

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12

Intel® OpenSource HD Graphics
Programmer’s Reference Manual (PRM)
Volume 2 Part 3: Multi-Format Transcoder – MFX
(Ivy Bridge)

For the 2012 Intel® Core™ Processor Family

May 2012

Revision 1.1

NOTICE:
This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 2

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly
or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM
OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY
OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 3

Contents
1. MFX Introduction ... 5

1.1 MFD Overview ... 5
1.1.1 MFD Memory Interface ... 8
1.1.2 MFD Codec-Specific Commands ... 9

1.2 MFC Overview ... 9
1.2.1 Example Usage Model ... 10
1.2.2 Sample Algorithmic Flow .. 11
1.2.3 Synchronization Mechanism ... 13
1.2.4 Restrictions ... 14

1.3 MFX State Model ... 14
1.4 MFX Interruptability Model ... 15
1.5 MFX Programming Restrictions ... 15

1.5.1 All Codecs ... 15
1.6 MFX Codec Commands Summary .. 16

1.6.1 MFX Decoder Commands Sequence ... 19
1.7 MFX Pipe Common Commands .. 22

1.7.1 MFX_WAIT Command ... 22
1.7.2 MFX_STATE_POINTER Command ... 23
1.7.3 MFX_PIPE_MODE_SELECT ... 25
1.7.4 MFX_SURFACE_STATE Command ... 30
1.7.5 MFX_PIPE_BUF_ADDR_STATE Command ... 37
1.7.6 MFX_IND_OBJ_BASE_ADDR_STATE Command.. 44
1.7.7 MFX_PAK_INSERT_OBJECT ... 50
1.7.8 MFX_STITCH_OBJECT ... 53
1.7.9 MFX_QM_STATE Command ... 55
1.7.10 MFX_FQM_STATE Command ... 57

2. AVC (H.264) .. 60
2.1 AVC Common Commands ... 60

2.1.1 MFX_AVC_IMG_STATE Command .. 60
2.1.2 MFX_AVC_DIRECTMODE_STATE Command ... 73
2.1.3 MFX_AVC_SLICE_STATE Command ... 77
2.1.4 MFX_AVC_REF_IDX_STATE Command .. 87
2.1.5 MFX_AVC_WEIGHTOFFSET_STATE Command... 89

2.2 AVC Decoder Commands .. 91
2.2.1 MFD_AVC_DPB_STATE Command .. 91
2.2.2 MFD_AVC_SLICEADDR Command .. 93
2.2.3 MFD_AVC_BSD_OBJECT Command ... 94

2.3 AVC Encoder PAK Commands .. 100
2.3.1 MFC_AVC_PAK_OBJECT Command ... 100

2.4 AVC Encoder MBAFF Support .. 139
3. MPEG-2 ... 141

3.1 MPEG2 Common Commands ... 141
3.1.1 MFX_MPEG2_PIC_STATE Command .. 141

3.2 MPEG2 Decoder Commands .. 150
3.2.1 MFD_MPEG2_BSD_OBJECT Command (pipeline) .. 150

4. JPEG ... 154
4.1 JPEG Decoder Commands .. 154

4.1.1 MFD_JPEG_BSD_OBJECT Command ... 154

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 4

4.1.2 MFX_JPEG_PIC_STATE Decoder .. 156
4.1.3 MFX_JPEG_HUFF_TABLE_STATE .. 160

5. More Decoder and Encoder.. 162
5.1 MFD IT Mode Decode Commands .. 162

5.1.1 MFD_IT_OBJECT Command ... 162
5.2 Session Decoder StreamOut Data Structure ... 183
5.3 Decoder Input Bitstream Formats .. 192

5.3.1 AVC Bitstream Formats – DXVA Short .. 192
5.3.2 AVC Bitstream Formats – DXVA Long ... 192
5.3.3 AVC Bitstream Formats – Intel Long .. 192
5.3.4 VC1 Bitstream Formats – Intel Long .. 192
5.3.5 MPEG2 Bitstream Formats – DXVA1 ... 192
5.3.6 JPEG Bitstream Formats – Intel ... 192

5.4 Concurrent, Multiple Video Stream Decoding Support .. 193
6. Encoder StreamOut Mode Data Structure Definition .. 194

6.1 PAK Multi-Pass .. 195
6.2 Driver Usage .. 196

7. Programming Reference ... 197
7.1 Monochrome Picture Processing ... 197
7.2 Context Switch ... 197
7.3 Pipeline Flush ... 197
7.4 MMIO Interface .. 197

7.4.1 Decoder Registers .. 199
7.4.2 Encoder Registers .. 211
7.4.3 MFC_BITSTREAM_BYTECOUNT_FRAME — Reported Bitstream Output Byte Count per
Frame 212
7.4.4 MFC_BITSTREAM_SE_BITCOUNT_FRAME (Reported Bitstream Output Bit Count for
Syntax Elements Only) ... 212
7.4.5 MFC_AVC_CABAC_BIN_COUNT_FRAME (Reported Bitstream Output CABAC Bin Count) . 213
7.4.6 MFC_AVC_CABAC_INSERTION_COUNT — Reported Bitstream Output CABAC Insertion
Count 214
7.4.7 MFC_AVC_MINSIZE_PADDING_COUNT — Reported Bitstream Output Minimal Size
Padding Count .. 214

7.5 MFC_IMAGE_STATUS_MASK ... 215
7.5.1 MFC_IMAGE_STATUS_CONTROL .. 215
7.5.2 MFC_QUP_CT - MFC QP Status Count .. 216
7.5.3 MFC_BITSTREAM_BYTECOUNT_SLICE — Bitstream Output Byte Count per Slice.............. 217
7.5.4 MFC_BITSTREAM_SE_BITCOUNT_SLICE — Bitstream Output Bit Count for the last Syntax
Element ... 217

7.6 Row Store Sizes and Allocations ... 218

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 5

1. MFX Introduction

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It
includes multi-format decoding (MFD) and multi-format encoding (MFC).

1.1 MFD Overview
When used for decoding, we refer to the MFX Engine also as the MFD Engine.

The Multi-Format Decoder (MFD) is a hardware fixed function pipeline for decoding the three video codec
formats and one image compression codec format : AVC (H.264), VC-1, MPEG2 and JPEG.

• Compliant to next generation high definition optical video disc requirements (e.g.) with sufficient
performance headroom

o Support AVC 4:2:0 Main and High (8-bit only) Profile only (no support for Baseline,
Extended and High-10 Profiles), up to Level 5.1 (max 983,040 MB/s, max 36,864
MB/frame, and at most one dimension can reach 4K pixel) resolution and up to 40
mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be
decoded.

 Allow a B-picture (frame or field) as a reference picture

 MVC is supported by AVC Long Format. All MVC specific functions are taken
care of by the Application.

o Support VC1 4:2:0 Simple, Main and Advanced Profiles, up to Level 4 (max 491,520
MB/s and max 16,384 MB/frame; max only one dimension will be at 4K pixel)
resolution and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate
contents can also be decoded.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 6

 Allow a B-field as a reference picture only in interlaced field decoding, no
other modes.

o Support MPEG2 HD Main Profile (4:2:0), up to High Level (1920x1152 pixels) and up
to 80 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be
decoded. No support for SNR and spatial-scalability.

 Does not support B-picture as a reference picture.

o Support Baseline JPEG with five choma types (4:0:0, 4:1:1, 4:2:2, 4:2:0, and 4:4:4. No
support for Extended DCT-based mode, Progressive mode, Loseless mode, nor
Hierarchical mode

 H/W support 64Kx64K, but Surface State can support only up to 16kx16k

Features Supported Unsupported

Coding
processes Baseline sequential mode:

• 8-bit pixel precision of source images
• loadable 2 AC and 2 DC Huffman tables
• 3 loadable quantization matrix for Y, U, V
• Interleaved and non-interleaved Scans
• Single and multiple Scans

Extended DCT-based mode, Lossless,
Hierarchical modes:

More than 8 bit pixel resolution, progressive
mode, arithmetic coding, 4 AC and 4 DC Huffman
tables (extended mode), predictive process
(lossless), multiple frames (hierarchical)

Number of
image
channels

1 for grey image

3 for Y, Cb, Cr color image

4-th channel (usually alpha blending image)

Image
resolution

Arbitrary image size up to 16K * 16K Larger than 16K * 16K (64K * 64K is max. in the
JPEG standard)

Chroma
subsampling
ratio

Chroma 4:0:0 (grey image)

Chroma 4:1:1

Chroma 4:2:0

Chroma horizontal 4:2:2

Chroma vertical 4:2:2

Chroma 4:4:4

Any other arbitrary ratio, e.g., 3:1 subsampled
chroma

Additional
feature (post-
processing)

Image rotation: 90/180/270 degrees

o H/W does not impose restriction on picture frame aspect ratio, but is bounded by a
max 256 MBs (4096 pixels) per dimension programmable at the H/W interface
specifications.

 For example, supporting HD video resolution 1920x1080/60i, 1920x1080/24p,
1280x720/60p

• Performance requirements with MFX core frequency above 1GHz

o Real-time performance around 10% duty cycle
o Support concurrently decoding of at least two active HD bitstreams of different formats

(For example, one AVC and one VC1 HD bitstream)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 7

• The parsing of transport layer and sequence layer is not performed in this hardware, and is required
to be done in the host software. We have added the parsing of Slice Header for AVC and the
Picture+Slice Header for VC1.

• The MFD hardware pipeline is operated concurrently with and independently from the Graphics
(3D/Media) pipeline with separate command streamer. The two parallel engines are designed with
the similar command protocol. They can be executed in parallel with different context.

• Local storages and buffers along the hardware pipeline are kept at minimum. For example, there is
no on-die row-store memory. They are resided on the system memory. MFD is designed to hide the
memory access latency (in both the row stores and in the motion compensation units) in maximizing
its decoding throughput.

• Support the following operating modes

o VLD mode – operation starts from entropy decoding of the compressed bit stream
(parsing Slice Header and Slice Data Layer in AVC, Picture layer, Slice layer and MB
Layer in VC-1, and MB-layer in MPEG2), all the way, to the reconstruction of display
picture, including in-loop , if any.

 Streamout mode – a new feature of the VLD mode in assisting transcoding
during decoding. Selected uncompressed data (e.g. per MB MV information)
will be sent out to the EU and the ME engine (resided on the Sampler of the
3D Gx Pipeline) for encoding into a different format or for the purpose of
transcaling and transrating. In addition, the uncompressed result may
continue to be processed by the rest of pipeline as in VLD mode to generate
the display picture for transcoding. That is, while intermediate data are
streaming out to the memory, the MFD Engine continues its decoding as
ususal.

 For JPEG, only VLD mode is supported (No IT mode). Host software decodes
Frame and Scan layers (down to Scan header in the JPEG bit stream syntax)
and sends all the corresponding information and Scan payload to the MFD
hardware pipeline.

o IT mode – when host software has already performed all the bit stream parsing of the
compressed data and packaging the uncompressed result into a specific format (as a
sequence of per-MB record) stored in memory. The hardware pipeline will fetch one
MB record at a time and perform the rest of the decoding process as in VLD mode

o Host software (Application) is responsible for parsing and decoding all the transport
and program layers, and all sequence layers. These parameters are passed to Driver
and forwarded to H/W as needed through different STATE commands. Host software
is also responsible for separating non-video data (audio, meta and user data) from
sending to H/W.

 MFD Engine is only responsible for macro-block and block layers decoding,
plus certain level of header decoding. For AVC MFD starts decoding from
Slice Header; for VC1, MFD starts decoding from Picture Header, and for
MPEG2 decoding starts from MB Layer only.

 For JPEG, MFD is responsible for ECS and block layers decoding.

• Support bitstream formats (compressed video data) for each codec

o AVC – 2 formats

 DXVA2 AVC Short Slice Format Specification (new in)
 DXVA2 AVC Long Slice Format Specification

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 8

o MVC – 2 formats

 DXVA2 AVC Long Slice Format Specification (exactly the same as AVC)

o VC1 – 2 formats

 DXVA2 VC1 Specification (new in)

• Fully compliant to Picture Parameter and Slice Control Parameter
interface definition

o MPEG2

 MB Layer only, according to DXVA 1 Specification

o JPEG

 Intel proprietary format (new in) this generation.
 ECS Layer

• The MFX codec is designed to be a stateless engine, that it does not retain any history of settings
(states) for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX
picture state command sequence prior to process each new picture. In addition, driver must issue
the full set of Slice state command sequence prior to process a slice.

o In particularly, RC6 always happens between frame boundaries. So at the beginning
of every frame, all state information needs to be programmed. There is no state
information as part of media context definition.

• To activate the AVC deblocker logic for incoming uncompressed 4:2:0-only video stream, one can
pack the uncompressed video stream to compliant with the IPCM MB data format (including ILDB
control information) and feed them into the MFD engine in IT mode. Since the MFD Engine is in
IPCM mode, transformation, inter and intra processing are all inactive.

Start Code Detection and removal are done in the CPU, but the Start Code Emulation Prevention Byte is
detected and removed by the front end logic in the MFD. The bitstream format for each codec and for
each mode is specified in this document.

Codec specific information are based on the following released documents from third parties :

• Draft of Version 4 of H.264/AVC (ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4
part 10) Advanced Video Coding); JVT-O205d1.doc; dated 2005-05-30

• Final Draft SMPTE Standard : VC1 Compressed Video Bitstream Format and Decoding Process,
SMPTE 421M, dated 2006-1-6; PDF file.

• MPEG2 Recommendation ITU T H.262 (1995 E), ISO/IEC 13818-2: 1995 (E); doc file.
• Digital Compression and Coding of Continuous-tone Still Images, ITU-T Rec. T.81 and ISO/IEC

10918-1: Requirements and guidelines September 18 1992; itu-t81[1].pdf

1.1.1 MFD Memory Interface
The Memory Arbitrator follows the pre-defined arbitration policy (as indicated in the following listing P0 to
P11, in which P0 is the highest priority) to select the next memory request to service, then it will perform
the TLB translation (translation to physical address in memory), and make the actual request to memory.

The Memory Arbitration unit is also responsible for capturing the return data from memory (read request)
and forward it to the appropriate unit along the MFD Engine.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 9

• Read streams: (all 64B requests)

o Commands for BSD : linear (including indirect data) (P0)
o Indirect DMA (P1)

o Row store for BSD: linear (P5)
o Row store for MPR: linear (P6)
o MC ref cache fetch : tiled (P2)
o Intra row store: linear (P9)
o ILDB row store: linear (P10)

• Write streams: (all 64B requests)

o Row store write for BSD: linear and can avoid partial writes (P3)
o Row store write for MPR: linear and can avoid partial writes (P4)
o Intra row store write: linear and can avoid partial writes (P7)
o ILDB row store write: linear and can avoid partial writes (P8)
o Final dest writes: tiled and can potentially be partial, two ways to avoid these

partials: 1) either write garbage and buffers are aligned or 2) read-modify
writes for dribble end of line cases (P11)

1.1.2 MFD Codec-Specific Commands
MFD hardware pipeline supports 3 different codec standards : AVC, VC1 and MPEG2. To make the
interface flexible, each codec is designed with its own set of commands.

There are two categories of commands for each codec format : one set for VLD mode and one set for IT
mode.

1.2 MFC Overview
Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It
includes multi-format decoding (MFD) and multi-format encoding (MFC). Many decoding function blocks
in MFD such as VIP, VMC, IQT, etc, are also used in encoding mode. Two blocks FTQ and BSE are
encoding only.

The encoding process is partitioned across host software, GPE engine and the MFX engine. The
generation of transport layer, sequence layer, picture layer and slice header layer is required to be done
in the host software. GP hardware is responsible for compressing from Slice Data Layer down to all
macro-block and block layers. Specifically, GPE w/ VME acceleration is for motion vector estimation,
motion estimation, and code decision. The VME(>Video Motion Estimation) is located next to all image
processing units, such as DN (denoise) and DI (deinterlace) in sampler in GPE. MFX is for final bit
packing and reconstructed picture generation.

MFC is operated concurrently with and independently from the GPE (3D/Media) pipeline with separate
command streamer. The two parallel engines have similar command protocol. They can be executed in
parallel with different context. For encoding, motion search, MB mode decision and rate control are
performed using GPE pipeline resources.

MFC is implemented to achieve the following objectives.

• Compliant to next generation high definition optical video disc requirements (e.g.) with sufficient
performance headroom

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 10

o Support AVC 4:2:0 Main Profile and High Profile only (8-bit only), up to Level 4.1
resolution and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate
contents can also be encoded. There is no support for Baseline, Extended and High-
10 Profiles.

• Performance requirements with MFX core frequency above 667MHz

o Real-time performance with 20% duty cycle or less
o Support concurrently decoding of two active HD bitstreams of different formats (For

example, one AVC and one VC1 HD bitstream) and one active HD encoding.

As the result of this hardware partitioning, VPP and ENC are always running in GPE, and PAK is what
runs exactly in MFC.

PAK – residue packing and entropy coding, including block transformation, quantization, data prediction,
bitrate tuning and reference decoding. It delivers final packed bitstream and decoded key-frame
reference.

• As the same as ENC, PAK is invoked on a Slice boundary; a single call of
VPP can lead to multiple calls for PAK.

• Rate control is inside ENC and PAK only, not in VPP
• PAK must always perform with reconstructed reference picture

There is a general dependency of the three operation pipelines. Semaphores are inserted either
according to frames or slices. The main CS will also be notified when the decoded reference is ready for
the next frame set to be encoded. The detailed discussion will be found in a later section.

Host software is responsible for encoding the transport stream and all the sequence, picture and slice
layer/header in the bit-stream; the MFC system is responsible for compressing from Slice Data Layer
down to all macro-block and block layers.

1.2.1 Example Usage Model
Encoding flow described here assumes that input stream is a series of uncompressed video frames that
will be converted into YUV (4:2:0) for encoding. Depending upon how this stream is derived, application
usage may be listed as below:

• Single video stream encoder, video capture+encode, home movie making (SD/HD)
• PVR usage: Decode the incoming stream to generate YUV (uncompressed) frames and then

encode to have a compressed file size storage (also transcoding)
• The HW asset needs to support single stream decode (SD+HD) and independent stream encode

(HD). This usage can be enabled by scheduling HW decoder at command stream level instead of
HW managed time-slicing.

For illustration purpose only, here are two possible usage modes: user-friendlymode and professional
mode.

 Professionalmode (PFM):
Application does the picture order sequencing and submit the picture
frame-by-frame to VPP as IN coded order with specified frame coding
type, and it has the full custom control of the GOP structure

• no restriction on numbers of I, P and B
• no restriction on individual interlace and progressive picture

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 11

 User-friendlymode (UFM):
Application presents video in display order. In this case, the application
can only specify two pre-defined parameters: NumP and NumB, for the
underlining pre-defined GOP structure.

• Where NumP is the number of P (or P/P) -frames in a GOP,
and NumB is the number of B (or B/B) frames between two
consecutive key (I, P, I/I, I/P, or P/P) frames.

In this case, the driver will need to composite the final GOP structure based on the application
parameters, and need to perform the proper sequencing of picture to the VPP in the coding order (i.e. it
will hold the pictures in the memory and submit the correct picture buffer address only in coding order),
then pass the data in as the same as in PFM.

A GOP (group of pictures) is a complete encoding unit consisting of a number of video frames. In general
a GOP structure has the following form:

I0, B-B1, K1, B-B2, K2, B-B3, K3, … , B-BN, KN

in display order, or equivalently

I¬0, K1, B-B1, K2, B-B2, K3, B-B3, … , KN, B-BN

in coded storage/transmission order. Where K is a key (i.e. I or P) frame, and B-Bi is a set of Mi
consecutive B frames. Thus, there are 1+N+(M1+…+MN) frames in a GOP.

In the UFM, we have N = NumP, and Mk = NumB for all k. Where NumB must be an number from 0, 1, 2,
or 3. For examples:

• NumP = 5, NumB = 2: GOP = I0 P3 B1 B2 P6 B4 B5 P9 B7 B8 P12 B10 B11 P15 B13 B14 I16 …
• NumP = 7, NumB = 0: GOP = I0 P1 P2 P3 P4 P5 P6 P7 I8 P9 …
• NumP = 0, NumB = 0: GOP = I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 …

As a result, a unified hardware interface is given.

All frame/slice type determination/specifications are performed prior to the hardware interface in coded
order.

1.2.2 Sample Algorithmic Flow
Assuming all the hardware components are given, there are infinite usage possibilities left with intention
for software to decide according to its own application needs depending upon the balanced requirement
of coding speed, frame latency, power-consumption, and video quality, and depending upon the usage
modes and user preferences (such as low-frame-rate-high-frame-quality vs. high-frame-rate-low-frame-
quality).

The last part of this chapter, we illustrate a generic sample to show how a compression algorithm can be
implemented to use our hardware.

Step 1. Application or driver initializes the encoder with desired configuration, including speed, quality,
targeted bit-rate, input video info, and output format and restrictions.

Step 2. VPP – Application or diver feeds VPP one frame at a time in coded order with specified frame or
field type, as well as transcoding informations: motion vectors, coded complexity (i.e. bit size).
It will perform denoising and deblocking based on original and targeted bit-rate, and output additional
4 spatial variances and 2 temporal variances for each macroblock as well as the whole frame.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 12

Step 3. ENC – Application or diver feeds ENC one coding slice buffer at a time including all VPP output.
The frame level data is accessible to all slices.

a. Encoding setup unit (ESE) will set picture level quality parameters (including LUTs,
and othe costing functions) and set target bit-budget (TBB) and maximal bit-budget
(MBB) to each macroblock based on rate-control (RC) scheme implemented. For B-
frames, it wll also make ME searching mode decision (either Fast, Slow or Uni-
directional).

b. Loop over all macroblocks: calculate searching center (MVP) perform individual ME
and IE (MEE). Multi-thread may be designed for HW according to a zigzag order for
minimal dependency issue.

c. ENC make microblock level code decision (CD) outputs macroblock type, intra-mode,
motion-vectors, distortions, as well as TBBs and MBBs.

Step 4. PAK – Application or diver feeds PAK one array of coded macroblocks covering a slice at a time,
including all ENC output. Original frame buffer and reconstructed reference frame buffers are also
available for PAK to access.

a. PAK may create bitstreams for all sequence, gop, picture, and slice level headers prior
the first macroblock.

b. Loop over all macroblocks, accurate prediction block is constructed for either inter- or
intra- predictions (VMC & VIP). If MB distortion is less than some predetermined
threshold, for a B slice this step can be skiped as well as the Steps (c)-(e) and jump
directly to Step (f); for a key slice the prediction calculated here will be directly used as
the reference thus it jump to Step (e) after this step.

c. Differencing the predicted block from the original block derives the residue block.
Forward transformation and quantization (FTQ) is performed. For B slice, it will jump
to Step (f) right after. For other types of slice, Steps (d) and (e) can be performed in a
thread in parallel with Step (f) and beyond.

d. This is for accurate construction of reference pictures. Inverse quantizationnd inverse
transformation (IQT) are performed and added to the predictions to have the decoded
blocks.

e. ILDB is applied accordingly to the reconstructed blocks.
f. Meanwhile macroblock codes: including its configuration info (types and modes),

motion info (motion vectors and reference ids), and residual info (quantized
coefficients), are collected for packing (BSE) in the following sub-steps:

i. Code clean-up (in MPR). Check and verify Mbtype and
Cbps, use Skip or Zero respectively if one can. In principal,
when there are equivalent codes, use the simple one.

ii. Drop dependency (in MPR). Calculate relative codes from
the absolute codes by associate thm with neighborhood
information. All neighborhood correlations are solved in this
step.

iii. Unify symbols (in SEC). Translate relative codes into
symbols, and table or context indices that are independent of
the concept of syntax type.

iv. Entropy coding (VLE) on symbols.
g. Parsing bitstream data in RBSP form (in VLE), and output to application or driver.
h. By the end of each picture, write out the accurate actual data size to designate buffer

for ENC to access.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 13

1.2.3 Synchronization Mechanism
Encoding of a video stream can be broken down to three major steps (as explained in the previous
section):

1. VPP: video-stream pre-processing.
2. ENC: encoding, i.e. code decision of inter-MVs and intra-modes. And
3. PAK: bit-stream packing,

a) residual calculation, transformation, and quantization,
b) code bit-stream packing, and
c) refenrece generation of keyframes.

This section describes an architectural solution to map first two steps in the GFX engine and the last step
in the MFX engine. Since this involves two OS visible engines, managing them using in parallel under one
application is similar to the solution in BLC/CTG implementations. Each engine has its own command
streamers and has mechanisms to synchronize at required level as described in the next sub-section.

Above three steps of encoding have dependencies in processing based on

i. functional pipeline order, i.e. on a given frame, VPP needs to be performed first, then
ENC, then PAK and finally MFD (Multi-Format Decoding) for key reference frame
generation.

ii. I-frames are key frames for P and B, they have to be first in every pipe-stage.
iii. P-frames are key frames for B frames and therefore P frames are processed first before

the dependent B frames
iv. GFX Engine is time slice to work on either VPP or ENC frame as we discussed in the

previous chapter.
v. PAK + MFD are executed on the same frame in the MFX engine by macro-block level

pipelining within a slice. It should be noted that for the sake of simplicity, an entire frame
(potentially multiple slices) are processed in the corresponding engine and no smaller
granularity of switching is allowed between the functional pipeline stages.

Three steps of the encoding can be interleaved on two engines in the following way on a frame by frame
basis.

Command Stream Synchronization

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 14

1.2.4 Restrictions
MFC implementation is subject to the following limitations.

• Context switching within MFC and with Graphics Engine occurs only at frame boundary to minimize
the amount of information need to be tracked and maintained.

1.3 MFX State Model
The parallel video engine (PVE) supports two state delivery models: inline state model and indirect state
model. For inline state model, the state commands (*_STATE) can be issued in batch buffers or ring
buffers directly preceding object commands (*_OBJECT). In the indirect state model, the state commands
are not placed in the batch buffers or ring buffers. Instead Indirect State Buffers provide state information
(in the form of the above mentioned state commands) for the MFX pipeline. The MFX_STATE_POINTER
command provides the memory pointer to a indirect state buffer.

VCS (aka BCS) handles the difference of the two state delivery models. Therefore, the MFX pipeline
always sees the state commands in both models. However, MFX hardware supports additional context
save/restore of ‘dynamic states’. Dynamic states are the internal signals that are persistent. This could be
the CABAC context for macroblock encoding.

MFX State Model

The MFX codec is designed to be a stateless engine, that it does not retain any history of settings (states)
for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX picture state
command sequence prior to process each new picture. In addition, driver must issue the full set of Slice
state command sequence prior to process a slice.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 15

• In particular, RC6 always happens between frame boundaries. So at the beginning of every frame,
all state information needs to be programmed. There is no state information as part of media context
definition.

1.4 MFX Interruptability Model
MFX encoding and the encoding pipeline do not support interruption. All operations are frame based.
Interrupts can only occur between frames; the driver will submit all the states at the beginning of each
frame. Any state kept across frames is in MMIO registers that should be read between frames.

Software submits without any knowledge of where the parser head pointer is located. Also there is a non-
deterministic amount of time for the new context to reach the command streamer. However, the state
model for the MFX engine requires software to know exactly what state the pipeline is in at all times. This
introduces cases where a preemption could occur during or after a state change without software ever
knowing the state saved out to memory on the context switch.

Also, preemption is only allowed during the last macroblock in a row. Hardware cannot always perform a
context switch when the new context is seen by the hardware. To avoid a switch during an invalid
macroblock and to keep the state synchronized with software, there are two commands available that are
used. MI_ARB_ON_OFF disables and enables preemption while MFX_WAIT ensures the context switch,
if needed, preempts during macroblock execution. Below illustrates an example assuming VC1 VLD
mode.

Command Ring/Batch Notes
MI_ARB_ON_OFF = OFF Disable preemption
S1 Inline or indirect state cmd 1
S2 Inline or indirect state cmd 2
S3 Inline or indirect state cmd 3
XXXX_OBJECT Slice
MI_ARB_ON_OFF = ON Enable preemption
MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes
MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below
S4 Inline or indirect state cmd 4
S5 Inline or indirect state cmd 5
S6 Inline or indirect state cmd 6
XXXX_OBJECT Slice
MI_ARB_ON_OFF = ON Enable preemption
MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes
MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

Note that store DW commands may execute inside the preemption enabling window if needed.

1.5 MFX Programming Restrictions

1.5.1 All Codecs
There is a hardware issue to switch to JPEG decode if the last MB of the previous video frame
(AVC/VC1/MPEG decode or AVC encode) has no coefficients coded (CBP equals 0).

To resolve the above issue, an AVC frame with only 1x1 intra-coded MB must be issued before JPEG
frame. Both AVC frame and JPEG frame must be placed in the same batch buffer to ensure JPEG frame
is executed immediately after the added AVC frame.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 16

The alternate WA is to place the AVC 1x1 intra-coded MB frame immediately after any AVC/VC1/MPEG
decode or AVC encode frame.

1.6 MFX Codec Commands Summary
DWord Bit Description

0 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

 GFXPIPE[28:27 = 1h, 26:24 = 1h, 23:16 = 04h] (Single DW, Non-pipelined)

15:1 Reserved: MBZ

0 Pipeline Select

0: 3D pipeline is selected

1: Media pipeline is selected

Pipeline Type
(28:27)

Opcode
(26:24)

Sub Opcode
(23:16)

Command Definition
Chapter

VC1 State

2h 5h 0h VC1_BSD_PIC_STATE VC1 BSD
2h 5h 1h Reserved n/a
2h 5h 2h Reserved n/a
2h 5h 3h VC1_BSD_BUF_BASE_ST

ATE
VC1 BSD

2h 5h 4h Reserved n/a
2h 5h 5h-7h Reserved n/a

VC1 Object

2h 5h 8h VC1_BSD_OBJECT VC1 BSD
2h 5h 9h-FFh Reserved n/a

Pipeline Type (28:27) Opcode (26:24) Sub Opcode (23:16) Command Definition
Chapter

State

2h 6h 0h GPU Overview
2h 6h 9h GPU Overview
2h 6h 2h-7h Reserved n/a

Object

2h 6h 8h GPU Overview
2h 6h 9h-FFh Reserved n/a

 Note that it is possible for a command to appear in both IMAGE and SLICE state buffer, e.g. QM_STATE
for JPEG can be issued at frame level or scan/slice level.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 17

Pipelin
e Type
(28:27)

Opcode
(26:24)

SubopA
(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptable
?

MFX
Commo

n Common
2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE No
2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE No
2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE No
2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STATE MFX IMAGE No
2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STATE MFX IMAGE No
2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE No
2h 0h 0h 7h MFX_QM_STATE MFX IMAGE/SLICE No
2h 0h 0h 8h MFX_FQM_STATE MFX IMAGE No
2h 0h 0h A-1Eh Reserved n/a n/a No
2h 0h 0h 1FH MFX_muC_IND_OBJ_BASE_ADDR_STA

TE
MFX IMAGE No

MFX
Commo

n Dec
2h 0h 1h 0-8h Reserved n/a n/a n/a
2h 0h 1h 9h MFD_ IT_OBJECT MFX n/a No
2h 0h 1h A-1Fh Reserved n/a n/a n/a

MFX
Commo

n Enc
2h 0h 2h 0-7Fh Reserved n/a n/a n/a
2h 0h 2h 8h MFX_PAK_INSERT_OBJECT MFX n/a No
2h 0h 2h 9h Reserved n/a n/a n/a
2h 0h 2h Ah MFX_STITCH_OBJECT MFX n/a No
2h 0h 2h B-1Fh Reserved n/a n/a n/a

AVC/
MVC

Common
(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE n/a
2h 1h 0h 1h Reserved n/a n/a n/a
2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE n/a
2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE n/a
2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE n/a
2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STATE MFX SLICE n/a

AVC/
MVC Dec

2h 1h 1h 0-5h Reserved MFX n/a n/a
2h 1h 1h 6h MFD_AVC_DPB_STATE MFX IMAGE n/a
2h 1h 1h 7h MFD_AVC_SLICEADDR_OBJECT MFX n/a n/a
2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX n/a No
2h 1h 1h 9-1Fh Reserved n/a n/a n/a

AVC/
MVC Enc

2h 1h 2h 0-8h Reserved n/a n/a n/a
2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX n/a No
2h 1h 2h A-1Fh Reserved n/a n/a n/a

AVC/
MVC

Extensio
n

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 18

 VC1

Commo
n

(State)
2h 2h 0h 0h Reserved n/a n/a n/a
2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE n/a
2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE n/a
2h 2h 0h 3-1Fh Reserved n/a n/a n/a

 VC1 Dec
2h 2h 1h 0h MFD_VC1_SHORT_PIC_STATE MFX IMAGE n/a
2h 2h 1h 1h MFD_VC1_LONG_PIC_STATE MFX IMAGE n/a
2h 2h 1h 2-7h Reserved n/a n/a n/a
2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX n/a No
2h 2h 1h 9-1Fh Reserved n/a n/a n/a

 VC1 Enc
2h 2h 2h 0-1Fh Reserved n/a n/a n/a

 MPEG2

Commo
n

(State)
2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE n/a
2h 3h 0h 1-1Fh Reserved n/a n/a n/a

 MPEG2 Dec
2h 3h 1h 1-7h Reserved n/a n/a n/a
2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX n/a No
2h 3h 1h 9-1Fh Reserved n/a n/a n/a

 MPEG2 Enc
2h 3h 2h 0-2h Reserved n/a n/a n/a
2h 3h 2h 3-8h Reserved
2h 3h 2h 9h MFC_MPEG2_SLICEGROUP_STATE
2h 3h 2h A-1Fh Reserved

 MuC
Common

(State)
2h 5h 0h Reserved

 MuC Enc
2h 5h 2h Reserved

 JPEG Common
2h 7h 0h 0h MFX_JPEG_PIC_STATE MFX IMAGE No
2h 7h 0h 1h Reserved n/a n/a n/a
2h 7h 0h 2h MFX_JPEG_HUFF_TABLE_STATE MFX IMAGE No
2h 7h 0h 3-1Fh Reserved n/a n/a n/a

 JPEG Dec
2h 7h 1h 1-7h Reserved MFX n/a n/a
2h 7h 1h 8h MFD_JPEG_BSD_OBJECT MFX MCU No
2h 7h 1h 9-1Fh Reserved MFX n/a n/a

 JPEG Enc
2h 7h 2h 0-1Fh Reserved MFX n/a n/a

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 19

MMIO Space Registers
Range Start Range End Unit owner
00002000 00002FFF Render/Generic Media Engine
00004000 00004FFF Render/Generic Media Graphics Memory Arbiter
00006000 00007FFF
00012000 000123FF MFX Control Engine (Video Command Streamer)
00012400 00012FFF Media Units (VIN unit)
00014000 00014FFF MFX Memory Arbiter
00022000 00022FFF Blitter Engine
00024000 00024FFF Blitter Memory Arbiter
00030000 0003FFFF
00100000 00107FFF Fence Registers
00140000 0017FFFF MCHBAR (SA)

Memory Interface Command Map
04h Opcode (28:23) MI_FLUSH

1.6.1 MFX Decoder Commands Sequence
The MFX codec is designed to be a stateless engine, that it does not retain any history of settings (states)
for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX picture state
command sequence prior to process each new picture. In addition, driver must issue the full set of Slice
state command sequence prior to process a slice.

In particular, RC6 always happens between frame boundaries. So at the beginning of every frame, all
state information needs to be programmed. There is no state information as part of media context
definition

1.6.1.1 Examples for AVC
The following gives a sample command sequence programmed by a driver

a) For Intel or DXVA2 AVC Long Slice Bitstream Format

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_QM_STATE

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 20

MFX_AVC_SLICE_STATE

VLD mode: MFD_AVC_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 AVC Short Slice Bitstream Format (for VLD mode only)

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFD_AVC_DPB_STATE

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_QM_STATE

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

VLD mode : MFD_AVC_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

VLD mode : MFD_AVC_BSD_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

… repeat these four commands N-1 times for a N-slice picture

VLD mode: MFD_AVC_BSD_OBJECT (for the last slice of the picture)

MI_FLUSH

1.6.1.2 Examples for VC1
The following gives a sample command sequence programmed by a driver

a) For Intel Proprietary Long Bitstream Format

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_LONG_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 21

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_SHORT_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

MI_FLUSH

c) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only), and field pair picture

Batch buffer for top-field

states....

Slice_objs...

MI_flush

store register immediate (if VC1 short format with interlaced field pic)

MI_flush

Batch buffer for bottom field

load register immediate (if VC1 short format with interlaced field pic)

MI_flush

states....

Slice_objs...

MI_flush

1.6.1.3 Examples for JPEG
The following gives a sample command sequence programmed by a driver

Programmed once at the start of decoding

MFX_PIPE_MODE_SELECT

MFX_PIPE_SURFACE_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_JPEG_PIC_STATE

Programmed at the start of Frame or Scan (These commands can be sent multiple times either before
MFX_JPEG_PIC_STATE or before MFD_JPEG_BSD_OBJECT)

MFX_JPEG_HUFF_TABLE

MFX_QM_STATE

Programmed per Scan (These commands can be sent multiple times depending on each bit stream)

MFD_JPEG_ BSD_OBJECT

MI_FLUSH

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 22

1.7 MFX Pipe Common Commands

1.7.1 MFX_WAIT Command
This is a VCS Command to synchronize the two concurrent pipeline (one is VCR and one if MFX). It is
included here, because it is only used by MFX pipeline. It defines the usage model for pre-emption which
makes it very easy to do any ring buffer programming.

VCS Command engine services both VCR and MFX pipelines. If VCR takes many clock to initialize , and
if no WAIT command, MFX Object Command can start sending data to VCR before it is initialized. Hence,
this command effective causes a flush in the selected pipeline (VCR or MFX).

MFX_WAIT

Source: VideoCS

Length Bias: 1

This command can be considered the same as an MI_NOOP except that the command parser will not parse the
next command until the following happens
• AVC or VC1 BSD mode: The command will stall the parser until completion of the BSD object
• IT, encoder, and MPEG2 BSD mode: The command will stall the parser until the object package is sent down

the pipelineThis command should be used to ensure the preemption enable window occurs during the time the
object command is being executed down the pipeline.

DWord Bit Description
0 31:29 Command Type

Default Value: 03h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Command Subtype
Default Value: 01h MFX_SINGLE_DW
Format: OpCode

26:16 Sub-Opcode
Default Value: 0h MFX_WAIT
Format: OpCode

15:10 Reserved
Project: All
Format: MBZ

8 MFX Sync Control Flag
If set, VCS will stall the parser until all prior MFX objects are completed down the MFX pipeline

7:6 Reserved
Project: All
Format: MBZ

5:0 DWord Length
Default Value: 0h Excludes DWord (0,1)
Project: All
Format: =n
Total Length - 2

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 23

1.7.2 MFX_STATE_POINTER Command

MFX_STATE_POINTER
Project: All

Source: VideoCS

Length Bias: 2

The MFX_STATE_POINTER command, issued at picture level, is used to set up the indirect pointers for VCS to
fetch all the MFX states (Image state, Slice state, etc.) needed for the encoding/decoding process in PAK/IT mode.
The encoding/decoding states are presented by state commands, which are grouped into separate sets (picture
level, slice level, etc.), and each is stored in its own memory buffer referred by an indirect state pointer. The content
of each indirect state buffer is a list of MFX state commands with no special format requirements. The sequence of
commands in each indirect state buffer is terminated by a MI_BATCH_BUFFER_END command (acts as the last
command marker). Therefore, indirect state buffers can have different and variable length of command sequences.

The indirection is designed to facilitate context switching in the middle of a codec operation. The smallest granularity
of interruption is designed to be at a completed MB row in AVC/VC1/MPEG2 IT and AVC PAK operating modes as
well as in VC1/MPEG2 VLD mode. There is no support for context switch in AVC VLD mode.

Hardware supports up to 4 separate indirect state pointers, allowing software to manage the grouping of state
commands. During context switch, hardware restores (re-issues) the latest version of each indirect state pointer, if
present.

MFX_STATE_POINTER command can only program one indirect state pointer at a time. MI_FLUSH will invalidate
all indirect state buffer pointers inside VCS.
DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFX_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h Media
Format: OpCode

26:24 Media Command Opcode
Default Value: 0h MFX_COMMON_STATE
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 6h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h DWORD_COUNT_n
Project: All
Format: =n Total Length - 2

1 31:5 State Pointer

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 24

MFX_STATE_POINTER
Format: GeneralStateOffset[31:5]Indirect State Buffer
Specifies the 32-byte aligned address of an Indirect State Buffer. This pointer is relative to the
General State Base Address.

4:2 Reserved
Project: All
Format: MBZ

1:0 State Pointer Index
Specifies one of the four indirect state pointers to program.

Value Name Description Project
00b indirect state pointer 0 (image state) All
01b indirect state pointer 1 (slice state)sc All
10b indirect state pointer 2
11b indirect state pointer 3

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 25

1.7.3 MFX_PIPE_MODE_SELECT

MFX_PIPE_MODE_SELECT

Source: VideoCS

Length Bias: 2

Specifies which codec and hardware module is being used to encode/decode the video data, on a per-frame basis.

The MFX_PIPE_MODE_SELECT command specifies which codec and hardware module is being used to
encode/decode the video data, on a per-frame basis. It also configures the hardware pipeline according to the
active encoder/decoder operating mode for encoding/decoding the current picture. Commands issued specifically
for AVC and MPEG2 are ignored when VC1 is the active codec.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_COMMON
Format: OpCode

26:24 Opcode
Default Value: 0h MFX_COMMON_STATE
Format: OpCode

23:21 SubOpA
Default Value: 0h
Format: OpCode

20:16 SubOpB
Default Value: 0h MFX_PIPE_MODE_SELECT
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Project: All
Format: =n Total Length - 2

Value Name Description
2h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 26:25 Reserved
Project: All
Format: MBZ

23:18 Reserved
Project: All
Format: MBZ

17 Decoder Short Format Mode
For IT mode, this bit must be 0.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 26

MFX_PIPE_MODE_SELECT
Value Name Description
1 Long Format Driver Interface AVC/VC1/MVC Long Format Mode is in use
0 Short Format Driver Interface [Default]

AVC/VC1/MVC Short Format Mode is in use

16:15 Decoder Mode select
Each coding standard supports two entry points: VLD entry point and IT (IDCT) entry point. This field
selects which one is in use.This field is only valid if Codec Select is 0 (decoder).
Value Name Description
0h VLD Mode All codec minimum must support this modeConfigure the MFD Engine for VLD Mode

 Note: All codec minimum must support this mode
1h IT Mode Configure the MFD Engine for IT Mode

 Note: Only VC1 and MPEG2 support this mode

14:13 Reserved
Project: All
Format: MBZ

12 Reserved

Format: MBZ

11 Pic Error/Status Report Enable.

This field control whether the error/status reporting is enable or not.0: Disable1: EnableIn decoder
modes: Error reporting is written out once per frame. The Error Report frame ID listed in DW3 along
with the VLD/IT error status bits are packed into one cache and written to the “Decoded Picture
Error/Status Buffer address” listed in the MFX_PIPE_BUF_ADDR_STATE Command. Note: driver shall
program different error buffer addresses between pictrues; otherwise, hardware might overwrite
previous written data if driver does not read it fast enough.In encoder modes: Not used

Value Name
0h Disable
1h Enable

10 Stream-Out Enable
This field controls whether the macroblock parameter stream-out is enabled during VLD decoding for
transcoding purpose.

Value Name
0h Disable
1h Enable

Programming Notes
In decoder modes: The Stream-Out feature is added to support transcoding. While decoding the input
compressed stream, selected decoded information may be used by the encoder for re-compression.In
encoder modes: This feature used to perform dynamic Multipass of PAK for conformance pupose. Also
it provides feedback to host (ENC) for future needs. Software can use this bit to disable writing PAK
steam data to the streamout buffer for last pass of frame in PAK. Thus, save memory bandwidth.

9 Post Deblocking Output Enable (PostDeblockOutEnable)
Project: All
This field controls the output write for the reconstructed pixels AFTER the deblocking filter.In MPEG2
decoding mode, if this is enabled, VC1 deblocking filter is used.

Value Name

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 27

MFX_PIPE_MODE_SELECT
0h Disable
1h Enable

8 Pre Deblocking Output Enable (PreDeblockOutEnable)
Project: All
This field controls the output write for the reconstructed pixels BEFORE the deblocking filter.

Value Name
0h Disable
1h Enable

7:6 Reserved
Format: MBZ

5 Stitch Mode
Project: All
Exists If: CodecSel=Encode and StandardSel=AVC

Value Name Description
0h Not in stitch mode
1h In the special stitch

mode
This mode can be used for any Codec as long as bitfield conditions are
met.

4 Codec Select
Value Name Description

0h Decode
1h Encode Valid only if StandardSel is AVC, MPEG2)

3:0 Standard Select
Value Name Description

0000b MPEG2
0001b VC1
0010b AVC Covers both AVC and MVC
0011b JPEG
0110b Reserved
0111b Reserved

2 31:11 Reserved
Format: MBZ

10 MPC pref08x8_disable Flag (Default 0)
BitFieldDesc

Value Name Project
0h Disable All
1h Enable All

9:8 Reserved
Format: MBZ

6 Clock gate Enable at Slice-level
BitFieldDesc:
Value Name Description

0h Disable Disable Slice-level Clock gating, Unit-level Clock gating will apply
1h Enable Enable Slice-level Clock gating, overrides any Unit level Clock gating

4 AVC Motion Vector/POC Table Error Disable Flag
This bit disable termination due to any errors resulting from Motion Vector and POC Table
Value Name Description

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 28

MFX_PIPE_MODE_SELECT
0h Terminates Motion Vector/POC Table Error will terminate the current slice decoding
1h Will not terminate Motion Vector/POC Table Error will not terminate the current slice decoding

3 AVC Mbdata Error Disable Flag
This bit disable termination due to any errors resulting from any Mbdata (QP delta range)

Value Name Description
0h Enable Mbdata Error will terminate the current slice decoding
1h Disable Mbdata Error will not terminate the current slice decoding

2 AVC CABAC/CAVLC Decode Error Disable Flag
This bit disable termination due to any errors resulting from CABAC/CAVLC decoding engine
Value Name Description
0h Terminate CABAC/CAVLC Decoder Error will terminate the current slice decoding
1h Will not terminate CABAC/CAVLC Decoder Error will not terminate the current slice decoding

1 Reserved
Format: MBZ

0 Reserved
Format: MBZ

3 31:0 Pic Status/Error Report ID
Format: U32
In decoder modes: Error reporting is written out once per frame. This field along with the VLD error
status bits are packed into one cache and written to the memory location specified by “Decoded Picture
Error/Status Buffer address” listed in the MFX_PIPE_BUF_ADDR_STATE Command.
 In encoder modes: Not used

Value Name Description
0h 32-bit unsigned Unique ID Number
1h Reserved

4 31:0 Reserved

Format: MBZ

The Encoder Pipeline Modes of Operation (Per Frame):

1. PAK Mode: VCS-command driven, setup by driver. Like the IT mode of decoder, it is executed
on a per-MB basis. Hence, each PAK Object command corresponds to coding of only one
MB.

a. Normal Mode (including transcoding): receive per-MB control and data (MV, mb_type,
cbp, etc.). It generates the output compressed bitstream as well as the reconstructed
reference pictures, one MB at a time, for later use.

b. Encoder StreamOut Mode: to provide per-MB, per-Slice and per-Frame coding result
and information (statistics) to the Host, Video Preprocessing Unit and ENC Unit to
enhance their operations.

The Decoder Pipeline Modes of Operation (Per Frame):

1. VLD Mode: The output from the BSD (weight&offset/coeff/motion vectors record) can be sent
in part (as specified) and to the remaining fixed function hardware pipeline to complete the
decoding processing. The driver specifies through MFD commands of what to send out from
the BSD unit and where to send the BSD output.

a. For transcoding (including transrating and transcaling), part of the BSD output (a
series of per-MB record) can be sent to memory for further processing to encode into

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 29

a difference output format. This function is named as StreamOut. When StreamOut is
active, not all MB information needs to be sent, only MVs and selective MB coding
information.

2. IT Mode: In this mode, the BSD is not invoked. Instead host performs all the bitstream
decoding and parsing; and the result are saved into memory in a specific per-MB record
format. The MFD Engine VCS reads in these records one at time and finish the rest of the
decoding (IT, MC, IntraPred and ILDB).

a. MB information is organized into two indirect data buffers, one for MVs and one for
residue coefficients. As such, two indirect base address pointers are defined.

Programming Restriction:

• Software must ensure the current pipeline is flushed via an MI_FLUSH prior to the execution of
MFX_PIPE_MODE_SELECT in switching the MFX Engine to encode/decode a different codec
format (AVC, VC1 or MPEG2).

• MFX_PIPE_MODE_SELECT is issued per picture (frame or field).

Emulation Prevention Byte Removal is handled in 2 different ways that affects the definition of the Slice
Data Buffer and H/W behavior. A control mode bit is defined to switch between these 2 methods.

1. Application is required to remove any emulation prevention byte straddling across the Slice
Header and Slice Data boundary in the bitstream

a. As such, application will pass to the driver the exact starting location of Slice Data
(Byte Offset and Bit Offset) in the Slice buffer and gurantee there is no Emulation
Prevention Byte at the beginning of Slice Data. So H/W does not need to do any
before the Slice Data.

2. Application does not remove any emulation prevention byte straddling across the Slice Header
and Slice Data boundary in the bitstream

a. As such application will pass to the driver the same set of information as above, but
H/W is now required to scan the Emulation Prevention Byte from the beginning of
Slice Header through to Slice Data, in order to locate the exact starting point of the
Slice Data.

i. This is because the Slice Header Byte Offset, as defined in DXVA2 interface,
does not include any emulation bytes found in the Slice Header.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 30

1.7.4 MFX_SURFACE_STATE Command

MFX_SURFACE_STATE

Source: VideoCS

Length Bias: 2

This command is common for all encoding/decoding modes, to specify the uncompressed YUV picture (i.e.
destination surface) or intermediate streamout in/out surface (e.g. coefficient/residual) (field, frame or interleaved
frame) format for reading and writing:
• Uncompressed, original input picture to be encoded
• Reconstructed non-filtered/filtered display picturec(becoming reference pictures as well for subsequent

temporal inter-prediction)

Since there is only one media surface state being active during the entire encoding/decoding process, all the
uncompressed/reconstructed pictures are defined to have the same surface state. The primary difference among
picture surface states is their individual programmed base addresses, which are provided by other state commands
and not included in this command. MFX engine is making the association of surface states and corresponding buffer
base addresses.

MFX engine currently supports only one media surface type for video and that is the NV12 (Planar YUV420 with
interleaved U (Cb) and V (Cr). For optimizing memory efficiency based on access patterns, only TileY is supported.
For JPEG decoder, only IMC1 and IMC3 are supported. Pitch can be wider than the Picture Width in pixels and
garbage will be there at the end of each line. The following describes all the different formats that are supported and
not supported in Gen7 MFX :
• NV12 – 4:2:0 only; UV interleaved; Full Pitch, U and V offset is set to 0 (the only format supported for video

codec); vertical UV offset is MB aligned; UV xoffsets = 0. JPEG does not support NV12 format because non-
interleave JPEG has performance issue with partial write (in interleaved UV format)

• IMC 1 & 3 – Full Pitch, U and V are separate plane; (JPEG only; U plane + garbage first in full pitch followed by
V plane + garbage in full pitch). U and V vertical offsets are block aligned; U and V xoffset = 0; there is no gap
between Y, U and V planes. IMC1 and IMC3 are different by a swap of U and V. This is the only format
supported in JPEG for all video subsampling types (4:4:4, 4:2:2 and 4:2:0)

• We are not supporting IMC 2 & 4 – Full Pitch, U and V are separate plane (JPEG only; U plane first in full pitch
followed by V plane in full pitch – U and V plane are side-by-side). U and V vertical offsets are 16-pixel aligned;
V xoffset is half-pitch aligned; U xoffset is 0; there is no gap between Y, U and V planes. IMC2 and IMC4 are
different by a swap of U and V.

• We are not supporting YV12 – half pitch for each U and V plane, and separate planes for Y, U and V (U plane
first in half pitch followed by V plane in half pitch). For YV12, U and V vertical offsets are block aligned; U and V
xoffset = 0; there is no gap between Y, U and V planes

Note that the following data structures are not specified through the media surface state
• 1D buffers for row-store and other miscellaneous information.
• 2D buffers for per-MB data-structures (e.g. DMV biffer, MB info record, ILDB Control and Tcoeff/Stocoeff).

This surface state here is identical to the Surface State for deinterlace and sample_8x8 messages described in the
Shared Function Volume and Sampler Chapter.

For non pixel data, such as row stores, indirect data (Compressed Slice Data, AVC MV record, Coeff record and
AVC ILDB record) and streamin/out and output compressed bitstream, a linear buffer is employed. For row stores,
the H/W is designed to guarantee legal memory accesses (read and write). For the remaining cases, indirect object
base address, indirect object address upper bound, object data start address (offset) and object data length are
used to fully specified their corresponding buffer. This mechanism is chosen over the pixel surface type because of
their variable record sizes.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 31

MFX_SURFACE_STATE

All row store surfaces are linear surface. Their addresses are programmed in Pipe_Buf_Base_State or
Bsp_Buf_Base_Addr_State

Programming Notes
VC1 I picture scaling: Even though VC1 allows I reconstructed picture scaling (via RESPIC), as such scaling is only
allowed at I picture. All subsequent P (and B) pictures must have the same picture dimensions with the preceding I
picture. Therefore, all reference pictures for P or B picture can share the same surface state with the current P and B
picture. Note : H/W is not processing RESPIC. Application is no longer expecting intel decoder pipelineand kernel to
perform this function, it is going to be done in the video post-processing scaler or display controller scale as a
separate step and controller.
All video codec surfaces must be NV12 Compliant, except JPEG. U/V vertical must be MB aligned for all video
codec (further contrained for field picture), but JPEG can be block aligned. All video codec and JPEG uses Tiled – Y
format only, for uncompressed pixel surfaces.
Even for JPEG planar 420 surface, application may provide only 1 buffers, but there is still only one single surface
state for all of them. If IMC equal to 1, 2, 3 or 4, U and V have the pitch same as Y. And U and V will have different
offset, each offset is block aligned.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_COMMON
Format: OpCode

26:24 Opcode
Default Value: 0h MFX_COMMON_STATE
Format: OpCode

23:21 SubOpA
Default Value: 0h
Format: OpCode

20:16 SubOpB
Default Value: 1h
Format: OpCode

15:12 Reserved
Format: MBZ

11:0 DWord Length
Format: =n Total Length - 2

Value Name Description
4h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:2 Reserved
Format: MBZ

1:0 Reserved

Format: MBZ

2 31:18 Height
Format: U14-1 Height

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 32

MFX_SURFACE_STATE

This field specifies the height of the Picture in units of pixels/residuals. For PLANAR surface formats,
this field indicates the height of the Y (luma) plane. Note : Gen7 Video Codecs must program less than
and equal to 4K.(In future, it will be ideal to have this field define in a WORD boundary.)AVC – multiple
of 2 MB rows for field pictureVC1 – mulitple of 4 pixels for field pictureMPEG2 - multiple of 2 MB rows
for field picJPEG – mulitple of integral MCU (8 or 16 pixels) per picture

Value Name Description
[0,16383] representing heights [1,16384]

Programming Notes Project

For AVC : For frame picture is a multiple of 16; for field picture is a multiple of 32

For VC1 : For progressive frames, the frame height and frame width is a multiple of 2 pixels.
For interlaced frames, the frame height shall be a multiple of 4 pixels, and its width is a
multiple of 2 pixels, based on a PLANAR_420 surface.

Video Codecs must program less than and equal to 4K.
In future, it will be ideal to have this field define in a WORD boundary.

17:4 Width
Format: U14-1 Width

This field specifies the width of the Picture in units of pixels/residuals. For PLANAR surface formats,
this field indicates the width of the Y (luma) plane.

Value Name Description
[0,16383] representing widths [1,16384]

Programming Notes Project

The Width specified by this field multiplied by the pixel size in bytes must be less than or
equal to the surface pitch (specified in bytes via the Surface Pitch field).

Width (field value + 1) must be a multiple of 2 for PLANAR_420,

MFX HW does not use this field, the picture width is read from IMG State instead, because
this field may not equal to the actual picture width. This field is used by the KMD to allocate
surface in GTT.

Video Codecs must program less than and equal to 4K.
In future, it will be ideal to have this field define in a WORD boundary.

3:2 Reserved
Format: MBZ

1:0 Cr(V)/Cb(U) Pixel Offset V Direction
Project: All
Format: U0.2 exactly as shown in the original spec

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 33

MFX_SURFACE_STATE

Specifies the distance to the U/V values with respect to the even numbered Y channels in the V
direction

Programming Notes
This field is ignored for all formats except PLANAR_420_8

3 31:28 Surface Format
Specifies the format of the surface. All of the Y and G channels will use table 0 and all of the Cr/Cb/R/B
channels will use table 1.Usage: For 420 planar YUV surface, use 4; for monochrome surfaces, use 12.
For monochrome surfaces, hardware ignores control fields for Chroma planes.This field must be set to
4 - PLANAR_420_8, or 12 – Y8_UNORMNot used for MFX, and is ignored. But for JPEG decoding,
this field should be programmed to the same format as JPEG_PIC_STATE. For video codec, it should
set to 4 always.

Value Name Description
0 YCRCB_NORMAL
1 YCRCB_SWAPUVY
2 YCRCB_SWAPUV
3 YCRCB_SWAPY
4 PLANAR_420_8 (NV12, IMC1,2,3,4, YV12)
5 PLANAR_411_8 Deinterlace Only
6 PLANAR_422_8 Deinterlace Only
7 STMM_DN_STATISTICS Deinterlace Only
8 R10G10B10A2_UNORM Sample_8x8 Only
9 R8G8B8A8_UNORM Sample_8x8 Only
10 R8B8_UNORM (CrCb Sample_8x8 Only
11 R8_UNORM (Cr/Cb) Sample_8x8 Only
12 Y8_UNORM Sample_8x8 Only
13,15 Reserved

27 Interleave Chroma
Format: Enable
This field indicates that the chroma fields are interleaved in a single plane rather than stored as two
separate planes. This field is only used for PLANAR surface formats.For AVC/VC1/MPEG VLD and IT
modes : set to Enable to support interleave U/V only.For JPEG : set to Disable for all formats (including
4:2:0) – because JPEG does not support NV12. (This field is needed only if JPEG will support NV12;
otherwise is ignored.)

Value Name
1 Enable
0 Disable

26 Reserved
Format: MBZ

25:22 Surface Object Control State (MEMORY_OBJECT_CONTROL_STATE)

This 4-bit field is used in various state commands and indirect state objects to define LLC cacheability
including graphics data type attributes for memory objects.
Value Name Description
2 Graphics Data

Type (GFDT)
This field contains the GFDT bit for this surface when writes occur. GFDT can
also be set by the GTT. The effective GFDT is the logical OR of this field with
the GFDT from the GTT entry. This field is ignored for reads.Format = U1

1 Cacheability
Control

This field controls cacheability in the last-level cache (LLC).Format = U2
enumerated type00: use cacheability control bits from GTT entry01: data is not

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 34

MFX_SURFACE_STATE
cached in LLC 1x: data is cached in LLC

Programming Notes
This field is ignored; H/W uses those values programmed in each of the Buf Address State entries
instead.

21:20 Reserved

Format: MBZ

19:3 Surface Pitch
Format: U17-1 pitch in Bytes

This field specifies the surface pitch in (#Bytes).
Value Name Description

[0,2047] to [1B, 2048B]

Programming Notes
For tiled surfaces, the pitch must be a multiple of the tile width (i.e.128 bytes aligned). If Half Pitch for
Chroma is set, this field must be a multiple of two tile widths for tiled surfaces, or a multiple of 2 bytes
for linear surfaces.For Y-tiled surfaces: Range = [127, 524287] to [128B,256KB] = [1 tile, 2048 tiles]

2 Half Pitch for Chroma
Format: Enable
(This field must be set to Disable)This field indicates that the chroma plane(s) will use a pitch equal to
half the value specified in the Surface Pitch field. This field is only used for PLANAR surface
formats.This field is igored by MFX (unless we support YV12)

1 Tiled Surface
Format: Boolean
(This field must be set to TRUE: Tiled)This field specifies whether the surface is tiled.This field is
ignored by MFX

Value Name Description
0 False Linear
1 True Tiled

Programming Notes
Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable,
snooped). Tiled surfaces can only be mapped to Main Memory.The corresponding cache(s) must be
invalidated before a previously accessed surface is accessed again with an altered state of this bit.

0 Tile Walk
Format: 3D_Tilewalk
(This field must be set to 1: TILEWALK_YMAJOR)This field specifies the type of memory tiling (XMajor
or YMajor) employed to tile this surface. See Memory Interface Functions for details on memory tiling
and restrictions.This field is ignored when the surface is linear.This field is ignored by MFX. Internally
H/W is always treated this set to 1 for all video codec and for JPEG.

Value Name Description
0h XMAJOR TILEWALK_XMAJOR

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 35

MFX_SURFACE_STATE
1h YMAJOR TILEWALK_YMAJOR

Programming Notes
The corresponding cache(s) must be invalidated before a previously accessed surface is accessed
again with an altered state of this bit

4 31 Reserved
Format: MBZ

30:16 X Offset for U(Cb)
Project: All
Format: U15 Pixel Offset

This field specifies the horizontal offset in pixels from the Surface Base Address to the start (origin) of
the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only used for
PLANAR surface formats. This field must be set to zero.X Offset for U(Cb) in pixel (This field must be
zero for NV12 and IMC 1 and 3)

Programming Notes
For PLANAR_420 and PLANAR_422 surface formats, this field must be zero.

15 Reserved
Project: All
Format: MBZ

14:0 Y Offset for U(Cb)
Project: All
Format: U15 Pixel Row Offset

This field specifies the veritical offset in rows from the Surface Base Address to the start (origin) of the
U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only used for
PLANAR surface formats.

Programming Notes
For PLANAR_420 and PLANAR_422 surface formats, this field must be multiple of 16 pixels – i.e.
multiple MBs. For JPEG, it is block aligned

5 31:29 Reserved
Format: MBZ

28:16 X Offset for V(Cr)
Format: U13 Offset in Pixels

This field must be zero for NV12 and IMC 1 and 3
This field specifies the horizontal offset in pixels from the Surface Base Address to the start (origin) of
the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma disabled.

Programming Notes
For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of
pixels.

15:0 Y Offset for V(Cr)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 36

MFX_SURFACE_STATE
Format: U16 Row Offset in Pixels

This field specifies the veritical offset in rows from the Surface Base Address to the start (origin) of the
V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma disabled. This
field is ignored by all video codec, only used by JPEG.

Programming Notes
For PLANAR_420 surface formats, this field must be multiple of 16 pixels – i.e. multiple MBs. For
JPEG, it is block aligned

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 37

1.7.5 MFX_PIPE_BUF_ADDR_STATE Command

MFX_PIPE_BUF_ADDR_STATE

Source: VideoCS

Length Bias: 2

This state command provides the memory base addresses for all row stores, StreamOut buffer and reconstructed
picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores of the Bit Stream
Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level state command and is
common among all codec standards and for both encoder and decoder operating modes. However, some fields may
only applicable to a specific codec standard.All Pixel Surfaces (original, reference frame and reconstructed frame) in
the Encoder are programmed with the same surface state (NV12 and TileY format), except each has its own frame
buffer base address. In the tile format, there is no need to provide buffer offset for each slice; since from each MB
address, the hardware can calculated the corresponding memory location within the frame buffer directly.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

26:24 Common Opcode
Default Value: 0h MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

23:21 SubOpcode A
Default Value: 0h MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

20:16 SubOpcode B
Default Value: 2h MFX_PIPE_BUF_ADDR_STATE
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Project: All
Format: =n

Total Length
Fixed Length

Value Name Description
16h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:6 Pre Deblocking - Destination Address
Specifies the 4K byte aligned frame buffer address for outputting the non-filtered reconstructed YUV
picture (i.e. output of final adder in each codec standard, and prior to the deblocking filter unit).This field
is ignored if PreDeblockOutEnable is set to 0 (disable).

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 38

MFX_PIPE_BUF_ADDR_STATE
5:0 Reserved

Format: MBZ

2 31:6 Post Deblocking - Destination Address
Specifies the 4K byte aligned frame buffer address for outputting the post-loop filtered reconstructed
YUV picture (i.e. output of the deblocking filter unit)This field is ignored if PostDeblockOutEnable is set
to 0 (disable).

5:4 Post Deblocking – Arbitration Priority Control
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 Post Deblocking - Graphics Data Type (GFDT)
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 Post Deblocking - Cacheability Control
Format: U2 Enumerated type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT entry Use cacheability control bits from GTT entry
01b not LLC or MLC Data is not cached in LLC or MLC
10b in LLC but not MLC Data is cached in LLC but not MLC
11b both LLC and MLC Data is cached in both LLC and MLC

3 31:6 Original Uncompressed Picture - Source Address (CurSrcAddr)
Exists If: Encoding
Format: Address[31:6]
Specifies the 64 byte aligned frame buffer address for fetching YUV pixel data from the original
uncompressed input picture for encoding.

5:4 Original Uncompressed Picture – Arbitration Priority Control
Format: U2 Enyumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 Original Uncompressed Picture - Graphics Data Type (GFDT)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 39

MFX_PIPE_BUF_ADDR_STATE
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 Original Uncompressed Picture - Cacheability Control
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT entry use cacheability control bits from GTT entry
01b not in LLC or MLC data is not cached in LLC or MLC
10b in LLC but not MLC data is cached in LLC but not MLC
11b both LLC and MLC data is cached in both LLC and MLC

4 31:6 StreamOut Data Destination - Base Address (StreamOutAddr)
Format: StreamOutAddress[31:6] 64 byte aligned buffer

Specifies the address for outputting the per-MB indirect data to memory when StreamOutEnable is set
in the MFX_PIPE_MODE_SELECT command.
 For decoder : this field is used for transcoding purpose.
 For encoder : this field is used for dynamic repeat of frame in PAK for Rate Control. Also used for
feeding coding information back to the Host, Video Preprocessing Unit and ENC Unit.All data are
written in fixed formats, and therefore all record sizes are known in the hardware. Hardware can
calculate the offset into this base address for per-MB data.

5:4 StreamOut Data Destination – Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 StreamOut Data Destination - Graphics Data Type (GFDT)
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 StreamOut Data Destination - Cacheability Control
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 40

MFX_PIPE_BUF_ADDR_STATE
00b GTT entry use cacheability control bits from GTT entry
01b Not in LLC or MLC data is not cached in LLC or MLC
10b In LLC but not MLC data is cached in LLC but not MLC
11b Both LLC and MLC data is cached in both LLC and MLC

5 31:6 Intra Row Store Scratch Buffer - Base Address (IntraOSRowStoreAddr)
Format: GraphicsAddress[31:6]
This field provides the base address of the scratch buffer (read/write) used by the AVC IntraPrediction
unit to store MB information of the previous row for processing of each macroblock in the current row.
The Intra Row Store buffer must be 64-byte cacheline aligned.Hardware uses the horizontal address of
the current macroblock to address the Intra Row Store.This field is ignored in MPEG2 and VC1
mode.Max 256 cachelines for 4K pixels (1 cacheline for either MBAFF or non-MBAFF)

5:4 Intra/Overlap Smoothing Row Store Scratch Buffer – Arbitration Priority Control
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 Intra/Overlap Smoothing Row Store Scratch Buffer - Graphics Data Type (GFDT)
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 Intra/Overlap Smoothing Row Store Scratch Buffer - Cacheability Control
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT entry use cacheability control bits from GTT entry
01b Not in LLC or MLC data is not cached in LLC or MLC
10b In LLC but not MLC data is cached in LLC but not MLC
11b Both LLC and MLC data is cached in both LLC and MLC

6 31:6 Deblocking Filter Row Store Scratch Buffer - Base Address (DeblockRowStoreAddr
Format: GraphicsAddress[31:6]
Deblocking Filter Row Store is needed for

 VC1 Overlap-smoothing Filter

 This field provides the base address of the scratch buffer (read and write) used by the deblocking filter
unit to store MB information of the previous row for filtering of each macroblock in the current row. The
Deblocking Filter Row Store buffer must be 64-byte cacheline aligned.
 Hardware uses the horizontal address of the current macroblock to address the Deblocking Filter Row
Store. Max 6 cachelines for VC1 and MPEG2, and max 4 for AVC (for MBAFF, 2 for non-MBAFF).

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 41

MFX_PIPE_BUF_ADDR_STATE
5:4 Deblocking Filter Row Store Scratch Buffer – Arbitration Priority Control

Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

0h Highest priority
1h Second highest priority
1h Third highest priority
1h Lowest priority

2 Deblocking Filter Row Store Scratch Buffer - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 Deblocking Filter Row Store Scratch Buffer - Cacheability Control
Project: All
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT entry use cacheability control bits from GTT entry
01b Not in LLC or MLC data is not cached in LLC or MLC
10b LLC but not MLC data is cached in LLC but not MLC
11b both LLC and MLC data is cached in both LLC and MLC

7..22 31:6 Reference Picture (RefAddr[0-15]) - Addresses
Format: GraphicsAddress[31:6]
Specifies the 64 byte aligned reference frame buffer addresses for the motion compensation operation
in AVC/VC1/MPEG2. AVC can specify up to 16 YUV frame-based surfaces for both forward and
backward references, i.e. L0+L1 total = 16 max. Any entry can be assigned to L0 or L1 or both lists.But
VC1 and MPEG2, worst case, can use up to 2 YUV frame-based surfaces for both forward and
backward references:P-MB : RefAddr[0] – temporal closest previous field of a reference frame (can be
the current frame)RefAddr[1] – next temporal closest previous field of a reference frame (must be
different from the current frame)It is a variant (without the LongTermRefPic specification) of the
RefFrameList[16] defined in AVC DXVA Spec. RefAddr[0-15] is indexed by frame_storeID >>1. It is not
a packed list, i.e. invalid entries can scatter among the list. All invalid addresses must be set to a valid
address RefAddr[0] by the driver. The same applies to VC1 and MPEG2.

Programming Notes
AVC: Always specifies all 16 addresses even some of them are not needed as indicated by the max
num of active reference pictures. This is done for preventing data corruption (error, fault condition, etc.)
by having all the references being set to a legal location.

5:4 Reference Picture (RefAddr[0-15]) – Arbitration Priority Control
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 42

MFX_PIPE_BUF_ADDR_STATE
00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 Reference Picture (RefAddr[0-15]) - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.H/W only reads this bit from the very first RefAddr[0][bit 3:0], all other RefAddr[i][bit
3:0] are ignored by H/W and are assumed to have the same values as that of RefAddr[0].

1:0 Reference Picture (RefAddr[0-15]) - Cacheability Control
Project: All
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).H/W only reads
this bit from the very first RefAddr[0][bit 3:0], all other RefAddr[i][bit 3:0] are ignored by H/W and are
assumed to have the same values as that of RefAddr[0].

Value Name Description
00b GTT entry use cacheability control bits from GTT entry
01b not in LLC or MLC data is not cached in LLC or MLC
10b in LLC but not MLC data is cached in LLC but not MLC
11b both LLC and MLC data is cached in both LLC and MLC

23 31:6 Macroblock Status Buffer Base Address (MacroblockStatAddr)
Project: All
Format: MacroblockStatusAddress[31:6] 64 byte aligned buffer

Specifies the address for reading the per-MB indirect data from memory when MacroblockStatEnable is
set in the MFX_AVC_IMG_STATE Command.For decoder : this field is ignored by hardware.For
encoder: this field is used for dynamic repeat of frame in PAK for Rate Control. Also used for feeding
coding information back to the Host, Video Preprocessing Unit and ENC Unit.All data are written in
fixed formats, and therefore all record sizes are known in the hardware. Hardware can calculate the
offset into this base address for per-MB data.

5:4 Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 Graphics Data Type (GFDT
Project: All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 43

MFX_PIPE_BUF_ADDR_STATE
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 Cacheability Control
Project: All
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT use cacheability control bits from GTT entry
01b Not in LLC or MLC data is not cached in LLC or MLC
10b In LLC but not MLC data is cached in LLC but not MLC
11b both LLC and MLC data is cached in both LLC and MLC

24 31:1 Reserved

Format: MBZ

0 Reserved
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 44

1.7.6 MFX_IND_OBJ_BASE_ADDR_STATE Command

MFX_IND_OBJ_BASE_ADDR_STATE

Source: VideoCS

Length Bias: 2

This state command provides the memory base addresses for all row stores, StreamOut buffer and reconstructed
picture output buffers required by the MFD or MFC Engine (that are in addition to the row stores of the Bit Stream
Decoding/Encoding Unit (BSD/BSE) and the reference picture buffers). This is a picture level state command and is
common among all codec standards and for both encoder and decoder operating modes. However, some fields may
only applicable to a specific codec standard. All Pixel Surfaces (original, reference frame and reconstructed frame) in
the Encoder are programmed with the same surface state (NV12 and TileY format), except each has its own frame
buffer base address. In the tile format, there is no need to provide buffer offset for each slice; since from each MB
address, the hardware can calculated the corresponding memory location within the frame buffer directly.
The MFX_IND_OBJ_BASE_ADDR command sets the memory base address pointers for the corresponding Indirect
Object Data Start Addresses (Offsets) specified in each OBJECT commands. The characteristic of these indirect
object data is their variable size (per MB or per Slice). Hence, each OBJECT command must specify the indirect
object data offset from the base address to start fetching or writing object data. While the use of base address is
unconditional, the indirection can be effectively disabled by setting the base address to zero. For decoder, there are
only 1 read-only per-slice indirect object in the BSD_OBJECT Command, and2 read-only per-MB indirect objects in
the IT_OBJECT CommandFor decoder : the Video Command Streamer (VCS) will perform the memory access
bound check automatically using the corresponding MFC Indirect Object Access Upper Bound specification. If any
access is at or beyond the upper bound, zero value is returned. The request to memory is still being sent, but the
corresponding codec’s BSD unit will detect this condition and perform the zeroing return. If the Upper Bound is
turned off, the beyond bound request will return whatever on the bus (invalid data).For encoder, there are 1 read-
only per-MB indirect object in the PAK_OBJECT Command, and1 write-only per-slice indirect object in the PAK
Slice_State CommandFor encoder : whenever an out of bound address accessing request is generated, VMX will
detect such requests and snap the address to the corresponding [indirect object base address + indirect data start
address]. VMX will return all 0s as the data to the requestor. NotationDefinitionPhysicalAddress[n:m]Corresponding
bits of a physical graphics memory byte address (not mapped by a GTT)GraphicsAddress[n:m]Corresponding bits of
an absolute, virtual graphics memory byte address (mapped by a GTT).

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

26:24 Common Opcode
Default Value: 0h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

23:21 Sub OpcodeA
Default Value: 0h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

20:16 SubOpcodeB
Default Value: 3h MFX_IND_OBJ_BASE_ADDR_STATE
Format: OpCode

15:12 Reserved
Project: All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 45

MFX_IND_OBJ_BASE_ADDR_STATE
Format: MBZ

11:0 DWord Length
Default Value: 0009h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:12 MFX Indirect Bitstream Object - Base Address (Decoder and Stitch Modes)
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only indirect data object pointed in the
MFD_XXX_BSD_OBJECT command for fetching (reading) the compressed Slice Data.This field is only
valid in MPEG2, AVC and VC1 decoder VLD mode.

11:6 Reserved
Project: All
Format: MBZ

5:4 MFX Indirect BSD Object – Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 MFX Indirect Bitstream Object - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 MFX Indirect Bitstream Object - Cacheability Control
Project: All
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT entry use cacheability control bits from GTT entry
01b not in LLC or MLC data is not cached in LLC or MLC
10b in LLC but not MLC data is cached in LLC but not MLC
11b both LLC and MLC data is cached in both LLC and MLC

2 31:12 MFX Indirect Bitstream Object - Access Upper Bound (Decoder and Stitch Modes)
Project: All
Format: GraphicsAddress[31:12]

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 46

MFX_IND_OBJ_BASE_ADDR_STATE
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by the
indirect data object in the MFD_XXX_BSD_OBJECT command for the compressed Slice Data. Indirect
data accessed at this address and beyond will return as 0 by the hardware. Setting this field to 0 will
cause this range check to be ignored.If non-zero, this address must be greater than the MFX Indirect
Bitstream ObjectBase Address state.Hardware ignores this field if indirect data is not present, i.e. the
Indirect Data Length field of the MFD_XXX_BSD_OBJECT command is set to 0.This field is only valid
in MPEG2, AVC and VC1 decoder VLD mode.

11:0 Reserved
Project: All
Format: MBZ

3 31:12 MFX Indirect MV Object - Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only indirect data object pointed in the
encoder MFC_AVC_PAK_OBJECT command or the decoder MFD_IT_OBJECT command for fetching
the per-MB MV data.This field is only valid in AVC encoder mode or in AVC decoder IT mode

11:6 Reserved
Project: All
Format: MBZ

5:4 MFX Indirect MV Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 MFX Indirect MV Object - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 MFX Indirect MV Object - Cacheability Control
Project: All
Format: U2
This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b From GTT entry use cacheability control bits from GTT entry
01b Not cached in LLC or MLC data is not cached in LLC or MLC
10b In LLC but not MLC data is cached in LLC but not MLC
11b Both LLC and MLC data is cached in both LLC and MLC

4 31:12 MFX Indirect MV Object Access Upper Bound
Project: All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 47

MFX_IND_OBJ_BASE_ADDR_STATE
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by the
indirect data object in the MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command for the per-MB MV
data. Indirect data accessed at this address and beyond will return as 0 by the hardware. Setting this
field to 0 will cause this range check to be ignored.If non-zero, this address must be greater than the
MFX Indirect MV Object Base Address state.Hardware ignores this field if indirect data is not present,
i.e. the Indirect Data Length field of the MFC_AVC_PAK_OBJECT / MFD_IT_OBJECT command is set
to 0.This field is only valid in AVC encoder mode or in AVC decoder IT mode.

11:0 Reserved
Project: All
Format: MBZ

5 31:12 MFD Indirect IT-COEFF Object - Base Address (Decoder Only)
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only indirect data object pointed in the
MFD_IT_OBJECT command for fetching (reading) the per-MB non-scaled coefficient data (all inverse
scaling and quantization are done in hardware).This field is only valid in MPEG2, AVC and VC1
decoder IT mode.

11:6 Reserved
Project: All
Format: MBZ

5:4 MFD Indirect IT-COEFF Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 MFD Indirect IT-COEFF Object - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 MFD Indirect IT-COEFF Object - Cacheability Control
Project: All
Format: U2 Enumerated type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b From GTT entry use cacheability control bits from GTT entry
01b Not in LLC or MLC data is not cached in LLC or MLC

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 48

MFX_IND_OBJ_BASE_ADDR_STATE
10b In LLC but not MLC data is cached in LLC but not MLC
11b Both LLC and MLC data is cached in both LLC and MLC

6 31:12 MFD Indirect IT-COEFF Object - Access Upper Bound (Decoder Only)
Project: All
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by the
indirect data object in the MFD_IT_OBJECT command for the per-MB non-scaled coefficient data.
Indirect data accessed at this address and beyond will return as 0 by the hardware. Setting this field to
0 will cause this range check to be ignored.If non-zero, this address must be greater than the MFD
Indirect IT-COEFF Object Base Address state.Hardware ignores this field if indirect data is not present,
i.e. the Indirect COEFF Data Length field of the MFD_IT_OBJECT command is set to 0.This field is
only valid in MPEG2, AVC and VC1 decoder IT mode.

11:0 Reserved
Project: All
Format: MBZ

7 31:12 MFD Indirect IT-DBLK Object - Base Address (Decoder Only)
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the read-only indirect data object pointed in the
MFD_IT_OBJECT command for fetching (reading) the per-MB Deblocking filter control data.This field is
only valid in AVC decoder IT mode.

11:6 Reserved
Project: All
Format: MBZ

5:4 MFD Indirect IT-DBLK Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 MFD Indirect IT-DBLK Object - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

1:0 MFD Indirect IT-DBLK Object - Cacheability Control
Project: All
Format: U2 Enumerated Type

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 49

MFX_IND_OBJ_BASE_ADDR_STATE
This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description Project

00b From GTT entry use cacheability control bits from GTT entry All
01b Not cached in LLC or MLC data is not cached in LLC or MLC All
10b In LLC but not MLC data is cached in LLC but not MLC All
11b Both LLC and MLC data is cached in both LLC and MLC All

8 31:12 MFD Indirect IT-DBLK Object Access Upper Bound (Decoder Only)
Project: All
Format: GraphicsAddress[31:12]
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by the
indirect data object in the MFD_IT_OBJECT command for the per-MB Deblocking filter control data.
Indirect data accessed at this address and beyond will return as 0 by the hardware. Setting this field to
0 will cause this range check to be ignored.If non-zero, this address must be greater than the MFD
Indirect IT-DBLK Object Base Address state.Hardware ignores this field if indirect data is not present,
i.e. the Indirect Deblocking Control Data Length field of the MFD_IT_OBJECT command is set to 0.This
field is only valid in AVC decoder IT mode.

11:0 Reserved
Project: All
Format: MBZ

9 31:12 MFC Indirect PAK-BSE Object - Base Address (Encoder Only)
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned memory base address for the write-only indirect data object pointed in
the PAK_SLICE_STATE command for writing out the compressed bitstream.This field is only valid in
AVC encoder mode.

11:6 Reserved
Project: All
Format: MBZ

5:4 MFC Indirect PAK-BSE Object - Arbitration Priority Control
Project: All
Format: U2 Enumerated Type

This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.
Value Name

00b Highest priority
01b Second highest priority
10b Third highest priority
11b Lowest priority

2 MFC Indirect PAK-BSE Object - Graphics Data Type (GFDT)
Project: All
Format: U1
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 50

MFX_IND_OBJ_BASE_ADDR_STATE
1:0 MFC Indirect PAK-BSE Object - Cacheability Control

Project: All
Format: U2 Enumerated Type

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description

00b GTT entry use cacheability control bits from GTT entry
01b Not in LLC or MLC data is not cached in LLC or MLC
10b In LLC but not MLC data is cached in LLC but not MLC
11b Both LLC and MLC data is cached in both LLC and MLC

10 31:12 MFC Indirect PAK-BSE Object - Access Upper Bound (Encoder Only)
Project: All
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by the
indirect data object in the PAK_SLICE_STATE command for the per-slice output bitstream. Indirect
data accessed at this address and beyond will be blocked by the hardware and ignored. Setting this
field to 0 will cause this range check to be ignoredIf non-zero, this address must be greater than the
MFC Indirect PAK-BSE Object Base Address state.This field is only valid in AVC encoder mode.

11:0 Reserved
Project: All
Format: MBZ

1.7.7 MFX_PAK_INSERT_OBJECT

MFX_PAK_INSERT_OBJECT

Source: VideoCS

Length Bias: 2

Description Project
The MFX_PAK_INSERT_OBJECT command is the first primitive command for the AVC and MPEG2
Encoding Pipeline.

This command is issued to setup the control and parameters of inserting a chunk of compressed/encoded
bits into the current bitstream output buffer starting at the specified bit locationto perform the actual insertion
by transferring the command inline data to the output buffer max, 32 bits at a time.

It is a variable length command as the data to be inserted are presented as inline data of this command. It
is a multiple of 32-bit (1 DW), as the data bus to the bitstream buffer is 32-bit wide.

Multiple insertion commands can be issued back to back in a series. It is host software’s responsibility to
make sure their corresponding data will properly stitch together to form a valid H.264 bitstream.

Internally, MFX hardware will keep track of the very last two bytes’ (the very last byte can be a partial byte)
values of the previous insertion. It is required that the next Insertion Object Command or the next PAK
Object Command to perform the start code emulation sequence check and prevention 0x03 byte insertion
with this end condition of the previous insertion.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 51

MFX_PAK_INSERT_OBJECT

Hardware will keep track of an output bitstream buffer current byte position and the associated next bit
insertion position index. Data to be inserted can be a valid H.264 NAL units or a partial NAL unit. Certain
NAL unit has a minimum byte size requirement. As such the hardware will optionally (enabled by STATE
Command) determines the number of CABAC_ZERO_WORD to be inserted to the end of the current NAL,
based on the minimum byte size of a NAL and the actual bin count of the encoded Slice. Since prior to the
CABAC_ZERO_WORD insertion, the RBSP or EBSP is already byte-aligned, so each
CABAC_ZERO_WORD insertion is actually a 3-byte sequence 0x00 00 03. The inline data may have
already been processed for start code emulation byte insertion, except the possibility of the last 2 bytes plus
the very last partial byte (if any). Hence, when hardware performing the concatenation of multiple
consecutive insertion commands, or concatenation of an insertion command and a PAK object command, it
must check and perform the necessary start code emulation byte insert at the junction.The inline data is
required to be byte aligned on the left (first transmitted bit order) and may or may not be byte aligned on the
right (last transmitted bits).

The command will specify the bit offset of the last valid DW.Each insertion state command defines a chunk
of bits (compressed data) to be inserted at a specific location of the output compressed bitstream in the
output buffer.Depend on CABAC or CAVLC encoding mode (from Slice State), PAK Object Command is
always ended in byte aligned output bitstream except for CABAC header insertion which is bit aligned. In
the aligned cases, PAK will perform 0 filling in CAVLC mode, and 1 filling in CABAC mode.

Insertion data can include:any encoded syntax elements bit data before the encoded Slice Data (PAK
Object Command) of the current SliceSPS NALPPS NALSEI NALOther Non-Slice
NALLeading_Zero_8_bits (as many bytes as there is)Start Code PrefixNAL Header ByteSlice HeaderAny
encoded syntax elements bit data after the encoded Slice Data (PAK Object Command) of the current Slice
and prior to the next encoded Slice Data of the next Slice or prior to the end of the bistream, whichever
comes firstCabac_Zero_Word or Trailing_Zero_8bits (as many bytes as there is).

Anything listed above before a Slice DataContext switch interrupt is not supported by this command.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_PAK_INSERT_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 0h MFX_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 2h
Format: OpCode

20:16 SubOpcode B
Default Value: 8h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h Excludes DWord (0,1) = Variable Length in DW
Project: All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 52

MFX_PAK_INSERT_OBJECT
Format: =n Total Length - 2

1 31:18 Reserved
Format: MBZ

17:16 DataByteOffset – SrcDataStartingByteOffset[1:0]
Source Data Starting Byte Position within the very first inline DW.

15:14 Reserved
Format: MBZ

13:8 DataBitsInLastDW – SrCDataEndingBitInclusion[5:0]
Source Data to be included in the very last inline DW. Follows the MSBit is the upper bit of each byte
within the DW. The lower byte is actually processed first.For example, SrCDataEndingBitInclusion = 9,
bit 7:0 and bit 15 are included as valid header data.

Value Name
[1,32]

7:4 SkipEmulByteCnt – Skip Emulation Byte Count
Skip emulation check for number of starting bytesIt can be programmed from 0 to 15 bytes.For
example, to skip the start code that has already prefixed in the bitstream.

3 EmulationFlag – EmulationByteBitsInsertEnable
Value Name
1 instruct the hardware to perform Start Code Prefix (0x 00 00 01/02/03/00) Search and

Prevention Byte (0x 03) insertion on the insertion data of this command. It is required that
hardware will handle a start code prefix crossing the boundary between

2 insertion commands, or an insertion command followed by a PAK Object command.

2 LastHeaderFlag – LastSrcHeaderDataInsertCommandFlag
To process a series of consecutive insertion commands, this flag (=1) indicates the current command
is the last ‘header’ insertion in the series.In CABAC, hardware must perform the “1” insert for byte align
for Slice Header before Slice Data comes in in the next PAK-OBJECT command.In CAVLC, hardware
ignores this bit

1 EndOfSliceFlag – LastDstDataInsertCommandFlag
No more insertion command and no more PAK-OBJECT command follows.Flush data out to memory

0 BitstreamStartReset – ResetBitStreamStartingPos
Value Name
1 Reset the bitstream buffer insertion position to the bitstream buffer starting position.
0 Insert the current command inline data starting at the current bitstream buffer insertion position

2..n 31:0 Insert Data PayLoad
Actual Data to be inserted to the output bitstream buffer.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 53

1.7.8 MFX_STITCH_OBJECT

MFX_STITCH_OBJECT
Project: All

Source: VideoCS

Length Bias: 2

The MFC_STITCH_OBJECT command is used when stitch-enabled is set to 1, while CodecSel and StandardSel are
set to ENCODE and AVC, respectively.This command is used, for example, to stitch multiple bitstreams to form a
transport stream. . It is a variable length command as the data to be inserted are presented as either inline data
and/or indirect data of this command. Multiple insertion commands can be issued back to back in a series. It is host
software’s responsibility to make sure their corresponding data will properly stitch together to form a valid output.
Hardware keeps track of an output bitstream buffer current byte position and the associated next bit insertion position
index. Context switch interrupt is not supported by this command. In order to support interrupt, it is software’s
responsibility to set up ARB_ON/OFF commands at the proper position to allow interrupt.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFC_STITCH_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 0h MFX_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 2h
Format: OpCode

20:16 SubOpcode B
Default Value: Ah
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h Excludes DWord (0,1) = Variable Length in DW (>= 3)
Format: =n Total Length - 2

If it is 3, it indicates the absent of inline data.

1 31:18 Reserved
Format: MBZ

17:16 Source Data Starting Byte Offset
Source Data Starting Byte Position within the very first inline DW.

15:14 Reserved
Format: MBZ

13:8 Source Data Ending Bit Inclusion
Source Data to be included in the very last inline DW. Follows the MSBit is the upper bit of each byte

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 54

MFX_STITCH_OBJECT
within the DW. The lower byte is actually processed first.For example, SrCDataEndingBitInclusion =9,
bit 7:0 and bit 15 are included as valid header data.

Value Name
[1,32]

2 Last Source Header Data Insert Command Flag
To process a series of consecutive insertion commands, this flag (=1) indicates the current command
is the last ‘header’ insertion in the series.In CABAC, hardware must perform the “1” insert for byte align
for Slice Header before Slice Data comes in in the next PAK-OBJECT command.In CAVLC, hardware
ignores this bit.

1 Last Destination Data Insert Command Flag
THIS FIELD MUST BE THE SAME AS Last Source Header Data Insert Command Flag
No more insertion command and no more PAK-OBJECT command follows.Flush data out to memory

2 31:19 Reserved
Project: All
Format: MBZ

18:0 Indirect Data Length

Format: U19
This field provides the length in bytes of the indirect data. A value zero indicates that indirect data
fetching is disabled – subsequently, the Indirect Data Start Address field is ignored. This field must
have the same alignment as the Indirect Object Data Start Address.

3 31:0 Indirect Data Start Address
Format: MfxIndirectBitstreamObjectAddress[31:0]
This field specifies the Graphics Memory starting address of the data to be loaded into the kernel for
processing. This pointer is relative to the MFX Indirect Bitstream Object Base Address.
 Hardware ignores this field if indirect data is not present.

Value Name
[0,FFFFFFFFh]

4..n 31:0 Insert Data PayLoad
Inline data to be inserted to the output bitstream buffer

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 55

1.7.9 MFX_QM_STATE Command

MFX_QM_STATE

Source: VideoCS

Length Bias: 2

This is a common state command for AVC encoder modes. For encoder, it represents both the forward QM matrices
as well as the decoding QM matrices.This is a Frame-level state. Only Scaling Lists specified by an application are
being sent to the hardware. The driver is responsible for determining the final set of scaling lists to be used for
decoding the current slice, based on the AVC Spec Table 7-2 (Fall-Back Rules A and B).In MFX AVC PAK mode,
PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are sent as in MFD in raster scan
order. But the Forward Q scaling lists are sent in column-wise raster order (column-by-column) to simplify the H/W.
Driver will perform all the scan order conversion for both ForwardQ and IQ.
DWord Bit Description

0 31:29 Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 Media Command Opcode
Default Value: 0h MFX_COMMON_STATE
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 8h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 20h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:2 Reserved
Format: MBZ

1:0 AVC or MPEG2 or JPEG
For AVC QM Type: This field specifies which Quantizer Matrix is loaded.
For MPEG2 QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name Exists If
0 AVC_4x4_Intra_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-

4DWs)
AVC- Decoder Only

1 AVC_4x4_Inter_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved- AVC- Decoder Only

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 56

MFX_QM_STATE
4DWs)

2 AVC_8x8_Intra_MATRIX AVC- Decoder Only
3 AVC_8x8_Inter_MATRIX AVC- Decoder Only

0 MPEG_INTRA_QUANTIZER_MATRIX MPEG2- Decoder

Only
1 MPEG_NON_INTRA_QUANTIZER_MATRIX MPEG2- Decoder

Only
2-3 Reserved MPEG2- Decoder

Only

Programming Notes
For JPEG encoder, each quantization element presents 16-bit 1/QM[i][j].

2..33 31:0 Forward Quantizer Matrix
Project: All
Format: U32
The format of a Quantizer Matrix is an 8x8 matrix in raster order. Each element is an unsigned
byte.

Bits 31:24 23:16 15:8 7:0
Dword 1 QuantMatrix[0][3] QuantMatrix[0][2] QuantMatrix[0][1] QuantMatrix[0][0]
Dword 2 QuantMatrix[0][7] QuantMatrix[0][6] QuantMatrix[0][5] QuantMatrix[0][4]
Dword 3 QuantMatrix[1][3] QuantMatrix[1][2] QuantMatrix[1][1] QuantMatrix[1][0]

… … … … …
Dword 16 QuantMatrix[7][7] QuantMatrix[7][6] QuantMatrix[7][5] QuantMatrix[7][4]

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 57

1.7.10 MFX_FQM_STATE Command

MFX_QM_STATE

Source: VideoCS

Length Bias: 2

This is a common state command for AVC encoder modes. For encoder, it represents both the forward QM matrices
as well as the decoding QM matrices.This is a Frame-level state. Only Scaling Lists specified by an application are
being sent to the hardware. The driver is responsible for determining the final set of scaling lists to be used for
decoding the current slice, based on the AVC Spec Table 7-2 (Fall-Back Rules A and B).In MFX AVC PAK mode,
PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are sent as in MFD in raster scan
order. But the Forward Q scaling lists are sent in column-wise raster order (column-by-column) to simplify the H/W.
Driver will perform all the scan order conversion for both ForwardQ and IQ.
DWord Bit Description

0 31:29 Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 Media Command Opcode
Default Value: 0h MFX_COMMON_STATE
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 8h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 20h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:2 Reserved
Format: MBZ

1:0 AVC or MPEG2 or JPEG
For AVC QM Type: This field specifies which Quantizer Matrix is loaded.
For MPEG2 QM Type: This field specifies which Quantizer Matrix is loaded.

Value Name Exists If
0 AVC_4x4_Intra_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-

4DWs)
AVC- Decoder Only

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 58

MFX_QM_STATE
1 AVC_4x4_Inter_MATRIX, (Y-4DWs, Cb-4DWs, Cr-4DWs, reserved-

4DWs)
AVC- Decoder Only

2 AVC_8x8_Intra_MATRIX AVC- Decoder Only
3 AVC_8x8_Inter_MATRIX AVC- Decoder Only

0 MPEG_INTRA_QUANTIZER_MATRIX MPEG2- Decoder

Only
1 MPEG_NON_INTRA_QUANTIZER_MATRIX MPEG2- Decoder

Only
2-3 Reserved MPEG2- Decoder

Only

Programming Notes
For JPEG encoder, each quantization element presents 16-bit 1/QM[i][j].

2..33 31:0 Forward Quantizer Matrix
Project: All
Format: U32
The format of a Quantizer Matrix is an 8x8 matrix in raster order. Each element is an unsigned
byte.

This is a frame-level state. Reciprocal Scaling Lists are always sent from the driver regardless whether
they are specified by an application or the default/flat lists are being used. This is done to save the ROM
(to store the default matrices) inside the PAK Subsystem. Hence, the driver is responsible for determining
the final set of scaling lists to be used for encoding the current slice, based on the AVC Spec (Fall-Back
Rules A and B). For encoding, there is no need to send the qm_list_flags[i], i=0 to7 and qm_present_flag
to the PAK, since Scaling Lists syntax elements are encoded above Slice Data Layer.

FQM Reciprocal Scaling Lists elements are 16-bit each, conceptually equal to 1/ScaleValue. QM matrix
elements are 8-bit each, equal to ScaleValue. However, in AVC spec., the Reciprocal Scaling Lists
elements are not exactly equal to one-over of the corresponding Scaling Lists elements. The numbers are
adjusted to simplify hardware implementation.

For all the description below, a scaling list set contains 6 4x4 scaling lists (or forward scaling lists) and 2
8x8 scaling lists (or forward scaling lists).

In MFX PAK mode, PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are
sent as in MFD in raster scan order as shown in MFX_AVC_QM_STATE. But the Forward Q scaling lists
are sent in transport form, i.e. column-wise raster order (column-by-column) to simplify the H/W. Driver
will perform all the scan order conversion for both ForwardQ and IQ.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/18/2012 59

Precisely, if the reciprocal forward scaling matrix is F[4][4], then the 16 word of the matrix will be set as
the following:

 bits 0-15 bits 16-31
DW0 F[0][0] F[1][0]
DW1 F[2][0] F[3][0]
DW2 F[0][1] F[1][1]
DW3 F[2][1] F[3][1]
DW4 F[0][2] F[1][2]
DW5 F[2][2] F[3][2]
DW6 F[0][3] F[1][3]
DW7 F[2][3] F[3][3]

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 60

2. AVC (H.264)
2.1 AVC Common Commands
The following commands are common for AVC decode and AVC encode.

2.1.1 MFX_AVC_IMG_STATE Command

MFX_AVC_IMG_STATE

Source: VideoCS

Length Bias: 2

This must be the very first command to issue after the surface state, the pipe select and base address setting
commands. This command supports both Long and Short VLD and IT DXVA2 AVC Decoding Interface.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_AVC_IMG_STATE
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 0h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default
Value:

0h Excludes DWord (0,1)

Project: All
Format: =n 00Eh, used for normal decode and encode mode000h, a special case to provide

a dummy image state for stitch mode operation. In this case, fields in DW1 which is
part of the dummy image state command are ignored by hardware.

1 31:16 Reserved
Project: All
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 61

MFX_AVC_IMG_STATE
15:0 Frame Size

Project: All
Format: U16-1 in MB unit

The value for FrameSizeInMBs must match the product of FrameWidthInMBs and
FrameHeightInMBs.Max. Screen resolution is therefore limited to 256 x 256 in MB unit. This
parameter is specified for Intel interface only, not present in the DXVA.

Value Name Description
[0,16383] representing Number of MBs [1,16384]

2 31:24 Reserved
Project: All
Format: MBZ
(bit[31:24] must be zero to match the DXVA 16-bit definition for FrameHeightInMBsMinus1)

23:16 Frame Height
Project: All
Format: U8-1 in MB unit

It is set to the value of (FrameHeightInMBsMinus1+ 1). Since the max value for
FrameHeightInMBs is 255, the max allowed value for FrameHeightInMBsMinus1 is only 254.
The min value for FrameHeightInMBs is 1.Although the max. value that can be specified for
FrameHeightInMBs is 255 (in the current implementation), FrameWidthInMBs *
FrameHeightInMBs must not exceed the max value of FrameSizeInMBs[14:0].e.g. for
1920x1080, FrameHeightInMBs[7:0] is equal to 68 (1080 divided by 16, and rounded up, i.e.
effectively specified as 1088 instead).It is derived from FrameHeightInMbs = (2 –
frame_mbs_only_flag) * PicHeightInMapUnits and PicHeightInMbs = FrameHeightInMbs / (1
+ field_pic_flag) internally done. For MBAFF, PicHeightInMapUnits is in MB pair unit, so the
bitstream sends only half frame height.

Value Name Description
[0,255] representing height [1,256]

15:8 Reserved
Project: All
Format: MBZ
(bit[15:8] must be zero to match the DXVA 16-bit definition for FrameWidthInMBsMinus1)

7:0 Frame Width
Project: All
Format: U8-1 in MB unit

It is set to the value of (FrameWidthInMBsMinus1+ 1). Since the max value for
FrameWidthInMBs is 255, the max allowed value for FrameWidthInMBsMinus1 is only 254.
The min value for FrameWidthInMBs is 1.Although the max. value that can be specified for
FrameWidthInMBs is 255 (in the current implementation), FrameWidthInMBs *
FrameWidthInMBs must not exceed the max value of FrameSizeInMBs[14:0].e.g. for
1920x1080, FrameHeightInMBs[7:0] is equal to 68 (1080 divided by 16, and rounded up, i.e.
effectively specified as 1088 instead).It is derived from FrameWidthInMbs = (2 –
frame_mbs_only_flag) * PicWidthInMapUnits and PicWidthInMbs = FrameWidthInMbs / (1 +
field_pic_flag) internally done. For MBAFF, PicWidthInMapUnits is in MB pair unit, so the

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 62

MFX_AVC_IMG_STATE
bitstream sends only half frame width.

Value Name Description
[0,255] representing width [1,256]

3 31:29 Reserved
Project: All
Format: MBZ
(bit[31:29] must be zero to match the DXVA2 8-bit definition for InitQpChroma[1])

28:24 Second Chroma QP Offset
Project: All
Signed integer value. It should be in the range of -12 to +12 (according to AVC spec).It
specifies the offset for determining QP Cr from QP Y. It is set to the upper 5 bits of the value
of the syntax element (Chroma_qp_offset[9:0]) read from the current active
PPS.Chroma_qp_offset [4:0] – chroma_qp_offset_bits (from the current active
PPS)Chroma_qp_offset [9:5] – second_chroma_qp_offset_bits

23:21 Reserved
Project: All
Format: MBZ
(bit[23:21] must be zero to match the DXVA2 8-bit definition for InitQpChroma[1])

20:16 First Chroma QP Offset
Project: All
Signed integer value. It should be in the range of -12 to +12 (according to AVC spec).It
specifies the offset for determining QP Cb from QP Y. It is set to the lower 5 bits of the value
of the syntax element (Chroma_qp_offset[9:0]) read from the current active
PPS.Chroma_qp_offset [4:0] – chroma_qp_offset_bits (from the current active
PPS)Chroma_qp_offset [9:5] – second_chroma_qp_offset_bits

15:13 Reserved
Project: All
Format: MBZ

12 Weighted_Pred_Flag
Project: All
(This field is defined differently from Gen6, Gen7 follows strictly DXVA2 AVC interface.)
Value Name
0 specifies that weighted prediction is not used for P and SP slices [Default]
1 specifies that weighted prediction is used for P and SP slices

Programming Notes
This field must set to '0' for B and I pictures.

11:10 Weighted_BiPred_Idc
Project: All
(This field follows strictly DXVA2 AVC interface.)
Value Name
0 Specifies that the default weighted prediction is used for B slices [Default]
1 Specifies that explicit weighted prediction is used for B slices
2 Specifies that implicit weighted prediction is used for B slices.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 63

MFX_AVC_IMG_STATE
3 Illegal value

Programming Notes
This field must set to 0 for P and I pictures.

9:8 ImgStruct – Image Structure, img_structure[1:0]
Project: All
The current encoding picture structure can only takes on 3 possible values

Value Name
00b Frame Picture
01b Top Field Picture
11b Bottom Field Picture
10b Invalid, not allowed.

Programming Notes
img_structure[0] can be used as a flag to distinguish between frame and field structure. It
must be consistent with the field_pic_flag setting in the Slice Header.This parameter is
specified for Intel interface only, not present in the DXVA as a separate state (instead the
img_structure[1] is embedded inside the DXVA picture definition).

7:0 Reserved
Project: All
Format: MBZ

4 31:16 MinFrameWSize
Default Value: 0h
Project: All
Format: U16

Minimum Frame Size [15:0] (in Word, 16-bit)(Encoder Only)Mininum Frame Size is
specified to compensate for intel Rate Control Currently zero fill (no need to perform
emulation byte insertion) is done only to the end of the CABAC_ZERO_WORD insertion (if
any) at the last slice of a picture. Intel encoder parameter, not part of DXVA. The caller
should always make sure that the value, represented by Mininum Frame Size, is always less
than maximum frame size FrameBitRateMax (DWORD 10 bits 29:16).This field is reserved
in Decode mode.

The programmable range 0…2^18-1

When MinFrameWSizeUnits is 00.

Programmable range is 0…2^20-1 when MinFrameWSizeUnits is 01.

Programmable range is 0…2^26-1 when MinFrameWSizeUnits is 10.

Programmable range is 0…2^32-1 when MinFrameWSizeUnits is 11.

15 MbStatEnabled
Project: All
Enable reading in MB status buffer (a.k.a. encoding stream-out buffer) Note: For multi-pass
encoder, all passes except the first one need to set this value to 1. By setting the first pass to
0, it does save some memory bandwidth.

Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 64

MFX_AVC_IMG_STATE
0 Disable Disable Reading of Macroblock Status Buffer All
1 Enable Enable Reading of Macroblock Status Buffer All

14 LoadSlicePointerFlag
Project: All
LoadBitStreamPointerPerSlice (Encoder-only)To support multiple slice picture and additional
header/data insertion before and after an encoded slice.When this field is set to 0, bitstream
pointer is only loaded once for the first slice of a frame. For subsequent slices in the frame,
bitstream data are stitched together to form a single output data stream.When this field is set
to 1, bitstream pointer is loaded for each slice of a frame. Basically bitstream data for different
slices of a frame will be written to different memory locations.
Value Name Description Project
0 Disable Load BitStream Pointer only once for the first slice of a frame All
1 Enable Load/reload BitStream Pointer only once for the each slice, reload the

start location of the bitstream buffer from the Indirect PAK-BSE Object
Data Start Address field

All

12 MvUnpackedFlag
Project: All
MVUnPackedEnable (Encoder Only)This field is reserved in Decode mode.
Value Name Description Project

0 use packed MV format (compliant to DXVA) Desc All
1 use unpacked 8MV/32MV format only Desc All

11:10 ChromaFormatIdc
Project: All
Chroma Format IDC, ChromaFormatIdc[1:0]It specifies the sampling of chroma component
(Cb, Cr) in the current picture as follows :

Value Name Description Project
00b monochrome picture Desc All
01b 4:2:0 picture Desc All
10b 4:2:2 picture (not supported)
11b 4:4:4 picture (not supported)

Programming Notes
It is set to the value of the syntax element read from the current active SPS.The
corresponding Monochrome Flag (monochrome_flag) can be derived from this field.

9 Reserved
Project: All
Format: MBZ

8 MbMvFormatFlag
Project: All
Use MB level MvFormat flag (Encoder Only)(This bit must be set to zero in IVB:GT2:A0)
Value Name Description Project
0 HW PAK ignore MvFormat

in the MB data.
When bit 12 == 0, all MBs use packed MV
formatWhen bit 12 == 1, each MB data must use
unpacked MV format, 8MV when there is no minor
MV involved, and 32MV if there are some minor
MVs.

All

1 (not for [SNB], [IVB] only)
HW PAK will follow

 All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 65

MFX_AVC_IMG_STATE
MvFormat value set within
each MB data.

Programming Notes
They must take one of the two values: the 8MV unpacked format (MvFormat =101b), and the
32MV unpacked format (MvFormat =110b).This bit can be set only when MvUnpackedFlag
(bit 12 of this register) is set otherwise system could hang.

7 EntropyCodingFlag
Project: All
Entropy Coding Flag, entropy_coding_flag

Value Name Description Project
0 CAVLC bit-serial encoding mode Desc All
1 CABAC bit-serial encoding mode. Desc All

Programming Notes
It specifies one of the two possible bit stream encoding modes in the AVC. It is set to the
value of the syntax element read from the current active PPS.

6 ImgDisposableFlag
Project: All
Current Img Disposable Flag or Non-Reference Picture Flag
Value Name Description Project
0 the current decoding picture may be used as a reference picture

for others
Desc All

1 the current decoding picture is not used as a reference picture
(e.g. a B-picture cannot be a reference picture for any subsequent
decoding)

Desc All

Programming Notes
It is derived from ImgDisposableFlag = (nal_ref_idc == 0). nal_ref_idc is a syntax element
from a NAL unit. When this flag is set, no reference picture and DMV are written out.This field
is only valid for VLD decoding mode.

5 ConstrainedIPredFlag
Project: All
Constrained Intra Prediction Flag, constrained_ipred_flagIt is set to the value of the syntax
element in the current active PPS.
Value Name Description Project
0 allows both intra and inter neighboring MB to be used in the intra-

prediction encoding of the current MB.
Desc All

1 allows only to use neighboring Intra MBs in the intra-prediction
encoding of the current MB. If the neighbor is an inter MB, it is
considered as not available.

Desc All

4 Direct8x8InfFlag
Project: All
Direct 8x8 Inference Flag, direct_8x8_inference_flagIt is set to the value of the syntax
element in the current active SPS.It specifies the derivation process for luma motion vectors
in the Direct MV coding modes (B_Skip, B_Direct_16x16 and B_Direct_8x8). When
frame_mbs_only_flag is equal to 0, direct_8x8_inference_flag shall be equal to 1.It must be

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 66

MFX_AVC_IMG_STATE
consistent with the frame_mbs_only_flag and transform_8x8_mode_flag settings.
Value Name Description Project
0 allows subpartitioning to go below 8x8 block size (i.e. 4x4, 8x4 or

4x8)
Desc All

1 allows processing only at 8x8 block size. MB Info is stored for 8x8
block size.

Desc All

3 Transform8x8Flag
Project: All
8x8 IDCT Transform Mode Flag, trans8x8_mode_flagSpecifies 8x8 IDCT transform may be
used in this pictureIt is set to the value of the syntax element in the current active PPS.
Value Name Description Project
0 no 8x8 IDCT Transform, only 4x4 IDCT transform blocks are

present
Desc All

1 8x8 Transform is allowed Desc All

2 FrameMbOnlyFlag
Project: All
Frame MB only flag, frame_mbs_only_flagIt is set to the value of the syntax element in the
current active SPS.
Value Name Description Project
0 not true ; effectively enables the possibility of MBAFF mode. Desc All
1 true, only frame MBs can occur in this sequence, hence disallows

the MBAFF mode and field picture.
Desc All

1 MbaffFlameFlag
Project: All
MBAFF mode is active, mbaff_frame_flag.It is derived from MbaffFrameFlag =
(mb_adaptive_frame_field_flag && ! field_pic_flag). mb_adaptive_frame_field_flag is a
syntax element in the current active SPS and field_pic_flag is a syntax element in the current
Slice Header. They both are present only if frame_mbs_only_flag is 0. Although
mbaff_frame_flag is a Slice Header parameter, its value is expected to be the same for all the
slices of a picture.It must be consistent with the mb_adaptive_frame_field_flag, the
field_pic_flag and the frame_mbs_only_flag settings.This bit is valid only when the
img_structure[1:0] indicates the current picture is a frame.

Value Name Description Project
0 not in MBAFF mode Desc All
1 in MBAFF mode Desc All

0 FieldPicFlag
Project: All
Field picture flag, field_pic_flag, specifies the current slice is a coded field or not.It is set to the
same value as the syntax element in the Slice Header. It must be consistent with the
img_structure[1:0] and the frame_mbs_only_flag settings.Although field_pic_flag is a Slice
Header parameter, its value is expected to be the same for all the slices of a picture.

Value Name Project
0h a slice of a coded frame All
1h a slice of a coded field All

5

[ExistsIf]Encode
Only

31:17 Reserved
16 NonFirstPassFlag

This signals the current pass is not the first pass. It will imply designate HW behavior: e.g
Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 67

MFX_AVC_IMG_STATE
0h Disable Always use the MbQpY from initial PAK inline object for all passes of

PAK
All

1h Enable Use MbQpY from stream-out buffer if MbRateCtrlFlag is set to 1 All

15:13 Reserved
Project: All
Format: MBZ

12 InterMbZeroCbpFlag – InterMB Force CBP to Zero Control Flag

Inter MB Force CBP ZERO mask.
Value Name Description
0h Disable No Effect
1h Enable Zero out all A/C coefficients for the inter MB violating Inter Confirmance

11:10 MinFrameWSizeUnits
This field is the Minimum Frame Size Units
Value Name Description Project
00b compatibility mode Minimum Frame Size is in old mode (words, 2bytes) All
01b 16 byte Minimum Frame Size is in 16bytes All
10b 4Kb Minimum Frame Size is in 4Kbytes All
11b 16Kb Minimum Frame Size is in 16Kbytes All

9 MbRateCtrlFlag – MB level Rate Control Enabling Flag
MB Rate Control conformance mask
Value Name Description Project
0h Disable Apply accumulative delta QP for consecutive passes on top of the

macroblock QP values in inline data
All

1h Enable Apply RC QP delta to suggested QP values in Macroblock Status
Buffer except the first pass.

All

Programming Notes
This field is ignored when MacroblockStatEnable is disabled or MB level Rate control flag for
the current MB is disable in Macroblock Status Buffer.

8 Reserved
Project: All
Format: MBZ

7 Intra/InterMbIpcmFlag – ForceIPCMControlMask
This field is to Force IPCM for Intra or Inter Macroblock size conformance mask.

Value Name Description Project
0h Disable Do not change intra macroblocks even.
1h Enable Change intra macroblocks MB_type to IPCM.

Programming Notes
This field is ignored when MacroblockStatEnable is disabled or MB level Intra MB
conformance flag for the current MB is disable in Macroblock Status Buffer.

6:4 Reserved
Project: All
Format: MBZ

3 FrameSzUnderFlag – FrameBitRateMinReportMask

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 68

MFX_AVC_IMG_STATE
This is a mask bit controlling if the condition of frame level bit count is less than
FrameBitRateMin
Value Name Description Project
0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register. All
1h Enable set bit0 and bit 1of MFC_IMAGE_STATUS control register if the total

frame level bit counter is less than or equal to Frame Bit rate Minimum
limit.

All

2 FrameSzOverFlag – FrameBitRateMaxReportMask
This is a mask bit controlling if the condition of frame level bit count exceeds
FrameBitRateMax.
Value Name Description Project
0 Disable Do not update bit0 of MFC_IMAGE_STATUS control register. All
1 Enable Set bit0 and bit 1 of MFC_IMAGE_STATUS control register if the total

frame level bit counter is greater than or equal to Frame Bit rate
Maximum limit.

All

1 InterMbMaxBitFlag – InterMBMaxSizeReportMask
This is a mask bit controlling if the condition of any inter MB in the frame exceeds
InterMBMaxSize.
Value Name Description Project
0 Disable Do not update bit0 of MFC_IMAGE_STATUS control register. All
1 Enable Set bit0 of MFC_IMAGE_STATUS control register if the total bit counter

for the current MB is greater than the Inter MB Conformance Max size
limit.

All

0 IntraMbMaxBitFlag – IntraMBMaxSizeReportMask
This is a mask bit controlling if the condition of any intra MB in the frame exceeds
IntraMBMaxSize.
Value Name Description Project
0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register. All
1 Enable set bit0 of MFC_IMAGE_STATUS control register if the total bit counter

for the current MB is greater than the Intra MB Conformance Max size
limit.

All

6

[ExistsIf]Encode
Only

31:28 Reserved
27:16 InterMbMaxSz

Project: All
Format: U12
This field, Inter MB Conformance Max size limit,indicates the allowed max bit count size for
Inter MB

15:12 Reserved
Project: All
Format: MBZ

11:0 IntraMbMaxSz
Project: All
Exists If: Intra Only
Format: U12

This field, Intra MB Conformance Max size limit,indicates the allowed max bit count size for
Intra MB

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 69

MFX_AVC_IMG_STATE
All IPCM MBs should ignore this Max size limit.

7 31:0 Reserved
8

[ExistsIf]Encode
Only

31:24 SliceDeltaQpMax[3]
Format: S7

Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for total bit-count above FrameBitRateMax - first 1/8
regionThis field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS
control register when total bit count for the entire frame exceeds FrameBitRateMax but is
within 1/8 of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the range of
(FrameBitRateMax, (FrameBitRateMax+ FrameBitRateMaxDelta>>3).

23:16 SliceDeltaQpMax[2]
Project: All
Format: U8

Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/8 and
below 1/ 4 This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is between
1/8 and ¼ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the range of
((FrameBitRateMax+ FrameBitRateMaxDelta>>3), (FrameBitRateMax+
FrameBitRateMaxDelta>>2).

15:8 SliceDeltaQpMax[1]
Format: S7

Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count above FrameBitRateMax – above1/ 4 and
below 1/2 This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is between ¼
and ½ of FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the range of
((FrameBitRateMax+ FrameBitRateMaxDelta>>2), (FrameBitRateMax+
FrameBitRateMaxDelta>>1).

7:0 SliceDeltaQpPMax[0]
Format: S7

Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/ 2This
field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control
register when total bit count for the entire frame is above FrameBitRateMax by more than half
the distance of FrameBitRateMaxDelta , i.e., in the range of ((FrameBitRateMax+
FrameBitRateMaxDelta>>1), infinite).

9

[ExistsIf]Encode
Only

31:24 SliceDeltaQpMin[3]
Format: S7

Range: [0:MAX_QP_DELTA]

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 70

MFX_AVC_IMG_STATE
This field is the Slice level delta QP for total bit-count below FrameBitRateMin - first 1/8
regionThis field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS
control register when total bit count for the entire frame is less than FrameBitRateMin and
greater than or equal to 1/8 the distance of FrameBitRateMinDelta from FrameBitRateMin,
i.e., in the range of [(FrameBitRateMin- FrameBitRateMinDelta>>3), FrameBitRateMin).

23:16 SliceDeltaQpMin[2]
Format: S7

Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count below FrameBitRateMin – below 1/ 8 and
above 1/ 4This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is between
one-eighth and quarter the distance of FrameBitRateMinDelta from FrameBitRateMin, i.e., in
the range of [(FrameBitRateMin- FrameBitRateMinDelta>>2), (FrameBitRateMin-
FrameBitRateMinDelta>>3)).

15:8 SliceDeltaQpMin[1]
Format: S7

Range: [0:MAX_QP_DELTA]
This field is the Slice level delta QP for bit-count below FrameBitRateMin– below 1/4 and
above 1/ 2This field is used to calculate the suggested slice QP into the
MFC_IMAGE_STATUS control register when total bit count for the entire frame is between
quarter and half the distance of FrameBitRateMinDelta from FrameBitRateMin, i.e., in the
range of [(FrameBitRateMin- FrameBitRateMinDelta>>1), (FrameBitRateMin-
FrameBitRateMinDelta>>2)).

7:0 SliceDeltaQpMin[0]
Format: S7

Range: [0:MAX_QP_DELTA]
This field is the Slice Level Delta QP for bit-count below FrameBitRateMin – below 1/ 2This
field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control
register when total bit count for the entire frame is below FrameBitRateMin by more than half
the distance of FrameBitRateMinDelta , i.e., in the range of [0, (FrameBitRateMin-
FrameBitRateMinDelta>>1).

10

[ExistsIf]Encode
Only

31 FrameBitrateMaxUnit
This field is the Frame Bitrate Maximum Limit Units.
Value Name Description Project
0 Byte FrameBitRateMax is in units of 32 Bytes when

FrameBitrateMaxUnitMode is 1 and in units of 128 Bytes if
FrameBitrateMaxUnitMode is 0

All

1 Kilo
Byte

FrameBitRateMax is in units of 4KBytes Bytes when
FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if
FrameBitrateMaxUnitMode is 0

All

30 FrameBitrateMaxUnitMode
This field is the Frame Bitrate Maximum Limit Units.
Value Name Description Project
0h compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb) All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 71

MFX_AVC_IMG_STATE
1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb) All

29:16 FrameBitRateMax
This field is the Frame Bitrate Maximum Limit. This field along with FrameBitrateMaxUnit
determines maximum allowed bits in a frame before multi-pass gets triggered (when
enabled). In other words, multi-pass is triggered when the actual frame byte count exceeds
this value. When FrameBitrateMaxUnitMode is 0(compatibility mode) bits 16:27 should be
used, bits 28 and 29 should be 0..

Value Name Description
0-512KB The programmable range is 0-512KB when FrameBitrateMaxUnit is 0.
0-8190KB The programmable range is 0-8190KB when FrameBitrateMaxUnit is 1.

15 FrameBitrateMinUnit
This field is the Frame Bitrate Minimum Limit Units.
Value Name Description Project
0 Byte FrameBitRateMax is in units of 32 Bytes when

FrameBitrateMinUnitMode is 1 and in units of 128 Bytes if
FrameBitrateMinUnitMode is 0

All

1 Kilo
Byte

FrameBitRateMax is in units of 4KBytes Bytes when
FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if
FrameBitrateMaxUnitMode is 0

All

14 FrameBitrateMinUnitMode
This field is the Frame Bitrate Minimum Limit Units.
Value Name Description Project
0h Compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb) All
1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb) All

13:0 FrameBitRateMin
RangeThe programmable range 0-512KB When FrameBitrateMinUnit is in 0.Programmable
range is 0–8190 KB when FrameBitrateMinUnit is in 1.This field is the Frame Bitrate Minimum
Limit ()This field along with FrameBitrateMinUnit determines minimum allowed bits in a Frame
before Multi-Pass gets triggered (when enabled). In other words, multi-pass is triggered when
the actual frame byte count is less than this value. When FrameBitrateMinUnitMode is 0
(compatibility mode) bits 0:11 should be used, bits 12 and 13 should be 0.

11

[ExistsIf]Encode
Only

31 Reserved
30:16 FrameBitRateMaxDelta

Project: All
Exists If: Always
Format: U15
This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It shares
the same FrameBitrateMaxUnit. When FrameBitrateMaxUnitMode is 0(compatibility mode)
bits 16:27 should be used, bits 28, 29 and 30 should be 0.

Value Name Description
0-1024KB The Programmable range 0-1024KB when FrameBitRateMaxUnit is 0.
0-
16380KB

 The Programmable range is 0–16380KB when FrameBitRateMaxUnit is
1.

0h [Default]

15 Reserved
Project: All
Format: MBZ

14:0 FrameBitRateMinDelta
Range: The programmable range 0-1024KB When FrameBitrateMinUnit is in

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 72

MFX_AVC_IMG_STATE
32Bytes.Programmable range is 0–16380KB when FrameBitrateMinUnit is in 4Kbytes.
This field is used to select the slice delta QP
 when FrameBitRateMin Is exceeded. It shares the same FrameBitrateMinUnit. When
 FrameBitrateMinUnitMode is 0(compatibility mode) bits 0:11 should be used, bits
 12, 13 and 14 should be 0.Note: HW requires the following condition
 FrameBitRateMinDelta <= 2*FrameBitRateMinMust be true, otherwise it may cause
 unpredicted behavior.

12 31:0 Reserved
Project: All
Format: MBZ

13 31:30 Reserved
Project: All
Format: MBZ

29 Current Picture Has Performed MMCO5
Set to 1 if the current Pic has performed the memory_management_control_operation = = 5.

28:24 Number of Reference Frames
Format: U5

Range: Range 0 to MaxDpbSize (=16 for Level 4.1)
Specifies the maximum number of reference frames (frames, field pairs, unpaired field)
existed in the current DBP for decoding the current picture.

23:22 Reserved
Project: All
Format: MBZ

21:16 Number of Active Reference Pictures from L1
Format: U6-1
Specifies the initial maximum reference index value minus 1 to access the L1 Reference List.
It is extracted from PPS. It corresponds to the number of active reference pictures from L1 to
decode the current picture. It can be modified by the slice header if
num_ref_idx_active_override_flag is set. Only valid for B picture.

Value Name
[0,31]

15:14 Reserved
Project: All
Format: MBZ

13:8 Number of Active Reference Pictures from L0
Format: U6-1
Specifies the initial maximum reference index value minus 1 to access the L0 Reference List.
It is extracted from PPS. It corresponds to the number of active reference pictures from L0 to
decode the current picture. It can be modified by the slice header if
num_ref_idx_active_override_flag is set. Valid for both P and B pictures.

Value Name
[0,31]

7:0 Initial QP Value
Format: S7

Description Project

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 73

MFX_AVC_IMG_STATE
Range: [-26,25]
Short Format Only
Initial QP value for a Slice, extracted from PPS. It may further get modified by
slice_qp_delta in slice header and mb_qp_delta in MB header.

MAX_QP_DELTA : Maximum QP delta is the Magnitude of QP delta between passes.

MAX_QP_DELTA is selected such that cumulative QP over all possible passes shouldn’t exceed 51.

Example Configurations:

MAX Number of Passes MAX_QP_DELTA
4 0xc
5 0xa
6 0x8
7 0x7

2.1.2 MFX_AVC_DIRECTMODE_STATE Command

MFX_AVC_DIRECTMODE_STATE

Source: VideoCS

Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple slices.
All DMV buffers are treated as standard media surfaces, in which the lower 6 bits are used for conveying surface
states.Current Pic POC number is assumed to be available in POCList[32 and 33] of the
MFX_AVC_DIRECTMODE_STATE Command.This command is only valid in the AVC decoding in VLD and IT
modes, and AVC encoder mode. The same command supports both Long and Short DXVA2 AVC Interface.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_SINGLE_DW
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC
Format: OpCode

23:21 SubOpcodeA
Default Value: 0h MEDIA_
Format: OpCode

20:16 SubOpcodeB
Default Value: 2h Desc
Format: OpCode

15:12 Reserved
Project: All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 74

MFX_AVC_DIRECTMODE_STATE
Format: MBZ

11:0 DWord Length
Default Value: 0043h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:6 Direct MV Buffer Base Address for Picture 0 (current or reference top field)
This field provides the base address of the DMV write buffer to store motion vectors decoded in the
current picture (top field), which may be used later as a collocated motion information read buffer of the
associated reference picture in decoding subsequent B-pictures that have MB coded in direct mode. It
is a private buffer used by the MPR hardware only. Its content is not accessed by software.This buffer
must be 64-byte cacheline aligned.The write buffer size is 557,056 bytes for 1 frame. Scalable with
frame height, but do not scale with frame width as the hardware assumes frame width (in MBs) fixed at
128 (smallest power of 2 value larger than 120 – 1920x1088 screen resolution)It is only valid if the
current picture is a progressive frame, MbAff frame, or a top field.There are a total of 32 reference
picture (previously decoded) Direct MV Buffers (0 to 31, not including the DMV write buffer 32 and 33
of the current picture) to read in the corresponding collocated DMV and motion information. For
reference picture, these 32 DMV read Buffers can be indexed by the frame_store_ID[4:0], which is
obtained from RefPicList L0/L1[RefPicIdx]. frame_Store_IDbit[0] (indicator for Top/Bottiom Field).For
writing out motion information during the decoding of the current picture, all 34 DMV buffers can be
addressed by [img_dec_fs_idc[4:0]<<1 + img_structure[1]].

5:4 Direct MV Buffer – Arbitration Priority Control
This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.

Value Name Description Project
00b Highest priority Desc All
01b Second highest priority Desc All
10b Third highest priority
11b Lowest priority

Programming Notes
This field of Picture 0 DMV Buffer must always be programmed, regardless if this buffer is active or
not, exist or not. H/W only reads this bit to determine the arbitration priority control for all 34 possible
DMV buffers. This field is ignored in all the other DMV buffers 1 to 33.

2 Direct MV Buffer - Graphics Data Type (GFDT) for Picture 0
This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.
The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is
ignored for reads.

Value Name Description Project
0h Disable Desc All
1h Enable Desc All

Programming Notes
This field of Picture 0 DMV Buffer must always be programmed, regardless if this buffer is active or
not, exist or not. H/W only reads this bit to determine the GFDT for all 34 possible DMV buffers. This
field is ignored in all the other DMV buffers 1 to 33.

1:0 Direct MV Buffer - Cacheability Control for Picture 0
Format: U2 Enumerated Type

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 75

MFX_AVC_DIRECTMODE_STATE

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).
Value Name Description Project

00b Use cacheability control bits from GTT entry Desc All
01b Data is not cached in LLC or MLC Desc All
10b Data is cached in LLC but not MLC
11b Data is cached in both LLC and MLC

Programming Notes
This field of Picture 0 DMV Buffer must always be programmed, regardless if this buffer is active or
not, exist or not. H/W only reads this bit to determine the cacheability control for all 34 possible DMV
buffers. This field is ignored in all the other DMV buffers 1 to 33.

2 31:6 Direct MV Buffer Base Address for Picture 1 (current or reference bottom field)
This field provides the base address of the DMV read/write buffer for the current or reference picture
(bottom field). It is paired with the DMV Buffer of Picture 0 for MB pair retrieval during read.It follows the
same format specification as DMV buffer for Picture 0It is only valid if the current picture is a bottom
field. It is also valid

5:4 Direct MV Buffer – Arbitration Priority Con
Project: All
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[5:4] above.

2 Direct MV Buffer - Graphics Data Type (GFDT) for Picture 1
Project: All
Format: U1
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[2] above.

1:0 Direct MV Buffer -Cacheability Control for Picture 1
Project: All
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[1:0] above.

3..32 31:6 Direct MV Buffer Base Address for Reference Frame 2 to 31
This field provides the base address of the DMV buffer for reference frame 2 to 31. They are needed if
the current B-Picture has MBs coded in direct mode. It is a private buffer used by the MPR hardware
only. Its content is not accessed by software.All these buffers must be 64-byte cacheline aligned.There
are a total of 32 possible Direct MV Read Buffers (not including the current write buffer of the current
picture) to read in the corresponding DMV. Each read buffer size is 557,056 bytes for 1 frame (the
selected colPic). Scalable with frame height, but do not scale with frame width as the hardware
assumes frame width (in MBs) fixed at 128 (smallest power of 2 value larger than 120 – 1920x1088
screen resolution).The adjacent DMV buffers are paired ([2 and 3], [4 and 5], [N and N+1], ..[30 and
31]).

5:4 Direct MV Buffer – Arbitration Priority Control
Project: All
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 76

MFX_AVC_DIRECTMODE_STATE
bit[5:4] above.

2 Direct MV Buffer - Graphics Data Type (GFDT) for Reference Frame 2 to 31
Project: All
Format: U1
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[2] above.

1:0 Direct MV Buffer - Cacheability Control for Reference Frame 2 to 31
Project: All
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[1:0] above.

33..34 31:6 Direct MV Buffer Base Addresses 32 and 33 (Write-Only Buffer), for Current Decoding
Frame/Field
This field provides the base address of the DMV write-only buffer for the current decoding frame/field.It
is a private buffer used by the MPR hardware only. Its content is not accessed by software.All these
buffers must be 64-byte cacheline aligned, i.e. the same as the above DMV read/write buffers.These 2
buffers can only be addressed by [img_dec_fs_idc[4:0]<<1 + img_structure[1]] for the current picture
being decoded.Each write buffer size is 557,056 bytes for 1 frame (the selected colPic). Scalable with
frame height, but do not scale with frame width as the hardware assumes frame width (in MBs) fixed at
128 (smallest power of 2 value larger than 120 – 1920x1088 screen resolution).DMV write buffer 32 is
valid only if the current picture is a progressive frame, MbAff frame, or a top field.DMV write buffer 33 is
valid only if the current picture is a bottom field.

5:4 Direct MV Buffer 32 and 33 (Write-only Buffer) – Arbitration Priority Control
Project: All
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[5:4] above.

3 Reserved
This field is ignored for writes.

2 Direct MV Buffer 32 and 33 (Write-only Buffer) - Graphics Data Type (GFDT) for Current
Frame/Field
Project: All
Format: U1
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[2] above.

1:0 Direct MV Buffer 32 and 33 (Write-only Buffer) - Cacheability Control for Current Frame/Field
Project: All
Format: U2
This field is ignored in H/W, and assumes the same value as of Picture 0 DMV Buffer specification
bit[1:0] above.

35..68 31:0 POC List, POCList[34][31:0]
Each POC value is a signed 32-bit number.One-to-one correspondence with the 34 Direct MV Buffer
Address for Reference and Currrent Frames/FieldsThere are 34 POC entries in the list. For reference
picture, only the lower 32 POC [0-31] entries can be used, and POCList[] is indexed by the

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 77

MFX_AVC_DIRECTMODE_STATE
frame_store_ID[4:0], which is obtained from RefPicList L0/L1[RefPicIdx]. frame_Store_IDbit[0]
(indicator for Top/Bottiom Field).For current picture, all 34 POC entries [0-33] can be addressed by
POCList[img_dec_fs_idc[4:0]<<1 + img_structure[1]].For frame-only mode, every other entry is
skipped. For MBAFF and field-only picture, each entry is a field POC, and every two entries are paired.

2.1.3 MFX_AVC_SLICE_STATE Command

MFX_AVC_SLICE_STATE

Source: VideoCS

Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple slices.
The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT modes).

Programming Notes
MFX_AVC_SLICE_STATE command is not issued for AVC DXVA2 Short Format Bitstream decode, instead
MFD_AVC_SLICEADDR command is executed to retrieve the next slice MB Start Address X and Y by H/W itself.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_AVC_SLICE_STATE
Format: OpCode

26:24 Command Opcode
Default Value: 1h AVC
Format: OpCode

23:21 SubOpcodeA
Default Value: 0h MFX_AVC_SLICE_STATE
Format: OpCode

20:16 Command SubOpcodeB
Default Value: 3h MFX_AVC_SLICE_STATE
Format: OpCode

15:12 Reserved
Format: MBZ

11:0 DWord Length
Default Value: 8h DWORD_COUNT_n
Excludes DWords 0,1

1 31:4 Reserved
Format: MBZ

3:0 Slice Type
It is set to the value of the syntax element read from the Slice Header.

Value Name
0000b P Slice
0001b B Slice

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 78

MFX_AVC_SLICE_STATE
0010b I Slice
0011b-1111b Reserved

Programming Notes
Bits[3:2] must be 0

2 31:30 Reserved
Format: MBZ

29:24 Number of Reference Pictures in Inter-prediction List 1
Format: U6
This field is valid only for encoding a B Slice, for which it is expected to have at least one entry in the
reference list L1; otherwise (if Slice Type is not a B Slice), this field must be set to 0.
 This field can be derived for a B Slice from the Slice Header syntax element
NumRefIdxActiveMinus1 as, Num_Ref_Idx_L1 = NumRefIdxActiveMinus1[1] + 1.

Value Name
0-32

23:22 Reserved
Format: MBZ

21:16 Number of Reference Pictures in Inter-prediction List 0
Format: U6
This field is valid for encoding a P or B Slice, for which it is expected to have at least one entry in the
reference list L0; otherwise (if Slice Type is not a P or B Slice), this field must be set to 0.
 This field can be derived for a P or B Slice from the Slice Header syntax element
NumRefIdxActiveMinus1 as, Num_Ref_Idx_L0 = NumRefIdxActiveMinus1[0] + 1.

Value Name
0-32

15:11 Reserved
Format: MBZ

10:8 Log 2 Weight Denom Chroma
Format: U3

Value Name
0-7

7:3 Reserved
Format: MBZ

2:0 Log 2 Weight Denom Luma
Format: U3
It is the base 2 logarithm of the denominator for all Luma weighting factors.
 It is set to the value of the syntax element read from the Slice Header Pred_Weight_Table().

Value Name
0-7

3 31:30 Weighted Prediction Indicator
This field indicates the Weighted Prediction mode for a P or B Slice. It is a combined field
corresponding to the syntax element WeightedBiPredIdc or WeightedPredFlag read from the current
active PPS.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 79

MFX_AVC_SLICE_STATE
If it is a B-Slice, these bits are interpreted as:

 00b – Specifies the default weighted inter-prediction to be applied
 01b – Specifies the explicit weighted inter-prediction to be applied
 10b – Specifies the implicit weighted inter-prediction to be applied
 11b – Reserved (not allowed)

If it is a P Slice, these bits are interpreted as:

 00b – Disables weighted inter-prediction (Default weighted)
 01b – Enables weighted inter-prediction (Explicit weighted)
 10b - 11b – Reserved

Programming Notes
Only when in B Slice with Weighted_Pred_Idc = 1 (explicit weighted prediction), will there be a L1
and/or a L0 weight+offset tables being sent to the BSD unit through the Slice_State command.
 Only when in P Slice with Weighted_Pred_Idc = 1, will there be a L0 weight+offset table being sent
to the BSD.
If Weighted_Pred_Idc != 1 for B Slice or Weighted_Pred_Idc =0 for P Slice, no Slice_State command
should be issued to send these tables. If still being issued, the data is read but ignored.
DXVA specifies Weighted_Bipred and Weighted_Pred in frame-level state. However, these two flags
are combined and specified in slice level for both P and B slice type.

29 Direct Prediction Type
Type of direct prediction used for B Slices. This field is valid only for Slice_Type = B Slice; otherwise,
it must be set to 0.

Value Name
0 Temporal
1 Spatial

28:27 Disable Deblocking Filter Indicator
Value Name Description
00b FilterInternalEdgesFlag is set equal to 1
01b Disable all deblocking operation, no deblocking parameter syntax element is read;

filterInternalEdgesFlag is set equal to 0
10b Macroblocks in different slices are considered not available; filterInternalEdgesFlag

is set equal to 1
11b Reserved Not defined in AVC

26 Reserved
Format: MBZ

25:24 Cabac Init Idc[1:0]
Specifies the index for determining the initialization table used in the context variable initialization
process.

Value Name
0-2

Programming Notes
Cabac initialization is also dependent on the field/frame picture type, Slice type, and the current
SliceQP value.

23:22 Reserved

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 80

MFX_AVC_SLICE_STATE
Format: MBZ

21:16 Slice Quantization Parameter
Quantization Parameter for current slice. Derived from PPS and slice_delta_qp syntax element in
Slice Header.
 It is needed for CABAC context initialization and deblocking filter control. And it is also used as the
starting QP value in the very first MB of a slice.
 It is in the range of unsigned integer 0 to 51, for 8-bit pixel bit-depth.

15:12 Reserved
Format: MBZ

11:8 Slice Beta Offset Div2
Format: S3 2's Complement

Range: [-6, 6] Inclusive
Specifies the offset used in accessing the deblocking filter strength tables.

7:4 Reserved
Format: MBZ

3:0 Slice Alpha C0 Offset Div2
Format: S3 2's Complement

Range: [-6, 6] Inclusive
Specifies the offset used in accessing the deblocking filter strength tables.

4 31:24 Slice Vertical Position
This field specifies the position in y-direction of the first macroblock in the Slice in unit of
macroblocks.
 The fields (Slice_MB_Start_Hor_Pos, Slice_MB_Start_Vert_Pos) are valid in VLD (decoding) mode
only. They are ignored by hardware in decoding IT mode and encoding mode (whereas the position
is provided by the per-macroblock object command).
 Derived

Programming Notes
Error Handling: Driver needs to check if FirstMbY starts at 0 on the first slice of frame. If not, driver
needs to add a phantom slice with FirstMbX and FirstMbY set to 0.

23:16 Slice Horizontal Position
This field specifies the position in x-direction of the first macroblock in the Slice in unit of
macroblocks.
 Derived

Programming Notes
Error Handling: Driver needs to check if FirstMbY starts at 0 on the first slice of frame. If not, driver
needs to add a phantom slice with FirstMbX and FirstMbY set to 0.

15 Reserved
Format: MBZ

14:0 Slice Start Mb Num
Exists If: Decoder Only
The MB number (linear MB address in a picture) at the start of a Slice, it must match with the Slice

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 81

MFX_AVC_SLICE_STATE
Horizontal Position (Slice_MB_Start_Hor_Pos) and Vertical Position (Slice_MB_Start_Vert_Pos) in
the picture.

Programming Notes
In creating the Phantom Slice for error concealment, this field should set to the total number of MB in
the current picture + 1.

5 31:24 Reserved
Format: MBZ

23:16 Next Slice Vertical Position
This field specifies the position in y-direction of the first macroblock in the next Slice in unit of
macroblocks.
 This field is primarily used for error concealment. In the case that current slice is the last slice, this
field should set to the height of picture (since y-direction is zero-based numbering).

15:8 Reserved
Format: MBZ

7:0 Next Slice Horizontal Position
This field specifies the position in x-direction of the first macroblock in the next Slice in unit of
macroblocks.
 This field is primarily used for error concealment. In the case that current slice is the last slice, this
field should set to 0.

6

Encoder
Only

31 Rate Control Counter Enable
To enable the accumulation of bit allocation for rate control
 This field enables hardware Rate Control logic. The rest of the RC control fields are only valid when
this field is set to 1. Otherwise, hardware ignores these fields.

Value Name
0 Disable
1 Enable

30 ResetRateControlCounter
To reset the bit allocation accumulation counter to 0 to restart the rate control.

Value Name
0 Not Reset
1 Reset

29:28 RC Triggle Mode
Value Name Description
00b Always Rate

Control
Whereas RC becomes active if sum_act > sum_target or sum_act <
sum_target

01b Gentle Rate
Control

whereas RC becomes active if sum_act > upper_midpt or sum_act <
lower_midpt

10b Loose Rate Control whereas RC becomes active if sum_act > sum_max or sum_act <
sum_min

11b Reserved

27:24 RC Stable Tolerance
Format: U4
This field specifies the tolerance required to deactivate RC once it has been triggered.

Value Name
0-15

23 RC Panic Enable
If this field is set to 1, RC enters panic mode when sum_act > sum_max. RC Panic Type field
controls what type of panic behavior is invoked.

Value Name

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 82

MFX_AVC_SLICE_STATE
0 Disable
1 Enable

22 RC Panic Type
This field selects between two RC Panic methods

Value Name
0 QP Panic
1 CBP Panic

Programming Notes
If it is set to 0, in panic mode, the macroblock QP is maxed out, setting to requested QP +
QP_max_pos_mod.
 If it is set to 1, for an intra macroblock, AC CBPs are set to zero (note that DC CBPs are not
modified).
 For inter macroblocks, AC and DC CBPs are forced to zero.

21 MB Type Direct Conversion Disable
Exists If: B-Slice
For all Macroblock type conversions in different slices, refer to Section "Macroblock Type Conversion
Rules" in the same volume.

Value Name
0 Enable direct mode conversion
1 Disable direct mode conversion

Programming Notes
This field is zero for all other slices other than B-Slice.

20 MB Type Skip Conversion Disable
Exists If: P-Slice or B-Slice
For all Macroblock type conversions in different slices, refer to Section "Macroblock Type Conversion
Rules" in the same volume.

Value Name
0 Enable skip type conversion
1 Disable skip type conversion

Programming Notes
This field is zero for all other slices other than P_Slice or B-Slice. \

19 Is Last Slice
It is used by the zero filling in the Minimum Frame Size test.

Value Name Description
1 Current slice is the last slice of a picture
0 Current slice is NOT the last slice of a picture

17 Header Insertion Present in Bitstream
Value Name Description
0 No header insertion into the output bitstream buffer, in front of the current slice encoded

bits.
1 Header insertion into the output bitstream buffer is present, and is in front of the current

slice encoded bits.

16 SliceData Insertion Present in Bitstream

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 83

MFX_AVC_SLICE_STATE
Value Name Description

0 No Slice Data insertion into the output bitstream buffer
1 Slice Data insertion into the output bitstream buffer is present.

15 Tail Insertion Present in bitstream
Value Name Description
0 No tail insertion into the output bitstream buffer, after the current slice encoded bits
1 Tail insertion into the output bitstream buffer is present, and is after the current slice

encoded bits.

14 Reserved
Format: MBZ

13 EmulationByteSliceInsertEnable
To have PAK outputting SODB or EBSP to the output bitstream buffer

Value Name Description
0 outputting RBSP
1 outputting EBSP

12 CabacZeroWordInsertionEnable
To pad the end of a SliceLayer RBSP to meet the encoded size requirement.
Value Name Description
0 No Cabac_Zero_Word Insertion
1 Allow internal Cabac_Zero_Word generation and append to the end of RBSP

 (effectively can be used as an indicator for last slice of a picture, if the assumption is
only the last slice of a picture needs to insert CABAC_ZERO_WORDs.

11:8 Reserved
Format: MBZ

7:4 Slice ID [3:0]
To identify the output data (coding information record) returned for rate control from PAK to ENC and
VPP.

3:2 Reserved
Format: MBZ

1:0 Stream ID [1:0]
To identify the output data (coding information record) returned for rate control from PAK to ENC and
VPP.

7

Encoder
Only

31:29 Reserved
Format: MBZ

28:0 Indirect PAK-BSE Data Start Address (Write)
Exists If: AVC Encode Mode
This field specifies the memory starting address (offset) to write out the compressed bitstream data
from the BSE processing. This pointer is relative to the MFC Indirect PAK-BSE Object Base Address.
 It is a byte-aligned address for the AVC bitstream data in both CABAC/CAVLC Modes.
 For Write, there is no need to have a data length field. It is assumed the global memory bound check
specified in the IND_OBJ_BASE_ADDRESS command (Indirect PAK-BSE Object Access Upper
Bound) will take care of any illegal write access.

Value Name
0 - 512MB

8

Encoder
Only

31:24 Magnitude of QP Max Negative Modifier
Format: U8
This field specifies the lower limit of the QP modifier.

Value Name

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 84

MFX_AVC_SLICE_STATE
0-51

23:16 Magnitude of QP Max Positive Modifier
Format: U8
This field specifies the upper limit of the QP modifier.

Value Name
0 - 15

15:12 Shrink Param - Shrink Resistance
Format: U4
This field specifies the additional points added each time decreased correction is invoked.

Value Name
0 - 15

11:8 Shrink Param – Shrink Init
Format: U4
This field specifies the initial points required to trip decreased control.

Value Name
0 - 15

7:4 Grow Param – Grow Resistance
Format: U4
This field specifies the additional points added each time increased correction is invoked.

Value Name
0 - 15

3:0 Grow Param – Grow Init
Format: U4
This field specifies the initial points required to trip increased control.

Value Name
0 - 15

9

Encoder
Only

31:24 Reserved
Format: MBZ

23:20 Correct 6
Format: U4
This field specifies the points used in the lowermost RC region when sum_act <= sum_min.

Value Name
0 - 15

19:16 Correct 5
Format: U4
This field specifies the points used in the fifth RC region when sum_act > sum_min but <=
lower_midpt.

Value Name
0 - 15

15:12 Correct 4
Format: U4
This field specifies the points used in the fourth RC region when sum_act > lower_midpt but <=
sum_target.

Value Name
0 - 15

11:8 Correct 3
Format: U4
This field specifies the points used in the third RC region when sum_act > sum_target but <=

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 85

MFX_AVC_SLICE_STATE
upper_midpt.

Value Name
0 - 15

7:4 Correct 2
Format: U4
This field specifies the points used in the second RC region when sum_act > upper_midpt but <=
sum_max.

Value Name
0 - 15

3:0 Correct 1
Format: U4
This field specifies the points used in the topmost RC region when sum_act > sum_max.

Value Name
0 - 15

10

Encoder
Only

31:28 ClampValues – CV7
27:24 CV6

23:20 CV5

19:16 CV4

15:12 CV3

11:8 CV2

7:4 CV1

3:0 CV0 - Clamp Value 0
Format: U4

If the magnitude of coefficients at locations assigned with CV0 (mapping shown below) exceeds
2CV0–1, they are replaced with 2CV0–1. For coefficients at locations marked as ‘none’, no clamping is
performed. The following mappings are only applied to luma and chroma blocks\subblocks
containing AC coefficiencts (blocks\sublocks with only DC coeffs will not be clamped).

For 4x4 frame block, each coefficient is mapped to one of the eight CV values as following:
none CV7 CV5 CV4
CV7 CV6 CV4 CV3
CV5 CV4 CV2 CV1
CV4 CV3 CV1 CV0

For 8x8 frame block, each coefficient is mapped to one of the eight CV values as following:
none none CV7 CV6 CV5 CV4 CV3 CV3
none CV7 CV6 CV5 CV4 CV3 CV3 CV2
CV7 CV6 CV5 CV4 CV3 CV3 CV2 CV2
CV6 CV5 CV4 CV3 CV3 CV2 CV2 CV1
CV5 CV4 CV3 CV3 CV2 CV2 CV1 CV1
CV4 CV3 CV3 CV2 CV2 CV1 CV1 CV0
CV3 CV3 CV2 CV2 CV1 CV1 CV0 CV0
CV3 CV2 CV2 CV1 CV1 CV0 CV0 CV0

For 4x4 field block, each coefficient is mapped to one of the eight CV values as following:
none CV6 CV3 CV1
CV7 CV6 CV3 CV1

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 86

MFX_AVC_SLICE_STATE
CV5 CV4 CV2 CV0
CV5 CV4 CV2 CV0

For 8x8 field block, each coefficient is mapped to one of the eight CV values as following:
none none CV6 CV5 CV4 CV3 CV2 CV1
none CV7 CV6 CV5 CV4 CV3 CV2 CV1
CV7 CV6 CV5 CV4 CV3 CV3 CV2 CV1
CV7 CV6 CV5 CV4 CV3 CV2 CV2 CV1
CV6 CV5 CV4 CV4 CV3 CV2 CV1 CV0
CV6 CV5 CV4 CV3 CV2 CV2 CV1 CV0
CV5 CV5 CV4 CV3 CV2 CV1 CV1 CV0
CV5 CV5 CV4 CV3 CV2 CV1 CV1 CV0

Value Name
0 - 15

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 87

2.1.4 MFX_AVC_REF_IDX_STATE Command

MFX_AVC_REF_IDX_STATE

Source: VideoCS

Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple slices.
The same command is used for AVC encoder (PAK mode) and decoder (VLD mode); it is not need in decoder IT
mode.

The inline data of this command is interpreted differently for encoder as for decoder. For decoder, it is interpreted as
RefIdx List L0/L1 as in AVC spec., and it matches with the DXVA2 AVC API data structure for decoder in VLD mode :
RefPicList[2][32] (L0:L1, 0:31 RefPic). But for encoder, it is interpreted as a Reference Index Mapping Table for L0
and L1 reference pictures. For packing the bits at the output of PAK, the syntax elements must follow the definition of
RefIdxL0/L1 list according to the AVC spec. However, the decoder pipeline was designed to use a variation of that
standard definition, as such a conversion (mapping) is needed to support the hardware design.

The Reference lists are needed in processing both P and B slice in AVC codec. For P-MB, only L0 list is used; for B-
MB both L0 and L1 lists are needed. For a B-MB that is coded in L1-only Prediction, only L1 list is used.

Programming Notes
DXVA2 specifies that an application will create the RefPicList L0 and L1 and pass onto the driver. The content of
each entry of RefPicList L0/L1[] is a 7-bit picture index. This picture index is the same as that of RefFrameList[]
content. This picture index, however, is not defined the same as the frame store ID (0 to 16, 5-bits) we have
implemented in H/W. Hence, driver is required to manage a table to convert between DXVA2 picture index and intel
frame store ID. As such, the final RefPicList L0/L1[] that the driver passes onto the H/W is not the same as that
defined in the DXVA2.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_AVC_REF_IDX_STATE
Format: OpCode

26:24 Command Opcode
Default Value: 1h AVC
Format: OpCode

23:21 SubOpcodeA
Default Value: 0h MFX_AVC_REF_IDX_STATE
Format: OpCode

20:16 SubOpcodeB
Default Value: 4h MFX_AVC_REF_IDX_STATE
Format: OpCode

15:12 Reserved
Format: MBZ

11:0 DWord Length
Default Value: 0008h
Excludes DWords 0,1

1 31:1 Reserved
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 88

MFX_AVC_REF_IDX_STATE
0 RefPicList Select

Num_ref_idx_l1_active is resulted from the specifications in both PPS and Slice Header for the
current slice. However, since the full reference list L0 and/or L1 are always sent, only present flags
are specified instead.

This parameter is specified for Intel interface only, not present in the DXVA.
Value Name Description
0 RefPicList

0
The list that followed represents RefList L0 (Decoder VLD mode) or Ref Idx
Mapping Table L0 (Encoder PAK mode)

1 RefPicList1 The list that followed represents RefList L1 (Decoder VLD mode) or Ref Idx
Mapping Table L1 (Encoder PAK mode)

2..9 31:0 Reference List Entry
This set of fields is always present whenever this command is issued.

 It always specifies the full 32 reference pictures in the selected list, regardless they are “existing
picture” or not. If a picture is non-existing, the corresponding entry should be set to all ones.
 Each list entry is 1 byte. A 32-bit DW can hold 4 list entries in the following format

31:24 entry X+3 (e.g. listY_3)

23:16 entry X+2 (e.g. listY_2)

15:8 entry X+1 (e.g. listY_1)

7:0 entry X (e.g. listY_0)

 X is replaced by the paddr[2:0] * 4 ; paddr[5:0] with 0x20 and 0x27, and Y is replaced by 0 or 1.
 The byte definition for a reference picture :

Bit 7 : Non-Existing – indicates that frame store index that should have been at this entry did not
exist and was replaced by an index 0 (a valid entry) for error concealment

Bit 6 : Long term bit – set this reference picture to be used as long term reference

Bit 5 : Field picture flag – indicates frame/field

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel
implementation)

 This is the final Reference List L0 or L1 after any reordering specified in the Slice Header as well as
modified by the driver, and its indices values are all translated to the intel specification.
 If the reference picture is a frame (Bit5 = 1), frame store ID is always an even number.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 89

MFX_AVC_REF_IDX_STATE
 This list is used in outputting MV information by the BSD unit in VLD mode. DMV access also reads
and writes Mvlist0 using this frame store ID.
 If this set of fields is interpreted as Reference Index Mapping Table L0/L1, the same field alignment is
followed, i.e. 4 mapping entries per DW. Each mapping entry is one byte in size, but only the least
significant 5 bits [4:0] is relevant. Driver should zero all the upper bits [7:5] for each entry.

2.1.5 MFX_AVC_WEIGHTOFFSET_STATE Command

MFX_AVC_WEIGHTOFFSET_STATE

Source: VideoCS

Length Bias: 2

This is a slice level command and can be issued multiple times within a picture that is comprised of multiple slices.
The same command is used for AVC encoder (PAK mode) and decoder (VLD and IT modes). However, since for
AVC decoder VLD and IT modes, and AVC encoder mode, the implicit weights are computed in hardware, this
command is not issued. For encoder, regardless of the type of weight calculation is active for the current slice
(default, implicit or explicit), they are all sent to the PAK as if they were all in explicit mode. However, for implicit
weight and offset, each entry contains only a 16-bit weight and no offset (offset = 0 always in implicit mode and can
be hard-coded inside the hardware).The weights (and offsets) are needed in processing both P and B slice in AVC
codec. For P-MB, at most only L0 list is used; for B-MB both L0 and L1 lists may be needed. For a B-MB that is
coded in L1-only Prediction, only L1 list is sent.The content of this command matches with the DXVA2 AVC API data
structure for explicit prediction mode only : Weights[2][32][3][2] (L0:L1, 0:31 RefPic, Y:Cb:Cr, W:0)
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_ AVC_ WEIGHTOFFSET_STATE
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 5h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h Excludes DWord (0,1) = 0030h
Project: All
Format: =n Total Length - 2

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 90

MFX_AVC_WEIGHTOFFSET_STATE

1 31:1 Reserved
Project: All
Format: MBZ

0 Weight and Offset Select
It must be set in consistent with the WeightedPredFlag and WeightedBiPredIdc in the Img_State
command.
 This parameter is specified for Intel interface only, not present in the DXVA.
 For implicit even though only one entry may be used, still loading the whole 32-entry table.
Value Name Description Project
0 Weight and Offset L0

table
The list that followed is associated with the weight and offset for
RefPicList L0

All

1 Weight and Offset L1
table

The list that followed is associated with the weight and offset for
RefPicList L1

All

2..97 31:0 WeightOffset
WeightOffset[L=L0=0 or L1=1][i=0 to 31][Y=0/Cb=1/Cr=2][weight=0/offset=1]
 WeightOffset[L][i=0][Y=0][Weight=0], WeightOffset[L][i=0][Y=0][Offset=1]
 WeightOffset[L][i=0][Cb=1][Weight=0], WeightOffset[L][i=0][Cb=1][Offset=1]
 WeightOffset[L][i=0][Cr=2][Weight=0], WeightOffset[L][i=0][Cr=2][Offset=1]:
 WeightOffset[L][i=31][Y=0][Weight=0], WeightOffset[L][i=31][Y=0][Offset=1]
 WeightOffset[L][i=31][Cb=1][Weight=0], WeightOffset[L][i=31][Cb=1][Offset=1]
 WeightOffset[L][i=31][Cr=2][Weight=0], WeightOffset[L][i=31][Cr=2][Offset=1]
Format for explicit: Both Weight and Offset are S15 in two’s compliment, with a valid range from -128
to 128
 Format for implicit: S15
This set of fields is always present whenever this command is issued. The full table, one entry for each
reference picture, is always specified. Any reference list L0/L1[i] that does not exist, the corresponding
weight and offset are set to 0.

 Weight and Offset are 2 byte each. Apair of Weight and Offset forms a dword, with Weight in the
LOWER word and Offset in the HIGHER word.

 WeightOffset[L0=0][i=0 to 31][Y=0] (i.e. luma_weight_l0[i]) are specified for the weighting and offset
factors applied to the luma prediction value for list 0 prediction using RefPicList0[i] (one-to-one
correspondence in i). When luma_weight_l0_flag (Slice Header syntax element) is equal to 1, the
value of luma_weight_l0[i] shall be in the range of –128 to 127. When luma_weight_l0_flag is equal to
0, luma_weight_l0[i] shall be inferred to be equal to 2luma_log2_weight_denom for RefPicList0[i].
luma_log2_weight_denom is a Slice Header syntax element.

 WeightOffset[L0=0][i=0 to 31][Cb=1] (i.e. chromaCb_weight_l0[i]) are specified for the weighting and
offset factors applied to the chroma Cb prediction values for list 0 prediction using RefPicList0[i] (one-
to-one correspondence in i). When chroma_weight_l0_flag (Slice Header syntax element) is equal to 1,
the value of chromaCb_weight_l0[i] shall be in the range of –128 to 127. When
chroma_weight_l0_flag is equal to 0, chromaCb_weight_l0[i] shall be inferred to be equal to
2chroma_log2_weight_denom for RefPicList0[i]. chroma_log2_weight_denom is a Slice Header
syntax element.

 WeightOffset[L0=0][i=0 to 31][Cr=2] (i.e. chromaCr_weight_l0[i]) are specified for the weighting and
offset factors applied to the chroma Cr prediction values for list 0 prediction using RefPicList0[i] (one-
to-one correspondence in i). When chroma_weight_l0_flag (Slice Header syntax element) is equal to 1,

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 91

MFX_AVC_WEIGHTOFFSET_STATE
the value of chromaCr_weight_l0[i] shall be in the range of –128 to 127. When
chroma_weight_l0_flag is equal to 0, chromaCr_weight_l0[i] shall be inferred to be equal to
2chroma_log2_weight_denom for RefPicList0[i].

2.2 AVC Decoder Commands

2.2.1 MFD_AVC_DPB_STATE Command

MFD_AVC_DPB_STATE
Project: All

Source: VideoCS

Length Bias: 2

This is a frame level state command used only in DXVA2 AVC Short Slice Bitstream Format VLD mode.
 RefFrameList[16] of DXVA2 interface is replaced with intel Reference Picture Addresses[16] of
MFX_PIPE_BUF_ADDR_STATE command. The LongTerm Picture flag indicator of all reference pictures are
collected into LongTermPic_Flag[16].
 FieldOrderCntList[16][2] and CurrFieldOrderCnt[2] of DXVA2 interface are replaced with intel POCList[34] of
MFX_AVC_DIRECTMODE_STATE command.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC_DEC
Format: OpCode

23:21 SubOpcode A
Default Value: 1h
Format: OpCode

20:16 SubOpcode B
Default Value: 6h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h Excludes DWord (0,1) =0009h
Project: All
Format: =n Total Length - 2

1 31:16 LongTermFrame_Flag[16][1 bit]

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 92

MFD_AVC_DPB_STATE
One-to-one correspondence with the entries of the Intel RefFrameList[16]. 1 bit per reference frame.

Value Name Project
1 the picture is a long term reference picture
0 the picture is a short term reference picture

15:0 Non-ExistingFrame_Flag[16][1 bit]
One-to-one correspondence with the entries of the Intel RefFrameList[16]. 1 bit per reference frame.
Value Name Project
1 the reference picture in that entry of RefFrameList[] does not exist anymore.
0 the reference picture in that entry of RefFrameList[] is a valid reference

Programming Notes
When an element of the list of frames is not relevant (e.g., due to the corresponding reference entry
being empty or being marked as "not used for reference"), the value of the corresponding bit of
NonExistingFrameFlags shall be set to 0.

2 31:0 UsedForReference_Flag[16][2 bits]
One-to-one correspondence with the entries of the Intel RefFrameList[16]. 2 bits per reference frame.
Value Name
0 indicates a frame is “not used for reference”.
1 bit[0] indicates that the top field of a frame is marked as "used for reference".
2 bit[1] indicates that the bottom field of a frame is marked as "used for reference".
3 bit[1:0] indicates that a frame (or field pair) is marked as “used for reference”.

3..10

31:0 LTSTFrameNumList[16][16 bits]

One-to-one correspondence with the entries of the Intel RefFrameList[16]. 16 bits per reference
frame.Depending on the corresponding LongTermFrame_Flag[], the content of this field is interpreted
differently.
Value Name Description
1 LongTermFrame_Flag[i] LTSTFrameNumList[i] represent LongTermFrameIdx.
0 LongTermFrame_Flag[i] LTSTFrameNumList[i]represent Short Term Picture

FrameNum.

Programming Notes
When an element of the list of frames is not relevant (e.g., due to the corresponding reference entry
being empty or being marked as "not used for reference"), the value of the LTSTFrameNumList entry
shall be set to 0.

NOTE modified from DXVA2 – The values in RefFrameList and UsedForReference_Flag are the primary
means by which the H/W can determine whether the corresponding entries in RefFrameList, POCList,
LTSTFrameNumList, and Non-ExistingFrame_Flag should be considered valid for use in the decoding
process of the current picture or not. When RefFrameList[i] is marked to be invalid, the values of
POCList[i][0], POCList[i][1], LTSTFrameNumList[i], UsedForReference_Flag[i], and Non-
ExistingFrame_Flag[i] must all be equal to 0. When UsedForReference_Flag[i] = 0, the value of
RefFrameList[i] must be marked invalid.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 93

2.2.2 MFD_AVC_SLICEADDR Command

MFD_AVC_SLICEADDR
Project: All

Source: VideoCS

Length Bias: 2

This is a Slice level command used only for DXVA2 AVC Short Slice Bitstream Format VLD mode.When decoding a
slice, H/W needs to know the last MB of the slice has reached in order to start decoding the next slice. It also needs
to know if a slice is terminated but the last MB has not reached, error conealment should be invoked to generate
those missing MBs. For AVC DXVA2 Short Format, the only way to know the last MB position of the current slice,
H/W needs to snoop into the next slice’s start MB address (a linear address encoded in the Slice Header). Since
each BSD Object command can have only one indirect bitstream buffer address, this command is added to help H/W
to snoop into the next slice’s slice header and retrieve its Start MB Address. This command will take the next slice’s
bitstream buffer address as input (exactly the same way as a BSD Object command), and parse only the
first_mb_in_slice syntax element. The result will stored inside the H/W, and will be used to decode the current slice
specified in the BSD Object command.Only the very first few bytes (max 5 bytes for a max 4K picture) of the Slice
Header will be decoded, the rest of the bitstream are don’t care. This is because the first_mb_in_slice is encoded in
Exponential Golomb, and will take 33 bits to represent the max 256 x 256 = 64K-1 value. The indirect data of
MFD_AVC_SLICEADDR is a valid BSD object and is decoded as in BSD OBJECT command.The next Slice Start
MB Address is also exposed to the MMIO interface.The Slice Start MB Address (first_mb_in_slice) is a linear MB
address count; but it is translated into the corresponding 2D MB X and Y raster position, and are stored internally as
NextSliceMbY and NextSliceMbX.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFD_AVC_ SLICEADDR
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC_DEC
Format: OpCode

23:21 SubOpcode A
Default Value: 1h
Format: OpCode

20:16 SubOpcode B
Default Value: 7h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h Excludes DWord (0,1) =0001h
Project: All
Format: =n Total Length - 2

1 31:24 Reserved
Project: All
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 94

MFD_AVC_SLICEADDR
23:0 Indirect BSD Data Length

Format: U24 in bytes

This field provides the length in bytes of the indirect data. A value zero indicates that indirect data
fetching is disabled – subsequently, the Indirect Data Start Address field is ignored. Driver always
programs this up to 5 bytes; for bitstream less than 5 bytes, driver program the lesser value. (Emulation
Prevention Byte should never happen for the first 5 bytes when the max picture size can only be
4Kx4K)It is the length in bytes of the bitstream data for the current slice, including Slice Header + Slice
Data + Emulation Prevention Bytes + any filling trailing zeros after the last MB. Hardware ignores the
contents after the last non-zero byte. Trailing zero is allowed and handled correctly in both CABAC and
CAVLC modes.

2 31:29 Reserved
Project: All
Format: MBZ

28:0 Indirect BSD Data Start Address

This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit for
processing. This pointer is relative to the MFD Indirect Object Base Address.Hardware ignores this field
if indirect data is not present. It is a byte-aligned address for the AVC bitstream data in both
CABAC/CAVLD Modes.In implementing a phantom slice at the end of a picture for automatic error
concealment, this field should set to 0.It includes the NAL Header Byte. (but does not perform EMU
detection).Must provide a valid MB address, even if error. MB must be clamped to within a pic
boundary.

Value Name
[0,512MB)

2.2.3 MFD_AVC_BSD_OBJECT Command

MFD_AVC_BSD_OBJECT

Source: VideoCS

Length Bias: 2

The MFD_AVC_BSD_OBJECT command is the only primitive command for the AVC Decoding Pipeline. The same
command is used for both CABAC and CAVLD modes.
 The Slice Data portion of the bitstream is loaded as indirect data object.Before issuing a MFD_AVC_BSD_OBJECT
command, all AVC states of the MFD Engine need to be valid. Therefore the commands used to set these states
need to have been issued prior to the issue of a MFD_AVC_BSD_OBJECT command.Context switch interrupt is not
supported by this command.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFD_AVC_BSD_OBJECT

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 95

MFD_AVC_BSD_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC_DEC
Format: OpCode

23:21 SubOpcode A
Default Value: 1h
Format: OpCode

20:16 SubOpcode B
Default Value: 8h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0h Excludes DWord (0,1) = 0004
Project: All
Format: =n Total Length - 2

1 31:24 Reserved
Format: MBZ

23:0 Indirect BSD Data Length
Format: U24
This field provides the length in bytes of the indirect data. A value zero indicates that indirect data
fetching is disabled – subsequently, the Indirect Data Start Address field is ignored.
 This field must have the same alignment as the Indirect Object Data Start Address.
 AVC Short Format : It is the length in bytes of the bitstream data for the current slice, including Slice
Header + Slice Data + Emulation Prevention Bytes + any filling trailing zeros after the last MB.
 Hardware ignores the contents after the last non-zero byte. Trailing zero is allowed and handled
correctly in both CABAC and CAVLC modes.

2 31:29 Reserved
Project: All
Format: MBZ

28:0 Indirect BSD Data Start Address
Project: All
Format: U29
This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit for
processing. This pointer is relative to the MFD Indirect Object Base Address.
 Hardware ignores this field if indirect data is not present.
 It is a byte-aligned address for the AVC bitstream data in both CABAC/CAVLD Modes.
 In implementing a phantom slice at the end of a picture for automatic error concealment, this field
should set to 0.
 It includes the NAL Header (the NAL Header does not need to perform EMU detection). For AVC
Base Layer, it is a single byte. But for MVC, the NAL Header is 4 Bytes long. These NAL Header Unit
must be passed to HW in the compressed bitstream buffer.

Value Name
[0,512MB)

3..5 31:0 Inline Data

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 96

MFD_AVC_BSD_OBJECT
All the required Slice Header parameters and error handling settings are captured as InLine Data of
the AVC_BSD_OBJECT command. It has a fixed size of 4 DWs. Its definition is described in the
follwoing section: Inline Data Description.

2.2.3.1 Inline Data Description

Inline Data Description

Source: VideoCS

Default Value: 0x00000000, 0x00000000

This structure includes all the required Slice Header parameters and error handling settings for AVC_BSD_OBJECT
command.
DWord Bit Description
3 31 Concealment Method

This field specifies the method used for concealment when error is detected. If set, a copy from
collocated macroblock location is performed from the concealment reference indicated by the
ConCeal_Pic_Id field. If it is not set, a copy from the current picture is performed using Intra 16x16
Prediction method.

Value Name Description
0 Intra 16x16 Prediction
1 Inter P Copy

30 Init Current MB Number
When set, the current Slice_Start_MB_Num, Slice_MB_Start_Hor_Pos and Slice_MB_Start_Vert_Pos
fields will be used to initialize the Current_MB_Number register.
 This effectively disables the concealment capability.

29 Reserved

Format: MBZ

28:27 MB Error Concealment B Temporal Prediction mode
These two bits control how the reference L0/L1 are overridden in B temporal slice.
Value Name Description
00b [Default] Both Reference Indexes L0/L1 are forced to 0 during Concealment
01b Only Reference Index L1 is forced to 0; Reference Index L0 is forced to -1
10b Only Reference Index L0 is forced to 0; Reference Index L1 is forced to -1
11b Reserved Invalid

26 MB Error Concealment B Temporal Reference Index Override Enable Flag

During MB Error Concealment on B slice with Temporal Direct Prediction, either L0 or L1 or both can be
forced to 0 (MB Error Concealment B Temporal Reference Index Override Mode from above will control
which one)
 This bit can be set to use the predicted reference indexes instead.
Value Name Description

0 [Default] Predicted Reference Indexes L0/L1 are used during MB Concealment.
1 Reference Indexes L0/L1 are overridden to 0 during MB Concealment.

25 MB Error Concealment B Temporal Motion Vectors Override Enable Flag
During MB Error Concealment on B slice with Temporal Direct Prediction, motion vectors are forced to

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 97

Inline Data Description
0 to improve image quality.
 This bit can be set to preserve the original weight prediction.

Value Name Description
0 [Default] Predicted Motion Vectors are used during MB Concealment
1 Motion Vectors are Overridden to 0 during MB Concealment

24 MB Error Concealment B Temporal Weight Prediction Disable Flag
During MB Error Concealment on B slice with Temporal Direct Prediction, weight prediction is disabled
to improve image quality.
 This bit can be set to preserve the original weight prediction.
Value Name Description

0 [Default] Weight Prediction is Disabled during MB Concealment
1 Weight Prediction will not be overridden during MB Concealment

23:22 Reserved
Format: MBZ

21:16 Concealment Picture ID
This field identifies the picture in the reference list to be used for concealment. This field is only valid if
Concealment Method is Inter P Copy.
Bit Filed Value Defenition
21 0 Frame Picture
21 1 Field picture
20:16 All Frame Store Index[4:0]

15 Reserved
Format: MBZ

14 BSD Premature Complete Error Handling
BSD Premature Complete Error occurs in situation where the Slice decode is completed but there are
still data in the bitstream.
Value Name Description
1 Set the interrupt to the driver (provide MMIO registers for MB address R/W)
0 Ignore the error and continue (masked the interrupt), assume the hardware automatically

performs the error handling

13 Reserved
Format: MBZ

12 MPR Error (MV out of range) Handling
Software must follow the action for each Value as follow:
Value Name Description
1 Set the interrupt to the driver (provide MMIO registers for MB address R/W)
0 Ignore the error and continue (masked the interrupt), assume the hardware automatically

performs the error handling

11 Reserved
Format: MBZ

10 Entropy Error Handling
Software must follow the action for each Value as follow:
Value Name Description
1 Set the interrupt to the driver (provide MMIO registers for MB address R/W).
0 Ignore the error and continue (masked the interrupt), assume the hardware automatically

perform the error handling.

9 Reserved
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 98

Inline Data Description
8 MB Header Error Handling

Software must follow the action for each Value as follow:
Value Name Description
1 Set the interrupt to the driver (provide MMIO registers for MB address R/W).
0 Ignore the error and continue (masked the interrupt), assume the hardware automatically

perform the error concealment.

7:6 MB Error Concealment B Spatial Prediction mode
These two bits control how the reference L0/L1 are overridden in B spatial slice.
Value Name Description
00b [Default] Both Reference Indexes L0/L1 are forced to 0 during Concealment
01b Only Reference Index L1 is forced to 0; Reference Index L0 is forced to -1
10b Only Reference Index L0 is forced to 0; Reference Index L1 is forced to -1
11b Reserved Invalid

5 MB Error Concealment B Spatial Reference Index Override Disable Flag

During MB Error Concealment on B slice with Spatial Direct Prediction, either L0 or L1 or both can be
forced to 0 (MB Error Concealment B Spatial Reference Index Override Mode from above will control
which one)
 This bit can be set to use the predicted reference indexes instead.
Value Name Description

0 [Default] Reference Indexes L0/L1 are overridden during MB Concealment
1 Predicted Reference Indexes L0/L1 are used during MB Concealment

4 MB Error Concealment B Spatial Motion Vectors Override Disable Flag
During MB Error Concealment on B slice with Spatial Direct Prediction, motion vectors are forced to 0
to improve image quality.
 This bit can be set to use the predicted motion vectors instead.
 This bit does not affect normal decoded MB.

Value Name Description
0 [Default] Motion Vectors are Overridden to 0 during MB Concealment
1 Predicted Motion Vectors are used during MB Concealment

3 MB Error Concealment B Spatial Weight Prediction Disable Flag
During MB Error Concealment on B slice with Spatial Direct Prediction, weight prediction is disabled to
improve image quality.
 This bit can be set to preserve the original weight prediction.
 This bit does not affect normal decoded MB.
Value Name Description

0 [Default] Weight Prediction is Disabled during MB Concealment.
1 Weight Prediction will not be overridden during MB Concealment.

2 MB Error Concealment P Slice Reference Index Override Disable Flag

During MB Error Concealment on P slice reference index L0 is forced to 0.
 This bit can be set to use the predicted reference indexes instead.
 This bit does not affect normal decoded MB.
Value Name Description

0 [Default] Reference Indexes L0 are force to 0
1 Predicted Reference Indexes L0 are used during MB Concealment.

1 MB Error Concealment P Slice Motion Vectors Override Disable Flag
During MB Error Concealment on P slice, motion vectors are forced to 0 to improve image quality.
 This bit can be set to use the predicted motion vectors instead.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 99

Inline Data Description
 This bit does not affect normal decoded MB.

Value Name Description
0 [Default] Motion Vectors are Overridden to 0 during MB Concealment
1 Predicted Motion Vectors are used during MB Concealment

0 MB Error Concealment P Slice Weight Prediction Disable Flag
During MB Error Concealment on P slice, weight prediction is disabled to improve image quality.
 This bit can be set to preserve the original weight prediction.
 This bit does not affect normal decoded MB.
Value Name Description

0 [Default] Weight Prediction is Disabled during MB Concealment.
1 Weight Prediction will not be overridden during MB Concealment.

4 31:16 First MB Byte Offset of Slice Data or Slice Header
Description Project

Long Format:It gives the byte offset to locate the Slice Header in the bitstream for a slice,
provided by the Indirect BSD Data Start Address.
 It does not include any Emulation Byte count present in the Slice Header. HW will take care of
the Emulation Byte adjustment to this offset.

Short Format: it should be programmed to be 0. HW will parse the Slice Header.

Programming Notes Project
MFX supports only DXVA2 Long and Short Format.

15:8 Reserved
Format: MBZ

7 Fix Prev Mb Skipped
Enables an alternative method for decoding mb_skipped, to cope with an encoder that codes a skipped
MB as a direct MB with no coefficient.

6:5 Reserved
Format: MBZ

Programming Notes
Please note that the field MUST be set to '0' at this time.

4 Emulation Prevention Byte Present
Value Name Description

0 H/W needs to perform Emulation Byte Removal
1 H/W does not need to perform Emulation Byte Removal

3 LastSlice Flag
It is needed for both error concealment at the end of a picture. It is also needed to know to set the last
MB in a picture correctly.
Value Name Description
1 If the current Slice to be decoded is the very last slice of the current picture.
0 If the current Slice to be decoded is any slice other than the very last slice of the current

picture

2:0 First Macroblock (MB)Bit Offset
Exists If: AVC Long Format Only
Format: U3
This field provides the bit offset of the first macroblock of the Slice in the first byte of the input
compressed bitstream.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 100

Inline Data Description

2.3 AVC Encoder PAK Commands
Each PAK Commands is composed of a command op-code DW and one or more command data DWs
(inline data). The size of each command is specified as part of the op-code DW. Most of the commands
have fixed size, except some are allowed to be of variable length.

There is an inherent order of executing MFC PAK commands that driver must follow.

2.3.1 MFC_AVC_PAK_OBJECT Command

MFC_AVC_PAK_OBJECT

Source: VideoCS

Length Bias: 2

The MFC_AVC_PAK_OBJECT command is the second primitive command for the AVC Encoding Pipeline. The
same command is used for both CABAC and CAVLC modes. The MV Data portion of the bitstream is loaded as
indirect data object.Before issuing a MFC_AVC_PAK_OBJECT command, all AVC MFX states need to be valid.
Therefore the commands used to set these states need to have been issued prior to the issue of this command.MB
record must be consecutive with no gaps, hence we do not need MB(x,y) in each MB command. Internal counter will
keep track of the current MB address, starting from the Start_MB_In_Slice loaded at the beginning of each slice.
MFC_AVC_PAK_OBJECT command follows the MbType definition like MFD. Many fields in this command are
identical to that in VME output. This is intended to reduce software converting overhead from VME to PAK. Encoding
statistical data such as the total size of the output bitstream are provided through MMIO registers. Software may
access these registers through MI_STORE_REGISTER_MEM command.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFC_AVC_PAK_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 1h AVC_ENC
Format: OpCode

23:21 SubOpcode A
Default Value: 2h
Format: OpCode

20:16 SubOpcode B
Default Value: 9h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 101

MFC_AVC_PAK_OBJECT
11:0 DWord Length

Default Value: 000Ah DWORD_COUNT_n
Project: All
Format: =n Length -2

1 31:10 Reserved
Project: All
Format: MBZ

9:0 Indirect PAK-MV Data Length
Format: U10
This field provides the length in bytes of the indirect data, which contains all the MVs for the current MB
(in any partitioning and subpartitioning form). A value zero indicates that indirect data fetching is
disabled – subsequently, the Indirect PAK-MV Data Start Address field is ignored. This field must have
the same alignment as the Indirect PAK-MV Data Start Address. This field must be DW aligned (since
each MV is 4 bytes in size).Driver has to derived this field from MVsize (MVquantity in DXVA, exact
size) *4 bytes per MV.

2 31:29 Reserved
Format: MBZ

28:0 Indirect PAK-MV Data Start Address Offset.
This field specifies the memory starting address (offset) of the MV data to be fetched into PAK
Subsystem for processing. This pointer is relative to the MFC Indirect PAK-MV Object Base
Address.Hardware ignores this field if indirect data is not present, i.e. the Indirect PAK-MV Data Length
is set to 0. It is a Dword aligned address in all AVC encoding configuration, since each MV is 4 bytes in
size.

Value Name
[0,512MB)

3..10 31:0 Inline Data
All the required MB level controls and parameters for encoding are captured as inline data of the
MFC_AVC_PAK_OBJECT command. It has a fixed size of 8 DWs. Its definition is described in the next
section.

2.3.1.1 PAK Object Inline Data Description
The Inline Data includes all the required MB encoding states, constitute part of the Slice Data syntax
elements, MB Header syntax elements and their derivatives. It provides information for the following
operations:

1. Forward and Inverse Transform
2. Forward and Inverse Quantization
3. Advanced Rate Control (QRC)
4. MB Parameter Construction (MPC)
5. CABAC/CAVLC encoding
6. Bit stream packing
7. Intra and inter-Prediction decoding loop
8. Internal error handling

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 102

These state/parameter values may subject to change on a per-MB basis, and must be provided in each
MFC_AVC_PAK_OBJECT command. The values set for these variables are retained internally, until they
are reset by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

The inline data has been designed to match the DXVA 2.0, with the exception of the starting byte
(DW0:0-7) and the ending dword (DW7:0-31).

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and
FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,
PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and
current MB position internally.

DWord Bit Description
 3 31 ExtendedForm

This field specifies that LumaIntraMode and RefPicSelect are fully replicated in 4x4 and
8x8 sub-blocks respectively. This non-DXVA form is used for optimal kernel performance.

30:24 Reserved: MBZ

23 Reserved : MBZ

22:20 MvFormat (Motion Vector Size). This field specifies the size and format of the output
motion vectors.

This field is reserved (MBZ) when the IntraMbFlag = 1.

The valid encodings are:

000 = 0: No motion vector

100 = 8MV: Four 8x8 motion vector pairs

110 = 32MV: 16 4x4 motion vector pairs

Others are reserved.

(The following encodings are intended for future usages:

001 = 1MV: one 16x16 motion vector

010 = 2MV: One 16x16 motion vector pair

011 = 4MV: Four 8x8 motion vectors

101 = 16MV: 16 4x4 motion vectors

111 = Packed, number of MVs is given by PackedMvNum.)

Note:

This field is fully supported for 100 (8MV) and 110 (32MV)

19 CbpDcY. This field specifies if the Luma DC sub-block is coded. Setting it to 0 will force PAK
to zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be
determined by the quantization process.

1 – the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it is still possible
that all DC coefficients are zero.

0 – no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB mode or all DC

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 103

DWord Bit Description
coefficients are zero.

Programming Note: when Reference Mb: IPCM or inferred IPCM, current mb: base mode
flag = 1; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and
Cbp4x4U[15:0] must set to 1’s.

18 CbpDcU. This field specifies if the Chroma Cb DC sub-block is coded. Setting it to 0 will
force PAK to zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be
determined by the quantization process.

1 – the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is present; it is still
possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are zero.

Programming Note: when Reference Mb: IPCM or inferred IPCM, current mb: base mode
flag = 1; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and
Cbp4x4U[15:0] must set to 1’s.

17 CbpDcV. This field specifies if the Chroma Cb DC sub-block is coded. Setting it to 0 will
force PAK to zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be
determined by the quantization process.

1 – the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is present; it is still
possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are zero.

Programming Note: when Reference Mb: IPCM or inferred IPCM, current mb: base mode
flag = 1; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and
Cbp4x4U[15:0] must set to 1’s.

16 Reserved: MBZ

(reserved for future use as ExternalResidBufFlag for turbo mode)

15 Transform8x8Flag

This field indicates that 8x8 transform is used for the macroblock.

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current MB
uses 8x8 transform. The transform_size_8x8_flag syntax element, if present in the output
bitstream, is the same as this field. However, whether transform_szie_8x8_flag is present or
not in the output bitstream depends on several other conditions.

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than 8x8

Otherwise, this field must be set to 0.

0: 4x4 integer transform

1: 8x8 integer transform

14 FieldMbFlag

This field specifies the field polarity of the current macroblock, as the mb_field_decoding_flag
syntax element in AVC spec.

This field specifies whether current macroblock is coded as a field or frame macroblock in
MBAFF mode. It is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 104

DWord Bit Description
mode.

0 = Frame macroblock
1 = Field macroblock

13 IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock. I_PCM is
considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

12:8 MbType5Bits

This field is encoded to match with the best macroblock mode determined as described in
the next section. It follows an unified encoding for inter and intra macroblocks according to
AVC Spec.

7 FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Within an MbAff frame picture, this field may be different per macroblock and is set to 1 only
for the second macroblock in a MbAff pair if FieldMbFlag is set. Otherwise, it is set to 0.

Within a field picture, this field is set to 1 if the current picture is the bottom field picture.
Otherwise, it is set to 0. It is a constant for the whole field picture.

This field is reserved and MBZ for a progressive frame picture.

0 = Current macroblock is a field macroblock from the top field

1 = Current macroblock is a field macroblock from the bottom field

Programming Note: Here bits [26:24] (MbAffFieldFlag and FiedlMbPolarityFlag) match with
bits [10:8] of the Media Block Read message descriptor, simplifying the programming for
message generation, as when MbAffFieldFlag is “1”, kernels need to override the original
“frame” surface state set for MBAFF frame picture.

6 MB Reserved: Inter MB converted to IPCM

This field is used for HW purpose only

SW should not use it.

5:4 IntraMbMode

This field is provided to carry information partially overlapped with MbType.

This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware..

3 Reserved: MBZ

2 SkipMbFlag

By setting it to 1, this field forces an inter macroblock to be encoded as a skipped
macroblock. It is equivalent to mb_skip_flag in AVS spec, indicating that a macroblock is
inferred as a P_Skip (or B_Skip) in a P Slice (or B Slice). Hardware honors input MVs for

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 105

DWord Bit Description
motion prediction and forces CBP to zero.

By setting it to 0, an inter macroblock will be coded as a normal inter macroblock. The
macroblock may still be coded as a skipped macroblock, according to the macroblock type
conversion rules described in the later sub sections.

This field can only be set to 1 for certain values of MbType. See details later.

This field is only valid for an inter macroblock. For intra MB (bit 13 of this DW set to one), this
bit must be set to zero.

0 = not a skipped macroblock

1 = is coded as a skipped macroblock

1:0 InterMbMode

This field is provided to carry redundant information as that encoded in MbType.

This field is only valid if IntraMbFlag =0, otherwise, it is ignored by hardware.

4 31:16 Cbp4x4Y[bit 15:0] (Coded Block Pattern Y)
For 4x4 sub-block (when Transform8x8flag = 0 or in intra16x16) :
 16-bit cbp, one bit for each 4x4 Luma sub-block (not including the DC 4x4 Luma block in
intra16x16) in a MB. The 4x4 Luma sub-blocks are numbered as

blk0 1 4 5

bit15 14 11 10

lk2 3 6 7

bit13 12 9 8

blk8 9 12 13

bit7 6 3 2

blk10 11 14 15

bit5 4 1 0

The cbpY bit assignment is cbpY bit [15 - X] for sub-block_num X.

For 8x8 block (when Transform8x8flag = 1)
Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored. The 8x8
Luma blocks are numbered as
 blk0 1 bit3 2
 blk2 3 bit1 0

The cbpY bit assignment is cbpY bit [3 - X] for block_num X.
0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all
coefficient values are zero), or force to zero for PAK.

1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is
still possible to have all its coefficients be zero - bad coding).

Programming Note: when Reference Mb: IPCM or inferred IPCM, current mb: base mode
flag = 1; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and
Cbp4x4U[15:0] must set to 1’s.

15:8 MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock in the
destination picture in units of macroblocks.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 106

DWord Bit Description
Format = U8 in unit of macroblock.

7:0 MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current macroblock in
the destination picture in units of macroblocks.
Format = U8 in unit of macroblock.

5 31:16 Cbp4x4V (Coded Block Pattern Cr)
Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cr sub-blocks are numbered as
 blk0 1 bit3 2
 blk2 3 bit1 0
The cbpCr bit assignment is cbpCr bit [3 - X] for sub-block_num X.
0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient
values are zero), or force to zero for PAK.
1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to
have all its coefficients be zero - bad coding).
For monochrome, this field is ignored.

Programming Note: when Reference Mb: IPCM or inferred IPCM, current mb: base mode
flag = 1; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and
Cbp4x4U[15:0] must set to 1’s.

15:0 Cbp4x4U (Coded Block Pattern Cb)
Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cb sub-blocks are numbered as
 blk0 1 bit3 2
 blk2 3 bit1 0
The cbpCb bit assignment is cbpCb bit [3 - X] for sub-block_num X.
0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient
values are zero), or force to zero for PAK.
1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to
have all its coefficients be zero - bad coding).
For monochrome, this field is ignored.

Programming Note: when Reference Mb: IPCM or inferred IPCM, current mb: base mode
flag = 1; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and
Cbp4x4U[15:0] must set to 1’s.

6 31:28 Skip8x8Pattern

This field indicates whether each of the four 8x8 sub macroblocks is using the predicted MVs
and will not be explicitly coded in the bitstream (the sub macroblock will be coded as direct
mode). It contains four 1-bit subfields, corresponding to the 4 sub macroblocks in sequential
order. The whole macroblock may be actually coded as B_Direct_16x16 or B_Skip,
according to the macroblock type conversion rules described in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also
ignores this field for an intra macroblock.

0 in a bit – Corresponding MVs are sent in the bitstream

1 in a bit – Corresponding MVs are not sent in the bitstream

27 EnableCoeffClamp

1 = the magnitude of coefficients of the current MB will be clamped based on the clamping
matrix after quantization

0 = no clamping

26 LastMbFlag

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 107

DWord Bit Description
1 – the current MB is the last MB in the current Slice

0 – the current MB is not the last MB in the current SliceReserved MBZ.

25 SkipMbConvDisable

This is a per-MB level control to enable and disable skip conversion. This field is ORed with
SkipConvDisable field. This field is only valid for a P or B slice. It must be zero for other slice
types. Rules are provided in Section Macroblock Type Conversion Rules

0 - Enable skip type conversion for the current macroblock

1 - Disable skip type conversion for the current macroblock

24:8 Reserved MBZ.
7:0 QpPrimeY

This is the per-MB QP value specified for the current MB.

For 8-bit pixel data, QpY is the same as QpPrimeY, and it takes on a value in the range of 0
to 51, positive integer.

Note: This value may differ from the actual codes, when HW QRC is on

7 .. 9 31:0

Each

For intra macroblocks, definition of these fields are specified in PAK Object Inline Data
Description

For inter macroblocks, definition of these fields are specified in PAK Object Inline Data
Description

10 31:24 MaxSizeInWord

PAK should not exceed this budget accumulatively, otherwise it will trickle the PANIC mode.

23:16 TargetSizeInWord

PAK should use this budget accumulatively to decide if it needs to limit the number of non-
zero coefficients.

15:0 Reserved : MBZ

Inline data for LumaIntraMode

ExtendedForm 0 or 1 0 0 1 1

 Intra4x4 Intra8x8 Intra16x16 Intra8x8 Intra16x16

DW4 – 31:28 Block 7 - - - Block 0
DW4 – 27:24 Block 6 - - - Block 0
DW4 – 23:20 Block 5 - - - Block 0
DW4 – 19:16 Block 4 - - - Block 0
DW4– 15:12 Block 3 - - - Block 0
DW4 – 11:8 Block 2 - - - Block 0
DW4 – 7:4 Block 1 - - - Block 0
DW4 – 3:0 Block 0 - - - Block 0

DW5 – 31:28 Block 15 - - - Block 0
DW5 – 27:24 Block 14 - - - Block 0
DW5 – 23:20 Block 13 - - - Block 0

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 108

ExtendedForm 0 or 1 0 0 1 1

DW5 – 19:16 Block 12 - - - Block 0
DW5 – 15:12 Block 11 - - - Block 0
DW5– 11:8 Block 10 - - - Block 0
DW5 – 7:4 Block 9 - - - Block 0
DW5 – 3:0 Block 8 - - - Block 0

vctrl_pred_mode[63:0] (vctrl_it_lumaintrapredmode3[15:0] & vctrl_it_lumaintrapredmode2[15:0] &

vctrl_it_lumaintrapredmode1[15:0] & vctrl_it_lumaintrapredmode0[15:0]) :

vctrl_pred_mode_noextend[63:0]

vctrl_pred_mode_noextend[63:0] (vctrl_INTRA_vld_16x16mode & vctrl_it_Transform8x8Flag) ?

vctrl_pred_mode_noextend_4x4[63:0] :

vctrl_pred_mode_noextend_16x16[63:0] :

vctrl_pred_mode_noextend_8x8[63:0] :

vctrl_pred_mode_noextend_4x4[63:0]

vctrl_pred_mode_noextend_16x1
6[63:0] vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0]

vctrl_pred_mode_noextend_8x8[6
3:0] “h000” & vctrl_it_lumaintrapredmode0[15:12] &

“h000” & vctrl_it_lumaintrapredmode0[11:8] &

“h000” & vctrl_it_lumaintrapredmode0[7:4] &

“h000” & vctrl_it_lumaintrapredmode0[3:0]

vctrl_pred_mode_noextend_4x4[6
3:0]

vctrl_it_lumaintrapredmode3[15:0] & vctrl_it_lumaintrapredmode2[15:0] &
vctrl_it_lumaintrapredmode1[15:0] & vctrl_it_lumaintrapredmode0[15:0]

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 109

Inline data for RefPicSelect

Extende
dForm

0 0 0 0 or 1 1 1 1

 16x16 16x8 8x16 8x8 16x16 16x8 8x16

DW8 –
31:24

- - - L0 blk3 L0 blk0 - L0 blk1

DW8 –
23:16

- - - L0 blk2 L0 blk0 - L0 blk0

DW8 –
15:8

- L0 blk1 L0 blk1 L0 blk1 L0 blk0 - L0 blk1

DW8 –
7:0

L0 blk0 L0 blk0 L0 blk0 L0 blk0 L0 blk0 - L0 blk0

DW9 –
31:24

- - - L1 blk3 L1 blk0 - L1 blk1

DW9 –
23:16

- - - L1 blk2 L1 blk0 - L1 blk0

DW9 –
15:8

- L1 blk1 L1 blk1 L1 blk1 L1 blk0 - L1 blk1

DW9 –
7:0

L1 blk0 L1 blk0 L1 blk0 L1 blk0 L1 blk0 - L1 blk0

The inline data content of Dwords 4 to 6 is defined either for intra prediction or for inter prediction, but not
both.

Inline data subfields for an Intra Macroblock

Dword Bit Description
7 31:16 LumaIntraMode[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment table later in this section.

 15:0 LumaIntraMode[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one
intra16x16 of a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block
(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only
the LSBit[1:0] is valid, since there are only 4 intra modes.

See the bit assignment table later in this section.

8 31:16 LumaIntraMode[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment table later in this section.

 15:0 LumaIntraMode[2]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 110

Dword Bit Description
See the bit assignment later in this section.

9 31:8 Reserved : MBZ

(Reserved for encocder turbo mode IntraResidueDataSize, when this is not 0, optional
residue data are provided to the PAK; Reserved for decoder)

 7:0 IntraStruct

This field contains 6 bits for IntraPredAvailFlags[5:0] and 2 bits for ChromaIntraPredMode.
The IntraPredAvailFlags[4:0] (the lower 5 bits) have already included the effect of the
constrained_intra_pred_flag. See the diagram later for the definition of neighbor position
around the current MB or MB pair (in MBAFF mode).

1 – IntraPredAvailFlagY, indicates the values of samples of neighbor Y can be used in intra
prediction for the current MB.

0 – IntraPredAvailFlagY, indicates the values of samples of neighbor Y is not available for
intra prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when
constrained_intra_pred_flag is equal to 1 and mb_field_decoding_flag is equal to 1 and the
value of the mb_field_decoding_flag for the macroblock pair to the left of the current
macroblock is equal to 0 (which can only occur when MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

it is in MBAFF mode, i.e. MbaffFrameFlag = 1,

the current macroblock is of frame type, i.e. MbFieldFag = 0, and

the current macroblock type is Intra8x8, i.e. IntraMbFlag = INTRA, IntraMbMode
= INTRA_8x8, and Transform8x8Flag = 1.

In any other cases IntraPredAvailFlag-A shall be used instead.

Bits IntraPredAvailFlags Definition
7 IntraPredAvailFlagF – F (Left 8th row

(-1,7) neighbor)

6 IntraPredAvailFlagA – A (Left
neighbor top half)

5 IntraPredAvailFlagE – E (Left
neighbor bottom half)

4 IntraPredAvailFlagB – B (Top
neighbor)

3 IntraPredAvailFlagC – C (Top right
neighbor)

2 IntraPredAvailFlagD – D (Top left
corner neighbor)

1:0 ChromaIntraPredMode – 2 bits to
specify 1 of 4 chroma intra prediction
modes, see the table in later section.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 111

Inline data subfields for an Inter Macroblock
DWord Bit Description

7 31:16 Reserved : MBZ

 15:8 SubMbPredMode (Sub-Macroblock Prediction Mode): If InterMbMode is INTER8x8, this
field describes the prediction mode of the sub-partitions in the four 8x8 sub-macroblock. It
contains four subfields each with 2-bits, corresponding to the four 8x8 sub-macroblocks in
sequential order.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant
information as MbType).

If InterMbMode is INTER16x16, INTER16x8 or INTER8x16, this field carries the prediction
modes of the sub macroblock (one 16x16, two 16x8 or two 8x16). The unused bits are set to
zero.

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

 7:0 SubMbShape (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks). It
contains four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub
macroblocks in sequential order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as
defined in DXVA). Otherwise, this field is ignored by hardware

Bits [1:0]: SubMbShape[0] – for 8x8 Block 0

Bits [3:2]: SubMbShape[1] – for 8x8 Block 1

Bits [5:4]: SubMbShape[2] – for 8x8 Block 2

Bits [7:6]: SubMbShape[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

01

23

Each 2-bit value [1:0] is defined as :

00 – SubMbPartWidth=8, SubMbPartHeight=8

01 – SubMbPartWidth=8, SubMbPartHeight=4

10 – SubMbPartWidth=4, SubMbPartHeight=8

11 – SubMbPartWidth=4, SubMbPartHeight=4

8 31:24 RefPicSelect[0][3]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List0 Table.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 112

DWord Bit Description
 23:16 RefPicSelect[0][2]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List0 Table.

 15:8 RefPicSelect[0][1]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List0 Table.

 7:0 RefPicSelect[0][0]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List0 Table.

9 31:24 RefPicSelect[1] [3]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List1 Table.

For P- picture these bits must be set to zero.

 23:16 RefPicSelect[1][2]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List1 Table.

For P- picture these bits must be set to zero.

 15:8 RefPicSelect[1][1]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List1 Table.

For P- picture these bits must be set to zero.

 7:0 RefPicSelect[1][0]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See
details in later section. This field specifies the reference index into the Reference Picture
List1 Table.

For P- picture these bits must be set to zero.

2.3.1.1.1 Luma Intra Prediction Modes
Luma Intra Prediction Modes (LumaIntraPredModes) is defined in Luma Intra Prediction Modes. It is
further categorized as Intra16x16PredMode (Luma Intra Prediction Modes), Intra8x8PredMode (Luma
Intra Prediction Modes) and Intra4x4PredMode (Luma Intra Prediction Modes), operating on 16x16, 8x8
and 4x4 block sizes, respectively. illustrates the intra prediction directions geometrically for the Intra4x4
prediction. When a macroblock is subdivided, the intra prediction is performed for the subdivision in a
predetermined order. For example, Luma Intra Prediction Modes shows the block order for Intra4x4

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 113

prediction. And Luma Intra Prediction Modes shows the block order of Block8x8 in a 16x16 region or
Block4x4 in an 8x8 region.

Definition of LumaIntraPredModes

LumaIntraPredModes

 [index] Intra16x16PredMode Intra8x8PredMode Intra4x4PredMode

Index Bit

MbType = [1…24]

Transform8x8Flag = 0

MbType = 0

Transform8x8Flag = 1

MbType = 0

Transform8x8Flag = 0

0 15:12 MBZ Block8x8 3 Block4x4 3 (0_0)

 11:8 MBZ Block8x8 2 Block4x4 2 (0_1)

 7:4 MBZ Block8x8 1 Block4x4 1 (0_2)

 3:0 Block16x16 Block8x8 0 Block4x4 0 (0_3)

1 15:12 MBZ MBZ Block4x4 7 (1_0)

 11:8 MBZ MBZ Block4x4 6 (1_1)

 7:4 MBZ MBZ Block4x4 5 (1_2)

 3:0 MBZ MBZ Block4x4 4 (1_3)

2 15:12 MBZ MBZ Block4x4 11 (2_0)

 11:8 MBZ MBZ Block4x4 10 (2_1)

 7:4 MBZ MBZ Block4x4 9 (2 2)

 3:0 MBZ MBZ Block4x4 8 (2_3)

3 15:12 MBZ MBZ Block4x4 15 (3_0)

 11:8 MBZ MBZ Block4x4 14 (3_1)

 7:4 MBZ MBZ Block4x4 13 (3_2)

 3:0 MBZ MBZ Block4x4 12 (3_3)

Definition of Intra16x16PredMode
Intra16x16PredMode Description

0 Intra_16x16_Vertical

1 Intra_16x16_Horizontal

2 Intra_16x16_DC

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 114

Intra16x16PredMode Description
3 Intra_16x16_Plane

4 – 15 Reserved

Definition of Intra8x8PredMode
Intra8x8PredMode Description

0 Intra_8x8_Vertical

1 Intra_8x8_Horizontal

2 Intra_8x8_DC

3 Intra_8x8_Diagonal_Down_Left

4 Intra_8x8_Diagonal_Down_Right

5 Intra_8x8_Vertical_Right

6 Intra_8x8_Horizontal_Down

7 Intra_8x8_Vertical_Left

8 Intra_8x8_Horizontal_Up

9 – 15 Reserved

Definition of Intra4x4PredMode
Intra4x4PredMode Description

0 Intra_4x4_Vertical

1 Intra_4x4_Horizontal

2 Intra_4x4_DC

3 Intra_4x4_Diagonal_Down_Left

4 Intra_4x4_Diagonal_Down_Right

5 Intra_4x4_Vertical_Right

6 Intra_4x4_Horizontal_Down

7 Intra_4x4_Vertical_Left

8 Intra_4x4_Horizontal_Up

9 – 15 Reserved

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 115

Intra_4x4 prediction mode directions

Numbers of Block4x4 in a 16x16 region

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 116

Numbers of Block4x4 in an 8x8 region or numbers of Block8x8 in a 16x16 region

Definition of Chroma Intra Prediction Mode

ChromaIntraPredMode

(intra_chroma_pred_mode)

Name of intra_chroma_pred_mode

0 Intra_Chroma_DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

2.3.1.1.1 Reference Indices defined for each MB partition type and Bit Assignment

 frame/field

MB/Picture

MB
partitioning

16x16 16x8 8x16 8x8

RefIdxL0/1[0] blk0 blk0 blk0 blk0 Bit 7:0
RefIdxL0/1[1] x blk1 blk1 blk1 Bit 15:8
RefIdxL0/1[2] x x x blk2 Bit 23:16
RefIdxL0/1[3] x x x blk3 Bit 31:24

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 117

2.3.1.1.2 MB Neighbor Availability in Intra-Prediction Modes (IntraPredAvailFlags)

Current MB is labelled as X. For non-MBAFF mode, 4 neighbors, A, B, C, D, are depicted in the following
picture and are defined as the following.

• MB D: top left neighbor of current MB X
• MB C: top right neighbor of current MB X
• MB B: top neighbor of current MB X
• MB A: left neighbor of the current MB X

mbAddrD
D

(top-left)

mbAddrB
B

(top)

mbAddrC
C

(top-right)

mbAddrA

A

(left)

X

CurrMbAddrX

N/A

N/A N/A N/A

For MBAFF mode, the current MB is labelled as X0 or X1, 4 neighbor pairs, A0/A1, B0/B1, C0/C1, D0/D1,
are depicted in the following picture and are defined as the following.

• MB D0: first MB of top left neighbor MB pair of current MB pair X0/X1
• MB D1: second MB of top left neighbor MB pair of current MB pair X0/X1
• MB C0: first MB of top right neighbor MB pair of current MB pair X0/X1
• MB C1: second MB of top right neighbor MB pair of current MB pair X0/X1
• MB B0: first MB of top neighbor MB pair of current MB pari X0/X1
• MB B1: second MB of top neighbor MB pair of current MB pari X0/X1
• MB A0: first MB of left neighbor MB pair of the current MB pair X0/X1
• MB A1: second MB of left neighbor MB pair of the current MB pair X0/X1

mbAddrD

D0

mbAddrB

B0

mbAddrC

C0

mbAddrD+1

D1

mbAddrB+1

B1

mbAddrC+1

C1

mbAddrA

A0

CurrMbAddrX

X0

 or

N/A

mbAddrA+1

A1

CurrMbAddrX

X1

N/A

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 118

For a given macroblock X (or X0/X1), the 6 neighbor availability signals, namely, A, B, C, D, E, F, are
defined as the following.

• IntraPredAvailFlagF – F: (Single neighbor pixel at the left 8th row (-1,7)
• IntraPredAvailFlagA – A (Left neighbor top half pixel group)
• IntraPredAvailFlagE – E (Left neighbor bottom half pixel group)
• IntraPredAvailFlagB – B (Top neighbor pixel group)
• IntraPredAvailFlagC – C (Top right neighbor pixel group)
• IntraPredAvailFlagD – D (Top left corner neighbor pixel)

The following table depicts the generation of IntraPredAvailFlags[5:0] signals in a condensed form. It
should note that for most cases only one input neighbor signal is assigned for each condition. The
exception is in the four places for deriving left neighbor A and E where the neighbor is only available if left
neighbors (A0 and A1) are both available (A0&A1). Also note that F takes output value very similar to that
for A except the two “AND” conditions, where F is assigned to A1 instead of (A0&A1).

Definition of intra-prediction neighbor availability calculation in MBAFF mode

Output D B C A E F

Current X \
Neighbor Y

Y-
Frame

Y-
Field

Y-
Frame

Y-
Field Y-Frame Y-

Field
Y-Frame Y-Field Y-Frame Y-Field Y-

Frame
Y-

Field

X0

(Top)

X-
Frame D1 D1 B1 B1 C1 C1 A0 A0 & A1 A0 A0 & A1 A0 A1

X-
Field D1 D0 B1 B0 C1 C0 A0 A0 A1 A0 A0 A0

X1

(Bottom)

X-
Frame A0 A1 X0 N/A 0 0 A1 A0 & A1 A1 A0 & A1 A1 A1

X-
Field D1 D1 B1 B1 C1 C1 A0 A1 A1 A1 A0 A1

In MB Neighbor Availability in Intra Prediction Modes IntraPredAvailFlags, X-Frame or X-Field indicates
the frame/field mode of the current MB; and Y-Frame or Y-Field indicates the corresponding neighbor MB
for the given neighbor location, being upper left (D) or left (A) for example. Therefore, “Y-” takes the
selected neighbor MB name as in the output cell in the same column. For example, for output D, if X1 is a
frame MB, Y = A, if X1 is a field MB, Y = D.

For non-MBAFF mode, as A0=A1, B0=B1, C0=C1 and D0=D1, the neighbor assignment is degenerated
into the following simple table. Here, E is assigned to the same as A and F is forced to 0.

Definition of intra-prediction neighbor availability calculation in non-MBAFF mode

Output D B C A E F

X D0 B0 C0 A0 A0 0

To further explain the neighbor assignment rules in MB Neighbor Availability in Intra Prediction Modes
IntraPredAvailFlags, the following table provides description for each condition. Please note that this table
is informative as it provides redundant information as in MB Neighbor Availability in Intra Prediction
Modes IntraPredAvailFlags.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 119

Detailed explanation of intra-prediction neighbor availability calculation in MBAFF mode

Current
MB

Current
MB Field

Neighbor
MB Field

Neighbor MB
Select (Y=?)

Neighbor Avail
Result

(OUTPUT) Description
 D

X0 X-Frame Y-Frame D D1 Top Frame MB uses [-1,-1] = D_31, thus D1 only,
regardless D frame or field pair (Top) X-Frame Y-Field D D1

 X-Field Y-Frame D D1 Top Field MB uses [-1,-2] = D_30, thus if D is
frame pair, takes D1 (D1_14 pixel), and if D is

field pair, takes D0 (D0_15 pixel)

 X-Field Y-Field D D0

X1 X-Frame Y-Frame A A0 Bottom Frame MB uses [-1,15] = A_15, thus A0
(A0_15 pixel) if A is a frame pair, or A1 (A1_7

pixel), if A is a field pair

(Bottom) X-Frame Y-Field A A1

 X-Field Y-Frame D D1 Bottom Field MB uses [-1,-1] = D_31, thus D1
only, regardless D frame or field pair X-Field Y-Field D D1

 B
X0 X-Frame Y-Frame B B1 Top Frame MB uses [0…15,-1] = B_31, thus B1

only, regardless B frame or field pair (Top) X-Frame Y-Field B B1

 X-Field Y-Frame B B1 Top Field MB uses [0…15,-2] = B_30, thus if B is
frame pair, takes B1 (B1_14 row), and if B is field

pair, takes B0 (B0_15 row)

 X-Field Y-Field B B0

X1 X-Frame Y-Frame X X0 Bottom Frame MB uses [0…15,15], thus X0
(X0_15 row)

(Bottom) X-Frame Y-Field X n/a Note: X0 and X1 must have the same field type,
this row is n/a.

 X-Field Y-Frame B B1 Bottom Field MB uses [0…15,-1] = B_31, thus B1
only, regardless B frame or field pair X-Field Y-Field B B1

 C
X0 X-Frame Y-Frame C C1 Top Frame MB uses [16…23,-1] = C_31, thus C1

only, regardless C frame or field pair (Top) X-Frame Y-Field C C1
 X-Field Y-Frame C C1 Top Field MB uses [16…23,-2] = C_30, thus if C is

frame pair, takes C1 (C1_14 row), and if C is field
pair, takes C0 (C0_15 row)

 X-Field Y-Field C C0

X1 X-Frame Y-Frame n/a 0 Bottom Frame MB doesn’t have left-top neighbor
by definition, thus forced to 0 (Bottom) X-Frame Y-Field n/a 0

 X-Field Y-Frame C C1 Bottom Field MB uses [16…23,-1] = C_31, thus C1
only, regardless C frame or field pair X-Field Y-Field C C1

 A
X0 X-Frame Y-Frame A A0 First Half of Top Frame MB uses [-1,0…7], thus A0

if A is a frame pair; but is only avail if both A0 and
A1 are avail if A is a field pair due to the mix

(Top) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A0 First Half of Top Field MB uses [-1,0..2..4..14], thus
take A0 (if A is frame pair, takes A0 even lines, and
if A is field pair, takes A0 first half)

 X-Field Y-Field A A0

X1 X-Frame Y-Frame A A1 First Half of Bottom Frame MB uses [-1,16…23],
thus A1 if A is a frame pair; but is only avail if both (Bottom) X-Frame Y-Field A A0&A1

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 120

Current
MB

Current
MB Field

Neighbor
MB Field

Neighbor MB
Select (Y=?)

Neighbor Avail
Result

(OUTPUT) Description
 D

A0 and A1 are avail if A is a field pair due to the
mix

 X-Field Y-Frame A A0 First Half of Bottom Field MB uses [-1,1..3..15],
thus take A0 (if A is frame pair, takes A0 odd lines,
and if A is field pair, takes A1 first half)

 X-Field Y-Field A A1

 E
X0 X-Frame Y-Frame A A0 Second Half of Top Frame MB uses [-1,8…15],

thus A0 if A is a frame pair; but is only avail if both
A0 and A1 are avail if A is a field pair due to the
mix

(Top) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A1 Second Half of Top Field MB uses [-1,16..18..30],
thus take A1 (if A is frame pair, takes A1 even
lines, and if A is field pair, takes A0 second half)

 X-Field Y-Field A A0

X1 X-Frame Y-Frame A A1 Second Half of Bottom Frame MB uses [-
1,24…31], thus A1 if A is a frame pair; but is only
avail if both A0 and A1 are avail if A is a field pair
due to the mix

(Bottom) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A1 Second Half of Bottom Field MB uses [-
1,17..19..31], thus takes A1 (if A is frame pair,
takes A1 odd lines, and if A is field pair, takes A1
second half)

 X-Field Y-Field A A1

 F
X0 X-Frame Y-Frame A A0 Top Frame MB uses [-1,7] = A_7 (odd location),

thus A0 if A is frame pair and A1 if field pair (Top) X-Frame Y-Field A A1
 X-Field Y-Frame A A0 Top Field MB uses [-1,14] = A_14 (even location),

thus A0 regardless A frame or field pair X-Field Y-Field A A0
X1 X-Frame Y-Frame A A1 Bottom Frame MB uses [-1,23] = A_23 (odd

location), thus A1 regardless A frame or field pair (Bottom) X-Frame Y-Field A A1
 X-Field Y-Frame A A0 Bottom Field MB uses [-1,15] = A_15 (odd

location), thus A0 if A is frame pair and A1 if A is
field pair

 X-Field Y-Field A A1

2.3.1.1.3 Macroblock Type for Intra Cases

MbType follows two different tables according to whether the macroblock is an inter or intra macroblock
according to IntraMbFlag.

For an intra macroblock, MbType, as defined in Macroblock Type for Intra Cases, carries redundant
information as IntraMbMode. The notation I_16x16_x_y_z used in the table, ‘x’ is
Intra16x16LumaPredMode, ‘y’ is ChromaCbpInd, and ‘z’ is LumaCbpInd, as defined in Macroblock Type
for Intra Cases.

MbType definition for Intra Macroblock

Macroblock Type MbType

I_4x4 0

I_8x8 0

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 121

Macroblock Type MbType

I_16x16_0_0_0 1

I_16x16_1_0_0 2

I_16x16_2_0_0 3

I_16x16_3_0_0 4

I_16x16_0_1_0 5

I_16x16_1_1_0 6

I_16x16_2_1_0 7

I_16x16_3_1_0 8

I_16x16_0_2_0 9

I_16x16_1_2_0 Ah

I_16x16_2_2_0 Bh

I_16x16_3_2_0 Ch

I_16x16_0_0_1 Dh

I_16x16_1_0_1 Eh

I_16x16_2_0_1 Fh

I_16x16_3_0_1 10h

I_16x16_0_1_1 11h

I_16x16_1_1_1 12h

I_16x16_2_1_1 13h

I_16x16_3_1_1 14h

I_16x16_0_2_1 15h

I_16x16_1_2_1 16h

I_16x16_2_2_1 17h

I_16x16_3_2_1 18h

I_PCM 19h (used by HW)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 122

Note: MbType here is identical as specified in DXVA 2.0.

For Intra_16x16 modes, the 5 bits of value (MbType – 1) have the following meanings.

Sub field definition used by MbType for a macroblock with Intra16x16 prediction
Bits Description

4 LumaCbpInd – Luma Coded Block Pattern Indicator

0 means none of the luma blocks are coded. 1 means that at least one luma block is coded.

0 = SUBMODE_I16_L_0

1 = SUBMODE_I16_L_NZ

In VME output, this field is forced to be 1 before adding 1 in Intra_16x16 mode.

3:2 ChromaCbpInd – Chroma Coded Block Pattern Indicator

00 means none of chroma blocks are coded. 01 means that only the chroma DC block is coded, but
all AC blocks are not coded. 10 means that at least one AC chroma block is coded.

00 = SUBMODE_I16_C_0

01 = SUBMODE_I16_C_DC

10 = SUBMODE_I16_C_NZ

11 = Reserved

In VME output, this field is forced to be 10 before adding 1 in Intra_16x16 mode.

Programming Note: Adding 1 to MbType by VME hardware may have carry in to this field. But as
‘11’ is reserved, the carry-in doesn’t propagate into bit 4 or higher. This allows software to update
MbType, if desired, using the redundant LumaIntraPredModes information.

1:0 Intra16x16PredMode – Intra16x16 Prediction Mode

These two bits carries redundant (identical) information as that in LumaIntraPredModes[0][0].

0 = SUBMODE_I16_VER

1 = SUBMODE_I16_HOR

2 = SUBMODE_I16_DC

3 = SUBMODE_I16_PLANE

IntraMbMode definition
IntraMbMode [1:0] Description Supported by VME? Used by PAK?

0 INTRA_16x16 (redundant with MbType) Yes Ignored

1 INTRA_8x8 Yes Yes

2 INTRA_4x4 Yes Yes

3 IPCM (redundant with MbType) No Ignored

As an alternative representation, MbType is logically the same as the following, except the I_PCM and
I_NxN (i.e. I_4x4 and I_8x8) cases:

• 24 types of 16x16 intra modes: A+B+C+D: (1h – 18h)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 123

MBTYPE_INTRA_16x16 1h A
o 4 Intra16x16 modes:

SUBMODE_I16_VER 0 B
SUBMODE_I16_HOR 1 B
SUBMODE_I16_DC 2 B
SUBMODE_I16_PLN 3 B

o 3 Chroma Cbp indices:

SUBMODE_I16_C_0 0 C
SUBMODE_I16_C_DC 4 C
SUBMODE_I16_C_NZ 8 C

o 2 Luma Cbp indices:

SUBMODE_I16_L_0 0 D
SUBMODE_I16_L_NZ Ch D

2.3.1.1.4 Macroblock Type for Inter Cases

Sub-Macroblock Prediction Mode, SubMbPredMode, indicates the prediction mode for the sub-partitions.
Prediction mode specifies prediction direction being forward (from L0), backward (from L1) or bi-
directional (from both L0 and L1). Its meaning depends on InterMbMode. Macroblock Type for Inter
Cases provides the definition of the field.

• If InterMbMode is INTER16x16, only SubMbPredMode[0] is valid, it describes the prediction mode of
the 16x16 macroblock. The other entries are set to zero by hardware.

o For AVC, SubMbPredMode[0] contains redundant information as encoded in MbType
parameter.

o Note: SubMbPredMode[1]-[3] are intentionally set to zero to allow a simple LUT to
derive MbType as described later.

• If InterMbMode is INTER16x8, and INTER8x16, only the first two entries SubMbPredMode[0] and
SubMbPredMode[1] are valid, describing the sub-macroblock prediction mode.

o For AVC, SubMbPredMode[0]/[1] contains redundant information as encoded in
MbType parameter.

o Note: SubMbPredMode[2]-[3] are intentionally set to zero to allow a simple LUT to
derive MbType as described later.

• If InterMbMode is INTER8x8, each entry of SubMbPredMode describes the prediction mode of the
sub-partition of an 8x8 sub-macroblock.

o For AVC, SubMbPredMode can be derived from sub_mb_type field for BP_8x8
macroblocks as defined in AVC spec.

o Note on Direct Sub-macroblock Prediction Mode: Direct prediction is not conveyed
through SubMbPredMode, instead, it is carried through Direct8x8Pattern.

InterMbMode definition
MbSkipFlag InterMbMode Description

0 0 INTER16x16

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 124

MbSkipFlag InterMbMode Description
0 1 INTER16x8

0 2 INTER8x16

0 3 INTER8x8

1 0 PSKIP/BSKIP16x16*

1 3 BSKIP

1 1, 2 Reserved

Used by PAK Ignored by PAK

* BSKIP16x16 is an optional non-standard but equivalent optimization.

Definition of SubMbPredMode based on InterMbMode
SubMbPredMode INTER16x16 INTER16x8 INTER8x16 INTER8x8

Bit MbType = [1…3] MbType = [16h] MbType = [4…15h] MbType = [16h]
7:6 MBZ MBZ MBZ Block8x8 3

5:4 MBZ MBZ MBZ Block8x8 2

3:2 MBZ Block16x8 1 Block8x16 1 Block8x8 1

1:0 Block16x16 Block16x8 0 Block8x16 0 Block8x8 0

 Ignored by PAK Ignored by PAK Ignored by PAK Used by PAK

Definition of SubMbPredMode[i]
SubMbPredMode Description InterMbMode VME Output MvCountPred Notes

0 Pred_L0 All Yes 1 P or B Slice

1 Pred_L1 All Yes 1 B Slice Only

2 BiPred All Yes 2 B Slice Only

3 Reserved Reserved Reserved Reserved Reserved

Sub-Macroblock Shape, SubMbShape[i], for i = 0…3, describes the shape of the sub partitions of the 8x8
sub-macroblock of a BP_8x8 macroblock. This field is only valid if InterMBMode is INTER8x8. They are
defined in Macroblock Type for Inter Cases. The parameters can be derived from sub_mb_type field as
defined in AVC spec.

Note: These fields must be correctly set even for Direct or Skip 8x8 cases, the individual B_Direct_8x8
block is flagged by the Direct8x8Pattern variable.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 125

Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock (including BSKIP, BDIRECT)

 Description
SubMbShape NumSubMbPart SubMbPartWidth SubMbPartHeight MvCountShape

0 1 8 8 1

1 2 8 4 2

2 2 4 8 2

3 4 4 4 4

For an inter macroblock, MbType, carries redundant information as InterMbMode and SubMbPredMode.
Macroblock Type for Inter Cases provides the typical inter macroblock types and Macroblock Type for
Inter Cases provides that with skip and direct modes. The definition of MbType for both P slice and B
slice is the same and is equivalent to that for mb_type of a B slice in the AVC spec. As direct mode is
indicated using a separate field Direct8x8Pattern, 0 is reserved for MbType.

Here, MVCount is the number of motion vectors actually encoded in the bitstream. It is informative. For a
BP_8x8 or equivalent Skip/Direct macroblock, MVCount is the sum of the following term for the four 8x8
sub macroblock (with i = 0…3):

MvCountShape[i] * MvCountPred[i] * MvCountDirect[i]

where MvCountShape[i] is block count for sub macroblock [i], MvCountPred[i] is the motion vector count
for each block of sub macroblock[i], and MvCountDirect[i] is the multipler for direct mode for B Slice,
indicating whether motion vectors are coded or not. It must be set to 1 for P slice. For B Slice,
MvCountDirect[i] = !Direct8x8Pattern[i], which is 0 for a sub macroblock coded as direct mode and 1
otherwise.

In the tables, “DC” stands for “Don’t Care” as PAK hardware ignores these fields.

MbType definition for Inter Macroblock (and MbSkipflag = 0)
Macroblock Type MbType MbSkipFlag Direct8x8Pattern SubMbShape SubMbPredMode MVCount

Reserved 0 - - - - -

BP_L0_16x16 1 0 0 DC DC 1

B_L1_16x16 2 0 0 DC DC 1

B_Bi_16x16 3 0 0 DC DC 2

BP_L0_L0_16x8 4 0 0 DC DC 2

BP_L0_L0_8x16 5 0 0 DC DC 2

B_L1_L1_16x8 6 0 0 DC DC 2

B_L1_L1_8x16 7 0 0 DC DC 2

B_L0_L1_16x8 8 0 0 DC DC 2

B_L0_L1_8x16 9 0 0 DC DC 2

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 126

Macroblock Type MbType MbSkipFlag Direct8x8Pattern SubMbShape SubMbPredMode MVCount
B_L1_L0_16x8 0Ah 0 0 DC DC 2

B_L1_L0_8x16 0Bh 0 0 DC DC 2

B_L0_Bi_16x8 0Ch 0 0 DC DC 3

B_L0_Bi_8x16 0Dh 0 0 DC DC 3

B_L1_Bi_16x8 0Eh 0 0 DC DC 3

B_L1_Bi_8x16 0Fh 0 0 DC DC 3

B_Bi_L0_16x8 10h 0 0 DC DC 3

B_Bi_L0_8x16 11h 0 0 DC DC 3

B_Bi_L1_16x8 12h 0 0 DC DC 3

B_Bi_L1_8x16 13h 0 0 DC DC 3

B_Bi_Bi_16x8 14h 0 0 DC DC 4

B_Bi_Bi_8x16 15h 0 0 DC DC 4

BP_8x8 16h 0 != Fh vary vary Sum

Reserved 17h-1Fh - - - - -

Additional MbType definition with Direct/Skip for Inter Macroblock

Macroblock
Type

Mb
Type

Xfrm
8x8

MbSkip
Flag

Direct8x8
Pattern

SubMb
Shape

SubMb
PredMode MvCount Notes

P_Skip_16
x16

1 - 1 DC DC DC 0 Skipped macroblock.
Motion compensation like
P_L0_16x16

B_Skip_16
x16_4MVP
air

16h Vary 1 Fh 0 vary 0 Skipped macroblock.
Motion compensation like
B_8x8 with 8x8 subblocks,
when
direct_8x8_inference_flag
is set to 1

B_Skip_16
x16_16MV
Pair

16h 0 1 Fh FFh vary 0 Skipped macroblock.
Motion compensation like
B_8x8 with 4x4 subblocks,
when
direct_8x8_inference_flag
is set to 0

B_Direct_1 16h vary 0 Fh 0 vary 0 MbType coded as

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 127

Macroblock
Type

Mb
Type

Xfrm
8x8

MbSkip
Flag

Direct8x8
Pattern

SubMb
Shape

SubMb
PredMode MvCount Notes

6x16_4MV
Pair

B_Direct_16x16. Motion
compensation like B_8x8
with 8x8 subblocks, when
direct_8x8_inference_flag
is set to 1

B_Direct_1
6x16_16MV
Pair

16h 0 0 Fh FFh vary 0 MbType coded as
B_Direct_16x16. Motion
compensation like B_8x8
with 4x4 subblocks, when
direct_8x8_inference_flag
is set to 0

People might notice that B_DIRECT_16x16 and B_SKIP are mapped on BP_8x8 for AVC decoding
interface in IT mode as the motion compensation operation for both modes are the same as BP_8x8.
According to AVC Spec, motion vectors for B_DIRECT_16x16 and B_SKIP are derived from temporally
co-located macroblock on an 8x8 sub macroblock basis if direct_8x8_inference_flag is set to 1 or on a
4x4 block basis if it is set to 0. For each sub macroblock or block, SubMbPredMode is derived, thus can
any of the valid numbers. Motion vectors may also be different. In spatial direct mode, the motion vectors
are subject to spatial neighbor macroblocks as well as co-located macroblock. The spatial prediction is
based on the neighbor macroblocks, so the same spatial predicted motion vector applies to all sub
macroblocks or blocks. However, under certain conditions, temporal predictor may replace (colZeroFlag)
the spatial predictor for a given sub macroblock or block. Thus the motion vectors may differ.

In Macroblock Type for Inter Cases, the macroblock type names for major partitions nicely follow forms
BP_MbPredMode_MbShape (like BP_L0_16x16) and B_MbPredMode0_MbPredMode1_MbShape (like
B_L0_Bi_16x8). For minor partitions it is fixed as BP_MbShape as BP_8x8.

However, in Macroblock Type for Inter Cases the macroblock types for Skip and Direct modes does not
follow the same rule. The third field in P_Skip_16x16 or B_Direct_16x16_x indicates that “Skip” or “Direct”
applies to the entire 16x16 macroblock, even though MbShape is 8x8 as that in BP_8x8. In order to
distinguish the SubMbShape being 8x8 or 4x4 for B_Skip and B_Direct, the fourth field is added.
4MVPair indicates upto 4 MV pairs are presented with SubMbShape equals to 0; and 16MVPair indicates
up to 16 MV pairs are presented with SubMbShape equals to FFh.Also note that P_8x8ref0 is not
specified in PAK input interface, it is up to hardware to detect and choose its packing format based on
number of reference indices and reference index for the given macroblock.

2.3.1.1.5 Macroblock Type Conversion Rules

For improved coding efficiency the PAK hardware has the capability to convert macroblock types to use
more efficiency coding modes such as DIRECT and SKIP. For an inter macroblock or a sub macroblock
coded as DIRECT, no motion vector is needed in the bitstream for the macroblock or sub macroblock. If a
macroblock is coded as SKIP, it only consumes one SKIP bit (no motion vector, no coefficients are
coded). And infomaton about the macroblock is ‘inferred’ according to the rules stated in the AVC Spec.

As the input to PAK, the following signals can convey the information regarding DIRECT and SKIP:

• MbSkipFlag
• Direct8x8Pattern
• CodecBlockPattern (CbpY, CbpCb, CbpCr)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 128

Such conversion can be enabled or disabled through the SLICE_STATE fields DirectConvDisable and
SkipConvDisable as well as the in line command field MbSkipConvDisable.

A P slice doesn’t support direct mode, it only supports P_Skip, which is equivalent to a 16_16_L0
prediction. Other prediction types cannot be converted to P_Skip. The following table describes the
macroblock type conversion rules for a P slice. Here CBP = CbpY/CbpCb/CbpCr are the final computed
results after quantization by the hardware. Note that hardware honors the input CbpY/CbpCb/CbpCr
fields – if the value corresponding to a block is set to zero, the resulting CBP is also zero. The output
mb_skip_flag and mb_type are the symbols coded in the bitstream as defined in the AVC spec. “DC”
stands for “Don’t care”, “T” for “True”.

Note that the internal condition of MV==MVP is subject to the precise rules stated in the AVC Spec as
quoted below. Note that there are exceptions for P_Skip from the normal motion vector prediction rules.

Derivation process for luma motion vectors for skipped macroblocks in P and SP slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

The reference index refIdxL0 for a skipped macroblock is derived as follows.

refIdxL0 = 0. (8-168)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following applies.

– The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx set equal to 0, subMbPartIdx
set equal to 0, currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output
is assigned to mbAddrA, mbAddrB, mvL0A, mvL0B, refIdxL0A, and refIdxL0B.

– The variable mvL0 is specified as follows.

– If any of the following conditions are true, both components of the motion vector mvL0 are set equal to
0.

– mbAddrA is not available

– mbAddrB is not available

– refIdxL0A is equal to 0 and both components of mvL0A are equal to 0

– refIdxL0B is equal to 0 and both components of mvL0B are equal to 0

– Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is
invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxL0, and currSubMbType = "na" as inputs and the
output is assigned to mvL0.

NOTE – The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

Macroblock type conversion rule for an inter macroblock in a P slice
Input Internal Output Notes

Macroblock
Type

SkipConvDisable
||

SkipConvDisable CBP

MV
==

MVP MbAffSkipAllowed

mb_s
kip_fl

ag
mb_
type

P_Skip_16x
16 DC DC DC 1 1 - Forced to P_Skip; Hardware will

force CBP to zero and also
ignore SkipConvDisable control.
Hardware doesn’t check for
MV==MVP error condition

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 129

Input Internal Output Notes

Macroblock
Type

SkipConvDisable
||

SkipConvDisable CBP

MV
==

MVP MbAffSkipAllowed

mb_s
kip_fl

ag
mb_
type

P_Skip_16x
16 DC DC DC 0 0 0 Reverse convert to

P_L0_16x16; Hardware will force
CBP to zero but reversely
convert MbType as P_L0_16x16
once it determines that Skip is
not allowed.

BP
_16x16_L0 0 0 T 1 1 - Converted to P_Skip. Even

input doesn’t provide skip hint,
hardware can performance the
optimization by detecting CBP
and MV==MVP condition.

BP
_16x16_L0 0 0 T 0 0 0 Reverse back to P_L0_16x16;

Hardware will reverse back to
P_L0_16x16 even Skip
conditions are met once it
determines that Skip is not
allowed.

BP
_16x16_L0 1 0 T T 0 0 Still coded as P_L0_16x16 = 0.

A B slice supports both direct and skip modes. The following table describes the macroblock type
conversion rules for a B slice. Hardware does not verify MV==MVP condition for a Skip/Direct macroblock
in a B Slice as no DMV is performed by hardware.

Macroblock type conversion rule for an inter macroblock in a B slice

Input Internal Output Notes

Macroblock
Type

SkipConvDisable
||

SkipConvDisable

DirectConv
Disable CBP

MV
==

MVP

MbAffSkip
Allowed mb_sk

ip_flag
mb_t
ype

B_Skip_8x8

B_Skip_4x4

DC DC DC n/a 1 1 - Forced to
B_Skip;
Hardware will
force CBP to
zero and also
ignore
SkipConvDisabl
e control.

B_Skip_8x8

B_Skip_4x4

DC DC DC n/a 0 0 0 REVERSE
convert to
B_Direct_16x16
; Hardware
will force CBP
to zero and
also reverse
convert to
B_Direct_16x16
when it

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 130

Input Internal Output Notes

Macroblock
Type

SkipConvDisable
||

SkipConvDisable

DirectConv
Disable CBP

MV
==

MVP

MbAffSkip
Allowed mb_sk

ip_flag
mb_t
ype

discovers Skip
is not
allowed.

B_Direct_16x16_4M
VPair/16MVPair 0 0 0 n/a 1 1 - Converted to

B_Skip.
Hardware first
converts to
B_Direct_16x16
and then
further to
B_Skip if CBP
= 0.

B_Direct_16x16_4M
VPair/16MVPair 0 0 0 n/a 0 0 0 Converted to

B_Direct_16x16
. Hardware
first converts
to
B_Direct_16x16
and stop there
as it
discovers Skip
is not allowed
even CBP=0.

B_Direct_16x16_4M
VPair/16MVPair 1 0 0 n/a DC 0 0 Converted to

B_Direct_16x16
. Hardware
converts to
B_Direct_16x16
and stops
there even
though CBP = 0
as input
disallows Skip
conversion.

B_Direct_16x16_4M
VPair/16MVPair DC 0 NZ n/a DC 0 0 Converted to

B_Direct_16x16
. Hardware
converts to
B_Direct_16x16
and stops
there because
CBP != 0.

B_Direct_16x16_4M
VPair/16MVPair DC 1 DC n/a DC 0 16h

The internal signal MbAffSkipAllowed is added to deal with a restriction on the frame/field flag
(MbFieldFlag) which is unique to MBAFF. MbAffSkipAllowed is always set to 1 in non-MBAFF modes.
In MBAFF mode, a macroblock pair may be both skipped only if its MbFieldFlag is the same as its

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 131

available neighbor macroblock pair A or B if A or B is available (in that order), or is not 0 if A/B are both
not available. Otherwise, one of the macroblocks in the pair must be coded.

To reduce the burden on software, PAK hardware handles the above restriction correctly. For the first MB
in a pair, MbAffSkipAllowed is always set to 1. Therefore, hardware allows converting the first MB to
Skip if skip conversion is enabled. For the second MB in a pair, hardware sets MbAffSkipAllowed to 0 if
the following is true:

• The current MB Pair has different MbFieldFlag than its available neighbor A or B if A or B is
available, or is not 0 if A/B are both not available

• And the first MB is coded as a SKIP (could be forced or converted)

Otherwise, it sets MbAffSkipAllowed to 1. As MbAffSkipAllowed is to 0 for the above condition,
hardware will disallow Skip mode for the second MB. If the input signal forces it to Skip, hardware
performs reverse-convertion to code it as P_L0_16x16 or B_Direct_16x16 with CBP = 0 for a macroblock
in a P or B Slice. This means that hardware is able to correct the programming mistake by software. If the
macroblock is not forced to skip, hardware simply disallows Skip conversion.

Software still has an option to disallow Skip Conversion on a per-MB basis using the
MbSkipConvDisable control field in the inline command.

2.3.1.2 Indirect Data Description
For each macroblock, an ENC-PAK data set consists of two types of data blocks: indirect MV data block
and inline MB information.

The indirect MV data block may be in two modes: unpackedmode and packed-size mode.

2.3.1.2.1 Unpacked Motion Vector Data Block

In the unpacked mode, motion vectors are expanded (or duplicated) to either bidirectional 8x8 8MV
major partition format, or bidirectional 4x4 32MV format. Thus either 32 bytes or 128 bytes is assigned to
each MB.

Motion Vector block contains motion vectors in an intermediate format that is partially expanded
according to the sub- macroblock size. During the expansion, a place that does not contain a motion
vector is filled by replicating the relevant motion vector according to the following motion vector replication
rules. If the relevant motion vector doesn’t exist (for the given L0 or L1), it is zero filled.

Motion Vector Replication Rules:

• Rule #1

o #1.1: For L0 MV, for any sub-macroblock or sub-partition where there is at least one
motion vector

 If L0 inter prediction exists, the corresponding L0 MV is used
 Else it must be zero

o #1.2: For L1 MV, for any sub-macroblock or sub-partition where there is at least one
motion vector

 If L1 inter prediction exists, the corresponding L1 MV is used
 Else it must be zero

• For a macroblock with a 16x16, 16x8 or 8x16 sub-macroblock, MvSize = 8. The eight MV fields
follow Rule #1.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 132

o The 16x16 is broken down into 4 8x8 sub-macroblocks. The 16x16 MVs (after rule #1)
are replicated into all 8x8 blocks.

o For an 8x16 partition, each 8x16 is broken down into 2 8x8 stacking vertically. The
8x16 MVs (after rule #1) are replicated into both 8x8 blocks.

o For a 16x8 partition, each 16x8 is broken down into 2 8x8 stacking horizontally. The
16x8 MVs (after rule #1) are replicated into both 8x8 blocks.

• For macroblock with sub-macroblock of 8x8 without minor partition (SubMbShape[0…3] = 0), MvSize
= 8, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o There is no motion vector replication

• For macroblock with sub-macroblock of 8x8 with at least one minor partition (if any SubMbShape[i]
!= 0), MvSize = 32, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o For an 8x8 sub-partition, the 8x8 MVs (after rule #1) is replicated into all the four 4x4
blocks.

o For an 4x8 sub-partition within an 8x8 partition, each 4x8 is broken down into 2 4x4
stacking vertically. The 4x8 MVs (after rule #1) are replicated into both 4x4 blocks.

o For an 8x4 sub-partition within an 8x8 partition, each 8x4 is broken down into 2 4x4
stacking horizontally. The 8x4 MVs (after rule #1) are replicated into both 4x4 blocks.

o For a 4x4 sub-partition within an 8x8 partition, each 4x4 has its own MVs (after rule
#1).

Motion Vector block and MvSize

DWord Bit

MvSize
 8 32

W1.0 31:16 MV_Y0_L0.y MV_Y0_0_L0.
y

 15:0 MV_Y0_L0.x MV_Y0_0_L0.
x

W1.1 31:16 MV_Y0_L1.y MV_Y0_0_L1.
y

 15:0 MV_Y0_L1.x MV_Y0_0_L1.
x

W1.2 31:0 MV_Y1_L0 MV_Y0_1_L0

W1.3 31:0 MV_Y1_L1 MV_Y0_1_L1

W1.4 31:0 MV_Y2_L0 MV_Y0_2_L1

W1.5 31:0 MV_Y2_L1 MV_Y0_2_L0

W1.6 31:0 MV_Y3_L0 MV_Y0_3_L0

W1.7 31:0 MV_Y3_L1 MV_Y0_3_L1

W2.0 31:0 n/a MV_Y1_0_L1

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 133

DWord Bit

MvSize
 8 32

W2.1 31:0 n/a MV_Y1_0_L0

W2.2 31:0 n/a MV_Y1_1_L1

W2.3 31:0 n/a MV_Y1_1_L0

W2.4 31:0 n/a MV_Y1_2_L1

W2.5 31:0 n/a MV_Y1_2_L0

W2.6 31:0 n/a MV_Y1_3_L0

W2.7 31:0 n/a MV_Y1_3_L1

W3.0 31:0 n/a MV_Y2_0_L1

W3.1 31:0 n/a MV_Y2_0_L0

W3.2 31:0 n/a MV_Y2_1_L1

W3.3 31:0 n/a MV_Y2_1_L0

W3.4 31:0 n/a MV_Y2_2_L1

W3.5 31:0 n/a MV_Y2_2_L0

W3.6 31:0 n/a MV_Y2_3_L0

W3.7 31:0 n/a MV_Y2_3_L1

W4.0 31:0 n/a MV_Y3_0_L1

W4.1 31:0 n/a MV_Y3_0_L0

W4.2 31:0 n/a MV_Y3_1_L1

W4.3 31:0 n/a MV_Y3_1_L0

W4.4 31:0 n/a MV_Y3_2_L1

W4.5 31:0 n/a MV_Y3_2_L0

W4.6 31:0 n/a MV_Y3_3_L0

W4.7 31:0 n/a MV_Y3_3_L1

The motion vector(s) for a given sub-macroblock or a sub-partition are uniquely placed in the output
message as shown by the non-duplicate fields in Unpacked Motion Vector Data Block and Unpacked
Motion Vector Data Block.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 134

MV_Yx_L0 and MV_Yx_L1 may be present individually or both. If one is not present, the corresponding
field must be zero. Subsequently, the duplicated fields will be zero as well.

Motion Vector duplication by sub-macroblocks for a 16x16 macroblock, whereas the 8x8 column
is for 4x(8x8) partition without minor shape

DWord Bit

16x16 16x8 8x16 8x8

W1.0 31:16 MV_Y0_L1
(A)

MV_Y0_L1 (A) MV_Y0_L1 MV_Y0_L
1

 15:0 MV_Y0_L0
(A)

MV_Y0_L0 (A) MV_Y0_L0 MV_Y0_L
0

W1.1 31:16 Duplicate (A) Duplicate (A) MV_Y1_L1 MV_Y1_L
1

 15:0 Duplicate (A) Duplicate (A) MV_Y1_L0 MV_Y1_L
0

W1.2 31:16 Duplicate (A) MV_Y2_L1 (B) Duplicate (A) MV_Y2_L
1

 15:0 Duplicate (A) MV_Y2_L0 (B) Duplicate (A) MV_Y2_L
0

W1.3 31:16 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y3_L
1

 15:0 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y3_L
0

Motion Vector duplication by sub-partitions for the first 8x8 sub-macroblock Y0 if any Y0-Y3
contains minor shape (Y1_ to Y3_ have the same format in W2 to W4)

DWord Bit

8x8 8x4 4x8 4x4

W1.0 31:16 MV_Y0_L1 MV_Y0_0_L1 (A) MV_Y0_0_L1 (A) MV_Y0_0_L1

 15:0 MV_Y0_L0 MV_Y0_0_L0 (A) MV_Y0_0_L0 (A) MV_Y0_0_L0

W1.1 31:16 Duplicate (A) Duplicate (A) MV_Y0_1_L1 (B) MV_Y0_1_L1

 15:0 Duplicate (A) Duplicate (A) MV_Y0_1_L0 (B) MV_Y0_1_L0

W1.2 31:16 Duplicate (A) MV_Y0_2_L1 (B) Duplicate (A) MV_Y0_2_L1

 15:0 Duplicate (A) MV_Y0_2_L0 (B) Duplicate (A) MV_Y0_2_L0

W1.3 31:16 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L0

 15:0 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L1

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 135

2.3.1.2.2 Packed-size Motion Vector Data Block

In the packed case, no redundant motion vectors are sent. So the number of motion vectors sent, as
specified by MvQuantity is the same as the motion vectors that will be packed (MvPacked).

The following tables are for information only. Fields like MvQuantity and MvPacked are not required
interface fields.

MbSkipFlag MbType Description Mv
Quantity

MvSize (Minimal MvSize)

1 1 P_Skip_16x16 0 8 1
0 1 BP_L0_16x16 1 8 1
0 2 B_L1_16x16 1 8 1
0 3 B_Bi_16x16 2 8 2
0 4 BP_L0_L0_16x8 2 8 4
0 5 BP_L0_L0_8x16 2 8 4
0 6 B_L1_L1_16x8 2 8 8
0 7 B_L1_L1_8x16 2 8 8
0 8 B_L0_L1_16x8 2 8 8
0 9 B_L0_L1_8x16 2 8 8
0 0Ah B_L1_L0_16x8 2 8 8
0 0Bh B_L1_L0_8x16 2 8 8
0 0Ch B_L0_Bi_16x8 3 8 8
0 0Dh B_L0_Bi_8x16 3 8 8
0 0Eh B_L1_Bi_16x8 3 8 8
0 0Fh B_L1_Bi_8x16 3 8 8
0 10h B_Bi_L0_16x8 3 8 8
0 11h B_Bi_L0_8x16 3 8 8
0 12h B_Bi_L1_16x8 3 8 8
0 13h B_Bi_L1_8x16 3 8 8
0 14h B_Bi_Bi_16x8 4 8 8
0 15h B_Bi_Bi_8x16 4 8 8
0 16h BP_8x8 ≥4 8 or 32 8 or 32

When MbType = 22, BP_8x8, take the sum of four individual 8x8 subblocks

Direct8x8Pattern SubMb
Shape

SubMb
PredMode

Description Mv
Quantity

Mv
Size

(Min MvSize)

OR OR OR ADD ADD ADD

1 0 0 P_Skip_8x8
B_Direct_L0_8x8
(B-Skip_ L0_8x8)

0 2 1

1 0 1 B_Direct_L1_8x8
(B-Skip_ L1_8x8)

0 2 1

1 0 2 B_Direct_Bi_8x8
(B-Skip_ Bi_8x8)

0 2 2

1 3 0 P_Skip_4x4
B_Direct_L0_4x4

0 8 4

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 136

(B-Skip_ L0_4x4)

1 3 1 B_Direct_L1_4x4
(B-Skip_ L1_4x4)

0 8 4

1 3 2 B_Direct_Bi_4x4
(B-Skip_ Bi_4x4)

0 8 8

0 0 0 BP_L0_8x8 1 2 1
0 0 1 B_L1_8x8 1 2 1
0 0 2 B_BI_8x8 2 2 2
0 1 0 BP_L0_8x4 2 8 4
0 1 1 B_L1_8x4 2 8 4
0 1 2 B_BI_8x4 4 8 8
0 2 0 BP_L0_4x8 2 8 4
0 2 1 B_L1_4x8 2 8 4
0 2 2 B_BI_4x8 4 8 8
0 3 0 BP_L0_4x4 4 8 4
0 3 1 B_L1_4x4 4 8 4
0 3 2 B_BI_4x4 8 8 8

2.3.1.3 Macroblock Level Rate Control
The QRC (Qauntization Rate Control) unit receives data from BSP (Bit Serial Packer) and VIN (Video In)
and generates adjustments to QP values across macroblocks.

QRC can be logically partitioned into two units as shown below.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 137

Macroblock level rate control is handled by the RC logic and the quantization logic.

The signals QPmod and panic are generated by the RC logic based on data feedback from BSP. A
flowchart of the RC logic is given below.

2.3.1.3.1 Theory of Operation Overview

BSP will generate a byte estimate for each macroblock packed. Additionally, the user will specify a target
and max size per macroblock. The running sum of these signals (actual, target, max) creates “curves”
which are used to identify when QP adjustments are necessary (see figure below). Three more curves are
symmetrically generated by QRC (upper_midpt, lower_midpt, sum_min) from target and max. The values
of target and max are specified by the user will dictate the shape of these curves.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 138

The difference between sum_actual and sum_target (called ‘bytediff’) identifies the margin of error
between the target and actual sizes. The difference between the current bytediff and the previously
calculated bytediff represents the rate of change in this margin over time. The sign of this rate is used to
identify if the correction is trending in the appropriate direction (towards bytediff = 0).

QPmod

Each macroblock will have a requested QP (which could vary across macroblocks or remain constant).
QPmod is to be added to the QP requested. QPmod will be positive when the target was under-predicted
and negative when the target is over-predicted.

QPmod is incremented or decremented when internal counters (called ‘over’ and ‘under’) reach tripping
points (called ‘grow’ and ‘shrink’). For each MB processed and based on which region (1-6) sum_actual
falls in, various amounts of points are added to either counters. If over exceeds grow, QPmod is
incremented whereas if under exceeds shrink, QPmod is decremented.

To dampen the effect of repeated changes in the same direction, an increase in resistance for that
direction and decrease in resistance for the complementary direction occurs (called ‘grow_resistance’ and
‘shrink_resistance’). This resistance is added to grow or shrink, which then requires more points to trip the
next correction in that direction.

The user can specify guard-bands that limit the amount QPmod can be modified. QPmod cannot exceed
QPmax_pos_mod or become less than -QPmax_neg_mod_abs.

Triggering

The RC unit begins to modify QPmod occurs only when it is triggered.

Three levels of triggering exist: always, gentle, loose. Always means that RC will be active once
sum_actual reaches regions 3 or 4. Gentle will trigger RC once sum_actual reaches regions 2 or 5. Loose
waits to trigger RC when sum_actual reaches regions 1 or 6.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 139

RC will deactivate (triggered = false) once sum_actual begins to track sum_target over a series of
macroblocks. Specifically, the sign of the rate of change for bytediff is monitored over a window of
macroblocks. When the sum of these signs over the window falls within a tolerance value (called ‘stable’),
triggered will reset to false.

Panic

When enabled, panic mode will occur whenever sum_actual reaches region 1 and will remain so until
sum_actual reaches region 4. When panicking, all macroblocks will be quantized with QP = MB(n).QP +
QPmax_pos_mod, clamped to 51.

User Controls

This unit achieves a large flexibility by allowing the user to define various key parameters. At the per-
macroblock level, the values of target and max are specifed and will create various shapes of curves that
sum_actual will be compared against.

Per-slice, the user can specify the triggering sensitivity and the tolerance required to disable the trigger.
Additionally, the user can enable panic detection.

The point values assigned to each of the 6 regions are exposed to the user which allow for asymmetrical
control for over and under predictions amongst other things. Additionally, the user can specify the initial
values of grow and shrink along with the resistance values applied when correction is invoked.

Lastly, the maximum and minimum values for QPmod are also exposed to the user.

2.4 AVC Encoder MBAFF Support
1. Algorithm

Prediction of current macroblock motion vector is possible from neighboring macroblocks
mbAddrA/mbAddrD/mbAddrB/mbAddrC/mbAddrA+1/mbAddrD+1/mbAddrB+1/mbAddrC+1. The selection
of these macroblocks depends on coding type(field/frame) of current macroblock pair and the coding of
neighbouring macroblock pair. Following is a generic diagram depicting naming conventions used for
neighbouring macroblocks. Selction of these mb pairs desrcibed in detail in following sections.

1.1 Selection of Top LeftMB pair: The selection of Top Left MB pair depends on coding type of
current and also top left macroblock pair. Following diagram shows the mapping to be used in
MPC unit for the selection of the Top Left MB (D or D+1 macroblock).

1.2 Selection of LeftMB pair The selection of Left MB pair depends on coding type of current
and also left macroblock pair. Following diagram shows the mapping to be used in MPC unit for
the selection of the Left MB (A or A+1 macroblock).

1.3 Selection of Top MB pair The selection of Top MB pair depends on coding type of
current and also top macroblock pair. Following diagram shows the mapping to be used
in MPC unit for the selection of the Top MB (B or B+1 macroblock).

1.4 Selection of Top RightMB pair The selection of Top Right MB pair depends on coding type
of current and also top right macroblock pair. Following diagram shows the mapping to be used
in MPC unit for the selection of the Top Right MB (C or C+1 macroblock).

1.5 Motion Vector and refIdx Scaling Motion vectors and refence index of neighbouring
macroblocks (mbAddrA/mbAddrB/mbAddrC/mbAddrD) should be scaled before using
them into prediction equations. Again the scaling depends on coding type of current and
neighbouring macroblock pair which is described as follows,

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 140

 If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame
macroblock

mvLXN[1] = mvLXN[1] / 2 (8-214)
refIdxLXN = refIdxLXN * 2 (8-215)

 Otherwise, if the current macroblock is a frame macroblock and the macroblock
mbAddrN is a field macroblock

mvLXN[1] = mvLXN[1] * 2 (8-216)
refIdxLXN = refIdxLXN / 2 (8-217)

 Otherwise, the vertical motion vector component mvLXN[1] and the reference index
refIdxLXN remain unchanged.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 141

3. MPEG-2
3.1 MPEG2 Common Commands

3.1.1 MFX_MPEG2_PIC_STATE Command

MFX_MPEG2_PIC_STATE

Source: VideoCS

Length Bias: 2

This must be the very first command to issue after the surface state, the pipe select and base address setting
commands. For MPEG-2 the encoder is called per slice-group, however the picture state is called per picture.Notice
that a slice-group is a group of consecutive slices that no non-trivial slice headers are inserted in between.
DWord Bit Description

0 31:29 Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_MPEG2_PIC_STATE
Format: OpCode

26:24 Media Command Opcode
Default Value: 3h MPEG2_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 0h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default
Value:

0h Excludes DWord (0,1)= 00Bh, used for normal decode and encode mode000h, a
special case to provide a dummy image state for stitch mode operation. In this case, fields
in DW1 which is part of the dummy image state command are ignored by hardware.

Project: All
Format: =n Total Length - 2

1 31:28 f_code[1][1].
Used for backward motion vector prediction. See ISO/IEC 13818-2 §7.6.3.1 for details

27:24 f_code[1][0].
Used for backward motion vector prediction. See ISO/IEC 13818-2 §7.6.3.1 for details

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 142

MFX_MPEG2_PIC_STATE
23:20 f_code[0][1]

Used for forward motion vector prediction. See ISO/IEC 13818-2 §7.6.3.1 for details

19:16 f_code[0][0]
Used for forward motion vector prediction. See ISO/IEC 13818-2 §7.6.3.1 for details

15:14 Intra DC Precision
Project: All
Format: U32
See ISO/IEC 13818-2 §6.3.10 for details.

13:12 Picture Structure
This field specifies whether the picture is encoded in the form of a frame picture or one field (top or
bottom) picture. See ISO/IEC 13818-2 §6.3.10 for details.Format =
MPEG_PICTURE_STRUCTURE00 = Reserved01 = MPEG_TOP_FIELD10 =
MPEG_BOTTOM_FIELD11 = MPEG_FRAME

11 TFF (Top Field First)
When two fields are stored in a picture, this bit indicates if the top field is the first field.For a frame P
picture, the value 1 indicates that the top field of the reconstructed frame is the first field output by the
decoding process, the same as defined in ISO/IEC 13818-2 §6.3.10. Particularly, it is used by the
hardware to calculate derivative motion vectors from the dual-prime motion vectors.For a field P
picture, hardware uses this bit together with the Picture Structure to determine if the current picture is
the Second Field. In this case, the definition of this bit differs from ISO/IEC 13818-2 §6.3.10 –
software must derive the value for this bit according to the following relation:Picture Structure = top
fieldPicture Structure = bottom fieldSecond Field = 0TFF = 1TFF = 0Second Field = 1TFF = 0TFF = 1

10 Frame Prediction Frame DCT
This field provides constraints on the DCT type and prediction type. It affects the syntax of the
bitstream.

9 Concealment Motion Vector Flag
This field indicates if the concealment motion vectors are coded in intra macroblocks. It affects the
syntax of the bitstream.

8 Quantizer Scale Type
Format: MPEG_Q_SCALE_TYPE
This field specifies the quantizer scaling type.

Value Name Description
0h MPEG_QSCALE_LINEAR
1h D MPEG_QSCALE_NONLINEAR esc

7 Intra VLC Format
This field is used by VLD

6 Scan Order
Format: MPEG_INVERSESCAN_TYPE
This field specifies the Inverse Scan method for the DCT-domain coefficients in the blocks of the
current picture.

Value Name Description
0h MPEG_ZIGZAG_SCAN
1h MPEG_ALTERNATE_VERTICAL_SCAN

5:0 Reserved
2 31:24 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 143

MFX_MPEG2_PIC_STATE
23:15 Reserved

Format: MBZ

14 LoadSlicePointerFlag – LoadBitStreamPointerPerSlice
Exists If: Encoder
To support multiple slice picture and additional header/data insertion before and after an encoded
slice.When this field is set to 0, bitstream pointer is only loaded once for the first slice of a frame. For
subsequent slices in the frame, bitstream data are stitched together to form a single output data
stream.When this field is set to 1, bitstream pointer is loaded for each slice of a frame. Basically
bitstream data for different slices of a frame will be written to different memory locations.
Value Name Description
0h Load BitStream Pointer only once for the first slice of a frame
1h Load/reload BitStream Pointer only once for the each slice, reload the start location of

the bitstream buffer from the Indirect PAK-BSE Object Data Start Address field

13 Reserved
Format: MBZ

12 Reserved
Format: MBZ

11 Reserved
Format: MBZ

10:9 Picture Coding Type
Format: MPEG_PICTURE_CODING_TYPE
This field identifies whether the picture is an intra-coded picture (I), predictive-coded picture (P) or bi-
directionally predictive-coded picture (B). See ISO/IEC 13818-2 §6.3.9 for details.

Value Name
00b Reserved
01b MPEG_I_PICTURE
10b 10 = MPEG_P_PICTURE
11b MPEG_B_PICTURE

8:2 Reserved
Format: MBZ

1 MismatchControlDisabled
These 2 bits flag disables mismatch control of the inverse transformation for some specific cases
during reference reconstruction.
Value Name Description
00b Mismatch control applies to all MBs
01b Disable mismatch control to all intra MBs whose all AC-coefficients are zero.
10b Disable mismatch control to all MBs whose all AC-coefficients are zero.
11b Disable mismatch control to all MBs.

0 Disable Mismatch
To disable MPEG2 IDCT fixed point arithmetic correction

3 31 Reserved

Format: MBZ

30:29 Reserved
Format: MBZ

23:16 FrameHeightInMBsMinus1[7:0] (Picture Height in Macroblocks)
Format: U8
To support MB error concealment.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 144

MFX_MPEG2_PIC_STATE

15:8 Reserved
Format: MBZ for future supporting width > 4K

7:0 FrameWidthInMBsMinus1[7:0] (Picture Width in Macroblocks)
Project: All
Format: U8
To support MB error concealment.

4 31:16 MinFrameWSize
Project: All
Format: U32
Format: GraphicsAddress[31:0]U32
– Minimum Frame Size [15:0] (16-bit) (Encoder Only)Mininum Frame Size is specified to compensate
for intel Rate ControlCurrently zero fill (no need to perform emulation byte insertion) is done only to
the end of the CABAC_ZERO_WORD insertion (if any) at the last slice of a picture. Intel encoder
parameter, not part of DXVA. The caller should always make sure that the value, represented by
Mininum Frame Size, is always less than maximum frame size FrameBitRateMax (DWORD 10 bits
29:16). This field is reserved in Decode mode.

Value Name Description
[0,0003FFFFh] The programmable range when MinFrameWSizeUnits is 00.
[0,000FFFFFh] The Programmable range when MinFrameWSizeUnits is 01.
[0,03FFFFFFh] The Programmable range when MinFrameWSizeUnits is 10.
[0,FFFFFFFFh] The Programmable range when MinFrameWSizeUnits is 11.
0h [Default]

15 Reserved
Project: All
Format: MBZ

14:12 RoundInterAC,
rounding precision for non-Intra AC000: +1/16001: +2/16010: +3/16011: +4/16100: +5/16101:
+6/16110: +7/16111: +8/16

11 Reserved
Format: MBZ

10:8 RoundIntraAC
Project: All
Format: U32
rounding precision for Intra AC000: +1/16001: +2/16010: +3/16011: +4/16100: +5/16101: +6/16110:
+7/16111: +8/16

7 Reserved
Format: MBZ

6:4 RoundInterDC
rounding Precision for non-Intra-DC000: +1/16001: +2/16010: +3/16011: +4/16100: +5/16101:
+6/16110: +7/16111: +8/16

3 Reserved
Format: MBZ

2:1 RoundIntraDC

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 145

MFX_MPEG2_PIC_STATE
rounding Precision for Intra-DC00: +1/801: +2/810: +3/811: +4/8

0 Reserved
5 31:17 Reserved(for future Mask bits)

16 FrameSizeControlMask
Frame size conformance maskThis field is used when MacroblockStatEnable is set to 1.
Value Name Description
0h Do not change Slice Quantization Parameter values in

MFC_MPEG2_SLICEGROUP_STATE with suggested slice QP value for frame level
Rate control

1h Replace Slice Quantization Parameter values in MFC_MPEG2_SLICEGROUP_STATE
with suggested slice QP value for frame level Rate control values in
MFC_IMAGE_STATUS control register.

15:13 Reserved

12 InterMBForceCBPZeroControlMask
Format: U32
Inter MB Force CBP ZERO mask.

Value Name Description Project
[0,FFFFFFFFh]
0h No effect All
1h Zero out all A/C coefficients for the inter MB violating Inter Confirmance All

11:10 MinFrameWSizeUnits
This field is the Minimum Frame Size Units
Value Name Description Project
00b compatibility mode Minimum Frame Size is in old mode (words, 2bytes) All
01b 16 byte Minimum Frame Size is in 16bytes All
10b 4Kb Minimum Frame Size is in 4Kbytes All
11b 16Kb Minimum Frame Size is in 16Kbytes All

9 MBRateControlMask
MB Rate Control conformance maskThis field is ignored when MacroblockStatEnable is disabled or
MB level Rate control flag for the current MB is disable in Macroblock Status Buffer.
Value Name Description
0h Do not change QP values of inter macroblock with suggested QP values in Macroblock

Status Buffer
1h Apply RC QP delta for all macroblock

8 Reserved

7 Reserved
Format: MBZ

6:4 Reserved

3 FrameBitRateMinReportMask
This is a mask bit controlling if the condition of frame level bit count is less than FrameBitRateMin.
Value Name Description Project
0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register. All
1h Enable set bit0 and bit 1of MFC_IMAGE_STATUS control register if the total frame

level bit counter is less than or equal to Frame Bit rate Minimum limit.
All

2 FrameBitRateMaxReportMask
This is a mask bit controlling if the condition of frame level bit count exceeds FrameBitRateMax.
Value Name Description Project
0h Disable Do not update bit0 of MFC_IMAGE_STATUS control register. All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 146

MFX_MPEG2_PIC_STATE
1h Enable set bit0 and bit 1 of MFC_IMAGE_STATUS control register if the total frame

level bit counter is greater than or equal to Frame Bit rate Maximum limit.
All

1 InterMBMaxSizeReportMask
This is a mask bit controlling if the condition of any inter MB in the frame exceeds InterMBMaxSize.
Value Name Description
0h Do not update bit0 of MFC_IMAGE_STATUS control register.
1h set bit0 of MFC_IMAGE_STATUS control register if the total bit counter for the current

MB is greater than the Inter MB Conformance Max size limit.

0 IntraMBMaxSizeReportMask
This is a mask bit controlling if the condition of any intra MB in the frame exceeds IntraMBMaxSize.
Value Name Description Project
0h Do not update bit0 of MFC_IMAGE_STATUS control register. All
1h set bit0 of MFC_IMAGE_STATUS control register if the total bit counter for the

current MB is greater than the Intra MB Conformance Max size limit.
All

6

(Encode
only)

31:28 Reserved
Project: All
Format: MBZ

27:16 InterMBMaxSize
Default Value: FFFh
This field, Inter MB Conformance Max size limit,indicates the allowed max bit count size for Inter MB

15:12 Reserved
Project: All
Format: MBZ

11:0 IntraMBMaxSize
Default Value: FFFh
This field, Intra MB Conformance Max size limit,indicates the allowed max bit count size for Intra MB

7 31:0 Reserved
Project: All
Format: MBZ

8

(Encode
only)

31:24 SliceDeltaQPMax[3]
Format: S7

This field is the Slice level delta QP for total bit-count above FrameBitRateMax - first 1/8 regionThis
field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control register
when total bit count for the entire frame exceeds FrameBitRateMax but is within 1/8 of
FrameBitRateMaxDelta above FrameBitRateMax, i.e., in the range of (FrameBitRateMax,
(FrameBitRateMax+ FrameBitRateMaxDelta>>3).
Range: [-30,30]

Value Name Project
0h Disable All
1h Enable All

Errata Description

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 147

MFX_MPEG2_PIC_STATE
23:16 SliceDeltaQPMax[2]

Format: S7

Range: [-30,30]
This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/8 and below 1/ 4
This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control register
when total bit count for the entire frame is between 1/8 and ¼ of FrameBitRateMaxDelta above
FrameBitRateMax, i.e., in the range of ((FrameBitRateMax+ FrameBitRateMaxDelta>>3),
(FrameBitRateMax+ FrameBitRateMaxDelta>>2).

15:8 SliceDeltaQPMax[1]
Format: S7

Range: [-30,30]
This field is the Slice level delta QP for bit-count above FrameBitRateMax – above1/ 4 and below 1/2
This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control register
when total bit count for the entire frame is between ¼ and ½ of FrameBitRateMaxDelta above
FrameBitRateMax, i.e., in the range of ((FrameBitRateMax+ FrameBitRateMaxDelta>>2),
(FrameBitRateMax+ FrameBitRateMaxDelta>>1).

7:0 SliceDeltaQPMax[0]
Format: S7

Range: [-30,30]
This field is the Slice level delta QP for bit-count above FrameBitRateMax - above 1/ 2This field is
used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control register when total
bit count for the entire frame is above FrameBitRateMax by more than half the distance of
FrameBitRateMaxDelta , i.e., in the range of ((FrameBitRateMax+ FrameBitRateMaxDelta>>1),
infinite).

9

(Encode
only)

31:24 SliceDeltaQPMin[3]
Format: S7

Range: [-30,30]
This field is the Slice level delta QP for total bit-count below FrameBitRateMin - first 1/8 regionThis
field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control register
when total bit count for the entire frame is less than FrameBitRateMin and greater than or equal to
1/8 the distance of FrameBitRateMinDelta from FrameBitRateMin, i.e., in the range of
[(FrameBitRateMin- FrameBitRateMinDelta>>3), FrameBitRateMin).

23:16 SliceDeltaQPMin[2]
Format: S7

Range: [-30,30]
This field is the Slice level delta QP for bit-count below FrameBitRateMin – below 1/ 8 and above 1/
4This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control
register when total bit count for the entire frame is between one-eighth and quarter the distance of
FrameBitRateMinDelta from FrameBitRateMin, i.e., in the range of [(FrameBitRateMin-
FrameBitRateMinDelta>>2), (FrameBitRateMin- FrameBitRateMinDelta>>3)).

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 148

MFX_MPEG2_PIC_STATE
15:8 SliceDeltaQPMin[1]

Format: S7

Range: [-30,30]
This field is the Slice level delta QP for bit-count below FrameBitRateMin– below 1/4 and above 1/
2This field is used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control
register when total bit count for the entire frame is between quarter and half the distance of
FrameBitRateMinDelta from FrameBitRateMin, i.e., in the range of [(FrameBitRateMin-
FrameBitRateMinDelta>>1), (FrameBitRateMin- FrameBitRateMinDelta>>2)).

7:0 SliceDeltaQPMin[0]
Format: S7

Range: [-30,30]
This field is the Slice Level Delta QP for bit-count below FrameBitRateMin – below 1/ 2This field is
used to calculate the suggested slice QP into the MFC_IMAGE_STATUS control register when total
bit count for the entire frame is below FrameBitRateMin by more than half the distance of
FrameBitRateMinDelta , i.e., in the range of [0, (FrameBitRateMin- FrameBitRateMinDelta>>1).

10

(Encode
only)

31 FrameBitrateMaxUnit
This field is the Frame Bitrate Maximum Limit Units.
Value Name Description Project
0h Byte FrameBitRateMax is in units of 32 Bytes when FrameBitrateMaxUnitMode is 1

and in units of 128 Bytes if FrameBitrateMaxUnitMode is 0
All

1h Kilobyte FrameBitRateMax is in units of 4KBytes Bytes when
FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if
FrameBitrateMaxUnitMode is 0

All

30 FrameBitrateMaxUnitMode
BitFiel This field is the Frame Bitrate Maximum Limit Units.dDesc
Value Name Description Project
0h Compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb) All
1h New mode FrameBitRateMaxUnit is in new mode (32byte/4Kb) All

29:16 FrameBitRateMax
This field is the Frame Bitrate Maximum Limit. This field along with FrameBitrateMaxUnit determines
maximum allowed bits in a frame before multi-pass gets triggered (when enabled). In other words,
multi-pass is triggered when the actual frame byte count exceeds this value. When
FrameBitrateMaxUnitMode is 0(compatibility mode) bits 16:27 should be used, bits 28 and 29 should
be 0.

Value Name Description
0-512KB The programmable range 0-512KB when FrameBitrateMaxUnit is 0.
0-8190KB The programmable range 0-8190KB when FrameBitrateMaxUnit is 1.

15 FrameBitrateMinUnit
This field is the Frame Bitrate Minimum Limit Units.
Value Name Description Project
0h Byte FrameBitRateMax is in units of 32 Bytes when FrameBitrateMinUnitMode is 1

and in units of 128 Bytes if FrameBitrateMinUnitMode is 0
All

1h KiloByte FrameBitRateMax is in units of 4KBytes Bytes when
FrameBitrateMaxUnitMode is 1 and in units of 16KBytes if
FrameBitrateMaxUnitMode is 0

All

14 FrameBitrateMinUnitMode

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 149

MFX_MPEG2_PIC_STATE
This field is the Frame Bitrate Minimum Limit Units.ValueNameDescriptionProject
Value Name Description Project
0h compatibility mode FrameBitRateMaxUnit is in old mode (128b/16Kb) All
1h New Mode FrameBitRateMaxUnit is in new mode (32byte/4Kb) All

13:0 FrameBitRateMin
This field is the Frame Bitrate Minimum Limit ()This field along with FrameBitrateMinUnit determines
minimum allowed bits in a Frame before Multi-Pass gets triggered (when enabled). In other words,
multi-pass is triggered when the actual frame byte count is less than this value. When
FrameBitrateMinUnitMode is 0 (compatibility mode) bits 0:11 should be used, bits 12 and 13 should
be 0. Range: The programmable range 0-512KB When FrameBitrateMinUnit is in 0. Programmable
range is 0–8190 KB when FrameBitrateMinUnit is in 1

11

(Encode
only)

31 Reserved
Format: MBZ

30:16 FrameBitRateMaxDelta
Default Value: 0h
Project: All
Access: None
Exists If: Always
Format: U32
Format: GraphicsAddress[31:0]U32

This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It shares the
same FrameBitrateMaxUnit.
 The programmable range is either 0- 512KB or 4MBB in FrameBitrateMaxUnit of 128 Bytes or 16KB
respectively.
This field is used to select the slice delta QP when FrameBitRateMax Is exceeded. It shares the
same FrameBitrateMaxUnit. When FrameBitrateMaxUnitMode is 0(compatibility mode) bits 16:27
should be used, bits 28, 29 and 30 should be 0.

15 Reserved
Project: All
Format: MBZ

14:0 FrameBitRateMinDelta
This field is used to select the slice delta QP when FrameBitRateMin Is exceeded. It shares the same
FrameBitrateMinUnit. When FrameBitrateMinUnitMode is 0(compatibility mode) bits 0:11 should be
used, bits 12, 13 and 14 should be 0.Note: HW requires the following condition
FrameBitRateMinDelta <= 2*FrameBitRateMinMust be true, otherwise it may cause unpredicted
behavior.

Value Name Description
0-1024KB The programmable range 0-1024KB When FrameBitrateMinUnit is in 32Bytes.
0-16380KB Programmable range is 0–16380KB when FrameBitrateMinUnit is in 4Kbytes.

12 31:0 Reserved
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 150

3.2 MPEG2 Decoder Commands

3.2.1 MFD_MPEG2_BSD_OBJECT Command (pipeline)

MFD_MPEG2_BSD_OBJECT

Source: VideoCS

Length Bias: 2

Different from AVC and VC1, MFD_MPEG2_BSD_OBJECT command is pipelinable. This is for performance
purpose as in MPEG2 a slice is defined as a group of MBs of any size that must be within a macroblock row.Slice
header parameters are passed in as inline data and the bitstream data for the slice is passed in as indirect data. Of
the inline data, slice_horizontal_position and slice_vertical_position determines the location within the destination
picture of the first macroblock in the slice. The content in this command is identical to that in the MEDIA_OBJECT
command in VLD mode described in the Media Chapter.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFD_MPEG2_BSD_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 3h MPEG2_DEC
Format: OpCode

23:21 SubOpcode A
Default Value: 1h
Format: OpCode

20:16 SubOpcode B
Default Value: 8h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 0003h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:0 Indirect BSD Data Length
Project: All
Format: U32
It is the length in bytes of the bitstream data for the current slice. It includes the first byte of the first
macroblock and the last non-zero byte of the last macroblock in the slice. Specifically, the zero-padding
bytes (if present) and the next start-code are excluded.
 This field is sized to support beyond MPEG-2 MP@HL bitstream (<4K). According to Table 8-6 of
ISO/IEC 13818-2, the maximum number of bits per macroblock for 4:2:0 is 4608. So the maximum slice
size for 4K x 4K is 4608 * 256 / 8 = 147,456 bytes (0x24000), which requires 18 bits.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 151

MFD_MPEG2_BSD_OBJECT
Programming Notes Project

As MPEG-2 spec does not post any limitation of the size of zero-padding bytes, it is possible
to have a slice data with large length (including zero-padding bytes). As the data beyond
0x10E00 would only be zero bytes for a valid slice data

Hardware does not handle zero-padding at the end of the slice data so driver needs to
program the datalength from the first byte of the first macroblock and the last non-zero byte of
the last macroblock in the slice. This datalength must exclude all the extra zero padding at the
end of a slice bitstream.

Bits [31:24] must be programmed to 0.

2 31:29 Reserved
Project: All
Format: MBZ

28:0 Indirect Data Start Address
This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit for
processing. This pointer is relative to the BSD Indirect Object Base Address.Hardware ignores this field
if indirect data is not present. It is a byte-aligned address for the MPEG2 VLD bitstream data This
address points to the first byte of the MB layer data, i.e. not including slice header.

3..4 31:0 Inline Data
All the required Slice Header parameters and error handling settings are captured as inline data of the
MPEG2_BSD_OBJECT command. It has a fixed size of 2 DWs. Its definition is described in the next
section.

3.2.1.1 Inline Data Description in MFD_MPEG2_BSD_OBJECT

Inline Data Description in MFD_MPEG2_BSD_OBJECT

Source: VideoCS

Default Value: 0x00000000, 0x00000000

DWord Bit Description
3 31 Reserved

Format: MBZ

30:24 Slice Horizontal Position
Format: U7 in Macroblocks

This field indicates the horizontal position (in macroblock units) of the first macroblock in the slice.

23 Reserved
Format: MBZ

22:16 Slice Vertical Position
Format: U7 in Macroblocks

This field indicates the vertical position (in macroblock units) of the first macroblock in the slice.

15 Reserved

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 152

Inline Data Description in MFD_MPEG2_BSD_OBJECT
Format: MBZ

14:8 Macroblock Count
Format: U7 in Macroblocks

This field indicates the number of macroblocks in the slice, including skipped macroblocks.

7:6 Reserved
Format: MBZ

5 Last Pic Slice
This bit is added to support error concealment at the end of a picture.

Value Name Description
1h The current Slice is the last Slice of the entire picture
0h The current Slice is not the last Slice of current picture

3 Is Last MB
Value Name Description

1h The current MB is the last MB in the current Slice
0h The current MB is not the last MB in the current Slice

2:0 First Macroblock Bit Offset
Format: U3
This field provides the bit offset of the first macroblock in the first byte of the input bitstream.

4 31:29 Reserved
Format: MBZ

28:24 Quantizer Scale Code
Format: U5
This field sets the quantizer scale code of the inverse quantizer. It remains in effect until changed by a
decoded quantizer scale code in a macroblock. This field is decoded from the slice header by host
software.

23:0 Reserved
Format: MBZ

3.2.1.2 Indirect Data Description
The indirect data start address in MFD_MPEG2_BSD_OBJECT specifies the starting Graphics Memory
address of the bitstream data that follows the slice header. It provides the byte address for the first
macroblock of the slice. Together with the First Macroblock Bit Offset field in the inline data, it provides
the bit location of the macroblock within the compressed bitstream.

The indirect data length in MFD_MPEG2_BSD_OBJECT provides the length in bytes of the bitstream
data for this slice. It includes the first byte of the first macroblock and the last non-zero byte of the last
macroblock in the slice. Specifically, the zero-padding bytes (if present) and the next start-code are
excluded. Hardware ignores the contents after the last non-zero byte. Indirect Data Description illustrates
these parameters for a slice data.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 153

Indirect data buffer for a slice

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 154

4. JPEG
4.1 JPEG Decoder Commands

4.1.1 MFD_JPEG_BSD_OBJECT Command

MFD_JPEG_BSD_OBJECT
Project: All

Source: VideoCS

Length Bias: 2

Decoder
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFD_JPEG_BSD_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 7h JPEG_DEC
Format: OpCode

23:21 SubOpcode A
Default Value: 1h
Format: OpCode

20:16 SubOpcode B
Default Value: 8h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 004h Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:0 Indirect Data Length
Project: All
. It is the length in bytes of the bitstream data for the current Scan. It includes the first byte of the first
MCU and the last non-zero byte of the last MCU in the Scan. Specifically, the zero-padding bytes (if
present) are excluded. Hardware ignores the contents after the last non-zero byte.

2 31:29 Reserved
Project: All

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 155

MFD_JPEG_BSD_OBJECT
Format: MBZ

28:0 Indirect Data Start Address
Project: All
This field specifies the Graphics Memory starting address of the data to be fetched into BSD Unit for
processing. This pointer is relative to the BSD Indirect Object Base Address.Hardware ignores this field
if indirect data is not present. It is a byte-aligned address for the JPEG bitstream data

3 31:29 Reserved
Project: All
Format: MBZ

28:16 Scan Horizontal Position
Project: All
Format: U13 bits in blocks

This field indicates the horizontal position (in block units) of the first MCU in the Scan.

15:13 Reserved
Project: All
Format: U13 bits in blocks

12:0 Scan Vertical Position
Project: All
Format: U13 bits in blocks

This field indicates the vertical position (in block units) of the first MCU in the Scan.

4 31 Reserved
Format: MBZ

30 Interleaved
Value Name Description

0 Non-Interleaved one component in the Scan
1 Interleaved multiple components in the Scan

29:27 Scan Components
Bit0: Y
 Bit1: U
 Bit2: V
 For example, if non-interleaved Y, then it will be set to 001b. If interleaved Y, U, and V, it will be set to
111b.

26 Reserved
Format: MBZ

25:0 MCU Count
Project: All
Format: U26
This field indicates the number of MCUs in the Scan.

5 31:16 Reserved

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 156

MFD_JPEG_BSD_OBJECT
Project: All
Format: MBZ

15:0 RestartInterval(16 bit)
Project: All
Format: U32
Specifies the number of MCU in restart interval. Valid values are 1->0xFFFFValue of 0 implies that all
the SCAN have only one ECS.

4.1.2 MFX_JPEG_PIC_STATE Decoder

MFX_JPEG_PIC_STATE_Decoder Only

Source: VideoCS

Length Bias: 2

Exists If: Decoder Only

DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 Media Command Opcode
Default Value: 7h JPEG_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 0h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Project: All
Format: =n Total Length - 2

Value Name Description
0001h [Default] Excludes DWord (0,1)

1 31:21 Reserved

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 157

MFX_JPEG_PIC_STATE_Decoder Only
Format: MBZ

20:19 Reserved

Format: MBZ

18 Reserved

Format: MBZ

17:16 Reserved

15:12 Reserved
Format: MBZ

11:8 Reserved

Format: MBZ

7:6 Reserved
Format: MBZ

5:4 Rotation
Value Name Description
00b no rotation
01b rotate clockwise 90 degree
10b rotate counter-clockwise 90 degree (same as rotating 270 degree clockwise)
11b rotate 180 degree (NOT the same as flipped on the x-axis)

3 Reserved
Format: MBZ

2:0 Input Format YUV
Exists If: Always
Format: U32 GraphicsAddress[31:0]

Value Name Description
0 [Default] YUV400 (grayscale image)
1 YUV420
2 YUV422H_2Y (Horizontally chroma 2:1 subsampled) – horizontal 2 Y-block, 1U and 1V
3 YUV444
4 YUV411
5 YUV422V_2Y (Vertically chroma 2:1 subsampled) – vertical 2 Y-blocks, 1U and 1V
6 YUV422H_4Y - 2x2 Y-blocks, vertical 2U and 2V
7 YUV422V_4Y - 2x2 Y-blocks, horizontal 2U and 2V

2 31:29 Reserved
Format: MBZ

28:16 Frame Height In Blocks Minus 1
Format: U32
(The number of blocks in height) – 1.
 This value is calculated using the number of lines Y and vertical sampling factor of the first component
V1 in Frame header. See the note following this table.
 For interleaved components, (((Y + (V1*8 -1)) / (V1*8)) * V1) – 1

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 158

MFX_JPEG_PIC_STATE_Decoder Only
 For non-interleaved components, ((Y + 7) / 8) – 1.

15:13 Reserved
Format: MBZ

12:0 Frame Width In Blocks Minus 1
Format: U32
(The number of blocks in width) – 1.
 This value is calculated using the number of samples per line X and horizontal sampling factor of the
first component H1 in Frame header. See the note following this table.
 For interleaved components, (((X + (H1 *8 -1)) / (H1 *8)) * H1) – 1.
 For non-interleaved components, ((X + 7) / 8) – 1.

For JPEG decoding, the following program note is informative.

For Rotation, it is important to note that rotation of 90 or 270 degrees also requires exchanging
FrameWidthlnBlksMinus1 with FrameHeightlnBlksMinus1 in the command. In addition, the rotation of
90 or 270 degrees also requires transportation of the quantization matrix will be transposed into the
position (y, x).

Chroma type is determined by the values of horizontal and vertical sampling factors of the components
(Hi and Vi where i is a component id) in the Frame header as shown in the following table.

 H1 H2 H3 V1 V2 V3

0: YUV400 r Not
available

Not available r Not available Not
available

1: YUV420 2 1 1 2 1 1

2:YUV422H_2Y 2 1 1 1 1 1

3: YUV444 1 1 1 1 1 1

4: YUV411 4 1 1 1 1 1

5: YUV422V_2Y 1 1 1 2 1 1

6:
YUV422H_4Y

2 1 1 2 2 2

7: YUV422V_4Y 2 2 2 2 1 1

For YUV400, the value of V1 can be 1, 2, or 3 and will be same as the value of H1, and the Minimum
coded unit (MCU) is one 8x8 block. For the other chroma formats, if non-interleaved data, the MCU is one

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 159

8x8 block. For interleaved data, the MCU is the sequence of block units defined by the sampling factors
of the components.

For example, the following figures show the MCU structures of interleaved data and the decoding order of
blocks in the MCU:

422H_2Y

422H_4Y

422V_2Y

422V_4Y

If picture width X in the Frame header is not a multiple of 8, the decoding process needs to extend the
number of column to complete the right-most sample blocks. If the component is to be interleaved, the
decoding process needs to extend the number of samples by one or more additional blocks so that the
number of blocks is an integer multiple of Hi. In other words, “The number of blocks in width” in the table
should be an integer multiple of (8xH1). Similarly, if picture height Y in the Frame header is not a multiple
of 8, the decoding process needs extend the number of lines to complete bottom-most block-row. If the
component is to be interleaved, the decoding process also needs to extend the number of lines by one or
more additional block-rows so that the number of block-row is an integer multiple of (8xV1). For example,
if non-interleaved YUV411 with X=270, then “The number of blocks in width” shall be (270 + 7) / 8 = 34,
where “/” is integer division. Therefore, FrameWidthlnBlksMinus1 will be set to 33. However, for
interleaved data, “The number of blocks in width” shall be ((270 + 31) / 32) x 4 = 36. Therefore,
FrameWidthlnBlksMinus1 will be set to 35.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 160

4.1.3 MFX_JPEG_HUFF_TABLE_STATE

MFX_JPEG_HUFF_TABLE_STATE
Project: All

Source: VideoCS

Length Bias: 2

This Huffman table commands contains both DC and AC tables for either luma or chroma. Once a Huffman table has
been defined for a particular destination, it replaces the previous tables stored in that destination and shall be used in
the remaining Scans of the current image. A Huffman table will be sent to H/W only when it is loaded from bitstream.
DWord Bit Description

0 31:29 Command Type
Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFX_MULTI_DW
Format: OpCode

26:24 Media Command Opcode
Default Value: 7h JPEG_COMMON
Format: OpCode

23:21 SubOpcode A
Default Value: 0h
Format: OpCode

20:16 SubOpcode B
Default Value: 2h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default Value: 033Dh Excludes DWord (0,1)
Project: All
Format: =n Total Length - 2

1 31:1 Reserved
Format: MBZ

0 HuffTableID (1-bit)
Identifies the huffman table.

Value Name Description
0 Y Huffman table for Y

2..4 31:0 DC_BITS (12 8-bit array)
The number of DC Huffman codes of length i, where i is 1~12

5..7 31:0 DC_HUFFVAL (12 8-bit array)
The value associated with each DC Huffman code of length i.

8..11 31:0 AC_BITS (16 8-bit array)
the list of Li, number of Huffman codes of length i, where i is 1~16

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 161

MFX_JPEG_HUFF_TABLE_STATE
12..51 31:0 AC_HUFFVAL (160 8-bit array)

the list of Vi,j, the value associated with each Huffman code of length i
52 31:16 Reserved

Project: All
Format: MBZ

15:0 AC_HUFFVAL(2-8 bit array)
In AC table, BITS can have up to 16-bit codeword. Li can be 0 ~ 162. HUFFVAL will have a list of
likely random distributed values

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 162

5. More Decoder and Encoder
5.1 MFD IT Mode Decode Commands

5.1.1 MFD_IT_OBJECT Command

MFD_IT_OBJECT
Project: All

Source: VideoCS

Length Bias: 2

All weight mode (default and implicit) are mapped to explicit mode. But the weights come in either as explicit or
implicit.
DWord Bit Description
0 31:29 Command Type

Default Value: 3h PARALLEL_VIDEO_PIPE
Format: OpCode

28:27 Pipeline
Default Value: 2h MFD_IT_OBJECT
Format: OpCode

26:24 Media Command Opcode
Default Value: 0h MFX_COMMON_DEC
Format: OpCode

23:21 SubOpcode A
Default Value: 1h
Format: OpCode

20:16 SubOpcode B
Default Value: 9h
Format: OpCode

15:12 Reserved
Project: All
Format: MBZ

11:0 DWord Length
Default
Value:

0h Excludes DWord (0,1) For AVC = Ch

Project: All
Format: =n Total Length – 2Note: Regardless of the mode, inline data must be present in this

command.

1 31:10 Reserved
Project: All
Format: MBZ

9:0 Indirect IT-MV Data Length
Format: U10 FormatDesc: In bytes

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 163

MFD_IT_OBJECT

This field provides the length in bytes of the indirect data, which contains all the MVs for the current MB
(in any partitioning and subpartitioning form). A value zero indicates that indirect data fetching is
disabled – subsequently, the Indirect IT-MV Data Start Address field is ignored. This field must have
the same alignment as the Indirect Object Data Start Address.AVC-IT Mode: It must be DWord aligned
(since each MV is 4bytes in size)Driver has to derived this field from MVsize (MVquantity in DXVA,
exact size) *4 bytes per MV.This field is only valid in AVC decoder IT mode (VC1 and MPEG uses
inline MV data).

2 31:29 Reserved
Project: All
Format: MBZ

28:0 Indirect IT-MV Data Start Address Offset
This field specifies the memory starting address (offset) of the MV data to be fetched into the IT
pipeline for processing. This pointer is relative to the Indirect IT-MV Object Base Address.Hardware
ignores this field if indirect data is not present, i.e. the Indirect MV Data Length is set to 0. Alignment of
this address depends on the mode of operation.AVC-IT Mode: It must be DWord aligned (since each
MV is 4 bytes in size). This field is only valid in AVC decoder IT mode (VC1 and MPEG uses inline MV
data).

Value Name
[0,512MB)

3 31:12 Reserved
Project: All
Format: MBZ

11:0 Indirect IT-COEFF Data Length
Project: All
This field provides the length in bytes of the indirect data, which contains all the non-zero coefficients
for the current MB. A value zero indicates that indirect data fetching is disabled – subsequently, the
Indirect IT-COEFF Data Start Address field is ignored. Since each IT-COEFF data is 1 DW in size, with
12 bits, this field can be extended to support up to 4:4:4 format.(256 pixel * 3 byte pixel components * 4
bytes per coeff).This field must be integer multiple of 16-bytes for AVC (since each coefficient is 4 bytes
in size).This field is only valid in AVC, VC1, MPEG2 decoder IT mode.

Value Name
[0,3072] In bytes [0, 256*3*4]

4 31:29 Reserved
Project: All
Format: MBZ

28:0 Indirect IT-COEFF Data Start Address Offset
Project: All
This field specifies the memory starting address (offset) of the coeff data to be loaded into the IT
pipeline for processing. This pointer is relative to the Indirect IT-COEFF Object Base
Address.Hardware ignores this field if indirect IT-COEFF data is not present, i.e. the Indirect IT-COEFF
Data Length is set to 0.This field must be DW aligned, since each coeff icient is 4 bytes in size.Driver
will determine the Num of EOB 4x4/8x8 must match the block cbp flags, if not match, hardware cannot
hang – add error handling.This field is only valid in AVC, VC1, MPEG2 decoder IT mode.

Value Name
[0,512MB)

5 31:6 Reserved
Project: All
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 164

MFD_IT_OBJECT
5:0 Indirect IT-DBLK Control Data Length

Project: All
Format: U6
This field provides the length in bytes of the indirect data, which contains all the deblocker control
information for the current MB (in 4x4 sub-block partitioning). A value zero indicates that indirect data
fetching is disabled – subsequently, the Indirect IT-DBLK Data Start Address field is ignored. This field
must have the same alignment as the Indirect IT-DBLK Data Start Address. It must be DWord aligned.
Each Deblock Control Data record is 48 bytes or 12 DWords in size.This field is only valid in AVC
decoder IT mode.

6 31:29 Reserved
Format: MBZ

28:0 Indirect IT-DBLK Control Data Start Address Offset
Format: IndirectObjectBaseAddress[28:0]
This field specifies the memory starting address (offset) of the Deblocker control data to be fetched into
the IT Pipeline for processing. This pointer is relative to the Indirect IT-DBLK Object Base Address.
 Hardware ignores this field if indirect data is not present, ie. The indirect IT-DBLK Control Data Length
is set to 0.
 It must be DWord aligned. Each Deblock Control Data record is 48 bytes or 12 DWords in size.
 This field is only valid in AVC decoder IT mode.

Value Name
[0,512MB)

7..n 31:0 Inline Data
Union for all 3 codecs

 Includes IT, MC, IntraPred inline data as well as Deblocker control information
 AVC-IT Modes: Hardware interprets this data in the specified format.
 VC1-IT Modes: Hardware interprets this data in the specified format. MV inline
 MPEG2-IT Modes: Hardware interprets this data in the specified format. (IS mode) MV inline
 For AVC there 7 DWords of inline data, hence N is equal to 13.

5.1.1.1 Common Indirect IT-COEFF Data Structure
Transform-domain residual data block in AVC-IT, VC1-IT and MPEG2-IT mode follows the same data
structure.

The indirect IT-COEFF data start address in MFD_IT_OBJECT command specifies the doubleword
aligned address of the first non-zero DCT coefficient of the first block of the macroblock. Only the non-
zero coefficients are present in the data buffer and they are packed in the 8x8 block sequence of Y0, Y1,
Y2, Y3, Cb4 and Cr5, as shown in Common Indirect IT COEFF Data Structure. When an 8x8 block is
further subdivided into 4x4 subblocks, the coefficients, if present, are organized in the subblock order.
The smallest subblock division is referred to as a transform block. The indirect IT-COEFF data length in
the command includes all the non-zero coefficients for the macroblock. It must be doubleword aligned.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 165

Structure of the IDCT Compressed Data Buffer

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size data structure
consisting of the coefficient index, end of block (EOB) flag and the fixed-point coefficient value in 2’s
compliment form. As shown in Common Indirect IT COEFF Data Structure, index is the row major 'raster'
index of the coefficient within a transform block (please note that it is not converted to 8x8 block basis).
A coefficient is a 16-bit value in 2's complement.

Structure of a transform-domain residue unit
DWord Bit Description

0 31:16 Transform-Domain Residual (coefficient) Value. This field contains the value of the non-zero
transform-domain residual data in 2’s compliment.

 15:7 Reserved: MBZ
 6:1 Index. This field specifies the raster-scan address (raw address) of the coefficient within the transform

block. For a coefficient at Cartesian location (row, column) = (y, x) in a transform block of width W,
Index is equal to (y * W + x). For example, coefficient at location (row, column) = (0, 0) in a 4x4
transform block has an index of 0; that at (2, 3) has an index of 2*4 + 3 = 11.

The valid range of this field depends on the size of the transform block.

Format = U6

Range = [0, 63]

 0 EOB (End of Block). This field indicates whether the transform-domain residue is the last one of the
current transform block.

Allowed transform block dimensions per coding standard
Transform Block Dimension AVC VC1 MPEG2

8x8 Yes Yes Yes
8x4 No Yes No
4x8 No Yes No
4x4 Yes Yes No

For AVC, there is intra16x16 mode, in which the DC Luma coefficients of all 4x4 sub-blocks within the
current MB are sent separately in its own 4x4 Luma block. As such, only 15 coefficients remains in each
of the 16 4x4 Luma blocks.

5.1.1.2 Inline Data Description in AVC-IT Mode
The Inline Data includes all the required MB decoding states, extracted primarily from the Slice Data, MB
Header and their derivatives. It provides information for the following operations:

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 166

1. Inverse Quantization
2. Inverse Transform
3. Intra and inter-Prediction decoding operations
4. Internal error handling

IT Mode supports only packed MV data as specified in the DXVA spec.

These state/parameter values may subject to change on a per-MB basis, and must be provided in each
MFD_IT_OBJECT command. The values set for these variables are retained internally, until they are
reset by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

The inline data has been designed to match the DXVA 2.0, with the exception of the starting byte
(DW0:0-7) and the ending dword (DW7:0-31).

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and
FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,
PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and
current MB position internally.

DWord Bit Description
0 31:24 MvQuantity

Specify the number of MVs (in unit of motion
vector, 4 bytes each) to be fetched for motion
compensation operation.

Decoder IT mode only supports packed MV
format (DXVA). This field specifies the exact
number of MVs present for the current MB.

For a P-Skip MB, there is still 1 MV being sent
(Skip MV is sent explicitly); for a B-Direct/Skip
MB, there are 2 MVs being sent.

For an Intra-MB, MvQuantity is set to 0.

MvQuantity = 0, signifies there is no MV
indirect data for the current MB.

This field must be set in consistent with
Indirect MV Data Length, so as not to exceed
its bound

Unsigned.

 23:20 Reserved MBZ (DXVA)
 19 DcBlockCodedYFlag

1 – the 4x4 DC-only Luma sub-block of the
Intra16x16 coded MB is present; it is still
possible that all DC coefficients are zero.

0 – no 4x4 DC-only Luma sub-block is present;
either not in Intra16x16 MB mode or all DC
coefficients are zero.

 18 DcBlockCodedCbFlag

For 4:2:0 case :

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 167

DWord Bit Description
1 – the 2x2 DC-only Chroma Cb sub-block of
all coded MB (any type) is present; it is still
possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cb sub-block is
present; all DC coefficients are zero.

 17 DcBlockCodedCrFlag

For 4:2:0 case :

1 – the 2x2 DC-only Chroma Cr sub-block of
all coded MB (any type) is present; it is still
possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cr sub-block is
present; all DC coefficients are zero.

 16 Reserved MBZ (DXVA)
 15 Transform8x8Flag

0: indicates the current MB is coded with 4x4
transform and therefore the luma residuals are
presented in 4x4 blocks.

1: indicates the current MB is coded with 8x8
transform and therefore the luma residuals are
presented in 8x8 blocks.

Same as the transform_szie_8x8_flag syntax
element in AVC spec.

 14 MbFieldFlag

This field specifies whether current macroblock
is coded as a field or frame macroblock in
MBAFF mode.

1 = Field macroblock

0 = Frame macroblock

This field is exactly the same as
FIELD_PIC_FLAG syntax element in non-
MBAFF mode.

Same as the mb_field_decoding_flag syntax
element in AVC spec.

 13 IntraMbFlag

This field specifies whether the current
macroblock is an Intra (I) macroblock.

0 – not an intra MB

1 – is an intra MB

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field
must set to 1.

This flag must be set in consistent with the

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 168

DWord Bit Description
interpretation of MbType (inter or intra modes).

 12:8 MbType

This field carries the Macroblock Type. The
meaning depends on IntraMbFlag.

If IntraMbFlag is 1, this field is the intra
macroblock type as defined in Macroblock
Type for Intra Cases.

If IntraMbFlag is 0, this field is the inter
macroblock type as defined in the first two
columns of Macroblock Type for Inter Cases.
All macroblock types in a P Slice are mapped
into the corresponding types in a B Slice. Skip
and Direct modes are converted into its
corresponding processing modes.

Programming note: It is exactly matched with
that of DXVA 2.0.

 7 FieldMbPolarityFlag

This field indicates the field polarity of the
current macroblock.

Within a MbAff frame picture, this field may be
different per macroblock and is set to 1 only for
the second macroblock in a MbAff pair if
FieldMbFlag is set. Otherwise, it is set to 0.

Within a field picture, this field is set to 1 if the
current picture is the bottom field picture.
Otherwise, it is set to 0. It is a constant for the
whole field picture.

This field is only valid for MBAFF frame
picture. It is reserved and set to 0 for a
progressive frame picture or a field picture.

0 = Current macroblock is a field macroblock
from the top field (first in a MBAFF pair)

1 = Current macroblock is a field macroblock
from the bottom field (second in a MBAFF
pair)

 6 IsLastMB

1 – the current MB is the last MB in the current
Slice

0 – the current MB is not the last MB in the
current Slice

 5-4 Reserved MBZ (Intel encoder)
 3:0 Reserved MBZ (DXVA Decoder)

1 31:16 CbpY[bit 15:0] (Coded Block Pattern Y)

For 4x4 sub-block (when Transform8x8flag =

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 169

DWord Bit Description
0 or in intra16x16) :

16-bit cbp, one bit for each 4x4 Luma sub-
block (not including the DC 4x4 Luma block in
intra16x16) in a MB. The 4x4 Luma sub-blocks
are numbered as

blk0 1 4 5 bit15 14
blk2 3 6 7 bit13 12
blk8 9 12 13 bit7 6
blk10 11 14 15 bit 5 4

The cbpY bit assignment is cbpY bit [15 – X]
for sub-block_num X.

For 8x8 block (when Transform8x8flag = 1)

Only the lower 4 bits [3:0] are valid; the
remaining upper bits [15:4] are ignored. The
8x8 Luma blocks are numbered as

blk0 1 bit3
blk2 3 bit1

The cbpY bit assignment is cbpY bit [3
– X] for block_num X.

0 in a bit – indicates the corresponding 8x8
block or 4x4 sub-block is not present (because
all coefficient values are zero)

1 in a bit – indicates the corresponding 8x8
block or 4x4 sub-block is present (although it is
still possible to have all its coefficients be zero
– bad coding).

 15:8 VertOrigin (Vertical Origin). This field

specifies the vertical origin of current
macroblock in the destination picture in units of
macroblocks.

For field macroblock pair in MBAFF frame, the
vertical origins for both macroblocks should be
set as if they were located in corresponding
field pictures. For example, for field
macroblock pair originated at (16, 64) pixel
location in an MBAFF frame picture, the
Vertical Origin for both macroblocks should be
set as 2 (macroblocks). Whether the current
macroblock is the first/second (top/bottom) in a
MBAFF pair is specified by
FieldMbPolarityFlag.

The macroblocks with (VertOrigin,
HorzOrigin) must be delivered in the strict
order as coded in the bitstream (raster order
for progressive frame or field pictures and
MBAFF pair order for MBAFF pictures). No
gap is allowed. Otherwise, hardware behavior

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 170

DWord Bit Description
is undefined.

Format = U8 in unit of macroblock.

 7:0 HorzOrigin (Horizontal Origin). This field
specifies the horizontal origin of current
macroblock in the destination picture in units of
macroblocks.

Format = U8 in unit of macroblock.

2 31:16 CbpCr (Coded Block Pattern Cr 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the
remaining upper bits [15:4] are ignored (only
valid for 4:2:2 and 4:4:4). The 4x4 Chroma Cr
sub-blocks are numbered as

blk0 1 bit3
blk2 3 bit1

The cbpCr bit assignment is cbpCr bit [3 – X]
for sub-block_num X.

0 in a bit – indicates the corresponding 4x4
sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 4x4
sub-block is present (although it is still possible
to have all its coefficients be zero – bad
coding).

For monochrome, this field is ignored.

 15-0 CbpCb (Coded Block Pattern Cb 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the
remaining upper bits [15:4] are ignored (only
valid for 4:2:2 and 4:4:4). The 4x4 Chroma Cb
sub-blocks are numbered as

blk0 1 bit3
blk2 3 bit1

The cbpCb bit assignment is cbpCb bit [3 – X]
for sub-block_num X.

0 in a bit – indicates the corresponding 4x4
sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 4x4
sub-block is present (although it is still possible
to have all its coefficients be zero – bad
coding).

For monochrome, this field is ignored.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 171

DWord Bit Description
3 31:24 Reserved MBz

 23:16 QpPrimeCr

Driver is responsible for deriving the
QpPrimeCr from QpPrimeY.

For 8-bit pixel data, QpCr is the same as
QpPrimeCr, and it takes on a value in the
range of 0 to 51, positive integer.

 15:8 QpPrimeCb

Driver is responsible for deriving the
QpPrimeCb from QpPrimeY.

For 8-bit pixel data, QpCb is the same as
QpPrimeCb, and it takes on a value in the
range of 0 to 51, positive integer.

 7:0 QpPrimeY

This is the per-MB QP value specified for the
current MB.

For 8-bit pixel data, QpY is the same as
QpPrimeY, and it takes on a value in the range
of 0 to 51, positive integer.

4 to 6 31:0

Each

For intra macroblocks, definition of these fields
are specified in Inline data subfields for an
Intra Macroblock

For inter macroblocks, definition of these fields
are specified in Inline data subfields for an
Inter Macroblock

5.1.1.3 Indirect Data Format in AVC-IT Mode
Indirect data in AVC-IT mode consist of Motion Vectors, Transform-domain Residue (Coefficient) and
ILDB control data. All three data records have variable size. Size of each Motion Vector record is
determined by the MvQuantity value as shown in Indirect Data Format in AVC IT Mode. ILDB control
record is fixed at the same size for all MBs in a picture. Coefficient data record is variable size per MB,
since it may only consist of non-zero coefficients.

Each MV is represented in 4 bytes, in the form of

Lower 2 bytes : horizontal MVx component in q-pel units

Upper 2 bytes : vertical MVy component in q-pel units

Integer distance is measured in unit of samples in the frame or field grid position.

Chroma MVs are not sent and are derived in the H/W.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 172

Indirect MV record size in AVC-IT mode
Macroblock Type MVQuant

BP_L0_16x16 1

B_L1_16x16 1

B_Bi_16x16 2

BP_L0_L0_16x8 2

BP_L0_L0_8x16 2

B_L1_L1_16x8 2

B_L1_L1_8x16 2

B_L0_L1_16x8 2

B_L0_L1_8x16 2

B_L1_L0_16x8 2

B_L1_L0_8x16 2

B_L0_Bi_16x8 3

B_L0_Bi_8x16 3

B_L1_Bi_16x8 3

B_L1_Bi_8x16 3

B_Bi_L0_16x8 3

B_Bi_L0_8x16 3

B_Bi_L1_16x8 3

B_Bi_L1_8x16 3

B_Bi_Bi_16x8 4

B_Bi_Bi_8x16 4

BP_8x8 Sum

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 173

For macroblock type of BP_8x8, MvQuant takes the sum of value MvQ[i] of the four individual 8x8 sub
macroblocks.

SubMbShape[i] SubMbPredMode[i] Description MvQ[i]

0 0 BP_L0_8x8 1
0 1 B_L1_8x8 1
0 2 B_BI_8x8 2
1 0 BP_L0_8x4 2
1 1 B_L1_8x4 2
1 2 B_BI_8x4 4
2 0 BP_L0_4x8 2
2 1 B_L1_4x8 2
2 2 B_BI_4x8 4
3 0 BP_L0_4x4 4
3 1 B_L1_4x4 4
3 2 B_BI_4x4 8

Indirect data Deblocking Filter Control block in AVC-IT mode:

AVC Deblocker Control Data record has a fixed size for each MB in a picture and is 48 bytes or 12
Dwords in size.

DWord Bit Description
0 31:24 Reserved : MBZ (DXVA Decoder)

 23 FilterTopMbEdgeFlag

22 FilterLeftMbEdgeFlag

21 FilterInternal4x4EdgesFlag

20 FilterInternal8x8EdgesFlag

19 FieldModeAboveMbFlag

18 FieldModeLeftMbFlag

17 FieldModeCurrentMbFlag

16 MbaffFrameFlag (DXVA Decoder reserved bit)

15:8 VertOrigin Current MB y position (address)

7:0 HorzOrigin Current MB x position (address)

1 31:30 bS_h13 2-bit boundary strength for internal top horiz 4-pixel edge 3

 29:28 bS_h12 2-bit boundary strength for internal top horiz 4-pixel edge 2

27:26 bS_h11 2-bit boundary strength for internal top horiz 4-pixel edge 1

25:24 bS_h10 2-bit boundary strength for internal top horiz 4-pixel edge 0

23:22 bS_v33 2-bit boundary strength for internal right vert 4-pixel edge 3

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 174

DWord Bit Description
21:20 bS_v23 2-bit boundary strength for internal right vert 4-pixel edge 2

19:18 bS_v13 2-bit boundary strength for internal right vert 4-pixel edge 1

17:16 bS_v03 2-bit boundary strength for internal right vert 4-pixel edge 0

15:14 bS_v32 2-bit boundary strength for internal mid vert 4-pixel edge 3

13:12 bS_v22 2-bit boundary strength for internal mid vert 4-pixel edge 2

11:10 bS_v12 2-bit boundary strength for internal mid vert 4-pixel edge 1

9:8 bS_v02 2-bit boundary strength for internal mid vert 4-pixel edge 0

7:6 bS_v31 2-bit boundary strength for internal left vert 4-pixel edge 3

5:4 bS_v21 2-bit boundary strength for internal left vert 4-pixel edge 2

3:2 bS_v11 2-bit boundary strength for internal left vert 4-pixel edge 1

1:0 bS_v01 2-bit boundary strength for internal left vert 4-pixel edge 0

2 31:28 bS_v30_0 4-bit boundary strength for Left0 4-pixel edge 3 (MSbit is wasted)

 17:24 bS_v20_0 4-bit boundary strength for Left0 4-pixel edge 2 (MSbit is wasted)

23:20 bS_v10_0 4-bit boundary strength for Left0 4-pixel edge 1 (MSbit is wasted)

19:16 bS_v00_0 4-bit boundary strength for Left0 4-pixel edge 0 (MSbit is wasted)

15:14 bS_h33 2-bit boundary strength for internal bot horiz 4-pixel edge 3

13:12 bS_h32 2-bit boundary strength for internal bot horiz 4-pixel edge 2

11:10 bS_h31 2-bit boundary strength for internal bot horiz 4-pixel edge 1

9:8 bS_h30 2-bit boundary strength for internal bot horiz 4-pixel edge 0

7:6 bS_h23 2-bit boundary strength for internal mid horiz 4-pixel edge 3

5:4 bS_h22 2-bit boundary strength for internal mid horiz 4-pixel edge 2

3:2 bS_h21 2-bit boundary strength for internal mid horiz 4-pixel edge 1

1:0 bS_h20 2-bit boundary strength for internal mid horiz 4-pixel edge 0

3 31:28 bS_h03_0 4-bit boundary strength for Top0 4-pixel edge 3 (MSbit is wasted)

 27:24 bS_h02_0 4-bit boundary strength for Top0 4-pixel edge 2 (MSbit is wasted)

23:20 bS_h01_0 4-bit boundary strength for Top0 4-pixel edge 1 (MSbit is wasted)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 175

DWord Bit Description
19:16 bS_h00_0 4-bit boundary strength for Top0 4-pixel edge 0 (MSbit is wasted)

15:12 bS_v03 4-bit boundary strength for Left1 4-pixel edge 3 (MSbit is wasted)

11:8 bS_v02 4-bit boundary strength for Left1 4-pixel edge 2 (MSbit is wasted)

7:4 bS_v01 4-bit boundary strength for Left1 4-pixel edge 1 (MSbit is wasted)

3:0 bS_v00 4-bit boundary strength for Left1 4-pixel edge 0 (MSbit is wasted)

4 31:24 bIndexBinternal_Y Internal index B for Y

 23:16 bIndexAinternal_Y Internal index A for Y

15:12 bS_h03_1 4-bit boundary strength for Top1 4-pixel edge 3 (MSbit is wasted)

11:8 bS_h02_1 4-bit boundary strength for Top1 4-pixel edge 2 (MSbit is wasted)

7:4 bS_h01_1 4-bit boundary strength for Top1 4-pixel edge 1 (MSbit is wasted)

3:0 bS_h00_1 4-bit boundary strength for Top1 4-pixel edge 0 (MSbit is wasted)

5 31:24 bIndexBleft1_Y

 23:16 bIndexAleft1_Y

15:8 bIndexBleft0_Y

7:0 bIndexAleft0_Y

6 31:24 bIndexBtop1_Y

 23:16 bIndexAtop1_Y

15:8 bIndexBtop0_Y

7:0 bIndexAtop0_Y

7 31:24 bIndexBleft0_Cb

 23:16 bIndexAleft0_Cb

15:8 bIndexBinternal_Cb

7:0 bIndexAinternal_Cb

8 31:24 bIndexBtop0_Cb

 23:16 bIndexAtop0_Cb

15:8 bIndexBleft1_Cb

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 176

DWord Bit Description
7:0 bIndexAleft1_Cb

9 31:24 bIndexBinternal_Cr

 23:16 bIndexAinternal_Cr

15:8 bIndexBtop1_Cb

7:0 bIndexAtop1_Cb

10 31:24 bIndexBleft1_Cr

 23:16 bIndexAleft1_Cr

15:8 bIndexBleft0_Cr

7:0 bIndexAleft0_Cr

11 31:24 bIndexBtop1_Cr

 23:16 bIndexAtop1_Cr

15:8 bIndexBtop0_Cr

7:0 bIndexAtop0_Cr

5.1.1.4 Inline Data Description in VC1-IT Mode
DWord Bit Description

+0 31:28 MvFieldSelect. A bit-wise representation indicating which field in the reference frame is used as the
reference field for current field. It’s only used in decoding interlaced pictures.

This field is valid for non-intra macroblock only.

Bit Description
28 Forward predict of current frame/field or TOP field of interlace frame, or block 0 in 4MV mode.
29 Backward predict of current frame/field or TOP field of interlace frame, or forward predict for block

1 in 4MV mode.
30 Forward predict of BOTTOM field of interlace frame, or block 2 in 4MV mode.
31 Backward predict of BOTTOM field of interlace frame, or forward predict for block 3 in 4MV mode.

 Each corresponding bit has the following indication.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Reserved. MBZ

 26 MvFieldSelectChroma . This field specifies the polarity of reference field for chroma blocks when their
motion vector is derived in Motion4MV mode for interlaced (field) picture.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 177

DWord Bit Description
Non-intra macroblock only. This field is derived from MvFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 25:24 MotionType – Motion Type

For frame picture, a macroblock may only be either 00 or 10.

For interlace picture, a macroblock may be of any motion types. It can be 01 if and only if DctType is 1.

This field is 00 if and only if IntraMacroblock is 1.

00 = Intra

01 = Field Motion.

10 = Frame Motion or no motion.

Others = Reserved.

 23 Reserved. MBZ

 22 MvSwitch. This field specifies whether the prediction needs to be switched from forward to backward
or vice versa for single directional prediction for top and bottom fields of interlace frame B
macroblocks.

0 = No directional prediction switch from top field to bottom field

1 = Switch directional prediction from top field to bottom field

 21 DctType. This field specifies whether the residual data is coded as field residual or frame residual for
interlaced picture. This field can be 1 only if MotionType is 00 (intra) or 01 (field motion).

For progressive picture, this field must be set to ‘0’, i.e. all macrobalcoks are frame macroblock.

0 = Frame residual type.

1 = Field residual type.

 20 OverlapTransform. This field indicates whether overlap smoothing filter should be performed on I-
block boundaries.

0 = No overlap smoothing filter.

1 = Overlap smoothing filter performed.

 19 Motion4MV. This field indicates whether current macroblock a progressive P picture uses 4 motion
vectors, one for each luminance block.

It’s only valid for progressive P-picture decoding. Otherwise, it is reserved and MBZ. For example, with
MotionForward is 0, this field must also be set to 0.

0 = 1MV-mode.

1 = 4MV-mode.

 18 MotionBackward. This field specifies whether the backward motion vector is active for B-picture. This
field must be 0 if Motion4MV is 1 (no backward motion vector in 4MV-mode).

0 = No backward motion vector.

1 = Use backward motion vector(s).

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 178

DWord Bit Description
 17 MotionForward. This field specifies whether the forward motion vector is active for P and B pictures.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16 IntraMacroblock. This field specifies if the current macroblock is intra-coded. When set, Coded Block
Pattern is ignored and no prediction is performed (i.e., no motion vectors are used).

For field motion, this field indicates whether the top field of the macroblock is coded as intra.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12 LumaIntra8x8Flag – Luma Intra 8x8 Flag

This field specifies whether each of the four 8x8 luminance blocks are intra or inter coded when
Motion4MV is set to 4MV-Mode.

Each bit corresponds to one block. “0” indicates the block is inter coded and ‘1’ indicates the block is
intra coded.

When Motion4MV is not 4MV-Mode, this field is reserved and MBZ.

Bit 15: Y0

Bit 14: Y1

Bit 13: Y2

Bit 12: Y3

 11:6 CBP - Coded Block Pattern

This field specifies whether the 8x8 residue blocks in the macroblock are present or not.

Each bit corresponds to one block. “0” indicates residue block isn’t present, “1” indicates residue block
is present.

Note: For each block in an intra-coded macroblock or an intra-coded block in a P macroblock in 4MV-
Mode, the corresponding CBP must be 1. Subsequently, there must be at least one coefficient (this
coefficient might be zero) in the indirect data buffer associated with the bock (i.e. residue block must
be present).

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

 5 ChromaIntraFlag - Derived Chroma Intra Flag

This field specifies whether the chroma blocks should be treated as intra blocks based on motion
vector derivation process in 4MV mode.

0 = Chroma blocks are not coded as intra.

1 = Chroma blocks are coded as intra

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 179

DWord Bit Description
 4 LastRowFlag – Last Row Flag

This field indicates that the current macroblock belongs to the last row of the picture.

This field may be used by the kernel to manage pixel output when overlap transform is on.

0 = Not in the last row

1 = In the last row

3 LastMBInRow – This field indicates the last MB in row flag.

2:0 Reserved. MBZ

+1 32:26 Reserved. MBZ

 15:8 VertOrigin - Vertical Origin

In unit of macroblocks relative to the current picture (frame or field).

 7:0 HorzOrigin - Horizontal Origin

In unit of macroblocks.

+2 31:16 MotionVector[0].Vert

 15:0 MotionVector[0].Horz

+3 31:0 MotionVector[1]

+4 31:0 MotionVector[2]

+5 31:0 MotionVector[3]

+6 31:0 MotionVectorChroma

This field is not valid for a field motion in an interlaced frame picture where 4 MVs for chroma blocks.

Notes: This field is derived from MotionVector[3:0] as described in the following section.

+7 31:24 Subblock Code for Y3

The following subblock coding definition applies to all 6 subblock coding bytes. Bits 7:6 are reserved.

Subblock Partitioning

(Bits [1:0])

Specify Transform uses for an 8x8
block

Subblock Present

(0 means not present, 1 means present)

Bits

[1:0] Meaning Bit 2 Bit 3 Bit 4 Bit 5
00 Single 8x8 block (sb0) Sb0 Don’t care Don’t care Don’t care
01 Two 8x4 subblocks (sb0-1) Sb1 (bot) Sb0 (top) Don’t care Don’t care
10 Two 4x8 subblocks (sb0-1) Sb1 (right) Sb0 (left) Don’t care Don’t care
11 Four 4x4 subblocks (sb0-3) Sb3 (lower Sb2 (lower Sb1 (upper Sb0 (upper

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 180

DWord Bit Description
right) left) right) left)

 23:16 Subblock Code for Y2

 15:8 Subblock Code for Y1

 7:0 Subblock Code for Y0

+8 31:16 Reserved. MBZ

 15:8 Subblock Code for Cr

 7:0 Subblock Code for Cb

+9 31:24 ILDB control data for block Y3

 23:16 ILDB control data for block Y2

 15:8 ILDB control data for block Y1

 7:0 ILDB control data for block Y0

+10 31:16 Reserved

 15:8 ILDB control data for Cr block

 7:0 ILDB control data for Cb block

5.1.1.5 Indirect Data Format in VC1-IT Mode
VC1-IT mode only contains IT-COEFF indirect data which is described in Common Indirect IT COEFF
Data Structure.

5.1.1.6 Inline Data Description in MPEG2-IT Mode
The content in this command is similar to that in the MEDIA_OBJECT command in IS mode described in
the Media Chapter.

Each MFD_IT_OBJECT command corresponds to the processing of one macroblock. Macroblock
parameters are passed in as inline data and the non-zero DCT coefficient data for the macroblock is
passed in as indirect data.

Inline Data Description in MPEG2 IT Mode depicts the inline data format. Inline data starts at dword 7 of
MFD_IT_OBJECT command. There are 7 dwords total.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 181

Inline data in MPEG2-IT Mode
DWord Bit Description

+0 31:28 Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as defined in §6.3.17.2 of
the ISO/IEC 13818-2 (see also §7.6.4).

Bit MVector[r] MVector[s] MotionVerticalFieldSelect Index
28 0 0 0
29 0 1 1
30 1 0 2
31 1 1 3

 Format = MC_MotionVerticalFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Reserved (was Second Field)
 26 Reserved. (HWMC mode)
 25:24 Motion Type. When combined with the destination picture type (field or frame) this Motion Type field

indicates the type of motion to be applied to the macroblock. See ISO/IEC 13818-2 §6.3.17.1, Tables
6-17, 6-18. In particular, the device supports dual-prime motion prediction (11) in both frame and field
picture type.

Format = MC_MotionType

Value

Destination = Frame

Picture_Structure = 11

Destination = Field

Picture_Structure != 11

‘00’ Reserved Reserved
‘01’ Field Field
‘10’ Frame 16x8
‘11’ Dual-Prime Dual-Prime

 23:22 Reserved. (Scan method)
 21 DCT Type. This field specifies the DCT type of the current macroblock. The kernel should ignore this

field when processing Cb/Cr data. See ISO/IEC 13818-2 §6.3.17.1. This field is zero if Coded Block
Pattern is also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

 20 Reserved (was Overlap Transform - H261 Loop Filter).
 19 Reserved (was 4MV Mode - H263/)

 18 Macroblock Motion Backward. This field specifies if the backward motion vector is active. See
ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17 Macroblock Motion Forward. This field specifies if the forward motion vector is active. See ISO/IEC
13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 182

DWord Bit Description
1 = Use forward motion vector(s).

 16 Macroblock Intra Type. This field specifies if the current macroblock is intra-coded. When set, Coded
Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are used). See
ISO/IEC 13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12 Reserved : MBZ

 11:6 Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

5:4 Reserved. (Quantization Scale Code)
3 LastMBInRow – This field indicates the last MB in each row.

2:0 Reserved: MBZ
+1 31:16 Reserved : MBZ

 15:8 VertOrigin - Vertical Origin

In unit of macroblocks relative to the current picture (frame or field).

7:0 HorzOrigin - Horizontal Origin

In unit of macroblocks.

+2 31:16 Motion Vectors – Field 0, Forward, Vertical Component. Each vector component is a 16-bit two’s-
complement value. The vector is relative to the current macroblock location. According to ISO/IEC
13818-2 Table 8, the valid range of each vector component is [-2048, +2047.5], implying a format of
s11.1. However, it should be noted that motion vector values are sign extended to 16 bits.

 15:0 Motion Vectors – Field 0, Forward, Horizontal Component

+3 31:16 Motion Vectors – Field 0, Backward, Vertical Component

 15:0 Motion Vectors – Field 0, Backward, Horizontal Component

+4 31:16 Motion Vectors – Field 1, Forward, Vertical Component

 15:0 Motion Vectors – Field 1, Forward, Horizontal Component

+5 31:16 Motion Vectors – Field 1, Backward, Vertical Component

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 183

DWord Bit Description
 15:0 Motion Vectors – Field 1, Backward, Horizontal Component

5.1.1.7 Indirect Data Format in MPEG2-IT Mode
MPEG2-IT mode only contains IT-COEFF indirect data which is described in Section Common Indirect IT
COEFF Data Structure.

5.2 Session Decoder StreamOut Data Structure
When StreamOut is enabled, per MB intermediated decoded data (MVs, mb_type, MB qp, etc.) are sent
to the memory in a fixed record format (and of fixed size). The per-MB records must be written in a strict
raster order and with no gap (i.e. every MB regardless of its mb_type and slice type, must have an entry
in the StreamOut buffer). Therefore, the consumer of the StreamOut data can offset into the StreamOut
Buffer (StreamOut Data Destination Base Address) using individual MB addresses.

A StreamOut Data record format is detailed as follows:

DWord Bit Description

0 31:24 Format: U5, valid from 0 to 32

23 Reserved MBZ

22-20 EdgeFilterFlag (AVC) / OverlapSmoothFilter (VC1)

19:17 CodedPatternDC (for AVC only, 111b for others)

The field indicates whether DC coefficients are sent..

1 bit each for Y, U and V.

16 Reserved MBZ

15 Transform8x8Flag

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current MB uses 8x8
transform. The transform_szie_8x8_flag syntax element, if present in the output bitstream, is the
same as this field. However, whether transform_szie_8x8_flag is present or not in the output
bitstream depends on several conditions:

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than 8x8

Otherwise, this field must be set to 0.

0: 4x4 integer transform

1: 8x8 integer transform

14 MbFieldFlag

This field specifies whether current macroblock is coded as a field or frame macroblock in MBAFF

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 184

DWord Bit Description
mode.

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

0 = Frame macroblock
1 = Field macroblock

13 IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

12:8 MbType5Bits

This field is encoded to match with the best macroblock mode determined as described in the next
section. It follows AVC encoding for inter and intra macroblocks.

7 MbPolarity FieldMB Polarity - vctrl_vld_top_field AVC

6 Reserved MBZ

5:4 IntraMbMode

This field is provided to carry information partially overlapped with MbType.

This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware..

3 Reserved MBZ

2 MbSkipFlag

Reserved MBZ (DXVA Encoder). HW (VDSunit) doesn’t have skip MB info.

It sets to 1 if any of the sub-blocks is inter, uses predicted MVs, and skips sending MVs explicitly in
the code stream. Currently H/W can provide this flag and is defaulted to 0 always.

 1:0 InterMbMode

This field is provided to carry redundant information as that in MbType. It also carries additional
information such as skip.

This field is only valid if IntraMbFlag =INTER, otherwise, it is ignored by hardware.

1 31:16 MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock in the
destination picture in units of macroblocks.

Format = U8 in unit of macroblock.

 15:0 MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current macroblock in the
destination picture in units of macroblocks.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 185

DWord Bit Description
Format = U8 in unit of macroblock.

2 31 Conceal MB Flag. This field specifies if the current MB is a conceal MB, use in AVC/VC1/MPEG2
mode

30 Last MB of the Slice Flag. This field indicate the current MB is a last MB of the slice. Use in
AVC/VC1/MPEG2 mode.

29:24 Reserved

23:20 CbpAcV

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still
possible to have all its coefficients be zero – bad coding).

19:16 CbpAcU

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still
possible to have all its coefficients be zero – bad coding).

15:0 CbpAcY

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still
possible to have all its coefficients be zero – bad coding).

Bit15=Y0Sub0, Bit0=Y3Sub3

3 31:28

AVC

Skip8x8Pattern (AVC)

This field indicates whether each of the four 8x8 sub macroblocks is using the predicted MVs and
will not be explicitly coded in the bitstream (the sub macroblock will be coded as direct mode). It
contains four 1-bit subfields, corresponding to the 4 sub macroblocks in sequential order. The whole
macroblock may be actually coded as B_Direct_16x16 or B_Skip, according to the macroblock type
conversion rules described in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also ignores this
field for an intra macroblock.

0 in a bit – Corresponding MVs are sent in the bitstream

1 in a bit – Corresponding MVs are not sent in the bitstream

 27:25 Reserved

 24:16 NzCoefCountMB

– all coded coefficients input including AC/DC blocks in current MB.

Range 0 to 384 (9 bits)

 15:8 [IVB+] MbClock16 – MB compute clocks in 16-clock unit.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 186

DWord Bit Description
 7 mbz (AVC) / QScaleType (MPEG2)

 6:0 QpPrimeY (AVC) / QScaleCode (MPEG2)

The luma quantization index. This is the per-MB QP value specified for the current MB.

4 to 6 31:0
Each For intra macroblocks, definition of these fields are specified in 1

For inter macroblocks, definition of these fields are specified in 2

7 31:24 Reserved

23:20 MvFieldSelect (Ref polarity top or bottom bits) for VC1 and MPEG2

vcp_vds_mvdataR[162:159] VC1

vmd_vds_mt_vert_fld_selR[3:0] MPEG2

19:12 Reserved

11:10 SubBlockCodeType V (If 8x8, 8x4, 4x8, 4x4 type)

9:8 SubBlockCodeType U (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

7:6 SubBlockCodeType Y3 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

5:4 SubBlockCodeType Y2 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

3:2 SubBlockCodeType Y1 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

1:0 SubBlockCodeType Y0 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

Inter
cases

8 31:16 MvFwd[0].y – y-component of the forward motion vector of the 1st 8x8 or 1st 4x4 subblock

 15:0 MvFwd[0].x – x-component of the forward motion vector of the 1st 8x8 or 1st 4x4 subblock

9 31:0 MvBck[0] – the backward motion vector of the 1st 8x8 or 1st 4x4 subblock

10 31:0 MvFwd[1] – the forward motion vector of the 2nd 8x8 or 4th 4x4 subblock

11 31:0 MvBck[1] – the backward motion vector of the 2nd 8x8 or 4th 4x4 subblock

12 31:0 MvFwd[2] – the forward motion vector of the 3rd 8x8 or 8th 4x4 subblock

13 31:0 MvBck[2] – the backward motion vector of the 3rd 8x8 or 8th 4x4 subblock

14 31:0 MvFwd[3] – the forward motion vector of the 4th 8x8 or 12th 4x4 subblock

15 31:0 MvBck[3] – the backward motion vector of the 4th 8x8 or 12th 4x4 subblock

Intra
Cases :

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 187

DWord Bit Description
8 to 15 31:0 Reserved MBZ

The inline data content of Dwords 4 to 6 is defined either for intra prediction or for inter prediction, but not
both.

Inline data subfields for an Intra Macroblock

4 31:16 LumaIndraPredModes[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC : See the bit assignment table later in this section.

VC1 : MBZ.

MPEG2 : MBZ.

 15:0 LumaIndraPredModes[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one intra16x16 of a
MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block
(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only the
LSBit[1:0] is valid, since there are only 4 intra modes.

AVC : See the bit assignment table later in this section.

VC1 : MBZ.

MPEG2 : MBZ.

5

AVC
INTRA

31:16 LumaIndraPredModes[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC : See the bit assignment table later in this section.

VC1 : MBZ.

MPEG2 : MBZ.

 15:0 LumaIndraPredModes[2]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC : See the bit assignment later in this section.

VC1 : MBZ.

MPEG2 : MBZ.

6 31:8 Reserved (Reserved for encocder turbo mode IntraResidueDataSize, when this is not 0, optional
residue data are provided to the PAK; Reserved for decoder)

 7:0 MbIntraStruct

The IntraPredAvailFlags[4:0] have already included the effect of the constrained_intra_pred_flag. See
the diagram later for the definition of neighbors position around the current MB or MB pair (in MBAFF
mode).

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 188

1 – IntraPredAvailFlagX, indicates the values of samples of neighbor X can be used in intra prediction
for the current MB.

0 – IntraPredAvailFlagX, indicates the values of samples of neighbor X is not available for intra
prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when constrained_intra_pred_flag
is equal to 1 and mb_field_decoding_flag is equal to 1 and the value of the mb_field_decoding_flag for
the macroblock pair to the left of the current macroblock is equal to 0 (which can only occur when
MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

o it is in MBAFF mode, i.e. MbaffFrameFlag = 1,
o the current macroblock is of frame type, i.e. MbFieldFag = 0, and
o the current macroblock type is Intra8x8, i.e. IntraMbFlag = INTRA, IntraMbMode =

INTRA_8x8, and Transform8x8Flag = 1.

In any other cases IntraPredAvailFlag-A shall be used instead.

Bits IntraPredAvailFlags[4:0] Definition
7 IntraPredAvailFlagF – F (Left 8th row (-1,7) neighbor)

6 IntraPredAvailFlagA – A (Left neighbor top half)

5 IntraPredAvailFlagE – E (Left neighbor bottom half)

4 IntraPredAvailFlagB – B (Top neighbor)

3 IntraPredAvailFlagC – C (Top right neighbor)

2 IntraPredAvailFlagD – D (Top left corner neighbor)

1:0 ChromaIntraPredMode – 2 bits to specify 1 of 4 chroma intra prediction mode, see the table in
later section.

Inline data subfields for an Inter Macroblock

4 31:24 Reserved: MBZ (DXVA Decoder)

 23:16 Reserved: MBZ (DXVA Decoder)

 15:8 SubMbPredModes[bit 7:0] (Sub Macroblock Prediction Mode)

This field describes the prediction mode of the sub macroblocks (four 8x8 blocks). It
contains four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub
macroblocks in sequential order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as
defined in DXVA)

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant
information as MbType)

Bits [1:0]: SubMbPredMode[0] – for 8x8 Block 0

Bits [3:2]: SubMbPredMode[1] – for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] – for 8x8 Block 2

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 189

Bits [7:6]: SubMbPredMode[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

Each 2-bit value [1:0] is defined as :

00 – Pred_L0

01 – Pred_L1

10 – BiPred

For VC1:

Bits [1:0]: “00”= Y0 Forward only, “01”= Y0 Backward only, “10”= Y0 Bi direction

Bits [3:2]: SubMbPredMode[1] – for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] – for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] – for 8x8 Block 3

 7:0 SubMbShape[bit 7:0] (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks). It
contains four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub
macroblocks in sequential order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as
defined in DXVA)

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively carries redundant
information as MbType). ???

Bits [1:0]: SubMbShape[0] – for 8x8 Block 0

Bits [3:2]: SubMbShape[1] – for 8x8 Block 1

Bits [5:4]: SubMbShape[2] – for 8x8 Block 2

Bits [7:6]: SubMbShape[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

Each 2-bit value [1:0] is defined as :

00 – SubMbPartWidth=8, SubMbPartHeight=8

01 – SubMbPartWidth=8, SubMbPartHeight=4

10 – SubMbPartWidth=4, SubMbPartHeight=8

11 – SubMbPartWidth=4, SubMbPartHeight=4

For VC-1, This field indicates the transformation types used for luma components, 2 bits for
each 8x8.

5 31:24 Frame Store ID L0[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 190

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

 23:16 Frame Store ID L0[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

 15:8 Frame Store ID L0[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation).

 7:0 Frame Store ID L0[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 191

6 31:24 Frame Store ID L1[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

 23:16 Frame Store ID L1[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

 15:8 Frame Store ID L1[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

 7:0 Frame Store ID L1[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details
in later section. This field specifies the frame Store ID into the Reference Picture List0
Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference
index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 192

Bit 6:5: reserved MBZ

Bit 4:0 : Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index
in intel implementation)

5.3 Decoder Input Bitstream Formats

5.3.1 AVC Bitstream Formats – DXVA Short
Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header
Byte. This byte must not be included in the Emulation Byte Detection Process.

5.3.2 AVC Bitstream Formats – DXVA Long
Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header
Byte. This byte must not be included in the Emulation Byte Detection Process. Application will provide the
Slice Header Skip Byte count (not including any possible Emulation Prevention Byte).

5.3.3 AVC Bitstream Formats – Intel Long
Obsolete – not supported.

5.3.4 VC1 Bitstream Formats – Intel Long
Bitstream starts right at the MB layer, with any emulation byte crossing the header and MB layer being
removed by application and the data length is adjusted.

5.3.5 MPEG2 Bitstream Formats – DXVA1
Bitstream buffer starts right at the very first MB data.

5.3.6 JPEG Bitstream Formats – Intel
Bitstream buffer starts right at the very first MCU data of each Scan.

The indirect data start address in MFD_JPEG_BSD_OBJECT specifies the starting Graphics Memory
address of the bitstream data that follows the Scan header. It provides the byte address for the first MCU
of the Scan. Different from MFD_MPEG2_BSD_OBJECT command, First MCU Bit Offset does not need
to be specified because it is always set to zero.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 193

Indirect data buffer for a Scan

The indirect data length in MFD_JPEG_BSD_OBJECT provides the length in bytes of the bitstream data
for the Scan excluding Scan header. It includes the first byte of the first macroblock and the last byte of
the last macroblock in the Scan. The Figure illustrates these parameters for a slice data.

5.4 Concurrent, Multiple Video Stream Decoding Support
The natural place for switching across multiple streams is at the Slice boundary. Each Slice is a self-
sustained unit of compressed video data and has no dependency with its neighbors (except for the
Deblocking process). In addition, there is no interruptability within a Slice. However, when ILDB is
invoked, the processing of some MBs will require neighbour MB information that crosses the Slice
boundary. Hence, to limit the buffering requirement, in this version of hardware design, stream switching
can only be performed at the picture boundary instead.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 194

6. Encoder StreamOut Mode Data
Structure Definition

When StreamOut is enabled, per MB (and/or per Slice, per Picture) intermediated coding data (e.g. bit
allocated for each MB, etc.) are sent to the memory in a fixed record format (and of fixed size) from the
PAK. The per-MB records must be written in a strict raster order and with no gap (i.e. every MB
regardless of its mb_type and slice type, must have an entry in the StreamOut buffer). Therefore, the
consumer of the StreamOut data can offset into the StreamOut Buffer (StreamOut Data Destination
Base Address) using individual MB addresses.

Adding per macroblock stream out for PAK is for the following purposes:

• Immediate multi-pass PAK (without host or EU intervention)

o 3200-bit conformance
o Re-quantization

• Providing information for host for offline processing
• Providing information for updated QP’s

The description for the fixed format PAK streamout record :

Streamout Pointer: Use the existing streamout pointer and enabler

Per Macroblock Information (a fixed size structure)

DWord Bit Description
0 31:24 MbQpY - Actual QPY used by the macroblock.

 23:16 [IVB+] MbClock16 – MB compute clocks in 16-clock unit.

 15:8 Reserved : MBZ
 7:4 Reserved : MBZ (future conformance flags)

 3 Reserved

 2 MbRcFlag: MB level Rate control flag(pass through)The same value as
RateControlCounterEnable of MFX_AVC_SLICE_STATE Command

 1 MbInterConfFlag: MB level InterMB conformance flag to trigger mutli-pass1- if total Bit Count of an
inter macroblock is more than Inter Conformance Max size limit in the MFX_AVC_IMG_STATE
Command

 0 MbIntraConfFlag: MB level IntraMB conformance flag to trigger mutli-pass1- if total Bit Count of an
intra macroblock is more than Intra Conformance Max size limit in the MFX_AVC_IMG_STATE
Command

1 31:29 Reserved

 28:16 MbBits : Total Bit Count for the macroblock

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 195

DWord Bit Description
 15:12 Reserved

 12:0 MbHdrBits : Header Bit count (bit count due to Pre-coefficient data) for the macroblock

2 31:27 Reserved

 26:0 Cbp: Coded Block Pattern of sub-blocks

3 31:30 Reserved

 29 IntraMBFlag

 28:24 MBType5Bits

 23:17 Reserved

 16 ClampFlag: Coefficient clamping flag for RC (Status)
1 - Indicates if clamping of any coefficient is done on the macroblock for Rate Control

 15:0 Reserved (future QRC stat output)

6.1 PAK Multi-Pass
Multi-Pass PAK Usages:

• Intra MB 3200-bit conformance
• Inter MB Re-quantization
• Frame level Re-quantization

How to Enable Multi-Pass PAK?

• Using the existing conditional batch buffer execution capability to skip/execute the second pass

o How to dynamically change the condition?

 Defined one error condition register with a mask. Do HW status page update
at the end of the first pass. 0 means all OK, non-zero means there is an error
condition, requiring second pass. Mask is used by the host to control what
kind of multi-pass is intended.

 For example, one error bit is 3200-bit conformance violation. Another error bit
is the total bit count exceeds (too much or too little) the target range (need to
define the target range in the state).

 The logic pefectly fits in the conditional batch buffer control logic that
VCS has today in GT. There is no additional logic need to be added in
VCS to support media functionality. (Batch Buffer Skip: This field only
takes effect if Compare Semaphore is set and the value at Semaphore
Address is NOT greater than the Semaphore Data Dword).

• Adding a picture level state command to enable and control the behavior of the second pass PAK

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 196

o How to control the re-PAK? Added 3 conformance flags (error registers) in the per-MB
streamout. Then the error control is based on the error register and the mask defined
in picture level states. There are 8 register flags defined out of which only the 3200-bit
case has usage model defined for today. The rest are left for future usage.

Issues and Limitations:

• There is no programmable engine in MFX for flexible control: Therefore, whatever we have defined
must consider flexibility

Following 2 MI packets are used inside VCS without any change to support Multipass-PAK behaviour.

• MI_Conditional_Batch_Buffer_End
• Memory Interface Registers

6.2 Driver Usage
Driver places Image states in one batch buffer and all slice level and macroblock level states into another
batch buffer and link 2 batch buffers. Also replicate Image states with multipass changes in another batch
buffer link them to slice/macroblock batch buffer. In this way, only Image states are replicated but not the
slice/macroblock states. The image states includes all buffers defined at image(indirectMV, original pixel
buffer, etc). Following changes are needed in the Multipass Image State,

• Reset- Stream-Out Enable(disable stream out in the second pass)
• Set- MacroblockStatEnable (enable reading of macroblock status buffer)
• Reset- 3200-bit conformance (do not report 3200-bit conformance)

• Define Conditional Batch Buffer End for CS/VCSVINunit

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 197

7. Programming Reference
7.1 Monochrome Picture Processing
Monochrome picture is specified using the Surface State with Surface Format of 12. Therefore, MFX
hardware, in either decode or encode mode, doesn’t generation any read or write traffic for U/V
components. Motivation for this bandwidth optimization is that monochrome video coding might be used
for wireless display.

For Encoder :

1. No read in UV original components.
2. processing UV component - no
3. reconstructed UV component reference picture - no
4. filter UV component - no

For Decoder :

1. VLD mode : no color component coming out in Monochrome mode and so no processing and
not writing output

2. IT mode : there is no color component in the coefficient buffer, and so no processing and not
writing output

7.2 Context Switch
There is no pre-emption for the BCS pipeline; hence every command buffer is required to contain all the
states setup (preamble). Specifically, CPU can not interrupt the BCS-BSD pipe, to stop the operation in
the middle of decoding a bitstream data.

Switch of contexts can only be performed at picture boundary.

No state needs to be saved.

7.3 Pipeline Flush
Implicit flush for AVC and VC1 is performed at the end of Slice : for MPEG2 is done when a new
image/picture command is issued. Because MPEG2 a slice can be one MB, no point to flush. MPEG2 will
snoop the next command if it is an img_state command.

Explicit flush MI (1 bit to do media pipeline vs Gx pipeline) flush and cache flush (switch reference frame)
– MI flush has bit to do cache flush. MI flush is for driver synchronization.

7.4 MMIO Interface
A set of registers are defined and accessible through MMIO interface to serve multiple purposes:

• Use for system configuration
• For accessing Performance counters

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 198

Register Name Description
Register

Type
Address
Offset Dec/Enc

MFD ERROR Status MFD ERROR STATUS_VLD
ERROR flags and counter

RO 12400 Dec

Reserved MBZ 12404~1241C
MFD picture-level parameter VC1 picture level parameters R/W 12420 Dec
Reserved MBZ 12434
MFX PIPELINE_STATUS_FLAGS MFX PIPELINE STATUS

Flags_MFX pipeline mode flags
RO 12438 Dec

MFX_Error_Injection_Parameter Control HW error injector WO 12454 Dec
Reserved 12458~1245C
MFX Frame Performance count Number of clocks spent

decoding/encoding a frame
RO 12460 Dec/Enc

MFX Slice Performance count Number of clocks spent
decoding/encoding a slice

RO 12464 Dec/Enc

MFX Frame Macroblock count Number of MBs decoded/encoded
per frame

RO 12468 Dec/Enc

MFD Frame BITSTREAM SE/BIN count Number of bin/SE decoded per
frame

RO 1246C Dec

MFX Memory Latency count1 Reference picture read latency -min
and max

RO 12470 Dec/Enc

MFX Memory Latency count2 Reference picture read latency -
Accumulative (used for compute
AVE latency)

RO 12474 Dec/ENc

MFX Memory Latency count3 row-store/bit-stream memory read
latency -min and max

RO 12478 Dec/Enc

MFX Memory Latency count4 row-store/bit-stream memory read
latency - accumulative (used to
compute AVE latency)

RO 1247C Dec/End

MFX Frame row-stored/bit-stream read
Count

of row-store memory requests sent RO 12480 Dec/End

MFX Motion Comp read Count total number of CL memory
accesses per frame

RO 12484 Dec/ENd

MFX Motion Comp MISS Count total number of CL HITs per frame RO 12488 Dec/ENd
Reserved 1248C~1249C
MFC_BITSTREAM_BYTECOUNT_FRAME Total Bitstream Output Byte Count

register per Frame
RO 124A0 Enc

MFC_BITSTREAM_SE_BITCOUNT_FRAME Bitstream Output total Byte Count for
syntax eements (total byes of MB
data from SEC per frame)

RO 124A4 Enc

MFC_AVC_CABAC_BIN_COUNT_FRAME Bitstream Output total bin count per
frame

RO 124A8 Enc

MFC_AVC_CABAC_INSERTION_COUNT Bitstream Output CABAC Insertion
Count Register

RO 124AC Enc

MFC_AVC_MINSIZE_PADDING_COUNT Bitstream Output Minimal Size
Padding Count Register

RO 124B0 Enc

MFC_IMAGE_STATUS_MASK image status(flags). R/W 124B4 Enc
MFC_IMAGE_STATUS_CONTROL suggested data for next frame in

multi-pass.
RO 124B8 Enc

MFC_QP_STATUS_COUNT Overall adjusted delta QP via multi-
pass, Sum of QPY for all
macroblocks of the frame

RO 124BC Enc

 124C0~124CC Enc
MFC_BITSTREAM_BYTECOUNT_SLICE Bitstream Output Byte Count RO 124D0 Enc

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 199

Register Name Description
Register

Type
Address
Offset Dec/Enc

Register per Slice
MFC_BITSTREAM_SE_BITCOUNT_SLICE Bitstream Output Bit Count for the

last Syntax Element Register
RO 124D4 Enc

PAK_ REPORT_WARNING MPC Warning Register RO 124E4 Enc
PAK_REPORT_ERROR MPC Error Register RO 124E8 Enc
PAK_REPORT_RUNNING PAK_REPORT_RUNNING status

register
RO 124EC Enc

Reserved 124F0~124FC Enc

7.4.1 Decoder Registers

7.4.1.1 MFD ERROR STATUS_VLD ERROR flags and counter

MFD_ERROR_STATUS - MFD Error Status
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12400h

This register stores the error status flags and count reports by the bit-stream decoder.
 This register is not part of hardware context save and restore. Driver should read the content prior to starting a new
batch/frame.
DWord Bit Description
0 31:16 Number of Error Events

Exists If: JPEG == True
Format: U16
This 16-bit field indicates the number of error events detected during decoding the current frame. This
field is clear at the start of decoding a new frame.

31:16 Number of MB Concealment
Exists If: AVC CAVLC, AVC CABAC, VC1 and MPEG2 == True
Format: U16
This 16-bit field indicates the number of MB is concealmed by hardware. This field is clear at the start
of decoding a new frame.

15:0 Bit-stream Error flags
Bit-stream error detected by the VLD bit-steram decoder. These flags are reset at the beginning of a
frame and updated until starting of another frame.
 AVC CAVLC: Please refer to AVC CAVLC table for each bit field
 AVC CABAC: Please refer to AVC CABAC table for each bit field
 VC1: Please refer to VC1 table for each bit field
 MPEG2: Please refer to MPEG2 table for each bit field
 JPEG: Please refer to JPEG table for each bit field

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 200

7.4.1.2 AVC CAVLC

AVC CAVLC

Source: VideoCS

Default Value: 0x00000000

DWord Bit Description
0 15 Total Zero out-of-bound Error

This flag indicates the Total zero SE count exceed the max number of coeffs allowed in an intra16x16 AC
block.

14 Coefficient level out-of-bound Error
This flag indicates the coded coefficient level SEs in the bit-stream is out-of-bound.

13 RunBefore out-of-bound Error
This flag indicates the coded RunBefore SE value is larger than the remaining zero block count.

12 Total coefficient Out-of-bound Error
This flag indicates the coded total coeff SE count exceed the max number of coeffs allowed in an
intra16x16 AC block.

11 Temporal Direction Motion Vector Out-of-Bound Error
This flag indicates motion vectors calculated from Temporal Direct Motion Vector is larger than the
allowed range specified by the AVC spec.

10 Final Motion Vector Out-of-Bound Error
This flag indicates final reconstructed Motion Vector value is larger than the allowed range specified by
the AVC spec.

9 Motion Vector Delta SE Out-of-Bound Error
This flag indicates inconsistent Motion Vector Delta SEs coded in the bit-stream.

8 Reference Index SE Out-of-Bound Error
This flag indicates inconsistent Reference Index SEs coded in the bit-stream.

7 RunBefore/TotalZero Error
This flag indicates one or more inconsistent RunBefore or TotalZero SEs coded in the bit-stream.

6 Exponential Golomb Error
This flag indicates hardware detects more than 18 leadzero for skip and more than 19 for other SEs from
the Exponential Golomb Logic

5 Total Coeff SE Error
This flag indicates one or more inconsistent total coeff SEs coded in the bit-stream.

4 Macroblock Coded Block Pattern Error
This flag indicates inconsistent CBP SEs coded in the bit-stream.

3 Mbytpe/submbtype Error
This flag indicates inconsistent MBtype/SubMBtype SEs coded in the bit-stream.

2 Chroma Intra prediction Mode Error
This flag indicates inconsistent Chroma Intra prediction mode SEs coded in the bit-stream.

1 Luma Intra prediction Mode Error
This flag indicates inconsistent luma Intra prediction mode SE coded in the bit-stream.

0 MB Concealment Flag
Each pulse from this flag indicates one MB is concealed by hardware.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 201

7.4.1.3 AVC CABAC

AVC CABAC

Source: VideoCS

Default Value: 0x00000000

DWord Bit Description
0 15 Reserved

Format: MBZ

14 Coefficient level out-of-bound Error
This flag indicates the coded coefficient level SEs in the bit-stream is out-of-bound.

13 Reserved
Format: MBZ

12 Reserved
Format: MBZ

11 Temporal Direction Motion Vector Out-of-Bound Error
This flag indicates motion vectors calculated from Temporal Direct Motion Vector is larger than the
allowed range specified by the AVC spec.

10 Final Motion Vector Out-of-Bound Error
This flag indicates final reconstructed Motion Vector value is larger than the allowed range specified by
the AVC spec.

9 Motion Vector Delta SE Out-of-Bound Error
This flag indicates inconsistent Motion Vector Delta SEs coded in the bit-stream.

8 Reference Index SE Out-of-Bound Error
This flag indicates inconsistent Reference Index SEs coded in the bit-stream.

7 MacroBlock QpDelta Error
This flag indicates out-of-bound MB QP delta SEs coded in the bit-stream.

6 Motion Vector Delta SE Error
This flag indicates out-of-bound motion vector delta SEs coded in the bit-stream.

5 Reference Index SE Error
This flag indicates out-of-bound Refidx SEs coded in the bit-stream.

4 Residual Error
This flag indicates out-of-bound absolute coefficient level SEs coded in the bit-stream.

3 Slice end Error
This flag indicates a pre-matured slice_end SE or inconsistent slice end on the last MB of a slice.

2 Chroma Intra prediction Mode Error
This flag indicates inconsistent Chroma Intra prediction mode SEs coded in the bit-stream.

1 Luma Intra prediction Mode Error
This flag indicates inconsistent luma Intra prediction mode SE coded in the bit-stream.

0 MB Concealment Flag
Each pulse from this flag indicates one MB is concealed by hardware.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 202

7.4.1.4 VC1

VC1

Source: VideoCS

Default Value: 0x00000000

DWord Bit Description
0 15:8 Reserved

Format: MBZ

7 Syncmarker Error
This flag indicates missing sync marker SEs coded in the bit-stream.

6 Mbmode SE Error
This flag indicates inconsistent Macroblock SEs coded in the bit-stream.

5 Transformtype SE Error
This flag indicates inconsistent transform type SEs coded in the bit-stream.

4 Coefficient Error
This flag indicates inconsistent Coefficient SEs coded in the bit-stream.

3 Motion Vector SE Error
This flag indicates inconsistent Motion Vector SEs coded in the bit-stream.

2 Coded Block Pattern CY SE Error
This flag indicates inconsistent CBPCY SEs coded in the bit-stream.

1 Mquant Error
This flag indicates inconsistent MQUANT SEs coded in the bit-stream.

0 MB Concealment Flag
. Each pulse from this flag indicates one MB is concealed by hardware.

7.4.1.5 MPEG2

MPEG2

Source: VideoCS

Default Value: 0x00000000

DWord Bit Description
0 15:6 Reserved

Format: MBZ

5 Missing EOB Error
This flag indicates missing EOB SEs coded in the bit-stream. Missing EOBs are concealed to match
CBP of the error MB.

4 Inconsistent starting position Error – overlapping MBs
This flag indicates two slices overlapping one another by one or more MBs. Duplicate MBs decoded off
the second slice shall be discarded.

3 Slice out-of-bound Error
This flag indicates a slice is running beyond the width of the picture. Out-of-bound MBs shall be
discarded.

2 Premature frame end Error
This flag indicates missing slices/MBs coded in the bit-stream of a frame. One or more MBs are

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 203

MPEG2
concealed to reach end of picture.

1 Inconsistent starting position Error – Missing MBs
This flag indicates one or more MBs are being concealed due to inconsistent MB starting and ending
positions between slices.

0 MB Concealment Flag
. Each pulse from this flag indicates one MB is concealed by hardware.

7.4.1.6 JPEG

JPEG

Source: VideoCS

Default Value: 0x00000000

DWord Bit Description
0 15:5 Reserved

Format: MBZ

4 Inconsistent VLD SE Error
This flag indicates an inconsistent SE coded in the bit-stream. Bit-stream does not match any entries in
the hauffman table.

3 Extra Block Error
This flag indicates extra block coded within an ECS data boundary.

2 Missing block Error
This flag indicates one or more blocks are missing within an ECS data boundary.

1 Extra ECS Error
This flag indicates extra ECS’ coded in the bit-stream SCAN payload data.

0 Missing ECS Error
This flag indicates one or more ECS’ are missing from the bit-stream SCAN payload data.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 204

7.4.1.7 MFD PICTURE PARAMETER - MFD Picture Parameter

MFD_PICTURE_PARAM - MFD Picture Parameter
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 12420h

DWord Bit Description
0 31:0 Reserved

Format: MBZ

7.4.1.8 MFX PIPELINE STATUS Flags_MFX pipeline mode flags

MFX_STATUS_FLAGS - MFX Pipeline Status Flags
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12438h

This register stores the various pipeline status flags.
 This register is not part of hardware context save and restore.

DWord Bit Description
0 31:17 Reserved

Format: MBZ

16 MFX Active
Frame decoding/encoding is in progress.
 Set on frame_start;
 clear on frame_end.

15:10 Reserved
Format: MBZ

9 Streamout Enable

7 Post Deblocking Mode Enable

6 Pre Deblocking Mode Enable

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 205

MFX_STATUS_FLAGS - MFX Pipeline Status Flags
5 Decoder Mode Select

Value Name
0 Configure the MFD Engine for VLD Mode
1 Configure the MFD Engine for IT Mode

4 Codec Select
Value Name

0 Decode
1 Encode

3:2 Video Mode
Value Name

00b MPEG2
01b VC1
10b AVC
11b JPEG

1 Decoder Short Format Mode
Value Name Description

0 AVC/VC1 Short Format Mode is in use
1 AVC/VC1 Long Format Mode is in use

0 Stitch Mode
Value Name Description

0b Not in Stitch Mode
1b In the Special Stitch Mode

7.4.1.9 MFX_FRAME_PERFORMANCE_CT - MFX Frame Performance Count

MFX_FRAME_PERFORMANCE_CT - MFX Frame Performance Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12460h

This register stores the number of clock cycles spent decoding/encoding the current frame.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:0 MFX Frame Performance Count

Total number of clocks between frame start and frame end. This count is incremented on crm_clk

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 206

7.4.1.10 MFX Slice Performance Count – Reported clock count per slice

MFX_SLICE_PERFORM_CT - MFX Slice Performance Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12464h

This register stores the number of clock cycles spent decoding/encoding the current slice.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:0 MFX Frame Performance Count

Total number of clocks between slice start and slice end. This count is incremented on crm_clk

7.4.1.11 MFX_MB_COUNT - MFX Frame Macroblock Count

MFX_MB_COUNT - MFX Frame Macroblock Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12468h

This register stores the number of Macro-blocks decoded/encoded in current frame.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:0 MFX Frame Macro-block Count

Total number of Macro-block decoded/encoded in current frame. This number is used with frame
performance count to derive clk/mb.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 207

7.4.1.12 MFX_SE-BIN_CT - MFX Frame BitSteam SE/BIN Count

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 1246Ch

This register stores the number of BINs (AVC CABAC) and SEs (CAVLD, VLD) decoded in a frame.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:0 MFX Frame Bit-stream SE/BIN Count

Total number of BINs/SEs decoded in current frame. This number is used with frame performance count
to derive Bin/clk or SE/clk.

7.4.1.13 MFX Memory Latency Count1 – Reported Reference read latency
Counts

MFX_LAT_CT1 - MFX_Memory_Latency_Count1
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12470h

This register stores the max and min memory latency counts reported on reference read requests.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:24 Max Request Count

This field indicates the maximum number of requests allowed by the memory sub-system channel.
23:16 Current Request Count

This field indicates the number of requests currently outstanding in the memory sub-system.
 This field should report with a value of zero at the end of frame; otherwise the motion compensation
engine is most likely hung waiting for read data to be returned from sub-system.

15:8 MFX Reference picture read request - Max Latency Count in 8xMedia clock cycles
This field reports the maximum memory latency count on all reference reads requested by the motion
compensation engine.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 208

MFX_LAT_CT1 - MFX_Memory_Latency_Count1
7:0 MFX Reference picture read request - Min Latency Count in 8xMedia clock cycles

This field reports the minimum memory latency count on all reference reads requested by the motion
compensation engine.

7.4.1.14 MFX_LAT_CT2 - MFX Memory Latency Count2

MFX_LAT_CT2 - MFX Memory Latency Count2
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12474h

This register stores the accumulative memory latency count on reference picture read requests.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:26 Reserved

Format: MBZ

25:0 MFX Reference picture read request - Accumulative Memory Latency Count for the entire frame
in 8xMedia clock cycles
The accumulative memory latency count of all reference reads requested by motion compensative
engine per frame.
 This number is used with MFX Frame Motion Comp Read Count to derive average memory latency.

7.4.1.15 MFX_LAT_CT3 - MFX Memory Latency Count3

MFX_LAT_CT3 - MFX Memory Latency Count3
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12478h

This register stores the max and min memory latency counts reported on row-stored/bit-stream read requests. Max

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 209

MFX_LAT_CT3 - MFX Memory Latency Count3
and current requests into memory sub-system engine.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:24 Max Request Count

This field indicates the maximum number of requests allowed by the memory sub-system channel.
23:16 Current Request Count

This field indicates the number of requests currently outstanding in the memory sub-system.
 This field should report with a value of zero at the end of frame; otherwise the pre-fetch engine most
likely hung waiting for read data to be returned from sub-system.

15:8 MFX row-stored/bit-stream read request - Max Latency Count in 8xMedia clock cycles
This field reports the maximum memory latency count on all row-stored/bit-stream reads requested by
the memory pre-fetch engine.

7:0 MFX row-stored/bit-stream read request - Min Latency Count in 8xMedia clock cycles
This field reports the minimum memory latency count on all row-stored/bit-stream reads requested by
the memory pre-fetch engine.

7.4.1.16 MFX_LAT_CT4 - MFX Memory Latency Count4

MFX_LAT_CT4 - MFX Memory Latency Count4
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 1247Ch

This register stores the accumulative memory latency count on row-stored/bit-stream read requests.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:26 Reserved

Format: MBZ

25:0 MFX row-stored/bit-stream read request - Accumulative Memory Latency Count for the entire
frame in 8xMedia clock cycles
The accumulative memory latency count of all row-stored/bit-stream reads requested by pre-fetch
engine per frame.
 This number is used with Frame row-stored/bit-stream memory read count to derive average
memory latency.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 210

7.4.1.17 MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 1246Ch

This register stores the number of BINs (AVC CABAC) and SEs (CAVLD, VLD) decoded in a frame.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:0 MFX Frame Bit-stream SE/BIN Count

Total number of BINs/SEs decoded in current frame. This number is used with frame performance count
to derive Bin/clk or SE/clk.

7.4.1.18 MFX_READ_CT - MFX Frame Motion Comp Read Count

MFX_READ_CT - MFX Frame Motion Comp Read Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12484h

This register stores the total number of reference picture read requests made by the Motion Compensation engine
per frame.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:20 Reserved

Format: MBZ

19:0 MFX Frame Motion Comp CL read request Count
Total number of reference picture read requests by the motion compensation engine per frame.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 211

7.4.1.19 MFX_READ_CT - MFX Frame Motion Comp MISS Count

MFX_MISS_CT - MFX Frame Motion Comp Miss Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12488h

This register stores the total number of cacheline hits occurred in the motion compensation cache per frame.
 This register is not part of hardware context save and restore.
DWord Bit Description
0 31:16 Reserved

Format: MBZ

15:0 MFX Frame Motion Comp cache miss Count
Total number of CL misses occurred in the 12KB cache of the motion compensation engine per frame.
 This number is used along with MFX Frame Motion Comp Read Count to derive motion comp cache
miss/hit ratio.

7.4.2 Encoder Registers

7.4.2.1 MFC_VIN_AVD_ERROR_CNTR — AVC Bitstream Decoding Front-End
Parsing Logic Error Counter Report Register

MFC_VIN_AVD_ERROR_CNTR - MFC_AVC Bitstream Decoding
Front-End Parsing Logic Error Counter

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 12804h

DWord Bit Description
0

avd_error_flagsR[31:0]

31:0 Reserved
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 212

7.4.3 MFC_BITSTREAM_BYTECOUNT_FRAME — Reported
Bitstream Output Byte Count per Frame

MFC_BITSTREAM_BYTECOUNT_FRAME - Reported Bitstream
Output Byte Count per Frame Register

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124A0h

This register stores the count of bytes of the bitstream output per frame
DWord Bit Description
0 31:0 MFC Bitstream Byte Count per Frame

Total number of bytes in the bitstream output per frame from the encoder. This includes header/tail/byte
alignment/data bytes/EMU (emulation) bytes/cabac-zero word insertion/padding insertion. This count is
updated for every time the internal bitstream counter is incremented and its reset at image start.

7.4.4 MFC_BITSTREAM_SE_BITCOUNT_FRAME (Reported
Bitstream Output Bit Count for Syntax Elements Only)

MFC_BITSTREAM_SE_BITCOUNT_FRAME - Reported Bitstream
Output Bit Count for Syntax Elements Only Register

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124A4h

This register stores the count of number of bits in the bitstream due to syntax elements only. This excludes header/
byte alignment /tail/EMU/CABAC-0word/padding bits but includes the stop-one-bit. This register is part of the context
save and restore.
DWord Bit Description
0 31:0 MFC Bitstream Syntax Element Only Bit Count

Total number of bits in the bitstream output due to syntax elements only. It includes the data bytes only.
This count is updated for every time the internal bitstream counter is incremented and its reset at image
start.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 213

7.4.5 MFC_AVC_CABAC_BIN_COUNT_FRAME (Reported Bitstream
Output CABAC Bin Count)

MFC_AVC_CABAC_BIN_COUNT_FRAME - Reported Bitstream
Output CABAC Bin Count Register

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124A8h

This register stores the count of number of bins per frame.
DWord Bit Description
0 31:0 MFC AVC Cabac Bin Count

Total number of BINs in the bitstream output per frame from the encoder. This count is updated for every
time the bin counter is incremented and its reset at image start.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 214

7.4.6 MFC_AVC_CABAC_INSERTION_COUNT — Reported Bitstream
Output CABAC Insertion Count

AVC_CABAC_INSERTION_COUNT -
MFC_AVC_CABAC_INSERTION_COUNT

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124ACh

This register stores the count in bytes of CABAC ZERO_WORD insertion. It is primarily provided for statistical
data gathering.
DWord Bit Description
0 31:0 MFC AVC Cabac Insertion Count

Total number of bytes in the bitstream output before for the CABAC zero word insertion. This count is
updated each time when the insertion count is incremented.

7.4.7 MFC_AVC_MINSIZE_PADDING_COUNT — Reported Bitstream
Output Minimal Size Padding Count

MFC_AVC_MINSIZE_PADDING_COUNT - Bitstream Output Minimal
Size Padding Count Report Register

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 12414h

Name: VDBOX1

This register stores the count in bytes of minimal size padding insertion. It is primarily provided for statistical
data gathering. This register is part of the context save and restore.
DWord Bit Description
0 31:0 MFC AVC MinSize Padding Count

Total number of bytes in the bitstream output contributing to minimal size padding operation. This count
is updated each time when the padding count is incremented.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 215

7.5 MFC_IMAGE_STATUS_MASK

MFC_IMAGE_STATUS_MASK - MFC Image Status Mask
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124B4h

This register stores the image status(flags).
DWord Bit Description

0 31:0 Control Mask
Control Mask for dynamic frame repeat.

7.5.1 MFC_IMAGE_STATUS_CONTROL

MFC_IMAGE_STATUS_CONTROL - MFC Image Status Control
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Trusted Type: 1

Address: 124B8h

This register stores the suggested data for next frame in multi-pass.
DWord Bit Description
0 31:24 Cumulative slice delta QP

23:16 QP Value
suggested slice QP delta value for frame level Rate control. This value can be +ve or -ve

15 QP-Polarity Change
Cumulative slice delta QP polarity change.

14:13 Num-Pass Polarity Change
Number of passes after cumulative slice delta QP polarity changes.

12 Reserved
Format: MBZ

11:8 Total Num-Pass

7:3 Reserved
Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 216

MFC_IMAGE_STATUS_CONTROL - MFC Image Status Control
2 Panic

Panic triggered to avoid too big packed file.

1 Frame Bit Count
Frame Bit count over-run/under-run flag

0 Max Conformance Flag
Max Macroblock conformance flag or Frame Bit count over-run/under-run

7.5.2 MFC_QUP_CT - MFC QP Status Count

MFC_QUP_CT - MFC QP Status Count
Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124BCh

This register stores the suggested QP COUNTS in multi-pass.
DWord Bit Description
0 31:24 Cumulative QP Adjust

Format: U8
Cumulative QP adjustment after multiple passes. If there is no need to multi-pass, this value would be
zero. (This is in sign magnitude form).

23:0 Cumulative QP
Format: U24
Cumulative QP for all MB of a Frame (Can be used for computing average QP).

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 217

7.5.3 MFC_BITSTREAM_BYTECOUNT_SLICE — Bitstream Output
Byte Count per Slice

MFC_BITSTREAM_BYTECOUNT_SLICE - Bitstream Output Byte
Count Per Slice Report Register

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124D0h

This register stores the count of bytes of the bitstream output. This register is part of the context save and restore.
DWord Bit Description
0 31:0 MFC Bitstream Byte Count

Total number of bytes in the bitstream output from the encoder. This count is updated for every time the
internal bitstream counter is incremented.

7.5.4 MFC_BITSTREAM_SE_BITCOUNT_SLICE — Bitstream Output
Bit Count for the last Syntax Element

MFC_BITSTREAM_SE_BITCOUNT_SLICE - Bitstream Output Bit
Count for the last Syntax Element Report Register

Register Space: MMIO: 0/2/0

Source: VideoCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 124D4h

Name: VDBOX1

This register stores the count of number of bits in the bitstream for the last syntax element before padding. The bit
count is before the byte-aligned alignment padding insertion, but includes the stop-one-bit. This register is part of the
context save and restore.
DWord Bit Description

0 31:0 MFC Bitstream Syntax Element Bit Count
Total number of bits in the bitstream output before padding. This count is updated each time the
internal counter is incremented.

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 218

7.6 Row Store Sizes and Allocations
 AVC VC1 MPEG2 JPEG IT ENC SEC ENC

vin_vmx_pixcoefind_
addr[31:6]

Bitstream Bitstream Bitstream Bitstream VDS
COEF

Orig Pix BSP data

vin_vmx_mvbsdrs_
addr[31:6]

VAD BSD VMD RS VDS MV MPC MV

vin_vmx_mpcildbmpr_
addr[31:6]

VAM MPR VDS ILDB MPC RS

vin_vmx_dmv*_
addr[31:6]

VAM DMV VCP DMV

vin_vmx_bp_addr
[31:0]

 VCP BP

 Write Surf size

 VBP BP vin_bp_addr Frame width/pitch * Height
 VMD RS vin_vmx_mvbsdrs_addr Frame width
 VCP RS vin_vmx_mvbsdrs_addr Frame width
 VCP DMV vin_vmx_dmv1_addr Frame size
 VAD BSD vin_vmx_mvbsdrs_addr Frame width * (1+mbaff)
 VAM MPR vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)
 VAM DMV 34x1 mux, from IDC Frame size
 Streamout vin_streamout_addr Frame size
 VOP RS vin_ipred_os_addr Frame width
 MPC RS vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)
 BSP BS Direct from BSP
 BSP MB Direct from BSP

 Read
row store VMD vin_vmx_mvbsdrs_addr Frame width

row store VCP vin_vmx_mvbsdrs_addr Frame width

DMV VCP vin_vmx_dmv*_addr Frame size

Bitplane VCD vin_vmx_bp_addr Frame width/pitch * Height

Bsd VAD vin_vmx_mvbsdrs_addr Frame width * (1+mbaff)

Mpr VAM vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)

Dmv VAM vin_vmx_dmv*_addr Frame size

Coef VDS vin_vmx_pixcoefind_addr Obj

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 219

 Write Surf size

Mv VDS vin_vmx_mvbsdrs_addr Obj

Ildb VDS vin_vmx_mpcildbmpr_addr Obj

Rs VIP vin_ipred_os_addr Frame width

RS MPC vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)

MV MPC vin_vmx_mvbsdrs_addr Obj

sec enc BSP vin_vmx_mvbsdrs_addr Obj

multipass VIN vin_vmx_bp_addr Frame size

orig pix USB vin_vmx_pixcoefind_addr Frame size

MPEG2 VLD Decoding Mode :

use BSD Row Store only, and

MPEG2 IT Decoding Mode :

MPEG2 IT mode does not need row-store

JPEG VLD Decoding Mode : no row store is needed

Doc Ref #: IHD-OS-V2 Pt 3_r1.1 – 05 12 7/19/2012 220

Revision History
Revision Number Description Revision Date
1.0 First 2012 OpenSource edition 2012
1.1 Revisions based on user feedback 2012

§§

	For the 2012 Intel® Core™ Processor Family
	Revision 1.1
	NOTICE:
	Creative Commons License
	You are free to Share — to copy, distribute, display, and perform the work
	Under the following conditions:
	No Derivative Works. You may not alter, transform, or build upon this work.
	Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
	Copyright © 2012, Intel Corporation. All rights reserved.
	1. MFX Introduction
	1.1 MFD Overview
	1.1.1 MFD Memory Interface
	1.1.2 MFD Codec-Specific Commands

	1.2 MFC Overview
	1.2.1 Example Usage Model

	I0, B-B1, K1, B-B2, K2, B-B3, K3, … , B-BN, KN
	1.2.2 Sample Algorithmic Flow
	1.2.3 Synchronization Mechanism

	Above three steps of encoding have dependencies in processing based on
	Command Stream Synchronization
	1.2.4 Restrictions
	1.3 MFX State Model

	MFX State Model
	1.4 MFX Interruptability Model
	1.5 MFX Programming Restrictions
	1.5.1 All Codecs

	1.6 MFX Codec Commands Summary
	1.6.1 MFX Decoder Commands Sequence
	1.6.1.1 Examples for AVC

	The following gives a sample command sequence programmed by a driver
	MFX_PIPE_MODE_SELECT
	MFX_SURFACE_STATE
	VLD mode: MFX_AVC_PICID_STATE
	MFX_AVC_IMG_STATE
	MFX_PIPE_MODE_SELECT
	MFX_SURFACE_STATE
	VLD mode: MFX_AVC_PICID_STATE
	MFX_AVC_IMG_STATE
	MI_FLUSH
	1.6.1.2 Examples for VC1

	The following gives a sample command sequence programmed by a driver
	MFX_VC1_DIRECTMODE_STATE
	MFX_VC1_PRED_PIPE_STATE
	MFX_VC1_DIRECTMODE_STATE
	MFX_VC1_PRED_PIPE_STATE
	1.6.1.3 Examples for JPEG

	The following gives a sample command sequence programmed by a driver
	MFX_PIPE_MODE_SELECT
	MFX_PIPE_SURFACE_STATE
	MFX_JPEG_HUFF_TABLE
	MFX_QM_STATE
	MFD_JPEG_ BSD_OBJECT
	MI_FLUSH
	1.7 MFX Pipe Common Commands
	1.7.1 MFX_WAIT Command
	1.7.2 MFX_STATE_POINTER Command
	1.7.3 MFX_PIPE_MODE_SELECT

	Programming Restriction:
	1.7.4 MFX_SURFACE_STATE Command
	1.7.5 MFX_PIPE_BUF_ADDR_STATE Command
	1.7.6 MFX_IND_OBJ_BASE_ADDR_STATE Command
	1.7.7 MFX_PAK_INSERT_OBJECT
	1.7.8 MFX_STITCH_OBJECT
	1.7.9 MFX_QM_STATE Command
	1.7.10 MFX_FQM_STATE Command

	2. AVC (H.264)
	2.1 AVC Common Commands
	2.1.1 MFX_AVC_IMG_STATE Command
	2.1.2 MFX_AVC_DIRECTMODE_STATE Command
	2.1.3 MFX_AVC_SLICE_STATE Command
	2.1.4 MFX_AVC_REF_IDX_STATE Command
	2.1.5 MFX_AVC_WEIGHTOFFSET_STATE Command

	2.2 AVC Decoder Commands
	2.2.1 MFD_AVC_DPB_STATE Command
	2.2.2 MFD_AVC_SLICEADDR Command
	2.2.3 MFD_AVC_BSD_OBJECT Command
	2.2.3.1 Inline Data Description

	2.3 AVC Encoder PAK Commands
	2.3.1 MFC_AVC_PAK_OBJECT Command
	2.3.1.1 PAK Object Inline Data Description

	Inline data for RefPicSelect
	Inline data subfields for an Intra Macroblock
	Definition of LumaIntraPredModes
	Numbers of Block4x4 in a 16x16 region
	Numbers of Block4x4 in an 8x8 region or numbers of Block8x8 in a 16x16 region
	Definition of Chroma Intra Prediction Mode
	2.3.1.1.1 Reference Indices defined for each MB partition type and Bit Assignment
	2.3.1.1.2 MB Neighbor Availability in Intra-Prediction Modes (IntraPredAvailFlags)

	Definition of intra-prediction neighbor availability calculation in MBAFF mode
	Definition of intra-prediction neighbor availability calculation in non-MBAFF mode
	Detailed explanation of intra-prediction neighbor availability calculation in MBAFF mode
	2.3.1.1.3 Macroblock Type for Intra Cases

	MbType definition for Intra Macroblock
	Sub field definition used by MbType for a macroblock with Intra16x16 prediction
	2.3.1.1.4 Macroblock Type for Inter Cases

	InterMbMode definition
	Definition of SubMbPredMode based on InterMbMode
	Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock (including BSKIP, BDIRECT)
	MbType definition for Inter Macroblock (and MbSkipflag = 0)
	2.3.1.1.5 Macroblock Type Conversion Rules

	Derivation process for luma motion vectors for skipped macroblocks in P and SP slices
	Macroblock type conversion rule for an inter macroblock in a P slice
	Macroblock type conversion rule for an inter macroblock in a B slice
	2.3.1.2 Indirect Data Description
	2.3.1.2.1 Unpacked Motion Vector Data Block

	Motion Vector block and MvSize
	2.3.1.2.2 Packed-size Motion Vector Data Block
	2.3.1.3 Macroblock Level Rate Control
	2.3.1.3.1 Theory of Operation Overview

	QPmod
	Triggering
	Panic
	User Controls
	2.4 AVC Encoder MBAFF Support

	3. MPEG-2
	3.1 MPEG2 Common Commands
	3.1.1 MFX_MPEG2_PIC_STATE Command

	3.2 MPEG2 Decoder Commands
	3.2.1 MFD_MPEG2_BSD_OBJECT Command (pipeline)
	3.2.1.1 Inline Data Description in MFD_MPEG2_BSD_OBJECT
	3.2.1.2 Indirect Data Description

	Indirect data buffer for a slice
	4. JPEG
	4.1 JPEG Decoder Commands
	4.1.1 MFD_JPEG_BSD_OBJECT Command
	4.1.2 MFX_JPEG_PIC_STATE Decoder

	422H_2Y
	422H_4Y
	422V_2Y
	422V_4Y
	4.1.3 MFX_JPEG_HUFF_TABLE_STATE

	5. More Decoder and Encoder
	5.1 MFD IT Mode Decode Commands
	5.1.1 MFD_IT_OBJECT Command
	5.1.1.1 Common Indirect IT-COEFF Data Structure

	Structure of the IDCT Compressed Data Buffer
	Structure of a transform-domain residue unit
	5.1.1.2 Inline Data Description in AVC-IT Mode
	5.1.1.3 Indirect Data Format in AVC-IT Mode

	Each MV is represented in 4 bytes, in the form of
	Indirect MV record size in AVC-IT mode
	5.1.1.4 Inline Data Description in VC1-IT Mode
	5.1.1.5 Indirect Data Format in VC1-IT Mode
	5.1.1.6 Inline Data Description in MPEG2-IT Mode

	Inline data in MPEG2-IT Mode
	5.1.1.7 Indirect Data Format in MPEG2-IT Mode
	5.2 Session Decoder StreamOut Data Structure

	Inline data subfields for an Intra Macroblock
	5.3 Decoder Input Bitstream Formats
	5.3.1 AVC Bitstream Formats – DXVA Short
	5.3.2 AVC Bitstream Formats – DXVA Long
	5.3.3 AVC Bitstream Formats – Intel Long
	5.3.4 VC1 Bitstream Formats – Intel Long
	5.3.5 MPEG2 Bitstream Formats – DXVA1
	5.3.6 JPEG Bitstream Formats – Intel

	Indirect data buffer for a Scan
	5.4 Concurrent, Multiple Video Stream Decoding Support

	6. Encoder StreamOut Mode Data Structure Definition
	6.1 PAK Multi-Pass

	Multi-Pass PAK Usages:
	How to Enable Multi-Pass PAK?
	Issues and Limitations:
	6.2 Driver Usage

	7. Programming Reference
	7.1 Monochrome Picture Processing
	7.2 Context Switch
	7.3 Pipeline Flush
	7.4 MMIO Interface
	7.4.1 Decoder Registers
	7.4.1.1 MFD ERROR STATUS_VLD ERROR flags and counter
	7.4.1.2 AVC CAVLC
	7.4.1.3 AVC CABAC
	7.4.1.4 VC1
	7.4.1.5 MPEG2
	7.4.1.6 JPEG
	7.4.1.7 MFD PICTURE PARAMETER - MFD Picture Parameter
	7.4.1.8 MFX PIPELINE STATUS Flags_MFX pipeline mode flags
	7.4.1.9 MFX_FRAME_PERFORMANCE_CT - MFX Frame Performance Count
	7.4.1.10 MFX Slice Performance Count – Reported clock count per slice
	7.4.1.11 MFX_MB_COUNT - MFX Frame Macroblock Count
	7.4.1.12 MFX_SE-BIN_CT - MFX Frame BitSteam SE/BIN Count
	7.4.1.13 MFX Memory Latency Count1 – Reported Reference read latency Counts
	7.4.1.14 MFX_LAT_CT2 - MFX Memory Latency Count2
	7.4.1.15 MFX_LAT_CT3 - MFX Memory Latency Count3
	7.4.1.16 MFX_LAT_CT4 - MFX Memory Latency Count4
	7.4.1.17 MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count
	7.4.1.18 MFX_READ_CT - MFX Frame Motion Comp Read Count
	7.4.1.19 MFX_READ_CT - MFX Frame Motion Comp MISS Count

	7.4.2 Encoder Registers
	7.4.2.1 MFC_VIN_AVD_ERROR_CNTR — AVC Bitstream Decoding Front-End Parsing Logic Error Counter Report Register

	7.4.3 MFC_BITSTREAM_BYTECOUNT_FRAME — Reported Bitstream Output Byte Count per Frame
	7.4.4 MFC_BITSTREAM_SE_BITCOUNT_FRAME (Reported Bitstream Output Bit Count for Syntax Elements Only)
	7.4.5 MFC_AVC_CABAC_BIN_COUNT_FRAME (Reported Bitstream Output CABAC Bin Count)
	7.4.6 MFC_AVC_CABAC_INSERTION_COUNT — Reported Bitstream Output CABAC Insertion Count
	7.4.7 MFC_AVC_MINSIZE_PADDING_COUNT — Reported Bitstream Output Minimal Size Padding Count

	7.5 MFC_IMAGE_STATUS_MASK
	7.5.1 MFC_IMAGE_STATUS_CONTROL
	7.5.2 MFC_QUP_CT - MFC QP Status Count
	7.5.3 MFC_BITSTREAM_BYTECOUNT_SLICE — Bitstream Output Byte Count per Slice
	7.5.4 MFC_BITSTREAM_SE_BITCOUNT_SLICE — Bitstream Output Bit Count for the last Syntax Element

	7.6 Row Store Sizes and Allocations

	Revision History

