80:0-79), DC(544:80-623), TX(544:80-623), GATR(16:624-639)

 SKL (L3TLB-GPGPU 640): L3(80:0-79), DC(560:80-639), TX(560:80-639)

TLB Entry Content

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as

well along with the physical address bits. The treatment on these bits would be considered when a HIT vs

MISS decision needs to be made during a look up.

The purpose of caching is to accelerate the paging process by caching individual translations in

translation look-aside buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is

referenced by a page number. It contains the following information from the paging-structure entries

used to translate linear addresses with the page number:

128 Doc Ref # IHD-OS-SKL-Vol 5-05.16

 The physical address corresponding to the page number (the page frame).

 The access rights from the paging-structure entries used to translate linear addresses with the

page number:

o The logical-AND of the R/W flags.

o The logical-AND of the U/S flags.

o The logical-OR of the XD flags.

 Attributes from a paging-structure entry that identifies the final page frame for the page number

(either a PTE or a paging-structure entry in which the PS flag is 1):

o The dirty flag.

o The memory type.

PRESENT: This is the same VALID bit description we had in previous page table designs. The lack of

present bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For

some fault models, even NOT PRESENT entries are cached to filter further page faults (see fault models

on caching page faulting entries). If such entry is cached, there are couple ways that it can be removed

from the page tables:

1. LRA selection where the entry becomes a victim for replacement

2. Global or Selective invalidation

3. Page fault response stating the faulting page is now fixed.

R/W Privilege: Certain pages can be allocated as read-only and write operations are not allowed. To

make this check work, TLB has to keep the R/W bit. This bit has no effect on read operations; however for

write operation privilege needs to be checked. If there is mis-match, the result of the TLB look-up should

be a MISS. This does not mean a page fault immediately; the walk has to be re-done as for any TLB MISS

result. There are cases OS may change page table privileges without invalidating pages in TLB (note: all

downgrades result in invalidation of the TLB, however upgrades can be done silently hence re-walk is

required). In case where the TLB Miss is due to privilege mis-match, the existing entry from TLB has to be

invalidated and page walk will bring in the most up-to-date copy from memory.

The R/W privilege on final frame is generated as a logical-AND process of all upper page walks pointing

to this location.

User vs Supervisor Privilege: The GPU typically operates in user mode when it comes to page tables. So

the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and the

context is marked as user mode. The faulted entry can be cached back into TLB with “P” bit off indicating

a faulted entry. However the page fault report should carry the correct reason why h/w detected the fault

in the first place which was the user vs supervisor privilege. There is an option in context header to define

the context as supervisor, than it legal to access supervisor pages.

 This is not stored in TLB

The U/S privilege on final frame is generated as a logical-AND process of all upper page walks pointing

to this location.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 129

Accessed Bit: This where a stage of the page walk cannot be used if the accessed bit is not set for that

level in the page walk. This is true for both storage into TLB as well as to make progress on the page

walk. In order to achieve the process of Accessed bit, every stage of the ppGTT read is done via a new

semantics between the GAM and GTI such that GTI can atomically process A-bit w/o running into access

violations. The details of the semantics are defined as part of the following sections. The “A” bit does not

need to be stored as part of the TLB, just the fact that a valid page table entry is present in the TLB does

mean that h/w took care off the “A” bit at the time the page was brought up to TLB. Note that TLB

prefetching is disabled when A-bit management is enabled.

IA32e mode page tables cannot co-exist with TLB pre-fetching due to lack of A-bit management for all

entries of the line.

 This is not stored in TLB

Dirty Bit: Similar to accessed bit, dirty bit needs to be managed. It is only applicable for “write” accesses.

Given there are cases where a TLB entry was acquired as part of a read operation, the presence of D-bit

should be maintained with the TLB. This gives us the capability to declare a TLB miss for a write access

when the D-bit is not set even though TLB has a valid translation. In such case, The TLB entry needs to

invalidated and the final stage of the walk needs to be re-done to ensure most up-to-date copy of GTT

entry is brought into h/w. The operation of Dirty bit update is also atomic similar to A-bit management.

Execute (XD) Bit: XD bit is also present on every stage of the walk and applicable to executable code

that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the

corresponding page does not have the execute credentials set properly. Similar treatment of the TLB

entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for

instruction space will have to check the XD bit which is also stored in TLB. If mis-match, the end result is a

TLB miss and walk has to be re-done replacing the different stages of the walk.

The XD privilege on final frame is generated as a logical-OR process of all upper page walks pointing to

this location.

Faulted Bit: There are usage models where the faulted entries are cached in TLB. This is to filter further

faults to the same page as opportunistic way to prevent fault storms. When faulted bit is set the address

is included in the TLB look up but final treatment is fault filtering. The rest of the bits are used to define

what would be the reason for the fault. If the look-up conflicts with the original faulted reason, a re-walk

is required. As a basic case, take a read access bringing up a PTE with W-flag cleared. A subsequent write

access has a conflict on privilege, and it will perform a re-walk. If the result of the re-walk is W-flag set,

than TLB is upgraded and write makes progress. However if the result is still W-flag cleared, the write

access will fault and TLB entry will be tagged as a faulted entry with only read-allowed. Subsequent write

accesses will be filtered as fault but read accesses should cause a re-walk of the page and if successful,

the TLB can be updated with PTE as valid with read-only attribute.

TLB Accessed and Dirty Flags

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.

For paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6

is the dirty flag. These flags are provided for use by memory-management software to manage the

transfer of pages and paging structures into and out of physical memory.

130 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Whenever the processor and/or GPU uses a paging-structure entry as part of linear-address translation, it

sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor and/or GPU sets the dirty flag (if it is not

already set) in the paging-structure entry that identifies the final physical address for the linear address

(either a PTE or a paging-structure entry in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging structure is initially

loaded into physical memory. These flags are “sticky,” meaning that, once set, the processor and/or GPU

does not clear them; only software can clear them.

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging-

structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty

flag from 1 to 0, the GPU might not set the corresponding bit in memory on a subsequent access using

an affected linear address

Accessed bit is applicable to every stage of the page walk, however the dirty bit is only applicable to final

stage of the walk.

The rule states that a particular access cannot be committed until the Accessed and/or Dirty bits are not

visible to page management s/w. In order for GPU to follow the rule, GTT accesses (when A/D bits are

supported) are going to be done via a special cycle definition between GAM and GTI.

Updating A/D Bits

New atomic operations are added to GAM to GPU interface (GTI) to handle paging entries. GAM has to

set the correct atomic opcodes based on the access type and context entry controls as well as level of

access.

Requires setting for opcodes are given in the table below. The steps of operations in the atomic ALUs are

given later in the document.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 131

 The Following Atomics are only applicable in GTI and used for Page Walks

 R/W => Bit[0]

 Extended Access required => Bit[1]

 Write Protect Enable => Bit[2]

 Intermediate Entry => Bit[3]

 Atomic

 Operation Opcode Description

 New

Destination

 Value Applicable

Return Value

(optional)

Atomic_Page_update_0000 1100_0000
Read Access

Extended Access bit is

disabled

Write Protection is

disabled

Final PTE

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0001 1100_0001
Write Access

Extended Access bit is

disabled

Write Protection is

disabled

Final PTE

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0000 1100_0010
Read Access

Extended Access bit is

enabled

Write Protection is

disabled

Final PTE

Set bit[5,10] if not

set

 new_dst

132 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_0001 1100_0011
Write Access

Extended Access bit is

enabled

Write Protection is

disabled

Final PTE

Set bit[5,6,10] if

not set

 new_dst

Atomic_Page_update_0100 1100_0100
Read Access

Extended Access bit is

disabled

Write Protection is

enabled

Final PTE

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0101 1100_0101
Write Access

Extended Access bit is

disabled

Write Protection is

enabled

Final PTE

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0100 1100_0110
Read Access

Extended Access bit is

enabled

Write Protection is

enabled

Final PTE

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0101 1100_0111
Write Access

Extended Access bit is

enabled

Write Protection is

enabled

Final PTE

Set bit[5,6,10] if

not set

 new_dst

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 133

Atomic_Page_update_0000 1100_1000
Read Access

Extended Access bit is

disabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0001 1100_1001
Write Access

Extended Access bit is

disabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0000 1100_1010
Read Access

Extended Access bit is

enabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0001 1100_1011
Write Access

Extended Access bit is

enabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,6,10] if

not set

 new_dst

Atomic_Page_update_0100 1100_1100
Read Access

Extended Access bit is

disabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5] if not

set

 new_dst

134 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_0101 1100_1101
Write Access

Extended Access bit is

disabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0100 1100_1110
Read Access

Extended Access bit is

enabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0101 1100_1111
Write Access

Extended Access bit is

enabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,6,10] if

not set

 new_dst

Atomic updates are only possible for cacheable memory types. There could be cases where the PTE could

be in WT/WC/UC space where atomic update is not possible via WB space. Those are the cases where IA

cores use bus lock to update the A/D bits in PTE.

GT core is not capable of supporting bus locks and has the following options. These options will be

enabled/disabled via register space.

Option#1: Ignore the PAT/MTRR setting of the PTE and update the space as WB with atomic ops. This is

the place GAM will decide to go forward with atomic updates assuming WB space works

Option#2: Once the memory type is determined and the end result of the page is WC/UC/WT space, we

can not guarantee an atomic update. GAM will report an application error (catastrophic) to the scheduler

and handle the case as error.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 135

Bit Access

Default

Value Description

 1 R/W 0b A/D Bit Update on non-WB Space: A/D bit updates are only possible via atomic

operations which are required to be on WB space to work properly. On non-WB spaces, the

A/D bit updates are done via bus locks which are not supported for GT.

“1”: Ignore the page level cacheability and do atomic updates for A/D bit management

“0”: Detect the page level cacheability as part of the atomic operation and throw a

catastrophic error when non-WB space is seen for A/D bit updates.

Replacement

TLB replacements during runtime are based on LRA algorithm; in addition invalidations and page

responses will have to invalidate the TLB entries.

Invalidations of TLB

There are various ways to invalidate TLBs:

1. Traditional invalidation from command streamer: Could be part of any fence accesses including

newly added atomics

2. SVM based invalidations: Listed as part of the new SVM related invalidations, various stages of

TLBs including intermediate stages can be invalidated selectively and/or as a whole.

3. Context Switch: A context switch has to invalidate caches to make sure we have no residual value

of the TLBs across multiple PASIDs. GAM will treat the context reload message from CS as a form

of TLB invalidation.

4. A page response: should invalidate faulted recordings. It should be done via address matching to

kick the faulted entries within the matching PASID.

Invalidation response “Invalidation Wait Descriptor” should also be a fence for both READs and WRITEs

that used the previous TLB entries. GAM can only respond to “invalidation wait descriptor” after getting a

GTI EMPTY indication.

Optional Invalidations

The following cases are listed as page table updates which software may choose not to invalidate the

TLBs.

 If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, s/w may choose

not to invalidate TLBs. This affects only the case where GPU keeps the faulted page in its TLB to

filter out future faults. Regardless of s/w does invalidation or not, for the cases where h/w cares,

there will be a page response from s/w which will be used to shootdown the faulted record from

the TLB.

136 Doc Ref # IHD-OS-SKL-Vol 5-05.16

GAM will put faulted entries to its TLBs only if there has been page request for it, which

means that only faultable surfaces can be stored in GAM TLBs as a faulted entry.

 If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is

necessary (assuming that an invalidation was performed the last time the accessed flag was

changed from 1 to 0). This is because no TLB entry or paging-structure cache entry is created with

information from a paging structure entry in which the accessed flag is 0.

 If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure to

perform an invalidation may result in a “spurious” page-fault exception (e.g., in response to an

attempted write access) but no other adverse behavior. Such an exception will occur at most once

for each affected linear address

GTT Walk Request Port (HDC)

A private GTT request port has been added between the HDC(s) and GAM to service the page walks.

HDC clusters will contain a mini-TLB and uses GAM’s page walker. Their accesses to this page walker is

provided thru this private ports. Main GAM TLBs also act as a secondary cache to back these TLBs.

When page walk request comes to GAM, it will be treated as any normal request where the TLB look up

will be done and in case of a miss further page walk will be performed. The results of the page walk will

be returned on the private connection between the GAM and HDC clusters.

The hierarchy is defined as following diagram where each slice will contain a “Slice GTT Request

Manager” (slice GRM) where all HDCs interface with. Each HDC get two credits (i.e. 2-deep ingress queue

per HDC) where walk request response back to HDC is considered the release of credits. Slice GRM will

collect the walk requests and arbitrate/forward them to GAM on per slice dedicated port.

The request interface is designed to support 1 page walk request per 4 core clocks. Hence both the HDC

to slice GRM and slice GRM to GAM should be designed to carry a single page request distributed over 4

clocks to keep the wiring at minimum.

Page Request Interface:

 Valid – 1 bit

 Opcode – 1 bit (“0”: Page Request and “1”: TLB Invalidation Response)

 Slice ID – 1 bit

 HDC ID – 2 bits

 Virtual (GFX) Address – 36 bits (corresponds to [47:12])

 R/W – Read vs Write intend – 1 bit

 Tracking Number – 8 bits

 Faultable vs non-fautable surface - 1 bits

Page response interface from GAM is designed to deliver one page response every 4 clocks and it is

broadcast bus that connects to all HDCs directly. It is up to HDC unit to decode slice/unit ID and claim

the response as its own which is also treated as claiming the page miss credit back.

Page Response Interface:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 137

 Valid – 1 bit

 Opcode – 1 bit

o 00: for Page Response

o 01: Reserved

o 10: TLB Invalidation Start

o 11: TLB Invalidation End

 PA – 27 bits (corresponds to [38:12])

 R/W – this was for a read or write

 Slice ID – 2 bit

 HDC ID – 2 bits

 D bit – 1 bit

 Fault Codes – 2 bits (6 bits)

 Cacheability (memory type) Override – 3 bits

 Tracking number – 8 bits

Fault Codes:

Bits[1:0] Bit Description

00 No Faults

01 Page fault due to Page not present

10 Privilege level violation

11 Write permission violation

Cacheability (memory type) Override – In case of advanced context execution (where HDC coherent

mode is only applicable), the cacheability from surface state will need to be overridden by the OS/VMM

setting up the page tables (PAT), MTRR and CD. The effective memory type for HDC has to be used for

cache allocation starting with L3. HDC needs to use the memory type bits reported by GAM for memory

accesses.

Memory Type Encoding in MTRR

 HDC to L3

 Control[3:2]

Uncacheable (UC) 0h “00”

Write Combining (WC) 1h “01”

Write Through (WT) 4h “10”

Write Protected (WP) (Reads:WB and Writes:WC) 5h
Read: “11”

Write: “01”

WriteBack (WB) 6h “11”

Reserved* 2,3,7h Reserved

*HDC is already capable of processing WT and WB memory types

138 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Overall Signaling Diagram for HDC/GAM connection:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 139

TLB Invalidation

In addition to page walk requests, there is also a communication needed between HDCs and GAM to

relate the TLB invalidation events. GAM combines all TLB invalidation events into a single event as a

global TLB invalidation to HDC where the entire content of mini-TLB is wiped out.

The protocol starts with GAM sending a “TLB invalidation start” on *page response* interface. All HDCs

will act on the TLB invalidation request as it is a broadcast event. Inline communication of the TLB

invalidation is to make sure all previous page responses are seen by the HDCs targeted. Upon receiving

the TLB Invalidation start, HDCs will stop sending new TLB requests and only process already available

translations pending and ensure corresponding (physical accesses) are GO’ed by L3. Once all these steps

are complete HDC will send out the ACK on the “page request” interface to GAM.

GAM will stop sending any page responses post “TLB invalidation start” message and it is free to drop

any new request that might have been enqueued by HDCs prior to HDCs seeing the invalidation request.

The inline ACK from each HDC is meant to push pending HDC TLB requests towards GAM (where they

are dropped). Once GAM collects all “TLB invalidations ACK’s” from all HDCs, it will re-enable the TLB

service path and send back (broadcast) “TLB invalidation end” message (inline).

HDCs seeing the “TLB Invalidation end” indicating the sequence are complete and synchronized are free

to send TLB requests back to GAM.

Faulting

Page Faulting Support

Gen9 supports the WDDM2.0 page fault model, where hardware detects non-present pages post

translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page fault

and would require a GPU-only reset to recover.

Page Faults

Production SKL supports the WDDM2.0 page fault model, where hardware detects non-present pages

post translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page

fault and would require a GPU-only reset to recover.

140 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Page Fault Modes

Only legacy faulting is supported, which means that a fault occurrence is treated as unrecoverable.

Page Faultable Context? No

Fault Mode Non-fault

Context Type Legacy

Shared Func. Support n/a

Fault Counters Inc'd No

IOMMU Action On Fault Signal fatal error

Shared Func Action on Fault <oblivious>

Msg Retry (2) n/a

Kernel Visibility of Fault None

App Visibility of Fault Via driver signaling of Fatal Error

Scheduler Visibility of Fault n/a

Usage Legacy Behavior

Fault and Hang/Crash (Legacy Mode)

GPU cores prior to gen8 all implemented Fault and Hang behavior (optionally continue – MMIO based)

with the exception of a simple fault and halt that was introduced for gen7.5. This is where page walker

detects a page which is not present as part of the translation and hangs the pipeline via reporting into a

register/interrupt (through command streamer).

The resulting issue points to a s/w problem either in defining the GTT or using a surface which is not

meant to be page faultable.

The same behavior will be carried forward for gen9 and used for legacy context operation as well as

optionally for surfaces that are not page fault-able. The same MMIO based mechanism will allow the

engine to ignore the page fault and resume operating.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 141

Memory Types and Cache Interface

This section has additional information on the types of memory which are accessible via the various GT

mechanisms. It includes discussion on how the various paging models are used and accessed. See the

Graphics Translation Tables for more detailed discussions on paging models.

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3

and the different behaviors which can be enabled.

Memory Object Control State (MOCS)

The memory object control state defines the behavior of memory accesses beyond the graphics core,

including graphics data types that allow selective flushing of data from outer caches, and controlling

cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by

page in the GTT entries. Memory objects that are defined by state per surface generally have additional

memory object control state in the state structure that defines the other surface attributes. Memory

objects without state defining them have memory object state control defined per class in the

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some

memory objects only have the GTT entry mechanism for defining this control. The table below

enumerates the memory objects and the location of the control state for each:

Memory Object Location of Control State

surfaces defined by SURFACE_STATE: sampling engine surfaces, render

targets, media surfaces, pull constant buffers, streamed vertex buffers

SURFACE_STATE

depth, stencil, and hierarchical depth buffers corresponding state command that

defined the buffer attributes

stateless buffers accessed by data port STATE_BASE_ADDRESS

indirect state objects STATE_BASE_ADDRESS

kernel instructions STATE_BASE_ADDRESS

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS)

index buffers 3DSTATE_INDEX_BUFFER

vertex buffers 3DSTATE_VERTEX_BUFFERS

indirect media object STATE_BASE_ADDRESS

generic state prefetch GTT control only

ring/batch buffers GTT control only

context save buffers GTT control only

store DWord GTT control only

142 Doc Ref # IHD-OS-SKL-Vol 5-05.16

MOCS Registers

These registers provide the detailed format of the MOCS table entries, that need to be programmed to

define each surface state.

MEMORY_OBJECT_CONTROL_STATE

L3 Control Registers

64x16b control registers are defined within L3 space to interpret MOCS indexing and map it to cache

events.

The incoming MOCS value is used to index into one of these registers which hardware uses as control

parameters for a given surface. It allows 64 concurrent surface definitions with unique control values for

L3 caching.

Also attached are the default settings for each 64 locations if driver chooses to use as is.

Following 16b defines per selection definition:

Register#64 (MOCS value 63) is reserved for h/w use and should not be used by s/w.

In L3 Node: B020-B09F (128 Bytes)

Bits Description

16:6 Reserved.

5:4
L3 Cacheability Control (L3CC).

Memory type information used in L3. This field is combined with the additional two bits that are

sent by HDC based on binding table index. For all other L3 requesters, this field is the primary

source of L3 cache controls.

00b: Use binding table index for direct EU accesses – for rest it is reserved.

01b: Uncacheable (UC) – non-cacheable.

10b: Reserved

11b: Writeback (WB).

3:1
Skip Caching Control (SCC).

Defines the bit values to enable caching. Outcome overrides the L3caching for the surface.

If “0” – than corresponding address bit value is don’t care.

Bit[1]=1: Address bit[9] needs to be “0” to cache in target.

Bit[2]=1: Address bit[10] needs to be “0” to cache in target.

Bit[3]=1: Address bit[11] needs to be “0” to cache in target.

../../../../Content/BXmlSnippets/Structure_MEMORY_OBJECT_CONTROL_STATE_DevSKL+_BSpec.html

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 143

Bits Description

0
Enable Skip Caching (ESC).

Enable for the Skip cache mechanism.

0: Not enabled.

1: Enabled for L3.

Defaults Table

Default L3CC SCC ESC Default L3CC SCC ESC

000000 00 000 0 100000 00 000 0

000001 01 000 0 100001 01 000 0

000010 01 001 1 100010 01 001 1

000011 01 011 1 100011 01 011 1

000100 01 111 1 100100 01 111 1

000101 10 000 0 100101 10 000 0

000110 01 001 1 100110 01 001 1

000111 01 011 1 100111 01 011 1

001000 01 111 1 101000 01 111 1

001001 11 000 0 101001 11 000 0

001010 01 001 1 101010 01 001 1

001011 01 011 1 101011 01 011 1

001100 01 111 1 101100 01 111 1

001101 00 000 0 101101 00 000 0

001110 00 000 0 101110 00 000 0

001111 00 000 0 101111 00 000 0

010000 00 000 0 110000 00 000 0

010001 01 000 0 110001 01 000 0

010010 01 001 1 110010 01 001 1

010011 01 011 1 110011 01 011 1

010100 01 111 1 110100 01 111 1

010101 10 000 0 110101 10 000 0

010110 01 001 1 110110 01 001 1

010111 01 011 1 110111 01 011 1

011000 01 111 1 111000 01 111 1

011001 11 000 0 111001 11 000 0

011010 01 001 1 111010 01 001 1

011011 01 011 1 111011 01 011 1

011100 01 111 1 111100 01 111 1

144 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Default L3CC SCC ESC Default L3CC SCC ESC

011101 00 000 0 111101 00 000 0

011110 00 000 0 111110 00 000 0

011111 00 000 0 111111 00 000 0

Memory Interface Control Registers

8*64x32b control registers are defined within the page walker where control parameters for LLC/eDRAM

caching are defined. Incoming memory control object state index is used to do a look up into the table

where the corresponding control parameters are picked for a given surface. These control values are

used to control LLC/eDRAM caching.

For EU surfaces where binding table index is used, we also pass two bits of information in the hardware.

Following 32b defines per selection definition:

These set of registers have to be engine specific (8x).

All MOCS registers are considered part of the HW context and need to be saved part of the context that

command streamers are controlling.

Register#64/#63 (MOCS value 63&62) are reserved for h/w use and should not be used by s/w.

 Register#64 is for Coherent L3 evictions

 Register#63 is used for Tiled-Resources page walker accesses

In GAMT: C800-CFFF (256 Bytes)

Bits Description

31:19 Reserved

18:17 Reserved

16:15
Class of Service

This field controls the Class of Service sent to the LLC to determine which sub-set of Ways the surface will be

stored

 in.The allocation of certain LLC ways to different class of service settings is a project dependent decision and

listed in the Bspec.

 00: Value from Private PAT Registers(40E0/40E4/40E8/40EC)

 01: Class 1

 10: Class 2

 11: Class 3

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 145

Bits Description

14
Snoop Control Field (SCF):

Enables s/w to have GFX h/w to be able to consume IA generated buffers that are tagged as WB. Driver can

mark these buffers as WB when generating them from IA. In LP-SOCs, the fabric is not forced to be coherent

all the time. IA-core generated WB buffers can only be consumed by GPU if that buffer is tagged as snoop-

able in GPUs buffer definitions (or via GPU Page tables).

1: Hardware will snoop the IA caches while accessing this surface

0: Hardware will not snoop the IA caches while accessing this surface

Note: There is a performance & power penalty in accessing surfaces that are tagged as snooped.

Note: S/W should NOT set this field in client platforms.

Note: In BXT-A step, there is a HW bug that does not send this snoop information to the uncore reliably for the

write transactions. Thus, should not rely on this snoop control bit for generating snoops to IA caches for write.

This could be worked around by making write surfaces "coherent", which would generate RFO/I2M requests to

the uncore which will generate snoops to IA regardless of this snoop control.

13:11
Page Faulting Mode

This fields controls the page faulting mode that will be used in the memory interface block for the given

request coming from this surface:

000: Use the global page faulting mode from context descriptor (default)

 001-111: Reserved

10:8
Skip Caching Control

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface.

If "0" - than corresponding address bit value is do not care

 Bit[8]=1: address bit[9] needs to be "0" to cache in target

 Bit[9]=1: address bit[10] needs to be "0" to cache in target

 Bit[10]=1: address bit[11] needs to be "0" to cache in target

The default value of this field is '000. For coherent surfaces, skip caching should not be enabled, as not

caching in LLC breaks the coherency.

7
Enable Reverse Skip Caching

Enable for the Skip cache mechanism

 0: Not enabled

 1: Enabled for LLC

146 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Description

6
Don't Allocate on miss

Controls defined for RO surfaces in mind, where if the target cache is missed - do not bring the line

(applicable to LLC/eDRAM).

0: Allocate on MISS (normal cache behavior)

 1: Do NOT allocate on MISS

5:4
LRU (Cache Replacement) Management (LRUM).

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular allocation is

done at youngest age (“3”) it tends to stay longer in the cache as compared to older age allocations (“2”, “1”,

or “0”). This option is given to driver to be able to decide which surfaces are more likely to generate HITs,

hence need to be replaced least often in caches.

00: Take the age value from Uncore CRs.

01: Assign the age of "0"

10: Dont change the age on a hit.

11: Assign the age of "3"

3:2
Target Cache (TC).

This field allows the choice of LLC vs eLLC for caching.

00b: Use TC/LRU controls from page table

01b: LLC Only.

10b: LLC/eLLC Allowed.

11b: LLC/eLLC Allowed.

For coherent surfaces ensure that LLC caching is enabled - even when using target cache controls

from page table.

1:0
LLC/eDRAM Cacheability Control (LeCC).

Memory type information used in LLC/eDRAM.

00b: Use Cacheability Controls from page table / UC with Fence (if coherent cycle).

01b: Uncacheable (UC) – non-cacheable.

10b: Writethrough (WT).

11b: Writeback (WB).

Note: In case of SVM (advanced context), LLC/eDRAM memory type is used based on the page table

controls and cannot be managed via MOCS index.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 147

Defaults Table

Default LeCC TC LRUM AOM ESC SCC PFM Default LeCC TC LRUM AOM ESC SCC PFM

000000 00 00 11 0 0 00 000 000000 00 00 11 0 0 00 000

000001 00 01 11 0 0 00 000 000001 00 01 11 0 0 00 000

000010 00 10 11 0 0 00 000 000010 00 10 11 0 0 00 000

000011 01 00 11 0 0 00 000 000011 01 00 11 0 0 00 000

000100 10 00 11 0 0 00 000 000100 10 00 11 0 0 00 000

000101 10 01 11 0 0 00 000 000101 10 01 11 0 0 00 000

000110 10 10 11 0 0 00 000 000110 10 10 11 0 0 00 000

000111 11 00 11 0 0 00 000 000111 11 00 11 0 0 00 000

001000 11 01 11 0 0 00 000 001000 11 01 11 0 0 00 000

001001 11 10 11 0 0 00 000 001001 11 10 11 0 0 00 000

001010 10 00 11 0 0 00 000 001010 10 00 11 0 0 00 000

001011 10 01 11 0 0 00 000 001011 10 01 11 0 0 00 000

001100 10 10 11 0 0 00 000 001100 10 10 11 0 0 00 000

001101 11 00 11 0 0 00 000 001101 11 00 11 0 0 00 000

001110 11 01 11 0 0 00 000 001110 11 01 11 0 0 00 000

001111 11 10 11 0 0 00 000 001111 11 10 11 0 0 00 000

010000 00 00 11 0 0 00 000 010000 00 00 11 0 0 00 000

010001 00 01 11 0 0 00 000 010001 00 01 11 0 0 00 000

010010 00 10 11 0 0 00 000 010010 00 10 11 0 0 00 000

010011 01 00 11 0 0 00 000 010011 01 00 11 0 0 00 000

010100 10 00 11 0 0 00 000 010100 10 00 11 0 0 00 000

010101 10 01 11 0 0 00 000 010101 10 01 11 0 0 00 000

010110 10 10 11 0 0 00 000 010110 10 10 11 0 0 00 000

010111 11 00 11 0 0 00 000 010111 11 00 11 0 0 00 000

011000 11 01 11 0 0 00 000 011000 11 01 11 0 0 00 000

011001 11 10 11 0 0 00 000 011001 11 10 11 0 0 00 000

011010 10 00 11 0 0 00 000 011010 10 00 11 0 0 00 000

011011 10 01 11 0 0 00 000 011011 10 01 11 0 0 00 000

011100 10 10 11 0 0 00 000 011100 10 10 11 0 0 00 000

011101 11 00 11 0 0 00 000 011101 11 00 11 0 0 00 000

011110 11 01 11 0 0 00 000 011110 11 01 11 0 0 00 000

011111 11 10 11 0 0 00 000 011111 11 10 11 0 0 00 000

148 Doc Ref # IHD-OS-SKL-Vol 5-05.16

HDCL3GAM Change Specific to Coherent L3

Given memory object control state is an index for SKL, for L3 coherent accesses HDC cannot replace the

bit[3:2] with the memory type information coming from GAM. Instead these two bits need to be

communicated separately.

Both L3 and GAM override the memory type information that is extracted from the index table with these

two bits passed by HDC in case of L3 coherent accesses.

Memory Type

Encoding

 in MTRR

HDC to L3

 Control[3:2]

Uncacheable (UC) 0h “00”

Write Combining (WC) 1h “01”

Write Through (WT) 4h “10”

Write Protected (WP) (Reads:WB and Writes:WC) 5h
Read: “11”

Write: “01”

WriteBack (WB) 6h “11”

Reserved* 2,3,7h Reserved

Also for the HDC GAM interface (page request response), the faulting mode from indexed table needs to

be communicated along with response. This would add 2 bits and HDC can use the mode bits to figure

out what to do with the data.

This is also applicable to read return data from GAM.

Graphics Cache and Memory Interface

The SKL generation memory interface has further improvements over previous generations. These

improvements are either on existing functions or new features that are added to this particular

generation.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 149

Skip Caching in LLC and eDRAM

Skip Caching is added to SKL to deal with two specific problems:

1. If a given surface is too large for LLC or eDRAM, we want to cache a portion of the surface in the

cache and get limited benefits instead of trying to cache the entire surface and trash the cache. Or

not cache at all and lose any benefit of using a cache.

2. If a given surface can benefit from additional/concurrent b/w of both caches and/or memory, we

can split the surface via allocating a certain segments of it in different caches and memory, and try

to extract additional b/w. The opportunity would be additional b/w from different sources rather

being stuck with cache b/w only.

For coherent surfaces, skip caching should not be enabled, as not caching in LLC breaks the coherency.

Mechanism can be controlled via memory object control state which is used to identify each surface

separately.

Bit Description

10:8 Skip Caching Control (SCC).

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface.

If "0" then corresponding address bit value is don't care.

 Bit[8]=1: Address bit[9] needs to be "0" to cache in target.

 Bit[9]=1: Address bit[10] needs to be "0" to cache in target.

 Bit[10]=1: Address bit[11] needs to be "0" to cache in target.

7
Enable Reverse Skip Caching (ESC).

Enable for the Skip cache mechanism.

 0: Not enabled.

 1: Enabled for reverse caching.

Here is the mechanism:

If bit[7]=0:

 If access is LLC cacheable and skip caching is enabled, match the enabled address bits:

 If matched address bits, let the caching to be in LLC

 If no-matched address bits, downgrade the caching to eLLC

 If access is eLLC/eDRAM cacheable (Only) and skip caching is enabled, match the enabled address

bits:

 If matched address bits, let the caching to be in eLLC

 If no-matched address bits, downgrade the memory type to UC (uncacheable).

150 Doc Ref # IHD-OS-SKL-Vol 5-05.16

If bit[7]=1:

 If access is LLC cacheable and skip caching is enabled, match the enabled address bits:

 If matched address bits, downgrade the caching to eLLC

 If no-matched address bits, let the caching to be in LLC

 If access is eLLC/eDRAM cacheable (Only) and skip caching is enabled, match the enabled address

bits:

 If matched address bits, downgrade the memory type to UC (uncacheable).

 If no-matched address bits, let the caching to be in eLLC

Caching Display Surfaces in LLC

Using LLC for the output Color pipeline when Display buffers are accessed has been tried for many

generations. Previous generations enabled write-through caching to get benefits from reads.

SKL generation GFX adds a mechanism to be able to cache display buffers that are immediate target of

the color pipeline as write-back. In order to synchronize the contents of the display buffer within LLC to

display controller, SKL PG added an option at the pipe-control flush to select whether a color buffer flush

is needed along with pipeline flush (see pipe-control and MI_Flush_DW definition updates).

For Frame buffer caching GFX driver will tag the corresponding Display buffer target as cacheable in LLC.

LLC cacheability shall be selected via GFX Page tables (using private PAT) or MOCS (memory object

control state). However this setting would enable for display buffers to be cached along with general GFX

accesses which could lead to trashing in LLC cache along with long flush penalties. In order to limit the

implications of an LLC flush, a global setting register (IDICR – IDI Control Register[23:22]) is included to

control the QOS (quality of service) value for display buffers only. GFX driver is required to tune the QOS

value based on system settings to limit the number of ways required to be allocated for frame buffer

caching and to be flushed at the FLIP time.

For proper LLC flush event, GFX driver will program the cache definition registers (FBCDR – Frame Buffer

Cache Definition Register) in the Page Walker register space to define different parameters of the

LLCcache on the system.

Pipe-control and/or MI_FLUSH_DW for the contexts that have Frame Buffer caching has to be enhanced

to enable overlap execution of the LLC flush as well as the execution of next context/frame by h/w. Not

doing the following steps will cause GT h/w to stall on LLC flush which is not desirable.

In the case where Frame Buffer is cached, driver is required to put 2 pipe-controls and/or

MI_FLUSH_DW’s.

 The first will be used to flush the GPU h/w with a stall, and will not have LLC flush or SYNC’ing

DW/interrupt to the driver.

 Second will be used to flush LLC with a SYNC DW/interrupt to the driver. This will not be a stalling

pipe-control and/or MI_FLUSH_DW.

After first pipe-control/MI_FLUSH_DW, hardware will be free to execute forward on the command ring

and 2nd pipe-control/MI_FLUS_DW will be non-stalling for h/w but will hold off the FLIP synchronization

to display controller until display buffer contents are flushed from LLC.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 151

Page Walker Access and Memory Types

Most of these notes are further explained in the document however summarized as part of the page

table behavior:

Page Walker Memory Types

1. Legacy Contexts

a. GT access to root/extended-root table and context/extended-context table

b. GTT access to private paging (PPGTT) entries

c. GT access to GPA-to-HPA paging entries

d. GT access to the translated page

2. Advanced context (without nesting)

a. GT access to extended-root table and extended-context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

3. Advanced context (with nesting)

a. GT access to extended-root table and extended-context table

b. GT access to PASID-entry & PASID-state entry

c. GT access to IA-32e paging entries

d. GT access to the translated page

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries

g. GT access to GPA-to-HPA paging entries to translate address of page

For Gen8, the following behavior is defined however gen9 needs to comply with the spec definition:

Error Cases

 A/D bit update attempt for paging entry in non-WB memory, cause page-walk to be aborted;

Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU

context in error – catastrophic error case.

 Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver

as GPGPU context in error (catastrophic error)

 CD=1 treated same as non-WB memory, for above lock behavior

152 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Common Surface Formats

This section documents surfaces and how they are stored in memory, including 3D and video surfaces,

including the details of compressed texture formats. Also covered are the surface layouts based on tiling

mode and surface type.

Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data

(e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats,

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory

object types.

Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. i.e., pixel bits 7:0 are stored

in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color components

in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order

(LSB channel on the left, MSB channel on the right), with the channel format specified following the

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of

red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

Intensity Formats

All surface formats containing “I” include an intensity value. When used as a source surface for the

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered.

Intensity surfaces are not supported as destinations.

Luminance Formats

All surface formats containing “L” include a luminance value. When used as a source surface for the

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being

filtered. The alpha channel is provided either from another field or receives a default value. Luminance

surfaces are not supported as destinations.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 153

R1_UNORM (same as R1_UINT) and MONO8

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to

Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine.

7 6 5 4 3 2 1 0

T7 T6 T5 T4 T3 T2 T1 T0

Bit Description

T0
Texel 0

On texture reads, this

(unsigned) 1-bit value is

replicated to all color channels.

Format: U1

...
...

T7
Texel 7

On texture reads, this

(unsigned) 1-bit value is

replicated to all color channels.

Format: U1

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only

supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter.

Palette Formats

Palette formats are supported by the sampling engine. These formats include an index into the palette

(Px) that selects the actual channel values from the palette, which is loaded via the

3DSTATE_SAMPLER_PALETTE_LOAD0 command.

154 Doc Ref # IHD-OS-SKL-Vol 5-05.16

P4A4_UNORM

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in

the low nibble).

7 4 3 0

Alpha Palette Index

Bit Description

7:4
Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 255

to yield a [0.0,1.0] Alpha value.

Format: U4

3:0
Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via

3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U4

A4P4_UNORM

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the

high nibble).

7 4 3 0

Palette Index Alpha

Bit Description

7:4
Palette Index

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U4

3:0
Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit

value, and then divided by 255 to yield a [0.0,1.0] alpha value.

Format: U4

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 155

P8A8_UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in

the low byte).

15 8 7 0

Alpha Palette Index

Bit Description

15:8
Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U8

7:0
Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded

via 3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U8

A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the

high byte).

15 8 7 0

Palette Index Alpha

Bit Description

15:8
Palette Index

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U8

7:0
Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.

Format: U8

156 Doc Ref # IHD-OS-SKL-Vol 5-05.16

P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit Description

7:0
Palette Index

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture

palette.

Format: U8

P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit Description

1:0
Palette Index

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U2

Compressed Surface Formats

This section contains information on the internal organization of compressed surface formats.

ETC1_RGB8

This format compresses UNORM RGB data using an 8-byte compression block representing a 4x4 block

of texels. The texels are labeled as texel[row][column] where both row and column range from 0 to 3.

Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

High 24 bits if “diff” is zero (individual mode):

Bits Description

7:4 R0[3:0]

3:0 R1[3:0]

15:12 G0[3:0]

11:8 G1[3:0]

23:20 B0[3:0]

19:16 B1[3:0]

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 157

High 24 bits if “diff” is one (differential mode):

Bits Description

7:3 R0[4:0]

2:0 dR1[2:0]

15:11 G0[4:0]

10:8 dG1[2:0]

23:19 B0[4:0]

18:16 dB1[2:0]

Low 40 bits:

Bits Description

31:29 lum table index for sub-block 0

28:26 lum table index for sub-block 1

25 diff

24 flip

39 texel[3][3] index MSB

38 texel[2][3] index MSB

37 texel[1][3] index MSB

36 texel[0][3] index MSB

35 texel[3][2] index MSB

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

40 texel[0][0] index MSB

55 texel[3][3] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

158 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Description

48 texel[0][2] index LSB

63 texel[3][1] index LSB

62 texel[2][1] index LSB

61 texel[1][1] index LSB

60 texel[0][1] index LSB

59 texel[3][0] index LSB

58 texel[2][0] index LSB

57 texel[1][0] index LSB

56 texel[0][0] index LSB

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks

controlled by the “flip” bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the

right. If flip=1, sub-block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom.

The “diff” bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444

value per sub-block (“individual” mode with diff = 0), or a single 555 value for the first sub-block

(R0/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block (“differential” mode with diff

= 1). The delta values are 3-bit two’s-complement values that hold values in the range [-4,3]. These

values are added to the 5-bit values for sub-block 0 to obtain the 5-bit values for sub-block 1 (if the

value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit

per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base

color for each sub-block.

For each sub-block one of 8 different luminance columns is selected based on the 3-bit lum table index.

Then each texel selects one of the 4 rows of the selected column with a 2-bit per-texel index. The chosen

value in the table is added to the 8-bit base color for the sub-block (obtained in the previous step) to

obtain the texel’s color. Values in the table are given in decimal, representing an 8-bit UNORM as an 8-

bit signed integer.

Luminance Table

0 1 2 3 4 5 6 7

0
2 5 9 13 18 24 33 47

1
8 17 29 42 60 80 106 183

2
-2 -5 -9 -13 -18 -24 -33 -47

3
-8 -17 -29 -42 -60 -80 -106 -183

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 159

ETC2_RGB8 and ETC2_SRGB8

The ETC2_RGB8 format builds on top of ETC1_RGB8, using a set of invalid bit sequences to enable three

new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be

documented in this section as they are covered in the ETC1_RGB8 section.

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1

differential mode. The mode is determined as follows (x indicates don’t care):

diff Rt Gt Bt mode

0 x x x individual

1 0 x x T

1 1 0 x H

1 1 1 0 planar

1 1 1 1 differential

The inputs in the above table are defined as follows:

 Rt = (R0 + dR1) in [0,31]

 Gt = (G0 + dG1) in [0,31]

 Bt = (G0 + dB1) in [0,31]

8-byte compression block for mode determination

Bits Description

7:3 R0[4:0]

2:0 dR1[2:0]

15:11 G0[4:0]

10:8 dG1[2:0]

23:19 B0[4:0]

18:16 dB1[2:0]

31:26 ignored

25 diff

24 ignored

63:32 ignored

The fields in the table above are used only for mode determination. Some of the bits in this table are

overloaded with other values within each mode. The algorithm is defined such that there is no ambiguity

in modes when this is done.

T mode

The “T” mode has the following bit definition:

160 Doc Ref # IHD-OS-SKL-Vol 5-05.16

8-byte compression block for “T” mode

Bits Description

7:5 ignored

4:3 R0[3:2]

2 ignored

1:0 R0[1:0]

15:12 G0[3:0]

11:8 B0[3:0]

23:20 R1[3:0]

19:16 G1[3:0]

31:28 B1[3:0]

27:26 di[2:1]

25 diff = 1

24 di[0]

39 texel[3][3] index MSB

38 texel[2][3] index MSB

37 texel[1][3] index MSB

36 texel[0][3] index MSB

35 texel[3][2] index MSB

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

40 texel[0][0] index MSB

55 texel[0][0] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

48 texel[0][2] index LSB

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 161

Bits Description

63 texel[3][1] index LSB

62 texel[2][1] index LSB

61 texel[1][1] index LSB

60 texel[0][1] index LSB

59 texel[3][0] index LSB

58 texel[2][0] index LSB

57 texel[1][0] index LSB

56 texel[0][0] index LSB

The “T” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the

individual mode, however the bit positions for these are different. For each channel, the 4 bits are

extended to 8 bits by bit replication.

A 3-bit distance index “di” is also defined in the compression block. This value is used to look up the

distance in the following table:

distance index

“di” distance “d”

0 3

1 6

2 11

3 16

4 23

5 32

6 41

7 64

Four colors are possible on each texel. These colors are defined as the following:

 P0 = (R0, G0, B0)

 P1 = (R1, G1, B1) + (d, d, d)

 P2 = (R1, G1, B1)

 P3 = (R1, G1, B1) – (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each

texel in the block based on the 2-bit texel index.

162 Doc Ref # IHD-OS-SKL-Vol 5-05.16

H mode

The “H” mode has the following bit definition:

8-byte compression block for “H” mode

Bits Description

7 ignored

6:3 R0[3:0]

2:0 G0[3:1]

15:13 ignored

12 G0[0]

11 B0[3]

10 ignored

9:8 B0[2:1]

23 B0[0]

22:19 R1[3:0]

18:16 G1[3:1]

31 G1[0]

30:27 B1[3:0]

26 di[2]

25 diff = 1

24 di[1]

39 texel[3][3] index MSB

38 texel[2][3] index MSB

37 texel[1][3] index MSB

36 texel[0][3] index MSB

35 texel[3][2] index MSB

34 texel[2][2] index MSB

33 texel[1][2] index MSB

32 texel[0][2] index MSB

47 texel[3][1] index MSB

46 texel[2][1] index MSB

45 texel[1][1] index MSB

44 texel[0][1] index MSB

43 texel[3][0] index MSB

42 texel[2][0] index MSB

41 texel[1][0] index MSB

40 texel[0][0] index MSB

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 163

Bits Description

55 texel[3][3] index LSB

54 texel[2][3] index LSB

53 texel[1][3] index LSB

52 texel[0][3] index LSB

51 texel[3][2] index LSB

50 texel[2][2] index LSB

49 texel[1][2] index LSB

48 texel[0][2] index LSB

63 texel[3][1] index LSB

62 texel[2][1] index LSB

61 texel[1][1] index LSB

60 texel[0][1] index LSB

59 texel[3][0] index LSB

58 texel[2][0] index LSB

57 texel[1][0] index LSB

56 texel[0][0] index LSB

The “H” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the

individual and T modes, however the bit positions for these are different. For each channel, the 4 bits are

extended to 8 bits by bit replication.

A 3-bit distance index “di” is defined by 2 MSBs in the compression block and the LSB computed by the

following equation, where R/G/B values are the 8-bit values from the first step:

 di[0] = ((R0 « 16) | (G0 « 8) | B0) >= ((R1 « 16) | (G1 « 8) | B1)

The distance “d” is then looked up in the same table used for T mode. The four colors for H mode are

computed as follows:

 P0 = (R0, G0, B0) + (d, d, d)

 P1 = (R0, G0, B0) - (d, d, d)

 P2 = (R1, G1, B1) + (d, d, d)

 P3 = (R1, G1, B1) – (d, d, d)

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each

texel in the block based on the 2-bit texel index as in T mode.

164 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Planar mode

The “planar” mode has the following bit definition:

8-byte compression block for “planar” mode

Bits Description

7 ignored

6:1 R0[5:0]

0 G0[6]

15 ignored

14:9 G0[5:0]

8 B[5]

23:21 ignored

20:19 B[4:3]

18 ignored

17:16 B0[2:1]

31 B0[0]

30:26 RH[5:1]

25 diff = 1

24 RH[0]

39:33 GH[6:0]

32 BH[5]

47:43 BH[4:0]

42:40 RV[5:3]

55:53 RV[2:0]

52:48 GV[6:2]

63:62 GV[1:0]

61:56 BV[5:0]

The “planar” mode has three base colors stored as RGB 676, with red & blue having 6 bits and green

having 7 bits. These three base colors are each extended to RGB 888 with bit replication.

The color of each texel is then computed using the following equations, with x and y representing the

texel position within the compression block:

 texel[y][x].R = x(RH-R0)/4 + y(RV-R0)/4 + R0

 texel[y][x].G = x(GH-G0)/4 + y(GV-G0)/4 + G0

 texel[y][x].B = x(BH-B0)/4 + y(BV-B0)/4 + B0

All resulting channels are clamped to the range [0,255].

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGB8, then a conversion from the resulting RGB

values to SRGB space is performed.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 165

EAC_R11 and EAC_SIGNED_R11

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and

column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows.

EAC_R11 compression block layout

Bits Description

7:0 R0[7:0]

15:12 m[3:0]

11:8 ti[3:0]

23:21 texel[0][0] index

20:18 texel[1][0] index

17:16,31 texel[2][0] index

30:28 texel[3][0] index

27:25 texel[0][1] index

24,39:38 texel[1][1] index

37:35 texel[2][1] index

34:32 texel[3][1] index

47:45 texel[0][2] index

44:42 texel[1][2] index

41:40,55 texel[2][2] index

54:52 texel[3][2] index

51:49 texel[0][3] index

48,63:62 texel[1][3] index

61:59 texel[2][3] index

58:56 texel[3][3] index

166 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The “ti” (table index) value from the compression block is used to select one of the columns in the table

below.

Intensity modifier (im) table

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
-3 -3 -2 -2 -3 -3 -4 -3 -2 -2 -2 -2 -3 -1 -4 -3

1
-6 -7 -5 -4 -6 -7 -7 -5 -6 -5 -4 -5 -4 -2 -6 -5

2
-9 -10 -8 -6 -8 -9 -8 -8 -8 -8 -8 -7 -7 -3 -8 -7

3
-15 -13 -13 -13 -12 -11 -11 -11 -10 -10 -10 -10 -10 -10 -9 -9

4
2 2 1 1 2 2 3 2 1 1 1 1 2 0 3 2

5
5 6 4 3 5 6 6 4 5 4 3 4 3 1 5 4

6
8 9 7 5 7 8 7 7 7 7 7 6 6 2 7 6

7
14 12 12 12 11 10 10 10 9 9 9 9 9 9 8 8

The eight possible color values Ri are then computed from the 8 values in the column labeled imi, where i

ranges from 0 to 7:

For EAC_R11:

if (m == 0) Ri = R0*8 + 4 + imi else Ri = R0*8 + 4 + (imi * m * 8)

Each value is clamped to the range [0,2047].

For EAC_SIGNED_R11:

if (m == 0) Ri = R0*8 + imi else Ri = R0*8 + (imi * m * 8)

Each value is clamped to the range [-1023,1023].

Note that in the signed case, the R0 value is a signed, 2’s complement value in the range [-127, 127].

Before being used in the above equations, an R0 value of -128 must be clamped to -127.

Finally, each texel red value is selected from the 8 possible values Ri using the 3-bit index for that texel.

The green, blue, and alpha values are set to their default values.

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 167

ETC2_RGB8_PTA and ETC2_SRGB8_PTA

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the “individual” mode in favor of

allowing a punch-through alpha. The “diff” bit from ETC2_RGB8 is renamed to “opaque” in this format,

and the mode selection behaves as if the “diff” bit is always 1, making the “individual” mode inaccessible

for these formats.

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is

determined to be zero, the three other channels are also forced to zero, regardless of what value the

normal decompression algorithm would have produced.

Differential Mode

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGB8 is used. If the opaque bit

is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out, otherwise

the table is the same):

Luminance Table for opaque bit not set

 0 1 2 3 4 5 6 7

0
0 0 0 0 0 0 0 0

1
8 17 29 42 60 80 106 183

2
0 0 0 0 0 0 0 0

3
-8 -17 -29 -42 -60 -80 -106 -183

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value is

set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255 and

RGB is the result of the normal decompression calculations.

T and H Modes

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set

to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255.

Planar Mode

In planar mode, the opaque bit is ignored and alpha is set to 255.

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the

resulting RGB values to SRGB space is performed, with alpha remaining unchanged.

168 Doc Ref # IHD-OS-SKL-Vol 5-05.16

ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8

The ETC2_EAC_RGBA8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression block

represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the EAC_R8

algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm. The EAC_R8

format differs from EAC_R11 as described below.

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBA8, then a conversion from

the resulting RGB values to SRGB space is performed, with alpha remaining unchanged.

EAC_R8 Format:

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier

section, except the procedure for computing the eight possible color values Ri is performed as follows:

Ri = R0 + (imi * m)

Each value is clamped to the range [0,255].

EAC_RG11 and EAC_SIGNED_RG11

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and

column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows.

EAC_RG11 compression block layout

Bits Description

63:56 G0[7:0]

55:52 Gm[3:0]

51:48 Gti[3:0]

47:45 texel[0][0] G index

44:42 texel[1][0] G index

41:39 texel[2][0] G index

38:36 texel[3][0] G index

35:33 texel[0][1] G index

32:30 texel[1][1] G index

29:27 texel[2][1] G index

26:24 texel[3][1] G index

23:21 texel[0][2] G index

20:18 texel[1][2] G index

17:15 texel[2][2] G index

14:12 texel[3][2] G index

11:9 texel[0][3] G index

8:6 texel[1][3] G index

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 169

Bits Description

5:3 texel[2][3] G index

66:64 texel[3][3] G index

63:56 R0[7:0]

55:52 Rm[3:0]

51:48 Rti[3:0]

47:45 texel[0][0] R index

44:42 texel[1][0] R index

41:39 texel[2][0] R index

38:36 texel[3][0] R index

35:33 texel[0][1] R index

32:30 texel[1][1] R index

29:27 texel[2][1] R index

26:24 texel[3][1] R index

23:21 texel[0][2] R index

20:18 texel[1][2] R index

17:15 texel[2][2] R index

14:12 texel[3][2] R index

11:9 texel[0][3] R index

8:6 texel[1][3] R index

5:3 texel[2][3] R index

2:0 texel[3][3] R index

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that they

supply two channels of output data, both red and green, from two independent 8-byte portions of the

compression block. The low half of the compression block contains the red information, and the high half

contains the green information. Blue and alpha channels are set to their default values.

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels

are generated using the data in the compression block.

170 Doc Ref # IHD-OS-SKL-Vol 5-05.16

FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel

blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged

according to the following diagram:

FXT1 Encoded Blocks

Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on

which encoding scheme results in best overall visual quality. The following table lists the four different

modes and their encodings:

FXT1 Format Summary

Bit

127

Bit

126

Bit

125

Block

Compression

Mode Summary Description

0 0 X
CC_HI

2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and

transparent black

0 1 0
CC_CHROMA

4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1
CC_ALPHA

3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3 discrete

colors + transparent black and 2 LUTs using interpolated values of Color 0,1

(t0-15) and Color 1,2 (t16-31).

1 x x
CC_MIXED

4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and

Color2,3 LUT used for t16-31. Alpha bit selects between LUTs with 4

interpolated colors or 3 interpolated colors + transparent black.

FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the

encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB

colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is

transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a

color from the table.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 171

CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format:

FXT CC_HI Block Encoding

Bit Description

127:126 Mode = ‘00’b (CC_HI)

125:121 Color 1 Red

120:116 Color 1 Green

115:111 Color 1 Blue

110:106 Color 0 Red

105:101 Color 0 Green

100:96 Color 0 Blue

95:93 Texel 31 Select

... ...

50:48 Texel 16 Select

47:45 Texel 15 Select

... ...

2:0 Texel 0 Select

CC_HI Block Decoding

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3

MSBs into the 3 LSBs, as shown in the following table:

FXT CC_HI Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]

Color 1 [18:16] Color 1 Red [2:0] [125:123]

Color 1 [15:11] Color 1 Green [7:3] [120:116]

Color 1 [10:08] Color 1 Green [2:0] [120:118]

Color 1 [07:03] Color 1 Blue [7:3] [115:111]

Color 1 [02:00] Color 1 Blue [2:0] [115:113]

Color 0 [23:19] Color 0 Red [7:3] [110:106]

Color 0 [18:16] Color 0 Red [2:0] [110:108]

Color 0 [15:11] Color 0 Green [7:3] [105:101]

Color 0 [10:08] Color 0 Green [2:0] [105:103]

Color 0 [07:03] Color 0 Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

172 Doc Ref # IHD-OS-SKL-Vol 5-05.16

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors

(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table:

FXT CC_HI Interpolated Color Table

Interpolated

Color Color RGB Alpha

0 Color0.RGB 0FFh

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh

6 Color1.RGB 0FFh

7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded

CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the

CC_HI block.

FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block.

These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB

colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color

from the table. The Alpha component defaults to fully opaque (0FFh).

CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format:

FXT CC_CHROMA Block Encoding

Bit Description

127:125 Mode = ‘010’b (CC_CHROMA)

124 Unused

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 173

Bit Description

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

...

33:32 Texel 16 Select

31:30 Texel 15 Select

...

1:0 Texel 0 Select

CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3

LSBs, as shown in the following tables:

FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10:08] Color 3 Green [2:0] [118:116]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

174 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded

CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 0FFh)

completing the decode of the CC_CHROMA block.

FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB

0 Color0.ARGB

1 Color1.ARGB

2 Color2.ARGB

3 Color3.ARGB

FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0

and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit

RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB

color from the table. The Alpha component defaults to fully opaque (0FFh).

CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format:

FXT CC_MIXED Block Encoding

Bit Description

127 Mode = ‘1’b (CC_MIXED)

126 Color 3 Green [0]

125 Color 1 Green [0]

124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 175

Bit Description

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block.

Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as

per the following table:

FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into

the 3 LSBs, as shown in the following table:

FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

176 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]

Color 2 [09:08] Color 2 Green [1:0] [103:100]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10] Color 0 Green [2] [1] XOR [125]

Color 0 [09:08] Color 0 Green [1:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four

interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15

indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures:

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-15 Select Color RGB Alpha

0 Color0.RGB 0FFh

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh

3 Color1.RGB 0FFh

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31 Select Color RGB Alpha

0 Color2.RGB 0FFh

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 177

Texel 16-31 Select Color RGB Alpha

3 Color3.RGB 0FFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are

encoded as RGB565 colors, with the Green LSB obtained as shown in the following table:

FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following

diagram.

FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:19] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:87]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:19] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

178 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors.

The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels

16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 3

is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures:

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15 Select Color RGB Alpha

0 Color0.RGB 0FFh

1 (Color0.RGB + Color1.RGB) /2 0FFh

2 Color1.RGB 0FFh

3 Black (0,0,0) 0

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-31 Select Color RGB Alpha

0 Color2.RGB 0FFh

1 (Color2.RGB + Color3.RGB) /2 0FFh

2 Color3.RGB 0FFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the

encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table,

completing the decode of the CC_CMIXED block.

FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control

bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects.

CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format:

FXT CC_ALPHA Block Encoding

Bit Description

127:125 Mode = ‘011’b (CC_ALPHA)

124 LERP

123:119 Color 2 Alpha

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 179

Bit Description

118:114 Color 1 Alpha

113:109 Color 0 Alpha

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

CC_ALPHA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3

MSBs into the 3 LSBs, as shown in the following tables:

FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]

Color 2 [26:24] Color 2 Alpha [2:0] [123:121]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [31:27] Color 1 Alpha [7:3] [118:114]

Color 1 [26:24] Color 1 Alpha [2:0] [118:116]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

180 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [31:27] Color 0 Alpha [7:3] [113:109]

Color 0 [26:24] Color 0 Alpha [2:0] [113:111]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th

entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded

CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of

the CC_ALPHA block.

FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha

0 Color0.RGB Color0.Alpha

1 Color1.RGB Color1.Alpha

2 Color2.RGB Color2.Alpha

3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The

Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-

31 indices, as shown in the following figures:

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-15 Select Color ARGB

0 Color0.ARGB

1 (2*Color0.ARGB + Color1.ARGB + 1) /3

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 181

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-31 Select Color ARGB

0 Color2.ARGB

1 (2*Color2.ARGB + Color1.ARGB + 1) /3

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

DXT/BC1-3 Texture Formats

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next

multiple of four texels – here the pad texels are not referenced by the device.

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is

opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding

can be used to support source textures that require more than one-bit alpha: here the 1st QWord is used

to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values.

These three types of format are discussed in the following sections:

 Opaque and One-bit Alpha Textures (DXT1)

 Opaque Textures (DXT1_RGB)

 Textures with Alpha Channels (DXT2-5)

DXT2 and DXT3 are equivalent compression formats from the perspective of the hardware. The only

difference between the two is the use of pre-multiplied alpha encoding, which does not affect hardware.

Likewise, DXT4 and DXT5 are the same compression formats with the only difference being the use of

pre-multiplied alpha encoding.

Note that the surface formats DXT1-5 are referred to in the DirectX Specification as BC1-3. The mapping

between formats is shown below:

 DXT1 ⇒ BC1

 DXT2/DXT3 ⇒ BC2

 DXT4/DXT5 ⇒ BC3

182 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Programming Note

Context: DXT Texture Formats

 Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit

blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-bit alpha

formats on a per-block basis within the same texture. In other words, the comparison of the unsigned

integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels.

 When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or

DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once

interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used

on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a

block-by-block basis.

Opaque and One-bit Alpha Textures (DXT1/BC1)

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque

or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This

totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel.

In the block bitmap, there are two bits per texel to select between the four colors, two of which are

stored in the encoded data. The other two colors are derived from these stored colors by linear

interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color

values stored in the block. They are treated as unsigned integers. If the first color is greater than the

second, it implies that only opaque texels are defined. This means four colors will be used to represent

the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed

in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha

transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that

the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the

alpha block .

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a

transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used

for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color

encoding is selected:

if (color_0 > color_1)

 {

 // Four-color block: derive the other two colors.

 // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3

 // These two bit codes correspond to the 2-bit fields

 // stored in the 64-bit block.

 color_2 = (2 * color_0 + color_1) / 3;

 color_3 = (color 0 + 2 * color_1) / 3;

 }

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 183

 else

 {

 // Three-color block: derive the other color.

 // 00 = color_0, 01 = color_1, 10 = color_2,

 // 11 = transparent.

 // These two bit codes correspond to the 2-bit fields

 // stored in the 64-bit block.

 color_2 = (color_0 + color_1) / 2;

 color_3 = transparent;

 }

The following tables show the memory layout for the 8-byte block. It is assumed that the first index

corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example,

Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word Address 16-bit Word

0 Color_0

1 Color_1

2 Bitmap Word_0

3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color

15:11 Red color component

10:5 Green color component

4:0 Blue color component

Bits Texel

1:0 (LSB) Texel[0][0]

3:2 Texel[0][1]

5:4 Texel[0][2]

7:6 Texel[0][3]

9:8 Texel[1][0]

11:10 Texel[1][1]

13:12 Texel[1][2]

15:14 Texel[1][3]

Bitmap Word_1 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[2][0]

3:2 Texel[2][1]

5:4 Texel[2][2]

184 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Texel

7:6 Texel[2][3]

9:8 Texel[3][0]

11:10 Texel[3][1]

13:12 Texel[3][2]

15:14 (MSB) Texel[3][3]

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We

will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly

distributed gradient between them. To determine the values for the 4x4 bitmap, the following

calculations are used:

 00 ? color_0

 01 ? color_1

 10 ? 2/3 color_0 + 1/3 color_1

 11 ? 1/3 color_0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit

integer, color_1. An example of where this format could be used is leaves on a tree to be shown against a

blue sky. Some texels could be marked as transparent while three shades of green are still available for

the leaves. Two of these colors fix the extremes, and the third color is an interpolated color.

The bitmap encoding for the colors and the transparency is determined using the following calculations:

 00 ? color_0

 01 ? color_1

 10 ? 1/2 color_0 + 1/2 color_1

 11 ? Transparent

Opaque Textures (DXT1_RGB)

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is

removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the

Opaque Color Encoding. The alpha channel defaults to 1.0.

Programming Note

Context: Opaque Textures (DXT1_RGB)

The behavior of this format is not compliant with the OGL spec.

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3)

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a

block that describes the transparency precedes the 64-bit block already described for DXT1. The

transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with

fewer bits and linear interpolation analogous to what is used for color encoding.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 185

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block

3:0 Transparency block

7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe

transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a

variety of means such as dithering or by simply using the 4 most significant bits of the alpha data.

However they are produced, they are used just as they are, without any form of interpolation.

Note: DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word.

This is the layout for Word 0:

Bits Alpha

3:0 (LSB) [0][0]

7:4 [0][1]

11:8 [0][2]

15:12 (MSB) [0][3]

This is the layout for Word 1:

Bits Alpha

3:0 (LSB) [1][0]

7:4 [1][1]

11:8 [1][2]

15:12 (MSB) [1][3]

This is the layout for Word 2:

Bits Alpha

3:0 (LSB) [2][0]

7:4 [2][1]

11:8 [2][2]

15:12 (MSB) [2][3]

This is the layout for Word 3:

Bits Alpha

3:0 (LSB) [3][0]

7:4 [3][1]

11:8 [3][2]

15:12 (MSB) [3][3]

186 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear

encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in

the first eight bytes of the block. The representative alpha values are used to interpolate intermediate

alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is

greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four

intermediate alpha values are interpolated between the specified alpha extremes. The two additional

implicit alpha values are 0 (fully transparent) and 255 (fully opaque).

The following pseudo-code illustrates this algorithm:

 // 8-alpha or 6-alpha block?

 if (alpha_0 > alpha_1) {

 // 8-alpha block: derive the other 6 alphas.

 // 000 = alpha_0, 001 = alpha_1, others are interpolated

 alpha_2 = (6 * alpha_0 + alpha_1) / 7; // Bit code 010

 alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011

 alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100

 alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101

 alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110

 alpha_7 = (alpha_0 + 6 * alpha_1) / 7; // Bit code 111

 }

 else {

 // 6-alpha block: derive the other alphas.

 // 000 = alpha_0, 001 = alpha_1, others are interpolated

 alpha_2 = (4 * alpha_0 + alpha_1) / 5; // Bit code 010

 alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011

 alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100

 alpha_5 = (alpha_0 + 4 * alpha_1) / 5; // Bit code 101

 alpha_6 = 0; // Bit code 110

 alpha_7 = 255; // Bit code 111

 }

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha_0

1 Alpha_1

2 [0][2] (2 LSBs), [0][1], [0][0]

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB)

4 [1][3], [1][2], [1][1] (2 MSBs)

5 [2][2] (2 LSBs), [2][1], [2][0]

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB)

7 [3][3], [3][2], [3][1] (2 MSBs)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 187

BC4

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data.

An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] bit code

21:19 texel[0][1] bit code

24:22 texel[0][2] bit code

27:25 texel[0][3] bit code

30:28 texel[1][0] bit code

33:31 texel[1][1] bit code

36:34 texel[1][2] bit code

39:37 texel[1][3] bit code

42:40 texel[2][0] bit code

45:43 texel[2][1] bit code

48:46 texel[2][2] bit code

51:49 texel[2][3] bit code

54:52 texel[3][0] bit code

57:55 texel[3][1] bit code

60:58 texel[3][2] bit code

63:61 texel[3][3] bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen

based on the three-bit code for that texel. The second mode has the two reference colors plus four

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max

values for the colors. The values of red_0 through red_7 are computed as follows:

188 Doc Ref # IHD-OS-SKL-Vol 5-05.16

red_0 = red_0; // bit code 000

 red_1 = red_1; // bit code 001

 if (red_0 > red_1) {

 red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010

 red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011

 red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100

 red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101

 red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110

 red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

 }

 else {

 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010

 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011

 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100

 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101

 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1

for SNORM)

 red_7 = 1.0; // bit code 111

 }

BC5

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. A

16-byte compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column]

where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] red bit code

21:19 texel[0][1] red bit code

24:22 texel[0][2] red bit code

27:25 texel[0][3] red bit code

30:28 texel[1][0] red bit code

33:31 texel[1][1] red bit code

36:34 texel[1][2] red bit code

39:37 texel[1][3] red bit code

42:40 texel[2][0] red bit code

45:43 texel[2][1] red bit code

48:46 texel[2][2] red bit code

51:49 texel[2][3] red bit code

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 189

Bit Description

54:52 texel[3][0] red bit code

57:55 texel[3][1] red bit code

60:58 texel[3][2] red bit code

63:61 texel[3][3] red bit code

71:64 green_0

79:72 green_1

82:80 texel[0][0] green bit code

85:83 texel[0][1] green bit code

88:86 texel[0][2] green bit code

91:89 texel[0][3] green bit code

94:92 texel[1][0] green bit code

97:95 texel[1][1] green bit code

100:98 texel[1][2] green bit code

103:101 texel[1][3] green bit code

106:104 texel[2][0] green bit code

109:107 texel[2][1] green bit code

112:110 texel[2][2] green bit code

115:113 texel[2][3] green bit code

118:116 texel[3][0] green bit code

121:119 texel[3][1] green bit code

124:122 texel[3][2] green bit code

127:125 texel[3][3] green bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen

based on the three-bit code for that texel. The second mode has the two reference colors plus four

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max

values for the colors. The values of red_0 through red_7 are computed as follows:

190 Doc Ref # IHD-OS-SKL-Vol 5-05.16

red_0 = red_0; // bit code 000

 red_1 = red_1; // bit code 001

 if (red_0 > red_1) {

 red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010

 red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011

 red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100

 red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101

 red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110

 red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

 }

 else {

 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010

 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011

 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100

 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101

 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1

for SNORM)

 red_7 = 1.0; // bit code 111

 }

The same calculations are done for green, using the corresponding reference colors and bit codes.

BC6H

These formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high dynamic range (> 8

bits per channel). BC6H supports floating point denorms but there is no support for INF and NaN, other

than with BC6H_SF16 –INF is supported. The alpha channel is not included, thus alpha is returned at its

default value.

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits

(either 2 or 5 bits).

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices

indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32

partition sets is indicated which selects which of the two lines each texel is assigned to.

Field Definition

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. The

mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines

(“TWO”), and the last 4 use one line (“ONE”). The difference between the various two-line and one-line

modes is with the precision of the first endpoint and the number of bits used to store delta values for the

remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than using

the deltas (these are indicated as having no delta values).

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 191

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is “r”,

“g”, or “b” indicating the color channel. The second letter is “w”, “x”, “y”, or “z” indicating which of the

four endpoints. The first line has endpoints “w” and “x”, with “w” being the endpoint that is fully specified

(i.e. not as a delta). The second line has endpoints “y” and “z”. Modes using ONE mode do not have

endpoints “y” and “z” as they have only one line.

In addition to the mode and endpoint data, TWO blocks contain a 5-bit “partition” which selects one of

the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are

described in more detail below.

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas

Bit Description

1:0 mode = 00

2 gy[4]

3 by[4]

4 bz[4]

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

49:45 gx[4:0]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas

Bit Description

1:0 mode = 01

2 gy[5]

3 gz[4]

192 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

4 gz[5]

11:5 rw[6:0]

12 bz[0]

13 bz[1]

14 by[4]

21:15 gw[6:0]

22 by[5]

23 bz[2]

24 gy[4]

31:25 bw[6:0]

32 bz[3]

33 bz[5]

34 bz[4]

40:35 rx[5:0]

44:41 gy[3:0]

50:45 gx[5:0]

54:51 gz[3:0]

60:55 bx[5:0]

64:61 by[3:0]

70:65 ry[5:0]

76:71 rz[5:0]

81:77 partition

127:82 indices

Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas

Green, Blue: 11-bit endpoint, 4-bit deltas

Bit Description

4:0 mode = 00010

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

39:35 rx[4:0]

40 rw[10]

44:41 gy[3:0]

48:45 gx[3:0]

49 gw[10]

50 bz[0]

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 193

Bit Description

54:51 gz[3:0]

58:55 bx[3:0]

59 bw[10]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas

Green: 11-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 00110

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

38:35 rx[3:0]

39 rw[10]

40 gz[4]

44:41 gy[3:0]

49:45 gx[4:0]

50 gw[10]

54:51 gz[3:0]

58:55 bx[3:0]

59 bw[10]

60 bz[1]

64:61 by[3:0]

68:65 ry[3:0]

69 bz[0]

70 bz[2]

74:71 rz[3:0]

75 gy[4]

76 bz[3]

81:77 partition

194 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

127:82 indices

Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas

Blue: 11-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 01010

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

38:35 rx[3:0]

39 rw[10]

40 by[4]

44:41 gy[3:0]

48:45 gx[3:0]

49 gw[10]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bw[10]

64:61 by[3:0]

68:65 ry[3:0]

69 bz[1]

70 bz[2]

74:71 rz[3:0]

75 bz[4]

76 bz[3]

81:77 partition

127:82 indices

Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 01110

13:5 rw[8:0]

14 by[4]

23:15 gw[8:0]

24 gy[4]

33:25 bw[8:0]

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 195

Bit Description

34 bz[4]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

49:45 gx[3:0]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas

Green, Blue: 8-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 10010

12:5 rw[7:0]

13 gz[4]

14 by[4]

22:15 gw[7:0]

23 bz[2]

24 gy[4]

32:25 bw[7:0]

33 bz[3]

34 bz[4]

40:35 rx[5:0]

44:41 gy[3:0]

49:45 gx[4:0]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 gz[1]

196 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

64:61 by[3:0]

70:65 ry[5:0]

76:71 rz[5:0]

81:77 partition

127:82 indices

Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas

Green: 8-bit endpoint, 6-bit deltas

Bit Description

4:0 mode = 10110

12:5 rw[7:0]

13 bz[0]

14 by[4]

22:15 gw[7:0]

23 gy[5]

24 gy[4]

32:25 bw[7:0]

33 gz[5]

34 bz[4]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

50:45 gx[5:0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 197

Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas

Blue: 8-bit endpoint, 6-bit deltas

Bit Description

4:0 mode = 11010

12:5 rw[7:0]

13 bz[1]

14 by[4]

22:15 gw[7:0]

23 by[5]

24 gy[4]

32:25 bw[7:0]

33 bz[5]

34 bz[4]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

49:45 gx[4:0]

50 bz[0]

54:51 gz[3:0]

60:55 bx[5:0]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas

Bit Description

4:0 mode = 11110

10:5 rw[5:0]

11 gz[4]

12 bz[0]

13 bz[1]

14 by[4]

20:15 gw[5:0]

198 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

21 gy[5]

22 by[5]

23 bz[2]

24 gy[4]

30:25 bw[5:0]

31 gz[5]

32 bz[3]

33 bz[5]

34 bz[4]

40:35 rx[5:0]

44:41 gy[3:0]

50:45 gx[5:0]

54:51 gz[3:0]

60:55 bx[5:0]

64:61 by[3:0]

70:65 ry[5:0]

76:71 rz[5:0]

81:77 partition

127:82 indices

Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas

Bit Description

4:0 mode = 00011

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

44:35 rx[9:0]

54:45 gx[9:0]

64:55 bx[9:0]

127:65 indices

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas

Bit Description

4:0 mode = 00111

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

43:35 rx[8:0]

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 199

Bit Description

44 rw[10]

53:45 gx[8:0]

54 gw[10]

63:55 bx[8:0]

64 bw[10]

127:65 indices

Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas

Bit Description

4:0 mode = 01011

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

42:35 rx[7:0]

43 rw[11]

44 rw[10]

52:45 gx[7:0]

53 gw[11]

54 gw[10]

62:55 bx[7:0]

63 bw[11]

64 bw[10]

127:65 indices

Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas

Bit Description

4:0 mode = 01111

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

38:35 rx[3:0]

39 rw[15]

40 rw[14]

41 rw[13]

42 rw[12]

43 rw[11]

44 rw[10]

48:45 gx[3:0]

200 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

49 gw[15]

50 gw[14]

51 gw[13]

52 gw[12]

53 gw[11]

54 gw[10]

58:55 bx[3:0]

59 bw[15]

60 bw[14]

61 bw[13]

62 bw[12]

63 bw[11]

64 bw[10]

127:65 indices

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels.

The “indices” fields are defined as follows:

TWO mode indices field with fix-up index [1] at texel[3][3]

Bit Description

83:82 texel[0][0] index

86:84 texel[0][1] index

89:87 texel[0][2] index

92:90 texel[0][3] index

95:93 texel[1][0] index

98:96 texel[1][1] index

101:99 texel[1][2] index

104:102 texel[1][3] index

107:105 texel[2][0] index

110:108 texel[2][1] index

113:111 texel[2][2] index

116:114 texel[2][3] index

119:117 texel[3][0] index

122:120 texel[3][1] index

125:123 texel[3][2] index

127:126 texel[3][3] index

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 201

TWO mode indices field with fix-up index [1] at texel[0][2]

Bit Description

83:82 texel[0][0] index

86:84 texel[0][1] index

88:87 texel[0][2] index

91:89 texel[0][3] index

94:92 texel[1][0] index

97:95 texel[1][1] index

100:98 texel[1][2] index

103:101 texel[1][3] index

106:104 texel[2][0] index

109:107 texel[2][1] index

112:110 texel[2][2] index

115:113 texel[2][3] index

118:116 texel[3][0] index

121:119 texel[3][1] index

124:122 texel[3][2] index

127:125 texel[3][3] index

TWO mode indices field with fix-up index [1] at texel[2][0]

Bit Description

83:82 texel[0][0] index

86:84 texel[0][1] index

89:87 texel[0][2] index

92:90 texel[0][3] index

95:93 texel[1][0] index

98:96 texel[1][1] index

101:99 texel[1][2] index

104:102 texel[1][3] index

106:105 texel[2][0] index

109:107 texel[2][1] index

112:110 texel[2][2] index

115:113 texel[2][3] index

118:116 texel[3][0] index

121:119 texel[3][1] index

124:122 texel[3][2] index

127:125 texel[3][3] index

202 Doc Ref # IHD-OS-SKL-Vol 5-05.16

ONE mode indices field

Bit Description

67:65 texel[0][0] index

71:68 texel[0][1] index

75:72 texel[0][2] index

79:76 texel[0][3] index

83:80 texel[1][0] index

87:84 texel[1][1] index

91:88 texel[1][2] index

95:92 texel[1][3] index

99:96 texel[2][0] index

103:100 texel[2][1] index

107:104 texel[2][2] index

111:108 texel[2][3] index

115:112 texel[3][0] index

119:116 texel[3][1] index

123:120 texel[3][2] index

127:124 texel[3][3] index

Endpoint Computation

The endpoints can be defined in many different ways, as shown above. This section describes how the

endpoints are computed from the bits in the compression block. The method used depends on whether

the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16).

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and

independently, however in some modes different channels have different incoming precision which must

be accounted for. The following rules are employed:

 If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits

 For all other cases, the value is zero-extended to 16 bits

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that are

delta values, the next step involves computing the absolute endpoint. The “w” endpoint is always

absolute and acts as a base value for the other three endpoints. Each channel is handled identically and

independently.

 x = w + x

 y = w + y

 z = w + z

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any

resulting high bits are dropped).

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 203

Palette Color Computation

The next step involves computing the color palette values that provide the available values for each

texel's color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 14

(ONE mode) interpolated colors. Again each channel is processed independently.

First the endpoints are unquantized, with each channel of each endpoint being processed independently.

The number of bits in the original base w value represents the precision of the endpoints. The input

endpoint is called e, and the resulting endpoints are represented as 17-bit signed integers and called e'

below.

For the BC6H_UF16 format:

 if the precision is already 16 bits, e' = e

 if e = 0, e' = 0

 if e is the maximum representible in the precision, e' = 0xFFFF

 otherwise, e' = ((e « 16) + 0x8000) » precision

For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e' and e refer

only to the magnitude portion:

 if the precision is already 16 bits, e' = e

 if e = 0, e' = 0

 if e is the maximum representible in the precision, e' = 0x7FFF

 otherwise, e' = ((e « 15) + 0x4000) » (precision - 1)

Next, the palette values are generated using predefined weights, using the tables below:

palette[i] = (w' * (64 - weight[i]) + x' * weight[i] + 32) » 6

TWO mode weights:

palette index 0 1 2 3 4 5 6 7

weight 0 9 18 27 37 46 55 64

ONE mode weights:

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the

above equation w' and x' represent the endpoints e' computed in the previous step corresponding to w

and x, respectively. For the second line in TWO mode, w and x are replaced with y and z.

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the

values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign

magnitude. These final 16-bit results are ultimately treated as 16-bit floats.

204 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Texel Selection

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit

per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter.

This procedure differs depending on whether the mode is TWO or ONE.

ONE Mode

In ONE mode, there is only one set of palette colors, but the “indices” field is 63 bits. This field consists of

a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 3

bits, the missing high bit being set to zero.

TWO Mode

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of

texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1

(endpoints y and z). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the

“fix-up index”. These texels have one less bit in the index.

0 1 2 3

00
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1]

04
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

08
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

0C
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1]

10
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 205

14
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1]

18
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0

1C
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

The 46-bit “indices” field consists of a 3-bit palette index for each of the 16 texels, with the exception of

the bracketed texels that have only two bits each. The high bit of these texels is set to zero.

BC7

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point

images.

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC7

has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 bits

depending on mode).

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or

three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If a

two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the two

lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the

color-only modes, alpha is always returned at its default value of 1.0.

Some modes contain the following fields:

 P-bits. These represent shared LSB for all components of the endpoint, which increases the

endpoint precision by one bit. In some cases both endpoints of a line share a P-bit.

 Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which of

the four components has its own indexes (scalar) vs. the other three components (vector).

 Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit

index vs. the 2-bit index.

206 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Field Definition

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The

mode is selected by the unique mode bits specified in each table. Each mode has particular

characteristics described at the top of the table.

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16

partitions

Bit Description

0 mode = 0

4:1 partition

8:5 R0

12:9 R1

16:13 R2

20:17 R3

24:21 R4

28:25 R5

32:29 G0

36:33 G1

40:37 G2

44:41 G3

48:45 G4

52:49 G5

56:53 B0

60:57 B1

64:61 B2

68:65 B3

72:69 B4

76:73 B5

77 P0

78 P1

79 P2

80 P3

81 P4

82 P5

127:83 indices

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 207

Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64

partitions

Bit Description

1:0 mode = 10

7:2 partition

13:8 R0

19:14 R1

25:20 R2

31:26 R3

37:32 G0

43:38 G1

49:44 G2

55:50 G3

61:56 B0

67:62 B1

73:68 B2

79:74 B3

80 P0

81 P1

127:82 indices

Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions

Bit Description

2:0 mode = 100

8:3 partition

13:9 R0

18:14 R1

23:19 R2

28:24 R3

33:29 R4

38:34 R5

43:39 G0

48:44 G1

53:49 G2

58:54 G3

63:59 G4

68:64 G5

73:69 B0

208 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

78:74 B1

83:79 B2

88:84 B3

93:89 B4

98:94 B5

127:99 indices

Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64

partitions

Bit Description

3:0 mode = 1000

9:4 partition

16:10 R0

23:17 R1

30:24 R2

37:31 R3

44:38 G0

51:45 G1

58:52 G2

65:59 G3

72:66 B0

79:73 B1

86:80 B2

93:87 B3

94 P0

95 P1

96 P2

97 P3

127:98 indices

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16

3-bit indices, 2-bit component rotation, 1-bit index selector

Bit Description

4:0 mode = 10000

6:5 rotation

7 index selector

12:8 R0

17:13 R1

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 209

Bit Description

22:18 G0

27:23 G1

32:28 B0

37:33 B1

43:38 A0

49:44 A1

80:50 2-bit indices

127:81 3-bit indices

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices,

2-bit alpha indices, 2-bit component rotation

Bit Description

5:0 mode = 100000

7:6 rotation

14:8 R0

21:15 R1

28:22 G0

35:29 G1

42:36 B0

49:43 B1

57:50 A0

65:58 A1

96:66 color indices

127:97 alpha indices

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit

indices

Bit Description

6:0 mode = 1000000

13:7 R0

20:14 R1

27:21 G0

34:28 G1

41:35 B0

48:42 B1

55:49 A0

62:56 A1

63 P0

210 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bit Description

64 P1

127:65 indices

Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit

indices, 64 partitions

Bit Description

7:0 mode = 10000000

13:8 partition

18:14 R0

23:19 R1

28:24 R2

33:29 R3

38:34 G0

43:39 G1

48:44 G2

53:49 G3

58:54 B0

63:59 B1

68:64 B2

73:69 B3

78:74 A0

83:79 A1

88:84 A2

93:89 A3

94 P0

95 P1

96 P2

97 P3

127:98 indices

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels.

The indices fields are variable in length and due to the different locations of the fix-up indices depending

on partition set there are a very large number of possible configurations. Each mode above indicates

how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, and three in

THREE mode) each have one less bit than indicated. However, the indices are always packed into the

index fields according to the table below, with the specific bit assignments of each texel following the

rules just given.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 211

Bit Description

LSBs texel[0][0] index

 texel[0][1] index

 texel[0][2] index

 texel[0][3] index

 texel[1][0] index

 texel[1][1] index

 texel[1][2] index

 texel[1][3] index

 texel[2][0] index

 texel[2][1] index

 texel[2][2] index

 texel[2][3] index

 texel[3][0] index

 texel[3][1] index

 texel[3][2] index

MSBs texel[3][3] index

Endpoint Computation

The endpoints can be defined with different precision depending on mode, as shown above. This section

describes how the endpoints are computed from the bits in the compression block. Each component of

each endpoint follows the same steps.

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint

value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range from

0x00 to 0xFF.

Palette Color Computation

The next step involves computing the color palette values that provide the available values for each

texel's color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14

interpolated colors, depending on the number of bits in the indices. Again each channel is processed

independently.

The equation to compute each palette color with index i, given two endpoints is as follows, using the

tables below to determine the weight for each palette index:

palette[i] = (E0 * (64 - weight[i]) + E1 * weight[i] + 32) » 6

212 Doc Ref # IHD-OS-SKL-Vol 5-05.16

2-bit index weights:

palette index 0 1 2 3

weight 0 21 43 64

3-bit index weights:

palette index 0 1 2 3 4 5 6 7

weight 0 9 18 27 37 46 55 64

4-bit index weights:

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the

above equation E0 and E1 represent the even-numbered and odd-numbered endpoints computed in the

previous step for the component and line currently being computed.

Texel Selection

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit

per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In

BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure

differs depending on whether the mode is ONE, TWO, or THREE.

ONE Mode

In ONE mode, there is only one set of palette colors, thus there is only a single “partition set” defined,

with all texels selecting line 0 and texel [0][0] being the “fix-up index” with one less bit in the index.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 213

TWO Mode

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of

texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 (endpoints

2 and 3). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the “fix-up

index”. These texels have one less bit in the index.

0 1 2 3

00
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1]

04
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

08
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

0C
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1]

10
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0

14
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1]

18
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0

1C
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1

214 Doc Ref # IHD-OS-SKL-Vol 5-05.16

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

20
[0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0

24
[0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1]

28
[0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0

2C
[0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0

30
[0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

34
[0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0

38
[0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1]

3C
[0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1]

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 215

THREE Mode

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block

of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 (endpoints 2

and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of “[0]”, “[1]”, and “[2]”, the index that

this is at is termed the “fix-up index”. These texels have one less bit in the index.

0 1 2 3

00
[0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2]

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1]

04
[0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1]

08
[0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2]

0C
[0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1]

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0

10
[0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2]

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1]

14
[0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0

18
[0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1

1C
[0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0

1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0

216 Doc Ref # IHD-OS-SKL-Vol 5-05.16

[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1]

20
[0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0

24
[0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1]

28
[0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2]

2C
[0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1]

30
[0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2]

34
[0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2]

38
[0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2]

3C
[0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1]

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 217

Adaptive Scalable Texture Compression (ASTC)

This section describes the data structure of the Adaptive Scalable Texture Compression (ASTC) format, as

well as the decoding flow of ASTC. Also described are the header format and mipmap layout in the

compressed texture file of *.astc. This is based on the reference encoder and decoder from the Khronos

committee, with an extension to support multiple miplevel texture.

ASTC is a new compressed texture format with following characteristics:

1. ASTC compression format is currently only used for static texture, due to the large amount of

computation and high latency required to find the optimal configuration in compression. It cannot

be used to compress dynamic textures such as a shadow map.

2. ASTC is a lossy compression technique that cannot be used to compress dynamic textures which

do not tolerate quality degradation.

3. ASTC has a huge range of compression ratio and block size, but these choices are fixed for each

texture for all blocks at all mipmap levels.

4. ASTC has options to support compression from 1 to 4 channels for texture data.

5. ASTC can support both high and low dynamic textures.

6. ASTC can support both 2D and 3D textures.

Supported Formats

2D LDR profile.

2D HDR profiles.

ASTC Fundamentals

This section describes some background details and new surface formats for ASTC.

Background

ASTC is a more advanced texture compression technique than the existing BC and ETC, and can reduce

footprint & BW of static texture further in Graphics application by providing a texture compression

solution at higher compression ratios. To best find the balance point of visual quality and compression, it

provides a wide range of bit rate selection from 8bpp to 0.89 bpp in 2D, and 4.6bpp to 0.6 bpp in 3D at

various block size of footprints. It also has flexibility to specify 1-4 components, selection of dual plane

mode among the specified color components.

It extends the existing linear model on color distribution of each block in multiple partitions (up to 4),

with flexible compact supporting on index/weight for color interpolation. ASTC also has a support of

high dynamic range (HDR) image and 3D textures. The mixture of HDR and LDR data is within each block

level allows a great flexibility to represent high dynamics variation at fine granularity. The support of 3D

texture explores the data coherency in all 3 dimensions, without the need to mimic 3D map with 2D

slices. On top of everything, void-extent regions are introduced for both 2D and 3D maps as further

optimization on large constant region.

218 Doc Ref # IHD-OS-SKL-Vol 5-05.16

ASTC is a voted approved future texture format for OpenGL ES by Khronos Group, and is on projection to

be accepted in D3D API. It provides less bandwidth, storage, lower power and high performance over

existing techniques, and has been identified as a critical feature for Gen GPU to get future design win

from desktop, laptop to tablet and handheld markets.

Due to the computational complexity and processing delay of the encoding process, ASTC compression

encoding is always offline, and can only be used for static texture. It does not support auto mipmap

generation and cannot be considered as a format for render target.

The ASTC provides a wide spectrum of bit per pixel for both 2D and 3D texture for both LDR and HDR

images, hence a wide range of compression to any 2D and 3D texture.

LDR Compression Ratios:

2D Block Footprint Bit Rate (bpp) Compression ratio (LDR 32bpp)

4x4 8.00 4.0

5x4 6.40 5.0

5x5 5.12 6.3

6x5 4.27 7.5

6x6 3.56 9.0

8x5 3.20 10.0

8x6 2.67 12.0

10x5 2.56 12.5

10x6 2.13 15.0

8x8 2.00 16.0

10x8 1.60 20.0

10x10 1.28 25.0

12x10 1.07 29.9

12x12 0.89 36.0

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 219

HDR Compression Ratios:

2D Block Footprint Bit Rate (bpp) Compression ratio (LDR 32bpp)

4x4 8.00 8.0

5x4 6.40 10.0

5x5 5.12 12.5

6x5 4.27 15.0

6x6 3.56 18.0

8x5 3.20 20.0

8x6 2.67 24.0

10x5 2.56 25.0

10x6 2.13 30.0

8x8 2.00 32.0

10x8 1.60 40.0

10x10 1.28 50.0

12x10 1.07 59.8

12x12 0.89 71.9

Compared against fixed compression ratios of 4x or 8x on BC* formats, ASTC provides compression

ratios from 4x to 36x for 2D LDR, 8x to 72x in 2D HDR maps, 7x to 54x on 3D LDR (32bpp) maps, and 14x

to 108x in 3D HDR (64bpp). This can reduce bandwidth and footprint of a static 2D HDR or 3D textures

to a small fractional of the existing BC formats, and greatly improve the performance on the graphic

applications using these textures intensively.

Another benefit of ASTC is that, with the large range of selection of footprints and bpp, it can provide a

good trade-off between quality degradation of the compressed texture and performance, due to the

bandwidth and footprints reduction. This could not be achieved by any previously existing texture

compression technologies.

Although ASTC has a huge benefit of bandwidth reduction, the expected performance gain in real 3D

application from this technique depends on how much texture bandwidth bottleneck is relative to the

throughput of computing in EU, Sampler, and other fixed function components.

New Surface Formats for ASTC Texture

The ASTC data format natively supports 14 2D block size, 10 3D block size, and each decoded format

should support either UN8 (with sRGB con version) or Float16 at each color component. Following is the

full list of all different surface formats as the full combination of different block shapes and UN8 or

Float16 options.

Programming Note

Context: Supported ASTC Formats

All 2D ASTC Formats (LDR and HDR) are supported.

220 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Value

[26] LDR/Full

 [25] 2D/3D

 [24] U8srgb

/FLT16

Width

 2D

[23:21]

 3D

[23:22]

Height

 2D

[20:18]

 3D

[21:20]

Depth

 2D: n/a

 3D:

[19:18]

Binary

form Name (BPE)

000h 000 0 0 000 000

000

ASTC_LDR_2D_4x4_U8sRGB 8.00

008h 000 1 0 000 001

000

ASTC_LDR_2D_5x4_U8sRGB 6.40

009h 000 1 1 000 001

001

ASTC_LDR_2D_5x5_U8sRGB 5.12

011h 000 2 1 000 010

001

ASTC_LDR_2D_6x5_U8sRGB 4.27

012h 000 2 2 000 010

010

ASTC_LDR_2D_6x6_U8sRGB 3.56

021h 000 4 1 000 100

001

ASTC_LDR_2D_8x5_U8sRGB 3.20

022h 000 4 2 000 100

010

ASTC_LDR_2D_8x6_U8sRGB 2.67

031h 000 6 1 000 110

001

ASTC_LDR_2D_10x5_U8sRGB 2.56

032h 000 6 2 000 110

010

ASTC_LDR_2D_10x6_U8sRGB 2.13

024h 000 4 4 000 100 100 ASTC_LDR_2D_8x8_U8sRGB 2.00

034h 000 6 4 000 110 100 ASTC_LDR_2D_10x8_U8sRGB 1.60

036h 000 6 6 000 110

110

ASTC_LDR_2D_10x10_U8sRGB 1.28

03eh 000 7 6 000 111 110 ASTC_LDR_2D_12x10_U8sRGB 1.07

03fh 000 7 7 000 111 111 ASTC_LDR_2D_12x12_U8sRGB 0.89

040h 001 0 0 001 000

000

ASTC_LDR_2D_4x4_FLT16 8.00

048h 001 1 0 001 001

000

ASTC_LDR_2D_5x4_FLT16 6.40

049h 001 1 1 001 001

001

ASTC_LDR_2D_5x5_FLT16 5.12

051h 001 2 1 001 010

001

ASTC_LDR_2D_6x5_FLT16 4.27

052h 001 2 2 001 010

010

ASTC_LDR_2D_6x6_FLT16 3.56

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 221

Value

[26] LDR/Full

 [25] 2D/3D

 [24] U8srgb

/FLT16

Width

 2D

[23:21]

 3D

[23:22]

Height

 2D

[20:18]

 3D

[21:20]

Depth

 2D: n/a

 3D:

[19:18]

Binary

form Name (BPE)

061h 001 4 1 001 100

001

ASTC_LDR_2D_8x5_FLT16 3.20

062h 001 4 2 001 100

010

ASTC_LDR_2D_8x6_FLT16 2.67

071h 001 6 1 001 110

001

ASTC_LDR_2D_10x5_FLT16 2.56

072h 001 6 2 001 110

010

ASTC_LDR_2D_10x6_FLT16 2.13

064h 001 4 4 001 100 100 ASTC_LDR_2D_8x8_FLT16 2.00

074h 001 6 4 001 110 100 ASTC_LDR_2D_10x8_FLT16 1.60

076h 001 6 6 001 110

110

ASTC_LDR_2D_10x10_FLT16 1.28

07eh 001 7 6 001 111 110 ASTC_LDR_2D_12x10_FLT16 1.07

07fh 001 7 7 001 111 111 ASTC_LDR_2D_12x12_FLT16 0.89

080h 010 0 0 0 010 000

000

ASTC_LDR_3D_3x3x3_U8sRGB 4.74

090h 010 1 0 0 010 010

000

ASTC_LDR_3D_4x3x3_U8sRGB 3.56

094h 010 1 1 0 010 010

100

ASTC_LDR_3D_4x4x3_U8sRGB 2.67

095h 010 1 1 1 010 010

101

ASTC_LDR_3D_4x4x4_U8sRGB 2.00

0a5h 010 2 1 1 010 100

101

ASTC_LDR_3D_5x4x4_U8sRGB 1.60

0a9h 010 2 2 1 010 101

001

ASTC_LDR_3D_5x5x4_U8sRGB 1.28

0aah 010 2 2 2 010 101

010

ASTC_LDR_3D_5x5x5_U8sRGB 1.02

0bah 010 3 2 2 010 111

010

ASTC_LDR_3D_6x5x5_U8sRGB 0.85

0beh 010 3 3 2 010 111

110

ASTC_LDR_3D_6x6x5_U8sRGB 0.71

0bfh 010 3 3 3 010 111

111

ASTC_LDR_3D_6x6x6_U8sRGB 0.59

140h 101 0 0 n/a 101 000 ASTC_FULL_2D_4x4_FLT16 8.00

222 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Value

[26] LDR/Full

 [25] 2D/3D

 [24] U8srgb

/FLT16

Width

 2D

[23:21]

 3D

[23:22]

Height

 2D

[20:18]

 3D

[21:20]

Depth

 2D: n/a

 3D:

[19:18]

Binary

form Name (BPE)

000

148h 101 1 0 n/a 101 001

000

ASTC_FULL_2D_5x4_FLT16 6.40

149h 101 1 1 n/a 101 001

001

ASTC_FULL_2D_5x5_FLT16 5.12

151h 101 2 1 n/a 101 010

001

ASTC_FULL_2D_6x5_FLT16 4.27

152h 101 2 2 n/a 101 010

010

ASTC_FULL_2D_6x6_FLT16 3.56

161h 101 4 1 n/a 101 100

001

ASTC_FULL_2D_8x5_FLT16 3.20

162h 101 4 2 n/a 101 100

010

ASTC_FULL_2D_8x6_FLT16 2.67

171h 101 6 1 n/a 101 110

001

ASTC_FULL_2D_10x5_FLT16 2.56

172h 101 6 2 n/a 101 110

010

ASTC_FULL_2D_10x6_FLT16 2.13

164h 101 4 4 n/a 101 100 100 ASTC_FULL_2D_8x8_FLT16 2.00

174h 101 6 4 n/a 101 110 100 ASTC_FULL_2D_10x8_FLT16 1.60

176h 101 6 6 n/a 101 110

110

ASTC_FULL_2D_10x10_FLT16 1.28

17eh 101 7 6 n/a 101 111 110 ASTC_FULL_2D_12x10_FLT16 1.07

17fh 101 7 7 n/a 101 111 111 ASTC_FULL_2D_12x12_FLT16 0.89

1c0h 111 0 0 0 111 000

000

ASTC_FULL_3D_3x3x3_FLT16 4.74

1d0h 111 1 0 0 111 010

000

ASTC_FULL_3D_4x3x3_FLT16 3.56

1d4h 111 1 1 0 111 010

100

ASTC_FULL_3D_4x4x3_FLT16 2.67

1d5h 111 1 1 1 111 010

101

ASTC_FULL_3D_4x4x4_FLT16 2.00

1e5h 111 2 1 1 111 100

101

ASTC_FULL_3D_5x4x4_FLT16 1.60

1e9h 111 2 2 1 111 101 ASTC_FULL_3D_5x5x4_FLT16 1.28

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 223

Value

[26] LDR/Full

 [25] 2D/3D

 [24] U8srgb

/FLT16

Width

 2D

[23:21]

 3D

[23:22]

Height

 2D

[20:18]

 3D

[21:20]

Depth

 2D: n/a

 3D:

[19:18]

Binary

form Name (BPE)

001

1eah 111 2 2 2 111 101

010

ASTC_FULL_3D_5x5x5_FLT16 1.02

1fah 111 3 2 2 111 111

010

ASTC_FULL_3D_6x5x5_FLT16 0.85

1feh 111 3 3 2 111 111

110

ASTC_FULL_3D_6x6x5_FLT16 0.71

1ffh 111 3 3 3 111 111

111

ASTC_FULL_3D_6x6x6_FLT16 0.59

ASTC File Format and Memory Layout

ASTC Header Data Structure and Amendment

The 1st block of an ASTC compression texture is a header file. Its byte layout in the original header

structure in *.astc file is:

struct astc_header

 {

 uint8_t magic[4];

 uint8_t blockdim_x;

 uint8_t blockdim_y;

 uint8_t blockdim_z;

 uint8_t xsize[3]; // x-size = xsize[0] + xsize[1] + xsize[2]

 uint8_t ysize[3]; // x-size, y-size and z-size are given in texels;

 uint8_t zsize[3]; // block count is inferred

 };

Since there are limited ranges for block dimensions in x, y and z directions as described in following, we

could store additional information in the unused upper bits of these byte fields

Block Dimension 2D 3D

blockdim_x 4, 5, 6, 8, 10, 12 3, 4, 5, 6

blockdim_y 4, 5, 6, 8, 10, 12 3, 4, 5, 6

blockdim_z 1 3, 4, 5, 6

Since blockdim_z is in the range of [1,6], only lower 3 bits of blockdim_z is used. We proposed the Intel

astc extension format with numLODs stored in the upper 5 bits of the byte field used for blockdim_z.

This new byte field can be defined as:

numLODs_blockdim_z = (numLODs-1) « 3 | (blockdim_z & 0x7) ;

224 Doc Ref # IHD-OS-SKL-Vol 5-05.16

New header:

 struct astc_header

 {

 uint8_t magic[4];

 uint8_t blockdim_x;

 uint8_t blockdim_y;

 uint8_t numLODs_blockdim_z;

 uint8_t xsize[3]; // width = xsize[0] + (xsize[1]«8) + (xsize[2]«16)

 uint8_t ysize[3]; // height= ysize[0] + (ysize[1]«8) + (ysize[2]«16)

 uint8_t zsize[3]; // depth = zsize[0] + (zsize[1]«8) + (zsize[2]«16)

 // x_size, y_size and z_size are given in texels;

 // block count is inferred

 };

The driver or the software responsible for managing the memory resource will get numLODs and

blockdim_z in:

numLODs = ((numLODs_blockdim_z » 3) & 0x1F) + 1;

blockdim_z = numLODs_blockdim_z & 0x7;

Data Layout in ASTC Compression File

A number of parameters are useful to determine where given pixels are located on the 2D & 3D surface.

First, the width and height for each LOD level “L” is computed as:

The numbers of blocks in width, height and depth slab in each LOD are:

Nw(L) = Ceil(WL /Bw);

Nh (L) = Ceil(HL /Bh);

Ns (L) = Ceil(DL /Bd),

Where Bw, Bh and Bd is the block width, height and depth respectively.

Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in

each LOD level of the mipmap is described by nBL = Nw(L) * Nh (L) * Ns (L), The total number of blocks

in the entire texture map is a summation of nBL‘s from all mipmap levels and all slabs, which are all pre-

compressed via ASTC encoder. All the blocks in each LOD are in raster sequenced in width, height and

then depth slab order.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 225

Total ASTC Data Block Layout in All Mipmap Levels

The entire layout of the compression texture file looks like:

Address Data Description

Addr0 (Base Address) Header structure

Addr0+16
1st Data Block in LOD0

Addr0+32
2nd Data Block in LOD0

… …

Addr1 = Addr0+16*nB0
Last Data Block in LOD0

Addr1 +16
1st Data Block in LOD1

Addr1+32
2nd Data Block in LOD1

… …

Addr2 = Addr1+16*nB1
Last Data Block in LOD1

Addr2+16
1st Data Block in LOD2

Addr2+32
2nd Data Block in LOD2

… …

Addr3 = Addr2+16*nB2
Last Data Block in LOD2

… …

Data Layout in Memory for All Mipmap Levels

The following equations for give the base address (U_offset, V_offset) in Cartesian coordinates for the

starting point of each mip map at LOD L and depth slab q:

LOD=0:

U_offset (0, q) = 0;

V_offset (0, q) = q * h0;

LOD=1:

U_offset (1, q) = (q%2)*w1;

V_offset (1, q) = D0*h0 + (q»1)*h1;

LOD=2:

U_offset (2, q) = (q%4)*w2;

226 Doc Ref # IHD-OS-SKL-Vol 5-05.16

V_offset (2, q) = D0*h0 + ceil(D1/2) * h1 + (q»2)*h2;

LOD=3:

U_offset (3, q) = (q%8)*w3;

V_offset (3, q) = D0*h0 + ceil(D1/2) * h1 + ceil(D2/2) * h2 + (q»3)*h3;

……
Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in

each LOD level of the mipmap is described by nBL = Nw(L) * Nh (L) * Ns (L). The memory layout for TileY

format are considered with 512bit (16Bx4) in 1 cacheline granularity, the total number of blocks is: 4*(

(Ceil(HL /Bh)+3)/4 * Ceil(WL /Bw) * Ceil(DL /Bd):

Here is the full list describing the total number of rows and columns of data in each mipmap for texture

in ASTC format:

Table for block dimension in 2D

Block Size

ASTC Block Height

 (in line)

ASTC Block Width

 (in Byte)

4 ((Ceil(HL /4) +3)/4) *4 Ceil(WL /4) * 16

5 ((Ceil(HL /5) +3)/4) *4 Ceil(WL /5) * 16

6 ((Ceil(HL /6) +3)/4) *4 Ceil(WL /6) * 16

8 ((Ceil(HL /8) +3)/4) *4 Ceil(WL /8) * 16

10 ((Ceil(HL /10) +3)/4) *4 Ceil(WL /10) * 16

12 ((Ceil(HL /12) +3)/4) *4 Ceil(WL /12) * 16

Table for block dimension in 3D

Block Size

ASTC Block Height

 (in line)

ASTC Block Width

 (in Byte)

ASTC Block Depth/slab

 (in slice)

3 ((Ceil(HL /3) +3)/4) *4 Ceil(WL /3) * 16 Ceil(DL /3)

4 ((Ceil(HL /4) +3)/4) *4 Ceil(WL /4) * 16 Ceil(DL /4)

5 ((Ceil(HL /5) +3)/4) *4 Ceil(WL /5) * 16 Ceil(DL /5)

6 ((Ceil(HL /6) +3)/4) *4 Ceil(WL /6) * 16 Ceil(DL /6)

For example, an image of 64x64 with 5x5 block coding in LOD0 will have:

Block Height: (13+3)/4*4=16 (lines)

Block Width: 13 *16 = 208 (Bytes)

The following diagram illustrate the memory layout for 2D and 3D map respectively.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 227

228 Doc Ref # IHD-OS-SKL-Vol 5-05.16

ASTC Data Structure

Layout and Description of Block Data

The block data structure is described in the following table in the categories of the block being partition

enabled (2-4 partitions) or disabled (only 1 partition), as well as 1 plane or dual-plane mode. Where CEM

refers to Color Endpoint Mode, and CCS stands for Color Channel Selection:

Layout of Partitioning Disabled (1 partition) and Enabled (multi-partition) blocks

The 11 bit “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this

field is listed in next two tables, one for the 2D and one for the 3D.

The “Part” field specifies the number of partitions minus one. If dual plane mode is enabled, the number

of partitions must be 3 or fewer. In case 4 partitions in such situation are specified, the error value is

returned for all texels in the block. The size and layout of the extra configuration data depends on the

number of partition, and the number of planes in the image.

Partitioning

For any non-void extend region, each block is subdivided into 1, 2, 3 or 4 partitions, with a separate color

endpoint pair for each partition. The number of partitions is specified by the partition count-1 in bits

[12:11] of block data. If 2 or more partitions are selected, partitioning is enabled, the 10 bit partition

index is then used to select one from 1024 partitioning patterns, where the total set of patterns

supported in ASTC depends on the partition count and block size. The partitioning patterns are

produced generatively, which supports a very large set of partitioning patterns for different block sizes

with a modest number of hardware gates implementation.

Index Mode

The “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this field is

listed in next two tables, one for the 2D and one for the 3D.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 229

The Index Mode field specifies the width (N), height (M) and depth (Q) of the grid of indices, what range

of values they use, and whether dual index planes are present. The index ranges are encoded using a 3

bit value R, which is interpreted together with a precision bit H, as follows:

Each index value is encoded using the specified number of Trits, Quints and Bits. The details of this

encoding can be found in Section - Integer Sequence Encoding. Due to the encoding of the R field, bits r2

and r1 cannot both be zero,

The number of indices provided for a block is not tied to the block size in any way, instead, the indices

form an N*M*Q ordered grid. N, M and Q are specified on a per-block basis rather then being a global

texture property. For 2D blocks, N and M can be set to any value from 2 to 12 while Q is fixed at 1; for 3D

blocks, N, M and Q can be set to any value from 2 to 5. The range used for each index can be set

separately for each block. The Index Bit Mode field species the values of N, M, Q and the range; it also

specifies whether Dual Index Planes are present or not as well.

The D bit in following tables is set to indicate dual-plane mode. In this mode, the maximum allowed

number of partitions is 3. The size of the grid in each dimension must be less than or equal to the

corresponding dimension of the block footprint. If the grid size is greater than the footprint dimension in

any axis, then this is an illegal block encoding and all texels will decode to the error color.

For 2D blocks, the index mode field is laid out as follows:

230 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The bit encoding of the index mode field for 2D Blocks

Bits Width Height Notes

10 9 8 7 6 5 4 3:2 1:0 N M

D H B A r0 0 0 r2 r1 B+4 A+2

D H B A r0 0 1 r2 r1 B+8 A+2

D H B A r0 1 0 r2 r1 A+2 B+8

D H 0 B A r0 1 1 r2 r1 A+2 B+6

D H 1 B A r0 1 1 r2 r1 B+2 A+2

D H 0 0 A r0 r2 r1 0 0 12 A+2

D H 0 1 A r0 r2 r1 0 0 A+2 12

D H 1 1 0 0 r0 r2 r1 0 0 6 10

D H 1 1 0 1 r0 r2 r1 0 0 10 6

B 1 0 A r0 r2 r1 0 0 A+6 B+6 D=0, H=0

x x 1 1 1 1 1 1 1 0 0 - - Void-Extent

x x 1 1 1 x x x x 0 0 - - Reserve

x x x x x x x 0 0 0 0 - - Reserve

Note that, due to the encoding of the R field (r0, r1, r2), bits r2 and r1 cannot both be zero, which

disambiguates the first five rows from the rest of the table. The penultimate row of the table is reserved

only if bits [5:2] are not all 1, in which case it encodes a void-extent block (as shown in the previous row)

For 3D blocks, the index mode field is laid out as follows:

3D Index Mode Layout

Bits Notes

10 9 8 7 6 5 4 3 2 1 0 N M Q (D, H)

D H B A r0 C r2 r1 A+2 B+2 C+2

B 0 0 A r0 r2 r1 0 0 6 B+2 A+2 (0, 0)

B 0 1 A r0 r2 r1 0 0 A+2 6 B+2 (0, 0)

B 1 0 A r0 r2 r1 0 0 A+2 B+2 6 (0, 0)

D H 1 1 0 0 r0 r2 r1 0 0 6 2 2

D H 1 1 0 1 r0 r2 r1 0 0 2 6 2

D H 1 1 1 0 r0 r2 r1 0 0 2 2 6

x x 1 1 1 1 1 1 1 0 0 - - - Void-Extent

x x 1 1 1 1 x x x 0 0 - - - Reserve

x x x x x x x 0 0 0 0 - - - Reserve

The D bit is set to indicate dual-plane mode:

1: dual index planes are used

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 231

0: single index plane is used

In this mode, the maximum allowed number of partitions is 3. The size of the grid in each dimension

must be less than or equal to the corresponding dimension of the block footprint. If the grid size is

greater than the footprint dimension in any axis, then this is an illegal block encoding and all texels will

decode to the error color. The penultimate row of the table is reserved only if bits [4:2] are not all 1, in

which case it encodes a void-extent block (as shown in the previous row).

H: Index Range Bit:

1: the High-Precision group is selected.

0: The Low-Precision group is selected.

Here is the detail description:

 The encoding of xx111111100 is for the void-extent block.

 The pattern xxxxxxx0000 (the bottom 4 bits being 0000b) is reserved for future extension, and

should result a NaN-vector when such a pattern is decoded.

 Any encodings not listed in the table are considered invalid and result in undened behavior if

encountered by decoders.

Given the limitation of the fix length of 128 bits per block, there are restrictions that will not allow every

possible encoding:

 The total number of indexes (N*M*Q for single index plane, 2*N*M*Q for dual index planes) must

not exceed 64.

 The length of the Index Integer Sequence must not exceed 96 bits.

 The length of the Index Integer Sequence must be at least 24 bits.

 The above restriction, combined with the other field widths of the format, implicitly restricts the

Color Integer Sequence to a maximum of 75 bits.

 Blocks that violate these restrictions are not legally produced by the encoder, result a vector of

NaNs if encountered by decoders.

Here is how the indices in each block are encoded and stored:

 They are encoded using the Integer Sequence Encoding method described in Appendix.

 The resulting bit-sequence is then bit-reversed, and stored from the top of the block downwards.

The ordering of the indices in the Integer Sequence is a simple scan line-like ordering.

The indices are used in two steps to interpolate between two endpoint colors for each texel.

 First, they are scaled from whatever interval they were to the range [0,64];

 The resulting value is then used as a weight to interpolate between the two endpoints.

Index Planes

Depending on the Index Bits mode selected, an ASTC compressed block may offer 1 or 2 index planes. In

the case of 2 index planes, two indices rather than just one are supplied for each texel that receives

232 Doc Ref # IHD-OS-SKL-Vol 5-05.16

indices. Of these two indices, the first one is used for a weighted sum of three of the color components;

the second is used for a weighted sum of the fourth color component. If only 1 index plane is present, it

applies to all four color components.

If two index planes are used, then a 2-bit bit field is needed to indicate which of the color components

the second index plane applies to. These two bits are stored just below the index bits, except in the case

where leftover color endpoint type bits are present; in that case, these two bits are stored just below the

leftover color endpoint type bits. This two-bit bit-field has the following layout:

Channel Red Green Blue Alpha

Value 0 1 2 3

If index infill is present while two index planes are being used, then index infill is performed on each

index plane separately. If two index planes are used, the indexes are stored interleaved: the first index

belongs to the first index plane, the second index belongs to the second index plane, the third index

belongs to the first index plane, and so on.

Index Infill Procedure

In ASTC, each block has an N*M*Q ordered grid of indices. N, M and Q may or may not match the

dimensions of the actual block (e.g. it is possible to encode a 5x3 grid for an 8x8 block); if they don't

match, then the grid is scaled so that its corner indexes align with the corner texels of the block, a

bilinear index infill procedure is defined to interpolate an index for each texel. This procedure picks 1 to 4

indexes, and assigns each of them a weight; these weights are always a multiple of 1/16. The exact details

of this interpolation procedure are specified below.

Color Endpoint Mode

In single-partition mode, the Color Endpoint Mode (CEM) field stores one of 16 possible values. Each of

these specifies how many raw data values are encoded, and how to convert these raw values into two

RGBA color endpoints. They can be summarized as follows:

List of Color Endpoint Modes

CEM Description Class # of integers to represent each pair of color end points

0
LDR Luminance or Alpha, direct

0 2

1
LDR Luminance, base+offset

0 2

2
HDR Luminance, large range

0 2

3
HDR Luminance, small range

0 2

4
LDR Luminance+Alpha, direct

1 4

5
LDR Luminance+Alpha, base+offset

1 4

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 233

CEM Description Class # of integers to represent each pair of color end points

6
LDR RGB, base+scale

1 4

7
HDR RGB, base+scale

1 4

8
LDR RGB, direct

2 6

9
LDR RGB, base+offset

2 6

10
LDR RGB, base+scale plus two A

2 6

11
HDR RGB, direct

2 6

12
LDR RGBA, direct

3 8: D=0; 6: D=1

13
LDR RGBA, base+offset

3 8: D=0; 6: D=1

14
HDR RGB, direct + LDR Alpha

3 8: D=0; 6: D=1

15
HDR RGB, direct + HDR Alpha

3 8: D=0; 6: D=1

Description

LDR modes are supported in ASTC LDR profile, which is enabled since CHV.

HDR modes are only supported in ASTC HDR mode, which is enabled since SKL.

In 2-4 partition modes, the encoding of Color Endpoint Modes are listed in following tables, where the

endpoint mode representation may take from 6 to 14 bits, of which the first 6 bits are stored just after

the partition indices, and the remaining bits are stored just below the index bits at variable position in

the remaining space.

234 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Partition /

Class Types

High bits [1:0]

Same Class 6b [5:0]
[5:2]

Color Endpoint Mode

0 0

Different

Classes

2-Partions

8b [7:0]

[7:6]

Mode in P1

[5:4]

Mode in P0

[3:3]

Class Select

for P1

[2:2]

Class Select

for P0

0 1

(Class 0 & 1)

3-Partions

11b [10:0]

[10:9]

Mode in P2

[8:7]

Mode in P1

1 0

(Class 1 & 2)

[6:5]

Mode in P0

[4:4]

Class Select

for P2

[3:3]

Class Select

for P1

[2:2]

Class Select

for P0

4-Partions

14b [13:0]

[13:12]

Mode in P2

[11:10]

Mode in P1

[9:8]

Mode in P2

[7:6]

Mode in P1

1 1

(Class 2 & 3)

[5:5]

Class Select

for P3

[4:4]

Class Select

for P2

[3:3]

Class Select

for P1

[2:2]

Class Select

for P0

More specifically, if the CEM selector value in bits [24:23] is not 00, then data layout is as follows:

List of Color Endpoint Class Types encoding under multi-partitions

Partitions … 28 27 26 25 24 23

2 … Index M1 …
M0

C1 C0 CEM

3 … Index M2 M1 M0 … M0 C2 C1 C0 CEM

4 … Index M3 M2 M1 M0 … C3 C2 C1 C0 CEM

In this view, each partition i has two fields. Ci is the class selector bit, choosing between the two possible

CEM classes (0 indicates the lower of the two classes), and Mi is a two-bit field specifying the low bits of

the color endpoint mode within that class. The additional bits appear at a variable bit position,

immediately below the texel index data. The ranges used for the data values are not explicitly specified.

Instead, they are derived from the number of available bits remaining after the configuration data and

index data have been specified. Details of the decoding procedure for Color Endpoints can be found

later.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 235

Color Endpoint Data Size Determination

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is determined

from the index mode and number of partitions as follows:

config_bits = 17;

 if (num_partitions>1)

 if (single_CEM)

 config_bits = 29;

 else

 config_bits = 24 + 3*num_partitions;

 num_indices = M * N * Q; // size of index grid

 if (dual_plane)

 config_bits += 2;

 num_indices *= 2;

 index_bits = floor(num_indices*8*trits_in_index_range/5) +

 floor(num_indices*7*quints_in_index_range/3) +

 num_indices*bits_in_index_range;

 remaining_bits = 128 – config_bits – index_bits;

 num_CEM_pairs = base_CEM_class+1 + count_bits(extra_CEM_bits);

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. This

table is initialized such that the range is as large as possible, consistent with the constraint that the

number of bits required to encode num_CEM_pairs pairs of values is not more than the number of

remaining bits. An equivalent iterative algorithm would be:

num_CEM_values = num_CEM_pairs*2;

 for(range = each possible CEM range in descending order of size)

 {

 CEM_bits = floor(num_CEM_values*8*trits_in_CEM_range/5) +

 floor(num_CEM_values*7*quints_in_CEM_range/3) +

 num_CEM_values*bits_in_CEM_range;

 if (CEM_bits <= remaining_bits)

 break;

 }

 return range;

In cases where this procedure results in unallocated bits, these bits are not read by the decoding process

and can have any value.

236 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Void-Extent Blocks

As noted in the index mode, a specifically type of encoding is the void-extended type (2D), an efficient

way to encode a constant color for large blocks of regions in texture. The data structure of a void extent

is listed in following 2 tables as 2D and 3D blocks respectively.

Layout of 2D Void-Extend Block, being supported in LDR.

127:112 111:96 95:80 79:64 63:51 50:38 37:25 24:12 11:10 9 8:0

A B G R T_high T_low S_high S_low Res:11 H 111111100

Bit 9 H is the Dynamic Range flag, which indicates the format in which colors are stored. A 0 value

indicates LDR, in which case the color components are stored as UNORM16 values. A 1 indicates HDR, in

which case the color components are stored as FP16 values. If a void-extent block with HDR values is

decoded in LDR mode, then the result will be the error color, opaque magenta, for all texels within the

block. The low and height coordinate values are treated as unsigned integers and then normalized into

the range 0..1 (by dividing by 213-1 for 2D or 29-1, for 3D respectively). The high values for each

dimension must be greater than the corresponding low values, unless they are all all-1s. If all the

coordinates are all-1s, then the void extent is ignored, and the block is simply a constant color block.The

existence of single-color blocks with void extents must not produce results different from those obtained

if these single-color blocks are defined without void-extents. Any situation in which the results would

differ is invalid. Results from invalid void extents are undefined. If a void-extent appears in a MIPmap

level other than the most detailed one, then the extent will apply to all of the more detailed levels too.

This allows decoders to avoid sampling more detailed MIPmaps. If the more detailed MIPmap level is not

a constant color in this region, then the block may be marked as constant color, but without a void

extent, as detailed above. If a void-extent extends to the edge of a texture, then filtered texture colors

may not be the same color as that specified in the block, due to texture border colors, wrapping, or cube

face wrapping. Care must be taken when updating or extracting partial image data that void-extents in

the image do not become invalid.

Decoding Process

Overview Decoding Flow

The goal for this feature is to reconstruct a cacheline (512b) of a target texture data at 4x4 region in

UNORM8 A8R8G8B8 or 4x2 in FLT16 A16R16G16B16 with certain performance target, given the input

texture coordinate (s,t,r). The scope of the u-architecture includes

 The additional surface format of the post decoding block, and the footprint (equivalent bpp).

These are both global to each texture surface, and can be passed to the Sampler in the surface

state via sampler messages.

 With post-scaled texture coordinate (u, v, p), the additional address calculation in FT to find the

particular block location relative to the native block size specified in the surface state, as well as the

relative texel position within that block. Assuming the block size for the block is Bu, Bv, Bp, the

dimensions of a 2D surface as measured in block size tsize is:

 bw = MAX (2, (w+ tsize -1)/ tsize)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 237

 bh = MAX (2, (h+ tsize -1)/ tsize)

Here the division is an integer division. The relationship between non-negative image coordinates

[row,col] =[u, v] and block coordinates is

 bu = u / tsize ; buu = u % tsize;

 bv = v / tsize ; bvv = v % tsize;

 bp = p / tsize ; bpp = p % tsize;

 With the selected sets of block size from 4x4 to 12x12 in 2D and 3x3x3 to 6x6x6 in 3D maps,1~4

blocks of source texture needs to be fetched, depending on whether the destination tile size (4x2

in FLT16 or 4x4 in UNORM8888) is inclusive or come across a few source blocks, as shown in Fig.

Destination tile is inclusive within one tile or across up to 4 tiles in source texture region

 Decode 1 to 4 128-bit ASTC compressed blocks fetched from DRAM in Sampler from ASTC

compression format to either UNORM8 (LDR) or FLT16(HDR), reconstruct the texels needed in the

texture filtering stage. The total decoding processing include:

Front End Decoding Processing:

1. Detect if an ASTC block is a void-extent type, illegal type, or a normal non-void-extent type.

2. Decode the partition state – number of partitions in the current block.

3. Decode the index mode for the block include the partition seed and (N,M,Q) dimension of the

compact sampling domain.

4. Decode the color endpoints modes in each partition.

5. Calculate the bit position and total # of bits used for Index.

6. Calculate the bit position and total # of bits and # of integers used in the Color endpoints in all

partitions within the block.

7. With Integer Sequence Decoding, get all the indices in the compact domain defined by NxMxQ

grid.

238 Doc Ref # IHD-OS-SKL-Vol 5-05.16

8. With Integer Sequence Decoding, get all the color end points from 16 modes in FLT16 for all

partitions.

Back End Decoding Processing:

1. Reconstruct the indices at the selected sampling locations with infill scaling.

2. Find the partition from the partition seed at each sampling location.

3. Reconstruct the texture color value with the index and the pair of color end points at each

sampling location.

4. If Block type is void extent, get the constant color from the high 64 bits and assign to the sampling

location.

5. Convert the data to UNORM8 if LDR data is needed for the subsequent FL filtering process. Under

void-extent block type,

Following is the flow diagram of the decoding process:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 239

Integer Sequence Encoding

Both the index data and the endpoint color data are variable width, and are specified using a sequence

of integer values. The range of each value in a sequence (e.g. a color index) is constrained. Since it is

often the case that the most efficient range for these values is not a power of two, each value sequence

is encoded using a technique known as “integer sequence encoding”. This allows efficient, hardware-

friendly packing and unpacking of values with non-power-of-two ranges. In a sequence, each value has

an identical range. The range is specified in one of the following forms:

Value range MSB encoding LSB encoding Value Block Packed block size

0 .. 2n-1
-

n bit value m (n <= 8) m
1

n

0 .. (3 * 2 n)-1 Base-3 “trit” value t n bit value m (n <= 6) t * 2 n + m
5 8 + 5*n

0 .. (5 * 2 n)-1 Base-5 “quint” value q n bit value m (n <= 5) q * 2 n + m
3 7 + 3*n

Since 35 is 243, it is possible to pack five trits into 8 bits (which has 256 possible values), so a trit can

effectively be encoded as 1.6 bits. Similarly, since 53 is 125, it is possible to pack three quints into 7 bits

(which has 128 possible values), so a quint can be encoded as 2.33 bits.

The encoding scheme packs the trits or quints, and then interleaves the n additional bits in positions that

satisfy the requirements of an arbitrary length stream. This makes it possible to correctly specify lists of

values whose length is not an integer multiple of 3 or 5 values. It also makes it possible to easily select a

value at random within the stream. If there are insufficient bits in the stream to fill the final block, then

unused (higher order) bits are assumed to be 0 when decoding.

To decode the bits for value number i in a sequence of bits b, both indexed from 0, perform the

following:

If the range is encoded as n bits per value, then the value is bits b[i*n+n-1:i*n] – a simple multiplexing

operation.

If the range is encoded using a trit, then each block contains 5 values (v0 to v4), each of which contains a

trit (t0 to t4) and a corresponding LSB value (m0 to m4). The first bit of the packed block is bit

floor(i/5)*(8+5*n). The bits in the block are packed as follows (in this example, n is 4):

Trit-based Packing

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T7 m4 T6 T5 m3 T4 m2 T3 T2 m1 T1 T0 m0

240 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The five trits t0 to t4 are obtained by bit manipulations of the 8 bits T[7:0] as follows:

if T[4:2] = 111

 C = { T[7:5], T[1:0] }; t4 = t3 = 2

 else

 C = T[4:0]

 if T[6:5] = 11

 t4 = 2; t3 = T[7]

 else

 t4 = T[7]; t3 = T[6:5]

 if C[1:0] = 11

 t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] }

 else if C[3:2] = 11

 t2 = 2; t1 = 2; t0 = C[1:0]

 else

 t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] }

Endpoint Unquantization

Each color endpoint is specified as a sequence of integers in a given range. These values are packed

using integer sequence encoding, as a stream of bits stored from just above the configuration data, and

growing upwards. Once unpacked, the values must be unquantized from their storage range, returning

them to a standard range of 0..255. For bit-only representations, this is simple bit replication from the

most significant bit of the value. For trit or quint-based representations, this involves a set of bit

manipulations and adjustments to avoid the expense of full-width multipliers. This procedure ensures

correct scaling, but scrambles the order of the decoded values relative to the encoded values. This must

be compensated for using a table in the encoder.

The initial inputs to the procedure are denoted A, B, C and D and are decoded using the range as follows:

Range Trits Quints Bits Bit value A (9 bits) B (9 bits)

C (9

bits) D (3 bits)

0..5 1 1 a aaaaaaaaa 000000000 204 Trit value

0..9 1 1 a aaaaaaaaa 000000000 113 Quint

value

0..11 1 2 ba aaaaaaaaa b000b0bb0 93 Trit value

0..19 1 2 ba aaaaaaaaa b0000bb00 54 Quint

value

0..23 1 3 cba aaaaaaaaa cb000cbcb 44 Trit value

0..39 1 3 cba aaaaaaaaa cb0000cbc 26 Quint

value

0..47 1 4 dcba aaaaaaaaa dcb000dcb 22 Trit value

0..79 1 4 dcba aaaaaaaaa dcb0000dc 13 Quint

value

0..95 1 5 edcba aaaaaaaaa edcb000ed 11 Trit value

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 241

Range Trits Quints Bits Bit value A (9 bits) B (9 bits)

C (9

bits) D (3 bits)

0..159 1 5 edcba aaaaaaaaa edcb0000e 6 Quint

value

0..191 1 6 fedcba aaaaaaaaa fedcb000f 5 Trit value

These are then processed as follows:

T= D * C + B;

T = T ^ A;

T = (A & 0x80) | (T » 2);

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4.

LDR Endpoint Decoding

The decoding method used depends on the Color Endpoint Mode (CEM) field, which specifies how many

values are used to represent the endpoint. The CEM field also specifies how to take the n unquantized

color endpoint values v0 to vn-1 and convert them into two RGBA color endpoints e0 and e1. The HDR

Modes are more complex and do not fit neatly into the table. They are documented in following section.

The LDR methods can be summarized as follows.

Color Endpoint Modes

CEM Range Description

of end

points Endpoints Reconstruction

0 LDR Luminance, direct 2 e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF);

1 LDR
Luminance,

base+offset

2
L0 = (v0»2)|(v1&0xC0); L1=L0+(v1&0x3F);

if (L1>0xFF) { L1=0xFF; }

e0=(L0,L0,L0,0xFF); e1=(L1,L1,L1,0xFF);

2 HDR Luminance, large range 2 See next Section

3 HDR Luminance, small range 2 See next Section

4 LDR
Luminance+Alpha,

Direct

4
e0=(v0,v0,v0,v2);

e1=(v1,v1,v1,v3);

5 LDR Luminance+Alpha,

base+offset

4
bit_transfer_signed(v1,v0);

bit_transfer_signed(v3,v2);

e0=(v0,v0,v0,v2); e1=(v0+v1,v0+v1,v0+v1,v2+v3);

clamp_unorm8(e0); clamp_unorm8(e1);

242 Doc Ref # IHD-OS-SKL-Vol 5-05.16

CEM Range Description

of end

points Endpoints Reconstruction

6 LDR
RGB,

base+scale

4
e0=(v0*v3»8,v1*v3»8,v2*v3»8, 0xFF);

e1=(v0,v1,v2,0xFF);

7 HDR RGB, base+scale 4 See next Section

8 LDR
RGB,

Direct

6
s0= v0+v2+v4; s1= v1+v3+v5;

if (s1>=s0){e0=(v0,v2,v4,0xFF); e1=(v1,v3,v5,0xFF); }

else { e0=blue_contract(v1,v3,v5,0xFF);

e1=blue_contract(v0,v2,v4,0xFF); }

9 LDR
RGB,

base+offset

6
bit_transfer_signed(v1,v0);

bit_transfer_signed(v3,v2);

bit_transfer_signed(v5,v4);

if(v1+v3+v5 >= 0)

{ e0=(v0,v2,v4,0xFF); e1=(v0+v1,v2+v3,v4+v5,0xFF);

}

else

{ e0=blue_contract(v0+v1,v2+v3,v4+v5,0xFF);

e1=blue_contract(v0,v2,v4,0xFF); }

clamp_unorm8(e0); clamp_unorm8(e1);

10 LDR
RGB,

base+scale plus two A

6
e0=(v0*v3»8,v1*v3»8,v2*v3»8, v4);

e1=(v0,v1,v2, v5);

11 HDR RGB 6 See next Section

12 LDR
RGBA,

direct

8
s0= v0+v2+v4; s1= v1+v3+v5;

if (s1>=s0){e0=(v0,v2,v4,v6); e1=(v1,v3,v5,v7); }

else { e0=blue_contract(v1,v3,v5,v7);

e1=blue_contract(v0,v2,v4,v6); }

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 243

CEM Range Description

of end

points Endpoints Reconstruction

13 LDR
RGBA,

base+offset

8
bit_transfer_signed(v1,v0);

bit_transfer_signed(v3,v2);

bit_transfer_signed(v5,v4);

bit_transfer_signed(v7,v6);

if(v1+v3+v5>=0) { e0=(v0,v2,v4,v6);

e1=(v0+v1,v2+v3,v4+v5,v6+v7); }

else { e0=blue_contract(v0+v1,v2+v3,v4+v5,v6+v7);

e1=blue_contract(v0,v2,v4,v6); }

clamp_unorm8(e0); clamp_unorm8(e1);

14 HDR RGB + LDR Alpha 8 See next Section

15 HDR RGB + HDR Alpha 8 See next Section

Mode 14 is special in that the alpha values are interpolated linearly, but the color components are

interpolated logarithmically. This is the only endpoint format with mixed-mode operation, and will return

the error value if encountered in LDR mode. The bit_transfer_signed procedure transfers a bit from one

signed byte value (a) to another (b). The result is an 8-bit signed integer value and a 6-bit integer value

sign extended to 8 bits. Note that, as is often the case, this is easier to express in hardware than in C:

bit_transfer_signed(uint16_t& a, uint16_t& b)

{

b »= 1;

b |= a & 0x80;

a »= 1;

a &= 0x3F;

if((a&0x20)!=0) a-=0x40;

}

For the purposes of this pseudocode, the signed bytes are passed in as unsigned 16-bit integers because

the semantics of a right shift on a signed value in C are undefined.

244 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The blue_contract procedure is used to give additional precision to RGB colors near grey:

color blue_contract(int r, int g, int b, int a)

{

color c;

c.r = (r+b) » 1;

c.g = (g+b) » 1;

c.b = b;

c.a = a;

return c;

}

The clamp_unorm8 procedure is used to clamp a color into the UNORM8 range:

void clamp_unorm8(color c)

{

if(c.r < 0) {c.r=0;} else if(c.r > 255) {c.r=255;}

if(c.g < 0) {c.g=0;} else if(c.g > 255) {c.g=255;}

if(c.b < 0) {c.b=0;} else if(c.b > 255) {c.b=255;}

if(c.a < 0) {c.a=0;} else if(c.a > 255) {c.a=255;}

}

HDR Endpoint Decoding

The 6 HDR CEM modes on color endpoints reconstruction and surface formats are only used in full-

profile ASTC texture in float 16 bit.

 HDR Endpoint Mode 2: HDR Luminance, large range

 HDR Endpoint Mode 3: HDR Luminance, small range

 HDR Endpoint Mode 7: HDR RGB, base + scale

 HDR Endpoint Mode 11: HDR RGB, direct

 HDR Endpoint Mode 14: HDR RGB, direct + LDR Alpha

 HDR Endpoint Mode 15: HDR RGB, direct + HDR Alpha

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 245

HDR Endpoint Mode 2 (HDR Luminance, Large Range)

Mode 2 represents luminance-only data with a large range. It encodes using two values (v0, v1). The

complete decoding procedure is as follows:

 If (v1 >= v0)

 {

 y0 = (v0 « 4);

 y1 = (v1 « 4);

 }

 else {

 y0 = (v1 « 4) + 8;

 y1 = (v0 « 4) - 8;

 }

 // Construct RGBA result (0x780 is 1.0f)

 e0 = (y0, y0, y0, 0x780);

 e1 = (y1, y1, y1, 0x780);

HDR Endpoint Mode 3 (HDR Luminance, Small Range)

Mode 3 represents luminance-only data with a small range. It packs the bits for a base luminance value,

together with an offset, into two values (v0, v1):

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

V0 M L[6:0]

V1 X[3:0] D[3:0]

246 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The bit field marked as X allocates different bits to L or d depending on the value of the mode bit M. The

complete decoding procedure is as follows:

// Check mode bit and extract.

If ((v0&0x80) !=0)

{

y0 = ((v1 & 0xE0) « 4) | ((v0 & 0x7F) « 2);

d = (v1 & 0x1F) « 2;

}

else {

y0 = ((v1 & 0xF0) « 4) | ((v0 & 0x7F) « 1);

d = (v1 & 0x0F) « 1;

}

// Add delta and clamp

y1 = y0 + d;

if(y1 > 0xFFF) { y1 = 0xFFF; }

// Construct RGBA result (0x780 is 1.0f)

e0 = (y0, y0, y0, 0x780);

e1 = (y1, y1, y1, 0x780);

HDR Endpoint Mode 7 (HDR RGB, Base+Scale)

Mode 7 packs the bits for a base RGB value, a scale factor, and some mode bits into the four values (v0,

v1, v2, v3).

HDR Mode 7 Value Layout

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

V0 M[3] M[2] R[5:0]

V1 M[1] X0 X1 G[4:0]

V2 M[0] X2 X3 B[4:0]

V3 X4 X5 X6 S[4:0]

The mode bits M[0:3] are a packed representation of an endpoint bit mode, together with the major

component index. For modes 0 to 4, the component (red, green, or blue) with the largest magnitude is

identified, and the values are swizzled to ensure that it is decoded from the red channel. The endpoint bit

mode is used to determine the number of bits assigned to each component of the endpoint, and the

destination of each of the extra bits X0 to X6, as follows:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 247

Endpoint Bit Mode

Mode

Number of bits Description of Extra Bits

R G B Scale X0 X1 X2 X3 X4 X5 X6

0 11 5 5 7 R[9] R[8] R[7] R[10] R[6] S[6] S[5]

1 11 6 6 5 R[8] G[5] R[7] B[5] R[6] R[10] R[9]

2 10 5 5 8 R[9] R[8] R[7] R[6] S[7] S[6] S[5]

3 9 6 6 7 R[8] G[5] R[7] B[5] R[6] S[6] S[5]

4 8 7 7 6 G[6] G[5] B[6] B[5] R[6] R[7] S[5]

5 7 7 7 7 G[6] G[5] B[6] B[5] R[6] S[6] S[5]

The complete decoding procedure is as follows:

// Extract mode bits and unpack to major component and mode.

int modeval = ((v0 & 0xC0) » 6) | ((v1 & 0x80) » 5) | ((v2 & 0x80) » 4);

int majcomp;

int mode;

if((modeval & 0xC) != 0xC) { majcomp = modeval » 2; mode = modeval & 3; }

else if(modeval != 0xF) { majcomp = modeval & 3; mode = 4; }

else { majcomp = 0; mode = 5; }

// Extract low-order bits of r, g, b, and s.

int red = v0 & 0x3f;

int green = v1 & 0x1f;

int blue = v2 & 0x1f;

int scale = v3 & 0x1f;

// Extract high-order bits, which may be assigned depending on mode

int x0 = (v1 » 6) & 1; int x1 = (v1 » 5) & 1;

int x2 = (v2 » 6) & 1; int x3 = (v2 » 5) & 1;

int x4 = (v3 » 7) & 1; int x5 = (v3 » 6) & 1; int x6 = (v3 » 5) & 1;

// Now move the high-order xs into the right place.

int ohm = 1 « mode;

if(ohm & 0x30) green |= x0 « 6;

if(ohm & 0x3A) green |= x1 « 5;

if(ohm & 0x30) blue |= x2 « 6;

if(ohm & 0x3A) blue |= x3 « 5;

248 Doc Ref # IHD-OS-SKL-Vol 5-05.16

if(ohm & 0x3D) scale |= x6 « 5;

if(ohm & 0x2D) scale |= x5 « 6;

if(ohm & 0x04) scale |= x4 « 7;

if(ohm & 0x3B) red |= x4 « 6;

if(ohm & 0x04) red |= x3 « 6;

if(ohm & 0x10) red |= x5 « 7;

if(ohm & 0x0F) red |= x2 « 7;

if(ohm & 0x05) red |= x1 « 8;

if(ohm & 0x0A) red |= x0 « 8;

if(ohm & 0x05) red |= x0 « 9;

if(ohm & 0x02) red |= x6 « 9;

if(ohm & 0x01) red |= x3 « 10;

if(ohm & 0x02) red |= x5 « 10;

// Shift the bits to the top of the 12-bit result.

static const int shamts[6] = { 1,1,2,3,4,5 };

int shamt = shamts[mode];

red «= shamt; green «= shamt; blue «= shamt; scale «= shamt;

// Minor components are stored as differences

if(mode != 5) { green = red - green; blue = red - blue; }

// Swizzle major component into place

if(majcomp == 1) swap(red, green);

if(majcomp == 2) swap(red, blue);

// Clamp output values, set alpha to 1.0

e1.r = clamp(red, 0, 0xFFF);

e1.g = clamp(green, 0, 0xFFF);

e1.b = clamp(blue, 0, 0xFFF);

e1.alpha = 0x780;

e0.r = clamp(red - scale, 0, 0xFFF);

e0.g = clamp(green - scale, 0, 0xFFF);

e0.b = clamp(blue - scale, 0, 0xFFF);

e0.alpha = 0x780;

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 249

HDR Endpoint Mode 11 (HDR RGB, Direct)

Mode 11 specifies two RGB values, which it calculates from a number of bitfields (a, b0, b1, c, d0 and d1)

which are packed together with some mode bits into the six values (v0, v1, v2, v3, v4, v5):

HDR Mode 11 Value Layout

Value Bit[7] Bit[6] Bit[5] Bit[3] Bit[2] Bit[1] Bit[0]

V0 a[7:0]

V1 m[0] a[8] c[5:0]

V2 m[1] X0 b0[5:0]

V3 m[2] X1 b1[5:0]

V4 mj[0] X2 X4 d0[4:0]

V5 mj[1] X3 X5 d1[4:0]

If the major component bits mj[1:0] = b11, then the RGB values are specified directly as

HDR Mode 11 Value Layout

Value Bit[7] Bit[6] Bit[5] Bit[3] Bit[2] Bit[1] Bit[0]

V0 R0[11:4]

V1 R1[11:4]

V2 G0 [11:4]

V3 G1[11:4]

V4 1 B0[11:5]

V5 1 B1[11:5]

The mode bits m[2:0] specify the bit allocation for the different values, and the destinations of the extra

bits X0 to X5:

Endpoint Bit Mode

Mode

Number of Bits Description of Extra Bits

a b c d X0 X1 X2 X3 X4 X5

0 9 7 6 7 b0[6] b1[6] d0[6] d1[6] d0[5] d1[5]

1 9 8 6 6 b0[6] b1[6] b0[7] b1[7] d0[5] d1[5]

2 10 6 7 7 a[9] c[6] d0[6] d1[6] d0[5] d1[5]

3 10 7 7 6 b0[6] b1[6] a[9] c[6] d0[5] d1[5]

4 11 8 6 5 b0[6] b1[6] b0[7] b1[7] a[9] a[10]

5 11 6 7 6 a[9] a[10] c[7] c[6] d0[5] d1[5]

6 12 7 7 5 b0[6] b1[6] a[11] c[6] a[9] a[10]

7 12 6 7 6 a[9] a[10] a[11] c[6] d0[5] d1[5]

250 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The complete decoding procedure is as follows:

// Find major component

int majcomp = ((v4 & 0x80) » 7) | ((v5 & 0x80) » 6);

// Deal with simple case first

if(majcomp == 3)

{

e0 = (v0 « 4, v2 « 4, (v4 & 0x7f) « 5, 0x780);

e1 = (v1 « 4, v3 « 4, (v5 & 0x7f) « 5, 0x780);

return;

}

// Decode mode, parameters.

int mode = ((v1 & 0x80) » 7) | ((v2 & 0x80) » 6) | ((v3 & 0x80) » 5);

int va = v0 | ((v1 & 0x40) « 2);

int vb0 = v2 & 0x3f;

int vb1 = v3 & 0x3f;

int vc = v1 & 0x3f;

int vd0 = v4 & 0x7f;

int vd1 = v5 & 0x7f;

// Assign top bits of vd0, vd1.

static const int dbitstab[8] = {7,6,7,6,5,6,5,6};

vd0 = signextend(vd0, dbitstab[mode]);

vd1 = signextend(vd1, dbitstab[mode]);

// Extract and place extra bits

int x0 = (v2 » 6) & 1;

int x1 = (v3 » 6) & 1;

int x2 = (v4 » 6) & 1;

int x3 = (v5 » 6) & 1;

int x4 = (v4 » 5) & 1;

int x5 = (v5 » 5) & 1;

int ohm = 1 « mode;

if(ohm & 0xA4) va |= x0 « 9;

if(ohm & 0x08) va |= x2 « 9;

if(ohm & 0x50) va |= x4 « 9;

if(ohm & 0x50) va |= x5 « 10;

if(ohm & 0xA0) va |= x1 « 10;

if(ohm & 0xC0) va |= x2 « 11;

if(ohm & 0x04) vc |= x1 « 6;

if(ohm & 0xE8) vc |= x3 « 6;

if(ohm & 0x20) vc |= x2 « 7;

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 251

if(ohm & 0x5B) vb0 |= x0 « 6;

if(ohm & 0x5B) vb1 |= x1 « 6;

if(ohm & 0x12) vb0 |= x2 « 7;

if(ohm & 0x12) vb1 |= x3 « 7;

// Now shift up so that major component is at top of 12-bit value

int shamt = (modeval » 1) ^ 3;

va «= shamt; vb0 «= shamt; vb1 «= shamt;

vc «= shamt; vd0 «= shamt; vd1 «= shamt;

e1.r = clamp(va, 0, 0xFFF);

e1.g = clamp(va - vb0, 0, 0xFFF);

e1.b = clamp(va - vb1, 0, 0xFFF);

e1.alpha = 0x780;

e0.r = clamp(va - vc, 0, 0xFFF);

e0.g = clamp(va - vb0 - vc - vd0, 0, 0xFFF);

e0.b = clamp(va - vb1 - vc - vd1, 0, 0xFFF);

e0.alpha = 0x780;

if(majcomp == 1)

{

swap(e0.r, e0.g); swap(e1.r, e1.g);

}

else if(majcomp == 2)

{

swap(e0.r, e0.b); swap(e1.r, e1.b);

}

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha)

Mode 14 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, v7). First, the RGB

values are decoded from (v0..v5) using the method from Mode 11. Then the alpha values are filled in

from v6 and v7:

// Decode RGB as for mode 11

(e0,e1) = decode_mode_11(v0,v1,v2,v3,v4,v5)

// Now fill in the alphas

e0.alpha = v6;

e1.alpha = v7;

252 Doc Ref # IHD-OS-SKL-Vol 5-05.16

HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha)

Mode 15 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, v7). First, the RGB

values are decoded from (v0..v5) using the method from Mode 11. The alpha values are stored in values

v6 and v7 as a mode and two values which are interpreted according to the mode:

HDR Mode 15 Alpha Value Layout

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

V6 M0 A[6:0]

V7 M1 B[6:0]

The alpha values are decoded from v6 and v7 as follows:

// Decode RGB as for mode 11

(e0,e1) = decode_mode_11(v0,v1,v2,v3,v4,v5)

// Extract mode bits

mode = ((v6 » 7) & 1) | ((v7 » 6) & 2);

v6 &= 0x7F;

v7 &= 0x7F;

if(mode==3)

{

// Directly specify alphas

e0.alpha = v6 « 5;

e1.alpha = v7 « 5;

}

else

{

// Transfer bits from v7 to v6 and sign extend v7.

v6 |= (v7 « (mode+1))) & 0x780;

v7 &= (0x3F » mode);

v7 ^= 0x20 » mode;

v7 -= 0x20 » mode;

v6 «= (4-mode);

v7 «= (4-mode);

// Add delta and clamp

v7 += v6;

v7 = clamp(v7, 0, 0xFFF);

e0.alpha = v6;

e1.alpha = v7;

}

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 253

Restrictions on Number of Partitions Per Block

Following table gives total number of partitions for each CEM mode given the restriction of total up to

16 integer values being decoded from the Integer Sequence Coding sequence.

Groups Max Number of Partition CEM Modes

(v0,v1) 4 0,1,2,3

(v0,v1,v2,v3) 4 4,5,6,7

(v0,v1,v2,v3,v4,v5) 3 8,9,10,11

(v0,v1,v2,v3,v4,v5,v6,v7) 2 12,13,14,15

Index Decoding

The index information is stored as a stream of bits, growing downwards from the most significant bit in

the block. Bit n in the stream is thus bit 127-n in the block.

For each location in the index grid, a value (in the specified range) is packed into the stream. These are

ordered in a raster pattern starting from location (0,0,0), with the X dimension increasing fastest, and the

Z dimension increasing slowest. If dual-plane mode is selected, both indices are emitted together for

each location, plane 0 first, then plane 1.

Index Unquantization

Each index plane is specified as a sequence of integers in a given range. These values are packed using

integer sequence encoding.

Once unpacked, the values must be unquantized from their storage range, returning them to a standard

range of 0..64. The procedure for doing so is similar to the color endpoint unquantization.

First, we unquantize the actual stored index values to the range 0..63.

For bit-only representations, this is simple bit replication from the most significant bit of the value.

For trit or quint-based representations, this involves a set of bit manipulations and adjustments to avoid

the expense of full-width multipliers.

For representations with no additional bits, the results are as follows:

Index Unquantization Values

Range 0 1 2 3 4

0..2 0 32 63 - -

0..4 0 16 32 47 63

For other values, we calculate the initial inputs to a bit manipulation procedure. These are denoted A, B,

C and D and are decoded using the range as follows:

254 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Index Unquantization Parameters

Range Trits Quints Bits Bit value A (7 bits) B (7 bits) C (7 bits) D (3 bits)

0..5 1 1 a aaaaaaa 0000000 50 Trit

0..9 1 1 a aaaaaaa 0000000 28 Quint

0..11 1 2 ba aaaaaaa b000b0b 23 Trit

0..19 1 2 ba aaaaaaa b0000b0 13 Quint

0..23 1 3 cba aaaaaaa cb000cb 11 Trit

These are then processed as follows:

T = D * C + B;

T = T ^ A;

T = (A & 0x20) | (T » 2);

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4. As a final step,

for all types of value, the range is expanded from 0..63 up to 0..64 as follows:

if (T > 32) { T += 1; }

This allows the implementation to use 64 as a divisor during interpolation, which is much easier than

using 63.

Infill Process

After unquantization, the indexes are subject to index selection and infill. The infill method is used to

calculate the index for a texel position, based on the indices in the stored index grid array (which may be

a different size). The procedure below must be followed exactly, to ensure bit exact results. The block size

is specified as three dimensions along the s, t and r axes (Bs, Bt, Br). Texel coordinates within the block

(s,t,r) can have values from 0 to one less than the block dimension in that axis.

For each block dimension, we compute scale factors (Ds, Dt, Dr)

Ds = floor((1024 + floor(Bs/2)) / (Bs-1));

Dt = floor((1024 + floor(Bt/2)) / (Bt-1));

Dr = floor((1024 + floor(Br/2)) / (Br-1));

Since the block dimensions are constrained, these are easily looked up in a table. These scale factors are

then used to scale the (s,t,r) coordinates to a homogeneous coordinate (cs, ct, cr):

cs = Ds * s;

ct = Dt * t;

cr = Dr * r;

This homogeneous coordinate (cs, ct, cr) is then scaled again to give a coordinate (gs, gt, gr) in the

index-grid space . The index-grid is of size (N, M, Q), as specified in the index mode field:

gs = (cs*(N-1)+32) » 6;

gt = (ct*(M-1)+32) » 6;

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 255

gr = (cr*(Q-1)+32) » 6;

The resulting coordinates may be in the range 0..176. These are interpreted as 4:4 unsigned fixed point

numbers in the range 0.0 .. 11.0. If we label the integral parts of these (js, jt, jr) and the fractional parts (fs,

ft, fr), then:

js = gs » 4; fs = gs & 0x0F;

jt = gt » 4; ft = gt & 0x0F;

jr = gr » 4; fr = gr & 0x0F;

These values are then used to interpolate between the stored indices. This process differs for 2D and 3D.

For 2D, bilinear interpolation is used:

v0 = js + jt*N;

p00 = decode_index(v0);

p01 = decode_index(v0 + 1);

p10 = decode_index(v0 + N);

p11 = decode_index(v0 + N + 1);

The function decode_index(n) decodes the nth index in the stored index stream. The values p00 to p11

are the indices at the corner of the square in which the texel position resides. These are then weighted

using the fractional position to produce the effective index i as follows:

w11 = (fs*ft+8) » 4;

w10 = ft – w11;

w01 = fs – w11;

w00 = 16 – fs – ft + w11;

i = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) » 4;

For 3D, simplex interpolation is used as it is cheaper than a naïve trilinear interpolation. First, we pick

some parameters for the interpolation based on comparisons of the fractional parts of the texel position:

fs>ft ft>fr fs>fr s1 s2 w0 w1 w2 w3

True True True 1 N 16-fs fs-ft ft-fr fr

False True True N 1 16-ft ft-fs fs-fr fr

True False True 1 N*M 16-fs fs-fr fr-ft ft

True False False N*M 1 16-fr fr-fs fs-ft ft

False True False N N*M 16-ft ft-fr fr-fs fs

False False False N*M N 16-fr fr-ft ft-fs fs

256 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The effective index i is then calculated as:

v0 = js + jt*N + jr*N*M;

p0 = decode_index(v0);

p1 = decode_index(v0 + s1);

p2 = decode_index(v0 + s1 + s2);

p3 = decode_index(v0 + N*M + N + 1);

i = (p0*w0 + p1*w1 + p2*w2 + p3*w3 + 8) » 4;

Index Application

Once the effective index i for the texel has been calculated, the color endpoints are interpolated and

expanded. For LDR endpoint modes, each color component C is calculated from the corresponding 8-bit

endpoint components C0 and C1 as follows:

If sRGB conversion is not enabled, C0 and C1 are first expanded to 16 bits by bit replication:

C0 = (C0 « 8) | C0; C1 = (C1 « 8) | C1;

If sRGB conversion is enabled, C0 and C1 are expanded to 16 bits differently, as follows:

C0 = (C0 « 8) | 0x80; C1 = (C1 « 8) | 0x80;

C0 and C1 are then interpolated to produce a UNORM16 result C:

C = floor((C0*(64-i) + C1*i + 32)/64)

If sRGB conversion is enabled, the top 8 bits of the interpolation result are passed to the external sRGB

conversion block. Otherwise, if C = 65535, then the final result is 1.0 (0x3C00) otherwise C is divided by

65536 and the infinite-precision result of the division is converted to FP16 with round-to-zero semantics.

For HDR endpoint modes, color values are represented in a 12-bit logarithmic representation, and

interpolation occurs in a piecewise-approximate logarithmic manner as follows:

In LDR mode, the error result is returned.

In HDR mode, the color components from each endpoint, C0 and C1, are initially shifted left 4 bits to

become 16-bit integer values and these are interpolated in the same way as LDR. The 16-bit value C is

then decomposed into the top five bits, E, and the bottom 11 bits M, which are then processed and

recombined with E to form the final value Cf:

C = floor((C0*(64-i) + C1*i + 32)/64)

E = (C&0xF800) » 11; M = C&0x7FF;

if (M < 512) { Mt = 3*M; }

else if (M >= 1536) { Mt = 5*M – 2048; }

else { Mt = 4*M – 512; }

Cf = (E«10) + (Mt»3)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 257

This final value Cf is interpreted as an IEEE FP16 value. If the result is +Inf or NaN, it is converted to the

bit pattern 0x7BFF, which is the largest representable finite value.

Dual-Plane Decoding

If dual-plane mode is disabled, all of the endpoint components are interpolated using the same index

value. If dual-plane mode is enabled, two indices are stored with each texel. One component is then

selected to use the second index for interpolation, instead of the first index. The first index is then used

for all other components.

The component to treat specially is indicated using the 2-bit Color Component Selector (CCS) field as

follows:

Dual Plane Color Component Selector Values

Value Index 0 Index 1

0 GBA R

1 RBA G

2 RGA B

3 RGB A

The CCS bits are stored at a variable position directly below the index bits and any additional CEM bits.

Partition Pattern Generation

When multiple partitions are active, each texel position is assigned a partition index. This partition index

is calculated using a seed (the partition pattern index), the texel’s x,y,z position within the block, and the

number of partitions. An additional argument, small_block, is set to 1 if the number of texels in the block

is less than 31, otherwise it is set to 0. The full partition selection algorithm is as follows:

int select_partition(int seed, int x, int y, int z,

int partitioncount, int small_block)

{

if(small_block){ x «= 1; y «= 1; z «= 1; }

seed += (partitioncount-1) * 1024;

uint32_t rnum = hash52(seed);

uint8_t seed1 = rnum & 0xF;

uint8_t seed2 = (rnum » 4) & 0xF;

uint8_t seed3 = (rnum » 8) & 0xF;

uint8_t seed4 = (rnum » 12) & 0xF;

uint8_t seed5 = (rnum » 16) & 0xF;

uint8_t seed6 = (rnum » 20) & 0xF;

uint8_t seed7 = (rnum » 24) & 0xF;

uint8_t seed8 = (rnum » 28) & 0xF;

uint8_t seed9 = (rnum » 18) & 0xF;

258 Doc Ref # IHD-OS-SKL-Vol 5-05.16

uint8_t seed10 = (rnum » 22) & 0xF;

uint8_t seed11 = (rnum » 26) & 0xF;

uint8_t seed12 = ((rnum » 30) | (rnum « 2)) & 0xF;

seed1 *= seed1; seed2 *= seed2; seed3 *= seed3; seed4 *= seed4;

seed5 *= seed5; seed6 *= seed6; seed7 *= seed7; seed8 *= seed8;

seed9 *= seed9; seed10 *= seed10; seed11 *= seed11; seed12 *= seed12;

int sh1, sh2, sh3;

if(seed & 1)

{ sh1 = (seed & 2 ? 4 : 5); sh2 = (partitioncount == 3 ? 6 : 5); }

else

{ sh1 = (partitioncount == 3 ? 6 : 5); sh2 = (seed & 2 ? 4 : 5); }

sh3 = (seed & 0x10) ? sh1 : sh2:

seed1 »= sh1; seed2 »= sh2; seed3 »= sh1; seed4 »= sh2;

seed5 »= sh1; seed6 »= sh2; seed7 »= sh1; seed8 »= sh2;

seed9 »= sh3; seed10 »= sh3; seed11 »= sh3; seed12 »= sh3;

int a = seed1*x + seed2*y + seed11*z + (rnum » 14);

int b = seed3*x + seed4*y + seed12*z + (rnum » 10);

int c = seed5*x + seed6*y + seed9 *z + (rnum » 6);

int d = seed7*x + seed8*y + seed10*z + (rnum » 2);

a &= 0x3F; b &= 0x3F; c &= 0x3F; d &= 0x3F;

if(partitioncount < 4) d = 0;

if(partitioncount < 3) c = 0;

if(a >= b && a >= c && a >= d) return 0;

else if(b >= c && b >= d) return 1;

else if(c >= d) return 2;

else return 3;

}

As has been observed before, the bit selections are much easier to express in hardware than in C.

The seed is expanded using a hash function hash52, which is defined as follows:

uint32_t hash52(uint32_t p)

{

p ^= p » 15; p -= p « 17; p += p « 7; p += p « 4; p ^= p » 5;

p += p « 16; p ^= p » 7; p ^= p » 3; p ^= p « 6; p ^= p » 17;

return p;

}

This assumes that all operations act on 32-bit values

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 259

Data Size Determination

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is determined

from the index mode and number of partitions as follows:

config_bits = 17;

if(num_partitions>1)

if(single_CEM)

config_bits = 29;

else

config_bits = 24 + 3*num_partitions;

num_indices = M * N * Q; // size of index grid

if(dual_plane)

config_bits += 2;

num_indices *= 2;

index_bits = ceil(num_indices*8*trits_in_index_range/5) +

ceil(num_indices*7*quints_in_index_range/3) +

num_indices*bits_in_index_range;

remaining_bits = 128 – config_bits – index_bits;

num_CEM_pairs = base_CEM_class+1 + count_bits(extra_CEM_bits);

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. This

table is initialized such that the range is as large as possible, consistent with the constraint that the

number of bits required to encode num_CEM_pairs pairs of values is not more than the number of

remaining bits.

An equivalent iterative algorithm would be:

num_CEM_values = num_CEM_pairs*2;

for(range = each possible CEM range in descending order of size)

{

CEM_bits = ceil(num_CEM_values*8*trits_in_CEM_range/5) +

ceil(num_CEM_values*7*quints_in_CEM_range/3) +

num_CEM_values*bits_in_CEM_range;

if(CEM_bits <= remaining_bits)

break;

}

return range;

In cases where this procedure results in unallocated bits, these bits are not read by the decoding process

and can have any value.

260 Doc Ref # IHD-OS-SKL-Vol 5-05.16

3D Void-Extent Blocks

The layout of a 3D Void-Extent block is as follows:

127:112 111:96 95:80 79:64 63:55 54:46 45:37 36:28 27:19 18:10 9:9 8:0

A B G R P_high P_low T_high T_low S_high S_low D 111111100

Bit 9 is the Dynamic Range flag, which indicates the format in which colors are stored. Value 0 indicates

LDR, in which case the color components are stored as UNORM16 values, while value 1 indicates HDR, in

which case the color components are stored as FP16 values.

The reason for the storage of UNORM16 values in the LDR case is due to the possibility that the value

will need to be passed on to sRGB conversion. By storing the color value in the format which comes out

of the interpolator, before the conversion to FP16, we avoid having to have separate versions for sRGB

and linear modes.

If a void-extent block with HDR values is decoded in LDR mode, then the result will be the error color,

opaque magenta, for all texels within the block.

The minimum and maximum coordinate values are treated as unsigned integers and then normalized

into the range 0..1 (by dividing by 213-1 or 29-1, for 2D and 3D respectively). The maximum values for

each dimension must be greater than the corresponding minimum values, unless they are all all-1s. If all

the coordinates are all-1s, then the void extent is ignored, and the block is simply a constant-color block.

Illegal Encodings

In ASTC, there is a variety of ways to encode an illegal block. Decoders are required to recognize all

illegal blocks and emit the standard Error Block color value upon encountering an illegal block. The

standard Error Block color value is opaque magenta (R, G, B, A) = (0xFF, 0x00, 0xFF, 0xFF) in the LDR

operation mode, and a vector of NaNs (R, G, B, A)=(NaN, NaN, NaN, NaN) in the HDR operation mode.

It is recommended that the NaN be encoded as the bit-pattern 0xFFFF.

Here is a comprehensive list of situations that represent illegal block encodings:

 The index bit mode specified is one of the modes explicitly listed as Reserved.

 An index bit mode has been specified that would require more than 64 indexes total.

 An index bit mode has been specified that would require more than 96 bits for the Index Integer

Sequence Encoding.

 An index bit mode has been specified that would require fewer than 24 bits for the Index Integer

Sequence Encoding.

 The size of the index grid exceeds the size of the block footprint in any dimension.

 Color endpoint modes have been specified such that the Color Integer Sequence Encoding would

require more than 18 integers.

 The number of bits available for color endpoint encoding after all the other fields have been

counted is less than ceil(13C/5) where C is the number of color endpoint integers (this would

restrict color integers to a range smaller than 0..5, which is not supported).

 Dual Index Mode is enabled for a block with 4 partitions.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 261

 Void-Extent blocks where the low coordinate for some texture axis is greater than or equal to the

high coordinate.

 Under 3D mode, the depth (Q) is not 1

In LDR mode, a block which has both HDR and LDR endpoint modes assigned to different partitions is

not an error block. Only those texels which belong to the HDR partition will result in the error color.

Texels belonging to a LDR partition will be decoded as normal.

Profile Support

In order to ease verification and accelerate adoption, an LDR-only subset of the full ASTC specification

has been made available.

Implementations of this LDR Profile must satisfy the following requirements:

 All textures with valid encodings for LDR Profile must decode identically using either a LDR Profile

or Full Profile decoder.

 All features included only in the Full Profile must be treated as reserved in the LDR Profile, and

return the error color on decoding.

 Any sequence of API calls valid for the LDR Profile must also be valid for the Full Profile and return

identical results when given a texture encoded for the LDR Profile.

The feature subset for the LDR profile is:

 2D textures only.

 Only those block sizes listed in Table 5 are supported.

 LDR operation mode only.

 Only LDR endpoint formats must be supported namely formats 0, 1, 4, 5, 6, 8, 9, 10, 12, 13.

 Decoding from a HDR endpoint results in the error color.

 Interpolation returns UNORM8 results when used in conjunction with sRGB.

 LDR void extent blocks must be supported, but void extents may not be checked.

262 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Video Pixel/Texel Formats

This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay

chapter for a description of how the Y, U, V components are sampled.

Packed Memory Organization

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain

two pixels and only the byte order affects the memory organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate names:

 YCRCB_NORMAL (YUYV/YUY2)

 YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM)

 YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM)

 YCRCB_SWAPY (UYVY)

The channels are mapped as follows:

Cr (V) Red

Y Green

Cb (U) Blue

Memory layout of packed YUV 4:2:2 formats

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 263

Planar Memory Organization

Planar formats use what could be thought of as separate buffers for the three color components.

Because there is a separate stride for the Y and U/V data buffers, several memory footprints can be

supported.

The 3D sampler supports direct sampling and filtering of planar video surfaces such as YV12 and NV12.

Programming Note

Context: NV21 Support

Sampling of NV21 surface format is supported by swapping the U and V channels when sampling the surface. This

can be done by programming the Shader Channel Select in the RENDER_SURFACE_STATE for the Red and Blue

Channels.

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data:

1. The memory organization of the common YV12 data, where all three planes are contiguous and

the strides of U and V components are half of that of the Y component.

2. An alternative memory structure that the addresses of the three planes are independent but satisfy

certain alignment restrictions.

YUV 4:2:0 Format Memory Organization

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are

contiguous.

Note: The chroma planes (U and V), when separate (case b above) are treated as half-pitch with respect

to the Y plane. In general, YV12 is supported only in linear format because separate planes cannot be

supported correctly with a tiled format.

264 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Workaround

When using Planar formats for YUV with half-pitch chroma planes (e.g. YV12), and fenced tiling is not supported

LINEAR filtering of Planar YUV surfaces such as YV12 using the 3D sampler is done after the U and V have been

replicated to form a YUV444 texels. This means that the U and V components will effectively be point-sampled

rather than filtered. Acheive true filtering of the U and V components, the 3 planes of the YUV surface must be

bound as separate surfaces, and the filtering must be done on each individually.

YUV 4:1:0 Format Memory Organization

The table below shows how position within a Planar YUV surface chroma plane is calculated for various

cases ot U and V pitch and position. It also shows restrictions on the alignment of the planes in memory

when Y Height is a multiple of 4 or when Interleaved Chroma (e.g. NV12) is used.

Case Interleave Chroma Pitch Vertical U/V Offset

YUV with Half Pitch Chroma No Half
When U is below Y

Y_Uoffset = Y_Height * 2

Y_Voffset = Y_Height * 2 + V_Height

When V is below Y

Y_Uoffset = Y_Height * 2 + V_Height

Y_Voffset = Y_Height * 2

YUV with Full Pitch Chroma Yes Full
When U is below Y

Y_Uoffset = Y_Height

Y_Voffset = Y_Height + V_Height

When V is below Y

Y_Uoffset = Y_Height + V_Height

Y_Voffset = Y_Height

YUV for Media Sampling Yes Always Full Same as 3D full pitch

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 265

Programming Note

Context: Planar Memory Organization

The MMIO Register E194h, bit 4 must be set to 1 in order to indicate half-pitch for chroma planes. It must be

cleared to 0 to indicate full-pitch chroma planes.

Programming Note

Context: MIP Filtering

Surface state cannot have (MIP Mode Filter != NONE) for Planar YUV surfaces (e.g. PLANAR_420_8).

Programming Note

Context: Standard Tiling

Planar YUV does not support MIP Tails as part of Standard Tiling. The MIP Tail Start field in

RENDER_SURFACE_STATE must be programmed to 15.

Raw Format

A format called "RAW" is available that is only supported with the untyped surface read/write, block,

scattered, and atomic operation data port messages. It means that the surface has no inherent format.

Surfaces of type RAW are addressed with byte-based offsets. The RAW surface format can be applied

only to surface types of BUFFER and STRBUF.

Surface Memory Organizations

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats.

Display, Overlay, Cursor Surfaces

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode.

See the Display chapter for specifics on how these surfaces are defined/used.

2D Render Surfaces

These surfaces are used as general source and/or destination operands in 2D BLT operations.

Note that there is no coherency between 2D render surfaces and the texture cache. Software must

explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine.

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,

restrictions on their size, placement, etc.

266 Doc Ref # IHD-OS-SKL-Vol 5-05.16

2D Monochrome Source

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where the

BLT engine expands the 1 BPP source to the required color depth.

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency

between 2D render surfaces and texture-cached monochrome sources. Software must explicitly

invalidate the texture cache before using a memory-based monochrome source that has been modified

via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source

surfaces as read-only surfaces.)

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,

restrictions on their size, placement, coherency rules, etc.

2D Color Pattern

Color pattern surfaces are used as special pattern operands in 2D BLT operations.

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency

between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly

invalidate the texture cache before using a memory-based color pattern that has been modified via the

BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-only

surfaces.)

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,

restrictions on their size, placement, etc.

3D Color Buffer (Destination) Surfaces

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always

requires a Color Buffer to be defined.

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel

formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details.

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the

3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM or SM (snooped or unsnooped),

and can be linear or tiled. When both the Depth and Color Buffers are tiled, the respective Tile Walk

directions must match.

When a linear Color Buffer and a linear Depth Buffer are used together:

 The buffers may have different pitches, though both pitches must be a multiple of 32 bytes.

 The buffers must be co-aligned with a 32-byte region.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 267

3D Depth Buffer Surfaces

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline.

The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to perform

non-trivial Depth Test and Stencil Test operations.

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that

instruction in Windower for restrictions.

See Depth Buffer Formats below for a summary of the possible depth buffer formats. See the Depth

Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort

chapters for details on the usage of the Depth Buffer.

Depth Buffer Formats

DepthBufferFormat /

DepthComponent

BPP (Bits Per

Pixel) Description

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit stencil

in lower byte of second DWord

D32_FLOAT 32 32-bit floating point Z depth value

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil

value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

3D Separate Stencil Buffer Surfaces

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D

Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform

non-trivial Stencil Test operations.

UNRESOLVED CROSS-REFERENCE, Depth Buffer Formats summarizes Stencil Buffer formats. Refer to the

Stencil Buffer Formats section in this chapter for details on the pixel formats. Refer to the Windower

chapters for Stencil Buffer usage details.

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction

description in Windower for restrictions.

Depth Buffer Formats

DepthBufferFormat /

DepthComponent BPP (bits per pixel) Description

R8_ UNIT 8 8-bit stencil value in a byte

268 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Surface Layout and Tiling

This section explains how various surface types (1D, 2D, 3D, and Cube) are laid out in memory. Most of

the information in this section is independent of tiling. The concept of tiling can be laid on top of

information. Wherever there is a specific difference it will be called out.

For Tiling (TileY, TileYs etc.), see the Address Tiling Function Introduction section which provides detailed

information on how tiles are organized and laid out.

Maximum Surface Size in Bytes

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a

maximum size of 2^38 bytes. All pixels within the surface must be contained within 2^38 bytes of the

base address.

Tiling

To improve efficiency in memory accesses, most surfaces can be laid out using a tiling scheme.

Supported Legacy Tiling Modes:

 TileY

 TileX

 TileW

Supported Tiled Resource Modes

 TileYF: 4KB tiling mode based on TileY

 TileYS: 64KB tiling mode based on TileY

These modes are described in the Address Tiling Function Introduction volume.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 269

Typed Buffers

A typed buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each

element is a single surface format using one of the supported surface formats depending on how the

surface is being accessed. The surface pitch state for the surface specifies the size of each structure in

bytes.

The buffer is stored in memory contiguously with each element in the structure packed together, and the

first element in the next structure immediately following the last element of the previous structure.

Buffers are supported only in linear memory.

Typed buffers are accessed using a surface state for each structure element (a,b,c, etc. in the diagram

above). The surface state for element “b” (for example) contains the surface format of element “b” (which

may differ from other elements), the base address points to element “b” in the first structure (slice 0 of

the array). The pitch for all of the elements in the buffer is the same value, and the surface type of each

element is SURFTYPE_BUFFER.

The offset into the typed buffer is given by the following equation:

Offset = (V * Pitch) + U

270 Doc Ref # IHD-OS-SKL-Vol 5-05.16

MIP Layout

A surface can support multiple levels of details (LODs) or MIPs. The MIPCOUNT field in the

RENDER_SURFACE_STATE defines how many MIPs a surface contains.

 MIP0 or LOD0 is the largest, highest-detail MIP. The height, width and depth of this LOD is what is

defined in the RENDER_SURFACE_STATE for that surface. Each subsequent

 MIP is exactly one-half the height and width of the previous, making it 1/4th the size in memory.

The MIPs of a surface a layed out in memory using a 2-dimensional method as shown below. Volumetric

and arrayed surfaces use multiple "slices" of this MIP layout, with each slice separted by QPITCH number

of rows.

The diagram below shows many of the parameters of a 2D,2D Arrayed and 3D surface.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 271

This 2-dimensional layout implies that there is padding required on the rows below LOD0 in order to

ensure each row is the same number of texels.

If Tiling is enabled, then each MIP is layed out using one or more tiles. If TileYf or TileYs tiling is enabled

(TR_MODE != NONE), then some of the MIPs may actually be stored in a MIPTail which fits in a single

64K or 4K tile. The layout above, then only applied to MIPs which are not packed in the MIP Tail.

Raw (Untyped) Buffers

Raw buffers also use the surface type of SURFTYPE_BUFFER, but the surface format is RAW. These buffers

are one-dimensional. They are accessed with a single U parameter which is a byte offset into the buffer.

Raw buffers are also supported only in linear memory.

The offset into the raw buffer is given directly by the U parameter.

Offset = U

Structured Buffers

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought of

as an array of structures, where each structure is a predefined number of DWords in size. The first

coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure

which must be a multiple of 4 (DWord-aligned). A structured buffer must be defined with Surface

Format RAW.

The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the array

size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch.

The two dimensional offset into the surface is defined directly by the U and V parameters. Structured

buffers are linear.

1D Surfaces

One-dimensional surfaces use a tiling mode of linear. Technically, they are not tiled resources, but the

Tiled Resource Mode field in RENDER_SURFACE_STATE is still used to indicate the alignment

requirements

 for this linear surface (See 1D Alignment requirements for how 4K and 64KB Tiled Resource Modes

impact alignment). Alternatively, a 1D surface can be defined as a 2D tiled surface (e.g. TileY or TileX)

with

 a height of 0.

Linear 1D surfaces are stored in a one-dimensional view of memory as follows:

Surface Pitch is ignored for 1D surfaces. Surface QPitch specifies the distance in pixels between array

slices. QPitch should allow at least enough space for any mips that may be present.

272 Doc Ref # IHD-OS-SKL-Vol 5-05.16

A number of parameters are useful to determine where given pixels will be located on the 1D surface.

First, the width for each LOD “L” is computed:

Next, the aligned width parameter for each LOD “L” is computed. The “i” parameter is the horizontal

alignment parameter set by a state field or defined as a constant, depending on the surface. The

alignment parameter may change at one point in the mip chain based on Mip Tail Start LOD. The

equation uses the I value that applies to the LOD being computed.

Next, the offset to each LOD is determined. The offset has one dimension for 1D surfaces. The single

element in the LODL vector is named LODUL.

Based on the above parameters and the U and R (pixel address and array index, respectively), and the

bytes per pixel of the surface format (Bpp), the offset “u” in bytes from the base address of the surface is

given by:

 u = [(R * QPitch) + LODUL + U] * Bpp

The layout documented in this section does not apply to sampler 1D surfaces if the tile mode is set to

TileY or TileW.

Tiling and Mip Tail for 1D Surfaces

If tiling is enabled and Tiled Resource Mode is set to TRMODE_NONE, the above sequence applies

throughout the full range of LODs. For other settings of Tiled Resource Mode, the mip tail offset is given

by the following, where S is the Mip Tail Start LOD:

LODS = (w0+w1+w2+w3+ ... + wS-1)

The mip tail exhibits a different arrangement than the rest of the surface. LODs are aligned to the left

side of the space available.

The offsets into the mip tail block are given by the following table for each LOD in the mip tail. The

offsets given here need to be added to the LODs offset computed earlier to obtain the offset into the

surface LODL.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 273

TRMODE_64KB LOD TRMODE_4KB LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe

s (2048) (4096) (8192) (16384) (32768)

s+1 (1024) (2048) (4096) (8192) (16384)

s+2 (512) (1024) (2048) (4096) (8192)

s+3 (256) (512) (1024) (2048) (4096)

s+4 s (128) (256) (512) (1024) (2048)

s+5 s+1 (64) (128) (256) (512) (1024)

s+6 s+2 (48) (96) (192) (384) (768)

s+7 s+3 (32) (64) (128) (256) (512)

s+8 s+4 (28) (56) (112) (224) (448)

s+9 s+5 (24) (48) (96) (192) (384)

s+10 s+6 (20) (40) (80) (160) (320)

s+11 s+7 (16) (32) (64) (128) (256)

s+12 s+8 (12) (24) (48) (96) (192)

s+13 s+9 (8) (16) (32) (64) (128)

s+14 s+10 (4) (8) (16) (32) (64)

s+15 s+11 (0) (0) (0) (0) (0)

1D Alignment Requirements

The horizontal alignment field in the RENDER_SURFACE_STATE are ignored for standard tiling formats

(TRMODE = NONE). In the case of standard tiling formats the alignment requirements are fixed and are

provided for by the tables below for 1D surfaces.

Tiled Resource Mode Bits per Element Horizontal Alignment

TRMODE_64KB 128 4096

64 8192

32 16384

16 32768

8 65536

TRMODE_4KB 128 256

64 512

32 1024

274 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Tiled Resource Mode Bits per Element Horizontal Alignment

16 2048

8 4096

TRMODE_NONE Any 64

2D Surfaces

2D surfaces represent two-dimensional bitmaps, which can also be mip-mapped and/or consist of array

slices, effectively representing multiple 2D sub-surfaces within a single surface. The diagram below

shows many of the parameters of a 2D surface or Arrayed 2D Surface and what they mean.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 275

All surface parameters are defined in terms of texels (agnostic to the surface format).

Surface Pitch defines the distance in bytes between rows of the surface and is a function of the Width

of LOD. QPitch specifies the distance in rows between array slices and is a function of the Height.

QPitch should allow at least enough space for any Mips that may be present.

There can also be non-zero offsets (X_Offset and Y_Offset) defined from the base address which can be

used to provide padding or provide an offset to a lower-detail LOD.

There are limitations to the physical size of an LOD in the sampler texture cache. An LOD must be

aligned to a cache-line except for some special cases related to Planar YUV surfaces. In general, the

cache-alignment restriction implies there is a minimum height for an LOD of 4 texels. So, LODs which are

smaller than 4 high are padded. For tiled surfaces with TR_MODE != TR_NONE this restriction is not

significant because the MIP tail will be used for smaller MIPs and the slots are a minimum of 64B. For

non-tiled surface or surfaces where TR_MODE == TR_NONE, Mips smaller than 4 high start at the top of

the region, and they are padded. This padding leads to a case where the smallest LOD starts “below”

LOD1 vertically.

Calculating Texel Location

This section describes how the texel location is calculated once the Surface State and LOD are known. A

number of parameters are useful to determine where given pixels are located on the 2D surface. The

width (WL) and height (HL) for each LOD “L” is computed by the formula:

WL = ((width»L) > 0 ? width»L:1)

HL = ((height»L) > 0? height»L:1)

The LOD width and height for each subsequent LOD is one-half the previous LOD, with the minimum

dimension being 1 texel. If the surface is multisampled and it is a depth or stencil surface or

Multisampled Surface Storage Format in SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must

be adjusted as follows:

Number of Multisamples WL = HL =

2 ceiling(WL / 2) * 4 HL [no adjustment]

4 ceiling(WL / 2) * 4 ceiling(HL / 2) * 4

8 ceiling(WL / 2) * 8 ceiling(HL / 2) * 4

16 ceiling(WL / 2) * 8 ceiling(HL / 2) * 8

Next, aligned width, height, and depth parameters for each LOD “L” must be computed. The “i” and “j”

parameters are horizontal and vertical alignment parameters set by state fields or defined as constants,

depending on the surface. Depth has no alignment parameter (effectively it is 1).

The equation uses the i and j values that apply to the LOD being computed. The “p” and “q” parameters

define the width and height in texels of the compression block for compressed surface formats. Both p

and q are defined to equal 1 for uncompressed surface formats.

276 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Once the height (hi) and width (wi) of each LOD is computed, the offset to each LOD can be determined.

The offset is a vector with two dimensions. The elements in the LODL vector are named in order LODUL,

LODVL.

LOD offset computation for TR_MODE == TR_NONE or when L < Mip Tail Start LOD:

LOD0 = (0,0)

 LOD1 = (0,h0)

LOD2 = (w1,h0)

 LOD3 = (w1,h0 + h2)

 LOD4 = (w1,h0 + h2 + h3)

 …

LODN = (w1, h0 + h2 + h3 ... + hN-1)

Where N = MIP_COUNT for the surface. As noted previous in this section, the value of h2 + h3... + hN-1

may be greater than h1 due to alignment requirements.

Based on the above parameters and the U, V, and R (two dimensional pixel address U/V and array index

R), and the bytes per pixel of the surface format (Bpp), the offsets u in bytes and v in rows are given by:

u = (U + LODUL) * Bpp

v = (R * QPitch) + LODVL + V

For a description of how the Mip Tail is laid out and offsets into the Mip Tail are calculated see the sub-

section on 2D Surface Layout for Mip Tails.

The two dimensional offset into the surface (for non-MipTail cases) is defined by the u and v values

computed above. The lower virtual address bits are determined by the following table, based on the bits

of u and v. An element is defined as a pixel for uncompressed surface formats and a compression block

for compressed surface formats. Empty bit positions indicate that the bit is not part of the tile swizzle and

is filled in with equations given next (note that linear mode has all bits empty—there is no swizzling in

linear mode).

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 277

Tile

Mode

Bits per

Element

TileID

constants

Virtual Address Bits

Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TileYS 64 & 128 6 10
u9 v5 u8 v4 u7 v3 u6 v2 u5 u4 v1 v0 u3 u2 u1 u0

16 & 32 7 9
u8 v6 u7 v5 u6 v4 u5 v3 u4 v2 v1 v0 u3 u2 u1 u0

8 8 8
u7 v7 u6 v6 u5 v5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0

TileYF 64 & 128 4 8
u7 v3 u6 v2 u5 u4 v1 v0 u3 u2 u1 u0

16 & 32 5 7
u6 v4 u5 v3 u4 v2 v1 v0 u3 u2 u1 u0

8 6 6
u5 v5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0

TileY all 5 7
u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0

TileX all 3 9
v2 v1 v0 u8 u7 u6 u5 u4 u3 u2 u1 u0

TileW all 6 6
u5 u4 u3 v5 v4 v3 v2 u2 v1 u1 v0 u0

Linear all 0 0

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table):

TileID = (v » Cv) * (Pitch » Cu) + (u » Cu)

Where Pitch is the Surface_Pitch field from RENDER_SURFACE_STATE.

Note: Multisampled CMS and UMS surfaces use a modified address bit swizzling table rather than the

one above. Refer to the Multisampled2D Surfaces section for details.

Tiling and Mip Tails for 2D Surfaces

When surface is Tiled (Tile_Mode=YMAJOR) and Tile Resources are enabled (TR_MODE != TR_NONE), a

2D surface can contain a Mip Tail for smaller Mip sizes.

When LOD (L) is less than the Mip Tail Start LOD (S) declared in the Surface State the offset to the start

of LOD is calculated as shown above.

If the LOD is greater than or equal to Mip Tail Start LOD field in the surface state then the MIP Tail

layout below is used..

For tiled resources, the mip tail offset is given by the following, where s is the Mip Tail Start LOD:

LODS = (w1, h0 + h2 + h3 + … + hS-1)

The LOD's in the Mip Tail are arranged differently than the other LOD's.

278 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The diagram below shows the 64KB TileYS Mip Tail layout of LODs within it, with "slots" indicating the

LOD contained within (slot 0 corresponds to LODs above). LOD's are aligned to the upper left corner of

the space available. The block marked "Slots 4-14" is a 4KB tile arrangement as shown. Within this 4KB

tile slots 11 thru 14 are arranged differently depending on the number bits per texel (bpt).

A TileYf (4KByte) Mip Tail will start with the 4KByte tile shown, but the slots will be renumbered to start at

Slot0 rather than Slot4. The layout of slots 11 through 14 remain the same. Note that Slots 12-14 are

NOT 256-Byte aligned which is not compliant with the standard MIP Tail layout. These slots are not

supported for Standard Tiling.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 279

The offsets into the Mip Tail tile are given by the following table for each LOD in the Mip tail. Each entry

in the table is a horizontal (MU) and vertical (MV) position (in texels) from the upper left corner of the Mip

Tail. If LOD >= S (starting LOD for MIP Tail), then these Mip Tail offsets must be added to the LODUL,

and LODVL calculated above.

Note that many of the higher LODs are not possible given surface size constraints, but they are listed

here for reference. The offsets given here need to be added to the LODs offset computed earlier to

obtain the offset into the surface LODL.

TileYS LOD TileYF LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe

1x 2x 4x 8x 16x (MU,MV) (MU,MV) (MU,MV) (MU,MV) (MU,MV)

s (32,0) (64,0) (64,0) (128,0) (128,0)

s+1 s (0,32) (0,32) (0,64) (0,64) (0,128)

s+2 s+1 s (16,0) (32,0) (32,0) (64,0) (64,0)

s+3 s+2 s+1 s (0,16) (0,16) (0,32) (0,32) (0,64)

s+4 s+3 s+2 s+1 s s (8,0) (16,0) (16,0) (32,0) (32,0)

s+5 s+4 s+3 s+2 s+1 s+1 (4, 8) (8, 8) (8, 16) (16, 16) (16, 32)

s+6 s+5 s+4 s+3 s+2 s+2 (0, 12) (0, 12) (0, 24) (0, 24) (0, 48)

s+7 s+6 s+5 s+4 s+3 s+3 (0, 8) (0, 8) (0, 16) (0, 16) (0, 32)

s+8 s+7 s+6 s+5 s+4 s+4 (4, 4) (8, 4) (8, 8) (16, 8) (16, 16)

s+9 s+8 s+7 s+6 s+5 s+5 (4, 0) (8, 0) (8, 0) (16, 0) (16, 0)

s+10 s+9 s+8 s+7 s+6 s+6 (0, 4) (0, 4) (0, 8) (0, 8) (0, 16)

s+11 s+10 s+9 s+8 s+7 s+7 (3, 0) (6, 0) (4, 4) (8, 4) (0, 12)

s+12 s+11 s+10 s+9 s+8 s+8 (2, 0) (4, 0) (4, 0) (8, 0) (0, 8)

s+13 s+12 s+11 s+10 s+9 s+9 (1, 0) (2, 0) (0, 4) (0, 4) (0, 4)

s+14 s+13 s+12 s+11 s+10 s+10 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

If the LOD is located in the MIP Tail then the equation for calculating the byte positions for u and v

become:

 u = (U + LODUS + MU) * Bpp

 v = (R * QPitch) + LODVS + MV + V

where MU and MV are the offset parameters from the table above for the given slot in the MIP Tail.

Programming Note

Context: Lossless Compression and MIP Tail

Lossless compression must not be used on surfaces which have MIP Tail which contains MIPs for Slots greater than

11.

280 Doc Ref # IHD-OS-SKL-Vol 5-05.16

2D/CUBE Alignment Requirement

The vertical and horizontal alignment fields in the RENDER_SURFACE_STATE are ignored for standard

tiling formats (TRMODE = NONE). In the case of standard tiling formats the alignment requirements are

fixed and are provided for by the tables below for 2D and CUBE surface.

Tile Mode Bits per Element Horizontal Alignment Vertical Alignment

TileYS 128 64 64

64 128 64

32 128 128

16 256 128

8 256 256

TileYF 128 16 16

64 32 16

32 32 32

16 64 32

8 64 64

For MSFMT_MSS type multi-sampled TileYS surfaces, the alignments given above must be divided by the

appropriate value from the table below.

Number of Multisamples Horizontal Alignment is divided by Vertical Alignment is divided by

2 2 1

4 2 2

8 4 2

16 4 4

Multisampled 2D Surfaces

There are three types of multisampled surface layouts designated as follows:

• IMS Interleaved Multisampled Surface

• CMS Compressed Mulitsampled Surface

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 281

• UMS Uncompressed Multisampled Surface

These surface layouts are described in the following sections.

Interleaved Multisampled Surfaces

IMS surfaces are supported in all generations for depth and stencil surfaces. These surfaces contain the

samples in an interleaved fashion, with the underlying surface in memory having a height and width that

is larger than the non-multisampled surface as follows:

 4x MSAA: 2x width and 2x height of non-multisampled surface.

 8x MSAA: 4x width and 2x height of non-multisampled surface.

 16x MSAA: 4X width and 4X height of the non-multisampled surface.

When sampling from an IMS surface (e.g. ld2dms), the coordinates are automatically scaled to handle the

increased physical size of the map.

Compressed Multisampled Surfaces

Multisampled render targets can be compressed. If Auxiliary Surface Mode in SURFACE_STATE is set to

AUX_CCS, hardware handles the compression using a software-invisible algorithm. However,

performance optimizations in the multisample resolve kernel using the sampling engine are possible if

the internal format of these surfaces is understood by software. This section documents the formats of

the Multisample Control Surface (MCS) and Multisample Surface (MSS).

MCS Surface

The MCS surface consists of one element per pixel, with the element size being an 8-bit unsigned integer

value for 4x multisampled surfaces, a 32-bit unsigned integer value for 8x multisampled surfaces and a

64-bit unsigned integer value for 16x multisampled surfae. Each field within the element indicates which

sample slice (SS) the sample resides on.

2x MCS

The 2x MCS is 8 bits per pixel. The 8 bits are encoded as follows:

7:2 1 0

reserved sample 1 SS sample 0 SS

Each 1-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00

indicates that both samples are stored in sample slice 0 (thus have the same color). This is the fully

compressed case. An MCS value of 0x03 indicates that all samples in the pixel are in the clear state, and

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value.

4x MCS

The 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows:

7:6 5:4 3:2 1:0

sample 3 SS sample 2 SS sample 1 SS sample 0 SS

282 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00

indicates that all four samples are stored in sample slice 0 (thus all have the same color). This is the fully

compressed case. An MCS value of 0xff indicates that all samples in the pixel are in the clear state, and

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. See

the section below on Clear Pixel Conditions for additional encoding information.

8x MCS

Extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 samples, or 24

bits per pixel. The 24-bit MCS value per pixel is placed in a 32-bit footprint, with the upper 8 bits unused

as shown below. See the section below on Clear Pixel Conditions for additional encoding information.

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0

reserved

(MBZ)

sample 7

SS

sample 6

SS

sample 5

SS

sample 4

SS

sample 3

SS

sample 2

SS

sample 1

SS

sample 0

SS

16x MCS

The 16x MCS is 64 bits per pixel. The 64 bits are encoded as follows:

63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

sample 15 SS sample 14 SS sample 13 SS sample 12 SS sample 11 SS sample 10 SS sample 9 SS sample 8 SS

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

sample 7 SS sample 6 SS sample 5 SS sample 4 SS sample 3 SS sample 2 SS sample 1 SS sample 0 SS

Other than this, the 16x algorithm is the same as the 8x algorithm. The MCS value indicating clear state is

0xffffffff_ffffffff. See the section below on Clear Pixel Conditions for additional encoding information.

Clear Pixel Conditions

The MCS format allows for the encoding of clear value for one or more planes of the multi-sampled

surface. A value of all 1's for defined MCS bits indicates that all planes of the mutli-sampled surface are

clear. For example, a value of 0x3 for 2X MSAA MCS byte means that both planes of the pixel are clear.

Likewise a value of 0xff for X4, 0xffffffff for X8 and 0xffffffff_ffffffff for X16 MSAA means that all planes of

the pixel are clear.

In the case where not all planes are clear, but at least 2 planes are clear the encoding of the MCS given

above is changed. If the MCS value for plane 0 is non-zero, then all planes which are at all 1's are clear

and all other planes are referencing the plane indicated by their respective MCS value minus 1. For

example, a 4X MSAA MCS value of 01 10 01 11 means that MCS 0 and 2 are referencing plane 0, and

MCS 1 is referencing plane 1, and MCS 3 is clear.

MSS Surface

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching

the pixel dimensions of the logical multisampled surface. The number of array slices in the physical

surface is 2, 4, 8, or 16 times that of the logical surface (depending on the number of multisamples).

Sample slices belonging to the same logical surface array slice are stored in adjacent physical slices. The

sampling engine ld2dss message gives direct access to a specific sample slice.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 283

Tiling for CMS and UMS Surfaces

Multisampled CMS and UMS use a modified table from non-mulitsampled 2D surfaces.

TileY, TileYF, TileX, TileW, and Linear: Treat as 2D array, with the array index “R” modified as follows.

“n” is the number of multisamples, “ss” is the sample slice index with range 0..n-1.

 R(new) = (R(old) « log2(n)) | ss

TileYS: In addition to u and v, the sample slice index “ss” is included in the address swizzling according

to the following table. Because of this, the mip tail holds one less LOD for each successive number of

multisamples. Refer to the mip tail table in the previous section for behavior of the mip tail for each

number of multisamples.

Number of

Multisamples Bits per Element

TileID

constants Virtual Address Bits

Cv Cu 15 14 13 12 11 10 9 8 7 6

2x 64 & 128 6 9 ss0 v5 u8 v4 u7 v3 u6 v2 u5 u4

16 & 32 7 8 ss0 v6 u7 v5 u6 v4 u5 v3 u4 v2

8 8 7 ss0 v7 u6 v6 u5 v5 u4 v4 v3 v2

4x 64 & 128 5 9 ss1 ss0 u8 v4 u7 v3 u6 v2 u5 u4

16 & 32 6 8 ss1 ss0 u7 v5 u6 v4 u5 v3 u4 v2

8 7 7 ss1 ss0 u6 v6 u5 v5 u4 v4 v3 v2

8x 64 & 128 5 8 ss2 ss1 ss0 v4 u7 v3 u6 v2 u5 u4

16 & 32 6 7 ss2 ss1 ss0 v5 u6 v4 u5 v3 u4 v2

8 7 6 ss2 ss1 ss0 v6 u5 v5 u4 v4 v3 v2

16x 64 & 128 4 8 ss3 ss2 ss1 ss0 u7 v3 u6 v2 u5 u4

16 & 32 5 7 ss3 ss2 ss1 ss0 u6 v4 u5 v3 u4 v2

8 6 6 ss3 ss2 ss1 ss0 u5 v5 u4 v4 v3 v2

Note that Cv and Cu are also different that the values for non-multisampled 2D surfaces.

Uncompressed Multisampled Surfaces

UMS surfaces similar to CMS, except that the Auxiliary Surface Mode is set to AUX_NONE, meaning

that there is no MCS surface. UMS contains only an MSS surface, where each sample is stored on its

sample slice (SS) of the same index.

Quilted Textures

A quilted texture is a 2D texture made up of quilt slices, each of which is a portion of the surface up to

16k x 16k texels in size. The quilt slices themselves are organized in a matrix up to 32 x 32. “Quilt Width”

and “Quilt Height” fields indicate the dimensions of the surface in quilt slices. “Height” and “Width” fields

indicate the size of each quilt slice in texels. The total size of the quilted texture can be up to 512k x 512k

texels.

284 Doc Ref # IHD-OS-SKL-Vol 5-05.16

In addition, arrays of quilted textures are supported. The total number of array slices is limited to 2048 /

(QuiltWidth * QuiltHeight).

A surface is defined as a “Quilted Texture” if either the “Quilt Width” or “Quilt Height” field in

SURFACE_STATE is nonzero. A quilted texture is stored in the storage format as a 2D array, with each

quilt square occupying one array slice. The following equation indicates how the array slice is computed

from the Qx, Qy, and R parameters, where Qx and Qy are the quilt slice coordinates and R is the array

index.

 ArraySliceIndex = (R * QuiltWidth * QuiltHeight) + Qy * QuiltWidth + Qx

Quilted textures do support wrapping. U and V coordinates must be in the range of [0.0,1.0).

Quilted textures can only be supported on tiled surfaces (e.g. TileY, TileYs, TileYf).

Cube Surfaces

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the

origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel

(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is

supplied as a 3D “vector” texture coordinate. These cube maps can also be mipmapped.

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are

identified by their relationship to the 3D texture coordinate system. The subsections below describe the

cube maps as described at the API as well as the memory layout dictated by the hardware.

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the

axes on the faces as they would be seen from the inside (at the origin).

Programming Note

Context: Cube Maps and Tiling

Cube Maps with linear (non-tiled) layout are allowed ONLY with Texture Coordinate Mode of

TEXCOORDMODE_CUBE or TEXCOORDMODE_CLAMP.

The origin of the U,V texel grid is at the top left corner of each face.

This will be looking directly at face 4, the +z –face. Y is up by default.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 285

DirectX Cube Map Definition

Each face has a corresponding face identifier “f” as indicated in the following table:

face face identifier “f”

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

A cube surface is stored in memory the same as a 2D array, with the face identifier “f” and array index “ai”

being transformed into the “R” coordinate used in storing 2D arrays using the following equation:

 R = (ai * 6) + f

Refer to the “2D Surfaces” section for details on how 2D arrays are stored.

286 Doc Ref # IHD-OS-SKL-Vol 5-05.16

3D Surfaces

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure

known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture

maps. See Sampler for a description of how volume textures are used.

Volume Texture Map

Surface Pitch defines the distance in bytes between rows of the surface. Surface QPitch specifies the

distance in rows between R-slices. QPitch should allow at least enough space for any mips that may be

present.

A number of parameters are useful to determine where given pixels are located on the 3D surface. First,

the width, height, and depth for each LOD “L” is computed:

Next, aligned width, height, and depth parameters for each LOD “L” are computed. The “i”, “j”, and “k”

parameters are the horizontal, vertical, and depth alignment parameters set by state fields or defined as

constants. The alignment parameters may change at one point in the mip chain based on Mip Tail Start

LOD. The equation uses the i/j values that apply to the LOD being computed. The “p”, “q”, and "s"

parameters define the width, height, and depth in texels of the compression block for compressed

surface formats. These are all defined to equal 1 for uncompressed surface formats.

Next, the offset to each LOD is determined. The offset is a vector with three dimensions. The elements in

the LODL vector are named in order LODUL, LODVL, LODRL.

LOD offset computation for Tiled Resource Mode == TR_NONE or when L < Mip Tail Start LOD:

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 287

For the Primary Surface

Based on the above parameters and the U, V, and R (three dimensional pixel address), and the bytes per

pixel of the surface format (Bpp), the offsets u in bytes, v in rows, and r in slices are given by:

 u = [U + LODUL] * Bpp

 v = LODVL + V

 r = LODRL + R

The three dimensional offset into the surface is defined by the u, v, and r values computed above. The

lower virtual address bits are determined by the following table, based on the bits of u, v, and r. An

element is defined as a pixel for uncompressed surface formats and a compression block for compressed

surface formats.

Empty bit positions indicate that the bit is not part of the tile swizzle and is filled in with the equations

given next (note that linear mode has all bits empty—there is no swizzling in linear mode).

Table for [DevSKL]:

Tile Mode Bits per Element

TileID constants Virtual Address Bits

Cr Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TileYS 128 & 64 4 4 8 u7 v3 r3 u6 v2 r2 u5 u4

 32 4 5 7 u6 v4 r3 u5 v3 r2 u4 v2 r1 r0 v1 v0 u3 u2 u1 u0

 16 & 8 5 5 6 u5 v4 r4 u4 v3 r3 v2 r2 r1 r0 v1 v0 u3 u2 u1 u0

TileYF 128 & 64 3 3 6 v2 r2 u5 u4 r1 r0 v1 v0 u3 u2 u1 u0

 32 3 4 5 v3 r2 u4 v2 r1 r0 v1 v0 u3 u2 u1 u0

 16 & 8 4 4 4 v3 r3 v2 r2 r1 r0 v1 v0 u3 u2 u1 u0

TileY all 0 5 7 u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0

Linear all 0 0 0

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table):

 TileID = [(r » Cr) * (QPitch » Cv) + (v » Cv)] * (Pitch » Cu) + (u » Cu)

For the CCS Auxiliary Surface

The CCS is stored differently for the 3D surface type. CCS supports only TileY tile mode, which does not

have a three dimensional offset. Instead, the 3D CCS follows a scheme similar to 2D surfaces. Based on

the above parameters and the U, V, and R (three dimensional pixel address, shifted to adjust for control

block size in bytes), the offsets u in bytes and v in rows are given by:

 u = [U + LODUL]

 v = (R * QPitch) + LODVL + V

288 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The two dimensional offset into the surface is defined by the u and v values computed above. The lower

virtual address bits are determined by the following table, based on the bits of u and v.

Empty bit positions indicate that the bit is not part of the tile swizzle and is filled in with equations given

next.

Tile Mode Bits per Element

TileID constants Virtual Address Bits

Cr Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TileY 5 7 u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table):

 TileID = (v » Cv) * (Pitch » Cu) + (u » Cu)

Tiling and Mip Tails for 3D Surfaces

For tiled surfaces where Tiled Resource Mode != TR_NONE, the surface may contain a mip tail. The Mip

tail offset is given by the following, where S is the Mip Tail Start LOD:

LODS = (w1,h0+h2+h3+ ... + hS-1,0)

The mip tail exhibits a different arrangement than the rest of the surface. The diagram below shows the

64KB TileYS mip tail and the arrangement of LODs within it, with “slots” indicating the LOD contained

within (slot 0 corresponds to LOD s). LODs are aligned to the front upper left corner of the space

available. The block marked “Slots 4-15” contains one of the 4KB tile arrangements within, depending on

the surface format bits per element. For TileYF, only the 4KB tile exists, with 4 subtracted from each slot

number.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 289

290 Doc Ref # IHD-OS-SKL-Vol 5-05.16

The offsets into the mip tail tile are given by the following table for each LOD in the mip tail. Note that

many of the higher LODs are not possible given surface size constraints, but they are listed here for

reference. The offsets given here need to be added to the LODs offset computed earlier to obtain the

offset into the surface LODL.

TileYS LOD TileYF LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe

s (8, 0, 0) (16, 0, 0) (16, 0, 0) (16, 0, 0) (32, 0, 0)

s+1 (0, 8, 0) (0, 8, 0) (0, 16, 0) (0, 16, 0) (0, 16, 0)

s+2 (0, 0, 8) (0, 0, 8) (0, 0, 8) (0, 0, 16) (0, 0, 16)

s+3 (4, 0, 0) (8, 0, 0) (8, 0, 0) (8, 0, 0) (16, 0, 0)

s+4 s (0, 4, 0) (0, 4, 0) (0, 8, 0) (0, 8, 0) (0, 8, 0)

s+5 s+1 (0, 0, 4) (0, 0, 4) (0, 0, 4) (0, 0, 8) (0, 0, 8)

s+6 s+2 (3, 0, 0) (6, 0, 0) (4, 4, 0) (0, 4, 4) (0, 4, 4)

s+7 s+3 (2, 0, 0) (4, 0, 0) (0, 4, 0) (0, 4, 0) (0, 4, 0)

s+8 s+4 (1, 0, 3) (2, 0, 3) (4, 0, 3) (0, 0, 7) (0, 0, 7)

s+9 s+5 (1, 0, 2) (2, 0, 2) (4, 0, 2) (0, 0, 6) (0, 0, 6)

s+10 s+6 (1, 0, 1) (2, 0, 1) (4, 0, 1) (0, 0, 5) (0, 0, 5)

s+11 s+7 (1, 0, 0) (2, 0, 0) (4, 0, 0) (0, 0, 4) (0, 0, 4)

s+12 s+8 (0, 0, 3) (0, 0, 3) (0, 0, 3) (0, 0, 3) (0, 0, 3)

s+13 s+9 (0, 0, 2) (0, 0, 2) (0, 0, 2) (0, 0, 2) (0, 0, 2)

s+14 s+10 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

s+15 s+11 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 291

3D Alignment Requirements

The vertical and horizontal alignment fields in the RENDER_SURFACE_STATE are ignored for standard

tiling formats (TRMODE = NONE). In the case of standard tiling formats the alignment requirements are

fixed and are provided for by the tables below for 3D (volumetric) surfaces.

Tile Mode Bits per Element Horizontal Alignment Vertical Alignment Depth Alignment

TileYS 128 16 16 16

64 32 16 16

32 32 32 16

16 32 32 32

8 64 32 32

TileYF 128 4 8 8

64 8 8 8

32 8 16 8

16 8 16 16

8 16 16 16

292 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Surface Padding Requirements

This section covers the requirements for padding around surfaces stored in memory, as there are cases

where the device will overfetch beyond the bounds of the surface due to implementation of caches and

other hardware structures.

Alignment Unit Size

This section documents the alignment parameters i and j to use, depending on the surface.

Alignment Parameters

Surface Defined By Surface Format Alignment Unit Width “i” Alignment Unit Height “j”

3DSTATE_DEPTH_BUFFER D16_UNORM 8 4

not D16_UNORM 4 4

3DSTATE_STENCIL_BUFFER N/A 8 8

SURFACE_STATE BC*, ETC*, EAC* 4 4

FXT1 8 4

all others set by

Surface Horizontal Alignment

set by

Surface Vertical Alignment

Surface Defined By Surface Format Alignment Unit Width “i” Alignment Unit Height “j”

SURFACE_STATE ASTC Value of ASTC_2DBlockWidth

 (4, 5, 6, 8, 10, or 12)

Value of ASTC_2DBlockHeight

 (4, 5, 6, 8, 10, or 12)

Sampling Engine Surfaces

The sampling engine accesses texels outside of the surface if they are contained in the same cache line

as texels that are within the surface. These texels will not participate in any calculation performed by the

sampling engine and will not affect the result of any sampling engine operation, however if these texels

lie outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order to

avoid these GTT errors, “padding” at the bottom and right side of a sampling engine surface is

sometimes necessary.

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All

pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid

errors. To determine the necessary padding on the bottom and right side of the surface, refer to the

table in Alignment Unit Size section for the i and j parameters for the surface format in use. The surface

must then be extended to the next multiple of the alignment unit size in each dimension, and all texels

contained in this extended surface must have valid GTT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 and

j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in texels,

and must be converted to bytes based on the surface format being used to determine whether

additional pages need to be defined.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 293

Buffer Padding Requirements

 For compressed textures (BC*, FXT1, ETC*, and EAC* surface formats), padding at the bottom of the

surface is to an even compressed row. This is equivalent to a multiple of 2q, where q is the compression

block height in texels. Thus, for padding purposes, these surfaces behave as if j = 2q only for surface

padding purposes. The value of j is still equal to q for mip level alignment and QPitch calculation. For

cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must be

ensured regardless of whether the surface is stored tiled or linear. This is due to the potential rotation of

cache line orientation from memory to cache.

The above comments also apply to the ASTC* surface format.

For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required. These

surfaces require an extra row plus 16 bytes of padding at the bottom in addition to the general padding

requirements.

For linear surfaces, additional padding of 64 bytes is required at the bottom of the surface. This is in

addition to the padding required above.

Programming Note

Context: Sampling Engine Surfaces.

For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array, non-MSAA, non-mip-mapped surfaces in linear

memory, the only padding requirement is to the next aligned 64-byte boundary beyond the end of the surface. The

rest of the padding requirements documented above do not apply to these surfaces.

Render Target and Media Surfaces

The data port accesses data (pixels) outside of the surface if they are contained in the same cache

request as pixels that are within the surface. These pixels will not be returned by the requesting message,

however if these pixels lie outside of defined pages in the GTT, a GTT error will result when the cache

request is processed. In order to avoid these GTT errors, “padding” at the bottom of the surface is

sometimes necessary.

294 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Device2 PASID Capability Structures

This part of the document describes the PCI-Express Extended Capability registers required on Processor

Graphics (Device 2) device to enumerate Shared Virtual Memory (SVM) related capabilities.

SVM feature support on Device-2 is exposed through three distinct capability structures:

 Process Address Space ID (PASID) Extended Capability. PASID capability reports support for

Process Address Space ID (PASID) on Device-2 compliant to PCI-Express PASID ECN.

 Address Translation Services (ATS) Extended Capability. ATS capability reports support for

Device-TLBs on Device-2, compliant to PCI-Express ATS specification.

 Page Request Extended Capability. Page Request capability reports support for page-faults on

Device-2, compliant to PCIExpress ATS 1.1 specification.

The following sections describe each of these capability structures and their implementation details for

Gen8/Gen9 for both GT and Display.

PASID Extended Capability

Refer to PCI Express PASID ECN for more details.

Following sections describe the registers in the PASID Extended Capability structure.

PASID Extended Capability Header

Bits Access Default Field

31:20 RO Xh Next Capability Offset (NCO): Offset to the next capability; Value ‘X’ in this field provides

the offset for ATS Capability described in later sections

19:16 RO 1h Version (V): Capability Version

15:0 RO 001Bh Capability ID (CAPID): PASID Extended Capability ID.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 295

PASID Capability Register

Bits Access Default Field

15:13 RO 0h Reserved.

12:8 RO 14h
Maximum PASID Width (MPW): Indicates the width of the PASID field supported by the

Endpoint. The value n indicates support for PASID values 0 through 2n-1 (inclusive). The

value 0 indicates support for a single PASID (0). The value 20 indicates support for all

PASID values (20 bits). This field must be between 0 and 20 (inclusive).

Processor Graphics supports PASID width of 20-bits.

7:3 RO 0h Reserved.

2 RO 1h
Privilege Mode Supported (PMS): If Set, the Endpoint supports operating in privileged

and non-privileged modes, and requests-with-PASID can request privileged mode.

If Clear, the Endpoint supports operating in non-privileged mode only, and will never

request privileged mode in requests-with-PASID.

On Processor Graphics, privileged and non-privileged mode are mapped to an attribute of

the advanced context. Advanced contexts created for use by user-mode

applications/drivers are considered non-privileged. Advanced context created for used by

kernel mode software/drivers can be treated as privileged contexts. The privilege mode

maps to the user/Supervisor (U/S) privilege checking in the first-level (IA-32e) paging.

On Gen9, advanced contexts supports a privileged/non-privileged attribute (part of

context-state). Software is expected to create advanced-contexts with this attribute as non-

privileged, for use by user-mode drivers/applications. For advanced contexts created for

use by kernel mode software/drivers, this bit is configured can be privileged. Gen9

Advanced-contexts configured as non-privileged function exactly the same as Gen-8

advanced contexts (i.e. restricted to user-mode virtual-addresses only). Gen9 advanced

contexts configured as privileged can access both user-mode and kernel-mode virtual

addresses, if Supervisor Request Enable field in extended-context-entry is Set.

1 RO 1h
Execute Permission Supported (EPS): If Set, the Endpoint supports requests-with-PASID

that request Execute permission. If Clear, the Endpoint will never request Execute

permission for requests-with-PASID.

On Processor Graphics, accesses by advanced contexts that fetch and execute graphics

instructions are normally treated as requests that require execute permission. These maps

to requests from GT Instruction Cache (IC) for advanced contexts.

On Gen9, advanced context accesses from Instruction Cache (IC) are checked for execute

permission, if Execute Request Enable in extended-context-entry is Set.

0 RO 0h Reserved.

296 Doc Ref # IHD-OS-SKL-Vol 5-05.16

PASID Control Register

Bits Access Default Field

15:3 RO 0h Reserved.

2 R/W 0b
Privilege Mode Enable (PME): When Set, the endpoint is permitted to request privileged

mode in requests-with-PASID. If Clear, the Endpoint is not permitted to do so. Behavior is

undefined if this bit changes value when ATS Enable field in ATS Capability is Set. If

Privileged Mode Supported field in PASID Capability register is Clear, this field is treated as

Reserved (0).

Processor graphics does not use this field. Software is expected to Set this field before

configuring extended-context-entry for Device-2 with Supervisor Request Enable field Set.

On Gen9, for compatibility reasons, this field is implemented as RW.

1 R/W 0b
Execute Permission Enable (EPE): If Set, the Endpoint is permitted to request execute

permission in requests-with-PASID. If Clear, the Endpoint is not permitted to do so. Behavior

is undefined if this bit changes value when ATS Enable field in ATS Capability is Set. If

Execute Permission Supported field in PASID Capability register is Clear, this field is treated

as Reserved (0).

Processor graphics does not use this field. Software is expected to Set this field before

configuring extended-context-entry for Device-2 with Execute Request Enable field Set.

On Gen9, for compatibility reasons, this field is implemented as RW.

0 R/W 0b
PASID Enable (PE): If Set, the Endpoint is permitted to generate requests-with-PASID. If

Clear, the Endpoint is not permitted to do so. Behavior is undefined if this bit changes value

when ATS Enable field in ATS Capability is Set.

Processor Graphics does not use this field. Instead, all accesses from advanced contexts are

treated as requested-with-PASID, subject to PASID-Enable field in the extended context-

entry. Software is expected to Set this field before configuring extended-context entry for

Device-2 with PASID Enable field Set. However, for compatibility reasons, this field is

implemented as RW.

ATS Extended Capability

The following sections describe the registers in the ATS Extended Capability structure.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 297

ATS Extended Capability Header

Bits Access Default Field

31:20 RO Xh Next Capability Offset (NCO). Offset to the next capability; Value ‘X’ in this field provides

the offset for ATS Capability described in later sections.

19:16 RO 1h Version (V). Capability Version.

15:0 RO 000Fh Capability ID (CAPID). PASID Extended Capability ID.

ATS Capability Register

Bits Access Default Field

15:6 RO 0h Reserved.

5 RO 1b
Page Aligned Request (PAR). If Set, indicates the Untranslated Address is always aligned to

a 4096 byte boundary.

Processor graphics reports value of 1b.

4:0 RO 0h
Invalidate Queue Depth (IQD). The number of Invalidate Requests that the endpoint can

accept before putting backpressure on the upstream connection. If 0h, the function can

accept 32 Invalidate Requests.

Processor Graphics does not use this field, and reports a value of 0h.

ATS Control Register

Bits Access Default Field

15 R/W 0h
ATS Enable (AE). When Set, the function is enabled to cache translations.

Processor graphics ignores this field, as GT uses GTLB as IOTLB, and only pretends to

software that it has a Device-TLB. Software is expected to Set this field before configuring

extended-context-entry for Device-2 with Page Request Enable field Set. For compatibility,

this field is implemented as RW as software can read it to determine ATS enable status.

14:5 RO 0h Reserved.

4:0 RW 0h
Smallest Translation Unit (STU). This value indicates to the Endpoint the minimum number

of 4096-byte blocks that is indicated in a Translation Completion or Invalidate Request. This

is a power of 2 multiple and the number of blocks is 2 STU. A value of 0h indicates one block

and value of 1F indicates 2 31 blocks.

Processor graphics does not use this field, and reports a value of 0h indicating it uses 4KB as

the smallest translation unit (smallest page-size).

298 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Page Request Extended Capability

The following register descriptions define the requirement.

Page Request Extended Capability Header

Bits Access Default Field

31:20 RO 0h Next Capability Offset (NCO): Offset to the next capability; Value ‘X’ in this field provides

the offset for ATS Capability described in later sections

19:16 RO 1h Version (V): Capability Version

15:0 RO 0013h Capability ID (CAPID): PASID Extended Capability ID.

Page Request Control Register

Bits Access Default Field

15:2 RO 0h Reserved.

1 RO 0 Reset (RST): When the Enable field is clear, or is being cleared in the same register update

that sets this field, writing a 1b to this field, clears the associated implementation dependent

page request credit counter and pending request state for the associated Page Request

Interface. No action is initiated if this field is written to 0b or if this field is written with any

value while the PRE field is Set. Read of this field return 0b.

Processor graphics does not use this field, and implements it as read-only (0).

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 299

Bits Access Default Field

0 RW 0h Page Request Enable (PRE): When Set, indicates that the page request interface on the

endpoint is allowed to make page requests. If both this field and the Stopped field in Page

Request Status register are Clear, then the page request interface will not issue new page

requests, but has outstanding page requests for which page responses is not yet received.

When this field transitions from 0 to 1, all the status fields in the Page-Request Status

register are cleared. Enabling a page request interface that has not successfully stopped has

indeterminate results.

Processor graphics ignores this field, as GT uses GTLB as IOTLB, and only pretends to

software that it has a Device-TLB. For compatibility, this field is implemented as RW as

software can read it to determine Page- Request enable status. Software is expected to Set

this field before configuring extended-context-entry for Device-2 with Page Request Enable

field Set. Software is expected to respond to all page requests in the page-request queue

before Clearing this field.

Page Request Status Register

Bits Access Default Field

15:9 RO 0h Reserved.

8 RO 0
Stopped (S): When this field is Set, the associated page request interface has stopped

issuing additional page requests and that all previously issued Page Requests have

completed. When this field is Clear the associate page request interface either has not

stopped or has stopped issuing new Page Requests but has outstanding Page Requests. This

field is only meaningful if Enable is Clear. If Enable is Set, this field is undefined. When the

Enable field is Cleared, after having been previously Set, the interface transitions to the

stopping state and Clears this field. After all page requests currently outstanding at the

function have received responses, this field is Set and the interface enters the disabled state.

If there were no outstanding page requests, this field may be Set immediately when Enable

is Cleared. Resetting the interface causes an immediate transition to the disabled state.

While in the stopping state, receipt of a Response Failure message results in the immediate

transition to the disabled state (Setting this field).

Processor Graphics has no direct use of this field. For compatibility reasons, this field is Set

when Page-Request Enable (PRE) field in the Page-request Control register transitions from

1 to 0. When PRE transitions from 0 to 1, this field is Cleared.

7:2 RO 0h Reserved.

1 RW1C 0h
Unexpected Page Request Group Index (UPGRI): When Set, indicates the function

received a PRG response message containing a PRG index that has no matching request. A

response failure. This field is Set by the Function and cleared when 1b is written to this field.

Processor graphics Sets this field when it receives a page_grp_resp_dsc with PRG Index that

does not match PRG index in any outstanding page_grp_req_dsc. Such a page_grp_resp_dsc is

ignored. When Page- Request Enable (PRE) field in the Pagerequest Control register

transtions from 0 to 1, this field is Cleared.

300 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Bits Access Default Field

0 RW1C 0h
Response Failure (RF): When Set, indicates the function received a PRG response message

indicating a response failure. The function expects no further response from the host (any

received are ignored). This field is Set by the Function and cleared when 1b is written to this

field.

Processor graphics Sets this field when it receives a page_grp_resp_dsc or

page_stream_resp_dsc with Response Code of Response Failure (1111b). The advanced

context corresponding to the PASID in such response is terminated with error. When Page-

Request Enable (PRE) field in the Page request Control register transitions from 0 to 1, this

field is Cleared.

Gen9 HW writes 1 to this bit if it gets a failing page response.

Outstanding Page Request Capacity

Bits Access Default Field

31:0 RO 8000h
Outstanding Page Request Capacity (OPRC): This register contains the number of

outstanding page request messages the associated Page Request Interface physically

supports. This is the upper limit on the number of pages that can be usefully allocated to

the Page Request Interface.

Processor Graphics device does not use this field.

Outstanding Page Request Allocation

Bits Access Default Field

31:0 RO 0h Outstanding Page Request Allocation (OPRC): This register contains the number of

outstanding page request messages the associated Page Request Interface is allowed to

issue (have outstanding at any given instance).

Processor Graphics device does not use this field. Software is required to program this field

with value 2(X+8), where X is the value in Queue Size (QS) field in the Page Request Queue

Address register. For compatibility reasons, this field is implemented as RW.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 301

Atomics for Page Table Updates (MSQD)

The following atomics are added to GTI just for page table management and only needed by GAM to

perform proper page walks:

The Following Atomics are only applicable in GTI and used for Page Walks.

Privilege and Instruction Access checks are not part of Gen8 GPU.

R/W => Bit[0]

Extended Access required => Bit[1]

Write Protect Enable => Bit[2]

Intermediate Entry => Bit[3]

Atomic

 Operation Opcode Description

New Destination

 Value Applicable

Return Value

(Optional)

Atomic_Page_update_0000 1100_0000
Read Access

Extended Access bit is

disabled

Write Protection is

disabled

Final PTE

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0001 1100_0001
Write Access

Extended Access bit is

disabled

Write Protection is

disabled

Final PTE

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0010 1100_0010
Read Access

Extended Access bit is

enabled

Write Protection is

disabled

Final PTE

Set bit[5,10] if not

set

 new_dst

302 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_0011 1100_0011
Write Access

Extended Access bit is

enabled

Write Protection is

disabled

Final PTE

Set bit[5,6,10] if

not set

 new_dst

Atomic_Page_update_0100 1100_0100
Read Access

Extended Access bit is

disabled

Write Protection is

enabled

Final PTE

Set bit[5] if not

set

 new_dst

Atomic_Page_update_0101 1100_0101
Write Access

Extended Access bit is

disabled

Write Protection is

enabled

Final PTE

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_0110 1100_0110
Read Access

Extended Access bit is

enabled

Write Protection is

enabled

Final PTE

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_0111 1100_0111
Write Access

Extended Access bit is

enabled

Write Protection is

enabled

Final PTE

Set bit[5,6,10] if

not set

 new_dst

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 303

Atomic_Page_update_1000 1100_1000
Read Access

Extended Access bit is

disabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5] if not

set

 new_dst

Atomic_Page_update_1001 1100_1001
Write Access

Extended Access bit is

disabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_1010 1100_1010
Read Access

Extended Access bit is

enabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_1011 1100_1011
Write Access

Extended Access bit is

enabled

Write Protection is

disabled

Intermediate Paging

Entry

Set bit[5,6,10] if

not set

 new_dst

Atomic_Page_update_1100 1100_1100
Read Access

Extended Access bit is

disabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5] if not

set

 new_dst

304 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_1101 1100_1101
Write Access

Extended Access bit is

disabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,6] if not

set

 new_dst

Atomic_Page_update_1110 1100_1110
Read Access

Extended Access bit is

enabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,10] if not

set

 new_dst

Atomic_Page_update_1111 1100_1111
Write Access

Extended Access bit is

enabled

Write Protection is

enabled

Intermediate Paging

Entry

Set bit[5,6,10] if

not set

 new_dst

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 305

Implementation

NOTE: Gen8 dropped the Execution privilege and Supervisor/User flag support. The following atomics

are simplified for gen8 but need to be updated for gen9.

Atomic_Page_update_0000:

This paging walk is started on a READ access where the extended access bits in the context is disabled

and write protection is disabled. This is the final Page Table Entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_0001:

This paging walk is started on a WRITE access where the extended access bits in the context is disabled

and write protection is disabled. This is the final Page Table Entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) and D-bit (bit6) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D-bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

306 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_0010:

This paging walk is started on a READ access where the extended access bits in the context is enabled

and write protection is disabled. This is the final Page Table Entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) and EA-bit (bit10) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/EA-bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_0011:

This paging walk is started on a WRITE access where the extended access bits in the context is enabled

and write protection is disabled. This is the final Page Table Entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:

i. If all set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D/EA-bit set, write to memory

and return new-dest to GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 307

Atomic_Page_update_0100:

This paging walk is started on a READ access where the extended access bits in the context is disabled

and write protection is enabled. This is the final Page Table Entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_0101:

This paging walk is started on a WRITE access where the extended access bits in the context is disabled

and write protection is enabled. This is the final Page Table Entry.

ALU Decision:

1. If Page is present and Writes are allowed:

 Is the A-bit (bit5) and D-bit (bit6) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D-bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page is present and Writes are not allowed:

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

3. If Page is not present:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision:

 If bit[0] of the QW of interest is “0” => Page not present.

 If bit[1] of the QW of interest is “0” => Write permission fault.

308 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_0110:

This paging walk is started on a READ access where the extended access bits in the context is enabled

and write protection is enabled. This is the final Page Table Entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) and EA-bit (bit10) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/EA-bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_0111:

This paging walk is started on a WRITE access where the extended access bits in the context is enabled

and write protection is enabled. This is the final Page Table Entry.

ALU Decision:

1. If Page is present and Writes are allowed:

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:

i. If all set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/EA/D-bit set, write to memory

and return new-dest to GAM and end atomic.

2. If Page is present and Writes are not allowed::

 Is the A-bit (bit5) and EA-bit (bit10) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest

to GAM and end atomic.

3. If Page is not present:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0” or bit[1] of the QW of interest is

“0”.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 309

Atomic_Page_update_1000:

This paging walk is started on a READ access where the extended access bits in the context is disabled

and write protection is disabled. This is an intermediate page table entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_1001:

This paging walk is started on a WRITE access where the extended access bits in the context is disabled

and write protection is disabled. This is an intermediate page table entry.

ALU Decision:

1. If No-Page fault & 1GB/2MB Page:

 Is the A-bit (bit5) and D-bit (bit6) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D-bit set, write to memory and

return new-dest to GAM and end atomic.

2. If No-Page fault & Not 1GB/2MB Page:

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

3. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”.

310 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_Page_update_1010:

This paging walk is started on a READ access where the extended access bits in the context is enabled

and write protection is disabled. This is an intermediate page table entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) and EA-bit (bit10) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/EA-bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_1011:

This paging walk is started on a WRITE access where the extended access bits in the context is enabled

and write protection is disabled. This is an intermediate page table entry.

ALU Decision:

1. If No-Page fault & 1GB/2MB Page:

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:

i. If all set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D/EA-bit set, write to memory

and return new-dest to GAM and end atomic.

2. If No-Page fault & Not 1GB/2MB Page:

 Are the A-bit (bit5) and EA-bit (bit10) set:

i. If both set, return the PTE to GAM and end-atomic (no writes).

ii. If neither not set, modify the old-dest with A/EA-bit set, write to memory and return

new-dest to GAM and end atomi

3. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 311

Atomic_Page_update_1100:

This paging walk is started on a READ access where the extended access bits in the context is disabled

and write protection is enabled. This is an intermediate page table entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_1101:

This paging walk is started on a WRITE access where the extended access bits in the context is disabled

and write protection is enabled. This is an intermediate page table entry.

ALU Decision:

1. If Page is present (1) & Writes are allowed (1) & 1GB/2MB Page (1):

 Is the A-bit (bit5) and D-bit (bit6) set:

i. If all set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D -bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (1):

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

3. If Page is present (1) and Writes are allowed (1) & 1GB/2MB Page (0):

 Is the A-bit (bit5) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

4. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (0):

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

5. If Page is not present:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

312 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Page Fault Decision:

 If bit[0] of the QW of interest is “0” => Page not present.

 If bit[1] of the QW of interest is “0” => Write permission fault.

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”.

Atomic_Page_update_1110:

This paging walk is started on a READ access where the extended access bits in the context is enabled

and write protection is enabled. This is an intermediate page table entry.

ALU Decision:

1. If No-Page fault:

 Is the A-bit (bit 5)and EA-bit (bit10) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest

to GAM and end atomic.

2. If Page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”.

Atomic_Page_update_1101:

This paging walk is started on a WRITE access where the extended access bits in the context is disabled

and write protection is enabled. This is an intermediate page table entry.

ALU Decision:

1. If Page is present (1) & Writes are allowed (1) & 1GB/2MB Page (1):

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:

i. If all set, return the PTE to GAM and end-atomic (no writes).

ii. If neither one of them set, modify the old-dest with A/D -bit set, write to memory and

return new-dest to GAM and end atomic.

2. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (1):

 Is the A-bit (bit5) and EA-bit (bit10) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest

to GAM and end atomic.

3. If Page is present (1) and Writes are allowed (1) & 1GB/2MB Page (0):

 Is the A-bit (bit5) and EA-bit (bit10) set:

i. If set, return the PTE to GAM and end-atomic (no writes).

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 313

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest

to GAM and end atomic.

4. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (0):

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

5. If Page is not present:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault Decision:

 If bit[0] of the QW of interest is “0” => Page not present.

 If bit[1] of the QW of interest is “0” => Write permission fault.

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”.

Atomic_A_update_000:

Read access from a user context and a non-instruction space.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, just return the PTE to GAM and end-atomic.

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0”, OR if bit[2]=0.

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not

support user vs supervisor privileges.

314 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_A_update_001:

Read access from a user context and an instruction space.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, just return the PTE to GAM and end-atomic.

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[63]=1 OR if bit[2]=0.

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not

support instruction privileges.

Atomic_A_update_010:

Read access from a supervisor context and an non-instruction space.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, just return the PTE to GAM and end-atomic.

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0”.

Gen8 implementation: Identical to what is described here.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 315

Atomic_A_update_011:

Read access from a supervisor context and an instruction space.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, just return the PTE to GAM and end-atomic.

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR if bit[63]=1 OR if bit[2]=1.

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not

support instruction privileges, nor supervisor/user separation.

Atomic_A_update_100:

Read access from a supervisor context and an instruction space and can be executed from supervisor or

user pages.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, just return the PTE to GAM and end-atomic.

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to

GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[63]=1.

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not

support instruction privileges, nor supervisor/user separation.

316 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic_AD_update_101:

Write access from a user context and a non-instruction space.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, is the D-bit (bit6) set:

A. If set, just return the PTE to GAM and end the atomic.

B. If not set, modify the old-dest with D-bit set, write to memory and return new-

dest to GAM and end atomic.

ii. If not set, modify the old-dest with A and D-bit set, write to memory and return the

new-dest to GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0”, OR if bit[2]=0 OR if bit[1]=0.

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_110. Gen8 does not

support instruction privileges, nor supervisor/user separation.

Atomic_AD_update_110:

Write access from a supervisor context and an non-instruction space.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, is the D-bit (bit6) set:

A. If set, just return the PTE to GAM and end the atomic.

B. If not set, modify the old-dest with D-bit set, write to memory and return new-

dest to GAM and end atomic

ii. If not set, modify the old-dest with A and D-bit set, write to memory and return the

new-dest to GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[1]=0.

Gen8 implementation: Identical to what is described here.

 Memory Views

Doc Ref # IHD-OS-SKL-Vol 5-05.16 317

Atomic_AD_update_111:

Write access from a supervisor context and an non-instruction space and RO is don’t care.

1. If no-page fault:

 Is the A-bit (bit5) set:

i. If set, is the D-bit (bit6) set:

A. If set, just return the PTE to GAM and end the atomic.

B. If not set, modify the old-dest with D-bit set, write to memory and return new-

dest to GAM and end atomic.

ii. If not set, modify the old-dest with A and D-bit set, write to memory and return the

new-dest to GAM and end atomic.

2. If page fault:

 Return old-dest to GAM which will lead to GAM detecting the fault as well.

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[63]=1.

Gen8 implementation: The behavior should be to ignore bit[63] in the above proposed mechanism. The

behavior should be exactly same as Atomic_A_update_110. Gen8 does not support instruction privileges,

nor supervisor/user separation.

318 Doc Ref # IHD-OS-SKL-Vol 5-05.16

Atomic Operations between GPU and IA

IA cores are capable of doing atomic operations on any memory space defined as part of their page

tables, MTRRs, and PAT. The core detects the memory type after applying all the checks, and if the end

target is within WB space, it uses the optimized MESI protocol (i.e. RFO, WB) to complete the atomic

operation. If the memory space is UC/WC/WT, it uses the bus lock to honor the atomic requirements.

GPUs are only capable of doing atomics via optimized MESI protocols; they do not have a mechanism to

do bus locking. This restricts atomic operations to WB space if they happened to be between GPU and IA

cores. We cannot guarantee the atomicity for UC/WC/WT.

There are multiple ways how GPU can handle atomics to non-WB space.

1. Ignore the Memory Type: GPU ignores the memory type for the atomic operation and performs

it via RFO/WBMtoI as if the space is WB.

If IA is relying on the LOCK for the same atomic, LOCK keeps the GPU off the bus for integrated

solutions. And if GPU has the ownership of the line, a LOCKed read from IA still evicts the line from

GT even if the IA has the line as UC/WT/WC in its memory space.

2. Report as an error and fail the cycle: GPU detects the mismatch and handles the cycle as error

(i.e. write has no affect and read returns garbage) and reports the error as catastrophic to SW. App

can be terminated by SW.

3. Perform Bus Lock: Similar to IA cores, GPU can support bus locks around atomic operations to

UC/WT/WC spaces. However the initial implementations of shared atomic implementations do not

have this option in GPU hardware.

Option#2 is the main mode where GPU is not expecting atomics to UC/WT/WC space and any such

accesses are faulted as HW cannot guarantee the atomicity of the operation with the current

implementation.

