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Introduction 

The hardware supports three engines: 

 The Render command streamer interfaces to 3D/IE and display streams. 

 The Media command streamer interfaces to the fixed function media. 

 The Blitter command streamer interfaces to the blit commands. 

Software interfaces of all three engines are very similar and should only differ on engine-specific 

functionality. 

Memory Views Glossary 

Term Definition 

IOMMU I/O Memory Mapping unit 

SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and 

processor graphics. 

SKL SkyLake CPU/GFX platform. 9th generation processor graphics (Gen9) 

Page Walker 

(GAM) 

GFX page walker which handles page level translations between GFX virtual memory to physical 

memory domain. 

GPU Memory Interface  

GPU memory interface functions are divided into 4 different major sections: 

 Global Arbitration 

 Memory Interface Functions 

 Page Translations (GFX Page Walker) 

 Ring Interface Functions (GTI) 

GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The 

following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces and 

page translations and page walker functions. 
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Global Arbitration  

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses 

from different stages of the pipeline are consolidated to a single interface towards GT’s connection to 

CPU’s ring interface. 

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels. 

Programming Note 

Context: Global Memory Arbitration 

Gen9 arbitration allows 4 levels of arbitration where each pipeline level can be put into these 4 levels. Each 

consolidation stage simply follows the 4-level arbitration with grace periods to allow ahead of the pipeline to get a 

higher share of the memory bandwidth. 

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases 

major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace 

period where its accesses are counted against a global pool. If a particular engine (or pipeline stage) 

exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based prioritization. 

Once all counts are expired, the grace period completes and resets. 

The count values are programmable via MMIO (i.e. *_MAX_REQ_COUNT) registers with defaults favoring 

the pipeline order. 

GFX MMIO – MCHBAR Aperture  

Address: 140000h – 147FFFh 

Default Value: Same as MCHBAR 

Access: Aligned Word, Dword, or Qword Read/Write 

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write 

registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers 

defined within the MCHBAR space are preserved when the same registers are accessed via this space. 

Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal 

Sensor, etc. 

The Alias functions work for MMIO access from the CPU only. A command stream load register 

immediate will drop the data, and the store register immediate will return all Zeroes. 

Graphics MMIO registers can be accessed through MMIO BARs in function #0 and function #1 in Device 

#2. The aliasing mechanism is turned off if memory access to the corresponding function is turned off via 

software or in certain power states. 
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Graphics Memory Interface Functions 

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various 

client functions access to “graphics” memory used to store commands, surfaces, and other information 

used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics 

memory is accessed. 

Information not presented in this chapter includes: 

 Microarchitectural and implementation-dependent features (e.g., internal buffering, caching, and 

arbitration policies). 

 MI functions and paths specific to the operation of external (discrete) devices attached via external 

connections. 

 MI functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional 

“chipset functions”  

 GFX Page Walker and GT interface functions are covered in different chapters. 

Graphics Memory Clients  

The MI function provides memory access functionality to a number of external and internal graphics 

memory clients, as described in the table below. 

Graphics Memory Clients 

MI Client Access Modes 

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed 

using Device 2 Graphics Memory Range Addresses 

External PEG Graphics 

Device 

Write-Only of Graphics Operands located in Main Memory via the Graphics Aperture. (This 

client is not described in this chapter). 

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics Memory is accessed 

using Device 2 Graphics Memory Range Addresses (i.e., mapped by GTT). Note that DMI 

access to Graphics registers is not supported. 

Coherent Read/Write 

(internal) 

Internally-generated snooped reads/writes. 

Command Stream 

(internal) 

DMA Read of graphics commands and related graphics data. 

Vertex Stream 

(internal) 

DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed 

Function. 

Instruction/State 

Cache (internal) 

Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions 

executed by the EUs. 

Render Cache 

(internal) 

Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D, 

MPEG, etc.) Read of render surface state. 

Sampler Cache 

(internal) 

Read of texture (and other sampled surface) data stored in graphics memory. 
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MI Client Access Modes 

Display/Overlay 

Engines (internal) 

Read of display, overlay, cursor and VGA data. 

Media Engines Read and write of media content and media processing. 

uController Read/Write (DMA) functions for u-controller and scheduler. 

Graphics Memory Addressing Overview  

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory 

addresses of various types, performs a number of optional operations along address paths, and 

eventually performs reads and writes of graphics memory data using the resultant addresses. The 

remainder of this subsection will provide an overview of the graphics memory clients and address 

operations. 

Graphics Address Path  

Graphics Address Path shows the internal graphics memory address path, connection points, and optional 

operations performed on addresses. Externally-supplied addresses are normalized to zero-based 

Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled address 

(based on inclusion in a fenced region or via explicit surface parameters), address tiling is performed. At 

this point the address is considered a Logical Memory address, and is translated into a Physical Memory 

address via the GTT and associated TLBs. The physical memory location is then accessed. 

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped 

cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory aperture. 
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Graphics Memory Paths  

 

The remainder of this chapter describes the basic features of the graphics memory address pipeline, 

namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation 

considerations. 
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Graphics Memory Address Spaces  

The Graphics Memory Address Spaces table lists the five supported Graphics Memory Address Spaces. 

Note that the Graphics Memory Range Removal function is automatically performed to transform system 

addresses to internal, zero-based Graphics Addresses. 

Graphics Memory Address Types 

Address 

Type Description Range Gen9 (BXT) 

GMADR Address range allocated via the Device 2 (integrated graphics 

device) GMADR register. The processor and other peer (DMI) 

devices utilize this address space to read/write graphics data 

that resides in Main Memory. This address is internally 

converted to a GM_Address. 

This is a 4 GB BAR 

above physical 

memory. 

128 MB, 256 

MB, 512 MB, 

1GB, 2GB, 4GB 

GTTMMADR 
The combined Graphics Translation Table Modification Range 

and Memory Mapped Range. The range requires 16 MB 

combined for MMIO and Global GTT aperture, with 8MB of that 

used by MMIO and 8MB used by GTT. GTTADR will begin at 

GTTMMADR  8MB while the MMIO base address will be the 

same as GTTMMADR. 

For the Global GTT, this range is defined as a memory BAR in 

graphics device config space. It is an alias into which software is 

required to write Page Table Entry values PTEs. Software may 

read PTE values from the global Graphics Translation Table GTT. 

PTEs cannot be written directly into the global GTT memory 

area. 

This is a 16MB BAR 

above physical 

memory. 

16 MB 

(2 MB MMIO + 

6 MB reserved 

+ 8 MB GGTT) 

GSM 
GTT Stolen Memory. It is an 8 MB (max) region taken out of 

physical memory to store the Global GTT entries for page 

translations specific to GFX driver use. 

It is accessible via GTTMMADR from the CPU path however 

GPU/DE can access the same region directly. 

This is an 8 MB 

region in physical 

memory not visible 

to OS. 

1 MB, 2 MB, 4 

MB, 8 MB 

DSM 
Data stolen memory, the size is determined with GMS filed (8 

bits) with MAX size of 4 GB. 

This is a stolen memory which can be accessed via GMADR for 

CPU and directly for GPU/DE. 

Size is programmable with 32 MB multiplier. 

First 4KB of DSM has to be reserved for GFX hardware use. 

This is a max of 4 

GB stolen physical 

memory for GFX 

data structures. 

0 MB, 32 MB, 

64 MB, 96 MB, 

...4096MB 

Next level breakdown for GTTMMADR is given below. 

Software is allowed to use range x17_0000 to x17_FFFF as the Null range. 
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Address Tiling Function Introduction 

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature, 

certain functions within the graphics device support the storage/access of the operands using alternative 

(tiled) memory formats to increase performance. This section describes these memory storage formats, 

why and when they should be used, and the behavioral mechanisms within the device to support them. 

Legacy Tiling Modes: 

 TileY: Used for most tiled surfaces when TR_MODE=TR_NONE. 

 TileX : Used primarily for display surfaces. 

 TileW: Used for Stencil surfaces. 

Programming Note 

Context: Address Tiling Function 

Tiled Resource Tiling Modes 

 TileYF: 4KB tiling mode based on TileY 

 TileYS: 64KB tiling mode based on TileY 

These modes are based on 4KB and 64KB tiles. The 64KB tile is made up of a 4x4 matrix of 4KB tiles. The 4KB tiles in 

general have a different layout as compared to the legacy modes, with the sub-mode defining the layout within the 

4KB tile. The sub-modes are determined by the bits per element of the surface format. The Tiled Resource Mode 

field in SURFACE_STATE is used to select the new modes. 

Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile modes). For 

1D surfaces, the base address must be 64KB aligned if Tiled Resource Mode is TRMODE_64KB, and 4KB aligned 

if Tiled Resource Mode is TRMODE_4KB. An exception to this tile alignment is when a SURFACE_STATE describes a 

single MIP within the MIP Tail of another surface, using a 64-bit or 128-bit Surface Format—then Surface Base 

Address can refer directly to the given MIP (e.g. to write to a non-renderable Surface Format by re-describing as 

an alternative surface). 
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Linear vs Tiled Storage  

Regardless of the memory storage format, “rectangular” memory operands have a specific width and 

height, and are considered as residing within an enclosing rectangular region whose width is considered 

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must 

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly with 

the surface). Rectangular Memory Operand Parameters shows these parameters. 

Rectangular Memory Operand Parameters 

 

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the 

operand is stored in sequentially increasing memory locations. If the surface width is less than the 

enclosing region’s pitch, there will be additional memory storage between rows to accommodate the 

region’s pitch. The pitch of the enclosing region determines the distance (in the memory address space) 

between vertically-adjacent operand elements (e.g., pixels, texels). 
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Linear Surface Layout 

 

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface 

where each scanline is read sequentially). Here the fact that one object element may reside in a different 

memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally-

adjacent elements are stored contiguously. However, when a device function needs to access a 2D 

subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2 

texel block for bilinear filtering), having vertically-adjacent elements fall within different memory pages is 

to be avoided, as the page crossings required to complete the access typically incur increased memory 

latencies (and therefore lower performance). 

One solution to this problem is to divide the enclosing region into an array of smaller rectangular 

regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same 

physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile 

and thereby increasing performance. 

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows 

high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the 

dimensions of tiles are irrespective of the data contained within – e.g., a tile can hold twice as many 16-

bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels). 
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Memory Tile Dimensions 

 

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled 

region are stored sequentially in memory in row-major order. 

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a 

pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles – 

the surface is not necessarily aligned or dimensioned to tile boundaries. 

Tiled Surface Layout 
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Auxiliary Surfaces for Sampled Tiled Resources  

For surfaces which are defined as Tiled Resources (TileYs or TileYf format), there may be auxiliary surfaces 

which are associated with the surface (e.g. HiZ, CCS or MCS).  These auxiliary surfaces, while actually not 

defined as TileYs or TileYf will behave like tiled resources from the hardware perspective.  It is possible 

for software to map and unmap tiles of auxiliary surfaces as tiles of the associated surface are mapped 

and unmapped.  Below is a description how sampling to the mapped/unmapped tile resources is 

handled for the associated auxiliary surface.  Normally, sampling unmapped tiles will return a NULL 

response to the requesting agen. 

HiZ 

A tile of HiZ data must be mapped to memory whenever any depth surface (Z) pixels associated with the 

HiZ tile are mapped. When all Z pixels associated with a HiZ tile are unmapped, the HiZ tile may be 

mapped or unmapped. Below is a table showing the responses for sampling to mapped and unmapped 

depth surfaces. 

Responses for Sampling to a Depth-Surface Tiled Resource 

Depth Surface Mapping HiZ Surface Mapping Sample Response 

Mapped Mapped Normal Sample Response 

Mapped Unmapped Undefined 

Unmapped Mapped NULL Response 

Unmapped Unmapped NULL Response 

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested) 

will indicate the depth pixel is Null. 

CCS 

A tile of CCS (Color Control Surface) must be mapped to memory whenever color surface pixels 

associated with the CCS tile are mapped. When all color pixels associated with a CCS tile are unmapped, 

the CCS may be mapped or unmapped. CCS is used to indicate that the color surface is losslessly 

compressed. Below is a table showing the responses for sampling to mapped and unmapped. 

Responses for Sampling to a Losslessly Compressed Color Surface That is a Tiled Resource 

Color Surface Mapping CCS Surface Mapping Sample Response 

Mapped Mapped Normal Response 

Mapped Unmapped Undefined 

Unmapped Mapped NULL Response 

Unmapped Unmapped NULL Response 

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested) 

will indicate the depth pixel is Null. 
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MCS 

A tile of MCS (Multi-Sample Control Surface) must be mapped to memory whenever MSAA surface pixels 

associated with the CCS tile are mapped. When all MSAA pixels associated with a MCS tile are 

unmapped, the MCS may be mapped or unmapped. Below is a table showing the responses for sampling 

to mapped and unmapped. 

Responses for Sampling to MSAA Tiled Resources 

MSAA Surface Mapping MCS Mapping Sample Response 

Mapped Mapped Normal Response 

Mapped Unmapped Undefined Response 

Unmapped Mapped NULL Response 

Unmapped Unmapped NULL Response 

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested) 

will indicate the depth pixel is Null. 

Tile Formats  

Multiple tile formats are supported by the Gen Core.  The following sections define and describe these 

formats. 

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the 

RENDER_SURFACE_STATE. 

Tile-X Legacy Format 

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following 

figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords. The 

selection of tile direction only impacts the internal organization of tile data, and does not affect how 

surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a 

linear fashion. 

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE 

to XMAJOR. 

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the organization 

of texels in memory. 
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Tile X-Tile (X-Major) Layout 

 

Tile-Y Legacy Format 

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as 

shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection 

of tile direction only impacts the internal organization of tile data, and does not affect how surfaces map 

onto tiles.  

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to 

YMAJOR. 

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout 

of pixels. 

Y-Major Tile Layout 
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W-Major Tile Format 

The device supports additional format W-Major storage of tile data units, as shown in the following 

figures. A 4KB tile is subdivided into 8-high by 8-wide array of Blocks for W-Major Tiles (W Tiles). Each 

Block is 8 rows by 8 bytes. The selection of tile direction only impacts the internal organization of tile 

data, and does not affect how surfaces map onto tiles. W-Major Tile Format is used for separate stencil. 

Tile-W surface format is selected by programming the Tile_Mode field in the RENDER_SURFACE_STATE to 

WMAJOR. 

W-Major Tile Layout 

 

W-Major Block Layout 
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Tile-Yf Format 

Tile-Yf is a 4K-Byte tile format (similar to Tile-Y), but organized in a different manner. Tile-Yf is selected 

by programming the Tile_Mode field in the RENDER_SURFACE_STATE to YMAJOR and the 

Tiled_Resource_Mode to TILEYF. The diagram below shows how pixels are mapped into the TileYf format 

for 2D surfaces, and it uses 32Bpp (bits per pixel) surface format as an example on a 2D surface which is 

N tiles wide and m tiles high.  The exact aspect ratio will be dependent on the Bpp of the surface.  Note 

that the TileYf format is identical to the TileYs up to the 4K-Byte tile size. 

2D Tile Layout for TileYf 
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Tile-Ys Format 

TileYs is a 64K-Byte tile size.  It is enabled by programming the Tile_Mode field (in 

RENDER_SURFACE_STATE) to YMAJOR, and programming the Tiled_Resource_Mode to TILEYS.  It is 

organized as shown below, and is composed of 4KByte blocks which have identical layout to the TileYf 

format.  The diagram below shows how pixels are mapped into the TileYs format, and it uses 32Bpp (bits 

per pixel) surface format as an example on a 2D surface which is N tiles wide and m tiles high.  The exact 

aspect ratio will be dependent on the Bpp of the surface. 

Tile-Ys Layout 
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Tiling Algorithm 

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics 

memory to an address in logical space. 

The following new modes are supported for Tiled Resources (TR_MODE != TR_NONE) defined to enable 

tiled resources.   

For more details about Mip Tails, see Surface Layout and Tiling in the Common Surface Formats section. 

 TileYF: 4KB tiling mode based on TileY 

 TileYS: 64KB tiling mode based on TileY 

 Inputs:  

  LinearAddress(offset into regular or LT aperture in terms of bytes), 

     Pitch(in terms of tiles),  

   WalkY (1 for Y and 0 for X) 

   WalkW (1 for W and 0 for the rest) 

     

 Static Parameters: 

  TileH (Height of tile, 8 for X, 32 for Y and 64 for W), 

  TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W) 

  TileSize = TileH * TileW; 

  RowSize = Pitch * TileSize; 

  

 If (Fenced) { 

      LinearAddress = LinearAddress – FenceBaseAddress 

      LinearAddrInTileW = LinearAddress div TileW; 

      Xoffset_inTile = LinearAddress mod TileW; 

   Y = LinearAddrInTileW div Pitch; 

   X = LinearAddrInTileW mod Pitch + Xoffset_inTile; 

 } 

  

 // Internal graphics clients that access tiled memory already have the X, Y 

 // coordinates and can start here 

 YOff_Within_Tile = Y mod TileH; 

 XOff_Within_Tile = X mod TileW; 

 TileNumber_InY = Y div TileH; 

 TileNumber_InX = X div TileW; 

   

  TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX + 

TileH * 16 * (XOff_Within_Tile div 16) +  

   YOff_Within_Tile * 16 +  

   (XOff_Within_Tile mod 16); 

   

  TiledOffsetW = RowSize * TileNumber_InY +  

   TileSize * TileNumber_InX +  

   TileH * 8 * (XOff_Within_Tile div 8) +  

   64 * (YOff_Within_Tile div 8) +  

   32 * ((YOff_Within_Tile div 4) mod 2) +  

   16 * ((XOff_Within_Tile div 4) mod 2) +  

    8 * ((YOff_Within_Tile div 2) mod 2) +  
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    4 * ((XOff_Within_Tile div 2) mod 2) + 

    2 * (YOff_Within_Tile mod 2) +  

   (XOff_Within_Tile mod 2); 

    

      TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + 

TileW * YOff_Within_Tile + XOff_Within_Tile; 

    

      TiledOffset = WalkW? TiledOffsetW : (WalkY? TiledOffsetY : 

TiledOffsetX); 

  

   TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress + 

Y*LinearPitch + X);TiledAddress = (Tiled && 

   (Address Swizzling for Tiled-Surfaces == 01)) ? 

   (WalkW || WalkY) ? 

   (TiledAddress div 128) * 128 + 

   (((TiledAddress div 64) mod 2) ^ 

   ((TiledAddress div 512) mod 2)) + 

   (TiledAddress mod 32) 

   : 

   (TiledAddress div 128) * 128 + 

   (((TiledAddress div 64) mod 2) ^ 

   ((TiledAddress div 512) mod 2) 

   ((TiledAddress Div 1024) mod2) + 

   (TiledAddress mod 32) 

   : 

   TiledAddress; 

  } 

  

  

Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more 

effective address swizzling algorithm. 

For Address Swizzling for Tiled-Surfaces see ARB_MODE – Arbiter Mode Control register, ARB_CTL—

Display Arbitration Control 1 and TILECTL - Tile Control register 

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the 

same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial 

locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture 

filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline. 

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements are 

stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned 

in row-major order for operations like display refresh. For this reason, the Display and Overlay memory 

streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions). 

This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled 

formats if they are to be displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be stored 

in Y-Major order. 
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The following Psuedo Code Describes the algorithm for mapping TileYs and TileYf Tile Address to Byte 

Offset within a Tile.  It describes the support for 2D for both TileYs and TileYf as well as MSAA 2D For 

TileYs. 

/****************************************************************************

***\ 

    BitMask 

  Used for masking single bits of x, y, z, ss# when _pdep32 instruction 

is 

     not available 

 

\****************************************************************************

***/ 

 enum BitMask 

 { 

     BIT0 = 1, 

     BIT1 = (1 « 1), 

     BIT2 = (1 « 2), 

     BIT3 = (1 « 3), 

     BIT4 = (1 « 4), 

     BIT5 = (1 « 5), 

     BIT6 = (1 « 6), 

     BIT7 = (1 « 7), 

     BIT8 = (1 « 8), 

     BIT9 = (1 « 9), 

     BIT10 = (1 « 10), 

     BIT11 = (1 « 11), 

     BIT12 = (1 « 12), 

     BIT13 = (1 « 13), 

     BIT14 = (1 « 14), 

     BIT15 = (1 « 15) 

 }; 

 

/****************************************************************************

***\ 

     TileYS/TileYF constant swizzle masks w/o _pdep32 instruction 

  

     Used to mask contiguous x/y/z/sample bit groupings before being shifted 

into 

     their final swizzled bit positions 

 

\****************************************************************************

***/ 

 // used for fallback 'manual' bit shifting 

 static const UINT16 xMaskBits5_4  = 0x0030; 

 static const UINT16 xMaskBits3_0  = 0x000F; 

 static const UINT16 yMaskBits4_0  = 0x001F; 

 static const UINT16 yMaskBits3_0  = 0x000F; 

 static const UINT16 yMaskBits2_0  = 0x0007; 

 static const UINT16 yMaskBits1_0  = 0x0003; 

 static const UINT16 SampleMask3_0 = 0x000F; 

 static const UINT16 SampleMask2_0 = 0x0007; 
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 static const UINT16 SampleMask1_0 = 0x0003; 

 static const UINT16 SampleMask0   = 0x0001; 

  

 

/****************************************************************************

***\ 

     TileYS 2D Tile address swizzling functions w/o _pdep32 

 

\****************************************************************************

***/ 

 /* 

  

_____________________________________________________________________________

_ 

 |    Num    | Bits per element |           Tiled element offset bits           

| 

 |  Samples  |                  |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 

1| 0| 

 

|______________________________|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

__| 

 |     1x    |     64 & 128     

|x9|y5|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      

|x8|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         

|x7|y7|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS2dElementOffset64_128bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYS swizzled bit 

locations 

     xSwizzle = ((BIT9 & x) « 6) | 

                ((BIT8 & x) « 5) | 

                ((BIT7 & x) « 4) | 

                ((BIT6 & x) « 3) | 

                ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT5 & y) « 9) | 

                ((BIT4 & y) « 8) | 

                ((BIT3 & y) « 7) | 

                ((BIT2 & y) « 6) | 

                ((yMaskBits1_0 & y) « 4);   // shift to bit positions 5..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 
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 UINT16 TileYS2dElementOffset16_32bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYS swizzled bit 

locations 

     xSwizzle = ((BIT8 & x) « 7) | 

                ((BIT7 & x) « 6) | 

                ((BIT6 & x) « 5) | 

                ((BIT5 & x) « 4) | 

                ((BIT4 & x) « 3) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT6 & y) « 8) | 

                ((BIT5 & y) « 7) | 

                ((BIT4 & y) « 6) | 

                ((BIT3 & y) « 5) | 

                ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2dElementOffset8bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYS swizzled bit 

locations 

     xSwizzle = ((BIT7 & x) « 8) | 

                ((BIT6 & x) « 7) | 

                ((BIT5 & x) « 6) | 

                ((BIT4 & x) « 5) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT7 & y) « 7) | 

                ((BIT6 & y) « 6) | 

                ((BIT5 & y) « 5) | 

                ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 

/****************************************************************************

***\ 

     TileYS 2D MSAA Tile address swizzling functions w/o _pdep32 

 

\****************************************************************************
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***/ 

 /* 

  

_____________________________________________________________________________

__ 

 |    Num    | Bits per element |           Tiled element offset bits            

| 

 |  Samples  |                  |15 |14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 

1| 0| 

 

|______________________________|___|__|__|__|__|__|__|__|__|__|__|__|__|__|__

|__| 

 |     2x    |     64 & 128     

|ss0|y5|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      

|ss0|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         

|ss0|y7|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS2xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT8 & x) « 5) |             // shift to bit position 13 

                ((BIT7 & x) « 4) |             // shift to bit position 11 

                ((BIT6 & x) « 3) |             // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |     // shift to bit positions 7..6 

                (xMaskBits3_0 & x);            // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 9) |             // shift to bit position 14 

                ((BIT4 & y) « 8) |             // shift to bit position 12 

                ((BIT3 & y) « 7) |             // shift to bit position 10 

                ((BIT2 & y) « 6) |             // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);      // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 
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swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 6) |              // shift to bit position 13 

                ((BIT6 & x) « 7) |              // shift to bit position 11 

                ((BIT5 & x) « 6) |              // shift to bit position 9 

                ((BIT4 & x) « 5) |              // shift to bit position 7 

                (xMaskBits3_0 & x);             // leave in bits 3..0 

  

     ySwizzle = ((BIT6 & y) « 8) |              // shift to bit position 14 

                ((BIT5 & y) « 7) |              // shift to bit position 12 

                ((BIT4 & y) « 6) |              // shift to bit position 10 

                ((BIT3 & y) « 5) |              // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);      // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |              // shift to bit position 13 

                ((BIT5 & x) « 6) |              // shift to bit position 11 

                ((BIT4 & x) « 5) |              // shift to bit position 9 

                (xMaskBits3_0 & x);             // leave in bits 3..0 

  

     ySwizzle = ((BIT7 & y) « 7) |              // shift to bit position 14 

                ((BIT6 & y) « 6) |              // shift to bit position 12 

                ((BIT5 & y) « 5) |              // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);      // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 /* 

  

_____________________________________________________________________________

___ 

 |    Num    | Bits per element |           Tiled element offset bits             

| 

 |  Samples  |                  |15 |14 |13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 

1| 0| 
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|______________________________|___|___|__|__|__|__|__|__|__|__|__|__|__|__|_

_|__| 

 |     4x    |     64 & 128     

|ss1|ss0|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      

|ss1|ss0|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         

|ss1|ss0|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS4xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT8 & x) « 5) |             // shift to bit position 13 

                ((BIT7 & x) « 4) |             // shift to bit position 11 

                ((BIT6 & x) « 3) |             // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |     // shift to bit positions 7..6 

                (xMaskBits3_0 & x);            // leave in bits 3..0 

  

     ySwizzle = ((BIT4 & y) « 8) |             // shift to bit position 12 

                ((BIT3 & y) « 7) |             // shift to bit position 10 

                ((BIT2 & y) « 6) |             // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);      // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions 

15..14 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS4xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 6) |             // shift to bit position 13 

                ((BIT6 & x) « 7) |             // shift to bit position 11 

                ((BIT5 & x) « 6) |             // shift to bit position 9 

                ((BIT4 & x) « 5) |             // shift to bit position 7 

                (xMaskBits3_0 & x);            // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 7) |             // shift to bit position 12 

                ((BIT4 & y) « 6) |             // shift to bit position 10 

                ((BIT3 & y) « 5) |             // shift to bit position 8 
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                ((yMaskBits2_0 & y) « 4);      // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions 

15..14 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS4xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |             // shift to bit position 13 

                ((BIT5 & x) « 6) |             // shift to bit position 11 

                ((BIT4 & x) « 5) |             // shift to bit position 9 

                (xMaskBits3_0 & x);            // leave in bits 3..0 

  

     ySwizzle = ((BIT6 & y) « 6) |             // shift to bit position 12 

                ((BIT5 & y) « 5) |             // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);      // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions 

15..14 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 /* 

  

_____________________________________________________________________________

____ 

 |    Num    | Bits per element |           Tiled element offset bits              

| 

 |  Samples  |                  |15 |14 |13 |12|11|10| 9| 8| 7| 6| 5| 4| 3| 

2| 1| 0| 

 

|______________________________|___|___|___|__|__|__|__|__|__|__|__|__|__|__|

__|__| 

 |     8x    |     64 & 128     

|ss2|ss1|ss0|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      

|ss2|ss1|ss0|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         

|ss2|ss1|ss0|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS8xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 
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 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 4) |             // shift to bit position 11 

                ((BIT6 & x) « 3) |             // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |     // shift to bit positions 7..6 

                (xMaskBits3_0 & x);            // leave in bits 3..0 

  

     ySwizzle = ((BIT4 & y) « 8) |             // shift to bit position 12 

                ((BIT3 & y) « 7) |             // shift to bit position 10 

                ((BIT2 & y) « 6) |             // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);      // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions 

15..13 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS8xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |             // shift to bit position 11 

                ((BIT5 & x) « 6) |             // shift to bit position 9 

                ((BIT4 & x) « 5) |             // shift to bit position 7 

                (xMaskBits3_0 & x);             // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 7) |             // shift to bit position 12 

                ((BIT4 & y) « 6) |             // shift to bit position 10 

                ((BIT3 & y) « 5) |             // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);      // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions 

15..13 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS8xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 
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     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT5 & x) « 6) |             // shift to bit position 11 

                ((BIT4 & x) « 5) |             // shift to bit position 9 

                (xMaskBits3_0 & x);             // leave in bits 3..0 

  

     ySwizzle = ((BIT6 & y) « 6) |             // shift to bit position 12 

                ((BIT5 & y) « 5) |             // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);      // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions 

15..13 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 /* 

  

_____________________________________________________________________________

_____ 

 |    Num    | Bits per element |           Tiled element offset bits               

| 

 |  Samples  |                  |15 |14 |13 |12 |11|10| 9| 8| 7| 6| 5| 4| 3| 

2| 1| 0| 

 

|______________________________|___|___|___|___|__|__|__|__|__|__|__|__|__|__

|__|__| 

 |    16x    |     64 & 128     

|ss3|ss2|ss1|ss0|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      

|ss3|ss2|ss1|ss0|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         

|ss3|ss2|ss1|ss0|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS16xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 

sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 4) |             // shift to bit position 11 

                ((BIT6 & x) « 3) |             // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |     // shift to bit positions 7..6 

                (xMaskBits3_0 & x);             // leave in bits 3..0 
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     ySwizzle = ((BIT3 & y) « 7) |             // shift to bit position 10 

                ((BIT2 & y) « 6) |             // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);      // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions 

15..12 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS16xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |             // shift to bit position 11 

                ((BIT5 & x) « 6) |             // shift to bit position 9 

                ((BIT4 & x) « 5) |             // shift to bit position 7 

                (xMaskBits3_0 & x);             // leave in bits 3..0 

  

     ySwizzle = ((BIT4 & y) « 6) |             // shift to bit position 10 

                ((BIT3 & y) « 5) |             // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);      // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions 

15..12 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS16xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA 

swizzled bit locations 

     xSwizzle = ((BIT5 & x) « 6) |             // shift to bit position 11 

                ((BIT4 & x) « 5) |             // shift to bit position 9 

                (xMaskBits3_0 & x);             // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 5) |             // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);      // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions 

15..12 
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     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

  

 

/****************************************************************************

***\ 

     TileYF 2D Tile address swizzling functions w/o _pdep32 

 

\****************************************************************************

***/ 

 /* 

  

_____________________________________________________________________________

_ 

 |    Num    | Bits per element |           Tiled element offset bits           

| 

 |  Samples  |                  |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 

1| 0| 

 

|______________________________|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

__| 

 |     1x    |     64 & 128     |  |  |  |  

|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |  |  |  |  

|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |  |  |  |  

|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYF2dElementOffset64_128bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYF swizzled bit 

locations 

     xSwizzle = ((BIT7 & x) « 4) | 

                ((BIT6 & x) « 3) | 

                ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT3 & y) « 7) | 

                ((BIT2 & y) « 6) | 

                ((yMaskBits1_0 & y) « 4);   // shift to bit positions 5..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYF2dElementOffset16_32bpe(UINT16 x, UINT16 y) 
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 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYF swizzled bit 

locations 

     xSwizzle = ((BIT6 & x) « 5) | 

                ((BIT5 & x) « 4) | 

                ((BIT4 & x) « 3) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT4 & y) « 6) | 

                ((BIT3 & y) « 5) | 

                ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYF2dElementOffset8bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYF swizzled bit 

locations 

     xSwizzle = ((BIT5 & x) « 6) | 

                ((BIT4 & x) « 5) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT5 & y) « 5) | 

                ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 
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Tiled Channel Select Decision  

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling 

modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13]. 

For Gen8 and subsequent generations, the swizzle fields are all reserved, and the CPU's memory 

controller performs all address swizzling modifications. 

Tiling Support  

The rearrangement of the surface elements in memory must be accounted for in device functions 

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled 

formats). This requires either the modification of an element's linear memory address or an alternate 

formula to convert an element's X,Y coordinates into a tiled memory address. 

However, before tiled-address generation can take place, some mechanism must be used to determine 

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile 

region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms 

by which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address 

falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters for surface 

operands (i.e., parameters included in surface-defining instructions). 

The following table identifies the tiling-detection mechanisms that are supported by the various memory 

streams. 

Access Path Tiling-Detection Mechanisms Supported 

Processor access through the Graphics Memory Aperture Fenced Regions 

3D Render (Color/Depth Buffer access) Explicit Surface Parameters 

Sampled Surfaces Explicit Surface Parameters 

Blt operands Explicit Surface Parameters 

Display and Overlay Surfaces Explicit Surface Parameters 

Tiled (Fenced) Regions  

The only mechanism to support the access of surfaces in tiled format by the host or external graphics 

client is to place them within “fenced” tiled regions within Graphics Memory. A fenced region is a block 

of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface 

Registers for details). Surfaces contained within a fenced region are considered tiled from an external 

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since 

external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by 

an internal graphics client) fall within a region covered by an enabled fence register, that enable will be 

effectively masked during the internal graphics client access. Only the explicit surface parameters 

described in the next section can be used to tile surfaces being accessed by the internal graphics clients. 
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Tiled Surface Parameters  

Internal device functions require explicit specification of surface tiling parameters via information passed 

in commands and state. This capability is provided to limit the reliance on the fixed number of fence 

regions. 

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color 

Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE. 

Surface 

Parameter Description 

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear 

format. 

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-

Major or X-Major tile format. 

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface. 

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile 

width. 

Tiled Surface Restrictions  

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition, 

restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The 

most restricted surfaces are those that will be accessed both by the host (via fence) and by internal 

device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then 

sampled by the device. 

The tiling algorithm for internal device functions is different from that of fence regions. Internal device 

functions always specify tiling in terms of a surface. The surface must have a base address, and this base 

address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y 

addressing within the surface) are transformed through tiling.  The base address of the surface must 

therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device 

pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than 

or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by 

the host (via a fence region). 

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated 

in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base 

address in graphics memory equal to the fence base address, and all accesses of the surfaces are 

(possibly quite large) offsets from the fence base address. Fence regions have a virtual “left edge” aligned 

with the fence base address, and a “right edge” that results from adding the fence pitch to the “left 

edge”. Surfaces in the fence region must not straddle these boundaries. 
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Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host 

have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the 

surface base address (as set in SURFACE_STATE) must be a “Tile Row Start Address” (TRSA). The first 

address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base 

address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base 

address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.) 

Tiled Surface Placement 

 

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to 

access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different 

GTT mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess 

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in 

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by 

SW between the time the host writes the surface and the device reads it, or it can be accomplished by 

arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory Mapping 

below). 
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The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch 

and the fence pitch in any scenario where a surface will be accessed by both the host and an internal 

graphics client. Changing the GTT mapping will not help if this restriction is violated. 

Surface Access Base Address Pitch Width Tile “Walk” 

Host only No restriction Integral multiple of tile size 

<= 256KB 

Must be <= Fence 

Pitch 

No restriction 

Client only 4KB-aligned Integral multiple of tile size 

<= 256KB 

Must be <= 

Surface Pitch 
Restrictions imposed by 

the client (see Per Stream 

Tile Format Support) 

Host and Client, 

No GTT 

Remapping 

Must be TRSA Fence Pitch = Surface Pitch 

= integral multiple of tile 

size <= 256KB 

Width <= Pitch Surface Walk must meet 

client restriction,  Fence 

Walk = Surface Walk 

Host and Client, 

GTT Remapping 

4KB-aligned for 

client (will be tile-

aligned for host) 

Both must be Integral 

multiple of tile size 

<=128KB, but not 

necessarily the same 

Width <= 

Min(Surface Pitch, 

Fence Pitch) 

Surface Walk must meet 

client restriction, Fence 

Walk = Surface Walk 

Per-Stream Tile Format Support  

MI Client Tile Formats Supported 

CPU Read/Write All 

Display/Overlay Y-Major not supported 

 X-Major required for Async Flips 

Blt Linear and X-Major only 

 No Y-Major support 

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowest. 

3D Color,Depth Rendering Mode 

 Color-vs-Depth bpp Buffer Tiling Supported 

Classical 

 Same Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 

Classical 

 Mixed Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 
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Main Memory  

The integrated graphics device is capable of using 4KB pages of physical main (system) memory for 

graphics functions. Some of this main memory can be “stolen” from the top of system memory during 

initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to 

satisfy application demands. To this end the graphics driver will frequently need to allocate locked-down 

(i.e., non-swappable) physical system memory pages – typically from a cacheable non-paged pool. The 

locked pages required to back large surfaces are typically non-contiguous. Therefore a means to support 

“logically-contiguous” surfaces backed by discontiguous physical pages is required. The Graphics 

Translation Table (GTT) that was described in previous sections provides the means. 

Optimizing Main Memory Allocation  

This section includes information for software developers on how to allocate SDRAM Main Memory (SM) 

for optimal performance in certain configurations. The general idea is that these memories are divided 

into some number of page types, and careful arrangement of page types both within and between 

surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and therefore yield 

somewhat higher performance. 

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is 

somewhat complicated by (1) permutations of memory device technologies (which determine page sizes 

and therefore the number of pages per device row), (2) memory device row population options, and (3) 

limitations on the allocation of physical memory (as imposed by the OS). 

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching 

between open pages is optimal (again, the pages do not need to be sequential), (b) switching between 

memory device rows does not in itself incur a penalty, and (c) switching between pages within a 

particular bank of a row incurs a page miss and should therefore be avoided. 
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Application of the Theory (Page Coloring)  

This section provides some scenarios for how Main Memory page allocation can be optimized. 

3D Color and Depth Buffers 

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in 

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or 

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within 

a Color or Depth Buffer should be mapped to different page types (where a page’s “type” or “color” 

refers to the row and bank it’s in). 

Memory Pages Backing Color and Depth Buffers 

 

For higher performance, the Color and Depth Buffers could be allocated from different memory device 

rows. 
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Media/Video 

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The U 

and V surfaces would split the same 4 page types as used in the Y surface. 

Physical Graphics Address Types  

The Physical Memory Address Types table lists the various physical address types supported by the 

integrated graphics device. Physical Graphics Addresses are either generated by Logical Memory 

mappings or are directly specified by graphics device functions. These physical addresses are not subject 

to tiling or GTT re-mappings. 

Physical Memory Address Types 

Address 

Type Description Range 

MM_Address Main Memory Address. Offset into physical, unsnooped Main Memory. [0,TopOfMemory-1] 

SM_Address System Memory Address. Accesses are snooped in processor cache, allowing 

shared graphics/ processor access to (locked) cacheable memory data. 

[0,512GB] 

Graphics Translation Tables 

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT) 

and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an 

array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to 

physical memory addresses, and sometimes snooped system memory “PCI” addresses. 

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and 

PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The 

GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes 

respectively) and is physically contiguous. The global GTT should only be programmed via the range 

defined by GTTMMADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT) 

size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB 

in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE 

entries. 
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Virtual Memory  

GT supports standard virtual memory models as defined by the IA programmer’s guide. This section 

describes the different paging models, their behaviors, and the page table formats. 

GFX Page Tables  

GPU supports three page table mechanisms 

  IA32e compatible GTT 

  PPGTT – private per process GTT (private GFX) 

  GGTT     - global GTT 

All page tables use the same 64-bit PTE format. Differences are in how various bit fields applies (vs 

reserved) under various usage models. 

Gen9 follows the same principles that gen8 set it up for improved page tables and compatibility of OS 

managed page table formats. 

Tiled Resources Translation Tables  

Sparse Tiled Resources can be thought of as a kind of application-controlled virtual memory scheme. The 

application allocates a resource in a virtual address space. Then the application tells the driver to map 

specified 64KB tiles within the surface to memory, within resources called Tile Pools. Tiles that are not 

mapped to a Tile Pool are null tiles. 

Tiled Resource Translation Table (TRTT) is constructed as a 3 level tile Table. Each tile is 64KB is size which 

leaves behind 44-16=28 address bits. 28bits are partitioned as 9+9+10 which corresponds to TRVATT L3, 

L2 and L1 respectively. This is where TRVATT L3 has 512 entries, L2 has 512 entries and L1 has 1024 

entries where each level is contained within a 4KB page hence L3 and L2 is composed of 64b entries and 

L1 is composed of 32b entries. 
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The contents of the TRVATT tables are as listed above where L3 and L2 points to the address of the next 

level which is a 4KB page and L1 contains the 32b VA address pointer needed to map the TR tile to 

virtual address space. 

L1 Entry: 

Bits Field Description 

31:0 ADDR: Address GFX virtual address of 64KB tile is referenced by this entry. 

 This field is treated as GFX Virtual Address (GPA) when translated and maps to 47:16. 

L2 Entry: 

Bits Field Description 

63:48 Ignored Ignored (h/w does not care about values behind ignored registers) 

47:12 ADDR: 

Address 

GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L1. 

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address 

mode chosen by GFX software.  

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped. 

0 Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is 

generated to GFX software when an invalid tile is accessed. 

L3 Entry: 

Bits Field Description 

63:48 Ignored Ignored (h/w does not care about values behind ignored registers) 

47:12 ADDR: 

Address 

GFX virtual address or Guest Physical Address of 4KB base address pointing to TR-TT L2. 

TR-TT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical address 

mode chosen by GFX software.  

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped. 

0 Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is 

generated to GFX software when an invalid tile is accessed. 

 

Programming Note 

Context: Tiled ResourceTranslation Tables in Gfx Page Tables 

GFX Driver has to disable the TR-TT bypass mode before using tiled resources translation tables. Details of the 

registers are given in "registers for TR-TT management." 

 

Programming Note 

Context: Tiled ResourceTranslation Tables in Gfx Page Tables 

GFX Driver is not allowed to put TR-TT entries into TR-VA space. 
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Programming Note 

Context: Tiled ResourceTranslation Tables in Gfx Page Tables 

Usage model for TR translations are restricted to GFX Render Engine. 

 

Programming Note 

Context: Tiled ResourceTranslation Tables in Gfx Page Tables 

TRTT is only for PPGTT64 (Advanced or Legacy PPGTT64). Enabling TRTT in Legacy PPGTT32 context or GGTT 

context is considered as invalid programming. 

Registers for TR-TT Management  

Following register is a global mechanism to disable the bypass mode which is considered to be default 

for h/w. GFX driver has to set this bit to disable bypass mode before using TR-TTs. 

Following registers shall be part of the h/w context. 

Tiled Resources VA Translation Table L3 Pointer 

Register Space: MMIO: 0/2/0 
 

DWord Bit Description 

1 63:48 
Reserved 

Access: RO 

Reserved. 

47:32 
Tiled Resource – VA translation Table L3 Pointer (Upper Address)  

Default Value: 0000h 

Access: R/W 

Upper address bits for tiled resource VA to virtual address translation L3 table. 

For physical memory option, address bits [47:39] has to be programmed to "0" as it is defined the 

limit of physical memory allocation. 

0 31:16 
Tiled Resource – VA translation Table L3 Pointer (Lower Address)  

Default Value: 0000h 

Access: R/W 

Lower address bits for tiled resource VA to virtual address translation L3 table. 

15:0 
Reserved 

Access: RO 

Reserved. 
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Tiled Resources Null Tile Detection Register 

Register Space: MMIO: 0/2/0 
 

DWord Bit Description 

 31:0 
Null Tile Detection Value 

Default Value: 00000000h 

Access: R/W 

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Null 

Tiles. Hardware will flag each entry and space behind it as Null Tile for matched entries. 

 

Tiled Resources Invalid Tile Detection Register 

Register Space: MMIO: 0/2/0 
 

DWord Bit Description 

 31:0 
Invalid Tile Detection Value 

Default Value: 00000000h 

Access: R/W 

A 32bit value programmed to enable h/w to perform a match of TR-VA TT entries to detect Invalid 

Tiles. Hardware will flag each entry and space behind it as Invalid Tile for matched entries. 

 

Tiled Resources Virtual Address Detection Registers (TRVADR) 

Register Space: MMIO: 0/2/0 
 

DWord Bit Description 

0 31:8 
Reserved 

Access: RO 

Reserved. 

7:4 
TRVA Mask Value (TRVAMV) 

Default Value: 0000b 

Access: R/W 

4bit MASK value that is mapped to incoming address bits[47:44]. MASK bits are used to identify 

which address bits need to be considered for compare. If particular mask bit is “1”, mapping address 

bit needs to be compared to DATA value provided. If “0”, corresponding address bit is masked which 

makes it don’t care for compare (this field defaults to “0000” to disable detection) 

Note that h/w supports two possible values for MASK: "0000" which is disabled case and "1111" where 

44 bit TR-VA space is carved out.  
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Tiled Resources Virtual Address Detection Registers (TRVADR) 

3:0 
TRVA Data Value (TRVADV) 

Default Value: 0b 

Access: R/W 

4bit DATA value that is mapped to incoming address bits[47:44]. Data bits are used to compare 

address values that are not filtered by the TRVAMV for match.  

 

Tiled Resources Translation Table Control Register (TRTTE) 

Register Space: MMIO: 0/2/0 
 

DWord Bit Description 

0 31:2 
Reserved 

Access: RO 

Reserved. 

1 
TR-VA Translation Table Memory Location 

Default Value: 0b 

Access: R/W 

This fields specifies whether the translation tables for TR-VA to VA are in virtual address space vs 

physical (GPA) address space. 

0: Tables are in Physical (GPA) Space 

1: Tables are in Virtual Address Space 

0 
TR-TT Enable 

Default Value: 0b 

Access: R/W 

TR translation tables are disabled as default. This field needs to be enabled via s/w to get TR 

translation active. 

Detection and Treatment of Null and Invalid Tiles 

Two types of definition that need to be extracted from TR-VA walk in addition to reaching the GFX virtual 

address. 

1. Null Tiles: Null tiles provide the applications of capability to preventing OS mapping the entire 

surface. When a memory access hits a Null tile, the access is terminated and zero’s are returned to 

the originator of the memory access for loads along with a null indicator and for stores the access 

is dropped at the page walker level. 
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2. Invalid Tiles: This is the case where GFX software did not update the value of the mapping 

properly for hardware to separate resident vs null tiles. The Invalid Tile treatment is exactly same 

however additionally a unique  interrupt is generated in h/w 

Both detections are done by GPU: 

 For L2/L3 entries, Null and Invalid tile information is already embedded in the TR-TT entries 

 For L1 entries, the contents (32bits) are compared in hardware to pre-programmed values by GFX 

software (values are provided in GFX MMIO space). For the match values, two separate 32b registers 

are defined, one for Null Tile detection and one for Invalid Tile detection. 

Hardware walking matching the value or detecting L2/L3 would terminate the walk (i.e. rest of the tables 

are not valid) and define the access as either Null or Invalid. 

Programming Note 

Context: Detection and treatment of null and invalid tiles. 

The software is not allowed to program both Null and Invalid values to be the same. 

 

Programming Note 

Context: TileX Surfaces and Null Tiles 

NULL or Invalid Tiles are not supported on TileX surfaces. 

GPU implements a counter mechanism to roll-up the Null tile accesses detected. The counter value is 

exposed to GFX software via GFX MMIO. 

In Gen9 implementation, when the TR translation tables are in Gfx virtual address domain, the pages faults 

encountered while walking the IA32e pages are not reported back to the TR walkers or TLBs.  These faults 

are handled as fault & halt, making these faults transparent to the TR walkers.  However, when such a fault 

is not fixed (unsuccessful fault response) or when a non-recoverable fault encountered, main page walker 

HW converts the cycle to an invalid cycle.  Thus, in this case, TR walker or TR TLBs will get incorrect read 

return data without any notification of the non-recoverable fault condition.  Thus TR walker/TLBs will 

continue with the TR-walk with incorrect data.  This can lead to spurious cycles being generated.  However, 

a Gfx reset/FLR is expected as a result of the non-recoverable fault. 

TR-TT Modes 

The L3 table pointer along with TRTTL3e/TRTTL2e is projected to support two modes of address space. 

Original intent was to have the contents to be in Virtual Address space (OS managed) and have them to 

be translated to GPA to HPA before getting accessed. Such mechanism will incur high latency penalties 

due to nested page translations. GPU shall have an additional mode where tiled-resources translation 

tables are in physical address space (GPA) and eliminate the need to have nested translations to reduce 

the potentially high miss latencies. 

TR-TT walker shall have both modes supported. The Mode bit will be part of the same Register that 

provides TR-VA TT L3 pointer. 
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Virtual Addressed TR Translation Tables 

Having sparse tiled resource translation tables in GFX virtual space requires the h/w TR-TT walker to walk 

thru the 1st level tile tables for table accesses to reach to Physical address at the L1 TR translation tables. 

The following diagrams provide the view of the walk TR-VA translation tables are in physical memory and 

no 2nd Level (VTd) translations enabled. 
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Once 2nd level translations are enabled each level of 1st level walk needs to be further walked through 

VTd page tables. 

The level of nested walks does not change the structure of the TR-VA walker; it just defines the recursive 

nature of the translations. 

TR-TT Page Walk 

Sparse Tiled Resources translation tables are separated into 3-levels. The pointer to L3 table is going to 

be set up in GFX MMIO space as part of the context, this pointer be would be available to page walker 

ahead of any TR-VA memory accesses. 

TR-TT L3 walk will be consistent of calculating the 64b of interest based on the L3 table pointer and 

using the 9 bit index (address bits[43:35]). L2 will use TR-TT L3 entry as the table pointer and use the next 

set of 9 address bits ([34:26]) to locate the L2 entry which is a pointer to L1 table. Final L1 table is located 

with L2 entry and indexed by remaining 10 address bits (25:16) to index where 32b virtual address is 

extracted. 

Post TR-TT walk 32b entry from L1 is mapped to final virtual address 47:16 and remaining 15:0 is passed 

from the original TR-VA access as is given all tiles in TR-VA space are 64KB in size. 



 

    

46   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

 



 Memory Views 
  

 

Doc Ref # IHD-OS-SKL-Vol 5-05.16   47 

Gen9 Page Table Modes 

GFX Aperture and Display accesses are mapped thru Global GTT to keep the walk simple (i.e. 1-level) and 

latency sensitive. GPU accesses to memory can be mapped via Global GTT and/or ppGTT with various 

addressing modes. 

Supported walk modes are listed as following: 

1. Global GTT with 32b virtual addressing: Global GTT usage is similar to previous generations with 

extended capability of increasing virtual address (VA) up to 4GB (from 2GB) and use a standard 

64b PTE format. The breakdown of the PTE for global GTT is given in later sections and allows 1-

level page walk where the 20b index is used to select the 64b PTE from memory. 

2. Legacy 32b VA with ppGTT: This is a mode where ppGTT page tables are considered private and 

managed via GFX sotfware (driver) where context is tagged as Legacy 32b VA. Each page walk is 

managed via 9b of the virtual address and 20b index to address 4GB memory space is broken into 

3 parts. In order to optimize the walks and make it look like previous generations, GFX sotfware 

provides 4 pointers to page tables (called 4 PDP entries) all guest physical address. GPU uses the 

four pointers and fetches the 4x4KB into h/w (for render and media) before the context execution 

starts. The optimization limits the dynamic (on demand) page walks to 1-level only. 

3. Legacy 48b VA with ppGTT: GFX address expansion beyond 4GB is added to address 48b virtual 

address space. 48b VA requires 36b indexing (4x9b) translating into 4-levels of page walk. To 

reduce the overhead of 4 level walk, GPU will cache the entire content of PML4 (4kB) to limit the 

on-demand walks to 3 levels. The caching happens as part of the initial demand where no further 

replacements required. 

4. Advanced 48b VA with IA32e support via IOMMU: 48b addressing in advanced mode is 

managed via IOMMU settings where the base of the page table shall be found after the root / 

context tables using bus/device/function values. PASID# is used as an index in PASID table to find 

page table pointer to start the 4-level page walk. Rest of the mechanism is similar to Legacy 48b 

VA mode, GPU has the capability to cache entire content of PML4 and try to limit the dynamic 

page walks to 3-level. 

Gen9 Per Process GTT  

Gen9 per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks 

on hardware. The listed mechanisms here are selectable per-context and descriptors are delivered to 

hardware as part of context descriptor. 

The entry contents are also modified to match the same format as IA32e page tables allowing future 

expansion for sharable page tables as well as higher order virtual addressing. 

Page Tables Entry (PTE) Formats  

Page Table Entry (PTE) formats follow the IA32e layout shown below. Note that the Hardware Address 

Width (HAW) is determined by Uncore: typically 39 for client products and 46 for server products. 
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Each table entry is further broken down along with the required functions. GFX has a 4-level page table 

which is pointed out by context descriptor starting with the 4th level of PML4. The next levels have 

slightly different formats depending on the size of the page supported. 1GB and 2MB page formats are 

required for support. 

Page walk in advanced mode with 48b VA requires 4 levels. The walk will start with a PML4 table pointer 

extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables. 

The following diagram shows the page walk that is needed for a 4KB page: 
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A 64 bit (48b canonical) address requires 4 levels of page table format where the context carries a 

pointer to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk 

thru various levels. 

To repurpose the caches the following mechanism is used: 

 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache. 

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD. 
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The 64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB 

page. In a page table every 16th entry (PTE#0, PTE#16, PTE#32, ... PTE#496) should be used to index. This 

is calculated using address[20:16] & “0000”. Note that hardware should not make any assumptions for 

any other PTEs. 
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With the 2MB Page walk, the last level of the page walk is skipped where the PD entry points to the final 

page. 
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For the support for 1GB page size, the following mechanism is needed. 
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Pointer to PML4 Table  

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be 

provided by PASID table entry in case of advanced context, else it will be provided by software as part of 

the legacy context with 48b addressing. 

Details of PASID entry is given in later sections. 

PML4E: Pointer to PDP Table  

PML4 is used to locate the page directory pointer tables distributed in physical memory. For gen8/9, 

PML4 will be used for advanced GPGPU context scheduled via PASID table as well as legacy context with 

48b VA. 

 

Bits Field Description 

63 XD: Execute 

Disable 

If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by this 

entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11 Ignored Ignored (h/w does not care about values behind ignored registers) 

10 EA: Extended 

Access 

Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this bit. 

If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU Only. 

9:8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 Reserved Reserved (must return 0’s) 

6 Ignored Ignored (h/w does not care about values behind ignored registers) 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 
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Bits Field Description 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server. 

PDPE: Pointer to PD Table  

PDP entry is used to locate the base of the PD table: 

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by 

this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this 

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU Only. 

9:8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 Reserved Reserved (must return 0’s) 
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Bits Field Description 

6 Ignored Ignored (h/w does not care about values behind ignored registers) 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table 

PDP entry for 1 GB Page 

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):30 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

29:13 Reserved Reserved (must return 0’s) 

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

11 Ignored/Reserved Ignored/not used by hardware 
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Bits Field Description 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this 

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU Only. 

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to 

indicate that the memory region pointed by this entry can be considered global 

Global paging is not used by GPU.  

7 Page Size Must be 1 to indicate 1GB page. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful 

write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 1GB Page. 

* HAW = 39 for client, and 46 for server. 

PD: Pointer to Page Table  

Page Directory entry has few different usage models: 

1. It can identify the base of the page table. 

2. It can define 2MB page table entries. 

Pointer to page table is given below: 
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Bits Field Description 

63 XD: Execute 

Disable 

If NXE=1 in the relevant extended-context-entry, execute permission is not granted 

for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4-KByte aligned page table referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11 IPS An MMIO level control has been introduced to manage 64KB page enabling. 

10 EA: Extended 

Access 

Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this bit. 

If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU Only. 

9:8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 Reserved Reserved (must return 0’s) 

6 Ignored Ignored (h/w does not care about values behind ignored registers) 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging structures. 

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table 
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PDE for 2MB Page is given below: 

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):21 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

20:13 Reserved Reserved (must return 0’s) 

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this 

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU Only. 

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to 

indicate that the memory region pointed by this entry can be considered global 

Global paging is not used by GPU.  

7 Page Size Must be 1 to indicate 2MB page. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful 

write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 
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Bits Field Description 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 2MB Page. 

* HAW = 39 for client, and 46 for server. 

PTE: Page Table Entry for 64KB Page  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):16 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

15:12 Reserved Reserved (must return 0’s) 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this 

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

 This bit applies to GPU Only. 

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to 

indicate that the memory region pointed by this entry can be considered global 

Global paging is not used by GPU.  

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful 

write transaction. See later sections for A/D-bit management. 
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Bits Field Description 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

64KB pages need to be enabled via MMIO along with the PDE IPS bit per directory entry. 

* HAW = 39 for client, and 46 for server. 

PTE: Page Table Entry for 4KB Page  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has been 

used for address translation by device. It is the devices responsibility to set this 

bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 
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Bits Field Description 

 This bit applies to GPU Only. 

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w to 

indicate that the memory region pointed by this entry can be considered global 

Global paging is not used by GPU.  

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a successful 

write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to 

set this bit for the first access to the region defined with this page table entry. See 

later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights. 

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 4KB Page. 

* HAW = 39 for client, and 46 for server. 

PPGTT for 32b Virtual Address  

For page walk in legacy mode with 32b VA, we need two levels. The walk starts with a PDP pointer 

provided by the context descriptor, and uses the 32b VA as an index to consecutive levels of page tables. 

Hardware implements 16KB intermediate caches to limit the page walk needed to a single level, to have 

the same sensitivity to latency as previous generations. 

The following diagram shows the page walk needed for a 4KB page. 
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Page Table Entry formats for 32b VA use the following formats: 

 

PDE for the page table 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 

Physical address of 4-KByte aligned page table referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests targeted to the 

memory range pointed by this PDE. 

In Legacy mode with 32b VA, R/W bits from PDE are not used.  

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table 

PTE for 64KB page 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):16 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

15:10 Ignored Ignored (h/w does not care about values behind ignored registers) 



 

    

64   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Bits Field Description 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

PTE for 4KB Page 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 
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Bits Field Description 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

* HAW = 39 for client, and 46 for server. 

Walk with 64KB Page  

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page. 

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is 

calculated using address[21:16] & “0000”. Note that hardware should not make any assumptions for any 

other PTEs. 
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Walk with 2MB Page  

PPGTT32 does not support 2MB pages. 

Walk with 1GB Page  

PPGTT32 does not support 1GB pages. 
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PPGTT for Standard Context (64b VA)  

For page walk in advanced mode with 48b VA, we need four levels. The walk starts with a PML4 table 

pointer given by GFX software and uses the 48b VA as index to consecutive levels of page tables. 

The following diagram shows the page walk that is needed for a 4KB page: 

 

A 64-bit (48b canonical) address requires 4-levels of page table format where the context carries a 

pointer to the highest level page table (PML4 pointer) via PASID. The rest of the walk is a normal page 

walk thru the various levels. 
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To repurpose the caches the following mechanism is used: 

 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache. 

 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache. 

The design sections the 512 entries within 4KB into separate areas for PML4, PDP, and PD. 

Page Table Entry (PTE) formats follow a similar layout to IA32e as given below. 

 

Each table entry is further broken down along with the required functions. GFX has a 4-level page table 

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different 

formats depending on the size of the page supported. 1GB and 2MB page formats are required for 

support. 

In 48b legacy mode, the pointer to the PML4 table is provided via the context descriptor provided by 

GFX software. The PML4 entry format is given below and points to the base of the PDP table. 
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Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 

Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access 

rights.  

GPU does not support Supervisor mode contexts. 

In 64b Legacy, R/W in PML4 entry can not be used for RO pages.   

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table 

PDP entry is used to locate the page directory. Similar to IA32e page tables, legacy 48b VA supports 1GB 

pages, the PDPE has a mechanism to identify a way to say whether this PDPE represents a pointer to 

page directory or to a contiguous 1GB physical memory. PDP entry format is given below and points to 

the base of PD table. 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 

Physical address of 4-KByte aligned page-directory table referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access 

rights.  

GPU does not support Supervisor mode contexts. 

In 64b Legacy, R/W in PDP entry can not be used for RO pages 

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table 
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PDP entry for 1GB Page 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):30 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

29:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 1GB Page. 
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Page Directory entry point to the base of the page table and format is given below. 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 

Physical address of 4-KByte aligned page- table referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access 

rights.  

GPU does not support Supervisor mode contexts. 

In 64b Legacy, R/W in PD entry can not be used for RO pages 

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table 

Page Directory entry for 2MB page: 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):21 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

20:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 
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Bits Field Description 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 1GB Page. 

Page Table entry for 64KB page: 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):16 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

15:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 
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Bits Field Description 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

Page Table Entry for 4KB page: 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

* HAW = 39 for client, and 46 for server. 
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Walk with 64KB Page  

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page. 

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is 

calculated using address [20:16]& “0000”. Note that hardware should not make any assumptions for any 

other PTEs. 
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Walk with 2MB Page  

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final 

page. 
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Walk with 1GB Page  

For the support for 1GB page size, the following mechanism is needed. 

 



 Memory Views 
  

 

Doc Ref # IHD-OS-SKL-Vol 5-05.16   77 

Gen9 Global GTT  

The Global GTT mechanism in gen9 looks very similar to pre-gen8 with the distinction of page table 

entry. Aperture and display will still use the global GTT even if GT core is mapped via per-process GTT. 

The PTE format for Gen9 is updated to match per process GTT definitions and GSM is now expanded in 

size (2MB=>8MB) to cover for the entire 4GB (32b virtual addressing) space. Each entry corresponding to 

a 4KB page with 2^20 entries in GSM (each with 8B content) 

For “MI_update_GTT”, the page address provided 31:12 need to be shifted down to 22:3 for the correct 

QW position within the GGTT. 

Page Table Entry  

The following page table entry will be used for Global GTT: 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

Address Physical address of 4KB memory page referenced by this entry. 

11:1 Ignored Ignored (h/w does not care about values behind ignored registers) 

0 Present When set to 1, indicates that this Page Table Entry is Valid, and the corresponding page is 

Present in physical memory 

* HAW = 39 for client, and 46 for server. 

The GPU accesses GGTT table entries as uncacheable. 
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Page Walk  

The global GTT page walk is identical to what it was before gen8. The only difference would be that each 

entry is 8B (instead of 4B) hence the entry selection needs to be updated once the corresponding Page 

Table miss read is returned. 
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Legacy mode with 32b VA  

Gen9 page walker is capable supporting 32b VA address with optimized page tables, this is to keep the 

walk to a single level. 

Page Walk in Legacy mode with 32b VA  

For page walk in legacy mode with 48b VA, we need 2 levels. The walk will start with a PDP pointer 

provided by the context descriptor and uses the 48b VA as index to consecutive levels of page tables. 

Hardware implements 16KB intermediate caches to limit the page walk needed to a single level to have 

the same sensitivity to latency as previous generations. 

The following diagram shows the page walk that is needed for a 4KB page. 
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Walk with 64KB Page  
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Page Table Entry (PTE) Formats  

Page Table Entry formats for 32b VA use the following format: 

 

PDE for Page Table  

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 

Physical address of 4-KByte aligned page table referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests targeted to the 

memory range pointed by this PDE. 

In Legacy mode with 32b VA, R/W bits from PDE are not used.  

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server. 
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PTE: Page Table Entry for 64KB Page  

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):16 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

15:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

* HAW = 39 for client, and 46 for server. 



 

    

84   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

PTE: Page Table Entry for 4KB Page  

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: Address Physical address of a 4KB memory page referenced by this entry. 

 This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry. 

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present This bit must be “1” to point to a valid Page. 

* HAW = 39 for client, and 46 for server. 
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Legacy mode with 48b VA  

Legacy mode with 48b VA enables larger virtual space while keeping the page walk compatible with 

IA32e. 

Page Walk in Legacy 48b Mode  

For page walk in advanced mode with 48b VA, we need 4 levels. The walk will start with a PML4 table 

pointer extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables. 

The following diagram shows the page walk that is needed for a 4KB page. 
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64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer 

to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk thru 

various levels. 

To repurpose the caches the following mechanism will be used: 

 3d: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache 

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache 

 VEBOX, Blitter: each with a 4KB acting as PML4, PDP, PD cache. 

Note: design can section the 512 entries within 4KB to separate areas for PML4, PDP and PD. 

Walk with 64KB Page  

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page. 

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is 

calculated using address [20:16]& “0000”. Note that hardware should not make any assumptions for any 

other PTEs.  
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Walk with 2MB Page  

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final 

page. 
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Walk with 1GB Page  

For the support for 1GB page size, the following mechanism is needed. 
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Page Tables Entry PTE Formats  

Page Table Entry (PTE) formats will follow the IA32e layout as given below: 

 

Each table entry is further broken down along with the required functions. GFX has a 4 level page table 

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different 

formats depending on the size of the page supported. 1GB and 2MB page formats are required for 

support. 

Pointer to PML4 table  

In legacy mode, pointer to PML4 table is provided via the context descriptor. 
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PML4E: Pointer to PDP Table  

 

Bits Field Description 

63:HAW* 
Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 
Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled 

(NESTE=1) in the relevant extended-context entry. 

11:2 
Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 
Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access 

rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server.  

PDPE: Pointer to PD Table  

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to 

identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB 

physical memory. 
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PDPE for PD  

 

Bits Field Description 

63:HAW* 
Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 
Physical address of 4-KByte aligned page-directory table referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled 

(NESTE=1) in the relevant extended-context entry. 

11:2 
Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 
Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. Access rights are described 

later. 

GPU does not support Supervisor mode contexts. 

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server. 
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PDPE for 1GB Page  

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):30 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

29:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, 

write accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present This bit must be “1” to point to a valid Page. 

* HAW = 39 for client, and 46 for server.  
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PD: Pointer to Page Table  

This section describes the following: 

 PDE for Page Table 

 PDE for 2 MB Page 

PDE for Page Table  

 

Bits Field Description 

63:HAW* 
Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: 

Address 
Physical address of 4-KByte aligned page- table referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are enabled 

(NESTE=1) in the relevant extended-context entry. 

11:2 
Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: 

Read/Write 
Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant extended-

context-entry) to the memory region controlled by this entry. See a later section for access 

rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PDP Entry is present. The value must be “1” to point to a page directory pointer table. 

 * HAW = 39 for client, and 46 for server. 
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PDE for 2MB Page  

 

Bits Field Description 

63:HAW* 
Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):21 

ADDR: Address 
Physical address of 1GB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

20:10 
Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null 
For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 
Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 
For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 
Ignored Ignored (h/w does not care about values behind ignored registers) 

4 
PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 
For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 
Ignored Ignored (h/w does not care about values behind ignored registers) 

1 R/W: Read/Write 
Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 
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Bits Field Description 

0 P: Present It must be “1” to point to a 1GB Page. 

* HAW = 39 for client, and 46 for server. 

PTE: Page Table Entry for 64KB Page  

 

Bits Field Description 

63:HAW* 
Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):16 

ADDR: Address 
Physical address of 64KB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

15:10 
Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null 
For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, write 

accesses are dropped. 

8 
Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 
For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 
Ignored Ignored (h/w does not care about values behind ignored registers) 

4 
PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 
For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 
Ignored Ignored (h/w does not care about values behind ignored registers) 



 Memory Views 
  

 

Doc Ref # IHD-OS-SKL-Vol 5-05.16   97 

Bits Field Description 

1 R/W: Read/Write 
Write permission rights. If 0, write permission not granted for requests with user-level 

privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

* HAW = 39 for client, and 46 for server. 

PTE: Page Table Entry for 4KB Page 

 

Bits Field Description 

63:HAW* Ignored Ignored (h/w does not care about values behind ignored registers) 

(HAW-

1):12 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations are 

enabled (NESTE=1) in the relevant extended-context entry. 

11:10 Ignored Ignored (h/w does not care about values behind ignored registers) 

9 N: Null For Tile-Resources, private PPGTT tables enables for driver to merge Null Page 

information to primary (1st Level) translation tables. If Null=1, the h/w will avoid the 

memory access and return all zero’s for the read access with a null completion, 

write accesses are dropped. 

8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 PAT: Page 

Attribute 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6:5 Ignored Ignored (h/w does not care about values behind ignored registers) 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 Ignored Ignored (h/w does not care about values behind ignored registers) 
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Bits Field Description 

1 R/W: 

Read/Write 

Write permission rights. If 0, write permission not granted for requests with user-

level privilege (and requests with supervisor-level privilege, if WPE=1 in the relevant 

extended-context-entry) to the memory region controlled by this entry. See a later 

section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

* HAW = 39 for client, and 46 for server.   

Advanced mode with 48b VA and IA32e Support  

In advanced mode, Gen9 per process GTT mechanism supports IA32e compatible page tables. Paging 

mechanism is controlled via IOMMU which shall be owned by OS or GFX driver (not both at the same 

time). 

Page Walk in Advanced Mode  

For page walk in advanced mode with 48b VA, we need 4 levels. The walk will start with a PML4 table 

pointer extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables. 

The following diagram shows the page walk that is needed for a 4KB page. 
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64bit (48b canonical) address requires 4-levels of page table format where the context carries a pointer 

to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk thru 

various levels. 

To repurpose the caches the following mechanism will be used: 

 3d: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache 

 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache 

 VEBOX, Blitter: each with a 4KB acting as PML4, PDP, PD cache. 

Note: design can section the 512 entries within 4KB to separate areas for PML4, PDP and PD. 
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Walk with 64KB Page  

64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB page. 

In page table every 16th entry (PTE#0, PTE#16, PTE#32….PTE#496) should be used to index. This is 

calculated using address [20:16]& “0000”. Note that hardware should not make any assumptions for any 

other PTEs.  
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Walk with 2MB Page  

With the 2MB Page walk, last level of the page walk is skipped where the PD entry points to the final 

page. 
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Walk with 1GB Page  

For the support for 1GB page size, the following mechanism is needed. 
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Page Tables Entry (PTE) Formats  

Page Table Entry (PTE) formats will follow the IA32e layout as given below: 

 

Each table entry is further broken down along with the required functions. GFX has a 4 level page table 

which is pointed out by context descriptor starting with the PML4. The next levels have slightly different 

formats depending on the size of the page supported. 1GB and 2MB page formats are required for 

support. 

Pointer to PML4 table  

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be 

provided by PASID table entry in case of advanced context, else it will be provided by software as part of 

the legacy context with 48b addressing. 

Details of PASID entry is given in later sections. 
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PML4E: Pointer to PDP Table  

 

Bits Field Description 

63 XD: Execute 

Disable 

If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by 

this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 

11 Ignored Ignored (h/w does not care about values behind ignored registers) 

10 EA: Extended 

Access 

Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to set 

this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9:8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 Reserved Reserved (must return 0’s) 

6 Ignored Ignored (h/w does not care about values behind ignored registers) 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table entry. 

See later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging 

structures. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

GPU does not support any memory type but WB when accessing paging 

structures. 



 Memory Views 
  

 

Doc Ref # IHD-OS-SKL-Vol 5-05.16   105 

Bits Field Description 

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PML4 Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server. 

PDPE: Pointer to PD Table  

PDP entry is used to locate the page directory. IA32e supports 1GB pages, the PDPE has a mechanism to 

identify a way to say whether this PDPE represents a pointer to page directory or to a contiguous 1GB 

physical memory. 

PDPE for PD  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when 

XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4-KByte aligned page-directory-pointer table referenced by 

this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 

11 Ignored/Reserved Ignored/not used by hardware 
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Bits Field Description 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to 

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9:8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 Reserved Reserved (must return 0’s) 

6 Ignored Ignored (h/w does not care about values behind ignored registers) 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table 

entry. See later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging 

structures. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

GPU does not support any memory type but WB when accessing paging 

structures. 

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PDP Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server.   
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PDPE for 1GB Page  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when 

XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):30 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 

29:13 Reserved Reserved (must return 0’s) 

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to 

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w 

to indicate that the memory region pointed by this entry can be considered 

global 

Global paging is not used by GPU.  

7 Page Size Must be 1 to indicate 1GB page. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a 

successful write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table 

entry. See later sections for A/D-bit management. 
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Bits Field Description 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present The value must be “1” to point to a 1GB Page. 

* HAW = 39 for client, and 46 for server. 

PD: Pointer to Page Table  

PDE for Page Table  

 

Bits Field Description 

63 XD: Execute 

Disable 

If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4-KByte aligned page table referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 
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Bits Field Description 

11 IPS If FL64KPE=1 in the corresponding PASID entry, the page table referenced by 

this PD entry with IPS=1 translates into 64KB pages. If IPS=0, the page table 

referenced here translates into 4KB pages. 

If FL64KPE=0 in the corresponding PASID entry, the IPS value is ignored and the 

page table referenced by this entry translates into 4KB pages. 

10 EA: Extended 

Access 

Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to set 

this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9:8 Ignored Ignored (h/w does not care about values behind ignored registers) 

7 Reserved Reserved (must return 0’s) 

6 Ignored Ignored (h/w does not care about values behind ignored registers) 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table entry. 

See later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

GPU does not support any memory type but WB when accessing paging 

structures. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

GPU does not support any memory type but WB when accessing paging 

structures. 

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present PD Entry is present. It must be “1” to point to a page directory pointer table 

* HAW = 39 for client, and 46 for server.   
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PDE for 2MB Page  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when 

XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):21 

ADDR: Address Physical address of 1GB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 

20:13 Reserved Reserved (must return 0’s) 

12 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended Access Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to 

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w 

to indicate that the memory region pointed by this entry can be considered 

global 

Global paging is not used by GPU.  

7 Page Size Must be 1 to indicate 2MB page. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a 

successful write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table 

entry. See later sections for A/D-bit management. 
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Bits Field Description 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 U/S: User/Supervisor User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 2MB Page. 

* HAW = 39 for client, and 46 for server.   

PTE: Page Table Entry for 64KB Page  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):16 

ADDR: Address Physical address of 64KB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 

15:12 Reserved Reserved (must return 0’s) 

11 Ignored/Reserved Ignored/not used by hardware 
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Bits Field Description 

10 EA: Extended 

Access 

Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to 

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w 

to indicate that the memory region pointed by this entry can be considered 

global 

Global paging is not used by GPU.  

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a 

successful write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table 

entry. See later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 64KB Page. 

* HAW = 39 for client, and 46 for server.   
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PTE: Page Table Entry for 4KB Page  

 

Bits Field Description 

63 XD: Execute Disable If NXE=1 in the relevant extended-context-entry, execute permission is not 

granted for requests to the memory region controlled by this entry when XD=1. 

Not support in gen9 

62:52 Ignored Ignored (h/w does not care about values behind ignored registers) 

51:HAW* Reserved Reserved (must return 0’s) 

(HAW-

1):12 

ADDR: Address Physical address of 4KB memory page referenced by this entry. 

This field is treated as Guest Physical Address (GPA) when Nested translations 

are enabled (NESTE=1) in the relevant extended-context entry. 

11 Ignored/Reserved Ignored/not used by hardware 

10 EA: Extended 

Access 

Extended Access bit is added for devices to separate accesses from IA cores. If 

EAFE=1 in the relevant PASID-entry, this bit indicates whether this entry has 

been used for address translation by device. It is the devices responsibility to 

set this bit. If EAFE=0 in the relevant PASID-entry, this bit is ignored. 

This bit applies to GPU Only.  

9 Ignored Ignored (h/w does not care about values behind ignored registers) 

8 G: Global If PGE=1 in the corresponding context table entry, this field can be set by s/w 

to indicate that the memory region pointed by this entry can be considered 

global 

Global paging is not used by GPU.  

7 PAT: Page Attribute For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 

6 D: Dirty D-bit needs to be managed by h/w as the table entry is accessed with a 

successful write transaction. See later sections for A/D-bit management. 

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs 

to set this bit for the first access to the region defined with this page table 

entry. See later sections for A/D-bit management. 

4 PCD: Page level 

cache disable 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory-pointer table 

referenced by this entry. 
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Bits Field Description 

3 PWT: Page level 

Write-through 

For devices operating in the processor coherency domain, this field indirectly 

determines the memory type used to access the page directory- pointer table 

referenced by this entry.  

2 U/S: 

User/Supervisor 

User vs supervisor access rights. If 0, requests with user-level privilege are not 

allowed to the memory region controlled by this entry. See section for access 

rights.  

GPU does not support Supervisor mode contexts.  

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with 

user-level privilege (and requests with supervisor-level privilege, if WPE=1 in the 

relevant extended-context-entry) to the memory region controlled by this entry. 

See a later section for access rights. 

GPU does not support Supervisor mode contexts. 

0 P: Present It must be “1” to point to a 4KB Page. 

* HAW = 39 for client, and 46 for server.   

GTT Cache  

Processor graphics page walker implements a GTT cache which holds the remaining entries that are read 

as a cacheline but not used for the immediate page walk. This is only applicable in case of leaf walks and 

not including the 2MB/1GB page sizes. When SW enables the use of 2MB/1GB page sizes, it must disable 

the GTT cache. 

GFX Page Walker (GAM)  

GPU supports various engines behind the same page walker. These streams/contexts are identified Client 

level IDs which are carried via the arbitration pipeline. Page walker using look-up tables does the correct 

selection for the page tables in case of concurrent context are running at the same time. 

There are two different types of page table types: 

Global graphics translation table (GGTT) is a single common translation table used for all processes. 

There can be many Per-process graphics translation table (PPGTT). This requires an additional lookup for 

translation. 

Virtual Memory Structure Memory Location 

Global (GGTT) GSM Only 

Per-Process (PPGTT) – private 2 to4-level, Page Tables anywhere 

Per-Process (IA32e) – shared 4 levels, Page Tables anywhere 

  IA32e compatible PPGTT is added to gen8/gen9 to enable SVM (shared virtual memory) functions. 
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Context Definition for GFX Page Walker  

Page Walker blocks need details about the context to decide on what type of page tables are used, what 

the error handling cases are, and many other details to operate. The information is passed to Page 

Walker (GAM) by the respective command streamer/DMA. 

GAM needs to support the following engines: 

 Render 

 Media (VDBox) x2 

 Blit 

 VEBOX x2 

The following fields are sent to GAM: 

 Context Type (4 bits):  

 Legacy vs Advanced Context. Defines the context type and qualifies the rest of the fields. 

Same field may mean something else between the Legacy vs Advanced context. There is no 

restriction for what type of context can run in either combination.  

 Requests without address-space-identifier (Legacy Context): These are the normal 

memory requests from endpoint devices. These requests typically specify the type of 

access (read/write/atomics), targeted DMA address/size, and identity of the device 

originating the request. 

 Requests with address-space-identifier (Advanced Context): These are memory requests 

with added information identifying the targeted process address space from endpoint 

devices supporting virtual memory capabilities. Beyond attributes in normal requests, 

these requests specify the targeted process address space identifier (PASID), and 

extended attributes such as Execute-Requested (ER) flag (to indicate reads that are 

instruction fetches), and Privileged-mode-Requested (PR) flag (to distinguish user 

versus supervisor access). For details, refer to the Process Address Space ID (PASID) 

Capability in the PCI-Express specifications. 

 A/D Support Enable. Access and Dirty bits are used when OS is managing the page tables 

and has been added to IA32e compatible page walk. Context defines whether A/D bits need 

to be managed via GPU (only applicable in Advanced Context). 

 Privileged Context Support. Enables GPU to be able to run a privileged context which 

translates into page table accesses regardless of user vs supervisor privileges (only 

applicable in Advanced Context). 

 32b vs 48b VA Support. Enables 48b VA in page tables for the page walks. The rest of the 

HW is seamless to 32b vs 48b VA address walks, however GAM does the check and properly 

aligns the page walk to address bits. Note: Only applicable in Legacy Context. Advanced 

Context is always 48b. 

 Page Fault Support Model: 
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 Fault and Hang: The only supported fault handling mode for legacy context and it is 

not applicable to advanced mode. Optionally hang can be skipped for HW to make 

progress (same as Gen7.5). 

 Fault and Stream (Switch if needed): Context can survive thru a number of page faults 

and could be switched out by the scheduler if a certain threshold is reached. 

 Fault and Halt: HW detects page fault and reports to SW; the request is flagged in 

pending queue as “waiting for page response” and is halted until the page response is 

returned. 

 Function Number – 3-bit field that defines the function number of the device. GFX device is 

always on BUS=0 and DEVICE=2. If we are not virtualized, our FUNCTION#=0 however if 

virtualized function number can be any 8 possible values (i.e. 0-7). The BUS/DEVICE/FUNCTION 

numbers are used for the initial walk for ROOT and CONTEXT tables. 

 PASID – Process Address Space IDentifier: Use to identify the context that is submitted to HW. We 

use the PASID in many places where during the page walk (i.e. PASID table look up) or while 

communicating with SW on page faults. Each engine could be running an independent context 

with different PASID. The page walker should have a mechanism to be able to cache at least some 

number of PASID table entries (matching the engine count) for faster walk. 

 Context ID (Queue ID, Bell ID) – Context ID is used to further qualify the running context beyond 

the PASID. PASID is given per process, and same process may allocate multiple queues to 

communicate with HW. The only way to further identify the process is to use an additional ID. For 

GFX HW Context ID could be same as the bell number assigned to it. GAM HW uses the context ID 

to populate the queue ID field while communicating page faults to SW. 

 Page Table Pointers – The field could be up to 256 bits (i.e. 4x64bits) to identify the page table 

pointers associated with the context. For legacy 32b context, the entire 256b is valid representing 

the 4 PDPTR table entries. For 48b legacy context only the lower 64b is relevant pointing to base of 

PML4. In case of advanced context, PASID is given in the context definition. 

Context Definition Delivery  

Context Definition is supposed to be delivered from the corresponding command streamer to GAM and 

GAM has independent storage for each engine present.  

Context Definition is given by *CS to GAM via a new message: 

Message: “Context Available” 

GAM prepares for new context, cleans up internal state and does the proper fencing. Most of these steps 

should have been performed when context switch request was done for the previous context, but added 

here for completeness. 

Message: “Context Receive Ready” 

GAM is ready for the context. *CS writes all new context values into the descriptor registers. To push all 

context descriptors CS sends the following message to GAM also indicating new context descriptor is 

downloaded. 

Message: “Context Launched” 
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GAM does the context requirements and sends the following message to CS to resume its command 

parser. 

Message: Context Confirmed 

GAM should send context confirmed message only after PD restore is done. CS waiting for context 

confirmed message is treated as PD restore busy. Since all clients memory interface are blocked during 

PD restore it doesn’t make any difference if the context confirmed message is send by GAM immediately 

or after PD restore. 

Element Descriptor Register  

General 

Description 

Element Information: The register is populated by command streamer and consumed by 

GAM 

Register Offset See per engine list below. 

 

Bits Access Default Field 

63:32 RO Xh Context ID: 

 Context identification number assigned to separate this context from others. Context IDs 

needs to be recycled in such a way that there cannot be two active contexts with the same 

ID. 

 This is a unique identification number by which a context is identified and referenced. 

31:12 RO Xh LRCA: 

 Command Streamer Only 

11:9 RO Xh Function Number: 

 GFX device is considered to be on Bus0 with device number of 2. Function number is 

normally assigned as 000b. 

    

 Not used in Gen8/9. 

8 RO Xh Privileged Context / GGTT vs PPGTT mode: Differs in legacy vs advanced context modes: 

In Legacy Context: Defines the page tables to be used. This is how page walker come to 

know PPGTT vs GGTT selection for the entire context. 

 0: Use Global GTT 

 1: Use Per-Process GTT 

    

7:6 RO Xh 
Fault Model: 

00b: Fault & Hang. Same mode as Gen7.5. 

01b: Fault & Halt/Wait. Same as initial release of Fault & Halt as in gen7.5. No Advanced 

Context.  

10b: Reserved 

11b: Reserved 



 

    

118   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Bits Access Default Field 

5 RO Xh Deeper IA coherency Support: 

In Advanced Context: Defines the level of IA coherency: 

 0: IA coherency is provided at LLC level for all streams of GPU (i.e. Gen7.5 like mode). 

 1: IA coherency is provided at L3 level for EU data accesses of GPU. 

4 RO Xh A&D Support / 32&64b Address Support: Differs in legacy vs advanced context modes: 

In Legacy Context: Defines 32b vs 64b (48b canonical) addressing format: 

 0: 32b addressing format. 

 1: 64b (48b canonical) addressing format. 

In Advanced Context: Defines A&D bit support: 

 0: A&D bit management in page tables is NOT supported. 

 1: A&D bit management in page tables is supported. 

3 RO Xh Context Type: Legacy vs Advanced 

 Defines the context type. 

 0: Advanced Context: Defines the rest of the advanced capabilities (i.e. OS page table 

support, fault models, ...). Note that advanced context is not bounded to GPGPU. 

 1: Legacy Context: Defines the context as legacy mode which is similar to prior generations 

of Gen8. 

Note: Bits [8:4] differs in functions when legacy vs advanced context modes are selected. 

2 RO Xh FR: Command streamer specific. 

1 RO xh Scheduling Mode: 

 0: Indicates Ring Buffer mode of scheduling. 

 1: Indicates execlist mode of scheduling. 

0 RO Xh Valid: Indicates that element descriptor is valid. If GAM is programmed with an invalid 

descriptor, it continues but flags an error. 

PDP0/PML4/PASID Descriptor Register  

General 

Description 

PDP0/PML4/PASID: The register is populated by command streamer and consumed by GAM. It 

contains one of the 3 values which is determined by looking at the element descriptor. 

Register Offset See per engine list below 

 

Bits Access Default Field 

63:0 RO Xh PDP0/PML4/PASID: 

This register can contain three values which depend on the element descriptor definition. 

PASID[19:0]: Populated in the first 20bits of the register and selected when Advanced 

Context flag is set. 

PML4[38:12]: Pointer to base address of PML4 and selected when Legacy Context flag is set 

and 64b address support is selected 

PDP0[38:12]: Pointer to one of the four page directory pointer (lowest) and defines the first 

0-1GB of memory mapping 

Note: This is a guest physical address 
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PDP1 Descriptor Register  

General 

Description 

PDP1: The register is populated by command streamer and consumed by GAM. It contains one 

of the pointers to PD. 

Register Offset See per engine list below 

 

Bits Access Default Field 

63:12 RO Xh PDP1: 

Pointer to one of the four page directory pointer (lowest+1) and defines the first 1-2GB of 

memory mapping 

Note: This is a guest physical address 

PDP2 Descriptor Register  

General 

Description 

PDP2: The register is populated by command streamer and consumed by GAM. It contains one 

of the pointers to PD. 

Register Offset See per engine list below 

 

Bits Access Default Field 

63:12 RO Xh PDP2: 

Pointer to one of the four page directory pointer (lowest+2) and defines the first 2-3GB of 

memory mapping 

Note: This is a guest physical address 

PDP3 Descriptor Register  

General 

Description 

PDP3: The register is populated by command streamer and consumed by GAM. It contains one 

of the pointers to PD. 

Register Offset See per engine list below 

 

Bits Access Default Field 

63:12 RO Xh PDP3: 

Pointer to one of the four page directory pointer (lowest+3) and defines the first 3-4GB of 

memory mapping 

Note: This is a guest physical address 
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List of Registers and Command Streamers  

The following registers are message registers and not written directly by SW. 

Engine Offset Description 

Render x4400h Element Descriptor Register 

x4408h PDP0/PML4/PASID Descriptor Register 

x4410h PDP1 Descriptor Register 

x4418h PDP2 Descriptor Register 

x4420h PDP3 Descriptor Register 

Media0 

 (VDBOX0) 

x4440h Element Descriptor Register 

x4448h PDP0/PML4/PASID Descriptor Register 

x4450h PDP1 Descriptor Register 

x4458h PDP2 Descriptor Register 

x4460h PDP3 Descriptor Register 

Media1 

 (VDBOX1) 

x4480h Element Descriptor Register 

x4488h PDP0/PML4/PASID Descriptor Register 

x4490h PDP1 Descriptor Register 

x4498h PDP2 Descriptor Register 

x44A0h PDP3 Descriptor Register 

VEBOX x44C0h Element Descriptor Register 

 x44C8h PDP0/PML4/PASID Descriptor Register 

 x44D0h PDP1 Descriptor Register 

 x44D8h PDP2 Descriptor Register 

 x44E0h PDP3 Descriptor Register 

Blitter x4500h Element Descriptor Register 

 x4508h PDP0/PML4/PASID Descriptor Register 

 x4510h PDP1 Descriptor Register 

 x4518h PDP2 Descriptor Register 

 x4520h PDP3 Descriptor Register 
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Messages: 

Message 

Name Source Destination Category Address Bit 

Mask 

Bit Value Description 

Context 

Available 

CS (GT) GAM (GT) self-clear 4004 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

CS(GT) self-clear 3438 0 16 1 Signal ack from GAM to CS in 

response to Context Available 

message from CS to GAM. 

Context 

Launched 

CS (GT) GAM (GT) self-clear 4004 1 17 1 Signal indicator to GAM that 

context descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

CS(GT) self-clear 3438 1 17 1 Signal ack from GAM to CS in 

response to Context Launched 

message from CS to GAM. 

         

Context 

Available 

BCS 

(GT) 

GAM (GT) self-clear 4014 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

BCS(GT) self-clear 23438 0 16 1 Signal ack from GAM to BCS in 

response to Context Available 

message from BCS to GAM. 

Context 

Launched 

BCS 

(GT) 

GAM (GT) self-clear 4014 1 17 1 Signal indicator to GAM that 

context descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

BCS(GT) self-clear 23438 1 17 1 Signal ack from GAM to BCS in 

response to Context Launched 

message from BCS to GAM. 

         

Context 

Available 

VECS 

(GT) 

GAM (GT) self-clear 4010 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

VECS(GT) self-clear 1B438 0 16 1 Signal ack from GAM to VECS in 

response to Context Available 

message from VECS to GAM. 

Context 

Launched 

VECS 

(GT) 

GAM (GT) self-clear 4010 1 17 1 Signal indicator to GAM that 

context descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

VECS(GT) self-clear 1B438 1 17 1 Signal ack from GAM to VECS in 

response to Context Launched 

message from VECS to GAM. 

         

Context 

Available 

VCS0 

(GT) 

GAM (GT) self-clear 4008 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context GAM VCS0(GT) self-clear 13438 0 16 1 Signal ack from GAM to VCS in 
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Message 

Name Source Destination Category Address Bit 

Mask 

Bit Value Description 

Receive 

Ready 

(GT) response to Context Available 

message from VCS to GAM. 

Context 

Launched 

VCS0 

(GT) 

GAM (GT) self-clear 4008 1 17 1 Signal indicator to GAM that 

context descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

VCS0(GT) self-clear 13438 1 17 1 Signal ack from GAM to VCS in 

response to Context Launched 

message from VCS to GAM. 

         

Context 

Available 

VCS1 

(GT) 

GAM (GT) self-clear 400C 0 16 1 Signal request from CS to GAM as 

new context is about to be 

submitted. 

Context 

Receive 

Ready 

GAM 

(GT) 

VCS1(GT) self-clear 1D438 0 16 1 Signal ack from GAM to VCS in 

response to Context Available 

message from VCS to GAM. 

Context 

Launched 

VCS1 

(GT) 

GAM (GT) self-clear 400C 1 17 1 Signal indicator to GAM that 

context descriptor is pushed. 

Context 

Confirmed 

GAM 

(GT) 

VCS1(GT) self-clear 1D438 1 17 1 Signal ack from GAM to VCS in 

response to Context Launched 

message from VCS to GAM. 

         

Updating Page Table Pointers (aka PD Load)  

In case of legacy context, driver is allowed to add/remove pages as long as it is ensured that h/w is not 

using these entries. Pre-gen8 flow allowed a mid-context PD load to update the PD entries and directed 

h/w to reload updated entries. 

Pre-loading of Page Directory Entries (PD load) for 32b legacy mode is not supported from Gen9 

onwards.  PD entries are loaded on demand when there is a miss in the PDE cache of the corresponding 

page walker.  Any new page additions by the driver are transparent to the HW, and the new page 

translations will be fetched on demand.  However, any removal of the pages by the driver should initiate 

a TLB invalidation to remove the stale entries. 
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Page Walker (GAM) Reset  

GAM gets all the engine specific resets as well as device and bus resets to manage its internal logic 

domains. It is the expectation of SW when a particular GPU engine (i.e. Render, Media…) gets reset, all its 

related HW is cleared and comes out fresh for reprogramming. That is true for most of the logic with the 

exception of some shared HW blocks. The following blocks require additional steps (post-reset) from SW 

to further clean-up the HW: 

 Hardware TLBs: The caching structures for the page walks are often considered shared resources. 

The expectation for GFX driver to clear the TLBs via “TLB Invalidate” prior to re-using the engine 

post reset. This is the same process that was followed on previous GPU generations. 

 Page Requests: At the time of the reset HW may have outstanding page requests to SW for page 

faulted accesses. These requests could be at any level hence it is required for SW to clear these 

paging requests pre/post-engine reset. Engine reset ensures that no new page requests are sent 

from HW. Page requests could be at the “page request queue” in memory where they could be 

mapped to a dummy page post engine reset completion. Or they could be at the MMIO registers 

which will block completion of the reset; it is up to SW to service paging request interrupts without 

waiting for the completion of reset request. 

Device reset (FLR) covers most of the page walker. However there are exceptions where all messaging 

towards the rest of the system (system agent) should not be impacted by it. 

All external interactions and IOMMU related blocks are kept under bus (system) reset. GAM keeps the 

following blocks outside the device reset: 

 IOMMU registers and content 

 All system agent messaging structures (including translation enable flows, root pointer structures, 

and DMA fault reporting pieces) 

An engine being reset also means the particular context that engine is running, is complete or taken out. 

This requires GAM to decrement the PASID_State Counter if the engine was running a PASID based 

(advanced) context. For FLR (device reset) similar requirement holds. In case of device reset, GAM needs 

to decrement all the PASID state counters that are active on the GPU before completing the sequence. 
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TLB Caching and Management  

As compared to previous generation of TLB entry, IA32e page translation entry is quite different. At every 

stage of the page different bits need to be taken into account and proper treatment is required. 

Regardless of PPGTT vs GGTT usage, the paging entry has the same format. Linear address are translated 

using a hierarchy of in-memory paging structures located using the contents of CR3. IA-32e paging 

translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4 

PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be 

accessed at any given time.IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 

1-GByte pages. 
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The following rules apply: 

1. M is an abbreviation for MAXPHYSICAL ADDRESS 

2. Reserved fields must be “0” 

3. Ignored field must be ignored (there could be private information) 

4. All ignore options are part of the context entry and coming from IOMMU definition. 
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TLB Caches  

For gen8/9 the caching structures are separated as following with the architectural view, this is also 

applicable to s/w view of these caches when it comes to invalidations. 

Context Cache - CC  

This is the storage for context table entry which is achieved as part of root/context table walk. 

Context cache can also be invalidated with directed invalidations, where HW needs to invalidate the 

content of the context cache along with all low level caches. 

PASID Cache - PC  

This is where the HW copy of the PASID table entry is kept and it is per context. This makes it unique for 

every HW engine that could be running an independent context (per GAM): 

 Render/GPGPU 

 MFX (VDBOX) – 1 

 MFX (VDBOX) – 2 

 Video Enhancement (VEBOX) – 1 

 Video Enhancement (VEBOX) – 2 

 Blitter 

The cache content is updated if the corresponding engine is running an advanced context where its page 

table pointers are accessible via PASID table. In case of legacy context running engine, corresponding 

PASID Cache entry is not valid. Recommendation is to keep ONE physical storage per engine which is 

filled/invalidated during the context switch time. 

PASID Cache can also be invalidated with the directed invalidations along with low level caches and 

needs to be re-filled prior to context resuming. 

Intermediate Page Walk Caches (PML4, PDP, PD) – PWC  

These are the stages where intermediate page walk entries are cached to speed-up/shorten the page 

walk when final TLB is missed. Each level can be cached separately or along with different levels, the 

cacheability structures will have programmability to move the boundary of different levels to 

accommodate more/less on each page walk level. However as a concept, for legacy 32b addressing 

mode, requirement is to cache 4PDPs along with 4x4KB PDs for certain engines, at least for render and 

media. The others will use cache concept.   
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TLB – Final Page Entry  

The size of the TLBs has been increased over the previous generation and should be targeting using the 

following list: 

 L3 TLB: 768 TLB entries – This is where all HDC, I$, Constant, State, and Sampler streams are stored. 

 MFX: 512 TLB entries – All Media streams (split 256/256 between two media engines). 

 BLT: 32 entries. 

 Z: 512 TLB entries – All depth accesses. 

 C: 256 (256 TLB entries) – All color accesses. 

 FF: 128 (128 TLB entries) – All FF accesses to memory. 

 VLF: 32 (32 TLB entries) – Media surface. 

 GAV: 64 (64 TLB entries) – Video enhancement. 

All TLB entries are increased to 48b to contain larger address as well as the page attributes attached to it. 

The max size of a single TLB is 256 entries, larger quantities have to be handled as set-associative 

storages. Set associativity will be managed by low order page bits (i.e. address#12, address#13, ...). 

Both Color and Z TLBs are designed to process a single memory request per cycle. To achieve a higher 

throughput where concurrent Color or Z read/write's are used, following register bit needs to be 

enabled: mmio0x04A30h [31] 

The sizes of RCCTLB and ZTLB is different in SKL and BXT.  In SKL both these have 448 entries and in BXT 

they only have 256 entries. 

    

The size of the L3 TLB is also different between projects.  The default TLB entry alocations are: 

 SKL (L3TLB-Gfx 640): L3(80:0-79), DC(100:80-179), TX(444:180-623), GATR(16:624-639) 

 SKL (L3TLB-GPGPU 640): L3(80:0-79), DC(460:80-539), TX(100:540-639) 

For giving more TLB resources for both DC and TX, the following allocations are recommended. 

 SKL (L3TLB-Gfx 640): L3(80:0-79), DC(544:80-623), TX(544:80-623), GATR(16:624-639) 

 SKL (L3TLB-GPGPU 640): L3(80:0-79), DC(560:80-639), TX(560:80-639) 

TLB Entry Content  

When a page walk entry is cached (or loaded prior to context start), certain bits need to be cached as 

well along with the physical address bits. The treatment on these bits would be considered when a HIT vs 

MISS decision needs to be made during a look up. 

The purpose of caching is to accelerate the paging process by caching individual translations in 

translation look-aside buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is 

referenced by a page number. It contains the following information from the paging-structure entries 

used to translate linear addresses with the page number: 
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  The physical address corresponding to the page number (the page frame). 

  The access rights from the paging-structure entries used to translate linear addresses with the 

page number: 

o  The logical-AND of the R/W flags. 

o  The logical-AND of the U/S flags. 

o  The logical-OR of the XD flags. 

  Attributes from a paging-structure entry that identifies the final page frame for the page number 

(either a PTE or a paging-structure entry in which the PS flag is 1): 

o  The dirty flag. 

o  The memory type. 

PRESENT: This is the same VALID bit description we had in previous page table designs. The lack of 

present bit (i.e. bit[0]=0) points that rest of the information in the page table entry is being invalid. For 

some fault models, even NOT PRESENT entries are cached to filter further page faults (see fault models 

on caching page faulting entries). If such entry is cached, there are couple ways that it can be removed 

from the page tables: 

1.  LRA selection where the entry becomes a victim for replacement 

2.  Global or Selective invalidation 

3.  Page fault response stating the faulting page is now fixed. 

R/W Privilege: Certain pages can be allocated as read-only and write operations are not allowed. To 

make this check work, TLB has to keep the R/W bit. This bit has no effect on read operations; however for 

write operation privilege needs to be checked. If there is mis-match, the result of the TLB look-up should 

be a MISS. This does not mean a page fault immediately; the walk has to be re-done as for any TLB MISS 

result. There are cases OS may change page table privileges without invalidating pages in TLB (note: all 

downgrades result in invalidation of the TLB, however upgrades can be done silently hence re-walk is 

required). In case where the TLB Miss is due to privilege mis-match, the existing entry from TLB has to be 

invalidated and page walk will bring in the most up-to-date copy from memory. 

The R/W privilege on final frame is generated as a logical-AND process of all upper page walks pointing 

to this location. 

User vs Supervisor Privilege: The GPU typically operates in user mode when it comes to page tables. So 

the GTT walk can be treated as faulted when GPU encounters a page with supervisor privileges and the 

context is marked as user mode. The faulted entry can be cached back into TLB with “P” bit off indicating 

a faulted entry. However the page fault report should carry the correct reason why h/w detected the fault 

in the first place which was the user vs supervisor privilege. There is an option in context header to define 

the context as supervisor, than it legal to access supervisor pages. 

  This is not stored in TLB 

The U/S privilege on final frame is generated as a logical-AND process of all upper page walks pointing 

to this location. 
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Accessed Bit: This where a stage of the page walk cannot be used if the accessed bit is not set for that 

level in the page walk. This is true for both storage into TLB as well as to make progress on the page 

walk. In order to achieve the process of Accessed bit, every stage of the ppGTT read is done via a new 

semantics between the GAM and GTI such that GTI can atomically process A-bit w/o running into access 

violations. The details of the semantics are defined as part of the following sections. The “A” bit does not 

need to be stored as part of the TLB, just the fact that a valid page table entry is present in the TLB does 

mean that h/w took care off the “A” bit at the time the page was brought up to TLB. Note that TLB 

prefetching is disabled when A-bit management is enabled. 

IA32e mode page tables cannot co-exist with TLB pre-fetching due to lack of A-bit management for all 

entries of the line. 

  This is not stored in TLB 

Dirty Bit: Similar to accessed bit, dirty bit needs to be managed. It is only applicable for “write” accesses. 

Given there are cases where a TLB entry was acquired as part of a read operation, the presence of D-bit 

should be maintained with the TLB. This gives us the capability to declare a TLB miss for a write access 

when the D-bit is not set even though TLB has a valid translation. In such case, The TLB entry needs to 

invalidated and the final stage of the walk needs to be re-done to ensure most up-to-date copy of GTT 

entry is brought into h/w. The operation of Dirty bit update is also atomic similar to A-bit management. 

Execute (XD) Bit: XD bit is also present on every stage of the walk and applicable to executable code 

that GT would be fetching. In the first pass, instruction cache accesses are not allowed to proceed if the 

corresponding page does not have the execute credentials set properly. Similar treatment of the TLB 

entry as privilege bits is expected. A page entry that was already cached in TLB and later accessed for 

instruction space will have to check the XD bit which is also stored in TLB. If mis-match, the end result is a 

TLB miss and walk has to be re-done replacing the different stages of the walk. 

The XD privilege on final frame is generated as a logical-OR process of all upper page walks pointing to 

this location. 

Faulted Bit: There are usage models where the faulted entries are cached in TLB. This is to filter further 

faults to the same page as opportunistic way to prevent fault storms. When faulted bit is set the address 

is included in the TLB look up but final treatment is fault filtering. The rest of the bits are used to define 

what would be the reason for the fault. If the look-up conflicts with the original faulted reason, a re-walk 

is required. As a basic case, take a read access bringing up a PTE with W-flag cleared. A subsequent write 

access has a conflict on privilege, and it will perform a re-walk. If the result of the re-walk is W-flag set, 

than TLB is upgraded and write makes progress. However if the result is still W-flag cleared, the write 

access will fault and TLB entry will be tagged as a faulted entry with only read-allowed. Subsequent write 

accesses will be filtered as fault but read accesses should cause a re-walk of the page and if successful, 

the TLB can be updated with PTE as valid with read-only attribute. 

TLB Accessed and Dirty Flags  

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag. 

For paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 

is the dirty flag. These flags are provided for use by memory-management software to manage the 

transfer of pages and paging structures into and out of physical memory. 



 

    

130   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Whenever the processor and/or GPU uses a paging-structure entry as part of linear-address translation, it 

sets the accessed flag in that entry (if it is not already set). 

Whenever there is a write to a linear address, the processor and/or GPU sets the dirty flag (if it is not 

already set) in the paging-structure entry that identifies the final physical address for the linear address 

(either a PTE or a paging-structure entry in which the PS flag is 1). 

Memory-management software may clear these flags when a page or a paging structure is initially 

loaded into physical memory. These flags are “sticky,” meaning that, once set, the processor and/or GPU 

does not clear them; only software can clear them. 

A processor and/or GPU may cache information from the paging-structure entries in TLBs and paging-

structure caches (see Section 4.10). This fact implies that, if software changes an accessed flag or a dirty 

flag from 1 to 0, the GPU might not set the corresponding bit in memory on a subsequent access using 

an affected linear address 

Accessed bit is applicable to every stage of the page walk, however the dirty bit is only applicable to final 

stage of the walk. 

The rule states that a particular access cannot be committed until the Accessed and/or Dirty bits are not 

visible to page management s/w. In order for GPU to follow the rule, GTT accesses (when A/D bits are 

supported) are going to be done via a special cycle definition between GAM and GTI. 

Updating A/D Bits  

New atomic operations are added to GAM to GPU interface (GTI) to handle paging entries. GAM has to 

set the correct atomic opcodes based on the access type and context entry controls as well as level of 

access. 

Requires setting for opcodes are given in the table below. The steps of operations in the atomic ALUs are 

given later in the document. 
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 The Following Atomics are only applicable in GTI and used for Page Walks 

 R/W => Bit[0] 

 Extended Access required => Bit[1] 

 Write Protect Enable => Bit[2] 

 Intermediate Entry => Bit[3] 

   

 Atomic 

 Operation Opcode Description 

 New 

Destination 

 Value Applicable 

Return Value 

(optional) 

Atomic_Page_update_0000 1100_0000 
Read Access 

Extended  Access bit is 

disabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5] if not 

set 

  new_dst 

Atomic_Page_update_0001 1100_0001 
Write Access 

Extended  Access bit is 

disabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0000 1100_0010 
Read Access 

Extended  Access bit is 

enabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,10] if not 

set 

  new_dst 
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Atomic_Page_update_0001 1100_0011 
Write Access 

Extended  Access bit is 

enabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,6,10] if 

not set 

  new_dst 

Atomic_Page_update_0100 1100_0100 
Read Access 

Extended  Access bit is 

disabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_0101 
Write Access 

Extended  Access bit is 

disabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0100 1100_0110 
Read Access 

Extended  Access bit is 

enabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_0111 
Write Access 

Extended  Access bit is 

enabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,6,10] if 

not set 

  new_dst 
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Atomic_Page_update_0000 1100_1000 
Read Access 

Extended  Access bit is 

disabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5] if not 

set 

  new_dst 

Atomic_Page_update_0001 1100_1001 
Write Access 

Extended  Access bit is 

disabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0000 1100_1010 
Read Access 

Extended  Access bit is 

enabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0001 1100_1011 
Write Access 

Extended  Access bit is 

enabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,6,10] if 

not set 

  new_dst 

Atomic_Page_update_0100 1100_1100 
Read Access 

Extended  Access bit is 

disabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5] if not 

set 

  new_dst 
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Atomic_Page_update_0101 1100_1101 
Write Access 

Extended  Access bit is 

disabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,6] if not 

set 

  new_dst 

Atomic_Page_update_0100 1100_1110 
Read Access 

Extended  Access bit is 

enabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,10] if not 

set 

  new_dst 

Atomic_Page_update_0101 1100_1111 
Write Access 

Extended  Access bit is 

enabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,6,10] if 

not set 

  new_dst 

  

Atomic updates are only possible for cacheable memory types. There could be cases where the PTE could 

be in WT/WC/UC space where atomic update is not possible via WB space. Those are the cases where IA 

cores use bus lock to update the A/D bits in PTE. 

GT core is not capable of supporting bus locks and has the following options. These options will be 

enabled/disabled via register space. 

Option#1: Ignore the PAT/MTRR setting of the PTE and update the space as WB with atomic ops. This is 

the place GAM will decide to go forward with atomic updates assuming WB space works 

Option#2: Once the memory type is determined and the end result of the page is WC/UC/WT space, we 

can not guarantee an atomic update. GAM will report an application error (catastrophic) to the scheduler 

and handle the case as error. 
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Bit Access 

Default 

Value Description 

 1  R/W  0b A/D Bit Update on non-WB Space: A/D bit updates are only possible via atomic 

operations which are required to be on WB space to work properly. On non-WB spaces, the 

A/D bit updates are done via bus locks which are not supported for GT. 

“1”: Ignore the page level cacheability and do atomic updates for A/D bit management 

“0”: Detect the page level cacheability as part of the atomic operation and throw a 

catastrophic error when non-WB space is seen for A/D bit updates. 

Replacement  

TLB replacements during runtime are based on LRA algorithm; in addition invalidations and page 

responses will have to invalidate the TLB entries. 

Invalidations of TLB  

There are various ways to invalidate TLBs: 

1. Traditional invalidation from command streamer: Could be part of any fence accesses including 

newly added atomics 

2. SVM based invalidations: Listed as part of the new SVM related invalidations, various stages of 

TLBs including intermediate stages can be invalidated selectively and/or as a whole.  

3. Context Switch: A context switch has to invalidate caches to make sure we have no residual value 

of the TLBs across multiple PASIDs. GAM will treat the context reload message from CS as a form 

of TLB invalidation. 

4. A page response: should invalidate faulted recordings. It should be done via address matching to 

kick the faulted entries within the matching PASID. 

Invalidation response “Invalidation Wait Descriptor” should also be a fence for both READs and WRITEs 

that used the previous TLB entries. GAM can only respond to “invalidation wait descriptor” after getting a 

GTI EMPTY indication. 

Optional Invalidations  

The following cases are listed as page table updates which software may choose not to invalidate the 

TLBs. 

 If a paging-structure is modified to change the Present (Valid) flag from 0 to 1, s/w may choose 

not to invalidate TLBs. This affects only the case where GPU keeps the faulted page in its TLB to 

filter out future faults. Regardless of s/w does invalidation or not, for the cases where h/w cares, 

there will be a page response from s/w which will be used to shootdown the faulted record from 

the TLB. 
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GAM will put faulted entries to its TLBs only if there has been page request for it, which 

means that only faultable surfaces can be stored in GAM TLBs as a faulted entry. 

 If a paging-structure entry is modified to change the accessed flag from 0 to 1,no invalidation is 

necessary (assuming that an invalidation was performed the last time the accessed flag was 

changed from 1 to 0). This is because no TLB entry or paging-structure cache entry is created with 

information from a paging structure entry in which the accessed flag is 0. 

 If a paging-structure entry is modified to change the R/W or U/S or XD flag from 0 to 1, failure to 

perform an invalidation may result in a “spurious” page-fault exception (e.g., in response to an 

attempted write access) but no other adverse behavior. Such an exception will occur at most once 

for each affected linear address 

GTT Walk Request Port (HDC)  

A private GTT request port has been added between the HDC(s) and GAM to service the page walks. 

HDC clusters will contain a mini-TLB and uses GAM’s page walker. Their accesses to this page walker is 

provided thru this private ports. Main GAM TLBs also act as a secondary cache to back these TLBs. 

When page walk request comes to GAM, it will be treated as any normal request where the TLB look up 

will be done and in case of a miss further page walk will be performed. The results of the page walk will 

be returned on the private connection between the GAM and HDC clusters. 

The hierarchy is defined as following diagram where each slice will contain a “Slice GTT Request 

Manager” (slice GRM) where all HDCs interface with. Each HDC get two credits (i.e. 2-deep ingress queue 

per HDC)  where walk request response back to HDC is considered the release of credits. Slice GRM will 

collect the walk requests and arbitrate/forward them to GAM on per slice dedicated port. 

The request interface is designed to support 1 page walk request per 4 core clocks. Hence both the HDC 

to slice GRM and slice GRM to GAM should be designed to carry a single page request distributed over 4 

clocks to keep the wiring at minimum. 

Page Request Interface:  

  Valid – 1 bit 

  Opcode – 1 bit (“0”: Page Request and “1”: TLB Invalidation Response) 

  Slice ID – 1 bit 

  HDC ID – 2 bits 

  Virtual (GFX) Address – 36 bits (corresponds to [47:12]) 

  R/W – Read vs Write intend – 1 bit 

  Tracking Number – 8 bits 

  Faultable vs non-fautable surface - 1 bits 

Page response interface from GAM is designed to deliver one page response every 4 clocks and it is 

broadcast bus that connects to all HDCs directly. It is up to HDC unit to decode slice/unit ID and claim 

the response as its own which is also treated as claiming the page miss credit back. 

Page Response Interface:  
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  Valid – 1 bit 

  Opcode – 1 bit 

o  00: for Page Response 

o  01: Reserved 

o  10: TLB Invalidation Start 

o  11: TLB Invalidation End 

  PA – 27 bits (corresponds to [38:12]) 

  R/W – this was for a read or write 

  Slice ID – 2 bit 

  HDC ID – 2 bits 

  D bit – 1 bit 

  Fault Codes – 2 bits (6 bits) 

  Cacheability (memory type) Override – 3 bits 

  Tracking number – 8 bits 

Fault Codes:  

Bits[1:0] Bit Description 

00 No Faults 

01 Page fault due to Page not present 

10 Privilege level violation 

11 Write permission violation 

Cacheability (memory type) Override – In case of advanced context execution (where HDC coherent 

mode is only applicable), the cacheability from surface state will need to be overridden by the OS/VMM 

setting up the page tables (PAT), MTRR and CD. The effective memory type for HDC has to be used for 

cache allocation starting with L3. HDC needs to use the memory type bits reported by GAM for memory 

accesses. 

Memory Type Encoding in MTRR 

 HDC to L3 

 Control[3:2] 

Uncacheable (UC) 0h “00” 

Write Combining (WC) 1h “01” 

Write Through (WT) 4h “10” 

Write Protected (WP) (Reads:WB and Writes:WC) 5h 
Read: “11” 

Write: “01” 

WriteBack (WB) 6h “11” 

Reserved* 2,3,7h Reserved 

*HDC is already capable of processing WT and WB memory types 
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Overall Signaling Diagram for HDC/GAM connection:  
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TLB Invalidation  

In addition to page walk requests, there is also a communication needed between HDCs and GAM to 

relate the TLB invalidation events. GAM combines all TLB invalidation events into a single event as a 

global TLB invalidation to HDC where the entire content of mini-TLB is wiped out. 

The protocol starts with GAM sending a “TLB invalidation start” on *page response* interface. All HDCs 

will act on the TLB invalidation request as it is a broadcast event. Inline communication of the TLB 

invalidation is to make sure all previous page responses are seen by the HDCs targeted. Upon receiving 

the TLB Invalidation start, HDCs will stop sending new TLB requests and only process already available 

translations pending and ensure corresponding (physical accesses) are GO’ed by L3. Once all these steps 

are complete HDC will send out the ACK on the “page request” interface to GAM. 

GAM will stop sending any page responses post “TLB invalidation start” message and it is free to drop 

any new request that might have been enqueued by HDCs prior to HDCs seeing the invalidation request. 

The inline ACK from each HDC is meant to push pending HDC TLB requests towards GAM (where they 

are dropped). Once GAM collects all “TLB invalidations ACK’s” from all HDCs, it will re-enable the TLB 

service path and send back (broadcast) “TLB invalidation end” message (inline). 

HDCs seeing the “TLB Invalidation end” indicating the sequence are complete and synchronized are free 

to send TLB requests back to GAM. 

Faulting  

Page Faulting Support  

Gen9 supports the WDDM2.0 page fault model, where hardware detects non-present pages post 

translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page fault 

and would require a GPU-only reset to recover. 

Page Faults  

Production SKL supports the WDDM2.0 page fault model, where hardware detects non-present pages 

post translation and interrupts the GFX driver for hardware clean-up. Hardware may get stuck on a page 

fault and would require a GPU-only reset to recover. 
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Page Fault Modes  

Only legacy faulting is supported, which means that a fault occurrence is treated as unrecoverable. 

Page Faultable Context? No 

Fault Mode Non-fault 

Context Type Legacy 

Shared Func. Support n/a 

Fault Counters Inc'd No 

IOMMU Action On Fault Signal fatal error 

Shared Func Action on Fault <oblivious> 

Msg Retry (2) n/a 

Kernel Visibility of Fault None 

App Visibility of Fault Via driver signaling of Fatal Error 

Scheduler Visibility of Fault n/a 

Usage Legacy Behavior 

Fault and Hang/Crash (Legacy Mode)  

GPU cores prior to gen8 all implemented Fault and Hang behavior (optionally continue – MMIO based) 

with the exception of a simple fault and halt that was introduced for gen7.5. This is where page walker 

detects a page which is not present as part of the translation and hangs the pipeline via reporting into a 

register/interrupt (through command streamer). 

The resulting issue points to a s/w problem either in defining the GTT or using a surface which is not 

meant to be page faultable. 

The same behavior will be carried forward for gen9 and used for legacy context operation as well as 

optionally for surfaces that are not page fault-able. The same MMIO based mechanism will allow the 

engine to ignore the page fault and resume operating.  
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Memory Types and Cache Interface 

This section has additional information on the types of memory which are accessible via the various GT 

mechanisms. It includes discussion on how the various paging models are used and accessed. See the 

Graphics Translation Tables for more detailed discussions on paging models. 

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3 

and the different behaviors which can be enabled. 

Memory Object Control State (MOCS)  

The memory object control state defines the behavior of memory accesses beyond the graphics core, 

including graphics data types that allow selective flushing of data from outer caches, and controlling 

cacheability in the outer caches. 

This control uses several mechanisms. Control state for all memory accesses can be defined page by 

page in the GTT entries. Memory objects that are defined by state per surface generally have additional 

memory object control state in the state structure that defines the other surface attributes. Memory 

objects without state defining them have memory object state control defined per class in the 

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some 

memory objects only have the GTT entry mechanism for defining this control. The table below 

enumerates the memory objects and the location of the control state for each:  

 

Memory Object Location of Control State 

surfaces defined by SURFACE_STATE: sampling engine surfaces, render 

targets, media surfaces, pull constant buffers, streamed vertex buffers 

SURFACE_STATE 

depth, stencil, and hierarchical depth buffers corresponding state command that 

defined the buffer attributes 

stateless buffers accessed by data port STATE_BASE_ADDRESS 

indirect state objects STATE_BASE_ADDRESS 

kernel instructions STATE_BASE_ADDRESS 

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS) 

index buffers 3DSTATE_INDEX_BUFFER 

vertex buffers 3DSTATE_VERTEX_BUFFERS 

indirect media object STATE_BASE_ADDRESS 

generic state prefetch GTT control only 

ring/batch buffers GTT control only 

context save buffers GTT control only 

store DWord GTT control only 
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MOCS Registers 

These registers provide the detailed format of the MOCS table entries, that need to be programmed to 

define each surface state. 

MEMORY_OBJECT_CONTROL_STATE 

L3 Control Registers  

64x16b control registers are defined within L3 space to interpret MOCS indexing and map it to cache 

events. 

The incoming MOCS value is used to index into one of these registers which hardware uses as control 

parameters for a given surface. It allows 64 concurrent surface definitions with unique control values for 

L3 caching. 

Also attached are the default settings for each 64 locations if driver chooses to use as is. 

Following 16b defines per selection definition: 

Register#64 (MOCS value 63) is reserved for h/w use and should not be used by s/w.  

In L3 Node: B020-B09F (128 Bytes) 

Bits Description 

16:6 Reserved. 

5:4 
L3 Cacheability Control (L3CC). 

Memory type information used in L3. This field is combined with the additional two bits that are 

sent by HDC based on binding table index. For all other L3 requesters, this field is the primary 

source of L3 cache controls. 

00b: Use binding table index for direct EU accesses – for rest it is reserved. 

01b: Uncacheable (UC) – non-cacheable. 

10b: Reserved 

11b: Writeback (WB). 

3:1 
Skip Caching Control (SCC). 

Defines the bit values to enable caching. Outcome overrides the L3caching for the surface. 

If “0” – than corresponding address bit value is don’t care. 

Bit[1]=1: Address bit[9] needs to be “0” to cache in target. 

Bit[2]=1: Address bit[10] needs to be “0” to cache in target. 

Bit[3]=1: Address bit[11] needs to be “0” to cache in target. 

../../../../Content/BXmlSnippets/Structure_MEMORY_OBJECT_CONTROL_STATE_DevSKL+_BSpec.html
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Bits Description 

0 
Enable Skip Caching (ESC). 

Enable for the Skip cache mechanism. 

0: Not enabled. 

1: Enabled for L3. 

Defaults Table 

Default L3CC SCC ESC  Default L3CC SCC ESC 

000000 00 000 0  100000 00 000 0 

000001 01 000 0  100001 01 000 0 

000010 01 001 1  100010 01 001 1 

000011 01 011 1  100011 01 011 1 

000100 01 111 1  100100 01 111 1 

000101 10 000 0  100101 10 000 0 

000110 01 001 1  100110 01 001 1 

000111 01 011 1  100111 01 011 1 

001000 01 111 1  101000 01 111 1 

001001 11 000 0  101001 11 000 0 

001010 01 001 1  101010 01 001 1 

001011 01 011 1  101011 01 011 1 

001100 01 111 1  101100 01 111 1 

001101 00 000 0  101101 00 000 0 

001110 00 000 0  101110 00 000 0 

001111 00 000 0  101111 00 000 0 

010000 00 000 0  110000 00 000 0 

010001 01 000 0  110001 01 000 0 

010010 01 001 1  110010 01 001 1 

010011 01 011 1  110011 01 011 1 

010100 01 111 1  110100 01 111 1 

010101 10 000 0  110101 10 000 0 

010110 01 001 1  110110 01 001 1 

010111 01 011 1  110111 01 011 1 

011000 01 111 1  111000 01 111 1 

011001 11 000 0  111001 11 000 0 

011010 01 001 1  111010 01 001 1 

011011 01 011 1  111011 01 011 1 

011100 01 111 1  111100 01 111 1 
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Default L3CC SCC ESC  Default L3CC SCC ESC 

011101 00 000 0  111101 00 000 0 

011110 00 000 0  111110 00 000 0 

011111 00 000 0  111111 00 000 0 

Memory Interface Control Registers  

8*64x32b control registers are defined within the page walker where control parameters for LLC/eDRAM 

caching are defined. Incoming memory control object state index is used to do a look up into the table 

where the corresponding control parameters are picked for a given surface. These control values are 

used to control LLC/eDRAM caching. 

For EU surfaces where binding table index is used, we also pass two bits of information in the hardware. 

Following 32b defines per selection definition: 

These set of registers have to be engine specific (8x). 

All MOCS registers are considered part of the HW context and need to be saved part of the context that 

command streamers are controlling. 

Register#64/#63 (MOCS value 63&62) are reserved for h/w use and should not be used by s/w. 

 Register#64 is for Coherent L3 evictions 

 Register#63 is used for Tiled-Resources page walker accesses 

In GAMT: C800-CFFF (256 Bytes) 

Bits Description 

31:19 Reserved 

18:17 Reserved 

16:15 
Class of Service 

This field controls the Class of Service sent to the LLC to determine which sub-set of Ways the surface will be 

stored 

 in.The allocation of certain LLC ways to different class of service settings is a project dependent decision and 

listed in the Bspec. 

 00: Value from Private PAT Registers(40E0/40E4/40E8/40EC) 

 01: Class 1 

 10: Class 2 

 11: Class 3 
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Bits Description 

14 
Snoop Control Field (SCF): 

Enables s/w to have GFX h/w to be able to consume IA generated buffers that are tagged as WB. Driver can 

mark these buffers as WB when generating them from IA. In LP-SOCs, the fabric is not forced to be coherent 

all the time. IA-core generated WB buffers can only be consumed by GPU if that buffer is tagged as snoop-

able in GPUs buffer definitions (or via GPU Page tables). 

1: Hardware will snoop the IA caches while accessing this surface 

0: Hardware will not snoop the IA caches while accessing this surface 

Note: There is a performance & power penalty in accessing surfaces that are tagged as snooped. 

Note: S/W should NOT set this field in client platforms. 

Note: In BXT-A step, there is a HW bug that does not send this snoop information to the uncore reliably for the 

write transactions.  Thus, should not rely on this snoop control bit for generating snoops to IA caches for write.  

This could be worked around by making write surfaces "coherent", which would generate RFO/I2M requests to 

the uncore which will generate snoops to IA regardless of this snoop control. 

13:11 
Page Faulting Mode 

This fields controls the page faulting mode that will be used in the memory interface block for the given 

request coming from this surface: 

000: Use the global page faulting mode from context descriptor (default) 

 001-111: Reserved 

   

10:8 
Skip Caching Control 

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface. 

If "0" - than corresponding address bit value is do not care 

 Bit[8]=1: address bit[9] needs to be "0" to cache in target 

 Bit[9]=1: address bit[10] needs to be "0" to cache in target 

 Bit[10]=1: address bit[11] needs to be "0" to cache in target 

The default value of this field is '000.  For coherent surfaces, skip caching should not be enabled, as not 

caching in LLC breaks the coherency. 

   

7 
Enable Reverse Skip Caching 

Enable for the Skip cache mechanism 

 0: Not enabled 

 1: Enabled for LLC 
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Bits Description 

6 
Don't Allocate on miss 

Controls defined for RO surfaces in mind, where if the target cache is missed - do not bring the line 

(applicable to LLC/eDRAM). 

0: Allocate on MISS (normal cache behavior) 

 1: Do NOT allocate on MISS 

   

5:4 
LRU (Cache Replacement) Management (LRUM). 

This field allows the selection of AGE parameter for a given surface in LLC or eLLC. If a particular allocation is 

done at youngest age (“3”) it tends to stay longer in the cache as compared to older age allocations (“2”, “1”, 

or “0”). This option is given to driver to be able to decide which surfaces are more likely to generate HITs, 

hence need to be replaced least often in caches. 

00: Take the age value from Uncore CRs. 

01: Assign the age of "0" 

10: Dont change the age on a hit. 

11: Assign the age of "3" 

3:2 
Target Cache (TC). 

This field allows the choice of LLC vs eLLC for caching. 

00b: Use TC/LRU controls from page table 

01b: LLC Only. 

10b: LLC/eLLC Allowed. 

11b: LLC/eLLC Allowed. 

For coherent surfaces ensure that LLC caching is enabled - even when using target cache controls 

from page table. 

1:0 
LLC/eDRAM Cacheability Control (LeCC). 

Memory type information used in LLC/eDRAM. 

00b: Use Cacheability Controls from page table / UC with Fence (if coherent cycle). 

01b: Uncacheable (UC) – non-cacheable. 

10b: Writethrough (WT). 

11b: Writeback (WB). 

Note: In case of SVM (advanced context), LLC/eDRAM memory type is used based on the page table 

controls and cannot be managed via MOCS index. 
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Defaults Table 

Default LeCC TC LRUM AOM ESC SCC PFM  Default LeCC TC LRUM AOM ESC SCC PFM 

000000 00 00 11 0 0 00 000  000000 00 00 11 0 0 00 000 

000001 00 01 11 0 0 00 000  000001 00 01 11 0 0 00 000 

000010 00 10 11 0 0 00 000  000010 00 10 11 0 0 00 000 

000011 01 00 11 0 0 00 000  000011 01 00 11 0 0 00 000 

000100 10 00 11 0 0 00 000  000100 10 00 11 0 0 00 000 

000101 10 01 11 0 0 00 000  000101 10 01 11 0 0 00 000 

000110 10 10 11 0 0 00 000  000110 10 10 11 0 0 00 000 

000111 11 00 11 0 0 00 000  000111 11 00 11 0 0 00 000 

001000 11 01 11 0 0 00 000  001000 11 01 11 0 0 00 000 

001001 11 10 11 0 0 00 000  001001 11 10 11 0 0 00 000 

001010 10 00 11 0 0 00 000  001010 10 00 11 0 0 00 000 

001011 10 01 11 0 0 00 000  001011 10 01 11 0 0 00 000 

001100 10 10 11 0 0 00 000  001100 10 10 11 0 0 00 000 

001101 11 00 11 0 0 00 000  001101 11 00 11 0 0 00 000 

001110 11 01 11 0 0 00 000  001110 11 01 11 0 0 00 000 

001111 11 10 11 0 0 00 000  001111 11 10 11 0 0 00 000 

010000 00 00 11 0 0 00 000  010000 00 00 11 0 0 00 000 

010001 00 01 11 0 0 00 000  010001 00 01 11 0 0 00 000 

010010 00 10 11 0 0 00 000  010010 00 10 11 0 0 00 000 

010011 01 00 11 0 0 00 000  010011 01 00 11 0 0 00 000 

010100 10 00 11 0 0 00 000  010100 10 00 11 0 0 00 000 

010101 10 01 11 0 0 00 000  010101 10 01 11 0 0 00 000 

010110 10 10 11 0 0 00 000  010110 10 10 11 0 0 00 000 

010111 11 00 11 0 0 00 000  010111 11 00 11 0 0 00 000 

011000 11 01 11 0 0 00 000  011000 11 01 11 0 0 00 000 

011001 11 10 11 0 0 00 000  011001 11 10 11 0 0 00 000 

011010 10 00 11 0 0 00 000  011010 10 00 11 0 0 00 000 

011011 10 01 11 0 0 00 000  011011 10 01 11 0 0 00 000 

011100 10 10 11 0 0 00 000  011100 10 10 11 0 0 00 000 

011101 11 00 11 0 0 00 000  011101 11 00 11 0 0 00 000 

011110 11 01 11 0 0 00 000  011110 11 01 11 0 0 00 000 

011111 11 10 11 0 0 00 000  011111 11 10 11 0 0 00 000 
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HDCL3GAM Change Specific to Coherent L3 

Given memory object control state is an index for SKL, for L3 coherent accesses HDC cannot replace the 

bit[3:2] with the memory type information coming from GAM. Instead these two bits need to be 

communicated separately. 

Both L3 and GAM override the memory type information that is extracted from the index table with these 

two bits passed by HDC in case of L3 coherent accesses. 

Memory Type 

Encoding 

 in MTRR 

HDC to L3 

 Control[3:2] 

Uncacheable (UC) 0h “00” 

Write Combining (WC) 1h “01” 

Write Through (WT) 4h “10” 

Write Protected (WP) (Reads:WB and Writes:WC) 5h 
Read: “11” 

Write: “01” 

WriteBack (WB) 6h “11” 

Reserved* 2,3,7h Reserved 

Also for the HDC GAM interface (page request response), the faulting mode from indexed table needs to 

be communicated along with response. This would add 2 bits and HDC can use the mode bits to figure 

out what to do with the data. 

This is also applicable to read return data from GAM. 

Graphics Cache and Memory Interface  

The SKL generation memory interface has further improvements over previous generations. These 

improvements are either on existing functions or new features that are added to this particular 

generation. 
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Skip Caching in LLC and eDRAM  

Skip Caching is added to SKL to deal with two specific problems: 

1. If a given surface is too large for LLC or eDRAM, we want to cache a portion of the surface in the 

cache and get limited benefits instead of trying to cache the entire surface and trash the cache. Or 

not cache at all and lose any benefit of using a cache. 

2. If a given surface can benefit from additional/concurrent b/w of both caches and/or memory, we 

can split the surface via allocating a certain segments of it in different caches and memory, and try 

to extract additional b/w. The opportunity would be additional b/w from different sources rather 

being stuck with cache b/w only. 

For coherent surfaces, skip caching should not be enabled, as not caching in LLC breaks the coherency. 

Mechanism can be controlled via memory object control state which is used to identify each surface 

separately. 

Bit Description 

10:8 Skip Caching Control (SCC). 

Defines the bit values to enable caching. Outcome overrides the LLC caching for the surface. 

If "0" then corresponding address bit value is don't care. 

 Bit[8]=1: Address bit[9] needs to be "0" to cache in target. 

 Bit[9]=1: Address bit[10] needs to be "0" to cache in target. 

 Bit[10]=1: Address bit[11] needs to be "0" to cache in target. 

7 
Enable Reverse Skip Caching (ESC). 

Enable for the Skip cache mechanism. 

 0: Not enabled. 

 1: Enabled for reverse caching. 

Here is the mechanism: 

If bit[7]=0: 

 If access is LLC cacheable and skip caching is enabled, match the enabled address bits:  

 If matched address bits, let the caching to be in LLC 

 If no-matched address bits, downgrade the caching to eLLC 

 If access is eLLC/eDRAM cacheable (Only) and skip caching is enabled, match the enabled address 

bits:  

 If matched address bits, let the caching to be in eLLC 

 If no-matched address bits, downgrade the memory type to UC (uncacheable). 
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If bit[7]=1: 

 If access is LLC cacheable and skip caching is enabled, match the enabled address bits:  

 If matched address bits, downgrade the caching to eLLC 

 If no-matched address bits, let the caching to be in LLC 

 If access is eLLC/eDRAM cacheable (Only) and skip caching is enabled, match the enabled address 

bits:  

 If matched address bits, downgrade the memory type to UC (uncacheable). 

 If no-matched address bits, let the caching to be in eLLC 

Caching Display Surfaces in LLC  

Using LLC for the output Color pipeline when Display buffers are accessed has been tried for many 

generations. Previous generations enabled write-through caching to get benefits from reads. 

SKL generation GFX adds a mechanism to be able to cache display buffers that are immediate target of 

the color pipeline as write-back. In order to synchronize the contents of the display buffer within LLC to 

display controller, SKL PG added an option at the pipe-control flush to select whether a color buffer flush 

is needed along with pipeline flush (see pipe-control and MI_Flush_DW definition updates). 

For Frame buffer caching GFX driver will tag the corresponding Display buffer target as cacheable in LLC. 

LLC cacheability shall be selected via GFX Page tables (using private PAT) or MOCS (memory object 

control state). However this setting would enable for display buffers to be cached along with general GFX 

accesses which could lead to trashing in LLC cache along with long flush penalties. In order to limit the 

implications of an LLC flush, a global setting register (IDICR – IDI Control Register[23:22]) is included to 

control the QOS (quality of service) value for display buffers only. GFX driver is required to tune the QOS 

value based on system settings to limit the number of ways required to be allocated for frame buffer 

caching and to be flushed at the FLIP time. 

For proper LLC flush event, GFX driver will program the cache definition registers (FBCDR – Frame Buffer 

Cache Definition Register) in the Page Walker register space to define different parameters of the 

LLCcache on the system. 

Pipe-control and/or MI_FLUSH_DW for the contexts that have Frame Buffer caching has to be enhanced 

to enable overlap execution of the LLC flush as well as the execution of next context/frame by h/w. Not 

doing the following steps will cause GT h/w to stall on LLC flush which is not desirable. 

In the case where Frame Buffer is cached, driver is required to put 2 pipe-controls and/or 

MI_FLUSH_DW’s. 

 The first will be used to flush the GPU h/w with a stall, and will not have LLC flush or SYNC’ing 

DW/interrupt to the driver. 

 Second will be used to flush LLC with a SYNC DW/interrupt to the driver. This will not be a stalling 

pipe-control and/or MI_FLUSH_DW. 

After first pipe-control/MI_FLUSH_DW, hardware will be free to execute forward on the command ring 

and 2nd pipe-control/MI_FLUS_DW will be non-stalling for h/w but will hold off the FLIP synchronization 

to display controller until display buffer contents are flushed from LLC. 
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Page Walker Access and Memory Types  

Most of these notes are further explained in the document however summarized as part of the page 

table behavior: 

Page Walker Memory Types  

1. Legacy Contexts 

a. GT access to root/extended-root table and context/extended-context table 

b. GTT access to private paging (PPGTT) entries 

c. GT access to GPA-to-HPA paging entries 

d. GT access to the translated page 

2. Advanced context (without nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

3. Advanced context (with nesting) 

a. GT access to extended-root table and extended-context table 

b. GT access to PASID-entry & PASID-state entry 

c. GT access to IA-32e paging entries 

d. GT access to the translated page 

e. GT access to GPA-to-HPA paging entries to translate address of PASID-entry and PASID-

state entry 

f. GT access to GPA-to-HPA paging entries to translate address of IA-32e paging entries 

g. GT access to GPA-to-HPA paging entries to translate address of page 

For Gen8, the following behavior is defined however gen9 needs to comply with the spec definition: 

Error Cases  

 A/D bit update attempt for paging entry in non-WB memory, cause page-walk to be aborted; 

Error reported to device in Translation Response; For Gen, gets reported to driver as GPGPU 

context in error – catastrophic error case. 

 Locked/Atomic operations to pages in non-WB memory aborted; For Gen, gets reported to driver 

as GPGPU context in error (catastrophic error) 

 CD=1 treated same as non-WB memory, for above lock behavior 
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Common Surface Formats 

This section documents surfaces and how they are stored in memory, including 3D and video surfaces, 

including the details of compressed texture formats. Also covered are the surface layouts based on tiling 

mode and surface type. 

Non-Video Surface Formats 

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data 

(e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, 

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory 

object types. 

Surface Format Naming 

Unless indicated otherwise, all pixels are stored in “little endian” byte order. i.e., pixel bits 7:0 are stored 

in byte n, pixel bits 15:8 are stored in byte n+1, and so on.  The format labels include color components 

in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A). 

The name of most of the surface formats specifies its format. Channels are listed in little endian order 

(LSB channel on the left, MSB channel on the right), with the channel format specified following the 

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of 

red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format. 

Intensity Formats 

All surface formats containing “I” include an intensity value. When used as a source surface for the 

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered. 

Intensity surfaces are not supported as destinations. 

Luminance Formats 

All surface formats containing “L” include a luminance value. When used as a source surface for the 

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being 

filtered. The alpha channel is provided either from another field or receives a default value. Luminance 

surfaces are not supported as destinations. 
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R1_UNORM (same as R1_UINT) and MONO8 

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are 

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to 

Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine. 

7 6 5 4 3 2 1 0 

T7 T6 T5 T4 T3 T2 T1 T0 

 

Bit Description 

T0 
Texel 0 

On texture reads, this 

(unsigned) 1-bit value is 

replicated to all color channels. 

Format: U1 

... 
... 

T7 
Texel 7 

On texture reads, this 

(unsigned) 1-bit value is 

replicated to all color channels. 

Format: U1 

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only 

supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter. 

Palette Formats 

Palette formats are supported by the sampling engine. These formats include an index into the palette 

(Px) that selects the actual channel values from the palette, which is loaded via the 

3DSTATE_SAMPLER_PALETTE_LOAD0 command. 
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P4A4_UNORM 

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in 

the low nibble). 

7   4 3   0 

Alpha Palette Index 

 

Bit Description 

7:4 
Alpha 

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 255 

to yield a [0.0,1.0] Alpha value. 

Format: U4 

3:0 
Palette Index 

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 

3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U4 

A4P4_UNORM 

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the 

high nibble). 

7   4 3   0 

Palette Index Alpha 

 

Bit Description 

7:4 
Palette Index 

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U4 

3:0 
Alpha 

Alpha value which will be replicated to both the high and low nibble of an 8-bit 

value, and then divided by 255 to yield a [0.0,1.0] alpha value. 

Format: U4 
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P8A8_UNORM 

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in 

the low byte). 

15   8 7   0 

Alpha Palette Index 

 

Bit Description 

15:8 
Alpha 

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value. 

Format: U8 

7:0 
Palette Index 

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded 

via 3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U8 

A8P8_UNORM 

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the 

high byte). 

15   8 7   0 

Palette Index Alpha 

 

Bit Description 

15:8 
Palette Index 

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U8 

7:0 
Alpha 

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value. 

Format: U8 
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P8_UNORM 

This surface format contains only an 8-bit Color Index value. 

Bit Description 

7:0 
Palette Index 

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture 

palette. 

Format: U8 

P2_UNORM 

This surface format contains only a 2-bit Color Index value. 

Bit Description 

1:0 
Palette Index 

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette. 

Format: U2 

Compressed Surface Formats 

This section contains information on the internal organization of compressed surface formats. 

ETC1_RGB8  

This format compresses UNORM RGB data using an 8-byte compression block representing a 4x4 block 

of texels. The texels are labeled as texel[row][column] where both row and column range from 0 to 3. 

Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

High 24 bits if “diff” is zero (individual mode): 

Bits Description 

7:4 R0[3:0] 

3:0 R1[3:0] 

15:12 G0[3:0] 

11:8 G1[3:0] 

23:20 B0[3:0] 

19:16 B1[3:0] 
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High 24 bits if “diff” is one (differential mode): 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

Low 40 bits: 

Bits Description 

31:29 lum table index for sub-block 0 

28:26 lum table index for sub-block 1 

25 diff 

24 flip 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 
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Bits Description 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks 

controlled by the “flip” bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the 

right. If flip=1, sub-block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom. 

The “diff” bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444 

value per sub-block (“individual” mode with diff = 0), or a single 555 value for the first sub-block 

(R0/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block (“differential” mode with diff 

= 1). The delta values are 3-bit two’s-complement values that hold values in the range [-4,3]. These 

values are added to the 5-bit values for sub-block 0 to obtain the 5-bit values for sub-block 1 (if the 

value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit 

per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base 

color for each sub-block. 

For each sub-block one of 8 different luminance columns is selected based on the 3-bit lum table index. 

Then each texel selects one of the 4 rows of the selected column with a 2-bit per-texel index. The chosen 

value in the table is added to the 8-bit base color for the sub-block (obtained in the previous step) to 

obtain the texel’s color. Values in the table are given in decimal, representing an 8-bit UNORM as an 8-

bit signed integer. 

Luminance Table 

 
0 1 2 3 4 5 6 7 

0 
2 5 9 13 18 24 33 47 

1 
8 17 29 42 60 80 106 183 

2 
-2 -5 -9 -13 -18 -24 -33 -47 

3 
-8 -17 -29 -42 -60 -80 -106 -183 
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ETC2_RGB8 and ETC2_SRGB8  

The ETC2_RGB8 format builds on top of ETC1_RGB8, using a set of invalid bit sequences to enable three 

new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be 

documented in this section as they are covered in the ETC1_RGB8 section. 

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1 

differential mode. The mode is determined as follows (x indicates don’t care): 

diff Rt Gt Bt mode 

0 x x x individual 

1 0 x x T 

1 1 0 x H 

1 1 1 0 planar 

1 1 1 1 differential 

The inputs in the above table are defined as follows: 

 Rt = (R0 + dR1) in [0,31] 

 Gt = (G0 + dG1) in [0,31] 

 Bt = (G0 + dB1) in [0,31] 

    

8-byte compression block for mode determination 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

31:26 ignored 

25 diff 

24 ignored 

63:32 ignored 

The fields in the table above are used only for mode determination. Some of the bits in this table are 

overloaded with other values within each mode. The algorithm is defined such that there is no ambiguity 

in modes when this is done. 

T mode 

The “T” mode has the following bit definition: 
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8-byte compression block for “T” mode 

Bits Description 

7:5 ignored 

4:3 R0[3:2] 

2 ignored 

1:0 R0[1:0] 

15:12 G0[3:0] 

11:8 B0[3:0] 

23:20 R1[3:0] 

19:16 G1[3:0] 

31:28 B1[3:0] 

27:26 di[2:1] 

25 diff = 1 

24 di[0] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[0][0] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 
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Bits Description 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The “T” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual mode, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index “di” is also defined in the compression block. This value is used to look up the 

distance in the following table: 

distance index 

“di” distance “d” 

0 3 

1 6 

2 11 

3 16 

4 23 

5 32 

6 41 

7 64 

Four colors are possible on each texel. These colors are defined as the following: 

 P0 = (R0, G0, B0) 

 P1 = (R1, G1, B1) + (d, d, d) 

 P2 = (R1, G1, B1) 

 P3 = (R1, G1, B1) – (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index. 
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H mode 

The “H” mode has the following bit definition: 

8-byte compression block for “H” mode 

Bits Description 

7 ignored 

6:3 R0[3:0] 

2:0 G0[3:1] 

15:13 ignored 

12 G0[0] 

11 B0[3] 

10 ignored 

9:8 B0[2:1] 

23 B0[0] 

22:19 R1[3:0] 

18:16 G1[3:1] 

31 G1[0] 

30:27 B1[3:0] 

26 di[2] 

25 diff = 1 

24 di[1] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 
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Bits Description 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The “H” mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual and T modes, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index “di” is defined by 2 MSBs in the compression block and the LSB computed by the 

following equation, where R/G/B values are the 8-bit values from the first step: 

 di[0] = ((R0 « 16) | (G0 « 8) | B0) >= ((R1 « 16) | (G1 « 8) | B1) 

    

The distance “d” is then looked up in the same table used for T mode. The four colors for H mode are 

computed as follows: 

 P0 = (R0, G0, B0) + (d, d, d) 

 P1 = (R0, G0, B0) - (d, d, d) 

 P2 = (R1, G1, B1) + (d, d, d) 

 P3 = (R1, G1, B1) – (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index as in T mode. 
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Planar mode 

The “planar” mode has the following bit definition: 

8-byte compression block for “planar” mode 

Bits Description 

7 ignored 

6:1 R0[5:0] 

0 G0[6] 

15 ignored 

14:9 G0[5:0] 

8 B[5] 

23:21 ignored 

20:19 B[4:3] 

18 ignored 

17:16 B0[2:1] 

31 B0[0] 

30:26 RH[5:1] 

25 diff = 1 

24 RH[0] 

39:33 GH[6:0] 

32 BH[5] 

47:43 BH[4:0] 

42:40 RV[5:3] 

55:53 RV[2:0] 

52:48 GV[6:2] 

63:62 GV[1:0] 

61:56 BV[5:0] 

The “planar” mode has three base colors stored as RGB 676, with red & blue having 6 bits and green 

having 7 bits. These three base colors are each extended to RGB 888 with bit replication. 

The color of each texel is then computed using the following equations, with x and y representing the 

texel position within the compression block: 

 texel[y][x].R = x(RH-R0)/4 + y(RV-R0)/4 + R0 

 texel[y][x].G = x(GH-G0)/4 + y(GV-G0)/4 + G0 

 texel[y][x].B = x(BH-B0)/4 + y(BV-B0)/4 + B0 

    

All resulting channels are clamped to the range [0,255]. 

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGB8, then a conversion from the resulting RGB 

values to SRGB space is performed. 
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EAC_R11 and EAC_SIGNED_R11  

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

EAC_R11 compression block layout 

Bits Description 

7:0 R0[7:0] 

15:12 m[3:0] 

11:8 ti[3:0] 

23:21 texel[0][0] index 

20:18 texel[1][0] index 

17:16,31 texel[2][0] index 

30:28 texel[3][0] index 

27:25 texel[0][1] index 

24,39:38 texel[1][1] index 

37:35 texel[2][1] index 

34:32 texel[3][1] index 

47:45 texel[0][2] index 

44:42 texel[1][2] index 

41:40,55 texel[2][2] index 

54:52 texel[3][2] index 

51:49 texel[0][3] index 

48,63:62 texel[1][3] index 

61:59 texel[2][3] index 

58:56 texel[3][3] index 
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The “ti” (table index) value from the compression block is used to select one of the columns in the table 

below. 

Intensity modifier (im) table 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
-3 -3 -2 -2 -3 -3 -4 -3 -2 -2 -2 -2 -3 -1 -4 -3 

1 
-6 -7 -5 -4 -6 -7 -7 -5 -6 -5 -4 -5 -4 -2 -6 -5 

2 
-9 -10 -8 -6 -8 -9 -8 -8 -8 -8 -8 -7 -7 -3 -8 -7 

3 
-15 -13 -13 -13 -12 -11 -11 -11 -10 -10 -10 -10 -10 -10 -9 -9 

4 
2 2 1 1 2 2 3 2 1 1 1 1 2 0 3 2 

5 
5 6 4 3 5 6 6 4 5 4 3 4 3 1 5 4 

6 
8 9 7 5 7 8 7 7 7 7 7 6 6 2 7 6 

7 
14 12 12 12 11 10 10 10 9 9 9 9 9 9 8 8 

The eight possible color values Ri are then computed from the 8 values in the column labeled imi, where i 

ranges from 0 to 7: 

For EAC_R11: 

if (m == 0) Ri = R0*8 + 4 + imi else Ri = R0*8 + 4 + (imi * m * 8) 

Each value is clamped to the range [0,2047]. 

For EAC_SIGNED_R11: 

if (m == 0) Ri = R0*8 + imi else Ri = R0*8 + (imi * m * 8) 

Each value is clamped to the range [-1023,1023]. 

Note that in the signed case, the R0 value is a signed, 2’s complement value in the range [-127, 127]. 

Before being used in the above equations, an R0 value of -128 must be clamped to -127. 

Finally, each texel red value is selected from the 8 possible values Ri using the 3-bit index for that texel. 

The green, blue, and alpha values are set to their default values. 

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer. 
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ETC2_RGB8_PTA and ETC2_SRGB8_PTA  

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the “individual” mode in favor of 

allowing a punch-through alpha. The “diff” bit from ETC2_RGB8 is renamed to “opaque” in this format, 

and the mode selection behaves as if the “diff” bit is always 1, making the “individual” mode inaccessible 

for these formats. 

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is 

determined to be zero, the three other channels are also forced to zero, regardless of what value the 

normal decompression algorithm would have produced. 

Differential Mode 

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGB8 is used. If the opaque bit 

is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out, otherwise 

the table is the same): 

Luminance Table for opaque bit not set 

 0 1 2 3 4 5 6 7 

0 
0 0 0 0 0 0 0 0 

1 
8 17 29 42 60 80 106 183 

2 
0 0 0 0 0 0 0 0 

3 
-8 -17 -29 -42 -60 -80 -106 -183 

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value is 

set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255 and 

RGB is the result of the normal decompression calculations. 

T and H Modes 

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set 

to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255. 

Planar Mode 

In planar mode, the opaque bit is ignored and alpha is set to 255. 

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the 

resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 
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ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8  

The ETC2_EAC_RGBA8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression block 

represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the EAC_R8 

algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm. The EAC_R8 

format differs from EAC_R11 as described below. 

The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBA8, then a conversion from 

the resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 

EAC_R8 Format: 

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier 

section, except the procedure for computing the eight possible color values Ri is performed as follows: 

Ri = R0 + (imi * m) 

Each value is clamped to the range [0,255]. 

EAC_RG11 and EAC_SIGNED_RG11  

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows. 

EAC_RG11 compression block layout 

Bits Description 

63:56 G0[7:0] 

55:52 Gm[3:0] 

51:48 Gti[3:0] 

47:45 texel[0][0] G index 

44:42 texel[1][0] G index 

41:39 texel[2][0] G index 

38:36 texel[3][0] G index 

35:33 texel[0][1] G index 

32:30 texel[1][1] G index 

29:27 texel[2][1] G index 

26:24 texel[3][1] G index 

23:21 texel[0][2] G index 

20:18 texel[1][2] G index 

17:15 texel[2][2] G index 

14:12 texel[3][2] G index 

11:9 texel[0][3] G index 

8:6 texel[1][3] G index 
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Bits Description 

5:3 texel[2][3] G index 

66:64 texel[3][3] G index 

63:56 R0[7:0] 

55:52 Rm[3:0] 

51:48 Rti[3:0] 

47:45 texel[0][0] R index 

44:42 texel[1][0] R index 

41:39 texel[2][0] R index 

38:36 texel[3][0] R index 

35:33 texel[0][1] R index 

32:30 texel[1][1] R index 

29:27 texel[2][1] R index 

26:24 texel[3][1] R index 

23:21 texel[0][2] R index 

20:18 texel[1][2] R index 

17:15 texel[2][2] R index 

14:12 texel[3][2] R index 

11:9 texel[0][3] R index 

8:6 texel[1][3] R index 

5:3 texel[2][3] R index 

2:0 texel[3][3] R index 

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that they 

supply two channels of output data, both red and green, from two independent 8-byte portions of the 

compression block. The low half of the compression block contains the red information, and the high half 

contains the green information. Blue and alpha channels are set to their default values. 

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels 

are generated using the data in the compression block. 
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FXT Texture Formats 

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel 

blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged 

according to the following diagram: 

FXT1 Encoded Blocks 

 

Overview of FXT1 Formats 

During the compression phase, the encoder selects one of the four formats for each block based on 

which encoding scheme results in best overall visual quality. The following table lists the four different 

modes and their encodings: 

FXT1 Format Summary 

Bit 

127 

Bit 

126 

Bit 

125 

Block 

Compression 

Mode Summary Description 

0 0 X 
CC_HI 

2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and 

transparent black 

0 1 0 
CC_CHROMA 

4 R5G5B5 colors used directly as 4-entry LUT. 

0 1 1 
CC_ALPHA 

3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3 discrete 

colors + transparent black and 2 LUTs using interpolated values of Color 0,1 

(t0-15) and Color 1,2 (t16-31). 

1 x x 
CC_MIXED 

4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and 

Color2,3 LUT used for t16-31. Alpha bit selects between LUTs with 4 

interpolated colors or 3 interpolated colors + transparent black. 

FXT1 CC_HI Format 

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the 

encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB 

colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is 

transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a 

color from the table. 



 Memory Views 
  

 

Doc Ref # IHD-OS-SKL-Vol 5-05.16   171 

CC_HI Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format: 

FXT CC_HI Block Encoding 

Bit Description 

127:126 Mode = ‘00’b (CC_HI) 

125:121 Color 1 Red 

120:116 Color 1 Green 

115:111 Color 1 Blue 

110:106 Color 0 Red 

105:101 Color 0 Green 

100:96 Color 0 Blue 

95:93 Texel 31 Select 

... ... 

50:48 Texel 16 Select 

47:45 Texel 15 Select 

... ... 

2:0 Texel 0 Select 

CC_HI Block Decoding 

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3 

MSBs into the 3 LSBs, as shown in the following table: 

FXT CC_HI Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 1 [23:19] Color 1 Red [7:3] [125:121] 

Color 1 [18:16] Color 1 Red [2:0] [125:123] 

Color 1 [15:11] Color 1 Green [7:3] [120:116] 

Color 1 [10:08] Color 1 Green [2:0] [120:118] 

Color 1 [07:03] Color 1 Blue [7:3] [115:111] 

Color 1 [02:00] Color 1 Blue [2:0] [115:113] 

Color 0 [23:19] Color 0 Red [7:3] [110:106] 

Color 0 [18:16] Color 0 Red [2:0] [110:108] 

Color 0 [15:11] Color 0 Green [7:3] [105:101] 

Color 0 [10:08] Color 0 Green [2:0] [105:103] 

Color 0 [07:03] Color 0 Blue [7:3] [100:96] 

Color 0 [02:00] Color 0 Blue [2:0] [100:98] 
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These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors 

(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table: 

FXT CC_HI Interpolated Color Table 

Interpolated 

Color Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh 

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh 

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh 

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh 

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh 

6 Color1.RGB 0FFh 

7 RGB = 0,0,0 0 

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded 

CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the 

CC_HI block. 

FXT1 CC_CHROMA Format 

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block. 

These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB 

colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color 

from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_CHROMA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format: 

FXT CC_CHROMA Block Encoding 

Bit Description 

127:125 Mode = ‘010’b (CC_CHROMA) 

124 Unused 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 
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Bit Description 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

...  

33:32 Texel 16 Select 

31:30 Texel 15 Select 

...  

1:0 Texel 0 Select 

CC_CHROMA Block Decoding 

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 

LSBs, as shown in the following tables: 

FXT CC_CHROMA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10:08] Color 3 Green [2:0] [118:116] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded 

CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 0FFh) 

completing the decode of the CC_CHROMA block. 

FXT CC_CHROMA Interpolated Color Table 

Texel Select Color ARGB 

0 Color0.ARGB 

1 Color1.ARGB 

2 Color2.ARGB 

3 Color3.ARGB 

FXT1 CC_MIXED Format 

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0 

and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31. 

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit 

RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB 

color from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_MIXED Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format: 

FXT CC_MIXED Block Encoding 

Bit Description 

127 Mode = ‘1’b (CC_MIXED) 

126 Color 3 Green [0] 

125 Color 1 Green [0] 

124 Alpha [0] 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 
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Bit Description 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_MIXED Block Decoding 

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block. 

Alpha[0] = 0 Decoding 

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as 

per the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125] 

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into 

the 3 LSBs, as shown in the following table: 

FXT CC_MIXED Decoded Colors (Alpha[0] = 0) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10] Color 2 Green [2] [33] XOR [126]] 

Color 2 [09:08] Color 2 Green [1:0] [103:100] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10] Color 0 Green [2] [1] XOR [125] 

Color 0 [09:08] Color 0 Green [1:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four 

interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15 

indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures: 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh 

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh 

3 Color1.RGB 0FFh 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh 

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh 
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Texel 16-31 Select Color RGB Alpha 

3 Color3.RGB 0FFh 

Alpha[0] = 1 Decoding 

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are 

encoded as RGB565 colors, with the Green LSB obtained as shown in the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following 

diagram. 

FXT CC_MIXED Decoded Colors (Alpha[0] = 1) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:19] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:87] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:19] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors. 

The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 

16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 3 

is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures: 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (Color0.RGB + Color1.RGB) /2 0FFh 

2 Color1.RGB 0FFh 

3 Black (0,0,0) 0 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (Color2.RGB + Color3.RGB) /2 0FFh 

2 Color3.RGB 0FFh 

3 Black (0,0,0) 0 

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the 

encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table, 

completing the decode of the CC_CMIXED block. 

FXT1 CC_ALPHA Format 

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control 

bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects. 

CC_ALPHA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format: 

FXT CC_ALPHA Block Encoding 

Bit Description 

127:125 Mode = ‘011’b (CC_ALPHA) 

124 LERP 

123:119 Color 2 Alpha 
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Bit Description 

118:114 Color 1 Alpha 

113:109 Color 0 Alpha 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_ALPHA Block Decoding 

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3 

MSBs into the 3 LSBs, as shown in the following tables: 

FXT CC_ALPHA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [31:27] Color 2 Alpha [7:3] [123:119] 

Color 2 [26:24] Color 2 Alpha [2:0] [123:121] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [31:27] Color 1 Alpha [7:3] [118:114] 

Color 1 [26:24] Color 1 Alpha [2:0] [118:116] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [31:27] Color 0 Alpha [7:3] [113:109] 

Color 0 [26:24] Color 0 Alpha [2:0] [113:111] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

LERP = 0 Decoding  

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th 

entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded 

CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of 

the CC_ALPHA block. 

FXT CC_ALPHA Interpolated Color Table (LERP=0) 

Texel Select Color Alpha 

0 Color0.RGB Color0.Alpha 

1 Color1.RGB Color1.Alpha 

2 Color2.RGB Color2.Alpha 

3 Black (RGB=0,0,0) 0 

LERP = 1 Decoding 

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The 

Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-

31 indices, as shown in the following figures: 

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15) 

Texel 0-15 Select Color ARGB 

0 Color0.ARGB 

1 (2*Color0.ARGB + Color1.ARGB + 1) /3 

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 
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FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 

Texel 16-31 Select Color ARGB 

0 Color2.ARGB 

1 (2*Color2.ARGB + Color1.ARGB + 1) /3 

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

DXT/BC1-3 Texture Formats 

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next 

multiple of four texels – here the pad texels are not referenced by the device. 

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is 

opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding 

can be used to support source textures that require more than one-bit alpha: here the 1st QWord is used 

to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values. 

These three types of format are discussed in the following sections: 

 Opaque and One-bit Alpha Textures (DXT1) 

 Opaque Textures (DXT1_RGB) 

 Textures with Alpha Channels (DXT2-5) 

DXT2 and DXT3 are equivalent compression formats from the perspective of the hardware.  The only 

difference between the two is the use of pre-multiplied alpha encoding, which does not affect hardware. 

Likewise, DXT4 and DXT5 are the same compression formats with the only difference being the use of 

pre-multiplied alpha encoding. 

Note that the surface formats DXT1-5 are referred to in the DirectX Specification as BC1-3.  The mapping 

between formats is shown below: 

 DXT1 ⇒ BC1 

 DXT2/DXT3 ⇒ BC2 

 DXT4/DXT5 ⇒ BC3 
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Programming Note 

Context: DXT Texture Formats 

 Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit 

blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-bit alpha 

formats on a per-block basis within the same texture. In other words, the comparison of the unsigned 

integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels. 

 When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or 

DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once 

interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used 

on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a 

block-by-block basis. 

Opaque and One-bit Alpha Textures (DXT1/BC1) 

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque 

or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This 

totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel. 

In the block bitmap, there are two bits per texel to select between the four colors, two of which are 

stored in the encoded data. The other two colors are derived from these stored colors by linear 

interpolation. 

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color 

values stored in the block. They are treated as unsigned integers. If the first color is greater than the 

second, it implies that only opaque texels are defined. This means four colors will be used to represent 

the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed 

in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha 

transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that 

the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the 

alpha block . 

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a 

transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used 

for encoding the alpha mask. 

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color 

encoding is selected: 

if (color_0 > color_1) 

 { 

   // Four-color block: derive the other two colors.   

   // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3 

   // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block. 

    color_2 = (2 * color_0 + color_1) / 3; 

    color_3 = (color 0 + 2 * color_1) / 3; 

 }   
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 else 

 { 

   // Three-color block: derive the other color. 

   // 00 = color_0, 01 = color_1, 10 = color_2, 

   // 11 = transparent. 

   // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block. 

    color_2 = (color_0 + color_1) / 2;   

    color_3 = transparent;   

 } 

The following tables show the memory layout for the 8-byte block. It is assumed that the first index 

corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example, 

Texel[1][2] refers to the texture map pixel at (x,y) = (2,1). 

Here is the memory layout for the 8-byte (64-bit) block: 

Word Address 16-bit Word 

0 Color_0 

1 Color_1 

2 Bitmap Word_0 

3 Bitmap Word_1 

Color_0 and Color_1 (colors at the two extremes) are laid out as follows: 

Bits Color 

15:11 Red color component 

10:5 Green color component 

4:0 Blue color component 

 

Bits Texel 

1:0 (LSB) Texel[0][0] 

3:2 Texel[0][1] 

5:4 Texel[0][2] 

7:6 Texel[0][3] 

9:8 Texel[1][0] 

11:10 Texel[1][1] 

13:12 Texel[1][2] 

15:14 Texel[1][3] 

Bitmap Word_1 is laid out as follows: 

Bits Texel 

1:0 (LSB) Texel[2][0] 

3:2 Texel[2][1] 

5:4 Texel[2][2] 
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Bits Texel 

7:6 Texel[2][3] 

9:8 Texel[3][0] 

11:10 Texel[3][1] 

13:12 Texel[3][2] 

15:14 (MSB) Texel[3][3] 

Example of Opaque Color Encoding 

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We 

will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly 

distributed gradient between them. To determine the values for the 4x4 bitmap, the following 

calculations are used: 

 00 ? color_0 

 01 ? color_1 

 10 ? 2/3 color_0 + 1/3 color_1 

 11 ? 1/3 color_0 + 2/3 color_1 

    

Example of One-bit Alpha Encoding 

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit 

integer, color_1. An example of where this format could be used is leaves on a tree to be shown against a 

blue sky. Some texels could be marked as transparent while three shades of green are still available for 

the leaves. Two of these colors fix the extremes, and the third color is an interpolated color. 

The bitmap encoding for the colors and the transparency is determined using the following calculations: 

 00 ? color_0 

 01 ? color_1 

 10 ? 1/2 color_0 + 1/2 color_1 

 11 ? Transparent 

    

Opaque Textures (DXT1_RGB) 

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is 

removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the 

Opaque Color Encoding. The alpha channel defaults to 1.0. 

Programming Note 

Context: Opaque Textures (DXT1_RGB) 

The behavior of this format is not compliant with the OGL spec. 

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3) 

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a 

block that describes the transparency precedes the 64-bit block already described for DXT1. The 

transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with 

fewer bits and linear interpolation analogous to what is used for color encoding. 
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The transparency block and the color block are laid out as follows: 

Word Address 64-bit Block 

3:0 Transparency block 

7:4 Previously described 64-bit block 

Explicit Texture Encoding 

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe 

transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a 

variety of means such as dithering or by simply using the 4 most significant bits of the alpha data. 

However they are produced, they are used just as they are, without any form of interpolation. 

Note: DirectDraw’s compression method uses the 4 most significant bits. 

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word. 

This is the layout for Word 0: 

Bits Alpha 

3:0 (LSB) [0][0] 

7:4 [0][1] 

11:8 [0][2] 

15:12 (MSB) [0][3] 

This is the layout for Word 1: 

Bits Alpha 

3:0 (LSB) [1][0] 

7:4 [1][1] 

11:8 [1][2] 

15:12 (MSB) [1][3] 

This is the layout for Word 2: 

Bits Alpha 

3:0 (LSB) [2][0] 

7:4 [2][1] 

11:8 [2][2] 

15:12 (MSB) [2][3] 

This is the layout for Word 3: 

Bits Alpha 

3:0 (LSB) [3][0] 

7:4 [3][1] 

11:8 [3][2] 

15:12 (MSB) [3][3] 
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Three-Bit Linear Alpha Interpolation 

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear 

encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in 

the first eight bytes of the block. The representative alpha values are used to interpolate intermediate 

alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is 

greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four 

intermediate alpha values are interpolated between the specified alpha extremes. The two additional 

implicit alpha values are 0 (fully transparent) and 255 (fully opaque). 

The following pseudo-code illustrates this algorithm: 

 // 8-alpha or 6-alpha block? 

 if (alpha_0 > alpha_1) { 

    // 8-alpha block: derive the other 6 alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (6 * alpha_0 + alpha_1) / 7;     // Bit code 010 

   alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011 

   alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100 

   alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101 

   alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110 

   alpha_7 = (alpha_0 + 6 * alpha_1) / 7;     // Bit code 111 

  } 

 else {  

    // 6-alpha block: derive the other alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (4 * alpha_0 + alpha_1) / 5;     // Bit code 010 

   alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011 

   alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100 

   alpha_5 = (alpha_0 + 4 * alpha_1) / 5;     // Bit code 101 

   alpha_6 = 0;                               // Bit code 110 

   alpha_7 = 255;                             // Bit code 111 

 } 

          

The memory layout of the alpha block is as follows: 

Byte Alpha 

0 Alpha_0 

1 Alpha_1 

2 [0][2] (2 LSBs), [0][1], [0][0] 

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB) 

4 [1][3], [1][2], [1][1] (2 MSBs) 

5 [2][2] (2 LSBs), [2][1], [2][0] 

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB) 

7 [3][3], [3][2], [3][1] (2 MSBs) 
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BC4 

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data. 

An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] bit code 

21:19 texel[0][1] bit code 

24:22 texel[0][2] bit code 

27:25 texel[0][3] bit code 

30:28 texel[1][0] bit code 

33:31 texel[1][1] bit code 

36:34 texel[1][2] bit code 

39:37 texel[1][3] bit code 

42:40 texel[2][0] bit code 

45:43 texel[2][1] bit code 

48:46 texel[2][2] bit code 

51:49 texel[2][3] bit code 

54:52 texel[3][0] bit code 

57:55 texel[3][1] bit code 

60:58 texel[3][2] bit code 

63:61 texel[3][3] bit code 

There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 
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red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 

for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

 

BC5 

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. A 

16-byte compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column] 

where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] red bit code 

21:19 texel[0][1] red bit code 

24:22 texel[0][2] red bit code 

27:25 texel[0][3] red bit code 

30:28 texel[1][0] red bit code 

33:31 texel[1][1] red bit code 

36:34 texel[1][2] red bit code 

39:37 texel[1][3] red bit code 

42:40 texel[2][0] red bit code 

45:43 texel[2][1] red bit code 

48:46 texel[2][2] red bit code 

51:49 texel[2][3] red bit code 
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Bit Description 

54:52 texel[3][0] red bit code 

57:55 texel[3][1] red bit code 

60:58 texel[3][2] red bit code 

63:61 texel[3][3] red bit code 

71:64 green_0 

79:72 green_1 

82:80 texel[0][0] green bit code 

85:83 texel[0][1] green bit code 

88:86 texel[0][2] green bit code 

91:89 texel[0][3] green bit code 

94:92 texel[1][0] green bit code 

97:95 texel[1][1] green bit code 

100:98 texel[1][2] green bit code 

103:101 texel[1][3] green bit code 

106:104 texel[2][0] green bit code 

109:107 texel[2][1] green bit code 

112:110 texel[2][2] green bit code 

115:113 texel[2][3] green bit code 

118:116 texel[3][0] green bit code 

121:119 texel[3][1] green bit code 

124:122 texel[3][2] green bit code 

127:125 texel[3][3] green bit code 

There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 
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red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 

for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

The same calculations are done for green, using the corresponding reference colors and bit codes. 

BC6H  

These formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high dynamic range (> 8 

bits per channel). BC6H supports floating point denorms but there is no support for INF and NaN, other 

than with BC6H_SF16 –INF is supported. The alpha channel is not included, thus alpha is returned at its 

default value. 

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits 

(either 2 or 5 bits). 

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices 

indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32 

partition sets is indicated which selects which of the two lines each texel is assigned to. 

Field Definition 

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. The 

mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines 

(“TWO”), and the last 4 use one line (“ONE”). The difference between the various two-line and one-line 

modes is with the precision of the first endpoint and the number of bits used to store delta values for the 

remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than using 

the deltas (these are indicated as having no delta values). 
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The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is “r”, 

“g”, or “b” indicating the color channel. The second letter is “w”, “x”, “y”, or “z” indicating which of the 

four endpoints. The first line has endpoints “w” and “x”, with “w” being the endpoint that is fully specified 

(i.e. not as a delta). The second line has endpoints “y” and “z”. Modes using ONE mode do not have 

endpoints “y” and “z” as they have only one line. 

In addition to the mode and endpoint data, TWO blocks contain a 5-bit “partition” which selects one of 

the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are 

described in more detail below. 

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas 

Bit Description 

1:0 mode = 00 

2 gy[4] 

3 by[4] 

4 bz[4] 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas 

Bit Description 

1:0 mode = 01 

2 gy[5] 

3 gz[4] 
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Bit Description 

4 gz[5] 

11:5 rw[6:0] 

12 bz[0] 

13 bz[1] 

14 by[4] 

21:15 gw[6:0] 

22 by[5] 

23 bz[2] 

24 gy[4] 

31:25 bw[6:0] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas 

Green, Blue: 11-bit endpoint, 4-bit deltas 

Bit Description 

4:0 mode = 00010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 rw[10] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 
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Bit Description 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas 

Green: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 00110 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 gw[10] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[0] 

70 bz[2] 

74:71 rz[3:0] 

75 gy[4] 

76 bz[3] 

81:77 partition 
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Bit Description 

127:82 indices 

Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas 

Blue: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 by[4] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bw[10] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[1] 

70 bz[2] 

74:71 rz[3:0] 

75 bz[4] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01110 

13:5 rw[8:0] 

14 by[4] 

23:15 gw[8:0] 

24 gy[4] 

33:25 bw[8:0] 
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Bit Description 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[3:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas 

Green, Blue: 8-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 10010 

12:5 rw[7:0] 

13 gz[4] 

14 by[4] 

22:15 gw[7:0] 

23 bz[2] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[3] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 gz[1] 
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Bit Description 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas 

Green: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 10110 

12:5 rw[7:0] 

13 bz[0] 

14 by[4] 

22:15 gw[7:0] 

23 gy[5] 

24 gy[4] 

32:25 bw[7:0] 

33 gz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas 

Blue: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 11010 

12:5 rw[7:0] 

13 bz[1] 

14 by[4] 

22:15 gw[7:0] 

23 by[5] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas 

Bit Description 

4:0 mode = 11110 

10:5 rw[5:0] 

11 gz[4] 

12 bz[0] 

13 bz[1] 

14 by[4] 

20:15 gw[5:0] 
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Bit Description 

21 gy[5] 

22 by[5] 

23 bz[2] 

24 gy[4] 

30:25 bw[5:0] 

31 gz[5] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas 

Bit Description 

4:0 mode = 00011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

44:35 rx[9:0] 

54:45 gx[9:0] 

64:55 bx[9:0] 

127:65 indices 

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas 

Bit Description 

4:0 mode = 00111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

43:35 rx[8:0] 
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Bit Description 

44 rw[10] 

53:45 gx[8:0] 

54 gw[10] 

63:55 bx[8:0] 

64 bw[10] 

127:65 indices 

Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas 

Bit Description 

4:0 mode = 01011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

42:35 rx[7:0] 

43 rw[11] 

44 rw[10] 

52:45 gx[7:0] 

53 gw[11] 

54 gw[10] 

62:55 bx[7:0] 

63 bw[11] 

64 bw[10] 

127:65 indices 

Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas 

Bit Description 

4:0 mode = 01111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[15] 

40 rw[14] 

41 rw[13] 

42 rw[12] 

43 rw[11] 

44 rw[10] 

48:45 gx[3:0] 
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Bit Description 

49 gw[15] 

50 gw[14] 

51 gw[13] 

52 gw[12] 

53 gw[11] 

54 gw[10] 

58:55 bx[3:0] 

59 bw[15] 

60 bw[14] 

61 bw[13] 

62 bw[12] 

63 bw[11] 

64 bw[10] 

127:65 indices 

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels. 

The “indices” fields are defined as follows: 

TWO mode indices field with fix-up index [1] at texel[3][3] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

107:105 texel[2][0] index 

110:108 texel[2][1] index 

113:111 texel[2][2] index 

116:114 texel[2][3] index 

119:117 texel[3][0] index 

122:120 texel[3][1] index 

125:123 texel[3][2] index 

127:126 texel[3][3] index 
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TWO mode indices field with fix-up index [1] at texel[0][2] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

88:87 texel[0][2] index 

91:89 texel[0][3] index 

94:92 texel[1][0] index 

97:95 texel[1][1] index 

100:98 texel[1][2] index 

103:101 texel[1][3] index 

106:104 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[2][0] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

106:105 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 
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ONE mode indices field 

Bit Description 

67:65 texel[0][0] index 

71:68 texel[0][1] index 

75:72 texel[0][2] index 

79:76 texel[0][3] index 

83:80 texel[1][0] index 

87:84 texel[1][1] index 

91:88 texel[1][2] index 

95:92 texel[1][3] index 

99:96 texel[2][0] index 

103:100 texel[2][1] index 

107:104 texel[2][2] index 

111:108 texel[2][3] index 

115:112 texel[3][0] index 

119:116 texel[3][1] index 

123:120 texel[3][2] index 

127:124 texel[3][3] index 

Endpoint Computation 

The endpoints can be defined in many different ways, as shown above. This section describes how the 

endpoints are computed from the bits in the compression block. The method used depends on whether 

the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16). 

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and 

independently, however in some modes different channels have different incoming precision which must 

be accounted for. The following rules are employed: 

 If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits 

 For all other cases, the value is zero-extended to 16 bits 

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that are 

delta values, the next step involves computing the absolute endpoint. The “w” endpoint is always 

absolute and acts as a base value for the other three endpoints. Each channel is handled identically and 

independently. 

 x = w + x 

 y = w + y 

 z = w + z 

    

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any 

resulting high bits are dropped). 
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Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 14 

(ONE mode) interpolated colors. Again each channel is processed independently. 

First the endpoints are unquantized, with each channel of each endpoint being processed independently. 

The number of bits in the original base w value represents the precision of the endpoints. The input 

endpoint is called e, and the resulting endpoints are represented as 17-bit signed integers and called e' 

below. 

For the BC6H_UF16 format: 

 if the precision is already 16 bits, e' = e 

 if e = 0, e' = 0 

 if e is the maximum representible in the precision, e' = 0xFFFF 

 otherwise, e' = ((e « 16) + 0x8000) » precision 

For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e' and e refer 

only to the magnitude portion: 

 if the precision is already 16 bits, e' = e 

 if e = 0, e' = 0 

 if e is the maximum representible in the precision, e' = 0x7FFF 

 otherwise, e' = ((e « 15) + 0x4000) » (precision - 1) 

Next, the palette values are generated using predefined weights, using the tables below: 

palette[i] = (w' * (64 - weight[i]) + x' * weight[i] + 32) » 6 

TWO mode weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

ONE mode weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation w' and x' represent the endpoints e' computed in the previous step corresponding to w 

and x, respectively. For the second line in TWO mode, w and x are replaced with y and z. 

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the 

values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign 

magnitude. These final 16-bit results are ultimately treated as 16-bit floats. 
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Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit 

per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter. 

This procedure differs depending on whether the mode is TWO or ONE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, but the “indices” field is 63 bits. This field consists of 

a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 3 

bits, the missing high bit being set to zero. 

TWO Mode 

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1 

(endpoints y and z). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the 

“fix-up index”. These texels have one less bit in the index. 

  
0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 
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14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

The 46-bit “indices” field consists of a 3-bit palette index for each of the 16 texels, with the exception of 

the bracketed texels that have only two bits each. The high bit of these texels is set to zero. 

BC7  

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point 

images. 

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC7 

has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 bits 

depending on mode). 

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or 

three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If a 

two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the two 

lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the 

color-only modes, alpha is always returned at its default value of 1.0. 

Some modes contain the following fields: 

 P-bits. These represent shared LSB for all components of the endpoint, which increases the 

endpoint precision by one bit. In some cases both endpoints of a line share a P-bit. 

 Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which of 

the four components has its own indexes (scalar) vs. the other three components (vector). 

 Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit 

index vs. the 2-bit index. 
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Field Definition 

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The 

mode is selected by the unique mode bits specified in each table. Each mode has particular 

characteristics described at the top of the table. 

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16 

partitions 

Bit Description 

0 mode = 0 

4:1 partition 

8:5 R0 

12:9 R1 

16:13 R2 

20:17 R3 

24:21 R4 

28:25 R5 

32:29 G0 

36:33 G1 

40:37 G2 

44:41 G3 

48:45 G4 

52:49 G5 

56:53 B0 

60:57 B1 

64:61 B2 

68:65 B3 

72:69 B4 

76:73 B5 

77 P0 

78 P1 

79 P2 

80 P3 

81 P4 

82 P5 

127:83 indices 
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Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64 

partitions 

Bit Description 

1:0 mode = 10 

7:2 partition 

13:8 R0 

19:14 R1 

25:20 R2 

31:26 R3 

37:32 G0 

43:38 G1 

49:44 G2 

55:50 G3 

61:56 B0 

67:62 B1 

73:68 B2 

79:74 B3 

80 P0 

81 P1 

127:82 indices 

Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions 

Bit Description 

2:0 mode = 100 

8:3 partition 

13:9 R0 

18:14 R1 

23:19 R2 

28:24 R3 

33:29 R4 

38:34 R5 

43:39 G0 

48:44 G1 

53:49 G2 

58:54 G3 

63:59 G4 

68:64 G5 

73:69 B0 
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Bit Description 

78:74 B1 

83:79 B2 

88:84 B3 

93:89 B4 

98:94 B5 

127:99 indices 

Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64 

partitions 

Bit Description 

3:0 mode = 1000 

9:4 partition 

16:10 R0 

23:17 R1 

30:24 R2 

37:31 R3 

44:38 G0 

51:45 G1 

58:52 G2 

65:59 G3 

72:66 B0 

79:73 B1 

86:80 B2 

93:87 B3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16 

3-bit indices, 2-bit component rotation, 1-bit index selector 

Bit Description 

4:0 mode = 10000 

6:5 rotation 

7 index selector 

12:8 R0 

17:13 R1 
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Bit Description 

22:18 G0 

27:23 G1 

32:28 B0 

37:33 B1 

43:38 A0 

49:44 A1 

80:50 2-bit indices 

127:81 3-bit indices 

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices, 

2-bit alpha indices, 2-bit component rotation 

Bit Description 

5:0 mode = 100000 

7:6 rotation 

14:8 R0 

21:15 R1 

28:22 G0 

35:29 G1 

42:36 B0 

49:43 B1 

57:50 A0 

65:58 A1 

96:66 color indices 

127:97 alpha indices 

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit 

indices 

Bit Description 

6:0 mode = 1000000 

13:7 R0 

20:14 R1 

27:21 G0 

34:28 G1 

41:35 B0 

48:42 B1 

55:49 A0 

62:56 A1 

63 P0 
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Bit Description 

64 P1 

127:65 indices 

Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit 

indices, 64 partitions 

Bit Description 

7:0 mode = 10000000 

13:8 partition 

18:14 R0 

23:19 R1 

28:24 R2 

33:29 R3 

38:34 G0 

43:39 G1 

48:44 G2 

53:49 G3 

58:54 B0 

63:59 B1 

68:64 B2 

73:69 B3 

78:74 A0 

83:79 A1 

88:84 A2 

93:89 A3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels. 

The indices fields are variable in length and due to the different locations of the fix-up indices depending 

on partition set there are a very large number of possible configurations. Each mode above indicates 

how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, and three in 

THREE mode) each have one less bit than indicated. However, the indices are always packed into the 

index fields according to the table below, with the specific bit assignments of each texel following the 

rules just given. 
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Bit Description 

LSBs texel[0][0] index 

  texel[0][1] index 

  texel[0][2] index 

  texel[0][3] index 

  texel[1][0] index 

  texel[1][1] index 

  texel[1][2] index 

  texel[1][3] index 

  texel[2][0] index 

  texel[2][1] index 

  texel[2][2] index 

  texel[2][3] index 

  texel[3][0] index 

  texel[3][1] index 

  texel[3][2] index 

MSBs texel[3][3] index 

Endpoint Computation 

The endpoints can be defined with different precision depending on mode, as shown above. This section 

describes how the endpoints are computed from the bits in the compression block. Each component of 

each endpoint follows the same steps. 

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint 

value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range from 

0x00 to 0xFF. 

Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14 

interpolated colors, depending on the number of bits in the indices. Again each channel is processed 

independently. 

The equation to compute each palette color with index i, given two endpoints is as follows, using the 

tables below to determine the weight for each palette index: 

palette[i] = (E0 * (64 - weight[i]) + E1 * weight[i] + 32) » 6 
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2-bit index weights: 

palette index 0 1 2 3 

weight 0 21 43 64 

3-bit index weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

4-bit index weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation E0 and E1 represent the even-numbered and odd-numbered endpoints computed in the 

previous step for the component and line currently being computed. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit 

per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In 

BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure 

differs depending on whether the mode is ONE, TWO, or THREE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, thus there is only a single “partition set” defined, 

with all texels selecting line 0 and texel [0][0] being the “fix-up index” with one less bit in the index. 
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TWO Mode 

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 (endpoints 

2 and 3). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the “fix-up 

index”. These texels have one less bit in the index. 

  
0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 
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0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

20 
[0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1 

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1 

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0 

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0 

24 
[0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1 

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1] 

28 
[0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1 

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1 

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 

2C 
[0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0 

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0 

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0 

30 
[0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0 

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

34 
[0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1 

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0 

38 
[0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1 

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1] 

3C 
[0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0 

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1] 
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THREE Mode 

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block 

of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 (endpoints 2 

and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of “[0]”, “[1]”, and “[2]”, the index that 

this is at is termed the “fix-up index”. These texels have one less bit in the index. 

  
0 1 2 3 

00 
[0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2] 

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2 

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1 

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1 

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1 

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1 

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1] 

08 
[0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2 

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2 

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2 

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2] 

0C 
[0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1] 

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1 

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0 

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0 

10 
[0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2] 

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2 

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2 

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1] 

14 
[0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0 

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0 

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0 

18 
[0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0 

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1 

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1 

1C 
[0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0 

1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0 
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[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1 

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1] 

20 
[0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0 

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0 

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0 

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0 

24 
[0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1 

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0 

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2 

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1] 

28 
[0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2 

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2 

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2 

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2] 

2C 
[0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0 

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1 

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1 

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1] 

30 
[0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0 

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2 

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2 

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2] 

34 
[0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0 

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2 

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2] 

38 
[0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0 

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0 

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0 

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2] 

3C 
[0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1] 

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1 

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1 

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0 
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Adaptive Scalable Texture Compression (ASTC)  

This section describes the data structure of the Adaptive Scalable Texture Compression (ASTC) format, as 

well as the decoding flow of ASTC. Also described are the header format and mipmap layout in the 

compressed texture file of *.astc. This is based on the reference encoder and decoder from the Khronos 

committee, with an extension to support multiple miplevel texture. 

ASTC is a new compressed texture format with following characteristics: 

1. ASTC compression format is currently only used for static texture, due to the large amount of 

computation and high latency required to find the optimal configuration in compression. It cannot 

be used to compress dynamic textures such as a shadow map. 

2. ASTC is a lossy compression technique that cannot be used to compress dynamic textures which 

do not tolerate quality degradation. 

3. ASTC has a huge range of compression ratio and block size, but these choices are fixed for each 

texture for all blocks at all mipmap levels. 

4. ASTC has options to support compression from 1 to 4 channels for texture data. 

5. ASTC can support both high and low dynamic textures. 

6. ASTC can support both 2D and 3D textures. 

Supported Formats 

2D LDR profile. 

2D HDR profiles. 

ASTC Fundamentals  

This section describes some background details and new surface formats for ASTC. 

Background   

ASTC is a more advanced texture compression technique than the existing BC and ETC, and can reduce 

footprint & BW of static texture further in Graphics application by providing a texture compression 

solution at higher compression ratios. To best find the balance point of visual quality and compression, it 

provides a wide range of bit rate selection from 8bpp to 0.89 bpp in 2D, and 4.6bpp to 0.6 bpp in 3D at 

various block size of footprints. It also has flexibility to specify 1-4 components, selection of dual plane 

mode among the specified color components. 

It extends the existing linear model on color distribution of each block in multiple partitions (up to 4), 

with flexible compact supporting on index/weight for color interpolation. ASTC also has a support of 

high dynamic range (HDR) image and 3D textures. The mixture of HDR and LDR data is within each block 

level allows a great flexibility to represent high dynamics variation at fine granularity. The support of 3D 

texture explores the data coherency in all 3 dimensions, without the need to mimic 3D map with 2D 

slices. On top of everything, void-extent regions are introduced for both 2D and 3D maps as further 

optimization on large constant region. 
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ASTC is a voted approved future texture format for OpenGL ES by Khronos Group, and is on projection to 

be accepted in D3D API. It provides less bandwidth, storage, lower power and high performance over 

existing techniques, and has been identified as a critical feature for Gen GPU to get future design win 

from desktop, laptop to tablet and handheld markets. 

Due to the computational complexity and processing delay of the encoding process, ASTC compression 

encoding is always offline, and can only be used for static texture. It does not support auto mipmap 

generation and cannot be considered as a format for render target. 

The ASTC provides a wide spectrum of bit per pixel for both 2D and 3D texture for both LDR and HDR 

images, hence a wide range of compression to any 2D and 3D texture. 

LDR Compression Ratios: 

2D Block Footprint Bit Rate (bpp) Compression ratio (LDR 32bpp) 

4x4 8.00 4.0 

5x4 6.40 5.0 

5x5 5.12 6.3 

6x5 4.27 7.5 

6x6 3.56 9.0 

8x5 3.20 10.0 

8x6 2.67 12.0 

10x5 2.56 12.5 

10x6 2.13 15.0 

8x8 2.00 16.0 

10x8 1.60 20.0 

10x10 1.28 25.0 

12x10 1.07 29.9 

12x12 0.89 36.0 
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HDR Compression Ratios: 

2D Block Footprint Bit Rate (bpp) Compression ratio (LDR 32bpp) 

4x4 8.00 8.0 

5x4 6.40 10.0 

5x5 5.12 12.5 

6x5 4.27 15.0 

6x6 3.56 18.0 

8x5 3.20 20.0 

8x6 2.67 24.0 

10x5 2.56 25.0 

10x6 2.13 30.0 

8x8 2.00 32.0 

10x8 1.60 40.0 

10x10 1.28 50.0 

12x10 1.07 59.8 

12x12 0.89 71.9 
 

Compared against fixed compression ratios of 4x or 8x on BC* formats, ASTC provides compression 

ratios from 4x to 36x for 2D LDR, 8x to 72x in 2D HDR maps, 7x to 54x on 3D LDR (32bpp) maps, and 14x 

to 108x in 3D HDR (64bpp). This can reduce bandwidth and footprint of a static 2D HDR or 3D textures 

to a small fractional of the existing BC formats, and greatly improve the performance on the graphic 

applications using these textures intensively. 

Another benefit of ASTC is that, with the large range of selection of footprints and bpp, it can provide a 

good trade-off between quality degradation of the compressed texture and performance, due to the 

bandwidth and footprints reduction. This could not be achieved by any previously existing texture 

compression technologies. 

Although ASTC has a huge benefit of bandwidth reduction, the expected performance gain in real 3D 

application from this technique depends on how much texture bandwidth bottleneck is relative to the 

throughput of computing in EU, Sampler, and other fixed function components. 

New Surface Formats for ASTC Texture   

The ASTC data format natively supports 14 2D block size, 10 3D block size, and each decoded format 

should support either UN8 (with sRGB con version) or Float16 at each color component. Following is the 

full list of all different surface formats as the full combination of different block shapes and UN8 or 

Float16 options. 

Programming Note 

Context: Supported ASTC Formats 

All 2D ASTC Formats (LDR and HDR) are supported. 
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Value 

[26] LDR/Full 

 [25] 2D/3D 

 [24] U8srgb 

/FLT16 

Width 

 2D 

[23:21] 

 3D 

[23:22] 

Height 

 2D 

[20:18] 

 3D 

[21:20] 

Depth 

 2D: n/a 

 3D: 

[19:18] 

Binary 

form Name (BPE) 

000h 000 0 0  000 000 

000 

ASTC_LDR_2D_4x4_U8sRGB 8.00 

008h 000 1 0  000 001 

000 

ASTC_LDR_2D_5x4_U8sRGB 6.40 

009h 000 1 1  000 001 

001 

ASTC_LDR_2D_5x5_U8sRGB 5.12 

011h 000 2 1  000 010 

001 

ASTC_LDR_2D_6x5_U8sRGB 4.27 

012h 000 2 2  000 010 

010 

ASTC_LDR_2D_6x6_U8sRGB 3.56 

021h 000 4 1  000 100 

001 

ASTC_LDR_2D_8x5_U8sRGB 3.20 

022h 000 4 2  000 100 

010 

ASTC_LDR_2D_8x6_U8sRGB 2.67 

031h 000 6 1  000 110 

001 

ASTC_LDR_2D_10x5_U8sRGB 2.56 

032h 000 6 2  000 110 

010 

ASTC_LDR_2D_10x6_U8sRGB 2.13 

024h 000 4 4  000 100 100 ASTC_LDR_2D_8x8_U8sRGB 2.00 

034h 000 6 4  000 110 100 ASTC_LDR_2D_10x8_U8sRGB 1.60 

036h 000 6 6  000 110 

110 

ASTC_LDR_2D_10x10_U8sRGB 1.28 

03eh 000 7 6  000 111 110 ASTC_LDR_2D_12x10_U8sRGB 1.07 

03fh 000 7 7  000 111 111 ASTC_LDR_2D_12x12_U8sRGB 0.89 

040h 001 0 0  001 000 

000 

ASTC_LDR_2D_4x4_FLT16 8.00 

048h 001 1 0  001 001 

000 

ASTC_LDR_2D_5x4_FLT16 6.40 

049h 001 1 1  001 001 

001 

ASTC_LDR_2D_5x5_FLT16 5.12 

051h 001 2 1  001 010 

001 

ASTC_LDR_2D_6x5_FLT16 4.27 

052h 001 2 2  001 010 

010 

ASTC_LDR_2D_6x6_FLT16 3.56 
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Value 

[26] LDR/Full 

 [25] 2D/3D 

 [24] U8srgb 

/FLT16 

Width 

 2D 

[23:21] 

 3D 

[23:22] 

Height 

 2D 

[20:18] 

 3D 

[21:20] 

Depth 

 2D: n/a 

 3D: 

[19:18] 

Binary 

form Name (BPE) 

061h 001 4 1  001 100 

001 

ASTC_LDR_2D_8x5_FLT16 3.20 

062h 001 4 2  001 100 

010 

ASTC_LDR_2D_8x6_FLT16 2.67 

071h 001 6 1  001 110 

001 

ASTC_LDR_2D_10x5_FLT16 2.56 

072h 001 6 2  001 110 

010 

ASTC_LDR_2D_10x6_FLT16 2.13 

064h 001 4 4  001 100 100 ASTC_LDR_2D_8x8_FLT16 2.00 

074h 001 6 4  001 110 100 ASTC_LDR_2D_10x8_FLT16 1.60 

076h 001 6 6  001 110 

110 

ASTC_LDR_2D_10x10_FLT16 1.28 

07eh 001 7 6  001 111 110 ASTC_LDR_2D_12x10_FLT16 1.07 

07fh 001 7 7  001 111 111 ASTC_LDR_2D_12x12_FLT16 0.89 

080h 010 0 0 0 010 000 

000 

ASTC_LDR_3D_3x3x3_U8sRGB 4.74 

090h 010 1 0 0 010 010 

000 

ASTC_LDR_3D_4x3x3_U8sRGB 3.56 

094h 010 1 1 0 010 010 

100 

ASTC_LDR_3D_4x4x3_U8sRGB 2.67 

095h 010 1 1 1 010 010 

101 

ASTC_LDR_3D_4x4x4_U8sRGB 2.00 

0a5h 010 2 1 1 010 100 

101 

ASTC_LDR_3D_5x4x4_U8sRGB 1.60 

0a9h 010 2 2 1 010 101 

001 

ASTC_LDR_3D_5x5x4_U8sRGB 1.28 

0aah 010 2 2 2 010 101 

010 

ASTC_LDR_3D_5x5x5_U8sRGB 1.02 

0bah 010 3 2 2 010 111 

010 

ASTC_LDR_3D_6x5x5_U8sRGB 0.85 

0beh 010 3 3 2 010 111 

110 

ASTC_LDR_3D_6x6x5_U8sRGB 0.71 

0bfh 010 3 3 3 010 111 

111 

ASTC_LDR_3D_6x6x6_U8sRGB 0.59 

140h 101 0 0 n/a 101 000 ASTC_FULL_2D_4x4_FLT16 8.00 
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Value 

[26] LDR/Full 

 [25] 2D/3D 

 [24] U8srgb 

/FLT16 

Width 

 2D 

[23:21] 

 3D 

[23:22] 

Height 

 2D 

[20:18] 

 3D 

[21:20] 

Depth 

 2D: n/a 

 3D: 

[19:18] 

Binary 

form Name (BPE) 

000 

148h 101 1 0 n/a 101 001 

000 

ASTC_FULL_2D_5x4_FLT16 6.40 

149h 101 1 1 n/a 101 001 

001 

ASTC_FULL_2D_5x5_FLT16 5.12 

151h 101 2 1 n/a 101 010 

001 

ASTC_FULL_2D_6x5_FLT16 4.27 

152h 101 2 2 n/a 101 010 

010 

ASTC_FULL_2D_6x6_FLT16 3.56 

161h 101 4 1 n/a 101 100 

001 

ASTC_FULL_2D_8x5_FLT16 3.20 

162h 101 4 2 n/a 101 100 

010 

ASTC_FULL_2D_8x6_FLT16 2.67 

171h 101 6 1 n/a 101 110 

001 

ASTC_FULL_2D_10x5_FLT16 2.56 

172h 101 6 2 n/a 101 110 

010 

ASTC_FULL_2D_10x6_FLT16 2.13 

164h 101 4 4 n/a 101 100 100 ASTC_FULL_2D_8x8_FLT16 2.00 

174h 101 6 4 n/a 101 110 100 ASTC_FULL_2D_10x8_FLT16 1.60 

176h 101 6 6 n/a 101 110 

110 

ASTC_FULL_2D_10x10_FLT16 1.28 

17eh 101 7 6 n/a 101 111 110 ASTC_FULL_2D_12x10_FLT16 1.07 

17fh 101 7 7 n/a 101 111 111 ASTC_FULL_2D_12x12_FLT16 0.89 

1c0h 111 0 0 0 111 000 

000 

ASTC_FULL_3D_3x3x3_FLT16 4.74 

1d0h 111 1 0 0 111 010 

000 

ASTC_FULL_3D_4x3x3_FLT16 3.56 

1d4h 111 1 1 0 111 010 

100 

ASTC_FULL_3D_4x4x3_FLT16 2.67 

1d5h 111 1 1 1 111 010 

101 

ASTC_FULL_3D_4x4x4_FLT16 2.00 

1e5h 111 2 1 1 111 100 

101 

ASTC_FULL_3D_5x4x4_FLT16 1.60 

1e9h 111 2 2 1 111 101 ASTC_FULL_3D_5x5x4_FLT16 1.28 
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Value 

[26] LDR/Full 

 [25] 2D/3D 

 [24] U8srgb 

/FLT16 

Width 

 2D 

[23:21] 

 3D 

[23:22] 

Height 

 2D 

[20:18] 

 3D 

[21:20] 

Depth 

 2D: n/a 

 3D: 

[19:18] 

Binary 

form Name (BPE) 

001 

1eah 111 2 2 2 111 101 

010 

ASTC_FULL_3D_5x5x5_FLT16 1.02 

1fah 111 3 2 2 111 111 

010 

ASTC_FULL_3D_6x5x5_FLT16 0.85 

1feh 111 3 3 2 111 111 

110 

ASTC_FULL_3D_6x6x5_FLT16 0.71 

1ffh 111 3 3 3 111 111 

111 

ASTC_FULL_3D_6x6x6_FLT16 0.59 

ASTC File Format and Memory Layout   

ASTC Header Data Structure and Amendment   

The 1st block of an ASTC compression texture is a header file. Its byte layout in the original header 

structure in *.astc file is: 

struct astc_header 

 { 

     uint8_t magic[4]; 

     uint8_t blockdim_x; 

     uint8_t blockdim_y; 

     uint8_t blockdim_z; 

     uint8_t xsize[3]; // x-size = xsize[0] + xsize[1] + xsize[2] 

     uint8_t ysize[3]; // x-size, y-size and z-size are given in texels; 

     uint8_t zsize[3]; // block count is inferred 

 }; 

Since there are limited ranges for block dimensions in x, y and z directions as described in following, we 

could store additional information in the unused upper bits of these byte fields 

Block Dimension 2D 3D 

blockdim_x 4, 5, 6, 8, 10, 12 3, 4, 5, 6 

blockdim_y 4, 5, 6, 8, 10, 12 3, 4, 5, 6 

blockdim_z 1 3, 4, 5, 6 

Since blockdim_z is in the range of [1,6], only lower 3 bits of blockdim_z is used. We proposed the Intel 

astc extension format with numLODs stored in the upper 5 bits of the byte field used for blockdim_z. 

This new byte field can be defined as: 

numLODs_blockdim_z = (numLODs-1) « 3 | ( blockdim_z & 0x7) ; 
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New header: 

 struct astc_header 

 { 

     uint8_t magic[4]; 

     uint8_t blockdim_x; 

     uint8_t blockdim_y; 

 uint8_t numLODs_blockdim_z; 

 uint8_t xsize[3]; // width = xsize[0] + (xsize[1]«8) + (xsize[2]«16) 

 uint8_t ysize[3]; // height= ysize[0] + (ysize[1]«8) + (ysize[2]«16) 

 uint8_t zsize[3]; // depth = zsize[0] + (zsize[1]«8) + (zsize[2]«16) 

 // x_size, y_size and z_size are given in texels; 

          

 // block count is inferred 

 }; 

The driver or the software responsible for managing the memory resource will get numLODs and 

blockdim_z in: 

numLODs = ((numLODs_blockdim_z » 3) & 0x1F) + 1; 

blockdim_z = numLODs_blockdim_z & 0x7; 

Data Layout in ASTC Compression File   

A number of parameters are useful to determine where given pixels are located on the 2D & 3D surface. 

First, the width and height for each LOD level “L” is computed as: 

 

 

 

The numbers of blocks in width, height and depth slab in each LOD are: 

Nw(L) = Ceil(WL /Bw ); 

Nh (L) =  Ceil(HL /Bh ); 

Ns (L) =  Ceil(DL /Bd ), 

Where Bw, Bh and Bd is the block width, height and depth respectively. 

Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in 

each LOD level of the mipmap is described by  nBL  = Nw(L) * Nh (L) * Ns (L), The total number of blocks 

in the entire texture map is a summation of nBL‘s from all mipmap levels and all slabs, which are all pre-

compressed via ASTC encoder. All the blocks in each LOD are in raster sequenced in width, height and 

then depth slab order. 
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Total ASTC Data Block Layout in All Mipmap Levels   

The entire layout of the compression texture file looks like: 

Address Data Description 

Addr0 (Base Address) Header structure 

Addr0+16 
1st Data Block in LOD0 

Addr0+32 
2nd Data Block in LOD0 

… … 

Addr1 = Addr0+16*nB0 
Last Data Block in LOD0 

Addr1 +16 
1st Data Block in LOD1 

Addr1+32 
2nd Data Block in LOD1 

… … 

Addr2 = Addr1+16*nB1 
Last Data Block in LOD1 

Addr2+16 
1st Data Block in LOD2 

Addr2+32 
2nd Data Block in LOD2 

… … 

Addr3 = Addr2+16*nB2 
Last Data Block in LOD2 

… … 

Data Layout in Memory for All Mipmap Levels   

The following equations for give the base address (U_offset, V_offset) in Cartesian coordinates for the 

starting point of each mip map at LOD L and depth slab q: 

LOD=0:  

U_offset (0, q) = 0;  

V_offset (0, q)  = q * h0; 

LOD=1:  

U_offset (1, q) = (q%2)*w1;  

V_offset (1, q)  = D0*h0 + (q»1)*h1; 

LOD=2:  

U_offset (2, q) = (q%4)*w2;    
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V_offset (2, q)  = D0*h0 + ceil(D1/2) * h1 + (q»2)*h2; 

LOD=3:  

U_offset (3, q) = (q%8)*w3;  

V_offset (3, q)  = D0*h0 + ceil(D1/2) * h1 + ceil(D2/2) * h2 + (q»3)*h3; 

…… 
Since ASTC has a native tile format specified by the encoding block size, the total number of blocks in 

each LOD level of the mipmap is described by  nBL  = Nw(L) * Nh (L) * Ns (L). The memory layout for TileY 

format are considered with 512bit (16Bx4) in 1 cacheline granularity, the total number of blocks is:   4*( 

(Ceil(HL /Bh )+3)/4  * Ceil(WL /Bw ) * Ceil(DL /Bd ): 

Here is the full list describing the total number of rows and columns of data in each mipmap for texture 

in ASTC format: 

Table for block dimension in 2D 

Block Size 

ASTC Block Height 

 (in line) 

ASTC Block Width 

 (in Byte) 

4 ((Ceil(HL /4 ) +3)/4) *4 Ceil(WL /4 ) * 16 

5 ((Ceil(HL /5 ) +3)/4) *4 Ceil(WL /5 ) * 16 

6 ((Ceil(HL /6 ) +3)/4) *4 Ceil(WL /6 ) * 16 

8 ((Ceil(HL /8 ) +3)/4) *4 Ceil(WL /8 ) * 16 

10 ((Ceil(HL /10) +3)/4) *4 Ceil(WL /10) * 16 

12 ((Ceil(HL /12) +3)/4) *4 Ceil(WL /12) * 16 

   

Table for block dimension in 3D 

Block Size 

ASTC Block Height 

 (in line) 

ASTC Block Width 

 (in Byte) 

ASTC Block Depth/slab 

 (in slice) 

3 ((Ceil(HL /3) +3)/4) *4 Ceil(WL /3) * 16 Ceil(DL /3 ) 

4 ((Ceil(HL /4 ) +3)/4) *4 Ceil(WL /4 ) * 16 Ceil(DL /4 )  

5 ((Ceil(HL /5 ) +3)/4) *4 Ceil(WL /5 ) * 16 Ceil(DL /5 ) 

6 ((Ceil(HL /6 ) +3)/4) *4 Ceil(WL /6 ) * 16 Ceil(DL /6 ) 

    

For example, an image of 64x64 with 5x5 block coding in LOD0 will have: 

Block Height: (13+3)/4*4=16 (lines) 

Block Width: 13 *16 = 208 (Bytes) 

The following diagram illustrate the memory layout for 2D and 3D map respectively. 
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ASTC Data Structure   

Layout and Description of Block Data   

The block data structure is described in the following table in the categories of the block being partition 

enabled (2-4 partitions) or disabled (only 1 partition), as well as 1 plane or dual-plane mode. Where CEM 

refers to Color Endpoint Mode, and CCS stands for Color Channel Selection: 

Layout of Partitioning Disabled (1 partition) and Enabled (multi-partition) blocks 

 

The 11 bit “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this 

field is listed in next two tables, one for the 2D and one for the 3D. 

The “Part” field specifies the number of partitions minus one. If dual plane mode is enabled, the number 

of partitions must be 3 or fewer. In case 4 partitions in such situation are specified, the error value is 

returned for all texels in the block. The size and layout of the extra configuration data depends on the 

number of partition, and the number of planes in the image. 

Partitioning   

For any non-void extend region, each block is subdivided into 1, 2, 3 or 4 partitions, with a separate color 

endpoint pair for each partition. The number of partitions is specified by the partition count-1 in bits 

[12:11] of block data. If 2 or more partitions are selected, partitioning is enabled, the 10 bit partition 

index is then used to select one from 1024 partitioning patterns, where the total set of patterns 

supported in ASTC depends on the partition count and block size. The partitioning patterns are 

produced generatively, which supports a very large set of partitioning patterns for different block sizes 

with a modest number of hardware gates implementation. 

Index Mode   

The “Index mode” field specifies how the Texel Index Data is encoded. The bit encoding of this field is 

listed in next two tables, one for the 2D and one for the 3D. 
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The Index Mode field specifies the width (N), height (M) and depth (Q) of the grid of indices, what range 

of values they use, and whether dual index planes are present. The index ranges are encoded using a 3 

bit value R, which is interpreted together with a precision bit H, as follows: 

 

Each index value is encoded using the specified number of Trits, Quints and Bits. The details of this 

encoding can be found in Section - Integer Sequence Encoding. Due to the encoding of the R field, bits r2 

and r1 cannot both be zero, 

The number of indices provided for a block is not tied to the block size in any way, instead, the indices 

form an N*M*Q ordered grid. N, M and Q are specified on a per-block basis rather then being a global 

texture property. For 2D blocks, N and M can be set to any value from 2 to 12 while Q is fixed at 1; for 3D 

blocks, N, M and Q can be set to any value from 2 to 5. The range used for each index can be set 

separately for each block. The Index Bit Mode field species the values of N, M, Q and the range; it also 

specifies whether Dual Index Planes are present or not as well. 

The D bit in following tables is set to indicate dual-plane mode. In this mode, the maximum allowed 

number of partitions is 3. The size of the grid in each dimension must be less than or equal to the 

corresponding dimension of the block footprint. If the grid size is greater than the footprint dimension in 

any axis, then this is an illegal block encoding and all texels will decode to the error color. 

For 2D blocks, the index mode field is laid out as follows: 
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The bit encoding of the index mode field for 2D Blocks 

Bits Width Height Notes 

10 9 8 7 6 5 4 3:2 1:0 N M  

D H B A r0 0 0 r2 r1 B+4 A+2  

D H B A r0 0 1 r2 r1 B+8 A+2  

D H B A r0 1 0 r2 r1 A+2 B+8  

D H 0 B A r0 1 1 r2 r1 A+2 B+6  

D H 1 B A r0 1 1 r2 r1 B+2 A+2  

D H 0 0 A r0 r2 r1 0 0 12 A+2  

D H 0 1 A r0 r2 r1 0 0 A+2 12  

D H 1 1 0 0 r0 r2 r1 0 0 6 10  

D H 1 1 0 1 r0 r2 r1 0 0 10 6  

B 1 0 A r0 r2 r1 0 0 A+6 B+6 D=0, H=0 

x x 1 1 1 1 1 1 1 0 0 - - Void-Extent 

x x 1 1 1 x x x x 0 0 - - Reserve 

x x x x x x x 0 0 0 0 - - Reserve 

Note that, due to the encoding of the R field (r0, r1, r2), bits r2 and r1 cannot both be zero, which 

disambiguates the first five rows from the rest of the table. The penultimate row of the table is reserved 

only if bits [5:2] are not all 1, in which case it encodes a void-extent block (as shown in the previous row) 

For 3D blocks, the index mode field is laid out as follows: 

3D Index Mode Layout 

Bits Notes 

10 9 8 7 6 5 4 3 2 1 0 N M Q (D, H) 

D H B A r0 C r2 r1 A+2 B+2 C+2  

B 0 0 A r0 r2 r1 0 0 6 B+2 A+2 (0, 0) 

B 0 1 A r0 r2 r1 0 0 A+2 6 B+2 (0, 0) 

B 1 0 A r0 r2 r1 0 0 A+2 B+2 6 (0, 0) 

D H 1 1 0 0 r0 r2 r1 0 0 6 2 2  

D H 1 1 0 1 r0 r2 r1 0 0 2 6 2  

D H 1 1 1 0 r0 r2 r1 0 0 2 2 6  

x x 1 1 1 1 1 1 1 0 0 - - - Void-Extent 

x x 1 1 1 1 x x x 0 0 - - - Reserve 

x x x x x x x 0 0 0 0 - - - Reserve 

The D bit is set to indicate dual-plane mode: 

1: dual index planes are used  
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0: single index plane is used 

In this mode, the maximum allowed number of partitions is 3. The size of the grid in each dimension 

must be less than or equal to the corresponding dimension of the block footprint. If the grid size is 

greater than the footprint dimension in any axis, then this is an illegal block encoding and all texels will 

decode to the error color. The penultimate row of the table is reserved only if bits [4:2] are not all 1, in 

which case it encodes a void-extent block (as shown in the previous row). 

H: Index Range Bit: 

1: the High-Precision group is selected. 

0: The Low-Precision group is selected. 

Here is the detail description: 

 The encoding of xx111111100 is for the void-extent block. 

 The pattern xxxxxxx0000 (the bottom 4 bits being 0000b) is reserved for future extension, and 

should result a NaN-vector when such a pattern is decoded. 

 Any encodings not listed in the table are considered invalid and result in undened behavior if 

encountered by decoders. 

Given the limitation of the fix length of 128 bits per block, there are restrictions that will not allow every 

possible encoding: 

 The total number of indexes (N*M*Q for single index plane, 2*N*M*Q for dual index planes) must 

not exceed 64. 

 The length of the Index Integer Sequence must not exceed 96 bits. 

 The length of the Index Integer Sequence must be at least 24 bits. 

 The above restriction, combined with the other field widths of the format, implicitly restricts the 

Color Integer Sequence to a maximum of 75 bits. 

 Blocks that violate these restrictions are not legally produced by the encoder, result a vector of 

NaNs if encountered by decoders. 

Here is how the indices in each block are encoded and stored: 

 They are encoded using the Integer Sequence Encoding method described in Appendix. 

 The resulting bit-sequence is then bit-reversed, and stored from the top of the block downwards. 

The ordering of the indices in the Integer Sequence is a simple scan line-like ordering. 

The indices are used in two steps to interpolate between two endpoint colors for each texel. 

 First, they are scaled from whatever interval they were to the range [0,64]; 

 The resulting value is then used as a weight to interpolate between the two endpoints. 

Index Planes 

Depending on the Index Bits mode selected, an ASTC compressed block may offer 1 or 2 index planes. In 

the case of 2 index planes, two indices rather than just one are supplied for each texel that receives 
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indices. Of these two indices, the first one is used for a weighted sum of three of the color components; 

the second is used for a weighted sum of the fourth color component. If only 1 index plane is present, it 

applies to all four color components. 

If two index planes are used, then a 2-bit bit field is needed to indicate which of the color components 

the second index plane applies to. These two bits are stored just below the index bits, except in the case 

where leftover color endpoint type bits are present; in that case, these two bits are stored just below the 

leftover color endpoint type bits. This two-bit bit-field has the following layout: 

Channel Red Green Blue Alpha 

Value 0 1 2 3 

If index infill is present while two index planes are being used, then index infill is performed on each 

index plane separately. If two index planes are used, the indexes are stored interleaved: the first index 

belongs to the first index plane, the second index belongs to the second index plane, the third index 

belongs to the first index plane, and so on. 

Index Infill Procedure 

In ASTC, each block has an N*M*Q ordered grid of indices. N, M and Q may or may not match the 

dimensions of the actual block (e.g. it is possible to encode a 5x3 grid for an 8x8 block); if they don't 

match, then the grid is scaled so that its corner indexes align with the corner texels of the block, a 

bilinear index infill procedure is defined to interpolate an index for each texel. This procedure picks 1 to 4 

indexes, and assigns each of them a weight; these weights are always a multiple of 1/16. The exact details 

of this interpolation procedure are specified below. 

Color Endpoint Mode   

In single-partition mode, the Color Endpoint Mode (CEM) field stores one of 16 possible values. Each of 

these specifies how many raw data values are encoded, and how to convert these raw values into two 

RGBA color endpoints. They can be summarized as follows: 

List of Color Endpoint Modes 

CEM Description Class # of integers to represent each pair of color end points 

0 
LDR Luminance or Alpha, direct 

0 2 

1 
LDR Luminance, base+offset 

0 2 

2 
HDR Luminance, large range 

0 2 

3 
HDR Luminance, small range 

0 2 

4 
LDR Luminance+Alpha, direct 

1 4 

5 
LDR Luminance+Alpha, base+offset 

1 4 
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CEM Description Class # of integers to represent each pair of color end points 

6 
LDR RGB, base+scale 

1 4 

7 
HDR RGB, base+scale 

1 4 

8 
LDR RGB, direct 

2 6 

9 
LDR RGB, base+offset 

2 6 

10 
LDR RGB, base+scale plus two A 

2 6 

11 
HDR RGB, direct 

2 6 

12 
LDR RGBA, direct 

3 8: D=0; 6: D=1 

13 
LDR RGBA, base+offset 

3 8: D=0; 6: D=1 

14 
HDR RGB, direct + LDR Alpha 

3 8: D=0; 6: D=1 

15 
HDR RGB, direct + HDR Alpha 

3 8: D=0; 6: D=1 

 

Description 

LDR modes are supported in ASTC LDR profile, which is enabled since CHV. 

HDR modes are only supported in ASTC HDR mode, which is enabled since SKL. 

In 2-4 partition modes, the encoding of Color Endpoint Modes are listed in following tables, where the 

endpoint mode representation may take from 6 to 14 bits, of which the first 6 bits are stored just after 

the partition indices, and the remaining bits are stored just below the index bits at variable position in 

the remaining space. 



 

    

234   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

 

Partition / 

Class Types 

High bits [1:0] 

Same Class 6b [5:0] 
[5:2] 

Color Endpoint Mode 

0 0 

Different 

Classes 

2-Partions 

8b [7:0] 

[7:6] 

Mode in P1 

[5:4] 

Mode in P0 

[3:3] 

Class Select 

for P1 

[2:2] 

Class Select 

for P0 

0 1 

(Class 0 & 1) 

3-Partions 

11b [10:0] 

  
[10:9] 

Mode in P2 

[8:7] 

Mode in P1 

1 0 

(Class 1 & 2) 

[6:5] 

Mode in P0 

[4:4] 

Class  Select 

for P2 

[3:3] 

Class Select 

for P1 

[2:2] 

Class Select 

for P0 

4-Partions 

14b [13:0] 

[13:12] 

Mode in P2 

[11:10] 

Mode in P1 

[9:8] 

Mode in P2 

[7:6] 

Mode in P1 

1 1 

(Class 2 & 3) 

[5:5] 

Class Select 

for P3 

[4:4] 

Class Select 

for P2 

[3:3] 

Class Select 

for P1 

[2:2] 

Class Select 

for P0 

More specifically, if the CEM selector value in bits [24:23] is not 00, then data layout is as follows: 

List of Color Endpoint Class Types encoding under multi-partitions 

Partitions       … 28 27 26 25 24 23 

2 … Index M1    … 
M0 

C1 C0 CEM 

3 … Index M2 M1 M0  … M0 C2 C1 C0 CEM 

4 … Index M3 M2 M1 M0 … C3 C2 C1 C0 CEM 

In this view, each partition i has two fields. Ci is the class selector bit, choosing between the two possible 

CEM classes (0 indicates the lower of the two classes), and Mi is a two-bit field specifying the low bits of 

the color endpoint mode within that class. The additional bits appear at a variable bit position, 

immediately below the texel index data. The ranges used for the data values are not explicitly specified. 

Instead, they are derived from the number of available bits remaining after the configuration data and 

index data have been specified. Details of the decoding procedure for Color Endpoints can be found 

later. 
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Color Endpoint Data Size Determination 

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is determined 

from the index mode and number of partitions as follows: 

config_bits = 17; 

    if (num_partitions>1) 

    if (single_CEM) 

    config_bits = 29; 

    else 

    config_bits = 24 + 3*num_partitions; 

   

    num_indices = M * N * Q; // size of index grid 

   

    if (dual_plane) 

    config_bits += 2; 

    num_indices *= 2; 

   

    index_bits = floor(num_indices*8*trits_in_index_range/5) + 

    floor(num_indices*7*quints_in_index_range/3) + 

    num_indices*bits_in_index_range; 

   

    remaining_bits = 128 – config_bits – index_bits; 

    num_CEM_pairs = base_CEM_class+1 + count_bits(extra_CEM_bits); 

 

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. This 

table is initialized such that the range is as large as possible, consistent with the constraint that the 

number of bits required to encode num_CEM_pairs pairs of values is not more than the number of 

remaining bits. An equivalent iterative algorithm would be: 

num_CEM_values = num_CEM_pairs*2; 

    for(range = each possible CEM range in descending order of size) 

    { 

       CEM_bits = floor(num_CEM_values*8*trits_in_CEM_range/5) + 

          floor(num_CEM_values*7*quints_in_CEM_range/3) + 

          num_CEM_values*bits_in_CEM_range; 

    if (CEM_bits <= remaining_bits) 

       break; 

    } 

    return range; 

 

In cases where this procedure results in unallocated bits, these bits are not read by the decoding process 

and can have any value. 



 

    

236   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Void-Extent Blocks   

As noted in the index mode, a specifically type of encoding is the void-extended type (2D), an efficient 

way to encode a constant color for large blocks of regions in texture. The data structure of a void extent 

is listed in following 2 tables as 2D and 3D blocks respectively. 

Layout of 2D Void-Extend Block, being supported in LDR. 

127:112 111:96 95:80 79:64 63:51 50:38 37:25 24:12 11:10 9 8:0 

A B G R T_high T_low S_high S_low Res:11 H 111111100 

Bit 9 H is the Dynamic Range flag, which indicates the format in which colors are stored. A 0 value 

indicates LDR, in which case the color components are stored as UNORM16 values. A 1 indicates HDR, in 

which case the color components are stored as FP16 values. If a void-extent block with HDR values is 

decoded in LDR mode, then the result will be the error color, opaque magenta, for all texels within the 

block. The low and height coordinate values are treated as unsigned integers and then normalized into 

the range 0..1 (by dividing by 213-1 for 2D or 29-1, for 3D respectively). The high values for each 

dimension must be greater than the corresponding low values, unless they are all all-1s. If all the 

coordinates are all-1s, then the void extent is ignored, and the block is simply a constant color block.The 

existence of single-color blocks with void extents must not produce results different from those obtained 

if these single-color blocks are defined without void-extents. Any situation in which the results would 

differ is invalid. Results from invalid void extents are undefined. If a void-extent appears in a MIPmap 

level other than the most detailed one, then the extent will apply to all of the more detailed levels too. 

This allows decoders to avoid sampling more detailed MIPmaps. If the more detailed MIPmap level is not 

a constant color in this region, then the block may be marked as constant color, but without a void 

extent, as detailed above. If a void-extent extends to the edge of a texture, then filtered texture colors 

may not be the same color as that specified in the block, due to texture border colors, wrapping, or cube 

face wrapping. Care must be taken when updating or extracting partial image data that void-extents in 

the image do not become invalid. 

Decoding Process   

Overview Decoding Flow   

The goal for this feature is to reconstruct a cacheline (512b) of a target texture data at 4x4 region in 

UNORM8 A8R8G8B8 or 4x2 in FLT16 A16R16G16B16 with certain performance target, given the input 

texture coordinate (s,t,r). The scope of the u-architecture includes 

 The additional surface format of the post decoding block, and the footprint (equivalent bpp). 

These are both global to each texture surface, and can be passed to the Sampler in the surface 

state via sampler messages. 

 With post-scaled texture coordinate (u, v, p), the additional address calculation in FT to find the 

particular block location relative to the native block size specified in the surface state, as well as the 

relative texel position within that block. Assuming the block size for the block is Bu, Bv, Bp, the 

dimensions of a 2D surface as measured in block size tsize is: 

           bw = MAX ( 2, (w+ tsize -1)/ tsize ) 
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           bh  = MAX (2, (h+ tsize -1)/ tsize) 

Here the division is an integer division. The relationship between non-negative image coordinates 

[row,col] =[u, v] and block coordinates is 

           bu  = u / tsize  ;  buu = u % tsize; 

           bv  = v / tsize  ;  bvv =  v % tsize; 

           bp  = p / tsize  ;  bpp = p % tsize; 

 With the selected sets of block size from 4x4 to 12x12 in 2D and 3x3x3 to 6x6x6 in 3D maps,1~4 

blocks of source texture needs to be fetched,  depending on whether the destination tile size (4x2 

in FLT16 or 4x4 in UNORM8888) is inclusive or come across a few source blocks, as shown in Fig. 

Destination tile is inclusive within one tile or across up to 4 tiles in source texture region 

 

 Decode 1 to 4 128-bit ASTC compressed blocks fetched from DRAM in Sampler from ASTC 

compression format to either UNORM8 (LDR) or FLT16(HDR), reconstruct the texels needed in the 

texture filtering stage. The total decoding processing include: 

Front End Decoding Processing: 

1. Detect if an ASTC block is a void-extent type, illegal type, or a normal non-void-extent type. 

2. Decode the partition state – number of partitions in the current block. 

3. Decode the index mode for the block include the partition seed and (N,M,Q) dimension of the 

compact sampling domain. 

4. Decode the color endpoints modes in each partition. 

5. Calculate the bit position and total # of bits used for Index. 

6. Calculate the bit position and total # of bits and # of integers used in the Color endpoints in all 

partitions within the block. 

7. With Integer Sequence Decoding, get all the indices in the compact domain defined by NxMxQ 

grid. 
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8. With Integer Sequence Decoding, get all the color end points from 16 modes in FLT16 for all 

partitions. 

Back End Decoding Processing: 

1. Reconstruct the indices at the selected sampling locations with infill scaling. 

2. Find the partition from the partition seed at each sampling location. 

3. Reconstruct the texture color value with the index and the pair of color end points at each 

sampling location. 

4. If Block type is void extent, get the constant color from the high 64 bits and assign to the sampling 

location. 

5. Convert the data to UNORM8 if LDR data is needed for the subsequent FL filtering process.  Under 

void-extent block type, 

Following is the flow diagram of the decoding process: 
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Integer Sequence Encoding   

Both the index data and the endpoint color data are variable width, and are specified using a sequence 

of integer values. The range of each value in a sequence (e.g. a color index) is constrained. Since it is 

often the case that the most efficient range for these values is not a power of two, each value sequence 

is encoded using a technique known as “integer sequence encoding”. This allows efficient, hardware-

friendly packing and unpacking of values with non-power-of-two ranges. In a sequence, each value has 

an identical range. The range is specified in one of the following forms: 

Value range MSB encoding LSB encoding Value Block Packed block size 

0 .. 2n-1 
- 

n bit value m (n <= 8) m  
1 

n  

0 .. (3 * 2 n)-1 Base-3 “trit” value t  n bit value m (n <= 6) t * 2 n + m  
5 8 + 5*n 

0 .. (5 * 2 n)-1 Base-5 “quint” value q  n bit value m (n <= 5) q * 2 n + m  
3 7 + 3*n 

Since 35 is 243, it is possible to pack five trits into 8 bits (which has 256 possible values), so a trit can 

effectively be encoded as 1.6 bits. Similarly, since 53 is 125, it is possible to pack three quints into 7 bits 

(which has 128 possible values), so a quint can be encoded as 2.33 bits. 

The encoding scheme packs the trits or quints, and then interleaves the n additional bits in positions that 

satisfy the requirements of an arbitrary length stream. This makes it possible to correctly specify lists of 

values whose length is not an integer multiple of 3 or 5 values. It also makes it possible to easily select a 

value at random within the stream. If there are insufficient bits in the stream to fill the final block, then 

unused (higher order) bits are assumed to be 0 when decoding. 

To decode the bits for value number i in a sequence of bits b, both indexed from 0, perform the 

following: 

If the range is encoded as n bits per value, then the value is bits b[i*n+n-1:i*n] – a simple multiplexing 

operation. 

If the range is encoded using a trit, then each block contains 5 values (v0 to v4), each of which contains a 

trit (t0 to t4) and a corresponding LSB value (m0 to m4). The first bit of the packed block is bit 

floor(i/5)*(8+5*n). The bits in the block are packed as follows (in this example, n is 4): 

Trit-based Packing 

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  

T7 m4 T6 T5 m3 T4 m2 T3 T2 m1 T1 T0 m0 
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The five trits t0 to t4 are obtained by bit manipulations of the 8 bits T[7:0] as follows: 

if T[4:2] = 111  

       C = { T[7:5], T[1:0] }; t4 = t3 = 2  

    else  

       C = T[4:0]  

       if T[6:5] = 11  

          t4 = 2; t3 = T[7]  

       else  

          t4 = T[7]; t3 = T[6:5]  

    if C[1:0] = 11  

       t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] }  

    else if C[3:2] = 11  

       t2 = 2; t1 = 2; t0 = C[1:0]  

    else  

       t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] } 

Endpoint Unquantization   

Each color endpoint is specified as a sequence of integers in a given range. These values are packed 

using integer sequence encoding, as a stream of bits stored from just above the configuration data, and 

growing upwards. Once unpacked, the values must be unquantized from their storage range, returning 

them to a standard range of 0..255. For bit-only representations, this is simple bit replication from the 

most significant bit of the value. For trit or quint-based representations, this involves a set of bit 

manipulations and adjustments to avoid the expense of full-width multipliers. This procedure ensures 

correct scaling, but scrambles the order of the decoded values relative to the encoded values. This must 

be compensated for using a table in the encoder. 

The initial inputs to the procedure are denoted A, B, C and D and are decoded using the range as follows: 

Range Trits Quints Bits Bit value A (9 bits) B (9 bits) 

C (9 

bits) D (3 bits) 

0..5 1  1 a aaaaaaaaa 000000000 204 Trit value 

0..9  1 1 a aaaaaaaaa 000000000 113 Quint 

value 

0..11 1  2 ba aaaaaaaaa b000b0bb0 93 Trit value 

0..19  1 2 ba aaaaaaaaa b0000bb00 54 Quint 

value 

0..23 1  3 cba aaaaaaaaa cb000cbcb 44 Trit value 

0..39  1 3 cba aaaaaaaaa cb0000cbc 26 Quint 

value 

0..47 1  4 dcba aaaaaaaaa dcb000dcb 22 Trit value 

0..79  1 4 dcba aaaaaaaaa dcb0000dc 13 Quint 

value 

0..95 1  5 edcba aaaaaaaaa edcb000ed 11 Trit value 
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Range Trits Quints Bits Bit value A (9 bits) B (9 bits) 

C (9 

bits) D (3 bits) 

0..159  1 5 edcba aaaaaaaaa edcb0000e 6 Quint 

value 

0..191 1  6 fedcba aaaaaaaaa fedcb000f 5 Trit value 

These are then processed as follows: 

T= D * C + B; 

T = T ^ A; 

T = (A & 0x80) | (T » 2); 

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4. 

LDR Endpoint Decoding   

The decoding method used depends on the Color Endpoint Mode (CEM) field, which specifies how many 

values are used to represent the endpoint. The CEM field also specifies how to take the n unquantized 

color endpoint values v0 to vn-1 and convert them into two RGBA color endpoints e0 and e1. The HDR 

Modes are more complex and do not fit neatly into the table. They are documented in following section. 

The LDR methods can be summarized as follows. 

Color Endpoint Modes 

CEM Range Description 

# of end 

points Endpoints Reconstruction 

0 LDR Luminance, direct 2 e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF); 

1 LDR 
Luminance, 

base+offset 

2 
L0 = (v0»2)|(v1&0xC0); L1=L0+(v1&0x3F); 

if (L1>0xFF) { L1=0xFF; } 

e0=(L0,L0,L0,0xFF); e1=(L1,L1,L1,0xFF); 

2 HDR Luminance, large range 2 See next Section 

3 HDR Luminance, small range 2 See next Section 

4 LDR 
Luminance+Alpha, 

Direct 

4 
e0=(v0,v0,v0,v2); 

e1=(v1,v1,v1,v3); 

5 LDR Luminance+Alpha, 

base+offset 

4 
bit_transfer_signed(v1,v0); 

bit_transfer_signed(v3,v2); 

e0=(v0,v0,v0,v2); e1=(v0+v1,v0+v1,v0+v1,v2+v3); 

clamp_unorm8(e0); clamp_unorm8(e1); 
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CEM Range Description 

# of end 

points Endpoints Reconstruction 

6 LDR 
RGB, 

base+scale 

4 
e0=(v0*v3»8,v1*v3»8,v2*v3»8, 0xFF); 

e1=(v0,v1,v2,0xFF); 

7 HDR RGB, base+scale 4 See next Section 

8 LDR 
RGB, 

Direct 

6 
s0= v0+v2+v4; s1= v1+v3+v5; 

if (s1>=s0){e0=(v0,v2,v4,0xFF); e1=(v1,v3,v5,0xFF); } 

else { e0=blue_contract(v1,v3,v5,0xFF); 

e1=blue_contract(v0,v2,v4,0xFF); } 

9 LDR 
RGB, 

base+offset 

6 
bit_transfer_signed(v1,v0); 

bit_transfer_signed(v3,v2); 

bit_transfer_signed(v5,v4); 

if(v1+v3+v5 >= 0) 

{ e0=(v0,v2,v4,0xFF); e1=(v0+v1,v2+v3,v4+v5,0xFF); 

} 

else 

{ e0=blue_contract(v0+v1,v2+v3,v4+v5,0xFF); 

e1=blue_contract(v0,v2,v4,0xFF); } 

clamp_unorm8(e0); clamp_unorm8(e1); 

10 LDR 
RGB, 

base+scale plus two A 

6 
e0=(v0*v3»8,v1*v3»8,v2*v3»8, v4); 

e1=(v0,v1,v2, v5); 

11 HDR RGB 6 See next Section 

12 LDR 
RGBA, 

direct 

8 
s0= v0+v2+v4; s1= v1+v3+v5; 

if (s1>=s0){e0=(v0,v2,v4,v6); e1=(v1,v3,v5,v7); } 

else { e0=blue_contract(v1,v3,v5,v7); 

e1=blue_contract(v0,v2,v4,v6); } 
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CEM Range Description 

# of end 

points Endpoints Reconstruction 

13 LDR 
RGBA, 

base+offset 

8 
bit_transfer_signed(v1,v0); 

bit_transfer_signed(v3,v2); 

bit_transfer_signed(v5,v4); 

bit_transfer_signed(v7,v6); 

if(v1+v3+v5>=0) { e0=(v0,v2,v4,v6); 

e1=(v0+v1,v2+v3,v4+v5,v6+v7); } 

else { e0=blue_contract(v0+v1,v2+v3,v4+v5,v6+v7); 

e1=blue_contract(v0,v2,v4,v6); } 

clamp_unorm8(e0); clamp_unorm8(e1); 

14 HDR RGB + LDR Alpha 8 See next Section 

15 HDR RGB + HDR Alpha 8 See next Section 

Mode 14 is special in that the alpha values are interpolated linearly, but the color components are 

interpolated logarithmically. This is the only endpoint format with mixed-mode operation, and will return 

the error value if encountered in LDR mode. The bit_transfer_signed procedure transfers a bit from one 

signed byte value (a) to another (b). The result is an 8-bit signed integer value and a 6-bit integer value 

sign extended to 8 bits. Note that, as is often the case, this is easier to express in hardware than in C: 

bit_transfer_signed(uint16_t& a, uint16_t& b) 

{ 

b »= 1; 

b |= a & 0x80; 

a »= 1; 

a &= 0x3F; 

if( (a&0x20)!=0 ) a-=0x40; 

} 

For the purposes of this pseudocode, the signed bytes are passed in as unsigned 16-bit integers because 

the semantics of a right shift on a signed value in C are undefined. 
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The blue_contract procedure is used to give additional precision to RGB colors near grey: 

color blue_contract( int r, int g, int b, int a ) 

{ 

color c; 

c.r = (r+b) » 1; 

c.g = (g+b) » 1; 

c.b = b; 

c.a = a; 

return c; 

} 

The clamp_unorm8 procedure is used to clamp a color into the UNORM8 range: 

void clamp_unorm8(color c) 

{ 

if(c.r < 0) {c.r=0;} else if(c.r > 255) {c.r=255;} 

if(c.g < 0) {c.g=0;} else if(c.g > 255) {c.g=255;} 

if(c.b < 0) {c.b=0;} else if(c.b > 255) {c.b=255;} 

if(c.a < 0) {c.a=0;} else if(c.a > 255) {c.a=255;} 

} 

HDR Endpoint Decoding   

The 6 HDR CEM modes on color endpoints reconstruction and surface formats are only used in full-

profile ASTC texture in float 16 bit. 

 HDR Endpoint Mode 2: HDR Luminance, large range 

 HDR Endpoint Mode 3: HDR Luminance, small range 

 HDR Endpoint Mode 7: HDR RGB, base + scale 

 HDR Endpoint Mode 11: HDR RGB, direct 

 HDR Endpoint Mode 14: HDR RGB, direct + LDR Alpha 

 HDR Endpoint Mode 15: HDR RGB, direct + HDR Alpha 
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HDR Endpoint Mode 2 (HDR Luminance, Large Range)   

Mode 2 represents luminance-only data with a large range. It encodes using two values (v0, v1). The 

complete decoding procedure is as follows: 

    If (v1 >= v0)  

    {  

       y0 = (v0 « 4);  

       y1 = (v1 « 4);  

    }  

    else {   

       y0 = (v1 « 4) + 8;  

       y1 = (v0 « 4) - 8;  

    }  

    // Construct RGBA result (0x780 is 1.0f)  

  

    e0 = (y0, y0, y0, 0x780);  

    e1 = (y1, y1, y1, 0x780); 

HDR Endpoint Mode 3 (HDR Luminance, Small Range)   

Mode 3 represents luminance-only data with a small range. It packs the bits for a base luminance value, 

together with an offset, into two values (v0, v1): 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V0 M L[6:0] 

V1 X[3:0] D[3:0] 
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The bit field marked as X allocates different bits to L or d depending on the value of the mode bit M. The 

complete decoding procedure is as follows: 

// Check mode bit and extract. 

If ((v0&0x80) !=0)  

{ 

y0 = ((v1 & 0xE0) « 4) | ((v0 & 0x7F) « 2); 

d = (v1 & 0x1F) « 2; 

} 

else { 

y0 = ((v1 & 0xF0) « 4) | ((v0 & 0x7F) « 1); 

d = (v1 & 0x0F) « 1; 

} 

// Add delta and clamp 

y1 = y0 + d; 

if(y1 > 0xFFF) { y1 = 0xFFF; } 

// Construct RGBA result (0x780 is 1.0f) 

e0 = (y0, y0, y0, 0x780); 

e1 = (y1, y1, y1, 0x780); 

HDR Endpoint Mode 7 (HDR RGB, Base+Scale)   

Mode 7 packs the bits for a base RGB value, a scale factor, and some mode bits into the four values (v0, 

v1, v2, v3). 

HDR Mode 7 Value Layout 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V0 M[3] M[2] R[5:0] 

V1 M[1] X0 X1 G[4:0] 

V2 M[0] X2 X3 B[4:0] 

V3 X4 X5 X6 S[4:0] 

The mode bits M[0:3] are a packed representation of an endpoint bit mode, together with the major 

component index. For modes 0 to 4, the component (red, green, or blue) with the largest magnitude is 

identified, and the values are swizzled to ensure that it is decoded from the red channel. The endpoint bit 

mode is used to determine the number of bits assigned to each component of the endpoint, and the 

destination of each of the extra bits X0 to X6, as follows: 
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Endpoint Bit Mode 

Mode 

Number of bits  Description of Extra Bits 

R G B Scale  X0 X1 X2 X3 X4 X5 X6 

0 11 5 5 7  R[9] R[8] R[7] R[10] R[6] S[6] S[5] 

1 11 6 6 5  R[8] G[5] R[7] B[5] R[6] R[10] R[9] 

2 10 5 5 8  R[9] R[8] R[7] R[6] S[7] S[6] S[5] 

3 9 6 6 7  R[8] G[5] R[7] B[5] R[6] S[6] S[5] 

4 8 7 7 6  G[6] G[5] B[6] B[5] R[6] R[7] S[5] 

5 7 7 7 7  G[6] G[5] B[6] B[5] R[6] S[6] S[5] 

The complete decoding procedure is as follows: 

// Extract mode bits and unpack to major component and mode. 

int modeval = ((v0 & 0xC0) » 6) | ((v1 & 0x80) » 5) | ((v2 & 0x80) » 4); 

int majcomp; 

int mode; 

if( (modeval & 0xC ) != 0xC ) { majcomp = modeval » 2; mode = modeval & 3; } 

else if( modeval != 0xF ) { majcomp = modeval & 3; mode = 4; } 

else { majcomp = 0; mode = 5; } 

// Extract low-order bits of r, g, b, and s. 

int red = v0 & 0x3f; 

int green = v1 & 0x1f; 

int blue = v2 & 0x1f; 

int scale = v3 & 0x1f; 

// Extract high-order bits, which may be assigned depending on mode 

int x0 = (v1 » 6) & 1; int x1 = (v1 » 5) & 1; 

int x2 = (v2 » 6) & 1; int x3 = (v2 » 5) & 1; 

int x4 = (v3 » 7) & 1; int x5 = (v3 » 6) & 1; int x6 = (v3 » 5) & 1; 

// Now move the high-order xs into the right place. 

int ohm = 1 « mode; 

if( ohm & 0x30 ) green |= x0 « 6; 

if( ohm & 0x3A ) green |= x1 « 5; 

if( ohm & 0x30 ) blue |= x2 « 6; 

if( ohm & 0x3A ) blue |= x3 « 5; 
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if( ohm & 0x3D ) scale |= x6 « 5; 

if( ohm & 0x2D ) scale |= x5 « 6; 

if( ohm & 0x04 ) scale |= x4 « 7; 

if( ohm & 0x3B ) red |= x4 « 6; 

if( ohm & 0x04 ) red |= x3 « 6; 

if( ohm & 0x10 ) red |= x5 « 7; 

if( ohm & 0x0F ) red |= x2 « 7; 

if( ohm & 0x05 ) red |= x1 « 8; 

if( ohm & 0x0A ) red |= x0 « 8; 

if( ohm & 0x05 ) red |= x0 « 9; 

if( ohm & 0x02 ) red |= x6 « 9; 

if( ohm & 0x01 ) red |= x3 « 10; 

if( ohm & 0x02 ) red |= x5 « 10; 

// Shift the bits to the top of the 12-bit result. 

static const int shamts[6] = { 1,1,2,3,4,5 }; 

int shamt = shamts[mode]; 

red «= shamt; green «= shamt; blue «= shamt; scale «= shamt; 

// Minor components are stored as differences 

if( mode != 5 ) { green = red - green; blue = red - blue; } 

// Swizzle major component into place 

if( majcomp == 1 ) swap( red, green ); 

if( majcomp == 2 ) swap( red, blue ); 

// Clamp output values, set alpha to 1.0 

e1.r = clamp( red, 0, 0xFFF ); 

e1.g = clamp( green, 0, 0xFFF ); 

e1.b = clamp( blue, 0, 0xFFF ); 

e1.alpha = 0x780; 

e0.r = clamp( red - scale, 0, 0xFFF ); 

e0.g = clamp( green - scale, 0, 0xFFF ); 

e0.b = clamp( blue - scale, 0, 0xFFF ); 

e0.alpha = 0x780; 
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HDR Endpoint Mode 11 (HDR RGB, Direct)   

Mode 11 specifies two RGB values, which it calculates from a number of bitfields (a, b0, b1, c, d0 and d1) 

which are packed together with some mode bits into the six values (v0, v1, v2, v3, v4, v5): 

HDR Mode 11 Value Layout 

Value Bit[7] Bit[6] Bit[5]  Bit[3] Bit[2] Bit[1] Bit[0] 

V0 a[7:0] 

V1 m[0] a[8] c[5:0] 

V2 m[1] X0 b0[5:0] 

V3 m[2] X1 b1[5:0] 

V4 mj[0] X2 X4 d0[4:0] 

V5 mj[1] X3 X5 d1[4:0] 

If the major component bits mj[1:0 ] = b11, then the RGB values are specified directly as 

HDR Mode 11 Value Layout 

Value Bit[7] Bit[6] Bit[5]  Bit[3] Bit[2] Bit[1] Bit[0] 

V0 R0[11:4] 

V1 R1[11:4] 

V2 G0 [11:4] 

V3 G1[11:4] 

V4 1 B0[11:5] 

V5 1 B1[11:5] 

The mode bits m[2:0] specify the bit allocation for the different values, and the destinations of the extra 

bits X0 to X5: 

Endpoint Bit Mode 

Mode 

Number of Bits  Description of Extra Bits 

a b c d  X0 X1 X2 X3 X4 X5 

0 9 7 6 7  b0[6] b1[6] d0[6] d1[6] d0[5] d1[5] 

1 9 8 6 6  b0[6] b1[6] b0[7] b1[7] d0[5] d1[5] 

2 10 6 7 7  a[9] c[6] d0[6] d1[6] d0[5] d1[5] 

3 10 7 7 6  b0[6] b1[6] a[9] c[6] d0[5] d1[5] 

4 11 8 6 5  b0[6] b1[6] b0[7] b1[7] a[9] a[10] 

5 11 6 7 6  a[9] a[10] c[7] c[6] d0[5] d1[5] 

6 12 7 7 5  b0[6] b1[6] a[11] c[6] a[9] a[10] 

7 12 6 7 6  a[9] a[10] a[11] c[6] d0[5] d1[5] 
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The complete decoding procedure is as follows: 

// Find major component 

int majcomp = ((v4 & 0x80) » 7) | ((v5 & 0x80) » 6); 

// Deal with simple case first 

if( majcomp == 3 ) 

{ 

e0 = (v0 « 4, v2 « 4, (v4 & 0x7f) « 5, 0x780); 

e1 = (v1 « 4, v3 « 4, (v5 & 0x7f) « 5, 0x780); 

return; 

} 

// Decode mode, parameters. 

int mode = ((v1 & 0x80) » 7) | ((v2 & 0x80) » 6) | ((v3 & 0x80) » 5); 

int va = v0 | ((v1 & 0x40) « 2); 

int vb0 = v2 & 0x3f; 

int vb1 = v3 & 0x3f; 

int vc = v1 & 0x3f; 

int vd0 = v4 & 0x7f; 

int vd1 = v5 & 0x7f; 

// Assign top bits of vd0, vd1. 

static const int dbitstab[8] = {7,6,7,6,5,6,5,6}; 

vd0 = signextend( vd0, dbitstab[mode] ); 

vd1 = signextend( vd1, dbitstab[mode] ); 

// Extract and place extra bits 

int x0 = (v2 » 6) & 1; 

int x1 = (v3 » 6) & 1; 

int x2 = (v4 » 6) & 1; 

int x3 = (v5 » 6) & 1; 

int x4 = (v4 » 5) & 1; 

int x5 = (v5 » 5) & 1; 

int ohm = 1 « mode; 

if( ohm & 0xA4 ) va |= x0 « 9; 

if( ohm & 0x08 ) va |= x2 « 9; 

if( ohm & 0x50 ) va |= x4 « 9; 

if( ohm & 0x50 ) va |= x5 « 10; 

if( ohm & 0xA0 ) va |= x1 « 10; 

if( ohm & 0xC0 ) va |= x2 « 11; 

if( ohm & 0x04 ) vc |= x1 « 6; 

if( ohm & 0xE8 ) vc |= x3 « 6; 

if( ohm & 0x20 ) vc |= x2 « 7; 
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if( ohm & 0x5B ) vb0 |= x0 « 6; 

if( ohm & 0x5B ) vb1 |= x1 « 6; 

if( ohm & 0x12 ) vb0 |= x2 « 7; 

if( ohm & 0x12 ) vb1 |= x3 « 7; 

// Now shift up so that major component is at top of 12-bit value 

int shamt = (modeval » 1) ^ 3; 

va «= shamt; vb0 «= shamt; vb1 «= shamt; 

vc «= shamt; vd0 «= shamt; vd1 «= shamt; 

e1.r = clamp( va, 0, 0xFFF ); 

e1.g = clamp( va - vb0, 0, 0xFFF ); 

e1.b = clamp( va - vb1, 0, 0xFFF ); 

e1.alpha = 0x780; 

e0.r = clamp( va - vc, 0, 0xFFF ); 

e0.g = clamp( va - vb0 - vc - vd0, 0, 0xFFF ); 

e0.b = clamp( va - vb1 - vc - vd1, 0, 0xFFF ); 

e0.alpha = 0x780; 

if( majcomp == 1 ) 

{ 

swap( e0.r, e0.g ); swap( e1.r, e1.g ); 

} 

else if( majcomp == 2 ) 

{ 

swap( e0.r, e0.b ); swap( e1.r, e1.b ); 

} 

HDR Endpoint Mode 14 (HDR RGB, Direct + LDR Alpha)   

Mode 14 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, v7). First, the RGB 

values are decoded from (v0..v5) using the method from Mode 11. Then the alpha values are filled in 

from v6 and v7: 

// Decode RGB as for mode 11 

(e0,e1) = decode_mode_11(v0,v1,v2,v3,v4,v5) 

// Now fill in the alphas 

e0.alpha = v6; 

e1.alpha = v7; 
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HDR Endpoint Mode 15 (HDR RGB, Direct + HDR Alpha)   

Mode 15 specifies two RGBA values, using the eight values (v0, v1, v2, v3, v4, v5, v6, v7). First, the RGB 

values are decoded from (v0..v5) using the method from Mode 11. The alpha values are stored in values 

v6 and v7 as a mode and two values which are interpreted according to the mode: 

HDR Mode 15 Alpha Value Layout 

Value Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] 

V6 M0 A[6:0] 

V7 M1 B[6:0] 

The alpha values are decoded from v6 and v7 as follows: 

// Decode RGB as for mode 11 

(e0,e1) = decode_mode_11(v0,v1,v2,v3,v4,v5) 

// Extract mode bits 

mode = ((v6 » 7) & 1) | ((v7 » 6) & 2); 

v6 &= 0x7F; 

v7 &= 0x7F; 

if(mode==3) 

{ 

// Directly specify alphas 

e0.alpha = v6 « 5; 

e1.alpha = v7 « 5; 

} 

else 

{ 

// Transfer bits from v7 to v6 and sign extend v7. 

v6 |= (v7 « (mode+1))) & 0x780; 

v7 &= (0x3F » mode); 

v7 ^= 0x20 » mode; 

v7 -= 0x20 » mode; 

v6 «= (4-mode); 

v7 «= (4-mode); 

// Add delta and clamp 

v7 += v6; 

v7 = clamp(v7, 0, 0xFFF); 

e0.alpha = v6; 

e1.alpha = v7; 

} 
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Restrictions on Number of Partitions Per Block   

Following table gives total number of partitions for each CEM mode given the restriction of total up to 

16 integer values being decoded from the Integer Sequence Coding sequence. 

Groups Max Number of Partition CEM Modes 

(v0,v1) 4 0,1,2,3 

(v0,v1,v2,v3) 4 4,5,6,7 

(v0,v1,v2,v3,v4,v5) 3 8,9,10,11 

(v0,v1,v2,v3,v4,v5,v6,v7) 2 12,13,14,15 

Index Decoding   

The index information is stored as a stream of bits, growing downwards from the most significant bit in 

the block. Bit n in the stream is thus bit 127-n in the block. 

For each location in the index grid, a value (in the specified range) is packed into the stream. These are 

ordered in a raster pattern starting from location (0,0,0), with the X dimension increasing fastest, and the 

Z dimension increasing slowest. If dual-plane mode is selected, both indices are emitted together for 

each location, plane 0 first, then plane 1. 

Index Unquantization   

Each index plane is specified as a sequence of integers in a given range. These values are packed using 

integer sequence encoding. 

Once unpacked, the values must be unquantized from their storage range, returning them to a standard 

range of 0..64. The procedure for doing so is similar to the color endpoint unquantization. 

First, we unquantize the actual stored index values to the range 0..63. 

For bit-only representations, this is simple bit replication from the most significant bit of the value. 

For trit or quint-based representations, this involves a set of bit manipulations and adjustments to avoid 

the expense of full-width multipliers. 

For representations with no additional bits, the results are as follows: 

Index Unquantization Values 

Range 0 1 2 3 4 

0..2 0 32 63 - - 

0..4 0 16 32 47 63 

For other values, we calculate the initial inputs to a bit manipulation procedure. These are denoted A, B, 

C and D and are decoded using the range as follows: 



 

    

254   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Index Unquantization Parameters 

Range Trits Quints Bits Bit value A (7 bits) B (7 bits) C (7 bits) D (3 bits) 

0..5 1  1 a aaaaaaa 0000000 50 Trit 

0..9  1 1 a aaaaaaa 0000000 28 Quint 

0..11 1  2 ba aaaaaaa b000b0b 23 Trit 

0..19  1 2 ba aaaaaaa b0000b0 13 Quint 

0..23 1  3 cba aaaaaaa cb000cb 11 Trit 

These are then processed as follows: 

T = D * C + B; 

T = T ^ A; 

T = (A & 0x20) | (T » 2); 

The multiply in the first line is nearly trivial as it only needs to multiply by 0, 1, 2, 3 or 4. As a final step, 

for all types of value, the range is expanded from 0..63 up to 0..64 as follows: 

if (T > 32) { T += 1; } 

This allows the implementation to use 64 as a divisor during interpolation, which is much easier than 

using 63. 

Infill Process   

After unquantization, the indexes are subject to index selection and infill. The infill method is used to 

calculate the index for a texel position, based on the indices in the stored index grid array (which may be 

a different size). The procedure below must be followed exactly, to ensure bit exact results. The block size 

is specified as three dimensions along the s, t and r axes (Bs, Bt, Br). Texel coordinates within the block 

(s,t,r) can have values from 0 to one less than the block dimension in that axis. 

For each block dimension, we compute scale factors (Ds, Dt, Dr) 

Ds = floor( (1024 + floor(Bs/2)) / (Bs-1) ); 

Dt = floor( (1024 + floor(Bt/2)) / (Bt-1) ); 

Dr = floor( (1024 + floor(Br/2)) / (Br-1) ); 

Since the block dimensions are constrained, these are easily looked up in a table. These scale factors are 

then used to scale the (s,t,r) coordinates to a homogeneous coordinate (cs, ct, cr): 

cs = Ds * s; 

ct = Dt * t; 

cr = Dr * r; 

This homogeneous coordinate (cs, ct, cr) is then scaled again to give a coordinate (gs, gt, gr) in the 

index-grid space . The index-grid is of size (N, M, Q), as specified in the index mode field: 

gs = (cs*(N-1)+32) » 6; 

gt = (ct*(M-1)+32) » 6; 
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gr = (cr*(Q-1)+32) » 6; 

The resulting coordinates may be in the range 0..176. These are interpreted as 4:4 unsigned fixed point 

numbers in the range 0.0 .. 11.0. If we label the integral parts of these (js, jt, jr) and the fractional parts (fs, 

ft, fr), then: 

js = gs » 4; fs = gs & 0x0F; 

jt = gt » 4; ft = gt & 0x0F; 

jr = gr » 4; fr = gr & 0x0F; 

These values are then used to interpolate between the stored indices. This process differs for 2D and 3D. 

For 2D, bilinear interpolation is used: 

v0 = js + jt*N; 

p00 = decode_index(v0); 

p01 = decode_index(v0 + 1); 

p10 = decode_index(v0 + N); 

p11 = decode_index(v0 + N + 1); 

The function decode_index(n) decodes the nth index in the stored index stream. The values p00 to p11 

are the indices at the corner of the square in which the texel position resides. These are then weighted 

using the fractional position to produce the effective index i as follows: 

w11 = (fs*ft+8) » 4; 

w10 = ft – w11; 

w01 = fs – w11; 

w00 = 16 – fs – ft + w11; 

i = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) » 4; 

For 3D, simplex interpolation is used as it is cheaper than a naïve trilinear interpolation. First, we pick 

some parameters for the interpolation based on comparisons of the fractional parts of the texel position: 

fs>ft ft>fr fs>fr s1 s2 w0 w1 w2 w3 

True True True 1 N 16-fs fs-ft ft-fr fr 

False True True N 1 16-ft ft-fs fs-fr fr 

True False True 1 N*M 16-fs fs-fr fr-ft ft 

True False False N*M 1 16-fr fr-fs fs-ft ft 

False True False N N*M 16-ft ft-fr fr-fs fs 

False False False N*M N 16-fr fr-ft ft-fs fs 
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The effective index i is then calculated as: 

v0 = js + jt*N + jr*N*M; 

p0 = decode_index(v0); 

p1 = decode_index(v0 + s1); 

p2 = decode_index(v0 + s1 + s2); 

p3 = decode_index(v0 + N*M + N + 1); 

i = (p0*w0 + p1*w1 + p2*w2 + p3*w3 + 8) » 4; 

Index Application   

Once the effective index i for the texel has been calculated, the color endpoints are interpolated and 

expanded. For LDR endpoint modes, each color component C is calculated from the corresponding 8-bit 

endpoint components C0 and C1 as follows: 

If sRGB conversion is not enabled, C0 and C1 are first expanded to 16 bits by bit replication: 

C0 = (C0 « 8) | C0; C1 = (C1 « 8) | C1; 

If sRGB conversion is enabled, C0 and C1 are expanded to 16 bits differently, as follows: 

C0 = (C0 « 8) | 0x80; C1 = (C1 « 8) | 0x80; 

C0 and C1 are then interpolated to produce a UNORM16 result C: 

C = floor( (C0*(64-i) + C1*i + 32)/64 ) 

If sRGB conversion is enabled, the top 8 bits of the interpolation result are passed to the external sRGB 

conversion block. Otherwise, if C = 65535, then the final result is 1.0 (0x3C00) otherwise C is divided by 

65536 and the infinite-precision result of the division is converted to FP16 with round-to-zero semantics. 

For HDR endpoint modes, color values are represented in a 12-bit logarithmic representation, and 

interpolation occurs in a piecewise-approximate logarithmic manner as follows: 

In LDR mode, the error result is returned. 

In HDR mode, the color components from each endpoint, C0 and C1, are initially shifted left 4 bits to 

become 16-bit integer values and these are interpolated in the same way as LDR. The 16-bit value C is 

then decomposed into the top five bits, E, and the bottom 11 bits M, which are then processed and 

recombined with E to form the final value Cf: 

C = floor( (C0*(64-i) + C1*i + 32)/64 ) 

E = (C&0xF800) » 11; M = C&0x7FF; 

if (M < 512) { Mt = 3*M; } 

else if (M >= 1536) { Mt = 5*M – 2048; } 

else { Mt = 4*M – 512; } 

Cf = (E«10) + (Mt»3) 
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This final value Cf is interpreted as an IEEE FP16 value. If the result is +Inf or NaN, it is converted to the 

bit pattern 0x7BFF, which is the largest representable finite value. 

Dual-Plane Decoding   

If dual-plane mode is disabled, all of the endpoint components are interpolated using the same index 

value. If dual-plane mode is enabled, two indices are stored with each texel. One component is then 

selected to use the second index for interpolation, instead of the first index. The first index is then used 

for all other components. 

The component to treat specially is indicated using the 2-bit Color Component Selector (CCS) field as 

follows: 

Dual Plane Color Component Selector Values 

Value Index 0 Index 1 

0 GBA R 

1 RBA G 

2 RGA B 

3 RGB A 

The CCS bits are stored at a variable position directly below the index bits and any additional CEM bits. 

Partition Pattern Generation   

When multiple partitions are active, each texel position is assigned a partition index. This partition index 

is calculated using a seed (the partition pattern index), the texel’s x,y,z position within the block, and the 

number of partitions. An additional argument, small_block, is set to 1 if the number of texels in the block 

is less than 31, otherwise it is set to 0. The full partition selection algorithm is as follows: 

int select_partition(int seed, int x, int y, int z, 

int partitioncount, int small_block) 

{ 

if( small_block ){ x «= 1; y «= 1; z «= 1; } 

seed += (partitioncount-1) * 1024; 

uint32_t rnum = hash52(seed); 

uint8_t seed1 = rnum & 0xF; 

uint8_t seed2 = (rnum » 4) & 0xF; 

uint8_t seed3 = (rnum » 8) & 0xF; 

uint8_t seed4 = (rnum » 12) & 0xF; 

uint8_t seed5 = (rnum » 16) & 0xF; 

uint8_t seed6 = (rnum » 20) & 0xF; 

uint8_t seed7 = (rnum » 24) & 0xF; 

uint8_t seed8 = (rnum » 28) & 0xF; 

uint8_t seed9 = (rnum » 18) & 0xF; 
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uint8_t seed10 = (rnum » 22) & 0xF; 

uint8_t seed11 = (rnum » 26) & 0xF; 

uint8_t seed12 = ((rnum » 30) | (rnum « 2)) & 0xF; 

seed1 *= seed1; seed2 *= seed2; seed3 *= seed3; seed4 *= seed4; 

seed5 *= seed5; seed6 *= seed6; seed7 *= seed7; seed8 *= seed8; 

seed9 *= seed9; seed10 *= seed10; seed11 *= seed11; seed12 *= seed12; 

int sh1, sh2, sh3; 

if( seed & 1 ) 

{ sh1 = (seed & 2 ? 4 : 5); sh2 = (partitioncount == 3 ? 6 : 5); } 

else 

{ sh1 = (partitioncount == 3 ? 6 : 5); sh2 = (seed & 2 ? 4 : 5); } 

sh3 = (seed & 0x10) ? sh1 : sh2: 

seed1 »= sh1; seed2 »= sh2; seed3 »= sh1; seed4 »= sh2; 

seed5 »= sh1; seed6 »= sh2; seed7 »= sh1; seed8 »= sh2; 

seed9 »= sh3; seed10 »= sh3; seed11 »= sh3; seed12 »= sh3; 

int a = seed1*x + seed2*y + seed11*z + (rnum » 14); 

int b = seed3*x + seed4*y + seed12*z + (rnum » 10); 

int c = seed5*x + seed6*y + seed9 *z + (rnum » 6); 

int d = seed7*x + seed8*y + seed10*z + (rnum » 2); 

a &= 0x3F; b &= 0x3F; c &= 0x3F; d &= 0x3F; 

if( partitioncount < 4 ) d = 0; 

if( partitioncount < 3 ) c = 0; 

if( a >= b && a >= c && a >= d ) return 0; 

else if( b >= c && b >= d ) return 1; 

else if( c >= d ) return 2; 

else return 3; 

} 

As has been observed before, the bit selections are much easier to express in hardware than in C. 

The seed is expanded using a hash function hash52, which is defined as follows: 

uint32_t hash52( uint32_t p ) 

{ 

p ^= p » 15; p -= p « 17; p += p « 7; p += p « 4; p ^= p » 5; 

p += p « 16; p ^= p » 7; p ^= p » 3; p ^= p « 6; p ^= p » 17; 

return p; 

} 

This assumes that all operations act on 32-bit values 
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Data Size Determination   

The size of the data used to represent color endpoints is not explicitly specified. Instead, it is determined 

from the index mode and number of partitions as follows: 

config_bits = 17; 

if(num_partitions>1) 

if(single_CEM) 

config_bits = 29; 

else 

config_bits = 24 + 3*num_partitions; 

num_indices = M * N * Q; // size of index grid 

if(dual_plane) 

config_bits += 2; 

num_indices *= 2; 

index_bits = ceil(num_indices*8*trits_in_index_range/5) + 

ceil(num_indices*7*quints_in_index_range/3) + 

num_indices*bits_in_index_range; 

remaining_bits = 128 – config_bits – index_bits; 

num_CEM_pairs = base_CEM_class+1 + count_bits(extra_CEM_bits); 

The CEM value range is then looked up from a table indexed by remaining bits and num_CEM_pairs. This 

table is initialized such that the range is as large as possible, consistent with the constraint that the 

number of bits required to encode num_CEM_pairs pairs of values is not more than the number of 

remaining bits. 

An equivalent iterative algorithm would be: 

num_CEM_values = num_CEM_pairs*2; 

for(range = each possible CEM range in descending order of size) 

{ 

CEM_bits = ceil(num_CEM_values*8*trits_in_CEM_range/5) + 

ceil(num_CEM_values*7*quints_in_CEM_range/3) + 

num_CEM_values*bits_in_CEM_range; 

if(CEM_bits <= remaining_bits) 

break; 

} 

 

return range; 

In cases where this procedure results in unallocated bits, these bits are not read by the decoding process 

and can have any value. 
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3D Void-Extent Blocks   

The layout of a 3D Void-Extent block is as follows: 

127:112 111:96 95:80 79:64 63:55 54:46 45:37 36:28 27:19 18:10 9:9 8:0 

A B G R P_high P_low T_high T_low S_high S_low D 111111100 

Bit 9 is the Dynamic Range flag, which indicates the format in which colors are stored. Value 0 indicates 

LDR, in which case the color components are stored as UNORM16 values, while value 1 indicates HDR, in 

which case the color components are stored as FP16 values. 

The reason for the storage of UNORM16 values in the LDR case is due to the possibility that the value 

will need to be passed on to sRGB conversion. By storing the color value in the format which comes out 

of the interpolator, before the conversion to FP16, we avoid having to have separate versions for sRGB 

and linear modes. 

If a void-extent block with HDR values is decoded in LDR mode, then the result will be the error color, 

opaque magenta, for all texels within the block. 

The minimum and maximum coordinate values are treated as unsigned integers and then normalized 

into the range 0..1 (by dividing by 213-1 or 29-1, for 2D and 3D respectively). The maximum values for 

each dimension must be greater than the corresponding minimum values, unless they are all all-1s. If all 

the coordinates are all-1s, then the void extent is ignored, and the block is simply a constant-color block. 

Illegal Encodings   

In ASTC, there is a variety of ways to encode an illegal block. Decoders are required to recognize all 

illegal blocks and emit the standard Error Block color value upon encountering an illegal block. The 

standard Error Block color value is opaque magenta (R, G, B, A) = (0xFF, 0x00, 0xFF, 0xFF) in the LDR 

operation mode, and a vector of NaNs (R, G, B, A)=(NaN, NaN, NaN, NaN) in the HDR operation mode. 

It is recommended that the NaN be encoded as the bit-pattern 0xFFFF. 

Here is a comprehensive list of situations that represent illegal block encodings: 

 The index bit mode specified is one of the modes explicitly listed as Reserved. 

 An index bit mode has been specified that would require more than 64 indexes total. 

 An index bit mode has been specified that would require more than 96 bits for the Index Integer 

Sequence Encoding. 

 An index bit mode has been specified that would require fewer than 24 bits for the Index Integer 

Sequence Encoding. 

 The size of the index grid exceeds the size of the block footprint in any dimension. 

 Color endpoint modes have been specified such that the Color Integer Sequence Encoding would 

require more than 18 integers. 

 The number of bits available for color endpoint encoding after all the other fields have been 

counted is less than ceil(13C/5) where C is the number of color endpoint integers (this would 

restrict color integers to a range smaller than 0..5, which is not supported). 

 Dual Index Mode is enabled for a block with 4 partitions. 
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 Void-Extent blocks where the low coordinate for some texture axis is greater than or equal to the 

high coordinate. 

 Under 3D mode, the depth (Q) is not 1 

In LDR mode, a block which has both HDR and LDR endpoint modes assigned to different partitions is 

not an error block. Only those texels which belong to the HDR partition will result in the error color. 

Texels belonging to a LDR partition will be decoded as normal. 

Profile Support   

In order to ease verification and accelerate adoption, an LDR-only subset of the full ASTC specification 

has been made available. 

Implementations of this LDR Profile must satisfy the following requirements: 

 All textures with valid encodings for LDR Profile must decode identically using either a LDR Profile 

or Full Profile decoder. 

 All features included only in the Full Profile must be treated as reserved in the LDR Profile, and 

return the error color on decoding. 

 Any sequence of API calls valid for the LDR Profile must also be valid for the Full Profile and return 

identical results when given a texture encoded for the LDR Profile. 

The feature subset for the LDR profile is: 

 2D textures only. 

 Only those block sizes listed in Table 5 are supported. 

 LDR operation mode only. 

 Only LDR endpoint formats must be supported namely formats 0, 1, 4, 5, 6, 8, 9, 10, 12, 13. 

 Decoding from a HDR endpoint results in the error color. 

 Interpolation returns UNORM8 results when used in conjunction with sRGB. 

 LDR void extent blocks must be supported, but void extents may not be checked. 
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Video Pixel/Texel Formats 

This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay 

chapter for a description of how the Y, U, V components are sampled. 

Packed Memory Organization 

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain 

two pixels and only the byte order affects the memory organization. 

The following four YUV 4:2:2 surface formats are supported, listed with alternate names: 

 YCRCB_NORMAL (YUYV/YUY2) 

 YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM) 

 YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM) 

 YCRCB_SWAPY (UYVY) 

The channels are mapped as follows: 

Cr (V) Red 

Y Green 

Cb (U) Blue 

Memory layout of packed YUV 4:2:2 formats 
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Planar Memory Organization 

Planar formats use what could be thought of as separate buffers for the three color components. 

Because there is a separate stride for the Y and U/V data buffers, several memory footprints can be 

supported. 

The 3D sampler supports direct sampling and filtering of planar video surfaces such as YV12 and NV12. 

Programming Note 

Context: NV21 Support 

Sampling of NV21 surface format is supported by swapping the U and V channels when sampling the surface.  This 

can be done by programming the Shader Channel Select in the RENDER_SURFACE_STATE for the Red and Blue 

Channels. 

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data: 

1. The memory organization of the common YV12 data, where all three planes are contiguous and 

the strides of U and V components are half of that of the Y component. 

2. An alternative memory structure that the addresses of the three planes are independent but satisfy 

certain alignment restrictions. 

YUV 4:2:0 Format Memory Organization 

 

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are 

contiguous. 

Note: The chroma planes (U and V), when separate (case b above) are treated as half-pitch with respect 

to the Y plane. In general, YV12 is supported only in linear format because separate planes cannot be 

supported correctly with a tiled format. 
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Workaround 

When using Planar formats for YUV with half-pitch chroma planes (e.g. YV12), and fenced tiling is not supported 

LINEAR filtering of Planar YUV surfaces such as YV12 using the 3D sampler is done after the U and V have been 

replicated to form a YUV444 texels.  This means that the U and V components will effectively be point-sampled 

rather than filtered.  Acheive true filtering of the U and V components, the 3 planes of the YUV surface must be 

bound as separate surfaces, and the filtering must be done on each individually. 

YUV 4:1:0 Format Memory Organization 

 

The table below shows how position within a Planar YUV surface chroma plane is calculated for various 

cases ot U and V pitch and position. It also shows restrictions on the alignment of the planes in memory 

when Y Height is a multiple of 4 or when Interleaved Chroma (e.g. NV12) is used. 

Case Interleave Chroma Pitch Vertical U/V Offset 

YUV with Half Pitch Chroma No Half 
When U is below Y 

Y_Uoffset = Y_Height * 2 

Y_Voffset = Y_Height * 2 + V_Height 

When V is below Y 

Y_Uoffset = Y_Height * 2 + V_Height 

Y_Voffset = Y_Height * 2 

YUV with Full Pitch Chroma Yes Full 
When U is below Y 

Y_Uoffset = Y_Height 

Y_Voffset = Y_Height  + V_Height 

When V is below Y 

Y_Uoffset = Y_Height  + V_Height 

Y_Voffset = Y_Height 

YUV  for Media Sampling Yes Always Full Same as 3D full pitch 



 Memory Views 
  

 

Doc Ref # IHD-OS-SKL-Vol 5-05.16   265 

 

Programming Note 

Context: Planar Memory Organization 

The MMIO Register E194h, bit 4 must be set to 1 in order to indicate half-pitch for chroma planes. It must be 

cleared to 0 to indicate full-pitch chroma planes. 

 

Programming Note 

Context: MIP Filtering 

Surface state cannot have (MIP Mode Filter != NONE) for Planar YUV surfaces (e.g. PLANAR_420_8). 

 

Programming Note 

Context: Standard Tiling 

Planar YUV does not support MIP Tails as part of Standard Tiling.  The MIP Tail Start field in 

RENDER_SURFACE_STATE must be programmed to 15. 

Raw Format  

A format called "RAW" is available that is only supported with the untyped surface read/write, block, 

scattered, and atomic operation data port messages.  It means that the surface has no inherent format. 

Surfaces of type RAW are addressed with byte-based offsets. The RAW surface format can be applied 

only to surface types of BUFFER and STRBUF. 

Surface Memory Organizations 

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats. 

Display, Overlay, Cursor Surfaces 

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode. 

See the Display chapter for specifics on how these surfaces are defined/used. 

2D Render Surfaces 

These surfaces are used as general source and/or destination operands in 2D BLT operations. 

Note that there is no coherency between 2D render surfaces and the texture cache. Software must 

explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine. 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 
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2D Monochrome Source 

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where the 

BLT engine expands the 1 BPP source to the required color depth. 

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency 

between 2D render surfaces and texture-cached monochrome sources. Software must explicitly 

invalidate the texture cache before using a memory-based monochrome source that has been modified 

via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source 

surfaces as read-only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, coherency rules, etc. 

2D Color Pattern 

Color pattern surfaces are used as special pattern operands in 2D BLT operations. 

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency 

between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly 

invalidate the texture cache before using a memory-based color pattern that has been modified via the 

BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-only 

surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

3D Color Buffer (Destination) Surfaces 

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always 

requires a Color Buffer to be defined. 

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel 

formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details. 

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 

3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM or SM (snooped or unsnooped), 

and can be linear or tiled. When both the Depth and Color Buffers are tiled, the respective Tile Walk 

directions must match. 

When a linear Color Buffer and a linear Depth Buffer are used together: 

 The buffers may have different pitches, though both pitches must be a multiple of 32 bytes. 

 The buffers must be co-aligned with a 32-byte region. 
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3D Depth Buffer Surfaces 

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline. 

The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to perform 

non-trivial Depth Test and Stencil Test operations. 

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that 

instruction in Windower for restrictions. 

See Depth Buffer Formats below for a summary of the possible depth buffer formats. See the Depth 

Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort 

chapters for details on the usage of the Depth Buffer. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent 

BPP (Bits Per 

Pixel) Description 

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit stencil 

in lower byte of second DWord 

D32_FLOAT 32 32-bit floating point Z depth value 

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil 

value in upper byte 

D16_UNORM 16 16-bit fixed point Z depth value 

3D Separate Stencil Buffer Surfaces  

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D 

Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform 

non-trivial Stencil Test operations. 

UNRESOLVED CROSS-REFERENCE, Depth Buffer Formats summarizes Stencil Buffer formats. Refer to the 

Stencil Buffer Formats section in this chapter for details on the pixel formats. Refer to the Windower 

chapters for Stencil Buffer usage details. 

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction 

description in Windower for restrictions. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent BPP (bits per pixel) Description 

R8_ UNIT 8 8-bit stencil value in a byte 



 

    

268   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Surface Layout and Tiling  

This section explains how various surface types (1D, 2D, 3D, and Cube) are laid out in memory. Most of 

the information in this section is independent of tiling. The concept of tiling can be laid on top of 

information. Wherever there is a specific difference it will be called out. 

For Tiling (TileY, TileYs etc.), see the Address Tiling Function Introduction section which provides detailed 

information on how tiles are organized and laid out. 

Maximum Surface Size in Bytes 

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a 

maximum size of 2^38 bytes. All pixels within the surface must be contained within 2^38 bytes of the 

base address. 

Tiling   

To improve efficiency in memory accesses, most surfaces can be laid out using a tiling scheme. 

Supported Legacy Tiling Modes: 

 TileY 

 TileX 

 TileW 

Supported Tiled Resource Modes 

 TileYF: 4KB tiling mode based on TileY 

 TileYS: 64KB tiling mode based on TileY 

These modes are described in the Address Tiling Function Introduction volume. 
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Typed Buffers  

A typed buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each 

element is a single surface format using one of the supported surface formats depending on how the 

surface is being accessed. The surface pitch state for the surface specifies the size of each structure in 

bytes. 

The buffer is stored in memory contiguously with each element in the structure packed together, and the 

first element in the next structure immediately following the last element of the previous structure. 

Buffers are supported only in linear memory. 

 

Typed buffers are accessed using a surface state for each structure element (a,b,c, etc. in the diagram 

above). The surface state for element “b” (for example) contains the surface format of element “b” (which 

may differ from other elements), the base address points to element “b” in the first structure (slice 0 of 

the array). The pitch for all of the elements in the buffer is the same value, and the surface type of each 

element is SURFTYPE_BUFFER. 

The offset into the typed buffer is given by the following equation: 

Offset = (V * Pitch) + U 
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MIP Layout  

A surface can support multiple levels of details (LODs) or MIPs.  The MIPCOUNT field in the 

RENDER_SURFACE_STATE defines how many MIPs a surface contains. 

 MIP0 or LOD0 is the largest, highest-detail MIP.  The height, width and depth of this LOD is what is 

defined in the RENDER_SURFACE_STATE for that surface.  Each subsequent 

 MIP is exactly one-half the height and width of the previous, making it 1/4th the size in memory. 

The MIPs of a surface a layed out in memory using a 2-dimensional method as shown below.  Volumetric 

and arrayed surfaces use multiple "slices" of this MIP layout, with each slice separted by QPITCH number 

of rows. 

The diagram below shows many of the parameters of a 2D,2D Arrayed and 3D surface. 
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This 2-dimensional layout implies that there is padding required on the rows below LOD0 in order to 

ensure each row is the same number of texels. 

If Tiling is enabled, then each MIP is layed out using one or more tiles. If TileYf or TileYs tiling is enabled 

(TR_MODE != NONE), then some of the MIPs may actually be stored in a MIPTail which fits in a single 

64K or 4K tile. The layout above, then only applied to MIPs which are not packed in the MIP Tail. 

Raw (Untyped) Buffers  

Raw buffers also use the surface type of SURFTYPE_BUFFER, but the surface format is RAW. These buffers 

are one-dimensional. They are accessed with a single U parameter which is a byte offset into the buffer. 

Raw buffers are also supported only in linear memory. 

The offset into the raw buffer is given directly by the U parameter. 

Offset = U 

Structured Buffers  

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought of 

as an array of structures, where each structure is a predefined number of DWords in size. The first 

coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure 

which must be a multiple of 4 (DWord-aligned). A structured buffer must be defined with Surface 

Format RAW. 

The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the array 

size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch. 

The two dimensional offset into the surface is defined directly by the U and V parameters. Structured 

buffers are linear. 

1D Surfaces   

One-dimensional surfaces use a tiling mode of linear. Technically, they are not tiled resources, but the 

Tiled Resource Mode field in RENDER_SURFACE_STATE is still used to indicate the alignment 

requirements 

 for this linear surface (See 1D Alignment requirements for how 4K and 64KB Tiled Resource Modes 

impact alignment). Alternatively, a 1D surface can be defined as a 2D tiled surface (e.g. TileY or TileX) 

with 

 a height of 0. 

Linear 1D surfaces are stored in a one-dimensional view of memory as follows: 

 

Surface Pitch is ignored for 1D surfaces. Surface QPitch specifies the distance in pixels between array 

slices. QPitch should allow at least enough space for any mips that may be present. 
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A number of parameters are useful to determine where given pixels will be located on the 1D surface. 

First, the width for each LOD “L” is computed: 

 

Next, the aligned width parameter for each LOD “L” is computed. The “i” parameter is the horizontal 

alignment parameter set by a state field or defined as a constant, depending on the surface. The 

alignment parameter may change at one point in the mip chain based on Mip Tail Start LOD. The 

equation uses the I value that applies to the LOD being computed. 

 

Next, the offset to each LOD is determined. The offset has one dimension for 1D surfaces. The single 

element in the LODL vector is named LODUL. 

 

Based on the above parameters and the U and R (pixel address and array index, respectively), and the 

bytes per pixel of the surface format (Bpp), the offset “u” in bytes from the base address of the surface is 

given by: 

 u = [(R * QPitch) + LODUL + U] * Bpp 

  

The layout documented in this section does not apply to sampler 1D surfaces if the tile mode is set to 

TileY or TileW. 

Tiling and Mip Tail for 1D Surfaces  

If tiling is enabled and  Tiled Resource Mode is set to TRMODE_NONE, the above sequence applies 

throughout the full range of LODs. For other settings of Tiled Resource Mode, the mip tail offset is given 

by the following, where S is the Mip Tail Start LOD: 

LODS = (w0+w1+w2+w3+ ... + wS-1) 

The mip tail exhibits a different arrangement than the rest of the surface. LODs are aligned to the left 

side of the space available. 

The offsets into the mip tail block are given by the following table for each LOD in the mip tail. The 

offsets given here need to be added to the LODs offset computed earlier to obtain the offset into the 

surface LODL. 
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TRMODE_64KB LOD TRMODE_4KB LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe 

s  (2048) (4096) (8192) (16384) (32768) 

s+1  (1024) (2048) (4096) (8192) (16384) 

s+2  (512) (1024) (2048) (4096) (8192) 

s+3  (256) (512) (1024) (2048) (4096) 

s+4 s (128) (256) (512) (1024) (2048) 

s+5 s+1 (64) (128) (256) (512) (1024) 

s+6 s+2 (48) (96) (192) (384) (768) 

s+7 s+3 (32) (64) (128) (256) (512) 

s+8 s+4 (28) (56) (112) (224) (448) 

s+9 s+5 (24) (48) (96) (192) (384) 

s+10 s+6 (20) (40) (80) (160) (320) 

s+11 s+7 (16) (32) (64) (128) (256) 

s+12 s+8 (12) (24) (48) (96) (192) 

s+13 s+9 (8) (16) (32) (64) (128) 

s+14 s+10 (4) (8) (16) (32) (64) 

s+15 s+11 (0) (0) (0) (0) (0) 
 

1D Alignment Requirements  

The horizontal alignment field in the RENDER_SURFACE_STATE are ignored for standard tiling formats 

(TRMODE = NONE).  In the case of standard tiling formats the alignment requirements are fixed and are 

provided for by the tables below for 1D  surfaces. 

Tiled Resource Mode Bits per Element Horizontal Alignment 

TRMODE_64KB 128 4096 

64 8192 

32 16384 

16 32768 

8 65536 

TRMODE_4KB 128 256 

64 512 

32 1024 
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Tiled Resource Mode Bits per Element Horizontal Alignment 

16 2048 

8 4096 

TRMODE_NONE Any 64 

2D Surfaces  

2D surfaces represent two-dimensional bitmaps, which can also be mip-mapped and/or consist of array 

slices, effectively representing multiple 2D sub-surfaces within a single surface.  The diagram below 

shows many of the parameters of a 2D surface or Arrayed 2D Surface and what they mean. 
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All surface parameters are defined in terms of texels (agnostic to the surface format). 

Surface Pitch defines the distance in bytes between rows of the surface and is a function of the Width 

of LOD. QPitch specifies the distance in rows between array slices and is a function of the Height. 

QPitch should allow at least enough space for any Mips that may be present. 

There can also be non-zero offsets (X_Offset and Y_Offset) defined from the base address which can be 

used to provide padding or provide an offset to a lower-detail LOD. 

There are limitations to the physical size of an LOD in the sampler texture cache.  An LOD must be 

aligned to a cache-line except for some special cases related to Planar YUV surfaces.  In general, the 

cache-alignment restriction implies there is a minimum height for an LOD of 4 texels.  So, LODs which are 

smaller than 4 high are padded.  For tiled surfaces with TR_MODE != TR_NONE this restriction is not 

significant because the MIP tail will be used for smaller MIPs and the slots are a minimum of 64B.  For 

non-tiled surface or surfaces where TR_MODE == TR_NONE, Mips smaller than 4 high start at the top of 

the region, and they are padded.  This padding leads to a case where the smallest LOD starts “below” 

LOD1 vertically. 

Calculating Texel Location 

This section describes how the texel location is calculated once the Surface State and LOD are known. A 

number of parameters are useful to determine where given pixels are located on the 2D surface. The 

width (WL) and height (HL) for each LOD “L” is computed by the formula: 

WL = ((width»L) > 0 ? width»L:1) 

HL = ((height»L) > 0? height»L:1) 

The LOD width and height for each subsequent LOD is one-half the previous LOD, with the minimum 

dimension being 1 texel. If the surface is multisampled and it is a depth or stencil surface or 

Multisampled Surface Storage Format in SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must 

be adjusted as follows: 

Number of Multisamples WL = HL = 

2 ceiling(WL / 2) * 4 HL [no adjustment] 

4 ceiling(WL / 2) * 4 ceiling(HL / 2) * 4 

8 ceiling(WL / 2) * 8 ceiling(HL / 2) * 4 

16 ceiling(WL / 2) * 8 ceiling(HL / 2) * 8 

Next, aligned width, height, and depth parameters for each LOD “L” must be computed. The “i” and “j” 

parameters are horizontal and vertical alignment parameters set by state fields or defined as constants, 

depending on the surface. Depth has no alignment parameter (effectively it is 1). 

The equation uses the i and j values that apply to the LOD being computed. The “p” and “q” parameters 

define the width and height in texels of the compression block for compressed surface formats. Both p 

and q are defined to equal 1 for uncompressed surface formats. 
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Once the height (hi) and width (wi) of each LOD is computed, the offset to each LOD can be determined. 

The offset is a vector with two dimensions. The elements in the LODL vector are named in order LODUL, 

LODVL. 

LOD offset computation for TR_MODE == TR_NONE or when L < Mip Tail Start LOD: 

LOD0 = (0,0) 

 LOD1 = (0,h0) 

LOD2 = (w1,h0) 

 LOD3 = (w1,h0 + h2) 

 LOD4 = (w1,h0 + h2 + h3) 

 … 

LODN = (w1, h0 + h2 + h3 ... + hN-1) 

Where N = MIP_COUNT for the surface. As noted previous in this section, the value of h2 + h3... + hN-1 

may be greater than h1 due to alignment requirements. 

Based on the above parameters and the U, V, and R (two dimensional pixel address U/V and array index 

R), and the bytes per pixel of the surface format (Bpp), the offsets u in bytes and v in rows are given by: 

u = (U + LODUL) * Bpp 

v = (R * QPitch) + LODVL + V 

For a description of how the Mip Tail is laid out and offsets into the Mip Tail are calculated see the sub-

section on 2D Surface Layout for Mip Tails. 

The two dimensional offset into the surface (for non-MipTail cases) is defined by the u and v values 

computed above. The lower virtual address bits are determined by the following table, based on the bits 

of u and v.  An element is defined as a pixel for uncompressed surface formats and a compression block 

for compressed surface formats. Empty bit positions indicate that the bit is not part of the tile swizzle and 

is filled in with equations given next (note that linear mode has all bits empty—there is no swizzling in 

linear mode). 
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Tile 

Mode 

Bits per 

Element 

TileID 

constants 

Virtual Address Bits 

Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

TileYS 64 & 128 6 10 
u9 v5 u8 v4 u7 v3 u6 v2 u5 u4 v1 v0 u3 u2 u1 u0 

16 & 32 7 9 
u8 v6 u7 v5 u6 v4 u5 v3 u4 v2 v1 v0 u3 u2 u1 u0 

8 8 8 
u7 v7 u6 v6 u5 v5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

TileYF 64 & 128 4 8     
u7 v3 u6 v2 u5 u4 v1 v0 u3 u2 u1 u0 

16 & 32 5 7     
u6 v4 u5 v3 u4 v2 v1 v0 u3 u2 u1 u0 

8 6 6     
u5 v5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

TileY all 5 7     
u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

TileX all 3 9     
v2 v1 v0 u8 u7 u6 u5 u4 u3 u2 u1 u0 

TileW all 6 6     
u5 u4 u3 v5 v4 v3 v2 u2 v1 u1 v0 u0 

Linear all 0 0                 

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table): 

TileID = (v » Cv) * (Pitch » Cu) + (u » Cu) 

Where Pitch is the Surface_Pitch field from RENDER_SURFACE_STATE. 

Note: Multisampled CMS and UMS surfaces use a modified address bit swizzling table rather than the 

one above. Refer to the Multisampled2D Surfaces section for details. 

Tiling and Mip Tails for 2D Surfaces  

When surface is Tiled (Tile_Mode=YMAJOR) and Tile Resources are enabled (TR_MODE != TR_NONE), a 

2D surface can contain a Mip Tail for smaller Mip sizes. 

When LOD (L) is less than the Mip Tail Start LOD (S) declared in the Surface State the offset to the start 

of LOD is calculated as shown above. 

If the LOD is greater than or equal to Mip Tail Start LOD field in the surface state then the MIP Tail 

layout below is used.. 

For tiled resources, the mip tail offset is given by the following, where s is the Mip Tail Start LOD: 

LODS = (w1, h0 + h2 + h3 + … + hS-1) 

The LOD's in the Mip Tail are arranged differently than the other LOD's. 
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The diagram below shows the 64KB TileYS Mip Tail layout of LODs within it, with "slots" indicating the 

LOD contained within (slot 0 corresponds to LODs above). LOD's are aligned to the upper left corner of 

the space available. The block marked "Slots 4-14" is a 4KB tile arrangement as shown. Within this 4KB 

tile slots 11 thru 14 are arranged differently depending on the number bits per texel (bpt). 

A TileYf (4KByte) Mip Tail will start with the 4KByte tile shown, but the slots will be renumbered to start at 

Slot0 rather than Slot4.  The layout of slots 11 through 14 remain the same.  Note that Slots 12-14 are 

NOT 256-Byte aligned which is not compliant with the standard MIP Tail layout.  These slots are not 

supported for Standard Tiling. 
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The offsets into the Mip Tail tile are given by the following table for each LOD in the Mip tail.  Each entry 

in the table is a horizontal (MU) and vertical (MV) position (in texels) from the upper left corner of the Mip 

Tail.   If LOD >= S (starting LOD for MIP Tail), then these Mip Tail offsets must be added to the LODUL, 

and LODVL calculated above. 

Note that many of the higher LODs are not possible given surface size constraints, but they are listed 

here for reference. The offsets given here need to be added to the LODs offset computed earlier to 

obtain the offset into the surface LODL. 

TileYS LOD TileYF LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe 

1x 2x 4x 8x 16x  (MU,MV) (MU,MV) (MU,MV) (MU,MV) (MU,MV) 

s      (32,0) (64,0) (64,0) (128,0) (128,0) 

s+1 s     (0,32) (0,32) (0,64) (0,64) (0,128) 

s+2 s+1 s    (16,0) (32,0) (32,0) (64,0) (64,0) 

s+3 s+2 s+1 s   (0,16) (0,16) (0,32) (0,32) (0,64) 

s+4 s+3 s+2 s+1 s s (8,0) (16,0) (16,0) (32,0) (32,0) 

s+5 s+4 s+3 s+2 s+1 s+1 (4, 8) (8, 8) (8, 16) (16, 16) (16, 32) 

s+6 s+5 s+4 s+3 s+2 s+2 (0, 12) (0, 12) (0, 24) (0, 24) (0, 48) 

s+7 s+6 s+5 s+4 s+3 s+3 (0, 8) (0, 8) (0, 16) (0, 16) (0, 32) 

s+8 s+7 s+6 s+5 s+4 s+4 (4, 4) (8, 4) (8, 8) (16, 8) (16, 16) 

s+9 s+8 s+7 s+6 s+5 s+5 (4, 0) (8, 0) (8, 0) (16, 0) (16, 0) 

s+10 s+9 s+8 s+7 s+6 s+6 (0, 4) (0, 4) (0, 8) (0, 8) (0, 16) 

s+11 s+10 s+9 s+8 s+7 s+7 (3, 0) (6, 0) (4, 4) (8, 4) (0, 12) 

s+12 s+11 s+10 s+9 s+8 s+8 (2, 0) (4, 0) (4, 0) (8, 0) (0, 8) 

s+13 s+12 s+11 s+10 s+9 s+9 (1, 0) (2, 0) (0, 4) (0, 4) (0, 4) 

s+14 s+13 s+12 s+11 s+10 s+10 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 
 

If the LOD is located in the MIP Tail then the equation for calculating the byte positions for u and v 

become: 

     u = (U + LODUS + MU) * Bpp 

     v = (R * QPitch) + LODVS + MV + V 

where MU and MV are the offset parameters from the table above for the given slot in the MIP Tail. 

Programming Note 

Context: Lossless Compression and MIP Tail 

Lossless compression must not be used on surfaces which have MIP Tail which contains MIPs for Slots greater than 

11. 
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2D/CUBE Alignment Requirement  

The vertical and horizontal alignment fields in the RENDER_SURFACE_STATE are ignored for standard 

tiling formats (TRMODE = NONE).  In the case of standard tiling formats the alignment requirements are 

fixed and are provided for by the tables below for 2D and CUBE surface. 

Tile Mode Bits per Element Horizontal Alignment Vertical Alignment 

TileYS 128 64 64 

64 128 64 

32 128 128 

16 256 128 

8 256 256 

TileYF 128 16 16 

64 32 16 

32 32 32 

16 64 32 

8 64 64 

 

For MSFMT_MSS type multi-sampled TileYS surfaces, the alignments given above must be divided by the 

appropriate value from the table below. 

Number of Multisamples Horizontal Alignment is divided by Vertical Alignment is divided by 

2 2 1 

4 2 2 

8 4 2 

16 4 4 

Multisampled 2D Surfaces  

There are three types of multisampled surface layouts designated as follows: 

• IMS Interleaved Multisampled Surface 

• CMS Compressed Mulitsampled Surface 
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• UMS Uncompressed Multisampled Surface 

These surface layouts are described in the following sections. 

Interleaved Multisampled Surfaces  

IMS surfaces are supported in all generations for depth and stencil surfaces. These surfaces contain the 

samples in an interleaved fashion, with the underlying surface in memory having a height and width that 

is larger than the non-multisampled surface as follows: 

 4x MSAA: 2x width and 2x height of non-multisampled surface. 

 8x MSAA: 4x width and 2x height of non-multisampled surface. 

 16x MSAA: 4X width and 4X height of the non-multisampled surface. 

When sampling from an IMS surface (e.g. ld2dms), the coordinates are automatically scaled to handle the 

increased physical size of the map. 

Compressed Multisampled Surfaces  

Multisampled render targets can be compressed. If Auxiliary Surface Mode in SURFACE_STATE is set to 

AUX_CCS, hardware handles the compression using a software-invisible algorithm. However, 

performance optimizations in the multisample resolve kernel using the sampling engine are possible if 

the internal format of these surfaces is understood by software. This section documents the formats of 

the Multisample Control Surface (MCS) and Multisample Surface (MSS). 

MCS Surface 

The MCS surface consists of one element per pixel, with the element size being an 8-bit unsigned integer 

value for 4x multisampled surfaces, a 32-bit unsigned integer value for 8x multisampled surfaces and a 

64-bit unsigned integer value for 16x multisampled surfae. Each field within the element indicates which 

sample slice (SS) the sample resides on. 

2x MCS 

The 2x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

7:2 1 0 

reserved sample 1 SS sample 0 SS 

Each 1-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00 

indicates that both samples are stored in sample slice 0 (thus have the same color). This is the fully 

compressed case. An MCS value of 0x03 indicates that all samples in the pixel are in the clear state, and 

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. 

4x MCS 

The 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

7:6 5:4 3:2 1:0 

sample 3 SS sample 2 SS sample 1 SS sample 0 SS 
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Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00 

indicates that all four samples are stored in sample slice 0 (thus all have the same color). This is the fully 

compressed case. An MCS value of 0xff indicates that all samples in the pixel are in the clear state, and 

none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value.  See 

the section below on Clear Pixel Conditions for additional encoding information. 

8x MCS 

Extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 samples, or 24 

bits per pixel. The 24-bit MCS value per pixel is placed in a 32-bit footprint, with the upper 8 bits unused 

as shown below. See the section below on Clear Pixel Conditions for additional encoding information. 

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0 

reserved 

(MBZ) 

sample 7 

SS 

sample 6 

SS 

sample 5 

SS 

sample 4 

SS 

sample 3 

SS 

sample 2 

SS 

sample 1 

SS 

sample 0 

SS 

16x MCS 

The 16x MCS is 64 bits per pixel. The 64 bits are encoded as follows: 

63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

sample 15 SS sample 14 SS sample 13 SS sample 12 SS sample 11 SS sample 10 SS sample 9 SS sample 8 SS 

 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 

sample 7 SS sample 6 SS sample 5 SS sample 4 SS sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Other than this, the 16x algorithm is the same as the 8x algorithm. The MCS value indicating clear state is 

0xffffffff_ffffffff. See the section below on Clear Pixel Conditions for additional encoding information. 

Clear Pixel Conditions 

The MCS format allows for the encoding of clear value for one or more planes of the multi-sampled 

surface.  A value of all 1's for defined MCS bits indicates that all planes of the mutli-sampled surface are 

clear.  For example, a value of 0x3 for 2X MSAA MCS byte means that both planes of the pixel are clear. 

Likewise a value of 0xff for X4, 0xffffffff for X8 and 0xffffffff_ffffffff for X16 MSAA means that all planes of 

the pixel are clear.  

In the case where not all planes are clear, but at least 2 planes are clear the encoding of the MCS given 

above is changed.  If the MCS value for plane 0 is non-zero, then all planes which are at all 1's are clear 

and all other planes are referencing the plane indicated by their respective MCS value minus 1.  For 

example, a 4X MSAA MCS value of 01 10 01 11 means that MCS 0 and 2 are referencing plane 0, and 

MCS 1 is referencing plane 1, and MCS 3 is clear. 

MSS Surface 

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching 

the pixel dimensions of the logical multisampled surface. The number of array slices in the physical 

surface is 2, 4, 8, or 16 times that of the logical surface (depending on the number of multisamples). 

Sample slices belonging to the same logical surface array slice are stored in adjacent physical slices. The 

sampling engine ld2dss message gives direct access to a specific sample slice. 
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Tiling for CMS and UMS Surfaces 

Multisampled CMS and UMS use a modified table from non-mulitsampled 2D surfaces. 

TileY, TileYF, TileX, TileW, and Linear: Treat as 2D array, with the array index “R” modified as follows. 

“n” is the number of multisamples, “ss” is the sample slice index with range 0..n-1. 

 R(new) = ( R(old) « log2(n) ) | ss 

TileYS: In addition to u and v, the sample slice index “ss” is included in the address swizzling according 

to the following table. Because of this, the mip tail holds one less LOD for each successive number of 

multisamples. Refer to the mip tail table in the previous section for behavior of the mip tail for each 

number of multisamples. 

Number of 

Multisamples Bits per Element 

TileID 

constants Virtual Address Bits 

Cv Cu 15 14 13 12 11 10 9 8 7 6 

2x 64 & 128 6 9 ss0 v5 u8 v4 u7 v3 u6 v2 u5 u4 

16 & 32 7 8 ss0 v6 u7 v5 u6 v4 u5 v3 u4 v2 

8 8 7 ss0 v7 u6 v6 u5 v5 u4 v4 v3 v2 

4x 64 & 128 5 9 ss1 ss0 u8 v4 u7 v3 u6 v2 u5 u4 

16 & 32 6 8 ss1 ss0 u7 v5 u6 v4 u5 v3 u4 v2 

8 7 7 ss1 ss0 u6 v6 u5 v5 u4 v4 v3 v2 

8x 64 & 128 5 8 ss2 ss1 ss0 v4 u7 v3 u6 v2 u5 u4 

16 & 32 6 7 ss2 ss1 ss0 v5 u6 v4 u5 v3 u4 v2 

8 7 6 ss2 ss1 ss0 v6 u5 v5 u4 v4 v3 v2 

16x 64 & 128 4 8 ss3 ss2 ss1 ss0 u7 v3 u6 v2 u5 u4 

16 & 32 5 7 ss3 ss2 ss1 ss0 u6 v4 u5 v3 u4 v2 

8 6 6 ss3 ss2 ss1 ss0 u5 v5 u4 v4 v3 v2 

Note that Cv and Cu are also different that the values for non-multisampled 2D surfaces. 

Uncompressed Multisampled Surfaces  

UMS surfaces similar to CMS, except that the Auxiliary Surface Mode is set to AUX_NONE, meaning 

that there is no MCS surface. UMS contains only an MSS surface, where each sample is stored on its 

sample slice (SS) of the same index. 

Quilted Textures  

A quilted texture is a 2D texture made up of quilt slices, each of which is a portion of the surface up to 

16k x 16k texels in size. The quilt slices themselves are organized in a matrix up to 32 x 32. “Quilt Width” 

and “Quilt Height” fields indicate the dimensions of the surface in quilt slices. “Height” and “Width” fields 

indicate the size of each quilt slice in texels. The total size of the quilted texture can be up to 512k x 512k 

texels. 
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In addition, arrays of quilted textures are supported. The total number of array slices is limited to 2048 / 

(QuiltWidth * QuiltHeight). 

A surface is defined as a “Quilted Texture” if either the “Quilt Width” or “Quilt Height” field in 

SURFACE_STATE is nonzero. A quilted texture is stored in the storage format as a 2D array, with each 

quilt square occupying one array slice. The following equation indicates how the array slice is computed 

from the Qx, Qy, and R parameters, where Qx and Qy are the quilt slice coordinates and R is the array 

index. 

 ArraySliceIndex = (R * QuiltWidth * QuiltHeight) + Qy * QuiltWidth + Qx 

 

Quilted textures do support wrapping.  U and V coordinates must be in the range of [0.0,1.0). 

Quilted textures can only be supported on tiled surfaces (e.g. TileY, TileYs, TileYf). 

Cube Surfaces  

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the 

origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel 

(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is 

supplied as a 3D “vector” texture coordinate. These cube maps can also be mipmapped. 

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are 

identified by their relationship to the 3D texture coordinate system. The subsections below describe the 

cube maps as described at the API as well as the memory layout dictated by the hardware. 

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the 

axes on the faces as they would be seen from the inside (at the origin). 

Programming Note 

Context: Cube Maps and Tiling 

Cube Maps with linear (non-tiled) layout are allowed ONLY with Texture Coordinate Mode of 

TEXCOORDMODE_CUBE or TEXCOORDMODE_CLAMP. 

The origin of the U,V texel grid is at the top left corner of each face. 

This will be looking directly at face 4, the +z –face. Y is up by default. 
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DirectX Cube Map Definition 

 

Each face has a corresponding face identifier “f” as indicated in the following table: 

face face identifier “f” 

+x 0 

-x 1 

+y 2 

-y 3 

+z 4 

-z 5 

A cube surface is stored in memory the same as a 2D array, with the face identifier “f” and array index “ai” 

being transformed into the “R” coordinate used in storing 2D arrays using the following equation: 

 R = (ai * 6) + f 

Refer to the “2D Surfaces” section for details on how 2D arrays are stored. 
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3D Surfaces  

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure 

known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture 

maps. See Sampler for a description of how volume textures are used. 

Volume Texture Map 

 

Surface Pitch defines the distance in bytes between rows of the surface. Surface QPitch specifies the 

distance in rows between R-slices. QPitch should allow at least enough space for any mips that may be 

present. 

A number of parameters are useful to determine where given pixels are located on the 3D surface. First, 

the width, height, and depth for each LOD “L” is computed: 

 

Next, aligned width, height, and depth parameters for each LOD “L” are computed. The “i”, “j”, and “k” 

parameters are the horizontal, vertical, and depth alignment parameters set by state fields or defined as 

constants. The alignment parameters may change at one point in the mip chain based on Mip Tail Start 

LOD. The equation uses the i/j values that apply to the LOD being computed. The “p”, “q”, and "s" 

parameters define the width, height, and depth in texels of the compression block for compressed 

surface formats. These are all defined to equal 1 for uncompressed surface formats. 

 

 

Next, the offset to each LOD is determined. The offset is a vector with three dimensions. The elements in 

the LODL vector are named in order LODUL, LODVL, LODRL. 

LOD offset computation for Tiled Resource Mode == TR_NONE or when L < Mip Tail Start LOD: 
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For the Primary Surface 

Based on the above parameters and the U, V, and R (three dimensional pixel address), and the bytes per 

pixel of the surface format (Bpp), the offsets u in bytes, v in rows, and r in slices are given by: 

 u = [U + LODUL] * Bpp 

 v = LODVL + V 

 r = LODRL + R 

The three dimensional offset into the surface is defined by the u, v, and r values computed above. The 

lower virtual address bits are determined by the following table, based on the bits of u, v, and r. An 

element is defined as a pixel for uncompressed surface formats and a compression block for compressed 

surface formats. 

Empty bit positions indicate that the bit is not part of the tile swizzle and is filled in with the equations 

given next (note that linear mode has all bits empty—there is no swizzling in linear mode). 

Table for [DevSKL]: 

Tile Mode Bits per Element 

TileID constants Virtual Address Bits 

Cr Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

TileYS 128 & 64 4 4 8 u7 v3 r3 u6 v2 r2 u5 u4         

 32 4 5 7 u6 v4 r3 u5 v3 r2 u4 v2 r1 r0 v1 v0 u3 u2 u1 u0 

 16 & 8 5 5 6 u5 v4 r4 u4 v3 r3 v2 r2 r1 r0 v1 v0 u3 u2 u1 u0 

TileYF 128 & 64 3 3 6     v2 r2 u5 u4 r1 r0 v1 v0 u3 u2 u1 u0 

 32 3 4 5     v3 r2 u4 v2 r1 r0 v1 v0 u3 u2 u1 u0 

 16 & 8 4 4 4     v3 r3 v2 r2 r1 r0 v1 v0 u3 u2 u1 u0 

TileY all 0 5 7     u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

Linear all 0 0 0                 

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table): 

 TileID = [(r » Cr) * (QPitch » Cv) + (v » Cv)] * (Pitch » Cu) + (u » Cu) 

For the CCS Auxiliary Surface 

The CCS is stored differently for the 3D surface type. CCS supports only TileY tile mode, which does not 

have a three dimensional offset. Instead, the 3D CCS follows a scheme similar to 2D surfaces. Based on 

the above parameters and the U, V, and R (three dimensional pixel address, shifted to adjust for control 

block size in bytes), the offsets u in bytes and v in rows are given by: 

 u = [U + LODUL] 

 v = (R * QPitch) + LODVL + V 
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The two dimensional offset into the surface is defined by the u and v values computed above. The lower 

virtual address bits are determined by the following table, based on the bits of u and v. 

Empty bit positions indicate that the bit is not part of the tile swizzle and is filled in with equations given 

next. 

Tile Mode Bits per Element 

TileID constants Virtual Address Bits 

Cr Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

TileY 5 7       u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table): 

 TileID = (v » Cv) * (Pitch » Cu) + (u » Cu) 

Tiling and Mip Tails for 3D Surfaces 

For tiled surfaces where Tiled Resource Mode != TR_NONE, the surface may contain a mip tail.  The Mip 

tail offset is given by the following, where S is the Mip Tail Start LOD: 

LODS = (w1,h0+h2+h3+ ... + hS-1,0) 

The mip tail exhibits a different arrangement than the rest of the surface. The diagram below shows the 

64KB TileYS mip tail and the arrangement of LODs within it, with “slots” indicating the LOD contained 

within (slot 0 corresponds to LOD s). LODs are aligned to the front upper left corner of the space 

available. The block marked “Slots 4-15” contains one of the 4KB tile arrangements within, depending on 

the surface format bits per element. For TileYF, only the 4KB tile exists, with 4 subtracted from each slot 

number. 
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The offsets into the mip tail tile are given by the following table for each LOD in the mip tail. Note that 

many of the higher LODs are not possible given surface size constraints, but they are listed here for 

reference. The offsets given here need to be added to the LODs offset computed earlier to obtain the 

offset into the surface LODL. 

TileYS LOD TileYF LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe 

s  (8, 0, 0) (16, 0, 0) (16, 0, 0) (16, 0, 0) (32, 0, 0) 

s+1  (0, 8, 0) (0, 8, 0) (0, 16, 0) (0, 16, 0) (0, 16, 0) 

s+2  (0, 0, 8) (0, 0, 8) (0, 0, 8) (0, 0, 16) (0, 0, 16) 

s+3  (4, 0, 0) (8, 0, 0) (8, 0, 0) (8, 0, 0) (16, 0, 0) 

s+4 s (0, 4, 0) (0, 4, 0) (0, 8, 0) (0, 8, 0) (0, 8, 0) 

s+5 s+1 (0, 0, 4) (0, 0, 4) (0, 0, 4) (0, 0, 8) (0, 0, 8) 

s+6 s+2 (3, 0, 0) (6, 0, 0) (4, 4, 0) (0, 4, 4) (0, 4, 4) 

s+7 s+3 (2, 0, 0) (4, 0, 0) (0, 4, 0) (0, 4, 0) (0, 4, 0) 

s+8 s+4 (1, 0, 3) (2, 0, 3) (4, 0, 3) (0, 0, 7) (0, 0, 7) 

s+9 s+5 (1, 0, 2) (2, 0, 2) (4, 0, 2) (0, 0, 6) (0, 0, 6) 

s+10 s+6 (1, 0, 1) (2, 0, 1) (4, 0, 1) (0, 0, 5) (0, 0, 5) 

s+11 s+7 (1, 0, 0) (2, 0, 0) (4, 0, 0) (0, 0, 4) (0, 0, 4) 

s+12 s+8 (0, 0, 3) (0, 0, 3) (0, 0, 3) (0, 0, 3) (0, 0, 3) 

s+13 s+9 (0, 0, 2) (0, 0, 2) (0, 0, 2) (0, 0, 2) (0, 0, 2) 

s+14 s+10 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) 

s+15 s+11 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
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3D Alignment Requirements  

The vertical and horizontal alignment fields in the RENDER_SURFACE_STATE are ignored for standard 

tiling formats (TRMODE = NONE).  In the case of standard tiling formats the alignment requirements are 

fixed and are provided for by the tables below for 3D (volumetric) surfaces. 

Tile Mode Bits per Element Horizontal Alignment Vertical Alignment Depth Alignment 

TileYS 128 16 16 16 

64 32 16 16 

32 32 32 16 

16 32 32 32 

8 64 32 32 

TileYF 128 4 8 8 

64 8 8 8 

32 8 16 8 

16 8 16 16 

8 16 16 16 
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Surface Padding Requirements 

This section covers the requirements for padding around surfaces stored in memory, as there are cases 

where the device will overfetch beyond the bounds of the surface due to implementation of caches and 

other hardware structures. 

Alignment Unit Size  

This section documents the alignment parameters i and j to use, depending on the surface. 

Alignment Parameters 

Surface Defined By Surface Format Alignment Unit Width “i” Alignment Unit Height “j” 

3DSTATE_DEPTH_BUFFER D16_UNORM 8 4 

not D16_UNORM 4 4 

3DSTATE_STENCIL_BUFFER N/A 8 8 

SURFACE_STATE BC*, ETC*, EAC* 4 4 

FXT1 8 4 

all others set by 

Surface Horizontal Alignment 

set by 

Surface Vertical Alignment 

 

Surface Defined By Surface Format Alignment Unit Width “i” Alignment Unit Height “j” 

SURFACE_STATE ASTC Value of ASTC_2DBlockWidth 

 (4, 5, 6, 8, 10, or 12) 

Value of ASTC_2DBlockHeight 

 (4, 5, 6, 8, 10, or 12) 

Sampling Engine Surfaces 

The sampling engine accesses texels outside of the surface if they are contained in the same cache line 

as texels that are within the surface. These texels will not participate in any calculation performed by the 

sampling engine and will not affect the result of any sampling engine operation, however if these texels 

lie outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order to 

avoid these GTT errors, “padding” at the bottom and right side of a sampling engine surface is 

sometimes necessary. 

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All 

pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid 

errors. To determine the necessary padding on the bottom and right side of the surface, refer to the 

table in Alignment Unit Size section for the i and j parameters for the surface format in use. The surface 

must then be extended to the next multiple of the alignment unit size in each dimension, and all texels 

contained in this extended surface must have valid GTT entries. 

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 and 

j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in texels, 

and must be converted to bytes based on the surface format being used to determine whether 

additional pages need to be defined. 
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Buffer Padding Requirements 

 For compressed textures (BC*, FXT1, ETC*, and EAC* surface formats), padding at the bottom of the 

surface is to an even compressed row. This is equivalent to a multiple of 2q, where q is the compression 

block height in texels. Thus, for padding purposes, these surfaces behave as if j = 2q only for surface 

padding purposes. The value of j is still equal to q for mip level alignment and QPitch calculation. For 

cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must be 

ensured regardless of whether the surface is stored tiled or linear. This is due to the potential rotation of 

cache line orientation from memory to cache. 

The above comments also apply to the ASTC* surface format. 

For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required. These 

surfaces require an extra row plus 16 bytes of padding at the bottom in addition to the general padding 

requirements. 

For linear surfaces, additional padding of 64 bytes is required at the bottom of the surface. This is in 

addition to the padding required above. 

Programming Note 

Context: Sampling Engine Surfaces. 

For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array, non-MSAA, non-mip-mapped surfaces in linear 

memory, the only padding requirement is to the next aligned 64-byte boundary beyond the end of the surface. The 

rest of the padding requirements documented above do not apply to these surfaces. 

Render Target and Media Surfaces 

The data port accesses data (pixels) outside of the surface if they are contained in the same cache 

request as pixels that are within the surface. These pixels will not be returned by the requesting message, 

however if these pixels lie outside of defined pages in the GTT, a GTT error will result when the cache 

request is processed. In order to avoid these GTT errors, “padding” at the bottom of the surface is 

sometimes necessary. 
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Device2 PASID Capability Structures  

This part of the document describes the PCI-Express Extended Capability registers required on Processor 

Graphics (Device 2) device to enumerate Shared Virtual Memory (SVM) related capabilities. 

SVM feature support on Device-2 is exposed through three distinct capability structures: 

 Process Address Space ID (PASID) Extended Capability. PASID capability reports support for 

Process Address Space ID (PASID) on Device-2 compliant to PCI-Express PASID ECN. 

 Address Translation Services (ATS) Extended Capability. ATS capability reports support for 

Device-TLBs on Device-2, compliant to PCI-Express ATS specification. 

 Page Request Extended Capability. Page Request capability reports support for page-faults on 

Device-2, compliant to PCIExpress ATS 1.1 specification. 

The following sections describe each of these capability structures and their implementation details for 

Gen8/Gen9 for both GT and Display. 

PASID Extended Capability  

 

Refer to PCI Express PASID ECN for more details. 

Following sections describe the registers in the PASID Extended Capability structure. 

PASID Extended Capability Header  

Bits Access Default Field 

31:20 RO Xh Next Capability Offset (NCO): Offset to the next capability; Value ‘X’ in this field provides 

the offset for ATS Capability described in later sections 

19:16 RO 1h Version (V): Capability Version 

15:0 RO 001Bh Capability ID (CAPID): PASID Extended Capability ID. 
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PASID Capability Register  

Bits Access Default Field 

15:13 RO 0h Reserved. 

12:8 RO 14h 
Maximum PASID Width (MPW): Indicates the width of the PASID field supported by the 

Endpoint. The value n indicates support for PASID values 0 through 2n-1 (inclusive). The 

value 0 indicates support for a single PASID (0). The value 20 indicates support for all 

PASID values (20 bits). This field must be between 0 and 20 (inclusive). 

Processor Graphics supports PASID width of 20-bits. 

7:3 RO 0h Reserved. 

2 RO 1h  
Privilege Mode Supported (PMS): If Set, the Endpoint supports operating in privileged 

and non-privileged modes, and requests-with-PASID can request privileged mode. 

If Clear, the Endpoint supports operating in non-privileged mode only, and will never 

request privileged mode in requests-with-PASID. 

On Processor Graphics, privileged and non-privileged mode are mapped to an attribute of 

the advanced context. Advanced contexts created for use by user-mode 

applications/drivers are considered non-privileged. Advanced context created for used by 

kernel mode software/drivers can be treated as privileged contexts. The privilege mode 

maps to the user/Supervisor (U/S) privilege checking in the first-level (IA-32e) paging. 

On Gen9, advanced contexts supports a privileged/non-privileged attribute (part of 

context-state). Software is expected to create advanced-contexts with this attribute as non-

privileged, for use by user-mode drivers/applications. For advanced contexts created for 

use by kernel mode software/drivers, this bit is configured can be privileged. Gen9 

Advanced-contexts configured as non-privileged function exactly the same as Gen-8 

advanced contexts (i.e. restricted to user-mode virtual-addresses only). Gen9 advanced 

contexts configured as privileged can access both user-mode and kernel-mode virtual 

addresses, if Supervisor Request Enable field in extended-context-entry is Set. 

1 RO 1h 
Execute Permission Supported (EPS): If Set, the Endpoint supports requests-with-PASID 

that request Execute permission. If Clear, the Endpoint will never request Execute 

permission for requests-with-PASID. 

On Processor Graphics, accesses by advanced contexts that fetch and execute graphics 

instructions are normally treated as requests that require execute permission. These maps 

to requests from GT Instruction Cache (IC) for advanced contexts. 

On Gen9, advanced context accesses from Instruction Cache (IC) are checked for execute 

permission, if Execute Request Enable in extended-context-entry is Set. 

0 RO 0h Reserved. 
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PASID Control Register  

Bits Access Default Field 

15:3 RO 0h Reserved. 

2 R/W  0b 
Privilege Mode Enable (PME): When Set, the endpoint is permitted to request privileged 

mode in requests-with-PASID. If Clear, the Endpoint is not permitted to do so. Behavior is 

undefined if this bit changes value when ATS Enable field in ATS Capability is Set. If 

Privileged Mode Supported field in PASID Capability register is Clear, this field is treated as 

Reserved (0). 

Processor graphics does not use this field. Software is expected to Set this field before 

configuring extended-context-entry for Device-2 with Supervisor Request Enable field Set. 

On Gen9, for compatibility reasons, this field is implemented as RW. 

1 R/W  0b 
Execute Permission Enable (EPE): If Set, the Endpoint is permitted to request execute 

permission in requests-with-PASID. If Clear, the Endpoint is not permitted to do so. Behavior 

is undefined if this bit changes value when ATS Enable field in ATS Capability is Set. If 

Execute Permission Supported field in PASID Capability register is Clear, this field is treated 

as Reserved (0). 

Processor graphics does not use this field. Software is expected to Set this field before 

configuring extended-context-entry for Device-2 with Execute Request Enable field Set. 

On Gen9, for compatibility reasons, this field is implemented as RW. 

0 R/W 0b 
PASID Enable (PE): If Set, the Endpoint is permitted to generate requests-with-PASID. If 

Clear, the Endpoint is not permitted to do so. Behavior is undefined if this bit changes value 

when ATS Enable field in ATS Capability is Set. 

Processor Graphics does not use this field. Instead, all accesses from advanced contexts are 

treated as requested-with-PASID, subject to PASID-Enable field in the extended context-

entry. Software is expected to Set this field before configuring extended-context entry for 

Device-2 with PASID Enable field Set. However, for compatibility reasons, this field is 

implemented as RW. 

ATS Extended Capability  

 

The following sections describe the registers in the ATS Extended Capability structure. 
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ATS Extended Capability Header  

Bits Access Default Field 

31:20 RO Xh Next Capability Offset (NCO). Offset to the next capability; Value ‘X’ in this field provides 

the offset for ATS Capability described in later sections. 

19:16 RO 1h Version (V). Capability Version. 

15:0 RO 000Fh Capability ID (CAPID). PASID Extended Capability ID. 

ATS Capability Register  

Bits Access Default Field 

15:6 RO 0h Reserved. 

5 RO 1b 
Page Aligned Request (PAR). If Set, indicates the Untranslated Address is always aligned to 

a 4096 byte boundary. 

Processor graphics reports value of 1b. 

4:0 RO 0h 
Invalidate Queue Depth (IQD). The number of Invalidate Requests that the endpoint can 

accept before putting backpressure on the upstream connection. If 0h, the function can 

accept 32 Invalidate Requests. 

Processor Graphics does not use this field, and reports a value of 0h. 

ATS Control Register  

Bits Access Default Field 

15 R/W 0h 
ATS Enable (AE). When Set, the function is enabled to cache translations. 

Processor graphics ignores this field, as GT uses GTLB as IOTLB, and only pretends to 

software that it has a Device-TLB. Software is expected to Set this field before configuring 

extended-context-entry for Device-2 with Page Request Enable field Set. For compatibility, 

this field is implemented as RW as software can read it to determine ATS enable status. 

14:5 RO 0h Reserved. 

4:0 RW 0h 
Smallest Translation Unit (STU). This value indicates to the Endpoint the minimum number 

of 4096-byte blocks that is indicated in a Translation Completion or Invalidate Request. This 

is a power of 2 multiple and the number of blocks is 2 STU. A value of 0h indicates one block 

and value of 1F indicates 2 31 blocks. 

Processor graphics does not use this field, and reports a value of 0h indicating it uses 4KB as 

the smallest translation unit (smallest page-size). 



 

    

298   Doc Ref # IHD-OS-SKL-Vol 5-05.16 

Page Request Extended Capability  

 

The following register descriptions define the requirement. 

Page Request Extended Capability Header  

Bits Access Default Field 

31:20 RO 0h Next Capability Offset (NCO): Offset to the next capability; Value ‘X’ in this field provides 

the offset for ATS Capability described in later sections 

19:16 RO 1h Version (V): Capability Version 

15:0 RO 0013h Capability ID (CAPID): PASID Extended Capability ID. 

Page Request Control Register  

Bits Access Default Field 

15:2 RO 0h Reserved. 

1 RO 0 Reset (RST): When the Enable field is clear, or is being cleared in the same register update 

that sets this field, writing a 1b to this field, clears the associated implementation dependent 

page request credit counter and pending request state for the associated Page Request 

Interface. No action is initiated if this field is written to 0b or if this field is written with any 

value while the PRE field is Set. Read of this field return 0b. 

Processor graphics does not use this field, and implements it as read-only (0). 
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Bits Access Default Field 

0 RW 0h Page Request Enable (PRE): When Set, indicates that the page request interface on the 

endpoint is allowed to make page requests. If both this field and the Stopped field in Page 

Request Status register are Clear, then the page request interface will not issue new page 

requests, but has outstanding page requests for which page responses is not yet received. 

When this field transitions from 0 to 1, all the status fields in the Page-Request Status 

register are cleared. Enabling a page request interface that has not successfully stopped has 

indeterminate results. 

Processor graphics ignores this field, as GT uses GTLB as IOTLB, and only pretends to 

software that it has a Device-TLB. For compatibility, this field is implemented as RW as 

software can read it to determine Page- Request enable status. Software is expected to Set 

this field before configuring extended-context-entry for Device-2 with Page Request Enable 

field Set. Software is expected to respond to all page requests in the page-request queue 

before Clearing this field. 

Page Request Status Register  

Bits Access Default Field 

15:9 RO 0h Reserved. 

8 RO 0 
Stopped (S): When this field is Set, the associated page request interface has stopped 

issuing additional page requests and that all previously issued Page Requests have 

completed. When this field is Clear the associate page request interface either has not 

stopped or has stopped issuing new Page Requests but has outstanding Page Requests. This 

field is only meaningful if Enable is Clear. If Enable is Set, this field is undefined. When the 

Enable field is Cleared, after having been previously Set, the interface transitions to the 

stopping state and Clears this field. After all page requests currently outstanding at the 

function have received responses, this field is Set and the interface enters the disabled state. 

If there were no outstanding page requests, this field may be Set immediately when Enable 

is Cleared. Resetting the interface causes an immediate transition to the disabled state. 

While in the stopping state, receipt of a Response Failure message results in the immediate 

transition to the disabled state (Setting this field). 

Processor Graphics has no direct use of this field. For compatibility reasons, this field is Set 

when Page-Request Enable (PRE) field in the Page-request Control register transitions from 

1 to 0. When PRE transitions from 0 to 1, this field is Cleared. 

7:2 RO 0h Reserved. 

1 RW1C 0h 
Unexpected Page Request Group Index (UPGRI): When Set, indicates the function 

received a PRG response message containing a PRG index that has no matching request. A 

response failure. This field is Set by the Function and cleared when 1b is written to this field. 

Processor graphics Sets this field when it receives a page_grp_resp_dsc with PRG Index that 

does not match PRG index in any outstanding page_grp_req_dsc. Such a page_grp_resp_dsc is 

ignored. When Page- Request Enable (PRE) field in the Pagerequest Control register 

transtions from 0 to 1, this field is Cleared. 
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Bits Access Default Field 

0 RW1C 0h 
Response Failure (RF): When Set, indicates the function received a PRG response message 

indicating a response failure. The function expects no further response from the host (any 

received are ignored). This field is Set by the Function and cleared when 1b is written to this 

field. 

Processor graphics Sets this field when it receives a page_grp_resp_dsc or 

page_stream_resp_dsc with Response Code of Response Failure (1111b). The advanced 

context corresponding to the PASID in such response is terminated with error. When Page-

Request Enable (PRE) field in the Page request Control register transitions from 0 to 1, this 

field is Cleared. 

Gen9 HW writes 1 to this bit if it gets a failing page response. 

Outstanding Page Request Capacity  

Bits Access Default Field 

31:0 RO 8000h 
Outstanding Page Request Capacity (OPRC): This register contains the number of 

outstanding page request messages the associated Page Request Interface physically 

supports. This is the upper limit on the number of pages that can be usefully allocated to 

the Page Request Interface. 

Processor Graphics device does not use this field. 

Outstanding Page Request Allocation  

Bits Access Default Field 

31:0 RO 0h Outstanding Page Request Allocation (OPRC): This register contains the number of 

outstanding page request messages the associated Page Request Interface is allowed to 

issue (have outstanding at any given instance). 

Processor Graphics device does not use this field. Software is required to program this field 

with value 2(X+8), where X is the value in Queue Size (QS) field in the Page Request Queue 

Address register. For compatibility reasons, this field is implemented as RW. 
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Atomics for Page Table Updates (MSQD)  

The following atomics are added to GTI just for page table management and only needed by GAM to 

perform proper page walks: 

The Following Atomics are only applicable in GTI and used for Page Walks. 

Privilege and Instruction Access checks are not part of Gen8 GPU. 

R/W => Bit[0] 

Extended Access required => Bit[1] 

Write Protect Enable => Bit[2] 

Intermediate Entry => Bit[3] 

Atomic 

 Operation Opcode Description 

New Destination 

 Value Applicable 

Return Value 

(Optional) 

Atomic_Page_update_0000 1100_0000 
Read Access 

Extended Access bit is 

disabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5] if not 

set 

 new_dst 

Atomic_Page_update_0001 1100_0001 
Write Access 

Extended Access bit is 

disabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,6] if not 

set 

 new_dst 

Atomic_Page_update_0010 1100_0010 
Read Access 

Extended Access bit is 

enabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,10] if not 

set 

 new_dst 
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Atomic_Page_update_0011 1100_0011 
Write Access 

Extended Access bit is 

enabled 

Write Protection is 

disabled 

Final PTE 

Set bit[5,6,10] if 

not set 

 new_dst 

Atomic_Page_update_0100 1100_0100 
Read Access 

Extended Access bit is 

disabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5] if not 

set 

 new_dst 

Atomic_Page_update_0101 1100_0101 
Write Access 

Extended Access bit is 

disabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,6] if not 

set 

 new_dst 

Atomic_Page_update_0110 1100_0110 
Read Access 

Extended Access bit is 

enabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,10] if not 

set 

 new_dst 

Atomic_Page_update_0111 1100_0111 
Write Access 

Extended Access bit is 

enabled 

Write Protection is 

enabled 

Final PTE 

Set bit[5,6,10] if 

not set 

 new_dst 
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Atomic_Page_update_1000 1100_1000 
Read Access 

Extended Access bit is 

disabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5] if not 

set 

 new_dst 

Atomic_Page_update_1001 1100_1001 
Write Access 

Extended Access bit is 

disabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,6] if not 

set 

 new_dst 

Atomic_Page_update_1010 1100_1010 
Read Access 

Extended Access bit is 

enabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,10] if not 

set 

 new_dst 

Atomic_Page_update_1011 1100_1011 
Write Access 

Extended Access bit is 

enabled 

Write Protection is 

disabled 

Intermediate Paging 

Entry 

Set bit[5,6,10] if 

not set 

 new_dst 

Atomic_Page_update_1100 1100_1100 
Read Access 

Extended Access bit is 

disabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5] if not 

set 

 new_dst 
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Atomic_Page_update_1101 1100_1101 
Write Access 

Extended Access bit is 

disabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,6] if not 

set 

 new_dst 

Atomic_Page_update_1110 1100_1110 
Read Access 

Extended Access bit is 

enabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,10] if not 

set 

 new_dst 

Atomic_Page_update_1111 1100_1111 
Write Access 

Extended Access bit is 

enabled 

Write Protection is 

enabled 

Intermediate Paging 

Entry 

Set bit[5,6,10] if 

not set 

 new_dst 
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Implementation  

NOTE: Gen8 dropped the Execution privilege and Supervisor/User flag support. The following atomics 

are simplified for gen8 but need to be updated for gen9. 

Atomic_Page_update_0000: 

This paging walk is started on a READ access where the extended access bits in the context is disabled 

and write protection is disabled. This is the final Page Table Entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_0001: 

This paging walk is started on a WRITE access where the extended access bits in the context is disabled 

and write protection is disabled. This is the final Page Table Entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) and D-bit (bit6) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D-bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 
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Atomic_Page_update_0010: 

This paging walk is started on a READ access where the extended access bits in the context is enabled 

and write protection is disabled. This is the final Page Table Entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) and EA-bit (bit10) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/EA-bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_0011: 

This paging walk is started on a WRITE access where the extended access bits in the context is enabled 

and write protection is disabled. This is the final Page Table Entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:  

i. If all set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D/EA-bit set, write to memory 

and return new-dest to GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 
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Atomic_Page_update_0100: 

This paging walk is started on a READ access where the extended access bits in the context is disabled 

and write protection is enabled. This is the final Page Table Entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_0101: 

This paging walk is started on a WRITE access where the extended access bits in the context is disabled 

and write protection is enabled. This is the final Page Table Entry. 

ALU Decision: 

1. If Page is present and Writes are allowed:  

 Is the A-bit (bit5) and D-bit (bit6) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D-bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page is present and Writes are not allowed:  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

3. If Page is not present:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: 

 If bit[0] of the QW of interest is “0” => Page not present. 

 If bit[1] of the QW of interest is “0” => Write permission fault. 
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Atomic_Page_update_0110: 

This paging walk is started on a READ access where the extended access bits in the context is enabled 

and write protection is enabled. This is the final Page Table Entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) and EA-bit (bit10) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/EA-bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_0111: 

This paging walk is started on a WRITE access where the extended access bits in the context is enabled 

and write protection is enabled. This is the final Page Table Entry. 

ALU Decision: 

1. If Page is present and Writes are allowed:  

 Is the A-bit (bit5) and EA-bit (bit10)  and D-bit (bit6) set:  

i. If all set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/EA/D-bit set, write to memory 

and return new-dest to GAM and end atomic. 

2. If Page is present and Writes are not allowed::  

 Is the A-bit (bit5) and EA-bit (bit10) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest 

to GAM and end atomic. 

3. If Page is not present:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0” or bit[1] of the QW of interest is 

“0”. 
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Atomic_Page_update_1000: 

This paging walk is started on a READ access where the extended access bits in the context is disabled 

and write protection is disabled. This is an intermediate page table entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_1001: 

This paging walk is started on a WRITE access where the extended access bits in the context is disabled 

and write protection is disabled. This is an intermediate page table entry. 

ALU Decision: 

1. If No-Page fault & 1GB/2MB Page:  

 Is the A-bit (bit5) and D-bit (bit6) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D-bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If No-Page fault & Not 1GB/2MB Page:  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

3. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”. 
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Atomic_Page_update_1010: 

This paging walk is started on a READ access where the extended access bits in the context is enabled 

and write protection is disabled. This is an intermediate page table entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) and EA-bit (bit10) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/EA-bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_1011: 

This paging walk is started on a WRITE access where the extended access bits in the context is enabled 

and write protection is disabled. This is an intermediate page table entry. 

ALU Decision: 

1. If No-Page fault & 1GB/2MB Page:  

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:  

i. If all set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D/EA-bit set, write to memory 

and return new-dest to GAM and end atomic. 

2. If No-Page fault & Not 1GB/2MB Page:  

 Are the A-bit (bit5) and EA-bit (bit10) set:  

i. If both set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither not set, modify the old-dest with A/EA-bit set, write to memory and return 

new-dest to GAM and end atomi 

3. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”. 
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Atomic_Page_update_1100: 

This paging walk is started on a READ access where the extended access bits in the context is disabled 

and write protection is enabled. This is an intermediate page table entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_1101: 

This paging walk is started on a WRITE access where the extended access bits in the context is disabled 

and write protection is enabled. This is an intermediate page table entry. 

ALU Decision: 

1. If Page is present (1) & Writes are allowed (1) & 1GB/2MB Page (1):  

 Is the A-bit (bit5) and D-bit (bit6) set:  

i. If all set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D -bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (1):  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

3. If Page is present (1) and Writes are allowed (1) & 1GB/2MB Page (0):  

 Is the A-bit (bit5) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

4. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (0):  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

5. If Page is not present:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 
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Page Fault Decision: 

 If bit[0] of the QW of interest is “0” => Page not present. 

 If bit[1] of the QW of interest is “0” => Write permission fault. 

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”. 

Atomic_Page_update_1110: 

This paging walk is started on a READ access where the extended access bits in the context is enabled 

and write protection is enabled. This is an intermediate page table entry. 

ALU Decision: 

1. If No-Page fault:  

 Is the A-bit (bit 5)and EA-bit (bit10) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest 

to GAM and end atomic. 

2. If Page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Atomic_Page_update_1101: 

This paging walk is started on a WRITE access where the extended access bits in the context is disabled 

and write protection is enabled. This is an intermediate page table entry. 

ALU Decision: 

1. If Page is present (1) & Writes are allowed (1) & 1GB/2MB Page (1):  

 Is the A-bit (bit5) and EA-bit (bit10) and D-bit (bit6) set:  

i. If all set, return the PTE to GAM and end-atomic (no writes). 

ii. If neither one of them set, modify the old-dest with A/D -bit set, write to memory and 

return new-dest to GAM and end atomic. 

2. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (1):  

 Is the A-bit (bit5) and EA-bit (bit10) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 

ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest 

to GAM and end atomic. 

3. If Page is present (1) and Writes are allowed (1) & 1GB/2MB Page (0):  

 Is the A-bit (bit5) and EA-bit (bit10) set:  

i. If set, return the PTE to GAM and end-atomic (no writes). 
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ii. If not set, modify the old-dest with A/EA-bit set, write to memory and return new-dest 

to GAM and end atomic. 

4. If Page is present (1) and Writes are not allowed (0) & 1GB/2MB Page (0):  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

5. If Page is not present:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault Decision: 

 If bit[0] of the QW of interest is “0” => Page not present. 

 If bit[1] of the QW of interest is “0” => Write permission fault. 

1GB/2MB Decision: It is a 1GB/2MB page if bit[7] of the intermediate walk entry is “1”. 

Atomic_A_update_000: 

Read access from a user context and a non-instruction space. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, just return the PTE to GAM and end-atomic. 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0”, OR if bit[2]=0. 

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not 

support user vs supervisor privileges. 
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Atomic_A_update_001: 

Read access from a user context and an instruction space. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, just return the PTE to GAM and end-atomic. 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[63]=1 OR if bit[2]=0. 

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not 

support instruction privileges. 

Atomic_A_update_010: 

Read access from a supervisor context and an non-instruction space. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, just return the PTE to GAM and end-atomic. 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0”. 

Gen8 implementation: Identical to what is described here. 
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Atomic_A_update_011: 

Read access from a supervisor context and an instruction space. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, just return the PTE to GAM and end-atomic. 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR if bit[63]=1 OR if bit[2]=1. 

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not 

support instruction privileges, nor supervisor/user separation. 

Atomic_A_update_100: 

Read access from a supervisor context and an instruction space and can be executed from supervisor or 

user pages. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, just return the PTE to GAM and end-atomic. 

ii. If not set, modify the old-dest with A-bit set, write to memory and return new-dest to 

GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[63]=1. 

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_010. Gen8 does not 

support instruction privileges, nor supervisor/user separation. 
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Atomic_AD_update_101: 

Write access from a user context and a non-instruction space. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, is the D-bit (bit6) set:  

A. If set, just return the PTE to GAM and end the atomic. 

B. If not set, modify the old-dest with D-bit set, write to memory and return new-

dest to GAM and end atomic. 

ii. If not set, modify the old-dest with A and D-bit set, write to memory and return the 

new-dest to GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0”, OR if bit[2]=0 OR if bit[1]=0. 

Gen8 implementation: The behavior should be exactly same as Atomic_A_update_110. Gen8 does not 

support instruction privileges, nor supervisor/user separation. 

Atomic_AD_update_110: 

Write access from a supervisor context and an non-instruction space. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, is the D-bit (bit6) set:  

A. If set, just return the PTE to GAM and end the atomic. 

B. If not set, modify the old-dest with D-bit set, write to memory and return new-

dest to GAM and end atomic 

ii. If not set, modify the old-dest with A and D-bit set, write to memory and return the 

new-dest to GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[1]=0. 

Gen8 implementation: Identical to what is described here. 
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Atomic_AD_update_111: 

Write access from a supervisor context and an non-instruction space and RO is don’t care. 

1. If no-page fault:  

 Is the A-bit (bit5) set:  

i. If set, is the D-bit (bit6) set:  

A. If set, just return the PTE to GAM and end the atomic. 

B. If not set, modify the old-dest with D-bit set, write to memory and return new-

dest to GAM and end atomic. 

ii. If not set, modify the old-dest with A and D-bit set, write to memory and return the 

new-dest to GAM and end atomic. 

2. If page fault:  

 Return old-dest to GAM which will lead to GAM detecting the fault as well. 

Page Fault decision: It is page fault, if bit[0] of the QW of interest is “0” OR bit[63]=1. 

Gen8 implementation: The behavior should be to ignore bit[63] in the above proposed mechanism. The 

behavior should be exactly same as Atomic_A_update_110. Gen8 does not support instruction privileges, 

nor supervisor/user separation. 
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Atomic Operations between GPU and IA  

IA cores are capable of doing atomic operations on any memory space defined as part of their page 

tables, MTRRs, and PAT. The core detects the memory type after applying all the checks, and if the end 

target is within WB space, it uses the optimized MESI protocol (i.e. RFO, WB) to complete the atomic 

operation. If the memory space is UC/WC/WT, it uses the bus lock to honor the atomic requirements. 

GPUs are only capable of doing atomics via optimized MESI protocols; they do not have a mechanism to 

do bus locking. This restricts atomic operations to WB space if they happened to be between GPU and IA 

cores. We cannot guarantee the atomicity for UC/WC/WT. 

There are multiple ways how GPU can handle atomics to non-WB space. 

1. Ignore the Memory Type: GPU ignores the memory type for the atomic operation and performs 

it via RFO/WBMtoI as if the space is WB. 

If IA is relying on the LOCK for the same atomic, LOCK keeps the GPU off the bus for integrated 

solutions. And if GPU has the ownership of the line, a LOCKed read from IA still evicts the line from 

GT even if the IA has the line as UC/WT/WC in its memory space. 

2. Report as an error and fail the cycle: GPU detects the mismatch and handles the cycle as error 

(i.e. write has no affect and read returns garbage) and reports the error as catastrophic to SW. App 

can be terminated by SW. 

3. Perform Bus Lock: Similar to IA cores, GPU can support bus locks around atomic operations to 

UC/WT/WC spaces. However the initial implementations of shared atomic implementations do not 

have this option in GPU hardware. 

Option#2 is the main mode where GPU is not expecting atomics to UC/WT/WC space and any such 

accesses are faulted as HW cannot guarantee the atomicity of the operation with the current 

implementation. 


