

Intel® Open Source HD Graphics and Intel Iris™ Plus Graphics

Programmer's Reference Manual

For the 2016 - 2017 Intel Core™ Processors, Celeron™ Processors,

and Pentium™ Processors based on the "Kaby Lake" Platform

Volume 14: Observability

 January 2017, Revision 1.0

 Observability

ii Doc Ref # IHD-OS-KBL-Vol 14-1.17

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 iii

Table of Contents

Observability Overview .. 1

Trace ... 1

Performance Visibility ... 1

Motivation For Hardware-Assisted Performance Visibility ... 1

Performance Event Counting .. 1

OA Programming .. 3

HW Support ... 3

Performance Counter Registers .. 3

OA Interrupt Control Registers ... 6

Performance Counter Report Formats ... 7

Performance Counter Reporting .. 12

Aggregating Counters .. 13

Flexible EU Event Counters ... 16

MI_REPORT_PERF_COUNT .. Error! Bookmark not defined.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 1

Observability Overview

As GFX-enabled systems and usage models have grown in complexity over time, a number of hardware

features have been added to provide more insight into hardware behavior while running a commercially

available operating system. This chapter documents these features with pointers to relevant sections in

other chapters. Supported observability features include:

Feature

Performance counters

Internal node tracing

Note: This chapter describes the registers and instructions used to monitor GPU performance. Please

review other volumes in this specification to understand the terms, functionality and details for specific

Intel graphics devices.

Trace

This section contains the following contents:

Feature

 Performance Visibility

Performance Visibility

Motivation For Hardware-Assisted Performance Visibility

As the focus on GFX performance and programmability has increased over time, the need for hardware

(HW) support to rapidly identify bottlenecks in HW and efficiently tune the work sent to same has

become correspondingly important. This part of the BSpec describes the HW support for Performance

Visibility.

Performance Event Counting

An earlier generation introduced dedicated GFX performance counters to address key issues associated

with existing chipset CHAPs counters (lack of synchronization with GFX rendering work and low sampling

frequency achievable when sampling via CPU MMIO read). Furthermore, reliance on SoC assets created a

cross-IP dependency that was difficult to manage well. Hence, the approach since that earlier generation

has been to use dedicated counters managed by the graphics device driver for graphics performance

measurement. The dedicated counter values are written to memory whenever an

MI_REPORT_PERF_COUNT command is placed in the ring buffer.

While this approach eliminated much of the error associated with the previous approaches, it is still

limited to sampling the counters only at the boundaries between ring commands. This inherently limited

the ability of performance analysis tools to drill down into a primitive, which can contain thousands of

triangles and require several hundreds of milliseconds to render.

Observability

2 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Additionally, Intel design and architecture teams found that the existing silicon-based performance

analysis tools provided only a general idea of where a problem may exist but were not able to pin point a

problem. This was generally because the counter values are integrated across a very large time period,

washing out the dynamic behavior of the workload.

Gen7 enhanced the aggregating counters to support the additional thread types generated by DX11

workloads. The high rate at which interesting internal events can occur motivated adding an interrupt-

generation capability so that HW could notify SW when the data buffer was approaching full.

Gen7.5 enhances support for high reporting frequencies by increasing the report buffer size in order to

allow SW sufficient time between performance monitoring interrupts, enabling single run histogramming

support for events like pixels per polygon. Desire for more flexibility in custom event creation drove

addition of 4 more Boolean counters.

Issues with SNB support drove enhancements to enable performance monitoring with RC6 enabled,

different report buffer ring wrap behavior, and MMIO visibility into performance counters.

Gen8 enhances functionality of aggregating counters for EUs by providing some flexibility in what

quantities are aggregated across all EUs including more quantities relevant to GPGPU workloads. Since

several of the previously defined aggregating counters had not delivered very much value on earlier

projects, the overall number of A-counters has gone down even though aggregating counters for

sampler/pixel-level functionality have been added/redefined. Custom counter creation has been

enhanced by adding the ability to negate a signal at the input of the Boolean logic. Given that the

increased complexity of GFX workloads and number of EUs in GT2/GT3 could lead to more frequent

counter overflows, the width A-counters has increased to 40 bits. HW optimizations have also modified

the SW interface slightly.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 3

OA Programming Guidelines

In order for OA counters to increment the 'Counter Stop-Resume Mechanism' bit of

the OACTXCONTROL register must be set. This requires a RCS context with this bit set be loaded, and

either RCS force wake be enabled or the RCS context be left active for the duration of the window this

counter is needed for.

If GT is running with decoupled unslice / slice frequencies, the following restrictions apply:

 C counters cannot be used for counting slice events.

 Max of 7 slice signals can be counted together.

Note that counting unslice events is unaffected.

HW Support

This section contains various reporting counters and registers for hardware support for Performance

Visibility.

Performance Counter Registers

Register

OACONTROL - Observation Architecture Control

OACTXCONTROL - Observation Architecture Control per Context

OACTXID - Observation Architecture Control Context ID

OA_IMR - OA Interrupt Mask Register

OASTATUS - Observation Architecture Status Register

OAHEADPTR - Observation Architecture Head Pointer

OATAILPTR - Observation Architecture Tail Pointer

OABUFFER - Observation Architecture Buffer

OASTARTTRIG_COUNTER - Observation Architecture Start Trigger Counter

OARPTTRIG_COUNTER - Observation Architecture Report Trigger Counter

OAREPORTTRIG2 - Observation Architecture Report Trigger 2

OAREPORTTRIG6 - Observation Architecture Report Trigger 6

CEC0-0 - Customizable Event Creation 0-0

CEC1-0 - Customizable Event Creation 1-0

CEC1-1 - Customizable Event Creation 1-1

CEC2-0 - Customizable Event Creation 2-0

CEC2-1 - Customizable Event Creation 2-1

CEC3-0 - Customizable Event Creation 3-0

CEC3-1 - Customizable Event Creation 3-1

CEC4-0 - Customizable Event Creation 4-0

CEC5-0 - Customizable Event Creation 5-0

CEC5-1 - Customizable Event Creation 5-1

Observability

4 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Register

CEC6-0 - Customizable Event Creation 6-0

CEC6-1 - Customizable Event Creation 6-1

CEC7-0 - Customizable Event Creation 7-0

CEC7-1 - Customizable Event Creation 7-1

The following Performance Statistics registers are power context save/restored:

Register

OAPERF_A0 - Aggregate Perf Counter A0

OAPERF_A0_UPPER - Aggregate Perf Counter A0 Upper DWord

OAPERF_A1 - Aggregate Perf Counter A1

OAPERF_A1_UPPER - Aggregate Perf Counter A1 Upper DWord

OAPERF_A2 - Aggregate Perf Counter 2

OAPERF_A2_UPPER - Aggregate Perf Counter A2 Upper DWord

OAPERF_A3 - Aggregate Perf Counter A3

OAPERF_A3_UPPER - Aggregate Perf Counter A3 Upper DWord

OAPERF_A4 - Aggregate Perf Counter A4

OAPERF_A4_UPPER - Aggregate Perf Counter A4 Upper DWord

OAPERF_A4_LOWER_FREE - Aggregate Perf Counter A4 Lower DWord Free

OAPERF_A4_UPPER_FREE - Aggregate Perf Counter A4 Upper DWord Free

OAPERF_A5 - Aggregate Perf Counter A5

OAPERF_A5_UPPER - Aggregate Perf Counter A5 Upper DWord

OAPERF_A6 - Aggregate Perf Counter A6

OAPERF_A6_UPPER - Aggregate Perf Counter A6 Upper DWord

OAPERF_A6_LOWER_FREE - Aggregate Perf Counter A6 Lower DWord Free

OAPERF_A6_UPPER_FREE - Aggregate Perf Counter A6 Upper DWord Free

OAPERF_A7 - Aggregate Perf Counter A7

OAPERF_A7_- Upper Aggregate Perf Counter A7 Upper DWord

OAPERF_A8 - Aggregate Perf Counter A8

OAPERF_A8_UPPER - Aggregate Perf Counter A8 Upper DWord

OAPERF_A9 - Aggregate Perf Counter A9

OAPERF_A9_UPPER - Aggregate Perf Counter A9 Upper DWord

OAPERF_A10 - Aggregate Perf Counter A10

OAPERF_A10_UPPER - Aggregate Perf Counter A10 Upper DWord

OAPERF_A11 - Aggregate Perf Counter A11

OAPERF_A11_UPPER - Aggregate Perf Counter A11 Upper DWord

OAPERF_A12 - Aggregate Perf Counter A12

OAPERF_A12_UPPER - Aggregate Perf Counter A12 Upper DWord

OAPERF_A13 - Aggregate Perf Counter A13

OAPERF_A13_UPPER - Aggregate Perf Counter A13 Upper DWord

OAPERF_A14 - Aggregate Perf Counter A14

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 5

Register

OAPERF_A14_UPPER - Aggregate Perf Counter A14 Upper DWord

OAPERF_A15 - Aggregate Perf Counter A15

OAPERF_A15_UPPER - Aggregate Perf Counter A15 Upper DWord

OAPERF_A16 - Aggregate Perf Counter A16

OAPERF_A16_UPPER - Aggregate Perf Counter A16 Upper DWord

OAPERF_A17 - Aggregate Perf Counter A17

OAPERF_A17_UPPER - Aggregate Perf Counter A17 Upper DWord

OAPERF_A18 - Aggregate Perf Counter A18

OAPERF_A18_UPPER - Aggregate Perf Counter A18 Upper DWord

OAPERF_A19 - Aggregate Perf Counter A19

OAPERF_A19_UPPER - Aggregate Perf Counter A19 Upper DWord

OAPERF_A19_LOWER_FREE - Aggregate Perf Counter A19 Lower DWord Free

OAPERF_A19_UPPER_FREE - Aggregate Perf Counter A19 Upper DWord Free

OAPERF_A20 - Aggregate Perf Counter A20

OAPERF_A20_UPPER - Aggregate Perf Counter A20 Upper DWord

OAPERF_A20_UPPER_FREE - Aggregate Perf Counter A20 Upper DWord Free

OAPERF_A20_LOWER_FREE - Aggregate Perf Counter A20 Lower DWord Free

OAPERF_A21 - Aggregate Perf Counter A21

OAPERF_A21_UPPER - Aggregate Perf Counter A21 Upper DWord

OAPERF_A22 - Aggregate Perf Counter A22

OAPERF_A22_UPPER - Aggregate Perf Counter A22 Upper DWord

OAPERF_A23 - Aggregate Perf Counter A23

OAPERF_A23_UPPER - Aggregate Perf Counter A23 Upper DWord

OAPERF_A24 - Aggregate Perf Counter A24

OAPERF_A24_UPPER - Aggregate Perf Counter A24 Upper DWord

OAPERF_A25 - Aggregate Perf Counter A25

OAPERF_A25_UPPER - Aggregate Perf Counter A25 Upper DWord

OAPERF_A26 - Aggregate Perf Counter A26

OAPERF_A26_UPPER - Aggregate Perf Counter A26 Upper DWord

OAPERF_A27 - Aggregate Perf Counter A27

OAPERF_A27_UPPER - Aggregate Perf Counter A27 Upper DWord

OAPERF_A28 - Aggregate Perf Counter A28

OAPERF_A28_UPPER - Aggregate Perf Counter A28 Upper DWord

OAPERF_A29 - Aggregate Perf Counter A29

OAPERF_A29_UPPER - Aggregate Perf Counter A29 Upper DWord

OAPERF_A30 - Aggregate Perf Counter A30

OAPERF_A30_UPPER - Aggregate Perf Counter A30 Upper DWord

OAPERF_A31 - Aggregate_Perf_Counter_A31

OAPERF_A31_UPPER - Aggregate Perf Counter A31 Upper DWord

OAPERF_A32 - Aggregate_Perf_Counter_A32

Observability

6 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Register

OAPERF_A33 - Aggregate_Perf_Counter_A33

OAPERF_A34 - Aggregate_Perf_Counter_A34

OAPERF_A35 - Aggregate_Perf_Counter_A35

OAPERF_B0 - Boolean_Counter_B0

OAPERF_B1 - Boolean_Counter_B1

OAPERF_B2 - Boolean_Counter_B2

OAPERF_B3 - Boolean_Counter_B3

OAPERF_B4 - Boolean_Counter_B4

OAPERF_B5 - Boolean_Counter_B5

OAPERF_B6 - Boolean_Counter_B6

OAPERF_B7 - Boolean_Counter_B7

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5

EU_PERF_CNT_CTL6 - Flexible EU Event Control 6

GPU_TICKS - GPU_Ticks_Counter

OA Interrupt Control Registers

The Interrupt Control Registers listed below all share the same bit definition. The bit definition is as follows:

Bit Description

31:29 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

28 Performance Monitoring Buffer Half-Full Interrupt: For internal trigger (timer based) reporting, if the

report buffer crosses the half full limit, this interrupt is generated.

27:0 Reserved: MBZ (These bits must be never set by OA, these bit could be allocated to some other unit)

 GT Interrupt 3 Definition

 IMR

 Bit Definition for Interrupt Control Registers

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 7

Performance Counter Report Formats

Counters layout for various values of select from the register:

Counters layout for various values of the “Counter Select” from the register:

Counter Select = 000

A-Cntr 10

(low

dword)

A-Cntr 9

(low

dword)

A-Cntr 8

(low

dword)

A-Cntr 7

(low

dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 18

(low

dword)

A-Cntr 17

(low

dword)

A-Cntr 16

(low

dword)

A-Cntr 15

(low

dword)

A-Cntr 14

(low dword)

A-Cntr 13

(low

dword)

A-Cntr 12 (low

dword)

A-Cntr 11

(low

dword)

Counter Select = 010

A-Cntr 10

(low

dword)

A-Cntr 9

(low

dword)

A-Cntr 8

(low

dword)

A-Cntr 7

(low

dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 18

(low

dword)

A-Cntr 17

(low

dword)

A-Cntr 16

(low

dword)

A-Cntr 15

(low

dword)

A-Cntr 14

(low dword)

A-Cntr 13

(low

dword)

A-Cntr 12 (low

dword)

A-Cntr 11

(low

dword)

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-cntr 0

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0

Counter Select = 101

Performance Counter Report Format 101b

Counter Select = 111

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 GPU_TICKS CTX ID TIME_STAMP RPT_ID

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

Description of RPT_ID and other important fields of the layout:

Field Description

GPU TICKS[31:0] GPU_TICKS is simply a free-running count of render clocks elapsed used for normalizing

other counters (e.g. EU active time), it is expected that the rate that this value advances will

vary with frequency and freeze (but not lose its value) when all GT clocks are gated, GT is in

RC6, and so on.

[Register] GPU_Ticks_Counter

Observability

8 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Field Description

Context ID[31:0]
This field carries the Context ID of the active context in render engine.

[31:0]: Context ID in Execlist mode of scheduling.

[31:12]: Context ID in Ring Buffer mode of scheduling, [11:0] must be ignored.

TIME_STAMP[31:0]
This field provides an elapsed real-time value that can be used as a timestamp for GPU

events over short periods of time. This field has the same format at TIMESTAMP register

defined in Vol1C.4 Render Command Streamer BSpec.

RPT_ID[31:0] This field has several sub fields as defined below:

31:26 Reserved MBZ

25 Render Context Valid: When set indicates render context is valid and the ID is of

the render context is set in “Context ID” field of report format.

24:19
Report Reason[5:0]:

Report_reason[0]: When set indicates current report is due to “Timer Triggered”.

Report_reason[1]: When set indicates current report is due to “Internal report

trigger 1”.

Report_reason[2]: When set indicates current report is due to “Internal report

trigger 2”.

Report_reason[3]: When set indicates current report is due to “Render context

switch”.

Report_reason[4]: When set indicates current report is due to “GO transition from

‘1’ to ‘0’ “.

Report_reason[5]: Reserved

18 Start Trigger Event:This bit is multiplexed from “Start Trigger Event-1” or “Start

Trigger Event-2” based on the “Internal Report Trigger-1” or “Internal Report

Trigger-2” asserted in the Report Reason respectively. “Internal Report Trigger-1”

is given priority over “Internal Report Trigger-2”. By default Start Trigger Event-1 is

outputted.

17 Threshold Enable: This bit is multiplexed from “Report Trigger Threshold Enable-

1” or “Report Trigger Threshold Enable-2” based on the “Internal Report Trigger-1”

or “Internal Report Trigger-2” asserted in the Report Reason respectively. “Internal

Report Trigger-1” is given priority over “Internal Report Trigger-2”. By default

“Report Trigger Threshold Enable-1” is outputted.

16 Timer Enabled

15:0

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 9

Field Description

RPT_ID[31:0] Subfields of RPT_ID detailed below:

31:25 squashed_slice_clock_frequency[6:0]:

 Ratio encoding in this field can be decoded using the ratio encoding table.

24:19 Report Reason[5:0]:

 Report_reason[0]: When set indicates current report is due to “Timer Triggered”.

 Report_reason[1]: When set indicates current report is due to “Internal report

trigger 1”.

 Report_reason[2]: When set indicates current report is due to “Internal report

trigger 2”.

 Report_reason[3]: When set indicates current report is due to “Render context

switch”.

 Report_reason[4]: When set indicates current report is due to “GO transition from

‘1’ to ‘0’ “.

 Report_reason[5]: When set indicates the current report is due to Clock Ratio

change between squashed Slice Clock frequency to squashed Unslice clock

frequency.

18 Start Trigger Event:This bit is multiplexed from “Start Trigger Event-1” or “Start

Trigger Event-2” based on the “Internal Report Trigger-1” or “Internal Report

Trigger-2” asserted in the Report Reason respectively. “Internal Report Trigger-1”

is given priority over “Internal Report Trigger-2”. By default Start Trigger Event-1 is

outputted.

17 Threshold Enable: This bit is multiplexed from “Report Trigger Threshold Enable-

1” or “Report Trigger Threshold Enable-2” based on the “Internal Report Trigger-1”

or “Internal Report Trigger-2” asserted in the Report Reason respectively. “Internal

Report Trigger-1” is given priority over “Internal Report Trigger-2”. By default

“Report Trigger Threshold Enable-1” is outputted.

16 Render Context Valid: When set indicates render context is valid and the ID is of

the render context is set in “Context ID” field of report format.

15:0 Additional Report Flags:

 Disable OA reports due to clock ratio change” is 1, these bits comprise of

following:

 [10:9]: squashed_slice_clock_frequency [8:7]

 [8:0]: squashed_unslice_clock_frequency [8:0]

 Ratio encoding in this field can be decoded using the ratio encoding table.

Observability

10 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Field Description

GPU TICKS[31:0]
GPU_TICKS is simply a free-running count of render clocks elapsed used for normalizing other

counters (e.g. EU active time), it is expected that the rate that this value advances will vary with

frequency and freeze (but not lose its value) when all GT clocks are gated, GT is in RC6, and so

on.

TIME_STAMP[31:0]
This field provides an elapsed real-time value that can be used as a timestamp for GPU events

over short periods of time. This field has the same format at TIMESTAMP register defined in

Vol1C.4 Render Command Streamer BSpec.

RPT_ID[31:0] This field has several sub fields as defined below:

31:26 Reserved MBZ

25 Render Context Valid: When set indicates render context is valid and the ID is of the

render context is set in “Context ID” field of report format.

24:19
Report Reason[5:0]:

Report_reason[0]: When set indicates current report is due to “Timer Triggered”.

Report_reason[1]: When set indicates current report is due to “Internal report trigger 1”.

Report_reason[2]: When set indicates current report is due to “Internal report trigger 2”.

Report_reason[3]: When set indicates current report is due to “Render context switch”.

Report_reason[4]: When set indicates current report is due to “GO transition from ‘1’ to

‘0’ “.

Report_reason[5]: Reserved

18 Start Trigger Event:This bit is multiplexed from “Start Trigger Event-1” or “Start

Trigger Event-2” based on the “Internal Report Trigger-1” or “Internal Report Trigger-2”

asserted in the Report Reason respectively. “Internal Report Trigger-1” is given priority

over “Internal Report Trigger-2”. By default Start Trigger Event-1 is outputted.

17 Threshold Enable: This bit is multiplexed from “Report Trigger Threshold Enable-1” or

“Report Trigger Threshold Enable-2” based on the “Internal Report Trigger-1” or

“Internal Report Trigger-2” asserted in the Report Reason respectively. “Internal Report

Trigger-1” is given priority over “Internal Report Trigger-2”. By default “Report Trigger

Threshold Enable-1” is outputted.

16 Timer Enabled

15:0

RPT_ID[31:0] Subfields of RPT_ID detailed below:

31:25 squashed_slice_clock_frequency[6:0]:

 Ratio encoding in this field can be decoded using the ratio encoding table.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 11

Field Description

24:19 Report Reason[5:0]:

 Report_reason[0]: When set indicates current report is due to “Timer Triggered”.

 Report_reason[1]: When set indicates current report is due to “Internal report trigger

1”.

 Report_reason[2]: When set indicates current report is due to “Internal report trigger

2”.

 Report_reason[3]: When set indicates current report is due to “Render context switch”.

 Report_reason[4]: When set indicates current report is due to “GO transition from ‘1’ to

‘0’ “.

 Report_reason[5]: : When set indicates the current report is due to Clock Ratio change

between squashed Slice Clock frequency to squashed Unslice clock frequency.

18 Start Trigger Event:This bit is multiplexed from “Start Trigger Event-1” or “Start

Trigger Event-2” based on the “Internal Report Trigger-1” or “Internal Report Trigger-2”

asserted in the Report Reason respectively. “Internal Report Trigger-1” is given priority

over “Internal Report Trigger-2”. By default Start Trigger Event-1 is outputted.

17 Threshold Enable: This bit is multiplexed from “Report Trigger Threshold Enable-1” or

“Report Trigger Threshold Enable-2” based on the “Internal Report Trigger-1” or

“Internal Report Trigger-2” asserted in the Report Reason respectively. “Internal Report

Trigger-1” is given priority over “Internal Report Trigger-2”. By default “Report Trigger

Threshold Enable-1” is outputted.

16 Render Context Valid: When set indicates render context is valid and the ID is of the

render context is set in “Context ID” field of report format.

15:0 Additional Report Flags:

 When Disable OA reports due to clock ratio change” is 1, these bits comprise of

following:

 [10:9]: squashed_slice_clock_frequency [8:7]

 [8:0]: squashed_unslice_clock_frequency [8:0]

 Disable OA reports due to clock ratio change” is 0,

 Ratio encoding in this field can be decoded using the ratio encoding table.

Observability

12 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Performance Counter Reporting

When either the MI_REPORT_PERF_COUNT command is received or the internal report trigger logic fires,

a snapshot of the performance counter values is written to memory. The format used by HW for such

reports is selected using the Counter Select field within the OACONTROL register. The organization and

number of report formats vary per project and are detailed in the following section. In the following

layouts, the RPT_ID is always stored in the lowest addressed DWORD.

OA contains logic to control when performance counter values are reported to memory. This

functionality is controlled using the OA report trigger and OA start trigger registers. More detailed

register descriptions are included in the Hardware Programming interface. The block diagram below

illustrates the logic these registers control.

Note that counters which are 40 bits wide in BDW are split in the report format into low DWORD and

high byte chunks for simplicity of HW implementation as well as SW-friendly alignment of report data.

The performance counter read logically done before writing out report data for these 40-bit counters is

guaranteed to be an atomic operation, the counter data is simply swizzled as it is being packed into the

report.

Due to OA being located in render power well, render power well shutdown must be disabled for proper

performance counter functionality when only workloads which do not exercise render logic (e.g. certain

media workloads) are running.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 13

Aggregating Counters

The table below described the desired high-level functionality from each of the aggregating counters.

Note that there is no counter of 2x2s sent to pixel shader, this is based on the assumption that the pixel

shader invocation pipeline statistics counter increments for partially lit 2x2s as well and hence does not

require a duplicate performance counter.

Counter

Event Description

A1 # of Vertex Shader

Threads Dispatched

Count of VS threads dispatched to EUs

[Register] Aggregate Perf Counter A1

A2 # of Hull Shader

Threads Dispatched

Count of HS threads dispatched to EUs

[Register] Aggregate Perf Counter A2

A3 # of Domain Shader

Threads Dispatched

Count of DS threads dispatched to EUs

[Register] Aggregate Perf Counter A3

A4
of GPGPU Threads

Dispatched

Count of GPGPU threads dispatched to EUs

[Register] Aggregate Perf Counter A4

A5 # of Geometry

Shader Threads

Dispatched

Count of GS threads dispatched to EUs

[Register] Aggregate Perf Counter A5

A6 # of Pixel Shader

Threads Dispatched

Count of PS threads dispatched to EUs

[Register] Aggregate Perf Counter A6

A7 Aggregating EU

counter 0

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A7

A8 Aggregating EU

counter 1

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A8

A9 Aggregating EU

counter 2

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A9

A10 Aggregating EU

counter 3

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A10

A11 Aggregating EU

counter 4

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A11

A12 Aggregating EU

counter 5

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A12

Observability

14 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Counter

Event Description

A13 Aggregating EU

counter 6

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A13

A14 Aggregating EU

counter 7

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A14

A15 Aggregating EU

counter 8

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A15

A16 Aggregating EU

counter 9

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A16

A17 Aggregating EU

counter 10

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A17

A18 Aggregating EU

counter 11

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A18

A19 Aggregating EU

counter 12

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A19

A20 Aggregating EU

counter 13

User-defined (details in Flexible EU Event Counters section)

[Register] Aggregate Perf Counter A20

A21 2x2s Rasterized Count of the number of samples of 2x2 pixel blocks generated from the input

geometry before any pixel-level tests have been applied. (Please note that 2x2s

may be in terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.)

[Register] Aggregate Perf Counter A21

A22 2x2s Failing Fast pre-

PS Tests

Count of the number of samples failing fast "early" (i.e. before pixel shader

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in

terms of pixels or in terms of samples depending on project but are consistent

between A21-A27.)

[Register] Aggregate Perf Counter A22

A24 2x2s Killed in PS
Number of samples entirely killed in the pixel shader as a result of explicit

instructions in the kernel (counted in 2x2 granularity). (Please note that 2x2s may

be in terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.)

[Register] Aggregate Perf Counter A24

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 15

Counter

Event Description

A25 2x2s Failing post-PS

Tests
Number of samples that entirely fail "late" tests (i.e. tests that can only be

performed after pixel shader execution). Counted at 2x2 granularity. (Please note

that 2x2s may be in terms of pixels or in terms of samples depending on project

but are consistent between A21-A27.)

[Register] Aggregate Perf Counter A25

A26 2x2s Written To

Render Target
Number of samples that are written to render target.(counted at 2x2 granularity).

MRT case will report multiple writes per 2x2 processed by the pixel shader. (Please

note that 2x2s may be in terms of pixels or in terms of samples depending on

project but are consistent between A21-A27.)

[Register] Aggregate Perf Counter A26

A27 Blended 2x2s Written

to Render Target

Number of samples of blendable that are written to render target.(counted at 2x2

granularity). MRT case will report multiple writes per 2x2 processed by the pixel

shader. (Please note that 2x2s may be in terms of pixels or in terms of samples

depending on project but are consistent between A21-A27.)

[Register] Aggregate Perf Counter A27

A28 2x2s Requested from

Sampler

Aggregated total 2x2 texel blocks requested from all EUs to all instances of

sampler logic.

[Register] Aggregate Perf Counter A28

A29 Sampler L1 Misses Aggregated misses from all sampler L1 caches. Please note that the number of L1

accesses varies with requested filtering mode and in other implementation

specific ways. Hence it is not possible in general to draw a direct relationship

between A28 and A29. However, a high number of sampler L1 misses relative to

texel 2x2s requested frequently degrades sampler performance.

[Register] Aggregate Perf Counter A29

A30 SLM Reads Total read requests from an EU to SLM (including reads generated by atomic

operations).

[Register] Aggregate Perf Counter A30

A31 SLM Writes Total write requests from an EU to SLM (including writes generated by atomic

operations).

[Register] Aggregate Perf Counter A31

A32 Other Shader

Memory Accesses
Aggregated total requests from all EUs to memory surfaces other than render

target or texture surfaces (e.g. shader constants).

[Register] Aggregate Perf Counter A32

Observability

16 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Counter

Event Description

A33 Other Shader

Memory Accesses

That Miss First-Level

Cache

Aggregated total requests from all EUs to memory surfaces other than render

target or texture surfaces (e.g. shader constants) that miss first-level cache.

[Register] Aggregate Perf Counter A33

A34 Atomic Accesses Aggregated total atomic accesses from all EUs. This counter increments on atomic

accesses to both SLM and URB.

[Register] Aggregate Perf Counter A34

A35 Barrier Messages
Aggregated total kernel barrier messages from all Eus (one per thread in barrier).

[Register] Aggregate Perf Counter A35

Flexible EU Event Counters

Since EU performance events are most interesting in many cases when aggregated across all EUs and

many interesting EU performance events are limited to certain APIs (e.g. hull shader kernel stats only

applicable when running a DX11+ workload), BDW adds some additional flexibility to the aggregated

counters coming from the EU array.

The following block diagram shows the high-level flow that generates each flexible EU event.

Note that no support is provided for differences between flexible EU event programming between EUs

because the resulting output from each EU is eventually merged into a single OA counter anyway.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 17

Supported Increment Events

Increment Event Encoding Notes

EU FPU0 Pipeline

Active

0b0000 Signal that is high on every EU clock where the EU FPU0 pipeline is actively

executing a Gen ISA instruction.

EU FPU1 Pipeline

Active

0b0001 Signal that is high on every EU clock where the EU FPU1 pipeline is actively

executing a Gen ISA instruction.

EU SEND Pipeline

Active

0b0010 Signal that is high on every EU clock where the EU send pipeline is actively

executing a Gen ISA instruction. Only fine event filters 0b0000,0b0101, 0b0110,

0b0111, 0b1000, 0b1001, and 0b1010 are supported with this increment event.

EU FPU0 & FPU1

Pipelines Concurrently

Active

0b0011 Signal that is high on every EU clock where the EU FPU0 and FPU1 pipelines are

both actively executing a Gen ISA instruction. Only coarse event filters 0b0000,

0b0111, and 0b1000 are supported with this increment event. Only fine event

filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are supported with this

increment event.

Some EU Pipeline

Active

0b0100 Signal that is high on every EU clock where at least one EU pipeline is actively

executing a Gen ISA instruction. Only coarse event filters 0b0000, 0b0111, and

0b1000 are supported with this increment event. Only fine event filters

0b0000,0b0101, 0b0110, 0b0111, 0b1000, 0b1001, and 0b1010 are supported

with this increment event.

At Least 1 Thread 0b0101 Signal that is high on every EU clock where at least one thread is loaded but no

Observability

18 Doc Ref # IHD-OS-KBL-Vol 14-1.17

Increment Event Encoding Notes

Loaded But No EU

Pipeline Active

EU pipeline is actively executing a Gen ISA instruction. Only coarse event filters

0b0000, 0b0111, and 0b1000 are supported with this increment event. Only fine

event filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are supported with

this increment event.

Threads loaded

integrator == max

threads for current

HW SKU

0b1000
Implies an accumulator which increases every EU clock by the number of loaded

threads, signal pulses high for one clock when the accumulator exceeds a

multiple of the number of thread slots (e.g. for a 8-thread EU, signal pulses high

every clock where the increment causes a 3-bit accumulator to overflow). Only

coarse event filters 0b0000, 0b0111, and 0b1000 are supported with this

increment event. Only fine event filters 0b0000, 0b0111, 0b1000, 0b1001, and

0b1010 are supported with this increment event.

Note: There were no C steppings for the BDW GPU, so this increment event is

supported for BDW:*:E0 and later.

Note: A thread slot is considered to be "loaded" once the EU receives the

transparent header. Hence, time spent transferring additional thread header data

phases (e.g. push constants and vertex attribute data) will count towards thead

occupancy.

Supported Coarse Event Filters

Coarse

Event Filter Encoding Notes

No mask 0b0000 Never masks increment event.

VS Thread

Filter

0b0001
For increment events 0b0000/0b0001/0b0010, masks increment events unless the FFID

which dispatched the currently executing thread equals FFID of VS.

HS Thread

Filter

0b0010
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of HS.

DS Thread

Filter

0b0011
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of DS.

GS Thread

Filter

0b0100
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of GS.

PS Thread

Filter

0b0101
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of PS.

TS Thread

Filter

0b0110
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of TS.

 Observability

Doc Ref # IHD-OS-KBL-Vol 14-1.17 19

Coarse

Event Filter Encoding Notes

Row = 0 0b0111 Masks increment event unless the row ID for this EU is 0 (control register is in TDL so only

have to check within quarter-slice).

Row = 1 0b1000 Masks increment event unless the row ID for this EU is 1 (control register is in TDL so only

have to check within quarter-slice).

Fine Event Filters

Fine Event Filter Encoding Notes

None 0b0000 Never mask increment event.

Cycles where

hybrid instructions

are being executed

0b0001 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are hybrid instructions.

Cycles where

ternary instructions

are being executed

0b0010 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are ternary instructions.

Cycles where

binary instructions

are being executed

0b0011 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are binary instructions.

Cycles where mov

instructions are

being executed

0b0100 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are mov instructions.

Cycles where sends

start being

executed

0b0101 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are send start of dispatch. Note that if this fine

event filter is used in combination with increment events not related to the EU send

pipeline (e.g. FPU0 active), the associated flexible event counter will increment in an

implementation-specific manner.

EU# = 0b00 0b0111 Masks increment event unless the EU number for this EU is 0b00.

EU# = 0b01 0b1000 Masks increment event unless the EU number for this EU is 0b01.

EU# = 0b10 0b1001 Masks increment event unless the EU number for this EU is 0b10.

EU# = 0b11 0b1010 Masks increment event unless the EU number for this EU is 0b11.

Flexible EU Event Config Registers

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5

