

Intel[®] Open Source HD Graphics and Intel Iris[™] Plus Graphics

Programmer's Reference Manual

For the 2016 - 2017 Intel Core[™] Processors, Celeron[™] Processors, and Pentium[™] Processors based on the "Kaby Lake" Platform

Volume 13: Memory-mapped Input/Output (MMIO)

January 2017, Revision 1.0

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following conditions:

- **Attribution.** You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

Table of Contents

Slice Registers and Die Recovery	. 1
SW Virtualization Reserved MMIO range	. 1

ΜΜΙΟ

Slice Registers and Die Recovery

When slice 0 is disabled (for example, GT3 fused to GT2 with a slice 0 fault), any read to a slice-located MMIO register must be directed to slice 1, otherwise data of '0' will be returned. This applies to SRM cycles from any command streamer.

MMIO Range Start	MMIO Range End	Unit Description
00005500	00005FFF	WMBE
00007000	00007FFF	SVL
00009400	000097FF	CP unit reg. file - Copy in Slice Common (in all slices)
0000B000	0000B0FF	L3 unique status registers for each slice (unicast per GT).
0000B100	0000B3FF	L3 bank config space (multicast copy per bank and slice)
0000E000	0000E0FF	DM
0000E100	0000E1FF	SC
0000E200	0000E3FF	GWL (inst. 0)
0000E200	0000E3FF	GWL (inst. 1)
0000E200	0000E3FF	GWL (inst. 2)
0000E400	0000E7FF	TDL

SW Virtualization Reserved MMIO range

The MMIO address range from 0x178000 thru 0x178FFF is reserved for communication between a VMM and the GPU Driver executing on a Virtual Machine.

HW does not actually implement anything within this range. Instead, in a SW Virtualized environment, if a VM driver issues a read to this MMIO address range, the VMM will trap that access, and provide whatever data it wishes to pass to the VM driver. In a non-SW-Virtualizated environment (including an SR-IOV Virtualized environment), reads will return zeros, like any other unimplemented MMIO address. Writes to this range are always ignored.

It is important that no "real" HW MMIO register be defined within this range, as it would be inaccessable in a SW-virtualized environment.