

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12

Intel
®
 OpenSource HD Graphics

Programmer’s Reference Manual (PRM)
Volume 4 Part 1: Subsystem and Cores –
Shared Functions
(Ivy Bridge)

For the 2012 Intel
®
 Core™ Processor Family

May 2012

Revision 1.0

NOTICE:
This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 5/29/2012 Doc Ref #: IHD-OS-V4 Pt 1 – 05 12

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL

®
 PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly
or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM
OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY
OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 3

Contents

1. Subsystem Overview .. 5

1.1 Introduction .. 5
1.2 Subsystem Topology .. 5
1.3 Execution Units (EUs) .. 5
1.4 Thread Dispatching .. 6
1.5 Shared Functions ... 6

1.5.1 Message Payload Containing a Header ... 7
1.5.2 Writebacks .. 7
1.5.3 Message Delivery Ordering Rules .. 8
1.5.4 Execution Mask and Messages .. 8
1.5.5 End-Of-Thread (EOT) Message ... 8
1.5.6 Performance ... 9
1.5.7 Message Description Syntax .. 9
1.5.8 Message Errors .. 10

2. Sampling Engine ... 12

2.1 Texture Coordinate Processing ... 12
2.1.1 Texture Coordinate Normalization .. 13
2.1.2 Texture Coordinate Computation ... 13

2.2 Texel Address Generation ... 14
2.2.1 Level of Detail Computation (Mipmapping) .. 14
2.2.2 Intra-Level Filtering Setup .. 18
2.2.3 Texture Address Control ... 21

2.3 Texel Fetch .. 24
2.3.1 Texel Chroma Keying ... 25

2.4 Shadow Prefilter Compare ... 25
2.5 Texel Filtering ... 26
2.6 Texel Color Gamma Linearization ... 26
2.7 Multisampled Surface Behavior ... 26

2.7.1 Multisample Control Surface .. 27
2.8 Denoise/Deinterlacer .. 27

2.8.1 Introduction ... 27
2.8.2 Denoise Algorithm .. 29
2.8.3 Block Noise Estimate (part of Global Noise Estimate) ... 32
2.8.4 Deinterlacer Algorithm .. 33
2.8.5 Field Motion Detector ... 46
2.8.6 Implementation Overview ... 48

2.9 Adaptive Video Scaler .. 50
2.9.1 Filtering Operations .. 51

2.10 Image Enhancement Filter and Video Signal Analysis ... 52
2.10.1 Detail Filter Algorithm ... 53
2.10.2 Skin-Tone Tuned IEF ... 53
2.10.3 Video Analytics Functions – Functional Description... 54

2.11 Mirror pixel at boundary edges for Media (sample_8x8 messages) .. 57
2.11.1 Restriction when Mirror mode is enabled for Sample_8x8 messages 60

2.12 State.. 61
2.12.1 BINDING_TABLE_STATE .. 61
2.12.2 SURFACE_STATE ... 61
2.12.3 SAMPLER_STATE ... 91

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 4

2.12.4 SAMPLER_8x8_STATE ... 111
2.12.5 SAMPLER_BORDER_COLOR_STATE .. 116
2.12.6 3DSTATE_CHROMA_KEY .. 119
2.12.7 3DSTATE_SAMPLER_PALETTE_LOAD0 .. 120
2.12.8 3DSTATE_MONOFILTER_SIZE .. 122

2.13 Messages ... 123
2.13.1 Initiating Message ... 123
2.13.2 Writeback Message .. 142

3. Shared Functions – Data Port .. 167

3.1 Cache Agents ... 168
3.1.1 Render Cache... 168
3.1.2 Data Cache ... 169
3.1.3 Sampler Cache ... 169

3.2 Surfaces ... 169
3.2.1 Surface State Model ... 169
3.2.2 Stateless Model .. 169
3.2.3 Shared Local Memory (SLM) .. 170

3.3 Write Commit ... 170
3.4 Read/Write Ordering .. 171
3.5 Accessing Buffers .. 171
3.6 Accessing Media Surfaces ... 172

3.6.1 Color Processing .. 172
3.6.2 Boundary Behavior ... 197

3.7 Accessing Render Targets ... 197
3.7.1 Single Source ... 198
3.7.2 Dual Source .. 198
3.7.3 Replicate Data .. 198
3.7.4 Multiple Render Targets (MRT) .. 199

3.8 State ... 199
3.8.1 BINDING_TABLE_STATE .. 199
3.8.2 SURFACE_STATE ... 199
3.8.3 COLOR_PROCESSING_STATE ... 199

3.9 Messages ... 225
3.9.1 Global Definitions ... 225
3.9.2 Data Port Messages ... 226
3.9.3 OWord Block Read/Write ... 233
3.9.4 Unaligned OWord Block Read.. 235
3.9.5 OWord Dual Block Read/Write ... 236
3.9.6 Media Block Read/Write ... 239
3.9.7 DWord Scattered Read/Write ... 245
3.9.8 Byte Scattered Read/Write ... 248
3.9.9 Typed/Untyped Surface Read/Write and Typed/Untyped Atomic Operation 251
3.9.10 Scratch Block Read/Write ... 274
3.9.11 Render Target Write ... 276

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 5

1. Subsystem Overview

1.1 Introduction

The subsystem consists of an array of execution units (EUs, sometimes referred to as an arrray of cores)

along with a set of shared functions outside the EUs that the EUs leverage for I/O and for complex

computations. Programmers access the subsystem via the 3D or Media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that has been optimized

to support various 3D API shader languages as well as media functions (primarily video) processing.

Shared functions are hardware units which serve to provide specialized supplemental functionality for the

EUs. A shared function is implemented where the demand for a given specialized function is insufficient

to justify the costs on a per-EU basis. Instead a single instantiation of that specialized function is

implemented as a stand-alone entity outside the EUs and shared among the EUs.

Invocation of the shared functionality is performed via a communication mechanism called a message. A

message is a small self-contained packet of information created by a kernel and directed to a specific

shared function. Messages are dispatched to the shared function under software control via the send

instruction. This instruction identifies the contents of the message and the GRF register locations to direct

any response.

The message construction and delivery mechanisms are general in their definition and capable of

supporting a wide variety of shared functions.

1.2 Subsystem Topology

The subsystem is organized as an array of EUs, and a set of functions that are shared among all of the

EUs. (The EU array is further divided into rows with each row having its own first level instruction cache

and Extended Math shared function, though this aspect of the implemented topology is not exposed to

software). The Sampler, DataPort, URB and Message Gateway functions are shared among the entire

array of EUs.

1.3 Execution Units (EUs)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data of

the same type in parallel (though not necessarily on the same instant in time). In addition, each EU can

support a number of execution contexts called threads that are used to avoid stalling the EU during a

high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a

completely different workload with minimal latency while waiting for the high-latency operation to

complete.

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU

may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the EU.

Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If that

thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler result

arrives back at the EU, the EU can switch back to the original thread and use the returned data as it

continues execution of that thread.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 6

The fact that there are multiple EU cores each with multiple threads can generally be ignored by software.

There are some exceptions to this rule: e.g., for

 thread-to-thread communication (see Message Gateway, Media)

 synchronization of thread output to memory buffers (see Geometry Shader).

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

1.4 Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread

Dispatcher receives the requests. The dispatcher performs such tasks as arbitrating between concurrent

requests, assigning requested threads to hardware threads on EUs, allocating register space in each EU

among multiple threads, and initializing a thread’s registers with data from the fixed functions and from

the URB. This operation is largely transparent to software.

1.5 Shared Functions

In general, a shared function has the ability to receive messages at its input, perform some specialized

amount of work for each, and if required, generate output back to the message’s originating execution

unit (Message Gateway may generate output to a target execution unit specified by the message).

To uniquely identify shared functions, each is assigned a unique 4-bit identifier code called its ‘Function

ID’. This ID is specified in the ‘send’ instruction’s 32b <desc> field of each message. Function ID

assignments are listed in the Graphics Processing Engine chapter of this specification.

Each shared function may support one or more related operations within itself. For example an Extended

Math shared function may support operations such as reciprocal, sine, cosine, and/or others. These are

generically referred to as sub-functions. The communication method as to which sub-function is desired is

typically contained in the 16b ‘function-control’ field of the ‘send’ instruction <desc> field. Alternatively, a

function may choose to define sub-function encodings in-band within message payload, or in the case of

a single function shared-function, the function code may be implied. The architecture, in no way interprets

the sub-function code and the actual implementation choice is left to the function itself.

The Shared Function units included in the Subsystem are as follows (refer to the chapters devoted to

each of these functions):

 Extended Math function

 Sampling Engine function

 DataPort function

 Message Gateway function

 Unified Return Buffer (URB)

 Thread Spawner (TS)

 Null function

The Extended Math function acts as an extension of the math functions already available inside the EUs.

Certain functions such as inverse, square root, exponentiation, etc., require significant hardware

resources to implement and are used infrequently enough that it is inefficient to implement them

separately in each EU. The EUs therefore send the operands for these operations along with the

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 7

operation to be performed to the Extended Math function which computes and returns the result to the

requesting EU.

The Sampling Engine acts a (read-only) I/O port on behalf of the EUs, translating texture coordinates

(and/or structure references) to memory addresses, reading texels and/or other data from memory, and in

the case of texels, combining and filtering them according to programmed state. The resulting pixel and/or

other data are then returned to the requesting EU.

The Data Port function acts as another I/O port on behalf of the EUs. It is both a read and a write port,

and the only way for the Graphics Processing Engine to write results (e.g., images) back to memory. The

Data Port contains the render and depth caches which receive the newly rendered pixels and write them

out to memory when necessary. They also permit previously rendered objects to be read back efficiently

by the Graphics Processing Engine in order to blend them with other rendered objects and test for

visibility of newly rendered objects. Finally, the Data Port also provides read access constant buffers

(arrays of constants in memory.)

The Message Gateway allows a thread to communicate (send a message to) another thread. A key is

used to connect the sender and receiver threads, and a simple gateway protocol is used to send

messages. This is primarily intended for media where a parent/child thread model is sometimes used and

requires parent and child threads to synchronize and efficiently share information. It is not intended to be

used by 3D graphics rendering threads.

The Unified Return Buffer (URB) is a single set of registers that EU threads use to return result data for

future fixed functions and their threads to make use of. Individual entries in the buffer are “owned” by a

given fixed function but a mechanism is provided where other fixed functions (those that follow) can read

the data placed there by another fixed function. The buffer is considered a “Shared Function” since EUs

need to be able to write result data to it using messages. In general, EU threads write their final results

either to memory via the Data Port or to the URB for re-use by subsequent EU threads or certain 3D

pipeline fixed-function units (CLIP, GS).

The Thread Spawner (TS) is a Shared Function that acts as a conduit for dispatching kernel-software-

generated threads, one thread can request another thread to be dispatched by sending a request to the

TS. TS is unique as it is also a Fixed Function in the media pipeline for dispatching threads originated

from Video Front End fixed function.

The Null shared function is supported to allow the broadcast of certain information (e.g, End Of Thread)

without invoking any other operation or response.

1.5.1 Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the

message (or simply the message header). Consequently, the rest of the message payload is referred to

as the data payload.

Messages to Extended Math do not have a header and only contain data payload. Those messages may

be referred to as header-less messages. Messages to Gateway combine the header and data payloads in

a single message register.

1.5.2 Writebacks

Some messages generate return data as dictated by the ‘function-control’ (opcode) field of the ‘send’

instruction (part of the <desc> field). The execution unit and message passing infrastructure do not

interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields in the

‘send’ instruction to the execution unit the starting GRF register and count of returning data. The

execution unit uses this information to set in-flight bits on those registers to prevent execution of any

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 8

instruction which uses them as an operand until the register(s) is(are) eventually written in response to

the message. If a message is not expected to return data, the ‘send’ instruction’s writeback destination

specifier (<post_dest>) must be set to ‘null’ and the response length field of <desc> must be 0 (see ‘send’

instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified

by the starting GRF register and length as specified in the ‘send’ instruction. As each register is written

back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If

a thread was suspended pending return of that register, the dependency is lifted and the thread is allowed

to continue execution (assuming no other dependency for that thread remains outstanding).

1.5.3 Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were

sent. Messages to different shared functions originating from a single thread may arrive at their respective

shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual

destination registers resulting from a single message may return out of order, potentially allowing

execution to continue before the entire response has returned (depending on the dependency chain

inherent in the thread).

1.5.4 Execution Mask and Messages

The Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field

identifies which SIMD computation channels are enabled for that instruction. Since the ‘send’ instruction

is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further the

execution size has no impact on the size of the ‘send' instruction’s implicit move (it is always 1 register

regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD

channels were enabled at the time of the ‘send’. A shared function may interpret or ignore this field as

dictated by the functionality it exposes. For instance, the Extended Math shared function observes this

field and performs the specified operation only on the operands with enabled channels, while the

DataPort writes to the render cache ignore this field completely, instead using the pixel mask included in-

band in the message payload to indicate which channels carry valid data.

1.5.5 End-Of-Thread (EOT) Message

The final instruction of all threads must be a ‘send’ instruction which signals ‘End-Of-Thread’ (EOT). An

EOT message is one in which the EOT bit is set in the ‘send’ instruction’s 32b <desc> field. When issuing

instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further

execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as

shown in the table below.

Target Shared Functions

supporting EOT messages

Target Shared Functions

not supporting EOT messages

Null, DataPortWrite, URB, MessageGateway, ThreadSpawner DataPortRead, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each

thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification by snooping

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 9

all message transmissions, regardless of the explicit destination, looking for messages which signal end-

of-thread. The Thread Spawner in the media pipeline does not snoop for EOT. As it is also a shared

function, all threads generated by Thread Spawner must send a message to Thread Spawner to explicity

signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource

usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed

functions require end-of-thread notification to maintain accounting as to which threads it issued have

completed and which remain outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon those

from threads which they originated, as indicated by the 4b fixed-function ID present in R0 of end-of-thread

message payload. This 4b field is attached to the thread at new-thread dispatch time and is placed in its

designated field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the fixed-function

ID, the typical end-of-thread message generally supplies R0 from the GRF as the first register of an end-

of-thread message.

As an optimization, an end-of-thread message may be overload upon another “productive” message,

saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-of-

thread message, most threads issue a message just prior to their termination (for instance, a Dataport

write to the framebuffer) so the overloaded end-of-thread is the common case. The requirement is that

the message contains R0 from the GRF (to supply the fixed-function ID), and that destination shared

function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as these functions

reside on the O-Bus. In the case where the last real message of a thread is to some other shared

function, the thread must issue a separate message for the purposes of signaling end-of-thread to the

“null” shared function.

1.5.6 Performance

The Architecture imposes no requirement as to a shared function’s latency or throughput. Due to this as

well as factors such as message queuing, shared bus arbitration, implementation choices in bus

bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a

response to a message is non-deterministic. It is expected that an implementation has some notion of

fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

 A thread may choose to have multiple messages under construction in non-overlapping registers in
the MRF at the same time.

 Multiple messages are allowed to be enqueued for transmission at the same time, so long as their
MRF payload registers do not overlap.

 Messages may rely on the MRF registers being maintained across a send message, thus
constructing subsequent messages overlaid on portions of a previous message,

 Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load
early in the thread for data that is required late in the thread).

1.5.7 Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256

bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is

the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits

[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 10

writeback messages, the register number indicates the offset from the specified starting destination

register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in

the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See

the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread

that initiated the message.

The bits within each DWord are given in the second column in each table.

1.5.8 Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the

possibility that a message may be sent containing one or more errors in its descriptor or payload

contents. There are two points of error detection in the message passing system: (a) the message

delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b)

the shared functions contain various error detection mechanisms which identify bad sub-function codes,

bad message lengths, and other misc errors. The error detection capabilities are specific to each shared

function. The execution unit hardware itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through MMIO

registers, and the driver notified via an interrupt mechanism . The set of possible errors is listed in

Message Errors with the associated outcome.

Error Cases

Error Outcome

Bad Shared Function ID The message is discarded before reaching any shared function. If the message specified a

destination, those registers will be marked as in-flight, and any future usage by the thread of

those registers will cause a dependency which will never clear, resulting in a hung thread

and eventual time-out.

Unknown opcode

Incorrect message

length

The destination shared function detects unknown opcodes (as specified in the ‘send’

instructions <desc> field), and known opcodes where the message payload is either too long

or too short, and threats these cases as errors. When detected, the shared function latches

and makes available via MMIO registers the following information: the EU and thread ID

which sent the message, the length of the message and expected response, and any

relevant portions of the first register (R0) of the message payload. The shared function alerts

the driver of an erroneous message through and interrupt mechanism , then continues

normal operation with the subsequent message.

Bad message contents

in payload

Detection of bad data is an implementation decision of the shared function. Not all fields may

be checked by the shared function, so an erroneous payload may return bogus data or no

data at all. If an erroneous value is detected by the shared function, it is free to discard the

message and continue with the subsequent message. If the thread was expecting a

response, the destination registers specified in the associated ‘send’ instruction are never

cleared potentially resulting in a hung thread and time-out.

Incorrect response

length
Case: too few registers specified – the thread may proceed with execution prior to all the

data returning from the shared function, resulting in the thread operating on bad data in the

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 11

Error Outcome

GRF.

Case: too many registers specified – the message response does not clear all the registers

of the destination. In this case, if the thread references any of the residual registers, it may

hand and result in an eventual time-out.

Improper use of End-

Of-Thread (EOT)
Any ‘send’ instruction which specifies EOT must have a ‘null’ destination register. The EU

enforces this and, if detected, will not issue the ‘send’ instruction, resulting in a hung thread

and an eventual time-out.

The ‘send’ instruction specifies that EOT is only recognized if the <desc> field of the

instruction is an immediate. Should a thread attempt to end a thread using a <desc>

sourced from a register, the EOT bit will not be recognized. In this case, the thread will

continue to execute beyond the intended end of thread, resulting in a wide range of error

conditions.

Two outstanding

messages using

overlapping GRF

destinations ranges

This is not checked by HW. Due to varying latencies between two messages, and out-of-

order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may be

the result from the first message, or the result from the second message, or a combination of

both.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 12

2. Sampling Engine
The Sampling Engine provides the capability of advanced sampling and filtering of surfaces in memory.

The sampling engine function is responsible for providing filtered texture values to the Core in response

to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering modes,

address control modes, and other features of the sampling engine. A pointer to the sampler state is

delivered with each message, and an index selects one of 16 states pointed to by the pointer. Some

messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE

to define the attributes of the surface being sampled. This includes the location, size, and format of the

surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used for any purpose

once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the

appropriate subfunctions are complete, the 4-component (reduced to fewer components in some cases)

filtered texture value is provided to the Core in order to complete the sample instruction.

Subfunction Description

Texture Coordinate

Processing

Any required operations are performed on the incoming pixel’s interpolated internal texture

coordinates. These operations may include: cube map intersection.

Texel Address

Generation

The Sampling Engine will determine the required set of texel samples (specific texel values

from specific texture maps), as defined by the texture map parameters and filtering modes.

This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample

and/or miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples will be read from the texture map. This step may require

decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette

Lookup

For streams which have “paletted” texture surface formats, this function uses the “index” values

read from the texture map to look up texel color data from the texture palette.

Shadow Pre-Filter

Compare
For shadow mapping, the texel samples are first compared to the 3rd (R) component of the

pixel’s texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture

Address Generation function. This “combination” ranges from simply passing through a

“nearest” sample to blending the results of anisotropic filters performed on two mipmap levels.

The output of this function is a single 4-component texel value.

Texel Color Gamma

Linearization

Performs optional gamma decorrection on texel RGB (not A) values.

Denoise/

Deinterlacer

Performs denoise and deinterlacing functions for video content ()

8x8 Video Scaler
Performs scaling using an 8x8 filter ()

Image Enhancement

Filter / Video Signal

Analysis

Image Enhancement functions for video content ()

2.1 Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the

texture coordinates that are required before physical addresses of texel samples can be generated.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 13

2.1.1 Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized

coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is located

at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right edge of the

lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the associated

map’s height or width. Here the origin is the located at the upper/left edge of the upper left texel of the

base texture map. Unnormalized coordinates delivered to the sampling engine are only supported with

the “ld” type messages.

Normalized vs. Unnormalized Texture Coordinates

2.1.2 Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from (interpolated)

screen space back into texture coordinate space by dividing the pixel’s S and T components by the Q

component. This operation is done as part of the pixel shader kernel in the Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map faces

(+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest absolute

value determines the proper (major) axis, and then the sign of that component is used to select between

the two faces associated with that axis. The coordinates along the two minor axes are then divided by the

coordinate of the major axis, and scaled and translated, to obtain the 2D texture coordinate ([0,1]) within

the chosen face. Note that the coordinates delivered to the sampling engine must already have been

divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided

below:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 14

Cube Map Coordinate Computation Example

2.2 Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto the

textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral. Any

given pixel of the object may “cover” multiple texels of the map, or only a fraction of one texel. For each

pixel, the usual goal is to sample and filter the texture image in order to best represent the covered texel

values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are provided to allow

the user to employ quality/performance/footprint tradeoffs in selecting how the particular texture is to be

sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the

texture maps are to be sampled. Outputs of this function include the number of texel samples to be taken,

along with the physical addresses of the samples and the filter weights to be applied to the samples after

they are read. This information is computed given the incoming texture coordinate and gradient values,

and the relevant state variables associated with the sampler and surface. This function also applies the

texture coordinate address controls when converting the sample texture coordinates to map addresses.

2.2.1 Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent

object warping due to a perspective projection, the texture image may become magnified (where a texel

covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an object.

In the case where an object pixel is found to cover multiple texels (texture minification), merely choosing

one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result in severe aliasing

artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling these

textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps of

decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are

provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object is

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 15

located a significant distance from the viewer), the device will sample the mipmap level(s) offering a

texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X 1

texel. Each successive level has ½ the resolution of the previous level in the U and V directions (to a

minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap

levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the

approximate, log2 measure of the ratio of texels per pixel. The highest resolution map is considered LOD

0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the

magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture

map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear

interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

2.2.1.1 Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log2 of the

texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space

distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-

space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates

being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels). The

q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant 0 for

2D surfaces.

The ideal LOD computation is included below.

2.2.1.2 LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower

miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap

level will trade off image blurring with possibly increased performance (due to better texture cache reuse).

Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input

message (which can be non-zero only for sample_b messages). The application of LOD Bias is

unconditional, therefore these variables must both be set to zero in order to prevent any undesired

biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore can

be used to control the min-vs-mag crossover point, its use has the undesired effect of actually changing

the LOD used in texture filtering.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 16

2.2.1.3 LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.

Enabling pre-clamping matches OpenGL semantics, while disabling it matches .

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by

the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag

Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even

when lower resolution maps may be available. Note that this is the only parameter used to specify the

number of valid mip levels that be can be accessed, i.e., there is no explicit “number of levels stored in

memory” parameter associated with a mip-mapped texture. All mip levels from the base mip level map

through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is

UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where

LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution mip

levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level

filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and

MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

2.2.1.4 Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down) or

magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel

state variable therefore has the effect of selecting the “base” mip level used to compute Min/Map

Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect

of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-

resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the

computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable

specifies whether one or two mip levels are to be included in the texture filtering, and how that (or those)

levels are to be determined as a function of the computed LOD.

2.2.1.5 LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the

steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not

shown.

Bias:S4.8

MinLod:U4.8

MaxLod:U4.8

Base:U4.1

MIPCnt:U4

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 17

SurfMinLod: U4.8

ResMinLod: U4.8

AdjMaxLod = min(MaxLod, MIPCnt)

AdjMinLod = min(MinLod, MIPCnt)

AdjPR_minLOD = ResMinLod – SurfMinLod

AdjMinLod = max(AdjMinLod, AdjPR_minLOD)

Out_of_Bounds = AdjPR_minLOD > MIPCnt

if (sample_b)

LOD += Bias + bias_parameter

else if (sample_l or ld)

LOD = Bias + lod_parameter

else

LOD += Bias

PreClamp = LODPreClampEnable

If (PreClamp)

LOD = min(LOD, MaxLod)

LOD = max(LOD, MinLod)

MagMode = (LOD - Base <= 0)

MagClampMipNone = 1

If ((MagMode && MagClampMipNone) or MipFlt = None)

LOD = 0

LOD = min(LOD, ceil(AdjMaxLod))

LOD = max(LOD, floor(AdjMinLod))

else if (MipFlt = Nearest)

 LOD = min(LOD, AdjMaxLod)

 LOD = max(LOD, AdjMinLod)

LOD = min(LOD, AdjMaxLod)

LOD = max(LOD, AdjMinLod)

LOD +=0.5

LOD = floor(LOD)

else// MipFlt = Linear

LOD = min(LOD, AdjMaxLod)

LOD = max(LOD, AdjMinLod)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 18

TriBeta = frac(LOD)

LOD0 = floor(LOD)

LOD1 = LOD0 + 1

if (!lod)// “LOD” message type

Lod += SurfMinLod

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced

with zero in all channels, except for surface formats that don’t contain alpha, for which the alpha channel

is replaced with one. These texels then proceed through the rest of the pipeline.

Errata: Out of Bound true on surface format that doesn’t contain alpha will be forced to 0 instead of 1.0 for

the case the filet type is Anisotropic.

Errata: when AdjPR_minLOD > MIPCnt and MIPFILTER_LINEAR texel values will not force to zero.

2.2.1.5.1 Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The

following table describes the various mip filter modes:

MipFilter Value
Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after

LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be

rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further

restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results using the distance

between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping

may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip

level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to

generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated

LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for

MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the

(integer bits of) MinLOD and MaxLOD state variables.

2.2.2 Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state variable

(respectively) is used to select the sampling filter to be used within a mip level (intra-level, as opposed to

any inter-level filter). Note that for volume maps, this selection also applies to filtering between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number and

texture map coordinates of the texture samples, and the computation of any required filter parameters.

The filtering of the samples occurs later on in the Sampling Engine function.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 19

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter
value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q coordinate is

read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE, or

3D surface, respectively) surrounding the pixel’s U,V,Q coordinate are read and a

linear filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture map is

generated and “subpixel” samples are taken along the major axis of the projection

(center axis of the longer dimension). The outermost subpixels are weighted according

to closeness to the edge of the projection, inner subpixels are weighted equally. Each

subpixel samples a bilinear 2x2 of texels and the results are blended according to

weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the monochrome

(MONO8) surface format. The monochrome texel block of the specified size

surrounding the pixel is selected and filtered.

2.2.2.1 MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel’s texture

coordinate is selected and output as the single texel sample coordinates for the level.

2.2.2.2 MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.

1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding

the pixel’s texture coordinate are sampled and later bilinearly filtered.

Bilinear Filter Sampling

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 20

The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each

texel’s contribution according to its distance from the pixel center. Texels further from the pixel center

receive a smaller weight.

2.2.2.3 MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of

pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and

later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter

employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the texture

map. LOD is chosen based on the minor axis length in texel space. The anisotropic “ratio” is equal to the

ratio between the major axis length and the minor axis length. The next larger even integer above the

ratio determines the anisotropic number of “ways”, which determines how many subpixels are chosen. A

line along the major axis is determined, and “subpixels” are chosen along this line, spaced one texel

apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the pixels

are in yellow.

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel

is then blended together using equal weights on all interior subpixels (not including the two endpoint

subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the

“ratio” is to the number of “ways”. This is done to ensure continuous behavior in animation.

2.2.2.4 MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel

sample location are read and filtered using the kernel described below. The size of this block is controlled

by Monochrome Filter Height and Width (referred to here as Nv and Nu, respectively) state. Filters from

1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel samples)

is equal to the size of the filter and the pixel center lies at the exact center of this footprint. The position of

the upper left filter kernel sample (uf, vf) relative to the pixel center at (u, v) is given by the following:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 21

u and v are the fractional parts of uf and vf, respectively. The integer parts select the upper left texel for

the kernel filter, given here as T0,0.

Sampling Using MAPFILTER_MONO

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each

texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and

alpha channels.

2.2.3 Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when

the specific texture coordinate component falls outside of the normalized texture map coordinate range

[0,1).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 22

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the

texture coordinates. Software will need to specify TEXCOORDMODE_WRAP mode for the sampler that

is provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control
Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER Use the texture map’s border color for any texel samples falling outside the

map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_HALF_BORDER Similar to CLAMP_BORDER except texels outside of the map are clamped to

a value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the

same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be

sampled along the edges of faces. This is considered the highest quality

mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each

time an edge is crossed. INVALID for use with unnormalized texture

coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction through the map each

time an edge is crossed. INVALID for use with unnormalized texture

coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the

TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls

provided for the TCW component as it is only used to scale the other 3 components before addressing

modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may

result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision

loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level (choosing

the wrong texels for filtering).

2.2.3.1 TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is

flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed

normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal again,

and so on. The second row of pictures in the figure below indicate a map that is mirrored in one direction

and then both directions. You can see that in the mirror mode every other integer map wrap the base map

is mirrored in either direction.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 23

Texture Wrap vs. Mirror Addressing Mode

2.2.3.2 TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,

leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being

continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate

values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through

0.0).

2.2.3.3 TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp

modes. The absolute value of the texture coordinate component is first taken (thus mirroring about 0),

and then the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then

clamped thereafter. This mode is used to reduce the storage required for symmetric maps.

2.2.3.4 TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the texture coordinate

extends outside the [0,1) range of the base texture map. This is contrasted to

TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.

TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be

obtained from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a

texture mapped object with texture coordinates extending outside of the base map region.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 24

Texture Clamp Mode

2.2.3.5 TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the

texture map’s border value BorderColor is to be used for any texel samples that fall outside of the base

map. The border color is specified via a pointer in SAMPLER_STATE.

2.2.3.6 TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face

filtering. When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-

level filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed.

This will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be

present.

2.3 Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the texture

addresses associated with each texel sample. The texture data is read either directly from the memory-

resident texture map, or from internal texture caches. The texture caches can be invalidated by the

Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable bit of

PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered

textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will

automatically decompress from the stored format into the appropriate [A]RGB values. The compressed

texture storage formats and decompression algorithms can be found in the Memory Data Formats

chapter. When the surface format of a texture is defined as being an index into the texture palette (format

names includiong “Px”), the palette lookup of the index determines the appropriate RGB values.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 25

2.3.1 Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of

texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an

RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel

samples against a “key” range, and takes certain actions if any texel samples are found to match the key.

2.3.1.1 Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel values,

as defined by ChromaKey[][High,Low] state variables. If each component of a texel sample is found to lie

within the respective (inclusive) range and ChromaKey is enabled, then an action will be taken to remove

this contribution to the resulting texel stream output. Comparison is done separately on each of the

channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

2.3.1.2 Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples from the image. The

ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode state

variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0). .

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample

instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not

done and pixels cannot be killed based on it.

2.4 Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed

on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the

“ref” component of the input message, using a compare function selected by ShadowFunction, and

described in the table below. Note that only single-channel texel formats are supported for shadow

mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction
Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) ? 0.0 : 1.0

PREFILTEROP_EQUAL (texel == ref) ? 0.0 : 1.0

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0 : 1.0

PREFILTEROP_GREATER (texel > ref) ? 0.0 : 1.0

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0 : 1.0

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0 : 1.0

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 26

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the

texel’s value which would normally be used).

Software is responsible for programming the ”ref” component of the input message such that it

approximates the same distance metric programmed in the texture map (e.g., distance from a specific

light to the object pixel). In this way, the comparison function can be used to generate “in shadow” status

for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Programming Notes:

 Refer to the Surface Formats table in the section SURFACE_STATE for most messages for the specific surface
formats that are supported with shadow mapping.

2.5 Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel values

on and possibly between texture map layers and levels. The output of this function is a single texel color

value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The

MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results of

any filtering on these separate levels are combined to produce a final texel color. The MinFilter and

MagFilter state variables specify how texel samples are filtered within a level.

2.6 Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back into

linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer. This

permits higher quality image blending by performing the blending on colors in linear gamma space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB” in its name. If

enabled, the pre-filtered texel RGB color to be converted from gamma=2.4 space to gamma=1.0 space

by applying a ^(1/2.4) = ^0.4167 exponential function.

2.7 Multisampled Surface Behavior

The ld message has added an additional parameter for sample index (si) to support unfiltered loading

from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo

message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface would sample a

surface with double the height and width as indicated in the surface state. Each pixel position on the

original-sized surface is replaced with 2x2 samples that have the following arrangement:

sample 0 sample 2

sample 1 sample 3

This behavior is useful when implementing the multisample resolve operation by selecting

MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source

texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four

underlying samples.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 27

2.7.1 Multisample Control Surface

Three new messages have been defined for the sampling engine, ld_mcs, ld2dms, and ld2dss. A pixel

shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS

surface using the ld_mcs message. This message behaves like the ld message, except that the surface is

defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is

effectively R8_UINT for 4x surfaces and R32_UINT for 8x surfaces, thus data is returned in unsigned

integer format. Following the ld_mcs, the kernel issues a ld2dms message to sample the surface itself.

The integer value from the MCS surface is delivered in the mcs parameter of this messages.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done

using ld2dms. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS and MCS

Enable set to enabled, an optimization is available to enable higher performance for compressed pixels.

The ld2dss message can be used to sample from a particular sample slice on the surface. By examining

the MCS value, software can determine which sample slices to sample from. A simple optimization with

probable large return in performance is to compare the MCS value to zero (indicating all samples are on

sample slice 0), and sample only from sample slice 0 using ld2dss if MCS is zero. Sample slice 0 is the

pixel color in this case. If MCS is not zero, each sample is then obtained using ld2dms messages and the

results are averaged in the kernel after being returned. Refer to the multisample storage format in the

GPU Overview volume for more details.

2.8 Denoise/Deinterlacer

The Denoise/Deinterlacer function takes a 4:2:0 or 4:2:2 video stream and first applies a denoise filter to it

and then deinterlace it.

The denoise filter is applied before the deinterlacer. The denoise filter detects and tries to minimize noise

in the input field, while the deinterlacer takes a field consisting of every other lines converts a field into a

frame. This block also gathers statistics for a global noise estimate made in software at the end of the

frame which is used in following frames to tune the denoise filter and image enhancement filter.

The deinterlacer takes the top and bottom fields of each frame and converts them into two individual

frames. This block also gathers statistics for a film mode detector in software run at the end of the frame.

If the film mode detector for the previous frame concludes that the input is progressive rather than

interlaced then the fields will be put together in the best order rather than being interlaced.

2.8.1 Introduction

2.8.1.1 Overview

This diagram shows how the Denoise/Deinterlacer fits in with the other functions of the video pipe. This is

only one possible usage model, other models are possible.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 28

Block Diagram

2.8.1.2 Features

 Denoise Filter – detects noise and motion and filters the block with either a temporal filter when
little motion is detected or a spatial filter. Noise estimates are kept between frames and blended
together. Since the filter is before the deinterlacer it works on individual fields rather than frames.
This usually improves the operation since the deinterlacer can take a single pixel of noise and
spread it to an adjacent pixel, making it harder to remove. The denoise filter works the same whether
deinterlacing or progressive cadence reconstruction is being done.

 Block Noise Estimate (BNE) – part of the Global Noise Estimate (GNE) algorithm, this estimates
the noise over the entire block. The GNE will be calculated at the end of the frame by combining all
the BNEs. The final GNE value is used to control the denoise filter for the next frame.

 Film Mode Detection (FMD) Variances – FMD determines if the input fields were created by
sampling film and converting it to interlaced video. If so the deinterlacer is turned off in favor of
reconstructing the frame from adjacent fields. Various sum-of-absolute differences are calcluated per
block. The FMD algorithm is run at the end of the frame by looking at the variances of all blocks for
both fields in the frame.

 Deinterlacer – Estimates how much motion is occuring across the fields. Low motion scenes are
reconstructed by averaging pixels from fields from nearby times (temporal deinterlacer), while high
motion scenes are reconstructed by interpolating pixels from nearby space (spatial deinterlacer).

 Progressive Cadence Reconstruction – If the FMD for the previous frame determines that film
was converted into interlaced video, then this block reconstructs the original frame by directly putting
together adjacent fields.

 Chroma Upsampling – If the input is 4:2:0 then chroma will be doubled vertically to convert to
4:2:2. Chroma will then either go through it’s own version of the deinterlacer or progressive cadence
reconstruction.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 29

When DI is enabled, the output for a 16x4 block is sent to the EU for further processing and writing to

memory. When DI is disabled and DN enabled the output for a 16x8 block is sent to the EU.

Formats supported are:

NV12 is supported for hardware video decode.

 UYVY, YUY2 and NV12 are required for WHQL.

YV12 and I420 are supported for software video decode.

 IMC3 and IMC4 are supported as internal temporary formats.

NV11 and P208 are not supported, since they have been removed from the WHQL logo requirement.

2.8.2 Denoise Algorithm

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 30

2.8.2.1 Motion Detection and Noise History Update

This block detection motion for the denoise filter, which it then combines with motion detected in the past

in the same part of the screen. The Denoise History is both saved to memory and also used to control the

temporal denoise filter.

The block calculates a number of values for updating the Denoise History. One value is calculated per

4x4 block (pixels from both fields, interleaved):

Block Sum of Temporal Absolute Difference:

BK_STAD =

Where curr(x,y) and prev(x,y) are lumas from the current and previous field. The previous field should

have already been run through the denoise filter.

Count of motion pixels: increment BK_Motion_Pixel for every pixel in the 4x4 for which: (abs(curr(x,y) –

prev(x,y)) >= temporal_diff_th.

Absolute Sum of Temporal Difference sums the differences without the initial absolute value, so that

random motions will tend to cancel out:

BK_TASD =

Sum of Complexity Measure looks for differences in the spatial domain:

BK_SHCM = // sum of 12 pixel pairs

BK_SVCM = // sum of 12 pixel pairs

BK_SCM = BK_SHCM + BK_SVCM

Denoise Motion History Update (for an 8-bit motion history):

if (BK_STAD>dnmh_stad_th) or (BK_Motion_Pixel > dnmh_mp_th) { // Motion Block

 motion_block = 1;

 if (denoise_history >= 128)

new_denoise_history = denoise_history / 2;

 else

new_denoise_history = 0;

} else { // static block

 motion_block = 0;

 if (denoise_history < 128)

new_denoise_history = 128;

 else if (denoise_history < dnmh_history_max)

new_denoise_history = denoise_history + dnmh_delta; // default value 8 for delta

 else

new_denoise_history = denoise_history;

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 31

 if ((BK_TASD > dnmh_tasd_th) and (BK_SCM < dnmh_scm_th))

new_denoise_history = 128;

}

2.8.2.2 Temporal Filter

For each pixel we need to filter we look at the noise history for the associated 4x4.

temporal_denoised = (new_denoise_history * prev(x,y) + (256 – new_denoise_history) * curr(x,y) +128)

>> 8

2.8.2.3 Context Adaptive Spatial Filter

For each pixel in the local 3x3, compare it’s luma to the lumas of the pixel to be filtered. Each pixel for

which the absolute difference is less than or equal to good_neighbor_th is marked as a “good neighbor”:

The filtered pixel is then equal to:

spatial_denoised = ∑ Good_neighbor luma / num_good_neighbors

The divide is implemented as a multiply by a table lookup:

spatial_denoised = ((∑Good_neighbor luma + (num_good_neighbors >>1)) *

gn_q_table[num_good_neighbors-1]) >> 11

Note: The number of good neighbors varies from 1 to 9 since the center pixel is always good. Gn_q_table

provides the reciprocal:

gn_q_table[9] = {2048, 1024, 682, 512, 409, 341, 292, 256, 227};

2.8.2.4 Denoise Blend

The denoise blend combines the temporal and spatial denoise outputs.

First we check to see if the temporal is out of the local range, if so we use the average of the denoised

and the local limit instead:

if (temporal_denoised >= block_max)

 temporal_denoised=(temporal_denoised+block_max)>>1;

if (temporal_denoised < block_min)

 temporal_denoised=(temporal_denoised+block_min)>>1;

Where block_max and block_min are the largest and smallest luma values in the local 3x3 (can be

shared with BNE calculation).

Next we decide between using the spatial and temporal denoise output:

 t_diff = abs(curr(x,y) – prev(x,y);

 if (t_diff < temporal_diff_th) {

 if (motion_block==1)

 denoise_out = spatial_denoised;

 else {

 if (t_diff < temp_diff_low)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 32

 denoise_out=temporal_denoised;

 else {

 denoise_out=

 (spatial_denoised*(t_diff-temp_diff_low) +

 temporal_denoised*(temporal_diff_th-t_diff)+

 (temporal_diff_th-temp_diff_low)/2

) * q_table[temporal_diff_th-temp_diff_low-1]) >> 10;

 }

 } else {

 denoise_out = spatial_denoised;

 }

Motion_block is defined in section Denoise Algorithm above. T_diff can be limited to 6-bits to minimize the

multipler gates required in the blend. A divide is eliminated by providing the reciprocal of the divisor in the

q_table which is defined:

 q_table[16] = {1024,512,341,256,205,171,146,128,114,102,93,85,79,73,68,64}

The following restrictions also apply:

1. Temporal_diff_th – temp_diff_low is limited in the state variable definition to the range 16 to 1.

2. Since t_diff<temporal_diff_th; (t_diff – temp_diff_low) is less than 16

3. Since t_diff>=temp_diff_low; (temporal_diff_th-t_diff) is less then or equal to 16.

The precision needed for spatial_denoised*(t_diff-temp_diff_low) is 8-bit times 4-bits to produce 12-bits.

The other multiply is 8 by 5 to produce 13-bits; the extra bit is needed for 16. The multiplier to implement

the divide will be a 13-bit times the 11-bit number out of q_table, but this could be reduced by

implementing a 13x9 bit multiplier with the top 2 bits controlling a mux since the only table entries that use

them are 1024 and 512.

2.8.3 Block Noise Estimate (part of Global Noise Estimate)

Edge detection is done on every pixel in the 16x4 (DI enabled) or 16x8 (DN only) by estimating a gradient

on the 3x3 neighborhood of pixels in the current field. The calculation only uses a multiply of 2, so shifts

and add are all that is needed. Currently only vertical and horizontal edges are detected, 45 degrees is a

potential improvement.

Hrz Edge = abs(c(x-1,y-1) +2*c(x,y-1) +c(x+1,y-1) –c(x-1,y+1) –2*c(x,y+1) –c(x+1,y+1))

Vrt Edge = abs(c(x-1,y-1) +2*c(x-1,y) +c(x-1,y+1) –c(x+1,y-1) –2*c(x+1,y) –c(x+1,y+1))

The Hrz_Edge and Vrt_Edge are added together and if the sum is greater than bne_edge_th then an

edge is detected:

 ED = (Hrz_Edge +Vrt_Edge) >> 3

 median9 – the median of the 9 luma values for the 3x3 neighborhood pixels is used. Median5, the
median of the pixels above/below/right/left/center may be satisfactory as a lower gate count solution.

 for each pixel luma “y” in 3x3: noise_metric = sum(y – median9)

 noise_min = min(abs(y-median9)) - min of all 9 ys in 3x3

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 33

 noise_max = max(abs(y-median9)) – max of all 9 ys in 3x3

 noise_min_max = noise_max(x,y) – noise_min(x,y)

 pixel_noise_metric = noise_metric if (ED(x,y) < bne_edge_th) and (noise_max_min(x,y) <
bne_nn_th) block_noise_estimate = min of all pixel_noise_metrics that pass the if test in the 16x4
(use 255 if no pixels pass the test)

If the block_noise_estimate is less than 255 then it is added to a sum gathered across the entire frame.

The summation will need to be 23-bits wide to be able to sum 8-bit values for all 32,400 blocks in a

1920x1080 frame. In addition, there will be a count of the number of blocks in the sum. The data will be

written to memory at the end of the frame. Two sets of counters are needed to support 2 simultaneous

streams. The streams are distinguished by the dndi_stream_id state variable in the DI state.

The per block block_noise_estimate is also sent to the EU in the output message for possible use by the

video encoder.

2.8.4 Deinterlacer Algorithm

The overall goal of the motion adaptive deinterlacer is to convert an interlaced video stream made of

fields of alternating lines into a progressive video stream made of frames in which every line is provided.

If there is no motion in a scene, then the missing lines can be provided by looking at the previous or next

fields, both of which have the missing lines. If there is a great deal of motion in the scene, then objects in

the previous and next fields will have moved, so we can’t use them for the missing pixels. Instead we

have to interpolate from the neighboring lines to fill in the missing pixels. This can be thought of as

interpolating in time if there is no motion and interpolating in space if there is motion.

This idea is implemented by creating a measure of motion on a per 2 pixel basis called the Spatial-

Temporal Motion Measure (STMM). If this measure shows that there is little motion in an area around the

pixels, then the missing pixels are created by averaging the pixel values from the previous and next

frame. If the STMM shows that there is motion, then the missing pixels are filled in by interpolating from

neighboring lines with the Spatial Deinterlacer (SDI). The two different ways to interpolate the missing

pixels are blended for intermediate values of STMM to prevent sudden transitions.

The Deinterlacer uses two frames for reference. The current frame contains the field that we are

deinterlacing. The reference frame is the closest frame in time to the field that we are deinterlacing – if we

are working on the 1st field then it is the previous frame, if it is the 2nd field then it is the next frame.

2.8.4.1 Spatial-Temporal Motion Measure

This algorithm combines a complexity measure with a estimate of motion. This prevents high complexity

scenes from incorrectly causing motion to be detected. It is calculated for a set of pixels 2 wide by 1 high.

Complexity is measured in the vertical and horizontal directions with the SVCM and SHCM. For each set

of 2 pixels which need to be interpolated, a window of pixels is used that is 4 wide and 5 high - +/-1 pixel

in X and +/- 2 pixels in Y. The pixels values are taken from both the current and previous field - for

example, if we are deinterlacing the top field then lines y+2,y, and y-2 will come from the top field; while

line y+1 and y-1 will come from the bottom field.

Spatial vertical complexity measure (SVCM) is a sum of all the differences in the vertical direction for a

window around the current pixels. If we take x,y=0,0 as the left pixel of our 2x1 then:

SVCM =

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 34

Where c(x,y) is the luma value at that x,y location in the current frame. Note that we are skipping by

2 in the Y direction to ensure that the compares are only done with lines from the same field.

Spatial horizontal complexity measure (SHCM) is a sum of differences in the horizontal direction.

SHCM =

The vertical edge complexity measure (VECM) is a sum of difference in the horizontal direction similar to

SHCM, but uses different pixels from the window.

VECM = >>5

Temporal Difference Measure (TDM) is a measure of differences between pairs of fields with the same

lines. It uses filtered versions of c(x,y) from the current frame and r(x,y) from the reference frame (either

the previous or next frame).

The filter used is a cross filter which uses the pixels above, below, to the right and to the left of the

needed pixel in the same field. When denoise filter is enabled, the filter input c(x,y) is a denoised pixel

only if -2<=y<=6 for dndi_topfirst=1, and -3<=Y<=5 for dndi_topfirst=0. Note that r(x,y) is a denoised pixel

regardless of y.

c’(x,y) = (2*c(x,y) +c(x-1,y) +c(x+1,y) +2*c(x,y-2) +2*c(x,y+2)) >> 3 (Done for both c(x,y) and r(x,y))

TDM =

STMM is then calculated by :

STMM = ((TDM >>tdm_shift1)<<tdm_shift2) / (SCM >> 4) + stmm_c2)

where SCM = max(0, SVCM+SHCM-VECM). Tdm_shift1 is used to quantize the STMM result, while

Tdm_shift2 is used to set the STMM range. Tdm_shift1 can range from 4 to 6; since TDM has 13

bits this results in between 9 and 7 bits of precision. Tdm_shift2 can range from 6 to 8, producing a

value between 17 and 13 bits, of which only 9-bits are non-zero. The divide can be implemented by

a 8-bit reciprocal table followed by an 9 -bit x 8-bit multiply by the TDM value, which finally produces

an output of 8-bits.

STMM is then smoothed with an exponential moving average with the STMM saved from the

previous field:

 if (STMM > stmm_md_th)

 STMM2 = (stmm_trc1 * STMM_s + (256-stmm_trc1)*STMM) / 256

 else

STMM2 = (stmm_trc2 * STMM_s + (256-stmm_trc2)*STMM) / 256

with state variables stmm_trc1 (typical value 64), stmm_trc2 (typical value 200), and stmm_md_th.

This process prevent sudden changes in STMM, though STMM over a certain value uses a smaller

smoothing constant (c1) which allows it to change faster. STMM2 is stored to memory to be read as

STMM_s by the next frame.

One final step is used to prevent sudden drops in STMM in the horizontal direction – taking the maximum

of the STMM on the right and left sides:

STMM3(x) = max (STMM2(x-2), STMM2(x), STMM2(x+2))

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 35

The resulting STMM3 will be used as a blending factor between the spatial and temporal deinterlacer.

2.8.4.2 Spatial Deinterlacer Angle Detection

Deciding the best pixels to interpolate in the current field is the job of the spatial deinterlacer. The

simplest method would be to interpolate directly from the pixels above and below the missing pixels, but

this can look bad; edges and lines particularly look jagged with this solution.

A better solution is to detect the direction of edges in the pixel neighborhood and interpolate along the

edge direction.

Edge detection is done per 2 pixels to lower the compute needed (may change in this implementation

depending on quality). Edge detection is done by taking a window of pixels around the pixels of interest

and comparing with a window offset in the direction being tested. The more simularity between the

windows the more likely it is that the movement is in the direction of an edge.

We test 9 different directions to pick the best edge: vertical, +/-45°, +/-27°, +/-18° and +/-11 degrees. The

window offset for 45° x+/-1, likewise the offset of 27° is x+/-2, 18° is x+/-3, and 11° is x+/-5. X+4 is not used because

the gap between 18° and 11° is too small to make it worth checking.

Use x,y=0,0 for the left pixel of the pair that we want to interpolate, and xoffset is the offset described in

the above paragraph. The equation for each angle checked is:

AngleCost_6x3 =

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 36

The above picture illustrates the 45 degree angle compution – taking the sum-of-absolute differences of

the two 6x3 blocks around the 2 pixels that need an angle estimated. Each block is offset by 1 in Y and X

in opposite direction. The offset in X is larger for the other angles, of course. Angle detection requires up

to 7 pixels (offset of 5 plus 2 to get all the pixels in the 6x3) on the right and left of the output block,

requiring the input to the deinterlacer from the denoise to be 16 + 7 + 7, or 30 pixels.

Once we have all the angle values, the final decision is done by comparing them with each other. In the

following diagram N45 indicates the AngleCost_6x3 for -45°, likewise P27 is the value for +27°, etc. Th

and D are constants used to fine tune the algorithm.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 37

Any missing arcs in the above diagram use the default edge of 90 degrees; for example if the lower left

box has P11 >= Th then the default will be used.

2.8.4.3 Angle Robustness Check

Three special checks are made to eliminate incorrect angle detection.

Fallback Mode 1

Moving regions with fine details can confuse the angle detection. This fallback mode will detect fine

details and fall back to 90 degrees if they are detected.

SUM_H1(x,y) =

This sum is similar to SHCM, but over a horizontal line of -2 to +3 only.

SUM_H2(x,y) =

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 38

if (SUM_H1(y-1) + SUM_H1(y+1) > SUM_H2(y-1) + SUM_H2(y+1) + sdi_t1 &&

 SUM_H1(y-1) + SUM_H1(y+1) >= sdi_t2)Then use 90 degree

The final decision for each pixel is done using the sums from above and below the current Y.

Fallback Mode 2

Sometimes the 6x3 angle detection window makes mistakes due to pixels on the edge of the window.

Adding a check using a 2x1 window fixes these problems:

If(AngleCost_6x3(90 degree) + (AngleCost_2x1(90 degree)<<3) <

 AngleCost_6x3(best angle) + ((AngleCost_2x1(best angle) + sdi_angle2x1)<<3)) then use 90 degree

AngleCost_2x1 is the same as AngleCost_6x3 with a much smaller window:

AngleCost_2x1 =

AngleCost_2x1 can be collected during the calculation of AngleCost_6x3.

Horizontal Median

One final step is used to prevent sudden angle changes – the angle detected for the pixel pair is

compared to the angle detected for the pixels to the right and left and the median of the 3 is the angle

finally used:

angle_final(x) = median3(angle(x-2), angle(x), angle(x+2))

2.8.4.4 Spatial Deinterlacer Interpolation

Once the best angle is picked, the interpolation is done on a per pixel basis. Both the chroma and luma

need to be interpolated (see section Chroma Up Sampler for chroma). Only 422 output is needed, so

there will be a chroma pair for each 2 lumas. The interpolation itself is very simple: take a pixel from the

line above and the line below along one of the 9 possible angles, and average the 8-bit luma and chroma

values to get the result pixel. We will do 2 lumas per clock to get enough performance.

2.8.4.5 Chroma Up-Sampler

The DN/DI block supports 4:2:0, 4:1:1 and 4:2:2 inputs, but only outputs 4:2:2. For 4:2:0 and 4:1:1 the

chroma needs to be up-sampled to 4:2:2 before interpolation.

The 4:2:0 input has chroma at ¼ the rate of the luma; ½ in the horizontal and ½ in the vertical directions.

The output needs to be 4:2:2, where chroma is ½ the rate of luma; ½ the horizontal but the same in the

vertical direction. Then chroma can be de-interlaced in the vertical direction. For luma we are working with

16x4 blocks, so for chroma we will have 8x2 in 4:2:0 and 8x4 in 4:2:2.

The 4:2:0 to 4:2:2 conversion requires doubling the chroma in the vertical direction to match the luma:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 39

The chroma is doubled by a simple interpolation in both time and space. In the following equations, pixel

locations are specified as u(field, x_location, y_location). Field=n would be from the current field, n-1 is

from the previous field, and n+1 is from the next field. The Cr and Cb X and Y values are ½ the luma

values to map to the smaller area.

temporal_cr = (cr(n-1,x,y) + cr(n+1,x,y)) / 2// Simple average in time

spatial_cr = (cr(n,x,y-1) + cr(n,x,y+1)) / 2// Simple average in vertical space

if (STMM3 < stmm_min)

 new_cr = temporal_cr

else if (STMM > stmm_max)

 new_cr = spatial_cr

else

 new_cr = ((STMM3 – stmm_min) * spatial_cr + (stmm_max - STMM3) * temporal_cr) >> stmm_shift

Note that this simple chroma interpolation is not correct, since the chroma sample position is ¼ of a pixel

different between 420 and 422. The polyphase filter in the scaler will be used to correct this inprecision by

modifying the filter coefficients in software.

For performance a single Cr and Cb has to be produce per clock in this stage to match the 2 pixel per

clock performance goal.

4:1:1 also has chroma at ¼ the rate of luma; ¼ in the horizontal direction and the same in the vertical

direction. To convert to 4:2:2 we need to double the chroma horizontally. This will be done by averaging

the chromas to the right and left to produce the new chroma.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 40

The above diagram shows how the existing chroma values (both U and V) are averaged between C0 and

C1 to produce the new C½. C0 is the chroma asociated with lumas L0 through L3, while C1 is associated

with L4 through L7.

2.8.4.6 Chroma Deinterlace

The next step is to do the deinterlacing. Chroma uses the output of the luma angle decision, but reduces

the number of angles. The actual spatial deinterlace algorithm is a little different for chroma, since there

are only 1 chroma per 2 lumas: some of the chromas are missing and must be filled in.

The diagram shows the chromas used in red. Only 90°, -27° and 27° are directly available. The chromas

for +/-45° are derived by a simple average of the 90° and 27° chromas. +/-18° and +/-11° both use the

chroma for +/-27°.

2.8.4.6.1 Static Image Fallback Mode

This algorithm has a problem with static images – alternate fields use different luma angle detections and

can select different angles, causing noticable flicker. Rather than calculating a separate set of angles for

chroma, we instead will blend with STMM so that a static image will use 90 degrees.

if (STMM3 < stmm_min)

 chroma_sdi = chroma90degree

else if (STMM > stmm_max)

 chroma_sdi = chroma_3angle

else

 chroma_sdi = (chroma90degree * (stmm_max – STMM3) + chroma_3angle * (STMM3 – stmm_min)) >>

stmm_shift

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 41

2.8.4.7 Temporal Deinterlacer and Final Deinterlacer Blend

The temporal deinterlacer is a simple average between the previous and next field; when deinterlacing

the 1st field of current the average will be between the 2nd field of previous and the 2nd field of current.

The interpolation between spatial and temporal:

if (STMM3 < stmm_min)

 deinterlace_out = tdi;

else if (STMM3 > stmm_max)

 deinterlace_out = sdi;

else

 deinterlace_out = (sdi * (STMM3 – stmm_min) + tdi * (stmm_max – STMM3)) >> stmm_shift

2.8.4.8 Progressive Cadence Reconstruction

When the FMD for the previous frame indicates that a progressive mode is being used rather than

interlaced, the luma and chroma will be taken from adjacent fields rather than spatially interpolated. The

exact fields needed depend on state variables written to memory by a thread at the end of the previous

frame. The thread will use the FMD variances written to memory via CSunit on the flush at the end of a

frame.

Since we are deinterlacing 2 fields at a time – one from the previous frame and one from the current

frame (see section Implementation Overview) we will need a state variable which says how each one

should be put together. In each case there are only two possibilities – either the field should be put

together with the matching field in the same frame or it should be put together with the adjacent field in

the other frame.

If we are deinterlacing the 2nd field from frame N and the 1st field from frame N+1, then the FMD decision

(which is made on frame boundaries) will be from frame N-1.

Chroma is reconstructed the same as luma – only the first step of doubling chroma is done in the chroma

upsampling block for the two needed fields.

2.8.4.9 Motion Search

Motion will be estimated independently for each horizontal pair of pixels in the 16x4 block. The area

around each pixel pair will be compared to areas in adjacent fields with different X/Y offsets. 16 different

offsets, or motion vectors, will be examined in this order:

 Y= -2, X = -1, 0, 1

 Y = 0, X = -6, -5, -4, -3, -2, 2, 3, 4, 5, 6

 Y = 2, X = -1, 0, 1

The area to be compared around the pixel pair is a 6 wide by 5 high window - 2 pixels on right and left

and 2 lines above and below. The lines above and below are from both fields, so a total of 3 lines from

the same field and 2 lines from the complement field are compared to lines in 2 fields from an adjacent

frame.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 42

The motion estimation equation for a pixel pair is:

Mx, My is the motion vector offset being tested, and x,y is the location of the leftmost pixel of the pair. The

motion vector with the smallest SAD is kept as the best motion estimate; if two motion vectors have the

same SAD then the last one tested will be kept.

2.8.4.10 Robustness Checks

The motion estimate output goes through 2 checks to make sure it is not an aberration – a smoothness

check and a consistency check.

2.8.4.10.1 Consistency Check

The consistency check is done per pixel and makes sure that the pixels we are interpolating for MC have

a lower delta than the ones that would be interpolated for spatial DI:

Here Edge is the delta found by SDI which corresponds to the best angle. MC_pixel_consistency_TH

(U6)is a state parameter.

PDI_cur is defined as: (same definition as in the motion compensation section)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 43

2.8.4.10.2 Smoothness Check

The smoothness check compares the motion vector found for neighboring pixel pairs. The neighbors are

different for different locations to make sure it stays within the local 4x4. Each pixel pair has 3 sets of

comparison with neighbor pixel pair within the 4 by 4: 2 sets of X/Y comparisons for the vertical direction

and one set of X/Y comparisons for the horizontal direction.

For lines 1 and 2 in the 16x4:

Where smooth_mv_th(U2) is a state parameter.

This equation ensures that the pixel pair 1 and 2 lines below have motion vector X and Y components

(MVx & MVy) that are within a threshold of the best motion vector for the current pixel pair. The compares

with y+1 use “+” rather than “-“ since they are comparing motion vectors in the opposite field, which have

motion vectors pointing in the opposite direction, since they are using the current field as their reference.

For example, if the current pixel has a motion vector of (4,2), the motion vector of x,y+1 would be the

same if it is (-4,-2).

For lines 3 and 4 in the 16x4:

For pixel pairs with the first pixel location x%4 == 0 (low X in the 4x4):

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 44

For pixel pairs with the first pixel location x%4 != 0 (high X in 4x4):

When all 3 comparisons pass the threshold, the smoothness check is passed.

2.8.4.11 Motion Comp

The MCDI output is an average done per pixel on pixels chosen from adjacent field.

There are 4 different equations depending on the motion vector (Mx, My):

If (Mx%2 ==0) && (My == 0) then

If (Mx%2 ==1) && (My == 0) then

If (Mx%2==0) && abs(My) == 2 then

If (Mx%2==1) & abs(My) == 2 then

 For all these equations, if more vareties of My are used than -2,0,2 then we need to use (My/2)%2==0)

instead of My==0, and (My/2)%2==1 instead of abs(My)==2.

2.8.4.12 Merge with TDI & SDI

The MADI equation used in Gen6 was:

if (STMM3 < stmm_min)

deinterlace_out = tdi;

else if (STMM3 > stmm_max)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 45

deinterlace_out = sdi;

Else

deinterlace_out = ((STMM3 – stmm_min) * sdi + (stmm_max - STMM3) * tdi) >> stmm_shift

Where STMM3 is a measure of the complexity of the scene and how much motion is in it.

The equation with MCDI is:

if (STMM3 < stmm_min)

Deinterlace_out = tdi;

else if (STMM3 > stmm_max)

deinterlace_out = DItemp;

else

deinterlace_out = ((STMM3 – stmm_min) * DItemp + (stmm_max - STMM3) * tdi) >> stmm_shift

Where DItemp is defined below:

Content Adaptive Thresholding:

We denote the best_ME_SAD as the minimal SAD value for the MV candidates. Best_ME_SAD and

Best_SAD_Angle_cost are measured based on the block of pixels. The new control equation with MCDI

is calculated per pixel:

If ((best_ME_SAD <= CAT_TH1)

If (Consistency check is passed && Smoothness check is passed)

DItemp = MCDI;

Else

DItemp = sdi;

Else if (CAT_TH1<best_ME_SAD < CAT_TH2*30) {

If (Consistency check is passed && Smoothness check is passed) AND

 (SDI_angle =90 degree) AND

 (best_ME_SAD + SAD_Tight_TH*30 < Best_SAD_Angle_cost*2) AND

{(MCDI==median3(MCDI, ,) ||

 (Min[abs(MCDI -), abs(MCDI -)] <

 NeighborPixel_TH)}

DItemp = MCDI;

Else

DItemp = sdi;

} Else

DItemp = sdi

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 46

Where CAT_TH1(U2, default = 0), SAD_Tight_TH (U4, default=5) and NeighborPixel_TH(U4,

default=10) are state parameters. CAT_TH2 is a content adaptive value dependent on SCM. SCM =

SHCM+SVCM from the spatial complexity measurement.

If (SCM < SCM_A)

CAT_TH2 = SAD_THA;

Else if (SCM > SCM_B)

CAT_TH2 = SAD_THB;

Else

CAT_TH2 = SCM / CAT_slope;

Where CAT_slope (U4: default value 10). SAD_THA (U4, default 5) and SAD_THB (U4, default 10) are

state parameters, and SCM_A and SCM_B are derived parameters:

 SCM_A = CAT_slope * SAD_THA;// 4-bit * 4-bit to produce 8-bit value

 SCM_B = CAT_slope * SAD_THB;// 4-bit * 4-bit to produce 8-bit value

2.8.5 Field Motion Detector

The Field Motion Detector is generated in either the EU or in the driver with a set of differences gathered

across entire fields. It is used to detect when a non-interlaced source like a film has been converted to

interlaced video – in this case there will be pairs of fields which can be put back together to make frames

rather than interpolating. The variances for the block are sent to the VSCunit to be summed across the

entire frame. The results are available in MMIO registers.

2.8.5.1 Simple Differences

The first set of variances are simply a sum of absolute pixel differences. The equations are done for every

pixel with an even y coordinate:

variance[0] += Diff_cTpT = (c(x,y) – p(x,y)) ^ 2; – difference between pixels from the top fields of the

current and previous frame.

variance[1] += Diff_cBpB = (c(x,y+1) – p(x,y+1)) ^ 2; – difference between pixels from the bottom fields

of the current and previous frame.

variance[2] += Diff_cTcB = (c(x,y) – c(x,y+1)) ^ 2; – difference between pixels from the top field and

bottom field in the current frame.

variance[3] += Diff_cTpB = (c(x,y) – p(x,y+1)) ^ 2; – difference between pixels from the top field of the

current frame and bottom field of previous frame.

variance[4] += Diff_cBpT = (c(x,y+1) – p(x,y)) ^ 2; – difference between pixels from the bottom field of

the current frame and top field of previous frame.

The variances summed for each 16x4 block are divided by 16 before adding them to the sum for the

frame to make sure the frame-level sum fits in a 32-bit register.

2.8.5.2 Counter Variances

The rest of the variances are counters for variance conditions as described in the following code:

// Same field difference of the current frame

diff_cTcT = (c(x,y) – c(x,y+2)) ^ 2;

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 47

diff_cBcB = (c(x,y-1) – c(x,y+1)) ^ 2;

// Same field difference of the previous frame

diff_pTpT = (p(x,y) – p(x,y+2)) ^ 2;

diff_pBpB = (p(x,y-1) – p(x,y+1)) ^ 2;

// Same field vertical smoothness of the current frame

diff_cT = ABS(c(x,y) – c(x,y-2)) + ABS(c(x,y) – c(x,y+2)) – ABS(c(x,y-2) + c(x,y+2));

diff_cB = ABS(c(x,y+1) – c(x,y-1)) + ABS(c(x,y+1) – c(x,y+3)) –

ABS(c(x,y-1) + c(x,y+3));

if(diff_cTpT + diff_cBpB > fmd_tdiff) {// if moving pixels,

 // Fine tears for cadence detection except 2-2 detection

 if(diff_cTcB > diff_cTcT + diff_cBcB)variance[5]++;

 elsevariance[6]++;

 // Find tears for 2-2 cadence detection

 if(diff_cT < fmd_vdiff1 && diff_cB < fmd_vdiff1) {// if fields are vertically

smooth,

variance[7]++;// total moving pixels

// Find tears. (1st condition is to exclude very small variations)

if(diff_cTcB >=fmd_vdiff2 && diff_cTcB > diff_cTcT + diff_cBcB) TEAR1(x,y) = 1

if(diff_cTpB >=fmd_vdiff2 && diff_cTpB > diff_cTcT + diff_pBpB) TEAR_2(x,y) = 1

if(diff_cBpT>=fmd_vdiff2 && diff_cBpT > diff_pTpT + diff_cBcB) TEAR_3(x,y) = 1

 }

}

2.8.5.3 Tear Variances

The all 3 TEAR_N variables are compared to neighbors to eliminate strays:

if(TEAR_N(x-1,y) == 0 &&

 TEAR_N(x+1,y) == 0 &&

 TEAR_N(x,y-2) == 0 &&

 TEAR_N(x,y+2) == 0)TEAR_N(x,y) = 0;where N=1,2,3.

variance[8] = sum of TEAR1(x,y)

variance[9] = sum of TEAR_2(x,y)

variance[10] = sum of TEAR_3(x,y)

if (variance[8] > variance[9] && variance[8] > variance[10])

 variance[7] = variance[8] = variance[9] = variance[10] = 0

if (variance[8] < fmd_thr_tear) variance[8] = 0

if (variance[9] < fmd_thr_tear) variance[9] = 0

if (variance[10] < fmd_thr_tear) variance[10] = 0

The variances are summed for each block across the frame. The accumulators may require 24-bit adders

if the differences are 8-bits and there can be 128 (horizontally) * 256 (vertically) of them. The sums are

written to memory at the end of the frame.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 48

Two sets of FMD variances are needed to support 2 simultaneous streams. The streams are

distinguished by the dndi_stream_id state variable in the DI state.

A-Stepping Erratum: TEAR_N compute doesn’t follow the equation above. Two signals were missing,

thus, it is incorrectly calculated as the following. Without the added protection of the N=-2 & N=4

collection of feature, the robustness of 2:2 detection suffers.

if(TEAR_N(x-1,y) == 0 &&

 TEAR_N(x+1,y) == 0 &&)TEAR_N(x,y) = 0;where N=1,2,3.

2.8.6 Implementation Overview

2.8.6.1 Input and Output Frames

Two frames are needed to do deinterlacing, but for any two frames, two fields can be deinterlaced,

doubling the output for the same input bandwidth. This also allows the denoise filter to only filter a frame

once.

The above picture shows that two frames are read in, called current and previous. The two fields of the

next frame are denoised using adjacent fields. The 2nd field of previous can be deinterlaced using current

as the reference, and the 1st field of current can be deinterlaced using previous as reference.

Since we are producing 2 16x4 outputs, and the performance goal is to output 2 pixels per clock, we have

64 clocks to run 2 denoise filters and 2 deinterlacers.

The fields are referred to as 1st and 2nd because either the top or bottom field can be the first in the

sequence depending on a state variable.

2.8.6.2 Statistics Surface Memory Format

The statistics memory page is used to store both STMM and Denoise history. The STMM and Denoise

history are stored in separate areas addressed by a single base address pointer:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 49

The STMM for any pixel pair is addressed by:

 STMM_X = pixelX / 2

 STMM_Y = pixelY

The Denoise History for any 4x4 block is addressed by

 DH_X = Pitch/2 + pixelX/4

 DH_Y = pixelY/4

Where the pixelX/Y comes from the address of the left pixel for STMM and the upper-left pixel for the

Denoise History. The Pitch is from the surface state.

The read and write surfaces for each frame must be separate, since any individual block will not know if

the neighbor blocks have been updated yet. This can be implemented as a ping-pong buffer pair with the

write surface for each frame becoming the read surface for the next.

2.8.6.3 First Frame Special Case

The first frame in the sequence is a special case for both denoise and deinterlace. Only data from the

current frame address is read, the previous frame, clean previous, statistics and control addresses are

ignored. Behavior for each function is as follows:

1. Denoise – The denoise filter needs to use the spatial filter, since there is no previous frame
from which to do a temporal filter.

a. The Denoise Motion History is not read.

b. The blend between the temporal and spatial is forced to 100% spatial.

c. The Denoise Motion History output values are written to 0.

1. BNE – The Block Noise Estimate only uses current frame values and so works normally.

2. Deinterlacer – Only the 1st field of the current frame frame is deinterlaced in this case – the 2nd
of previous does not exist.

a. The spatial deinterlacer is used to produce the output.

b. The STMM input values are not read.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 50

c. The STMM output values are written as a the maximum 255 value so that the next
frame is correctly told that spatial deinterlacing was used in this frame.

3. FMD – variances between the top and bottom of the current field should be output correctly.
Variances that read from the previous field should indicate a maximum difference.

4. Progressive Cadence Reconstruction – the FMD input is not read, so always assume
interlaced.

2.9 Adaptive Video Scaler

The adaptive video scaler consists of a pair of filters. The sharp filter is an 8x8 and the smooth filter is

bilinear. The results of the two filters are alpha blended together using an alpha factor determined

separately from an algorithm that examines the pixel values in the each vector.

There are a total of four different coefficient tables with two in each direction. For both directions is it

possible to use either of the two tables that are assigned to it or use both at once with one table for the Y

and the other table for the U/V. The coefficients are programmable by software and loaded via a new

command streamer instruction. The coefficients are considered to be nonpipelined state, with a full

pipeline flush being required before a new set of coefficients is loaded.

The above diagram shows two pixels (red and green) mapped onto a texture map, with the texel centers

blue. The red/green boxes around the pixels indicate the area where the pixel would choose the same

8x8 footprint for its filter, while the large transparent box indicates the footprint for each pixel.

The u/v addresses for each pixel (in texel space) are as follows:

red pixel: u=3.3, v=3.3 (betau=0.3, betav=0.3)

green pixel: u=4.3, v=4.7 (betau=0.3, betav=0.7)

The integer u/v address of the upper left pixel of the footprint is a function of the pixel u/v address as

follows:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 51

u(UL) = floor(u(pix)) – 3

v(UL) = floor(v(pix)) – 3

When the 8x8 filter is selected, the 8x8 texel block surrounding the pixel sample point is selected. The

blend factors "beta" (horizontal and vertical) are determined by the relative distance between the pixel

center and the nearest 4 texels (2x2). The betas are first truncated to 5 bits (i).

The beta value is used to look up two sets of 8 coefficients, one set of 8 for horizontal (called Kh0..7), and

one set of 8 for vertical (called Kv0..7).

2.9.1 Filtering Operations

There are two separate filters, sharp and smooth, which are blended in an adaptive manner.

2.9.1.1 Sharp

The following formula is used to compute the filtered texture color for the sharp filter:

R0 = T00*Kh0 + T01*Kh1 + T02*Kh2 + T03*Kh3 + T04*Kh4 + T05*Kh5 + T06*Kh6 + T07*Kh7

R1 = T10*Kh0 + T11*Kh1 + T12*Kh2 + T13*Kh3 + T14*Kh4 + T15*Kh5 + T16*Kh6 + T17*Kh7

R2 = T20*Kh0 + T21*Kh1 + T22*Kh2 + T23*Kh3 + T24*Kh4 + T25*Kh5 + T26*Kh6 + T27*Kh7

R3 = T30*Kh0 + T31*Kh1 + T32*Kh2 + T33*Kh3 + T34*Kh4 + T35*Kh5 + T36*Kh6 + T37*Kh7

R4 = T40*Kh0 + T41*Kh1 + T42*Kh2 + T43*Kh3 + T44*Kh4 + T45*Kh5 + T46*Kh6 + T47*Kh7

R5 = T50*Kh0 + T51*Kh1 + T52*Kh2 + T53*Kh3 + T54*Kh4 + T55*Kh5 + T56*Kh6 + T57*Kh7

R6 = T60*Kh0 + T61*Kh1 + T62*Kh2 + T63*Kh3 + T64*Kh4 + T65*Kh5 + T66*Kh6 + T67*Kh7

R7 = T70*Kh0 + T71*Kh1 + T72*Kh2 + T73*Kh3 + T74*Kh4 + T75*Kh5 + T76*Kh6 + T77*Kh7

F’ = R0*Kv0 + R1*Kv1 + R2*Kv2 + R3*Kv3 + R4*Kv4 + R5*Kv5 + R6*Kv6 + R7*Kv7

F_sharp = Clamp F’ to [0.0, 1.0)

where:

 Trc is the texel color in row r ([0..3]) and column c ([0..3]) of the 8x8 array of neighboring texel colors

 F_sharp is the final output color of the sharp filter.

2.9.1.2 Smooth

The following formula is used to compute the filtered texture color for the smooth filter:

F_smooth = (T33 * (1-betaU) + T34 * betaU) * (1-betav) + (T43 * (1-betaU) + T44 * betaU) * betav

2.9.1.3 Adaptive Filtering

The adaptive filter only supports RGB or YUV packed formats. For YUV formats, the alpha value is

determined only by the Y channel (green), with this alpha value being applied to all three channels. For

the RGB formats the alpha value is determined based on an average of all three channels with G having

double the weight as the other channels.

Each horizontal or vertical filter has 8 texels input which feeds into an eight tap filter. On the center two

there is a linear blend using the betaV. Then using the Y channel an adaptive part weight is calculated

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 52

and the two filters are alpha blended. The adaptive part calculated on the Y channel is used on all three

channels. Only the 8 MSBs are used in these calculations.

The adaptive part is done to classify a pixel as prone to ringing or not. This is done by analyzing the 8 Y

samples from the interpolation window (Wy0… Wy7).

2.10 Image Enhancement Filter and Video Signal Analysis

The IEF module takes in the YUV 444 color space with 10 bit components.

The IEF can be configured to operate either detail filtering or smooth filtering. A 3x3 and a 5x5

programmable filter are involved to achieve detail-enhanced or smooth effect.

VSA – Video Signal Analysis – analyzes the local Y environment of each pixel and outputs several values

that describe its nature (smooth, detailed, sharpening). Those values will be used by the IEF to decide

how the filter should be applied at each pixel location.

IEF – Image Enhancement Filter – The operations this filter performs are detail filter, smoothing and

sharpening on the Y component, according to the VSA outputs.

The IEF throughput is 2 pixels per clock.

Block Diagram

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 53

2.10.1 Detail Filter Algorithm

2.10.1.1 VSA for Detail Filter

VSA in IEF aims to analyze the local property of the content and it is achieved with the usage of Sobel

edge detection. For example, below detection kernel can be used to analyze 3x3 neighborhoods.

Statistics from Sobel filtering outputs are taken for setting different weights to the detail added.

EM(x) = |NH9(x) * E_h| + |NH9(x) * E_v| // where the input is 10 bits, EM is 6 bits (CLIP((|NH9(x) * E_h| +

|NH9(x) * E_v|+4) >> 3 , 0 ,63))

If (EM(x) > Strong_Edge_Threshold) local_adjust = Strong_Edge_Weight // local_adjust is 3bits

Else if (EM(x) > Weak_Edge_Threshold) local_adjust = Regular_Weight

Else local_adjust = Non_Edge_Weight

The Strong_Edge_Threshold, Weak_Edge_Threshold, Strong_Edge_Weight, Non_Edge_Weight

and Regular_Weight are the pipelined state variables to be specified by driver.

Strong_Edge_Threshold & Weak_Edge_Threshold are 6-bit length variables.

2.10.1.2 Detail IEF

A programmable 3x3 and a 5x5 filter are provided to extract the detail information of the image. The detail

extracted is the combination of the convolution results from the 3x3 and the 5x5 filter. The amount of

detail added upon each pixel is determined by the weighting obtained from the VSA.

2.10.2 Skin-Tone Tuned IEF

The operation of IEF can be enhanced with the skin tone detection (STD). The STD unit detects the skin-

tone like colors and passes a grade of skin tone color to the IEF. The skin tone operation on the YUV

space, and the detected skin tone score will be recorded as a 5-bit number as per-pixel basis. The IEF

modifies the pixel value by adjusting the delta signal according to the detected skin tone score.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 54

2.10.2.1 Skin Tone Detection

2.10.2.1.1 STD - Detection in the (U,V) sub-space

The STD operates on digital images in the YUV color space. In these spaces, the skin-tone region is

represented by the ellipse in the (U,V) subspace (chroma components), by a trapeze membership

function in the Y direction (luma component) and by a piece-wise linear classifier in the (V,Y) subspace.

The detection in each sub-space outputs a likelihood score (i.e., det_UV, det_Y, and det_VY)

representing how likely a pixel being a skin-tone pixel in that sub-space. Each score is represented with 5

bits, and the final skin-tone detection score SkinToneFactor is taken as the minimum of (det_UV, det_Y,

det_VY).

2.10.3 Video Analytics Functions – Functional Description

2.10.3.1 Convolve

The CONVOLVE instruction performs a convolution on the source matrix, using the specified kernel, and

stores the result in the destination matrix. The source input can either be 8bit UINT or 16bit UINT/SINT.

The floating point coefficient (i.e., each element within mentioned in Sec. 1.3.1) could be scaled up by

before being loaded as the fixed point kernel for the convolve. The final result would need to be scaled

down by the same amount before clamping the result to the fixed point 16 bit format. This scaling is

helpful in getting more precision and hence near to accurate result of the floating point math. The scaling

supported is only in powers of 2, and this could be found as follows:

Assuming all coefficients will be less than the value 8. In case it is greater they would need to be scaled

down such that the max value is lesser than 8 before doing the following calculation. The scale up of the

resultant convolve value then would need to be done in the EUs appropriately. In case all coefficients are

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 55

less than 1/2^7, then coefficients can be upscaled by driver and later the result from the convolve

operation will be down scaled by EU.

If((MAX(ABS(C[i])) <= 8) && (MAX(ABS(C[i])) >= 1/2^7)

Scale = Max_power_of_2(8/MAX(ABS(C[i])))

C[i] = 2^(scale) * C[i]

Where the following are the functions:

MAX – Is the max of all the coefficients

Max_power_of_2 – Finds the Max power of 2 lower or equal to the input value. The Max_power_of_2

output cannot be greater than 512.

CONVOLVE(src, kernel, scale, dest)

Src - 8bit UINT/ 16bit SINT/ 16bit UINT

Kernel - 16bit S3.12

Dest – 16bit SINT

Scale – Range 0 to 10. The final result is shifted by this amount.

Pseudo Code:

// Example for kernel_widthxkernel_height below:

CONVOLVE src, kernel, dest

{

 ((

real tmp = 0;

for (m = 0; m < kernel_width; m++)

{

for (n = 0; n < kernel_height; n++)

{

int ii = i + m – ((kernel_width-1)>>1);

int jj = j + n – ((kernel_height-1)>>1);

if (ii < 0) {

if(clamp) ii = 0;

else ii = -ii - 1; // mirror

}

else if (ii > src.width - 1) {

if(clamp) ii = src.width – 1;

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 56

else ii = 2*src.width - ii - 1; //mirror

}

if (jj < 0) {

if(clamp) jj = 0;

else jj = -jj - 1; // mirror

}

else if (jj > src.height - 1) {

if(clamp) jj = src.height – 1;

else jj = 2*src.height - jj - 1; //mirror

}

// handle matrix sizes smaller than the kernel, use null value in place of src[ii,jj]

if (ii < 0 || ii > src.width - 1 || jj < 0 || jj > src.height - 1)

val = 0;

else

val = src[jj,ii];

//Note: that the driver does the kernel flipping already and hardware does the

following operation:

tmp += val * kernel[n,m];

}

}

tmp = tmp <<1;

tmp = INT(tmp) >> scale

tmp = (tmp + 1)>>1;

dest[i,j] = Clamp(tmp, -2^16, 2^16-1);

))

}

Even though the convolve is suppose to do kernel flipping, the kernel is actually flipped by driver, and the

hardware does not do any kernel flipping and operates using the kernel directly. Also the kernel is always

starting from (0,0) and depending on the kernel width and height the appropriate coefficients are picked

from the kernel coefficient stored.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 57

2.11 Mirror pixel at boundary edges for Media (sample_8x8
messages)

Presently we support only Clamp mode for sample_8x8 messages. This is to extend mirror mode as

supported for 3D messages for sample_8x8 messages. The restriction here would be that the surface

width is in multiples of DWords in native L1 storage format. The following are the surfaces which would

need to be covered here:

1. 32bpp format in Memory and L1 (for AVS only and sample_unorm):

a. 8: R10G10B10A2_UNORM

b. 9: R8G8B8A8_UNORM

c. 13: A8Y8U8V8_UNORM

d. 14: B8G8R8A8_UNORM

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 58

2. 16bpp format in Memory and 16bpp in L1 (for AVS only and sample_unorm):

a. 0: YCRCB_NORMAL

b. 1: YCRCB_SWAPUVY

c. 2: YCRCB_SWAPUV

d. 3: YCRCB_SWAPY

e. 10: R8B8_UNORM (CrCb)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 59

3. 8bpp format in Memory and 16bpp in L1 (for AVS only):

The pixel when read out from L1 would be replicated as what is shown above in the diagram for 16bpp.

a. 4: PLANAR_420_8

b. 11: R8_UNORM (Cr/Cb)

c. 12:Y8_UNORM

4. 64bpp format in Memory and L1 (for AVS only):

15: R16G16B16A16

 This would be similar to the 32bpp except each pixel is 64bpp instead.

5. 8bpp format in Memory and L1 (for VA only):

a. 5: PLANAR_Y8_UNORM

Each cell in the below figure is 8bits.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 60

6. 16bpp format in Memory and L1 (for VA only):

Same as the above except each cell is 16bpp.

a. 7:PLANAR_Y16_UNORM

b. 6 : PLANAR_Y16_SNORM

7. 1bpp format (Boolean) in Memory and 32bpp in L1(for VA only) :

Will not support Mirror on this surface. Clamp will still happen on vertical direction. Clamp on horizontal

direction will not be taken care of in sampler for 1bpp format, but will be done in AVS unit.

a. 16: PLANAR_Y32_UNORM

2.11.1 Restriction when Mirror mode is enabled for Sample_8x8
messages

When Function=AVS, ChromaKey is not supported with Mirror mode. In case ChromaKey needs to be

enabled, then the Address control needs to be Clamp mode only.

2.11.1.1 For AVS

For AVS scaling, the following are the restrictions on the input image size:

Image Width > MAX((19*deltaU_nn + 139*ddu_nn + 7), 32)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 61

Image Height > MAX((19*deltaV_nn + 139*ddv_nn + 7), 32)

The non-normalized input co-ordinate should be in the following range:

-width < (U_nn+2*deltaU_nn+3*ddu_nn) < (2*width – U – 17*deltaU_nn – 136*ddu_nn – 7)

-height < (V_nn+2*deltaV_nn+3*ddv_nn) < (2*height – 17*deltaV_nn – 136*ddv_nn – 7)

Where

U_nn = U_normaized * width

V_nn = V_normaized * height

deltaU_nn = deltaU_normaized * width

deltaV_nn = deltaV_normaized * height

ddU_nn = ddU_normaized * width

ddV_nn = ddV_normaized * height

2.11.1.2 For VA

For VA message (other than AVS scaling mode) the restriction is that the minimum input image size

should be 32x32. The normalized input co-ordinate should not be in the range of -1 to 2 not inclusive.

2.12 State

2.12.1 BINDING_TABLE_STATE

BINDING_TABLE_STATE

Default Value: 0x00000000

The binding table binds surfaces to logical resource indices used by shaders and other compute engine kernels. It is

stored as an array of up to 256 elements, each of which contains one dword as defined here. The start of each

element is spaced one dword apart. The first element of the binding table is aligned to a 32-byte boundary.

DWord Bit Description

0 31:5 Surface State Pointer

Format: SurfaceStateOffset[31:5]

This 32-byte aligned address points to a surface state block. This pointer is relative to the Surface

State Base Address.

4:0 Reserved

Format: MBZ

2.12.2 SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table. Each

surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 62

 texture maps (1D, 2D, 3D, cube) read by the sampling engine

 buffers read by the sampling engine

 constant buffers read by the data cache via the data port

 render targets read/written by the render cache via the data port

 streamed vertex buffer output written by the render cache via the data port

 media surfaces read from the texture cache or render cache via the data port

 media surfaces written to the render cache via the data port

2.12.2.1 SURFACE_STATE for most messages

RENDER_SURFACE_STATE

Exists If: (MessageType != 'Deinterlace') && (MessageType != 'Sample_8x8')

Default

Value:

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000

This is the normal surface state used by all messages that use SURFACE_STATE except deinterlace and

sample_8x8.

DWord Bit Description

0 31:29 Surface Type

Project: All

Format: U3 enumerated type

This field defines the type of the surface.

Value Name Description Project

0h SURFTYPE_1D Defines a 1-dimensional map or array of maps All

1h SURFTYPE_2D Defines a 2-dimensional map or array of maps. All

2h SURFTYPE_3D Defines a 3-dimensional (volumetric) map. All

3h SURFTYPE_CUBE Defines a cube map or array of cube maps. All

4h SURFTYPE_BUFFER Defines an element in a buffer. All

5h SURFTYPE_STRBUF Defines a structured buffer surface. All

6h Reserved All

7h SURFTYPE_NULL Defines a null surface. All

Programming Notes

A null surface is used in instances where an actual surface is not bound. When a write

message is generated to a null surface, no actual surface is written to. When a read message

(including any sampling engine message) is generated to a null surface, the result is all zeros.

Note that a null surface type is allowed to be used with all messages, even if it is not

specificially indicated as supported. All of the remaining fields in surface state are ignored for

null surfaces, with the following exceptions: Width, Height, Depth, LOD, and Render Target

View Extent fields must match the depth buffer’s corresponding state for all render target

surfaces, including null.All sampling engine and data port messages support null surfaces with

the above behavior, even if not mentioned as specifically supported, except for the following:

Data Port Media Block Read/Write messages. The Surface Type of a surface used as a render

target (accessed via the Data Port’s Render Target Write message) must be the same as the

Surface Type of all other render targets and of the depth buffer (defined in

3DSTATE_DEPTH_BUFFER), unless either the depth buffer or render targets are

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 63

RENDER_SURFACE_STATE

SURFTYPE_NULL.

28 Surface Array

Project: All

Format: Enable

This field, if enabled, indicates that the surface is an array.

If this field is enabled, the Surface Type must be SURFTYPE_1D, SURFTYPE_2D, or

SURFTYPE_CUBE. If this field is disabled and Surface Type is SURFTYPE_1D,

SURFTYPE_2D, or SURFTYPE_CUBE, the Depth field must be set to zero.

27 Reserved

Project: All

Format: MBZ

26:18 Surface Format

Project: All

Format: SURFACE_FORMAT

Specifies the format of the surface or element within this surface. Refer to the table in section

1.12.4.1.2 for the formats supported and their encodings.

Programming Notes

YUV (YCRCB) surfaces used as render targets can only be rendered to using

3DPRIM_RECTLIST with even X coordinates on all of its vertices, and the pixel shader cannot

kill pixels. If Number of Multisamples is set to a value other than MULTISAMPLECOUNT_1,

this field cannot be set to the following formats: any format with greater than 64 bits per

element, if Number of Multisamples is MULTISAMPLECOUNT_8, any compressed texture

format (BC*), and any YCRCB* format.

This field cannot be a YUV (YCRCB*) format if the Surface Type is SURFTYPE_BUFFER or

SURFTYPE_STRBUF.

17:16 Surface Vertical Alignment

Format: U2 enumerated type

Description Project

For Sampling Engine Uncompressed and Render Target Surfaces: This field specifies

the vertical alignment requirement for the surface. Refer to the “Memory Data Formats”

chapter for details on how this field changes the layout of the surface in memory. This

field applies to surface formats other than compressed formats. For other surfaces this

field is ignored.

A value of 1 is not supported for formats YCRCB_NORMAL (0x182),

YCRCB_SWAPUVY (0x183), YCRCB_SWAPUV (0x18f), or YCRCB_SWAPY (0x190).

Value Name Description

2h-3h Reserved Reserved

Programming Notes Project

This field is intended to be set to VALIGN_4 if the surface was rendered as a depth

buffer, for a

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 64

RENDER_SURFACE_STATE

 multisampled (4x) render target, or for a multisampled (8x) render target, since these

surfaces support only alignment of 4.

 Use of VALIGN_4 for other surfaces is supported, but uses more memory.

 This field must be set to VALIGN_4 for all tiled Y Render Target surfaces.

Value of 1 is not supported for format YCRCB_NORMAL (0x182),

 YCRCB_SWAPUVY (0x183), YCRCB_SWAPUV (0x18f), YCRCB_SWAPY (0x190)

If Number of Multisamples is not MULTISAMPLECOUNT_1, this field must be set to

VALIGN_4.

Errata Description Project

 VALIGN_4 is not supported for surface format R32G32B32_FLOAT.

15 Surface Horizontal Alignment

Project: All

Format: U2 enumerated type

U2 enumerated type

For Sampling Engine Uncompressed and Render Target Surfaces: This field specifies the

horizontal alignment requirement for the surface. Refer to the “Memory Data Formats” chapter

for details on how this field changes the layout of the surface in memory. This field applies to

surface formats other than compressed formats. For other surfaces, this field is ignored.

Value Name Description Project

0h HALIGN_4 Horizontal alignment factor j = 4 All

1h HALIGN_8 Horizontal alignment factor j = 8 All

Programming Notes

This field is intended to be set to HALIGN_8 only if the surface was rendered as a depth buffer

with Z16 format or a stencil buffer, since these surfaces support only alignment of 8. Use of

HALIGN_8 for other surfaces is supported, but uses more memory.

This field must be set to HALIGN_4 if the Surface Format is BC*.

This field must be set to HALIGN_8 if the Surface Format is FXT1.

14 Tiled Surface

Project: All

Format: U1 enumerated type

This field specifies whether the surface is tiled.

Value Name Description Project

0h FALSE Linear surface All

1h TRUE Tiled surface All

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable,

snooped). Tiled surfaces can only be mapped to Main Memory. The corresponding cache(s)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 65

RENDER_SURFACE_STATE

must be invalidated before a previously accessed surface is accessed again with an altered

state of this bit. If Surface Type is SURFTYPE_BUFFER, this field must be FALSE (because

buffers are supported only in linear memory). If Surface Type is SURFTYPE_NULL, this field

must be TRUE.

13 Tile Walk

Project: All

Format: U2 enumerated type

This field specifies the type of memory tiling (XMajor or YMajor) used to tile this surface. See

Memory Interface Functions for details on memory tiling and restrictions.

Value Name Description Project

0b TILEWALK_XMAJOR X major tiling. All

1b TILEWALK_YMAJOR Y major tiling. All

Programming Notes

Refer to Memory Data Formats for restrictions on TileWalk direction for the various buffer

types. (Of particular interest is the fact that YMAJOR tiling is not supported for display/overlay

buffers). The corresponding caches must be invalidated before a previously accessed surface

is accessed again with an altered state of this bit.This field is ignored when the surface is

linear.

Errata Description Project

 Set Tile Walk to TILEWALK_XMAJOR if Tiled Surface is False.

12 Vertical Line Stride

Project: All

Format: U1 in lines to skip between logically adjacent lines

For 2D non-array surfaces accessed via the Sampling Engine or Data Port: Specifies the

number of lines (0 or 1) to skip between logically adjacent lines and supports interleaved

(field) surfaces as textures.

For other surfaces, Vertical Line Stride must be zero.

Programming Notes

This bit must not be set if the surface format is a compressed type (BCn*).

If this bit is set on a sampling engine surface, the mip mode filter must be set to

MIPFILTER_NONE.

11 Vertical Line Stride Offset

Project: All

Format: U1 in lines of initial offset (when Vertical Line Stride == 1)

For 2D non-array Surfaces accessed via the Sampling Engine or Data Port: Specifies the

offset of the initial line from the beginning of the buffer. Ignored when Vertical Line Stride is 0.

For other surfaces, Vertical Line Stride Offset must be zero.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 66

RENDER_SURFACE_STATE

10 Surface Array Spacing

Project: All

Format: U1 enumerated type

For 1D Array, 2D Array, Cube, and 2D Multisampled Surfaces: This field specifies whether

space is reserved between array slices for additional LODs beyond LOD 0. Refer to the

“Memory Data Formats” chapter for details on how this field changes the QPitch equation used

to determine spacing between array slices in memory. For other surfaces, this field is ignored.

Value Name Description Project

0h ARYSPC_FULL Memory space between array slices is reserved for all possible

LOD’s.

All

1h ARYSPC_LOD0 Memory space is optimized for surfaces which contain only LOD

0.

All

Programming Notes

If Multisampled Surface Storage Format is MSFMT_MSS and Number of Multisamples is not

MULTISAMPLECOUNT_1, this field must be set to ARYSPC_LOD0.

9 Reserved

Project: All

Format: MBZ

8 Render Cache Read Write Mode

Project: All

Format: U1 enumerated type

For Surfaces accessed via the Data Port to Render Cache: This field specifies the way Render

Cache treats a write request. If clear, Render Cache allocates a write-only cache line for a write

miss. If set, Render Cache allocates a read-write cache line for a write miss. For Surfaces

accessed via the Sampling Engine or Data Port to Texture Cache or Data Cache: This field is

reserved and MBZ.

Value Name Description Project

0h Allocating write-only cache for a write miss All

1h Allocating read-write cache for a write miss All

Programming Notes

This field is provided for performance optimization for Render Cache read/write accesses (from

EU’s point of view).

7:6 Media Boundary Pixel Mode

Project: All

Format: U2 enumerated type

For 2D Non-Array Surfaces accessed via the Data Port Media Block Read Message: This field

enables control of which rows are returned on vertical out-of-bounds reads using the Data Port

Media Block Read Message. In the description below, frame mode refers to Vertical Line Stride

= 0, field mode is Vertical Line Stride = 1 in which only the even or odd rows are addressable.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 67

RENDER_SURFACE_STATE

The frame refers to the entire surface, while the field refers only to the even or odd rows within

the surface. For other surfaces this field is reserved and MBZ.

Value Name Description Project

0h NORMAL_MODE the row returned on an out-of-bound access is the

closest row in the frame or field. Rows from the

opposite field are never returned.

All

1h Reserved All

2h PROGRESSIVE_FRAME the row returned on an out-of-bound access is the

closest row in the frame, even if in field mode.

All

3h INTERLACED_FRAME In field mode, the row returned on an out-of-bound

access is the closest row in the field. In frame mode,

even out-of-bound rows return the nearest even row

while odd out-of-bound rows return the nearest odd

row.

All

5:0 Cube Face Enables

Project: All

Format: U6 bit mask of enables

For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine: Bits 5:0 of this field

enable the individual faces of a cube map. Enabling a face indicates that the face is present in

the cube map, while disabling it indicates that that face is represented by the texture map’s

border color. Refer to Memory Data Formats for the correlation between faces and the cube

map memory layout. Note that storage for disabled faces must be provided. For other surfaces

this field is reserved and MBZ.

Value Name

1xxxxxb -X face

x1xxxxb +X face

xx1xxxb -Y face

xxx1xxb +Y face

xxxx1xb -Z face

xxxxx1b +Z face

Programming Notes

When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be

programmed to 111111b (all faces enabled). This field is ignored unless the Surface Type is

SURFTYPE_CUBE.

1 31:0 Surface Base Address

Project: All

Format: GraphicsAddress[31:0]

Specifies the byte-aligned base address of the surface.

Programming Notes

For SURFTYPE_BUFFER render targets, this field specifies the base address of first
element of the surface. The surface is interpreted as a simple array of that single element
type. The address must be naturally-aligned to the element size (e.g., a buffer containing
R32G32B32A32_FLOAT elements must be 16-byte aligned)

For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address of
the first element of the surface, computed in software by adding the surface base address to

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 68

RENDER_SURFACE_STATE

the byte offset of the element in the buffer.

Mipmapped, cube and 3D sampling engine surfaces are stored in a "monolithic" (fixed)
format, and only require a single address for the base texture.

The Base Address for linear render target surfaces and surfaces accessed with the typed
surface read/write data port messages must be element-size aligned, for non-YUV surface
formats, or a multiple of 2 element-sizes for YUV surface formats. Other linear surfaces have
no alignment requirements (byte alignment is sufficient).

Linear depth buffer surface base addresses must be 64-byte aligned. Note that while render
targets (color) can be SURFTYPE_BUFFER, depth buffers cannot.

Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from Surface
Base Address are tiled, Surface Base Address itself is not transformed using the tiling
algorithm.

For tiled surfaces, the actual start of the surface can be offset from the Surface Base
Address by the X Offset and Y Offset fields.

Certain message types used to access surfaces have more stringent alignment
requirements. Please refer to the specific message documentation for additional restrictions.

2
31:30 Reserved

Project: All

Format: MBZ

29:16 Height

Project: All

Format: U14

This field specifies the height of the surface. If the surface is MIP-mapped, this field contains

the height of the base MIP level. For buffers, this field specifies a portion of the buffer size.

Value Name Description

0 SURFTYPE_1D: must be zero

[0,16383] SURFTYPE_2D: height of surface – 1 (y/v dimension)

[0,2047] SURFTYPE_3D: height of surface – 1 (y/v dimension)

[0,16383] SURFTYPE_CUBE: height of surface – 1 (y/v dimension)

[0,16383] SURFTYPE_BUFFER/STRBUF: contains bits [20:7] of the number of entries

in the buffer – 1

Programming Notes

For typed buffer and structured buffer surfaces, the number of entries in the buffer ranges from

1 to 227. For raw buffer surfaces, the number of entries in the buffer is the number of bytes

which can range from 1 to 230. After subtracting one from the number of entries, software must

place the fields of the resulting 27-bit value into the Height, Width, and Depth fields as

indicated, right-justified in each field. Unused upper bits must be set to zero.If Vertical Line

Stride is 1, this field indicates the height of the field, not the height of the frameThe Height of a

render target must be the same as the Height of the other render targets and the depth buffer

(defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is SURFTYPE_1D or

SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 69

RENDER_SURFACE_STATE

If this surface in memory is accessed with Vertical Line Stride set to both 0 and 1, this field

must be an even value when Vertical Line Stride is 0.

If Media Pixel Boundary Mode is not set to NORMAL_MODE, this field must be an even value.

15:14 Reserved

Project: All

Format: MBZ

13:0 Width

Project: All

Format: U14-1

This field specifies the width of the surface. If the surface is MIP-mapped, this field specifies

the width of the base MIP level. The width is specified in units of pixels or texels. For buffers,

this field specifies a portion of the buffer size.

For surfaces accessed with the Media Block Read/Write message, this field is in units of

DWords except when used for IECP and the output surface format is NV12 (R16_UNORM),

this field is in units of Words.

Value Name Description

[0,

16383]

 SURFTYPE_1D: width of surface – 1 (x/u dimension)

[0,

16383]

 SURFTYPE_2D: width of surface – 1 (x/u dimension)

[0, 2047] SURFTYPE_3D: width of surface – 1 (x/u dimension)

[0,

16383]

 SURFTYPE_CUBE: width of surface – 1 (x/u dimension)

[0, 127] SURFTYPE_BUFFER/STRBUF: contains bits [6:0] of the number of entries in

the buffer – 1

Programming Notes

For surface types other than SURFTYPE_BUFFER or STRBUF The Width specified by this

field must be less than or equal to the surface pitch (specified in bytes viathe Surface Pitch

field).For cube maps, Width must be set equal to the Height.For MONO8 textures, Width must

be a multiple of 32 texels.The Width of a render target must be the same as the Width of the

other render target(s) and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless

Surface Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0

(non-mip mapped).The Width of a render target with YUV surface format must be a multiple of

2.For SURFTYPE_BUFFER: The low two bits of this field must be 11 if the Surface Format is

RAW (the size of the buffer must be a multiple of 4 bytes).

3 31:21 Depth

Project: All

Format: U11

This field specifies the total number of levels for a volume texture or the number of array

elements allowed to be accessed starting at the Minimum Array Element for arrayed surfaces.

If the volume texture is MIP-mapped, this field specifies the depth of the base MIP level. For

buffers, this field specifies a portion of the buffer size.

Value Name Description

[0,2047] SURFTYPE_1D: number of array elements – 1

[0,2047] SURFTYPE_2D: number of array elements – 1

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 70

RENDER_SURFACE_STATE

[0,2047] SURFTYPE_3D: depth of surface – 1 (z/r dimension)

[0,2047] SURFTYPE_CUBE: number of array elements – 1 [see programming notes for

range]

[0,1023] SURFTYPE_BUFFER: contains bits [30:21] of the number of entries in the

buffer – 1 for Surface Format RAW.

[0,127] SURFTYPE_BUFFER: Contains bits [27:21] of the number of entries in the

buffer – 1 for other surface formats.

[0,63] SURFTYPE_STRBUF: contains bits [26:21] of the number of entries in the

buffer – 1

Programming Notes

The Depth of a render target must be the same as the Depth of the other render target(s) and

of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).For SURFTYPE_CUBE:For

Sampling Engine Surfaces, the range of this field is [0,340], indicating the number of cube

array elements (equal to the number of underlying 2D array elements divided by 6). For other

surfaces, this field must be zero.For SURFTYPE_BUFFER: The range of this field is [0,63]

unless the Surface Format is RAW and Surface Ptich is 1 byte.

Errata Description Project

 Errata: For SURFTYPE_CUBE sampling engine surfaces, the range of this field

is limited to [0,85].

 Errata: If Surface Array is enabled, and Depth is between 1024 and 2047, an

incorrect array slice may be accessed if the requested array index in the

message is greater than or equal to 4096.

20:18 Reserved

Format: MBZ

17:0 Surface Pitch

Project: All

Format: U18 pitch in (#Bytes – 1)

This field specifies the surface pitch in (#Bytes - 1).For surfaces of type SURFTYPE_BUFFER

and SURFTYPE_STRBUF, this field indicates the size of the structure.

Value Name Description

[0,2047] For surfaces of type SURFTYPE_BUFFER: representing [1B, 2048B]

[0,2047] For surfaces of type SURFTYPE_STRBUF: representing [1B, 2048B]

[0,262143] For other linear surfaces: representing [1B, 256KB]

[511,262143] For X-tiled surface: representing [512B, 256KB] = [1 tile, 512 tiles]

[127,262143] For Y-tiled surfaces: representing [128B, 256KB] = [1 tile, 2048 tiles]

Programming Notes

For linear render target surfaces and surfaces accessed with the typed data port messages,

the pitch must be a multiple of the element size for non-YUV surface formats. Pitch must be a

multiple of 2 * element size for YUV surface formats. For linear surfaces with Surface Type of

SURFTYPE_STRBUF, the pitch must be a multiple of 4 bytes.For other linear surfaces, the

pitch can be any multiple of bytes.For tiled surfaces, the pitch must be a multiple of the tile

width.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 71

RENDER_SURFACE_STATE

Errata Description Project

 Maximum pitch supported is 128KB for all surfaces

4 31 Reserved

Project: All

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: MBZ

30:29 Render Target Rotation

Project: All

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: U2 enumerated type

For Render Target Surfaces: This field specifies the rotation of this render target surface when

being written to memory.For Other Surfaces:This field is ignored.

Value Name Description Project

0h RTROTATE_0DEG No rotation (0 degrees) All

1h RTROTATE_90DEG Rotate by 90 degrees All

2h Reserved All

3h RTROTATE_270DEG Rotate by 270 degrees All

Programming Notes

Rotation is not supported for render targets of any type other than simple, non-mip-mapped,

non-array 2D surfaces. The surface must be using tiled with X major.Width and Height fields

apply to the dimensions of the surface before rotation.For 90 and 270 degree rotated surfaces,

the Height (rather than the Width) must be less than or equal to the Surface Pitch (specified in

bytes).For 90 and 270 degree rotated surfaces, the actual Height and Width of the surface in

pixels (not the field value which is decremented) must both be even.Rotation is supported only

for surfaces with the following surface formats: B5G6R5_UNORM, B5G6R5_UNORM_SRGB,

R8G8B8[A|X]8_UNORM, R8G8B8[A|X]8_UNORM_SRGB, B8G8R8[A|X]8_UNORM,

B8G8R8[A|X]8_UNORM_SRGB, B10G10R10[A|X]2_UNORM,

B10G10R10A2_UNORM_SRGB, R10G10B10A2_UNORM, R10G10B10A2_UNORM_SRGB,

R16G16B16A16_FLOAT, R16G16B16X16_FLOAT.Rotation is not supported for typed UAV

messages

31:27 Reserved

Project: All

Exists If: [Surface Type] == SURFTYPE_STRBUF

Format: MBZ

28:18 Minimum Array Element

Project: All

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: U11

For Sampling Engine, Render Target, and Typed 1D and 2D Surfaces:This field indicates the

minimum array element that can be accessed as part of this surface. This field is added to the

delivered array index before it is used to address the surface.For Render Target 3D

Surfaces:This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered

to. This field is added to the delivered array index before it is used to address the surface.For

Sampling Engine Cube Surfaces:This field indicates the minimum array element in the

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 72

RENDER_SURFACE_STATE

underlying 2D surface array that can be accessed as part of this surface (the cube array index

is multipled by 6 to compute this value, although this field is not restricted to only multiples of

6). This field is added to the delivered array index before it is used to address the surface.

 For Other Surfaces:This field must be set to zero.

Value Name Description

[0,2047] 1D/2D/cube surfaces

[0,2047] 3D surfaces

Errata Description Project

 If Number of Multisamples is not MULTISAMPLECOUNT_1, this field must be

set to zero if this surface is used with sampling engine messages.

17:7 Render Target View Extent

Project: All

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: U11

For Render Target 3D Surfaces:This field indicates the extent of the accessible ‘R’ coordinates

minus 1 on the LOD currently being rendered to.For Render Target 1D and 2D Surfaces:This

field must be set to the same value as the Depth field.For Other Surfaces:This field is ignored.

Value Name Description

[0,2047] to indicate extent of [1,2048]

6 Multisampled Surface Storage Format

Project: All

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: U1 enumerated type

This field indicates the storage format of the multisampled surface.

Value Name Description Project

0h MSFMT_MSS Multsampled surface was/is rendered as a render

target

All

1h MSFMT_DEPTH_STENCIL Multisampled surface was rendered as a depth or

stencil buffer

All

Programming Notes

All multisampled render target surfaces must have this field set to MSFMT_MSSIF this field is

MSFMT_DEPTH_STENCIL, the only sampling engine messages allowed are “ld2dms”,

“resinfo”, and “sampleinfo”.

This field is ignored if Number of Multisamples is MULTISAMPLECOUNT_1

Errata Description Project

 If the surface’s Number of Multisamples is MULTISAMPLECOUNT_8, Width is

>= 8192 (meaning the actual surface width is >= 8193 pixels), this field must be

set to MSFMT_MSS.

 If the surface’s Number of Multisamples is MULTISAMPLECOUNT_8,

((Depth+1) * (Height+1)) is > 4,194,304, OR if the surface’s Number of

Multisamples is MULTISAMPLECOUNT_4, ((Depth+1) * (Height+1)) is >

8,388,608, this field must be set to MSFMT_DEPTH_STENCIL.This field must

be set to MSFMT_DEPTH_STENCIL if Surface Format is one of the following:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 73

RENDER_SURFACE_STATE

I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, or

R24_UNORM_X8_TYPELESS.

5:3 Number of Multisamples

Project: All

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: U3 enumerated type

This field indicates the number of multisamples on the surface.

Value Name Project

0h MULTISAMPLECOUNT_1 All

1h Reserved All

2h MULTISAMPLECOUNT_4 All

3h MULTISAMPLECOUNT_8 All

4h-7h Reserved All

Programming Notes

If this field is any value other than MULTISAMPLECOUNT_1, the Surface Type must be

SURFTYPE_2D

 This field must be set to MULTISAMPLECOUNT_1 unless the surface is a Sampling Engine

surface or Render Target surface.

 This field must be set to MULTISAMPLECOUNT_1 for SINT MSRTs when all RT channels are

not written

 If this field is any value other than MULTISAMPLECOUNT_1, Surface Min LOD, Mip Count /

LOD, and Resource Min LOD must be set to zero

26:0 Minimum Array Element

Project: All

Exists If: [Surface Type] == SURFTYPE_STRBUF

This field indicates the minimum array element that can be accessed as part of this surface.

This field is added to the delivered array index before it is used to address the surface.

Value Name

[0,226]

2:0 Multisample Position Palette Index

Exists If: [Surface Type] != SURFTYPE_STRBUF

Format: U3

This field indicates the index into the sample position palette that the multisampled surface is

using. This field is only used as a return value for the sampleinfo message, and is otherwise

not used by hardware.

Value Name

[0,7]

5 31:25 X Offset

Project: All

Format: PixelOffset[8:2]

This field specifies the horizontal offset in pixels from the Surface Base Address to the start

(origin) of the surface. This field effectively loosens the alignment restrictions on the origin of

tiled surfaces. Previously, tiled surface origin was (by definition) located at the base address,

and thus needed to satisfy the 4KB base address alignment restriction. Now the origin can be

specified at a finer (4-wide x 2-high pixel) resolution.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 74

RENDER_SURFACE_STATE

Value Name Description

[0,508] in multiples of 4 (low 2 bits missing)

Programming Notes

For linear surfaces, this field must be zero.

 For surfaces accessed with the Data Port Media Block Read/Write message, the pixel size is

assumed to be 32 bits in width.

 For Surface Format with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be zero.

 If Render Target Rotation is set to other than RTROTATE_0DEG, this field must be zero.

 If Surface Type is SURFTYPE_STRBUF, this field must be zero.

 This field must be zero if Surface Format is PLANAR*. For all other surfaces, Xoffset must be

programmed such that (max X of the draw rectangle)+Xoffset < 16K (max surface width)

 For YUV422 surfaces, the pixel offset is in multiples of 2. Pixel offset specified in this case is

PixelOffset[7:1]

24 Reserved

Project: All

Format: MBZ

23:20 Y Offset

Project: All

Format: RowOffset[4:1]

This field specifies the vertical offset in rows from the Surface Base Address to the start of the

surface. (See additional description in the X Offset field)

Value Name Description

[0,30] in multiples of 2 (low bit missing)

Programming Notes

For linear surfaces, this field must be zero. For render targets in which the Render Target

Array Index is not zero, this field must be zero. For Surface Format with other than 8, 16, 32,

64, or 128 bits per pixel, this field must be zero. If Render Target Rotation is set to other than

RTROTATE_0DEG, this field must be zero. For surfaces accessed in field mode (Vertical Line

Stride = 1 or equivalent Media Block Read/Write message override), this field must be set to a

multiple of 4. If Surface Type is SURFTYPE_STRBUF, this field must be zero. This field must

be zero if Surface Format is PLANAR*. For all other surfaces, Yoffset must be programmed

such that (Maximum Yof draw rectangle) + Yoffset < 16K (max surface height)

19:16 Surface Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this surface.

15:14 Reserved

Format: MBZ

13:8 Reserved

Project: All

Format: MBZ

7:4 Surface Min LOD

Project: All

Format: U4 in LOD units

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 75

RENDER_SURFACE_STATE

For Sampling Engine and Typed Surfaces:This field indicates the most detailed LOD that can

be accessed as part of this surface. This field is added to the delivered LOD (sample_l, ld, or

resinfo message types) before it is used to address the surface.For Other Surfaces:This field is

ignored.

Value Name

[0,14]

Programming Notes

This field must be zero if the Surface Format is MONO8

3:0 MIP Count / LOD

Project: All

Format: Sampling Engine and Typed Surfaces: U4 in (LOD units – 1)Render Target Surfaces:

U4 in LOD units

For Sampling Engine and Typed Surfaces:This field indicates the number of MIP levels allowed

to be accessed starting at Surface Min LOD, which must be less than or equal to the number of

MIP levels actually stored in memory for this surface. Force the mip map access to be between

the mipmap specified by the integer bits of the Min LOD and the ceiling of the value specified

here.For Render Target Surfaces:This field defines the MIP level that is currently being

rendered into. This is the absolute MIP level on the surface and is not relative to the Surface

Min LOD field, which is ignored for render target surfaces.For Other Surfaces:This field is

reserved : MBZ

Value Name Description Project

[0,14] Sampling Engine and Typed Surfaces: representing [1,15] MIP levels

[0,14] Render Target Surfaces: representing LOD

0 Other Surfaces

0h Disable All

1h Enable All

Programming Notes

The LOD of a render target must be the same as the LOD of the other render target(s) and of

the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).

For render targets with YUV surface formats, the LOD must be zero.

It is not legal to have more than one 1x1 mipmap. Software must ensure that MIP Count is set

to end on the first 1x1 mipmap (or before).

6

This DW6

appllies only if

Surface

Format is not

PLANAR*

31:30 Reserved: MBZ

Project: All

Exists If: [Surface Format] == PLANAR

Format: MBZ

29:16 X Offset for UV Plane

Exists If: [Surface Format] == PLANAR

Format: U14 Row Offset

This field specifies the horizontal offset in pixels from the Surface Base Address to the start

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 76

RENDER_SURFACE_STATE

(origin) of the interleaved UV plane. This field is only used for PLANAR surface formats.

Programming Notes

This field must indicate an even number of pixels.

15:14 Reserved

Project: All

Exists If: [Surface Format] == PLANAR

Format: MBZ

31:12 MCS Base Address

Project: All

Exists If: ([Surface Format] != 'PLANAR') && ([MCS Enable] == 'Enabled')

Format: GraphicsAddress[31:12]

Specifies the 4kbyte-aligned base address of the MCS surface associated with the MSS

surface specified in other 32 fields.

Programming Notes

The MCS surface must be stored as Tile Y.

The MCS surface shares Height, Width, Depth, Surface Min LOD, MIP Count / LOD, Surface

Object Control State, Surface Array Spacing, and Minimum Array Element with the primary

surface.

31:6 Append Counter Address

Project: All

Exists If: ([Surface Format] != 'PLANAR') && ([MCS Enable] == 'Disabled')

Format: GraphicsAddress[31:6]

Specifies the 64byte-aligned base address of the Append counter associated with this surface

specified in other SURFACE_STATE fields.

11:3 MCS Surface Pitch

Project: All

Exists If: ([Surface Format] != 'PLANAR') && ([MCS Enable] == 'Enabled')

Format: U9-1 pitch in #Tiles

This field specifies the MCS surface pitch in (#Tiles – 1).

Value Name Description

[0,511] representing [1 tile, 512 tiles]

5:2 Reserved

Project: All

Exists If: ([Surface Format] != 'PLANAR') && ([MCS Enable] == 'Disabled')

Format: MBZ

2:1 Reserved

Project: All

Exists If: ([Surface Format] != 'PLANAR') && ([MCS Enable] == 'Enabled')

Format: MBZ

1 Append Counter Enable

Project: All

Exists If: ([Surface Format] != 'PLANAR') && ([MCS Enable] == 'Disabled')

Format: Enable

Enables the use of the Append Counter with this surface. If disabled, all other Append counter

fields are ignored.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 77

RENDER_SURFACE_STATE

13:0 Y Offset for UV Plane

Exists If: [Surface Format] == PLANAR

Format: 14 Row Offset

This field specifies the vertical offset in rows from the Surface Base Address to the start (origin)

of the interleaved UV plane. This field is only used for PLANAR surface formats.

Programming Notes

This field must indicate an even number (bit 0 = 0).

0 MCS Enable

Project: All

Format: Enable

Enables the use of the MCS with this surface. If disabled, all other MCS fields are ignored.

 For Render Target and Sampling Engine Surfaces:If the surface is multisampled (Number of

Multisamples any value other than MULTISAMPLECOUNT_1), this field must be enabled.

 For Other Surfaces:This field and the other MCS fields are ignored.

Programming Notes

When accessing a multisampled surface using the sampling engine, the MCS surface is read

in a separate pass and is considered by hardware to be an independent surface.

 This same bitfield is used when MCS is enabled; also when disabled.

Errata Description Project

 If this field is disabled and the sampling engine ld_mcs message is issued on

this surface, the MCS surface may be accessed. Software must ensure that the

surface is defined to avoid GTT errors. This same bitfield is used when MCS is

enabled; also when disabled. This field must be set to 0 for all SINT MSRTs

when all RT channels are not written

When ld2dms from MCS on a subspan that some of the pixel on the pixel are

not valid, can lead to data corruption.

7 31 Red Clear Color

Format: U1 enumerated type

For Sampling Engine Multisampled Surfaces and Render Targets:Specifies the clear value for

the red channel.For Other Surfaces:This field is ignored.

Value Name Description Project

0 CC_ZERO Clear color value is 0.0, correctly interpreted based on surface format. All

1 CC_ONE Clear color value is 1.0, correctly interpreted based on surface format. All

30 Green Clear Color

Format: U1 enumerated type

For Sampling Engine Multisampled Surfaces and Render Targets:Specifies the clear value for

the green channel.For Other Surfaces:This field is ignored.

Value Name Description Project

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 78

RENDER_SURFACE_STATE

0 CC_ZERO Clear color value is 0.0, correctly interpreted based on surface format. All

1 CC_ONE Clear color value is 1.0, correctly interpreted based on surface format. All

29 Blue Clear Color

Format: U1 enumerated type

For Sampling Engine Multisampled Surfaces and Render Targets:Specifies the clear value for

the blue channel.For Other Surfaces:This field is ignored.

Value Name Description Project

0 CC_ZERO Clear color value is 0.0, correctly interpreted based on surface format. All

1 CC_ONE Clear color value is 1.0, correctly interpreted based on surface format. All

28 Alpha Clear Color

Format: U1 enumerated type

For Sampling Engine Multisampled Surfaces and Render Targets:Specifies the clear value for

the alpha channel.For Other Surfaces:This field is ignored.

Value Name Description Project

0 CC_ZERO Clear color value is 0.0, correctly interpreted based on surface format. All

1 CC_ONE Clear color value is 1.0, correctly interpreted based on surface format. All

15:12 Reserved

Project: All

Format: MBZ

11:0 Resource Min LOD

Project: All

Format: U4.8 in LOD units

For Sampling Engine Surfaces:This field indicates the most detailed LOD that is present in the

resource underlying the surface. Refer to the “LOD Computation Pseudocode” section for the

use of this field.For Other Surfaces:This field is ignored.

Value Name

[0,14]

Programming Notes

This field must be zero if the Surface Format is MONO8

This field must be zero if the ChromaKey Enable is enabled in the associated sampler.

2.12.2.1.1 Surface Formats

The following table is used ONLY when ASTC_ENABLE is set to 0, which indicates the supported surface

formats and the 9-bit encoding for each. Note that some of these formats are used not only by the

Sampling Engine, but also by the Data Port and the Vertex Fetch unit. When ASTC_ENABLE is set to 1,

please refer to SURFACE_STATE table on the surface format value and description. The name for all the

ASTC texture format is ASTC.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 79

SURFACE_FORMAT

Project: All

Size (in bits): 9

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that some of these

formats are used not only by the Sampling Engine, but also by the Data Port and the Vertex Fetch unit.

Value Name
Bits Per Element

(BPE) Description

000h R32G32B32A32_FLOAT 128

001h R32G32B32A32_SINT 128

002h R32G32B32A32_UINT 128

003h R32G32B32A32_UNORM 128

004h R32G32B32A32_SNORM 128

005h R64G64_FLOAT 128

006h R32G32B32X32_FLOAT 128

007h R32G32B32A32_SSCALED 128

008h R32G32B32A32_USCALED 128

020h R32G32B32A32_SFIXED 128

021h R64G64_PASSTHRU 128

040h R32G32B32_FLOAT 96

041h R32G32B32_SINT 96

042h R32G32B32_UINT 96

043h R32G32B32_UNORM 96

044h R32G32B32_SNORM 96

045h R32G32B32_SSCALED 96

046h R32G32B32_USCALED 96

050h R32G32B32_SFIXED 96

080h R16G16B16A16_UNORM 64

081h R16G16B16A16_SNORM 64

082h R16G16B16A16_SINT 64

083h R16G16B16A16_UINT 64

084h R16G16B16A16_FLOAT 64

085h R32G32_FLOAT 64

086h R32G32_SINT 64

087h R32G32_UINT 64

088h R32_FLOAT_X8X24_TYPELESS 64

089h X32_TYPELESS_G8X24_UINT 64

08Ah L32A32_FLOAT 64

08Bh R32G32_UNORM 64

08Ch R32G32_SNORM 64

08Dh R64_FLOAT 64

08Eh R16G16B16X16_UNORM 64

08Fh R16G16B16X16_FLOAT 64

090h A32X32_FLOAT 64

091h L32X32_FLOAT 64

092h I32X32_FLOAT 64

093h R16G16B16A16_SSCALED 64

094h R16G16B16A16_USCALED 64

095h R32G32_SSCALED 64

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 80

SURFACE_FORMAT

096h R32G32_USCALED 64

0A0h R32G32_SFIXED 64

0A1h R64_PASSTHRU 64

0C0h B8G8R8A8_UNORM 32

0C1h B8G8R8A8_UNORM_SRGB 32

0C2h R10G10B10A2_UNORM 32

0C3h R10G10B10A2_UNORM_SRGB 32

0C4h R10G10B10A2_UINT 32

0C5h R10G10B10_SNORM_A2_UNORM 32

0C7h R8G8B8A8_UNORM 32

0C8h R8G8B8A8_UNORM_SRGB 32

0C9h R8G8B8A8_SNORM 32

0CAh R8G8B8A8_SINT 32

0CBh R8G8B8A8_UINT 32

0CCh R16G16_UNORM 32

0CDh R16G16_SNORM 32

0CEh R16G16_SINT 32

0CFh R16G16_UINT 32

0D0h R16G16_FLOAT 32

0D1h B10G10R10A2_UNORM 32

0D2h B10G10R10A2_UNORM_SRGB 32

0D3h R11G11B10_FLOAT 32

0D6h R32_SINT 32

0D7h R32_UINT 32

0D8h R32_FLOAT 32

0D9h R24_UNORM_X8_TYPELESS 32

0DAh X24_TYPELESS_G8_UINT 32

0DDh L32_UNORM 32

0DEh A32_UNORM 32

0DFh L16A16_UNORM 32

0E0h I24X8_UNORM 32

0E1h L24X8_UNORM 32

0E2h A24X8_UNORM 32

0E3h I32_FLOAT 32

0E4h L32_FLOAT 32

0E5h A32_FLOAT 32

0E6h X8B8_UNORM_G8R8_SNORM 32

0E7h A8X8_UNORM_G8R8_SNORM 32

0E8h B8X8_UNORM_G8R8_SNORM 32

0E9h B8G8R8X8_UNORM 32

0EAh B8G8R8X8_UNORM_SRGB 32

0EBh R8G8B8X8_UNORM 32

0ECh R8G8B8X8_UNORM_SRGB 32

0EDh R9G9B9E5_SHAREDEXP 32

0EEh B10G10R10X2_UNORM 32

0F0h L16A16_FLOAT 32

0F1h R32_UNORM 32

0F2h R32_SNORM 32

0F3h R10G10B10X2_USCALED 32

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 81

SURFACE_FORMAT

0F4h R8G8B8A8_SSCALED 32

0F5h R8G8B8A8_USCALED 32

0F6h R16G16_SSCALED 32

0F7h R16G16_USCALED 32

0F8h R32_SSCALED 32

0F9h R32_USCALED 32

100h B5G6R5_UNORM 16

101h B5G6R5_UNORM_SRGB 16

102h B5G5R5A1_UNORM 16

103h B5G5R5A1_UNORM_SRGB 16

104h B4G4R4A4_UNORM 16

105h B4G4R4A4_UNORM_SRGB 16

106h R8G8_UNORM 16

107h R8G8_SNORM 16

108h R8G8_SINT 16

109h R8G8_UINT 16

10Ah R16_UNORM 16

10Bh R16_SNORM 16

10Ch R16_SINT 16

10Dh R16_UINT 16

10Eh R16_FLOAT 16

10Fh A8P8_UNORM_PALETTE0 16

110h A8P8_UNORM_PALETTE1 16

111h I16_UNORM 16

112h L16_UNORM 16

113h A16_UNORM 16

114h L8A8_UNORM 16

115h I16_FLOAT 16

116h L16_FLOAT 16

117h A16_FLOAT 16

118h L8A8_UNORM_SRGB 16

119h R5G5_SNORM_B6_UNORM 16

11Ah B5G5R5X1_UNORM 16

11Bh B5G5R5X1_UNORM_SRGB 16

11Ch R8G8_SSCALED 16

11Dh R8G8_USCALED 16

11Eh R16_SSCALED 16

11Fh R16_USCALED 16

122h P8A8_UNORM_PALETTE0 16

123h P8A8_UNORM_PALETTE1 16

124h A1B5G5R5_UNORM 16

125h A4B4G4R4_UNORM 16

126h L8A8_UINT 16

127h L8A8_SINT 16

140h R8_UNORM 8

141h R8_SNORM 8

142h R8_SINT 8

143h R8_UINT 8

144h A8_UNORM 8

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 82

SURFACE_FORMAT

145h I8_UNORM 8

146h L8_UNORM 8

147h P4A4_UNORM_PALETTE0 8

148h A4P4_UNORM_PALETTE0 8

149h R8_SSCALED 8

14Ah R8_USCALED 8

14Bh P8_UNORM_PALETTE0 8

14Ch L8_UNORM_SRGB 8

14Dh P8_UNORM_PALETTE1 8

14Eh P4A4_UNORM_PALETTE1 8

14Fh A4P4_UNORM_PALETTE1 8

150h Y8_UNORM 8

152h L8_UINT 8

153h L8_SINT 8

154h I8_UINT 8

155h I8_SINT 8

180h DXT1_RGB_SRGB 0

181h R1_UNORM 1

182h YCRCB_NORMAL 0

183h YCRCB_SWAPUVY 0

184h P2_UNORM_PALETTE0 2

185h P2_UNORM_PALETTE1 2

186h BC1_UNORM 0 (DXT1)

187h BC2_UNORM 0 (DXT2/3)

188h BC3_UNORM 0 (DXT4/5)

189h BC4_UNORM 0

18Ah BC5_UNORM 0

18Bh BC1_UNORM_SRGB 0 (DXT1_SRGB)

18Ch BC2_UNORM_SRGB 0 (DXT2/3_SRGB)

18Dh BC3_UNORM_SRGB 0 (DXT4/5_SRGB)

18Eh MONO8 1

18Fh YCRCB_SWAPUV 0

190h YCRCB_SWAPY 0

191h DXT1_RGB 0

192h FXT1 0

193h R8G8B8_UNORM 24

194h R8G8B8_SNORM 24

195h R8G8B8_SSCALED 24

196h R8G8B8_USCALED 24

197h R64G64B64A64_FLOAT 256

198h R64G64B64_FLOAT 192

199h BC4_SNORM 0

19Ah BC5_SNORM 0

19Bh R16G16B16_FLOAT 48

19Ch R16G16B16_UNORM 48

19Dh R16G16B16_SNORM 48

19Eh R16G16B16_SSCALED 48

19Fh R16G16B16_USCALED 48

1A1h BC6H_SF16 0

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 83

SURFACE_FORMAT

1A2h BC7_UNORM 0

1A3h BC7_UNORM_SRGB 0

1A4h BC6H_UF16 0

1A5h PLANAR_420_8 0

1A8h R8G8B8_UNORM_SRGB 24

1A9h ETC1_RGB8 0

1AAh ETC2_RGB8 0

1ABh EAC_R11 0

1ACh EAC_RG11 0

1ADh EAC_SIGNED_R11 0

1AEh EAC_SIGNED_RG11 0

1AFh ETC2_SRGB8 0

1B0h R16G16B16_UINT 48

1B1h R16G16B16_SINT 48

1B2h R32_SFIXED 32

1B3h R10G10B10A2_SNORM 32

1B4h R10G10B10A2_USCALED 32

1B5h R10G10B10A2_SSCALED 32

1B6h R10G10B10A2_SINT 32

1B7h B10G10R10A2_SNORM 32

1B8h B10G10R10A2_USCALED 32

1B9h B10G10R10A2_SSCALED 32

1BAh B10G10R10A2_UINT 32

1BBh B10G10R10A2_SINT 32

1BCh R64G64B64A64_PASSTHRU 256

1BDh R64G64B64_PASSTHRU 192

1C0h ETC2_RGB8_PTA 0

1C1h ETC2_SRGB8_PTA 0

1C2h ETC2_EAC_RGBA8 0

1C3h ETC2_EAC_SRGB8_A8 0

1C8h R8G8B8_UINT 24

1C9h R8G8B8_SINT 24

1FFh RAW 0

NOTE: “RAW” is supported only with buffers and structured buffers accessed via the untyped surface

read/write and untyped atomic operation messages, which do not have a column in the table.

Errata : RT format of A8_UNORM, R32_UINT, R32_SINT, R32G32_SINT,R32G32_UINT are not

supported in MSAA 4x/8x mode.

Errata : BC6H_SF16, BC6H_UF16, and BC7_SRGB are not supported and may result in data corruption

if used.

2.12.2.1.2 Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from

the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel to

the corresponding output, thus those formats are not shown in this table.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 84

Some formats are supported only in DX10/OGL Border Color Mode. Those formats have only that mode

indicated. Formats that behave the same way in both Border Color Modes are indicated by that column

being blank.

Surface Format Name
Filterin

g
Shado
w Map

Chrom
a Key

Border
Color
Mode R G B A

Borde
r

Color
Mode R G B A

R32G32B32A32_FLOAT R G B A

R32G32B32A32_SINT R G B A

R32G32B32A32_UINT R G B A

R32G32B32X32_FLOAT R G B 1.0

R32G32B32_FLOAT R G B 1.0

R32G32B32_SINT R G B 1.0

R32G32B32_UINT DX10/O

GL

R G B 1.0

R16G16B16A16_UNORM R G B A

R16G16B16A16_SNORM R G B A

R16G16B16A16_SINT R G B A

R16G16B16A16_UINT R G B A

R16G16B16A16_FLOAT R G B A

R32G32_FLOAT DX10/O

GL

R G 0.0 1.0 DX9 R G 1.0 1.0

R32G32_SINT DX10/O

GL

R G 0.0 1.0

R32G32_UINT DX10/O

GL

R G 0.0 1.0

R32_FLOAT_X8X24_TYPELE

SS

 DX10/O

GL

R 0.0 0.0 1.0

X32_TYPELESS_G8X24_UIN

T

 DX10/O

GL

0.0 G 0.0 1.0

L32A32_FLOAT DX10/O

GL

L L L A

R16G16B16X16_UNORM R G B 1.0

R16G16B16X16_FLOAT R G B 1.0

A32X32_FLOAT 0.0 0.0 0.0 A

L32X32_FLOAT L L L 1.0

I32X32_FLOAT I I I I

B8G8R8A8_UNORM R G B A

B8G8R8A8_UNORM_SRGB R G B A

R10G10B10A2_UNORM R G B A

R10G10B10A2_UNORM_SRG

B

 R G B A

R10G10B10A2_UINT R G B A

R10G10B10_SNORM_A2_UN

ORM

 R G B A

R8G8B8A8_UNORM R G B A

R8G8B8A8_UNORM_SRGB R G B A

R8G8B8A8_SNORM R G B A

R8G8B8A8_SINT R G B A

R8G8B8A8_UINT R G B A

R16G16_UNORM DX10/O

GL

R G 0.0 1.0 DX9 R G 1.0 1.0

R16G16_SNORM DX10/O R G 0.0 1.0 DX9 R G 1.0 1.0

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 85

Surface Format Name
Filterin

g
Shado
w Map

Chrom
a Key

Border
Color
Mode R G B A

Borde
r

Color
Mode R G B A

GL

R16G16_SINT DX10/O

GL

R G 0.0 1.0

R16G16_UINT DX10/O

GL

R G 0.0 1.0

R16G16_FLOAT DX10/O

GL

R G 0.0 1.0 DX9 R G 1.0 1.0

B10G10R10A2_UNORM R G B A

B10G10R10A2_UNORM_SRG

B

 R G B A

R11G11B10_FLOAT R G B 1.0

R32_SINT DX10/O

GL

R 0.0 0.0 1.0

R32_UINT DX10/O

GL

R 0.0 0.0 1.0

R32_FLOAT DX10/O

GL

R 0.0 0.0 1.0 DX9 R 1.0 1.0 1.0

R24_UNORM_X8_TYPELESS DX10/O

GL

R 0.0 0.0 1.0

X24_TYPELESS_G8_UINT DX10/O

GL

0.0 G 0.0 1.0

L16A16_UNORM L L L A

I24X8_UNORM I I I I

L24X8_UNORM L L L 1.0

A24X8_UNORM 0.0 0.0 0.0 A

I32_FLOAT I I I I

L32_FLOAT L L L 1.0

A32_FLOAT 0.0 0.0 0.0 A

B8G8R8X8_UNORM R G B 1.0

B8G8R8X8_UNORM_SRGB R G B 1.0

R8G8B8X8_UNORM R G B 1.0

R8G8B8X8_UNORM_SRGB R G B 1.0

R9G9B9E5_SHAREDEXP R G B 1.0

B10G10R10X2_UNORM R G B 1.0

L16A16_FLOAT L L L A

B5G6R5_UNORM R G B 1.0

B5G6R5_UNORM_SRGB R G B 1.0

B5G5R5A1_UNORM R G B A

B5G5R5A1_UNORM_SRGB R G B A

B4G4R4A4_UNORM R G B A

B4G4R4A4_UNORM_SRGB R G B A

R8G8_UNORM DX10/O

GL

R G 0.0 1.0 DX9 R G 1.0 1.0

R8G8_SNORM DX10/O

GL

R G 0.0 1.0 DX9 R G 1.0 1.0

R8G8_SINT DX10/O

GL

R G 0.0 1.0

R8G8_UINT DX10/O

GL

R G 0.0 1.0

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 86

Surface Format Name
Filterin

g
Shado
w Map

Chrom
a Key

Border
Color
Mode R G B A

Borde
r

Color
Mode R G B A

R16_UNORM DX10/O

GL

R 0.0 0.0 1.0

R16_SNORM DX10/O

GL

R 0.0 0.0 1.0

R16_SINT DX10/O

GL

R 0.0 0.0 1.0

R16_UINT DX10/O

GL

R 0.0 0.0 1.0

R16_FLOAT DX10/O

GL

R 0.0 0.0 1.0 DX9 R 1.0 1.0 1.0

A8P8_UNORM_PALETTE0 R G B A

A8P8_UNORM_PALETTE1 R G B A

I16_UNORM I I I I

L16_UNORM L L L 1.0

A16_UNORM 0.0 0.0 0.0 A

L8A8_UNORM L L L A

I16_FLOAT I I I I

L16_FLOAT L L L 1.0

A16_FLOAT 0.0 0.0 0.0 A

L8A8_UNORM_SRGB L L L A

R5G5_SNORM_B6_UNORM R G B 1.0

P8A8_UNORM_PALETTE0 R G B A

P8A8_UNORM_PALETTE1 R G B A

R8_UNORM DX10/O

GL

R 0.0 0.0 1.0

R8_SNORM DX10/O

GL

R 0.0 0.0 1.0

R8_SINT DX10/O

GL

R 0.0 0.0 1.0

R8_UINT DX10/O

GL

R 0.0 0.0 1.0

A8_UNORM 0.0 0.0 0.0 A

I8_UNORM I I I I

L8_UNORM L L L 1.0

P4A4_UNORM_PALETTE0 R G B A

A4P4_UNORM_PALETTE0 R G B A

P8_UNORM_PALETTE0 R G B A

L8_UNORM_SRGB L L L 1.0

P8_UNORM_PALETTE1 R G B A

P4A4_UNORM_PALETTE1 R G B A

A4P4_UNORM_PALETTE1 R G B A

DXT1_RGB_SRGB R G B 1.0

R1_UNORM R 0.0 0.0 1.0

YCRCB_NORMAL Cr Y Cb 1.0

YCRCB_SWAPUVY Cr Y Cb 1.0

P2_UNORM_PALETTE0 R G B A

P2_UNORM_PALETTE1 R G B A

BC1_UNORM R G B A

BC2_UNORM R G B A

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 87

Surface Format Name
Filterin

g
Shado
w Map

Chrom
a Key

Border
Color
Mode R G B A

Borde
r

Color
Mode R G B A

BC3_UNORM R G B A

BC4_UNORM DX10/O

GL

R 0.0 0.0 1.0

BC5_UNORM DX10/O

GL

R G 0.0 1.0

BC1_UNORM_SRGB R G B A

BC2_UNORM_SRGB R G B A

BC3_UNORM_SRGB R G B A

MONO8 N/

A

N/

A

N/

A

N/

A

YCRCB_SWAPUV Cr Y Cb 1.0

YCRCB_SWAPY Cr Y Cb 1.0

DXT1_RGB R G B 1.0

FXT1 R G B A

BC4_SNORM DX10/O

GL

R 0.0 0.0 1.0

BC5_SNORM DX10/O

GL

R G 0.0 1.0

R16G16B16_FLOAT R G B 1.0

BC6H_SF16 R G B 1.0

BC7_UNORM R G B A

BC7_UNORM_SRGB R G B A

BC6H_UF16 R G B 1.0

2.12.2.2 SURFACE_STATE for deinterlace, sample_8x8, and VME

MEDIA_SURFACE_STATE

Exists If: (MessageType == 'Deinterlace') || (MessageType == 'Sample_8x8')

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

This is the SURFACE_STATE used by only deinterlace, sample_8x8, and VME messages.

DWord Bit Description

0 31:0 Surface Base Address

Format: GraphicsAddress[31:0]

Specifies the byte-aligned base address of the surface

Programming Notes

For SURFTYPE_BUFFER render targets, this field specifies the base address of first element of the

surface. The surface is interpreted as a simple array of that single element type. The address must be

naturally-aligned to the element size (e.g., a buffer containing R32G32B32A32_FLOAT elements must

be 16-byte aligned).For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base

address of the first element of the surface, computed in software by adding the surface base address

to the byte offset of the element in the buffer. Mipmapped, cube and 3D sampling engine surfaces are

stored in a “monolithic” (fixed) format, and only require a single address for the base texture.Linear

render target surface base addresses must be element-size aligned, for non-YUV surface formats, or a

multiple of 2 element-sizes for YUV surface formats. Other linear surfaces have no alignment

requirements (byte alignment is sufficient.)Linear depth buffer surface base addresses must be 64-byte

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 88

MEDIA_SURFACE_STATE

aligned. Note that while render targets (color) can be SURFTYPE_BUFFER, depth buffers

cannot.Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from Surface

Base Address are tiled, Surface Base Address itself is not transformed using the tiling algorithm.Tiled

surface base addresses must be 4KB-aligned. Note that only the offsets from Surface Base Address

are tiled, Surface Base Address itself is not transformed using the tiling algorithm.For tiled surfaces,

the actual start of the surface can be offset from the Surface Base Address by the X Offset and Y

Offset fields.Certain message types used to access surfaces have more stringent alignment

requirements. Please refer to the specific message documentation for additional restrictions.

1 31:18 Height

Format: U14

This field specifies the height of the surface in units of pixels. For PLANAR surface formats, this field

indicates the height of the Y (luma) plane.

Value Name Description

[0,16383] representing heights [1,16384]

Programming Notes

Height (field value + 1) must be a multiple of 2 for PLANAR_420 surfaces.If Vertical Line Stride is 1,

this field indicates the height of the field, not the height of the frame.

17:4 Width

Format: U14

This field specifies the width of the surface in units of pixels. For PLANAR surface formats, this field

indicates the width of the Y (luma) plane.

Value Name Description

[0,16383] representing widths [1,16384]

Programming Notes

 The Width specified by this field multiplied by the pixel size in bytes must be less than or equal to
the surface pitch (specified in bytes via the Surface Pitch field).

 Width (field value + 1) must be a multiple of 2 for PLANAR_420, PLANAR_422, and all YCRCB_*
and PLANAR_Y16_UNORM surfaces, and must be a multiple of 4 for PLANAR_411 and
PLANAR_Y8_UNORM surfaces.

 For deinterlace messages, the Width (field value + 1) must be a multiple of 8.

3:2 Picture Structure

Specifies the encoding of the current picture.

Value Name

00b Frame Picture

01b Top Field Picture

10b Bottom Field Picture

11b Invalid, not allowed

1:0 Cr(V)/Cb(U) Pixel Offset V Direction

Format: U0.2

Specifies the distance to the U/V values with respect to the even numbered Y channels in the V

direction

Programming Notes

This field is ignored for all formats except PLANAR_420_8

2 31:28 Surface Format

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 89

MEDIA_SURFACE_STATE

Specifies the format of the surface. All of the Y and G channels will use table 0 and all of the Cr/Cb/R/B

channels will use table 1

Value Name Description

0 YCRCB_NORMAL

1 YCRCB_SWAPUVY

2 YCRCB_SWAPUV

3 YCRCB_SWAPY

4 PLANAR_420_8

5 PLANAR_411_8 Deinterlace only

6 PLANAR_422_8 Deinterlace only

7 STMM_DN_STATISTICS Deinterlace only

8 R10G10B10A2_UNORM Sample_8x8 only

9 R8G8B8A8_UNORM Sample_8x8 only

10 R8B8_UNORM (CrCb) Sample_8x8 only

11 R8_UNORM (Cr/Cb) Sample_8x8 only

12 Y8_UNORM

15 Reserved

27 Interleave Chroma

Format: Enable

This field indicates that the chroma fields are interleaved in a single plane rather than stored as two

separate planes. This field is only used for PLANAR surface formats.

26 Reserved

Format: MBZ

25:22 Surface Object Control State (MEMORY_OBJECT_CONTROL_STATE)

This 4-bit field is used in various state commands and indirect state objects to define LLC cacheability

including graphics data type for memory objects.

21 Reserved

Format: MBZ

20:3 Surface Pitch

Format: U18-1 pitch in Bytes

This field specifies the surface pitch in (#Bytes - 1).

Value Name Description

[0,2047] For surfaces of type SURFTYPE_BUFFER: representing [1B, 2048B]

[0,2047] For surfaces of type SURFTYPE_STRBUF: representing [1B, 2048B]

[0,524287] For other linear surfaces: representing [1B, 256KB]

[511, 131071] For X-tiled surface: representing [512B, 256KB] = [1 tile, 512 tiles]

[127, 131071] For Y-tiled surfaces: representing [128B, 256KB] = [1 tile, 2048 tiles]

Programming Notes

For tiled surfaces, the pitch must be a multiple of the tile widthIf Half Pitch for Chroma is set, this field

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 90

MEDIA_SURFACE_STATE

must be a multiple of two tile widths for tiled surfaces, or a multiple of 2 bytes for linear surfaces.The

Surface Pitches of current picture and reference picture should be declared as the identical type in VDI

mode with identical Height, Width and Format.

2 Half Pitch for Chroma

Format: Enable

This field indicates that the chroma plane(s) will use a pitch equal to half the value specified in the

Surface Pitch field. This field is only used for PLANAR surface formats.

1:0 Tile Mode

Format: U2 enumerated type

This field specifies the type of memory tiling (Linear, WMajor, XMajor, or YMajor) employed to tile this

surface. See Memory Interface Functions for details on memory tiling and restrictions.

Value Name Description Project

0h TILEMODE_LINEAR Linear mode (no tiling) All

1h Reserved Reserved All

2h TILEMODE_XMAJOR X major tiling All

3h TILEMODE_YMAJOR Y major tiling All

Programming Notes

 Refer to Memory Data Formats for restrictions on TileMode direction for the various buffer types.

(Of particular interest is the fact that YMAJOR tiling is not supported for display/overlay buffers).

 The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this field.

 Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable,
snooped). Tiled (X/Y/W) surfaces can only be mapped to Main Memory.

3 31:30 Reserved

Project: All

Format: MBZ

29:16 X Offset for U(Cb)

Format: U14 Pixel Offset

For Planar surfaces this field specifies the horizontal offset in pixels from the Surface Base Address to

the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. For

non planar surfaces this field specifies the horizontal offset in pixels from the Surface Base Address to

the start (origin) of the surface

Programming Notes

For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of

pixels.

15 Reserved

Format: MBZ

14:0 Y Offset for U(Cb)

Format: U15 Row Offset

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 91

MEDIA_SURFACE_STATE

For Planar surfaces this field specifies the vertical offset in rows from the Surface Base Address to the

start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. For non

planar surfaces this field specifies the vertical offset in pixels from the Surface Base Address to the

start (origin) of the surface

Programming Notes Project

This field must indicate an even number (bit 0 = 0).

4 31:30 Reserved

Project: All

Format: MBZ

29:16 X Offset for V(Cr)

Format: U14 Pixel Offset

Programming Notes

For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of

pixels.

15 Reserved

Project: All

Format: MBZ

14:0 Y Offset for V(Cr)

Format: U15 Row Offset

This field specifies the veritical offset in rows from the Surface Base Address to the start (origin) of the

V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma disabled.

Value Name

0,16380

Programming Notes Project

This field must indicate an even number (bit 0 = 0).

5 31:30 Reserved

Project:

Format: MBZ

29:7 Reserved

Format: MBZ

6:0 Reserved

Format: MBZ

2.12.3 SAMPLER_STATE

SAMPLER_STATE has different formats, depending on the message type used:

 For , the sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as
detailed in the corresponding sections.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 92

 For The Min LOD and Max LOD fields need range increased from [0.0,13.0] to [0.0,14.0] and
fractional bits increased from 6 to 8. This requires a few fields to be moved as indicated in the text.

2.12.3.1 Sampler_State for Most Messages

SAMPLER_STATE

Exists If: (MessageType != 'Deinterlace') && (MessageType != 'Sample_8x8')

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000

This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and

deinterlace. The sampler state is stored as an array of up to 16 elements, each of which contains the dwords

described here. The start of each element is spaced 4 dwords apart. The first element of the sampler state array is

aligned to a 32-byte boundary.

DWord Bit Description

0 31 Sampler Disable

Project: All

Format: Disable

This field allows the sampler to be disabled. If disabled, all output channels will return 0.

30 Reserved

Project: All

Format: MBZ

29 Texture Border Color Mode

Project: All

Format: U1 enumerated type

For some surface formats, the 32 bit border color is decoded differently based on the border color

mode. In addition, the default value of channels not included in the surface may be affected by this

field. Refer to the “Sampler Output Channel Mapping” table for the values of these channels, and for

surface formats that may only support one of these modes. Also refer to the definition of

SAMPLER_BORDER_COLOR_STATE for more details on the behavior of the two modes defined by

this field.

Value Name Description Project

0h DX10/OGL DX10/OGL mode for interpreting the border color All

1h DX9 DX9 and earlier mode for interpreting the border color All

Programming Notes

If this bit changes for a given map with surface format R8G8_SNORM or R16_FLOAT, there must be

two different SURFACE_STATE pointers for Texture Border Color Mode = 0 and 1. This is done to

prevent an aliasing problem in the L1 cache with the default value for the missing channels changing.

Alternately there could be a flush every time this changes.

This field must be set to DX9 mode when used with surfaces that have Surface Format P4A4_UNORM

or A4P4_UNORM.

This field must be set to DX10/OGL mode when used with surfaces that have Surface Format

YCRCB_SWAPUV or YCRCB_SWAPY.

This field must be set to DX10/OGL mode if Surface Format for the associated surface is UINT OR

SINT.

This field must be set to DX10/OGL mode if REDUCTION_MINIMUM or REDUCTION_MAXIMUM or

message type is sample_min or sample_max.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 93

SAMPLER_STATE

This field must be set to DX10/OGL mode if either Min or Mag Mode Filter is set to

MAPFILTER_FLEXIBLE.

28 LOD PreClamp Enable

Format: U1 enumerated type

When enabled, the computed LOD is clamped to [max,min] mip level before the mag-vs-min

determination is performed. This is how the OpenGL API currently performs min/mag determination,

and therefore it is expected that an OpenGL driver would need to set this bit.

Value Name Description

1h OGL OGL Mode (LOD PreClamp enabled)

27 Reserved

Format: MBZ

26:22 Base Mip Level

Format: U4.1

Range: [0.0, 14.0]

Specifies which mip level is considered the “base” level when determining mag-vs-min filter and

selecting the “base” mip level.

21:20 Mip Mode Filter

Project: All

Format: U2 enumerated type

This field determines if and how mip map levels are chosen and/or combined when texture filtering.

Value Name Description Project

0h MIPFILTER_NONE Disable mip mapping – force use of the mipmap level

corresponding to Min LOD.

All

1h MIPFILTER_NEAREST Nearest, Select the nearest mip map All

2h Reserved All

3h MIPFILTER_LINEAR Linearly interpolate between nearest mip maps (combined with

linear min/mag filters this is analogous to “Trilinear” filtering).

All

Programming Notes

MIPFILTER_LINEAR is not supported for surface formats that do not support “Sampling Engine

Filtering” as indicated in the Surface Formats table unless using the sample_c message type or

minimum/maximum operation.

19:17 Mag Mode Filter

Project: All

Format: U2 enumerated type

This field determines how texels are sampled/filtered when a texture is being “magnified” (enlarged).

For volume maps, this filter mode selection also applies to the 3rd (inter-layer) dimension.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 94

SAMPLER_STATE

Value Name Description Project

0h MAPFILTER_NEAREST Sample the nearest texel All

1h MAPFILTER_LINEAR Bilinearly filter the 4 nearest texels All

2h MAPFILTER_ANISOTROPIC Perform an “anisotropic” filter on the chosen mip level All

4h-5h Reserved All

6h MAPFILTER_MONO Perform a monochrome convolution filter All

7h Reserved All

Programming Notes

Only MAPFILTER_NEAREST and MAPFILTER_LINEAR are supported for surfaces of type

SURFTYPE_3D.

Only MAPFILTER_NEAREST is supported for surface formats that do not support “Sampling Engine

Filtering” as indicated in the Surface Formats table unless using the sample_c message type or

minimum/maximum operation.

MAPFILTER_MONO: Only CLAMP_BORDER texture addressing mode is supported. . Both Mag

Mode Filter and Min Mode Filter must be programmed to MAPFILTER_MONO. Mip Mode Filter must

be MIPFILTER_NONE. Only valid on surfaces with Surface Format MONO8 and with Surface Type

SURFTYPE_2D.

MAPFILTER_FLEXIBLE: The Surface Type of the surface being sampled must be SURFTYPE_2D.

MAPFILTER_ANISOTROPIC may cause artifacts at cube edges if enabled for cube maps with the

TEXCOORDMODE_CUBE addressing mode.

MAPFILTER_ANISOTROPIC will be overridden to MAPFILTER_LINEAR when using a sample_l or

sample_l_c message type or when Force LOD to Zero is set in the message header.

Errata Description Project

 MAPFILTER_ANISOTROPIC may have data corruption when sampled from surface

with BC6H_UF16 or BC6H_SF16

16:14 Min Mode Filter

Project: All

Format: U2 enumerated type

This field determines how texels are sampled/filtered when a texture is being “minified” (shrunk). For

volume maps, this filter mode selection also applies to the 3rd (inter-layer) dimension.See Mag Mode

Filter

13:1 Texture LOD Bias

Project: All

Format: S4.8 2’s complement

Range: [-16.0, 16.0)

This field specifies the signed bias value added to the calculated texture map LOD prior to min-vs-mag

determination and mip-level clamping. Assuming mipmapping is enabled, a positive LOD bias will

result in a somewhat blurrier image (using less-detailed mip levels) and possibly higher performance,

while a negative bias will result in a somewhat crisper image (using more-detailed mip levels) and may

lower performance.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 95

SAMPLER_STATE

Programming Notes

There is no requirement or need to offset the LOD Bias in order to produce a correct LOD for texture

filtering (as was required for correct bilinear and anisotropic filtering in some legacy devices).

0 Anisotropic Algorithm

Project: All

Format: U1 enumerated type

Controls which algorithm is used for anisotropic filtering. Generally, the EWA approximation algorithm

results in higher image quality than the legacy algorithm.

Value Name Description Project

0h LEGACY Use the legacy algorithm for anisotropic filtering All

1h EWA Approximation Use the new EWA approximation algorithm for anisotropic filtering All

1 31:20 Min LOD

Project: All

Format: U4.8 in LOD units

Range: [0.0, 14.0], where the upper limit is also bounded by the Max LOD.

This field specifies the minimum value used to clamp the computed LOD after LOD bias is applied.

Note that the minification-vs.-magnification status is determined after LOD bias and before this

maximum (resolution) mip clamping is applied.The integer bits of this field are used to control the

“maximum” (highest resolution) mipmap level that may be accessed (where LOD 0 is the highest

resolution map). The fractional bits of this value effectively clamp the inter-level trilinear blend factor

when trilinear filtering is in use.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD will always be

Min LOD.

This field must be zero if the Min or Mag Mode Filter is set to MAPFILTER_MONO

19:8 Max LOD

Project: All

Format: U4.8 in LOD units

Range: [0.0, 14.0]

This field specifies the maximum value used to clamp the computed LOD after LOD bias is applied.

Note that the minification-vs.-magnification status is determined after LOD bias and before this

minimum (resolution) mip clamping is applied.The integer bits of this field are used to control the

“minimum” (lowest resolution) mipmap level that may be accessed.The fractional bits of this value

effectively clamp the inter-level trilinear blend factor when trilinear filtering is in use.Force the mip map

access to be between the mipmap specified by the integer bits of the Min LOD and the ceiling of the

value specified here.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 96

SAMPLER_STATE

7:4 Reserved

Format: MBZ

3:1 Shadow Function

Project: All

Format: U3 enumerated type

This field is used for shadow mapping support via the sample_c message type, and specifies the

specific comparison operation to be used. The comparison is between the texture sample red channel

(except for alpha-only formats which use the alpha channel), and the “ref” value provided in the input

message.

Value Name Project

0h PREFILTEROP_ALWAYS All

1h PREFILTEROP_NEVER All

2h PREFILTEROP_LESS All

3h PREFILTEROP_EQUAL All

4h PREFILTEROP_LEQUAL All

5h PREFILTEROP_GREATER All

6h PREFILTEROP_NOTEQUAL All

7h PREFILTEROP_GEQUAL All

0 Cube Surface Control Mode

Project: All

Format: U1 enumerated type

When sampling from a SURFTYPE_CUBE surface, this field controls whether the TC* Address Control

Mode fields are interpreted as programmed or overridden to TEXCOORDMODE_CUBE.

Value Name Project

0h CUBECTRLMODE_PROGRAMMED All

1h CUBECTRLMODE_OVERRIDE All

Programming Notes

This field must be set to CUBECTRLMODE_PROGRAMMED

2 31:5 Border Color Pointer

Format: DynamicStateOffset[31:5]

Description Project

This field specifies the pointer to SAMPLER_BORDER_COLOR_STATE, which contains the

“border” color to be used when accessing texels not contained within the texture map.

This pointer is relative to the Dynamic State Base Address.

Field definition if Flexible Filter Mode = FLEX_NONSEP:

Errata Description Project

 In order to ensure correct data sampling, it must be ensured that the bits of this field with

three LSBs of zero appended do not match the offset (without base address added) of

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 97

SAMPLER_STATE

any instance of BINDING_TABLE_STATE (includes each 32-bit entry) used by the

sampling engine between texture cache invalidations.

4:0 Reserved

Format: MBZ

3 31:26 Reserved

Format: MBZ

25 ChromaKey EnableFormat: Enable

This field enables the chroma key function.

Programming Notes

Supported only on a specific subset of surface formats. See section “Surface Formats” for supported

formats.This field must be disabled if min or mag filter is MAPFILTER_MONO or

MAPFILTER_ANISOTROPIC.This field must be disabled if used with a surface of type

SURFTYPE_3D.

24:23 ChromaKey Index

Format: U2

This field specifies the index of the ChromaKey Table entry associated with this Sampler. This field is a

“don’t care” unless ChromaKey Enable is ENABLED.

Value Name

[0,3]

22 ChromaKey Mode

Format: U1 Enumerated Type

This field specifies the behavior of the device in the event of a ChromaKey match. This field is ignored

if ChromaKey is disabled.KEYFILTER_KILL_ON_ANY_MATCH:In this mode, if any contributing texel

matches the chroma key, the corresponding pixel mask bit for that pixel is cleared. The result of this

operation is observable only if the Killed Pixel Mask Return flag is set on the input message.

KEYFILTER_REPLACE_BLACK:In this mode, each texel that matches the chroma key is replaced with

(0,0,0,0) (black with alpha=0) prior to filtering. For YCrCb surface formats, the black value is A=0,

R(Cr)=0x80, G(Y)=0x10, B(Cb)=0x80. This will tend to darken/fade edges of keyed regions. Note that

the pixel pipeline must be programmed to use the resulting filtered texel value to gain the intended

effect, e.g., handle the case of a totally keyed-out region (filtered texel alpha==0) through use of alpha

test, etc.

Value Name Project

0h KEYFILTER_KILL_ON_ANY_MATCH All

1h KEYFILTER_REPLACE_BLACK All

21:19 Maximum Anisotropy

Project: All

Format: U3 enumerated type

This field clamps the maximum value of the anisotropy ratio used by the MAPFILTER_ANISOTROPIC

filter (Min or Mag Mode Filter).

Value Name Description Project

0h ANISORATIO_2 At most a 2:1 aspect ratio filter is used All

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 98

SAMPLER_STATE

1h ANISORATIO_4 At most a 4:1 aspect ratio filter is used All

2h ANISORATIO_6 At most a 6:1 aspect ratio filter is used All

3h ANISORATIO_8 At most a 8:1 aspect ratio filter is used All

4h ANISORATIO_10 At most a 10:1 aspect ratio filter is used All

5h ANISORATIO_12 At most a 12:1 aspect ratio filter is used All

6h ANISORATIO_14 At most a 14:1 aspect ratio filter is used All

7h ANISORATIO_16 At most a 16:1 aspect ratio filter is used All

18:13 Address Rounding Enable

Project: All

Format: 6-bit mask of enables

Controls whether the U/V/R texture address is rounded or truncated before being used to select texels

to sample. Each bit provides independent control of rounding on one texture address dimension

(U/V/R) in either mag or min filter mode.

Value Name

1xxxxxb U address mag filter

x1xxxxb U address min filter

xx1xxxb V address mag filter

xxx1xxb V address min filter

xxxx1xb R address mag filter

xxxxx1b R address min filter

Programming Notes Project

Hardware will force rounding enable to 0 when message is gather4, gather4_po, gather4_c,

or gather4_po_c.

12:11 Trilinear Filter Quality

Project: All

Format: U2 enumerated type

Selects the quality level for the trilinear filter.

Value Name Description Project

0 TRIQUAL_FULL Full Quality. Both mip maps are sampled under all circumstances. All

2 TRIQUAL_MED Medium Quality. If the contribution of one mip map is less than 25%,

only the other mip map contributes.

All

3 TRIQUAL_LOW Low Quality. If the contribution of one mip map is less than 37.5%, only

the other mip map contributes.

All

10 Non-normalized Coordinate Enable

Project: All

Format: Enable

This field, if enabled, specifies that the input coordinates (U/V/R) are in non-normalized space, where

each integer increment is one texel on LOD 0. If disabled, coordinates are normalized, where the range

0 to 1 spans the entire surface.

Programming Notes

The following state must be set as indicated if this field is enabled:

 TCX/Y/Z Address Control Mode must be TEXCOORDMODE_CLAMP,
TEXCOORDMODE_HALF_BORDER, or TEXCOORDMODE_CLAMP_BORDER.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 99

SAMPLER_STATE

 Surface Type must be SURFTYPE_2D or SURFTYPE_3D.

 Mag Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR.

 Min Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR.

 Mip Mode Filter must be MIPFILTER_NONE.

 Min LOD must be 0.

 Max LOD must be 0.

 MIP Count must be 0.

 Surface Min LOD must be 0.

 Texture LOD Bias must be 0.

9 Reserved

Format: MBZ

8:6 TCX Address Control Mode

Project: All

Format: U3 enumerated type

Controls how the 1st (TCX, aka U) component of input texture coordinates are mapped to texture map

addresses – specifically, how coordinates “outside” the texture are handled (wrap/clamp/mirror). The

setting of this field is subject to being overridden by the Cube Surface Control Mode field when

sampling from a SURFTYPE_CUBE surface.

Value Name Description Project

0h TEXCOORDMODE_WRAP Map is repeated in the U direction All

1h TEXCOORDMODE_MIRROR Map is mirrored in the U direction All

2h TEXCOORDMODE_CLAMP Map is clamped to the edges of the accessed

map

All

3h TEXCOORDMODE_CUBE For cube-mapping, filtering in edges access

adjacent map faces

All

4h TEXCOORDMODE_CLAMP_BORDER Map is infinitely extended with the border color All

5h TEXCOORDMODE_MIRROR_ONCE Map is mirrored once about origin, then clamped All

7h Reserved All

Programming Notes Project

When using cube map texture coordinates, only TEXCOORDMODE_CLAMP and

TEXCOORDMODE_CUBE settings are valid, and each TC component must have the same

Address Control mode.

When TEXCOORDMODE_CUBE is not used accessing a cube map, the map’s Cube Face

Enable field must be programmed to 111111b (all faces enabled).

MAPFILTER_MONO: Texture addressing modes must all be set to

TEXCOORDMODE_CLAMP_BORDER. The Border Color is ignored in this mode, a constant

value of 0 is used for border color. Software must pad the border texels within the map itself

with 0.

5:3 TCY Address Control Mode

Project: All

Format: U3 enumerated type

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 100

SAMPLER_STATE

Controls how the 2nd (TCY, aka V) component of input texture coordinates are mapped to texture map

addresses – specifically, how coordinates “outside” the texture are handled (wrap/clamp/mirror). See

Address TCX Control Mode above for details

Programming Notes

If this field is set to TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

and a 1D surface is sampled, incorrect blending with the border color in the vertical direction may

occur.

2:0 TCZ Address Control Mode

Project: All

Format: U3 enumerated type

Description Project

Controls how the 3rd (TCZ) component of input texture coordinates are mapped to texture map

addresses – specifically, how coordinates “outside” the texture are handled

(wrap/clamp/mirror).See Address TCX Control Mode above for details

If this field is set to TEXCOORDMODE_CLAMP_BORDER for 3D maps on formats without an

alpha channel, samples straddling the map in the Z direction may have their alpha channels off

by 1.

2.12.3.2 SAMPLER_STATE for Sample_8x8 Message

SAMPLER_STATE for Sample_8x8 Message

Default Value: 0x00000000, 0x00000000, 0x0D090801, 0x721A03C6

. This state definition is used only by the sample_8x8 message. This state is stored as an array of up to 16 elements,

each of which contains the dwords described here. The start of each element is spaced 4 dwords apart. The first

element of the array is aligned to a 32-byte boundary.

 The index with range 0-15 that selects which element is being used to determine the Sampler Index in the message

descriptor.

Programming Notes

IEF Filter Type was dropped and is assumed to be Detailed filter

IEF Filter Size was dropped and assumed to be 5x5.

IEF bypass must always be forced to 1, if Y/G-channel is masked.

DWord Bit Description

0 31:30 Reserved

Format: MBZ

29 IEF Bypass

Format: MBZ

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 101

SAMPLER_STATE for Sample_8x8 Message

Causes IEF function to be bypassed, VSA will output neutral values.

28:19 Reserved

Format: MBZ

18 ChromaKey Enable

Format: Enable

This field enables chroma keying when accessing this particular texture map.

Programming Notes

For sample_8x8 instructions KEYFILTER_REPLACE_BLACK is assumed if chromakey is
enabled.

For 10 bit formats only the 8 MSBs will be compared.

17:16 ChromaKey Index

Format: U2

This field specifies the index of the ChromaKey Table entry associated with this Sampler. This field

is a “don’t care” unless ChromaKey Enable is ENABLED.

Value Name

[0,3]

15:8 Reserved

Format: MBZ

7:0 Global Noise Estimation

Format: U8

Global noise estimation of previous frame.

1 31:5 Sampler 8x8 State Pointer

Format: DynamicStateOffset[31:5]

This field specifies the pointer to the SAMPLER_8x8_STATE structure. This pointer is relative to the

Dynamic State Base Address.

Programming Notes

This field must be set to the same value in all sample_8x8 type SAMPLER_STATE instances
applied to a given primitive.

PIPE_CONTROL with State/Instruction Cache Invalidate set and the CS Stall field set is required
between primitives that use different values of this field.

4:0 Reserved

Format: MBZ

2 31 Reserved

Format: MBZ

30:26 R5c Coefficient

Default Value: 3

Format: U0.5

IEF smoothing coefficient, see IEF map.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 102

SAMPLER_STATE for Sample_8x8 Message

25:21 R5x Coefficient

Default Value: 8

Format: U0.5

IEF smoothing coefficient, see IEF map.

20:16 R5c Coefficient

Default Value: 9

Format: U0.5

IEF smoothing coefficient, see IEF map.

15:14 Reserved

Format: MBZ

13:8 Strong Edge Threshold

Default Value: 8

Format: U6

If EM > Strong Edge Threshold, the basic VSA detects a strong edge.

7:6 Reserved

Format: MBZ

5:0 Weak Edge Threshold

Default Value: 1

Format: U6

If Strong Edge Threshold > EM > Weak Edge Threshold, the basic VSA detects a weak edge.

3 31 IEF4Smooth Enable

Value Name Description

1 IEF is operating as a content adaptive smooth filter based on 3x3 region

0 [Default] IEF is operating as a content adaptive detail filter based on 5x5 region

30:28 Strong Edge Weight

Default Value: 7

Format: U3

Sharpening strength when a strong edge is found in basic VSA..

27 Reserved

Format: MBZ

26:24 Regular Weight

Default Value: 2

Format: U3

Sharpening strength when a weak edge is found in basic VSA.

23 Reserved

Format: MBZ

22:20 Non Edge Weight

Default Value: 1

Format: U3

Sharpening strength when no edge is found in basic VSA.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 103

SAMPLER_STATE for Sample_8x8 Message

19:14 Gain Factor

Default Value: 40

Format: U6

User control sharpening strength.

13:11 Reserved

Format: MBZ

10:6 R3c Coefficient

Default Value: 15

Format: 0.5

IEF smoothing coefficient, see IEF map.

5 Reserved

Format: MBZ

4:0 R3x Coefficient

Default Value: 6

Format: U6

IEF smoothing coefficient, see IEF map.

2.12.3.3 For Deinterlace Message

DEINTERLACE_SAMPLER_STATE

Exists If: MessageType == 'Deinterlace'

Default

Value:

0x00000800, 0x00000000, 0x04950100, 0x407D0000, 0x00000000, 0x00000000, 0x00000000,

0x005064A5

This state definition is used only by the deinterlace message. This state is stored as an array of up to 8 elements,

each of which contains the dwords described here. The start of each element is spaced 8 dwords apart. The first

element of the array is aligned to a 32-byte boundary. The index with range 0-7 that selects which element is being

used is multiplied by 2 to determine the Sampler Index in the message descriptor.

DWord Bit Description

0 31:24 Denoise STAD Threshold

Threshold for denoise sum of temporal absolute differences.

23:16 Denoise Maximum History

Maximum allowed value for denoise history.

Value Name Description

128-240

15 Reserved

Format: MBZ

14 VDI Walker Frame Sharing Enable

Format: U1 enumerated type

For a GT2 system with 2 half-slices, this field controls how the frame is shared by the two deinterlacer

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 104

DEINTERLACE_SAMPLER_STATE

walkers.

Value Name

0 There is only a single deinterlacer which must walk the entire frame. VDI Walker Y Stride is

ignored.

1 The screen is shared by the two deinterlacers as controlled by the VDI Walker Y Stride

13:12 VDI Walker Y Stride

Format: U2 enumerated type

This field controls if the VDI walker skips pixels as it goes down the screen. This is used when a pair

of VDI'S are splitting the frame between them. The stride also implies the offset used by the 2nd half-

slice.

Value Name

0 Stride of 1 block (where a block is 4x4 when DI is enabled and 4x8 when DN only), offset for

the 2nd half-slice is � the surface height.

1 Stride of 2 blocks (every other row of blocks calculated by this VDI), offset for the 2nd half-slice

is 1 block.

2 Stride of 4 blocks (2 vertical blocks calclated by this VDI, then skip 2), offset for the 2nd half-

slice is 2 blocks.

3 Stride of 8 blocks (4 vertical blocks calculated by this VDI, then skip 4), offset for the 2nd half-

slice is 4 blocks.

11:8 Denoise History Delta

Default Value: 8

Amount that denoise_history is increased.

7:0 Denoise ASD Threshold

Threshold for denoise absolute sum of differences.

Value Name Description

0-63

1 31:30 Reserved

Format: MBZ

29:24 Temporal Difference Threshold

Programming Notes

The difference between Temporal Difference Threshold and Low Temporal Difference Threshold

must be larger than 0 and less than or equal to 16, except when both thresholds are set to 0.

23:22 Reserved

Format: MBZ

21:16 Low Temporal Difference Threshold

Programming Notes

The difference between Temporal Difference Threshold and Low Temporal Difference Threshold

must be larger than 0 and less than or equal to 16, except when both thresholds are set to 0.

15:13 STMM C2

Bias for divisor in STMM equation. The range represents values [1,8]

Value Name Description

0-7

12:8 Denoise Moving Pixel Threshold

Threshold for number of moving pixels to declare a block to be moving.

Value Name Description

0-16

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 105

DEINTERLACE_SAMPLER_STATE

7:0 Denoise Threshold for Sum of Complexity Measure

2 31:30 Reserved

Format: MBZ

29:24 Good Neighbor Threshold

Maximum difference from current pixel for neighboring pixels to be considered a good neighbor.

Value Name Description

4 [Default] depending on GNE of previous frame

23:20 CAT Slope

Format: U4-1

Determines the slope of the Content Adaptive Threshold. +1 added internally to get CAT_slope.

Value Name Description

9 [Default] CAT_slope value = 10

19:16 SAD Tight Threshold

Default Value: 5

Format: U4

15:14 Smooth MV Threshold

Format: U2

13:12 Reserved

Format: MBZ

11:8 BNE Edge Threshold

Default Value: 1

Format: U4

Threshold for detecting an edge in block noise estimate.

7:0 Block Noise Estimate Noise Threshold

Format: U8

Threshold for noise maximum/minimum.

Value Name Description

0-31

3 31 STMM Blending Constant Select

Format: U1

Value Name

0 Use Minimum STMM for stmm_md_th

1 Use Maximum STMM for stmm_md_th

30:24 Blending constant across time for large values of STMM

Default Value: 64

Format: U7

23:16 Blending constant across time for small values of STMM

Default Value: 125

Format: U8

15:14 Reserved

Format: MBZ

13:8 Multiplier for VECM

Format: U6

Determines the strength of the vertical edge complexity measure.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 106

DEINTERLACE_SAMPLER_STATE

7:0 Maximum STMM

Format: U8

Largest allowed STMM in blending equations

4 31:24 Minimum STMM

Format: U8

Smallest allowed STMM in blending equations

23:22 STMM Shift Down

Format: U2

Amount to shift STMM down (quantize to fewer bits)

Value Name

0 Shift by 4

1 Shift by 5

2 Shift by 6

3 Reserved

21:20 STMM Shift Up

Format: U2

Amount to shift STMM up (set range).

Value Name

0 Shift by 6

1 Shift by 7

2 Shift by 8

3 Reserved

19:16 STMM Output Shift

Format: U4

Amount to shift output of STMM blend equation

Value Name Description

0-16

Programming Notes

The value of this field must satisfy the following equation: stmm_max – stmm_min = 2 ^

stmm_output_shift

15:8 SDI Threshold

Format: U8

Threshold for angle detection in SDI algorithm.

7:0 SDI Delta

Format: U8

Delta value for angle detection in SDI algorithm.

5 31:24 SDI Fallback Mode 1 T1 Constant

Format: U8

23:16 SDI Fallback Mode 1 T2 Constant

Format: U8

15:8 SDI Fallback Mode 2 Constant (Angle2x1)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 107

DEINTERLACE_SAMPLER_STATE

Format: U8

7:0 FMD Temporal Difference Threshold

Format: U8

6 31:24 FMD #1 Vertical Difference Threshold

Format: U8

23:16 FMD #2 Vertical Difference Threshold

Format: U8

15:14 CAT Threshold 1

Default Value: 0

Format: U2

13:8 FMD Tear Threshold

Format: U6

7 MCDI Enable

Use Motion Compensated Deinterlace algorithm.

 Ignored if DI Enable is off.

6 Progressive DN

Format: Enable

Indicates that the denoise algorithm should assume progressive input when filtering neighboring

pixels. DI Enable must be disabled when this field is enabled

Value Name

0 DN assumes interlaced video and filters alternate lines together

1 DN assumes progressive video and filters neighboring lines together

5 DN/DI First Frame

Format: Enable

Indicates that this is the first frame of the stream, so previous clean is not available

Value Name

0 Not first field; previous clean surface state is valid

1 First field; previous clean surface state is invalid

4 DN/DI Stream ID

Format: U1

Distinguishes between the two simultaneous streams that are supported. Used to update the GNE and

FMD counters for that stream.

3 DN/DI Top First

Format: Enable

Indicates the top field is first in sequence, otherwise bottom is first

Value Name

0 Bottom field occurs first in sequence

1 Top field occurs first in sequence

2 DI Partial

Format: Enable

If DI Enable and DI Partial are both enabled, the deinterlacer will output the partial VDI writeback

message.

Value Name

0 Output normal VDI writeback message (only if DI Enable is enabled also)

1 Output partial VDI writeback message (only if DI Enable is enabled also)

1 DI Enable

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 108

DEINTERLACE_SAMPLER_STATE

Format: Enable

Deinterlacer is bypassed if this is disabled: the output is the same as the input (same as a 2:2

cadence). FMD and STMM are not calculated and the values in the response message are 0.

Value Name

0 Do not calculate DI

1 Calculate DI

Programming Notes

DI Enable and DN Enable cannot both be disabled

0 DN Enable

Format: Enable

Denoise is bypassed if this is low � BNE is still calculated and output, but the denoised fields are not.

VDI does not read in the denoised previous frame but uses the pointer for the original previous frame.

Value Name

0 Do not denoise frame

1 Denoise frame

Programming Notes

DI Enable and DN Enable cannot both be disabled

7 31:23 Column Width Minus 1

Format: U9

This field specifies the (column width-1) / stride in units of blocks (Each blocks has width 16 pixels).

 A column width * 16 that equals the width of the frame means the walker will walk to the end of the

frame.

 The value of this field is interpreted as binary value + 1, so the range represents column widths of

[1,512].

Value Name Description

0-511

22:19 Neighbor Pixel Threshold

Default Value: 10

Format: U4

18 VDI Walker Enable

Format: U1

Value Name

0 Walker Disabled. Use XY generated by Driver.

1 Walker Enabled. Use XY generated by VDIunit.

Programming Notes

When enabled frame size should be aligned to 16x8 in DN only mode and 16x4 in DI enabled mode

When walker is enabled in a GT2 system, the MEDIA_OBJECT commands dispatching work to the

VDI must use the Half-Slice Destination Select field to split the work between the two half-slices; the

Half-Slice Destination Select must never be set to 00 (either half-slice).

17:16 FMD for 2nd field of previous frame

Format: U2

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 109

DEINTERLACE_SAMPLER_STATE

Value Name

0 Deinterlace (not progressive output)

1 Put together with previous field in sequence (1st field of previous frame)

2 Put together with next field in sequence (1st field of current frame)

15:10 MC Pixel Consistency Threshold

Default Value: 25

Format: U6

9:8 FMD for 1st field of current frame

Format: U2

Value Name

0 Deinterlace (not progressive output)

1 Put together with previous field in sequence (2nd field of previous frame)

2 Put together with next field in sequence (2nd field of current frame)

7:4 SAD Threshold B

Default Value: 10

Format: U4

3:0 SAD Threshold A

Default Value: 5

Format: U4

 This state definition is used only by the deinterlace message. This state is stored as an array of up to 8

elements, each of which contains the dwords described here. The start of each element is spaced 8

dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7

that selects which element is being used is multiplied by 2 to determine the Sampler Index in the

message descriptor.

2.12.3.3.1 Restrictions

1. VDIWalker can be enabled only when frame is aligned to block size of 16x4 if DI is enabled
(interlaced) and 16x8 if DN only (Progressive).

2. When VDIWalker Frame Sharing is enabled driver should dispatch same number of Media Objects
to both half slice by explicitly programming half slice destination select as 01 and 10 alternately
(Note: Dispatch of threads should be in ping pong fashion to have load balance between both
Halfslice and better L3 utilization).

3. For VDIWalker disabled mode (when frame size is not aligned to 16x4 or 16x8) it is recommended to
have a simplified SW walker. Using Half Slice Destination Select 00 will affect performance
significantly.

2.12.3.3.2 Dispatch of Media Object Commands for VDIWalker Enabled

1. Frame Sharing is Disabled:

a. Program all MO commands to have Half Slice destination select as either “01” or “10”

b. Y_stride programmed in Sampler State will be ignored

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 110

2. Frame Sharing Enabled:

a. if Frame_height (in blocks) % 2 = 0 (where block height = 4 when DI enabled, 8 when DN only)
dispatch MO in ping pong fashion

b. Y_Stride of 0,1,2,3 is valid and VDIwalker will divide frame into multiple slices based on stride
value

c. if Frame_height (in blocks) % 2 > 0, then dispatch MO in ping pong fashion and all threads for
blocks from residual row to be sent to Half Slice0

2.12.3.3.3 Psuedo Code for Media Object Dispatch

//Variables

Frame Height in pixels => frame_height

Frame Width in pixels => frame_width

Frame Height in Blocks => fh

Frame Width in Blocks => fw

Block Height in Pixels => block_height = Interlaced? 4 : 8

//Code

fw = frame_width / 16;

fh = frame_height / block_height;

2.12.3.3.4 Calculate Residual Blocks

If (fh % (2**stride)) ≠ 0 {

 Y_Blocks_Remainder = (fh % (2**stride))

 If (Y_Blocks_Remainder > (2**stride) / 2) {

 Y_Blocks_Remainder_HS1 = (2**stride) / 2

 Y_Blocks_Remainder_HS2 = Y_Blocks_Remainder - (2**stride) / 2

 }

 Else {

 Y_Blocks_Remainder_HS1 = Y_Blocks_Remainder

 Y_Blocks_Remainder_HS2 = 0

 }

}

Else {

 Y_Blocks_Remainder_HS1 = 0

 Y_Blocks_Remainder_HS2 = 0

}

2.12.3.3.5 Dispatch Media Object

total_media_obj_cnt = fw * fh;

reminder_media_obj_cnt_HS1 = fw * Y_Blocks_Remainder_HS1;

reminder_media_obj_cnt_HS2 = fw * Y_Blocks_Remainder_HS2;

ping_pong_media_obj_cnt =

total_media_obj_cnt – (reminder_media_obj_cnt_HS1 + reminder_media_obj_cnt_HS1);

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 111

for (i = 0; i < ping_pong_media_obj_cnt; i++) {

 if (i % 2 == 0) {

 dispatch_media_object_hs1;

 }

 else {

 dispatch_media_object_hs2;

 }

}

for (i = 0; i < reminder_media_obj_cnt_HS1; i++) {

 dispatch_media_object_hs1;

}

for (i = 0; i < reminder_media_obj_cnt_HS2; i++) {

 dispatch_media_object_hs2;

}

2.12.4 SAMPLER_8x8_STATE

SAMPLER_8x8_STATE

Exists If: MessageType == 'Sample_8x8'

Default

Value:

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

The 8x8 coefficients and other state used by the sample_8x8 message are stored as indirect state, pointed to by a

field in SAMPLER_STATE. There are four different tables loaded using this structure (0X, 0Y, 1X, and 1Y). Each

table is stored as an array of 17 elements, each with either 4 or 8 coefficients.

DWord Bit Description

0 31:24 Table 0X Filter Coefficient[0,3]

Format: S1.6 In 2’s complement format

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 112

SAMPLER_8x8_STATE

Description Project

Range: [-2.0, +2.0)

23:16 Table 0X Filter Coefficient[0,2]

Format: S1.6 In 2’s complement format

Range: [-1, +1)

15:8 Table 0X Filter Coefficient[0,1]

Format: S1.6 In 2’s complement format

Range = [-2-1, +2-1)

Programming Notes

Must be zero if the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM.

7:0 Table 0X Filter Coefficient[0,0]

Format: S1.6 In 2's complement format

Range = [-2-2, +2-2)

Programming Notes

Must be zero if the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM

1 31:24 Table 0X Filter Coefficient[0,7]

Format: S1.6 In 2's complement format

Range = [-2-2, +2-2)

23:16 Table 0X Filter Coefficient[0,6]

Format: S1.6 In 2's complement format

Range = [-2-1, +2-1)

15:8 Table 0X Filter Coefficient[0,5]

Format: S1.6 In 2's complement format

Range: [-1, +1)

7:0 Table 0X Filter Coefficient[0,4]

Format: S1.6 In 2's complement format

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 113

SAMPLER_8x8_STATE

Description Project

Range: [-2.0, +2.0)

2..3 31:24 Table 0Y Filter Coefficient[0,7]

Format: S1.6 In 2's complement format

Range = [-2-2, +2-2)

23:16 Table 0Y Filter Coefficient[0,6]

Format: S1.6 In 2's complement format

Range = [-2-1, +2-1)

15:8 Table 0Y Filter Coefficient[0,5]

Format: S1.6 In 2's complement format

Range: [-1, +1)

7:0 Table 0Y Filter Coefficient[0,4]

Format: S1.6 In 2's complement format

Description Project

Range: [-2.0, +2.0)

4 31:24 Table 1X Filter Coefficient[0,3]

Format: S1.6 In 2's complement format

Range: [0.0, +2.0)

23:16 Table 1X Filter Coefficient[0,2]

Format: S1.6 In 2's complement format

Range: [-1, +1)

15 Adaptive Filter for all channels

Only to be enabled if 8-tap Adaptive filter mode is on. Else it should be disabled.

Value Name

1 Enable adaptive filter on UV/RB channels

0 Disable adaptive filter on UV/RB channels

14 Enable RGB Adaptive for RGB input only :

This should be always set to 0 for YUV input and can be enabled/disabled for RGB input. This

should be enabled only if we enable 8-tap adaptive filter for RGB input

Value Name

1 Enable the RGB Adaptive filter using the equation (Y=(R+2G+B)>>2)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 114

SAMPLER_8x8_STATE

0 Disable the RGB Adaptive equation and use G-Ch directly for adaptive filter

13:0 Reserved

Format: MBZ

5 31:16 Reserved

Format: MBZ

15:8 Table 1X Filter Coefficient[0,5]

Format: S1.6 In 2's complement format

Range: [-1, +1)

7:0 Table 1X Filter Coefficient[0,4]

Format: S1.6 In 2's complement format

Range: [0.0, +2.0)

6..7 31:16 Reserved

Format: MBZ

15:8 Table 1Y Filter Coefficient[0,5]

Format: S1.6 In 2's complement format

Range: [-1, +1)

7:0 Table 1Y Filter Coefficient[0,4]

Format: S1.6 In 2's complement format

Range: [0.0, +2.0)

8..15 31:0 Filter Coefficient[1,7:0]

16..23 31:0 Filter Coefficient[2,7:0]

24..31 31:0 Filter Coefficient[3,7:0]

32..39 31:0 Filter Coefficient[4,7:0]

40..47 31:0 Filter Coefficient[5,7:0]

48..55 31:0 Filter Coefficient[6,7:0]

56..63 31:0 Filter Coefficient[7,7:0]

64..71 31:0 Filter Coefficient[8,7:0]

72..79 31:0 Filter Coefficient[9,7:0]

80..87 31:0 Filter Coefficient[10,7:0]

88..95 31:0 Filter Coefficient[11,7:0]

96..103 31:0 Filter Coefficient[12,7:0]

104..111 31:0 Filter Coefficient[13,7:0]

112..119 31:0 Filter Coefficient[14,7:0]

120..127 31:0 Filter Coefficient[15,7:0]

128..135 31:0 Filter Coefficient[16,7:0]

136 31:24 Default Sharpness Level

Format: U8

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 115

SAMPLER_8x8_STATE

When adaptive scaling is off, determines the balance between sharp and smooth scalers.

Value Name

0 Contribute 1 from the smooth scalar

255 Contribute 1 from the sharp scalar

23:16 Max Derivative 4 Pixels

Format: U8

Used in adaptive filtering to specify the lower boundary of the smooth 8 pixel area.

15:8 Max Derivative 8 Pixels

Format: U8

Used in adaptive filtering to specify the lower boundary of the smooth 8 pixel area.

7 Reserved

Format: MBZ

6:4 Transition Area with 4 Pixels

Format: U3

Used in adaptive filtering to specify the width of the transition area for the 4 pixel calculation.

3 Reserved

Format: MBZ

2:0 Transition Area with 8 Pixels

Format: U3

Used in adaptive filtering to specify the width of the transition area for the 8 pixel calculation.

137 31:23 Reserved

Format: MBZ

22 Bypass X Adaptive Filtering

Format: Disable

When disabled, the X direction will use Default Sharpness Level to blend between the smooth

and sharp filters rather than the calculated value.

Value Name

1 Disable X adaptive filtering

0 Enable X adaptive filtering

21 Bypass Y Adaptive Filtering

Format: Disable

When disabled, the Y direction will use Default Sharpness Level to blend between the smooth

and sharp filters rather than the calculated value.

Value Name

1 Disable X adaptive filtering

0 Enable X adaptive filtering

20:2 Reserved

Format: MBZ

1 Reserved

Project:

Format: MBZ

0 Reserved

Project:

Format: MBZ

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 116

2.12.5 SAMPLER_BORDER_COLOR_STATE

SAMPLER_BORDER_COLOR_STATE

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000

This structure is pointed to by a field in SAMPLER_STATE. The interpretation of the border color depends on the

Texture Border Color Mode field in SAMPLER_STATE as follows:In DX9 mode, the border color is 8-bit UNORM

format, regardless of the surface format chosen. For surface formats with one or more channels missing (i.e.

R5G6R5_UNORM is missing the alpha channel), the value from the border color, if selected, will be used even for

the missing channels.In DX10/OGL mode, the format of the border color is R32G32B32A32_FLOAT, regardless of

the surface format chosen. For surface formats with one or more channels missing, the value from the border color is

not used for the missing channels, resulting in these channels resulting in the overall default value (0 for colors and 1

for alpha) regardless of whether border color is chosen. The surface formats with “L” and “I” have special behavior

with respect to the border color. The border color value used for the replicated channels (RGB for “L” formats and

RGBA for “I” formats) comes from the red channel of border color. In these cases, the green and blue channels, and

also alpha for “I”, of the border color are ignored.The format of this state depends on the Texture Border Color Mode

field.

Programming Notes

 DX9 mode is not supported for surfaces with more than 16 bits in any channel, other than 32-bit float formats
which are supported.

 The conditions under which this color is used depend on the Surface Type – 1D/2D/3D surfaces use the

border color when the coordinates extend beyond the surface extent; cube surfaces use the border color for
“empty” (disabled) faces.

 The border color itself is accessed through the texture cache hierarchy rather than the state cache hierarchy.
Thus, if the border color is changed in memory, the texture cache must be invalidated and the state cache
does not need to be invalidated.

 MAPFILTER_MONO: The border color is ignored. Border color is fixed at a value of 0 by hardware.

DWord Bit Description

0 31:24 Border Color Alpha

Format: UNORM8

Texture Border Color Mode = DX9

23:16 Border Color Blue

Format: UNORM8

Texture Border Color Mode = DX9

15:8 Border Color Green

Format: UNORM8

Texture Border Color Mode = DX9

31:0 Border Color Red

Format: IEEE_FP

Texture Border Color Mode = DX10/OGL

7:0 Border Color Red

Format: UNORM8

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 117

SAMPLER_BORDER_COLOR_STATE

Texture Border Color Mode = DX9

1 31:0 Border Color Green

Format: IEEE_FP

Texture Border Color Mode = DX10/OGL

2 31:0 Border Color Blue

Format: IEEE_FP

Texture Border Color Mode = DX10/OGL

3 31:0 Border Color Alpha

Format: IEEE_FP

Texture Border Color Mode = DX10/OGL

2.12.5.1 SAMPLER_BORDER_COLOR_STATE

For, if border color is used, all formats must be provided. Hardware will choose the appropriate format based

on Surface Format and Texture Border Color Mode. The values represented by each format should be

the same (other than being subject to range-based clamping and precision) to avoid unexpected

behavior.

DWord Bit Description

0 31:24
Border Color Alpha

Format = UNORM8

 23:16
Border Color Blue

Format = UNORM8

 15:8
Border Color Green

Format = UNORM8

 7:0
Border Color Red

Format = UNORM8

1 31:0
Border Color Red

Format = IEEE_FP

2 31:0
Border Color Green

Format = IEEE_FP

3 31:0
Border Color Blue

Format = IEEE_FP

4 31:0
Border Color Alpha

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 118

DWord Bit Description

Format = IEEE_FP

5 31:16
Border Color Green

Format = FLOAT16

 15:0
Border Color Red

Format = FLOAT16

6 31:16
Border Color Alpha

Format = FLOAT16

 15:0
Border Color Blue

Format = FLOAT16

7 31:16
Border Color Green

Format = UNORM16

 15:0
Border Color Red

Format = UNORM16

8 31:16
Border Color Alpha

Format = UNORM16

 15:0
Border Color Blue

Format = UNORM16

9 31:16
Border Color Green

Format = SNORM16

 15:0
Border Color Red

Format = SNORM16

10 31:16
Border Color Alpha

Format = SNORM16

 15:0
Border Color Blue

Format = SNORM16

11 31:24
Border Color Alpha

Format = SNORM8

 23:16
Border Color Blue

Format = SNORM8

 15:8
Border Color Green

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 119

DWord Bit Description

Format = SNORM8

 7:0
Border Color Red

Format = SNORM8

2.12.6 3DSTATE_CHROMA_KEY

3DSTATE_CHROMA_KEY

Project: All

Source: RenderCS

Length Bias: 2

The 3DSTATE_CHROMA_KEY instruction is used to program texture color/chroma-key key values. A table

containing four set of values is supported. The ChromaKey Index sampler state variable is used to select which table

entry is associated with the map. Texture chromakey functions are enabled and controlled via use of the ChromaKey

Enable texture sampler state variable.Texture Color Key (keying on a paletted texture index) is not supported.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: Opcode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: Opcode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE

Format: Opcode

23:16 3D Command Sub Opcode

Default Value: 04h 3DSTATE_CHROMA_KEY

Format: Opcode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

Total Length - 2

1 31:30 ChromaKey Table Index

Project: All

Format: U2 index

Selects which entry in the ChromaKey table is to be loaded

Value Name

[0,3]

29:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 120

3DSTATE_CHROMA_KEY

2 31:0 ChromaKey Low Value

This field specifies the “low” (minimum) value of the chroma key range. Texel samples are considered

“matching the key” if each component of the texel falls within the (inclusive) chroma range.See

ChromaKey High Value for further format, programming info.

3 31:0 ChromaKey High Value

This field specifies the “high” (maximum) value of the chroma key range. Texel samples are considered

“matching the key” if each component of the texel falls within the (inclusive) chroma range.

Programming Notes

ChromaKey values are specified using 8-bit channels. When using surface formats with less than 8

bits per channel, the device will expand channels by replicating the required number of MSBs into the

LSBs of each channel. Software must account for this conversion when it programs Chromakey

Low/High Values (e.g., by performing the same replication).

For channels that do not exist in the actual surface (e.g., Alpha channel for non-ARGB maps), software

must explicitly program full range high/low values (High=FFh, Low=0h for formats using unsigned

chroma key values, High=7Fh, Low=FFh for formats using sign magnitude chroma key values) in order

to effectively remove the comparison of that field from the ChromaKey function.

For channels in SNORM format in the surface format, the value in the high/low value for that channel is

interpreted in sign magnitude format. Negative zero value is not supported (use positive zero instead).

For channels with mixed UNORM/SNORM formats (i.e. R5G5_SNORM_B6_UNORM), the ChromaKey

is programmed as if all channels are SNORM.

YUV ChromaKey will use an interpolated chrominance value from the map for comparison to the

chroma key values for those texels without chrominance due to downsampling. The chrominance value

used is the average of values to the left and right of the texel in question.

It is UNDEFINED to program any component of the ChromaKey High Value to be less than the

corresponding component of ChromaKey Low Value.

Format = interpreted according to associated texel format “class”:

Only the surface formats listed as supported for chroma key in the surface formats table can be used

with this feature. Use of any other surface format with chroma key enabled is UNDEFINED.

Surface Format 31:24 23:15 16:8 7:0

ARGB and BC (DXT) formats A R G B

YCrCb formats A Cr Y Cb

2.12.7 3DSTATE_SAMPLER_PALETTE_LOAD0

3DSTATE_SAMPLER_PALETTE_LOAD0

Project: All

Source: RenderCS

Length Bias: 2

Description Project

The 3DSTATE_SAMPLER_PALETTE_LOAD0 instruction is used to load 32-bit values into the first texture

palette. The texture palette is used whenever a texture with a paletted format (containing “Px [palette0]”) is

referenced by the sampler.

This instruction is used to load all or a subset of the 256 entries of the first palette. Partial loads always start

from the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: Opcode

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 121

3DSTATE_SAMPLER_PALETTE_LOAD0

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: Opcode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE

Format: Opcode

23:16 3D Command Sub Opcode

Default Value: 02h 3DSTATE_SAMPLER_PALETTE_LOAD0

Format: Opcode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n

Total Length - 2

1..n 31:24 Palette Alpha[0:N-1]

Project: All

Format: U8

Alpha channel loaded into the Nth entry of the texture color palette.

23:16 Palette Red[0:N-1]

Project: All

Format: U8

Alpha channel loaded into the Nth entry of the texture color palette.

15:8 Palette Green[0:N-1]

Project: All

Format: U8

Alpha channel loaded into the Nth entry of the texture color palette.

7:0 Palette Blue[0:N-1]

Project: All

Format: U8

Alpha channel loaded into the Nth entry of the texture color palette.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 122

2.12.8 3DSTATE_MONOFILTER_SIZE

3DSTATE_MONOFILTER_SIZE

Source: RenderCS

Length Bias: 2

This state specifies the size of the filter which is used when filtering in MAPFILTER_MONO mode.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 11h 3DSTATE_MONOFILTER_SIZE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n

Total Length - 2

1 31:6 Reserved

Project: All

Format: MBZ

5:3 Monochrome Filter Width

Project: All

Format: U3

This field specifies the width of the monochrome filter. It is ignored if the monochrome filter is not

enabled.

Value Name

[1,7]

2:0 Monochrome Filter Height

Project: All

Format: U3

This field specifies the height of the monochrome filter. It is ignored if the monochrome filter is not

enabled.

Value Name

[1,7]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 123

2.13 Messages

Restrictions:

 Use of any message to the Sampling Engine function with the End of Thread bit set in the message
descriptor is not allowed.

2.13.1 Initiating Message

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are

sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the

GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter

mode and at least one pixel in the subspan being valid, the sampling engine assumes that the

parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of the

execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD needs to be

computed based on MIP filter mode and at least one pixel in the subspan being valid, the sampling

engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan

are valid regardless of the execution mask, since these are needed for the LOD computation.

SIMD4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If any of the high 4 bits

are asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The Write

Channel Mask rather than the execution mask determines which channels are written back to the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid and all channels are returned

regardless of the execution mask.

2.13.1.1 Message Descriptor

Bit Description

19
Header Present: Specifies whether the message includes a header phase. If the header is not present (this

field is zero), all of the fields normally contained in the header are assumed to be 0.

Format = Enable

18:17
SIMD Mode: Specifies the SIMD mode of the message being sent.

Format = U2

0 = SIMD4x2

1 = SIMD8

2 = SIMD16

3 = SIMD32/64

16:12
Message Type: Specifies the type of message being sent.

Format = U5

Refer to the table in section Payload Parameter Definition for encoding details.

11:8
Sampler Index: Specifies the index into the sampler state table. Ignored for “ld”, “resinfo”, “sampleinfo” and

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 124

Bit Description

“cache_flush”type messages.

Format = U4

Range = [0,15]

Programming Notes:

 for the deinterlace message, this field must be a multiple of 2 (even)

 for the sample_8x8 message, this field must be a multiple of 4

7:0
Binding Table Index: Specifies the index into the binding table. Ignored for “cache_flush” type messages.

Format = U8

Range = [0,255]

2.13.1.2 Message Header

The message header for the sampling engine is the same regardless of the message type. If the header

is not present (only), behavior is as if the message was sent with all fields in the header set to zero (write

channel masks are all enabled and offsets are zero). When Response length is 0 for sample_8x8

message then the data from sampler is directly written out to memory using media write message.

DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:5 Reserved

 4:0 Reserved

M0.4 31:0 Reserved

M0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to the sampler state table. This field is

ignored for “ld” and “resinfo” message types. This pointer is relative to the General State Base

Address.

Format = GeneralStateOffset[31:5]

Ignored

 4:0 Ignored

M0.2 31:24 Ignored

 23 Reserved

 21:20 Ignore

 19:18
SIMD32/64 Output Format Control

The contents of this field are ignored. The “16 bit Full” mode is always selected.

 17

 17:16
Gather4 Source Channel Select: Selects the source channel to be sampled in the gather4*

messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 125

DWord Bit Description

Programming Note:

 For gather4*_c messages, this field must be set to 0 (Red channel).

16

Force LOD to Zero: If this bit is enabled, the calculated LOD is replaced with zero. The LOD is

replaced just before entering the pseudocode in section LOD Computation Pseudocode, therefore the

LOD is still subject to bias, overriding by sample_l delivered LOD, and clamping.

Format = Enable

Ignored

 15
Alpha Write Channel Mask: Enables the alpha channel to be written back to the originating thread.

0: Alpha channel will be written back

1: Alpha channel will not be written back

Programming Notes:

 a message with all four channels masked is not allowed.

 this field is ignored for the sample_unorm*. The write channel mask is generated from the
message type itself.

 this field is ignored for the deinterlace message.

 this field must be set to zero for sample_8x8 in VSA mode.

 14
Blue Write Channel Mask: See Alpha Write Channel Mask

 13
Green Write Channel Mask: See Alpha Write Channel Mask

 12
Red Write Channel Mask: See Alpha Write Channel Mask

 11:8
U Offset: the u offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

 this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

 this field is ignored if the “offu” parameter is included in the gather4* messages

 7:4
V Offset: the v offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

 this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

 this field is ignored if the “offu” parameter is included in the gather4* messages

 3:0
R Offset: the r offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

 this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

M0.1 31:0 Ignored

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 126

DWord Bit Description

M0.0 31:0 Ignored

2.13.1.3 Payload Parameter Definition

The table below shows all of the messages supported by the sampling engine. The message type field in

the message descriptor in combination with the message length determines which message is being sent.

The table defines all of the parameters sent for each message type. The position of the parameters in the

payload is given in the section following corresponding to the SIMD mode given in the table. The

instruction column indicates the DX10 shader instructions expected to be translated to each message

type.

All parameters are of type IEEE_Float, except those in the ld and resinfo instruction message types,

which are of type S31. Any parameter indicated with a blank entry in the table is unused. A message

register containing only unused parameters not included as part of the message. The response lengths

given below assume all channels are unmasked. SIMD16 messages with masked channels will have

reduced response length.

2.13.1.3.1 Payload Parameter Definition

The table below shows all of the message types supported by the sampling engine. The Message Type

field in the message descriptor determines which message is being sent. The SIMD Mode field

determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback

messages. The Header Present field determines whether a header is delivered as the first phase of the

message or the default header from R0 of the thread’s dispatch is used. The Message Length field is

used to vary the number of parameters sent with each message. Higher-numbered parameters are

optional, and default to a value of 0 if not sent but needed for the surface being sampled.

The message lengths are computed as follows, where “N” is the number of parameters (“N” is rounded up

to the next multiple of 4 for SIMD4x2), and “H” is 1 if the header is present, 0 otherwise. The maximum

message length allowed to the sampler is 11.

SIMD Mode Message Length

SIMD4x2 H + (N/4)

SIMD8* H + N

SIMD16 H + (2*N)

The response lengths are computed as follows:

SIMD Mode Response Length

SIMD4x2 1

SIMD8
sample+killpix 5

all other message types 4

SIMD16 8 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which

case they are not supported. This includes some forms of sample_b_c, sample_l_c, and gather4_po_c

message types. Note that even for these messages, if 5 or fewer parameters are included in the

message, the SIMD16 form of the message is allowed. SIMD16 forms of sample_d and sample_d_c are

not allowed, regardless of the number of parameters sent.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 127

SIMD8 and SIMD16 Messages:

Message Type mnemonic parameters

0 1 2 3 4 5 6 7 8 9 10

00000 sample u v r ai mlod*

00001 sample_b bias u v r ai mlod*

00010 sample_l lod u v r ai

00011 sample_c ref u v r ai mlod*

00100 sample_d u dudx dudy v dvdx dvdy r drdx drdy ai mlod*

00101 sample_b_c ref bias u v r ai

00110 sample_l_c ref lod u v r ai

00111 ld u lod v r

00111 ld † u v lod r

01000 gather4 u v r ai

01001 LOD u v r ai

01010 resinfo lod

01011 sampleinfo

01011 sampleinfo † x

01100 sample+killpix u v r

10000 gather4_c ref u v r ai

10001 gather4_po u v offu offv r

10010 gather4_po_c ref u v offu offv r

10100 sample_d_c ref u dudx dudy v dvdx dvdy r drdx drdy ai

11100 ld2dms_w si mcsl mcsh u v r lod *

10110 sample_min u v

10111 sample_max u v

11101 ld_mcs u v r lod *

11110 ld2dms si mcs u v r lod *

11111 Id2dss ssi u v r lod *

11000 sample_lz u v r ai

11001 sample_c_lz ref u v r ai

11010 ld_lz u v r

SIMD4x2 Messages:

Message Type mnemonic parameters

0 1 2 3 4 5 6 7 8 9 10

00010 sample_l u v r ai lod

00100 sample_d u v r ai dudx dudy dvdx dvdy drdx drdy mlod*

00110 sample_l_c u v r ai ref lod

00111 ld u v r lod

01000 gather4 u v r ai

01010 resinfo lod

01011 sampleinfo

10000 gather4_c u v r ai ref

10001 gather4_po u v r ai offu offv

10010 gather4_po_c u v r ref offu offv

10100 sample_d_c u v r ai dudx dudy dvdx dvdy drdx drdy ref

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 128

11100 ld2dms_w u v r lod * si mcsl mcsh

11101 ld_mcs u v r lod *

11110 ld2dms u v r lod * si mcs

SIMD32/SIMD64 Messages:

Message Type mnemonic Payload Layout Message Length Response Length

00000 sample_unorm Pixel Shader H + 1 8 **

00010 sample_unorm+killpix Pixel Shader H + 1 9 **

00011 sample_8x8 Pixel Shader H + 1 16 *

01000 deinterlace Pixel Shader H + 1 †

01100 sample_unorm Media H + 1 8 **

01010 sample_unorm+killpix Media H + 1 9 **

01011 sample_8x8 Media H + 1 16 *

11111 cache_flush no payload 1 1

* For sample_8x8, phases in the response length are reduced by 4 for each channel that is masked.

** For sample_unorm, phases in the response length are reduced by 2 for each channel that is masked.

† For deinterlace, response length depending on certain state fields. Refer to writeback message

definition for details.

2.13.1.4 Message Types

The behavior of each message type is as follows:

Message Type Description

sample
The surface is sampled using the indicated sampler state. LOD is computed using gradients

between adjacent pixels. One, two, or three parameters may be specified depending on how

many coordinate dimensions the indicated surface type uses. Extra parameters specified are

ignored. Missing parameters are defaulted to 0.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8.

 If the Surface Format of the associated surface is UINT or SINT, the Surface Type cannot
be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

 sample is not supported in SIMD4x2 mode.

 :Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample+killpix The surface is sampled as in the sample message type. An additional register is returned after

the sample results which contains the kill pixel mask. This message type is required to allow the

result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH mode to affect

the final pixel mask.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8.

 If the Surface Format of the associated surface is UINT or SINT, the Surface Type cannot
be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 129

Message Type Description

CLAMP_BORDER or HALF_BORDER.

 sample+killpix is supported only in SIMD8 mode.

 Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample_b
The surface is sampled using the indicated sampler state. LOD is computed using gradients

between adjacent pixels, then the value in the parameter is added to the LOD for each pixel.

The LOD bias delivered in the bias parameter is restricted to a range of [-16.0, +16.0). Values

outside this range produce undefined results.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,

SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8

 If the Surface Format of the associated surface is UINT or SINT, the Surface Type
cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER

 sample_b is not supported in SIMD4x2 mode.

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample_l

sample_lz

The surface is sampled using the indicated sampler state. LOD is not computed, but instead is

taken from the lod parameter.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 If the Surface Format of the associated surface is UINT or SINT, the Surface Type
cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample_c

sample_c_lz

The surface is sampled using the indicated sampler state. All four coordinates must be

specified, however v and r may not be used depending on the indicated surface type. The ai

parameter indicates the array index for a cube surface.The ref parameter specifies the

reference value that is compared against the red channel of the sampled surface, and the texel

is replaced with either white or black depending on the result of the comparison.

The WGF sample_c_lz instruction is implemented by issuing the sample_c message with Force

LOD to Zero enabled in the message header or by issuing the sample_l_c message with the

LOD parameter set to zero.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,

or SURFTYPE_CUBE.

 The Surface Format of the associated surface must be indicated as supporting shadow

mapping as indicated in the surface format table.

 With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR,

MAPFILTER_ANISOTROPIC are allowed even for surface formats that are listed as not
supporting filtering in the surface formats table.

 Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the

message header is not allowed, as it is not possible for the hardware to compute LOD for

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 130

Message Type Description

SIMD4x2 messages. For, sample_c is not supported in SIMD4x2 mode.

 Use of sample_c with DX9 Texture Border Color Mode and either of the following is

undefined:

 any applicable Address Control Mode (depending on Surface Type) is set to
TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

 Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

 Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following
surface formats: I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, I32_FLOAT,
L32_FLOAT, A32_FLOAT.

 Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_b_c
This is a combination of sample_b and sample_c. Both the LOD bias and reference values are

delivered. All restrictions applying to both sample_b and sample_c must be honored.

sample_l_c
This is a combination of sample_l and sample_c. Both the LOD and reference values are

delivered. All restrictions applying to both sample_l and sample_c must be honored. However,

unlike sample_c, sample_l_c is allowed as a SIMD4x2 message.

Programming Notes:

sample_g

sample_d

The surface is sampled using the indicated sampler state. LOD is computed using the gradients

present in the message. The r coordinate and its gradients are required only for surface types

that use the third coordinate. Usage of this message type on cube surfaces assumes that the u,

v, and gradients have already been transformed onto the appropriate face, but still in [-1,+1]

range. The r coordinate contains the faceid, and the r gradients are ignored by hardware.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,

SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8.

 If the Surface Format of the associated surface is UINT or SINT, the Surface Type
cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample_g_c

sample_d_c

This is a combination of sample_g and sample_c. Both the gradients for calculating LOD and

reference values are delivered. All restrictions applying to both sample_g and sample_c must be

honored. However, unlike sample_c, sample_g_c is allowed as a SIMD4x2 message.

resinfo
The surface indicated in the surface state is not sampled. Instead, the width, height, depth, and

MIP count of the surface are returned as indicated in the table below. The format of the returned

data is UINT32 for. The width, height, and depth may be shifted right, per pixel, by the LOD

value provided in the lod parameter to give the dimensions of the specified mip level. The lod

parameter is an unsigned 32-bit integer in this mode (note that sending a signed 32-bit integer

always has the same effect, as negative values are out-of-range when interpreted as unsigned

integers). The Sampler State Pointer and Sampler Index are ignored.

surface type red green blue alpha

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 131

Message Type Description

SURFTYPE1D (Width+1)>>LOD
Surface Array?

Depth+1 : 0

0 MIPCount

SURFTYPE_2D (Width+1)>>LOD (Height+1)>>LOD
:

Surface Array?

Depth+1 : 0

MIPCount

SURFTYPE_3D (Width+1)>>LOD (Height+1)>>LOD (Depth+1)>>LOD MIPCount

SURFTYPE_CUBE (Width+1)>>LOD (Height+1)>>LOD
Depth==0 ? 0 :

Depth+1

 :

Surface Array ?

Depth+1 : 0

MIPCount

SURFTYPE_BUFFER

SURFTYPE_STRBUF

undefined

 Buffer size (from

combined

Depth/Height/Width)

undefined undefined undefined

SURFTYPE_NULL 0 0 0 0

ld

ld2dms

Id2dms_w

ld_mcs

Id2dss

ld_lz

The surface is sampled using a default sampler state, indicated below. The lod parameter

contains the LOD of the mip map to be sampled. If the message doesn’t include an lod

parameter, the message samples from LOD 0. The parameter si contains the sample index,

which is clamped to the number of samples on the surface (supported by some messages on

only). The v and r channel may be ignored depending on the indicated surface type. All

incoming values are unsigned 32-bit integers in this mode. The u, v, and r parameters contain

integer texel addresses on the LOD indicated in the parameter. The Sampler State Pointer and

Sampler Index are ignored.

For these message types, the sampler state is defaulted as follows:

•min, mag, and mip filter modes are “nearest”

•all address control modes are “zero” (a special mode in which any texel off the map or

outside the MIP range of the surface has a value of zero in all channels, except for

surface formats without an alpha channel, which will return a value of one in the alpha

channel)

Errata:Address offset needs to be zero for ld2dms/ld2dss messages

The mcs parameter in the ld2dms message defines the multisample control data and is used

only to sample from a multisampled surface.

The ld_mcs message uses the MCS Base Address and MCS Surface Pitch fields in

SURFACE_STATE to determine the base address and pitch of the surface. Surface Format is

overridden to R8_UINT if Number of Multisamples is 4, or R32_UINT if Number of Multisamples

is 8. This message cannot be used on a non-multisampled surface. Otherwise, ld_mcs behaves

like the ld message. If ld_mcs is issued on a surface with MCS disabled, this message returns

zeros in all channels.

 The ssi parameter in the Id2dss message defines the sample slice that will be sampled from.

Refer to the multisample storage format in the GPU Overview volume for more details.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 132

Message Type Description

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_BUFFER for the ld message.

 The Surface Type of the associated surface must be SURFTYPE_2D for the ld_mcs ,
ld2dms , and Id2dss messages.

 The Surface Format of the associated surface cannot be MONO8.

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1 for the ld message type.

 Errata: Surface formats R32G32B32X32_FLOAT, X32_TYPELESS_G8X24_UINT,
R16G16B16X16_UNORM, R16G16B16X16_FLOAT, X24_TYPELESS_G8_UINT,
L24X8_UNORM, L32_FLOAT, B8G8R8X8_UNORM, B8G8R8X8_UNORM_SRGB,
R8G8B8X8_UNORM, R8G8B8X8_UNORM_SRGB, B10G10R10X2_UNORM,
B5G6R5_UNORM, B5G6R5_UNORM_SRGB, L16_UNORM,
R5G5_SNORM_B6_UNORM, L8_UNORM, L8_UNORM_SRGB, R1_UNORM,
BC4_UNORM (DXT4/5) will return zero in the alpha channel, for out of bound case.

sampleinfo
only: The surface indicated in the surface state is not sampled. Instead, the number of samples

(UINT32) and the sample position palette index (UINT32) for the surface are returned in the red

and alpha channels respectively as UINT32 values. The sample position palette index returned

in alpha is incremented by one from its value in the surface state. The Sampler State Pointer

and Sampler Index are ignored.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_NULL

LOD
only: The surface indicated in the surface state is not sampled. Instead, LOD is computed as if

the surface will be sampled, using the indicated sampler state, and the clamped and unclamped

LOD values are returned in the red and green channels, respectively, in FLOAT32 format. The

blue and alpha channels are undefined, and can be masked to avoid returning them. LOD is

computed using gradients between adjacent pixels. Three parameters are always specified,

with extra parameters not needed for the surface being ignored.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8

 The Surface Format of the associated surface cannot be any UINT or SINT format.

 LOD is not supported in SIMD4x2 mode.

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

gather4

gather4_po

(load4)

The surface is sampled using bilinear filtering, regardless of the filtering mode specified in the

sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples are not

filtered, but instead the four samples are returned directly in the sample’s corresponding four

channels as follows:

upper left sample = alpha channel upper right sample = blue channel

lower left sample = red channel lower right sample = green channel

Two or three parameters may be specified depending on how many coordinate dimensions the

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 133

Message Type Description

indicated surface type uses. Extra parameters specified are ignored. Missing parameters

default to 0.

The gather4_po message has offu and offv parameters, which contain texel-space offsets that

override the U/V Offset fields in the message header. Unlike the message header fields

however, these offsets have a wider range [-32,+31], and can differ per pixel or sample. The

format of the data is 32-bit 2’s complement signed integer, but hardware only interprets the

least significant 6 bits of each value, treating it as a 6-bit 2’s complement signed integer.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po, only SURFTYPE_2D is allowed.

 The Surface Format of the associated surface cannot be MONO8

 The Surface Format of the associated surface cannot be any UINT or SINT format.

 The channel selected is determined by the Gather4 Source Channel Select field in the
message header.

 Mip Mode Filter must be set to MIPFILTER_NONE

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

 Use of gather4 or gather4_po with DX9 Border Color Mode and either of the following is
underfined:

o any applicable Address Control Mode (depending on Surface Type) is set to
TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

o Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

gather4_c

gather4_po_c

only: The surface is sampled using bilinear filtering, regardless of the filtering mode specified in

the sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples are

not filtered, but instead the four samples are returned, after being compared with the ref

paramater as in the sample_c message. Each texel is replaced with either white or block

depending on the result of the comparison. The four samples are returned in the sample’s

corresponding four channels in the same mapping as the gather4 message. The offu and offv

parameters in the gather4_po_c message cause offset override behavior as described in the

gather4 message.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po_c, only SURFTYPE_2D is
allowed.

 The Surface Format of the associated surface must be one of the following:
R32_FLOAT_X8X24_TYPELESS, R32_FLOAT, R24_UNORM_X8_TYPELESS,
R16_UNORM.

 The channel selected is determined by the Gather4 Source Channel Select field in the
message header.

 Mip Mode Filter must be set to MIPFILTER_NONE

 Use of gather4_c or gather4_po_c with DX9 Border Color Mode and either of the
following is underfined:

o Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

o any applicable Address Control Mode (depending on Surface Type) is set to

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 134

Message Type Description

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER

 Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample_unorm
only: The surface is sampled using the indicated sampler state. 32 contiguous pixels in a 8-wide

by 4-high arrangement are sampled. The U and V addresses for the upper left pixel is delivered

in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y) relative to

the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel are computed

as follows:

U(x,y) = U(0,0) + DeltaU * x

V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D

 The Surface Format of the associated surface must be UNORM with <= 8 bits per channel

 The MIP Count, Depth, Surface Min LOD, and Min Array Element of the associated surface
must be 0

 The Min and Mag Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR

 The Mip Mode Filter must be MIPFILTER_NONE

 The TCX and TCY Address Control Mode cannot be

TEXCOORDMODE_CLAMP_BORDER

TEXCOORDMODE_HALF_BORDER

TEXCOORDMODE_MIRROR

TEXCOORDMODE_MIRROR_ONCE

TEXCOORDMODE_WRAP

 DeltaU * Width of the associated surface must be less than or equal to 3.0

 DeltaV * Height of the associated surface must be less than or equal to 3.0

 Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample_unorm_R

G

+killpix

sample_unorm

+killpix

only: This message is identical to the sample_unorm message except it returns a kill pixel mask

in addition to the selected channels in the writeback message. This message type is required to

allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH

mode to affect the final pixel mask. All restrictions of the sample_unorm message apply to this

message also.

sample_8x8
only:The surface is sampled using an optional 8x8 filter followed by an optional image

enhancement filter, using state defined in SAMPLER_STATE and SAMPLER_8x8_STATE. The

input consists of 64 contiguous pixels in an 16-wide by 4-high arrangement. The address

control mode behaves as clamp mode. The U and V addresses for the upper left pixel are

delivered in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y)

relative to the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel are

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 135

Message Type Description

computed as follows:

U(x,y) = U(0,0) + DeltaU * x + U_2nd_Derivative * x * (x - 1)/2

V(x,y) = V(0,0) + DeltaV * y + V_2nd_Derivative * y * (y - 1)/2

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D

 The Surface Format of the associated surface must be UNORM with <= 10 bits per
channel

 DeltaV * Height of the associated surface must be less than 16.0

 Map Width must be >= 4

 :Errata IEF_OFF YUV |U_2nd_Derivative| < 0.02/MapWidth

 :Errata IEF_OFF RGB |U_2nd_Derivative| < 0.05/MapWidth

 :Errata for IEF_OFF set DeltaU = DeltaU + 2x U_2nd_Derivative

deinterlace
to The surface is deinterlaced and/or denoised, using state defined in SAMPLER_STATE. The

U and V addresses for the upper left pixel are delivered in this message.

Programming Notes:

Programming Notes:

 For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters that
have already been divided by the absolute value of the parameter (u, v, or r) with the largest
absolute value.

2.13.1.5 Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except

the ‘mcs’, ‘offu’, and ‘offv’ parameters. Usage of the u, v, and r parameters is as follows based on

Surface Type. Normalized values range from [0,1] across the surface, with values outside the surface

behaving as specified by the Address Control Mode in that dimension. Unnormalized values range from

[0,n-1] across the surface, where n is the size of the surface in that dimension, with values outside the

surface being clamped to the surface.

Surface Type u v r ai

SURFTYPE1D normalized ‘x’

coordinate

unnormalized array

index

ignored ignored

SURFTYPE_2D normalized ‘x’

coordinate

normalized ‘y’

coordinate

unnormalized array

index

ignored

SURFTYPE_3D normalized ‘x’

coordinate

normalized ‘y’

coordinate

normalized ‘z’

coordinate

ignored

SURFTYPE_CUBE normalized ‘x’

coordinate

normalized ‘y’

coordinate

normalized ‘z’

coordinate

unnormalized array

index

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 136

mcs parameter

The ‘mcs’ parameter delivers the multisample control data. The format of this parameter is always a 32-bit

unsigned integer. Refer to the section titled “Multisampled Surface Behavior” for details on this parameter.

Ld* messages

For the ld message types, all parameters are 32-bit signed integers, except the ‘mcs’ parameter. Usage

of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range from [0,n-

1] across the surface, where n is the size of the surface in that dimension. Input of any value outside of

the range returns zero.

Surface Type u v r

SURFTYPE1D unnormalized ‘x’ coordinate unnormalized array index ignored

SURFTYPE_2D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized array index

SURFTYPE_3D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized ‘z’ coordinate

SURFTYPE_BUFFER unnormalized ‘x’ coordinate ignored ignored

2.13.1.6 SIMD16 Payload

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities

(examples of an entity are vertex and pixel). The number of parameters required to sample the surface

depends on the state that the sampler/surface is in. Each parameter takes two message registers, with 8

entities, each a 32-bit floating point value, being placed in each register. Each parameter always takes a

consistent position in the input payload. The length field can be used to send a shorter message, but

intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map

using “sample_b” needs only u, v, and bias, but must send the r parameter as well.

DWord Bit Description

M1.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is given

in the table in section Payload Parameter Definition.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0
Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0
Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0
Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0
Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0
Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0
Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0
Subspan 0, Pixel 0 (upper left) Parameter 0

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 137

DWord Bit Description

M2.7 31:0
Subspan 3, Pixel 3 (lower right) Parameter 0

M2.6 31:0
Subspan 3, Pixel 2 (lower left) Parameter 0

M2.5 31:0
Subspan 3, Pixel 1 (upper right) Parameter 0

M2.4 31:0
Subspan 3, Pixel 0 (upper left) Parameter 0

M2.3 31:0
Subspan 2, Pixel 3 (lower right) Parameter 0

M2.2 31:0
Subspan 2, Pixel 2 (lower left) Parameter 0

M2.1 31:0
Subspan 2, Pixel 1 (upper right) Parameter 0

M2.0 31:0
Subspan 2, Pixel 0 (upper left) Parameter 0

M3 –

Mn

 Repeat packets 1 and 2 to cover all required parameters

2.13.1.7 SIMD8 Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each

message contains sample requests for just 8 pixels.

DWord Bit Description

M1.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is given

in the table in section Payload Parameter Definition.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0
Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0
Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0
Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0
Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0
Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0
Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0
Subspan 0, Pixel 0 (upper left) Parameter 0

M2 –

Mn

 Repeat packet 1 to cover all required parameters

2.13.1.8 SIMD8D Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each

message contains sample requests for just 8 pixels. The “u” and “v” parameters are delivered in double

precision floating point, and thus it takes two message phases to deliver 8 values. These are labeled in

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 138

the Payload Parameter Definition table as “u0”, “u1”, “v0”, and “v1”. The number after the u/v indicate

which subspan is contained in that parameter.

Parameters “u0”, “u1”, “v0”, or “v1”:

DWord Bit Description

Mn.7 31:0
Pixel 3 (lower right) Parameter n – upper 32 bits

Specifies the value of the pixel’s parameter n. The actual parameter that maps to parameter n is given

in the table in section Payload Parameter Definition.

Format = Double precision IEEE Float, upper 32 bits

Mn.6 31:0
Pixel 3 (lower right) Parameter n – lower 32 bits

Format = Double precision IEEE Float, lower 32 bits

Mn.5 31:0 Pixel 2 (lower left) Parameter n – upper 32 bits

Mn.4 31:0 Pixel 2 (lower left) Parameter n – lower 32 bits

Mn.3 31:0 Pixel 1 (upper right) Parameter n – upper 32 bits

Mn.2 31:0 Pixel 1 (upper right) Parameter n – lower 32 bits

Mn.1 31:0 Pixel 0 (upper left) Parameter n – upper 32 bits

Mn.0 31:0 Pixel 0 (upper left) Parameter n – lower 32 bits

All other parameters:

DWord Bit Description

Mn.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter n

Specifies the value of the pixel’s parameter n. The actual parameter that maps to parameter n is given

in the table in section Payload Parameter Definition.

Format = IEEE Float

Mn.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter n

Mn.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter n

Mn.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter n

Mn.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter n

Mn.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter n

Mn.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter n

Mn.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter n

2.13.1.9 SIMD4x2 Payload

DWord Bit Description

M1.7 31:0
Sample 1 Parameter 3

Specifies the value of the pixel’s parameter 3. The actual parameter that maps to parameter 3 is given in

the table in section Payload Parameter Definition.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0
Sample 1 Parameter 2

M1.5 31:0
Sample 1 Parameter 1

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 139

DWord Bit Description

M1.4 31:0
Sample 1 Parameter 0

M1.3 31:0
Sample 0 Parameter 3

M1.2 31:0
Sample 0 Parameter 2

M1.1 31:0
Sample 0 Parameter 1

M1.0 31:0
Sample 0 Parameter 0

M2 Parameters 4-7 if present

M3 Parameters 8-11 if present

2.13.1.10 SIMD32/64 Payload

2.13.1.10.1 Pixel Shader

This position of Delta U/V in the pixel shader payload layout is to allow the register delivered in the pixel

shader dispatch containing the coefficients for the texture coordinates to be left in their original position

(Delta U = Cxs, Delta V = Cyt). The values for U and V are computed in the pixel shader into the unused

positions in this register.

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0
Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0
Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8

message type.

 This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.4
31:0 Ignored

M1.3 31:0 Ignored

M1.2 31:0
Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

M1.1 31:0
U 2nd Derivative

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 140

DWord Bit Description

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

 This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

Ignored

M1.0 31:0
Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

 This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

2.13.1.10.2 Media

DWord Bits Description

M1.7 31:0
Group ID Number

Used to group messages for reorder for sample_8x8 messages. All messages with the same Group ID

must have the following in common: SURFACE_STATE, SAMPLER_STATE, destination register on

send instruction, M0, and M1 except for Horizontal and Vertical Block Number.

M1.6 31:0
U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

 This field is ignored for messages other than sample_8x8.

 (64 – (2*du))/35 >= ddu >= -du/18

Format = IEEE_Float in normalized space.

M1.5
31:0

Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8

message type.

 This field is ignored for the deinterlace message type.

 Negative Delta V are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.4 31:0
Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 141

DWord Bits Description

 Delta U multiplied by Width in SURFACE_STATE must be less than 16 for the sample_8x8

message type.

 This field is ignored for the deinterlace message type.

 Negative Delta U are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.3 31:0
Pixel 0 V Address

Format: sample_unorm* and sample_8x8: IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,2046])

 Specifies the address for the pixel at the top left of the group and not the top of the message block sent

in.

M1.2 31:0
Pixel 0 U Address

Format: sample_unorm* and sample_8x8: IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,4095])

Specifies the address for the pixel at the top left of the group and not the top of the message block sent

in.

WA for Sample_8x8 messages only:

//Only for YUV packed surfaces, NV12 and Y-channel only for Planar surfaces

if (((int)(u_left*width + 5.0/256) > (int)(uleft*width))

{

modified_u_coord = u_coord – 5.0/(256*width); //floating point

}

else if(((int)(u_left*width + 255.0/256) == (int)(u_left*width))

{

modified_u_coord = u_coord + 1.0/(256*width); //floating point

}

Else{

modified_u_coord = u_coord;

}

Where u_left = u – 2*du + 3*ddu for IEF On

And u_left = u for IEF Off case

u_coord is the intended Pixel 0 U address and Modified_u_coord is what is sent in this field.

M1.1 31:0
Vertical Block Number

Specifies the vertical block offset for the 8x8 block being sent for the sample_8x8 message. This will be

equal to the vertical pixel offset from the given address pixel 0 V address divided by 8.

Format: U9

M1.0 31:0 Ignored

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 142

2.13.2 Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message

generates a corresponding writeback message of the same type (SIMD16, SIMD8, SIMD4x2, or

SIMD32/64).

2.13.2.1 SIMD16

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is

determined by the write channel mask received in the corresponding input message. Each asserted write

channel mask results in both destination registers of the corresponding channel being skipped in the

writeback message, and all channels with higher numbered registers being dropped down to fill in the

space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to

regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination

register is determined by the execution mask on the “send” instruction.

DWord Bit Description

W0.7 31:0
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format depends on the

Data Return Format programmed for the surface being sampled.

W0.6 31:0
Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0
Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0
Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0
Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0
Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0
Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0
Supspan 0, Pixel 0 (upper left) Red

W1.7 31:0
Subspan 3, Pixel 3 (lower right) Red

W1.6 31:0
Subspan 3, Pixel 2 (lower left) Red

W1.5 31:0
Subspan 3, Pixel 1 (upper right) Red

W1.4 31:0
Supspan 3, Pixel 0 (upper left) Red

W1.3 31:0
Subspan 2, Pixel 3 (lower right) Red

W1.2 31:0
Subspan 2, Pixel 2 (lower left) Red

W1.1 31:0
Subspan 2, Pixel 1 (upper right) Red

W1.0 31:0
Supspan 2, Pixel 0 (upper left) Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 143

DWord Bit Description

W2
Subspans 1 and 0 of Green: See W0 definition for pixel locations

W3
Subspans 3 and 2 of Green: See W1 definition for pixel locations

W4
Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W5
Subspans 3 and 2 of Blue: See W1 definition for pixel locations

W6
Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W7
Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

W8.7:1 Reserved (not written): W8 is only delivered when Pixel Fault Mask Enable is enabled.

W8.0 31:16 Reserved: always written as 0xffff

15:0 Pixel Fault Mask: This field has the bit for all pixels set to 1 except those pixels in which a page fault

has occurred.

2.13.2.2 SIMD8/SIMD8D

This writeback message consists of four registers, or five in the case of sample+killpix. As opposed to the

SIMD16 writeback message, channels that are masked in the write channel mask are not skipped, all four

channels are always returned. The masked channels, however, are not overwritten in the destination

register.

For the sample+killpix message types, an additional register (W4) is included after the last channel

register.

DWord Bits Description

W0.7 31:0
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format depends on the

Data Return Format programmed for the surface being sampled.

W0.6 31:0
Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0
Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0
Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0
Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0
Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0
Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0
Supspan 0, Pixel 0 (upper left) Red

W1
Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2
Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3
Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 144

DWord Bits Description

W4.7:1
Reserved (not written) : This W4 is only delivered for the sample+killpix message type

W4.0 31:16
Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the R0 header in

the pixel shader thread.

 15:0
Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been killed

as a result of chroma key with kill pixel mode. Since the SIMD8 message applies to only 8 pixels, only

the low 8 bits within this field are used. The high 8 bits are always set to 1.

 Errata: Active Pixel Mask needs to be ORed with the inverse of the EMask before it is ANDed with the

DMask. Also if the sample instruction is within a conditional then the active pixel mask will be

overwritten with the partial mask on each different sample instruction so this will have to be done for

each instance of the sample instruction not just as the end.

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:8 Reserved: always written as 0xffffff

7:0 Pixel Fault Mask: This field has the bit for all pixels set to 1 except those pixels in which a page fault

has occurred.

2.13.2.3 SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing all four channels

of each of the two “pixels” (called “samples” here, as they are not really pixels) of data. The write channel

mask bits as well as the execution mask on the “send” instruction are used to determine which of the

channels in the destination register are overwritten. If any of the four execution mask bits for a sample is

asserted, that sample is considered to be active. The active channels in the write channel mask will be

written in the destination register for that sample. If the sample is inactive (all four execution mask bits

deasserted), none of the channels for that sample will be written in the destination register.

DWord Bit Description

W0.7 31:0
Sample 1 Alpha: Specifies the value of the pixel’s alpha channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format depends on the

Data Return Format programmed for the surface being sampled.

W0.6 31:0
Sample 1 Blue

W0.5 31:0
Sample 1 Green

W0.4 31:0
Sample 1 Red

W0.3 31:0
Sample 0 Alpha

W0.2 31:0
Sample 0 Blue

W0.1 31:0
Sample 0 Green

W0.0 31:0
Sample 0 Red

W1.7:1 Reserved (not written) : W4 is only delivered when Pixel Fault Mask Enable is enabled.

W1.0 31:2 Reserved: always written as 0x3fffffff

1:0 Pixel Fault Mask: This field has the bit for all samples set to 1 except those pixels in which a page fault

has occurred.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 145

2.13.2.4 SIMD32/64

2.13.2.4.1 Sample_unorm*

Pixels are numbered as follows:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Which registers are returned is determined by the write channel mask received in the corresponding input

message. Each asserted write channel mask results in both destination registers of the corresponding

channel being skipped in the writeback message, and all channels with higher numbered registers being

dropped down to fill in the space occupied by the masked channel. For example, if only red and alpha are

enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3 (using 16 bit Full mode as

an example).

“16 bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:16
Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0
Pixel 14 Red

W0.6
Pixel 13 & 12 Red

W0.5
Pixel 11 & 10 Red

W0.4
Pixel 9 & 8 Red

W0.3
Pixel 7 & 6 Red

W0.2
Pixel 5 & 4 Red

W0.1
Pixel 3 & 2 Red

W0.0
Pixel 1 & 0 Red

W1.7
Pixel 31 & 30 Red

W1.6
Pixel 29 & 28 Red

W1.5
Pixel 27 & 26 Red

W1.4
Pixel 25 & 24 Red

W1.3
Pixel 23 & 22 Red

W1.2
Pixel 21 & 20 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 146

DWord Bit Description

W1.1
Pixel 19 & 18 Red

W1.0
Pixel 17 & 16 Red

W2
Pixels 15:0 Green

W3
Pixels 31:16 Green

W4
Pixels 15:0 Blue

W5
Pixels 31:16 Blue

W6
Pixels 15:0 Alpha

W7
Pixels 31:16 Alpha

“16 Bit Chrominance Downsampled” Output Format Control Mode

In this mode the odd pixel red & blue channels are not included.

DWord Bit Description

W0.7 31:16
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0
Pixel 28 Red

W0.6
Pixel 26 & 24 Red

W0.5
Pixel 22 & 20 Red

W0.4
Pixel 18 & 16 Red

W0.3
Pixel 14 & 12 Red

W0.2
Pixel 10 & 8 Red

W0.1
Pixel 6 & 4 Red

W0.0
Pixel 2 & 0 Red

W1.7 31:16
Pixel 15 Green

 15:0
Pixel 14 Green

W1.6
Pixel 13 & 12 Green

W1.5
Pixel 11 & 10 Green

W1.4
Pixel 9 & 8 Green

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 147

DWord Bit Description

W1.3
Pixel 7 & 6 Green

W1.2
Pixel 5 & 4 Green

W1.1
Pixel 3 & 2 Green

W1.0
Pixel 1 & 0 Green

W2.7
Pixel 31 & 30 Green

W2.6
Pixel 29 & 28 Green

W2.5
Pixel 27 & 26 Green

W2.4
Pixel 25 & 24 Green

W2.3
Pixel 23 & 22 Green

W2.2
Pixel 21 & 20 Green

W2.1
Pixel 19 & 18 Green

W2.0
Pixel 17 & 16 Green

W3.7 31:16
Pixel 30 Blue

 15:0
Pixel 28 Blue

W3.6
Pixel 26 & 24 Blue

W3.5
Pixel 22 & 20 Blue

W3.4
Pixel 18 & 16 Blue

W3.3
Pixel 14 & 12 Blue

W3.2
Pixel 10 & 8 Blue

W3.1
Pixel 6 & 4 Blue

W3.0
Pixel 2 & 0 Blue

W4.7 31:16
Pixel 15 Alpha

 15:0
Pixel 14 Alpha

W4.6
Pixel 13 & 12 Alpha

W4.5
Pixel 11 & 10 Alpha

W4.4
Pixel 9 & 8 Alpha

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 148

DWord Bit Description

W4.3
Pixel 7 & 6 Alpha

W4.2
Pixel 5 & 4 Alpha

W4.1
Pixel 3 & 2 Alpha

W4.0
Pixel 1 & 0 Alpha

W5.7
Pixel 31 & 30 Alpha

W5.6
Pixel 29 & 28 Alpha

W5.5
Pixel 27 & 26 Alpha

W5.4
Pixel 25 & 24 Alpha

W5.3
Pixel 23 & 22 Alpha

W5.2
Pixel 21 & 20 Alpha

W5.1
Pixel 19 & 18 Alpha

W5.0
Pixel 17 & 16 Alpha

“8 Bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:24
Pixel 31 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16
Pixel 30 Red

 15:8
Pixel 29 Red

 7:0
Pixel 28 Red

W0.6
Pixel 27:24 Red

W0.5
Pixel 23:20 Red

W0.4
Pixel 19:16 Red

W0.3
Pixel 15:12 Red

W0.2
Pixel 11:8 Red

W0.1
Pixel 7:4 Red

W0.0
Pixel 3:0 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 149

DWord Bit Description

W1
Pixels 31:0 Green

W2
Pixels 31:0 Blue

W3
Pixels 31:0 Alpha

“8 Bit Chrominance Downsampled” Output Format Control Mode

If either red or blue channel (but not both) are masked, the W0 register is included in the payload but the

masked channel is not written to the GRF. If both are masked, W0 is not included in the payload

(reducing the response length by one).

DWord Bit Description

W0.7 31:24
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 23:16
Pixel 28 Red

 15:8
Pixel 26 Red

 7:0
Pixel 24 Red

W0.6
Pixel 22, 20, 18, 16 Red

W0.5
Pixel 14, 12, 10, 8 Red

W0.4
Pixel 6, 4, 2, 0 Red

W0.3
Pixel 30, 28, 26, 24 Blue

W0.2
Pixel 22, 20, 18, 16 Blue

W0.1
Pixel 14, 12, 10, 8 Blue

W0.0
Pixel 6, 4, 2, 0 Blue

W1.7 31:24
Pixel 31 Green

 23:16
Pixel 30 Green

 15:8
Pixel 29 Green

 7:0
Pixel 28 Green

W1.6
Pixel 27:24 Green

W1.5
Pixel 23:20 Green

W1.4
Pixel 19:16 Green

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 150

DWord Bit Description

W1.3
Pixel 15:12 Green

W1.2
Pixel 11:8 Green

W1.1
Pixel 7:4 Green

W1.0
Pixel 3:0 Green

W2.7
Pixel 31:28 Alpha

W2.6
Pixel 27:24 Alpha

W2.5
Pixel 23:20 Alpha

W2.4
Pixel 19:16 Alpha

W2.3
Pixel 15:12 Alpha

W2.2
Pixel 11:8 Alpha

W2.1
Pixel 7:4 Alpha

W2.0
Pixel 3:0 Alpha

Additional Writeback Phase for sample_unorm+killpix

For the sample_unorm+killpix messages, an additional writeback phase is returned. The value of “n”

depends on which channels are enabled for return and the Output Format Control Mode, this register

will immediately follow the first part of the writeback message.

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0
Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been killed

as a result of chroma key with kill pixel mode.

The bits in this mask correspond to the pixels as follows and they are listed from upper left (MSB) lower

right LSB:

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

2.13.2.5 Sample_8x8 Writeback Messages

2.13.2.5.1 Sample_8x8 Writeback Messages

The writeback message for sample_8x8 consists of up to 16 destination registers. Which registers are

returned is determined by the write channel mask received in the corresponding input message. Each

asserted write channel mask results in all four destination registers of the corresponding channel being

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 151

skipped in the writeback message, and all channels with higher numbered registers being dropped down

to fill in the space occupied by the masked channel.

Pixels are numbered as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

“16 bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:16
Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0
Pixel 14 Red

W0.6
Pixel 13 & 12 Red

W0.5
Pixel 11 & 10 Red

W0.4
Pixel 9 & 8 Red

W0.3
Pixel 7 & 6 Red

W0.2
Pixel 5 & 4 Red

W0.1
Pixel 3 & 2 Red

W0.0
Pixel 1 & 0 Red

W1
Pixel 31:16 Red

W2
Pixels 47:32 Red

W3
Pixels 63:33 Red

W4
Pixels 15:0 Green

W5
Pixels 31:16 Green

W6
Pixels 47:32 Green

W7
Pixels 63:33 Green

W8
Pixels 15:0 Blue

W9
Pixels 31:16 Blue

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 152

W10
Pixels 47:32 Blue

W11
Pixels 63:33 Blue

W12
Pixels 15:0 Alpha

W13
Pixels 31:16 Alpha

W14
Pixels 47:32 Alpha

W15
Pixels 63:33 Alpha

“16 Bit Chrominance Downsampled” Output Format Control Mode

In this mode the odd pixel red & blue channels are not included.

DWord Bit Description

W0.7 31:16
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0
Pixel 28 Red

W0.6
Pixel 26 & 24 Red

W0.5
Pixel 22 & 20 Red

W0.4
Pixel 18 & 16 Red

W0.3
Pixel 14 & 12 Red

W0.2
Pixel 10 & 8 Red

W0.1
Pixel 6 & 4 Red

W0.0
Pixel 2 & 0 Red

W1.7
Pixel 62 & 60 Red

W1.6
Pixel 58 & 56 Red

W1.5
Pixel 54 & 52 Red

W1.4
Pixel 50 & 48 Red

W1.3
Pixel 46 & 44 Red

W1.2
Pixel 42 & 40 Red

W1.1
Pixel 38 & 36 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 153

W1.0
Pixel 34 & 32 Red

W2.7 31:16
Pixel 15 Green

 15:0
Pixel 14 Green

W2.6
Pixel 13 & 12 Green

W2.5
Pixel 11 & 10 Green

W2.4
Pixel 9 & 8 Green

W2.3
Pixel 7 & 6 Green

W2.2
Pixel 5 & 4 Green

W2.1
Pixel 3 & 2 Green

W2.0
Pixel 1 & 0 Green

W3
Pixel 31:16 Green

W4
Pixel 47:32 Green

W5
Pixel 63:48 Green

W6.7 31:16
Pixel 30 Blue

 15:0
Pixel 28 Blue

W6.6
Pixel 26 & 24 Blue

W6.5
Pixel 22 & 20 Blue

W6.4
Pixel 18 & 16 Blue

W6.3
Pixel 14 & 12 Blue

W6.2
Pixel 10 & 8 Blue

W6.1
Pixel 6 & 4 Blue

W6.0
Pixel 2 & 0 Blue

W7.7
Pixel 62 & 60 Blue

W7.6
Pixel 58 & 56 Blue

W7.5
Pixel 54 & 52 Blue

W7.4
Pixel 50 & 48 Blue

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 154

W7.3
Pixel 46 & 44 Blue

W7.2
Pixel 42 & 40 Blue

W7.1
Pixel 38 & 36 Blue

W7.0
Pixel 34 & 32 Blue

W8.7 31:16
Pixel 15 Alpha

 15:0
Pixel 14 Alpha

W8.6
Pixel 13 & 12 Alpha

W8.5
Pixel 11 & 10 Alpha

W8.4
Pixel 9 & 8 Alpha

W8.3
Pixel 7 & 6 Alpha

W8.2
Pixel 5 & 4 Alpha

W8.1
Pixel 3 & 2 Alpha

W8.0
Pixel 1 & 0 Alpha

W9
Pixel 31:16 Alpha

W10
Pixel 47:32 Alpha

W11
Pixel 63:48 Alpha

“8 Bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:24
Pixel 31 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16
Pixel 30 Red

 15:8
Pixel 29 Red

 7:0
Pixel 28 Red

W0.6
Pixel 27:24 Red

W0.5
Pixel 23:20 Red

W0.4
Pixel 19:16 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 155

W0.3
Pixel 15:12 Red

W0.2
Pixel 11:8 Red

W0.1
Pixel 7:4 Red

W0.0
Pixel 3:0 Red

W1.7
Pixel 63:60 Red

W1.6
Pixel 59:56 Red

W1.5
Pixel 55:52 Red

W1.4
Pixel 51:48 Red

W1.3
Pixel 47:44 Red

W1.2
Pixel 43:40 Red

W1.1
Pixel 39:36 Red

W1.0
Pixel 35:52 Red

W2
Pixels 31:0 Green

W3
Pixels 63:32 Green

W4
Pixels 31:0 Blue

W5
Pixels 63:32 Blue

W6
Pixels 31:0 Alpha

W7
Pixels 63:32 Alpha

“8 Bit Chrominance Downsampled” Output Format Control Mode

DWord Bit Description

W0.7 31:24
Pixel 62 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16
Pixel 60 Red

 15:8
Pixel 58 Red

 7:0
Pixel 56 Red

W0.6
Pixel 54, 52, 50, 48 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 156

W0.5
Pixel 46, 44, 42, 40 Red

W0.4
Pixel 38, 36, 34, 32 Red

W0.3
Pixel 30, 28, 26, 24 Red

W0.2
Pixel 22, 20, 18, 16 Red

W0.1
Pixel 14, 12, 10, 8 Red

W0.0
Pixel 6, 4, 2, 0 Red

W1.7
31:24

Pixel 31 Green

23:16
Pixel 30 Green

15:8
Pixel 29 Green

7:0
Pixel 28 Green

W1.6
Pixel 27:24 Green

W1.5
Pixel 23:20 Green

W1.4
Pixel 19:16 Green

W1.3
Pixel 15:12 Green

W1.2
Pixel 11:8 Green

W1.1
Pixel 7:4 Green

W1.0
Pixel 3:0 Green

W2
Pixel 63:32 Green

W3.7 31:24
Pixel 62 Blue

 23:16
Pixel 60 Blue

 15:8
Pixel 58 Blue

 7:0
Pixel 56 Blue

W3.6
Pixel 54, 52, 50, 48 Blue

W3.5
Pixel 46, 44, 42, 40 Blue

W3.4
Pixel 38, 36, 34, 32 Blue

W3.3
Pixel 30, 28, 26, 24 Blue

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 157

W3.2
Pixel 22, 20, 18, 16 Blue

W3.1
Pixel 14, 12, 10, 8 Blue

W3.0
Pixel 6, 4, 2, 0 Blue

W4.7 31:24
Pixel 31 Alpha

 23:16
Pixel 30 Alpha

 15:8
Pixel 29 Alpha

 7:0
Pixel 28 Alpha

W4.6
Pixel 27:24 Alpha

W4.5
Pixel 23:20 Alpha

W4.4
Pixel 19:16 Alpha

W4.3
Pixel 15:12 Alpha

W4.2
Pixel 11:8 Alpha

W4.1
Pixel 7:4 Alpha

W4.0
Pixel 3:0 Alpha

W5
Pixel 63:32 Alpha

2.13.2.6 Deinterlace

The deinterlace message has three different writeback messages, depending on the DI Enable and DI

Partial fields of SAMPLER_STATE.

Pixels are indicated by an (X, Y) pair. The following tables indicate the format of common Luma,

Chroma, STMM, and Block Noise Estimate/Denoise History blocks defined as portions of the specific

writeback messages defined in the following sections. Each block defines one register.

Luma block definition:

DWord Bit Description

Wn.7 31:24
Luma (15,1)

Format = U8

 23:16
Luma (14,1)

 15:8
Luma (13,1)

 7:0
Luma (12,1)

Wn.6 31:0
Luma (11:8,1)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 158

DWord Bit Description

Wn.5 31:0
Luma (7:4,1)

Wn.4 31:0
Luma (3:0,1)

Wn.3 31:0
Luma (15:12,0)

Wn.2 31:0
Luma (11:8,0)

Wn.1 31:0
Luma (7:4,0)

Wn.0 31:0
Luma (3:0,0)

Chroma block definition:

DWord Bit Description

Wp.7 31:24
Cb (14,1)

Format = U8

 23:16
Cr (14,1)

Format = U8

 15:8
Cb (12,1)

 7:0
Cr (12,1)

Wp.6 31:0
Cr & Cb (10:8,1)

Wp.5 31:0
Cr & Cb (6:4,1)

Wp.4 31:0
Cr & Cb (2:0,1)

Wp.3 31:0
Cr & Cb (14:12,0)

Wp.2 31:0
Cr & Cb (10:8,0)

Wp.1 31:0
Cr & Cb (6:4,0)

Wp.0 31:0
Cr & Cb (2:0,0)

STMM block definition:

DWord Bit Description

Wr.7 31:24
STMM (14,3)

Format = U8

 23:16
STMM (12,3)

 15:8
STMM (10,3)

 7:0
STMM (8,3)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 159

DWord Bit Description

Wr.6 31:0
STMM (6:0,3)

Wr.5 31:0
STMM (14:8,2)

Wr.4 31:0
STMM (6:0,2)

Wr.3 31:0
STMM (14:8,1)

Wr.2 31:0
STMM (6:0,1)

Wr.1 31:0
STMM (14:8,0)

Wr.0 31:0
STMM (6:0,0)

Block Noise Estimate/Denoise History block definition: [prior to Gen6]

DWord Bit Description

Wq.7 31:0 Reserved : MBZ

Wq.6 31:0 Reserved : MBZ

Wq.5 31:0 Reserved : MBZ

Wq.4 31:0 Reserved : MBZ

Wq.3 31:0 Reserved : MBZ

Wq.2 31:0 Reserved : MBZ

Wq.1 31:8 Reserved : MBZ

Wq.1 7:0
Block Noise Estimate

Format = U8

Wq.0 31:24
Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16
Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8
Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0
Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

Block Noise Estimate/Denoise History block definition: [Gen6]

Wq.7 31:16
Y[15:0] - For a 1080 screen & 4 high blocks we need 9-bits

Wq.7 15:0
X[15:0] – for a 2048 screen & 16 wide block we need 7-bits

Wq.6
31:24

STAD0 – Sum in time of absolute differences for 16x8 (DN only) or 16x4 (DN/DI)

Format = U8

Wq.6
23:16

STAD1

Wq.6 15:8
STAD2

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 160

Wq.6 7:0
STAD3

Wq.5
31:24

SHCM0 – Sum horizontaly of absolute differences

Wq.5
23:16

SHCM1

Wq.5 15:8
SHCM2

Wq.5 7:0
SHCM3

Wq.4
31:24

SVCM0 – Sum vertically of absolute differences.

Wq.4
23:16

SVCH1

Wq.4
15:8

SVCH2

Wq.4
7:0

SVCH3

Wq.3 31:16 FMD Variance[0] - Diff_cTpT – difference in top fields of current and previous frame

Format = U16

Wq.3 15:0 FMD Variance[1] – Diff_cBpB – difference in bottom field of current and previous frame

Wq.2 31:16 FMD Variance[2] – Diff_cTcB – difference between top and bottom field in current frame.

Wq.2
15:0 FMD Variance[3] – Diff_cTpB – difference between current top and previous bottom

Wq.1 31:16 FMD Variance[4] – Diff_cBpT – difference between current bottom and previous top.

Wq.1 15:8
FMD Variance[7] – sum of pixels that are moving (different above a threshold)

Format = U8

Wq.1

Wq.0

Wq.0

Wq.0

Wq.0

Block Noise Estimate/Denoise History block definition: [Gen6 DI enabled]

DWord Bit Description

Wq.7 31:16 Y[15:0] – Location of 16x4

Wq.7 15:0 X[15:0] - Location of 16x4

Wq.6 31:24
STAD0 - Sum in time of absolute differences for 4x4

Format = U8 [STAD values are 0 if DN is disabled]

Wq.6 23:16 STAD1

Wq.6 15:8 STAD2

Wq.6 7:0 STAD3 (Ignore when both DN & DI are enabled)

Wq.5 31:24
SHCM0 - Sum horizontally of absolute differences for 4x4

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 161

 Format = U8 [SHCM values are 0 if DN is disabled]

Wq.5 23:16 SHCM1

Wq.5 15:8 SHCM2

Wq.5 7:0 SHCM3 (Ignore when both DN & DI are enabled)

Wq.4 31:24
SVCM0 Sum Vertically of absolute differences for 4x4

Format = U8 [SVCM values are 0 if DN is disabled]

Wq.4 23:16 SVCM1

Wq.4 15:8 SVCM2

Wq.4 7:0 SVCM3 (Ignore when both DN & DI are enabled)

Wq.3 31:16
Diff_cTpT - difference in top fields of current and previous frame

Format = U16

Wq.3 15:0 Diff_cBpB - difference in bottom field of current and previous frame

Wq.2 31:16 Diff_cTcB - difference between top and bottom field in current frame.

Wq.2 15:0 Diff_cTpB - difference between current top and previous bottom

Wq.1 31:16 Diff_cBpT - difference between current bottom and previous top.

Wq.1 15:8
Motion_Count - number of pixels that are moving (different above a threshold)

Format = U8

Wq.1 7:0
Block Noise Estimate for 16x4 (Valid only if DN is enabled)

Wq.0 31:24
Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16
Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8
Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0
Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

 Block Noise Estimate/Denoise History block definition: [Gen6 DI disabled]

DWord Bit Description

Wq.7 31:16 Y[15:0] – Location of 16x4

Wq.7 15:0 X[15:0] - Location of 16x4

Wq.6 31:24
STAD0 - Sum in time of absolute differences for 4x8

Format = U8

Wq.6 23:16 STAD1

Wq.6 15:8 STAD2

Wq.6 7:0 STAD3

Wq.5 31:24 SHCM0 - Sum horizontally of absolute difference for 4x8

Wq.5 23:16 SHCM1

Wq.5 15:8 SHCM2

Wq.5 7:0 SHCM3

Wq.4 31:24 SVCM0 Sum Vertically of absolute difference for 4x8

Wq.4 23:16 SVCM1

Wq.4 15:8 SVCM2

Wq.4 7:0 SVCM3

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 162

Wq.3 31:16 Reserved

Wq.3 15:0 Reserved

Wq.2
31:8

Reserved

Wq.2
7:0

Block Noise Estimate for 16x8

Wq.1 31:24
Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

Format = U8

Wq.1 23:16
Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

Wq.1 15:8
Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

Wq.1 7:0
Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

Wq.0 31:24
Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16
Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8
Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0
Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

 Block Noise Estimate/Denoise History block definition: [Gen7 +] DI Enabled

DWord Bit Description

Wq.7 31:16 Y[15:0]

Wq.7 15:0 X[15:0]

Wq.6 31:16
STAD - Sum in time of absolute differences for 16x4 – value is 0 if DN disabled.

Format = U16

Wq.6
15:0 SHCM - Sum horizontaly of absolute differences – value is 0 if DN is disabled.

Format = U16

Wq.5
31:16 SVCM - Sum vertically of absolute differences – value is 0 if DN is disabled..

Format = U16

Wq.5
15:0 Diff_cTpT - sum of differences in top fields of current and previous frame

Format = U16

Wq.4
31:16 Diff_cBpB - sum of differences in bottom field of current and previous frame

Format = U16

Wq.4
15:0 Diff_cTcB -sum of differences between top and bottom field in current frame.

Format = U16

Wq.3 31:16
Diff_cTpB - sum of differences between current top and previous bottom

Format = U16

Wq.3 15:0
Diff_cBpT - sum of differences between current bottom and previous top.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 163

DWord Bit Description

Format = U16

Wq.2 31:0 Reserved

Wq.1
31:24 Tearing_Count - number of pixels that have (diff_cTcB > diff_cTcT + diff_cBcB)

Format = U8

Wq.1 23:16
Fitting_Count - number of pixels that have (diff_cTcB<=diff_cTcT + diff_cBcB)

Format = U8

Wq.1 15:8
Motion_Count - number of pixels that are moving (different above a threshold)

Format = U8

Wq.1 7:0
Block Noise Estimate

Format = U8

Wq.0 31:24
Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16
Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8
Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0
Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

Block Noise Estimate/Denoise History block definition: [Gen7+] DI Disabled:

DWord Bit Description

Wq.7 31:16 Y[15:0]

Wq.7 15:0 X[15:0]

Wq.6 31:16
STAD - Sum in time of absolute differences for top 16x4

Format = U16

Wq.6 15:0
SHCM - Sum horizontaly of absolute differences for top 16x4

Format = U16

Wq.5 31:16
SVCM - Sum vertically of absolute differences for top 16x4

Format = U16

Wq.5 15:0
STAD - Sum in time of absolute differences for bottom 16x4

Format = U16

Wq.4 31:16
SHCM - Sum horizontaly of absolute differences for bottom 16x4

Format = U16

Wq.4 15:0
SVCM - Sum vertically of absolute differences for bottom 16x4

Format = U16

Wq.3 31:0 Reserved

Wq.2 31:8 Reserved

Wq.2 7:0
Block Noise Estimate

Format = U8

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 164

DWord Bit Description

Wq.1 31:24
Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

Format = U8

Wq.1 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

Wq.1 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

Wq.1 7:0 Denoise History for 4x4 at X = 3 to 0, Y = 7 to 4

Wq.0 31:24
Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

Format = U8

Wq.0 23:16
Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0

Wq.0 15:8
Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0

Wq.0 7:0
Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0

DI Enabled (Only)

This writeback message is returned when the DI Enable field in SAMPLER_STATE is enabled. The

response length possibilities are:

 DN Enabled & surface_format == 4:2:2 packed: 12

 DN Enabled & surface_format != 4:2:2 packed: 11

 DN Disabled: 10

DWord Bit Description

W0
Previous 2nd Field Deinterlaced Luma for Y=0,1

Refer to Luma block above for definition.

W1
Previous 2nd Field Deinterlaced Luma for Y=2,3

W2
Previous 2nd Field Deinterlaced Chroma for Y=0,1

Refer to Chroma block above for definition.

W3
Previous 2nd Field Deinterlaced Chroma for Y=2,3

W4
Current 1st Field Deinterlaced Luma for Y=0,1

W5
Current 1st Field Deinterlaced Luma for Y=2,3

W6
Current 1st Field Deinterlaced Chroma for Y=0,1

W7
Current 1st Field Deinterlaced Chroma for Y=2,3

W8
STMM

Refer to STMM block above for definition.

W9
Block Noise Estimate/Denoise History

Refer to Block Noise Estimate/Denoise History block above for definition.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 165

DWord Bit Description

W10
Current 2nd Field Luma for 16x2

This register is only included if DN Enable is enabled.

W11
Current 2nd Field Chroma

This register is only included if DN Enable is enabled.

Only valid if input surface format is 4:2:2

The denoised luma for both the current 1st and 2nd field needs to be written out, but only the 2nd field has a

dedicated location. This is because the denoised data for the 1st field is in the deinterlaced output for the

1st field – Y=0 and Y=2 are the denoised data, while Y=1 and Y=3 either the deinterlaced lines or copied

from the previous or current frame if progressive.

DI Disabled

This writeback message is returned when the DI Enable field in SAMPLER_STATE is disabled. The DN

with DI disabled responses with a 16x8 block rather than a 16x4 with a response length of 9 for a 4:2:2

input format, or 5 for other formats. Two denoised luma and chroma fields are combined into an

interleaved top/bottom format.

 Description

W0

Luma for Y=0 & 1

Refer to Luma block above for definition.

W1

Luma for Y=2 & 3

Refer to Luma block above for definition, but add 2 to Y to get location

W2

Luma for Y=4 & 5

W3

Luma for Y=6 & 7

W4.7 31:16 Y[15:0]

Y co-ordinate of the current block within the frame

W4.7 15:0 X[15:0]

X co-ordinate of the current block within the frame

W4.6 31:24 STAD0 – Sum in time of absolute differences for the 1st 4x8

Format = U8

W4.6 23:16 STAD1– Sum in time of absolute differences for the 2nd 4x8

W4.6
15:8 STAD2 – Sum in time of absolute differences for the 3rd 4x8

W4.6
7:0 STAD3 – Sum in time of aboslute differences for the 4th 4x8

W4.5 31:24 SHCM0 – Sum horizontaly of absolute differences

W4.5 23:16 SHCM1

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 166

 Description

W4.5
15:8 SHCM2

W4.5
7:0 SHCM3

W4.4 31:24 SVCM0 – Sum vertically of absolute differences.

W4.4 23:16 SVCH1

W4.4 15:8 SVCH2

W4.4 7:0 SVCH3

W4.3 31:0
Reserved : MBZ

W4.2 31:8
Reserved : MBZ

7:0 Block Noise Estimate

Format = U8

W4.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

7:0 Denoise History for 4x4 at X = 3 to 0, Y = 7 to 4

W4.0 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

23:16 Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0

15:8 Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0

7:0 Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0

W5

Chroma for Y=0 & 1

Refer to Chroma block above for definition.

Only delivered if input surface format is 4:2:2

W6

Chroma for Y=2 & 3

Refer to Chroma block above for definition, but add 2 to Y to get location.

Only delivered if input surface format is 4:2:2

W7

Chroma for Y=4 & 5

Only valid if input surface format is 4:2:2

W8

Chroma for Y=6 & 7

Only sent if input surface format is 4:2:2

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 167

3. Shared Functions – Data Port
The Data Port provides all memory accesses for the subsystem other than those provided by the

sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes,

and media surface accesses.

The diagram below shows the three parts of the Data Port (Sampler Cache, Constant Cache, and Render

Cache) and how they connect with the caches and memory subsystem. The execution units and sampling

engine are shown for clarity.

The kernel programs running in the execution units communicate with the data port via messages, the

same as for the other shared function units. The three data ports are considered to be separate shared

functions, each with its own shared function identifier.

 The diagram below shows the four parts of the Data Port (Sampler Cache, Constant Cache, Data Cache

and Render Cache) and how they connect with the caches and memory subsystem. The execution units

and sampling engine are shown for clarity.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 168

The kernel programs running in the execution units communicate with the data port via messages, the

same as for the other shared function units. The four data ports are considered to be separate shared

functions, each with its own shared function identifier.

3.1 Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given

application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other

purposes.

The cache to use is selected by the shared function accessed.

3.1.1 Render Cache

The render cache is intended to be used for the following surfaces:

 3D render target surfaces

 destination surfaces for media applications

 intermediate working surfaces for media applications

 scratch space buffers

 streamed vertex buffers

The render cache is a read/write cache that supports 3D render target surfaces, media read/write

surfaces, and typed read/write surfaces.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 169

3.1.2 Data Cache

The data cache is a read/write cache that is coherent across the physical instances of this cache. It is

intended to be used for the following surfaces:

 constant buffers

 destination surfaces for media applications

 intermediate working surfaces for media applications

 scratch space buffers

 general read/write access of surfaces

 atomic operations

 shared memory for GPGPU thread groups

The data cache can be accessed via the Data Cache Data Port shared function, and via the load and

store EU messages. Ordering from a single thread is maintained when accessing the data cache using

only one of these mechanisms, but is not maintained when using both of these mechanisms from the

same thread. In these instances, software must ensure ordering by utilizing write commits and/or waiting

for read data to be returned.

3.1.3 Sampler Cache

The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being

used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be

used for source surfaces in media applications via the data port. The same application may use the

sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

3.2 Surfaces

The data elements accessed by the data port are called “surfaces”. There are two models used by the

data port to access these surfaces: surface state model and stateless model.

3.2.1 Surface State Model

The data port uses the binding table to bind indices to surface state, using the same mechanism used by

the sampling engine. The surface state model is used when a Binding Table Index (specified in the

message descriptor) of less than 255 is specified. In this model, the Binding Table Index is used to index

into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.

SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,

format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

3.2.2 Stateless Model

The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is

specified. In this model, the binding table is not accessed, and the parameters that define the surface

state are overloaded as follows:

 Surface Type = SURFTYPE_BUFFER

 Surface Format = R32G32B32A32_FLOAT

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 170

 Vertical Line Stride = 0

 Surface Base Address = General State Base Address + Immediate Base Address

 Buffer Size = checked only against General State Access Upper Bound

 Surface Pitch = 16 bytes

 Utilize Fence = false

 Tiled = false

This model is primarily intended to be used for scratch space buffers.

3.2.3 Shared Local Memory (SLM)

The shared local memory (SLM) is a high bandwidth memory that is not backed up by system memory. It

is enabled by configuring the L3 cache to use a portion of its space for the SLM. One SLM is present in

each half slice, and its contents are shared between all of the active threads in that half slice. Its contents

are uninitialized after creation, and its contents disappear when deallocated.

The SLM is accessed when a Binding Table Index (specified in the message descriptor) of 254 is

specified. The binding table is not accessed, and the parameters that define the surface state are

overloaded as follows:

 Surface Type = SURFTYPE_BUFFER

 Surface Format = RAW

 Surface Base Address = points to the start of the internal SLM (no memory address is applicable)

 Surface Pitch = 1 byte

Due to the predefined surface state attributes for the SLM, only a subset of the data port messages can

be used. This includes the Byte Scattered Read/Write, Untyped Surface Read/Write, and Untyped Atomic

Operation messages. In addition, only the data cache data port is supported, the other data ports treat

Binding Table Index 254 as a normal surface state access.

Programming Note: Accesses to SLM don’t have any bounds checking. Addresses beyond the size

(64KB) of the SLM will wrap around.

3.3 Write Commit

For write messages, an optional write commit writeback message can be requested via the Send Write

Commit Message bit in the message descriptor. This bit causes a return message to the thread indicating

when the write has been committed to the in-order cache pipeline and it is safe to issue another access to

the same data with the assurance that it will happen after the first write. A read issued after the write

commit ensures that the read will get the newly written data, and another write issued after the write

commit will be the last to modify the data. "Committed" does not guarantee that the data has been

actually written to the memory subsystem, but only that the write has been scheduled and cannot be

passed by another read or write issued subsequently.

If Send Write Commit Message is used on a Flush Render Cache message, the write commit is sent

only when the render cache has completed its flush to memory. A read issued to another cache after the

write commit is received will be guaranteed to retrieve the “new” data that was written before the Flush

Render Cache message was issued.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 171

The write commit does not modify the destination register, but merely clears the dependency associated

with the destination register. Thus, a simple “mov” instruction using the register as a source is sufficient to

wait for the write commit to occur. The following code sequence indicates this:

send r12 m1 DPWRITE; issue write to render cache

mov m1 r3; assemble read message

mov r12 r12; block on write commit

send r13 m1 DPREAD; read same location as write

Prior to End of Thread with a URB_WRITE, the kernel must ensure all writes are complete by sending the

final write as a committed write for all non-pixel shaders.

3.4 Read/Write Ordering

Reads and writes issued from the same thread are guaranteed to be processed in the same order as they

are issued. Software mechanisms must still ensure ordering of accesses issued from different threads.

3.5 Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant

buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed

vertex buffers. All of these messages support only buffers, and can use the surface state model as well

as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications

OWord Block

Read/Write
 constant buffer reads of a single constant or multiple contiguous constants

 scratch space reads/writes where the index for each pixel/vertex is the same

 block constant reads, scratch memory reads/writes for media

OWord Dual

Block Read/Write

 SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different
(if there are two indices and they are the same, hardware will optimize the cache
accesses and do only one cache access)

 SIMD4x2 scratch space reads/writes where the indices are different.

DWord Scattered

Read/Write
 SIMD8/16 constant buffer reads where the indices of each pixel are different (read

one channel per message)

 SIMD8/16 scratch space reads/writes where the indices are different (read/write one
channel per message)

 general purpose DWord scatter/gathering, used by media

Streamed Vertex

Buffer Write
 geometry shader streaming vertex data out

These messages generally ignore the surface format field of the state and perform no format conversion.

The exception is the Streamed Vertex Buffer Write, which uses the surface format field to determine only

how many channels are to be written. The data contained in each channel is still not converted in any

way.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 172

3.6 Accessing Media Surfaces

The Media Block Read/Write message is intended to be used to access 2D media surfaces. The

message specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D

surfaces, the stateless model cannot be used with this message.

3.6.1 Color Processing

The image enhancement color processing pipe, known as IECP or shortly CP. The pipe contains a couple

of functions:

 Packer with 422 to 444 converter.

 Skin Tone detection & Enhancement (STDE).

 Color Gamut Compression (CGC) (added for

 TCCE - Automatic Contrast Enhancement (ACE) & Total Color Control (TCC).

 Procamp.

 Color Space Converter (CSC).

 repacker with 444 to 422 converter

Since these functions are performed on per-pixel basis, IECP is integrated in Render Cache Pixel

Backend (RCPB). The operation of each functionality could be on/off through the enable bit of each

function.

Surface Format Name

R16G16B16A16_UNORM

B8G8R8A8_UNORM

R10G10B10A2_UNORM

R10G10B10A2_UNORM_SRGB

R8G8B8A8_UNORM

R8G8B8A8_UNORM_SRGB

B10G10R10A2_UNORM

B10G10R10A2_UNORM_SRGB

B8G8R8X8_UNORM

R16_UNORM

YCRCB_NORMAL

YCRCB_SWAPUVY

YCRCB_SWAPUV

YCRCB_SWAPY

3.6.1.1 Overview of color processing pipeline

The input message to IECP is 256 bits data from RCPB (contains 2 lines X 2 pixels per clock); along with

256 bits color enhancement state from ISC (State Arbitator for). This unpacker converts 256b into two

pixels per clock, 36 bits each. In case of 422 inputs the UV are the same for the two pixels in the pair (422

to 444 conversion).

The Re-packer (the CSC) delivers 2 pixels in parallel, 36 bits each. The 2x2 message pixels are packed

again to 256b and sent with the outgoing message. The 256 bits are organized according to the data type

(422/444, 8/16 bits). In case of 422 output, the UV is the average of two adjacent pixels. Also the pipe

itself is 12bis/pixel component, in the output message it will be either 8 bit/pixel component (while taking

only the 8 MSB) or 16 bits/pixel component (while adding 0000 at the LSB).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 173

There is statistic information from ACE block (10 bit histogram, 1 bit aoi and 1bit skin pixel) to be sent to

VSC (Video Statistic Counter). VSC will process on these data and output the maximum and minimum

value of the luma values (Ymax and Ymin) and the number of total skin pixels through MMIO. The

Software development can access these data through MMIO and performs the SW part of the color

processing algorithms.

The color-processing enables the user to customize visual quality of video playback on the PC platform.

The seven functions main goals can be summarized as:

 422 to 444 converter and the 444 to 422 converter functions enable us some flexibility in the data
format input and output.

 Skin Tone Detection/Enhancement function detects skin like color and attempts to change the tone
based on user specified parameters to make it more palatable to the user.

 Automatic Contrast Enhancement increases details in dark and bright areas by changing the
contrast function in relation to frames luma histogram.

 Total color control allows the user to increase or decrease the color saturation of the six basic colors
(Red, Green, Blue, Magenta, Cyan, Yellow).

 Procamp enables the user to control the Brightness, Contrast, Saturation and the Hue.

 Color Space Converter enables the user to convert color space from YUV format to RGB.

The module of color gamut compression is added among STDE and TCC/ACE in the below diagram.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 174

The performance of IVB IECP pipe is improved to 4 pixels per clock for input video of 4:2:2 format and

maintained at 2 pixels per clock for input video of 4:4:4 format.

With this performance improvement for 4:2:2 input, there are a couple of addition/modification of IVB pipe

to the existing IECP pipe of GT.

The following changes are being done:

Unpacker :

The input format 4:2:2 and 4:4:4 are supported for unpacker. Input video of 4:2:2 format by default is

operating at 4 pixels per clock. Input video of 4:4:4 format by default is dependent of an auto UV detection

logic to determine if it is operating at 2 pixels per clock, or it could be operating at 4 pixels per clock if

detection logic identifies the “true” 4:2:2 format is contained.

A by default auto UV detection logic for the input video of 4:4:4 format tests the MSB 8-bits of the U, V

channel value. With the pixel layout below:

Pix_0 Pix_1

Pix_2 Pix_3

The 4:2:2 format is detected if the below conditions are observed

U_pixel_0 = U_pixel_1

U_pixel_2 = U_pixel_3

V_pixel_0 = V_pixel_1

V_pixel_2 = V_pixel_3

When the 4:2:2 format is detected from the input video of 4:4:4 format, the performance improved mode

at 4 pixels per clock is applicable. Thus, the average of the U, V values in horizontal direction is used as

the U, V output to the remaining pipe. If UV detection logic cannot detect the input as 4:2:2 format, it will

operate as 4:4:4 mode.

There is a flag bit as the state parameters to force the operation in 4:2:2 mode ()

when the input video is of 4:4:4 format. In this case, the horizontal average of U, V pixel values is taken

as the output values to the remaining pipe. A flag bit of state parameter,, is provided

to ensure the 4:4:4 operation for the input of 4:4:4 format. There is also a flag bit of state parameter to

force the operation in 4:4:4 mode () when the input video is of 4:2:2 format. In this

case, U, V pixel values are horizontally replicated as the output values to the remaining pipe. It is 2

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 175

pixel/clk when oris enabled and is 4 pixel/clk when

is enabled..

In 4:2:2 mode, all the four Y-channels and two U, V channels in the 422 format as is to STD. No

sequencing. An example of the values Y_p0, Y_p1, Y_p2, Y_p3, U_p01, V_p01, U_p23, V_p23 are the

pixel values being sent to the pipe.

In 4:4:4 mode, 2 pixels (two Y, U, V, A channels) are forwarded per clock to STD. Sequencing is done

across two clocks. To keep the pipe with minimum changes the corresponding channels are sent like

below example:

Y_p0, X, Y_p1, X, U_p0, V_p0, U_p1, V_p1 are the pixel values which are sent to the pipe. Where “X” is

don’t care.

Skin tone detection /enhancement

For both 4:2:2/4:4:4 the detection in UV space is done for the two UV values independently. i.e. both the

rectangle and diamond std factor are calculated in similar way for both 4:2:2/4:4:4 format. Satnew and

HueNew are also calculated based on the two UV values based out of the PWL.

For the Y-factor calculation is done for 4 pixels. In case of 4:2:2 all four pixels are valid, but for 4:4:4 only

two pixels are valid. The factor calculated on UV space in step 1 is replicated for the horizontal pixels and

we get the effective four STD factors out of this step.

In VY-factor calculation, the V is replicated for the horizontal pixels i.e. pixel0 and pixel1 will use the same

V pixel01 value and pixel2 and pixel3 will use the same V pixel23 value. We will get four STD factors out

of this stage. For 4:2:2 mode, two resultant STD factors can be produced for skin tone enhancement or

later stage based on the horizontal minimum, maximum, or average of the STD factors, which can

specified via the state parameters

In skin tone enhancement module, based on Y-channel, MVdark and MVbright are calculated for 4 pixels.

Then for 4:2:2 mode, the horizontal minimum, maximum, or average of MVdark values, which could be

specified via the state parameters can be used to effect the new

Satnew and Huenew values. In 4:4:4, we use the corresponding MVdark/bright and discard the other i.e.

no averaging.

Delta U/V : For 4:2:2 mode, the two resultant STD factors froom step iii are used to derive Delta U/V. For

4:4:4 mode, the corresponding pixel STD factor is used. Out of this stage we always get two Delta U/V

values.

Finally only two updated U/V values using the above delta U/V values come out of the STDE pipe.

Color Gamut Compression:

For 4:2:2 mode, only two U/V values are received, and thus two Hue index are calculated and only two

vertex point (Lv, Cv) lookups is checked.

For both 4:2:2/4:4:4, there are 4pixel Y channels so 4 parallel out pixel detection occurs based on the

vertex points(Lv, Cv), U, V values. Four SF (scaling factor) are produced.

In 4:4:4 mode, only two of the above are valid and the rest two are discarded. Only the corresponding SF

is used to calculate the new U/V values.

In 4:2:2 mode, two SF values are produced based on the horizontal minimum, maximum, or average

value of SF, which could be specified via the state parameters . 4 updated Y

values and 2 U/V values are produced out of Gamut compression

TCC works on 2 UV values received from gamut compression and is 2wide for 4:2:2 mode.

ACE works on 4 Y pixel received from Gamut compression and is 4 wide

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 176

Procamp optimizes and has 4pixel Y and 2pixel UV values and output the same in 4:2:2 mode

CSC optimized the UV portion and then uses the same result out for the 2 horizontal pixels and adds the

result to the individual Ypixels. From CSC we will get 4pixel out for 4:2:2 mode.

Repacker pack sends the data 4 pixels for 4:2:2 mode as is to RCPB, but in the case of 4:4:4 it will

combine the 2pixels received from CSC across 2 clocks before outputting the 4pixels to RCPB.

3.6.1.2 Skin Tone Detection/Enhancement (STD/E)

The STD/E unit, composed of the Skin Tone Detection (STD) and Skin Tone Enhancement (STE) units, is

part of color processing pipe located at the Render Cache Pixel Backend (RCBP).

The main goal of the STD/E is to reproduce the skin colors in a way that is more palatable to the

observer, and by that to increase the sensed image quality. It may also pass indication of skin tones to

the TCC and ACE.

The STD unit detects the skin like colors and passes a grade of skin tone color to the STE. The STE

modify the saturation and Hue of the pixel. Both the STD and STE are per-pixel basis. The input pixels

are required to be on the YUV space.

The skin tone detected factor will be recorded as a 5-bit number and it will be passed to the module of

ACE and TCC to indicate the strength of skin tone likelihood.

3.6.1.2.1 STD

The STD operates on digital images in the YUV color space. In these space the skin-tone region is

represented by the ellipse in the (U,V) subspace (chroma components), by a trapeze membership

function in the Y direction (luma component) and by a piece-wise linear classifier in the (V,Y) subspace.

U,V data is transformed into Hue and Saturation space through shifting and rotation

Step 1: shift rectangle

U_center = U –

 V_center = V -

Step 2: rotate rectangle

Sat = -(U_center * - V_center *)

 Hue = -(U_center * + V_center *)

Where: Sin = and Cos =

Rectangle skin-tone measure determination

Skin-tone detection is described by a continue score on the [0,1] range, where a level 0 means not a skin

(SkinToneFactor = 0) , and a level 1 (SkinToneFactor = 1) means a full skin. In between, (0,1) region, we

have partial skin-tone detection. This partial skin-tone detection is controlled by a margin parameter,

which will be denoted by “”. The SkinToneFactor is expressed by 5 bits, and thus have values

in the [0,31] range.

if(abs(Sat) <= SatMax && abs(Hue) <= HueMax)

{

 if(HS_margin >= 5)

 {

 Sat_Factor = (Sat_max-abs(Sat)) / 2(HS_margin - 5);

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 177

 Hue_Factor = (Hue_max-abs(Hue)) / 2(HS_margin - 5);

 }

 else

 {

 Sat_Factor = (Sat_max-abs(Sat)) * 2(HS_margin - 5);

 Hue_Factor = (Hue_max-abs(Hue)) * 2(HS_margin - 5);

 } //end of if(HS_margin >= 5)

 }

else

{

 Sat_Factor = 0;

 Hue_Factor = 0;

} //end of if(abs(Sat) <= SatMax && abs(Hue) <= HueMax)

Sat_Factor = min(Sat_Factor,31);

Hue_Factor = min(Hue_Factor,31);

Rectagle_SkinToneFactor = min(Sat_Factor, Hue_Factor);

Rhombus skin tone detection determination

Similar to the rectangle skin-tone measure, a rhombus-margin () is introduced. This

introduces a new rhombus region, inner to the original rhombus, in a similar happened with the rectangle.

There are two regions such that: outside the original rhombus a SkinToneFactor = 0 (not a skin); inside

the inner rhombus SkinToneFactor = 1 (full skin); in between 0 < SkinToneFactor < 1 indicating a partial

skin-tone detection. As in the rectangle case, the SkinToneFactor is expressed by 5 bits, and thus have

values in the [0,31] range.

A Diamond SkinToneFactor calculations algorithm is:

Dist = abs(Sat – Diamond_du) + Diamond_alpha(1/tan()) * abs(Hue –

Diamond_dv);

//outside the diamond

if(Dist >= Diamond_TH)

{

 D_Factor = 0; //the point is out of the large rhombus

}

else if(Dist < (Diamond_TH - Diamond_margin))

 {

 D_Factor = 31; //the point is inside the inner rhombus

 }

 else //the point is inbetween the outer and the inner rhombuses

 {

 if(Diamond_margin >= 5)

 {

 D_Factor = (Diamond_TH - Dist) / 2(Diamond_margin - 5);

 }

 else

 {

 D_Factor = (Diamond_TH - Dist) * 2(Diamond_margin - 5);

 } // end of if(Diamond_margin >= 5)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 178

 } // if(D < (Diamond_TH - Diamond_margin))

 Diamond_SkinToneFactor = D_factor;

Finally the level of the skin-tone detection in the (U,V) subspace is given by:

 UV_SkinToneFactor = min(Rectangle_SkinToneFactor, Diamond_SkinToneFactor);

Detection in Y direction

The detection based on the Y-values, is given by a piece-wise linear membership function, which is

defined with 4 points) (x=1, 2, 3, and 4).

if(Y >= Y_Point_0 && in_Y < Point_1)

 Y_Factor = (Y – Y_Point_0) * Y_Slope_1;

else if(Y >= Point_1 && Y < Point_2)

 Y_Factor = 31;

 else if(Y >= Point_2 && Y < Point_3)

 Y_Factor = (Point_3 - Y) * Y_Slope_2

 else

 Y_Factor = 0;

At the end of the process a double (min,max) clipping is applied:

Y_Factor = min(31,max(Y_Factor,0));

The final Skin-Tone detection is is given by:

SkinToneFactor = min(UV_SkinToneFactor, Y_factor);

Detection in the VY plane (3D-like DTD)

The operation of the detection in VY plane is particularly enabled by bit

It is known that the application of a three-dimensional (3D) classifier in the (Y,U,V) space, instead of a two

dimensional (2D) skin-tone detector in the (U,V) plane, is resulted in a better detection. Implementation

complexity of the full 3D classifier is too high, and forces us to approximate the classifier by more simple,

but useful methods. Skin-tone data distribution implies (it is almost convex, and has a predominate

directions) that the 3D classifier could be approximated by the intersection of the three 2D classifiers in

(U,V), (U,Y), and (V,Y) subspaces. The (U,V) subspace is the most important one it is already

approximated by the ellipse, as was described previously. Our study implies that the (V,Y) subspace is

the next most important one. Although the (U,Y) space carries the STD information, it is heavily

redundant and has the reduced importance.

Thus the approximation of 3D classifier is an intersection of (U,V) and (V,Y) two-dimensional classifiers.

The (V,Y) classifier is given by two piece-wise linear functions (PWLF), Each PWLF is composed of four

straight segments. Each segment is described by the three parameters (Point, Slope and bias). Thus a

single PWLF (lower or upper) is described by 12 parameters (4 points, 4 biases, 4 slopes).

The parameters of lower part are: 4 point PxL (x=0, 1, 2, 3), 4 bias BxL (x=0, 1, 2, 3) and 4 slope

SxL (x=0, 1, 2, 3).

The parameters of upper part are: 4 point PxU (x=0, 1, 2, 3), 4 bias BxU (x=0, 1, 2, 3) and 4 slope

SxU (x=0, 1, 2, 3).

There is Programming Restrictions to specify the parameters

The points must be in the non-decreasing order: P0 <= P1 <= P2 <= P3.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 179

The parts must be continues on they ends. Thus the user:

(a). must set: P0L = P0U (continuity at the leftmost points).

(b). must care for continuity at the rightmost points.

Margin for the detection in the VY plane (3D-like DTD)

Vertical margins of each part were introduced to provide a “soft” continuous detection over the classifier

boundaries. There are two parameters defined

 - the margin of the lower (blue) part.

 - the margin of the upper (red) part.

Consider a pixel with coordinates (Y,V) = (P2L,V1),. This pixel has a Y coordinate exactly as of the point

P2, and a V coordinate equal V1. For this pixel the detection relative to the Lower Part will be:

detL = Min (Max ((V1 – B2L) / MarginVYL, 0), 1)

The identical calculations are made for the Upper Line as well:

detU = Min (Max ((VU – V1) / MarginVYU, 0) , 1)

Where:

detL - is a detection relative to the Lower Part

detU - is a detection relative to the Upper Part

VU - is a V value of the Upper PWLF correspond to the Y=P2L

BU - is a V value of the Lower PWLF correspond to the Y=P2L

The inverse operation of (1/ MarginVYL), and (1/ MarginVYU) is specified by the parameters

INV_ and .

Both detections (detL, detU) are reduced to 5 bit representations, and the overal detection in the (V,Y)-

plane is given by:

 det_VY = min(detL, detU)

The final Skin-Tone Detection is given by the minimum of the previously calculated STD in the (U,V)-

plane (9), and the current one:

SkinToneFactor = min(SkinToneFactor, det_VY)

This value is represented with 5 bits, and has a [0,31] range.

3.6.1.2.2 STE

The enhancement step is performed on the pixels which were detected as the skin-tone pixels only by the

previous (STD) step. This step is divided into two sub-steps: saturation correction enhancemen and hue

correction enhancement

STE – Saturation Correction Enhancement

The enhancement is performed by the transformation SatNew = FSat(SatOld), which is realized by the piece-

wise linear function (PWLF) with a 4 straight segments.

The parameters of this PWLF are:

 Points:

SATP0 = -SatMax

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 180

(x=1,2,3) – defined by the user

SATP4 = SatMax

 Biases:

SATB0 = -SatMax

 (x=1,2,3) – defined by the user

SATB4 = SatMax

 Slopes:

 (x=0,1,2,3) – defined by the user

There is Programming Restrictions to specify the parameters

The point Sat = -SatMax maps to itself: (-SatMax) (-SatMax).

The point Sat = SatMax maps to itself: (SatMax) (SatMax).

The correction function is continuous.

The correction function is non-decreasing.

SatOld

SatNew

(-SatMax ,-SatMax)

(SatMax ,SatMax)

Identity

transformation

Fig.. General form of the Saturation correction PWLF.

Correction Function

STE – Hue Correction Enhancement

The enhancement is performed by the transformation HueNew = FSat(HueOld), which is realized by the piece-

wise linear function (PWLF) with a 4 straight segments.

The parameters of this PWLF are:

 Points:

HUEP0 = -HueMax

(x=1,2,3) – defined by the user

HUEP4 = HueMax

 Biases:

HUEB0 = -HueMax

 (x=1,2,3) – defined by the user

HUEB4 = HueMax

 Slopes:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 181

 (x=0,1,2,3) – defined by the user

There are Programming Restrictions to specify the parameters

The point Hue = -HueUEMax maps to itself: (-HueMax) (-HueMax).

The point Hue = HueMax maps to itself: (HueMax) (HueMax).

The correction function is continuous.

The correction function is non-decreasing.

HueOld

HueNew

(-HueMax,-HueMax)

(HueMax ,HueMax)

Identity

transformation

Fig. General form of the Hue correction PWLF.

Correction Function

STE – Skin Type Correction Enhancement

The operation of this mode is enabled by the control parameter .

The Saturation and Hue enhancement processes are basic STE procedure. The advanced mode to

adjust the enhacement based on the skin type define the second set of the Sat and the Hue

enhancement parameters, which has an identical structure as the previous one (Points, Biases, Slopes)

but having different values. We will refer one set of parameters to the Bright skin (Bs), and the other to

the Dark skin (Ds). Each pixel is referred as belongs to the Bright, the Dark, or to the both skin types with

a different membership values. The Dark/Bright skin classifier is defined by the two parameters:

, and . It works on the luma (Y) values.

The parameters related are

Points:

(x=1,2,3) – defined by the user

(x=1,2,3) – defined by the user

Biases:

 (x=1,2,3) – defined by the user

 (x=1,2,3) – defined by the user

Slopes:

 (x=0,1,2,3) – defined by the user

 (x=0,1,2,3) – defined by the user

For the luma value Y, we define

 YA = skinTypesThesh - skinTypesMargin

 YB = skinTypesThesh + skinTypesMargin

 MVDark = 1 , if Y < YA

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 182

 = 0, if Y > YB

 = (YB – Y) / (2* skinTypesMargin), if YA <= Y <= YB

 MVBright = 1 - mVDark

Where MVDark and MVBright are the membership value of the Dark and Bright skin (belongnes). (Note: the

membership values represent the “belongness” of the skin pixel to the different skin types). Also, we mark

that the inversee operation of 1/(2* Skin_types_margin) wil be specified by the parameter

.

In previous sections the procedure for the calculation of the SatNew and HueNew values was described. We

calculate these values for the two skin types and thus get SatNew B, HueNew B, and SatNew D, HueNew D values ,

where and subscribes “B” and “D” stands for the Bright and the Dark skin types, respectively. (In this

case, the parameters with “_DARK” extension are used to work out SatNew D and HueNew D, and the other

set of the parameter could be reloaded with the parameters to work out SatNew D, HueNew D.)The final values

of the enhanced pixel will be given by:

SatNew = MVDark * SatNew D + MVBright * SatNew B

HueNew = MVDark * HueNew D + MVBright * HueNew B

STE – (Sat, Hue) to (U, V) transformation

In prior session,, the (U,V) (Sat,Hue) transformation was proceeded by the two steps: and

. Thus the backward transformation should be done in the inverse order: a , and then a

.

 // Rotate back:

 U_Center_New = (Sat_New * Cos) + (Hue_New * Sin)

 V_Center_New = -(Sat_New * Sin) + (Hue_New * Cos)

 // Shift:

 U_New = U_Center_New + U_mid

 V_New = V_Center_New + V_mid

The (U_new, V_new) are the (SatNew, HueNew) values in transformed to the original (U,V) coordinates.

Let denote the original (U,V) values of the pixel by (U_in,V_in). Thus the difference between the corrected

and the original values are:

 DU = U_new – U_in

 DV = V_new – V_in

The final correction must be depended by the SkinToneFactor value, and therefore DU, DV are corrected

by:

DU = DU * STD_ Likelihood_Factor

DV = DV * STD_ Likelihood_Factor

Where:

STD_ Likelihood_Factor = (SkinToneFactor / 32)

(Remember that the 0 <= SkinToneFactor <= 31).

After the DU and DV were corrected by the STD likelihood factor, the final (U,V) will be calculated by:

U = U_in + DU

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 183

V = V_in + DV

3.6.1.2.3 STD Score Output

This mode outputs the STD score, which is controlled by the state bit “Output STD Decisions” instead of

the pixel values. In this mode, the STD should be enabled and other functions in the IECP after STDE in

the pipe should be disabled. Only ACE can be enabled to collect the histogram of the STD score values.

The output when “Output STD Decision” is enabled should be as follows:

Y = 0x7FF + + (STD_Score <<6)

U = 0x7FF

V = 0x7FF

In this mode, a histogram of skin tone distribution can be obtained in ACE module, and a special ACE

PWLF curve (step function) can be configurated to produce a bi-level picture to illustrate the pixels based

on the level of skin tone detection.

3.6.1.3 Adaptive Contrast Enhancement (ACE)

The Automatic Contrast Enhancement (ACE) is a part of the color processing pipe, which located at the

render cache in the RCPB block.

The main goals of the ACE is to improve the overall contrast of the image, and emphasizing details when

relevant (such as in dark areas).

The ACE algorithm analyzes the image, and consequently changes contrast of the image according to its

characteristics. It works in YCbCr color space, where analysis and changes are performed over the Y

component. The result of ACE is a 1d (1 dimension) look up table (1D LUT) operating on Y. The ACE

follows the skin tone enhancement module in the pipe.

The ACE is receiving skin information from the STD block. When the frame includes skin the affect of the

ACE is reduced in the skin area.

The ACE operation is divided into three stages:

 Collecting information on Y and building the picture histogram. (Hardware)

 Analysis on the collected data. (Software/Kernel)

 Modification of the Y component. (Hardware)

The major steps of ACE can be divided into the following steps and depict in the below diagram.

1. Histogram calculation of the Y values.

2. Limiting extremely large histogram’s bins.

3. Calculate the Image’s gray level mean value (Ymean).

4. Calculate the Image’s “Dark Factor” by the Ymean and external transfer function.

5. Find the PWLF anchor input and output points according to the “Portion Values” and the “Destination
Points” of the Bright and the Dark images.

6. Find the PWLF anchor Input points by the blending of the Dark and Bright anchor input points,
according to the Dark Factor calculated previously.

7. Find the PWLF anchor Output points by the blending of the Dark and Bright anchor output points,
according to the Dark Factor calculated previously.

8. Limit Slopes between the anchor points. This stage’s output is the current’s image ACE PWLF.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 184

9. “Soften” the ACE PWLF by blending I with the Identity Transformation.

10. Blend the current PWLF with the PWLF of the previous image (History blend).

11. Apply the final PWLF, and get the Yout values.

Note: Step 1 & step 11 are done in HW and steps 2-10 are done in software.

The main ACE goals are overall contrast improvement, and details emphasizing. ACE algorithm

generates a Piece-wise Linear Function (PWLF), and the final gray values, Yout, are calculated by Yout =

PWLF(Yin).

The HW compares the input pixels to the to determine if the target pixel is a skin pixel or

not. It operates on all of the input pixels if the flag is defined. (to ignore the AOI

flag). HW output the histogram of luma pixel value to VSC, and at VSC, the maximum and minimum value

of luma pixels (Ymax, Ymin) ans the number of skin pixels is determined to be made available to the

software development via MMIO register.

An eleven-segment (12 points) was established to implement PWLF via the state parameters (Points:

, Bias: , Slope:).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 185

3.6.1.4 Total Color Control (TCC)

The TCC allows users to choose different grades of saturation for each of the six basic colors (Red,

Green, Blue, Magenta, Yellow and Cyan) in order to custom the color scheme. The TCC algorithm

operates on the UV-color components in the YUV color space. It operates in the pixel-wise mode, without

considering any neighborhood information.

Its input is:

 U,V color components (10 bit)

 Skin-tone detection value (5 bit)

 External control parameters

Its output is the new U, V values (10 bit).

The motivation to implement this block in HW is to reduce the power of the system and therefore the

battery life.

The pixel TPT (throughput) is two pixels per clock. The pipeline works in YUV formats only – 10bit pixels.

The TCC block is control by state only and does not require any memory access. The TCC block runs at

the same frequency of the existing RCPBunit.

There are two paths in parallel to support the requirement of two pixels per clock. Valid out is a signal

which high when the pixels are valid.

The TCC block includes three sub blocks.

Angle_calculator

This block receive pixel U and V and perform division of abs|v| by abs|u| using Divider ROM with pipeline.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 186

The division result is used to calculated arctan of the V/U. This result is used to calculate the angle called

θ, by using approximation equation. This angle is defined as a 10bit.

To simplify this calculation the “arctangent” function is approximated in the [0,45]o region by the second

order polynomial:

 = arctan(x) = -0.2880x2 + 1.0797x - 0.005; (0 <= x <= 1)

The resulted is given in radians with the maximal error of 0.005 rad. (0.286 deg.) This approximation is

calculated by the minimizing the mean squared error (mse) between the actual “arctan” function, and its

polynomial approximation, and thus represents the optimal mse-approximation in the [0, /4] region. The

 for the all regions is calculated by:

 0.25 ; for region I, (0 <= x <= 1),

 /2 – 0.25 ; for region II, (1 < (V/U) < infinity)

 /2 + 0.25 ; for region III, (-infinity < (V/U) < -1)

 = - 0.25 ; for region IV, (-1 <= (V/U) < 0)

 + 0.25 ; for region V, (0 <= (V/U) <= 1)

 3 - 0.25 ; for region VI, (1 < (V/U) < infinity)

 3 + 0.25 ; for region VII, (-infinity < (V/U) < -1)

 2 - 0.25 ; for region VIII, (-1 <= (V/U) < 0)

Whereas x = (V/U), and the 0.25 is given by the above equation.

Saturation_Factor_Calculator

This block is using the angle θ, locate where it is in the color wheel, find the appropriate base colors and

calculate the proportional distance from the adjacent base color. The result called . Alpha ()

represent the distance from the two relevant base color.

Calculate the saturation by using the appropriate user parameters. The result is the Saturation factor.

This block considering also the threshold and the maximum UV values, and considering also correction

for gray colors to minimize the possible noise. In addition the saturation skipping doing saturation when

the color is skin and doing alpha blending according the skin factor called STDscore.

This block requires several external parameters such:

 – Six basic user defined colors.

 – Six basic saturation change user defined factors.

 – Six calculation result of 1/(BaseColorX – BaseColorY)

ColorBias1,…, ColorBias6 – Six color bias.

STDscore – Skin-tone Detection score (from STD/E).

The result of SF is a number of 8bits.

There are four major steps to derive the saturation factor.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 187

The Interpolated Basic SFs1

With the calculated angle , which lies in the [Ci, Ci+1] interval, the Interpolated Basic SFs1 will be:

SFs1 = (1- i + i+1

Whereas is calculated by:

 = Min{Max[(i)* i – i, 0],

1}

Over Saturation Limiter SFs2

Over Saturation Limiter block is used to avoid saturation boosting of the already high saturated pixels.

The SFs2 is calculated by:

SFs1 , for (SF1 <= 1)

SFs2 = 1 + (SFs1 – 1)(MaxColor – UVmax)/MaxColor, for (1 < SF1 <= 2) AND (UVmax <=)

 1, for (UVmax >)

Where the UVmax = max(|U|,|V|), and is an external parameter which in the case of YUV

color space is equal to 448 in 10bit representation. was used for the inverse

calculation of 1/UVMaxColor.

Note: The last condition (UVmax > UVMaxColor) is associated with the illegal colors, and usually hasn’t to

appea (Can this be OK for wide gamut mapping?).

GrayPixels Saturation LimiterSFs3

This block limits the saturation of the almost gray pixels. The reason for this limiter is to prevent the noise

amplification by the Saturation increase process. The result of this block is:

 SFs3 = 1 + dSF * CLF

Where:

 dSF = SFs2 – 1;

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 188

And the CLF is called Color Limiting Factor and ranges from 0 to 1. The calculation of the CLF is given

by:

 = 1; for (SFs2 <= 1) AND (any UVmax)

 CLF = 0; for (UVmax <=)

 = (UVmax – UV_Threshold) / 2UV_Threshold_Bits ; for (UV_Threshold < UVmax < (UV_Threshold+2UV_Threshold_Bits))

Skin-tone Saturation LimiterSFs4

The last block effects TCC strength operation of the Skin-tone pixels. Uncontrolled enhancement of the

skin pixels could lead to appearing of artifacts and to undesired results. The final SFs4 is calculated by a

linear blending:

 SFs4 = (128*STEfactor + (256 - STEfactor) SFs3) / 256

Where the STEfactor is called Skin Tone factor and is calculated by:

 diff = (STDscore –) * 23

Note: the STDscore (from STD) and the STE_Threshold are presented with 5 bits. The multiplication by 23

is in order to raise the “diff” to 8 bits.

 STEfactor = Min {Max [(diff * 2 STE_SlopeBits), 0], 255}

The STDscore is a result of the Skin-tone Detection module. It is represented with 5 bits, where the values 0

and 31 mean no skin-tone, and full skin-tone detection, respectively. The STEfactor is given by 8 bits, where

the value 256 represents the number 1.

It is evident that for the high values of STEfactor the resulted SFs4 is close to 1, which means a weak TCC

action of this pixel (SFs4 = 1 actually means TCC is off).

 – The input pixels are multiple by the saturation factor. The results are the output pixels.

SF final is the final saturation factor which actually resulted from the forth SFcalculation block:

SFfinal = SFs4

The calculation of the Unew, and Vnew output values. They are calculated below:

Unew = U * SFfinal

Vnew = V * SFfinal

Whereas (U,V) are the original input color components,

Because these pixels are represented in the unbiased form, which is the result of substraction of the

value 512 from the original [U,V] values, the final [Uout, Vout] values are given by:

 Uout = Unew + 512

 Vout = Vnew + 512

This is the final TCC output represented with 10 bits.

3.6.1.5 ProcAmp

The PROCAMP block modifies the brightness, contrast, hue and saturation of an image in YCbCr color

space (or similar).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 189

The algorithm itself uses 8-16 bits per color.

Y Processing: 256 is subtracted from the Y values to position the black level at zero. This removes the

DC offset so that adjusting the contrast does not vary the black level. Since Y values may be less than

256, negative Y values should be supported at this point. Contrast is adjusted by multiplying the YUV

pixel values by a constant. If U and V are adjusted, a color shift will result whenever the contrast is

changed. The brightness property value is added (or subtracted) from the contrast adjusted Y values; this

is done to avoid introducing a DC offset due to adjusting the contrast. Finally the value 64 is added to

reposition the black level at 256. The equation for processing of Y values is:

Y’ = ((Y-256) x C) + B + 256,

where C is the Contrast value and B is the Brightness value.

UV Processing: 2048 is first subtracted from both U and V values to position the range around zero. The

hue property is implemented by mixing the U and V values together:

U’ = (U-2048) x Cos(H) + (V-2048) x Sin(H)

V’ = (V-2048) x Cos(H) – (U-2048) x Sin(H)

Where H represents the desired Hue angle; Saturation is adjusted by multiplying both U and V by a

constant.

Finally, the value 2048 is added to both U and V. The combined processing of Hue and Saturation on the

UV data is:

U’ = (((U-2048) x Cos(H) + (V-2048) x Sin(H)) x C x S) + 2048

V’ = (((V-2048) x Cos(H) - (U-2048) x Sin(H)) x C x S) + 2048

Where C is the contrast, H is Hue angle and S is the Saturation and the combination of Cos(H)*C*S and

Sin(H)*C*S is specified by parameters Cos_c_s and Sin_c_s.

3.6.1.6 Color Space Conversion

The CSC block enables linear conversion between color spaces using vector shift, matrix multiplication,

and additional shift.

The CSC algorithm is a linear coordinate transformation, comprising of the following stages:

Shifting the input color coordinate.

Multiply by 3*3 matrix

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 190

Shifting the output color coordinate

Formula representation of last 3 steps:

Where is

aij are the matrix elements, i.e., the transform coefficients:

vin_i is the input pixel color components

v0_i is the input offset vector, i.e., ,

u0_1_i is the output offset vector. i.e.,

Clipping the output to ensure each component is in allowed range.

The parameters is used to set input to be RGB format and is uased to set output to be

RGB format

Notes about Repacker:

There are two states to be used in the repacker: and . The

last module in the IECP pipeline.

If Alpha from State Select is set, the Y, U ,V is packed with the information from color pipe alpha, and

then the data is sent out to RCPB.

Otherwise, “0” is inserted in the 4LSB (alpha) and the packed data is sent out to RCPB.

3.6.1.7 Color Gamut Compression

3.6.1.7.1 Background of Color Gamut Compression

While most photography today complies with the sRGB standard color space, which covers around 72%

of color perceived by human being, this 72% content looks incorrect/unnatural on wide gamut displays,

which can extend more than 100%. Therefore, a gamut mapping (GM) algorithm is required to adjust

when the input gamut range is different to the output gamut range such as the input sRGB color space to

be displayed onto the WG display, or to adjust the wide gamut content to be displayed onto the traditional

lower gamut display.

The easiest compression method applied to displaying wider gamut content on lower gamut displays is to

clip the out of range primary values to the valid range (i.e., 0-1). Although this simple clipping procedure

leads to acceptable visual appearance in most cases, loss of color depth can be observed in the video

containing out-of-range pixels. The reason behind this effect should be the uniform quantization process

applied to out-of-range values (e.g., two distinct out-of-range red colors are mapped to the same

boundary red color). Moreover, the simple clipping method treats each color channel independently. This

may lead to unexpected perceptual loss since the composite ratios of three primaries have been

changed. An approach which takes these two factors into account while scaling down the out of range

values can possibly maintain the detail information of the image.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 191

3.6.1.7.2 Usage Models

There are two usage models depending on the set up of bit:

Basic mode: fixed-hue color gamut clipping mode

Advanced mode: fixed-hue full range mapping mode

The application of basic mode of the fixed-hue color gamut clipping is preferred when the content having

the smaller percentage of out-of-range pixels in the scene. The advanced mode of fixed-hue full range

mapping mode may also change the in-range pixels and is thus preferred when the percentage of out-of-

range pixel is large. The outcome of the in/out range pixel percentage is derived from the out-of range

color gamut detection module to provide an indicator to operate among basic mode and advanced mode.

3.6.1.7.3 Gamut compression module overview

The main goal of color gamut compression module algorithm is to compress out-of-range pixel values

while keeping their hue values same as it is before compression. A block diagram to color gamut

compress the xv Color video into sRGB format is shown below.

AT the pipeline level, the input into Gamut compression unit is from STDE unit and the output from the

Gamut compression goes to TCCE unit. The Gamut compression comprises of the following stages:

xvYCC decoding

YUV2LCH color space conversion

Out of range Gamut pixel detection

Scaling factor calculation

Find out the Euclidean distance for the out of range pixel for advance mode

Fixed-hue Gamut compression

Bring the out of range pixel to the boundary for basic mode

Bring the out of range pixel depending on the distance and apply uniform quantization process in advance

mode

xvYCC encoding

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 192

3.6.1.7.4 xvYCC decoding

The non-linear YCbCr values (i.e.,Y’Cb’Cr’, or Y’UV) is decoded from an example of 8-bit/channel below:

.

For 12-bit/channel the above equation can be re-written as follows:

3.6.1.7.5 YUV2LCH

The parameters for scaling the out-of-range pixel values are determined in LCHuv space, which is the

cylindrical version of LUV space. For every input pixel, (Y_in = Y” , U_in = Cb” , V_in = Cr”) we find its

chrominance value (i.e., C) and hue value (i.e., H)

,

,

The approximation of hue angle calculation is described in the TCC session.

3.6.1.7.6 Out-of-range gamut pixel detection

An input pixel is denoted as in the LCH color space. If , the pixel can be

outputted without pixel value change.

Every input pixel is associated with a hue value in LCH space. From the calculated hue value, we can

read a corresponding vertex point from the pre-calculated table which contained the 512-entry vertex

points of the below color triangle in LCH space with the designated hue value derived off-line. Note that

with the symmetric property of the lightness vertex, only vertices in need to be stored in the pre-

calculated LUT. Therefore, the 512x2 components in the LUT correspond to the information of 512

equally-distributed hue angles in the range of . Moreover, the vertex value of a certain hue angle

is dependent of the color space (e.g., BT. 709 or BT. 601). Here, the vertex point V for a hue angle is

denoted as

.(3)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 193

Left: The RGB boundary corresponding to hue value H. Right: the RGB boundary in left projected on the

luminance-chrominance plane.

Vertex point look up table:

Utilizing the hue angle calculation module in TCC, the equally-spaced, discrete hue angle ranging from 0

to is represented with an integer (i.e., angle index) in [0~1023]. Since the LUT in color compression

only stores vertices in [0~), a mapping procedure is required to remap angles in to

before indexing the LUT:

if((angle_index < 512) && (angle_index > =0))

angle_index = angle_index;

else

angle_index = angle_index – 512;

With the properly remapped angle index for accessing the LUT, the information of the vertex point can be

obtained as below.

Sat_Vertex = m_SatVertex[angle_index]; // Sat Vertex form the LUT

Luma1 = m_LumaVertex[angle_index]; // lightness vertex in [0~pi)

Luma2 = denorm-Luma1; // symmetric lightness vertex; denorm = 4096 in 12 bit representation

Note that the lightness vertex is symmetric in uv/ CbCr-plane (i.e., Luma1 + Luma2 = denom), and the

lightness vertex stored in the LUT correspond to those in . Thus, one has to check the hue side

(i.e., whether this pixel is originally in or in of the current pixel to acquire the correct

lightness vertex for this pixel:

if(srcV == 0)// 0 or 180 degree

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 194

{

if (srcU > 0)// srcU == 0 Cp = 0

Luma_Vertex = Luma1;

else

Luma_Vertex = Luma2;

}

else

{

if(srcV > 0)

Luma_Vertex = Luma1;

else

Luma_Vertex = Luma2;

}

An input pixel is detected as an out-of-range pixel if the below condition is true.

 (4)

A statistics parameter, , is incremented if the above equation is true. The

 will be collected at picture level through VSC unit to assess the property

of a picture to determine the strategy of ways to do gamut compression.

Note: If is an in-range pixel, the pixel will be outputted according to equation (13).

3.6.1.7.7 Scaling factor – Basic mode

The slope of a compression line is defined from the vertex point table.

, with default

to be 3.(5)

 in the above equation is the slope of the compression line while represents the slope of the

line perpendicular to the RGB boundary line:

, and(6)

 where .(7)

The intersection between the compression line for pixel and the L-axis is denoted as

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 195

, then

, and(8)

The point nearest to the input pixel on the RGB boundary along the compression direction (i.e.,

intersection between the compression line and the RGB boundary) be , then

, with

, and (9)

.

Scaling factor is denoted as

.(10)

For the usage of Basic mode - fixed-hue color gamut clipping mode, all out-of-range pixels will be clipped

to the boundary, which means

(11)

And the luma is mapped at along the compression line to hit the boundary line at

(12)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 196

3.6.1.7.8 Fixed-hue compression

The output of fixed compression is based on the scaling factor and the property of pixel.

, if or , else

. (13)

3.6.1.7.9 Scaling factor – Advanced mode

The out-of-range pixel values can be mapped inwards according to how far they are from the boundary

from the following equation:

.(14)

.

Where is coming from the reference point as the origin of the linear transformation for compressing

pixel as

Denote the reference point

 (15)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 197

3.6.1.7.10 xvYCC encoding

The output of Y, Cb and Cr values are scaled back through xvYCC encoding process, and the example

for the 12bit format is provided below:

3.6.2 Boundary Behavior

The table below summarizes the behavior of the Media Boundary Pixel Mode field (SURFACE_STATE)

in combination with the Vertical Line Stride and Vertical Line Stride Offset fields (both of which are

subject to being overridden by the Data Port message descriptor fields). The Behavior column illustrates

behavior for a surface with four rows numbered 0 to 3. The bold indicators are off-surface behavior and

the non-bold indicators are on-surface behavior. Input row addresses range from -3 to +7 going left to

right.

Media Boundary Pixel

Mode
Vertical Line Stride Vertical Line Stride Offset Usage Model Behavior

0 0 X normal frame 000001233333

0 1 0 normal field even 000002222222

0 1 1 normal field odd 111113333333

2 0 X frame / progressive 000001233333

2 1 0 field even / progressive 000002333333

2 1 1 field odd / progressive 000013333333

3 0 X frame / interlaced 010101232323

3 1 0 field even / interlaced 000002222222

3 1 1 field odd / interlaced 111113333333

3.7 Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets

support a large set of surface formats (refer to surface formats table in Sampling Engine for details) with

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 198

hardware conversion from the format delivered by the thread. The render target message also causes

numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which

normally causes a read of the render target), and other functions. These functions are covered in the

Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned by

the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-effects

that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of reads and

writes to the same pixel does not occur.

3.7.1 Single Source

The “normal” render target messages are single source. There are two forms, SIMD16 and SIMD8,

intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each of

the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information can

also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of

SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

The single source message will not cause a write to the render target if Dual Source Blend Enable in

3DSTATE_WM is enabled. However, if Last Render Target Select is set, the message will still cause

pixel scoreboard clear and depth/stencil buffer updates if enabled.

3.7.2 Dual Source

The dual source render target messages only have SIMD8 forms due to maximum message length

limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each

message contains two colors (4 channels each) for each pixel in the message payload. In addition to the

first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in

the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and

antialias alpha information can also be delivered with these messages.

Each dual source message delivered will clear the corresponding pixel scoreboard bits if the Last Render

Target Select bit in the message descriptor is set.

The dual source message will revert to a single source message using source 0 if Dual Source Blend

Enable in 3DSTATE_WM is disabled.

3.7.3 Replicate Data

The replicate data render target message is used for “fast clear” functionality in cases where the color

data for each pixel is identical. This message performs better than the other messages due to its smaller

message length. This message does not support depth, stencil, or antialias alpha data being sent with it.

This message must target only tiled memory. Access of linear memory using this message type is

UNDEFINED. The depth buffer can be cleared through the “early depth” function in conjunction with a

pixel shader using this message. Refer to the Windower chapter for more details on the early depth

function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last Render

Target Select bit is set in the message descriptor.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 199

3.7.4 Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data messages. Each render

target is accessed with a separate Render Target Write message, each with a different surface indicated

(different binding table index). The depth buffer is written only by the message(s) to the last render target,

indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

MRT is not supported when one or more RTs have this surface formats: YCRCB_SWAPUVY,

YCRCB_SWAPUV, YCRCB_SWAPY, YCRCB_NORMAL

3.8 State

3.8.1 BINDING_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to Statein the Sampling Engine

section for the definition of this state.

3.8.2 SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media surfaces. Refer to

SURFACE_STATE in the Sampling Engine section for the definition of this state.

3.8.3 COLOR_PROCESSING_STATE

The following state structures contain different states used by the color processing function.

COLOR_PROCESSING_STATE - STD/STE State

Default

Value:

0x9A6E39F0, 0x400C0000, 0x00001180, 0xFE2F2E00, 0x000000FF, 0x00140000, 0xD82E0000,

0x8285ECEC, 0x00008282, 0x00000000, 0x02117000, 0xA38FEC96, 0x00008CC8, 0x00000000,

0x01478000, 0x0007C300, 0x00000000, 0x00000000, 0x1C180000, 0x00000000, 0x00000000,

0x00000000, 0x0007CF80, 0x00000000, 0x00000000, 0x1C080000, 0x00000000, 0x00000000,

0x00000000

This state structure contains the STD/STE state used by the color processing function.

DWord Bit Description

0 31:24 V_Mid

Default Value: 154

Format: U8

Rectangle middle-point V coordinate

23:16 U_Mid

Default Value: 110

Format: U8

Rectangle middle-point U coordinate

15:10 Hue Max

Default Value: 14

Format: U6

Rectangle half width

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 200

COLOR_PROCESSING_STATE - STD/STE State

9:4 Sat Max

Default Value: 31

Format: U6

Rectangle half length.

3 Reserved

Format: MBZ

2 Output Control

Value Name

0 Output Pixels [Default]

1 Output STD Decisions

1 STE Enable

Format: Enable

0 STD Enable

Format: Enable

1 31 Reserved

Format: MBZ

30:28 Diamond Margin

Default Value: 4

Format: U3

27:21 Diamond du

Default Value: 0

Format: S7 2’s complement

Rhombus center shift in the sat-direction, relative to the rectangle center.

20:18 HS Margin

Default Value: 3

Format: U3

17:10 Cos(α)

Format: S0.7 2's Compliment

The default is 79/128

9:8 Reserved

Format: MBZ

7:0 Sin(α)

Format: S0.7 2's Compliment

The default is 101/128

2 31:21 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 201

COLOR_PROCESSING_STATE - STD/STE State

20:13 Diamond Alpha

Format: U2.6

1 / tan(β)

 The default is 100/64

12:7 Diamond Th

Default Value: 35

Format: U6

Half length of the rhombus axis in the sat-direction.

6:0 Diamond dv

Default Value: 0

Format: S6 2’s complement

3 31:24 Y_point_3

Default Value: 254

Format: U8

Third point of the Y piecewise linear membership function.

23:16 Y_point_2

Default Value: 47

Format: U8

Second point of the Y piecewise linear membership function.

15:8 Y_point_1

Default Value: 46

Format: U8

First point of the Y piecewise linear membership function.

7 VY_STD_Enable

Format: Enable

Enables STD in the VY subspace.

6:0 Reserved

Format: MBZ

4 31:18 Reserved

Format: MBZ

17:13 Y_Slope_2

Format: U2.3

Slope between points Y3 and Y4.

 The default is 31/8.

12:8 Y_Slope_1

Format: U2.3

Slope between points Y1 and Y2.

 The default is 31/8.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 202

COLOR_PROCESSING_STATE - STD/STE State

7:0 Y_point_4

Default Value: 255

Format: U8

Fourth point of the Y piecewise linear membership function

5 31:16 INV_skin_types_margin

Format: U0.16

1/(2* Skin_types_margin)

Value Name Description

20 [Default] Skin_Type_margin

15:0 Inverse Margin VYL

Format: U0.16

1 / Margin_VYL

 The default is 3300/65536

6 31:24 P1L

Default Value: 216

Format: U8

Y Point 1 of the lower part of the detection PWLF.

23:16 P0L

Default Value: 46

Format: U8

Y Point 0 of the lower part of the detection PWLF.

15:0 Inverse Margin VYU

Format: U0.16

1 / Margin_VYU

 The default is 1600/65536.

7 31:24 B1L

Default Value: 130

Format: U8

V Bias 1 of the lower part of the detection PWLF.

23:16 B0L

Default Value: 133

Format: U8

V Bias 0 of the lower part of the detection PWLF.

15:8 P3L

Default Value: 236

Format: U8

Y Point 3 of the lower part of the detection PWLF.

7:0 P2L

Default Value: 236

Format: U8

Y point 2 of the lower part of the detection PWLF.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 203

COLOR_PROCESSING_STATE - STD/STE State

8 31:27 Reserved

Format: MBZ

26:16 S0L

Format: S2.8 2's complement

Slope 0 of the lower part of the detection PWLF.

 The default is -5/256.

15:8 B3L

Default Value: 130

Format: U8

V Bias 3 of the lower part of the detection PWLF.

7:0 B2L

Default Value: 130

Format: U8

V Bias 2 of the lower part of the detection PWLF.

9 31:22 Reserved

Format: MBZ

21:11 S2L

Format: S2.8 2's complement

Slope 2 of the lower part of the detection PWLF.

 The default is 0/256.

10:0 S1L

Format: S2.8 2's complement

Slope 1 of the lower part of the detection PWLF.

 The default is 0/256.

10 31:27 Reserved

Format: MBZ

26:19 P1U

Default Value: 66

Format: U8

Y Point 1 of the upper part of the detection PWLF.

18:11 P0U

Default Value: 46

Format: U8

Y Point 0 of the upper part of the detection PWLF.

10:0 S3L

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 204

COLOR_PROCESSING_STATE - STD/STE State

Format: S2.8 2's complement

Slope 3 of the lower part of the detection PWLF.

 The default is 0/256.

11 31:24 B1U

Default Value: 163

Format: U8

V Bias 1 of the upper part of the detection PWLF.

23:16 B0U

Default Value: 143

Format: U8

V Bias 0 of the upper part of the detection PWLF.

15:8 P3U

Default Value: 236

Format: U8

Y Point 3 of the upper part of the detection PWLF.

7:0 P2U

Default Value: 150

Format: U8

Y Point 2 of the upper part of the detection PWLF.

12 31:27 Reserved

Format: MBZ

26:16 S0U

Format: S2.8 2's complement

Slope 0 of the upper part of the detection PWLF.

 The default is 256/256.

15:8 B3U

Default Value: 140

Format: U8

V Bias 3 of the upper part of the detection PWLF.

7:0 B2U

Default Value: 200

Format: U8

V Bias 2 of the upper part of the detection PWLF.

13 31:22 Reserved

Format: MBZ

21:11 S2U

Format: S2.8 2's complement

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 205

COLOR_PROCESSING_STATE - STD/STE State

Slope 2 of the upper part of the detection PWLF.

 The default is -179/256.

10:0 S1U

Format: S2.8 2's complement

Slope 1 of the upper part of the detection PWLF.

 The default is -113/256.

14 31:28 Reserved

Format: MBZ

27:20 Skin Types Margin

Default Value: 20

Format: U8

Skin types Y margin.

19:12 Skin Types Thresh

Default Value: 120

Format: U8

Skin types Y threshold.

11 Skin Type Enable

Format: Enable

Treat differently bright and dark skin types.

Value Name Description

0 [Default] Disable

10:0 S3U

Format: S2.8 2's complement

Slope 3 of the upper part of the detection PWLF.

 The default is 0/256.

15 31 Reserved

Format: MBZ

30:21 SATB1

Format: S7.2 2's complement

First bias for the saturation PWLF (bright skin).

 The default is -8/4.

20:14 SATP3

Default Value: 31

Format: S6 2's complement

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 206

COLOR_PROCESSING_STATE - STD/STE State

Third point for the saturation PWLF (bright skin).

13:7 SATP2

Default Value: 6

Format: S6 2's complement

Second point for the saturation PWLF (bright skin).

6:0 SATP1

Format: S6 2's complement

First point for the saturation PWLF (bright skin).

 The default is -6.

16 31 Reserved

Format: MBZ

30:20 SATS0

Format: U3.8

Zeroth slope for the saturation PWLF (bright skin).

 The default is 297/256.

19:10 SATB3

Format: S7.2 2's complement

Third bias for the saturation PWLF (bright skin).

 The default is 124/4.

9:0 SATB2

Format: S7.2 2's complement

Second bias for the saturation PWLF (bright skin).

 The default is 8/4.

17 31:22 Reserved

Format: MBZ

21:11 SATS2

Format: U3.8

Second slope for the saturation PWLF (bright skin).

 The default is 297/256.

10:0 SATS1

Format: U3.8

First slope for the saturation PWLF (bright skin).

 The default is 85/256.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 207

COLOR_PROCESSING_STATE - STD/STE State

18 31:25 HUEP3

Default Value: 14

Format: S6 2's complement

Third point for the hue PWLF (bright skin)

24:18 HUEP2

Default Value: 6

Format: S6 2's complement

Second point for the hue PWLF (bright skin)

17:11 HUEP1

Format: S6 2's complement

First point for the hue PWLF (bright skin).

 The default is -6.

10:0 SATS3

Format: U3.8

Thrid slope for the saturation PWLF (bright skin).

 The default is 256/256.

19 31:30 Reserved

Format: MBZ

29:20 HUEB3

Format: S7.2 2's complement

Third bias for the hue PWLF (bright skin).

 The default is 56/4.

19:10 HUEB2

Format: S7.2 2's complement

Second bias for the hue PWLF (bright skin).

 The default is 8/4.

9:0 HUEB1

Format: S7.2 2's complement

First bias for the hue PWLF (bright skin).

 The default is -8/4.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 208

COLOR_PROCESSING_STATE - STD/STE State

20 31:22 Reserved

Format: MBZ

21:11 HUES1

Format: U3.8

First slope for the hue PWLF (bright skin)

 The default is 85/256.

10:0 HUES0

Format: U3.8

Zeroth slope for the hue PWLF (bright skin)

 The default is 384/256.

21 31:22 Reserved

Format: MBZ

21:11 HUES3

Format: U3.8

Third slope for the hue PWLF (bright skin)

 The default is 256/256.

10:0 HUES2

Format: U3.8

Second slope for the hue PWLF (bright skin)

 The default is 384/256.

22 31 Reserved

30:21 SATB1_DARK

Format: S7.2 2's complement

First bias for the saturation PWLF (dark skin)

 The default is 0/4.

20:14 SATP3_DARK

Default Value: 31

Format: S6 2's complement

Third point for the saturation PWLF (dark skin)

13:7 SATP2_DARK

Default Value: 31

Format: S6 2's complement

Second point for the saturation PWLF (dark skin)

6:0 SATP1_DARK

Format: S6 2's complement

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 209

COLOR_PROCESSING_STATE - STD/STE State

First point for the saturation PWLF (dark skin).

 The default is -11.

23 31 Reserved

Format: MBZ

30:20 SATS0_DARK

Format: U3.8

Zeroth slope for the saturation PWLF (dark skin).

 The default is 397/256.

19:10 SATB3_DARK

Format: S7.2 2's complement

Third bias for the saturation PWLF (dark skin).

 The default is 124/4.

9:0 SATB2_DARK

Format: S7.2 2's complement

Second bias for the saturation PWLF (dark skin).

 The default is 124/4.

24 31:22 Reserved

Format: U3.8

21:11 SATS2_DARK

Format: U3.8

Second slope for the saturation PWLF (dark skin).

 The default is 256/256.

10:0 SATS1_DARK

Format: U3.8

First slope for the saturation PWLF (dark skin).

 The default is 189/256.

25 31:25 HUEP3_DARK

Default Value: 14

Format: S6 2's complement

Third point for the hue PWLF (dark skin).

24:18 HUEP2_DARK

Default Value: 2

Format: S6 2's complement

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 210

COLOR_PROCESSING_STATE - STD/STE State

Third point for the hue PWLF (dark skin).

17:11 HUEP1_DARK

Default Value: 0

Format: S6 2's complement

Third point for the hue PWLF (dark skin).

10:0 SATS3_DARK

Format: U3.8

Third slope for the saturation PWLF (dark skin).

 The default is 256/256.

26 31:30 Reserved

Format: MBZ

29:20 HUEB3_DARK

Format: S7.2 2's complement

Third bias for the hue PWLF (dark skin).

 The default is 56/4.

19:10 HUEB2_DARK

Format: S7.2 2's complement

Second bias for the hue PWLF (dark skin).

 The default is 0/4.

9:0 HUEB1_DARK

Format: S7.2 2's complement

First bias for the hue PWLF (dark skin).

 The default is 0/4.

27 31:22 Reserved

Format: MBZ

21:11 HUES1_DARK

Format: U3.8

First slope for the hue PWLF (dark skin).

 The default is 0/256.

10:0 HUES0_DARK

Format: U3.8

Zeroth slope for the hue PWLF (dark skin).

 The default is 256/256.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 211

COLOR_PROCESSING_STATE - STD/STE State

28 31:22 Reserved

Format: MBZ

21:11 HUES3_DARK

Format: U3.8

Third slope for the hue PWLF (dark skin).

 The default is 256/256.

10:0 HUES2_DARK

Format: U3.8

Second slope for the hue PWLF (dark skin).

 The default is 299/256.

COLOR_PROCESSING_STATE - ACE State

Default

Value:

0x00000068, 0x4C382410, 0x9C887460, 0xEBD8C4B0, 0x604C3824, 0xB09C8874, 0x0000D8C4,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

This state structure contains the ACE state used by the color processing function.

DWord Bit Description

29 31:7 Reserved

Format: MBZ

6:2 Skin Threshold

Format: U5

Used for Y analysis (min/max) for pixels which are higher than skin threshold.

Value Name

1-31

26 [Default]

1 Full Image Histogram

Default Value: 0

Format: Enable

Used to ignore the area of interest for full image histogram.

0 ACE Enable

Format: Enable

30 31:24 Y3

Default Value: 76

Format: U8

The value of the y_pixel for point 3 in PWL.

23:16 Y2

Default Value: 56

Format: U8

The value of the y_pixel for point 2 in PWL.

15:8 Y1

Default Value: 36

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 212

COLOR_PROCESSING_STATE - ACE State

Format: U8

The value of the y_pixel for point 1 in PWL.

7:0 Ymin

Default Value: 16

Format: U8

The value of the y_pixel for point 0 in PWL.

31 31:24 Y7

Default Value: 156

Format: U8

The value of the y_pixel for point 7 in PWL.

23:16 Y6

Default Value: 136

Format: U8

The value of the y_pixel for point 6 in PWL.

15:8 Y5

Default Value: 116

Format: U8

The value of the y_pixel for point 5 in PWL.

7:0 Y4

Default Value: 96

Format: U8

The value of the y_pixel for point 4 in PWL.

32 31:24 Ymax

Default Value: 235

Format: U8

The value of the y_pixel for point 11 in PWL.

23:16 Y10

Default Value: 216

Format: U8

The value of the y_pixel for point 10 in PWL.

15:8 Y9

Default Value: 196

Format: U8

The value of the y_pixel for point 9 in PWL.

7:0 Y8

Default Value: 176

Format: U8

The value of the y_pixel for point 8 in PWL.

33 31:24 B4

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 213

COLOR_PROCESSING_STATE - ACE State

Default Value: 96

Format: U8

The value of the bias for point 4 in PWL.

23:16 B3

Default Value: 76

Format: U8

The value of the bias for point 3 in PWL.

15:8 B2

Default Value: 56

Format: U8

The value of the bias for point 2 in PWL.

7:0 B1

Default Value: 36

Format: U8

The value of the bias for point 1 in PWL.

34 31:24 B8

Default Value: 176

Format: U8

The value of the bias for point 8 in PWL.

23:16 B7

Default Value: 156

Format: U8

The value of the bias for point 7 in PWL.

15:8 B6

Default Value: 136

Format: U8

The value of the bias for point 6 in PWL.

7:0 B5

Default Value: 116

Format: U8

The value of the bias for point 5 in PWL.

35 31:16 Reserved

Format: MBZ

15:8 B10

Default Value: 216

Format: U8

The value of the bias for point 10 in PWL.

7:0 B9

Default Value: 196

Format: U8

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 214

COLOR_PROCESSING_STATE - ACE State

The value of the bias for point 9 in PWL.

36 31:27 Reserved

Format: MBZ

26:16 S1

Format: U1.10

The value of the slope for point 1 in PWL.

 The default is 1024/1024.

15:11 Reserved

Format: MBZ

10:0 S0

Format: U1.10

The value of the slope for point 0 in PWL.

 The default is 1024/1024.

37 31:27 Reserved

Format: MBZ

26:16 S3

Format: U1.10

The value of the slope for point 3 in PWL.

 The default is 1024/1024.

15:11 Reserved

Format: MBZ

10:0 S2

Format: U1.10

The value of the slope for point 2 in PWL.

 The default is 1024/1024.

38 31:27 Reserved

Format: MBZ

26:16 S5

Format: U1.10

The value of the slope for point 5 in PWL.

 The default is 1024/1024.

15:11 Reserved

Format: MBZ

10:0 S4

Format: U1.10

The value of the slope for point 4 in PWL.

 The default is 1024/1024.

39 31:27 Reserved

Format: MBZ

26:16 S7

Format: U1.10

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 215

COLOR_PROCESSING_STATE - ACE State

The value of the slope for point 7 in PWL.

 The default is 1024/1024.

15:11 Reserved

Format: MBZ

10:0 S6

Format: U1.10

The value of the slope for point 6 in PWL.

 The default is 1024/1024.

40 31:27 Reserved

Format: MBZ

26:16 S9

Format: U1.10

The value of the slope for point 9 in PWL.

 The default is 1024/1024.

15:11 Reserved

Format: MBZ

10:0 S8

Format: U1.10

The value of the slope for point 8 in PWL.

 The default is 1024/1024.

41 31:11 Reserved

Format: MBZ

10:0 S10

Format: U1.10

The value of the slope for point 10 in PWL.

 The default is 1024/1024.

COLOR_PROCESSING_STATE - TCC State

Default

Value:

0xDCDCDC00, 0xDCDCDC00, 0x1E34CC91, 0x3E3CCE91, 0x02E80195, 0x0197046B, 0x01790174,

0x00096000, 0x00000000, 0x03030000, 0x009201C0

This state structure contains the TCC state used by the color processing function.

DWord Bit Description

42 31:24 SatFactor3

Default Value: 220

Format: U1.7

The saturation factor for yellow.

23:16 SatFactor2

Default Value: 220

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 216

COLOR_PROCESSING_STATE - TCC State

Format: U1.7

The saturation factor for red.

15:8 SatFactor1

Default Value: 220

Format: U1.7

The saturation factor for magenta.

7 TCC Enable

Format: Enable

6:0 Reserved

Format: MBZ

43 31:24 SatFactor6

Default Value: 220

Format: U1.7

The saturation factor for blue.

23:16 SatFactor5

Default Value: 220

Format: U1.7

The saturation factor for cyan.

15:8 SatFactor4

Default Value: 220

Format: U1.7

The saturation factor for green.

7:0 Reserved

Format: MBZ

44 31:30 Reserved

Format: MBZ

29:20 Base Color 3

Default Value: 483

Format: U10

19:10 Base Color 2

Default Value: 307

Format: U10

9:0 Base Color 1

Default Value: 145

Format: U10

45 31:30 Reserved

Format: MBZ

29:20 Base Color 6

Default Value: 995

Format: U10

19:10 Base Color 5

Default Value: 819

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 217

COLOR_PROCESSING_STATE - TCC State

Format: U10

9:0 Base Color 4

Default Value: 657

Format: U10

46 31:16 Color Transit Slope 23

Default Value: 744

Format: U0.16

The calculation result of 1 / (BC3 – BC2) [1/62]

15:0 Color Transit Slope 12

Default Value: 405

Format: U0.16

The calculation result of 1 / (BC2 – BC1) [1/57]

47 31:16 Color Transit Slope 45

Default Value: 407

Format: U0.16

The calculation result of 1 / (BC5 – BC4) [1/57]

15:0 Color Transit Slope 34

Default Value: 1131

Format: U0.16

The calculation result of 1 / (BC4 – BC3) [1/61]

48 31:16 Color Transit Slope 61

Default Value: 377

Format: U0.16

The calculation result of 1 / (BC1 – BC6) [1/62]

15:0 Color Transit Slope 56

Default Value: 372

Format: U0.16

The calculation result of 1 / (BC6 – BC5) [1/62]

49 31:22 Color Bias 3

Default Value: 0

Format: U2.8

Color bias for BaseColor3.

21:12 Color Bias 2

Default Value: 150

Format: U2.8

Color bias for BaseColor2.

11:2 Color Bias 1

Default Value: 0

Format: U2.8

Color bias for BaseColor1.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 218

COLOR_PROCESSING_STATE - TCC State

1:0 Reserved

Format: MBZ

50 31:22 Color Bias 6

Default Value: 0

Format: U2.8

Color bias for BaseColor6.

21:12 Color Bias 5

Default Value: 0

Format: U2.8

Color bias for BaseColor5.

11:2 ColorBias4

Default Value: 0

Format: U2.8

Color bias for BaseColor4.

1:0 Reserved

Format: MBZ

51 31 Reserved

Format: MBZ

30:24 UV Threshold

Default Value: 3

Format: U7

Low UV threshold.

23:19 Reserved

Format: MBZ

18:16 UV Threshold Bits

Default Value: 3

Format: U3

Low UV transition width bits.

15:13 Reserved

Format: MBZ

12:8 STE Threshold

Default Value: 0

Format: U5

Skin tone pixels enhancement threshold.

7:3 Reserved

Format: MBZ

2:0 STE Slope Bits

Default Value: 0

Format: U3

Skin tone pixels enhancement slope bits.

52 31:16 Inverse UVMax Color

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 219

COLOR_PROCESSING_STATE - TCC State

Default Value: 146

Format: U0.16

1 / UVMaxColor. Used for the SFs2 calculation.

15:9 Reserved

Format: MBZ

8:0 UVMax Color

Default Value: 448

Format: U9

The maximum absolute value of the legal UV pixels. Used for the SFs2 calculation.

COLOR_PROCESSING_STATE - PROCAMP State

Default Value: 0x00020001, 0x01000000

This state structure contains the PROCAMP state used by the color processing function.

DWord Bit Description

53 31:28 Reserved

Format: MBZ

27:17 Contrast

Default Value: 1

Format: U4.7

Contrast magnitude.

16:13 Reserved

Format: MBZ

12:1 Brightness

Default Value: 0

Format: S7.4 2's complement

Brightness magnitude.

0 PROCAMP Enable

Default Value: 1

Format: Enable

54 31:16 Cos_c_s

Default Value: 256

Format: S7.8 2's complement

UV multiplication cosine factor.

15:0 Sin_c_s

Default Value: 0

Format: S7.8 2's complement

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 220

COLOR_PROCESSING_STATE - PROCAMP State

UV multiplication sine factor.

COLOR_PROCESSING_STATE - CSC State

Default

Value:

0x00002000, 0x00000000, 0x00000400, 0x00000000, 0x000004B4, 0x00000000, 0x00000000,

0x00000000, 0x00000000

This state structure contains the CSC state used by the color processing function.

DWord Bit Description

55 31:29 Reserved

Format: MBZ

28:16 C1

Default Value: 0

Format: S2.10 2's complement

Transform coefficient

15:3 C0

Default Value: 1024

Format: S2.10 2's complement

Transform coefficient

2 YUV_IN

Default Value: 0

Format: YUV

CSC input offset enable.

1 YUV_OUT

Default Value: 0

Format: RGB

CSC output offset enable.

0 Transform Enable

Format: Enable

56 31:26 Reserved

Format: MBZ

25:13 C3

Default Value: 0

Format: S2.10 2's complement

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 221

COLOR_PROCESSING_STATE - CSC State

Transform coefficient.

12:0 C2

Default Value: 0

Format: S2.10 2's complement

Transform coefficient.

57 31:26 Reserved

Format: MBZ

25:13 C5

Default Value: 0

Format: S2.10 2's complement

Transform coefficient.

12:0 C4

Default Value: 1024

Format: S2.10 2's complement

Transform coefficient.

58 31:26 Reserved

Format: MBZ

25:13 C7

Default Value: 0

Format: S2.10 2's complement

Transform coefficient.

12:0 C6

Default Value: 0

Format: S2.10 2's complement

Transform coefficient.

59 31:13 Reserved

Format: MBZ

12:0 C8

Default Value: 1204

Format: S2.10 2's complement

Transform coefficient.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 222

COLOR_PROCESSING_STATE - CSC State

60 31:20 Reserved

Format: MBZ

19:10 Offset out 1

Default Value: 0

Format: S9 2's complement

Offset Out for Y/R.

9:0 Offset In 1

Default Value: 0

Format: S9 2's complement

Offset in for Y/R.

61 31:20 Reserved

Format: MBZ

19:10 Offset out 2

Default Value: 0

Format: S9 2's complement

Offset out for U/G.

9:0 Offset in 2

Default Value: 0

Format: S9 2's complement

Offset in for U/G.

62 31:20 Reserved

Format: MBZ

19:10 Offset out 3

Default Value: 0

Format: S9 2's complement

Offset out for V/B.

9:0 Offset in 3

Default Value: 0

Format: S9 2's complement

Offset in for V/B.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 223

COLOR_PROCESSING_STATE - CSC State

63 31:17 Reserved

Format: MBZ

16 Alpha from State Select

Format: U1 Enumerated Type

Value Name Description

0 Alpha is taken from message

1 Alpha is taken from state

15:0 Color Pipe Alpha

Format: U16

COLOR_PROCESSING_STATE - CGC State

Default Value: 0x0CD2911F, 0x30000334, 0x8A800000

This state structure contains the CGC state used by the color processing function.

DWord Bit Description

64 31 Color Gamut Compression Enable

30 Full Range Mapping Enable

Value Name

0 Basic Mode [Default]

1 Advanced Mode

29:20 d(in,default)

Default Value: 205

Format: U10

din.defaultInnerTriangleMappingLength

19:10 d(out,default)

Default Value: 164

Format: U10

dout.defaultOuterTriangleMappingLength

9:0 d1(out)

Default Value: 287

Format: U10

d1
outOuterTriangleMappingLengthBelow

65 31 Reserved

Format: MBZ

30:28 Compression Line Shift

Value Name

0-4

3 [Default]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 224

COLOR_PROCESSING_STATE - CGC State

27:10 Reserved

Format: MBZ

9:0 d1(in)

Default Value: 820

Format: U10

d1
inInnerTriangleMappingLengthBelow

66 31 xvYcc Decode Encode Enable

Value Name Description

1 [Default] Both xvYcc decode and xvYcc encode are enabled

0 Disable both xvYcc decode and xvYcc encode

Programming Notes

This bit is valid only when ColorGamutCompressionnEnable is on.

30 Forced 444 for 444

Default Value: 0

Force the 4:4:4 operation when input video of 4:4:4 format

29 Forced 422 for 444

Default Value: 0

Force the 4:2:2 operation when input video of 4:4:4 format

28 Forced 444 for 422

Default Value: 0

Force the 4:4:4 operation when input video of 4:2:2 format

27:26 STD Factor Mode

Value Name Description

00b STDMin Select the minimum value of the STD factors

01b STDMax Select the maximum value of the STD factors

10b STDAve [Default] Select the average value of the STD factors

11b Reserved

Programming Notes

This field is only valid for input of 4:2:2 (Forced444_for 422 is disabled), or when (Forced422_for444

is enabled).

25:24 MV Dark Factor Mode

Value Name Description

00b MVDarkMin Select the minimum value of the MVDark factors

01b MVDarkMax Select the maximum value of the MVDark factors

10b MVDarkAve [Default] Select the average value of the MVDark factors

11b Reserved

Programming Notes

This field is only valid for input of 4:2:2 (Forced444_for 422 is disabled), or when (Forced422_for444

is enabled).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 225

COLOR_PROCESSING_STATE - CGC State

23:22 Scaling Factor Mode

This mode is for color gamut compression module

Value Name Description

00b SFMin Select the minimum value of the Scaling Factors

01b SFMax Select the maximum value of the Scaling Factors

10b SFAve [Default] Select the average value of the Scaling Factors

11b Reserved

Programming Notes

This field is only valid for input of 4:2:2 (Forced444_for 422 is disabled), or when (Forced422_for444

is enabled).

21:5 Reserved

Format: Reserved

4 Override Saturation Equal Zero

Format: MBZ

Programming Notes

This bit should always be 0.

3:0 Display Color Space Mode

Value Name

0 BT709

1 BT601

2-15 Reserved

3.9 Messages

3.9.1 Global Definitions

For data port messages, part of the message descriptor is used to determine the message type. This field

is documented here. The remainder of the message descriptor is defined differently depending on the

message type, and is documented in the section for the corresponding message.

The Data Port is actually three separate targets, DataPort Sampler Cache, DataPort Constant Cache,

and Data Port Render Cache, each with its own target unit ID. Each target has its own set of message

type encodings as shown below.

Restrictions:

Data port messages may not have the End of Thread bit set in the message descriptor other than the

following exeptions:

The Render Target Write message may have End of Thread set for pixel shader threads dispatched by

the windower in non-contiguous dispatch mode.

The Render Target UNORM Write message may have End of Thread set for pixel shader threads

dispatched by the windower in contiguous dispatch mode.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 226

The Media Block Write message may have End of Thread set for pixel shader threads dispatched by the

windower in contiguous dispatch mode.

3.9.2 Data Port Messages

Most of the messages have an existing definition that is not expected to change. There are several new

messages that are documented here.

Data Cache Data Port Message Summary

Message Type Header Required
Shared Local Memory

Support
Stateless
Support

Address
Modes

Vector
Width

OWord Block Read yes no yes global 1

OWord Block Write yes no yes global 1

Unaligned OWord Block

Read

yes no yes global 1

OWord Dual Block

Read
no for stated

yes for

stateless

no yes global + offset 2

OWord Dual Block

Write
no for stated

yes for

stateless

no yes global + offset 2

DWord Scattered Read
no for stated

yes for

stateless

no yes global + offset 8, 16

DWord Scattered Write
no for stated

yes for

stateless

no yes global + offset 8, 16

Byte Scattered Read
no for stated

yes for

stateless

yes global + offset 8, 16

Byte Scattered Write
no for stated

yes for

stateless

yes global + offset 8, 16

Untyped Surface Read
no for stated

yes for

stateless

yes 1D or 2D 2, 8, 16

Untyped Surface Write
no for stated

yes for

stateless

yes 1D or 2D 2, 8, 16

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 227

Message Type Header Required
Shared Local Memory

Support
Stateless
Support

Address
Modes

Vector
Width

Untyped Atomic

Operation
no for stated

yes for

stateless

yes 1D or 2D 8, 16

Scratch Block Read yes no yes (only) Imm_Buf +

offset

Scratch Block Write yes no yes (only) Imm_Buf +

offset

Memory Fence yes N/A N/A N/A N/A

“global” is the Global Offset in the message header (if header is not present, Global Offset is zero).

“imm_buf” is the Immediate Buffer Base Address provided in message header register M0.5.

“offset” is in the message payload, and is per-slot.

“handle” is the handle address in the message header.

“URBoffset” is the Global Offset field in the URB message descriptor.

“1D” and “2D” are the address payload.

Render Cache Data Port Message Summary

Message Type Header Required Address Modes Vector Width

Media Block Read yes 2D 1

Media Block Write yes 2D 1

Render Target Write
No1

2D + RTAI 8, 16

Typed Surface Read yes 1D, 2D, 3D, 4D 8

Typed Surface Write yes 1D, 2D, 3D, 4D 8

Typed Atomic Operation yes 1D, 2D, 3D, 4D 8

Memory Fence yes N/A N/A

“4D” address refers to U/V/R/LOD for mip-mapped surfaces

“2D + RTAI” address refers to a basic 2D address with render target array index for the third dimension

3.9.2.1 Message Descriptor

The following message descriptor applies to.

DATA PORT SAMPLER

CACHE

DATA PORT CONSTANT

CACHE

DATA PORT RENDER CACHE

Bit Description Bit Description Bit Description

19
Header Present. If set, indicates that the message includes the header. Refer to Render

Target Write message section for more details on this field.

Programming Notes:

The header must be present unless the message type is Render Target Write

Format = Enable

18 Ignored

17:16 Ignored 17:16 Ignored 17
Send Write Commit Message. Indicates

that a write commit message will be sent

back to the thread when the write has

been committed. See section Write

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 228

DATA PORT SAMPLER

CACHE

DATA PORT CONSTANT

CACHE

DATA PORT RENDER CACHE

Commit for more details. This field is

ignored on read message types.

Format = Enable

15:13
Message

Type

000: OWord

Block Read

010: OWord

Dual Block

Read

100: Media

Block Read

101:

Unaligned

OWord Block

Read

110: DWord

Scattered

Read

All other

encodings

are reserved.

15:13
Message

Type

000: OWord

Block Read

010: OWord

Dual Block

Read

110: DWord

Scattered

Read

All other

encodings

are reserved.

16:13
Message Type

0000: OWord Block Read

0001: Render Target UNORM Read

0010: OWord Dual Block Read

0100: Media Block Read

0101: Unaligned OWord Block Read

0110: DWord Scattered Read

0111: DWord Atomic write message

1000: OWord Block Write

1001: OWord Dual Block Write

1010: Media Block Write

1011: DWord Scattered Write

1100: Render Target Write

1101: Streamed Vertex Buffer Write

1110: Render Target UNORM Write

All other encodings are reserved.

12:8
Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0
Binding Table Index. Specifies the index into the binding table for the specified surface. A

binding table index of 255 indicates that a stateless model is to be used. The stateless model

is allowed only with the render cache data port. Refer to section 2.2.2 for details on the

stateless model.

Format = U8

Range = [0,255]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 229

3.9.2.1.1 Message Descriptor

The following message descriptor applies to.

SAMPLER CACHE DATA PORT RENDER CACHE DATA PORT

Bit Description Bit Description

19
Header Present. If set, indicates that the message includes the header.

Programming Notes:

For the Render Cache Data Port, the header must be present for the following message

types:

Typed Surface Read/Write

Typed Surface Atomic Operation

Memory Fence

For the Sampler Cache Data Port, the header must be present for the following message

types:

Unaligned OWord Block Read

Media Block Read.

Format = Enable

18 Ignored 18 Ignored

17:14
Message Type

0001: Unaligned OWord Block Read

0100: Media Block Read

All other encodings are reserved.

17:14
Message Type

0100: Media Block Read

0101: Typed Surface Read

0110: Typed Atomic Operation

0111: Memory Fence

1010: Media Block Write

1100: Render Target Write

1101: Typed Surface Write

All other encodings are reserved.

13:8
Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0
Binding Table Index. Specifies the index into the binding table for the specified surface.

Format = U8

Range = [0,255]

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit Description Bit Description

19
Header Present. If set, indicates that the message includes the header.

Programming Notes:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 230

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit Description Bit Description

For the Data Cache Data Port, the header must be present for the following message types:

OWord Block Read/Write

Unaligned OWord Block Read

Memory Fence

Scratch read/write

For the Constant Cache Data Port, the header must be present for the following message

types:

OWord Block Read

Unaligned OWord Block Read.

Format = Enable

18 Ignored 18
Category

0: Legacy DAP-DC messages

1: Scratch Block Read/Write messages

17:14
Message Type

0000: OWord Block Read

0001: Unaligned OWord Block Read

0010: OWord Dual Block Read

0011: DWord Scattered Read

All other encodings are reserved.

17:14
Category=0 (legacy dataport)

Message Type

0000: OWord Block Read

0001: Unaligned OWord Block Read

0010: OWord Dual Block Read

0011: DWord Scattered Read

0100: Byte Scattered Read

0101: Untyped Surface Read

0110: Untyped Atomic Operation

0111: Memory Fence

1000: OWord Block Write

1010: OWord Dual Block Write

1011: DWord Scattered Write

1100: Byte Scattered Write

1101: Untyped Surface Write

All other encodings are reserved.

Category=1 (scratch)

 [17]: 0=Read; 1=write

[16]:Type;

 0=Oword, 1= Dword

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 231

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit Description Bit Description

 [15]:Invalidate after read;

 [14]:<Reserved, mbz>

[13:12]: Block Size

11: 4 registers

10: <reserved>

01: 2 registers

00: 1 register

[11:0]: Addr offset (Hword based)

13:8
Message Specific Control. Refer to the specific message section for the definition of these

bits.

7:0
Binding Table Index. Specifies the index into the binding table for the specified surface.

For the data cache data port, two binding table indexes are used to select special surfaces:

254: A binding table index of 254 indicates that the shared local memory (SLM) is to be used.

The SLM is only supported with the Byte Scattered Read/Write, Untyped Surface Read/Write,

and Untyped Atomic Operation messages. Refer to the “Shared Local Memory” section

earlier in this chapter for further details on its behavior.

255: A binding table index of 255 indicates that a stateless model is to be used. Stateless

model is only supported with the OWord Block Read/Write, Unaligned OWord Block Read,

Dual OWord Block Read/Write and DWord Scattered Read/Write messages. Refer to section

“Stateless Model” section for details on the stateless model.

Format = U8

Range = [0,255]

3.9.2.2 Message Header

This header applies to the following data port messages:

 OWord Block Read/Write

 Unaligned OWord Block Read

 OWord Dual Block Read/Write

 DWord Scattered Read/Write

 Byte Scattered Read/Write

 Scratch Block Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:10
Immediate Buffer Base Address. Specifies the surface base address for messages in

which the Binding Table Index is 255 (stateless model), otherwise this field is ignored.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 232

DWord Bit Description

This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:8 Ignored

 7:0
Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for

the thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:4 Ignored

3:0
Programming Notes:

This amount is available to the kernel for information only. It will be passed verbatim (if

not altered by the kernel) to the Data Port in any scratch space access messages. The

data port will use this to bounds check scratch space messages. Writes out of bounds

will be ignored. Reads out of bounds will return 0.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

M0.2 31:0
Global Offset.

:

Specifies the global element offset into the buffer.

For the Unaligned OWord messages, this offset is in units of Bytes but must be DWord

aligned (bits 1:0 MBZ)

For the other OWord messages, this offset is in units of OWords

For the DWord messages, this offset is in units of DWords

For the Byte messages, this offset is in units of Bytes

Format = U32

Range = [0,FFFFFFFCh] for Unaliged OWord messages

Range = [0,0FFFFFFFh] for other OWord messages

Range = [0,3FFFFFFFh] for DWord messages

Range = [0,FFFFFFFFh] for Byte messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

3.9.2.3 Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message

bit in the message descriptor is set. The destination register is not modified. Write messages without the

Send Write Commit Message bit set will not return anything to the thread (response length is 0 and

destination register is null).

DWord Bit Description

W0.7:0 Reserved

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 233

3.9.3 OWord Block Read/Write

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords

starting at that offset.

Restrictions:

1. the only surface type allowed is SURFTYPE_BUFFER.

2. the surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

3. the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the
surface state model.

4. the surface cannot be tiled

5. the surface base address must be OWord aligned

6. the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

7. the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model

Applications:

Constant buffer reads of a single constant or multiple contiguous constants.

Scratch space reads/writes where the index for each pixel/vertex is the same.

Block constant reads, scratch memory reads/writes for media.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and

third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The

high 8 bits are used similarly for the second and fourth (W1, W3 or M2, M4). For reads, any mask bit

asserted within a group of four will cause the entire OWord to be read and returned to the destination

GRF register. For writes, each mask bit is considered for its corresponding DWord written to the

destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or

the high 4 bits, depending on the position of the OWord to be read or written, is used as the single group

of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two

channels (red and green) of a single scratch register across 16 pixels. A second message would access

the other two channels (blue and alpha). The execution mask is used to ensure that data associated with

inactive pixels are not overwritten.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

3.9.3.1 Message Descriptor

Bit Description

13
Invalidate After Read Enable

This field, if enabled, causes all lines in the L3 cache accessed by the message to be

invalidated after the read occurs, regardless of whether the line contains modified data. It is

intended as a performance hint indicating that the data will no longer be used to avoid writing

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 234

Bit Description

back data to memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a

single thread and thus does not need to be maintained after the thread completes.

Format = Enable

12
Ignored

11
Ignored

10:8
Block Size. Specifies the number of contiguous OWords to be read or written

000: 1 OWord, read into or written from the low 128 bits of the destination register

001: 1 OWord, read into or written from the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Programming Notes:

The 6 OWord block size is valid only with Data Port Constant Cache.

3.9.3.2 Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the

header) depending on the Block Size specified in the message. For the one-constant case, data is taken

from either the high or low half of the payload register depending on the half selected in Block Size. In

this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is

also in units of OWords.

DWord Bit Description

M1.7:4 127:0
OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of

the destination, OWord[Offset] will appear in this location

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

3.9.3.3 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending on

the Block Size specified in the message. For the one-constant case, data is placed in either the high or

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 235

low half of the returned register depending on the half selected in Block Size. In this case, the other half

of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is

also in units of OWords.

DWord Bit Description

W0.7:4 127:0
OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of

the destination, OWord[Offset] will appear in this location

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

3.9.4 Unaligned OWord Block Read

This message takes one DWord aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous

OWords starting at that offset. This message is identical to the OWord Block Read message except the

offset alignment. For read/write cache, only the read path supports this unaligned OWord Block access.

Restrictions:

1. the only surface type allowed is SURFTYPE_BUFFER.

2. the surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

3. the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the
surface state model.

4. the surface cannot be tiled

5. the surface base address must be OWord aligned

6. the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

7. the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model

Applications:

Reads with offset that is not aligned with data size, such as row store usage in media

Execution Mask. The execution mask is ignored by this message.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 236

3.9.4.1 Message Descriptor

Bit Description

13
 Ignored

12:11 Ignored

10:8
Block Size. Specifies the number of contiguous OWords to be read

000: 1 OWord, read into the low 128 bits of the destination register

001: 1 OWord, read into the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

3.9.4.2 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the

Block Size specified in the message. For the one-constant case, data is placed in either the high or low

half of the returned register depending on the half selected in Block Size. In this case, the other half of

the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in

units of OWord starts at Global Offset.

DWord Bit Description

W0.7:4 127:0
OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128

bits of the destination, OWord0 will appear in this location

W0.3:0 127:0 OWord0 = Buffer[Global Offset]

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5= *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

3.9.5 OWord Dual Block Read/Write

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset.

The Global Offset is added to each of the specific offsets.

 The message header is no longer required for the OWord Dual Block Read/Write messages if sent to the data

cache data port. If header is not sent, the Global Offset field is assumed to be zero. The header is required,

however, if the binding table index is 255 (stateless model), as the Immediate Buffer Base Address field is

required.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 237

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Restrictions:

1. The only surface type allowed is SURFTYPE_BUFFER.

2. The surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

3. The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the
surface state model.

4. The surface cannot be tiled

5. The surface base address must be OWord aligned

6. The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

7. the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model

Applications:

SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are two

indices and they are the same, hardware will optimize the cache accesses and do only one cache

access)

SIMD4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF

registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a

group of four will cause the entire OWord to be read and returned to the destination GRF register. For

writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

3.9.5.1 Message Descriptor

Bit Description

13
Invalidate After Read Enable

This field, if enabled, causes all lines in the L3 cache accessed by the message to be

invalidated after the read occurs, regardless of whether the line contains modified data. It is

intended as a performance hint indicating that the data will no longer be used to avoid writing

back data to memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a

single thread and thus does not need to be maintained after the thread completes.

Format = Enable

12
Ignored

11:10
Ignored

9:8
Block Size: Specifies the number of OWords in each block to be read or written

00: 1 OWord

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 238

Bit Description

10: 4 OWords

all other encodings are reserved.

3.9.5.2 Message Payload

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Ignored

M1.5 31:0 Ignored

M1.4 31:0
Block Offset 1.

Specifies the OWord offset of OWord Block 1 into the surface.

Format = U32

Range = [0,0FFFFFFFh]

M1.3 31:0 Ignored

M1.2 31:0 Ignored

M1.1 31:0 Ignored

M1.0 31:0 Block Offset 0

3.9.5.3 Additional Message Payload (Write)

For the write operation, the message payload consists of one or four registers (not including the header or

the first part of the payload) depending on the Block Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is

in units of OWords . The OWord array index is also in units of OWords.

DWord Bit Description

M2.7:4 127:0 OWord[Offset1]

M2.3:0 127:0 OWord[Offset0]

M3.7:4 127:0 OWord[Offset1+1]

M3.3:0 127:0 OWord[Offset0+1]

M4.7:4 127:0 OWord[Offset1+2]

M4.3:0 127:0 OWord[Offset0+2]

M4.7:4 127:0 OWord[Offset1+3]

M4.3:0 127:0 OWord[Offset0+3]

3.9.5.4 Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the Block

Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is

in units of Owords. The OWord array index is also in units of OWords.

DWord Bit Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 239

DWord Bit Description

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

3.9.6 Media Block Read/Write

The read form of this message enables a rectangular block of data samples to be read from the source

surface and written into the GRF. The write form enables data from the GRF to be written to a rectangular

block.

Restrictions:

1. The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the
stateless surface model is not supported with this message.

2. The surface format is used to determine the pixel structure for boundary clamp, the raw data from
the surface is returned to the thread without any format conversion nor filtering operation

3. The target cache cannot be the data cache

4. The surface base address must be 32-byte aligned

5. When a surface is XMajor tiled, (tilewalk field in the surface state is set to TILEWALK_XMAJOR), a
memory area mapped through the Render Cache cannot be read and/or wrote in mixed frame and
field modes. For example, if a memory location is first written with a zero Vertical Line Stride (frame
mode), and later on (without render cache flush) read back using Vertical Line Stride of one (field
mode), the read data stored in GRF are uncertain.

6. The block width and offset should be aligned to the size of pixels stored in the surface. For a surface
with 8bpp pixels for example, the block width and offset can be byte aligned. For a surface with
16bpp pixels, it is word aligned.

7. For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. dword aligned).

8. The write form of message has the additional restriction that both X Offset and Block Width must
be DWord aligned.

9. Pitch must be a multiple of 64 bytes when the surface is linear.

Applications:

Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The

data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the

nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface are

dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be

found in the Surface Formats Section of the Sampling Engine Chapter.

For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary dword

B0B1B2B3, to replicate the left boundary byte pixel, the out of bound dwords have the format of

B0B0B0B0, and that for right boundary is B3B3B3B3.

This rule applies to all surface formats with BPE of 8. As the data port does not perform format

conversion, the most likely used surface formats are R8_UINT and R8_SINT.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 240

For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a

boundary dword B0B1B2B3, to replicate the left boundary word pixel, the out of bound dwords have the

format of B0B1B0B1, and that for right boundary is B2B3B2B3.

This rule applies to all surface formats with BPE of 16. As the data port does not perform format

conversion, only the formats with integer data types may be useful in practice.

For special surfaces with 16bpp pixels YUV422 packed format, there are two basic cases depending on

the Y location: YUYV (surface format YCRCB_NORMAL) and UYVY (surface format YCRCB_SWAPY).

Boundary handling for YVYU (surface format YCRCB_SWAPUV) is the same as that for YUYV. Similarly,

boundary handling for VYUY (surface format YCRCB_SWAPUVY) is the same as that for UYVY. Note

that these four surface formats have 16bpp pixels, even though the BPE fields are set to zero according

to the table in the Surface Formats Section.

For a boundary dword Y0U0Y1V0, to replicate the left boundary, we get Y0U0Y0V0, and to replicate the

right boundary, we get Y1U0Y1V0.

For a boundary dword U0Y0V0Y1, to replicate the left boundary, we get U0Y0V0Y0, and to replicate the

right boundary, we get U0Y1V0Y1.

For a surface with 32bpp pixels, the boundary dword pixel is replicated.

This rule applies to all surface formats with BPE of 32. As the data port does not perform format

conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

When Color Processing Enable is set to 1 and the IECP output surface to be written is NV12 format

(R16_UNORM surface format 0x10A, should be used if the output surface is NV12 format).

NV12 surface state : The width of the surface should be always multiples of 4pixels. For 16bpp input

message (422 8-bit) the width will always need to be in multiples of 8bytes and for 32bpp input message

(422 16-bit or 444 8-bit) the width should be in multiples of 16bytes. Height should be in multiples of

2pixel high. (presently the MFX restriction is that width should be in multiples of 2pixels).

y-offset of the media block write from the EU should be always even

x-offset of the media block write from the EU should be in multiples of 4 pixel.

The media block dword write can have only the following combinations (for IECP when NV12 output

format is used):

 8pixel wide for 422 8-bit mode

 4pixel wide for 422 8-bit mode

 4pixel wide for 422 16-bit

 4pixel wide for 444 8-bit.

 444 16-bit input format cannot be supported when the output format is NV12 (s/w should not use this
combination).

 It has to be in multiples of 2pixel high for all above modes.

If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped

and in case of 422-format the top UV values are used and the bottom UV values is dropped if the output

format is NV12 format.

Assuming IECP messages will always have vertical stride = 0. (since this is only for pre-processing before

the encoder).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 241

3.9.6.1 Message Descriptor

Bit Description

13
Reserved: MBZ

12
Reserved : MBZ

11
Reserved : MBZ

10
Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface

state should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine

chapter) is modified according the following rules:

Vertical Line

Stride

(in surface state)
Override Vertical Line

Stride

Derived 1-based surface height

(As a function of the 0-based Height in surface state)

0 0
Height + 1

(Normal)

0 1
(Height +1) / 2

Restriction: (Height + 1) must be an even

number.

1 0 (Height + 1) * 2

1 1
Height + 1

(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface

state is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of

this frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride

Offset will be set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2).

In contrary, if Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface

state is 0, the surface state represents the top field of the video buffer. In this case, Height (of

the top field) should be programmed as 239. Accessing the bottom video field will use the same

surface height of 240. Accessing the video frame (with Override Vertical Line Stride and

Override Vertical Line Stride Offset set to 0) will result in a derived surface height of 480

((Height + 1) * 2).

0 -- Use parameters in the surface state and ignore bits 9:8

1 -- Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset

9 Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of

interleaved (field) surfaces as textures.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 242

Bit Description

Format = U1 in lines to skip between logically adjacent lines

8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override

VerticalLine Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

3.9.6.2 Message Header

DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:8 Ignored

 7:0
FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the

thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:5
Color Processing State Pointer. Defines the pointer to COLOR_PROCESSING_STATE.

Ignored on read messages and when Color Processing Enable is not set. This pointer is

relative to the General State Base Address.

Programming Notes:

This pointer is not delivered via state variables like most other pointers are delivered. It

must be delivered via another software-defined mechanism such as CURBE.

Format = GeneralStateOffset[31:5]

 4
Message Mode

This field selects the mode of this message as follows:

0: NORMAL. The Block Height and Block Width fields are set in M0.2. The Pixel Mask

is not explicitly set but behaves as if it is set to all ones.

1: PIXEL_MASK: The Pixel Mask field is set in M0.2. The Block Height and Block Width

are not explicitly set but behave as if they are set to 4 rows and 32 bytes, respectively.

 3:2
Message Format. Defines the format of the message if Color Processing Enable is set.

0: YUV 4:2:2, 8 bits per channel

1: YUV 4:4:4, 8 bits per channel

2: YUV 4:2:2, 16 bits per channel

3: YUV 4:4:4, 16 bits per channel

 1
Area of Interest. This field controls whether the statistic for the luma pixels is collected at VSC

for ACE histogram. This field is effective only when the state variable Full_image_histogram is

disabled.

 0
Color Processing Enable. This field controls whether color processing is enabled on a

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 243

DWord Bit Description

media block write message.

Format = Enable

This bit must be set to zero on a Media Block Read to the Render Cache.

The following M0.2 definition applies only if the Message Mode field is set to NORMAL:

M0.2 31:29 Ignored

 28:24
Programming Notes:

Sub-Register Offset must be aligned to BasePitch (therefore will be a multiple of

DWords as well).

When Register Pitch Control = 0, Sub-Register Offset must align to BasePitch*Block

Height and the output fits in a single GRF register.

In general (and specifically when Sub-Register Offset is greater than 0), when the

resulting data cross GRF register boundary, the data must be placed symmetrically

between GRF registers.

Sub-Register Offset and Register Pitch Control allow software to assembly multiple

media block reads directly into a shared GRF register set. For example, if both are set

to zero, the read data are written to GRF registers, aligning to the least significant bits

of the first register, and the register pitch is equal to the next power-of-2 that is greater

than or equal to the Block Width. If Register Pitch Control is non-zero, multiple media

block read messages sharing the same Register Pitch Control but with different Sub-

Register Offset can fill in the same set of GRF registers with media block data line

interleaved.

Format = U5

Range = [0, 28] (Only a multiple of BasePitch, including 0, is valid)

Programming Note: This field must be zero for Render Cache Data Port.

 21:16
Block Height. Height in rows of block being accessed.

Programming Notes:

The Block Height is restricted to the following maximum values depending on the

Block Width:

Block Width (bytes) Maximum Block Height (rows)

1-4 64

5-8 32

9-16 16

17-32 8

Format = U6

Range = [0,63] representing 1 to 64 rows

 15:10 Ignored

 9:8
Programming Notes:

Register Pitch Control is only allowed to be non-zero, if Block Width is a multiple of

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 244

DWord Bit Description

DWords. The effective register pitch must be less than or equal to 32 bytes (to fit in a

single GRF register).

Defining BasePitch as the next power-of-2 that is greater than or equal to the Block

Width, Register Pitch Control set the register pitch in term of BasePitch as the following.

Range = [0,3] representing 1 to 4 BasePitch

Programming Note: This field must be zero for Render Cache Data Port.

 7:5 Ignored

 4:0
Block Width. Width in bytes of the block being accessed.

Programming Notes:

Must be DWord aligned for the write form of the message.

The following M0.2 definition applies only if the Message Mode field is set to PIXEL_MASK:

MO.2 31:0
Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to

be written. This field is ignored by the read message, all pixels are always returned..

The bits in this mask correspond to the pixels (DWords) as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

M0.1 31:0
Y offset. The Y offset of the upper left corner of the block into the surface.

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4

M0.0 31:0
X offset. The X offset of the upper left corner of the block into the surface.

Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from

the offset in the surface if Color Processing is enabled due to format conversion.

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32

Programming Note: The legal combinations of block width, pitch control, sub-register offset and block

height are given below:

Block Height for given block width, pitch control, subreg offsets

 sub-register offsets

block width pitch control 0 1 2 3 4 5 6 7

1-4 00 1-64 1 1 1 1 1 1 1

01 1-64 1-64 illegal illegal 1-2 1-2 illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-64 1-64 1-64 1-64 illegal illegal illegal illegal

5-8 00 1-32 illegal 1 illegal 1 illegal 1 illegal

01 1-32 illegal 1-32 illegal illegal illegal illegal illegal

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 245

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-32 illegal 1-32 illegal 1-32 illegal 1-32 illegal

9-16 00 1-16 illegal illegal illegal 1 illegal illegal illegal

01 1-16 illegal illegal illegal 1-16 illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-16 illegal illegal illegal 1-16 illegal illegal illegal

7-32 00 1-8 illegal illegal illegal illegal illegal illegal illegal

01 1-8 illegal illegal illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-8 illegal illegal illegal illegal illegal illegal illegal

3.9.6.3 Message Payload (Write)

DWord Bit Description

M1:n
Write Data. The format of the write data depends on the Block Height and Block Width.

The data is aligned to the least significant bits of the first register, and the register pitch is

equal to the next power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message

Format field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position

includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0

YUV 4:2:2, 8 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 8 bits per channel alpha (A) luminance (Y) Cb (U) Cr (V)

 63:48 47:32 31:16 15:0

YUV 4:2:2, 16 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 16 bits per channel alpha (A) Cr (V) luminance (Y) Cb (U)

3.9.6.4 Writeback Message (Read)

DWord Bit Description

W0:n
Read Data. The format of the read data depends on the Block Height and Block Width. The data

is aligned to the least significant bits of the first register, and the register pitch is equal to the next

power-of-2 that is greater than or equal to the Block Width.

.

3.9.7 DWord Scattered Read/Write

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset.

The Global Offset is added to each of the specific offsets.

The message header is no longer required for the OWord DWord Scattered Read/Write messages if sent

to the data cache data port. If header is not sent, the Global Offset field is assumed to be zero. The

header is required, however, if the binding table index is 255 (stateless model), as the Immediate Buffer

Base Address field is required.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 246

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped to

the nearest edge of the surface. For write messages with X/Y offsets that are outside the bounds of the

surface, the behavior is undefined.

Hardware does check for and optimize for cases where offsets are equal or contiguous, however for

optimal performance in some these cases a different message may provide higher performance.

Restrictions:

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored, data is returned from the constant buffer to the GRF without format

conversion.

The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is

used to determine the size of the buffer for out-of-bounds checking if using the surface state model.

The surface cannot be tiled

The surface base address must be DWord aligned

The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when

using this message with the render cache in the surface state model

The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to

read/write mode when using this message with the render cache in the stateless model

Applications:

SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per

message)

SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per

message)

general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask

are used to determine which DWords are read into the destination GRF register (for read), or which

DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

3.9.7.1 Message Descriptor

Bit Description

13
Invalidate After Read Enable

This field, if enabled, causes all lines in the L3 cache accessed by the message to be

invalidated after the read occurs, regardless of whether the line contains modified data. It is

intended as a performance hint indicating that the data will no longer be used to avoid writing

back data to memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a

single thread and thus does not need to be maintained after the thread completes.

Format = Enable

12:10 Reserved

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 247

Bit Description

9:8
Block Size. Specifies the number of DWords to be read or written

10: 8 DWords

11: 16 DWords

All other encodings are reserved.

3.9.7.2 Message Payload

DWord Bit Description

M1.7 31:0
Offset 7.

Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0
Offset 15. This message register is included only if the block size is 16 DWords.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

3.9.7.3 Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of

DWords . The DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7]

M3.6 31:0 DWord[Offset6]

M3.5 31:0 DWord[Offset5]

M3.4 31:0 DWord[Offset4]

M3.3 31:0 DWord[Offset3]

M3.2 31:0 DWord[Offset2]

M3.1 31:0 DWord[Offset1]

M3.0 31:0 DWord[Offset0]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 248

DWord Bit Description

M4.7 31:0
DWord[Offset15]. This message register is included only if the block size is 16 DWords

M4.6 31:0 DWord[Offset14]

M4.5 31:0 DWord[Offset13]

M4.4 31:0 DWord[Offset12]

M4.3 31:0 DWord[Offset11]

M4.2 31:0 DWord[Offset10]

M4.1 31:0 DWord[Offset9]

M4.0 31:0 DWord[Offset8]

3.9.7.4 Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the

block size.

The DWord array index is also in units of DWords.

DWord Bit Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

W1.7 31:0
DWord[Offset15]. This writeback message register is included only if the block size is 16

DWords.

W1.6 31:0 DWord[Offset14]

W1.5 31:0 DWord[Offset13]

W1.4 31:0 DWord[Offset12]

W1.3 31:0 DWord[Offset11]

W1.2 31:0 DWord[Offset10]

W1.1 31:0 DWord[Offset9]

W1.0 31:0 DWord[Offset8]

3.9.8 Byte Scattered Read/Write

These messages are supported on only.

These messages take a set of offsets, and read or write 8 or 16 scattered and possibly misaligned bytes,

words, or dwords starting at each offset. The Global Offset from the message header is added to each of

the specific offsets.

Restrictions:

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored, data is returned from the buffer to the GRF without format conversion.

The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 4 bytes is

used to determine the size of the buffer for out-of-bounds checking if using the surface state model.

The surface cannot be tiled

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 249

The surface base address must be DWord aligned

The stateless model is not supported.

Applications:

Byte aligned buffer accesses in compute shaders

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask

are used to determine which slots are read into the destination GRF register (for read), or which slots are

written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

3.9.8.1 Message Descriptor

Bit Description

13:12 Ignored

11:10
Data Size. Specifies the data size for each slot.

0: 1 byte

1: 2 bytes

2: 4 bytes

3: Reserved

9 Ignored

8
SIMD Mode. Specifies the SIMD mode of the message (number of slots processed).

0: SIMD8

1: SIMD16

3.9.8.2 Message Payload

DWord Bit Description

M1.7 31:0
Offset 7.

Specifies the byte offset of DWord 7 into the surface.

Format = U32

Range = [0,FFFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0
Offset 15. This message register is included only if the SIMD Mode is SIMD16.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 250

DWord Bit Description

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

3.9.8.3 Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload

contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of

bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit field.

The upper bits are ignored for 1 byte and 2 byte Data Size.

DWord Bit Description

M3.7 31:0 Data[Offset7]

M3.6 31:0 Data[Offset6]

M3.5 31:0 Data[Offset5]

M3.4 31:0 Data[Offset4]

M3.3 31:0 Data[Offset3]

M3.2 31:0 Data[Offset2]

M3.1 31:0 Data[Offset1]

M3.0 31:0 Data[Offset0]

M4.7 31:0
Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

M4.6 31:0 Data[Offset14]

M4.5 31:0 Data[Offset13]

M4.4 31:0 Data[Offset12]

M4.3 31:0 Data[Offset11]

M4.2 31:0 Data[Offset10]

M4.1 31:0 Data[Offset9]

M4.0 31:0 Data[Offset8]

3.9.8.4 Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the

block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of

bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit field and

only the requeted bytes are written to the GRF.

DWord Bit Description

W0.7 31:0 Data[Offset7]

W0.6 31:0 Data[Offset6]

W0.5 31:0 Data[Offset5]

W0.4 31:0 Data[Offset4]

W0.3 31:0 Data[Offset3]

W0.2 31:0 Data[Offset2]

W0.1 31:0 Data[Offset1]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 251

DWord Bit Description

W0.0 31:0 Data[Offset0]

W1.7 31:0
Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

W1.6 31:0 Data[Offset14]

W1.5 31:0 Data[Offset13]

W1.4 31:0 Data[Offset12]

W1.3 31:0 Data[Offset11]

W1.2 31:0 Data[Offset10]

W1.1 31:0 Data[Offset9]

W1.0 31:0 Data[Offset8]

3.9.9 Typed/Untyped Surface Read/Write and Typed/Untyped Atomic
Operation

Six data port messages (Typed Surface Read, Typed Surface Write, Typed Atomic Operation, Untyped

Surface Read, Untyped Surface Write, and Untyped Atomic Operation) allow direct read/write accesses to

surfaces. These messages support three major categories of surfaces:

Typed surfaces. These surfaces are of type SURFTYPE_1D, 2D, 3D, or BUFFER and have a supported

surface format other than RAW. Supported via the render cache data port.

Programming Restriction: Vertical stride & Vertical Offset fields of the surface state object is only

supported for 2D non-array surfaces.

Raw buffer (untyped). These surfaces are of type SURFTYPE_BUFFER and have a surface format of

RAW and a surface pitch of 1 byte. Supported via the data cache data port. All SLM accesses are in this

category.

Structured buffer (untyped). These surfaces are of type SURFTYPE_STRBUF and have a surface

format of RAW. Supported via the data cache data port.

A typed surface uses U, V, R, and LOD address parameters (number of parameters utilized depends on

surface type), and performs conversion of type to/from the selected surface format as follows:

Surface formats with UINT require the message data in U32 format

Surface formats with SINT require the message data in S32 format

All other surface formats require the message data in FLOAT32 format

The untyped surface categories, both of which use the RAW surface format, perform no type conversion.

A raw buffer uses just the U address parameter, which specifies the byte offset into the surface, which

must be a multiple of 4. A structured buffer uses the U address parameter as an array index and the V

address parameter as a byte offset into the array element (which also must be a multiple of 4).

For both raw and structured buffers, up to 4 dwords are accessed beginning at the byte address

determined. These 4 dwords correspond to the red, green, blue, and alpha channels in that order with red

mapping to the lowest order dword. The atomic operation messages will only access the first dword

(corresponding to the red channel for typed messages).

The atomic operation messages causes atomic read-modify-write operations on the “destination” location

addressed. In the table below, the new value of the destination (new_dst) is computed as indicated based

on the old value of the destination (old_dst) and up to two sources included in the message (src0 and

src1). Optionally, a value can be returned by the message (ret).

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 252

The atomic operations guarantee that the read and the write are performed atomically, meaning that no

read or write to the same memory location from this thread or any other thread can occur between the

read and the write.

The following atomic operations are available, along with the specific operation performed for each and

the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst

AOP_OR old_dst | src0 old_dst

AOP_XOR old_dst ^ src0 old_dst

AOP_MOV src0 old_dst

AOP_INC old_dst + 1 old_dst

AOP_DEC old_dst – 1 old_dst

AOP_ADD old_dst + src0 old_dst

AOP_SUB old_dst – src0 old_dst

AOP_REVSUB src0 – old_dst old_dst

AOP_IMAX imax(old_dst, src0) old_dst

AOP_IMIN imin(old_dst, src0) old_dst

AOP_UMAX umax(old_dst, src0) old_dst

AOP_UMIN umin(old_dst, src0) old_dst

AOP_CMPWR (src0 == old_dst) ? src1 : old_dst old_dst

AOP_PREDEC old_dst – 1 new_dst

AOP_CMPWR8B (src08B == old_dst8B) ? src18B : old_dst8B old_dst8B

Programming Note: src08B is 8 bytes, src18B is 8 Bytes and old_dst8B is 8 bytes in length.

Programming Note: AOP_CMPWR8B is not supported for SLM.

Programming Note: AOP_CMPWR8B addresses must be QWORD aligned.

Note: imax/imin assume operands are signed integers, umax/umin assume operands are unsigned

integers. All other operations treat all values as 32-bit unsigned integers. Add and subtract operations will

wrap without any special indication.

These messages are supported on only.

Restrictions:

For untyped messages, the Surface Format must be RAW and the Surface Type must be

SURFTYPE_BUFFER or SURFTYPE_STRBUF.

For typed messages, the Surface Type must be SURFTYPE_1D, 2D, 3D, or BUFFER.

Surface Format Name

R32_SINT

R32_UINT

R32_FLOAT

The Surface Format for typed surface writes must be

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R16G16B16A16_UNORM

R16G16B16A16_SNORM

R16G16B16A16_SINT

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 253

Surface Format Name

R16G16B16A16_UINT

R16G16B16A16_FLOAT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

B8G8R8A8_UNORM

R10G10B10A2_UNORM

R10G10B10A2_UINT

R8G8B8A8_UNORM

R8G8B8A8_SNORM

R8G8B8A8_SINT

R8G8B8A8_UINT

R16G16_UNORM

R16G16_SNORM

R16G16_SINT

R16G16_UINT

R16G16_FLOAT

B10G10R10A2_UNORM

R11G11B10_FLOAT

R32_SINT

R32_UINT

R32_FLOAT

B5G6R5_UNORM

B5G5R5A1_UNORM

B4G4R4A4_UNORM

R8G8_UNORM

R8G8_SNORM

R8G8_SINT

R8G8_UINT

R16_UNORM

R16_SNORM

R16_SINT

R16_UINT

R16_FLOAT

B5G5R5X1_UNORM

R8_UNORM

R8_SNORM

R8_SINT

R8_UINT

A8_UNORM

The Surface Format for typed atomic operations must be R32_UINT or R32_SINT.

For untyped messages accessing SURFTYPE_STRBUF, the V address (byte offset) must be DWord

aligned (low 2 bits must be zero).

For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord

aligned (low 2 bits must be zero).

Typed messages only support SIMD8.

The stateless model support is limited to untyped messages.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 254

Execution Mask:

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from

the message header and the resulting mask is used to determine which slots are read into the destination

GRF register (for read), or which slots are written to the surface (for write). If the header is not present,

only the execution mask is used.

SIMD8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from the

message header. For the typed messages, the Slot Group in the message descriptor selects either the

low or high 8 bits. For the untyped messages, the low 8 bits are always selected. The resulting mask is

used to determine which slots are read into the destination GRF register (for read), or which slots are

written to the surface (for write). If the header is not present, only the low 8 bits of the execution mask are

used.

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create

two bits which are used to determine which slots are read into the destination GRF register.

Out–of–Bounds Accesses: Reads to areas outside of the surface return 0, except for the Typed Surface

Read message which returns 1 in the alpha channel and 0 in the other channels. Writes to areas outside

of the surface are dropped and will not modify memory contents.

Errata: The Typed Surface Read returns 0 in all channels for out-of-bounds accesses.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

The following table summarizes the SIMD Mode support for each message type:

 Untyped Typed

Read Write Atomic Read Write Atomic

SIMD16 x x x

SIMD8 x x x x x x

The following table indicates the hardware interpretation of each input parameter based on surface type.

Parameters with blank entries are ignored by hardware if delivered.

Surface Type “Surface Array” field in

SURFACE_STATE

U Address V Address R Address LOD

SURFTYPE_1D disabled X pixel address LOD

 enabled X pixel address array

index

 LOD

SURFTYPE_2D disabled X pixel address Y pixel

address

 LOD

 enabled X pixel address Y pixel

address

array

index

LOD

SURFTYPE_3D disabled X pixel address Y pixel

address

Z pixel

address

LOD

SURFTYPE_BU

FFER

disabled buffer index

SURFTYPE_ST

RBUF

disabled buffer index byte offset

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 255

3.9.9.1 Typed Surface Read/Write Message Descriptor

Bit Description

13
Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with

the execution mask to determine which slots are accessed. This field is ignored if the header is

not present.

Format = U1

0: Use low 8 slots

1: Use high 8 slots

12 Ignored

11
Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the

write message, indicates that alpha is included in the message payload, and that alpha will be

written to the surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

3.9.9.2 Untyped Surface Read/Write Message Descriptor

Bit Description

13:12
SIMD Mode

Format = U2

0: SIMD4x2 (valid for read message only) (valid for read message only) ,

1: SIMD16

2: SIMD8

3: Reserved

11
Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the

write message, indicates that alpha is included in the message payload, and that alpha will be

written to the surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 256

Bit Description

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower

mask bits are also zero. This means that the only 4-bit channel mask values allowed are

0000b, 1000b, 1100b, and 1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the

4-bit channel mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

3.9.9.3 Typed Atomic Operation Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12
Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with

the execution mask to determine which slots are accessed.

Format = U1

0: Use low 8 slots

1: Use high 8 slots

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 257

Bit Description

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

3.9.9.4 Typed Atomic Operation SIMD4x2 Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

3.9.9.5 Untyped Atomic Operation Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 258

Bit Description

12
SIMD Mode

Format = U1

0: SIMD16

1: SIMD8

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: 0000: AOP_CMPWR8B

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

3.9.9.6 Untyped Atomic Operation SIMD4x2 Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: AOP_CMPWR8B

0001: AOP_AND

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 259

Bit Description

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

3.9.9.7 Atomic Counter Operation Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12
SIMD Mode

Format: U1

0: SIM16

1: SIM8 (low 8 slots)

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 260

Bit Description

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append

counter field in the surface state. The write data payloads are the same as untyped atomic. The write

back are the same as untyped atomic.

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of the

surface state is not 1, it the access will be treated as out of bounds, w/ the writes being ignored and the

reads returning 0.

3.9.9.8 Atomic Counter Operation SIMD4x2 Message Descriptor

Bit Description

13
Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8
Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 261

Bit Description

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append

counter field in the surface state. The write data payloads are the same as untyped atomic 4x2. The write

back are the same as untyped atomic 4x2.

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of the

surface state is not 1, it the access will be treated as out of bounds, w/ the writes being ignored and the

reads returning 0.

3.9.9.9 Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,

where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)

calculations, but the corresponding slot on the surface must not be accessed. Typed messages (which go

to render cache data port) must include the header.

DWord Bit Description

M0.7 31:16 Ignored

 15:0
Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for

SIMD16 and SIMD8 messages. All 16 bits are used for SIMD16 messages. For typed

SIMD8 messages, Slot Group selects with 8 bits of this field are used. For untyped

SIMD8 messages, the low 8 bits of this field are used.

If the header is not delivered, this field defaults to all ones. The field is ignored for

SIMD4x2 messages.

M0.6 31:0 Ignored

M0.5 31:0
Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

3.9.9.10 Message Payload

The message payload consists of the following:

 For the read messages, only an address payload is delivered

 For the write messages, an address payload is followed by the write data payload

 For the atomic operation messages, an address payload is followed by the source payload

 For SIMD16 and SIMD8 messages, the message length is used to determine how may address
parameters are included in the message. The number of message registers in the write data payload
is determined by the number of channel mask bits that are enabled, and the number of message

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 262

registers in the source payload is determined by the atomic operation operation. Thus, one or neither
of these two values (depending on the message type), plus one for the header, can be subtracted
from the message length to determine the number of message registers in the address payload,
from which the number of address parameters can be determined.

3.9.9.10.1 SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible

address parameters are U and V (since SIMD16 is only supported with untyped messages). The number

of parameters required depends on the surface type being accessed. Each parameter takes two message

registers. Each parameter always takes a consistent position in the input payload. The length field can be

used to send a shorter message, but intermediate parameters cannot be skipped as there is no way to

signal this.

DWord Bit Description

M1.7 31:0
Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2.7 31:0 Slot 15 U Address

M2.6 31:0 Slot 14 U Address

M2.5 31:0 Slot 13 U Address

M2.4 31:0 Slot 12 U Address

M2.3 31:0 Slot 11 U Address

M2.2 31:0 Slot 10 U Address

M2.1 31:0 Slot 9 U Address

M2.0 31:0 Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

3.9.9.10.2 SIMD16 Source Payload (Atomic Operation message only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 263

DWord Bit Description

M5.7 31:0
Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0 Slot 6 Source0

M5.5 31:0 Slot 5 Source0

M5.4 31:0 Slot 4 Source0

M5.3 31:0 Slot 3 Source0

M5.2 31:0 Slot 2 Source0

M5.1 31:0 Slot 1 Source0

M5.0 31:0 Slot 0 Source0

M6.7 31:0 Slot 15 Source0

M6.6 31:0 Slot 14 Source0

M6.5 31:0 Slot 13 Source0

M6.4 31:0 Slot 12 Source0

M6.3 31:0 Slot 11 Source0

M6.2 31:0 Slot 10 Source0

M6.1 31:0 Slot 9 Source0

M6.0 31:0 Slot 8 Source0

M7 Slots 7:0 Source1

M8 Slots 15:8 Source1

3.9.9.10.3 SIMD16 Source Payload (AOP_CMPWR8B only)

DWord Bit Description

M5.7 31:0
Slot 7 Source0[31:0]

Specifies Source0[31:0] for slot 7.

Format = U32

M5.6 31:0 Slot 6 Source0[31:0]

M5.5 31:0 Slot 5 Source0[31:0]

M5.4 31:0 Slot 4 Source0[31:0]

M5.3 31:0 Slot 3 Source0[31:0]

M5.2 31:0 Slot 2 Source0[31:0]

M5.1 31:0 Slot 1 Source0[31:0]

M5.0 31:0 Slot 0 Source0[31:0]

M6.7 31:0 Slot 15 Source0[31:0]

M6.6 31:0 Slot 14 Source0[31:0]

M6.5 31:0 Slot 13 Source0[31:0]

M6.4 31:0 Slot 12 Source0[31:0]

M6.3 31:0 Slot 11 Source0[31:0]

M6.2 31:0 Slot 10 Source0[31:0]

M6.1 31:0 Slot 9 Source0[31:0]

M6.0 31:0 Slot 8 Source0[31:0]

M7 Slots 7:0 Source0[63:32]

M8 Slots 15:8 Source0[63:32]

M9 Slots 7:0 Source1[31:0]

M10 Slots 15:8 Source1[31:0]

M11 Slots 7:0 Source1[63:32]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 264

DWord Bit Description

M12 Slots 15:8 Source1[63:32]

3.9.9.10.4 SIMD16 Write Data Payload (Write message only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included or if some of the channel mask bits are

asserted. Any parameter or write channel not included in the payload is skipped, with message phases

below it being renumbered to take up the vacated space.

DWord Bit Description

M5.7 31:0
Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

Format = 32 bits raw data.

M5.6 31:0 Slot 6 Red

M5.5 31:0 Slot 5 Red

M5.4 31:0 Slot 4 Red

M5.3 31:0 Slot 3 Red

M5.2 31:0 Slot 2 Red

M5.1 31:0 Slot 1 Red

M5.0 31:0 Slot 0 Red

M6.7 31:0 Slot 15 Red

M6.6 31:0 Slot 14 Red

M6.5 31:0 Slot 13 Red

M6.4 31:0 Slot 12 Red

M6.3 31:0 Slot 11 Red

M6.2 31:0 Slot 10 Red

M6.1 31:0 Slot 9 Red

M6.0 31:0 Slot 8 Red

M7 Slots 7:0 Green

M8 Slots 15:8 Green

M9 Slots 7:0 Blue

M10 Slots 15:8 Blue

M11 Slots 7:0 Alpha

M12 Slots 15:8 Alpha

3.9.9.10.5 SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address

parameters are U, V, R, and LOD. The number of parameters required depends on the surface type

being accessed. Each parameter takes one message register. Each parameter always takes a consistent

position in the input payload. The length field can be used to send a shorter message, but intermediate

parameters cannot be skipped as there is no way to signal this.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 265

DWord Bit Description

M1.7 31:0
Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2 Slots 7:0 V Address

M3
Slots 7:0 R Address

Programming Notes:

This register can only be delivered for the Typed message types.

M4
Slots 7:0 LOD

Programming Notes:

This register can only be delivered for the Typed message types.

Errata: Overlapping addresses (identical U/V/R/LOD) in the same simd8 message is not supported for typed (non-

atomic) writes to tiled surfaces.

3.9.9.10.6 SIMD8 Source Payload (Atomic Operation message only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M5.7 31:0
Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0 Slot 6 Source0

M5.5 31:0 Slot 5 Source0

M5.4 31:0 Slot 4 Source0

M5.3 31:0 Slot 3 Source0

M5.2 31:0 Slot 2 Source0

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 266

DWord Bit Description

M5.1 31:0 Slot 1 Source0

M5.0 31:0 Slot 0 Source0

M6 Slots 7:0 Source1

3.9.9.10.7 SIMD8 Write Data Payload (Write message only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included or if some of the channel mask bits are

asserted. Any parameter or write channel not included in the payload is skipped, with message phases

below it being renumbered to take up the vacated space.

DWord Bit Description

M5.7 31:0
Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being

accessed. SINT formats use S31, UINT formats use U32, and all other formats use

Float.

M5.6 31:0 Slot 6 Red

M5.5 31:0 Slot 5 Red

M5.4 31:0 Slot 4 Red

M5.3 31:0 Slot 3 Red

M5.2 31:0 Slot 2 Red

M5.1 31:0 Slot 1 Red

M5.0 31:0 Slot 0 Red

M6 Slots 7:0 Green

M7 Slots 7:0 Blue

M8 Slots 7:0 Alpha

3.9.9.10.8 SIMD8 Write Data Payload (Tile W Write message only)

The write data payload follows the address payload for write messages. Actual position within the

message may vary if some of the parameters are not included.

DWord Bit Description

M5.7 31:8 Ignored

7:0
Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Typed messages:

Format = U8

M5.6 31:8 Ignored

7:0 Slot 6 Red

M5.5 31:8 Ignored

7:0 Slot 5 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 267

DWord Bit Description

M5.4 31:8 Ignored

7:0 Slot 4 Red

M5.3 31:8 Ignored

7:0 Slot 3 Red

M5.2 31:8 Ignored

7:0 Slot 2 Red

M5.1 31:8 Ignored

7:0 Slot 1 Red

M5.0 31:8 Ignored

7:0 Slot 0 Red

3.9.9.10.9 SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots.

DWord Bit Description

M1.7 31:0
Programming Notes:

This register can only be delivered for the Typed message types.

M1.6 31:0
Programming Notes:

This register can only be delivered for the Typed message types.

M1.5 31:0
Slot 1 V Address

Format = U32

M1.4 31:0
Slot 1 U Address

Format = U32

M1.3 31:0

M1.2 31:0

M1.1 31:0 Slot 0 V Address

M1.0 31:0 Slot 0 U Address

3.9.9.10.10 SIMD4x2 Source Payload (Atomic Operation message only)

The source payload follows the address payload for atomic operation messages. Depending on the

atomic operation, zero, one, or two sources are required. If the source is not required, it must not be

included. Message registers given here could be a lower number if some of the address parameters are

not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,

AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M2.7 31:0 Ignored

M2.6 31:0 Ignored

M2.5 31:0
Slot 1 Source1

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 268

DWord Bit Description

Specifies Source1 for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M2.4 31:0 Slot 1 Source0

M2.3 31:0 Ignored

M2.2 31:0 Ignored

M2.1 31:0 Slot 0 Source1

M2.0 31:0 Slot 0 Source0

3.9.9.10.11 SIMD4x2 Source Payload ((AOP_CMPWR8B only)

DWord Bit Description

M2.7 31:0 Slot 1 Source1 [63:32]

M2.6 31:0 Slot 1 Source1 [31:0]

M2.5 31:0 Slot 1 Source0 [63:32]

M2.4 31:0 Slot 1 Source0 [31:0]

M2.3 31:0 Slot 0 Source1 [63:32]

M2.2 31:0 Slot 0 Source1 [31:0]

M2.1 31:0 Slot 0 Source0 [63:32]

M2.0 31:0 Slot 0 Source0 [31:0]

3.9.9.10.12 SIMD4x2 Write Data Payload (Write message only)

The write data payload follows the address payload for write messages.

DWord Bit Description

M2.7 31:0
Slot 1 Alpha

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being

accessed. SINT formats use S31, UINT formats use U32, and all other formats use

Float.

M2.6 31:0 Slot 1 Blue

M2.5 31:0 Slot 1 Green

M2.4 31:0 Slot 1 Red

M2.3 31:0 Slot 0 Alpha

M2.2 31:0 Slot 0 Blue

M2.1 31:0 Slot 0 Green

M2.0 31:0 Slot 0 Red

3.9.9.11 Writeback Message

3.9.9.11.1 SIMD16 Read

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 269

destination register of the corresponding channel being skipped in the writeback message, and all

channels with higher numbered registers being dropped down to fill in the space occupied by the masked

channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to

regid+2 and regid+3. The slots written within each destination register is determined by the execution

mask on the “send” instruction.

DWord Bit Description

W0.7 31:0
Slot 7 Red: Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1.7 31:0 Slot 15 Red

W1.6 31:0 Slot 14 Red

W1.5 31:0 Slot 13 Red

W1.4 31:0 Slot 12 Red

W1.3 31:0 Slot 11 Red

W1.2 31:0 Slot 10 Red

W1.1 31:0 Slot 9 Red

W1.0 31:0 Slot 8 Red

W2 Slots 7:0 Green

W3 Slots 15:8 Green

W4 Slots 7:0 Blue

W5 Slots 15:8 Blue

W6 Slots 7:0 Alpha

W7 Slots 15:8 Alpha

3.9.9.11.2 SIMD8 Read

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is

determined by the channel mask in the message descriptor. Each asserted channel mask results in the

destination register of the corresponding channel being skipped in the writeback message, and all

channels with higher numbered registers being dropped down to fill in the space occupied by the masked

channel. For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to regid+1.

The slots written within each destination register is determined by the execution mask on the “send”

instruction.

DWord Bit Description

W0.7 31:0
Slot 7 Red: Specifies the value of the red channel for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being

accessed. SINT formats use S31, UINT formats use U32, and all other formats use

Float.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 270

DWord Bit Description

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1 Slots 7:0 Green

W2 Slots 7:0 Blue

W3 Slots 7:0 Alpha

3.9.9.11.3 SIMD8 Read (Tile W)

The slots written within each destination register is determined by the execution mask on the “send”

instruction.

DWord Bit Description

M5.7 31:8 Reserved (0)

7:0
Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Typed messages:

Format = U8

M5.6 31:8 Reserved (0)

7:0 Slot 6 Red

M5.5 31:8 Reserved (0)

7:0 Slot 5 Red

M5.4 31:8 Reserved (0)

7:0 Slot 4 Red

M5.3 31:8 Reserved (0)

7:0 Slot 3 Red

M5.2 31:8 Reserved (0)

7:0 Slot 2 Red

M5.1 31:8 Reserved (0)

7:0 Slot 1 Red

M5.0 31:8 Reserved (0)

7:0 Slot 0 Red

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 271

3.9.9.11.4 SIMD4x2 Read

A SIMD4x2 writeback message always consists of a single message register containing all four color

channels of each of the two slots. The channel mask bits as well as the execution mask on the “send”

instruction are used to determine which of the channels in the destination register are overwritten. If any

of the four execution mask bits for a slot is asserted, that slot is considered to be active. The active

channels in the channel mask will be written in the destination register for that slot. If the slot is inactive

(all four execution mask bits deasserted), none of the channels for that slot will be written in the

destination register.

DWord Bit Description

W0.7 31:0
Slot 1 Alpha: Specifies the value of the pixel’s alpha channel.

Format = 32 bits raw data.

W0.6 31:0 Slot 1 Blue

W0.5 31:0 Slot 1 Green

W0.4 31:0 Slot 1 Red

W0.3 31:0 Slot 0 Alpha

W0.2 31:0 Slot 0 Blue

W0.1 31:0 Slot 0 Green

W0.0 31:0 Slot 0 Red

3.9.9.11.5 SIMD16 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field in

the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0
Slot 7 Return Data: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

W1.7 31:0 Slot 15 Return Data

W1.6 31:0 Slot 14 Return Data

W1.5 31:0 Slot 13 Return Data

W1.4 31:0 Slot 12 Return Data

W1.3 31:0 Slot 11 Return Data

W1.2 31:0 Slot 10 Return Data

W1.1 31:0 Slot 9 Return Data

W1.0 31:0 Slot 8 Return Data

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 272

3.9.9.11.6 SIMD16 Atomic Operation (AOP_CMPWR8B only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0
Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data[31:0]

W0.5 31:0 Slot 5 Return Data[31:0]

W0.4 31:0 Slot 4 Return Data[31:0]

W0.3 31:0 Slot 3 Return Data[31:0]

W0.2 31:0 Slot 2 Return Data[31:0]

W0.1 31:0 Slot 1 Return Data[31:0]

W0.0 31:0 Slot 0 Return Data[31:0]

W1.7 31:0 Slot 15 Return Data[31:0]

W1.6 31:0 Slot 14 Return Data[31:0]

W1.5 31:0 Slot 13 Return Data[31:0]

W1.4 31:0 Slot 12 Return Data[31:0]

W1.3 31:0 Slot 11 Return Data[31:0]

W1.2 31:0 Slot 10 Return Data[31:0]

W1.1 31:0 Slot 9 Return Data[31:0]

W1.0 31:0 Slot 8 Return Data[31:0]

W2 Slot 7:0 Return Data[63:32]

W3 Slot 15:8 Return Data[63:32]

3.9.9.11.7 SIMD8 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field in

the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0
Slot 7 Return Data: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 273

3.9.9.11.8 SIMD8 Atomic Operation (AOP_CMPWR8B only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0
Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data[31:0]

W0.5 31:0 Slot 5 Return Data[31:0]

W0.4 31:0 Slot 4 Return Data[31:0]

W0.3 31:0 Slot 3 Return Data[31:0]

W0.2 31:0 Slot 2 Return Data[31:0]

W0.1 31:0 Slot 1 Return Data[31:0]

W0.0 31:0 Slot 0 Return Data[31:0]

W1.7 31:0 Slot 7 Return Data[63:32]

W1.6 31:0 Slot 6 Return Data[63:32]

W1.5 31:0 Slot 5 Return Data[63:32]

W1.4 31:0 Slot 4 Return Data[63:32]

W1.3 31:0 Slot 3 Return Data[63:32]

W1.2 31:0 Slot 2 Return Data[63:32]

W1.1 31:0 Slot 1 Return Data[63:32]

W1.0 31:0 Slot 0 Return Data[63:32]

3.9.9.11.9 SIMD4x2 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field in

the message descriptor is enabled. The execution mask on the “send” instruction indicates which

channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 reserved – not written to GRF

W0.6 31:0 reserved – not written to GRF

W0.5 31:0 reserved – not written to GRF

W0.4 31:0
Slot 1 Return Data: Specifies the value of the return data for slot 1.

Format = U32

W0.3 31:0 reserved – not written to GRF

W0.2 31:0 reserved – not written to GRF

W0.1 31:0 reserved – not written to GRF

W0.0 31:0 Slot 0 Return Data

3.9.9.11.10 SIMD4x2 Atomic Operation (AOP_CMPWR8B only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send

Return Data field in the message descriptor is enabled. The execution mask on the “send” instruction

indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 reserved – not written to GRF

W0.6 31:0 reserved – not written to GRF

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 274

DWord Bit Description

W0.5 31:0 Slot 1 Return Data: [63:32]

W0.4 31:0 Slot 1 Return Data: [31:0]

W0.3 31:0 reserved – not written to GRF

W0.2 31:0 reserved – not written to GRF

W0.1 31:0 Slot 0 Return Data: [63:32]

W0.0 31:0 Slot 0 Return Data[31:0]

3.9.10 Scratch Block Read/Write

This message performs a read or write operation of between 1 and 4 simd-8 registers to a Hword aligned

offset to scratch memory. The Hword offset into the scratch memory is provided in the message

descriptor, allowing a single instruction read|write block operation in a single source instruction. 12b are

provided for the Hword offset, allowing addressing of 4K Hword locations (128KB).

Two modes of channel-enable interpretation are provided: Dword, which support a simd-8 or simd-16

dword channel-serial view of a register, and Oword, which supports a simd-4x2 view of a register. For

operations under conditions of simd-32 processing, two messages should be used, with one of them

indicating ‘H2’ to select the upper 16b of execution mask.

This message type can only be used with stateless model memory access. Thus binding table entry 0xFF

is hard-coded into the execution of this message.

Applications:

scratch space reads/writes for register spill/fill operations.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and

third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The

high 8 bits are used similarly for the second and fourth (W1, W3 or M2, M4).

For Dword mode, the execution mask delivered with the message dictates dword-based control of read or

write operations. For Oword mode, any one or more asserted bits within the Oword’s corresponding

execution mask nibble causes read or write operations to occur across all four dwords of the Oword

regardless of the setting of any particular dword’s bit.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the

surface are dropped and will not modify memory contents.

3.9.10.1 Message Descriptor

Bits Description

17 Operation Type: 0 = Read, 1 = write

16
Channel Mode:

0: Oword – Channel enables in effect at the time of ‘send’ are interpreted such if one or more

are enabled, the read or write operation occurs on all four dwords.

1: Dword – Channel enables in effect at the time of the ‘send’ are used as dword enables,

causing the read or write operation to occur only on the dwords whose corresponding channel

enable is set..

15
Invalidate after read – Indicates the cache line should invalidated after the read.

1: Invalidate cache line

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 275

Bits Description

0: no Invalidate

14 Reserved - MBZ

13:12
Block Size – indicates the number of simd-8 registers to be read|written.

11: 4 registers

10: <reserved>

01: 2 registers

00: 1 register

11:0
Offset – A 12b Hword offset into the memory Immediate Memory buffer as specified by

binding table 0xFF.

3.9.10.2 Message Header

DWord Bit Description

M0.7 31:16 Ignored

 15:0 Ignored

M0.6 31:0 Ignored

M0.5 31:0
Immediate Buffer Base Address. Specifies the surface base address for messages in

which the Binding Table Index is 255 (stateless model), otherwise this field is ignored.

This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

3.9.10.3 Message Payload (Write)

The listing below illustrates the write payload for a message of block size = 4;

DWord Bit Description

M1.7:0 255:0 HWord[Offset]

M2.7:0 255:0 HWord[Offset+1]

M3.7:0 255:0 HWord[Offset+2]

M3.7:0 255:0 HWord[Offset+3]

3.9.10.4 Message Payload (Read)

Only required a message header.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 276

3.9.10.5 Writeback Message (Read)

The table below illustrates an example where 4 Hwords are read through a scratch block read.

DWord Bit Description

W0.7:0 255:0 HWord[Offset]

W1.7:0 255:0 HWord[Offset+1]

W2.7:0 255:0 HWord[Offset+2]

W3.7:0 255:0 HWord[Offset+3]

3.9.11 Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters

contained in the message and state, it may also perform a depth and stencil buffer write and/or a render

target read for a color blend operation. Additional operations enabled in the Color Calculator state will

also be initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This message

is intended only for use by pixel shader kernels for writing results to render targets.

Restrictions:

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the

surface. The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input

message to provide an additional coordinate. The Render Target Array Index must be zero for

SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is

enabled, the surface format is further restricted to the set supported as alpha blend render target.

The last message sent to the render target by a thread must have the End Of Thread bit set in the

message descriptor and the dispatch mask set correctly in the message header to enable correct clearing

of the pixel scoreboard.

The stateless model cannot be used with this message (Binding Table Index cannot be 255).

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader

kernel), dispatched in non-contiguous mode. Any other kernel issuing this message will cause undefined

behavior.

The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set

to anything other than RTROTATE_0DEG.

This message cannot be used on a surface in field mode (Vertical Line Stride = 1)

If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each SIMD8_DUALSRC_LO

message must be issued before the SIMD8_DUALSRC_HI message with the same Slot Group Select setting.

SIMD8 Image Write: Out of bounds write to SURFTYPE_BUFFER with more than 8K elements is

undefined.

Execution Mask. The execution mask for render target messages is ignored. Control of which pixels are

active is controlled by the Pixel/Sample Enables fields in the message header.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and will not modify

memory contents. However, if the Render Target Array Index is out of bounds, it is set to zero and the

surface write is not surpressed.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 277

The following table indicates the surface formats that are supported by this message.

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R16G16B16A16_UNORM

R16G16B16A16_SNORM

R16G16B16A16_SINT

R16G16B16A16_UINT

R16G16B16A16_FLOAT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

B8G8R8A8_UNORM

B8G8R8A8_UNORM_SRGB

R10G10B10A2_UNORM

R10G10B10A2_UINT

R8G8B8A8_UNORM

R8G8B8A8_UNORM_SRGB

R8G8B8A8_SNORM

R8G8B8A8_SINT

R8G8B8A8_UINT

R16G16_UNORM

R16G16_SNORM

R16G16_SINT

R16G16_UINT

R16G16_FLOAT

B10G10R10A2_UNORM

B10G10R10A2_UNORM_SRGB

R11G11B10_FLOAT

R32_SINT

R32_UINT

R32_FLOAT

B5G6R5_UNORM

B5G6R5_UNORM_SRGB

B5G5R5A1_UNORM

B5G5R5A1_UNORM_SRGB

B4G4R4A4_UNORM

B4G4R4A4_UNORM_SRGB

R8G8_UNORM

R8G8_SNORM

R8G8_SINT

R8G8_UINT

R16_UNORM

R16_SNORM

R16_SINT

R16_UINT

R16_FLOAT

B5G5R5X1_UNORM

B5G5R5X1_UNORM_SRGB

R8_UNORM

R8_SNORM

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 278

Surface Format Name

R8_SINT

R8_UINT

A8_UNORM

YCRCB_NORMAL

YCRCB_SWAPUVY

YCRCB_SWAPUV

YCRCB_SWAPY

3.9.11.1 Subspan/Pixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader

dispatch depending on the number of samples and message size. This table applies to all devices,

however NumSamples = 4X is supported only on, and NumSamples = 8X is supported only on.

Pixels are numbered as follows within a subspan:

0 = upper left

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Dispatch Size Num Samples
Slot Mapping

(SSPI = Starting Sample Pair Index)

SIMD32
1X

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 279

Dispatch Size Num Samples
Slot Mapping

(SSPI = Starting Sample Pair Index)

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

SIMD16 8X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Restriction:

When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16

messages, the following must hold:

All the slots (as described above) must have a corresponding render target write irrespective of the slot's

validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS

thread must send two SIMD8 render target writes to cover all the slots.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 280

PS thread must send SIMD render target write messages with increasing slot numbers. For example,

SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the first SIMD8 render

target write must send Slot[7:0] and the next one must send Slot[15:8].

3.9.11.2 Message Descriptor

Message Descriptor - Render Target Write

Default Value: 0x00000000

DWord Bit Description

0 31 Reserved

Format: MBZ

29:14 Reserved

Format: MBZ

13 Reserved

Format: MBZ

12 Last Render Target Select

This bit must be set on the last render target write message sent for each group of pixels. For single

render target pixel shaders, this bit is set on all render target write messages. For multiple render target

pixel shaders, this bit is set only on messages sent to the last render target. This bit must be zero for

SIMD8 Image Write message.

Programming Notes

In general, when threads are not launched by 3D FF, this bit must be zero.

11 Slot Group Select

This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the antialias alpha, multisample coverage mask, and if the header is not

present also includes the X/Y addresses and pixel enables. For 8- and 16-pixel dispatches,

SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set

correctly for each message based on which slots are currently being processed.

Value Name Description

0 SLOTGRP_LO choose bypassed data for slots 15:0

1 SLOTGRP_HI choose bypassed data for slots 31:16

Programming Notes

For SIMD8 Image Write message thsi field MBZ.

10:8 Message Type

This field specifies the type of render target message.

 For the SIMD8_DUALSRC_xx messages, the low bit indicates which slots to use for the pixel enables,

X/Y addresses, and oMask.

Value Name Description

000b SIMD16 SIMD16 single source message

001b SIMD16_REPDATA SIMD16 single source message with replicated data

010b SIMD8_DUALSRC_LO SIMD8 dual source message, use slots 7:0

011b SIMD8_DUALSRC_HI SIMD8 dual source message, use slots 15:8

100b SIMD8_LO SIMD8 single source message, use slots 7:0

111b SIMD16_REPDATA It's only supported when accessing Tiled Memory. Using this Message

Type to access linear (Untiled) memory is UNDEFINED.

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 281

Message Descriptor - Render Target Write

Programming Notes Project

the above slots indicated are within the 16 slots selected by Slot Group Select. If

SLOTGRP_HI is selected, the SIMD8 message types above reference slots 23:16 or 31:24

instead of 7:0 or 15:8, respectively.

SIMD16 messages are not supported for 8X MSAA when PS outputs depth.

SIMD16_REPDATA message must not be used in SIMD8 pixel-shaders.

7:0 Reserved

Format: MBZ

3.9.11.3 Message Header

The render target write message has a two-register message header.

If the header is not present, behavior is as if the message was sent with most fields set to the same value

that was delivered in R0 and R1 on the pixel shader thread dispatch. The following fields, which are not

delivered in the pixel shader dispatch, behave as if they are set to zero:

Render Target Index

Source0 Alpha Present to Render Target

DWord Bits Description

M0.7 31:0

M0.6 31:0

M0.5 31:10 Ignored

 9:8
Color Code: This ID is assigned by the Windower unit and is used to track

synchronizing events.

Format: Reserved for HW Implementation Use.

 7:0
FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a

unique identifier for the thread. It is used to free up resources used by the thread upon

thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:3 Ignored

 2:0
Render Target Index. Specifies the render target index that will be used to select blend

state from BLEND_STATE.

Format = U3

M0.1 31:6
ColorCalculatorState Pointer. Specifies the 64-byte aligned pointer to the color

calculator state. This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

 5:0 Ignored

M0.0 31 Ignored

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 282

DWord Bits Description

 30:27
Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

 26:16
Render Target Array Index. Specifies the array index to be used for the following

surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “z” or “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

SURFTYPE_BUFFER: must be zero.

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

The Render Target Array Index used by hardware for access to the Render Target is

overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of

the range between Minimum Array Element and Depth. For cube surfaces, a depth

value of 5 is used for this determination.

 15
Front/Back Facing Polygon. Determines whether the polygon is front or back facing.

Used by the render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

 14
Ignored

 14

 13
Source Depth Present to Render Target. Indicates that source depth is included in the

message.

 12
oMask to Render Target

This bit indicates that oMask data is present in the message and is to be used to mask

off samples.

 11
Source0 Alpha Present to RenderTarget. This bit indicates that Source0 Alpha (aka

o0.a) data is included in RTWrite message. If present, these alpha values are used as

inputs to AlphaTest and AlphaToCoverage functions. This is required to meet the API

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 283

DWord Bits Description

rules when writing to multiple render targets (MRTs).

Programming Notes:

This bit should not be set when writing to RT0, though sending and using redundant

alpha will provide the correct results (at lower performance).

This bit is not supported on Dual-Source Blend message types, as source0 alpha is

already included in those messages.

This bit is not supported on replicated data message types.

 10:9 Ignored

 8:6
Starting Sample Pair Index: indicates the index of the first sample pair of the dispatch

Format = U3

Range = [0,3]

 5:0 Ignored

M1.7 31:16
Dispatched Pixel/Sample Enables. One bit per pixel (or sample within pixel) indicating

which pixels/samples were originally enabled when the thread was dispatched. This

field is only required for the end-of-thread message and on all dual-source messages.

The Dispatched Pixel/Sample Enablesmust be unmodified from the ones sent when the

pixel shader thread was initiated. If the Dispatched Pixel/Sample Enables are modified,

behavior is undefined.

Multisample Note:

When operating in PERSAMPLE mode these bits correspond to samples, not pixels.

Each subspan slot (4 bits) corresponds to a specific sample location for the subspan.

Note that in NUMSAMPLES_1 mode, a pixel and sample are synonomous.

When operating in PERPIXEL mode, this field is ignored, and instead the

SampleEnableMask (obtained via bypass) are used to clear the Depth Scoreboard.

 15:0
Pixel/Sample Enables. One bit per pixel/sample indicating which pixels/samples are still

lit based on kill instruction activity in the pixel shader. This mask is used to control

actual writes to the color buffer.

Multisample Note:

When operating in PERSAMPLE mode these bits correspond to samples, not pixels,

as the PS is run per-sample. Each subspan slot (4 bits) corresponds to a specific

sample location for the subspan.

When operating in PERPIXEL mode, these bits still correspond to pixels, as the PS is

run per-pixel. Each pixel’s mask bit is replicated according to Number of Multisamples

and combined with other masks to control writes to the multisample locations.

M1.6 31:0 Ignored

M1.5 31:16
Y3. Y coordinate for upper-left pixel of subspan 3 (slot 12)

Format = U16

 15:0
X3. X coordinate for upper-left pixel of subspan 3 (slot 12)

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 284

DWord Bits Description

Format = U16

M1.4 31:16 Y2

 15:0 X2

M1.3 31:16 Y1

 15:0 X1

M1.2 31:16 Y0

 15:0 X0

M1.1 31:0 Ignored

M1.0 31:0 Ignored

3.9.11.4 Source 0 Alpha Payload

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if

present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are not

supported for dual source messages.

DWord Bit Description

M2.7 31:0
Source 0 Alpha for Slot 7

Format = IEEE_Float

This and the next register is only included if Source 0 Alpha Present bit is set.

M2.6 31:0 Source 0 Alpha for Slot 6

M2.5 31:0 Source 0 Alpha for Slot 5

M2.4 31:0 Source 0 Alpha for Slot 4

M2.3 31:0 Source 0 Alpha for Slot 3

M2.2 31:0 Source 0 Alpha for Slot 2

M2.1 31:0 Source 0 Alpha for Slot 1

M2.0 31:0 Source 0 Alpha for Slot 0

M3.7 31:0 Source 0 Alpha for Slot 15

M3.6 31:0 Source 0 Alpha for Slot 14

M3.5 31:0 Source 0 Alpha for Slot 13

M3.4 31:0 Source 0 Alpha for Slot 12

M3.3 31:0 Source 0 Alpha for Slot 11

M3.2 31:0 Source 0 Alpha for Slot 10

M3.1 31:0 Source 0 Alpha for Slot 9

M3.0 31:0 Source 0 Alpha for Slot 8

3.9.11.5 oMask Payload ()

The oMask payload, if present, follows source 0 alpha. The value of ‘p’ depends on whether the header

and source 0 alpha are present.

Sample “n” for that pixel will be killed (not written to the render target or depth buffer) if bit “n” of the

oMask is zero. Bits numbers where “n” is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the Message Type

encoding.

DWord Bit Description

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 285

DWord Bit Description

Mp.7 31:16
oMask for Slot 15

Format = 16-bit mask

This register is only included if oMask Present bit is set.

 15:0 oMask for Slot 14

Mp.6 31:16 oMask for Slot 13

 15:0 oMask for Slot 12

Mp.5 31:16 oMask for Slot 11

 15:0 oMask for Slot 10

Mp.4 31:16 oMask for Slot 9

 15:0 oMask for Slot 8

Mp.3 31:16 oMask for Slot 7

 15:0 oMask for Slot 6

Mp.2 31:16 oMask for Slot 5

 15:0 oMask for Slot 4

Mp.1 31:16 oMask for Slot 3

 15:0 oMask for Slot 2

Mp.0 31:16 oMask for Slot 1

 15:0 oMask for Slot 0

3.9.11.6 Color Payload: SIMD16 Single Source

3.9.11.6.1 Color Payload

This payload is included if the Message Type is SIMD16 single source. The value of ‘m’ depends on

whether the header, source 0 alpha, and oMask are present.

DWord Bit Description

Mm.7 31:0
Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface

being accessed. SINT formats use S31, UINT formats use U32, and all other formats

use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1).7 31:0 Slot 15 Red

M(m+1).6 31:0 Slot 14 Red

M(m+1).5 31:0 Slot 13 Red

M(m+1).4 31:0 Slot 12 Red

M(m+1).3 31:0 Slot 11 Red

M(m+1).2 31:0 Slot 10 Red

M(m+1).1 31:0 Slot 9 Red

M(m+1).0 31:0 Slot 8 Red

M(m+2)
Slot[7:0] Green. See Mm definition for slot locations

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 286

DWord Bit Description

M(m+3)
Slot[15:8] Green. See M(m+1) definition for slot locations

M(m+4)
Slot[7:0] Blue. See Mm definition for slot locations

M(m+5)
Slot[15:8] Blue. See M(m+1) definition for slot locations

M(m+6)
Slot[7:0] Alpha. See Mm definition for slot locations

M(m+7)
Slot[15:8] Alpha. See M(m+1) definition for slot locations

3.9.11.7 Color Payload: SIMD8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. For , the

value of ‘m’ depends on whether the header, source 0 alpha, and oMask are present.

DWord Bit Description

Mm.7 31:0
Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface

being accessed. SINT formats use S31, UINT formats use U32, and all other formats

use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1)
Slot[7:0] Green. See Mm definition for slot locations

M(m+2)
Slot[7:0] Blue. See Mm definition for slot locations

M(m+3)
Slot[7:0] Alpha. See Mm definition for slot locations

3.9.11.8 Color Payload: SIMD16 Replicated Data

This payload is included if the Message Type specifies single source message with replicated data. One

set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data only (for , oMask is also legal with this message). The registers for

depth, stencil, and antialias alpha data cannot be included with this message, and the corresponding bits

in the message header must indicate that these registers are not present.

Programming Notes:

This message is allowed only on tiled surfaces

DWord Bit Description

Mm.7:4 31:0 Reserved

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 287

DWord Bit Description

Mm.3 31:0
Alpha. Specifies the value of all slots’ alpha channel.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface

being accessed. SINT formats use S31, UINT formats use U32, and all other formats

use Float.

Mm.2 31:0 Blue

Mm.1 31:0 Green

Mm.0 31:0 Red

3.9.11.9 Message Sequencing Summary

This section summarizes the sequencing that occurs for each legal render target write message. All

messages have the M0 and M1 header registers if the header is present. If the header is not present, all

registers below are renumbered starting with M0 where M2 appears. All cases not shown in this table are

illegal.

Key:

s0, s1 = source 0, source 1

1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

oM = oMask

Messag

e Type

oMask

Presen

t

Source

Depth

Presen

t

Source

0

Alpha

Presen

t

M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

000 0 0 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 0 0 1 1/0s0

A

3/2s0

A

1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 0 1 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2s

Z

000 0 1 1 1/0s0

A

3/2s0

A

1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s

Z

3/2s

Z

000 1 0 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 1 0 1 1/0so

A

3/2s0

A

oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 1 1 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s

Z

3/2s

Z

000 1 1 1 1/0s0

A

3/2s0

A

oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s

Z

3/2s

Z

001 0 0 0 RGBA

001 1 0 0 oM RGBA

010 0 0 0 1/0s0

R

1/0s0

G

1/0s0

B

1/0s0

A

1/0s1

R

1/0s1

G

1/0s1

B

1/0s1

A

010 0 1 0 1/0s0

R

1/0s0

G

1/0s0

B

1/0s0

A

1/0s1

R

1/0s1

G

1/0s1

B

1/0s1

A

1/0sZ

010 1 0 0 oM 1/0s0

R

1/0s0

G

1/0s0

B

1/0s0

A

1/0s1

R

1/0s1

G

1/0s1

B

1/0s1

A

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 288

Messag

e Type

oMask

Presen

t

Source

Depth

Presen

t

Source

0

Alpha

Presen

t

M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

010 1 1 0 oM 1/0s0

R

1/0s0

G

1/0s0

B

1/0s0

A

1/0s1

R

1/0s1

G

1/0s1

B

1/0s1

A

1/0s

Z

011 0 0 0 3/2s0

R

3/2s0

G

3/2s0

B

3/2s0

A

3/2s1

R

3/2s1

G

3/2s1

B

3/2s1

A

011 0 1 0 3/2s0

R

3/2s0

G

3/2s0

B

3/2s0

A

3/2s1

R

3/2s1

G

3/2s1

B

3/2s1

A

3/2sZ

011 1 0 0 oM 3/2s0

R

3/2s0

G

3/2s0

B

3/2s0

A

3/2s1

R

3/2s1

G

3/2s1

B

3/2s1

A

011 1 1 0 oM 3/2s0

R

3/2s0

G

3/2s0

B

3/2s0

A

3/2s1

R

3/2s1

G

3/2s1

B

3/2s1

A

3/2s

Z

100 0 0 0 R G B A

100 0 0 1 s0A R G B A

100 0 1 0 R G B A sZ

100 0 1 1 s0A R G B A sZ

100 1 0 0 oM R G B A

100 1 0 1 s0A oM R G B A

100 1 1 0 oM R G B A sZ

100 1 1 1 s0A oM R G B A sZ

Doc Ref #: IHD-OS-V4 Pt 1 – 05 12 5/31/2012 289

Revision History

Revision Number Description Revision Date

1.0 First 2012 OpenSource edition May 2012

§§

